

2020 MarkAir Warehouse Groundwater Monitoring with Enhanced Monitored Natural Attenuation Report

	ADEC File No.	Hazard ID
MarkAir Warehouse	100.26.043	22871

Prepared for: Alaska Department of Transportation and Public Facilities Fairbanks International Airport 6450 Airport Way Fairbanks, Alaska 99709

> Prepared by: Jacobs Engineering Group Inc.

Responsible ADEC-Qualified Environmental Professionals						
Groundwate	r Samplers					
Karri Sicard						
Guy Wade						
Data Ar	nalysis					
Karri Sicard						
Dave Ward						
Tomos Davies						
Kari Hagen						
Report A	Report Authors					
Karri Sicard						
Guy Wade						

TABLE OF CONTENTS

<u>SEC</u>	<u>TIOI</u>	<u>N</u>	PAG	E
ACF	RONY	MS AND	OABBREVIATIONS	iii
EXE	CUT	IVE SUM	IMARYES	-1
1.0	INT	RODUCT	TION	-1
	1.1	PROJEC	CT OBJECTIVES	-1
	1.2	SITE DI	ESCRIPTION1	-2
	1.3	SITE HI	STORY	-2
2.0	FIEI	LD ACTI	VITIES2	-1
	2.1	WORK	PLAN DEVIATIONS	-1
	2.2	GROUN	DWATER MONITORING2	-2
		2.2.1	Monitored Natural Attenuation	-3
		2.2.2	Microbial Community Analysis2	-3
	2.3	WELL N	MAINTENENCE2	-4
	2.4	WELL S	SURVEY AND GROUNDWATER GRADIENT EVALUATION2	-4
	2.5	INVEST	TIGATION-DERIVED WASTE2	-5
3.0	PRO	POSED (CLEANUP LEVELS	-1
4.0	QUA	ALITY AS	SSURANCE ASSESSMENT4	-1
	4.1	QUALI	ГY CONTROL4	-1
	4.2	DATA (QUALITY4	-1
	4.3	DATA U	JSABILITY4	-2
5.0	RES	ULTS AI	ND FINDINGS	-1
	5.1	MONIT	ORING WELL GAUGING	-1
	5.2	RESUL	ГS	-2
		5.2.1	Water Quality Parameters	-2
		5.2.2	Analytical Results for Site Contaminants	-2
		5.2.3	Evaluation of MNA Parameters	-8
		5.2.4	Genetic Results	12
	5.3	MANN-	KENDALL ANALYSIS	14
6.0	CON	ICEPTUA	AL SITE MODEL	-1
7.0	CON	ICLUSIO	ONS AND RECOMMENDATIONS	-1

TABLE OF CONTENTS (Continued)

<u>SECTION</u>

PAGE

	7.1	CONCLUSIONS	7-1
	7.2	RECOMMENDATIONS	7-2
8.0	REF	ERENCES	8-1

TABLES

Table 3-1	GCLs for Select Target Analytes at MarkAir Warehouse Site	3-1
Table 5-1	Summary of Well Integrity and Gauging Data	5-1
Table 5-2	2020 Final Water Quality Parameters	5-2
Table 5-3	2020 Groundwater Parameters (µg/L)	5-8
Table 5-4	2020 and Historical Groundwater – Microbial Analysis Genetic Results	5-13
Table 5-5	Mann-Kendall Trend Summary	5-15

APPENDICES

Appendix A	Site Figures
Appendix B	Photograph Log
Appendix C	Field Notes
Appendix D	Groundwater Sampling Forms
Appendix E	Analytical Data Tables
Appendix F	Data Quality Assessment
Appendix G	Mann-Kendall Time-Series Plots
Appendix H	Standard Operating Procedure
Appendix I	Conceptual Site Model
Appendix J	Response to Comments

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
μg/L	micrograms per liter
µS/cm	microSiemens per centimeter
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
APS	adenosite-5'-phosphosulfate reductase (sulfate-reducing bacteria)
ASCWG	Alaska Statement of Cooperation Working Group
bgs	below ground surface
BSS	benzyl succinate synthase
btoc	below top of casing
BTEX	benzene, toluene, ethylbenzene, xylenes
cells/mL	cells per milliliter
CSM	conceptual site model
DL	detection limit
DO	dissolved oxygen
DOT&PF	Alaska Department of Transportation & Public Facilities
DRO	diesel-range organics
EDB	1,2-dibromoethane
EDC	1,2-dichloroethane
EPA	U.S. Environmental Protection Agency
FAI	Fairbanks International Airport
GCL	groundwater cleanup level
GRO	gasoline-range organics
Jacobs	Jacobs Engineering Group Inc.
LOD	limit of detection
LOQ	limit of quantitation
MAW	MarkAir Warehouse
MDC	maximum detected concentration
mg/L	milligrams per liter
MNA	monitored natural attenuation
MS/MSD	matrix spike/matrix spike duplicate
mV	millivolts
MW	monitoring well
ND	nondetect
NTU	nephelometric turbidity units
ORP	oxidation-reduction potential

ACRONYMS AND ABBREVIATIONS (Continued)

polycyclic aromatic hydrocarbon
quality control
residual-range organics
SGS Environmental Laboratory Services
underground storage tank
volatile organic compound
Yellow Springs Instruments

EXECUTIVE SUMMARY

The Alaska Department of Transportation & Public Facilities (DOT&PF) requested groundwater monitoring at the Alaska Department of Environmental Conservation (ADEC) Fairbanks International Airport (FAI) MarkAir Warehouse (MAW) contaminated site (File No. 100.26.043, Hazard ID 22871), located at the FAI in Fairbanks, Alaska (Figure A-1, Appendix A). At the request of DOT&PF, Jacobs Engineering Group Inc. conducted groundwater monitoring on 15 and 16 December 2020.

During the project, seven monitoring wells were visited for well integrity inspections, surveying of groundwater elevations, and groundwater sampling. These included monitoring wells MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17. Samples collected from all monitoring wells during the monitoring event were submitted to the laboratory for analysis of gasoline-range organics (GRO) using ADEC Method AK101, diesel-range organics (DRO) using ADEC Method AK102, and residual-range organics using ADEC Method AK103. In addition, samples from monitoring wells MW-3, MW-5, MW-9, MW-12 and MW-17 were submitted for benzene, toluene, ethylbenzene and xylenes (BTEX) using U.S. Environmental Protection Agency (EPA) Method SW8021B; samples from MW-8 and MW-10 were submitted for analysis of volatile organic compounds by EPA Method SW8260D; and polyaromatic hydrocarbons via EPA Method SW8270D-SIM. Samples collected at MW-8, MW-9, MW-10, MW-12, and MW-17 were also analyzed for 1,2-dibromoethane (EDB) and 1,2-dichloroethane (EDC) via EPA Method SW8260D.

Additional sampling of groundwater took place from four wells (MW-5, MW-8, MW-10, and MW-12) to conduct a gene analysis of the microbial community to monitor the growth of sulfate-reducing bacteria population and to collect monitored natural attenuation (MNA) parameters. Samples collected for MNA were submitted for analysis of manganese and iron via EPA Method 6020A, methane via RSK 175, sulfate via EPA Method 300.0, total nitrite and nitrate via SM21 4500NO3-F, and total phosphorous by SM21 4500P-B,E. A Mann-Kendall trend analysis of groundwater sampling results was conducted to aid in recommendations for further monitoring and remediation activities. Remedial injection of nutrient mixtures for

enhanced MNA was postponed due to cold temperatures significantly below freezing that could severely inhibit mixing and injection of the water-based mix.

Analytical results were screened against the groundwater cleanup levels (GCLs) listed in Table C of the Alaska Administrative Code Title 18, Chapter 75, *Oil and other Hazardous Substances Pollution Control* (ADEC 2020b). Results of the sampling event indicated the following exceedances of ADEC GCLs in groundwater at the specified monitoring wells:

- GRO in MW-8 and MW-10
- DRO in MW-10 and MW-17
- RRO in MW-10 and MW-17
- Naphthalene, 1,2,4-trimethylbenzene (TMB), EDB, benzene, ethylbenzene, and xylenes in MW-10 and MW-8
- 1-methylnaphthalene, 2-methylnaphthalene, and 1,3,5-TMB in MW-10 (Figure A-2, Appendix A)
- EDC in MW-8

Results of MNA sampling indicated manganese concentrations above ADEC GCLs in MW-8, MW-10, and MW-12.

Results of a Mann-Kendall trend analysis of contaminant concentrations indicated DRO concentrations are decreasing in monitoring well MW-3, increasing in monitoring well MW-10, and stable in the rest of the sampled wells at the MAW site. No trend in contaminant concentration data was observed for EDC in monitoring well MW-8 or for EDB in MW-10. The analysis also showed the rest of the contaminants in the seven sampled wells were stable.

The genetic analysis of four wells indicated microbe concentrations and gene biodegradation pathways are available on site. Comparisons of these results with historical results for benzyl succinate synthase and sulfate-reducing bacteria show similarities to population concentrations since monitoring began in 2012.

Recommendations at the DOT&PF FAI MAW site include continuation of biennial groundwater monitoring and remedial injection of nutrient mixtures for enhanced MNA in coordination with ADEC until ADEC determines that further monitoring is not required.

(intentionally blank)

1.0 INTRODUCTION

The Alaska Department of Transportation & Public Facilities (DOT&PF) contracted Jacobs Engineering Group Inc. (Jacobs) to perform biennial groundwater monitoring activities at the Fairbanks International Airport (FAI) MarkAir Warehouse (MAW) contaminated site, Alaska Department of Conservation (ADEC) No. 100.26.043 and Hazard ID 22871. Sampling activities at the MAW site are outlined in the ADEC-approved work plan prepared in November 2020 (DOT&PF 2020). This report has been prepared on behalf of the DOT&PF to document the objectives and scope of work associated with the sampling event, field activities that occurred in December 2020, as well as the analytical results, findings, conclusions and recommendations for the MAW site.

1.1 PROJECT OBJECTIVES

In December 2020, Jacobs field staff performed groundwater monitoring at the DOT&PF FAI MAW site. Objectives of the 2020 MAW groundwater monitoring field effort included the following:

- Collecting groundwater samples at seven existing groundwater monitoring wells (MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17) for analysis of fuel-related constituents, monitored natural attenuation (MNA) parameters, and microbial community
- Surveying groundwater elevations and conducting repairs at the seven wells
- Performing remedial activities for enhanced MNA, to include:
 - Injection of nutrient mixtures (sulfate, nitrate/nitrite, and phosphorous) into six wells (IW-1, IW-2, IW-3, IW-4, MW-10, and MW-17) during two separate events to promote growth of sulfate-reducing bacteria to continue biodegradation of fuel-related contaminants in soil and water
 - Sampling groundwater from four monitoring wells (MW-5, MW-8, MW-10, and MW-12) to conduct a gene analysis of the microbial community to monitor the growth of sulfate-reducing bacteria population
- Performing a Mann-Kendall trend analysis of groundwater sampling results
- Reporting on field activities conducted and results of the groundwater monitoring and remedial activities
- Developing recommendations for further monitoring and remediation activities

1.2 SITE DESCRIPTION

The MarkAir Warehouse site, also known as the Former Weaver Brothers Facility, is located northwest of the FAI runways at the southwest corner of the Mail Trail Road and Airport Industrial Road intersection (ADEC 2020a) (Figure A-1). The site is located within the Fairbanks Meridian, Township 1 South, Range 2 West, Section 13 and consists of lots 6, 7, and 13 of block 10. The property is owned by the DOT&PF and is operated/managed by FAI. Based on previous monitoring reports, groundwater depth varies between approximately 6 and 12 feet below ground surface (bgs), and groundwater flow direction is to the northwest (DOT&PF 2017) (Figure A-2).

1.3 SITE HISTORY

The source of the contamination at the MAW site originated from leaking and overfilled underground storage tanks (USTs) that were installed in 1976. The leaks were discovered during tank tightness tests and subsequent removal activities in 1992. USTs and associated pipes were grouted in place where removal was not practicable, and contaminated soil was also removed in this 1992 effort. Between 1993 and 2005, several investigations to characterize and delineate contamination in soil and groundwater were performed (DOT&PF 2018).

The following paragraphs summarize historical environmental investigations that have occurred at the MAW site in response to the initial discovery of contamination. The results of the historical investigations have been re-screened against ADEC groundwater cleanup levels (GCLs) listed in Alaska Administrative Code (AAC) Title 18, Chapter 75 (18 AAC 75), (ADEC 2020b) for the purpose of comparison to the 2020 groundwater monitoring results and are described below. References to GCLs throughout this report imply ADEC GCLs listed in 18 AAC 75 unless otherwise specified.

In 2004, benzene, volatile organic compounds (VOCs), 1,2-dibromoethane (EDB), and 1,2-dichloroethane (EDC) were detected at concentrations greater than GCLs at monitoring well MW-8. Additionally, elevated concentrations of petroleum hydrocarbons were detected in subsurface soil near MW-8 (DOT&PF 2018).

In 2005, groundwater samples were collected from seven select groundwater monitoring wells and temporary well points. Results indicated petroleum hydrocarbon concentrations greater than ADEC GCLs in four of the seven groundwater samples (DOT&PF 2018).

In 2006, groundwater samples were collected from four separate groundwater monitoring wells, and a soil-gas survey was conducted at the north end of the MAW site. Passive soil-gas canisters were installed in a 50-foot gridded network. The results indicated two diesel-range organics (DRO) "hotspots" and one BTEX hotspot (ADEC 2020a).

In 2008, six monitoring wells were installed along the western property boundary of the MAW site, two soil borings were advanced at the DRO hotspots identified in 2006, and one soil boring and one monitoring well were advanced/installed at the BTEX hotspot. Benzene was detected at concentrations greater than GCLs in a newly installed monitoring well, MW-12, located along the western boundary of the property, near tax parcel lot TL-2321. No other contaminant concentrations exceeded the ADEC GCLs at MW-12. BTEX contamination was identified in soil and groundwater at MW-16, also installed in 2008, indicating an unknown source of contamination (ADEC 2020a).

In 2010, additional groundwater monitoring to investigate sources of contamination at monitoring well MW-16 included a nearby well search. Groundwater was sampled from all wells at the MAW site and analyzed for contaminants and biogeochemical indicators. A vapor intrusion study was also conducted, and the conceptual site model (CSM) for the site was updated. Findings from the groundwater monitoring event indicated volatile contaminants at concentrations lower than during the previous sampling event (ADEC 2020a).

In March 2012, ADEC recommended enhanced MNA to remediate residual groundwater and soil contamination. Field work in 2012 included baseline groundwater sampling and injection of a sulfate-nutrient solution followed by three months of performance monitoring. An increase in the population of sulfate-reducing bacteria in groundwater downgradient from the injection wells was concluded (DOT&PF 2018).

In 2013, a meeting between DOT&PF, the DOT&PF consultant, and ADEC occurred. The meeting resulted in a plan for future groundwater monitoring. Several wells where contamination had never been detected at concentrations exceeding ADEC GCLs were to be decommissioned. Other groundwater monitoring wells to remain in the monitoring network would be sampled for gasoline-range organics (GRO), BTEX, MNA parameters, and sulfate-reducing microbes to determine a baseline prior to performing additional sulfate-nutrient solution injections (ADEC 2020a). Results of the 2013 injections and monitoring process indicated anaerobic processes were continuing to reduce contaminant concentrations in groundwater (DOT&PF 2018).

In 2016, baseline groundwater monitoring was conducted that included analysis of microbial communities to identify petroleum hydrocarbon degraders, as well as groundwater sampling for contaminant concentrations (ADEC 2020a). Results indicated increasing populations of sulfate-reducing bacteria in groundwater and stable and decreasing groundwater contaminant concentrations. Due to reduced concentrations of contaminants, monitoring wells MW-4, MW-11, MW-14, and MW-15 were removed from the monitoring program, and biennial groundwater monitoring was recommended (DOT&PF 2018).

In 2018, baseline groundwater sampling was performed at monitoring wells MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17, and nutrient-sulfate solution injections occurred at injection wells IW-1, IW-2, IW-3, and IW-4 and monitoring wells MW-10 and MW-17. Results of the groundwater sampling event indicated GRO, VOCs (naphthalene and trimethylbenzene (TMB) isomers), BTEX, and polycyclic aromatic hydrocarbons (PAHs) (1- and 2-methylnaphthalene and naphthalene) at concentrations greater than ADEC GCLs in monitoring wells MW-8 and MW-10. In addition, DRO concentrations exceeded ADEC GCLs in monitoring wells MW-10 and MW-17, and benzene exceeded GCLs in monitoring wells MW-10 and MW-17, and benzene exceeded GCLs in monitoring well MW-17 (DOT&PF 2018). The report recommended continuation of biennial sampling, monitoring, gene census analyses, remedial injection, and discontinuation of supplemental carbon injection. (DOT&PF 2018).

2.0 FIELD ACTIVITIES

From 15 through 16 December 2020, Guy Wade (project manager) and Karri Sicard (geologist) visited the DOT&PF FAI MAW site to conduct biennial groundwater monitoring activities. Groundwater monitoring activities included inspection of monitoring wells for integrity, depth to groundwater measurement, and collection of groundwater samples from seven groundwater monitoring wells (MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17). The Jacobs sampling staff are ADEC-qualified samplers as defined in 18 AAC 75 (ADEC 2020b). Field activities were performed in accordance with the *2020 MarkAir Warehouse Groundwater Monitoring with Enhanced Monitored Natural Attenuation Work Plan* (WP) (DOT&PF 2020) and the ADEC *Field Sampling Guidance* (ADEC 2019). Field notes from sampling activities were recorded in a logbook and can be found in Appendix C. Section 2.0 details activities conducted during the 2020 monitoring effort.

2.1 WORK PLAN DEVIATIONS

Remedial injection of nutrient mixtures for enhanced MNA was intended to occur concurrent to groundwater monitoring. However, due to the late field season and cold temperatures that would inhibit biodegradation of fuel-related contaminants in soil and groundwater, this injection has been postponed until Spring 2022. Activities associated with nutrient injection in Spring 2022 will be reported in a separate technical memorandum once the activities are complete or included in the report after the 2022 groundwater monitoring event.

The WP (DOT&PF 2020) indicates that samples collected from monitoring wells MW-8 and MW-10 were to be analyzed for BTEX via SW8021B. However, because the samples collected from these wells also required VOC analysis, which includes BTEX, via U.S. Environmental Protection Agency (EPA) Method SW8260D, samples were not analyzed for BTEX via EPA Method SW8021B. Use of this methodology is consistent with historical sampling efforts at these monitoring wells.

2.2 GROUNDWATER MONITORING

Groundwater samples were collected from the following seven monitoring wells on 15 and 16 December 2020: MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17 (Figure A-2). The rationale for sampling these seven wells is as follows:

- Monitoring wells MW-3, MW-5, MW-8, MW-9, MW-10, MW-12, and MW-17 were sampled for analysis of fuel-related constituents to monitor for contaminants and MNA parameters (MW-5, MW-8, MW-10, and MW-12 only), to identify contaminant concentration trends using prior GRO, DRO, and BTEX data.
- Groundwater from monitoring wells MW-5, MW-8, MW-10, and MW-12 was also sampled to conduct a gene analysis of the microbial community to monitor the growth of sulfate-reducing bacteria population.

Groundwater sampling was conducted in general accordance with the Jacobs standard operating procedures in the WP (DOT&PF 2020) and the low-flow sample techniques described in the ADEC *Field Sampling Guidance* (ADEC 2019). Groundwater samples were collected using a bladder pump. Prior to sampling, an in-line flow-through cell and multi-parameter water quality meter (e.g., Yellow Springs Instruments (YSI) 556) were used to measure the following water quality parameters at 3- to 5-minute increments during well purging. Measured water quality parameters included temperature, pH, specific conductance, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Turbidity and well drawdown were also measured during purging using a turbidity meter and water level meter, respectively. For accurate and comprehensive record keeping, personnel followed Jacobs' sample documentation and naming protocol (DOT&PF 2020).

Groundwater samples collected from all wells were submitted to SGS Environmental Laboratory Services (SGS) for analytical testing of the following contaminants: GRO by ADEC Method AK101; DRO by ADEC Method AK102; and residual-range organics (RRO) by ADEC Method AK103. Samples collected from monitoring wells MW-3, MW-5, MW-9, MW-12, and MW-17 were also submitted for analysis of BTEX by EPA Method SW8021B and groundwater samples collected from monitoring wells MW-8 and MW-10 were analyzed for VOCs via EPA Method SW8260D and PAHs via EPA Method SW8270D-SIM. Samples collected from monitoring wells MW-8, MW-9, MW-10, MW-12, and MW-17 were analyzed for EDB via

Method SW8260D-SIM and EDC via Method SW8260D. For quality control (QC), one field duplicate was collected for each of the required analytical methods. In addition, one trip blank was included for the analysis of volatiles (GRO, BTEX, VOCs, EDB, and EDC).

No free petroleum product was measured in these seven monitoring wells. Analytical groundwater samples were collected once water quality parameters stabilized. Water quality parameters were considered stable once three of the five parameters, excluding temperature, had met stability criteria for three successive readings, per the WP (DOT&PF 2020). The bladder pump intake depth was set to within 1 foot of the top of static groundwater within each monitoring well during sample collection, except at MW-12, where the intake was set to 1.13 feet below the static water level. Groundwater samples were collected into containers provided by the laboratory in the following analyte order: volatiles (GRO, BTEX, VOCs, EDB, and/or EDC) and then DRO/RRO. Groundwater samples were collected for analysis of MNA parameters and microbial communities (described in Sections 2.2.1 and 2.2.2) once sample collection for analysis of contaminants of concern was completed. Groundwater sampling data sheets corresponding to monitoring wells sampled in 2020 are presented in Appendix D. Final water quality parameters of all wells are presented in Section 5.2.

2.2.1 Monitored Natural Attenuation

In addition to monitoring groundwater for contaminants, groundwater samples collected from monitoring wells MW-5, MW-8, MW-10, and MW-12 were analyzed for specific parameters to assess natural attenuation and to help predict the future success of remedial injection in decreasing fuel-related contaminants. MNA parameter analyses include manganese and iron via EPA Method SW6020B, methane via RSK 175, sulfate via EPA Method 300.0, total nitrate and nitrite via SM21 4500NO3-F, and total phosphorous via SM21 4500P-B,E.

2.2.2 Microbial Community Analysis

Microbial communities at the MAW site were evaluated to determine the genetic biodegradation potential of petroleum hydrocarbon contaminants. To assess the microbial communities, groundwater samples were collected for QuantArray-Petroleum analysis, which

targeted 22 genes responsible for aerobic and anaerobic biodegradation pathways of BTEX, PAHs, oxygenates, and alkanes (Microbial Insights 2017). Approximately one liter of water was passed through a small groundwater filter, from each of the following four wells: MW-5, MW-8, MW-10, and MW-12 (Figure A-2). The filter containing the microbes for each well was then shipped to Microbial Insights for QuantArray-Petroleum analysis.

Groundwater samples for microbial community analysis were collected after collection of samples for contaminant and MNA parameter analyses. Each microbial community sample was collected using a bladder pump and Bio-Flo filters in accordance with the WP (DOT&PF 2020).

2.3 WELL MAINTENENCE

Jacobs field personnel inspected the monitoring well caps, cover bolts, casing, and plugs during 2020 groundwater monitoring activities at sampled monitoring wells. All sampled monitoring wells were in good condition with no apparent frost jacking.

2.4 WELL SURVEY AND GROUNDWATER GRADIENT EVALUATION

Jacobs contracted Lounsbury & Associates, Inc. to perform surveys of the locations and elevations of sampled monitoring wells at the MAW site. Monitoring well surveys were conducted using a Leica GS16 Real Time Kinematic global navigation satellite system. Wells surveyed referenced the existing control network at FAI, using Real Time Kinematic global navigation satellite system survey methods with redundant measurement techniques to record the location and elevation of the monitoring wells. All monitoring wells were surveyed vertically and horizontally. Survey data has a horizontal accuracy of 1.0 foot and a vertical accuracy of 0.01-foot. Lounsbury & Associates, Inc. was responsible for providing coordinates and elevation data corresponding to each well to Jacobs. Jacobs used the data for both mapping and groundwater elevation assessment purposes. Survey-grade geospatial data will be reported in the North American Datum of 1983, National Adjustment of 2011 (epoch 2010.00) for horizontal measurements, and the North American Vertical Datum of 1988 (NAVD88) (GEOID12B-derived) for vertical measurements.

2.5 INVESTIGATION-DERIVED WASTE

Nonhazardous investigation-derived waste was generated during the field events. Disposable personal protective equipment and sampling materials (e.g., disposable tubing) were bagged and disposed of at Fairbanks North Star Borough landfill. Nonhazardous investigation-derived waste also included purge and decontamination water, generated during monitoring well purging and decontamination of reusable equipment (e.g., water level meter, YSI water quality meter, and turbidity meter) in accordance with JE-SOP-2000 *Decontamination* (Appendix H). Purge and decontamination water (approximately 19.5 gallons) were containerized in 5-gallon buckets during sampling, then transferred to a designated 55-gallon drum and stored at the FAI waste storage facility (almost directly across Old Airport Road from MAW) prior to transport and disposal by an FAI-contracted waste disposal firm at a later date.

(intentionally blank)

Analytical sample results were screened against 2020 GCLs specified in Table C of 18 AAC 75 (ADEC 2020). The following table (Table 3-1) identifies laboratory analytical method used, GCLs, and limits of detection (LODs) utilized in the MAW groundwater monitoring event for select analytes commonly encountered at fuel-contaminated sites (i.e. GRO, DRO, RRO, and BTEX). Laboratory methods, GCLs, and LODs of all other VOCs can be found in the full analytical data tables provided in Appendix E.

Analyte	Method	2019 ADEC GCL ¹ (µg/L)	LOD ² (µg/L)
GRO	AK101	2,200	2,500 ³
DRO	AK102	1,500	334
RRO	AK103	1,100	278
Benzene	SW8021B or SW8260D	4.6	0.25
Toluene	SW8021B or SW8260D	1,100	0.5
Ethylbenzene	SW8021B or SW8260D	15	0.5
Total Xylenes	SW8021B or SW8260D	190	1.5

 Table 3-1

 GCLs for Select Target Analytes at MarkAir Warehouse Site

Notes:

¹18 AAC 75. Table C Groundwater Human Health Cleanup Levels (ADEC 2020b).

² LOD is the highest observed for all samples.

³ Results associated with high LODs were much greater than the GCL.

For definitions, refer to the Acronyms and Abbreviations section.

FINAL

(intentionally blank)

4.0 QUALITY ASSURANCE ASSESSMENT

This section details the QC and sample preservation practices employed during groundwater sample collection to ensure data quality. Analytical data packets received by the laboratory (Attachment F-1) were reviewed for data quality and usability by Kari Hagen, the Jacobs project chemist. Findings of the data review are presented in Sections 4.2 and 4.3.

4.1 QUALITY CONTROL

Samples were collected using the sample containers provided by SGS. The sample containers came prepared with the appropriate laboratory- provided preservative, which included hydrochloric acid for GRO, DRO, RRO, BTEX, methane, and VOC samples, sulfuric acid for total nitrate/nitrite and phosphorous samples, and nitric acid for manganese and iron samples. Sample containers were labeled with the sample ID number, date and time of collection, sampler initials, and analyses requested. Each sample's temperature was maintained between 0 and 6 degrees Celsius (°C) while in storage and during shipment. The samples were submitted to the SGS office in Fairbanks, Alaska for shipment to their laboratory in Anchorage, Alaska for analytical testing. For QC, one field duplicate was collected during the sample bottles contained a trip blank. Trip blanks accompanied the sample containers from the laboratory to the MAW site and back to the laboratory for analysis. The trip blanks were analyzed for GRO, BTEX, VOCs, and EDB.

4.2 DATA QUALITY

Jacobs performed this data quality review and completed the ADEC Laboratory Data Review Checklists (Attachment F-1) for records associated with the analytical data. The Jacobs project chemist performed a completeness check to verify that data packages included all the requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation (LOQs), LODs, detection limits (DLs), laboratory control sample recoveries, and precision. Other QC parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative. The following qualifiers were applied during the review:

- E The result was nondetect (ND) and the LOD exceeds the GCL.
- B The analyte was detected in the method blank, trip blank, or equipment blank and the concentration in the sample did not exceed the blank concentration by a factor of 5.
- J The result is an estimated value because it was greater than the DL but less than the LOQ.
- JL The result was an estimated value biased high (+) or low (-) because the analyte failed recovery criteria in the laboratory control sample, laboratory control sample duplicate, or both.

Project specific matrix spike/matrix spike duplicates (MS/MSDs) were not required for this project; however, they were included in the analytical batches as the methods required. MS/MSDs were only evaluated if they were performed on samples from this project.

4.3 DATA USABILITY

The overall quality of project data was acceptable. The qualifications applied during data validation did not adversely affect data usability.

All reported data are considered usable with limitations discussed in this report and in the ADEC Laboratory Data Review Checklists (Attachment F-1). The following QC issues were identified during the review:

- Several ND results had LODs greater than the GCLs and were qualified E. Results exceeding the GCL may be reported as ND. Except EDB, affected results were not contaminants of concern at this site. EDB was analyzed by Method SW8260D SIM and the LOD met the GCL. The following analytes had LODs greater than the GCL in one or more ND samples:
 - **SW8260D:** 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2,4-trichlorobenzene, 1,2-EDC, 2-hexanone, bromodichloromethane, bromomethane, carbon tetrachloride, chloroform, EDB, hexachlorobutadiene, 1,1,2-trichloroethene, trans-1,3-dichloropropene and vinyl chloride.
- Nitrate/Nitrite-N was detected in the method blank. Associated sample results with detections less than 5 times the blank concentration were qualified B to indicate the sample result may be biased high.

• DRO, RRO, and phenanthrene (SW8270 SIM) were detected in the equipment blank, 20MAW/BFS-EB. Associated results with detections were qualified B to indicate the result may be biased high. Samples 20MAW-MW10-GW, 20MAW-MW10-GWA for RRO were slightly greater than the screening level and may be biased high. All other B qualified results were less than the GCLs; therefore, the data quality and usability were minimally affected.

(intentionally blank)

5.0 RESULTS AND FINDINGS

This section presents analytical groundwater results and a comparison to historical data and the results of the Mann-Kendall analysis of groundwater contaminant concentration data.

5.1 MONITORING WELL GAUGING

Depth to groundwater at sampled groundwater wells ranged from approximately 9.52 to 11.25 feet bgs. This equated to an elevation of 421.58 feet at the shallowest and most southeastern well (MW-5), and an elevation of 421.24 feet at the three deepest and most northwestern wells (MW-9, MW-12, and MW-8), confirming that groundwater flow direction is generally from east to west, slightly northwest. No free product was detected in any of the seven monitoring wells. A summary of well integrity and gauging data is presented in Table 5-1.

Well ID	Integrity	Depth to Product (feet bgs)	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet)	Total Well Depth (feet btoc)
MW-3	Good	No product	10.02	421.31	19.28
MW-5	Good	No product	9.51	421.58	17.00
MW-8	Good	No product	10.58	421.24	18.75
MW-9	Good	No product	9.93	421.24	16.58
MW-10	Good	No product	11.25	421.35	16.70
MW-12	Good	No product	9.51	421.24	17.72
MW-17	Good	No product	11.16	421.34	14.45

Table 5-1Summary of Well Integrity and Gauging Data

Note:

For definitions, refer to the Acronyms and Abbreviations section.

Historical well gauging data for those monitoring wells sampled and gauged during the 2020 monitoring event is found in Table E-1 (Appendix E). Historic gradient information from this site, and from the results of the 2020 groundwater survey, shows a consistent groundwater flow gradient of 0.001 to the northwest (Figure A-2).

5.2 **RESULTS**

The following paragraphs summarize the results of the 2020 groundwater monitoring event, including water quality parameters, analytical results of the 2020 samples, and provide a brief comparison of 2020 results to historical data. A more thorough analysis of contaminant concentration trends in each monitoring well is provided in Section 5.3, Mann-Kendall Time-Series Analysis, and locations of 2020 exceedances are presented on Figure A-2.

5.2.1 Water Quality Parameters

Table 5-2 shows the final water quality parameters measured during monitoring well purging. Groundwater reached stability in all sampled wells prior to sampling. Purged water volume and groundwater parameters were recorded in groundwater sampling forms (Appendix D).

Well ID	Temperature (ºC)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)
MW-3	5.93	766	13.42	6.63	-26.2	7.50
MW-5	4.02	433	6.98	6.78	77.3	4.42
MW-8	5.30	548	2.05	6.71	-27.3	5.71
MW-9	5.25	523	7.60	6.75	73.0	5.41
MW-10	3.93	643	41.28	6.69	-56.4	7.93
MW-12	5.00	460	17.35	6.56	53.40	48.38
MW-17	4.37	1260	1.52	6.64	35.0	12.57

Table 5-22020 Final Water Quality Parameters

Note:

For definitions, refer to the Acronyms and Abbreviations section.

5.2.2 Analytical Results for Site Contaminants

Analytical results are presented by analyte or analyte group. Historical and 2020 results corresponding to monitoring wells sampled in 2020 are presented in Tables E-2 through E-5 (Appendix E). Fuels (GRO, DRO, and RRO) and BTEX are presented in Table E-2 and all other VOC results are presented in Table E-3. PAH and MNA parameter results are presented in Tables E-4 and E-5, respectively.

GRO

The concentrations of GRO in MW-8 (2,390 [micrograms per liter] μ g/L) and in the primary and field duplicate samples collected at MW-10 (28,400 and 29,000 μ g/L, respectively) exceeded the GCL (2,200 μ g/L). Results were below the GCL in the remaining wells (Table E-2).

Historically, GRO concentrations exceeded the GCL at monitoring well MW-8 during almost all prior sampling events. Concentrations ranged from a maximum detected concentration (MDC) of 20,900 μ g/L in 2004 to a minimum of 2,290 μ g/L in 2008. Concentrations have generally been decreasing from 2012 (8,720 μ g/L) to 2020 (2,390 μ g/L).

GRO results at MW-10 exceeded the GCL from 2008 through 2020, except for results from July of 2012. The MDC for GRO at MW-10 was 42,900 μ g/L in 2008. Three other historical results (two in 2012 and one in 2018) were detected at concentrations over 30,000 μ g/L.

DRO

DRO concentrations during the 2020 groundwater monitoring event exceeded the GCL (1,500 μ g/L) in monitoring wells MW-10 and MW-17. DRO was detected at 14,800 μ g/L and 14,400 μ g/L, respectively, in primary and field duplicate samples collected from MW-10. The DRO concentration at MW-17 was 3,050 μ g/L (Table E-2).

Historically, DRO concentrations exceeded the GCL at MW-10 in all previous sampling events, except one in 2010 and one in July 2012. The MDC for DRO at MW-10 occurred in 2020. At MW-17, DRO concentrations exceeded the GCL in samples collected during all monitoring events, with the MDC (5,200 μ g/L) occurring in November 2012.

RRO

RRO concentrations in 2020 exceeded the GCL (1,100 μ g/L) in MW-10 and MW-17, at maximum concentrations of 1,300 μ g/L and 3,620 μ g/L, respectively. Results were below the GCL in the remaining wells (Table E-2).

Historically, RRO concentrations exceeded the GCL at monitoring well MW-10 in November 2012 and at MW-17 during the October and November 2012 sampling events. At MW-10 the MDC was 4,480 μ g/L in November 2012. At MW-17, concentrations were 1,650 and 1,290 μ g/L in October and November 2021, respectively, and the MDC was in 2020.

Benzene

The concentration of benzene in MW-8 (393 μ g/L), and in the primary and field duplicate samples collected at MW-10 (809 and 824 μ g/L, respectively) exceeded the GCL (4.6 μ g/L). Results of benzene concentrations in all other monitoring wells were less than the GCL (Table E-2).

Benzene concentrations have historically exceeded the GCL in monitoring wells MW-8, MW-9, MW-10, and MW-12. At MW-8, concentrations have exceeded in every prior sampling event, with the MDC occurring in the field duplicate sample collected in 2016, measuring 4,490 μ g/L; however, this result was qualified J due to a relative percent difference failure between the primary and field duplicate sample. The next greatest concentration of benzene at MW-8 occurred in 2004 and measured 3,860 μ g/L. At MW-10, the MDC occurred in 2004 and measured 3,860 μ g/L. At MW-10, the MDC occurred in 2004 and measured 3,860 μ g/L. At MW-10 was detected in September 2012 and measured 6.71 μ g/L. Benzene concentrations at MW-12 exceeded the GCL in most of the previous sampling events, with the most recent exceedance occurring in 2013 and measuring 30.5 μ g/L.

Toluene

The concentration of toluene exceeded the GCL (1,100 μ g/L) in monitoring well MW-10 in 2020. Concentrations in the primary and field duplicate samples from MW-10 measured 4,940 μ g/L and 4,960 μ g/L. respectively. Toluene concentrations in all other monitoring wells sampled in 2020 were less than the GCL (Table E-2).

Historically, toluene concentrations have consistently exceeded the GCL in MW-10, except during the September 2010 and July 2012 sampling events. No historical exceedances for toluene have been detected at other MAW monitoring wells (Table E-2).

Ethylbenzene

The concentrations of ethylbenzene exceeded the GCL (15 μ g/L) at MW-8 and MW-10 in 2020. The concentration was 196 μ g/L in MW-8 and the MDC of the primary and field duplicate sample pair collected at MW-10 was 947 μ g/L. The concentrations of ethylbenzene in all other monitoring wells sampled in 2020 were less than the GCL (Table E-2).

Historically, ethylbenzene concentrations in MW-8 and MW-10 have exceeded the GCL. Ethylbenzene concentrations in MW-8 exceeded the GCLs in every sampling event from 2004 to 2020, with the MDC occurring in 2004 and measuring 1,410 μ g/L, and the minimum concentration occurring in July 2012 and measuring 39.2 μ g/L. In MW-10, ethylbenzene concentrations exceeded the GCL in all sampling events conducted from 2004 through 2020. The MDC of 1,710 μ g/L was detected in 2004 and the minimum concentration of 63 μ g/L was detected in July of 2012.

Total Xylenes

The concentrations of total xylenes exceeded the GCL (190 μ g/L) in monitoring wells MW-8 and MW-10 in 2020. The concentration measured 370 μ g/L in MW-8 and the MDC of the primary and field duplicate sample pair collected at MW-10 measured 8,200 μ g/L. Concentrations of total xylenes in all other monitoring wells sampled during the 2020 were less than the GCL (Table E-2).

Historically, concentrations of total xylenes have exceeded the GCL in MW-8 in all monitoring events, except in July 2012. Similarly, in MW-10, concentrations of total xylenes exceeded the GCL in all monitoring events, with the MDC of 9,860 μ g/L occurring in 2008, and the minimum concentration of 337 μ g/L occurring in July 2012.

Other VOCs

Samples from 2020 with detected concentrations of VOCs, aside from BTEX, are listed in Table E-3 (Appendix E) compared to historical groundwater analytical results. The EDB concentration at MW-10 exceeded the GCL (0.075 μ g/L) in 2020; the MDC between the primary and duplicate sample pair was 3.89 μ g/L.

The EDC concentration at MW-8 exceeded the GCL (1.7 μ g/L) at MW-8, at 3.04 μ g/L. EDC was ND in the groundwater sample collected from MW-10.

Concentrations of 1,2,4-TMB and 1,3,5-TMB exceeded the GCLs (56 μ g/L and 60 μ g/L, respectively) in groundwater samples collected from MW-10, and the concentration of 1,2,4-TMB exceeded the GCL in the sample collected from MW-8 in 2020. The MDCs between the primary and field duplicate sample from MW-10 for 1,2,4-TMB and 1,3,5-TMB were 1,650 μ g/L and 426 μ g/L, respectively. The concentration of 1,2,4-TMB at MW-8 was 153 μ g/L.

Naphthalene concentrations exceeded GCL (1.7 μ g/L) in groundwater samples collected from MW-8 and MW-10 in 2020. The concentration at MW-8 was 72.3 μ g/L, and the MDC of the primary and field duplicate sample collected at MW-10 was 463 μ g/L (Table E-3).

No other VOCs were detected at concentrations exceeding their respective GCLs in monitoring wells sampled for VOCs.

Historically, EDB concentrations at MW-8 exceeded the GCL in 2004 (0.543 μ g/L) and 2016 (0.2 μ g/L). EDC concentrations also exceeded the GCL at MW-10 in all prior monitoring events, with the MDC in 2008 (79.3 μ g/L with a J qualifier), and the minimum concentration of 0.183 μ g/L in 2012.

The EDC concentration at MW-8 have consistently exceeded the GCL except for a ND result in 2005. The MDC concentration of EDC in MW-8 was 32.4 μ g/L (2004) and the minimum concentration was 2.35 μ g/L in 2018. Historically, MW-12 had one EDC GCL exceedance that occurred in 2008 at 1.7 μ g/L.

Historically, concentrations of 1,3,5-TMB exceeded the GCLs in groundwater samples collected from MW-8 and MW-10 in every prior sampling event except for one. 1,2,4-TMB concentrations in MW-8 exceeded the GCLs in every sampling event from 2004 to 2020, with the MDC occurring in 2004 and measuring 916 μ g/L, and the minimum concentration occurring in 2008 and measuring 75.4 μ g/L. In MW-10, 1,2,4-TMB concentrations exceeded the GCL in

all sampling events except for a minimum concentration measured in 2010 at 3.23 μ g/L. The 1,3,5-TMB MDC at MW-10 (1,790 μ g/L) was detected in 2008.

Historically, 1,3,5-TMB concentrations in MW-8 exceeded the GCLs in about half of the sampling events from 2004 to 2020, with the MDC occurring in 2004 and measuring 229 μ g/L, and the minimum concentration occurring in 2013 and measuring 15.6 μ g/L. In MW-10, 1,3,5-TMB concentrations exceeded the GCL in about half of the sampling events with a minimum concentration measured in 2010 at 9.86 μ g/L and an MDC of 535 μ g/L in 2008.

Historical naphthalene concentrations consistently exceeded GCL in groundwater samples collected from MW-8 and MW-10 during the sampling events of 2004 to 2020. Naphthalene concentrations in MW-8 exceeded the GCL with an MDC occurring in 2004 and measuring 318 μ g/L, and the minimum concentration occurring in 2008 and measuring 29.9 μ g/L. In MW-10, naphthalene concentrations exceeded the GCL in all sampling events with an MDC occurring in 2008 and measuring 568 μ g/L, and the minimum concentration occurring in 2010 and measuring 568 μ g/L, and the minimum concentration occurring in 2010 and measuring 2.51 μ g/L. Naphthalene was detected above the GCL in the groundwater sample from MW-12 in only its first year (2008) at a concentration of 8.04 μ g/L.

PAHs

PAH compounds were detected in both MW-8 and MW-10 in 2020. Three PAH compounds (1-methylnaphthalene, 2-methylnaphthalene, and naphthalene) were detected above the GCL in MW-10, and one (naphthalene) in MW-8 (Table E-4).

The concentration of 1-methylnaphthalene exceeded the GCL (11 μ g/L), with the MDC from the primary and field duplicate sample pair measured at 118 μ g/L. The concentration of 2-methylnaphthalene also exceeded the GCL (36 μ g/L) in MW-10, with the MDC between the primary and field duplicate measuring 165 μ g/L. Naphthalene concentrations exceeded the GCL (1.7 μ g/L) in the groundwater samples collected from MW-8 and MW-10. Naphthalene was sampled using both EPA Method SW8270SIM and SW8260D in 2020. The MDC in 2020 for both monitoring wells was detected using EPA Method SW8260D; as previously mentioned, under "Other VOCs," the concentrations of naphthalene at MW-8 and MW-10 were 72.3 μ g/L and 454 μ g/L, respectively.

Historically, concentrations of 1-methylnaphthalene and 2-methylnaphthalene exceeded the GCL in MW-10 during the 2018 sampling event at 86.9 and 115 μ g/L, respectively. In 2018, naphthalene also exceeded the GCL in MW-8 at 49.6 μ g/L. Similarly, in MW-10, concentrations of naphthalene exceeded the GCL in 2018, at 230 μ g/L.

5.2.3 Evaluation of MNA Parameters

Nitrate/nitrite, total phosphorous, sulfate, and iron and manganese analyses were performed on groundwater samples collected from MW-5, MW-8, MW-10, and MW-12 as part of MNA (Table 5-3). Results at MW-5 represent conditions upgradient of the groundwater contamination plume, results at MW-10 represent in-plume conditions, and results at MW-5 and MW-12 represent downgradient conditions. The results can be used to determine if natural attenuation is occurring at the site.

Well ID	Methane	Sulfate	Total Nitrate/ Nitrite-N	Total Phosphorus	Iron	Manganese
MW-5	77.2 [0.25]	11,000 [100]	1390 [100]	ND [20]	996 [250]	385 [1]
MW-8	312 [0.25]	6,920 [500]	92.4 [100] J,B	130 [20]	36,800 [500]	3,910 [2]
MW-10	1,820 [2.5]	517 [100]	192 [100] J,B	875 [100]	123,000 [1250]	5,450 [5]
MW-10*	2,390 [2.5]	471 [100]	192 [100] J,B	926 [40]	125,000 [1250]	5,600 [5]
MW-12	568 [0.25]	8,930 [100]	55 [100] J,B	139 [20]	24,800 [500]	2,990 [2]

Table 5-3 2020 Groundwater Parameters (µg/L)

Notes:

* Sample is a field duplicate of the preceding sample with the same name.

Bold results exceed ADEC GCL (18 AAC 75, Table C) (ADEC 2020b).

[] = LOD

B = The analyte was detected in the method blank, trip blank, or equipment blank and the concentration in the sample did not exceed the blank concentration by a factor of 5.

J = The result is an estimated value because it was greater than the detection level but less than the limit of quantitation. For definitions, refer to the Acronyms and Abbreviations section.

The subsections that follow evaluate results of the MNA parameters analyzed during the 2020 sampling event and water quality measurements obtained during sampling to determine if conditions at the site are conducive to degradation of site contaminants.

Dissolved Oxygen

DO serves as and is the favored electron acceptor during the biodegradation process for petroleum hydrocarbons. At concentrations greater than 0.5 mg/L, the reductive pathway may be suppressed (EPA 1998).

The average DO concentration at MAW site wells in 2020 was 12.88 mg/L. The DO concentration was greatest at the most contaminated well (MW-10) at 41.28 mg/L (Table 5-2). The high availability of DO suggests that electron acceptors are available to support biodegradation, but that at present, aerobic biodegradation may not be readily occurring.

Nitrate/Nitrite

Once DO is depleted in the contaminant plume, anaerobic degradation continues with nitrate serving as the favored electron acceptor during hydrocarbon degradation. In 2018, a nutrient solution was injected in wells IW-1, IW-2, IW-3, and IW-4, located at former UST locations upgradient of MW-10 and MW-17. The nutrient injection was performed with the intent to provide nitrogen to microbial communities in the form of nitrate/nitrite to promote hydrocarbon degradation. The target concentration was 240,000 μ g/L.

The concentrations of total nitrate/nitrite in 2020 measured at 192 μ g/L at MW-10, located within the plume. The highest concentration (1,390 μ g/L) was detected upgradient of the contaminant plume at MW-5. Downgradient of the plume, at MW-8 and MW-12, nitrate/nitrate measured 92.3 μ g/L and 55.0 μ g/L, respectively. The low concentrations of nitrate/nitrite within and downgradient of the contaminant plume, where concentrations would have measured closer to the target concentration of 240,000 μ g/L in 2018, indicate that nitrate reduction has occurred at the site. However, the low concentrations observed in 2020 indicate that at present, nitrate reduction is not a leading anaerobic biodegradation process.

Manganese

Manganese is made available when it is chelated from subsurface soil and serves as an electron acceptor for anaerobic digestion of BTEX by microbes. The presence of high concentrations of soluble manganese in groundwater can indicate that anaerobic biodegradation is occurring.

Manganese concentrations in the upgradient well, MW-5, measured 385 μ g/L. At MW-10, nearest the contaminant source, the manganese concentration was 5,600 μ g/L. Downgradient of the contaminant plume, at MW-8 and MW-12, concentrations measured 3,910 μ g/L and 2,999 μ g/L, respectively. The manganese results indicate reduced conditions within the contaminant plume, supporting the idea that anaerobic biodegradation is occurring.

Iron

Ferrous iron in groundwater at fuel-contaminated sites often appears in high concentrations when ferric iron chelated from soil is reduced to the soluble ferrous form.

Sitewide, ferrous iron concentrations ranged from 996 μ g/L at MW-8 (downgradient of the plume) to 123,000 μ g/L at MW-10 (the most contaminated well within the plume). The results for dissolved iron indicate reduced conditions within the plume and that anaerobic biodegradation is occurring through chelation of ferric iron followed by reduction of ferric iron to ferrous iron, with the most significant activity occurring within the most contaminated area of the plume.

Sulfate

Sulfate-reducing bacteria use sulfate for anaerobic biodegradation of BTEX once nitrate and DO in groundwater have been fully consumed. Significant concentrations of sulfate indicate that a healthy source for microbial digestion of fuel contamination.

The greatest sulfate concentration (11,000 μ g/L) was detected at MW-5, located upgradient of the contamination. Within the contaminant plume, at MW-10, the sulfate concentration was 517 μ g/L, and downgradient at wells MW-8 and MW-12, concentrations were 6,920 μ g/L and 8,930 μ g/L, respectively. Results indicate the presence of sulfate to support the sulfate-reducing

bacteria community and continue the digestion of BTEX. Moreover, the lower concentrations observed at MW-10 suggest that sulfate-reducing bacteria are actively digesting contamination within the plume.

Total Phosphorous

The addition of phosphorus at fuel-contaminated sites can stimulate microbial degradation of petroleum hydrocarbons. In 2018, the nutrient solution injection contained phosphorus and targeted a concentration of $60,000 \,\mu$ g/L.

Phosphorus concentrations in 2020 were greatest at MW-10 within the contaminant plume at 926 μ g/L, and lowest upgradient of the contaminant plume at MW-5, where concentrations were nondetect. Downgradient of the plume, concentrations were 130 μ g/L and 139 μ g/L at MW-8 and MW-12, respectively. The 2020 results indicate that the nutrient injections are successfully introducing phosphorus to the subsurface in the most contaminated area of the site (MW-10) and downgradient to stimulate hydrocarbon digestion. Assuming that the concentration were closer to the target of 60,000 ug/L after injecting the solution in 2018, the 2020 results also indicate that the microbial community has used phosphorus for anaerobic degradation since the last injection.

Methane

Methane is not used by hydrocarbon-degrading bacteria but is an indicator of anaerobic biodegradation of hydrocarbons using carbon dioxide in groundwater as a terminal electron acceptor.

Concentrations of methane upgradient of the contamination plume measured 77.20 μ g/L at MW-5. Within the plume, at MW-10, the concentration of methane was 2,390 μ g/L. Downgradient, at MW-8 and MW-12, concentrations of methane were 312 μ g/L and 568 μ g/L, respectively. The methane results suggest that anaerobic biodegradation is occurring at the site, with the greatest activity occurring in the heaviest area of contamination.

ORP, Temperature, and pH

ORP across the site ranged from -56.4 millivolts (mV) at MW-10 (within the plume) to 77.3 mV at MW-9 (downgradient of the plume). Measurements below 50 mV indicate potential reducing site conditions, whereas measurements less than -100 mV indicate a likely reductive pathway (EPA 1998). Measurements were less than 50 mV at all wells except at MW-9 (downgradient of the plume) and at MW-5 (upgradient of the plume), indicating a possible reductive pathway.

Groundwater temperature at the site ranged between 4.02°C and 5.93°C during sampling. These temperatures are well below the optimal temperature for accelerated biodegradation processes (i.e., 20°C) (EPA 1998). The measured temperatures would be prohibitive of any anaerobic processes occurring at the site.

Measured pH across the site was relatively consistent, ranging from 6.56 to 6.73. The observed pH is within the optimal range to support a reductive pathway (between 5 and 9) (EPA 1998).

5.2.4 Genetic Results

Samples from four wells (MW-5, MW-8, MW-10, and MW-12) were sent to Microbial Insights for analysis by their QuantArray-Petro method. This method quantifies a broad spectrum of different microorganisms and key functional genes involved in a variety of pathways for hydrocarbon degradation. A summary of the microorganisms present in the wells and their numbers is found in Table F.2-1. The full report by Microbial Insights is included in Attachment F-2, with figures that show target gene concentrations in each well analyzed relative to each other, as well as relative to observed values in the larger database of analyzed wells (outside this study). Comparisons of these results with historical results for benzyl succinate synthase (BSS) and sulfate-reducing bacteria (adenosite-5'-phosphosulfate reductase [APS]) show similarities to recent population concentrations since coeval remedial injection and monitoring began in 2012 (Table 5-4).

Well ID	Sample Date	BSS (cells/mL)	APS (cells/mL)
	9/5/2013	141 (H)	240 (H)
	11/7/2013	125	1.3 (J)
MW-5	10/12/2016	9	468,000
	12/16/2020	82	3,490
	7/25/2012	3	682
	9/18/2012	7	989
	10/17/2012	ND [1]	1,080
	11/15/2012	119	1,990
MW-8	9/5/2013	4,360 (H)	1,180 (H)
	11/7/2013	7,230	1,080
	10/12/2016	18,400	443,000
	12/15/2020	6,400	52,900
	9/5/2013	11,300 (H)	41,400 (H)
NNN 40	11/7/2013	1,050	12,500
MW-10	10/12/2016	17,400	72,600
	12/15/2020	11,700	40,900
	9/5/2013	117 (H)	3,690 (H)
NNN 40	11/7/2013	203	686
MW-12	10/12/2016	421	762,000
	12/16/2020	380	45,400

 Table 5-4

 2020 and Historical Groundwater – Microbial Analysis Genetic Results

Notes:

Italic = results are from this 2020 study and historical data from 2018 groundwater monitoring report (DOT&PF 2018).

H = Sample hold time exceeded prior to analysis J = Estimated gene copies below detection limit but above limit of quantitation

J = Estimated gene copies below detection limit but above limit of quantitation For definitions, refer to the Acronyms and Abbreviations section

For definitions, refer to the Acronyms and Abbreviations section.

The report (Attachment F-2) includes additional summary tables grouped by biodegradation pathways and contaminant type to show which microbes present in the MAW wells have shown biodegradation abilities for the noted contaminants via specific gene pathways. The following paragraphs describe the five common pathways that have been most studied for degradation of hydrocarbons in groundwater wells, and the relative population concentrations of microbes and genes present in the wells from this study.

Aerobic BTEX and Methyl-t-Butyl Ether

The microorganism and gene results show that wells MW-8, MW-10, and MW-12 have target microbial gene populations involved in aerobic biodegradation of BTEX and methyl-t-butyl ether, with the largest cell concentrations recorded in cells per milliliter (cells/mL) at monitoring well MW-10, followed by MW-8, and MW-12. Populations in these wells were

greatest for toluene 2 monooxygenase/phenol hydroxylase, toluene ring hydroxylating monooxygenase, and phenol hydroxylase (Table E-5).

Aerobic PAHs and Alkanes

Population concentrations for the aerobic biodegradation pathway of PAHs and alkanes were found only in MW-8. These populations included naphthalene dioxygenase and naphthalene-inducible dioxygenase.

Anaerobic BTEX

Anerobic BTEX degrading microbes were detected in the highest concentrations in wells MW-10 and MW-8, specifically as BSS and benzoyl coenzyme A reductase. These two microbial gene concentrations for anerobic BTEX degradation were present in all analyzed wells.

Anaerobic PAHs and Alkanes

Population concentrations for the anerobic biodegradation pathway of PAHs and alkanes were found in the highest concentrations in MW-8, with naphthyl methyl succinate synthase at the highest observed concentrations, followed by fewer alkyl succinate synthase. MW-10 and MW-12 contained populations of these compounds in lower concentrations.

Other (Bacteria)

Other bacteria responsible for biodegradation were detected in high numbers in all four wells. Total eubacteria and sulfate-reducing bacteria (APS) showed the largest population concentrations in any degradation pathway category.

5.3 MANN-KENDALL ANALYSIS

The Mann-Kendall test does not make any assumptions about the statistical distribution of the data or regularity of sampling intervals; therefore, it is a general-purpose tool used to identify whether a trend is present and whether the slope of the trend is positive, zero, or negative. If the Mann-Kendall test suggests a declining trend, then geometric regression of the data is used to evaluate the rate of natural attenuation, the probable start of the attainment phase of monitoring, and the probable date of complete remediation. A Microsoft Excel workbook was programmed to perform the regression analysis (Appendix G). The geometric regression methodology is

consistent with EPA guidance for evaluating completion of groundwater cleanup (EPA 2014). The EPA guidance defines the attainment phase as the period of monitoring during which contaminant concentrations are expected to have decreased to less than the project cleanup levels.

The calculated Mann-Kendall statistic is proportional to the strength of the trend, with negative values representing decreasing trends, values close to zero representing stable trends, and positive values representing increasing trends. The test also calculates a coefficient of variation, which reflects the variability of the data; values greater than or equal to one indicate excessive scatter. Finally, the test provides a trend confidence, which is the probability that the trend identified by the test statistic is real rather than arising by chance. Detailed results of the Mann-Kendall trend analysis for each contaminant in each well are presented in Table 5-5, and the time-series plots for each contaminant are presented with the full data tables in Appendix G.

Well	Analyte ¹	GCL ²	UCL95*	Mann-Kendall Analysis					
wen	Analyte	(µg/L)	(µg/L)	n	S	COV	1-alpha	Trend	
MW-3	GRO	2,200	62.2	6	-7	0.31	0.86	Stable	
10100-3	DRO	1,500	570	7	-13	0.46	0.97	Decreasing	
MW-5	GRO	2,200	62.1	5	-4	0.33	0.76	Stable	
0100-5	DRO	1,500	463	5	-2	0.50	0.59	Stable	
	GRO	2,200	7,330	12	-15	0.85	0.83	Stable	
	DRO	1,500	1,610	12	2	0.41	0.53	Stable	
	Benzene	4.6	2,200	12	-18	0.98	0.88	Stable	
	Ethylbenzene	15	481	12	-10	0.86	0.73	Stable	
MIVV-8	Naphthalene	1.7	120	10	-10	0.80	0.78	Stable	
	EDC	1.7	14.8	8	-2	1.32	0.55	No Trend	
	1,2,4-TMB	56	561	8	-8	0.73	0.80	Stable	
	1,3,5-TMB	60	153	8	-8	0.75	0.80	Stable	
MW-9	DRO	1,500	487	10	-3	0.45	0.57	Stable	
10100-9	Benzene	4.6	3.69	12	-16	0.89	0.85	Stable	
	GRO	2,200	32,000	10	1	0.56	0.50	Stable	
	DRO	1,500	9,390	10	25	0.68	0.99	Increasing	
MW-10	Benzene	4.6	1,230	10	5	0.87	0.64	Stable	
10100-10	EDB	0.075	13.8	12	3	1.64	0.55	No Trend	
	Ethylbenzene	15	1,090	10	-1	0.56	0.50	Stable	
	Toluene	1,100	5,880	10	5	0.77	0.64	Stable	

Table 5-5 Mann-Kendall Trend Summary

Well	Analyte ¹	GCL ²	UCL95*	Mann-Kendall Analysis					
wen		(µg/L)	(µg/L)	n	s	COV	1-alpha	Trend	
	Xylenes	190	7,870	10	7	0.57	0.70	Stable	
	Naphthalene	1.7	434	8	8	0.67	0.80	Stable	
	1,2,4-TMB	56	1,760	6	3	0.75	0.64	Stable	
	1,3,5-TMB	60	477	6	3	0.76	0.64	Stable	
MW-12	GRO	2,200	348	10	-13	0.85	0.85	Stable	
10100-12	DRO	1,500	676	10	-7	0.45	0.70	Stable	
MW-17	DRO	1,500	4,730	8	-2	0.35	0.55	Stable	
10100-17	RRO	1,100	2,140	7	8	0.84	0.85	Stable	

Table 5-5 (Continued) Mann-Kendall Trend Summary

Notes:

Red indicates unfavorable values (ULC95 exceeds GCL, Trend is increasing)

Green indicates favorable values (UCL95 less than GCL, Trend is decreasing)

¹ Analytes have at least one exceedance (except fuels), at least four results, and less than 50 percent ND results

² 18 AAC 75. Table C Groundwater Human Health Cleanup Levels (ADEC 2020b)

* 95 percent upper confidence level of the mean is calculated for the most recent eight results

n = number of results

S = Mann-Kendall sum of signs

COV = Mann-Kendall covariance; stable if less than 1, no trend if greater than 1 and 1-alpha less than 0.90

1-alpha = significance level; must be greater than 0.95 (95 percent) to conclusively identify a trend

For definitions, refer to the Acronyms and Abbreviations section.

Geometric (lognormal) regression plots for those wells statistically demonstrating a decreasing trend would normally be used to quantitatively analyze attenuation of groundwater contaminants at the MAW site. However, the only well and contaminant that showed a decrease was DRO in MW-3 and none of the available data showed an exceedance of the GCL at this location; therefore, a regression plot for this location would not be useful and is not presented. Results of the Mann-Kendall analysis for other contaminants at other wells were generally stable, except for EDC at MW-8 and EDB at MW-10, for which no trends were observed, and DRO at MW-10, which exhibited an increasing trend.

The exact cause for the overall increase in DRO concentrations at MW-10 is most likely related to biodegradation of DRO upgradient of the well that is migrating to the well. As residual DRO contamination from former leaking USTs and spills upgradient of MW-10 continues to weather to water-soluble polar byproducts (i.e., organic acids, alcohols, and phenols), which are detected as DRO via analytical method AK102, concentrations can reach levels above published solubilities (Alaska Statement of Cooperation Working Group [ASCWG] 2006). Published solubilities of DRO (1,000 to 5,000 μ g/L) are below the concentrations observed between 2012

and 2020 (up to 14,800 μ g/L), suggesting that these soluble DRO fractions must be present in the subsurface and driving the increasing concentrations. This idea is supported by the fact that no free product was observed in MW-10 in 2020 and concentrations were an order of magnitude greater than solubility.

Another possible contributor to increasing DRO concentrations at MW-10 could be overland flow or runoff from surface releases from vehicles, equipment, or materials parked or stored over or adjacent to the well. In 2020, a trailer was observed parked over MW-10 and a pallet of foam sealant with nearby surface staining was observed south of the well (Photograph No. 1, Appendix B). The surface surrounding MW-10 is paved and the pattern of the staining did not indicate flow toward the monitoring well or ponding of surface water at the well. Additionally, the rubber seal on the flushmount monitoring well appeared to be intact and functional. Although it is plausible that contaminants could have been introduced from the stained area, additional characterization of the stored foam sealant and sampling of the stained area would be necessary to determine if these are sources of DRO. (intentionally blank)

6.0 CONCEPTUAL SITE MODEL

The CSM scoping and graphic forms were updated for the MAW site based on 2020 groundwater monitoring results (Appendix I).

Leaks and spills from historical USTs directly to subsurface soil remain the release mechanisms for fuel contamination at the site. Impacted media includes subsurface soil and groundwater. Complete exposure pathways include incidental soil ingestion, dermal absorption of contaminants from soil, inhalation of fugitive dust, dermal absorption of contaminants in groundwater, and inhalation of outdoor air by potential future commercial, industrial, and/or construction workers, site employees, site visitors, and/or trespassers. Inhalation of indoor air by current and future commercial, industrial, and/or construction workers, site employees, and site visitors or trespassers is also considered a complete pathway since contaminated soil remains in situ adjacent to the warehouse.

The site is currently paved with contamination present in groundwater and in soil at the groundwater interface (approximately 10 feet bgs). As a result, incidental soil ingestion, dermal absorption of contaminants from soil (i.e., naphthalene and 1-methylnaphthalene), inhalation of fugitive dust, and dermal absorption of contaminants in groundwater (i.e., naphthalene) would only become possible given future construction work at the site that disturbs pavement and exposes the subsurface. There are currently no plans for construction at the site. Exposure to volatile contamination via inhalation of outdoor air is possible but unlikely at present, given the depth to contamination in soil and groundwater. This exposure scenario becomes more likely in the case of future construction.

(intentionally blank)

7.0 CONCLUSIONS AND RECOMMENDATIONS

The following paragraphs present conclusions and recommendations for the MAW site based on historical analytical results, results of the 2020 monitoring event, and based on the Mann-Kendall analysis of historical data.

7.1 CONCLUSIONS

Results of the sampling event indicated the presence of the following contaminants at concentrations exceeding the ADEC GCLs in the specified monitoring wells:

- GRO, naphthalene, 1,2,4-TMB, EDB, benzene, ethylbenzene, and xylenes (total) in MW-8 and MW-10
- DRO in MW-10 and MW-17
- 1-Methylnaphthalene and 2-methylnaphthalene in MW-10
- Manganese in MW-8, MW-10, and MW-12.

Groundwater at monitoring well MW-10 remains the most contaminated based on number of contaminants detected and the magnitude of those contaminant concentrations. Geographically, the number contamination at the MAW site is greatest at MW-10, which is closest to the historical USTs, and at MW-8, downgradient from MW-10 (Figure A-2). Contaminant concentrations decrease with distance downgradient and away from the center of the site and the historical locations of these former USTs. However, the plume appears to be stable based on the time-series analyses and historical data.

Based on the 2020 Mann-Kendall analysis the following trends were concluded:

- MW-3: DRO was shown to be decreasing (although it has never been detected above GCL at this location).
- MW-10: DRO was shown to be increasing.
- All other analyzed wells and analytes displayed a stable trend or showed no trend at all.

The increasing DRO concentrations at MW-10 are most likely due to increased solubility of weathered biodegradation byproducts of residual DRO upgradient of the well, as evidenced by

1/6/2022

the concentrations well above published solubility values for DRO and absence of free product (ASCWG 2006). However, surface spills and leaks could introduce contamination to MW-10 if a proper seal on the well is not maintained and if equipment and materials continue to be stored on and adjacent to the well.

Genetic analysis of four wells (MW-5, MW-8, MW-10, and MW-12) showed population concentration of microbes and gene pathways responsible for biodegradation are viable and seem to be consistent with past findings at this site. The genetic results likely show that the remedial injections for continued biodegradation of contaminants are helping keep the plume stable and may promote hydrocarbon degradation with future nutrient injections.

MNA parameter trends found in historical data support the benefit of continued nutrient injections (DOT&PF 2018). The results 2020 ORP measurements indicate a reducing environment within the contaminant plume area, and results for soluble manganese, ferrous iron, and sulfate suggest active anaerobic biodegradation of contaminants may be occurring. In addition, concentrations of phosphorus and nitrate/nitrite observed in 2020, when compared to the corresponding 2018 target concentrations from the nutrient solution injections, support that the microbial community may be using the nutrients for hydrocarbon degradation. After injections are concluded in Spring of 2022, MNA parameter trends can be more specifically addressed to note whether the nutrient solutions are continuing to enhance microbial activity as desired.

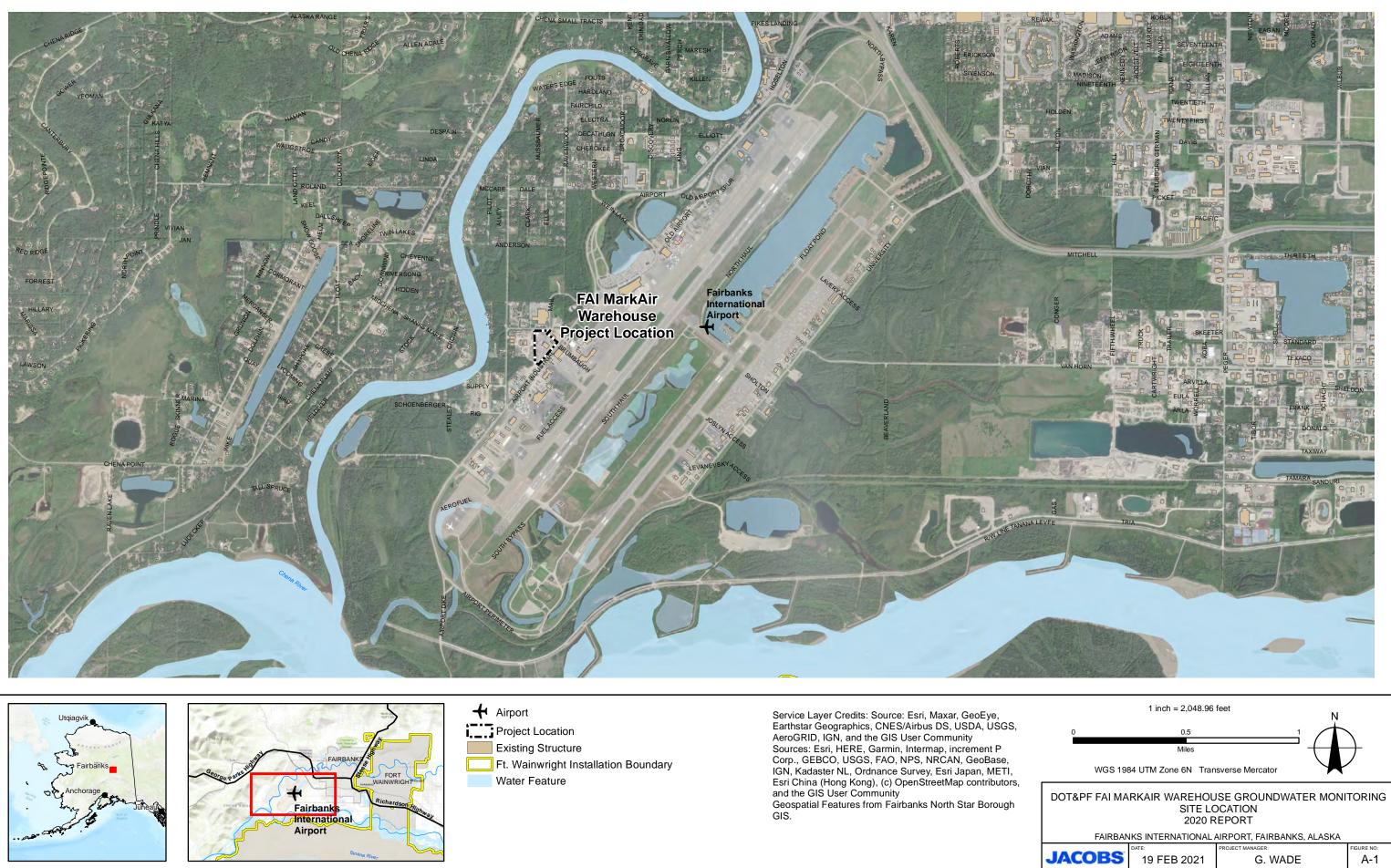
7.2 **RECOMMENDATIONS**

The following actions are recommended for the MAW site:

• Continue biennial sampling for GRO, DRO, RRO, VOCs, and PAHs and continue nutrient injection of the FAI MAW monitoring well network in coordination with the ADEC. Biennial injection and monitoring of groundwater should continue until the ADEC determines it is no longer necessary based on results of sampling activities. The delayed nutrient injection is rescheduled for Spring of 2022. After Spring 2022, groundwater monitoring, including sampling and nutrient injection should occur in Fall of 2022.

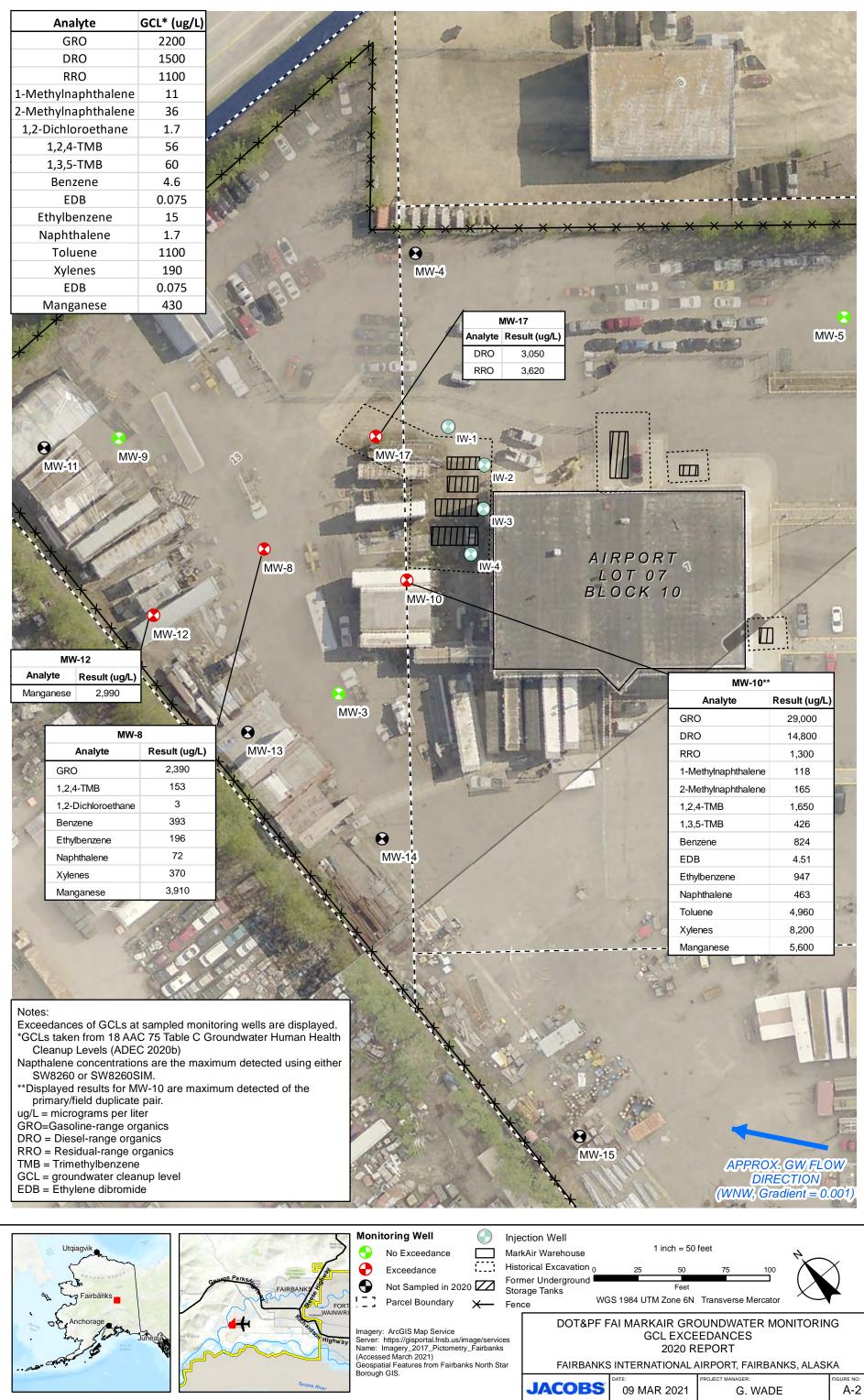
- For EDB, continue analyzing sample via EPA Method 8260D SIM to obtain LODs in ND samples that do not exceed the ADEC GCLs.
- Continue the frequency of injection for remediation. Results are mostly stable, showing no significant decrease in contaminant trends; therefore, the sufficiency of the frequency should be re-evaluated as more injections are completed and more data becomes available.
- Continue analyzing the trends in contaminant concentration data, and conduct geometric regression when trends are decreasing to predict the start of attainment and the year remediation goals will be met.
- Ensure that vehicles, equipment, and materials that could introduce contamination to groundwater are stored away from flushmount monitoring wells and in secondary containment as appropriate.
- Remove any staining from pavement adjacent to monitoring wells so that these are not a continued potential source of pollution. Be sure to properly containerize and dispose of washwater generated during stain removal.

(intentionally blank)


8.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2019. *Field Sampling Guidance*. Final. Division of Spill Prevention and Response, Contaminated Sites Program.
- ADEC. 2020a. ADEC Contaminated Site Program MarkAir- FIA Fairbanks Warehouse. <u>https://dec.alaska.gov/Applications/SPAR/PublicMVC/CSP/SiteReport/22871</u>. Accessed August 2020.
- ADEC. 2020b (January). *Oil and Other Hazardous Substances Pollution Control*. Division of Spill Prevention and Response, Contaminated Sites Program. 18 AAC 75. Updated per Register 236, January 2021.
- ASCWG (Alaska Statement of Cooperation Working Group). 2006. *Groundwater Sampling Techniques for Site Characterization and Hydrocarbon Risk Calculations Technical Background Document and Recommendations*. Prepared by Geopshere, Inc. and CH2M Hill, Inc.
- DOT&PF (Alaska Department of Transportation & Public Facilities). 2017 (16 November). 2017 Annual Monitoring Report. Prepared by R&M Consultants, Inc.
- DOT&PF. 2018. 2018 Groundwater Monitoring Report. Former MarkAir Warehouse. Fairbanks, Alaska. Prepared by Brice Environmental Services Corporation.
- DOT&PF. 2020 (November). 2020 MarkAir Warehouse Groundwater Monitoring with Enhanced Monitored Natural Attenuation Work Plan. Prepared by Jacobs.
- EPA (U.S. Environmental Protection Agency). 1998 (September). *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water*.

Microbial Insights. 2017 (May). Site Logic Report, QuantArray-Petro Study. Example Report.


(intentionally blank)

Appendix A Site Figures

Appendix B Photograph Log

PHOTOGRAPH LOG TABLE OF CONTENTS

Photo Numbe	e <u>r</u>	Page
Photo No. 1 –	15 December 2020 Location of well MW-10 under a trailer at the MarkAir Warehouse site prior to sampling. Well is located in the disturbed snow area. View facing north	B-1
Photo No. 2 –	15 December 2020 MW-10 located under a trailer at the MarkAir Warehouse site prior to sampling. View facing southwest	B-2
Photo No. 3 –	16 December 2020 Well monitoring setup with a YSI, turbidity meter, and a bladder pump inside an ice fishing tent to prevent freezing of groundwater during sampling. View facing southeast	B-3
Photo No. 4 –	16 December 2020 Project Manager G. Wade (Jacobs) records groundwater parameters inside the temporary ice fishing tent with a portable heater to keep equipment warm. View facing southwest	B-4

(intentionally blank)

Photo No. 1 – 15 December 2020
Location of well MW-10 under a trailer at the MarkAir Warehouse site prior to sampling.
Well is located in the disturbed snow area. View facing north.

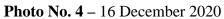


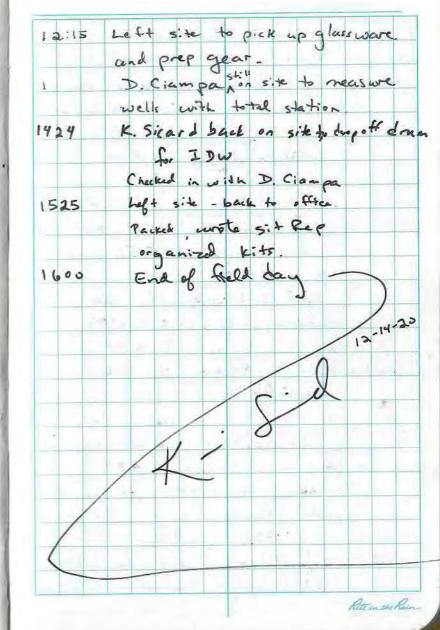
Photo No. 2 – 15 December 2020 MW-10 located under a trailer at the MarkAir Warehouse site prior to sampling. View facing southwest.

Photo No. 3 – 16 December 2020
Well monitoring setup with a YSI, turbidity meter, and a bladder pump inside an ice fishing tent to prevent freezing of groundwater during sampling. View facing southeast.

Project Manager G. Wade (Jacobs) records groundwater parameters inside the temporary ice fishing tent with a portable heater to keep equipment warm. View facing southwest.

Appendix C Field Notes

ADOT FAI ADOT - JA7 - 70 4198 - H44 - 9981


Nº 550F

No.550F-Environmental-Yellow-4.75* x7.5* TTT Environmental Instruments and Supplies (907) 770-9041 www.tttenviro.com ISBN 978-1-932149-50-0 J. Robinson G. Wade T. Laiti

Location Mark Air / FAI Dot Date 12/14/20 Project / Client DOT FAI

Personnel: K. Sicard Louns bury & #1500. Inc. David Ciampa Weather : Windy, 14F, overcast Objective: Find & Survey wells at mark Air, open them and measure WL. Packel gear from office 0815 Acr. on site, got key from TAL 0 845 0910 Met D. Ciampa (Lounsbury) a started looking for wells after going through POWRA (safety failgate form) 1 \$10:30 Located all wells opened all wells a meas. W2 & Toc 10:30 T. Laiti came by to provide socket sof WL : MW12 (Kes) Deet to water well name btoc bas diff. MW-12 9.01 -10.08 0.5 MW-3 9.63 10.08 0.45 MW-17 111.22/0.58 10.64 9.73 9.95 0.22 MW-9 9.10 9.54 0.44 140-5 0.35 10.95 11.30 MW-10 MN-8 10.58 10.36 0.22 11:45

Location Mark A: FAI Dor Date 12/14/20 Project/Client D.T / FAI

Location Airport / Mask Air Date 12/15/20 Incation mark Air Date 12/15/20 Project / Client DoT, FAI Project/Client DoT FAI Personnel: K. Sicard, G. Wade Set up at well im w-8 started purging reached stubility, sampled Weather: 0-10 F wind 5-lomph 1005 objectives : Sample Grud wells at mark 1036 sampled ret . Air site PPE: modified level D. 1043 0730 arro at office Kar: Hayen picked up voricostial 1105 Calibrated multi Rae sumple to ship Fed Exovern & sumplest Finished sampling, Decord, packed 1115 Calibrated turbidity notes Drum mAW # 1 (mw-8) 0827 YSI: serial :15H 202751 Lunch , left site for I hour Torental 556 mps 12-1300 T= 21.66 °C 1310 Setup at mw-3 cond. P/N 00653 18 6t# : (C19505 Purged, stabilized 1336 Cond: 1.337 ms/cms E-p:02/12/21 Sampled (mw-3) 1343-1849 Decond , IDW 2.0 gals PH: 4.01 actual 3.95 Packed up (into mAw I P/N 00654-00 LOT CC620441 exe : 05/13/21 14:30 Set up under trailer, que ward. PH: 7.00 actual , 6.90 mw-10 - purged stabilized P/N 00654-04 Lot CC616864 4/23/21 collected DNA/MI took an 15:36 hous & 1st one O. le L till clogged PH: 10.01 actual: 9.97 ((mw-10)) 2nd film 0.2 L toll clogged 00654-08 Lot: (56 2031 exp. 5/25/2) +x 3 gals Collected rest of sample + DUP ORP: 240.5 TIM L.t: 1422 exp 4/22 20 MAW-MW10-GWA - Due. IDV 0858 Departed office & headed to site 17:30 Packed up, deconde. Back to attice Parked sample bottles. End of Day 18:45 Held safety tailgate - K-Sid-

Location Mark Air, Date 12 16 20 Project / Client FAI / DOT K. Siard G. Wade Ressonnel: Windy 5-10 mpl, -10 to 0 F weather : objectives: Sample GW modified D REE : Arr. at office 0715 Calibrated Two bidity meter Calibrated air monitoring 20 milti maker Calibrated air monitoring 20 Burge test Calibrated YSI - same as yesterday 0 750 0755 0756 PH 4.01 (same Lot #) actual pH 3.89 pH to. 7.00 (same bottle asyesterday) actual 7.05, calib. to 7.00 9H 10.01 PN: 00654-08 Exp: actual 10,15 LoT#: CC 635213 8/13/21 Cond: same bittle as yesterday 1413 prs/cm Temp: 21 °C actual 1.409 mS/cm 1310 ms/cm ORP: Lot # 1422 exp 04/22 420 240mv actual 240.3 Departed office for New-12 well 152 0825 Set up at mw-12 started prop Drw 8.96 btoc 0913 cloudy, orange-brown, tarbid 0943 Stabilized

Location Mask Air Date 12/16/20 Moject/Client_DOT/Ampr+

Started sampling DNA/MI mw-12 0945 Fruished sampling, I DW 3 gals int Set up at mw-9, purged Kari Hagen came by to grab 11:15 DNA/MJ samples > ted EX K. Sirard van to got batteries 12:00 sampled at mw-9 12:30 sample 20MAW-mw9-GW IDW B gals into same drum: mAW 1 Set up at mw-17, G. wade 13:39 purged stabilized lunch sampled mw-17, dup for Btex 14:03 pung rate was trickser but stabilized quicely Racked up to move to mw-5 14:25 mw-5 set up, started purging 15:20 G. Wade to Brooks Fuel Site BFS to look for last 3 wells. G. wade game back. Finished, packed up IDW 3.5 gals 16:21 17:00 Decond. A back to office Ungacked sent sample into to Kasi 17:30 18:30 End of day K= S-d

Location		Date	
Project / Client _			
		*	
		-	

Location FAI (mark Air Date 12/15-12/18/20

Project / Client DOT

IDW Log - Mark A: - 2020 Dec. into down well Date gals mAW #1 2.5 MW-8 12-15-20 mAW 1 2.0 MW-3 12 15 20 3.0 MAW mw-10 1 0 12 15/20 mw-12 3.0 12/16/20 5 3.0 mw-9 mw-17 2.0 3.5 (19) mw-5 1 t mAw 1 2 mw-2 12 17 20 3 mALO 1 mw-5 (BES) +2 (7) mAW2 mw -8 26.0 +0.5 calibration \$ decon. Hop 26.5 gals Total emptical info mAw drum at Air port / Dot holding bldg across from mast Ar Warehouse waste = (26.5 +Hal) 12/18/20 Final anen MAWI Sato Gri sampling from Dec event Rite in the Rain

Appendix D Groundwater Sampling Forms Appendix E Analytical Data Tables

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-1 2020 and Historical Groundwater Elevations

Monitoring Well ID	Date	Total Depth (feet btoc)	Top of Casing Elevation (feet)	Depth to Water (feet btoc)	Water Table Elevation (feet)
	9/9/2010		431.21		
	9/10/2010	19.49		7.92	423.29
	10/18/2010			10.19	421.02
	11/15/2010				
MW-3	7/24/2012		431.22	6.71	424.51
	9/5/2012			8.8	422.42
	9/6/2013			7.88	423.34
	10/11/2016 8/28/2018	19.49 19.39	431.24	9.24	422
	12/15/2020	19.39	430.94	6.38 9.63	421.31
	9/9/2010		430.94	9.03	421.31
	9/10/2010	17.09		7.18	423.79
	10/18/2010			9.64	421.33
	11/15/2010			10.79	420.18
	7/24/2012		430.97	6.4	424.57
MW-5	9/5/2012			8.31	422.66
	9/5/2013			7.58	423.39
	11/7/2013			10.46	420.51
	10/11/2016	16.99	430.95	8.6	422.35
	8/28/2018	16.99		5.96	
	12/15/2020	17.00	430.68	9.10	421.58
	9/9/2010		432.06		
	9/10/2010	19.44		8.48	423.58
	10/18/2010			11.03	421.03
	11/15/2010 7/24/2012			12.15	419.91
MW-8	9/5/2012		431.74	7.25 9.36	424.49 422.38
	9/5/2012			9.56	422.38
	11/7/2013			11.52	423.05
	10/11/2016	19.19	431.74	9.73	422.01
	8/28/2018	19.09		6.98	
	12/15/2020	18.75	431.60	10.36	421.24
	9/9/2010		431.1		
	9/10/2010	17.3		7.55	423.55
	10/18/2010			10.16	420.94
	11/15/2010			11.21	419.89
MW-9	7/24/2012		430.9	6.44	424.46
	9/5/2012			8.55	422.35
	9/5/2013			7.81	423.09
	10/11/2016	17.05	431.04	9.08	421.96
	8/28/2018	16.95		6.34	
	12/16/2020	16.58	430.97	9.73	421.24
	9/9/2010 9/10/2010	 17.67	432.66	 9.04	 423.62
	10/18/2010			9.04	423.62
	11/15/2010			12.82	419.84
	7/24/2012		432.59	8.07	424.52
104/ 10	9/5/2012			10.14	422.45
MW-10	9/5/2013			9.33	423.26
	9/6/2013		432.49	9.13	423.36
	11/7/2013			12.56	419.93
	10/11/2016	17.50	432.45	10.38	422.07
	8/28/2018	17.50		7.69	
	12/15/2020	16.70	432.30	10.95	421.35
	9/9/2010		430.71		
	9/10/2010	18.03		7.17	423.54
	10/18/2010			9.76	420.95
	11/15/2010			10.83	419.88
MM/ 10	7/24/2012		430.6	6.14	424.46
MW-12	9/5/2012 9/6/2013			8.26 7.52	422.34 423.08
	9/6/2013			10.46	423.08
	10/11/2013	17.86	430.51	8.55	420.14
	8/28/2018	17.86	430.51	5.75	421.90
	12/16/2020	17.72	430.25	9.01	421.24

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-1 2020 and Historical Groundwater Elevations

Monitoring Well ID	Date	Total Depth (feet btoc)	Top of Casing Elevation (feet)	Depth to Water (feet btoc)	Water Table Elevation (feet)
	9/5/2013	14.53		9.16	
MW-17	10/11/2016	14.36	432.28	10.2	422.08
10100-17	8/28/2018	14.36		7.4	
	12/16/2020	14.45	431.98	10.64	421.34

Notes:

-- = Not applicable/data not collected

btoc = below top of casing

For definitions, refer to the Acronyms and Abbreviations section.

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-2 2020 and Historical Groundwater Sample Analytical Results - Fuels and BTEX (µg/L)

				Alaska Methods		BTEX EPA Method SW8021 or SW8260				
Well ID	Sample ID	Date Sampled	AK101 GRO	AK102 DRO	AK103 RRO	Benzene	Toluene	Ethylbenzene	Xylenes	
ADEC Grour	ndwater Cleanup Level	s ^A (µq/L)	2,200	1,500	1,100	4.6	1,100		190	
	MW-3	10/13/2004	ND	ND						
	MW-3	August 2008	ND [100]	712		ND [0.5]	ND [2]	ND [2]	ND [4]	
	MW-3	9/15/2010	ND [62.0]	ND [500]	ND [300]	ND [0.3]	ND [1.24]	ND [1.24]	ND [1.24]	
MW-3	MW-3	7/25/2012	ND [62.0]	631	296 J	0.480 J	ND [0.620]	ND [0.620]	ND [1.24]	
10100-3	MW-3	9/6/2013	ND [62.0]	250 J		ND [0.3]	ND [0.620]	ND [0.620]	ND [1.86]	
	MW-03	11/11/2016	ND [31.0]	237 J	ND [147]	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930]	
	MW-3	8/28/2018	ND [31.0]	414 J	372 J	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930]	
	MW-3	12/15/2020	ND [50]	244 [300] J	361 [250] J	0.19 [0.25] J	ND [0.5]	Ethylbenzene 15 ND [2] ND [1.24] ND [0.620] ND [0.620] ND [0.52] ND [0.5310] ND [2] ND [0.51] ND [1.24] ND [0.520] ND [0.520] ND [1.24] ND [0.520] ND [0.520] ND [0.310] ND [0.51] 1,410 430 547 108 121 147 39.2 385 527 633 326 467 447 234 234 196 [2.5] ND ND [1.24] ND [0.620] ND [0.620] <td< td=""><td>ND [1.5]</td></td<>	ND [1.5]	
	MW-5	August 2008	ND [100]	ND [400]		ND [0.5]	ND [2]	ND [2]	ND [4]	
	MW-5	9/14/2010	ND [62.0]	ND [472]	ND [284]	ND [0.3]	ND [1.24]	ND [1.24]	ND [1.24]	
	MW-5	7/24/2012	ND [62.0]	495 J	ND [300]	ND [0.3]	ND [0.620]	Ethylbenzene 15 ND [2] ND [1.24] ND [0.620] ND [0.620] ND [0.620] ND [0.310] ND [0.5] ND [1.24] ND [0.5] ND [1.24] ND [0.5] ND [1.24] ND [0.50] ND [0.310] ND [0.310] ND [0.310] ND [0.5] 1,410 430 547 108 121 1417 39.2 385 527 633 326 467 447 234 196 [2.5] ND ND ND ND ND ND 447 234 196 [2.5] ND ND ND ND	ND [1.24]	
MW-5	MW-05	11/12/2016	ND [31.0]	ND [173]	ND [144]	ND [0.150]	ND [0.310]		ND [0.930]	
	MW-205*	11/12/2016	ND [31.0]	ND [173]	ND [144]	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930]	
	MW-5	8/28/2018	ND [31.0]	189 J	174 J	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930]	
	MW-5	12/16/2020	ND [50]	235 [294] J	404 [245] J	ND [0.25]	ND [0.5]	ND [0.5]	0.98 [1.5] J	
	MW-8	10/13/2004	20,900	1,970		3,860	51.7	1,410	4,080	
	MW-8-WEAVER	9/11/2005	6,800	1,050		1,930	21.8		1,200	
	MW-10*	9/11/2005	8,500	1,150		2,000	22		1,480	
	MW-8	August 2008	2,330	950		584	6.37		235.8	
	MW-8*	August 2008	2,290	1,110		633	7.12		272.1	
	MW-8	9/15/2010	1,800	571 J	ND [288]	459	3.29		269	
	MW-8	7/25/2012	655	329 J	ND [300]	148	1.08		55.5 J	
	MW-8	9/18/2012	6,790	1,240	ND [300]	1,380	25.6		1,150	
MW-8	MW-8	10/17/2012	8,720	1,390	ND [300]	1,280	16.9		1,784	
	MW-8	11/15/2012	8,500	2,030	241 J	1,210	45.7		2,152	
	MW-8	9/5/2013	5,990	982		907	46.3		1,016	
	MW-08	11/11/2016	6,570	1,780	ND [144]	2,240 J	9.5 J		1,150	
	MW-208*	11/11/2016				4,490 J	9.2 J		1,110	
	MW-8	8/28/2018	3,310	1,330	462 J	373	11.8 J		859	
	MW-98*	8/28/2018	3,030	1,040	232 J	363	3.64 J		802 ^B	
	MW-98*	8/28/2018	3,030	1,040	232 J	363	3.64 J		802 ^B	
	MW-9	12/15/2020	2,390 [250]	1,050 [294]	472 [245] J	393 [1]	7.94 [2.5]		370 [7.5]	
	MW-9	10/13/2004			ND	4.58	ND		ND	
	WP-1A*	10/13/2004		ND		4.49				
	MW-9	9/12/2005	ND	164		0.557	ND		ND	
	MW-9	August 2008	ND [100]	ND [400]		0.62	ND [2]		ND [4]	
	MW-9	9/15/2010	ND [62.0]	ND [500]	ND [300]	3.7	ND [1.24]		ND [1.24]	
MAN O	MW-9	7/24/2012	ND [62.0]	484 J	ND [300]	2.02	ND [0.620]		ND [1.24]	
MW-9	MW-9	9/18/2012	47 J	276 J	ND [300]	6.71	ND [0.620]		ND [1.24]	
	MW-9	10/17/2012	32.4 J	344 J	ND [300]	2.83	ND [0.620]		ND [1.24]	
	MW-9	11/15/2012	ND [62.0]	718	ND [300]	0.79	ND [0.620]		1.98 J	
	MW-9	9/5/2013	ND [62.0]	329 J		1.83	ND [0.620]		ND [1.86]	
	MW-09	11/11/2016	56.3 J	208 J	ND [147]	3.44	ND [0.310]		ND [0.930]	
	MW-9	8/28/2018	ND [31.0]	241 J	202 J	ND [0.150]	ND [0.310]		ND [0.930]	
	MW-9	12/16/2020	ND [50]	412 [334] J	438 [278] J	ND [0.25]	0.37 [0.5] J	ND [0.5]	1.22 [1.5] J	

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-2 2020 and Historical Groundwater Sample Analytical Results - Fuels and BTEX (µg/L)

				Alaska Methods			BTEX EPA Method SV	/8021 or SW8260	
Well ID	Sample ID	Date Sampled	AK101	AK102	AK103	Benzene	Toluene	Ethylbenzene	Xylenes
Weil ID	Sample ID	Date Sampled	GRO	DRO	RRO	Delizene	Toldelle	Luiyibenzene	Aylenes
ADEC Groun	dwater Cleanup Level	ls ^A (μg/L)	2,200	1,500	1,100	4.6	1,100	15	190
	MW-10	September 2008	42,900	5,150		3,450	12,300	1,710	9,860
	MW-10	9/15/2010	3,750	1,100	ND [300]	185	ND [0.620]	362	485
	MW-10	7/25/2012	1,550	886	ND [300]	25.4 ^B	73	68.2	349
	MW-910*	7/25/2012				23.2	78.7	63	337
	MW-10	9/18/2012	33,600	4,030	ND [300]	1,320	6,610	1,050	6,580
MW-10	MW-10	10/17/2012	28,100	6,120	ND [300]	752	4,420	963	5,970
	MW-10	11/15/2012	34,400	8,560	4,480	978	6,970	1,450	8,570
	MW-10	9/5/2013	16,700	5,140		735	1,920	571	3,660
	MW-10	10/11/2016	19,900	5,290	ND [153]	1,060	4,570	665	6,420
	MW-10	8/28/2018	32,600	8,360	731	1,610	5,140 ^B	872 ^B	8,250 ^B
	MW-10	12/15/2020	28,400 [2,500]	14,800 [300]	1,300 [250]	809 [2]	4,940 [25]	941 [5]	8,090 [75
	MW-10A*	12/15/2020	29,000 [2,500]	14,400 [326]	1,200 [272]	824 [2]	4,960 [25]	947 [5]	8,200 [75
	MW-12	September 2008	321	520		109	6.57	15.3	25.2
	MW-12*	September 2008	331	446		113	1.25	14.8	20.5
	MW-12	9/15/2010	43.9 J	295 J	ND [268]	2.74	ND [1.24]	ND [1.24]	1.98 J
	MW-912 *	9/15/2010	ND [62.0]	464 J	ND [292]	2.68	ND [1.24]	ND [1.24]	ND [1.24
	MW-12	7/25/2012	170	399 J	ND [300]	56	ND [0.620]	ND [0.620]	13.9
	MW-912 *	7/25/2012	176	200 J	ND [300]	56.2	ND [0.620]	ND [0.310]	14.9
	MW-12	9/18/2012	382	326 J	ND [300]	104	0.48 J	14.2	48.1
	MW-22 *	9/18/2012	361	283 J	ND [300]	101	0.45 J	13.3	45.2
MW-12	MW-12	10/17/2012	391	685	264 J	110	ND [0.620]	6.92	39.7
	MW-22 *	10/17/2012	440	469 J	ND [300]	128	ND [0.620]	9.3	48.1
	MW-12	11/15/2012	505	1030	ND [300]	145	0.34 J	11.1	50.1 J
	MW-22 *	11/15/2012	452	907	ND [300]	133	ND [0.620]	9.79	44.89 J
	MW-12	9/5/2013	80.4 J	240 J		22.4	ND [0.620]	ND [0.620]	2.49 J
	MW-99 *	9/5/2013	110	322 J		30.5	ND [0.620]	0.31 J	2.81 J
	MW-12	10/11/2016	70.1 J	243 J	ND [153]	4.01	ND [0.310]	0.85 J	8.46
	MW-212*	10/11/2016	57.5 J	284 J	ND [150]	3.63	ND [0.310]	0.71	7.03
	MW-12	8/28/2018	ND [31.0]	387 J	232 J	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930
	MW-12	12/16/2020	36.4 [50] J	603 [319] J	350 [266] J	1.7 [0.25]	1.06 [0.5]	0.42 [0.5] J	4.71 [1.5
	MW-17	8/6/2012	ND [62.0]	2,110	245 J	0.230 J	ND [0.620]	0.310 J	0.390 J
	MW-17	9/18/2012	ND [62.0]	4,900	956	ND [0.30]	ND [0.620]	ND [0.620]	ND [1.24
	MW-17	10/17/2012	ND [62.0]	4,920	1,650	ND [0.30]	ND [0.620]	ND [0.620]	ND [1.24
	MW-17	11/15/2012	146	5,200	1,290	1.39	11.7	3.98	29.5
MW-17	MW-17	9/5/2013	ND [62.0]	4,960		ND [0.30]	ND [0.620]	ND [0.620]	ND [1.86
	MW-17	10/11/2016	ND [31.0]	1,900	543	ND [0.150]	ND [0.310]	ND [0.310]	ND [0.930
	MW-17	8/28/2018	ND [31.0]	3,580	956	ND [0.150]	0.758 J	0.451 J	3.81
	MW-17	12/16/2020	ND [50]	3,050 [313]	3,620 [261]	ND [0.25]	0.34 [0.5] J	ND [0.5]	1.16 [1.5]
	MW-17A*	12/16/2020				ND [0.25] Abbreviations:	0.34 [0.5] J	ND [0.5]	1.08 [1.5]

Notes:

^A ADEC Groundwater Cleanup Levels (18 AAC 75, Table C) (ADEC 2021).

^B Reported result is from the SW8260 analysis because the result was greater than the SW8021 results and

* Sample is a field duplicate of the preceding sample with the same date.

-- Sample not analyzed for this contaminant.

J = Result is an estimated value because it was greater than the method detection limit but less than the LOQ.

Bold = Result exceeds the ADEC GCLs.

Italics = Result is from 2020 sampling event.

Historical values taken from prior groundwater monitoring report (DOT&PF 2018)

Abbreviations:

µg/L = micrograms per liter

ADEC = Alaska Department of Environmental Conservation

GCL = groundwater cleanup level

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = diesel-range organics

EPA = U.S. Environmental Protection Agency

GRO = gasoline-range organics

LOD = limit of detection

LOQ = limit of quanititation

ND = nondetect

RRO = residual-range organics

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-3 2020 and Historical Groundwater Analytical Results - Volatile Organic Compounds (µg/L)

MW-3 MW-3 9/15 MW-3 12/1 MW-5 12/1 MW-5 12/1 MW-5 12/1 MW-8 10/1 MW-8 10/1 MW-8 9/1 MW-8 10/1 MW-88 10/1 MW-08 10/1 MW-208* 10/1	0.075 10/13/2004 ND [1.00] 1/15/2010 ⁶ 12/15/2020 1/15/2020 1/1/2005 ND [1.00] 1/1/2005 ND [1.00] 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	5600 ND [10] 16.2 ND [10] ND [10]	300 ND [1.00] ND [1.00] ND [1.00] ND [1.00] ND [1.00] 0.320 J ND [0.620] ND [0.620]	1.7 ND [1.00] 32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01 5.92	56 ND [1.00] 916 491 503 75.4 80.8 109	60 ND [1.00] 229 127 134 15.9 17.7	N/A ND [1.00] 23.5 3.79 3.74 3.41 3.64	ND [1.00] 32 5.47 5.52 2.06	2,000 V-2 Removed on S ND [1.00] ND [1.00] 6.4 6.38 1.65	ND [1.00] 5 2.34 2.31	190 ND [5.00] ND [5.00] ND [1.00] ND [1.00]	2.2 ND [1.00] ND [1.00] ND [1.00] ND [1.00]	200 ND [1.00] ND [1.00] 1.1 1.15	5200 ND [1.00] ND [1.00] ND [1.00] ND [1.00]	450 ND [1.00] 102 58.8 52.4	1.7 ND [1.00] 318 108 125	660 ND [1.00] 153 84.5 89.5
MW-3 MW-3 9/15 MW-3 12/1 MW-5 9/14 MW-5 12/1 MW-5 12/1 MW-8 10/1 MW-8 10/1 MW-8 9/1 MW-8 10/1 MW-08 10/1 MW-208* 10/1	a)/15/2010 ^C i2/15/2010 ^C i2/15/2020 i2/15/2020 i2/15/2020 i2/15/2020 i2/15/2020 i0/13/2004 0.543 g/11/2005 ND [1.00] yugust 2008 ND [1.00] ugust 2008 ND [1.00] ysjust 2008 ND [1.00] y/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2		 ND [1.00] ND [1.00] 0.320 J ND [0.620]	 32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01	 916 491 503 75.4 80.8	 229 127 134 15.9 17.7	 23.5 3.79 3.74 3.41	ND [1.00] 32 5.47 5.52 2.06	ND [1.00] ND [1.00] 6.4 6.38	ND [1.00] 5 2.34 2.31	 ND [5.00] ND [1.00]	 ND [1.00] ND [1.00]	 ND [1.00] 1.1 1.15	 ND [1.00] ND [1.00]	 102 58.8 52.4	 318 108	 153 84.5
MW-3 MW-3 9/15 MW-3 12/1 MW-5 9/14 MW-5 9/14 MW-5 9/14 MW-5 12/1 MW-8 10/1 MW-8 10/1 MW-8 9/1 MW-8 9/1 MW-8 4ug MW-8 9/11 MW-8 4ug MW-8 9/11 MW-8 9/12 MW-8 9/11 MW-8 9/12 MW-8 10/1 MW-8 10/1 MW-80 10/1 MW-08 10/1 MW-208* 10/1	a)/15/2010 ^C i2/15/2010 ^C i2/15/2020 i2/15/2020 i2/15/2020 i2/15/2020 i2/15/2020 i0/13/2004 0.543 g/11/2005 ND [1.00] yugust 2008 ND [1.00] ugust 2008 ND [1.00] ysjust 2008 ND [1.00] y/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2		 ND [1.00] ND [1.00] 0.320 J ND [0.620]	 32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01	 916 491 503 75.4 80.8	 229 127 134 15.9 17.7	 23.5 3.79 3.74 3.41	 32 5.47 5.52 2.06	 ND [1.00] 6.4 6.38	 5 2.34 2.31	 ND [5.00] ND [1.00]	 ND [1.00] ND [1.00]	 ND [1.00] 1.1 1.15	 ND [1.00] ND [1.00]	 102 58.8 52.4	 318 108	 153 84.5
MW-3 12/1 MW-3 12/1 MW-5 9/14 MW-5 12/1 MW-8 10/1 MW-8-WEAVER 9/1 MW-10* 9/1 MW-8 Augu MW-8 Augu MW-8 Augu MW-8 9/1 MW-8 Augu MW-8 9/1 MW-8 9/2 MW-08 10/1 MW-208* 10/1	12/15/2020 3/14/2010 ^C 12/15/2020 10/13/2004 0.543 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	 ND [6.20] ND [6.20] ND [6.20]	 ND [1.00] ND [1.00] ND [1.00] 0.320 J ND [0.620]	 32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01	 916 491 503 75.4 80.8	 229 127 134 15.9 17.7	 23.5 3.79 3.74 3.41	 32 5.47 5.52 2.06	 ND [1.00] 6.4 6.38	 5 2.34 2.31	 ND [5.00] ND [1.00]	 ND [1.00] ND [1.00]	 ND [1.00] 1.1 1.15	 ND [1.00] ND [1.00]	 102 58.8 52.4	 318 108	 153 84.5
MW-5 MW-5 9/14 MW-5 12/1 MW-8 10/1 MW-8-WEAVER 9/1 MW-10* 9/1 MW-8 Augu MW-8 Augu MW-8 Augu MW-8 9/12 MW-8 10/1 MW-08 10/1 MW-208* 10/1	a)/14/2010 ^C 12/15/2020 10/13/2004 0.543 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018- 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	 16.2 ND [10] ND [10] ND [6.20] ND [6.20] ND [6.20]	 ND [1.00] ND [1.00] ND [1.00] 0.320 J ND [0.620]	 32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01	 916 491 503 75.4 80.8	 229 127 134 15.9 17.7	 23.5 3.79 3.74 3.41	 32 5.47 5.52 2.06	 ND [1.00] 6.4 6.38	 5 2.34 2.31	 ND [5.00] ND [1.00]	 ND [1.00] ND [1.00]	 ND [1.00] 1.1 1.15	 ND [1.00] ND [1.00]	 102 58.8 52.4	 318 108	 153 84.5
MW-5 MW-5 12/1 MW-5 12/1 10/1 MW-8 10/1 MW-8 10/1 MW-8 WEAVER 9/1 1 MW-8 Augu MW-8 Augu MW-8 Augu MW-8 9/13 MW-8 MW-8 9/15 1 MW-8 MW-8 9/15 1 MW-8 MW-8 9/15 1 MW-8 MW-8 10/1 1 MW-08 10/1 1 1	12/15/2020 10/13/2004 0.543 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018- 9/5/2013 ND [0.620 9/5/2013 ND [0.620 9/5/2013 ND [0.620	16.2 ND [10] ND [10] ND [6.20] ND [6.20] ND [6.20]	ND [1.00] ND [1.00] 0.320 J ND [0.620]	32.4 ND [0.500] ND [0.500] 4.92 5.12 3.01	916 491 503 75.4 80.8	 229 127 134 15.9 17.7	23.5 3.79 3.74 3.41	32 5.47 5.52 2.06	ND [1.00] 6.4 6.38	5 2.34 2.31	ND [5.00] ND [1.00]	ND [1.00] ND [1.00]	ND [1.00] 1.1 1.15	ND [1.00] ND [1.00]	102 58.8 52.4	318 108	153 84.5
MW-8 10/1 MW-8-WEAVER 9/1 MW-10* 9/1 MW-8 Augu MW-8* Augu MW-8 9/1 MW-8 9/1 MW-8 9/1 MW-8 9/1 MW-8 9/1 MW-8 9/1 MW-8 10/1 MW-08 10/1 MW-208* 10/1	10/13/2004 0.543 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] 9/11/2005 ND [1.00] ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	ND [10] ND [10] ND [6.20] ND [6.20] ND [6.20]	ND [1.00] ND [1.00] 0.320 J ND [0.620]	ND [0.500] ND [0.500] 4.92 5.12 3.01	491 503 75.4 80.8	229 127 134 15.9 17.7	23.5 3.79 3.74 3.41	32 5.47 5.52 2.06	6.4 6.38	5 2.34 2.31	ND [1.00]	ND [1.00]	1.1 1.15	ND [1.00]	102 58.8 52.4	108	153 84.5
MW-10 * 9/1 MW-8 Augu MW-8 Augu MW-8 9/1 MW-8 9/1 MW-8 9/5 MW-89 * 9/5 MW-08 10/1 MW-208* 10/1	9/11/2005 ND [1.00] ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	ND [10] ND [10] ND [6.20] ND [6.20] ND [6.20]	ND [1.00] 0.320 J ND [0.620]	ND [0.500] 4.92 5.12 3.01	503 75.4 80.8	134 15.9 17.7	3.79 3.74 3.41	5.52 2.06	6.4 6.38	2.31			1.1 1.15	ND [1.00]	52.4		84.5
MW-8 Augu MW-8* Augu MW-8 9/11 MW-8 9/12 MW-8 9/12 MW-8 9/12 MW-8 9/12 MW-8 10/1 MW-208* 10/1	ugust 2008 ND [1.00] ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	ND [10] ND [6.20] ND [6.20] ND [6.20]	 0.320 J ND [0.620]	4.92 5.12 3.01	75.4 80.8	15.9 17.7	3.41	2.06		-	ND [1.00]	ND [1.00]		ND [1.00]	-	125	89.5
MW-8 Aug MW-8 9/1 MW-8 9/1 9/1 MW-8 9/2 9/2 MW-89 * 9/2 9/2 MW-08 10/1 MW-208* 10/1	ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	 ND [6.20] ND [6.20] ND [6.20]	 0.320 J ND [0.620]	5.12 3.01	80.8	17.7			1.65	ND [4,00]	1				-		
MW-8 Aug MW-8 9/1 MW-8 9/1 9/1 MW-8 9/2 9/2 MW-89 * 9/2 9/2 MW-08 10/1 MW-208* 10/1	ugust 2008 ND [1.00] 9/15/2010 ND [0.018 9/5/2013 ND [0.620 9/5/2013 ND [0.620 10/11/2016 0.2	ND [6.20] ND [6.20] ND [6.20]	0.320 J ND [0.620]	5.12 3.01	80.8	17.7				ND [1.00]			2.07 J	ND [1.00]	15.3	29.9	21.3
MW-8 MW-8 9/5 MW-89 * 9/5 MW-08 10/1 MW-208* 10/1	9/5/2013 ND [0.620] 9/5/2013 ND [0.620] 10/11/2016 0.2	ND [6.20] ND [6.20]	ND [0.620]		109	1 1		2.59	1.81	ND [1.00]			2.24 J	ND [1.00]	16.3	33.9	22.8
MW-89 * 9/5 MW-08 10/1 MW-208* 10/1	9/5/2013 ND [0.620 10/11/2016 0.2	ND [6.20]		5.92		15.6	3.84	3.22	2.23	1.09	0.860 J	ND [0.600]	2.07	ND [.620]	19.2	43.3	32.3
MW-08 10/1 MW-208* 10/1	10/11/2016 0.2		ND [0.620]		418	104	13.9	11	5.96	2.57	ND [.620]	ND [0.600]	0.600 J	ND [.620]	51.8	135	67
MW-208* 10/1		ND [50.0]		5.76	447	117	15	12.1	6.35	2.7	ND [.620]	ND [0.600]	0.590 J	ND [.620]	55.1	133	77
	10/11/2016 02		ND [5.00]	10	470	171	20.3	ND [5.00]	10.9	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	79.6	182	120
MM/ 9 9/20		ND [50.0]	ND [5.00]	10.4	472	172	21.3	ND [5.00]	11.6	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	ND [5.00]	80.1	191	121
IVIVV-0 0/2	8/28/2018 ND [0.014	ND [0.310]	ND [0.310]	2.4	311	85	10.3	ND [0.310]	4.54	1.87	ND [0.310]	ND [0.310]	ND [0.310]	ND [0.310]	35.6	94	64.1
MW-98* 8/2	8/28/2018 ND [0.014	ND [0.310]	ND [0.310]	2.35	330	91	10.9	ND [0.310]	4.76	ND [0.310]	ND [0.310]	ND [0.310]	ND [0.310]	ND [0.310]	36.5	98	68.4
MW-8 12/1	12/15/2020 ND [0.0125	E ND [25]	ND [2.5]	3.04 [1.25]	153 [2.5]	39.7 [2.5]	7.87 [2.5]	ND [2.5]	4.22 [2.5] J	1.95 [2.5] J	ND [2.5]	ND [2.5] E	ND [2.5]	ND [2.5]	35.3 [2.5]	72.3 [2.5]	53.4 [2.5]
MW-9 10/1	0/13/2004 ^C																
MW-9 WP-1A * 10/1	0/13/2004 ^C																
	9/15/2010 ^C																
MW-9 12/1	2/16/2020 ND [0.002			ND [0.25]													
MW-10 Septer	otember 2008 79.3 J			ND [0.500]	1790	535	64	47.8	24.8	6.54			1.23 J	ND [1.00]	120	568	220
MW-10 9/1	9/15/2010 0.854	ND [6.20]	ND [0.620]	ND [0.300]	3.23	9.86	0.940 J	ND [0.620]	0.620 J	ND [0.620]	0.670 J	ND [0.600]	ND [0.620]	ND [.620]	20.7	2.51	5.12
MW-10 7/2	7/25/2012 0.211	ND [6.20]	ND [0.620]	ND [0.300]	117	39.8	7.84	6.56	3.41	0.950 J	1.04	ND [0.600]	1.44	ND [0.620]	11.6	38.1	20.5
MW-910 7/2	7/25/2012 0.183	ND [6.20]	ND [0.620]	ND [0.300]	120	30.8	2.04	5.19	2.62	0.800 J	0.540 J	ND [0.600]	1.51	ND [0.620]	9.41	30.3	16.2
MW-10 MW-10 9/6	9/6/2013 11																
MW-109 * 9/6	9/6/2013 10																
MW-10 10/1	10/11/2016 18	ND [5.00]	ND [0.500]	ND [0.25]	1,250	294	17.9	ND [0.500]	21.5	ND [0.500]	ND [0.500]	ND [0.500]	ND [0.500]	1.61	64.8	302	123
MW-10 8/2	8/28/2018 12	ND [31.0]	ND [3.10]	ND [1.50]	1,700	460	60.3	ND [3.10]	18.9	ND [3.10]	ND [3.10]	ND [3.10]	ND [3.10]	ND [3.10]	79.5	436	151
MW-10 12/1	12/15/2020 3.8 [0.025	ND [50]	ND [5]	ND [2.5] E	1,640 [5]	424 [5]	12.2 [5]	ND [5]	18.7 [5]	6.15 [5] J	ND [5]	ND [5] E	ND [5]	ND [5]	83.7 [5]	454 [5]	146 [5]
MW-10A * 12/1	12/15/2020 3.89 [0.02	ND [50]	ND [5]	ND [2.5] E	1,650 [5]	426 [5]	12.4 [5]	ND [5]	19.6 [5]	6.18 [5] J	ND [5]	ND [5] E	ND [5]	ND [5]	83.2 [5]	463 [5]	145 [5]
MW-12 Septer	otember 2008 ND [1.00]			1.68	13.8	6.05	2.47	ND [1.00]	ND [1.00]	ND [1.00]			1.79 J	ND [1.00]	4.69	8.04	3.86
MW-12 * Septer	otember 2008 ND [1.00]			1.7	12.9	4.29	1.96	ND [1.00]	ND [1.00]	ND [1.00]			1.74 J	ND [1.00]	4.47	ND [2.00]	4.13
MW-12 MW-12 9/1	9/15/2010 ND [0.019	ND [6.20]	0.320 J	0.83	1.12	ND [0.620]	0.740 J	ND [0.620]	0.570 J	0.480 J	ND [0.620]	ND [0.600]	2.21	ND [.620]	1.86	ND [1.24]	0.440 J
MW-912 * 9/15	9/15/2010 ^C																
MW-12 12/1	12/16/2020 ND [0.002	1		0.378 [0.25] J													
MW-17 MW-17 12/1	12/16/2020 ND [0.002			ND [0.25]													
MW-17 MW-17A * 12/1	12/16/2020																

Notes:

^A ADEC Groundwater Cleanup Levels (18 AAC 75, Table C) (ADEC 2021).
 ^B The maximum detected concentration using EPA Method SW8260, 504.1, or 8011 was reported per the 2018 groundwater monitoring report (DOT&PF)

 C Sample was not analyzed for VOCs by Method 8260. E = The result was nondetect and the LOD exceeds the GCL J = The result is an estimated value because it was greater than the method detection limit but less than the LOQ

-- = Sample was not analyzed for the contaminant
 * = Sample is a duplicate of preceding sample.

[] = The laborartory LOQ is presented in brackets for ND results using Method 504.1 and for pre-2010 ND results; the LOD is presented in brackets for all other ND and detected results

Bold = Result exceeds ADEC GCLs.

Italic = Result is from the 2020 sampling event.

VOC results that are not presented in this table were not detected in groundwater samples.

Abbreviations:

- AAC = Alaska Administrative Code ADEC = Alaska Department of Environmental Conservation
- EDB = 1,2-dibromoethane

- EDC = 1,2-dichloroethane EPA = U.S. Environmental Protection Agency
- GCL = groundwater cleanup leve
- LOD = limit of detection

LOQ = limit of quantiation MEK = 2-butanone ND = nondetect RO = residual-range organics TMB = trimethylbenzene VOC = volatile organic compound µg/L = micrograms per liter

Page 1 of 1

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-4 2020 and Historical 2018 Groundwater Sample Analytical Results - Polycyclic Aromatic Hydrocarbons (µg/L)

EPA Method 8270 SIM LV (PAH)

		Location ID: Sample ID: Sample Date:	MW-8	MW-98* 8/28/2018	MW8 20MAW-MW8-GW 12/15/2020	MW-10 8/28/2018	MW10 20MAW-MW10-GW 12/15/2020	MW10* 20MAW-MW10-GWA 12/15/2020
Method	Analyte	ADEC GCL ^A (µg/L)						
SW8270D SIM LV (PAH)	1-Methylnaphthalene	11	10.6	9.6	9.38 [0.0284]	86.9	99.3 [0.481]	118 [0.505]
SW8270D SIM LV (PAH)	2-Methylnaphthalene	36	8.63	7.37	7.09 [0.0284]	115	137 [0.481]	165 [0.505]
SW8270D SIM LV (PAH)	Acenaphthene	530	0.0598	0.0583	0.0401 [0.0284] J	0.439	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Acenaphthylene	260	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Anthracene	43	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Benzo(a)anthracene	0.3	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Benzo(a)pyrene	0.25	ND [0.00585]	ND [0.00630]	ND [0.0114]	ND [0.00608]	ND [0.0096]	ND [0.0101]
SW8270D SIM LV (PAH)	Benzo(b)fluoranthene	2.5	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Benzo(g,h,i)perylene	0.26	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Benzo(k)fluoranthene	0.8	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Chrysene	2	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Dibenzo(a,h)anthracene	0.25	ND [0.00585]	ND [0.00630]	ND [0.0114]	ND [0.00608]	ND [0.0096]	ND [0.0101]
SW8270D SIM LV (PAH)	Fluoranthene	260	0.0308 J	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8270D SIM LV (PAH)	Fluorene	290	ND [0.0142]	ND [0.0152]	ND [0.0284]	0.588	0.938 [0.024]	0.82 [0.0252]
SW8270D SIM LV (PAH)	Indeno(1,2,3-cd)pyrene	0.19	ND [0.0142]	ND [0.0152]	ND [0.0284]	ND [0.0147]	ND [0.024]	ND [0.0252]
SW8260D	Naphthalene	1.7	49.6	49.1	72.3 [2.5]	230	454 [5]	463 [5]
SW8270D SIM LV (PAH)	Phenanthrene	170	0.0267 J	ND [0.0152]	0.0225 [0.0284] J	0.154	0.273 [0.024]	0.255 [0.0252]
SW8270D SIM LV (PAH)	Pyrene	120	0.0253 J	ND [0.0152]	ND [0.0284]	ND [0.0147]	0.0204 [0.024] J	0.0202 [0.0252] J
Notes:					Abbreviations:			

Notes:

Bold = Result exceeds ADEC GCL.

A = ADEC Groundwater Cleanup Lev

[] = The laboratory LOD is presented in brackets for ND results

* = Sample is a field duplicate of sample taken on the same date

J = Result is an estimated value gie LOQ

2020 results are from this study (Jacobs); 2018 results are from groundwater monitoring report (DOT&PF 2018

For other definitions, refer to the Acronyms and Abbreviations section

AAC = Alaska Administrative Code

ADEC = Alaska Department of Environmental Conservation

GCL = groundwater cleanup level

- LOD = limit of detection
- LOQ = limit of quantitation
- ND = nondetect

PAH = polycyclic aromatic hydrocarbons

 $\mu g/L = microgram(s) per liter$

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table E-5 2020 Groundwater Sample Microbial Analysis Genetic Results (cells/mL)

Summary of the QuantArray-Petro results

Well Location:	MW-5	MW-8	MW-10	MW-12
Sample Date:	12/16/2020	12/15/2020	12/15/2020	12/16/2020
Aerobic BTEX and MTBE				
Toluene/Benzene Dioxygenase (TOD)	ND [4.50]	ND [5.00]	24.3	ND [5.00]
Phenol Hydroxylase (PHE)	ND [4.50]	5,070	47,100	22,800
Toluene 2 Monooxygenase/Phenol Hydroxylase (RDEG)	ND [4.50]	2,700	93,400	ND [5.00]
Toluene Ring Hydroxylating Monooxygenases (RMO)	ND [4.50]	7,170	50,900	117
Kylene/Toluene Monooxygenase (TOL)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Ethylbenzene/Isopropylbenzene Dioxygenase (EDO)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Biphenyl/Isopropylbenzene Dioxygenase (BPH4)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Methylibium petroleiphilum PM1 (PM1)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
TBA Monooxygenase (TBA)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Aerobic PAHs and Alkanes		•	-	• •
Naphthalene Dioxygenase (NAH)	ND [4.50]	5.80	ND [7.10]	ND [5.00]
Naphthalene-inducible Dioxygenase (NidA)	ND [4.50]	39.9	ND [7.10]	ND [5.00]
Phenanthrene Dioxygenase (PHN)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Alkane Monooxygenase (ALK)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Alkane Monooxygenase (ALMA)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Anaerobic BTEX				
Benzoyl Coenzyme A Reductase (BCR)	213	2,120	937	1,580
Benzylsuccinate Synthase (BSS)	82	6,400	11,700	380
Benzene Carboxylase (ABC)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Anaerobic PAHs and Alkanes				
Naphthylmethylsuccinate Synthase (MNSSA)	ND [4.50]	5,160	1,330	886
Naphthalene Carboxylase (ANC)	ND [4.50]	ND [5.00]	ND [7.10]	ND [5.00]
Alkylsuccinate Synthase (ASSA)	ND [4.50]	39	165	686
Other (Bacteria)				
otal Eubacteria (EBAC)	439,000	2,870,000	36,300,000	1,010,000
Sulfate Reducing Bacteria (APS)	3,490	52,900	40,900	45,400

Notes:

Bold results are above detection limits for ease of viewing

[] LOD is presented in brackets for ND results.

See Appendix F Genetic Results for detailed charts, tables, and explanations

Abbreviations:

BTEX = benzene, toluene, ethylbenzene, and xylenes

mL = milliliters

MTBE = methyl-t-butyl ether

ND = nondetect

PAHs = polycyclic aromatic hydrocarbons

Appendix F Data Quality Assessment

Attachment F-1

Analytical Results Tables, ADEC Data Review Checklists, and Laboratory Reports

ADOT MAW 20ADOT-MAW01 Microbial Insights 096RL 20MAW-MW36 ADOT MAW 20ADOT-MAW01 Microbial Insights 096RL 20MAW-MW36 ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW45 ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW46 ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW84 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW36 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW36 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW36 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW	W MW12 / MW5 // MW5 // MW8 / MW3 // MW10 // MW10 // MW10 // MW10 // MW10	MW12 16-Dec-2 MW5 16-Dec-2 MW10 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15	0 0945 0 1621 0 1536 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	1 1 2 15 2 2 2 1 1 1 1 1 3 2 12 2 2 1 2 1	TypePoly, Bio-Flo FiltersPoly, Bio-Flo FiltersPoly, Bio-Flo FiltersVOAGAGAPolyPolyPolyPolyQAGA	Volume 50mL 50mL 50mL 20mL 250mL 250mL 250mL 250mL 250mL 40mL 250mL 250mL 250mL 250mL 250mL	<6°C <6°C <6°C <6°C <6°C; HCI <6°C; HCI <6°C HNO3 <6°C HNO3 <6°C <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW GW GW GW GW GW GW	Method Method QuantArray Petro Image: Comparison of the system Image: Comparison of the system QuantArray Petro Image: Comparison of the system Image: Comparison of the system QuantArray Petro Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system QuantArray Petro Image: Comparison of the system Image: Comparison of the system <td< th=""><th></th><th>14 Day 14 Day</th><th>NO2/NO3, Total Phos GRO, BTEX</th></td<>		14 Day 14 Day	NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW01 Microbial Insights 096RL 20MAW-MW12 ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW5-G ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW5-G ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW8-G ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-G ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-G ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-G ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW0	W MW12 / MW5 // MW5 // MW8 / MW3 // MW10 // MW10 // MW10 // MW10 // MW10	MW12 16-Dec-2 MW5 16-Dec-2 MW10 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15	0 0945 0 1621 0 1536 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	15 2 1 1 3 2 12 2 2 2	Poly, Bio-Flo Filters Poly, Bio-Flo Filters Poly, Bio-Flo Filters VOA GA GA Poly Poly Poly VOA GA VOA GA GA	50mL 50mL 50mL 250mL 250mL 125mL 60mL 250mL 250mL 40mL 250mL 40mL 250mL	<6°C <6°C <6°C; HCI <6°C; HCI <6°C; HCI <6°C HNO3 <6°C <6°C, H2SO4 <6°C, H2SO4 <6°C; HCI <6°C; HCI	GW GW GW GW GW GW GW GW GW GW	QuantArray Petro QuantArray Petro QuantArray Petro AK101, SW8260, SW8260 SIM, RSK 175 AK101, SW8260, SW8260 SIM, RSK 175 SW8270 SIM SW8270 SIM SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day	Volume Filtered: 1L Volume Filtered: 1.1L Volume Filtered: 0.5, 0.2L GRO, VOCs, EDB, Methane DRO/RRO PAHs Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW02 Microbial Insights 096RL 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS	W MW10 / MW8 / MW3 / MW3 / MW10 // MW10	MW10 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	D 1536 D 1036 D 1343 D 1536 D 1536 D 1536 D 1536 D 1536 D 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	15 2 1 1 3 2 12 2 2 2	Poly, Bio-Flo Filters Poly, Bio-Flo Filters VOA GA GA Poly Poly Poly VOA GA VOA GA GA	50mL 40mL 250mL 250mL 125mL 60mL 250mL 40mL 250mL 40mL 250mL 250mL	<6°C <6°C; HCI <6°C; HCI <6°C HNO3 <6°C <6°C, H2SO4 <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW GW GW GW GW	QuantArray Petro AK101, SW8260, SW8260 SIM, RSK 175 AK102/103 SW8270 SIM SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103 AK102/103		14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day	Volume Filtered: 1.1L Volume Filtered: 0.5, 0.2L GRO, VOCs, EDB, Methane DRO/RRO PAHs Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1	// MW8 / MW3 / MW3 // MW10	MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	D 1036 D 1343 D 1536 D 1536 D 1536 D 1536 D 1536 D 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	15 2 1 1 3 2 12 2 2 2	Poly, Bio-Flo Filters VOA GA GA Poly Poly Poly VOA GA VOA GA GA	40mL 250mL 250mL 125mL 60mL 250mL 40mL 250mL 40mL 250mL 250mL	<6°C <6°C; HCI <6°C; HCI <6°C HNO3 <6°C <6°C, H2SO4 <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW GW GW	AK101, SW8260, SW8260 SIM, RSK 175 AK102/103 SW8270 SIM SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day	GRO, VOCs, EDB, Methane DRO/RRO PAHs Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 12	// MW8 / MW8 / MW8 / MW8 / MW8 / MW8 / MW3 / MW3 / MW10 // MW10	MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1036 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	2 2 1 1 3 2 12 2 2 2	GA GA Poly Poly VOA GA VOA GA GA	250mL 250mL 125mL 60mL 250mL 40mL 250mL 40mL 250mL 250mL	<6°C; HCI <6°C HNO3 <6°C <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW GW GW	AK102/103 SW8270 SIM SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day 14 Day 14 Day 14 Day 14 Day 14 Day	DRO/RRO PAHs Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 120	// MW8 / MW8 / MW8 / MW8 / MW3 / MW3 / MW10 // MW10	MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	0 1036 0 1036 0 1036 0 1036 0 1036 0 1343 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	2 1 1 3 2 12 2 2	GA Poly Poly VOA GA VOA GA GA	250mL 125mL 60mL 250mL 40mL 250mL 40mL 250mL	<6°C HNO3 <6°C <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW GW	SW8270 SIM SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day 14 Day 14 Day 14 Day 14 Day	PAHs Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 120	// MW8 / MW8 / MW8 / MW3 // MW3 // MW10	MW8 15-Dec-2 MW8 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	D 1036 D 1036 D 1036 D 1343 D 1343 D 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	1 1 3 2 12 2 2	Poly Poly VOA GA VOA GA GA GA	125mL 60mL 250mL 40mL 250mL 40mL 250mL	HNO3 <6°C <6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW GW	SW6020A EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103 AK102/103		14 Day 14 Day 14 Day 14 Day 14 Day	Fe, Mn Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209	// MW8 // MW8 // MW3 // MW3 // MW10 //A MW10 //A MW10 //A MW10	MW8 15-Dec-2 MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	D 1036 D 1036 D 1343 D 1343 D 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	1 1 3 2 12 2 2 2	Poly Poly VOA GA VOA GA GA	60mL 250mL 40mL 250mL 40mL 250mL	<6°C <6°C, H2SO4 <6°C; HCl <6°C; HCl <6°C; HCl	GW GW GW GW	EPA 300.0 SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day 14 Day 14 Day	Sulfate NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW8-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 12098	// MW8 / MW3 // MW3 // MW10	MW8 15-Dec-2 MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	0 1036 0 1343 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	1 3 2 12 2 2 2	Poly VOA GA VOA GA GA	250mL 40mL 250mL 40mL 250mL	<6°C, H2SO4 <6°C; HCI <6°C; HCI <6°C; HCI	GW GW GW GW	SM 4500 NO3-F, SM 4500-B,E AK101, SW8021 AK102/103		14 Day 14 Day 14 Day	NO2/NO3, Total Phos GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-WW10 ADOT MAW 20ADOT-MAW04 SGS 120987	// MW3 // MW3 // MW10	MW3 15-Dec-2 MW3 15-Dec-2 MW10 15-Dec-2	0 1343 0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS GW/KS	3 2 12 2 2	VOA GA VOA GA GA	40mL 250mL 40mL 250mL	<6°C; HCl <6°C; HCl <6°C; HCl	GW GW GW	AK101, SW8021 AK102/103		14 Day 14 Day	GRO, BTEX
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW3-C ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-W10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-W10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-W10 ADOT MAW 20ADOT-MAW04 SGS 1209871 <td>MW3 W MW10 WA MW10</td> <td>MW3 15-Dec-2 MW10 15-Dec-2</td> <td>0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536</td> <td>GW/KS GW/KS GW/KS GW/KS GW/KS</td> <td>2 12 2 2</td> <td>GA VOA GA GA</td> <td>250mL 40mL 250mL</td> <td><6°C; HCI <6°C; HCI</td> <td>GW GW</td> <td>AK102/103</td> <td></td> <td>14 Day</td> <td>,</td>	MW3 W MW10 WA MW10	MW3 15-Dec-2 MW10 15-Dec-2	0 1343 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536 0 1536	GW/KS GW/KS GW/KS GW/KS GW/KS	2 12 2 2	GA VOA GA GA	250mL 40mL 250mL	<6°C; HCI <6°C; HCI	GW GW	AK102/103		14 Day	,
ADOT MAW 20ADDT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADDT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209876 </td <td>W MW10 W MW10 W MW10 W MW10 W MW10 W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2</td> <td>D 1536 D 1536</td> <td>GW/KS GW/KS GW/KS GW/KS</td> <td>12 2 2</td> <td>VOA GA GA</td> <td>40mL 250mL</td> <td><6°C; HCl</td> <td>GW</td> <td></td> <td></td> <td></td> <td></td>	W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2	D 1536	GW/KS GW/KS GW/KS GW/KS	12 2 2	VOA GA GA	40mL 250mL	<6°C; HCl	GW				
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 </td <td>W MW10 W MW10 W MW10 W MW10 W MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2</td> <td>1536 1536 1536 1536 1536 1536 1536 1536 1536</td> <td>GW/KS GW/KS GW/KS GW/KS</td> <td>2 2</td> <td>GA GA</td> <td>250mL</td> <td><6°C; HCl</td> <td>-</td> <td>AK101 SW0260 SW0260 SIM BSK 175</td> <td></td> <td></td> <td>DRO/RRO</td>	W MW10 W MW10 W MW10 W MW10 W MW10 WA MW10	MW10 15-Dec-2	1536 1536 1536 1536 1536 1536 1536 1536 1536	GW/KS GW/KS GW/KS GW/KS	2 2	GA GA	250mL	<6°C; HCl	-	AK101 SW0260 SW0260 SIM BSK 175			DRO/RRO
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>W MW10 W MW10 W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2</td> <td>1536 1536 1536 1536 1536 1536</td> <td>GW/KS GW/KS GW/KS</td> <td>2 2</td> <td>GA</td> <td></td> <td><6°C; HCl</td> <td>a</td> <td>ARIUI, 300200, 300200 3110, KSR 1/3</td> <td></td> <td>14 Day</td> <td>GRO, VOCs, EDB, Methane</td>	W MW10 W MW10 W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2	1536 1536 1536 1536 1536 1536	GW/KS GW/KS GW/KS	2 2	GA		<6°C; HCl	a	ARIUI, 300200, 300200 3110, KSR 1/3		14 Day	GRO, VOCs, EDB, Methane
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>W MW10 W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2</td> <td>) 1536) 1536) 1536</td> <td>GW/KS GW/KS</td> <td>-</td> <td></td> <td>050ml</td> <td></td> <td>GW</td> <td>AK102/103</td> <td></td> <td>14 Day</td> <td>DRO/RRO</td>	W MW10 W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2) 1536) 1536) 1536	GW/KS GW/KS	-		050ml		GW	AK102/103		14 Day	DRO/RRO
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW10 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2</td> <td>) 1536) 1536</td> <td>GW/KS</td> <td>1</td> <td></td> <td>250mL</td> <td><6°C</td> <td>GW</td> <td>SW8270 SIM</td> <td></td> <td>14 Day</td> <td>PAHs</td>	W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2) 1536) 1536	GW/KS	1		250mL	<6°C	GW	SW8270 SIM		14 Day	PAHs
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW10 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2</td> <td>) 1536) 1536</td> <td>GW/KS</td> <td></td> <td>Poly</td> <td>125mL</td> <td>HNO3</td> <td>GW</td> <td>SW6020A</td> <td></td> <td></td> <td>Fe. Mn</td>	W MW10 W MW10 WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2) 1536) 1536	GW/KS		Poly	125mL	HNO3	GW	SW6020A			Fe. Mn
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>W MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2</td> <td>) 1536</td> <td></td> <td>1</td> <td>Polv</td> <td>60mL</td> <td><6°C</td> <td>GW</td> <td>EPA 300.0</td> <td></td> <td></td> <td>Sulfate</td>	W MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2 MW10 15-Dec-2) 1536		1	Polv	60mL	<6°C	GW	EPA 300.0			Sulfate
ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>WA MW10 WA MW10 WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2 MW10 15-Dec-2</td> <td></td> <td>GW/KS</td> <td>1</td> <td>Poly</td> <td>250mL</td> <td><6°C, H2SO4</td> <td>GW</td> <td>SM 4500 NO3-F, SM 4500-B,E</td> <td></td> <td></td> <td>NO2/NO3. Total Phos</td>	WA MW10 WA MW10 WA MW10 WA MW10 WA MW10	MW10 15-Dec-2 MW10 15-Dec-2		GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E			NO2/NO3. Total Phos
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 </td <td>WA MW10 WA MW10 WA MW10</td> <td>MW10 15-Dec-2</td> <td></td> <td>GW/KS</td> <td>12</td> <td>VOA</td> <td>40mL</td> <td><6°C; HCl</td> <td>GW</td> <td>AK101, SW8260, SW8260 SIM, RSK 175</td> <td>Dup</td> <td></td> <td>GRO, VOCs, EDB, Methane</td>	WA MW10 WA MW10 WA MW10	MW10 15-Dec-2		GW/KS	12	VOA	40mL	<6°C; HCl	GW	AK101, SW8260, SW8260 SIM, RSK 175	Dup		GRO, VOCs, EDB, Methane
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 </td <td>WA MW10 WA MW10</td> <td></td> <td></td> <td>GW/KS</td> <td>2</td> <td>GA</td> <td>250mL</td> <td><6°C; HCl</td> <td>GW</td> <td>AK102/103</td> <td>Dup</td> <td>,</td> <td>DRO/RRO</td>	WA MW10 WA MW10			GW/KS	2	GA	250mL	<6°C; HCl	GW	AK102/103	Dup	,	DRO/RRO
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 </td <td>WA MW10</td> <td>MW10 15-Dec-2</td> <td></td> <td>GW/KS</td> <td>2</td> <td>GA</td> <td>250mL</td> <td><6°C</td> <td>GW</td> <td>SW8270 SIM</td> <td>Dup</td> <td>14 Day</td> <td></td>	WA MW10	MW10 15-Dec-2		GW/KS	2	GA	250mL	<6°C	GW	SW8270 SIM	Dup	14 Day	
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 </td <td></td> <td></td> <td></td> <td>GW/KS</td> <td>1</td> <td>Poly</td> <td>125mL</td> <td>HNO3</td> <td>GW</td> <td>SW6020A</td> <td>Dup</td> <td></td> <td>Fe. Mn</td>				GW/KS	1	Poly	125mL	HNO3	GW	SW6020A	Dup		Fe. Mn
ADOT MAW 20ADOT-MAW04 SGS 1209871 20MAW-MW10 ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-TB01 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-TB01 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 </td <td>WA MW10</td> <td></td> <td></td> <td>GW/KS</td> <td>1</td> <td>Poly</td> <td>60mL</td> <td><6°C</td> <td>GW</td> <td>EPA 300.0</td> <td>Dup</td> <td></td> <td>Sulfate</td>	WA MW10			GW/KS	1	Poly	60mL	<6°C	GW	EPA 300.0	Dup		Sulfate
ADOT MAW 20ADOT-MAW03 SGS 1209871 20MAW-TB01 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876<				GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E	Dup	,	NO2/NO3, Total Phos
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876<	MAW-TB01			GW/KS	9	VOA	40mL	<6°C; HCI	W	AK101, SW8260, SW8260 SIM	ТВ		GRO, VOCs, EDB
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17				GW/KS	12	VOA	40mL	<6°C; HCl	GW	AK101, SW8021, SW8260, SW8260 SIM, RSK 175		14 Day	GRO, BTEX, 1,2-dichloroethane (EDC) Only, EDB, Methane
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	W MW12	MW12 16-Dec-2	0 0945	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103		14 Day	DRO/RRO
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW12 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17	W MW12	MW12 16-Dec-2	0945	GW/KS	1	Poly	125mL	HNO3	GW	SW6020A		14 Day	Fe, Mn
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	W MW12	MW12 16-Dec-2	0 0945	GW/KS	1	Poly	60mL	<6°C	GW	EPA 300.0		14 Day	Sulfate
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW9-0 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	W MW12	MW12 16-Dec-2	0 0945	GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E		14 Day	NO2/NO3, Total Phos
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	/ MW9	MW9 16-Dec-2) 1230	GW/KS	9	VOA	40mL	<6°C; HCl	GW	AK101, SW8021, SW8260, SW8260 SIM		14 Day	GRO, BTEX, EDC Only, EDB
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW17 ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	/ MW9	MW9 16-Dec-2) 1230	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103		14 Day	DRO/RRO
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW17	W MW17	MW17 16-Dec-2) 1403	GW/KS	9	VOA	40mL	<6°C; HCl	GW	AK101, SW8021, SW8260, SW8260 SIM		14 Day	GRO, BTEX, EDC Only, EDB
	W MW17	MW17 16-Dec-2) 1403	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103		14 Day	DRO/RRO
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-MW5.(WA MW17	MW17 16-Dec-2) 1403	GW/KS	3	VOA	40mL	<6°C; HCI	GW	SW8021	Dup	14 Day	BTEX Only
7.801 M. W 20/1801 M. WOO 000 1203070 20/0AW-IVIW3-	/ MW5	MW5 16-Dec-2) 1621	GW/KS	6	VOA	40mL	<6°C; HCI	GW	AK101, SW8021, RSK 175		14 Day	GRO, BTEX, Methane
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW5-0	/ MW5	MW5 16-Dec-2) 1621	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103		14 Day	DRO/RRO
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW5-0	/ MW5	MW5 16-Dec-2) 1621	GW/KS	1	Poly	125mL	HNO3	GW	SW6020A		14 Day	Fe, Mn
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW5-0	/ MW5	MW5 16-Dec-2) 1621	GW/KS	1	Poly	60mL	<6°C	GW	EPA 300.0		14 Day	Sulfate
ADOT MAW 20ADOT-MAW07 SGS 1209876 20MAW-MW5-0	/ MW5	MW5 16-Dec-2) 1621	GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E		14 Day	NO2/NO3, Total Phos
ADOT MAW 20ADOT-MAW06 SGS 1209876 20MAW-TB02	MAW-TB02			GW/KS	9	VOA	40mL	<6°C; HCl	W	AK101, SW8021, SW8260, SW8260 SIM		,	GRO, BTEX, EDC Only, EDB
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E		MAW/BFS-EB 18-Dec-2		KS	15	VOA	40mL	<6°C; HCl	GW	AK101, SW8260, SW8260 SIM, RSK 175		,	GRO, VOCs, EDB, Methane
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E		MAW/BFS-EB 18-Dec-2		KS	2	GA	250mL	<6°C; HCl	GW	AK102/103			DRO/RRO
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E	MAW/BES-EI	MAW/BFS-EB 18-Dec-2		KS	2	GA	250mL	<6°C	GW	SW8270 SIM		14 Day	
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E		MAW/BFS-EB 18-Dec-2		KS	1	Poly	125mL	HNO3	GW	SW6020A	EB	14 Day	
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E	MAW/BFS-E			KS	1	Poly	60mL	<6°C	GW	EPA 300.0		14 Day	
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-E	MAW/BFS-EI MAW/BFS-EI	MAW/BFS-EB 18-Dec-2		KS	4	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E	EB	,	NO2/NO3, Total Phos (Not sampled- glassware was not available)
ADOT MAW/BFS 20ADOT-BFS01 SGS 1209879 20MAW/BFS-TI	MAW/BFS-EI MAW/BFS-EI MAW/BFS-EI		0800	GW/KS	9	VOA	40mL	<6°C; HCl	W	AK101, SW8260, SW8260 SIM	ТВ	14 Dov	GRO, VOCs, EDB

Notes:

°C = degrees celcius

CoC = chain of custody

Dup = field duplicate

GW = groundwater

HCI = hydrochloric acid

mL = milliliter

QC = quality control

SDG = sample delivery group

SGS = SGS North America Inc., Anchorage, AK

TAT = turnaround time

[Location ID:	MW3	MW5	MW8	MW9
				Sample ID:	20MAW-MW3-GW	20MAW-MW5-GW	20MAW-MW8-GW	20MAW-MW9-GW
			l al	b Sample ID:	1209871002	1209876005	1209871001	1209876002
			Lu	SDG:	1209871	1209876	1209871	1209876
			Sampl	e Date/Time:	12/15/2020 13:43	12/16/2020 16:21	12/15/2020 10:36	12/16/2020 12:30
			Gampi	QA/QC:	Primary Sample	Primary Sample	Primary Sample	Primary Sample
CAS #	Method	Units	Analyte	GCL ¹				.,
-	AK101	µg/L	GRO	2200	ND [50]	ND [50]	2390 [250]	ND [50]
	AK102	µg/L	DRO	1500	244 [300] J,B	235 [294] J,B	1050 [294] B	412 [334] J,B
	AK102 AK103	µg/L	RRO	1100	361 [250] J,B	404 [245] J,B	472 [245] J,B	438 [278] J,B
74-82-8	RSKSOP-147/175	µg/L	Methane	-	-	77.2 [0.25]	312 [0.25]	430 [270] 3,D
14808-79-8	EPA 300.0	µg/L	Sulfate	-		11000 [100]	6920 [500]	-
-	SM21 4500NO3-F	µg/L	Total Nitrate/Nitrite-N	-	-	1390 [100]	92.4 [100] J,B	-
	SM21 4500P-B,E	µg/L µg/L		-	-	ND [20]	92.4 [100] J,В 130 [20]	-
- 7439-89-6	SW21 4500Р-В,Е SW6020B	10	Total Phosphorus			996 [250]	36800 [500]	-
	SW6020B	µg/L	Iron	- 430	-			-
7439-96-5		µg/L	Manganese		-	385 [1]	3910 [2]	-
90-12-0	8270D SIM LV (PAH)	µg/L	1-Methylnaphthalene	11 36		-	9.38 [0.0284]	
91-57-6	8270D SIM LV (PAH)	µg/L	2-Methylnaphthalene		-	-	7.09 [0.0284]	-
83-32-9	8270D SIM LV (PAH)	µg/L	Acenaphthene	530	-	-	0.0401 [0.0284] J	-
208-96-8	8270D SIM LV (PAH)	µg/L	Acenaphthylene	260	-	-	ND [0.0284]	-
120-12-7	8270D SIM LV (PAH)	µg/L	Anthracene	43	-	-	ND [0.0284]	-
56-55-3	8270D SIM LV (PAH)	µg/L	Benzo(a)anthracene	0.3	-	-	ND [0.0284]	-
50-32-8	8270D SIM LV (PAH)	µg/L	Benzo(a)pyrene	0.25	-	-	ND [0.0114]	-
205-99-2	8270D SIM LV (PAH)	µg/L	Benzo(b)fluoranthene	2.5	-	-	ND [0.0284]	-
191-24-2	8270D SIM LV (PAH)	µg/L	Benzo(g,h,i)perylene	0.26	-	-	ND [0.0284]	-
207-08-9	8270D SIM LV (PAH)	µg/L	Benzo(k)fluoranthene	0.8	-	-	ND [0.0284]	-
218-01-9	8270D SIM LV (PAH)	µg/L	Chrysene	2	-	-	ND [0.0284]	-
53-70-3	8270D SIM LV (PAH)	µg/L	Dibenzo(a,h)anthracene	0.25	-	-	ND [0.0114]	-
206-44-0	8270D SIM LV (PAH)	µg/L	Fluoranthene	260	-	-	ND [0.0284]	-
86-73-7	8270D SIM LV (PAH)	µg/L	Fluorene	290	-	-	ND [0.0284]	-
193-39-5	8270D SIM LV (PAH)	µg/L	Indeno(1,2,3-cd)pyrene	0.19	-	-	ND [0.0284]	-
91-20-3	8270D SIM LV (PAH)	µg/L	Naphthalene	1.7	-	-	43.3 [0.57]	-
85-01-8	8270D SIM LV (PAH)	µg/L	Phenanthrene	170	-	-	0.0225 [0.0284] J,B	-
129-00-0	8270D SIM LV (PAH)	µg/L	Pyrene	120	-	-	ND [0.0284]	-
71-43-2	SW8021B	µg/L	Benzene	4.6	0.19 [0.25] J	ND [0.25]	-	ND [0.25]
100-41-4	SW8021B	µg/L	Ethylbenzene	15	ND [0.5]	ND [0.5]	-	ND [0.5]
-	SW8021B	µg/L	o-Xylene	-	ND [0.5]	ND [0.5]	-	0.32 [0.5] J
-	SW8021B	µg/L	P & M -Xylene	-	ND [1]	0.71 [1] J	-	0.9 [1] J
108-88-3	SW8021B	µg/L	Toluene	1100	ND [0.5]	ND [0.5]	-	0.37 [0.5] J
1330-20-7	SW8021B	µg/L	Xylenes	190	ND [1.5]	0.98 [1.5] J	-	1.22 [1.5] J
630-20-6	SW8260D	µg/L	1,1,1,2-Tetrachloroethane	5.7	-	-	ND [1.25]	-
71-55-6	SW8260D	µg/L	1,1,1-Trichloroethane	8000	-	-	ND [2.5]	-
79-34-5	SW8260D	µg/L	1,1,2,2-Tetrachloroethane	0.76	-	-	ND [1.25] E	-
79-00-5	SW8260D	µg/L	1,1,2-Trichloroethane	0.41	-	-	ND [1] E	-
75-34-3	SW8260D	µg/L	1,1-Dichloroethane	28	-	-	ND [2.5]	-
75-35-4	SW8260D	µg/L	1,1-Dichloroethene	280	-	-	ND [2.5]	-
563-58-6	SW8260D	µg/L	1,1-Dichloropropene	-	-	-	ND [2.5]	-
96-18-4	SW8260D	µg/L	1,2,3-TCP	0.0075	-	-	ND [2.5] E	-
87-61-6	SW8260D	µg/L	1,2,3-Trichlorobenzene	7	-	-	ND [2.5]	-
95-63-6	SW8260D	µg/L	1,2,4-TMB	56	-	-	153 [2.5]	-
120-82-1	SW8260D	ua/L	1,2,4-Trichlorobenzene	4	-	-	ND [2.5]	-
96-12-8	SW8260D	µg/L	1,2-Dibromo-3-chloropropane	-	-	-	ND [25]	-
95-50-1	SW8260D	ua/L	1,2-Dichlorobenzene	300	-	-	ND [2.5]	-
30-00-1	3002000	µg/∟	1,2-DIGHIOIODEHZEHE	300	=	-	IND [2.5]	-

				Location ID:	MW3	MW5	MW8	MW9
				Sample ID:	20MAW-MW3-GW	20MAW-MW5-GW	20MAW-MW8-GW	20MAW-MW9-GW
				Lab Sample ID:	1209871002	1209876005	1209871001	1209876002
				SDG:	1209871	1209876	1209871	1209876
			Sa	ample Date/Time:	12/15/2020 13:43	12/16/2020 16:21	12/15/2020 10:36	12/16/2020 12:30
				QA/QC:	Primary Sample	Primary Sample	Primary Sample	Primary Sample
CAS #	Method	Units	Analyte	GCL ¹	i iiiiai) eainpie	r minary campio	r minary campio	r mary campic
107-06-2	SW8260D	μq/L	1,2-Dichloroethane	1.7	-	-	3.04 [1.25]	ND [0.25]
78-87-5	SW8260D		1,2-Dichloropropane	8.2		-	ND [2.5]	ND [0.23]
108-67-8	SW8260D SW8260D		1.3.5-TMB	60	-		39.7 [2.5]	-
541-73-1	SW8260D SW8260D		1-1-	300	-	-		-
142-28-9	SW8260D SW8260D		1,3-Dichlorobenzene 1,3-Dichloropropane	- 300	-	-	ND [2.5]	-
					-	-	ND [1.25]	-
106-46-7	SW8260D	10	1,4-Dichlorobenzene	4.8			ND [1.25]	
594-20-7	SW8260D	10	2,2-Dichloropropane		-	-	ND [2.5]	-
95-49-8	SW8260D	10	2-Chlorotoluene	-	-	-	ND [2.5]	-
591-78-6	SW8260D	µg/L	2-Hexanone	38	-	-	ND [25]	-
106-43-4	SW8260D	13	4-Chlorotoluene	-	-	-	ND [2.5]	-
108-10-1	SW8260D	10	4-Methyl-2-Pentanone	6300	-	-	ND [25]	-
71-43-2	SW8260D	15	Benzene	4.6	-	-	393 [1]	-
108-86-1	SW8260D	10	Bromobenzene	62	-	-	ND [2.5]	-
74-97-5	SW8260D	10	Bromochloromethane	-	-	-	ND [2.5]	-
75-27-4	SW8260D		Bromodichloromethane	1.3	-	-	ND [1.25]	-
75-25-2	SW8260D	µg/L	Bromoform	33	-	-	ND [2.5]	-
74-83-9	SW8260D	µg/L	Bromomethane	7.5	-	-	ND [12.5] E	-
75-15-0	SW8260D	µg/L	Carbon Disulfide	810	-	-	ND [25]	-
56-23-5	SW8260D	µg/L	Carbon Tetrachloride	4.6	-	-	ND [2.5]	-
108-90-7	SW8260D	µg/L	Chlorobenzene	78	-	-	ND [1.25]	-
75-00-3	SW8260D	µg/L	Chloroethane	21000	-	-	ND [2.5]	-
67-66-3	SW8260D	µg/L	Chloroform	2.2	-	-	ND [2.5] E	-
74-87-3	SW8260D	μg/L	Chloromethane	190	-	-	ND [2.5]	-
542-75-6	SW8260D	μg/L	cis-1,3-Dichloropropene	4.7	-	-	ND [1.25]	-
156-59-2	SW8260D	μg/L	cis-DCE	36	-	-	ND [2.5]	-
98-82-8	SW8260D	µg/L	Cumene	450	-	-	35.3 [2.5]	-
124-48-1	SW8260D	µg/L	Dibromochloromethane	8.7	-	-	ND [1.25]	-
74-95-3	SW8260D	µg/L	Dibromomethane	8.3	-	-	ND [2.5]	-
106-93-4	SW8260D	µg/L	EDB	0.075	-	-	ND [0.188] E	-
100-41-4	SW8260D	µg/L	Ethylbenzene	15	-	-	196 [2.5]	-
75-69-4	SW8260D	µg/L	Freon-11	5200	-	-	ND [2.5]	-
76-13-1	SW8260D	µg/L	Freon-113	10000	-	-	ND [25]	-
75-71-8	SW8260D	µg/L	Freon-12	200	-	-	ND [2.5]	-
87-68-3	SW8260D	µg/L	Hexachlorobutadiene	1.4	-	-	ND [2.5] E	-
78-93-3	SW8260D	µg/L	MEK	5600	-	-	ND [25]	-
75-09-2	SW8260D	1.6	Methylene Chloride	110	-	-	ND [25]	-
1634-04-4	SW8260D		Methyl-t-butyl ether	140	-	-	ND [25]	-
91-20-3	SW8260D	µg/L	Naphthalene	1.7	-	-	72.3 [2.5]	-
104-51-8	SW8260D		n-Butylbenzene	1000	-	-	ND [2.5]	-
-	SW8260D	10	o-Xylene	-	-	-	52.7 [2.5]	-
- 1	SW8260D	10	P & M -Xylene	-	-	-	317 [5]	-
127-18-4	SW8260D		PCE	41	-	-	ND [2.5]	-
99-87-6	SW8260D	μg/L	p-Cymene	-	-	-	7.87 [2.5]	-
103-65-1	SW8260D	μg/L	Propylbenzene	660	-	-	53.4 [2.5]	-
135-98-8	SW8260D	10	sec-Butylbenzene	2000	-	-	4.22 [2.5] J	-
100-42-5	SW8260D		Styrene	1200	-	-	+.22 [2.5] 5 ND [2.5]	

				Location ID: Sample ID: Lab Sample ID: SDG: Sample Date/Time: QA/QC:	MW3 20MAW-MW3-GW 1209871002 1209871 12/15/2020 13:43 Primary Sample	MW5 20MAW-MW5-GW 1209876005 1209876 12/16/2020 16:21 Primary Sample	MW8 20MAW-MW8-GW 1209871001 1209871 12/15/2020 10:36 Primary Sample	MW9 20MAW-MW9-GW 1209876002 1209876 12/16/2020 12:30 Primary Sample
CAS #	Method	Units	Analyte	GCL ¹				
79-01-6	SW8260D	µg/L	TCE	2.8	-	-	ND [2.5]	-
98-06-6	SW8260D	µg/L	tert-Butylbenzene	690	-	-	1.95 [2.5] J	-
108-88-3	SW8260D	µg/L	Toluene	1100	-	-	7.94 [2.5]	-
542-75-6	SW8260D	µg/L	trans-1,3-Dichloropropene	4.7	-	-	ND [2.5]	-
156-60-5	SW8260D	µg/L	trans-DCE	360	-	-	ND [2.5]	-
75-01-4	SW8260D	µg/L	Vinyl Chloride	0.19	-	-	ND [0.375] E	-
108-05-4	SW8260D	µg/L	Vinyl Acetate	410	-	-	ND [25]	-
1330-20-7	SW8260D	μg/L	Xylenes	190	-	-	370 [7.5]	-
106-93-4	SW8260D-SIM	µg/L	EDB	0.075	-	-	ND [0.0125] E	ND [0.0025]

Notes:

^A ADEC Groundwater Cleanup Levels, Table C (ADEC 2020b).

E = The result was nondetect and the LOD exceeds the groundwater cleanup level.

J = The result is an estimated value because it was greater than the detection limit but less than the LOQ.

B =The analyte was detected in the method blank, trip blank, or equipment blank and the concentration in the sample did not exceed the blank concentration by a factor of 5.

- = Sample was not analyzed/not applicable for contaminant.

[] = LOD

Bold = results exceed ADEC cleanup levels.

For microbial results, refer to Microbial Genetic Results Report and associated documents (Attachment F-2).

CAS = Chemical Abstract Services

PQL = practical quantitation limit

TMB = trimethylbenzene

For additional definitions, refer to the Acronyms and Abbreviations section of the report.

				Location ID:	MW10	MW10	MW12	MW17
				Sample ID:	20MAW-MW10-GW	20MAW-MW10-GWA	20MAW-MW12-GW	20MAW-MW17-GW
			Lak	Sample ID:	1209871003	1209871004	1209876001	1209876003
			Lat	SDG:	1209871	1209871	1209876	1209876
			Sample	e Date/Time:	12/15/2020 15:36	12/15/2020 15:36	12/16/2020 09:45	12/16/2020 14:03
			Campio	QA/QC:	Primary Sample	Field Duplicate	Primary Sample	Primary Sample
CAS #	Method	Units	Analyte	GCL ¹				
040 #	AK101	µg/L	GRO	2200	28400 [2500]	29000 [2500]	36.4 [50] J	ND [50]
	AK101 AK102	µg/∟ µg/L	DRO	1500	14800 [300]	14400 [326]	603 [319] J,B	3050 [313]
-	AK102 AK103	10	RRO	1500	1300 [250] B	1200 [272] B	350 [266] J,B	3620 [261]
- 74-82-8	RSKSOP-147/175	μg/L						
14808-79-8	EPA 300.0	μg/L	Methane Sulfate	-	1820 [2.5]	2390 [2.5] 471 [100]	568 [0.25] 8930 [100]	-
- 14808-79-8	SM21 4500NO3-F	µg/L	Total Nitrate/Nitrite-N	-	517 [100]	· · ·		-
-	SM21 4500NO3-F SM21 4500P-B,E	µg/L		-	192 [100] J,B	192 [100] J,B	55 [100] J,B	-
- 7439-89-6	SW21 4500P-B,E SW6020B	µg/L	Total Phosphorus	-	875 [100] 123000 [1250]	926 [40] 125000 [1250]	139 [20] 24800 [500]	-
		µg/L	Iron					-
7439-96-5 90-12-0	SW6020B	µg/L	Manganese	430 11	5450 [5] 99.3 [0.481]	5600 [5]	2990 [2]	-
	8270D SIM LV (PAH)	µg/L	1-Methylnaphthalene			118 [0.505]	-	-
91-57-6	8270D SIM LV (PAH)	µg/L	2-Methylnaphthalene	36	137 [0.481]	165 [0.505]	-	-
83-32-9	8270D SIM LV (PAH)	µg/L	Acenaphthene	530	ND [0.024]	ND [0.0252]	-	-
208-96-8	8270D SIM LV (PAH)	µg/L	Acenaphthylene	260	ND [0.024]	ND [0.0252]	-	-
120-12-7	8270D SIM LV (PAH)	μg/L	Anthracene	43	ND [0.024]	ND [0.0252]	-	-
56-55-3	8270D SIM LV (PAH)	µg/L	Benzo(a)anthracene	0.3	ND [0.024]	ND [0.0252]	-	-
50-32-8	8270D SIM LV (PAH)	µg/L	Benzo(a)pyrene	0.25	ND [0.0096]	ND [0.0101]	-	-
205-99-2	8270D SIM LV (PAH)	µg/L	Benzo(b)fluoranthene	2.5	ND [0.024]	ND [0.0252]	-	-
191-24-2	8270D SIM LV (PAH)	µg/L	Benzo(g,h,i)perylene	0.26	ND [0.024]	ND [0.0252]	-	-
207-08-9	8270D SIM LV (PAH)	µg/L	Benzo(k)fluoranthene	0.8	ND [0.024]	ND [0.0252]	-	-
218-01-9	8270D SIM LV (PAH)	µg/L	Chrysene	2	ND [0.024]	ND [0.0252]	-	-
53-70-3	8270D SIM LV (PAH)	µg/L	Dibenzo(a,h)anthracene	0.25	ND [0.0096]	ND [0.0101]	-	-
206-44-0	8270D SIM LV (PAH)	µg/L	Fluoranthene	260	ND [0.024]	ND [0.0252]	-	-
86-73-7	8270D SIM LV (PAH)	µg/L	Fluorene	290	0.938 [0.024]	0.82 [0.0252]	-	-
193-39-5	8270D SIM LV (PAH)	µg/L	Indeno(1,2,3-cd)pyrene	0.19	ND [0.024]	ND [0.0252]	-	-
91-20-3	8270D SIM LV (PAH)	µg/L	Naphthalene	1.7	354 [4.81]	329 [5.05]	-	-
85-01-8	8270D SIM LV (PAH)	µg/L	Phenanthrene	170	0.273 [0.024] B	0.255 [0.0252] B	-	-
129-00-0	8270D SIM LV (PAH)	µg/L	Pyrene	120	0.0204 [0.024] J	0.0202 [0.0252] J	-	-
71-43-2	SW8021B	µg/L	Benzene	4.6	-	-	1.7 [0.25]	ND [0.25]
100-41-4	SW8021B	µg/L	Ethylbenzene	15	-	-	0.42 [0.5] J	ND [0.5]
-	SW8021B	µg/L	o-Xylene	-	-	-	1.02 [0.5]	0.33 [0.5] J
-	SW8021B	µg/L	P & M -Xylene	-	-	-	3.69 [1]	0.83 [1] J
108-88-3	SW8021B	µg/L	Toluene	1100	-	-	1.06 [0.5]	0.34 [0.5] J
1330-20-7	SW8021B	μg/L	Xylenes	190	-	-	4.71 [1.5]	1.16 [1.5] J
630-20-6	SW8260D	μg/L	1,1,1,2-Tetrachloroethane	5.7	ND [2.5]	ND [2.5]	-	-
71-55-6	SW8260D	μg/L	1,1,1-Trichloroethane	8000	ND [5]	ND [5]	-	-
79-34-5	SW8260D	μg/L	1,1,2,2-Tetrachloroethane	0.76	ND [2.5] E	ND [2.5] E	-	-
79-00-5	SW8260D	μg/L	1,1,2-Trichloroethane	0.41	ND [2] E	ND [2] E	-	-
75-34-3	SW8260D	μg/L	1,1-Dichloroethane	28	ND [5]	ND [5]	-	-
75-35-4	SW8260D	µg/L	1,1-Dichloroethene	280	ND [5]	ND [5]	-	-
563-58-6	SW8260D	µg/L	1,1-Dichloropropene	-	ND [5]	ND [5]	-	-
96-18-4	SW8260D	µg/L	1,2,3-TCP	0.0075	ND [5] E	ND [5] E	-	-
87-61-6	SW8260D	µg/L	1,2,3-Trichlorobenzene	7	ND [5]	ND [5]	-	-
95-63-6	SW8260D	μg/L	1,2,4-TMB	56	1640 [5]	1650 [5]	-	-
120-82-1	SW8260D	µg/L	1,2,4-Trichlorobenzene	4	ND [5] E	ND [5] E	-	-
96-12-8	SW8260D	µg/L	1,2-Dibromo-3-chloropropane	-	ND [50]	ND [50]	-	-
95-50-1	SW8260D	µg/L	1,2-Dichlorobenzene	300	ND [5]	ND [5]	-	-

				Location ID:	MW10	MW10	MW12	MW17
				Sample ID:	20MAW-MW10-GW	20MAW-MW10-GWA	20MAW-MW12-GW	20MAW-MW17-GW
				Lab Sample ID:	1209871003	1209871004	1209876001	1209876003
				SDG:	1209871	1209871	1209876	1209876
			s	Sample Date/Time:	12/15/2020 15:36	12/15/2020 15:36	12/16/2020 09:45	12/16/2020 14:03
				QA/QC:	Primary Sample	Field Duplicate	Primary Sample	Primary Sample
CAS #	Method	Units	Analyte	GCL ¹				
107-06-2	SW8260D	µg/L	1,2-Dichloroethane	1.7	ND [2.5] E	ND [2.5] E	0.378 [0.25] J	ND [0.25]
78-87-5	SW8260D	µg/L	1,2-Dichloropropane	8.2	ND [5]	ND [5]	-	-
108-67-8	SW8260D	µg/L	1,3,5-TMB	60	424 [5]	426 [5]	-	-
541-73-1	SW8260D	μg/L	1,3-Dichlorobenzene	300	ND [5]	ND [5]	-	-
142-28-9	SW8260D	μg/L	1,3-Dichloropropane	-	ND [2.5]	ND [2.5]	_	-
106-46-7	SW8260D	µg/L	1,4-Dichlorobenzene	4.8	ND [2.5]	ND [2.5]	_	-
594-20-7	SW8260D	µg/L	2,2-Dichloropropane		ND [5]	ND [5]	-	-
95-49-8	SW8260D	µg/L	2-Chlorotoluene	-	ND [5]	ND [5]	-	-
591-78-6	SW8260D	µg/L	2-Hexanone	38	ND [50] E	ND [50] E	-	-
106-43-4	SW8260D	µg/L µg/L	4-Chlorotoluene		ND [50] L	ND [5]		-
108-10-1	SW8260D	µg/L	4-Methyl-2-Pentanone	6300	ND [50]	ND [50]	-	-
71-43-2	SW8260D	µg/L	Benzene	4.6	809 [2]	824 [2]	-	-
108-86-1	SW8260D	μg/L	Bromobenzene	62	ND [5]	ND [5]	-	-
74-97-5	SW8260D	µg/L	Bromochloromethane	-	ND [5]	ND [5]	-	-
75-27-4	SW8260D	µg/L	Bromodichloromethane	1.3	ND [2.5] E	ND [2.5] E	-	_
75-25-2	SW8260D	μg/L μg/L	Bromoform	33	ND [2.5]	ND [2.3] L ND [5]		
74-83-9	SW8260D	μg/L μg/L	Bromomethane	7.5	ND [25] E	ND [25] E		
75-15-0	SW8260D	µg/L µg/L	Carbon Disulfide	810	ND [23] L	ND [50]		
56-23-5	SW8260D	μg/L μg/L	Carbon Tetrachloride	4.6	ND [5] E	ND [50]	-	-
108-90-7	SW8260D	μg/L μg/L	Chlorobenzene	78	ND [3] E ND [2.5]	ND [2.5]		-
75-00-3	SW8260D	μg/L μg/L	Chloroethane	21000	ND [2.5]	ND [2.5]	-	-
67-66-3	SW8260D	μg/L μg/L	Chloroform	21000	ND [5] E	ND [5] E		-
74-87-3	SW8260D	μg/L μg/L	Chloromethane	190	ND [5]	ND [5]		
542-75-6	SW8260D	μg/L μg/L	cis-1,3-Dichloropropene	4.7	ND [2.5]	ND [2.5]		
156-59-2	SW8260D	μg/L μg/L	cis-DCE	36	ND [5]	ND [2.3]		-
98-82-8	SW8260D	μg/L μg/L	Cumene	450	83.7 [5]	83.2 [5]		
124-48-1	SW8260D	μg/L μg/L	Dibromochloromethane	8.7	ND [2.5]	ND [2.5]		-
74-95-3	SW8260D	µg/L µg/L	Dibromomethane	8.3	ND [5]	ND [2.3]		
106-93-4	SW8260D	μg/L μg/L	EDB	0.075	4.22 [0.375]	4.51 [0.375]	-	-
100-33-4	SW8260D	µg/L µg/L	Ethylbenzene	15	941 [5]	947 [5]	-	-
75-69-4	SW8260D	μg/L μg/L	Freon-11	5200	ND [5]	ND [5]		-
76-13-1	SW8260D	μg/L μg/L	Freon-113	10000	ND [5]	ND [5]		-
75-71-8	SW8260D	µg/L µg/L	Freon-12	200	ND [5]	ND [50]	-	
87-68-3	SW8260D	µg/L µg/L	Hexachlorobutadiene	1.4	ND [5] E	ND [5] E		
78-93-3	SW8260D	µg/L	MEK	5600	ND [50]	ND [50]	-	-
75-09-2	SW8260D	μg/L μg/L	Methylene Chloride	110	ND [50]	ND [50]		
1634-04-4	SW8260D	µg/L	Methyl-t-butyl ether	140	ND [50]	ND [50]	-	-
91-20-3	SW8260D	μg/L	Naphthalene	1.7	454 [5]	463 [5]	-	-
104-51-8	SW8260D	µg/L	n-Butylbenzene	1000	ND [5]	ND [5]	-	-
-	SW8260D	μg/L	o-Xylene	-	2250 [25]	2280 [25]	-	-
	SW8260D	µg/L	P & M -Xylene	-	5840 [50]	5920 [50]	-	-
127-18-4	SW8260D	µg/L	PCE	41	ND [5]	ND [5]	-	-
99-87-6	SW8260D	µg/L	p-Cymene	-	12.2 [5]	12.4 [5]	-	-
103-65-1	SW8260D	µg/L	Propylbenzene	660	146 [5]	145 [5]	-	-
135-98-8	SW8260D	µg/L µg/L	sec-Butylbenzene	2000	140 [5]	145 [5]		
100-42-5	SW8260D	µg/L µg/L	Styrene	1200	ND [5]	ND [5]	_	
100-42-0	3002000	µg/∟	Styrene	1200	נכן שא	נטן שא	-	-

				Location ID:	MW10	MW10	MW12	MW17
				Sample ID:	20MAW-MW10-GW	20MAW-MW10-GWA	20MAW-MW12-GW	20MAW-MW17-GW
				Lab Sample ID:	1209871003	1209871004	1209876001	1209876003
				SDG:	1209871	1209871	1209876	1209876
				Sample Date/Time:	12/15/2020 15:36	12/15/2020 15:36	12/16/2020 09:45	12/16/2020 14:03
				QA/QC:	Primary Sample	Field Duplicate	Primary Sample	Primary Sample
CAS #	Method	Units	Analyte	GCL ¹				
79-01-6	SW8260D	µg/L	TCE	2.8	ND [5] E	ND [5] E	-	-
98-06-6	SW8260D	µg/L	tert-Butylbenzene	690	6.15 [5] J	6.18 [5] J	-	-
108-88-3	SW8260D	µg/L	Toluene	1100	4940 [25]	4960 [25]	-	-
542-75-6	SW8260D	µg/L	trans-1,3-Dichloropropene	4.7	ND [5] E	ND [5] E	-	-
156-60-5	SW8260D	µg/L	trans-DCE	360	ND [5]	ND [5]	-	-
75-01-4	SW8260D	µg/L	Vinyl Chloride	0.19	ND [0.75] E	ND [0.75] E	-	-
108-05-4	SW8260D	µg/L	Vinyl Acetate	410	ND [50]	ND [50]	-	-
1330-20-7	SW8260D	µg/L	Xylenes	190	8090 [75]	8200 [75]	-	-
106-93-4	SW8260D-SIM	µg/L	EDB	0.075	3.8 [0.025]	3.89 [0.025]	ND [0.0025]	ND [0.0025]

Notes:

^A ADEC Groundwater Cleanup Levels, Table C (ADEC 2020b).

E = The result was nondetect and the LOD exceeds the groundwater cleanup level.

J = The result is an estimated value because it was greater than the detection limit but less than the LOQ.

B =The analyte was detected in the method blank, trip blank, or equipment blank and the concentration in the sample did not exceed the blank concentration by a factor of 5.

- = Sample was not analyzed/not applicable for contaminant.

[] = LOD

Bold = results exceed ADEC cleanup levels.

For microbial results, refer to Microbial Genetic Results Report and associated documents (Attachment F-2).

CAS = Chemical Abstract Services

PQL = practical quantitation limit

TMB = trimethylbenzene

For additional definitions, refer to the Acronyms and Abbreviations section of the report.

				Location ID:	MW17	MAW/BFS-EB	MAW-TB01	MAW-TB02	MAW-TB01
				Sample ID:	20MAW-MW17-GWA	20MAW/BFS-EB	20MAW-TB01	20MAW-TB02	20MAW/BFS-TB01
			L	ab Sample ID:	1209876004	1209879005	1209871005	1209876006	1209879006
			-	SDG:	1209876	1209879	1209871	1209876	1209879
			Sam	ole Date/Time:	12/16/2020 14:03	12/18/2020 15:30	12/15/2020 08:00	12/16/2020 08:00	12/17/2020 08:00
				QA/QC:	Field Duplicate	Equipment Blank	Trip Blank	Trip Blank	Trip Blank
CAS #	Method	Units	Analyte	GCL ¹					
-	AK101	µg/L	GRO	2200	-	ND [50]	ND [50]	ND [50]	ND [50]
-	AK102	µg/L	DRO	1500	-	417 [326] J	-	-	-
-	AK103	µg/L	RRO	1100	-	325 [272] J	-	-	-
74-82-8	RSKSOP-147/175	µg/L	Methane	-	-	0.22 [0.25]	-	-	-
14808-79-8	EPA 300.0	µg/L	Sulfate	-	-	ND [100]	-	-	-
-	SM21 4500NO3-F	µg/L	Total Nitrate/Nitrite-N	-	-	-	-	-	-
-	SM21 4500P-B,E	µg/L	Total Phosphorus	-	-	-	-	-	-
7439-89-6	SW6020B	µg/L	Iron	-	-	ND [250]	-	-	-
7439-96-5	SW6020B	µg/L	Manganese	430	-	0.761 [1] J,JL+	-	-	-
90-12-0	8270D SIM LV (PAH)	µg/L	1-Methylnaphthalene	11	-	0.0319 [0.0284] J	-	-	-
91-57-6	8270D SIM LV (PAH)	µg/L	2-Methylnaphthalene	36	-	0.0415 [0.0284] J	-	-	-
83-32-9	8270D SIM LV (PAH)	µg/L	Acenaphthene	530	-	ND [0.0284]	-	-	-
208-96-8	8270D SIM LV (PAH)	µg/L	Acenaphthylene	260	-	ND [0.0284]	-	-	-
120-12-7	8270D SIM LV (PAH)	µg/L	Anthracene	43	-	ND [0.0284]	-	-	-
56-55-3	8270D SIM LV (PAH)	µg/L	Benzo(a)anthracene	0.3	-	ND [0.0284]	-	-	-
50-32-8	8270D SIM LV (PAH)	µg/L	Benzo(a)pyrene	0.25	-	ND [0.0114]	-	-	-
205-99-2	8270D SIM LV (PAH)	µg/L	Benzo(b)fluoranthene	2.5	-	ND [0.0284]	-	-	-
191-24-2	8270D SIM LV (PAH)	µg/L	Benzo(g,h,i)perylene	0.26	-	ND [0.0284]	-	-	-
207-08-9	8270D SIM LV (PAH)	µg/L	Benzo(k)fluoranthene	0.8	-	ND [0.0284]	-	-	-
218-01-9	8270D SIM LV (PAH)	µg/L	Chrysene	2	-	ND [0.0284]	-	-	-
53-70-3	8270D SIM LV (PAH)	µg/L	Dibenzo(a,h)anthracene	0.25	-	ND [0.0114]	-	-	-
206-44-0	8270D SIM LV (PAH)	µg/L	Fluoranthene	260	-	ND [0.0284]	-	-	-
86-73-7	8270D SIM LV (PAH)	µg/L	Fluorene	290	-	ND [0.0284]	-	-	-
193-39-5	8270D SIM LV (PAH)	µg/L	Indeno(1,2,3-cd)pyrene	0.19	-	ND [0.0284]	-	-	-
91-20-3	8270D SIM LV (PAH)	µg/L	Naphthalene	1.7	-	ND [0.057]	-	-	-
85-01-8	8270D SIM LV (PAH)	μg/L	Phenanthrene	170	-	0.0693 [0.0284]	-	-	-
129-00-0	8270D SIM LV (PAH)	μg/L	Pyrene	120	-	ND [0.0284]	-	-	-
71-43-2	SW8021B	μg/L	Benzene	4.6	ND [0.25]	-	-	ND [0.25]	-
100-41-4	SW8021B	µg/L	Ethylbenzene	15	ND [0.5]	-	-	ND [0.5]	-
-	SW8021B	µg/L	o-Xylene	-	0.32 [0.5] J	-	-	ND [0.5]	-
-	SW8021B	µg/L	P & M -Xylene	-	0.76 [1] J	-	-	ND [1]	-
108-88-3	SW8021B	µg/L	Toluene	1100	0.34 [0.5] J	-	-	ND [0.5]	-
1330-20-7	SW8021B	µg/L	Xylenes	190	1.08 [1.5] J	-	-	ND [1.5]	-
630-20-6	SW8260D	µg/L	1,1,1,2-Tetrachloroethane	5.7	-	ND [0.25]	ND [0.25]	-	ND [0.25]
71-55-6	SW8260D	µg/L	1,1,1-Trichloroethane	8000	-	ND [0.5]	ND [0.5]	-	ND [0.5]
79-34-5	SW8260D	µg/L	1,1,2,2-Tetrachloroethane	0.76	-	ND [0.25]	ND [0.25]	-	ND [0.25]
79-00-5	SW8260D	µg/L	1,1,2-Trichloroethane	0.41	-	ND [0.2]	ND [0.2]	-	ND [0.2]
75-34-3	SW8260D	µg/L	1,1-Dichloroethane	28	-	ND [0.5]	ND [0.5]	-	ND [0.5]
75-35-4	SW8260D	µg/L	1,1-Dichloroethene	280	-	ND [0.5]	ND [0.5]	-	ND [0.5]
563-58-6	SW8260D	µg/L	1,1-Dichloropropene	-	-	ND [0.5]	ND [0.5]	-	ND [0.5]
96-18-4	SW8260D	µg/L	1,2,3-TCP	0.0075	-	ND [0.5] E	ND [0.5] E	-	ND [0.5] E
87-61-6	SW8260D	µg/L	1,2,3-Trichlorobenzene	7	-	ND [0.5]	ND [0.5]	-	ND [0.5]
95-63-6	SW8260D	µg/L	1,2,4-TMB	56	-	ND [0.5]	ND [0.5]	-	ND [0.5]
120-82-1	SW8260D	µg/L	1,2,4-Trichlorobenzene	4	-	ND [0.5]	ND [0.5]	-	ND [0.5]
96-12-8	SW8260D	µg/L	1,2-Dibromo-3-chloropropane	-	-	ND [5]	ND [5]	-	ND [5]
95-50-1	SW8260D	µg/L	1,2-Dichlorobenzene	300	-	ND [0.5]	ND [0.5]	-	ND [0.5]

				Location ID:	MW17	MAW/BFS-EB	MAW-TB01	MAW-TB02	MAW-TB01
				Sample ID:	20MAW-MW17-GWA	20MAW/BFS-EB	20MAW-TB01	20MAW-TB02	20MAW/BFS-TB01
				Lab Sample ID:	1209876004	1209879005	1209871005	1209876006	1209879006
				SDG:	1209876	1209879	1209871	1209876	1209879
				Sample Date/Time:	12/16/2020 14:03	12/18/2020 15:30	12/15/2020 08:00	12/16/2020 08:00	12/17/2020 08:00
				QA/QC:	Field Duplicate	Equipment Blank	Trip Blank	Trip Blank	Trip Blank
CAS #	Method	Units	Analyte	GCL ¹	·				·
107-06-2	SW8260D	µg/L	1,2-Dichloroethane	1.7	-	ND [0.25]	ND [0.25]	ND [0.25]	ND [0.25]
78-87-5	SW8260D	µg/L	1,2-Dichloropropane	8.2	-	ND [0.5]	ND [0.5]	-	ND [0.5]
108-67-8	SW8260D	µg/L	1,3,5-TMB	60	-	ND [0.5]	ND [0.5]	-	ND [0.5]
541-73-1	SW8260D	µg/L	1,3-Dichlorobenzene	300	-	ND [0.5]	ND [0.5]	-	ND [0.5]
142-28-9	SW8260D	ug/L	1,3-Dichloropropane	-	-	ND [0.25]	ND [0.25]	-	ND [0.25]
106-46-7	SW8260D	µg/L	1,4-Dichlorobenzene	4.8	-	ND [0.25]	ND [0.25]	-	ND [0.25]
594-20-7	SW8260D	µg/L	2,2-Dichloropropane	-	-	ND [0.5]	ND [0.5]	-	ND [0.5]
95-49-8	SW8260D	µg/L	2-Chlorotoluene		-	ND [0.5]	ND [0.5]	-	ND [0.5]
591-78-6	SW8260D	µg/L	2-Hexanone	38	-	ND [5]	ND [5]	-	ND [5]
106-43-4	SW8260D	µg/L	4-Chlorotoluene		-	ND [0.5]	ND [0.5]	-	ND [0.5]
108-10-1	SW8260D	µg/L	4-Methyl-2-Pentanone	6300	-	ND [5]	ND [5]	-	ND [5]
71-43-2	SW8260D	µg/L	Benzene	4.6	-	ND [0.2]	ND [0.2]	-	ND [0.2]
108-86-1	SW8260D	µg/L	Bromobenzene	62	-	ND [0.5]	ND [0.5]	-	ND [0.5]
74-97-5	SW8260D	µg/L	Bromochloromethane	-	-	ND [0.5]	ND [0.5]	-	ND [0.5]
75-27-4	SW8260D	µg/L	Bromodichloromethane	1.3	-	ND [0.25]	ND [0.25]	-	ND [0.25]
75-25-2	SW8260D	µg/L	Bromoform	33	-	ND [0.5]	ND [0.5]	-	ND [0.5]
74-83-9	SW8260D	ua/L	Bromomethane	7.5	-	ND [2.5]	ND [2.5]	-	ND [2.5]
75-15-0	SW8260D	µg/L	Carbon Disulfide	810	-	ND [5]	ND [5]	-	ND [5]
56-23-5	SW8260D	µg/L	Carbon Tetrachloride	4.6	-	ND [0.5]	ND [0.5]	-	ND [0.5]
108-90-7	SW8260D	µg/L	Chlorobenzene	78	-	ND [0.25]	ND [0.25]	-	ND [0.25]
75-00-3	SW8260D	µg/L	Chloroethane	21000	-	ND [0.5]	ND [0.5]	-	ND [0.5]
67-66-3	SW8260D	µg/L	Chloroform	2.2	-	ND [0.5]	ND [0.5]	-	ND [0.5]
74-87-3	SW8260D	ua/L	Chloromethane	190	-	ND [0.5]	ND [0.5]	-	ND [0.5]
542-75-6	SW8260D	µg/L	cis-1,3-Dichloropropene	4.7	-	ND [0.25]	ND [0.25]	-	ND [0.25]
156-59-2	SW8260D	µg/L	cis-DCE	36	-	ND [0.5]	ND [0.5]	-	ND [0.5]
98-82-8	SW8260D	µg/L	Cumene	450	-	ND [0.5]	ND [0.5]	-	ND [0.5]
124-48-1	SW8260D	µg/L	Dibromochloromethane	8.7	-	ND [0.25]	ND [0.25]	-	ND [0.25]
74-95-3	SW8260D	ua/L	Dibromomethane	8.3	-	ND [0.5]	ND [0.5]	-	ND [0.5]
106-93-4	SW8260D	µg/L	EDB	0.075	-	ND [0.0375]	ND [0.0375]	-	ND [0.0375]
100-41-4	SW8260D	µg/L	Ethylbenzene	15	-	ND [0.5]	ND [0.5]	-	ND [0.5]
75-69-4	SW8260D	µg/L	Freon-11	5200	-	ND [0.5]	ND [0.5]	-	ND [0.5]
76-13-1	SW8260D	µg/L	Freon-113	10000	-	ND [5]	ND [5]	-	ND [5]
75-71-8	SW8260D	µg/L	Freon-12	200	-	ND [0.5]	ND [0.5]	-	ND [0.5]
87-68-3	SW8260D	µg/L	Hexachlorobutadiene	1.4	-	ND [0.5]	ND [0.5]	-	ND [0.5]
78-93-3	SW8260D	µg/L	MEK	5600	-	ND [5]	ND [5]	-	ND [5]
75-09-2	SW8260D	µg/L	Methylene Chloride	110	-	ND [5]	ND [5]	-	ND [5]
1634-04-4	SW8260D	µg/L	Methyl-t-butyl ether	140	-	ND [5]	ND [5]	-	ND [5]
91-20-3	SW8260D	µg/L	Naphthalene	1.7	-	ND [0.5]	ND [0.5]	-	ND [0.5]
104-51-8	SW8260D	µg/L	n-Butylbenzene	1000	-	ND [0.5]	ND [0.5]	-	ND [0.5]
-	SW8260D	µg/L	o-Xylene	-	-	ND [0.5]	ND [0.5]	-	ND [0.5]
- 1	SW8260D	µg/L	P & M -Xylene	-	-	ND [1]	ND [1]	-	ND [1]
127-18-4	SW8260D	µg/L	PCE	41	-	ND [0.5]	ND [0.5]	-	ND [0.5]
99-87-6	SW8260D	µg/L	p-Cymene		-	ND [0.5]	ND [0.5]	-	ND [0.5]
103-65-1	SW8260D	µg/L	Propylbenzene	660	-	ND [0.5]	ND [0.5]	-	ND [0.5]
135-98-8	SW8260D	µg/L	sec-Butylbenzene	2000	-	ND [0.5]	ND [0.5]	-	ND [0.5]
100-42-5	SW8260D	µg/L	Styrene	1200	-	ND [0.5]	ND [0.5]	-	ND [0.5]

Location ID: Sample ID: Lab Sample ID: SDG: Sample Date/Time: QA/QC:					MW17 20MAW-MW17-GWA 1209876004 1209876 12/16/2020 14:03 Field Duplicate	MAW/BFS-EB 20MAW/BFS-EB 1209879005 1209879 12/18/2020 15:30 Equipment Blank	MAW-TB01 20MAW-TB01 1209871005 1209871 12/15/2020 08:00 Trip Blank	MAW-TB02 20MAW-TB02 1209876006 1209876 12/16/2020 08:00 Trip Blank	MAW-TB01 20MAW/BFS-TB01 1209879006 1209879 12/17/2020 08:00 Trip Blank
CAS #	Method	Units	Analyte	GCL ¹					
79-01-6	SW8260D	µg/L	TCE	2.8	-	ND [0.5]	ND [0.5]	-	ND [0.5]
98-06-6	SW8260D	μg/L	tert-Butylbenzene	690	-	ND [0.5]	ND [0.5]	-	ND [0.5]
108-88-3	SW8260D	μg/L	Toluene	1100	-	ND [0.5]	ND [0.5]	-	ND [0.5]
542-75-6	SW8260D	μg/L	trans-1,3-Dichloropropene	4.7	-	ND [0.5]	ND [0.5]	-	ND [0.5]
156-60-5	SW8260D	μg/L	trans-DCE	360	-	ND [0.5]	ND [0.5]	-	ND [0.5]
75-01-4	SW8260D	μg/L	Vinyl Chloride	0.19	-	ND [0.075]	ND [0.075]	-	ND [0.075]
108-05-4	SW8260D	μg/L	Vinyl Acetate	410	-	ND [5]	ND [5]	-	ND [5]
1330-20-7	SW8260D	µg/L	Xylenes	190	-	ND [1.5]	ND [1.5]	-	ND [1.5]
106-93-4	SW8260D-SIM	µg/L	EDB	0.075	_	ND [0.0025]	ND [0.0025]	ND [0.0025]	ND [0.0025]

Notes:

^A ADEC Groundwater Cleanup Levels, Table C (ADEC 2020b).

 $\mathsf{E}=\mathsf{The}$ result was nondetect and the LOD exceeds the groundwater cleanup level.

J = The result is an estimated value because it was greater than the detection limit but less than the LOQ.

B =The analyte was detected in the method blank, trip blank, or equipment blank and the concentration in the

sample did not exceed the blank concentration by a factor of 5. - = Sample was not analyzed/not applicable for contaminant.

[] = LOD

Bold = results exceed ADEC cleanup levels.

For microbial results, refer to Microbial Genetic Results Report and associated documents (Attachment F-2).

CAS = Chemical Abstract Services

PQL = practical quantitation limit

TMB = trimethylbenzene

For additional definitions, refer to the Acronyms and Abbreviations section of the report.

Laboratory Data Review Checklist

Completed By:

Kari Hagen

Title:

Chemist

Date:

2/01/2021

Consultant Firm:

Jacobs

Laboratory Name:

SGS

Laboratory Report Number:

1209871

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ADEC File Number:

100.26.043

Hazard Identification Number:

22871

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

Samples were submitted to SGS of Anchorage, AK.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \boxtimes No \square N/A \square Comments:

SGS of Orlando, FL performed the method RSK175 methane.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes⊠	No	$N/A\square$	Comments:	

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

- 3. Laboratory Sample Receipt Documentation
 - a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

SGS Fairbanks temperature: 2.0°C SGS Anchorage temperature: 1.4°C SGS Orlando temperature (RSK175 methane): 5.0°C

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

No discrepancies were noted on the cooler receipt form.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

No discrepancies were noted on the cooler receipt form.

e. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

QC failures are discussed in the relevant sections of this checklist.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

Corrective actions were not necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The data quality and usability were not affected.

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this project.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

The following samples/analytes had LODs greater than the project screening level (PSL).

SW8260D -

20MAW-MW10-GW and 20MAW-MW10-GWA: 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,2,3-TCP, 1,2,4-Trichlorobenzene, 1,2-Dichloroethane, 2-Hexanone, Bromodichloromethane, Bromomethane, Carbon Tetrachloride, Chloroform, Hexachlorobutadiene, TCE, trans-1,3-Dichloropropene and VC.

20MAW-MW8-GW: 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,2,3-TCP, Bromomethane, Chloroform, EDB, Hexachlorobutadiene and VC.

20MAW-TB01: 1,2,3-TCP

e. Data quality or usability affected?

Data quality was affected in that results exceeding the PSL may be reported as nondetect (ND) due to sample dilutions or laboratory method limitations. Except EDB, affected results were not contaminants of concern at this site. EDB was analyzed by method SW8260D SIM and the LOD met the PSL. Nondetect results with LODs greater than the PSL are qualified E.

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

All detections in the method blank were less than the LOQ; however, all sample results associated with a method blank detection were reviewed.

SM21 4500NO3-F-

Total Nitrate/Nitrite-N was detected in the method blank (50.2 ug/L).

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

SM21 4500NO3-F-

Total Nitrate/Nitrite-N was detected in the method blank affecting samples 20MAW-MW8-GW, 20MAW-MW10-GW and 20MAW-MW10-GWA.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Affected results were qualified B to indicate the result may be biased high.

v. Data quality or usability affected?

Comments:

The results are usable, but may be biased high.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

Associated sample results are only qualified if the dilution factor is less than five and the matrix spike concentration is at least two times the sample concentration.

SM21 4500P-B,E: Phosphorus was recovered high in the MSD in sample 20MAW-MW5-GW. The affected sample concentration was greater than the spike concentration; therefore, the result was not affected or qualified.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

The data quality and usability were not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
 - Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

iv. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

All TB results were nondetect.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

One field duplicate was submitted with 7 primary samples.

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The following field duplicate was submitted with this SDG: **Primary/Field Duplicate Sample ID:** 20MAW-MW10-GW/20MAW-MW10-GWA

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \boxtimes N/A \square Comments:

RPDs were only evaluated if at least one result in the duplicate pair was greater than the LOD. If one result was non-detect, the LOD value was used to calculate the RPD.

All Primary/Field Duplicate RPDs were less than 30 percent.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality and usability were not affected.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

One equipment blank (EB), MAW/BFS-EB was submitted.

i. All results less than LOQ and project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

All results were less than the LOQ except phenanthrene, however all detections in the EB were evaluated.

The following analytes were detected in the EB, 20MAW/BFS-EB:

AK102-DRO AK103-RRO 8270D SIM-1-Methylnaphthalene, 2-Methylnaphthalene and Phenanthrene SW6020B-Manganese

Laboratory Report Date:

1/12/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

The following sample results were qualified B if the sample result was less than five times the EB result:

AK102 DRO - 20MAW-MW3-GW, 20MAW-MW8-GW AK103 RRO - 20MAW-MW3-GW, 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW10-GWA 8270D SIM Phenanthrene - 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW10-GWA

iii. Data quality or usability affected?

Comments:

Samples 20MAW-MW10-GW, 20MAW-MW10-GWA were qualified B for RRO due to detections in the EB. The sample results were slightly greater than the screening level and may be biased high.

All other results qualified B (RRO and phenanthrene) were less than the PSL; therefore, the data quality and usability were minimally affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

Laboratory Data Review Checklist

Completed By:

Kari Hagen

Title:

Chemist

Date:

2/01/2021

Consultant Firm:

Jacobs

Laboratory Name:

SGS

Laboratory Report Number:

1209876

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ADEC File Number:

100.26.043

Hazard Identification Number:

22871

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

Samples were submitted to SGS of Anchorage, AK.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \boxtimes No \square N/A \square Comments:

SGS of Orlando, FL performed the method RSK175 methane.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes⊠	No	$N/A\square$	Comments:

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

- 3. Laboratory Sample Receipt Documentation
 - a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

SGS Fairbanks temperature: 2.8°C SGS Anchorage temperature: 4.3°C SGS Orlando temperature: 5.2°C

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

No discrepancies were noted on the cooler receipt form.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

No discrepancies were noted on the cooler receipt form.

e. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

QC failures are discussed in the relevant sections of this checklist.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

Corrective actions were not necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The data quality and usability were not affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this project.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

The data quality and usability were not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

All detections in the method blank were less than the LOQ; however, all sample results associated with a method blank detection were reviewed.

SM21 4500NO3-F-

Total Nitrate/Nitrite-N was detected in the method blank (50.2 ug/L).

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

SM21 4500NO3-F-

Total Nitrate/Nitrite-N was detected in the method blank affecting sample 20MAW-MW12-GW.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Affected results were qualified B to indicate the result may be biased high.

v. Data quality or usability affected?

Comments:

The results are usable, but may be biased high.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \Box No \Box N/A \boxtimes Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

Associated sample results are only evaluated and qualified if the dilution factor is less than five and the matrix spike concentration is at least two times the sample concentration.

SM21 4500P-B,E: Phosphorus was recovered high in the MS and MSD of sample 20MAW-MW5-GW. The affected sample concentration was greater than the spike concentration; therefore the results were not affected or qualified.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes□	No	$N/A \boxtimes$	Comments:
IUSL			comments.

No samples were affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

iv. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

All TB results were nondetect.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

One field duplicate was submitted with this SDG for method SW8021 BTEX only.

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The following field duplicate was submitted with this SDG: **Primary/Field Duplicate Sample ID:**

20MAW-MW17-GW/ 20MAW-MW17-GWA

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \boxtimes N/A \square Comments:

RPDs were only evaluated if at least one result in the duplicate pair was greater than the LOD. If one result was non-detect, the LOD value was used to calculate the RPD.

All Primary/Field Duplicate RPDs were less than 30 percent.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality and usability were not affected.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

One equipment blank (EB), MAW/BFS-EB was submitted.

i. All results less than LOQ and project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

All results were less than the LOQ, however all detections in the EB were evaluated.

The following analytes were detected in the EB, 20MAW/BFS-EB:

AK102-DRO AK103-RRO

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

The following sample results were qualified B if the sample result was less than five times the EB result:

AK102 DRO - 20MAW-MW5-GW, 20MAW-MW9-GW, 20MAW-MW17-GW **AK103 RRO** - 20MAW-MW5-GW, 20MAW-MW9-GW, 20MAW-MW17-GW

iii. Data quality or usability affected?

Comments:

All affected results qualified B were less than the screening level; therefore the data quality and usability were minimally affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

- a. Defined and appropriate?
 - Yes \boxtimes No \square N/A \square Comments:

Laboratory Data Review Checklist

Completed By:

Kari Hagen

Title:

Chemist

Date:

2/01/2021

Consultant Firm:

Jacobs

Laboratory Name:

SGS

Laboratory Report Number:

1209879

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

ADEC File Number:

100.38.279

Hazard Identification Number:

26870

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

Samples were submitted to SGS of Anchorage, AK.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \boxtimes No \square N/A \square Comments:

SGS of Orlando, FL performed the method RSK175 methane.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments	:
---	---

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

- 3. Laboratory Sample Receipt Documentation
 - a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

SGS Fairbanks temperature: 4.1°C SGS Anchorage temperature: 3.3°C SGS Orlando temperature: 2.2°C

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

No discrepancies were noted on the cooler receipt form.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

No discrepancies were noted on the cooler receipt form.

e. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

QC failures are discussed in the relevant sections of this checklist.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

Corrective actions were not necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The data quality and usability were not affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this project.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

The following analyte/samples had LODs greater than the project screening level (PSL).

SW8260D – **1,2,3-TCP:** 20MAW/BFS-EB and 20MAW/BFS-TB01

e. Data quality or usability affected?

Data results exceeding the PSL may be reported as nondetect (ND) due to sample dilutions or laboratory method limitations. 1,2,3-TCP was not a contaminant of concern at this site; therefore, the data quality or usability were minimally affected. ND results with LODs greater than the PSL are qualified E.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

No samples were affected.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

The following recoveries were outside of lab criteria:

LCS/LCSD %R:

SW6020B – Iron and manganese were recovered high in the LCS.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

LCS/LCSD %R:

SW6020B – Iron and manganese were recovered high in the LCS. All associated iron results were ND and not affected. The manganese result was affected in the equipment blank sample, 20MAW/BFS-EB.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

LCS/LCSD %R:

SW6020B –The manganese result in sample 20MAW/BFS-EB was qualified JL+ to indicate the result may be biased high.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

LCS/LCSD %R:

SW6020B –The manganese result in sample 20MAW/BFS-EB was less than the PSL; therefore, data quality or usability were minimally affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

MS/MSDs were not required for this project.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

MS/MSDs were not required for this project however, they were included in the analytical batches as the methods required. MS/MSDs were only evaluated if they were performed on samples from this project.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

Associated sample results are only qualified if the dilution factor is less than five and the matrix spike concentration is at least two times the sample concentration.

SW6020B: Iron and manganese were recovered high in the MS and/or MSD in sample 20MAW/BFS-EB. The affected sample had a dilution factor of 5 or greater; therefore, the results were not affected. According to the case narrative, a post digestion spike was successful.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes⊠	No□	N/A	Comments:
------	-----	-----	-----------

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

iv. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

All TB results were ND.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

The field duplicate frequency of 10 percent was met for the project. A field duplicate was not submitted with this sample delivery group (SDG).

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \boxtimes Comments:

A field duplicate was not submitted with this SDG.

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)
 RPD (%) = Absolute value of: (R1-R2) x 100

 $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

A field duplicate was not submitted with this SDG.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Data quality or usability were not affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

One equipment blank (EB), 20MAW/BFS-EB was submitted. Because the same sampling equipment was used at two separate sites (Brooks Fuel and MarkAir Warehouse), only one EB was submitted and shared between the two sites. Only affected samples from the MarkAir Warehouse site are evaluated in this checklist.

i. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

All results were less than the LOQ, however all detections in the EB were evaluated.

The following analytes were detected in the EB, 20MAW/BFS-EB: AK102 - DRO AK103 - RRO SW8270D SIM - 1-methylnaphthalene, 2-methylnaphthalene and phenanthrene SW6020B - manganese RSKSOP-147/175 - methane

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

The following sample results were qualified B if the sample result was less than five times the EB result:

AK102 DRO - 20MAW-MW3-GW, MAW-MW5-GW, MAW-MW8-GW and MAW-MW9-GW. AK103 RRO - 20MAW-MW3-GW, MAW-MW5-GW, MAW-MW8-GW, MAW-MW9-GW, MAW-MW10-GW, MAW-MW10-GWA and MAW-MW12-GW. SW8270D SIM Phenanthrene - MAW-MW8-GW, MAW-MW10-GW and MAW-MW10-GWA.

iii. Data quality or usability affected?

Comments:

Samples MAW-MW10-GW and MAW-MW10-GWA were qualified B for RRO due to detections in the EB. The sample results were slightly greater than the PSL and may be biased high.

All other results qualified B were less than the PSL; therefore, the data quality and usability were minimally affected.

Laboratory Report Date:

1/13/2021

CS Site Name:

2020 ADOT MarkAir Warehouse Groundwater Monitoring (Equipment Blank Only)

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report of Analysis

To: Jacobs Technology Inc. 794 University Ave #201 Fairbanks, AK 99709

Report Number: **1209871**

Client Project: MarkAir GW Monitoring

Dear Kari Hagen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Justin Nelson

16:52:09 -09'00'

2021.01.12

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 01/11/2021 3:42:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Jacobs Technology Inc. SGS Project: 1209871 Project Name/Site: MarkAir GW Monitoring Project Contact: Kari Hagen

Refer to sample receipt form for information on sample condition.

20MAW-MW8-GW (1209871001) PS

Light Gases by RSK 175 (Methane only) were analyzed by SGS of Orlando, FL. 8260D SIM - The LOQs were elevated due to a high concentration of non-target compounds.

LCSD for HBN 1814939 [XXX/4432 (1596120) LCSD

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 biased high.

MB for HBN 1814939 [XXX/44324] (1596118) MB

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 biased high.

1206643001MS (1596227) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1206703002MS (1596229) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1206643001MSD (1596228) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1206703002MSD (1596230) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1209876005MSD (1596476) MSD

4500P-B,E - Total Phosphorus - MSD recovery is outside of QC criteria. Refer to LCS for accuracy requirements. 4500P-B,E - Total Phosphorus - MS/MSD RPD was outside of QC criteria. Refer to LCS/LCSD for precision requirement.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/11/2021 3:42:27PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

		Report of Manual Integration	IS	
Laboratory ID	<u>Client Sample ID</u>	Analytical Batch	<u>Analyte</u>	Reason
SW8260D				
1209871003	20MAW-MW10-GW	VMS20529	4-Isopropyltoluene	SP
1209871004	20MAW-MW10-GWA	VMS20529	4-Isopropyltoluene	SP

Manual	Integration	Reason	Code	Descriptions
manual	mogration	ricuson	oouc	Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 01/11/2021 3:42:29PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i	include a result for "Total Solids" have already been adjusted for moisture content
All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.
A DIVOLUTO analyses ald	

Print Date: 01/11/2021 3:42:30PM

Note:

SW8260D-SIM

SW8260D

SM21 4500P-B,E

Sample Summary						
Client Sample ID	Lab Sample ID	Collected	Received	Matrix		
20MAW-MW8-GW	1209871001	12/15/2020	12/17/2020	Water (Surface, Eff., Ground)		
20MAW-MW3-GW	1209871002	12/15/2020	12/17/2020	Water (Surface, Eff., Ground)		
20MAW-MW10-GW	1209871003	12/15/2020	12/17/2020	Water (Surface, Eff., Ground)		
20MAW-MW10-GWA	1209871004	12/15/2020	12/17/2020	Water (Surface, Eff., Ground)		
20MAW-TB01	1209871005	12/15/2020	12/17/2020	Water (Surface, Eff., Ground)		
<u>Method</u> 8270D SIM LV (PAH) AK101 SW8021B	<u>Method Description</u> 8270 PAH SIM GC/MS LV AK101/8021 Combo. AK101/8021 Combo.					
AK102	DRO/RRO Low Volume Water					
AK103 AK101	DRO/RRO Low Volume Water					
EPA 300.0	Gasoline Range Organics (W) Ion Chromatographic Analysis (W)					
SW6020B	Metals by IC	CP-MS				
SM21 4500NO3-F	Nitrate/Nitrit	e Flow injection P	res.			

SW8260-SIM (W)

Total Phosphorus (W)

Volatile Organic Compounds (W) FULL

Print Date: 01/11/2021 3:42:32PM

Detectable Results Summary Client Sample ID: 20MAW-MW8-GW Lab Sample ID: 1209871001 Parameter Result Units 36800 ug/L Metals by ICP/MS Iron Manganese 3910 ug/L 1-Methylnaphthalene 9.38 ug/L **Polynuclear Aromatics GC/MS** 2-Methylnaphthalene 7.09 ug/L Acenaphthene 0.0401J ug/L Naphthalene 43.3 ug/L Phenanthrene 0.0225J ug/L **Diesel Range Organics** 1.05 mg/L Semivolatile Organic Fuels **Residual Range Organics** 0.472J mg/L Gasoline Range Organics 2.39 mg/L **Volatile Fuels** Volatile GC/MS 1,2,4-Trimethylbenzene 153 ug/L 1,2-Dichloroethane 3.04 ug/L 1,3,5-Trimethylbenzene 39.7 ug/L 4-Isopropyltoluene 7.87 ug/L Benzene 393 ug/L Ethylbenzene 196 ug/L Isopropylbenzene (Cumene) 35.3 ug/L Naphthalene 72.3 ug/L n-Propylbenzene 53.4 ug/L 52.7 o-Xylene ug/L P & M -Xylene 317 ug/L sec-Butylbenzene 4.22J ug/L tert-Butylbenzene 1.95J ug/L 7.94 Toluene ug/L Xylenes (total) 370 ug/L Sulfate 6.92 Waters Department mg/L Total Nitrate/Nitrite-N 0.0924J mg/L **Total Phosphorus** 0.130 mg/L Client Sample ID: 20MAW-MW3-GW Lab Sample ID: 1209871002 Units Parameter Result Semivolatile Organic Fuels **Diesel Range Organics** 0.244J mg/L **Residual Range Organics** 0.361J mg/L Benzene 0.190J ug/L **Volatile Fuels**

Print Date: 01/11/2021 3:42:34PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 20MAW-MW10-GW			
Lab Sample ID: 1209871003	<u>Parameter</u>	Result	Units
Metals by ICP/MS	Iron	123000	ug/L
	Manganese	5450	ug/L
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	99.3	ug/L
	2-Methylnaphthalene	137	ug/L
	Fluorene	0.938	ug/L
	Naphthalene	354	ug/L
	Phenanthrene	0.273	ug/L
	Pyrene	0.0204J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	14.8	mg/L
_	Residual Range Organics	1.30	mg/L
Volatile Fuels	Gasoline Range Organics	28.4	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1640	ug/L
	1,2-Dibromoethane	4.22	ug/L
	1,3,5-Trimethylbenzene	424	ug/L
	4-Isopropyltoluene	12.2	ug/L
	Benzene	809	ug/L
	Ethylbenzene	941	ug/L
	Isopropylbenzene (Cumene)	83.7	ug/L
	Naphthalene	454	ug/L
	n-Propylbenzene	146	ug/L
	o-Xylene	2250	ug/L
	P & M -Xylene	5840	ug/L
	sec-Butylbenzene	18.7	ug/L
	tert-Butylbenzene	6.15J	ug/L
	Toluene	4940	ug/L
	Xylenes (total)	8090	ug/L
Volatile-SIM	1,2-Dibromoethane	3.80	ug/L
Waters Department	Sulfate	0.517	mg/L
-	Total Nitrate/Nitrite-N	0.192J	mg/L
	Total Phosphorus	0.875	mg/L

Print Date: 01/11/2021 3:42:34PM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: 20MAW-MW10-GWA			
Lab Sample ID: 1209871004	Parameter	Result	Units
Metals by ICP/MS	Iron	125000	ug/L
	Manganese	5600	ug/L
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	118	ug/L
-	2-Methylnaphthalene	165	ug/L
	Fluorene	0.820	ug/L
	Naphthalene	329	ug/L
	Phenanthrene	0.255	ug/L
	Pyrene	0.0202J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	14.4	mg/L
	Residual Range Organics	1.20	mg/L
Volatile Fuels	Gasoline Range Organics	29.0	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1650	ug/L
	1,2-Dibromoethane	4.51	ug/L
	1,3,5-Trimethylbenzene	426	ug/L
	4-Isopropyltoluene	12.4	ug/L
	Benzene	824	ug/L
	Ethylbenzene	947	ug/L
	Isopropylbenzene (Cumene)	83.2	ug/L
	Naphthalene	463	ug/L
	n-Propylbenzene	145	ug/L
	o-Xylene	2280	ug/L
	P & M -Xylene	5920	ug/L
	sec-Butylbenzene	19.6	ug/L
	tert-Butylbenzene	6.18J	ug/L
	Toluene	4960	ug/L
	Xylenes (total)	8200	ug/L
Volatile-SIM	1,2-Dibromoethane	3.89	ug/L
Waters Department	Sulfate	0.471	mg/L
	Total Nitrate/Nitrite-N	0.192J	mg/L
	Total Phosphorus	0.926	mg/L

Print Date: 01/11/2021 3:42:34PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 20MAW-MW8-GW Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871001 Lab Project ID: 1209871		Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8					
Results by Metals by ICP/MS							
<u>Parameter</u> Iron	<u>Result Qual</u> 36800	<u>LOQ/CL</u> 1000	<u>DL</u> 300	<u>Units</u> ug/L	<u>DF</u> 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/30/20 11:59
Manganese	3910	4.00	1.24	ug/L	10		12/30/20 11:59
Batch Information							
Analytical Batch: MMS10977 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 12/30/20 11:59 Container ID: 1209871001-E		F	Prep Methoo Prep Date/T Prep Initial V	MXX33902 d: SW3010A ime: 12/21/2 Vt./Vol.: 25 n t Vol: 25 mL	20 10:14 mL		

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW8-GW

Client Sample ID: **20MAW-MW8-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871001 Lab Project ID: 1209871 Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Polynuclear Aromatics GC/MS

E.						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1-Methylnaphthalene	9.38	0.0568	0.0170	ug/L	1		12/22/20 12:34
2-Methylnaphthalene	7.09	0.0568	0.0170	ug/L	1		12/22/20 12:34
Acenaphthene	0.0401 J	0.0568	0.0170	ug/L	1		12/22/20 12:34
Acenaphthylene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Anthracene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Benzo(a)Anthracene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Benzo[a]pyrene	0.0114 U	0.0227	0.00705	ug/L	1		12/22/20 12:34
Benzo[b]Fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Benzo[g,h,i]perylene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Benzo[k]fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Chrysene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Dibenzo[a,h]anthracene	0.0114 U	0.0227	0.00705	ug/L	1		12/22/20 12:34
Fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Fluorene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Indeno[1,2,3-c,d] pyrene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Naphthalene	43.3	1.14	0.352	ug/L	10		12/23/20 18:09
Phenanthrene	0.0225 J	0.0568	0.0170	ug/L	1		12/22/20 12:34
Pyrene	0.0284 U	0.0568	0.0170	ug/L	1		12/22/20 12:34
Surrogates							
2-Methylnaphthalene-d10 (surr)	74.7	37-78		%	1		12/22/20 12:34
Fluoranthene-d10 (surr)	81.8	24-116		%	1		12/22/20 12:34

Batch Information

Analytical Batch: XMS12452 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/22/20 12:34 Container ID: 1209871001-C

Analytical Batch: XMS12453 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/23/20 18:09 Container ID: 1209871001-C Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 220 mL Prep Extract Vol: 1 mL

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 220 mL Prep Extract Vol: 1 mL

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS	

Results of 20MAW-MW8-GW Client Sample ID: 20MAW-MW8-GW Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871001 Lab Project ID: 1209871		(F M S					
Results by Semivolatile Organic Fue	ls		_				
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	1.05	0.588	0.176	mg/L	1		12/28/20 17:37
urrogates							
5a Androstane (surr)	86.1	50-150		%	1		12/28/20 17:37
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 17:37 Container ID: 1209871001-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 255	20 16:15		
Parameter	Posult Qual		DL	Unite	DF	<u>Allowable</u> Limits	Date Analyzed
Residual Range Organics	<u>Result Qual</u> 0.472 J	<u>LOQ/CL</u> 0.490	<u>DL</u> 0.147	<u>Units</u> mg/L	<u>DF</u> 1	LIIIIIIS	12/28/20 17:37
urrogates				0			
n-Triacontane-d62 (surr)	95.2	50-150		%	1		12/28/20 17:37
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 17:37 Container ID: 1209871001-A			Prep Batch: Prep Method Prep Date/Tit Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 255	20 16:15		

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: 20MAW-MW8-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871001 Lab Project ID: 1209871	ring	Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8					
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 2.39	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/23/20 19:20
Surrogates							
4-Bromofluorobenzene (surr)	130	50-150		%	5		12/23/20 19:20
Batch Information							
Analytical Batch: VFC15474 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/23/20 19:20 Container ID: 1209871001-H		Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW8-GW

Client Sample ID: **20MAW-MW8-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871001 Lab Project ID: 1209871 Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date	e Analyzed
1,1,1,2-Tetrachloroethane	1.25 U	2.50	0.750	ug/L	5		21/20 22:41
1,1,1-Trichloroethane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,1,2,2-Tetrachloroethane	1.25 U	2.50	0.750	ug/L	5	12/2	21/20 22:41
1,1,2-Trichloroethane	1.00 U	2.00	0.600	ug/L	5	12/2	21/20 22:41
1,1-Dichloroethane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,1-Dichloroethene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,1-Dichloropropene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2,3-Trichlorobenzene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2,3-Trichloropropane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2,4-Trichlorobenzene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2,4-Trimethylbenzene	153	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2-Dibromo-3-chloropropane	25.0 U	50.0	15.5	ug/L	5	12/2	21/20 22:41
1,2-Dibromoethane	0.188 U	0.375	0.0900	ug/L	5	12/2	21/20 22:41
1,2-Dichlorobenzene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,2-Dichloroethane	3.04	2.50	0.750	ug/L	5	12/2	21/20 22:41
1,2-Dichloropropane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,3,5-Trimethylbenzene	39.7	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,3-Dichlorobenzene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
1,3-Dichloropropane	1.25 U	2.50	0.750	ug/L	5	12/2	21/20 22:41
1,4-Dichlorobenzene	1.25 U	2.50	0.750	ug/L	5	12/2	21/20 22:41
2,2-Dichloropropane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
2-Butanone (MEK)	25.0 U	50.0	15.5	ug/L	5	12/2	21/20 22:41
2-Chlorotoluene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
2-Hexanone	25.0 U	50.0	15.5	ug/L	5	12/2	21/20 22:41
4-Chlorotoluene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
4-Isopropyltoluene	7.87	5.00	1.55	ug/L	5	12/2	21/20 22:41
4-Methyl-2-pentanone (MIBK)	25.0 U	50.0	15.5	ug/L	5	12/2	21/20 22:41
Benzene	393	2.00	0.600	ug/L	5	12/2	21/20 22:41
Bromobenzene	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
Bromochloromethane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
Bromodichloromethane	1.25 U	2.50	0.750	ug/L	5	12/2	21/20 22:41
Bromoform	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
Bromomethane	12.5 U	25.0	10.0	ug/L	5	12/2	21/20 22:41
Carbon disulfide	25.0 U	50.0	15.5	ug/L	5	12/2	21/20 22:41
Carbon tetrachloride	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41
Chlorobenzene	1.25 U	2.50	0.750	ug/L	5	12/2	21/20 22:41
Chloroethane	2.50 U	5.00	1.55	ug/L	5	12/2	21/20 22:41

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW-MW8-GW

Client Sample ID: **20MAW-MW8-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871001 Lab Project ID: 1209871 Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Chloromethane	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
cis-1,2-Dichloroethene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
cis-1,3-Dichloropropene	1.25 U	2.50	0.750	ug/L	5		12/21/20 22:41
Dibromochloromethane	1.25 U	2.50	0.750	ug/L	5		12/21/20 22:41
Dibromomethane	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Dichlorodifluoromethane	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Ethylbenzene	196	5.00	1.55	ug/L	5		12/21/20 22:41
Freon-113	25.0 U	50.0	15.5	ug/L	5		12/21/20 22:41
Hexachlorobutadiene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Isopropylbenzene (Cumene)	35.3	5.00	1.55	ug/L	5		12/21/20 22:41
Methylene chloride	25.0 U	50.0	15.5	ug/L	5		12/21/20 22:41
Methyl-t-butyl ether	25.0 U	50.0	15.5	ug/L	5		12/21/20 22:41
Naphthalene	72.3	5.00	1.55	ug/L	5		12/21/20 22:41
n-Butylbenzene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
n-Propylbenzene	53.4	5.00	1.55	ug/L	5		12/21/20 22:41
o-Xylene	52.7	5.00	1.55	ug/L	5		12/21/20 22:41
P & M -Xylene	317	10.0	3.10	ug/L	5		12/21/20 22:41
sec-Butylbenzene	4.22 J	5.00	1.55	ug/L	5		12/21/20 22:41
Styrene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
tert-Butylbenzene	1.95 J	5.00	1.55	ug/L	5		12/21/20 22:41
Tetrachloroethene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Toluene	7.94	5.00	1.55	ug/L	5		12/21/20 22:41
trans-1,2-Dichloroethene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
trans-1,3-Dichloropropene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Trichloroethene	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Trichlorofluoromethane	2.50 U	5.00	1.55	ug/L	5		12/21/20 22:41
Vinyl acetate	25.0 U	50.0	15.5	ug/L	5		12/21/20 22:41
Vinyl chloride	0.375 U	0.750	0.250	ug/L	5		12/21/20 22:41
Xylenes (total)	370	15.0	5.00	ug/L	5		12/21/20 22:41
Surrogates							
1,2-Dichloroethane-D4 (surr)	92	81-118		%	5		12/21/20 22:41
4-Bromofluorobenzene (surr)	93.6	85-114		%	5		12/21/20 22:41
Toluene-d8 (surr)	102	89-112		%	5		12/21/20 22:41

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW-MW8-GW

Client Sample ID: **20MAW-MW8-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871001 Lab Project ID: 1209871

Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 22:41 Container ID: 1209871001-K Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Member of SGS Group

15 of 114

Results of 20MAW-MW8-GW

Client Sample ID: **20MAW-MW8-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871001 Lab Project ID: 1209871 Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 0.0125 U	<u>LOQ/CL</u> 0.0250	<u>DL</u> 0.00625	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 18:03
Surrogates							
4-Bromofluorobenzene (surr)	91.1	85-114		%	5		12/26/20 18:03
Toluene-d8 (surr)	97.4	89-112		%	5		12/26/20 18:03

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 18:03 Container ID: 1209871001-N

Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

SGS	

Client Sample ID: 20MAW-MW8-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871001 Lab Project ID: 1209871	ring	Collection Date: 12/15/20 10:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8						
Results by Waters Department								
Parameter Sulfate	<u>Result Qual</u> 6.92	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.250	<u>Units</u> mg/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/18/20 23:56	
Batch Information								
Analytical Batch: WIC6125 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/18/20 23:56 Container ID: 1209871001-F			Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	METHOD ne: 12/18/2 t./Vol.: 10 i	20 12:00			
P <u>arameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 0.0924 J	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> Limits	Date Analyzed 12/18/20 17:55	
Analytical Method: SM21 4500NO3-F Analyst: EWW Analytical Date/Time: 12/18/20 17:55								
Container ID: 1209871001-G	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed	
Parameter	<u>Result Qual</u> 0.130	LOQ/CL 0.0400	<u>DL</u> 0.0120	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits		
<u>Parameter</u> Total Phosphorus								
Container ID: 1209871001-G Parameter Total Phosphorus Batch Information Analytical Batch: WDA4915 Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 12/23/20 10:48 Container ID: 1209871001-G				mg/L WXX13575 SM21 450 ne: 12/22/2 t./Vol.: 251	1 00P-B,E 20 16:15		Date Analyzed	
Parameter Total Phosphorus Batch Information Analytical Batch: WDA4915 Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 12/23/20 10:48			0.0120 Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W	mg/L WXX13575 SM21 450 ne: 12/22/2 t./Vol.: 251	1 00P-B,E 20 16:15	Limits		

SGS	

Client Sample ID: 20MAW-MW3-GW Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871002 Lab Project ID: 1209871							
Results by Semivolatile Organic Fuels	3		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.244 J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/28/20 17:47
Surrogates 5a Androstane (surr)	85.1	50-150		%	1		12/28/20 17:47
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 17:47 Container ID: 1209871002-A			Prep Batch: Prep Method Prep Date/Tit Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 250	20 16:15		
Parameter Residual Range Organics	<u>Result Qual</u> 0.361 J	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/28/20 17:47
Surrogates n-Triacontane-d62 (surr)	96.8	50-150		%	1		12/28/20 17:47
	30.0	30-130		70	I		12/20/20 17.47
Batch Information Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 17:47 Container ID: 1209871002-A			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 250	20 16:15		

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: 20MAW-MW3-GW Client Project ID: MarkAir GW Monit Lab Sample ID: 1209871002 Lab Project ID: 1209871		Collection Date: 12/15/20 13:43 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW3					
Results by Volatile Fuels							
				Allowable			
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		12/28/20 17:47
urrogates							
4-Bromofluorobenzene (surr)	98.5	50-150		%	1		12/28/20 17:47
Batch Information							
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 17:47 Container ID: 1209871002-C		1	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 12/28/2 't./Vol.: 5 m	20 06:00		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.190 J	0.500	0.150	ug/L	1		12/28/20 17:47
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 17:47
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/28/20 17:47
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/28/20 17:47
Toluene Xylenes (total)	0.500 U 1.50 U	1.00 3.00	0.310 0.930	ug/L ug/L	1 1		12/28/20 17:47 12/28/20 17:47
	1.00 0	0.00	0.000	ug/L			12/20/20 11.4/
urrogates	70 5	77.445		0/			
1,4-Difluorobenzene (surr)	79.5	77-115		%	1		12/28/20 17:47
Batch Information							
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 17:47 Container ID: 1209871002-C		F	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 12/28/2 /t./Vol.: 5 m	20 06:00		

SGS North America Inc.

Client Sample ID: 20MAW-MW10-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871003 Lab Project ID: 1209871		C R M S					
Results by Metals by ICP/MS			_				
<u>Parameter</u> Iron	<u>Result Qual</u> 123000	<u>LOQ/CL</u> 2500	<u>DL</u> 750	<u>Units</u> ug/L	<u>DF</u> 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/30/20 12:04
Manganese	5450	10.0	3.10	ug/L	25		12/30/20 12:04
Batch Information							
Analytical Batch: MMS10977 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 12/30/20 12:04 Container ID: 1209871003-E		Prep Batch: MXX33902 Prep Method: SW3010A Prep Date/Time: 12/21/20 10:14 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL					

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW10-GW

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	99.3	0.962	0.288	ug/L	20		12/23/20 18:30
2-Methylnaphthalene	137	0.962	0.288	ug/L	20		12/23/20 18:30
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		12/22/20 12:54
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		12/22/20 12:54
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Fluorene	0.938	0.0481	0.0144	ug/L	1		12/22/20 12:54
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		12/22/20 12:54
Naphthalene	354	9.62	2.98	ug/L	100		12/28/20 14:18
Phenanthrene	0.273	0.0481	0.0144	ug/L	1		12/22/20 12:54
Pyrene	0.0204 J	0.0481	0.0144	ug/L	1		12/22/20 12:54
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.9	37-78		%	1		12/22/20 12:54
Fluoranthene-d10 (surr)	68.9	24-116		%	1		12/22/20 12:54

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW10-GW

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871

Results by Polynuclear Aromatics GC/MS

Batch Information

Analytical Batch: XMS12452 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/22/20 12:54 Container ID: 1209871003-C

Analytical Batch: XMS12454 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/28/20 14:18 Container ID: 1209871003-C

Analytical Batch: XMS12453 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/23/20 18:30 Container ID: 1209871003-C Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: 20MAW-MW10-GW Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871003 Lab Project ID: 1209871		Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10					
Results by Semivolatile Organic Fue	ls						
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	14.8	0.600	0.180	mg/L	1		12/28/20 17:57
surrogates							
5a Androstane (surr)	94.3	50-150		%	1		12/28/20 17:57
Batch Information							
Analytical Batch: XFC15834			Prep Batch:				
Analytical Method: AK102 Analyst: IVM			Prep Method Prep Date/Ti				
Analytical Date/Time: 12/28/20 17:57		Prep Initial W	/t./Vol.: 250				
Container ID: 1209871003-A			Prep Extract	Vol: 1 mL			
Parameter	Reput Quel		DL	Lipito	DF	<u>Allowable</u> Limits	Date Analyzed
Residual Range Organics	<u>Result Qual</u> 1.30	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	LIIIIIIS	12/28/20 17:57
Surrogates					-		
n-Triacontane-d62 (surr)	100	50-150		%	1		12/28/20 17:57
Batch Information							
Analytical Batch: XFC15834			Prep Batch:	XXX44331			
Analytical Method: AK103		Prep Method: SW3520C Prep Date/Time: 12/22/20 16:15					
Analyst: IVM Analytical Date/Time: 12/28/20 17:57		Prep Date/Time: 12/22/20 16:15 Prep Initial Wt./Vol.: 250 mL					
		Prep Extract Vol: 1 mL					

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW10-GW Client Sample ID: 20MAW-MW10-GW Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871003 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1209871 Solids (%): Location: MW10 Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> <u>Limits</u> Date Analyzed Gasoline Range Organics 28.4 5.00 1.55 mg/L 50 12/23/20 19:56 Surrogates 4-Bromofluorobenzene (surr) 93 50-150 % 50 12/23/20 19:56 **Batch Information** Analytical Batch: VFC15474 Prep Batch: VXX36761 Analytical Method: AK101 Prep Method: SW5030B Analyst: MDT Prep Date/Time: 12/23/20 06:00 Analytical Date/Time: 12/23/20 19:56 Prep Initial Wt./Vol.: 5 mL Container ID: 1209871003-H Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
1,1,1-Trichloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,1,2,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
1,1,2-Trichloroethane	2.00 U	4.00	1.20	ug/L	10	12/21/20 22:50
1,1-Dichloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,1-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,1-Dichloropropene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,2,3-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,2,3-Trichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,2,4-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,2,4-Trimethylbenzene	1640	10.0	3.10	ug/L	10	12/21/20 22:50
1,2-Dibromo-3-chloropropane	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
1,2-Dibromoethane	4.22	0.750	0.180	ug/L	10	12/21/20 22:50
1,2-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,2-Dichloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
1,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,3,5-Trimethylbenzene	424	10.0	3.10	ug/L	10	12/21/20 22:50
1,3-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
1,3-Dichloropropane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
1,4-Dichlorobenzene	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
2,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
2-Butanone (MEK)	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
2-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
2-Hexanone	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
4-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
4-Isopropyltoluene	12.2	10.0	3.10	ug/L	10	12/21/20 22:50
4-Methyl-2-pentanone (MIBK)	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
Benzene	809	4.00	1.20	ug/L	10	12/21/20 22:50
Bromobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Bromochloromethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Bromodichloromethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
Bromoform	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Bromomethane	25.0 U	50.0	20.0	ug/L	10	12/21/20 22:50
Carbon disulfide	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
Carbon tetrachloride	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Chlorobenzene	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
Chloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Chloromethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
cis-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
cis-1,3-Dichloropropene	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:5
Dibromochloromethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 22:50
Dibromomethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
Dichlorodifluoromethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
Ethylbenzene	941	10.0	3.10	ug/L	10	12/21/20 22:50
Freon-113	50.0 U	100	31.0	ug/L	10	12/21/20 22:50
Hexachlorobutadiene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
lsopropylbenzene (Cumene)	83.7	10.0	3.10	ug/L	10	12/21/20 22:5
Methylene chloride	50.0 U	100	31.0	ug/L	10	12/21/20 22:5
Methyl-t-butyl ether	50.0 U	100	31.0	ug/L	10	12/21/20 22:5
Naphthalene	454	10.0	3.10	ug/L	10	12/21/20 22:5
n-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:50
n-Propylbenzene	146	10.0	3.10	ug/L	10	12/21/20 22:5
o-Xylene	2250	50.0	15.5	ug/L	50	12/21/20 22:12
P & M -Xylene	5840	100	31.0	ug/L	50	12/21/20 22:1
sec-Butylbenzene	18.7	10.0	3.10	ug/L	10	12/21/20 22:5
Styrene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
tert-Butylbenzene	6.15 J	10.0	3.10	ug/L	10	12/21/20 22:5
Tetrachloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
Toluene	4940	50.0	15.5	ug/L	50	12/21/20 22:1
trans-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
trans-1,3-Dichloropropene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
Trichloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
Trichlorofluoromethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 22:5
Vinyl acetate	50.0 U	100	31.0	ug/L	10	12/21/20 22:5
Vinyl chloride	0.750 U	1.50	0.500	ug/L	10	12/21/20 22:5
Xylenes (total)	8090	150	50.0	ug/L	50	12/21/20 22:12
Surrogates						
1,2-Dichloroethane-D4 (surr)	89.3	81-118		%	10	12/21/20 22:50
4-Bromofluorobenzene (surr)	92.8	85-114		%	10	12/21/20 22:50
Toluene-d8 (surr)	103	89-112		%	10	12/21/20 22:5

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 22:12 Container ID: 1209871003-K

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 22:56 Container ID: 1209871003-K Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: **20MAW-MW10-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871003 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 3.80	<u>LOQ/CL</u> 0.0500	<u>DL</u> 0.0125	<u>Units</u> ug/L	<u>DF</u> 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 18:18
Surrogates							
4-Bromofluorobenzene (surr)	92.4	85-114		%	10		12/26/20 18:18
Toluene-d8 (surr)	97.1	89-112		%	10		12/26/20 18:18

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 18:18 Container ID: 1209871003-N Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

SGS	

Client Sample ID: 20MAW-MW10-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871003 Lab Project ID: 1209871	ring		Collection Da Received Dat Matrix: Water Solids (%): Location: MV	e: 12/17/2 (Surface,	20 10:24	und)	
Results by Waters Department							
<u>Parameter</u> Sulfate	<u>Result</u> Qual 0.517	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/29/20 15:21
Batch Information							
Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/29/20 15:21 Container ID: 1209871003-F			Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	METHOD ne: 12/29/2 t./Vol.: 10 r	20 10:00		
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 0.192 J	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/18/20 18:16
Analytical Method: SM21 4500NO3-F Analyst: EWW Analytical Date/Time: 12/18/20 18:16 Container ID: 1209871003-G						Allowable	
<u>Parameter</u> Total Phosphorus	<u>Result Qual</u> 0.875	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0600	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	<u>Date Analyzed</u> 01/06/21 13:39
Batch Information							
Analytical Batch: WDA4919 Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 01/06/21 13:39 Container ID: 1209871003-G			Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SM21 450 ne: 01/06/2 t./Vol.: 5 m	0P-B,E 21 10:36		

Client Sample ID: 20MAW-MW10-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871004 Lab Project ID: 1209871		Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10					
Results by Metals by ICP/MS Parameter Iron Manganese	<u>Result Qual</u> 125000 5600	<u>LOQ/CL</u> 2500 10.0	<u>DL</u> 750 3.10	<u>Units</u> ug/L ug/L	<u>DF</u> 25 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/30/20 12:08 12/30/20 12:08
Batch Information Analytical Batch: MMS10977 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 12/30/20 12:08 Container ID: 1209871004-E		F	Prep Methoo Prep Date/T Prep Initial V	MXX33902 d: SW3010A ime: 12/21/2 Vt./Vol.: 25 nL t Vol: 25 mL	20 10:14 mL		

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1-Methylnaphthalene	118	1.01	0.302	ug/L	20		12/23/20 18:50
2-Methylnaphthalene	165	1.01	0.302	ug/L	20		12/23/20 18:50
Acenaphthene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Acenaphthylene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Benzo(a)Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Benzo[a]pyrene	0.0101 U	0.0202	0.00625	ug/L	1		12/22/20 13:15
Benzo[b]Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Benzo[g,h,i]perylene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Benzo[k]fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Chrysene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Dibenzo[a,h]anthracene	0.0101 U	0.0202	0.00625	ug/L	1		12/22/20 13:15
Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Fluorene	0.820	0.0504	0.0151	ug/L	1		12/22/20 13:15
Indeno[1,2,3-c,d] pyrene	0.0252 U	0.0504	0.0151	ug/L	1		12/22/20 13:15
Naphthalene	329	10.1	3.13	ug/L	100		12/28/20 14:38
Phenanthrene	0.255	0.0504	0.0151	ug/L	1		12/22/20 13:15
Pyrene	0.0202 J	0.0504	0.0151	ug/L	1		12/22/20 13:15
Surrogates							
2-Methylnaphthalene-d10 (surr)	67.4	37-78		%	1		12/22/20 13:15
Fluoranthene-d10 (surr)	63.2	24-116		%	1		12/22/20 13:15

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871

Results by Polynuclear Aromatics GC/MS

Batch Information

Analytical Batch: XMS12452 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/22/20 13:15 Container ID: 1209871004-C

Analytical Batch: XMS12454 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/28/20 14:38 Container ID: 1209871004-C

Analytical Batch: XMS12453 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/23/20 18:50 Container ID: 1209871004-C Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/20 12:40 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW10-GWA Client Sample ID: 20MAW-MW10-GV Client Project ID: MarkAir GW Monit Lab Sample ID: 1209871004 Lab Project ID: 1209871			Collection Da Received Da Matrix: Wate Solids (%): Location: M\	te: 12/17/2 r (Surface,	20 10:24		
Results by Semivolatile Organic Fue	els		_				
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	14.4	0.652	0.196	mg/L	1		12/28/20 18:07
urrogates							
5a Androstane (surr)	88.9	50-150		%	1		12/28/20 18:07
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 18:07 Container ID: 1209871004-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 230	20 16:15		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Residual Range Organics	1.20	0.543	0.163	mg/L	1		12/28/20 18:07
urrogates							
n-Triacontane-d62 (surr)	92.9	50-150		%	1		12/28/20 18:07
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 18:07 Container ID: 1209871004-A			Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 230	20 16:15		

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-MW10-GWA Client Sample ID: 20MAW-MW10-GWA Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209871004 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1209871 Solids (%): Location: MW10 Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed Gasoline Range Organics 29.0 5.00 1.55 mg/L 50 12/23/20 20:14 Surrogates 4-Bromofluorobenzene (surr) 108 50-150 % 50 12/23/20 20:14 **Batch Information** Analytical Batch: VFC15474 Prep Batch: VXX36761 Analytical Method: AK101 Prep Method: SW5030B Analyst: MDT Prep Date/Time: 12/23/20 06:00 Analytical Date/Time: 12/23/20 20:14 Prep Initial Wt./Vol.: 5 mL Container ID: 1209871004-H Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
1,1,1-Trichloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,1,2,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
1,1,2-Trichloroethane	2.00 U	4.00	1.20	ug/L	10	12/21/20 23:10
1,1-Dichloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,1-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,1-Dichloropropene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,2,3-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,2,3-Trichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,2,4-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,2,4-Trimethylbenzene	1650	10.0	3.10	ug/L	10	12/21/20 23:10
1,2-Dibromo-3-chloropropane	50.0 U	100	31.0	ug/L	10	12/21/20 23:10
1,2-Dibromoethane	4.51	0.750	0.180	ug/L	10	12/21/20 23:10
1,2-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,2-Dichloroethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
1,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,3,5-Trimethylbenzene	426	10.0	3.10	ug/L	10	12/21/20 23:10
1,3-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
1,3-Dichloropropane	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
1,4-Dichlorobenzene	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
2,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
2-Butanone (MEK)	50.0 U	100	31.0	ug/L	10	12/21/20 23:10
2-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
2-Hexanone	50.0 U	100	31.0	ug/L	10	12/21/20 23:10
4-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
4-Isopropyltoluene	12.4	10.0	3.10	ug/L	10	12/21/20 23:10
4-Methyl-2-pentanone (MIBK)	50.0 U	100	31.0	ug/L	10	12/21/20 23:10
Benzene	824	4.00	1.20	ug/L	10	12/21/20 23:10
Bromobenzene	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
Bromochloromethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
Bromodichloromethane	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
Bromoform	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
Bromomethane	25.0 U	50.0	20.0	ug/L	10	12/21/20 23:10
Carbon disulfide	50.0 U	100	31.0	ug/L	10	12/21/20 23:10
Carbon tetrachloride	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10
Chlorobenzene	2.50 U	5.00	1.50	ug/L	10	12/21/20 23:10
Chloroethane	5.00 U	10.0	3.10	ug/L	10	12/21/20 23:10

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

						Allewishle	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Chloromethane	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
cis-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
cis-1,3-Dichloropropene	2.50 U	5.00	1.50	ug/L	10		12/21/20 23:10
Dibromochloromethane	2.50 U	5.00	1.50	ug/L	10		12/21/20 23:10
Dibromomethane	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Dichlorodifluoromethane	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Ethylbenzene	947	10.0	3.10	ug/L	10		12/21/20 23:10
Freon-113	50.0 U	100	31.0	ug/L	10		12/21/20 23:10
Hexachlorobutadiene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Isopropylbenzene (Cumene)	83.2	10.0	3.10	ug/L	10		12/21/20 23:10
Methylene chloride	50.0 U	100	31.0	ug/L	10		12/21/20 23:10
Methyl-t-butyl ether	50.0 U	100	31.0	ug/L	10		12/21/20 23:10
Naphthalene	463	10.0	3.10	ug/L	10		12/21/20 23:10
n-Butylbenzene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
n-Propylbenzene	145	10.0	3.10	ug/L	10		12/21/20 23:10
o-Xylene	2280	50.0	15.5	ug/L	50		12/21/20 22:27
P & M -Xylene	5920	100	31.0	ug/L	50		12/21/20 22:27
sec-Butylbenzene	19.6	10.0	3.10	ug/L	10		12/21/20 23:10
Styrene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
tert-Butylbenzene	6.18 J	10.0	3.10	ug/L	10		12/21/20 23:10
Tetrachloroethene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Toluene	4960	50.0	15.5	ug/L	50		12/21/20 22:27
trans-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
trans-1,3-Dichloropropene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Trichloroethene	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Trichlorofluoromethane	5.00 U	10.0	3.10	ug/L	10		12/21/20 23:10
Vinyl acetate	50.0 U	100	31.0	ug/L	10		12/21/20 23:10
Vinyl chloride	0.750 U	1.50	0.500	ug/L	10		12/21/20 23:10
Xylenes (total)	8200	150	50.0	ug/L	50		12/21/20 22:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	88.6	81-118		%	10		12/21/20 23:10
4-Bromofluorobenzene (surr)	92.6	85-114		%	10		12/21/20 23:10
Toluene-d8 (surr)	105	89-112		%	10		12/21/20 23:10

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 22:27 Container ID: 1209871004-J

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 23:10 Container ID: 1209871004-J Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Sample ID: **20MAW-MW10-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871004 Lab Project ID: 1209871 Collection Date: 12/15/20 15:36 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW10

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 3.89	<u>LOQ/CL</u> 0.0500	<u>DL</u> 0.0125	<u>Units</u> ug/L	<u>DF</u> 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 18:33
Surrogates							
4-Bromofluorobenzene (surr)	88.3	85-114		%	10		12/26/20 18:33
Toluene-d8 (surr)	96.6	89-112		%	10		12/26/20 18:33

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 18:33 Container ID: 1209871004-M Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Client Project ID: MarkAir GW Monito Lab Sample ID: 1209871004 Lab Project ID: 1209871	A ring	F	Collection Da Received Dat Matrix: Water Solids (%): Location: MV	e: 12/17/2 (Surface,	20 10:24	und)	
Results by Waters Department			_				
<u>Parameter</u> Sulfate	<u>Result</u> Qual 0.471	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/29/20 16:18
Batch Information							
Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/29/20 16:18 Container ID: 1209871004-F			Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	METHOD ne: 12/29/2 t./Vol.: 10 i	20 10:00 mL		
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 0.192 J	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u>	Date Analyzed 12/18/20 18:18
Batch Information							
Analytical Method: SM21 4500NO3-F Analyst: EWW Analytical Date/Time: 12/18/20 18:18 Container ID: 1209871004-G							
						Allowable	
	<u>Result Qual</u> 0.926	<u>LOQ/CL</u> 0.0800	<u>DL</u> 0.0240	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	
Total Phosphorus							
Total Phosphorus				mg/L //XX13580 SM21 450 ne: 01/06/2 t./Vol.: 12.9	1 00P-B,E 21 10:36 5 mL		<u>Date Analyzed</u> 01/06/21 13:41
Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 01/06/21 13:41			0.0240 Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W	mg/L //XX13580 SM21 450 ne: 01/06/2 t./Vol.: 12.9	1 00P-B,E 21 10:36 5 mL		

Results of 20MAW-TB01

ing	Collection Date: 12/15/20 08:00 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01						
Result Qual	LOQ/CL	DL	Units	DF		Date Analyzed	
0.0500 U	0.100	0.0310	mg/L	1		12/23/20 15:26	
103	50-150		%	1		12/23/20 15:26	
	F	Prep Method:	SW5030B				
	F		t./Vol.: 5 m				
	0.0500 U	ring R M Sa La <u>Result Qual</u> <u>LOQ/CL</u> 0.0500 U 0.100 103 50-150	Received Dat Matrix: Water Solids (%): Location: MA Result Qual 0.0500 U LOQ/CL 0.100 DL 0.0310 103 50-150 Prep Batch: ' Prep Method: Prep Date/Tir Prep Initial W	Received Date: 12/17/2 Matrix: Water (Surface, Solids (%): Location: MAW-TB01 Result Qual LOQ/CL DL Units 0.0500 U 0.100 0.0310 mg/L 103 50-150 % Prep Batch: VXX36761 Prep Date/Time: 12/23/2 Prep Initial Wt./Vol.: 5 method:	Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Groupsolids (%): Location: MAW-TB01 Result Qual LOQ/CL DL Units DF 0.0500 U 0.100 0.0310 mg/L 1 103 50-150 % 1 Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 06:00 Prep Initial Wt./Vol.: 5 mL	Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Result Qual 0.0500 U LOQ/CL 0.100 DL 0.0310 Units mg/L DF 1 Allowable Limits 103 50-150 % 1 Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 06:00 Prep Initial Wt./Vol.: 5 mL	

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Results of 20MAW-TB01

Client Sample ID: **20MAW-TB01** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871005 Lab Project ID: 1209871

Collection Date: 12/15/20 08:00 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Ana	alyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	12/21/20	17:08
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	12/21/20	17:08
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	12/21/20	17:08
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	12/21/20	17:08
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	12/21/20	17:08
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	12/21/20	17:08
Benzene	0.200 U	0.400	0.120	ug/L	1	12/21/20	17:08
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
Bromoform	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
Bromomethane	2.50 U	5.00	2.00	ug/L	1	12/21/20	17:08
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	12/21/20	17:08
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	12/21/20	17:08
Chloroethane	0.500 U	1.00	0.310	ug/L	1	12/21/20	17:08

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW-TB01

Client Sample ID: **20MAW-TB01** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871005 Lab Project ID: 1209871

Collection Date: 12/15/20 08:00 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF		nalyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/21/2	0 17:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/21/2	0 17:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/21/2	0 17:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	12/21/2	0 17:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/21/2	0 17:08
Naphthalene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	12/21/2	0 17:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Styrene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Toluene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	12/21/2	0 17:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/21/2	0 17:08
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/21/2	0 17:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	12/21/2	0 17:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	95	81-118		%	1	12/21/2	0 17:08
4-Bromofluorobenzene (surr)	95	85-114		%	1	12/21/2	0 17:08
Toluene-d8 (surr)	103	89-112		%	1	12/21/2	0 17:08

Print Date: 01/11/2021 3:42:36PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW-TB01

Client Sample ID: **20MAW-TB01** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209871005 Lab Project ID: 1209871

Collection Date: 12/15/20 08:00 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 17:08 Container ID: 1209871005-D Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Member of SGS Group

43 of 114

Results of 20MAW-TB01

Client Sample ID:20MAW-TB01CollectClient Project ID:MarkAir GW MonitoringReceivLab Sample ID:1209871005MatrixLab Project ID:1209871SolidsLocatiLocati

Collection Date: 12/15/20 08:00 Received Date: 12/17/20 10:24 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 0.00250 U	<u>LOQ/CL</u> 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 17:17
Surrogates							
4-Bromofluorobenzene (surr)	94.6	85-114		%	1		12/26/20 17:17
Toluene-d8 (surr)	97.9	89-112		%	1		12/26/20 17:17

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 17:17 Container ID: 1209871005-G

Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:42:36PM

J flagging is activated

Blank ID: MB for HBN 18 Blank Lab ID: 1596297	314978 [MXX/33902]	Matrix	k: Water (Surfa	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1209871001, 1209871003	, 1209871004								
Results by SW6020B]							
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>					
Iron	250U	500	150	ug/L					
Manganese	1.00U	2.00	0.620	ug/L					
Batch Information									
Analytical Batch: MMS	10977	Prep Ba	tch: MXX33902						
Analytical Method: SW			ethod: SW3010/						
Instrument: Perkin Elm	er Nexlon P5			2020 10:14:11AM					
Analyst: DMM			tial Wt./Vol.: 25						
	2/30/2020 10:44:16AM	Prep Ex	tract Vol: 25 mL	-					

Print Date: 01/11/2021 3:42:39PM

lank Spike Summary				
lank Spike ID: LCS for lank Spike Lab ID: 159 bate Analyzed: 12/30/	96298	MXX3390	2]	Matrix: Water (Surface, Eff., Ground)
	9871001, 120987	1003, 1209	9871004	
Results by SW6020B			_	
	E	Blank Spike	e (ug/L)	
			Rec (%)	CL
Parameter_	Spike	Result		
	<u>Spike</u> 5000	<u>Result</u> 5410	108	(87-118)
Iron				
Iron Manganese	5000	5410	108	(87-118)
Iron Manganese Batch Information	5000 500	5410	108	(87-118) (87-115)
Iron Manganese Batch Information Analytical Batch: MMS1 Analytical Method: SW6	5000 500 0977 020B	5410	108	(87-118)
-	5000 500 0977 020B	5410	108	(87-118) (87-115) Prep Batch: MXX33902

Print Date: 01/11/2021 3:42:42PM

-

Matrix Spike Summary

Original Sample ID: 1596299 MS Sample ID: 1596300 MS MSD Sample ID: 1596301 MSD Analysis Date: 12/30/2020 10:53 Analysis Date: 12/30/2020 10:58 Analysis Date: 12/30/2020 11:03 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004

		Ma	trix Spike ((ug/L)	Spik	e Duplicat	e (ug/L)			
Parameter Iron	<u>Sample</u> 163J	<u>Spike</u> 5000	<u>Result</u> 5350	<u>Rec (%)</u> 104	<u>Spike</u> 5000	<u>Result</u> 5200	<u>Rec (%)</u> 101	<u>CL</u> 87-118	<u>RPD (%)</u> 2.86	<u>RPD CI</u> (< 20)
Manganese	1.75J	500	546	109	500	523	104	87-115	4.32	(< 20)
Batch Information										
Batch Information	0977			Prep	Batch: 1	MXX33902				
) Digest for	Metals ICF	P-MS	
Analytical Batch: MMS10)20B			Prep Prep	o Method: o Date/Tin	3010 H20 ne: 12/21/) Digest for 2020 10:14		P-MS	
Analytical Batch: MMS10 Analytical Method: SW60	20B Nexlon P5			Prep Prep Prep	o Method: o Date/Tin o Initial W	3010 H20) Digest for 2020 10:14 00mL		P-MS	

Print Date: 01/11/2021 3:42:45PM

Method Blank

Blank ID: MB for HBN 1815009 [VXX/36750] Blank Lab ID: 1596418 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by SW8260D

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 01/11/2021 3:42:46PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1815009 [VXX/36750] Blank Lab ID: 1596418 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

_	Results by SW8260D				
	Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
	Chloromethane	0.500U	1.00	0.310	ug/L
	cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
	Dibromochloromethane	0.250U	0.500	0.150	ug/L
	Dibromomethane	0.500U	1.00	0.310	ug/L
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
	Ethylbenzene	0.500U	1.00	0.310	ug/L
	Freon-113	5.00U	10.0	3.10	ug/L
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
	Methylene chloride	5.00U	10.0	3.10	ug/L
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
	Naphthalene	0.500U	1.00	0.310	ug/L
	n-Butylbenzene	0.500U	1.00	0.310	ug/L
	n-Propylbenzene	0.500U	1.00	0.310	ug/L
	o-Xylene	0.500U	1.00	0.310	ug/L
	P & M -Xylene	1.00U	2.00	0.620	ug/L
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L
	Styrene	0.500U	1.00	0.310	ug/L
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L
	Tetrachloroethene	0.500U	1.00	0.310	ug/L
	Toluene	0.500U	1.00	0.310	ug/L
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
	Trichloroethene	0.500U	1.00	0.310	ug/L
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
	Vinyl acetate	5.00U	10.0	3.10	ug/L
	Vinyl chloride	0.0750U	0.150	0.0500	ug/L
	Xylenes (total)	1.50U	3.00	1.00	ug/L
9	Surrogates				-
	1,2-Dichloroethane-D4 (surr)	91.6	81-118		%
	4-Bromofluorobenzene (surr)	93.3	85-114		%
	Toluene-d8 (surr)	105	89-112		%
			00 112		,0

Print Date: 01/11/2021 3:42:46PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 1596418	1815009 [VXX/36750] 3	Matri	x: Water (Su	rface, Eff., Ground)	
QC for Samples: 1209871001, 120987100	03, 1209871004, 1209871005				
Results by SW8260D					
<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>	
atch Information					
Analytical Batch: VM			atch: VXX367		
Analytical Method: S Instrument: Agilent 7			ethod: SW503 ate/Time: 12/2	21/2020 12:30:00PM	
Analyst: NRB			tial Wt./Vol.: {		
			tract Vol: 5 m		

Print Date: 01/11/2021 3:42:46PM

Blank Spike ID: LCS for HBN 1209871 [VXX36750] Blank Spike Lab ID: 1596419 Date Analyzed: 12/21/2020 12:47 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36750] Spike Duplicate Lab ID: 1596420 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by SW8260D

	Blank Spike (ug/L)					cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.8	106	30	31.9	106	(78-124)	0.20	(< 20)
1,1,1-Trichloroethane	30	29.0	97	30	29.0	97	(74-131)	0.00	(< 20)
1,1,2,2-Tetrachloroethane	30	28.5	95	30	28.9	96	(71-121)	1.20	(< 20)
1,1,2-Trichloroethane	30	31.2	104	30	31.8	106	(80-119)	2.20	(< 20)
1,1-Dichloroethane	30	29.4	98	30	29.3	98	(77-125)	0.44	(< 20)
1,1-Dichloroethene	30	30.4	101	30	30.2	101	(71-131)	0.81	(< 20)
1,1-Dichloropropene	30	30.5	102	30	30.4	101	(79-125)	0.44	(< 20)
1,2,3-Trichlorobenzene	30	32.5	108	30	34.8	116	(69-129)	6.90	(< 20)
1,2,3-Trichloropropane	30	28.5	95	30	28.7	96	(73-122)	0.74	(< 20)
1,2,4-Trichlorobenzene	30	31.6	105	30	33.5	112	(69-130)	6.00	(< 20)
1,2,4-Trimethylbenzene	30	28.7	96	30	28.6	96	(79-124)	0.34	(< 20)
1,2-Dibromo-3-chloropropane	30	27.1	90	30	28.2	94	(62-128)	4.20	(< 20)
1,2-Dibromoethane	30	32.5	108	30	32.9	110	(77-121)	1.40	(< 20)
1,2-Dichlorobenzene	30	29.6	99	30	30.0	100	(80-119)	1.50	(< 20)
1,2-Dichloroethane	30	26.2	87	30	26.5	89	(73-128)	1.50	(< 20)
1,2-Dichloropropane	30	30.9	103	30	31.1	104	(78-122)	0.76	(< 20)
1,3,5-Trimethylbenzene	30	28.4	95	30	28.5	95	(75-124)	0.31	(< 20)
1,3-Dichlorobenzene	30	30.1	100	30	30.0	100	(80-119)	0.10	(< 20)
1,3-Dichloropropane	30	30.8	103	30	31.3	104	(80-119)	1.50	(< 20)
1,4-Dichlorobenzene	30	29.8	99	30	29.8	99	(79-118)	0.15	(< 20)
2,2-Dichloropropane	30	26.6	89	30	26.4	88	(60-139)	0.86	(< 20)
2-Butanone (MEK)	90	92.9	103	90	96.3	107	(56-143)	3.70	(< 20)
2-Chlorotoluene	30	29.6	99	30	29.4	98	(79-122)	0.65	(< 20)
2-Hexanone	90	87.1	97	90	90.8	101	(57-139)	4.10	(< 20)
4-Chlorotoluene	30	28.1	94	30	28.0	94	(78-122)	0.27	(< 20)
4-Isopropyltoluene	30	29.5	98	30	29.9	100	(77-127)	1.30	(< 20)
4-Methyl-2-pentanone (MIBK)	90	91.5	102	90	93.9	104	(67-130)	2.60	(< 20)
Benzene	30	31.4	105	30	31.3	104	(79-120)	0.32	(< 20)
Bromobenzene	30	30.2	101	30	30.2	101	(80-120)	0.13	(< 20)
Bromochloromethane	30	31.4	105	30	31.8	106	(78-123)	1.00	(< 20)
Bromodichloromethane	30	29.7	99	30	30.0	100	(79-125)	1.10	(< 20)
Bromoform	30	32.6	109	30	33.8	113	(66-130)	3.50	(< 20)
Bromomethane	30	26.3	88	30	25.1	84	(53-141)	4.40	(< 20)
Carbon disulfide	45	44.8	100	45	43.8	97	(64-133)	2.20	(< 20)

Print Date: 01/11/2021 3:42:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209871 [VXX36750] Blank Spike Lab ID: 1596419 Date Analyzed: 12/21/2020 12:47 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36750] Spike Duplicate Lab ID: 1596420 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by SW8260D

		Blank Spike							
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.4	101	30	30.3	101	(72-136)	0.08	(< 20)
Chlorobenzene	30	31.5	105	30	31.3	104	(82-118)	0.82	(< 20)
Chloroethane	30	30.7	102	30	26.4	88	(60-138)	14.90	(< 20)
Chloroform	30	29.2	97	30	29.3	98	(79-124)	0.25	(< 20)
Chloromethane	30	29.9	100	30	29.3	98	(50-139)	2.10	(< 20)
cis-1,2-Dichloroethene	30	31.1	104	30	31.3	104	(78-123)	0.50	(< 20)
cis-1,3-Dichloropropene	30	30.6	102	30	31.0	103	(75-124)	1.50	(< 20)
Dibromochloromethane	30	31.9	106	30	32.4	108	(74-126)	1.30	(< 20)
Dibromomethane	30	30.0	100	30	30.5	102	(79-123)	1.60	(< 20)
Dichlorodifluoromethane	30	32.2	107	30	31.8	106	(32-152)	1.40	(< 20)
Ethylbenzene	30	31.5	105	30	31.7	106	(79-121)	0.60	(< 20)
Freon-113	45	45.7	102	45	45.3	101	(70-136)	0.74	(< 20)
Hexachlorobutadiene	30	30.5	102	30	31.2	104	(66-134)	2.30	(< 20)
Isopropylbenzene (Cumene)	30	31.3	104	30	31.5	105	(72-131)	0.62	(< 20)
Methylene chloride	30	29.4	98	30	29.5	98	(74-124)	0.26	(< 20)
Methyl-t-butyl ether	45	45.1	100	45	45.6	101	(71-124)	1.20	(< 20)
Naphthalene	30	30.1	100	30	32.6	109	(61-128)	8.00	(< 20)
n-Butylbenzene	30	29.1	97	30	29.8	100	(75-128)	2.60	(< 20)
n-Propylbenzene	30	28.8	96	30	28.8	96	(76-126)	0.18	(< 20)
o-Xylene	30	31.5	105	30	31.6	105	(78-122)	0.22	(< 20)
P & M -Xylene	60	62.8	105	60	63.5	106	(80-121)	1.10	(< 20)
sec-Butylbenzene	30	29.4	98	30	29.9	100	(77-126)	1.70	(< 20)
Styrene	30	31.4	105	30	31.7	106	(78-123)	0.96	(< 20)
tert-Butylbenzene	30	29.2	97	30	29.8	99	(78-124)	2.00	(< 20)
Tetrachloroethene	30	33.0	110	30	32.7	109	(74-129)	0.82	(< 20)
Toluene	30	31.0	103	30	30.9	103	(80-121)	0.21	(< 20)
trans-1,2-Dichloroethene	30	31.0	103	30	30.9	103	(75-124)	0.34	(< 20)
trans-1,3-Dichloropropene	30	29.8	99	30	30.3	101	(73-127)	1.60	(< 20)
Trichloroethene	30	30.9	103	30	30.7	102	(79-123)	0.73	(< 20)
Trichlorofluoromethane	30	30.5	102	30	30.1	100	(65-141)	1.30	(< 20)
Vinyl acetate	30	33.8	113	30	34.3	114	(54-146)	1.50	(< 20)
Vinyl chloride	30	29.8	100	30	29.4	98	(58-137)	1.60	(< 20)
Xylenes (total)	90	94.3	105	90	95.0	106	(79-121)	0.79	(< 20)

Print Date: 01/11/2021 3:42:49PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209871 [VXX36750] Blank Spike Lab ID: 1596419 Date Analyzed: 12/21/2020 12:47 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36750] Spike Duplicate Lab ID: 1596420 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by SW8260D Blank Spike (%) Spike Duplicate (%) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) <u>CL</u> <u>RPD (%)</u> RPD CL Surrogates 1,2-Dichloroethane-D4 (surr) 90.3 30 90.8 30 90 91 (81-118) 0.57 4-Bromofluorobenzene (surr) 30 92.7 93 30 91.6 92 (85-114) 1.20 Toluene-d8 (surr) 30 104 104 30 104 104 0.37 (89-112)

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36750 Prep Method: SW5030B Prep Date/Time: 12/21/2020 12:30 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 01/11/2021 3:42:49PM

lank ID: MB for HBN 18150 lank Lab ID: 1596606	85 [VXX/36757]	Matrix	: Water (Surface,	Eff., Ground)	
C for Samples: 209871001, 1209871003, 120	9871004, 1209871005				
esults by SW8260D-SIM					
<u>arameter</u> ,2-Dibromoethane	<u>Results</u> 0.00250U	LOQ/CL 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L	
irrogates -Bromofluorobenzene (surr) oluene-d8 (surr)	99.3 98	85-114 89-112		% %	
Analytical Batch: VMS20532 Analytical Method: SW8260 Instrument: VSA Agilent GC Analyst: NRB Analytical Date/Time: 12/26	D-SIM /MS 7890B/5977A	Prep Me Prep Dat Prep Initi	ch: VXX36757 thod: SW5030B te/Time: 12/26/202 ial Wt./Vol.: 25 mL ract Vol: 25 mL	0 4:00:00PM	

Print Date: 01/11/2021 3:42:52PM

Blank Spike ID: LCS for HBN 1209871 [VXX36757] Blank Spike Lab ID: 1596607 Date Analyzed: 12/26/2020 16:31 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36757] Spike Duplicate Lab ID: 1596608 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by SW8260D-SIM

		Blank Spike	e (ug/L)	S	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,2-Dibromoethane	0.2	0.195	97	0.2	0.198	99	(77-121)	1.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	30	95.6	96	30	96.4	96	(85-114)	0.88	(< 20)
Toluene-d8 (surr)	30	96.5	97	30	98.3	98	(89-112)	1.80	(< 20)

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Instrument: VSA Agilent GC/MS 7890B/5977A Analyst: NRB Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/2020 16:00 Spike Init Wt./Vol.: 0.2 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 ug/L Extract Vol: 25 mL

Print Date: 01/11/2021 3:42:54PM

Method Blank					
Blank ID: MB for HBN 18151 Blank Lab ID: 1596704	14 [VXX/36761]	Matrix	: Water (Surfac	ce, Eff., Ground)	
QC for Samples: 209871001, 1209871003, 1209	9871004, 1209871005				
Results by AK101					
<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
urrogates					
I,4-Difluorobenzene (surr) I-Bromofluorobenzene (surr)	85.1 99.6	77-115 50-150		% %	
atch Information					
Analytical Batch: VFC15474 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID Analyst: MDT Analytical Date/Time: 12/23/2020 12:02:00PM		Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/2020 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL			

Print Date: 01/11/2021 3:42:56PM

_

Blank Spike ID: LCS for HBN 1209871 [VXX36761] Blank Spike Lab ID: 1596705 Date Analyzed: 12/23/2020 12:56 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36761] Spike Duplicate Lab ID: 1596706 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004, 1209871005

Results by AK101									
	E	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.991	99	(60-120)	2.20	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	106	106	0.0500	103	103	(50-150)	2.80	
Batch Information									
Analytical Batch: VFC15474				Prep	Batch: V	XX36761			
Analytical Method: AK101				Prep	Method:	SW5030B			
Instrument: Agilent 7890 PID/	FID			Prep Date/Time: 12/23/2020 06:00					
Analyst: MDT						· · · · · · · · · · · · · · · · · · ·	g/L Extract		
				Dup	e Init Wt./\	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL	

Print Date: 01/11/2021 3:42:59PM

- Method Blank						
Blank ID: MB for HBN 1815114 [VXX/3676] L Blank ba9 ID: 154671]	Ma2t,t∶i a2prxCWfa(pucff⊞.roWnGd					
0 Q for CaS mpe: 1] s4871ss]						
, pe₩2e 9R AK101						
<u>OaraSp2pr</u>) <u>peW2e</u> . aeol,np) anPp UrPan,(e sEs5ssy	<u>bU0/Qb</u> s⊟ss	<u>Db</u> sEs31s	<u>y n,2e</u> S P/b			
Surrogates g-BroSoflWøro9pnzpnp æWrd 1sg	5s-15s		%			
Batch Information						
AnalR2(al Ba2(h: VFQ15g75 AnalR2(al Mp2hoG: AK1s1 Ine2W6pn2: AP,Ipn2784s OID/FID AnalRe2: MDT AnalR2(al Da2p/T,Sp: 1]/]8/]s]s 3:57:ssOM	OrpmMp2n OrpmDa⊅ OrpmIn,2a	h: VXX3676] IoG Ci 5s3sE (T,Sp: 1]/]8/] Ii 2EVolE 5 S a(2Vol: 5 S b	s]s 6:ss:ssAM			

Blank	Spike	Summary
-------	-------	---------

Blank Spike ID: LCS for HBN 1209871 [VXX36762] Blank Spike Lab ID: 1596713 Date Analyzed: 12/28/2020 16:51 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36762] Spike Duplicate Lab ID: 159671R x atriW (ater ,SurfaceE ffŒ) roundP

4 C for Sa%pleM 1209871002

s eMultMby AK101 Blank Spike ,%QLP Spike Duplicate ,%QLP <u>mara%eter</u> <u>Spike</u> <u>s eMult</u> <u>Spike</u> <u>s ec ,g P</u> CL s mD CL <u>s ec ,g P</u> <u>s eMult</u> <u>smD,gP</u> 0**9**69) aMoline s anQe OrQanicM 1**@**0 1**@**0 0982 , 60-120 P 1GRO ,< 20 P 97 98 Surrogates R-Bro%ofluorobenzene ,MurrP 00500 107 107 00500 10R 10R , 50-150 P 230 **Batch Information** Analytical Batch: VFC15475 mrep Batch: VXX3676W Analytical x ethod: AK101 mrep x ethod: S2 5030B InMru%ent: Agilent 7890 PID/FID mrep Date/Ti%e: 1WW8/W0W0 06:00 AnalyM: MDT Spike Init (tolvolG 1000 %QL . What Vol: 5 %L Dupe Init (tOVoIG 100 %Q/L . What Vol: 5 %L

mrint Date: 01/11/2021 3:R3:05mx

Method Blank

Blank ID: MB for HBN 1815110 9 VVX 3637] Blank Lab ID: 1503617

4 Q for CaS mipe: 17s0861ss7

) peW2e bRSW8021B

OaraS p2pr) peW2e	LU4 XQL	DL	<u>y n,2e</u>
BpnPpnp	s₽5sy	sEss	s₿5s	V¥ XL
c 2TRbpnPpnp	sБssy	1Ess	s∉1s	₩¥L
oh∕Ripnp	sБssy	1Ess	s∉1s	V¥ XL
Og MhVRpnp	1Essy	7Ess	s₿7s	V¥ XL
zolWønp	s⊞ssy	1Ess	s∉1s	₩¥
VRpnpe x2o2ald	1Њsy	/Ess	s⊞/s	₩¥
Surrogates				
1uKrD,flWørobpnPpnp xeWrd	81Ð	66h115		А

Batch Information

v nalR2(al Ba2(T: [wQ15K65 v nalR2(al Mp2ToG Ci 8s71B Ine2WS pn2 v - ,lpn2680s OIDXMD v nalRe2 MDz v nalR2(al Da2pXz,S p: 17X78X/s7s /:56:ssOM OrpmBa2(T: [VV/3637 OrpmMp2ToG Ci 5s/sB OrpmDa2p2x,Sp: 17%8%/s7s 3:ss:ssvM OrpmIn,2al i 22% oIE 5 S L Orpmct2a(2[ol: 5 S L

Ma2,t:i a2pr xCWfa(pucffE).roWhGd

Or,n2Da2p: s1X1X/s71 /:K/:s8OM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209871 [VXX36762] Blank Spike Lab ID: 1596715 Date Analyzed: 12/28/2020 16:33 Spike Duplicate ID: LCSD for HBN 1209871 [VXX36762] Spike Duplicate Lab ID: 1596716 Matrix: Water (Surface, Eff., Ground)

Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

QC for Samples: 1209871002

Results by SW8021B

		Blank Spike (ug/L) Spike Duplicate (ug/L)							
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	116	116	100	110	110	(80-120)	5.30	(< 20)
Ethylbenzene	100	116	116	100	108	108	(75-125)	6.80	(< 20)
o-Xylene	100	115	115	100	107	107	(80-120)	7.50	(< 20)
P & M -Xylene	200	230	115	200	214	107	(75-130)	7.00	(< 20)
Toluene	100	118	118	100	112	112	(75-120)	5.20	(< 20)
Xylenes (total)	300	345	115	300	321	107	(79-121)	7.20	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	92.8	93	50	101	101	(77-115)	8.00	
Batch Information				Pre	o Batch: V	XX36762			
Analytical Method: SW8021B	Analytical Method:SW8021BPrep Method:SW5030BInstrument:Agilent 7890 PID/FIDPrep Date/Time:12/28/2020 06:00								

Print Date: 01/11/2021 3:43:10PM

Method Blank								
Blank ID: MB for HBN 1814964 (WFI/2900) Blank Lab ID: 1596287		Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1209871001								
Results by SM21 4500NC)3-F							
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>				
Nitrate-N	0.100U	0.200	0.0500	mg/L				
Nitrite-N Total Nitrate/Nitrite-N	0.100U 0.100U	0.200 0.200	0.0500 0.0500	mg/L mg/L				
	0.1000	0.200	0.0000	1119/ E				
atch Information								
Analytical Batch: WFI29 Analytical Method: SM2 Instrument: Astoria segn Analyst: EWW Analytical Date/Time: 12	1 4500NO3-F nented flow							

Print Date: 01/11/2021 3:43:13PM

Method Blank Blank ID: MB for HBN 1814964 (WFI/2900) Matrix: Water (Surface, Eff., Ground) Blank Lab ID: 1596289 QC for Samples: 1209871001, 1209871003, 1209871004 Results by SM21 4500NO3-F LOQ/CL DL <u>Units</u> Parameter **Results** Nitrate-N 0.100U 0.200 0.0500 mg/L Nitrite-N 0.100U 0.200 0.0500 mg/L Total Nitrate/Nitrite-N 0.0502J 0.200 0.0500 mg/L **Batch Information** Analytical Batch: WFI2900 Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow Analyst: EWW Analytical Date/Time: 12/18/2020 5:59:24PM

Print Date: 01/11/2021 3:43:13PM

Blank Spike Summary Blank Spike ID: LCS for H Blank Spike Lab ID: 1596		WFI2900]		
Date Analyzed: 12/18/20				Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1209	871001			Matrix. Water (Surface, En., Ground)
Results by SM21 4500NC)3-F			
		Blank Spike	e (mg/L)	
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	2.5	2.36	94	(70-130)
Nitrite-N	2.5	2.48	99	(90-110)
Total Nitrate/Nitrite-N	5	4.84	97	(90-110)
Batch Information				
Analytical Batch: WFI2900 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	4500NO3-F			

Print Date: 01/11/2021 3:43:16PM

SGS	

Blank Spike Summary				
Blank Spike ID: LCS for F Blank Spike Lab ID: 1596 Date Analyzed: 12/18/20	288	[WFI2900]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1209	871001, 120987	1003, 1209	9871004	
Results by SM21 4500NO)3-F		_	
		Blank Spike	e (mg/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	2.5	2.32	93	(70-130)
Nitrite-N	2.5	2.51	100	(90-110)
Total Nitrate/Nitrite-N	5	4.83	97	(90-110)
Batch Information				
Analytical Batch: WFI2900 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	4500NO3-F			

Print Date: 01/11/2021 3:43:16PM

-

SGS	

Matrix Spike Summary										
Original Sample ID: 1206 MS Sample ID: 1596227 MSD Sample ID: 159622	MS				Analysis Analysis	Date: 12	2/18/2020 2/18/2020 2/18/2020 Water	16:33		
QC for Samples:										
Results by SM21 4500NC)3-F									
		Mat	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Sample</u> 0.200U	<u>Spike</u> 5.00	<u>Result</u> 6.04	<u>Rec (%)</u> 121 *	<u>Spike</u> 5.00	<u>Result</u> 6.05	<u>Rec (%)</u> 121 *	<u>CL</u> 90-110	<u>RPD (%)</u> 0.12	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WFI290 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW Analytical Date/Time: 12/	4500NO3-F nented flow	9PM								
Print Date: 01/11/2021 3:43:18P	Μ									

I										
Matrix Spike Summary										
Original Sample ID: 12067	03002				Analysis	Date: 12	2/18/2020	17:17		
MS Sample ID: 1596229 M							2/18/2020			
MSD Sample ID: 1596230) MSD						2/18/2020	17:20		
					Matrix:	Drinking \	Nater			
QC for Samples: 1209871	001									
Results by SM21 4500NO3	3-F									
		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Total Nitrate/Nitrite-N	0.200U	5.00	5.64	113 *	5.00	5.70	114 *	90-110	1.20	(< 25)
Batch Information										
Analytical Batch: WFI2900										
Analytical Method: SM21 4										
Instrument: Astoria segme Analyst: EWW	ented flow									
Analytical Date/Time: 12/1	8/2020 5:19:00	8PM								
j										

Print Date: 01/11/2021 3:43:18PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

•										
Matrix Spike Summary										
Original Sample ID: 1206738001 MS Sample ID: 1596233 MS MSD Sample ID: 1596234 MSD					Analysis Analysis	Date: 12	2/18/2020 2/18/2020 2/18/2020 Water	18:04		
QC for Samples: 1209871	001, 120987100	03, 120987	71004							
Results by SM21 4500NO3	3-F									
		Ma	trix Spike ((mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Total Nitrate/Nitrite-N	0.100U	5.00	5.21	104	5.00	5.21	104	90-110	0.03	(< 25)
Batch Information										
Analytical Batch: WFI2900 Analytical Method: SM21 4 Instrument: Astoria segme	4500NO3-F									
Analyst: EWW Analytical Date/Time: 12/1		9PM								

Print Date: 01/11/2021 3:43:18PM

Method Blank					
Blank ID: MB for HBN 1814997 [X / / 31027] L Blank ba5 ID: 1296020 QC for Samples:		Matri	x: X ater \&(rfau	uecEff.cGro(nd)	
1] , 9871, , 1					
Res(Its 5y EPA 300.0	0				
<u>Parameter</u> S(lfate	<u>Res(Its</u> , .1, , U	<u>bOQ3Cb</u> , .] , ,	<u>Db</u> , ., 2, ,	<u>Units</u> mg3o	
Batch Information	l				
Analyst: A.A		Prep Me Prep Da Prep Ini	atuh: X / / 1027] ethod: METHOD ate3Time: 1] 3183 tial X t.3/ol.: 1, r traut Vol: 1, mb		

Print Date: , 13113,] 1 0:40:], PM

SGS North Ameriua Inu.

],, X est Potter Drive AnuhoragecAK 92218 t 9, 7.26].] 040 f 9, 7.261.20, 1 www.(s.sgs.uom

Method Blank					
Blank ID: MB for HBN Blank ba5 ID: 1296026	1814997 [X / / 31027] L S	Matrix:	X ater ₩3(rfau	lecEff.cGro(nd)	
QC for Samples: 1] , 9871, , 1					
Res(Its 5y EPA 300.0					
<u>Parameter</u>	<u>Res(Its</u>	bOQ3Cb	Db	<u>Units</u>	
S(lfate	, .1, , U	, .] , ,	, ., 2, ,	mg3o	
Batch Information					
Analytiual Batuh: X IO Analytiual Method: El Instr(ment: 90, Metr Analyst: A.A Analytiual Date3Time:	PA 0, , .,	Prep Metl Prep Date Prep Initia	uh: X / / 1027] hod: METHOD e3Time: 1] 3183] al X t.3/ol.: 1, n aut Vol: 1, mb	,] , 1] :, , :, , PM nb	

SGS	
Blank Spike Summary Blank Spike ID: LCS for HBN 1209871 [MXX1	3] 72b
Blank Spike La5 ID: 1] 963] t DaAe y nalzde/ : 1241842020 1] :06	

				x aAtiW MaAer (Surface, Eff., Groun/)	
QC for Samples:	1209871001				
ResulAs 5z EPA 30	0.0				
		Blank Spike	(mg4_)		
ParameAer	Spike	<u>ResulA</u>	<u>Rec (%)</u>	<u>CL</u>	
SulfaÆ]] .18	10t	(90-110)	
Batch Information					_
y nalzAcal BaAch: W y nalzAcal x eAno/: InsAtumenA 930 Me y nalzsA A.A		ĸ		Prep BaAsh: WXX13572 Prep x eAso/: METHOD Prep DaAs4Time: 12/18/2020 12:00 Spike IniAMAA/ol.:] mg4_ EWasaAVol: 10 mL Dupe IniAMAA/ol.: EWasaAVol:	

PrinADaAe: 0141142021 3:t 3:22Px

-

lank Spike Summary lank Spike ID: LCS for HBN 1209871 [MXX13] 72b	
ank Spike ID: LCS for HBN 1209671 [MXX13] 720 lank Spike La5 ID: 1] 963] 7 a& y nalzde/ : 1241942020 01:] 0	
	x aAiW MaAer (Surface, Eff., Groun/)
C for Samples: 1209871001	
Resul A s 5z EPA 300.0	
Blank Spike (mg4.)	
arameAer Spike ResulA Rec (%) ulfaAe]] .16 103	<u>CL</u> (90-110)
y nalzAcal BaAsh: WIC6125 y nalzAcal x eAso/: EPA 300.0 InsAsumenA 930 Metrohm compact IC flex y nalzsA A.A	Prep BaAsh: WXX13572 Prep x eAso/ : METHOD Prep DaAs4Time: 12/18/2020 12:00 Spike IniAM A4/ol.:] mg4_ EWMacAVol: 10 mL Dupe IniAM A4/ol.: EWMacAVol:

PrinADaAe: 0141142021 3:t 3:22Px

+

SGS										
Matrix Spike Summary										
Original Sample ID: 15963 MS Sample ID: 1596368 MSD Sample ID: QC for Samples: 1209871	MS				Analysis Analysis	Date: 12 Date:	2/18/2020 2/18/2020 urface, Eff.	17:38)	
Results by EPA 300.0		Ma	trix Spike (mg/L)	Snik	e Duplicate	(mg/L)			
Parameter Sulfate	<u>Sample</u> 16.1	<u>Spike</u> 25.0	<u>Result</u> 40.3	<u>Rec (%)</u> 97	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD CL</u>
Batch Information Analytical Batch: WIC612 Analytical Method: EPA 3 Instrument: 930 Metrohm Analyst: A.A Analytical Date/Time: 12/	00.0 compact IC flex			Pre Pre Pre	o Method: o Date/Tin o Initial Wi		.0 Extractior 2020 12:00 .00mL		iquids	

Print Date: 01/11/2021 3:43:24PM

SGS North America Inc.

SGS Matrix Spike Summary										
Original Sample ID: 159 MS Sample ID: 159637 MSD Sample ID:	6369				Analysis Analysis	Date: 12 Date:	2/18/2020 2/18/2020 urface, Eff.	21:44)	
QC for Samples: 12098 Results by EPA 300.0	371001	Ma	trix Spike (ma(l)	Snik	e Duplicate	(mg/l)			
<u>Parameter</u> Sulfate	<u>Sample</u> 5.15	<u>Spike</u> 5.00	<u>Result</u> 9.97	<u>Rec (%)</u> 96	<u>Spike</u>	<u>Result</u>	Rec (%)	<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD CL</u>
Batch Information Analytical Batch: WIC6 Analytical Method: EPA Instrument: 930 Metron Analyst: A.A Analytical Date/Time: 1	A 300.0 Im compact IC flex			Prep Prep Prep	Method: Date/Tin Initial W		.0 Extraction 2020 12:00 .00mL		iquids	

Print Date: 01/11/2021 3:43:24PM

SGS North America Inc.

Matrix Spike Summar Original Sample ID: 15 MS Sample ID: 15963 MSD Sample ID:	96377				Analysis Analysis	Date: 12 Date:	2/19/2020 2/19/2020	2:28		
QC for Samples: 1209 Results by EPA 300.0	871001				Maux.		inace, En	., Ground)	
	<u> </u>		trix Spike (r			e Duplicate				
a <u>rameter</u> Ilfate	<u>Sample</u> 4.56	<u>Spike</u> 5.00	<u>Result</u> 9.29	<u>Rec (%)</u> 95	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD C</u>
Batch Information										
Analytical Batch: WIC Analytical Method: EP		(Pre Pre	o Method: o Date/Tim		0 Extractio 2020 12:0	n Waters/L 0:00PM	iquids	

Print Date: 01/11/2021 3:43:24PM

SGS North America Inc.

SGS	

Method Blank		1			
L	l 1815024 [WXX/13575] 72	Matrix	: Water (Surfac	ce, Eff., Ground)	
QC for Samples: 1209871001					
Results by SM21 450	0P-B.E				
<u>Parameter</u> Total Phosphorus	<u>Results</u> 0.0200U	<u>LOQ/CL</u> 0.0400	<u>DL</u> 0.0120	<u>Units</u> mg/L	
Batch Information					
Analytical Batch: Wi Analytical Method: S Instrument: Discrete Analyst: EWW Analytical Date/Time	SM21 4500P-B,E	Prep Me Prep Dat Prep Initi	ch: WXX13575 thod: SM21 450 æ/Time: 12/22/2 al Wt./Vol.: 25 r ract Vol: 25 mL	020 4:15:00PM	

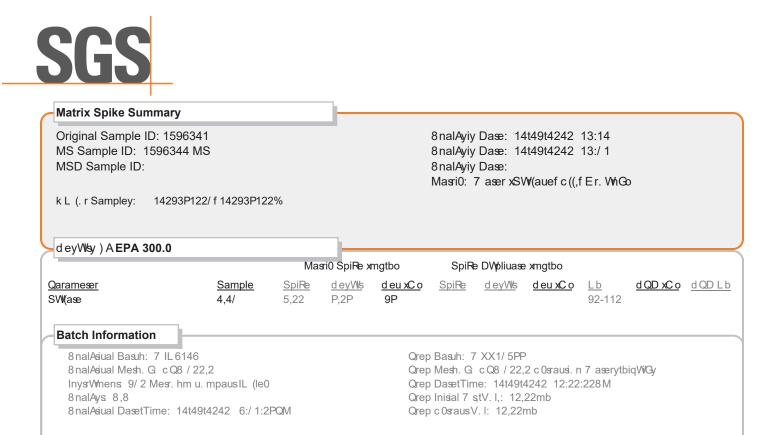
Print Date: 01/11/2021 3:43:25PM

-

Blank Spike Summary									
Blank Spike ID: LCS for HE Blank Spike La] ID: 169bt Da& ynalzde/ : 12ເ23ເ202	73	V XX1367	65	[V) Spi	KX136765 ke DcpliRa	Ae La] ID:	SD for HBN ⁻ 169bt 7t Eff., Grocn/		
QC for SampleM 120987	71001								
seMclAM]z SM214500P-B,	E								
	1	Blank Spike	(mgւL)	5	Spike DcpliF	àAe (mguL)			
<u>ParameAer</u> 4oAal P-oMp-orcM	<u>Spike</u> 0.2	<u>s eMtIA</u> 0.20t	<u>s eR(%)</u> 102	<u>Spike</u> 0.2	<u>s eMtIA</u> 0.196	<u>s eR(%)</u> 98	<u>CL</u> (76h126)	<u>s PD (%)</u> t .b0	<u>s PD CL</u> (< 26)
Batch Information									
y nalzARal BaAR : WDA4915 y nalzARal x eA o/ : SM2145 InMacmenA Discrete Analy: y nalzMA EWW	500P-B,E			Pre Pre Spil		5M21 4500F e: 12/22/202 ol.: 0.2 mg			

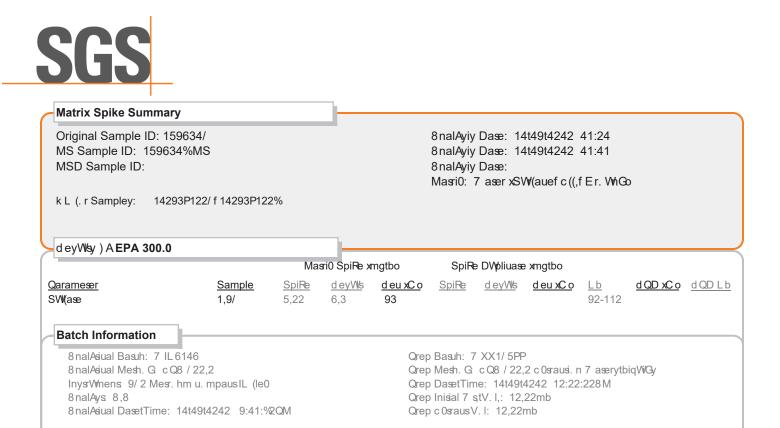
PrinADaAe: 01ul1u2021 3:t 3:27Px

-


QC for Samples: 120987100	1				-		2/23/2020 urface, Eff.,)
						,		,	
Results by SM21 4500P-B,E			_						
		Ma	trix Spike (ı	mg/L)	Spike	e Duplicate	e (mg/L)		
<u>earameter</u> otal Phosphorus	<u>Sample</u> 0.0200U	<u>Spike</u> 0.200	<u>Result</u> .203	<u>Rec (%)</u> 102	<u>Spike</u> 0.200	<u>Result</u> 0.378		<u>CL</u> 75-125	RPD (%) RPD CL 60.30 * (< 25)
Batch Information									
Analytical Batch: WDA4915						VXX13575			
Analytical Method: SM21 450 Instrument: Discrete Analyze							sphorus (W 2020 4:15:		
Analyst: EWW						./Vol.: 25.			
Analytical Date/Time: 12/23/2	2020 10:52:1	6AM				/ol: 25.00i			

Print Date: 01/11/2021 3:43:29PM

		1.			
Method Blank					
Blank ID: MB for H Blank] aL ID: 14b5	BN 1814194 7 XX/134002 5818	Mair¥/	V[aipr (Curfa	acpt Eff.t Ground)	
6 Q for CaS mipe:					
1s, b801, , 3t 1s, b80)1, , 9				
		1			
Rpeulie Ly EPA 30	0.0				
<u>ParaS pipr</u> Culfaip	<u>Rpeulie</u> , .1, , U	<u>] O6 /Q]</u> , .s, ,	<u>D]</u> , ., 4, ,	<u>Unxie</u> S g/]	
Batch Information					
Analyei: A.A		PrpmMpi PrpmDai PrpmIn⁄x	ch: [XX13400 ihod: METHOE p/TxSp: 1s/sb/ val[i./Vol.: 1, faci Vol: 1, S]) s, s, 1, :, , :, , AM S]	


SGS	

Blank Spike Summary Blank Spike ID: LCS for HBN 1209871 [MXX13] 77b Blank Spike La5 ID: 1] 96819 Date Analyzed: 12/29/2020 14:43 x atriW Mater (Surface, Eff., Ground) QC for Samples: 1209871003, 1209871004 Results 5y EPA 300.0 Blank Spike (mg/L) Parameter Spike Sulfate J J.11 102 (90-110) Batch Information Analytical Batch: WIC6126 Prep Batch: WICX13577 Analytical sethod: WIC6126 Prep Atech: METHOD Analytical sethod: WIC6126 Prep Date/Time: 12/29/2020 10:00 Analytical Satch: WIC6126 Prep Date/Time: 12/29/2020 10:00 Spike Init ML/Vol: I mg/L EWact Vol: 10 mL Dupe Init ML/Vol: EWact Vol: EWact Vol:
Blank Spike La5 ID: 1] 96819 Date Analyzed: 12/29/2020 14:43 x atriW Mater (Surface, Eff., Ground) QC for Samples: 1209871003, 1209871004 Results 5y EPA 300.0 Blank Spike (mg/L) Parameter Spike Result Rec (%) Sulfate]]].11 102 CL (90-110) Batch Information Analytical Batch: WIC6126 Analytical x ethod: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analytical X ethod: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analytical X ethod: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: A.A Spike Init Mt./Vol.:] mg/L EWfract Vol: 10 mL
QC for Samples: 1209871003, 1209871004 Results 5y EPA 300.0 Blank Spike (mg/L) Parameter Spike Result Rec (%) CL Sulfate]].11 102 (90-110) Batch Information
Blank Spike (mg/L) Parameter Spike Result Rec (%) CL Sulfate]].11 102 (90-110) Batch Information Analytical Batch: WIC6126 Prep Batch: WXX13577 Prep Batch: WXX13577 Analytical x ethod: EPA 300.0 Prep x ethod: METHOD Prep Date/Time: 12/29/2020 10:00 Instrument: 930 Metrohm compact IC flex Prep Date/Time: 12/29/2020 10:00 Analyst: A.A Spike Init Mt./Vol.:] mg/L
Blank Spike (mg/L) Parameter Spike Result Rec (%) CL Sulfate]].11 102 (90-110) Batch Information Analytical Batch: WIC6126 Prep Batch: WXX13577 Prep Batch: WXX13577 Analytical x ethod: EPA 300.0 Prep x ethod: METHOD Prep Date/Time: 12/29/2020 10:00 Instrument: 930 Metrohm compact IC flex Prep Date/Time: 12/29/2020 10:00 Analyst: A.A Spike Init Mt./Vol.:] mg/L
Parameter Spike Result Rec (%) CL Sulfate]].11 102 (90-110) Batch Information
Sulfate]].11 102 (90-110) Batch Information
Batch Information Analytical Batch: WIC6126 Prep Batch: WXX13577 Analytical x ethod: EPA 300.0 Prep x ethod: METHOD Instrument: 930 Metrohm compact IC flex Prep Date/Time: 12/29/2020 10:00 Analyst: A.A Spike Init Mt./Vol.:] mg/L
Analytical Batch: WIC6126Prep Batch: WXX13577Analytical x ethod: EPA 300.0Prep x ethod: METHODInstrument: 930 Metrohm compact IC flexPrep Date/Time: 12/29/2020 10:00Analyst: A.ASpike Init Mt./Vol.:] mg/L
Analytical x ethod:EPA 300.0Prep x ethod:METHODInstrument:930 Metrohm compact IC flexPrep Date/Time:12/29/202010:00Analyst:A.ASpike Init Mt./Vol.:] mg/LEVtract Vol:10 mL
Print Date: 01/11/2021 3:43:33Px

QrinsDase: 21t11t4241 / :% :/ %QM

SES N. rsh 8 meriua Inu,

SGS	
Method Blank	1
Blank ID: MB for HBN 1815002 4 WWM / 5837 Blank] aL ID: 15b23b9	Matrix: [atpr (Curfacps, ffEs. rounGd
6 Q for CaS mpe: 103b82133/ s103b821339	
Deulto I DSM21 4500D D E	

) peulte LRSM21 4500P-	B,E				
<u>OaraS ptpr</u> Potal OToemTorue) peulte 3B033y	<u>] U6 XQ]</u> 3B933	<u>D]</u> 3B103	<u>y nite</u> Sh ∦	
Batch Information					
gnalRtical BatcT: [Dg9		1	BatcT: [VWVI/58		
gnalRtical MptToG CM0			MptToG CM01 95		
InetruS pnt: Diecrptp gna	alR-pr 0		DatpXPiSp: 11/2/00	0	
gnalRet: , [[6 V0 2 0.1 1.0 0.0 0 0 1	1	Initial [tEVolE 05	-	
gnalRtical DatpXPiSp: 1)	£70301 1:08:090W	Orpm	, xtract Vol: 05 S]	

Orint Datp: 31X1X0301 /:9/:/zOM

	1003(120987	7100Q		Ma	brix: Vabe	-	169709/ ffĘ. rounz(G	
Resulbs] A SM21 4500P-B,	E								
		Blank Spike	eW¶%dLG	5	Spike Duplic	abeWP%dLG			
<u>) araPeber</u> 4obal) - osp-orus	<u>Spike</u> 0E2	<u>Resulb</u> 0₽03	<u>Rec Wh</u> G 101	<u>Spike</u> 0E2	<u>Resulb</u> 0⊟96	<u>RecWm</u> G 97	<u>CL</u> W76h126 G	<u>R)DWhG</u> Q⊟10	<u>R) D CL</u> ₩ 26 G
Batch Information t nalAbical Babc-: WDA4919 t nalAbical Meb oz: SM21 45 InsbruP enb Discrete Analyz t nalAsb EWW	,) re) re Spil	pDabed4iPo keInibVbE0∏	SM21 4500P e: 01/06/202 ole 062 P %			

) rinbDabe: 01d11d2021 3:Q3:38) M

Matrix Spike Summary Original Sample ID: 120 MS Sample ID: 159709 MSD Sample ID: 15970 QC for Samples: 12098	7 MS			Analysis Analysis	Date: 01 Date: 01	I/06/2021 I/06/2021 I/06/2021 urface, Eff.	13:40 13:41	,		
Results by SM21 4500P	-B,E	Ма	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
P <u>arameter</u> Total Phosphorus	<u>Sample</u> 0.875	<u>Spike</u> 1.00	<u>Result</u> 1.93	<u>Rec (%)</u> 106	<u>Spike</u> 1.00	<u>Result</u> 1.92	<u>Rec (%)</u> 104	<u>CL</u> 75-125	<u>RPD (%)</u> 0.55	<u>RPD CL</u> (< 25)
Batch Information Analytical Batch: WDA4 Analytical Method: SM2 Instrument: Discrete An Analyst: EWW Analytical Date/Time: 1,	21 4500P-B,E alyzer 2	M		Prep Prep Prep	Method: Date/Tim Initial Wt		osphorus (W 21 10:36:0 0mL	,		

Print Date: 01/11/2021 3:43:42PM

Method Blank

Blank ID: MB for HBN 1814939 [XXX/44324] Blank Lab ID: 1596118 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	DL	Units
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	78.6*	37-78		%
Fluoranthene-d10 (surr)	87.4	24-116		%

Batch Information

Analytical Batch: XMS12452 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: LAW Analytical Date/Time: 12/22/2020 10:10:00AM Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/2020 12:40:11PM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 01/11/2021 3:43:44PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209871 [XXX44324] Blank Spike Lab ID: 1596119 Date Analyzed: 12/22/2020 10:30 Spike Duplicate ID: LCSD for HBN 1209871 [XXX44324] Spike Duplicate Lab ID: 1596120 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871003, 1209871004

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.54	77	2	1.58	79	(41-115)	2.60	(< 20)
2-Methylnaphthalene	2	1.59	79	2	1.61	81	(39-114)	1.60	(< 20)
Acenaphthene	2	1.59	80	2	1.64	82	(48-114)	2.70	(< 20)
Acenaphthylene	2	1.69	85	2	1.67	84	(35-121)	1.20	(< 20)
Anthracene	2	1.72	86	2	1.71	85	(53-119)	0.96	(< 20)
Benzo(a)Anthracene	2	1.52	76	2	1.45	73	(59-120)	4.70	(< 20)
Benzo[a]pyrene	2	1.83	92	2	1.70	85	(53-120)	7.30	(< 20)
Benzo[b]Fluoranthene	2	1.84	92	2	1.76	88	(53-126)	4.60	(< 20)
Benzo[g,h,i]perylene	2	1.80	90	2	1.74	87	(44-128)	3.30	(< 20)
Benzo[k]fluoranthene	2	1.80	90	2	1.71	86	(54-125)	5.10	(< 20)
Chrysene	2	1.76	88	2	1.69	85	(57-120)	4.00	(< 20)
Dibenzo[a,h]anthracene	2	1.82	91	2	1.76	88	(44-131)	3.60	(< 20)
Fluoranthene	2	1.72	86	2	1.70	85	(58-120)	1.10	(< 20)
Fluorene	2	1.69	84	2	1.73	86	(50-118)	2.50	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.95	97	2	1.86	93	(48-130)	4.40	(< 20)
Naphthalene	2	1.57	78	2	1.63	81	(43-114)	3.70	(< 20)
Phenanthrene	2	1.70	85	2	1.73	87	(53-115)	1.60	(< 20)
Pyrene	2	1.70	85	2	1.68	84	(53-121)	1.10	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	77.4	77	2	80.3	80	* (37-78)	3.70	
Fluoranthene-d10 (surr)	2	83.7	84	2	85.8	86	(24-116)	2.40	

Batch Information

Analytical Batch: XMS12452 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: LAW Prep Batch: XXX44324 Prep Method: SW3535A Prep Date/Time: 12/18/2020 12:40 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 01/11/2021 3:43:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

C for Samples: 209871001, 1209871002, 1:	209871003, 1209871004				
Results by AK102					
P <u>arameter</u> Diesel Range Organics	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	
S urrogates 5a Androstane (surr)	92.7	60-120		%	
atch Information Analytical Batch: XFC158 Analytical Method: AK102 Instrument: Agilent 7890E Analyst: IVM Analytical Date/Time: 12/	2 3 F	Prep Me Prep Dat Prep Initi	ch: XXX44331 thod: SW3520C ie/Time: 12/22/2 al Wt./Vol.: 250 ract Vol: 1 mL		

Print Date: 01/11/2021 3:43:50PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209871 [VVVXX3316 Blank Spike La] ID: 1b95X15 Date Analyzed: 12/28/2020 17:08 Spike Duplicate ID: LCSD for HBN 1209871 [VVVXX3316 Spike Duplicate La] ID: 1b95X17 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871002, 1209871003, 120987100X

Results] y AK102									
		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range 4 rganics	20	20.5	103	20	19.9	100	(7bCl2b)	3.30	(- 20)
Surrogates									
ba Androstane (surr)	0.X	102	102	0.X	10X	10X	(500120)	1.90	
Batch Information									
Analytical Batc<: XFC15834					p Batc<: X				
Analytical Met <od: ak102<="" td=""><td></td><td></td><td></td><td></td><td>p Met<od:< td=""><td></td><td></td><td></td><td></td></od:<></td></od:>					p Met <od:< td=""><td></td><td></td><td></td><td></td></od:<>				
Instrument: Agilent 7890B F						e: 12/22/202			
Analyst: IVM						0	L Extract To Extract Tol		

Print Date: 01/11/2021 3:X3:b2PM

Method Blank					
Blank ID: MB for HBN 1815 Blank Lab ID: 1596415 QC for Samples:	008 [XXX/44331]	Matrix	: Water (Surfa	ace, Eff., Ground)	
1209871001, 1209871002, 12 Results by AK103	09871003, 1209871004	L.			
•	Desults		DI	Linite	
<u>Parameter</u> Residual Range Organics	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	
Surrogates					
nA riacontaneAd62 (surr)	98.4	60A120		%	
Batch Information					
hnalytical BatcF: XKC1583 hnalytical MetFod: hV103 Instrument: hgilent 7890B hnalyst: ITM hnalytical Date/- ime: 12/2	К	Prep Me Prep Da Prep Init	tcF: XXX44331 tFod: SW3520 te/- ime: 12/22/ ial Wt./Tol.: 25 rract Tol: 1 mL	C 2020 4:15:50PM	

Print Date: 01/11/2021 3:43:55PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209871 [VVVXX3316 Blank Spike La] ID: 1b95X15 Date Analyzed: 12/28/2020 17:08 Spike Duplicate ID: LCSD for HBN 1209871 [VVVXX3316 Spike Duplicate La] ID: 1b95X17 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209871001, 1209871002, 1209871003, 120987100X

Results] y AK102									
		Blank Spike	e (mg/L)	S	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Residual Range 4 rganics	20	19.b	97	20	19.1	95	(500120)	1.70	(- 20)
Surrogates									
n&riacontane@52 (surr)	0.X	97.7	98	0.X	95.X	95	(500120)	1.30	
Batch Information									
Analytical Batch: XFC15823				Pre	p Batch: X	XX33221			
Analytical Method: AK102				Pre	p Method:	SM25W0C			
Instrument: Agilent 4870B F				Pre	p Date/ <im< td=""><td>e: 1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>16:15</td><td></td><td></td></im<>	e: 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16:15		
Analyst: I9V						0	Extract To		
				Dup	e Init Wt./T	ol.: 20 mg/L	Extract Tol	: 1 mL	

Print Date: 01/11/2021 3:X3:b7PM

	o Organization roject Number	: Jacobs : MarkAir GW	Monitoring		Chain-	hain-of-C of-Custody: Laboratory:	20ADOT-N	No.	Cooler ID: Bill To:	Jacobs		Number: eport To:	
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
20MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	2	GA	250mL	<6°C; HC1	GW	AK102/103	(IAB)	14 Day	DRO/RRO
20MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	2	GA	250mL	<6°C	GW	SW8270 SIM	120	14 Day	PAHs
20MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	1	Poly	125mL	HNO3	GW	SW6020A	(IE)	14 Day	Fe, Mn
20MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	1	Poly	60mL	<6°C	GW	EPA 300.0	(1)	14 Day	Sulfate
20MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	Í	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B.E	14	14 Day	NO2/NO3, Total Pho
20MAW-MW3-GW	MW3	12/15/2020	1343	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103	(2AB)	14 Day	DRO/RRO
20MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	2	GA	250mL	<6ªC; HCl	GW	AK102/103	(AB)	14 Day	DRO/RRO
20MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	2	GA	250mL	<6°C	GW	SW8270 SIM	(RO)	14 Day	PAHs
20MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	1	Poly	125mL	HNO3	GW	SW6020A	(JE)	14 Day	Fe, Mn
20MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	1	Poly	60mL	<6°C	GW	EPA 300.0	(JF)	14 Day	Sulfate
20MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	1	Poly	250mL	<6°C, H2SO4	GŴ	SM 4500 NO3-F, SM 4500-B,E	36)	14 Day	NO2/NO3, Total Pho
20MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	2	GA	250mL	<6°C; HC1	GW	AK102/103	NAB	14 Day	DRO/RRO
20MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	2	GA	250mL	<6°C	GW	SW8270 SIM	YED	14 Day	PAHs
20MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	1	Poly	125mL	HNO3	GW	SW6020A	(4E)	14 Day	Fe, Mn
20MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	Î.	Poly	60mL	<6°C	GW	EPA 300.0	(HE	14 Day	Sulfate
20MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E	16	14 Day	NO2/NO3, Total Phos
pecial Instructions: Relinquish By:	Signature/Printed Nam	12		/Kari Hager	i tis KNY	12/16/2020 Date/Time Date/Time Date/Time	1520	Delinquish By OReceived By	Suffature Frinted Van	Jan Ser	Dei Ishumu	JKin	12-16- 1520 Date Time 1520 02/11/2010024 Date Time

Profile # 365105 AV

	on Organization: Project Number:		Monitoring			of-Custody: Laboratory:		1AW03	Cooler ID: Bill To:			Number: eport To:	A 111
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
0MAW-MW8-GW	MW8	12/15/2020	1036	GW/KS	12	VOA	40mL	<6°C; HCl	GW	AK101, SW8260, SW8260 SIM, RSK 175	(HV)	14 Day	GRO, VOCs, EDB Methane
0MAW-MW3-GW	MW3	12/15/2020	1343	GW/KS	3	VOA	40mL	<6°C; HCl	GW	AK101, SW8021	QCE)	14 Day	GRO, BTEX
0MAW-MW10-GW	MW10	12/15/2020	1536	GW/KS	12	VOA	40mL	<6°C; HCI	GW	AK101, SW8260, SW8260 SIM, RSK 175	(34,87)	14 Day	GRO, VOCs, EDB Methane
0MAW-MW10-GWA	MW10	12/15/2020	1536	GW/KS	12	VOA	40mL	<6°C; HCI	GW	AK101, SW8260, SW8260 SIM, RSK 175	(44p)	14 Day	GRO, VOCs, EDB Methane
OMAW-TB01 (SAI)	MAW-TB01	12/15/2020	0800	GW/KS	9	VOA	40mL	<6°C; HCl	W	AK101, SW8260, SW8260 SIM	TB	14 Day	GRO, VOCs, EDB
				1					1		-	111	
pecial Instructions: Relinquish By: Received By	Signature/Printed Ninne	1	s Ten	/Kari Hagen Detu/l	ins	12/16/2020 Date/Time スール・ジ Date/Time	1520	Delinquish By:	Signature Printed	ane Michty Kchurch	Ten G	eiska Ir fac	12-16-3 Date/Time Date/Time Date/Time

SGS			ple Receipt Form						
odo	SGS Workorder #:	1		209871			120987		
	w Criteria	Conditior					eptions Noted below		
	ustody / Temperature Requ				N/A Exem	ption pe	rmitted if sampl	er hand carries/deliver	
W	/ere Custody Seals intact? Note # 8			1F,1B					
	COC accompanied s	· · · · · · · · · · · · · · · · · · ·							
DOD: Were samp	bles received in COC corresponding								
_	N/A **Exemption permitted i								
Temperature	blank compliant* (i.e., 0-6 °C aft	ter CF)?	Yes			1	@	2.0 °C Therm. ID: D	
				Cooler I			@	°C Therm. ID:	
	perature blank, the "cooler temperature" w " will be noted to the right. "ambient" or "c			Cooler I	_		@	°C Therm. ID:	
be noted	if neither is available.			Cooler I	_		@	°C Therm. ID:	
*16 000				Cooler I	D:		@	°C Therm. ID:	
*lt >6°C,	were samples collected <8 hour	rs ago?	N/A						
lf «	<0°C, were sample containers ic	ce free?	N/A						
	,								
Note: Identify containers	received at non-compliant tempe	erature .							
Use	form FS-0029 if more space is	needed.							
			_						
	mentation / Sample Condition F e samples received within holdir			Note: Refe	er to form F-0	83 "Samp	le Guide" for spec	ific holding times.	
VVEN		ig time :	162						
Do samples match COC**	(i.e.,sample IDs,dates/times col	llected)?	No	There is	15 voa via	ls for sa	mple 1 & 3.Pro	ceeded with sample	
	<1hr, record details & login per (-							
*Note: If sample information on contain	ners differs from COC, SGS will default to	COC inform	nation						
Nere analytical requests clear	r? (i.e., method is specified for a	analyses	Yes						
	e option for analysis (Ex: BTEX,								
		_			N/A ***Ex	emption	permitted for m	etals (e.g,200.8/6020E	
Were proper containers (ty	/pe/mass/volume/preservative**	**)used?	Yes						
	Volatile / LL-Hg Re								
	, VOAs, LL-Hg) in cooler with sa	· · ·							
	ee of headspace (i.e., bubbles ≤	· · · ·							
	VOAs field extracted with MeOH								
Note to Client:	Any "No", answer above indicates n	ion-complia	ance v	with stand	dard proced	ures and	l may impact da	ata quality.	
	Addition	al notes	(if a	pplicabl	le):				
	Addition	iai notes	(ii u						

000	e-Sample	e-Sampl <u>e Receipt Form FBK</u>								
SGS	SGS Workorder #:	1209871			1209871					
Review C	riteria	Condition	(Yes, No,	N/A	Exce	ptions	Noted belo	w		
Chain of Cust	ody / Temperature Requi	rements	<u>}</u>	Ye	Exemption per	permitted if sampler hand carries/delivers				
Were	Custody Seals intact? Note # &	location	N/A							
	COC accompanied sa	amples?	Yes							
DOD: Were samples	received in COC corresponding of									
	**Exemption permitted if				-		-	-		
Temperature bla	nk compliant* (i.e., 0-6 °C afte	er CF)?		ooler ID:	1	@		Therm. ID:		
			Yes Co	ooler ID:	2	@		Therm. ID:	D51	
If samples received without a temperate documented instead & "COOLER TEMP" will			C	ooler ID:		@		Therm. ID:		
be noted if ne	ther is available.		C	ooler ID:		@	°C	Therm. ID:		
*It >6°C, wei	e samples collected <8 hours	s ago?								
If	C, were sample containers ice	freed								
II <0 (, were sample containers ice									
Note: Identify containers rece										
Use for	m FS-0029 if more space is n	eeded.								
Do samples match COC** (i.e	ntation / Sample Condition Ro			ote: Refer	to form F-083 "S	ample Gu	ide" for specifi	c holding tir	nes.	
	, record details & login per C		v /C							
***Note: If sample information on containers			ation							
	ndition (no leaks/cracks/brea	_								
Were analytical requests clear? (i										
with multiple of	otion for analysis (Ex: BTEX, I	Metals)	Yes							
Were Trip Blanks (i.e., V	DAs, LL-Hg) in cooler with sa									
Were all water VOA vials free of										
Were all soil VO	As field extracted with MeOH	+BFB?	N/A							
For Rush/Short Hold Tin	ne, was RUSH/Short HT emai	il sent?	N/A							
Note to Client: Any	"No", answer above indicates no	n-compliar	nce with	n standard	d procedures and	may impa	act data qualit	у.		
	Additiona	al notes ((if app	licable):	:					
						\cap				
SGS Profile #						0				
								l		

Sample Containers and Preservatives

Container Id	Preservative	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1209871001-A	HCL to pH < 2 $$	OK	1209871004-B	HCL to pH < 2	OK
1209871001-B	HCL to pH < 2	OK	1209871004-C	No Preservative Required	ОК
1209871001-C	No Preservative Required	OK	1209871004-D	No Preservative Required	ОК
1209871001-D	No Preservative Required	OK	1209871004-E	HNO3 to pH < 2	ОК
1209871001-E	HNO3 to pH < 2	ОК	1209871004-F	No Preservative Required	ОК
1209871001-F	No Preservative Required	OK	1209871004-G	H2SO4 to pH < 2	ОК
1209871001-G	H2SO4 to pH < 2	OK	1209871004-H	HCL to $pH < 2$	OK
1209871001-H	HCL to pH < 2	OK	1209871004-I	HCL to $pH < 2$	OK
1209871001-I	HCL to pH < 2	OK	1209871004-J	HCL to $pH < 2$	OK
1209871001-J	HCL to $pH < 2$	OK	1209871004-K	HCL to $pH < 2$	OK
1209871001-K	HCL to $pH < 2$	OK	1209871004-L	HCL to $pH < 2$	OK
1209871001-L	HCL to $pH < 2$	OK	1209871004-M	HCL to $pH < 2$	OK
1209871001-M	HCL to $pH < 2$	OK	1209871004-N	HCL to $pH < 2$	OK
1209871001-N	HCL to pH < 2	OK	1209871004-0	HCL to pH < 2	OK
1209871001-0	HCL to $pH < 2$	OK	1209871004-P	HCL to $pH < 2$	OK
1209871001-P	HCL to $pH < 2$	OK	1209871005-A	HCL to $pH < 2$	OK
1209871001-Q	HCL to $pH < 2$	OK	1209871005-B	HCL to $pH < 2$	OK
1209871001-R	HCL to $pH < 2$	OK	1209871005-C	HCL to $pH < 2$	OK
1209871001-S	HCL to $pH < 2$	OK	1209871005-D	HCL to $pH < 2$	OK
1209871001-T	HCL to $pH < 2$	OK	1209871005-E	HCL to $pH < 2$	OK
1209871001-U	HCL to $pH < 2$	OK	1209871005-F	HCL to $pH < 2$	OK
1209871001-V	HCL to $pH < 2$	OK	1209871005-G	HCL to $pH < 2$	OK
1209871002-A	HCL to $pH < 2$	OK	1209871005-H	HCL to $pH < 2$	OK
1209871002-B	HCL to $pH < 2$	OK	1209871005-I	HCL to $pH < 2$	OK
1209871002-C	HCL to $pH < 2$	OK	12090/1003 1		ÖR
1209871002-D	HCL to $pH < 2$	OK			
1209871002-E	HCL to $pH < 2$	OK			
1209871003-A	HCL to $pH < 2$	OK			
1209871003-B	HCL to pH < 2	OK			
1209871003-C	No Preservative Required	OK			
1209871003-D	No Preservative Required	OK			
1209871003-E	HNO3 to pH < 2	OK			
1209871003-F	No Preservative Required	OK			
1209871003-G	H2SO4 to pH < 2	OK			
1209871003-H	HCL to $pH < 2$	OK			
1209871003-I	HCL to $pH < 2$	OK			
1209871003-J	HCL to $pH < 2$	OK			
1209871003-K	HCL to $pH < 2$	OK			
1209871003-L	HCL to $pH < 2$	OK			
1209871003-M	HCL to $pH < 2$	OK			
1209871003-N	HCL to $pH < 2$	OK			
1209871003-O	HCL to $pH < 2$	OK			
1209871003-P	HCL to $pH < 2$	OK			
1209871003-Q	HCL to $pH < 2$	OK			
1209871003-R	HCL to $pH < 2$	OK			
1209871003-S	HCL to $pH < 2$	OK			
1209871003-T	HCL to $pH < 2$	OK			
1209871003 U	HCL to $pH < 2$	OK			
1209871003-V	HCL to $pH < 2$	OK			
1209871004-A	HCL to $pH < 2$	OK			
					96 of 114

Container Id

<u>Preservative</u>

Container Condition Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Orlando, FL

Automated Report

The results set forth herein are provided by SGS North America Inc.

Technical Report for

SGS North America, Inc

1209871

SGS Job Number: FA82050

Sampling Date: 12/15/20

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 julie.shumway@sgs.com

ATTN: Julie Shumway

Total number of pages in report: 17

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 17

Table of Contents

_

N

ယ

4 5

6

-1-

Section 1: Sample Summary	3 4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA82050-1: 20MAW-MW8-GW	7
4.2: FA82050-2: 20MAW-MW10-GW	8
4.3: FA82050-3: 20MAW-MW10-GWA	9
Section 5: Misc. Forms 1	10
5.1: Chain of Custody	11
Section 6: GC Volatiles - QC Data Summaries	13
6.1: Method Blank Summary	14
6.2: Blank Spike/Blank Spike Duplicate Summary	15
6.3: Matrix Spike Summary	16
6.4: Duplicate Summary	17

Sample Summary

SGS North America, Inc

1209871

Job No: FA82050

Sample Number	Collected Date	Time By	Received	Matr: Code		Client Sample ID
FA82050-1	12/15/20	10:36	12/24/20	AQ	Water	20MAW-MW8-GW
FA82050-2	12/15/20	15:36	12/24/20	AQ	Water	20MAW-MW10-GW
FA82050-3	12/15/20	15:36	12/24/20	AQ	Water	20MAW-MW10-GWA

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc

1209871

Site:

Job No: FA82050

Report Date: 1/4/2021 4:31:29 PM

3 Sample(s) were collected on 12/15/2020 and were received at SGS North America Inc - Orlando on 12/24/2020 properly preserved, at 5.2 Deg. C and intact. These Samples received an SGS Orlando job number of FA82050. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

GC Volatiles By Method RSKSOP-147/175 Matrix: AQ Batch ID: G1R153

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) LA68517-2DUP, LA68517-3MS were used as the QC samples indicated.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Summary of Hits Job Number: FA82050 Account: SGS North SGS North America, Inc Project: Collected: 1209871 12/15/20

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method
FA82050-1	20MAW-MW8-G	W				
Methane		312	0.50	0.25	ug/l	RSKSOP-147/175
FA82050-2	20MAW-MW10-0	W				
Methane		1820	5.0	2.5	ug/l	RSKSOP-147/175
FA82050-3	20MAW-MW10-0	GWA				
Methane		2390	5.0	2.5	ug/l	RSKSOP-147/175

Page 1 of 1

ယ

Orlando, FL

Sample Results

Report of Analysis

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San	nple ID:	20MAW	-MW8-GV	V								
Lab Samp	le ID:	FA8205	0-1					Date	e Sampled	: 12	/15/20	
Matrix:		AQ - W	ater					Date	: 12	/24/20		
Method:		RSKSO	P-147/175					Perc	ent Solids	: n/a	a	
Project:		1209871										
	File ID		DF	Analyzed	l	By	Prep l	Date	Prep Ba	tch	Analytical Bat	ch
Run #1	1R4177	.D	1	12/28/20	12:46	KB	n/a		n/a		G1R153	
Run #2												
	Initial	Volume	Headspa	ce Volume	Volu	me Inj	ected	Tempera	ature			
Run #1	38.0 m	l	5.0 ml		500 i	ıl		25 Deg.	С			
Run #2												
CAS No.	Comp	ound		Result	t	LOQ	LOD	DL	Units	Q		
74-82-8	Metha	ne		312		0.50	0.25	0.16	ug/l			

 $J = \ Indicates \ an \ estimated \ value$

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San	nple ID:	20MAW	/-MW10-0	GW								
Lab Samp	le ID:	FA8205	0-2					Dat	e Sampled	: 12	/15/20	
Matrix:		AQ - W	ater					Dat	e Received	: 12	/24/20	
Method:		RSKSO	P-147/175					Per	cent Solids	: n/a	a	
Project:		1209871	l									
	File ID		DF	Analyze	ed	By	Prep l	Date	Prep Ba	tch	Analytical Bate	h
Run #1	1R4182	2.D	10	12/28/20	0 14:16	KB	n/a		n/a		G1R153	
Run #2												
	Initial	Volume	Headspa	ice Volume	e Volu	me Inj	ected	Temper	ature			
Run #1	38.0 m	l	5.0 ml		500 u	ul		25 Deg.	С			
Run #2												
CAS No.	Comp	ound		Resu	lt	LOQ	LOD	DL	Units	Q		
74-82-8	Metha	ne		1820		5.0	2.5	1.6	ug/l			

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

SGS North America Inc.

Report of Analysis

Page 1 of 1

1												
Client San	nple ID:	20MAW	/-MW10-	GWA								
Lab Samp	le ID:	FA8205	0-3					Dat	e Sampled	: 12	2/15/20	
Matrix:		AQ - W	ater					Dat	e Received	: 12	2/24/20	
Method:		RSKSO	P-147/175	5				Per	cent Solids	: n/a	a	
Project:		1209871	l									
	File ID		DF	Analy	zed	By	Prep l	Date	Prep Ba	tch	Analytical Bate	h
Run #1	1R4184	4.D	10	12/28/	20 15:22	2 KB	n/a		n/a		G1R153	
Run #2												
	Initial	Volume	Headsp	ace Volu	ne Volu	ıme Inj	jected	Temper	ature			
Run #1	38.0 m	1	5.0 ml		500	ul		25 Deg.	С			
Run #2												
CAS No.	Comp	ound		Re	sult	LOQ	LOD	DL	Units	Q		
74-82-8	Metha	ne		239	90	5.0	2.5	1.6	ug/l			

 $J= \ Indicates \ an \ estimated \ value$

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide Alaska Florida

Texas

New Jersey Colorado North Carolina

CLIENT:	SGS North Ame	erica Inc Ala	ska Division		SG	S Refere	nce:		SC	SS C	RL	ANDO FL		
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	62-2343	Addi	tional	Commer	ts: Al	l soils	repo	ort ou	t in dry weigl	nt unless	Page 1 of 1
PROJECT NAME:	1209871	PWSID#: NPDL#:			#	Preserv- ative	HCI							
	: Julie Shumway	E-MAIL: Julie.Shumway@sgs.co Env.Alaska.RefLabTeam@sgs.com			C O N T	Used: TYPE C = COMP	RSK-175	1						
INVOICE TO:	SGS - Alaska	QUOTE #: P.O. #:	1209	871	A I N	G = GRAB MI = Multi	ss by only)							
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	E R S	Incre- mental Solls	Light Gase (Methane o			MS	MSD	SGS lab #		Location ID
1	20MAW-MW8-GW	12/15/2020	10:36:00	Water	3		X					1209871001		MW8
Z	20MAW-MW10-GW	12/15/2020	15:36:00	Water	3	1 - 1	X					1209871003	1	MW10
3	20MAW-MW10-GWA	12/15/2020	15:36:00	Water	2		X			-		1209871004		MW10
				-				-	-			25		
Relinquished	reimunder	Date	Time	Received I	By:			Repo	Project ort to Di eport as l	_ (J FI	ags)? //LOQ.	YES NO		erable Requirements:
Relinquished I	ву: (2) FX	Date	Time	Received I	Ву:				er ID: equest	ed T	urnar	ound Time a		cial Instructions:
Relinquished By:/(3) Date Time Received By:		-		Chain of (Custody Seal: (Circle)									
Relinquished By: (4)		Date	Time	Received For Laboratory By: IC/C//20 IC/C//20									INTACT	BROKEN ABSENT

[5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

.

5,2

F088_COC_REF_LAB_20190411

FA82050: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA82050		Client:	SGS ALASKA	Project: 1209871	Project: 1209871					
Date / Time Received: 12/24/202	20 10:30:00	AM	Delivery Method:	FX Airbill #'s: 1483 4	801 2438					
Therm ID: IR 1;			Therm CF: 0.2; # of Co			olers: 1				
Cooler Temps (Raw Measured) °C: Cool	er 1: (5.0);							
Cooler Temps (Corrected	l) ° C : Cool	er 1: (5.2);							
Cooler Information	Y or	N		Sample Information	Y	or N	N/A			
1. Custody Seals Present	\checkmark			1. Sample labels present on bottles	\checkmark					
2. Custody Seals Intact	\checkmark			2. Samples preserved properly						
3. Temp criteria achieved	\checkmark			3. Sufficient volume/containers recvd for analysis	s: 🔽					
4. Cooler temp verification	IR Gun			4. Condition of sample	Intact					
5. Cooler media	Ice (Bag)			5. Sample recvd within HT	\checkmark					
				6. Dates/Times/IDs on COC match Sample Labe	el 🗸					
Trip Blank Information	<u>Y or</u>	<u>N</u>	N/A_	7. VOCs have headspace		\checkmark				
1. Trip Blank present / cooler	\checkmark			8. Bottles received for unspecified tests		\checkmark				
2. Trip Blank listed on COC	\checkmark			9. Compositing instructions clear			\checkmark			
	W or	s	N/A	10. Voa Soil Kits/Jars received past 48hrs?			\checkmark			
3. Type Of TB Received				11. % Solids Jar received?			\checkmark			
3. Type Of TB Received	\checkmark			12. Residual Chlorine Present?			\checkmark			
Misc. Information										
Number of Encores: 25-Gram		5-Gram	Num	nber of 5035 Field Kits: Number of	f Lab Filtere	ed Metals:				
	H 0-3									
Residual Chlorine Test Strip Lot										
Comments										
SM001 Technician:	PETERH		Date: 12/24/202	0 10:30:00 Reviewer:		Date:				
Rev. Date 05/24/17				<u> </u>						

5.1

FA82050: Chain of Custody Page 2 of 2

Section 6

GC Volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA82050

Account: Project:	SGSAKA SGS 1 1209871	North Ame	rica, Inc					
Sample G1R153-MB	File ID 1R4159.D	DF 1	Analyzed 12/28/20	By KB	Pre j n/a	p Date	Prep Batch n/a	Analytical Batch G1R153
	prted here applies t		wing samples	:			Method: RSKS(DP-147/175
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-82-8	Methane		ND	0.50	0.16	ug/l		

Blank Spike/Blank Spike Duplicate Summary

Job Number: Account: Project:	FA82050 SGSAKA SGS 1 1209871	North Ame	erica, Inc				
Sample G1R153-BS G1R153-BSD	File ID 1R4161.D 1R4162.D	DF 1 1	Analyzed 12/28/20 12/28/20	By KB KB	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch G1R153 G1R153
	ted here applies t		wing samples:			Method: RSKS	OP-147/175
FA82050-1, FA	482050-2, FA820:	50-3	Spike BSP	BSP	BSD F	BSD L	imits

ug/l

105

%

97 111

ug/l

%

103

RPD

6

Rec/RPD

62-139/30

ug/l

108

Page 1 of 1

112 of 1

* = Outside of Control Limits.

CAS No.

74-82-8

Compound

Methane

Matrix Spike Summary

Job Number:	FA82050
Account:	SGSAKA SGS North America, Inc
Project:	1209871

Sample LA68517-3MS LA68517-3	File ID 1R4172.D 1R4165.D	DF 1 1	Analyzed 12/28/20 12/28/20	By KB KB	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch G1R153 G1R153			
The QC reported	l here applies t	o the follo	wing samples:			Method: RSKS	OP-147/175			
FA82050-1, FA82050-2, FA82050-3										

CAS No.	Compound	LA68517-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
74-82-8	Methane	0.59	108	132	122	62-139

Duplicate Summary

Job Number:	FA82050
Account:	SGSAKA SGS North America, Inc
Project:	1209871

Sample LA68517-2DUP LA68517-2	File ID 1R4171.D 1R4164.D	DF 1 1	Analyzed 12/28/20 12/28/20	By KB KB	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch G1R153 G1R153
The QC reported	here applies to	the followi	ng samples:		Ν	lethod: RSKSC	DP-147/175
FA82050-1, FA82	050-2, FA8205	0-3					

CACN	Common d	LA68517-2		חחח	T ::4 a
CAS NO.	Compound	ug/l Q	ug/i Q	KPD	Limits
74-82-8	Methane	9.6	8.0	18	30

Page 1 of 1

FA82050

Laboratory Report of Analysis

To: Jacobs Technology Inc. 794 University Ave #201 Fairbanks, AK 99709

Report Number: 1209876

Client Project: MarkAir GW Monitoring

Dear Kari Hagen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Justin Nelson

11:53:43 -09'00'

2021.01.13

Sincerely, SGS North America Inc.

Justin Nelson

Project Manager Justin.Nelson@sgs.com

Date

Print Date: 01/11/2021 3:45:18PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Jacobs Technology Inc. SGS Project: 1209876 Project Name/Site: MarkAir GW Monitoring Project Contact: Kari Hagen

Refer to sample receipt form for information on sample condition.

20MAW-MW12-GW (1209876001) PS

Light Gases by RSK 175 (Methane only) were analyzed by SGS of Orlando, FL.

1206703002MS (1596229) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1206703002MSD (1596230) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for Total Nitrite / Nitrate is outside of QC criteria. Refer to LCS for accuracy requirements.

1209876005MSD (1596476) MSD

4500P-B,E - Total Phosphorus - MSD recovery is outside of QC criteria. Refer to LCS for accuracy requirements. 4500P-B,E - Total Phosphorus - MS/MSD RPD was outside of QC criteria. Refer to LCS/LCSD for precision requirement.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/11/2021 3:45:20PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. i integrated per SOP.

Print Date: 01/11/2021 3:45:22PM

Note:

EPA 300.0

SW6020B

SW8260D

SM21 4500NO3-F SW8260D-SIM

SM21 4500P-B,E

	S	Sample Summary		
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>
20MAW-MW12-GW	1209876001	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
20MAW-MW9-GW	1209876002	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
20MAW-MW17-GW	1209876003	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
20MAW-MW17-GWA	1209876004	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
20MAW-MW5-GW	1209876005	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
20MAW-TB02	1209876006	12/16/2020	12/18/2020	Water (Surface, Eff., Ground)
<u>Method</u>	Method Des	cription		
AK101	AK101/8021	Combo.		
SW8021B	AK101/8021	Combo.		
SW8021B	BTEX 8021			
AK102	DRO/RRO L	ow Volume Water	-	
AK103	DRO/RRO L	ow Volume Water	-	

Ion Chromatographic Analysis (W)

Nitrate/Nitrite Flow injection Pres.

Volatile Organic Compounds(W)Custom List

Metals by ICP-MS

SW8260-SIM (W)

Total Phosphorus (W)

Print Date: 01/11/2021 3:45:24PM

Detectable Results Summary

Client Sample ID: 20MAW-MW12-GW			
Lab Sample ID: 1209876001	Parameter	Result	Units
Metals by ICP/MS	Iron	24800	ug/L
	Manganese	2990	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.603J	mg/L
	Residual Range Organics	0.350J	mg/L
Volatile Fuels	Benzene	1.70	ug/L
	Ethylbenzene	0.420J	ug/L
	Gasoline Range Organics	0.0364J	mg/L
	o-Xylene	1.02	ug/L
	P & M -Xylene	3.69	ug/L
	Toluene	1.06	ug/L
	Xylenes (total)	4.71	ug/L
Volatile GC/MS	1,2-Dichloroethane	0.378J	ug/L
Waters Department	Sulfate	8.93	mg/L
	Total Nitrate/Nitrite-N	0.0550J	mg/L
	Total Phosphorus	0.139	mg/L
Client Sample ID: 20MAW-MW9-GW			
Lab Sample ID: 1209876002	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.412J	mg/L
	Residual Range Organics	0.438J	mg/L
Volatile Fuels	o-Xylene	0.320J	ug/L
	P & M -Xylene	0.900J	ug/L
	Toluene	0.370J	ug/L
	Xylenes (total)	1.22J	ug/L
Client Sample ID: 20MAW-MW17-GW			
Lab Sample ID: 1209876003	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	3.05	mg/L
	Residual Range Organics	3.62	mg/L
Volatile Fuels	o-Xylene	0.330J	ug/L
	P & M -Xylene	0.830J	ug/L
	Toluene	0.340J	ug/L
	Xylenes (total)	1.16J	ug/L
Client Sample ID: 20MAW-MW17-GWA			
Lab Sample ID: 1209876004	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	o-Xylene	0.320J	ug/L
	P & M -Xylene	0.760J	ug/L
	Toluene	0.340J	ug/L
	Xylenes (total)	1.08J	ug/L
	- • •		-

Print Date: 01/11/2021 3:45:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 20MAW-MW5-GW			
Lab Sample ID: 1209876005	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Iron	996	ug/L
	Manganese	385	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.235J	mg/L
	Residual Range Organics	0.404J	mg/L
Volatile Fuels	P & M -Xylene	0.710J	ug/L
	Xylenes (total)	0.980J	ug/L
Waters Department	Sulfate	11.0	mg/L
	Total Nitrate/Nitrite-N	1.39	mg/L

Print Date: 01/11/2021 3:45:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 20MAW-MW12-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209876001 Lab Project ID: 1209876	ring	R M S	eceived Da	ate: 12/16/ ate: 12/18/2 er (Surface, IW12	20 08:47		
Results by Metals by ICP/MS Parameter Iron Manganese	<u>Result Qual</u> 24800 2990	<u>LOQ/CL</u> 1000 4.00	<u>DL</u> 300 1.24	<u>Units</u> ug/L ug/L	<u>DF</u> 10 10	<u>Allowable</u> Limits	Date Analyzed 12/30/20 12:13 12/30/20 12:13
Batch Information Analytical Batch: MMS10977 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 12/30/20 12:13 Container ID: 1209876001-C		F	Prep Methoo Prep Date/T Prep Initial V	MXX33902 d: SW3010A ïme: 12/21/2 Nt./Vol.: 25 t Vol: 25 mL	20 10:14 mL		

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Client Sample ID: 20MAW-MW12-GW Client Project ID: MarkAir GW Monit Lab Sample ID: 1209876001 Lab Project ID: 1209876	 	Collection Da Received Da Matrix: Wate Solids (%): Location: M	te: 12/18/2 r (Surface,	20 08:47			
Results by Semivolatile Organic Fue	ls		_				
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	0.603 J	0.638	0.191	mg/L	1		12/28/20 18:17
urrogates							
5a Androstane (surr)	88.9	50-150		%	1		12/28/20 18:17
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 18:17 Container ID: 1209876001-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 235	0 16:15		
						Allowable	
Parameter Residual Range Organics	<u>Result Qual</u> 0.350 J	<u>LOQ/CL</u> 0.532	<u>DL</u> 0.160	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/28/20 18:17
	0.330 J	0.552	0.100	mg/L	I		12/20/20 10.17
urrogates				<u>.</u>			
n-Triacontane-d62 (surr)	96.3	50-150		%	1		12/28/20 18:17
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 18:17 Container ID: 1209876001-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 235	0 16:15		

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

SGS	

Client Sample ID: 20MAW-MW12-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209876001 Lab Project ID: 1209876		Collection Date: 12/16/20 09:45 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW12					
Results by Volatile Fuels			_				
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0364 J	0.100	0.0310	mg/L	1		12/28/20 18:05
urrogates							
4-Bromofluorobenzene (surr)	111	50-150		%	1		12/28/20 18:05
Batch Information							
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 18:05 Container ID: 1209876001-F			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 12/28/2 t./Vol.: 5 m	20 06:00		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	1.70	0.500	0.150	ug/L	1		12/28/20 18:05
Ethylbenzene	0.420 J	1.00	0.310	ug/L	1		12/28/20 18:05
o-Xylene	1.02	1.00	0.310	ug/L	1		12/28/20 18:05
P & M -Xylene	3.69	2.00	0.620	ug/L	1		12/28/20 18:05
Toluene Xylenes (total)	1.06 4.71	1.00 3.00	0.310 0.930	ug/L ug/L	1 1		12/28/20 18:05 12/28/20 18:05
	4.71	0.00	0.000	ug/L	1		12/20/20 10:00
urrogates	70						
1,4-Difluorobenzene (surr)	79	77-115		%	1		12/28/20 18:05
Batch Information							
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 18:05 Container ID: 1209876001-F			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 12/28/2 t./Vol.: 5 m	20 06:00		

Results of 20MAW-MW12-GW

Client Sample ID: **20MAW-MW12-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876001 Lab Project ID: 1209876 Collection Date: 12/16/20 09:45 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW12

Results by Volatile GC/MS

<u>Parameter</u> 1,2-Dichloroethane	<u>Result Qual</u> 0.378 J	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/21/20 20:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	94.1	81-118		%	1		12/21/20 20:02
4-Bromofluorobenzene (surr)	94.8	85-114		%	1		12/21/20 20:02
Toluene-d8 (surr)	103	89-112		%	1		12/21/20 20:02

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 20:02 Container ID: 1209876001-I Prep Batch: VXX36751 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Results of 20MAW-MW12-GW

Client Sample ID: **20MAW-MW12-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876001 Lab Project ID: 1209876 Collection Date: 12/16/20 09:45 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW12

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 0.00250 U	<u>LOQ/CL</u> 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 19:19
Surrogates							
4-Bromofluorobenzene (surr)	89.3	85-114		%	1		12/26/20 19:19
Toluene-d8 (surr)	98.5	89-112		%	1		12/26/20 19:19

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 19:19 Container ID: 1209876001-L Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Client Sample ID: 20MAW-MW12-GW Client Project ID: MarkAir GW Monito Lab Sample ID: 1209876001 Lab Project ID: 1209876		Collection Date: 12/16/20 09:45 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW12					
Results by Waters Department							
<u>Parameter</u> Sulfate	<u>Result Qual</u> 8.93	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/29/20 16:37
Batch Information							
Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/29/20 16:37 Container ID: 1209876001-D			Prep Batch: \ Prep Method: Prep Date/Tin Prep Initial W Prep Extract \	METHOD ne: 12/29/2 t./Vol.: 10 r	20 10:00		
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 0.0550 J	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u>	Date Analyzed 12/18/20 18:30
Batch Information							
Analyst: EWW Analytical Date/Time: 12/18/20 18:30 Container ID: 1209876001-E						Allowable	
	<u>Result Qual</u> 0.139	<u>LOQ/CL</u> 0.0400	<u>DL</u> 0.0120	<u>Units</u> ma/L	<u>DF</u> 1	<u>Limits</u>	
<u>Parameter</u> Total Phosphorus				<u>Units</u> mg/L		<u>Limits</u>	<u>Date Analyzed</u> 12/23/20 10:50
				mg/L WXX13575 SM21 450 ne: 12/22/2 t./Vol.: 25 r	1 00P-B,E 20 16:15	Limits	
Total Phosphorus Batch Information Analytical Batch: WDA4915 Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 12/23/20 10:50			0.0120 Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W	mg/L WXX13575 SM21 450 ne: 12/22/2 t./Vol.: 25 r	1 00P-B,E 20 16:15		-

SGS	

Client Sample ID: 20MAW-MW9-GW Client Project ID: MarkAir GW Monitoring Lab Sample ID: 1209876002 Lab Project ID: 1209876		F N S	Collection Da Received Da Matrix: Wate Solids (%): ocation: M\	te: 12/18/2 r (Surface,	20 08:47	und)	
Results by Semivolatile Organic Fuel	s						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.412 J	<u>LOQ/CL</u> 0.667	<u>DL</u> 0.200	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/28/20 18:26
s urrogates 5a Androstane (surr)	85.6	50-150		%	1		12/28/20 18:26
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 18:26 Container ID: 1209876002-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 225	20 16:15		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.438 J	<u>LOQ/CL</u> 0.556	<u>DL</u> 0.167	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/28/20 18:26
urrogates							
n-Triacontane-d62 (surr)	93.8	50-150		%	1		12/28/20 18:26
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 18:26 Container ID: 1209876002-A			Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 225	20 16:15		

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

SGS

Client Sample ID: 20MAW-MW9-GW Client Project ID: MarkAir GW Monit Lab Sample ID: 1209876002 Lab Project ID: 1209876		C R M S L					
Results by Volatile Fuels			_				
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		12/28/20 18:23
urrogates							
4-Bromofluorobenzene (surr)	98.6	50-150		%	1		12/28/20 18:23
Batch Information							
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 18:23 Container ID: 1209876002-D			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 12/28/2 t./Vol.: 5 m	20 06:00		
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		12/28/20 18:23
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 18:23
p-Xylene	0.320 J	1.00	0.310	ug/L	1		12/28/20 18:23
P & M -Xylene	0.900 J	2.00	0.620	ug/L	1		12/28/20 18:23
Toluene Xylenes (total)	0.370 J 1.22 J	1.00 3.00	0.310 0.930	ug/L ug/L	1 1		12/28/20 18:23 12/28/20 18:23
	1.22 0	0.00	0.000	ug/L			12/20/20 10:20
urrogates	04.4	77 445		0/	4		40/00/00 40.00
1,4-Difluorobenzene (surr)	81.4	77-115		%	1		12/28/20 18:23
Batch Information							
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 18:23 Container ID: 1209876002-D			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B ne: 12/28/2 t./Vol.: 5 m	20 06:00		

SGS North America Inc.

SGS

Results of 20MAW-MW9-GW

Client Sample ID: **20MAW-MW9-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876002 Lab Project ID: 1209876 Collection Date: 12/16/20 12:30 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW9

Results by Volatile GC/MS

<u>Parameter</u> 1,2-Dichloroethane	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/21/20 20:17
Surrogates							
1,2-Dichloroethane-D4 (surr)	95.1	81-118		%	1		12/21/20 20:17
4-Bromofluorobenzene (surr)	93.7	85-114		%	1		12/21/20 20:17
Toluene-d8 (surr)	104	89-112		%	1		12/21/20 20:17

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 20:17 Container ID: 1209876002-G Prep Batch: VXX36751 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

SGS

Results of 20MAW-MW9-GW

Client Sample ID: **20MAW-MW9-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876002 Lab Project ID: 1209876 Collection Date: 12/16/20 12:30 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW9

Results by Volatile-SIM

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 19:34 Container ID: 1209876002-C Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Client Sample ID: 20MAW-MW17-GV Client Project ID: MarkAir GW Monit Lab Sample ID: 1209876003 Lab Project ID: 1209876			Collection Da Received Da Matrix: Wate Solids (%): Location: M	te: 12/18/2 r (Surface,	20 08:47		
Results by Semivolatile Organic Fue	ls		_				
					55	Allowable	
Parameter Diesel Range Organics	<u>Result Qual</u> 3.05	<u>LOQ/CL</u> 0.625	<u>DL</u> 0.188	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/28/20 18:36
0 0	5.05	0.025	0.100	ilig/L			12/20/20 10:00
S urrogates 5a Androstane (surr)	85.5	50-150		%	1		12/28/20 18:36
	00.0	00 100		70	·		12,20,20 10.00
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 18:36 Container ID: 1209876003-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 240	20 16:15		
Parameter	Result Qual	LOQ/CL	DL	Unite	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Residual Range Organics	3.62	0.521	<u>DL</u> 0.156	<u>Units</u> mg/L	<u>DF</u> 1	LIIIIIS	12/28/20 18:36
Surrogates n-Triacontane-d62 (surr)	99.1	50-150		%	1		12/28/20 18:36
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 18:36 Container ID: 1209876003-A			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 240	20 16:15		

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

SGS	

ab Project ID: 1209876	pring	C R M S L					
Results by Volatile Fuels			_				
						Allowable	
P <u>arameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u>	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/28/20 18:41
	0.0500 0	0.100	0.0310	mg/L	I		12/20/20 10.41
ırrogates							
-Bromofluorobenzene (surr)	101	50-150		%	1		12/28/20 18:41
Batch Information							
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 18:41 Container ID: 1209876003-C		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B ne: 12/28/2 t./Vol.: 5 m	0 06:00		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		12/28/20 18:41
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 18:41
p-Xylene 2 & M -Xylene	0.330 J 0.830 J	1.00 2.00	0.310 0.620	ug/L	1 1		12/28/20 18:41
oluene	0.830 J 0.340 J	2.00	0.820	ug/L ug/L	1		12/28/20 18:41 12/28/20 18:41
(ylenes (total)	1.16 J	3.00	0.930	ug/L ug/L	1		12/28/20 18:41
				0			
i rrogates ,4-Difluorobenzene (surr)	80.7	77-115		%	1		12/28/20 18:41
Batch Information							
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 18:41 Container ID: 1209876003-C		F	Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 12/28/2 t./Vol.: 5 m	0 06:00		

Results of 20MAW-MW17-GW

Client Sample ID: **20MAW-MW17-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876003 Lab Project ID: 1209876 Collection Date: 12/16/20 14:03 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW17

Results by Volatile GC/MS

<u>Parameter</u> 1,2-Dichloroethane	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 12/23/20 03:18
Surrogates							
1,2-Dichloroethane-D4 (surr)	93.7	81-118		%	1		12/23/20 03:18
4-Bromofluorobenzene (surr)	92.6	85-114		%	1		12/23/20 03:18
Toluene-d8 (surr)	103	89-112		%	1		12/23/20 03:18

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/23/20 03:18 Container ID: 1209876003-H Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Member of SGS Group

10 of 91

Results of 20MAW-MW17-GW

Client Sample ID: **20MAW-MW17-GW** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876003 Lab Project ID: 1209876 Collection Date: 12/16/20 14:03 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW17

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane	<u>Result Qual</u> 0.00250 U	<u>LOQ/CL</u> 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 19:49
Surrogates							
4-Bromofluorobenzene (surr)	89.3	85-114		%	1		12/26/20 19:49
Toluene-d8 (surr)	98.2	89-112		%	1		12/26/20 19:49

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 19:49 Container ID: 1209876003-I Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Results of 20MAW-MW17-GWA

Client Sample ID: **20MAW-MW17-GWA** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876004 Lab Project ID: 1209876 Collection Date: 12/16/20 14:03 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW17

Results by Volatile Fuels

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		12/28/20 18:59
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 18:59
o-Xylene	0.320 J	1.00	0.310	ug/L	1		12/28/20 18:59
P & M -Xylene	0.760 J	2.00	0.620	ug/L	1		12/28/20 18:59
Toluene	0.340 J	1.00	0.310	ug/L	1		12/28/20 18:59
Xylenes (total)	1.08 J	3.00	0.930	ug/L	1		12/28/20 18:59
Surrogates							
1,4-Difluorobenzene (surr)	80.8	77-115		%	1		12/28/20 18:59

Batch Information

Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 18:59 Container ID: 1209876004-A Prep Batch: VXX36762 Prep Method: SW5030B Prep Date/Time: 12/28/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Client Sample ID: 20MAW-MW5-GV Client Project ID: MarkAir GW Moni Lab Sample ID: 1209876005 Lab Project ID: 1209876		Collection Date: 12/16/20 16:21 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5					
- Results by Metals by ICP/MS							
<u>Parameter</u> Iron	<u>Result Qual</u> 996	<u>LOQ/CL</u> 500	<u>DL</u> 150	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/30/20 12:18
Manganese	385	2.00	0.620	ug/L	5		12/30/20 12:18
Batch Information							
Analytical Batch: MMS10977 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 12/30/20 12:18 Container ID: 1209876005-C	Prep Batch: MXX33902 Prep Method: SW3010A Prep Date/Time: 12/21/20 10:14 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL						

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

SGS	

Client Sample ID: 20MAW-MW5-GW Client Project ID: MarkAir GW Monit Lab Sample ID: 1209876005 Lab Project ID: 1209876		Collection Date: 12/16/20 16:21 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5					
Results by Semivolatile Organic Fue	ls		_				
Deremeter	Result Qual			Linita		Allowable	Data Analyzad
<u>Parameter</u> Diesel Range Organics	0.235 J	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/28/20 18:46
	0.2000	0.000	0.110	iiig/L	·		12/20/20 10:10
urrogates 5a Androstane (surr)	84	50-150		%	1		12/28/20 18:46
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 12/28/20 18:46 Container ID: 1209876005-A			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 255	20 16:15		
Parameter	Result Qual	LOQ/CL	DL	Linito	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Residual Range Organics	0.404 J	0.490	<u>DL</u> 0.147	<u>Units</u> mg/L	<u>DF</u> 1	LIIIIIIS	12/28/20 18:46
urrogates				-			
n-Triacontane-d62 (surr)	93.7	50-150		%	1		12/28/20 18:46
Batch Information							
Analytical Batch: XFC15834 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 12/28/20 18:46 Container ID: 1209876005-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/22/2 /t./Vol.: 255	20 16:15		

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Client Sample ID: 20MAW-MW5-GW Client Project ID: MarkAir GW Monite Lab Sample ID: 1209876005 Lab Project ID: 1209876	oring	Collection Date: 12/16/20 16:21 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5					
Results by Volatile Fuels							
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		12/28/20 19:17
urrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		12/28/20 19:17
Batch Information							
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 19:17 Container ID: 1209876005-F			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	: SW5030B me: 12/28/2 ′t./Vol.: 5 m	20 06:00		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		12/28/20 19:17
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 19:17
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/28/20 19:17
P & M -Xylene	0.710 J	2.00	0.620	ug/L	1		12/28/20 19:17
Toluene Xylenes (total)	0.500 U 0.980 J	1.00 3.00	0.310 0.930	ug/L ug/L	1 1		12/28/20 19:17 12/28/20 19:17
	0.900 0	5.00	0.930	ug/L	I		12/20/20 19.17
urrogates							
1,4-Difluorobenzene (surr)	81.6	77-115		%	1		12/28/20 19:17
Batch Information							
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 19:17 Container ID: 1209876005-F			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	: SW5030B me: 12/28/2 't./Vol.: 5 m	20 06:00		

SGS	

Client Sample ID: 20MAW-MW5-GW Client Project ID: MarkAir GW Monit Lab Sample ID: 1209876005 Lab Project ID: 1209876		Collection Date: 12/16/20 16:21 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5						
Results by Waters Department			<u> </u>					
<u>Parameter</u> Sulfate	<u>Result Qual</u> 11.0	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/29/20 17:15	
Batch Information								
Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/29/20 17:15 Container ID: 1209876005-D			Prep Batch: V Prep Method: Prep Date/Tin Prep Initial Wi Prep Extract V	METHOD ne: 12/29/2 t./Vol.: 10 r	20 10:00			
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 1.39	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u>	Date Analyzed 12/18/20 18:32	
Analyst: EWW Analytical Date/Time: 12/18/20 18:32 Container ID: 1209876005-E Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed	
Total Phosphorus	0.0200 U	0.0400	0.0120	mg/L	1		12/23/20 10:51	
Batch Information			Prep Batch: \	WXX13575 SM21 450				
Analytical Batch: WDA4915 Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 12/23/20 10:51 Container ID: 1209876005-E			Prep Date/Tin Prep Initial Wi Prep Extract \	ne: 12/22/2 t./Vol.: 25 r				
Analytical Method: SM21 4500P-B,E Analyst: EWW Analytical Date/Time: 12/23/20 10:51			Prep Date/Tin Prep Initial Wi	ne: 12/22/2 t./Vol.: 25 r			g is activated	

Results by Volatile Fuels			ocation: MA	W-TB02		Collection Date: 12/16/20 08:00 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB02					
]								
Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/28/20 17:29				
Irrogates I-Bromofluorobenzene (surr)	94.2	50-150		%	1		12/28/20 17:29				
Batch Information											
Analytical Batch: VFC15475 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/28/20 17:29 Container ID: 1209876006-A		F F	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N								
	De suit Orași	1.00/01		1.1	DE	Allowable	Data Analyzad				
P <u>arameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/28/20 17:29				
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/28/20 17:29				
-Xylene	0.500 U	1.00	0.310	ug/L	1		12/28/20 17:29				
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/28/20 17:29				
oluene	0.500 U	1.00	0.310	ug/L	1		12/28/20 17:29				
(ylenes (total)	1.50 U	3.00	0.930	ug/L	1		12/28/20 17:29				
irrogates											
,4-Difluorobenzene (surr)	81.3	77-115		%	1		12/28/20 17:29				
Batch Information											
Analytical Batch: VFC15475 Analytical Method: SW8021B Analyst: MDT Analytical Date/Time: 12/28/20 17:29 Container ID: 1209876006-A		F	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	: SW5030B me: 12/28/2 /t./Vol.: 5 m	20 06:00						

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Results of 20MAW-TB02

Client Sample ID: **20MAW-TB02** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876006 Lab Project ID: 1209876

Collection Date: 12/16/20 08:00 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB02

Results by Volatile GC/MS

<u>Parameter</u> 1,2-Dichloroethane	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/21/20 15:56
Surrogates							
1,2-Dichloroethane-D4 (surr)	93.9	81-118		%	1		12/21/20 15:56
4-Bromofluorobenzene (surr)	94.9	85-114		%	1		12/21/20 15:56
Toluene-d8 (surr)	103	89-112		%	1		12/21/20 15:56

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/21/20 15:56 Container ID: 1209876006-D Prep Batch: VXX36751 Prep Method: SW5030B Prep Date/Time: 12/21/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Results of 20MAW-TB02

Client Sample ID: **20MAW-TB02** Client Project ID: **MarkAir GW Monitoring** Lab Sample ID: 1209876006 Lab Project ID: 1209876

Collection Date: 12/16/20 08:00 Received Date: 12/18/20 08:47 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB02

Results by Volatile-SIM

<u>Parameter</u> 1,2-Dibromoethane Surrogates	<u>Result Qual</u> 0.00250 U	<u>LOQ/CL</u> 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/26/20 17:32
4-Bromofluorobenzene (surr) Toluene-d8 (surr)	96.8 98.4	85-114 89-112		% %	1 1		12/26/20 17:32 12/26/20 17:32

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 17:32 Container ID: 1209876006-G

Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:45:27PM

J flagging is activated

Blank Lab ID: 15962 QC for Samples: 209876001, 1209876		Mail		ice, Eff., Ground)			
Results by SW6020B							
P <u>arameter</u> ron ⁄langanese	<u>Results</u> 250U 1.00U	<u>LOQ/CL</u> 500 2.00	<u>DL</u> 150 0.620	<u>Units</u> ug/L ug/L			
Analytical Batch: MMS10977 Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Analytical Date/Time: 12/30/2020 10:44:16AM		Prep Batch: MXX33902 Prep Method: SW3010A Prep Date/Time: 12/21/2020 10:14:11AM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL					

Print Date: 01/11/2021 3:45:30PM

_

Blank Spike Summary			
Blank Spike ID: LCS for HBl Blank Spike Lab ID: 159629 Date Analyzed: 12/30/2020	8	KX33902]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1209876	6001, 12098760	05	
Results by SW6020B			
	Bla	nk Spike (ug/L)	
<u>Parameter</u>	Spike	Result Rec (%)	<u>CL</u>
Iron		5410 108	(87-118)
Manganese	500	575 115	(87-115)
Batch Information			
Analytical Batch: MMS10977 Analytical Method: SW6020E Instrument: Perkin Elmer Ne Analyst: DMM	3		Prep Batch: MXX33902 Prep Method: SW3010A Prep Date/Time: 12/21/2020 10:14 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 01/11/2021 3:45:32PM

+

Matrix Spike Summary

Original Sample ID: 1596299 MS Sample ID: 1596300 MS MSD Sample ID: 1596301 MSD

QC for Samples: 1209876001, 1209876005

Analysis Date: 12/30/2020 10:53 Analysis Date: 12/30/2020 10:58 Analysis Date: 12/30/2020 11:03 Matrix: Water (Surface, Eff., Ground)

Results by SW6020B										
		Ма	atrix Spike ((ug/L)	Spik	e Duplicat	e (ug/L)			
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Iron	163J	5000	5350	104	5000	5200	101	87-118	2.86	(< 20)
Manganese	1.75J	500	546	109	500	523	104	87-115	4.32	(< 20)
Batch Information Analytical Batch: MMS109 Analytical Method: SW602 Instrument: Perkin Elmer I Analyst: DMM Analytical Date/Time: 12/3	20B Nexlon P5	21AM		Prep Prep Prep	o Method: o Date/Tin o Initial Wi) Digest for 2020 10:14 .00mL		P-MS	

Print Date: 01/11/2021 3:45:34PM

Method Blank

Blank ID: MB for HBN 1815010 [VXX/36751] Blank Lab ID: 1596421 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209876001, 1209876006

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	96.4	81-118		%
4-Bromofluorobenzene (surr)	93.7	85-114		%
Toluene-d8 (surr)	105	89-112		%

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Analytical Date/Time: 12/21/2020 2:58:00PM Prep Batch: VXX36751 Prep Method: SW5030B Prep Date/Time: 12/21/2020 12:30:00PM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:36PM

Leaching Blank Blank ID: LB for HBN 1814933 [TCLP/10940 Matrix: Water (Surface, Eff., Ground) Blank Lab ID: 1596105 QC for Samples: 1209876001, 1209876002, 1209876006 Results by SW8260D **Results** LOQ/CL Units Parameter DL 1.2-Dichloroethane 12.5U 25.0 7.50 ug/L Surrogates 1,2-Dichloroethane-D4 (surr) 94.7 81-118 % 4-Bromofluorobenzene (surr) 94.3 85-114 % Toluene-d8 (surr) 89-112 % 103 **Batch Information** Analytical Batch: VMS20529 Prep Batch: VXX36751 Analytical Method: SW8260D Prep Method: SW5030B Instrument: Agilent 7890-75MS Prep Date/Time: 12/21/2020 12:30:00PM Analyst: NRB Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:36PM

Analytical Date/Time: 12/21/2020 5:23:00PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VXX36751] Blank Spike Lab ID: 1596422 Date Analyzed: 12/21/2020 13:16 Spike Duplicate ID: LCSD for HBN 1209876 [VXX36751] Spike Duplicate Lab ID: 1596423 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209876001, 1209876002, 1209876006

Results by SW8260D									
		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,2-Dichloroethane	30	26.7	89	30	26.6	89	(73-128)	0.56	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	90.5	91	30	90.3	90	(81-118)	0.31	
4-Bromofluorobenzene (surr)	30	92.1	92	30	91.1	91	(85-114)	1.20	
Toluene-d8 (surr)	30	104	104	30	105	105	(89-112)	0.71	

Batch Information

Analytical Batch: VMS20529 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36751 Prep Method: SW5030B Prep Date/Time: 12/21/2020 12:30 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:39PM

Method Blank

Blank ID: MB for HBN 18150[8 W/ / 367] 5[L Blank ba9 ID: 1547240

QC for Samples: 1[048] 7006

Res(I,s 9y SW8260D

Parame,er	<u>Res(I,s</u>	bOQ3Cb	Db	<u>Unt,s</u>
14 -Dtuhloroe,hane	0.[50U	0.500	0.150	(g3o
Surrogates				
1∉ -Dtuhloroe,hane-D2 Ѡ(rr)	41.7	81-118		%
2-Bromofl(oro9enzene 18/(rr)	46.[85-112		%
Tol(ene-d8 \\$/(rr)	105	84-11[%

Batch Information

Analy,tual Ba,uh: XMS[0560 Analy,tual Me,hod: Sx 8[70D Ins,r(men,: Agtlen,] 840-] 5MS Analys,: NRB Analy,tual Da,e3Ttme: 1[3 [3 0[0 7:01:00PM Prep Ba,uh: X/ / 67] 5[Prep Me,hod: Sx 5060B Prep Da,e3Ttme: 1[3[[3 0[0 7:00:00PM Prep Int,tal x ,.3Kol.: 5 mb Prep Ei ,rau, Xol: 5 mb

Ma,rti : x a,er \\$ (rfauecEff.cGro(nd)

Prtn, Da,e: 013113[0[1 6:25:2[PM

Leaching Blank Blank ID: bB for HBN 1812482 VTCbP310426 Ma,rti : x a,er \\$ (rfauecEff.cGro(nd) Blank ba9 ID: 15476[5 QC for Samples: 1[048] 7006 Res(I,s 9y SW8260D bOQ3Cb Res(I,s <u>Unt,s</u> Parame,er Db 1d -Dtuhloroe,hane 1[.5U [5.0 1.50 (g3b Surrogates 14 -Dtuhloroe,hane-D2 W (rr) 42.4 81-118 % 2-Bromofl(oro9enzene Wg(rr) 42 85-112 % Tol(ene-d8 Ws/(rr) 105 84-11[% **Batch Information** Analy,tual Ba,uh: XMS[0560 Prep Ba,uh: X/ / 67] 5[Analy,tual Me,hod: Sx 8[70D Prep Me,hod: Sx 5060B Ins,r(men,: Agtlen,] 840-] 5MS Prep Da,e3Ttme: 1[3][3]0[0 7:00:00PM Analys,: NRB Prep Int,tal x ,.3Xol.: 5 mb Analy,tual Da,e3Ttme: 1[3][3]0[0 4:[7:00PM Prep Ei ,rau, Xol: 5 mb

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VXX36752] Blank Spike Lab ID: 1596491 Date Analyzed: 12/22/2020 18:15 Spike Duplicate ID: LCSD for HBN 1209876 [VXX36752] Spike Duplicate Lab ID: 1596492 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209876003

Results by SW8260D									
		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
1,2-Dichloroethane	30	25.8	86	30	26.3	88	(73-128)	1.80	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	89.7	90	30	89.9	90	(81-118)	0.17	
4-Bromofluorobenzene (surr)	30	91.8	92	30	91.3	91	(85-114)	0.50	
Toluene-d8 (surr)	30	104	104	30	105	105	(89-112)	0.72	

Batch Information

Analytical Batch: VMS20590 Analytical Method: SW8260D Instrument: Agilent 78-0N5MS Analyst: RXB Prep Batch: V3396752 Prep Method: SW5090B Prep Date/Time: 12/22/2020 18:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 01/11/2021 3:45:44PM

Method Blank					
Blank ID: MB for HBN 18150 Blank Lab ID: 1596606	85 [VXX/36757]	Ma,rti	:x a,mrWQ(rfaumso	offEs.ro(nGd	
4 2 for QaC SImp: 1e09876001s1e0987600es1e09	9876003s1e09876006				
) mp(l,p bR SW8260D-SIM					
<u>OaraCmm</u> 1æ₽DtbroCom,- anm	<u>) mp(l,p</u> 0⊞0e50y	<u>LU4 /2 L</u> 0⊞0500	<u>DL</u> 0⊞01e5	<u>y nt.p</u> (h/L	
Surrogates					
gPBroCofl(orobmn%mmNø/(rrd Tol(mmnPC38Vø/(rrd	99B 98	85PI1g 89PI1e		z z	
Batch Information					
AnalRtual Ba,u-: VMQe053e AnalRtual Mm- oG Qx 8e60 Inp,r(Crm,: VQA Ahtlm, . 2 AnalRp,: N) B AnalRtual Da,m/TtCm 1e/e6/	DFQIM /MQ 7890B/5977A	Orm& Mm Orm& Da, Orm& Int,1	u-: VXX36757 -oG Qx 5030B m/TtCm 1e/e6/e0e0 alx,ÆVolE e5 CL rau,Vol: e5 CL	g:00:00OM	

e00 x mp, Oo,,mr DrtvmAnu- orahmsAK 95518 t 907Б6еље3g3 f 907Б61Б301 www.Ę рБррБюС

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VXX36757] Blank Spike Lab ID: 1596607 Daھ t nalAyez: 12¢26¢2020 16:31 Spike D/ pliua4e ID: LCSD for HBN 1209876 [VXX36757] Spike D/ pliua4e Lab ID: 1596608 s a4iM x a4er W/ rfaue(, fft . ro/ nzG

g C for SaP pleR

1209876001(1209876002(1209876003(1209876006

ceR/I4RbA SW8260D-SIM

	ł	Blank Spike	₩%aLG	S	pike D/ pliu	ıa4e W%dLG			
<u>) araP e4er</u>	<u>Spike</u>	<u>c eR/ I4</u>	<u>ceuWh</u> G	<u>Spike</u>	<u>c eR/ I4</u>	<u>ceuWh</u> G	CL	<u>c)DWm</u> G	<u>c) D CL</u>
1(2DibroPoe4 ane	012	0日95	97	012	0日98	99	W7Q121 G	1⊵0	₩ 20 G
Surrogates									
< the second sec	30	95 £ 6	96	30	96⊵	96	W85C 1 <g< th=""><th>0188</th><th>₩ 20 G</th></g<>	0188	₩ 20 G
Tol/ eneQ28 WW rrG	30	965	97	30	98B	98	W89C112 G	1₿0	₩ 20 G

Batch Information

t nalA4ual Ba4J-: VMS20532 t nalA4ual s e4 oz: SW8260D-SIM InR4/ P en4 VSA Agilent GC/MS 7890B/5977A t nalAR4 NRB) rep Ba4ı-: VXX36757) rep s e4 oz: SW5030B) rep Da4edTiP e: 12/26/2020 16:00 Spike Ini4x 460/oIE 0E2 / %dL , M#au4Vol: 25 PL D/ pe Ini4x 460/oIE 0E2 / %dL , M#au4Vol: 25 PL

) rin4Da4e: 01d11d2021 3:<5:50) s

Method Blank Blank ID: MB for HBN 1815119 [VXX/36762 Blank Lab ID: 1596712 QC for Samples: 1209876001, 1209876002, 1209876003, 120987		Matrix: Water (Surface, Eff., Ground) 209876005, 1209876006					
Results by AK101							
Parameter Results Gasoline Range Organics 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L				
Surrogates4-Bromofluorobenzene (surr)104	50-150		%				
Analytical Batch: VFC15475 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID Analyst: MDT Analytical Date/Time: 12/28/2020 3:57:00P	Prep I Prep I Prep I	Batch: VXX36762 Method: SW5030B Date/Time: 12/28/2020 nitial Wt./Vol.: 5 mL Extract Vol: 5 mL	6:00:00AM				

Print Date: 01/11/2021 3:45:53PM

_

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VXX36762] Blank Spike Lab ID: 1596713 Date Analyzed: 12/28/2020 16:51 Spike Duplicate ID: LCSD for HBN 1209876 [VXX36762] Spike Duplicate Lab ID: 1596714 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209876001, 1209876002, 1209876003, 1209876004, 1209876005, 1209876006

Results by AK101									
		Blank Spike	e (mg/L)	S	Spike Duplicate (mg/L)				
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.969	97	1.00	0.982	98	(60-120)	1.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	107	107	0.0500	104	104	(50-150)	2.50	
Batch Information									
Analytical Batch: VFC15475				Prep	Batch: V	XX36762			
Analytical Method: AK101					Method:				
Instrument: Agilent 7890 PID/	FID					e: 12/28/202			
Analyst: MDT						· · · · · · · · · · · · · · · · · · ·	g/L Extract		
				Dup	e init Wt./V	/ol.: 1.00 mg	g/L Extract V	01: 5 mL	

Print Date: 01/11/2021 3:45:56PM

Method Blank

Blank ID: MB for HBN 1815119 [VXX/36762] Blank Lab ID: 1596712 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1209876001, 1209876002, 1209876003, 1209876004, 1209876005, 1209876006

arameter	Results	LOQ/CL	DL	<u>Units</u>	
enzene	0.250U	0.500	0.150	ug/L	
thylbenzene	0.500U	1.00	0.310	ug/L	
-Xylene	0.500U	1.00	0.310	ug/L	
& M -Xylene	1.00U	2.00	0.620	ug/L	
oluene	0.500U	1.00	0.310	ug/L	
ylenes (total)	1.50U	3.00	0.930	ug/L	
urrogates					
,4-Difluorobenzene (surr)	81.9	77-115		%	
tch Information					
Analytical Batch: VFC1547 Analytical Method: SW802		itch: VXX36762 ethod: SW5030E	3		
Instrument: Agilent 7890 P		Prep Da	ate/Time: 12/28/	2020 6:00:00AM	
Analyst: MDT			tial Wt./Vol.: 5 m	L	
Analytical Date/Time: 12/2	8/2020 3:57:00PM	Prep Ex	tract Vol: 5 mL		

Print Date: 01/11/2021 3:45:58PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VXX36762] Blank Spike Lab ID: 1596715 Date Analyzed: 12/28/2020 16:33 Spike Duplicate ID: LCSD for HBN 1209876 [VXX36762] Spike Duplicate Lab ID: 1596716 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209876001, 1209876002, 1209876003, 1209876004, 1209876005, 1209876006

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	100	116	116	100	110	110	(80-120)	5.30	(< 20)
Ethylbenzene	100	116	116	100	108	108	(75-125)	6.80	(< 20)
o-Xylene	100	115	115	100	107	107	(80-120)	7.50	(< 20)
P & M -Xylene	200	230	115	200	214	107	(75-130)	7.00	(< 20)
Toluene	100	118	118	100	112	112	(75-120)	5.20	(< 20)
Xylenes (total)	300	345	115	300	321	107	(79-121)	7.20	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	92.8	93	50	101	101	(77-115)	8.00	
Batch Information									
Analytical Batch: VFC15475				Pre	p Batch: V	XX36762			
Analytical Method: SW8021	В			Pre	p Method:	SW5030B			
Instrument: Agilent 7890 Pl	D/FID					e: 12/28/202			
Analyst: MDT				1		/ol.: 100 ug/			
				Dup	pe Init Wt./V	/ol.: 100 ug/	L Extract Vo	ol: 5 mL	

Print Date: 01/11/2021 3:46:01PM

Method Blank					
Blank ID: MB for HBN 18′ Blank Lab ID: 1596289	14964 (WFI/2900)	Matrix	k: Water (Surfac	e, Eff., Ground)	
QC for Samples: 1209876001, 1209876005					
Results by SM21 4500NO)3-F				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
litrate-N	0.100U	0.200	0.0500	mg/L	
Nitrite-N	0.100U	0.200	0.0500	mg/L	
Total Nitrate/Nitrite-N	0.0502J	0.200	0.0500	mg/L	
atch Information					
Analytical Batch: WFI290 Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				
Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW	1 4500NO3-F nented flow				

Print Date: 01/11/2021 3:46:04PM

_

Blank Spike Summary				
Blank Spike ID: LCS for H Blank Spike Lab ID: 1596 Date Analyzed: 12/18/20	288	[WFI2900]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1209	876001, 120987	6005		wath. Water (Surface, Ell., Glound)
			_	
Results by SM21 4500NC			(112 11/1)	
Parameter		Blank Spike		<u>CL</u>
Nitrate-N	<u>Spike</u> 2.5	<u>Result</u> 2.32	<u>Rec (%)</u> 93	(70-130)
Nitrite-N	2.5	2.52	90 100	(90-110)
Total Nitrate/Nitrite-N	5	4.83	97	(90-110)
Batch Information				
Analytical Batch: WFI2900				
Analytical Method: SM21 Instrument: Astoria segm				
Analyst: EWW				

Print Date: 01/11/2021 3:46:07PM

SGS	

Matrix Spike Summary										
Original Sample ID: 1206703002 MS Sample ID: 1596229 MS MSD Sample ID: 1596230 MSD					Analysis Analysis	Date: 1	2/18/2020 2/18/2020 2/18/2020 Water	17:19		
QC for Samples:			maan.	Dimining						
			_							
Results by SM21 4500NC	03-F	Ma	rix Spike (mg/L) Spike Duplicate (mg/L)							
Parameter	<u>Sample</u>	Spike	Result		<u>Spike</u>		<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Total Nitrate/Nitrite-N	0.200U	5.00	5.64	113 *	5.00	5.70	114 *		1.20	(< 25)
Batch Information										
Analytical Batch: WFI290 Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW Analytical Date/Time: 12	ented flow	8PM								
Print Date: 01/11/2021 3:46:08P				nchorage A						

Matrix Spike Summary								
Original Sample ID: 1206738001 MS Sample ID: 1596233 MS MSD Sample ID: 1596234 MSD QC for Samples: 1209876001, 120	9876005		Analysis Analysis	s Date: 12	2/18/2020 2/18/2020 2/18/2020 Water	18:04		
Results by SM21 4500NO3-F								
	Mati	rix Spike (mg/L)	Spik	e Duplicate	e (mg/L)			
arameter Sam otal Nitrate/Nitrite-N 0.10		<u>Result</u> <u>Rec</u> 5.21 104	<u>; (%)</u> <u>Spike</u> 4 5.00	<u>Result</u> 5.21	<u>Rec (%)</u> 104	<u>CL</u> 90-110	<u>RPD (%)</u> 0.03	<u>RPD CL</u> (< 25)
Batch Information								
Instrument: Astoria segmented flow Analyst: EWW Analytical Date/Time: 12/18/2020								

Print Date: 01/11/2021 3:46:08PM

— Method Blank							
Blank ID: MB for HBN 18 ⁴ Blank Lab ID: 1596472	15024 [WXX/13575]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1209876001, 1209876005							
Results by SM21 4500P-E	3,E						
<u>Parameter</u> Total Phosphorus	<u>Results</u> 0.0200U	<u>LOQ/CL</u> 0.0400	<u>DL</u> 0.0120	<u>Units</u> mg/L			
Batch Information							
Analytical Batch: WDA49 Analytical Method: SM21 Instrument: Discrete Ana Analyst: EWW Analytical Date/Time: 12	4500P-B,E Ilyzer 2	Prep Me Prep Dat Prep Initi	ch: WXX13575 thod: SM21 450 te/Time: 12/22/2 ial Wt./Vol.: 25 r ract Vol: 25 mL	00P-B,E 2020 4:15:00PM mL			

-

	Blank Spike Summary									
Blank Spike ID: LCS for HBN 1209876 [V XX13575] Blank Spike Lab ID: 1596473 Date Analyzed: 12/23/2020 10:37					Spike Duplicate ID: LCSD for HBN 1209876 [V XX13575] Spike Duplicate Lab ID: 1596474 Matrix: V ater ሤurface(, ff똕 . roundG					
	g C for SaP ples: 1209876001(1209876005									
	Results by SM21 4500P-B,E			_						
	Blank Spike 🗤 🤋			₩ % LG	5	pike Duplic	ate ₩%LG			,
	<u>) araP eter</u>	<u>Spike</u>	Result	<u>Rec Wh</u> G	Spike	Result	<u>Rec Wh</u> G	CL	<u>R)DWhG</u>	R) D CL

0E2

0日95

98

Batch Information

Qotal) - osp- orus

Analytical Batc- : **WDA4915** Analytical Met- od: **SM21 4500P-B,E** InstruP ent: **Discrete Analyzer 2** Analyst: **EWW**

012

0臣04

102

) rep Batc-: WXX13575) rep Met- od: SM21 4500P-B,E) rep Date/QiP e: 12/22/2020 16:15 Spike Init V t∉ToIE 0₽ P%L , xtract ToI: 25 P L Dupe Init V t∉ToIE 0₽ P%L , xtract ToI: 25 P L

W75h125 G 4E60

₩ 25 G

) rint Date: 01/11/2021 3:46:12) M

Matrix Spike Summary Original Sample ID: 1209 MS Sample ID: 1596475 MSD Sample ID: 159647 QC for Samples: 120987			Analysis Analysis	Date: 12 Date: 12	2/23/2020 2/23/2020 2/23/2020 urface, Eff.	10:52 10:53)			
Results by SM21 4500P-	B,E	Mat	trix Spike (i	mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u> Total Phosphorus	<u>Sample</u> 0.0200U	<u>Spike</u> 0.200	<u>Result</u> .203	<u>Rec (%)</u> 102	<u>Spike</u> 0.200	<u>Result</u> 0.378		<u>CL</u> 75-125	<u>RPD (%)</u> 60.30 *	RPD CL (< 25)
Batch Information Analytical Batch: WDA4 Analytical Method: SM2 Instrument: Discrete Ana Analyst: EWW Analytical Date/Time: 12		Prep Prep Prep	Method: Date/Tim Initial Wt		osphorus (W 2020 4:15: .00mL	/				

Print Date: 01/11/2021 3:46:13PM

Method Blank								
	N 1814194 7 XX/134002 I8	MairW/ aipr (Curfacpt Eff.t Ground)						
6 Q for CaS mpe: 1s, b805, , 1t 1s, b805,	, 4							
Rpeulie Ly EPA 300.0)							
<u>ParaS pipr</u> Culfaip	<u>Rpeulie</u> , .1, , U	<u>] 06 /Q]</u> , .s, ,	<u>D]</u> , ., 4, ,	<u>Unxie</u> Sg/]				
Batch Information	·							
Analyei: A.A		PrpmMp PrpmDai PrpmInx	ch: [XX13400 ihod: METHOD p/TxSp: 1s/sb/s xal[i./Vol.: 1, 3 faci Vol: 1, S]	s, s, 1, :, , :, , AM S]				
Prxni Daip: , 1/11/s, s1 3:95:	10DM							

I Daip: , 1/11/s, s1 3:95:19PM

CGC Norih AS prxa Inc.

s, , [pei Poiipr Drwp Anchoragpt AK b4418 t b, 0.45s.s393 f b, 0.451.43, 1 www.ue.ege.coS

SGS	

1							
Blank Spike Summary							
Blank Spike ID: LCS for HBN Blank Spike La5 ID: 1] 9681 Date Analyzed: 12/29/2020	9	X13] 77b	×	x atriW Mater (Surface, Eff., Ground)			
QC for Samples: 1209876	6001, 120987600]					
Results 5y EPA 300.0			ì				
	Blan	k Spike (m	a/L)				
<u>Parameter</u> Sulfate	<u>Spike</u> <u>R</u>	lesult <u>R</u>	<u>Rec (%)</u> 102	<u>CL</u> (90-110)			
Batch Information							
Analytical Batch: WIC6126 Analytical x ethod: EPA 300. Instrument: 930 Metrohm con Analyst: A.A			F	Prep Batch: WXX13577 Prep x ethod: METHOD Prep Date/Time: 12/29/2020 10:00 Spike Init Mt./Vol.:] mg/L EVt/ract Vol: 10 mL Dupe Init Mt./Vol.: EVt/ract Vol:			
Print Date: 01/11/2021 3:46:17Px	1200 Ma)rive Anchorage				

SGS Matrix Spike Summary			<u> </u>								
Original Sample ID: 1596821 MS Sample ID: 1596822 MS MSD Sample ID: QC for Samples: 1209876001, 1209876005				Analysis Date: 12/29/2020 18:12 Analysis Date: 12/29/2020 18:31 Analysis Date: Matrix: Water (Surface, Eff., Ground)							
Results by EPA 300.0				mg/L)	Spike Duplicate (mg/L)						
<u>Parameter</u> Sulfate	<u>Sample</u> 2.23	<u>Spike</u> 5.00	<u>Result</u> 7.07	<u>Rec (%)</u> 97	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	RPD CL	
Batch Information Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: A.A Analytical Date/Time: 12/29/2020 6:31:07PM				Prep Batch: WXX13577 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 12/29/2020 10:00:00AM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL							

Print Date: 01/11/2021 3:46:19PM

SGS North America Inc.

SGS Matrix Spike Summary											
Original Sample ID: 15968 MS Sample ID: 1596824 MSD Sample ID: QC for Samples: 1209876		Analysis Date: 12/29/2020 21:02 Analysis Date: 12/29/2020 21:21 Analysis Date: Matrix: Water (Surface, Eff., Ground)									
Results by EPA 300.0				mg/L)	Spike Duplicate (mg/L)						
<u>Parameter</u> Sulfate	<u>Sample</u> 1.93	<u>Spike</u> 5.00	<u>Result</u> 6.8	<u>Rec (%)</u> 98	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD CL</u>	
Batch Information Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: A.A Analytical Date/Time: 12/29/2020 9:21:40PM				Prep Batch: WXX13577 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 12/29/2020 10:00:00AM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL							

Print Date: 01/11/2021 3:46:19PM

SGS North America Inc.

SGS

5008 [XXX/44331]	Matrix	k: Water (Surfa	ce, Eff., Ground)			
209876003, 1209876005						
Results	LOQ/CL	<u>DL</u>	<u>Units</u>			
0.300U	0.600	0.180	mg/L			
92.7	60-120		%			
334	Prep Ba	tch: XXX44331				
2						
B F						
	Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL					
	209876003, 1209876005 <u>Results</u> 0.300U 92.7	209876003, 1209876005 Results LOQ/CL 0.300U 0.600 92.7 60-120 334 Prep Ba 2 Prep Me 3 F Prep Da	Results LOQ/CL DL 0.300U 0.600 0.180 92.7 60-120 334 Prep Batch: XXX44331 2 Prep Method: SW35200 3 F Prep Date/Time: 12/22/2			

Print Date: 01/11/2021 3:46:21PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VVVXX331] Blank Spike Lab ID: 1596X16 Date Analyzed: 12/28/2020 17:08 Spike Duplicate ID: LCSD for HBN 1209876 [VVVXX331] Spike Duplicate Lab ID: 1596X17 s atriM x ater Wourface(, fftf. roundG

g C for SaP pleR

1209876001(1209876002(1209876003(1209876005

4 eRultRby AK102									
	Blank Spike			5	Spike Duplie	cate ₩%LG			
<u>) araP eter</u>	Spike	<u>4 eRult</u>	<u>4 ec Wh</u> G	<u>Spike</u>	<u>4 eRult</u>	<u>4 ec Wh</u> G	<u>CL</u>	<u>4)DWm</u> G	<u>4) D CL</u>
DieRel 4 an & Qr & anicR	20	2016	103	20	1919	100	₩75C125 G	3130	W 20 G
Surrogates									
5a AndroRtane WaurrG	0EX	102	102	0 E X	10X	10X	W60C120G	1190	
Batch Information									
Analytical Batc<: XFC15834) re	p Batc<: X	XX44331			
Analytical s et <od: <b="">AK102</od:>				/	o s et <od:< td=""><td></td><td></td><td></td><td></td></od:<>				
InRtruPent: Agilent 7890B F				/		e: 12/22/202			
AnalyRt: IVM							. , Miract To		
				Dup		UL ZUF /0L			

) rint Date: 01/11/2021 3:X6:2X) s

SGS

	Matrix: Water (Surface, Eff., Ground)						
76003, 1209876005							
<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L				
98.4	60A120		%				
020 4:58:00PM							
	0.250U	Results LOQ/CL 0.250U 0.500 98.4 60A120 Prep Batt Prep Datt Prep Initi	Results LOQ/CL DL 0.250U 0.500 0.150 98.4 60/420 Prep BatcF: XXX44331 Prep MetFod: SW3520C Prep Date/- ime: 12/22/2 Prep Initial Wt./Tol.: 250	Results LOQ/CL DL Units 0.250U 0.500 0.150 mg/L 98.4 60/120 % Prep BatcF: XXX44331 Prep MetFod: SW3520C Prep Date/- ime: 12/22/2020 Prep Initial Wt./Tol.: 250 mL 4:15:50PM			

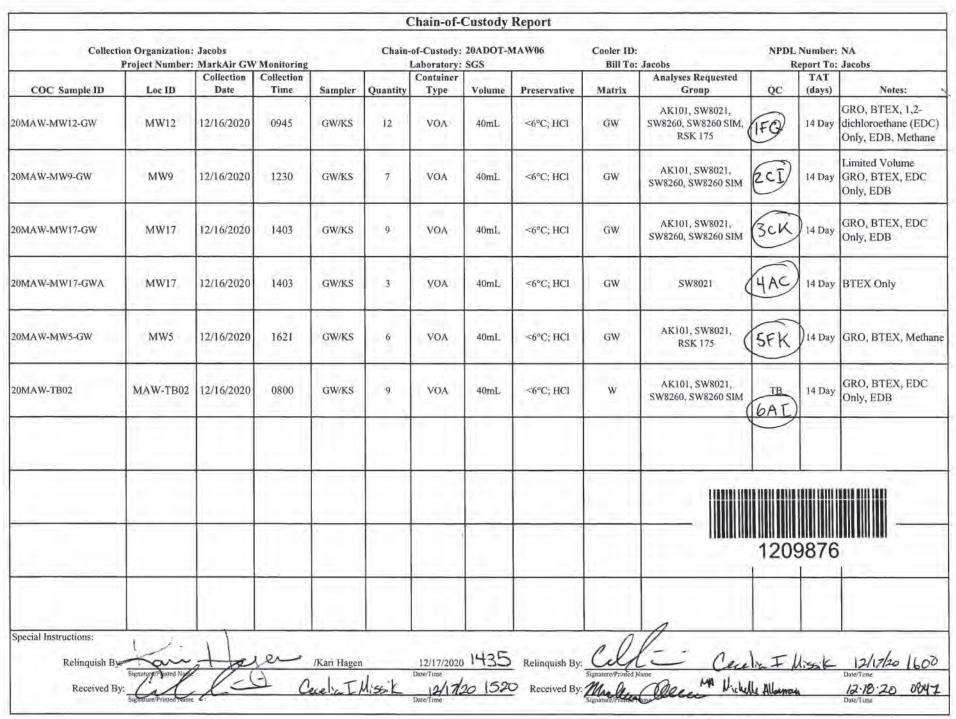
Print Date: 01/11/2021 3:46:27PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1209876 [VVVXX331] Blank Spike Lab ID: 1596X16 Date Analyzed: 12/28/2020 17:08 Spike Duplicate ID: LCSD for HBN 1209876 [VVVXX331] Spike Duplicate Lab ID: 1596X17 s atriM x ater Wourface(, fftf. roundG

g C for SaP pleR 1209876001(1209876002(1209876003(1209876005

4 eRultRby AK102									
		Blank Spike	w¶ %LG	S	Spike Duplic	cate ₩%LG			
<u>) araP eter</u>	<u>Spike</u>	<u>4 eRult</u>	<u>4 ec Wh</u> G	<u>Spike</u>	<u>4 eRult</u>	<u>4 ec Wh</u> G	<u>CL</u>	<u>4)DWm</u> G	<u>4) D CL</u>
4 eRidual 4 an% Qr%anicR	20	1955	97	20	19日	96	W60C120G	11270	W 20 G
Surrogates									
n&riacontane@l62 WaurrG	0EX	97 <i>E</i> 7	98	05X	96EX	96	W60C120G	1B0	
Batch Information									
Analytical Batch: XFC15823 Analytical s ethod: AK102 In R ruP ent: Agilent 4870B F) rep Batch: XXX33221) rep s ethod: SM 25V0C) rep Date/ <ip 16:15<="" 1wwww0v0="" e:="" th=""><th></th></ip>								
AnalyRt: I9V							. , Mract To . , Mract Tol:		


) rint Date: 01/11/2021 3:X6:30) s

		n Organization roject Number	r: MarkAir GW				-of-Custody: Laboratory:		MAW07	Bill To: Jacobs			L Number: NA Report To: Jacobs		
	COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:	
	20MAW-MW12-GW	MW12	12/16/2020	0945	GW/KS	2	GA	250mL	<6°C; HC1	GW	AK102/103	TAB	14 Day	DRO/RRO	
	20MAW-MW12-GW	MW12	12/16/2020	0945	GW/KS	Ĩ.	Poly	J25mL	HNO3	GŴ	SW6020A	0	14 Day	Fe, Mn	
[20MAW-MW12-GW	MW12	12/16/2020	0945	GW/KS	1	Poly	60mL	<6°C	GW	EPA 300,0	TD	14 Day	Sulfate	
Ī	20MAW-MW12-GW	MW12	12/16/2020	0945	GW/KS	1	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E	TE	14 Day	NO2/NO3, Total Ph	
	20MAW-MW9-GW	MW9	12/16/2020	1230	GW/KS	2	GA	250mL	<6°C; HC1	GW	AK102/103	ZAB) 14 Day	DRO/RRO	
ſ	20MAW-MW17-GW	MW17	12/16/2020	1403	GW/KS	2	GA	250mL	<6°C; HCl	GW	AK102/103	3AB	14 Day	DRO/RRO	
ſ	20MAW-MW5-GW	MW5	12/16/2020	1621	GW/KS	2	GA	250mL	<6°C; HCI	GW	AK102/103	SAB	14 Day	DRO/RRO	
	20MAW-MW5-GW	MW5	12/16/2020	1621	GW/KS	Ĩ	Poly	125mL	HNO3	GW	SW6020A	50	14 Day	Fe, Mn	
ſ	20MAW-MW5-GW	MW5	12/16/2020	1621	GW/KS	I	Poly	60mL	<6°C	GW	EPA 300.0 (50	14 Day	Sulfate	
	20MAW-MW5-GW	MW5	12/16/2020	1621	GW/KS	Ĩ	Poly	250mL	<6°C, H2SO4	GW	SM 4500 NO3-F, SM 4500-B,E	SE)	14 Day	NO2/NO3, Total Ph	
145	pecial Instructions: Relinquish By:<	Han	the	por	/Kari Hage	n	12/17/2020	1435	Relinquish By:	al	1- cen	eliat	Missi	L 12/17/201	

1209876

ANO: 1F, 1B 28 DS2 Profile # 365105 94

59 of 81

ANC: 15,18 28 052

60 of 81

000	e-Sam	ole Receipt	t Form	1						
262	SGS Workorder #:	1	209	9876)		120	98	376	
R	eview Criteria	Condition (Yes	No, N/A		Exce	eptions	Noted be	elov	N	
<u>Chain</u>	of Custody / Temperature Requi			N/A E	xemption pe	rmitted if s	ampler har	nd ca	arries/deliv	/ers.
	Were Custody Seals intact? Note # &									
	COC accompanied sa									
DOD: Were	samples received in COC corresponding of N/A **Exemption permitted if		ated 2	hours	o orforcom		o obilling io	not	required	
Temper	ature blank compliant* (i.e., 0-6 °C after				1 101 101 101	ipies when			herm. ID:	D52
rempere			Cooler			@		_	herm. ID:	
	a temperature blank, the "cooler temperature" wil		Cooler			@			herm. ID:	
	TEMP" will be noted to the right. "ambient" or "ch noted if neither is available.	hilled" will	Cooler			@		-	herm. ID:	<u> </u>
		Cooler			@		°Фт	herm. ID:		
*If >	6°C, were samples collected <8 hours	s ago? N/A								
	If <0°C, were sample containers ice	e free? N/A								
Note: Identify contai	ners received at non-compliant tempe Use form FS-0029 if more space is n									
Holding Time /	Documentation / Sample Condition R	equirements	Note: Re	efer to form	E-083 "Samp	le Guide" foi	specific hole	dina t	imes	
	Were samples received within holding									
	DC ** (i.e.,sample IDs,dates/times colle									
	liffer <1hr, record details & login per C									
	containers differs from COC, SGS will default to									
	clear? (i.e., method is specified for an nultiple option for analysis (Ex: BTEX,									
					**Exemption					
Were proper contain	ers (type/mass/volume/preservative***	')used? Yes	Preser LW09-(vative in 0463-17-(sufficent foi 03	r sample N	/IW17 add	ed 2	ml HCL fi	rom lot
	Volatile / LL-Hg Rec									
	s (i.e., VOAs, LL-Hg) in cooler with sa		Bubble	es in 1 vi	al from MW	12 and 2 v	ials from I	MWS)	
	als free of headspace (i.e., bubbles ≤									
	Il soil VOAs field extracted with MeOH									
Note to C	lient: Any "No", answer above indicates no	on-compliance	with sta	ndard pro	ocedures and	d may impa	act data qua	ality.		
	Additiona	al notes (if a	pplical	ble):						

000	e-Sample_	Receipt F	orm FBK			
SGS	SGS Workorder #:	1	20987	'6	12	209876
R	eview Criteria	Condition (Yes,	No, N/A	Exce	eptions Not	ed below
<u>Chain</u>	of Custody / Temperature Require	rements	Yes	Exemption per	rmitted if sampl	ler hand carries/delivers.
	Were Custody Seals intact? Note # &	location N/A				
	COC accompanied sa	amples? Yes				
DOD: Were	e samples received in COC corresponding c	oolers? Yes				
	**Exemption permitted if	chilled & colle	cted <8 hours	ago, or for sam	ples where chi	
Tempera	ature blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@	4.3 °C Therm. ID: D23
			Cooler ID:		@	°C Therm. ID:
	t a temperature blank, the "cooler temperature" will R TEMP" will be noted to the right. "ambient" or "ch		Cooler ID:		@	°C Therm. ID:
	e noted if neither is available.		Cooler ID:		@	°C Therm. ID:
*If >	>6°C, were samples collected <8 hours	ago?				
	If <0°C, were sample containers ice	e free?				
	,					
Note: Identify contai	iners received at non-compliant temper	rature .				
, , , , , , , , , , , , , , , , , , ,	Use form FS-0029 if more space is n					
	Documentation / Sample Condition Re		Note: Refer to	o form F-083 "S	ample Guide" f	or specific holding times.
-	OC** (i.e.,sample IDs,dates/times colle					
**Note: If times of	differ <1hr, record details & login per Co	OC.				
	n containers differs from COC, SGS will default to C					
Were samples ir	n good condition (no leaks/cracks/breal	kage)? Yes				
Were analytical requests	s clear? (i.e., method is specified for an	alvee				
	nultiple option for analysis (Ex: BTEX, N					
		Yes				
Were Trip Blank	s (i.e., VOAs, LL-Hg) in cooler with sar	mples? N/A				
Were all water VOA vi	ials free of headspace (i.e., bubbles ≤ 0	6mm)? N/A				
Were a	all soil VOAs field extracted with MeOH-	+BFB? N/A				
For Rush/Short	t Hold Time, was RUSH/Short HT emai	l sent? N/A				
Note to C	lient: Any "No", answer above indicates no	n-compliance	with standard	procedures and	I may impact da	ata quality.
	Additiona	al notes (if a	pplicable):			
SGS Profi	ilo #				0	
363 FI01					0	
						

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1209876001-A	HCL to $pH < 2$	ОК	1209876005-J	HCL to pH < 2	ОК
1209876001-B	HCL to pH < 2	ОК	1209876005-K	HCL to $pH < 2$	ОК
1209876001-C	HNO3 to pH < 2	ОК	1209876006-A	HCL to pH < 2	ОК
1209876001-D	No Preservative Required	OK	1209876006-B	HCL to $pH < 2$	OK
1209876001-E	No Preservative Required	OK	1209876006-C	HCL to $pH < 2$	OK
1209876001-F	HCL to pH < 2	OK	1209876006-D	HCL to $pH < 2$	OK
1209876001-G	HCL to pH < 2	OK	1209876006-E	HCL to pH < 2	OK
1209876001-H	HCL to pH < 2	OK	1209876006-F	HCL to pH < 2	OK
1209876001-I	HCL to pH < 2	OK	1209876006-G	HCL to $pH < 2$	OK
1209876001-J	HCL to pH < 2	OK	1209876006-H	HCL to pH < 2	OK
1209876001-K	HCL to pH < 2	OK	1209876006-I	HCL to $pH < 2$	OK
1209876001-L	HCL to $pH < 2$	OK			0
1209876001-M	HCL to $pH < 2$	OK			
1209876001-N	HCL to $pH < 2$	OK			
1209876001-0	HCL to $pH < 2$	OK			
1209876001-P	HCL to $pH < 2$	OK			
1209876001-Q	HCL to $pH < 2$	OK			
1209876002-A	HCL to $pH < 2$	OK			
1209876002-B	HCL to $pH < 2$	OK			
1209876002-C	HCL to $pH < 2$	OK			
1209876002-D	HCL to $pH < 2$	OK			
1209876002-E	HCL to $pH < 2$	OK			
1209876002 E	HCL to $pH < 2$	OK			
1209876002-G	HCL to $pH < 2$	OK			
1209876002-H	HCL to $pH < 2$	OK			
1209876002-I	HCL to pH < 2	OK			
1209876002-1 1209876003-A	HCL to $pH < 2$	OK			
1209876003-B	HCL to $pH < 2$	OK			
1209876003 D	HCL to $pH < 2$	OK			
1209876003-C	HCL to $pH < 2$	OK			
1209876003-E	HCL to $pH < 2$	OK			
1209876003 E	HCL to $pH < 2$	OK			
1209876003-G	HCL to $pH < 2$	OK			
1209876003-G	HCL to $pH < 2$	OK			
1209876003-I	HCL to $pH < 2$	OK			
1209876003-J	HCL to $pH < 2$	OK			
1209876003-K	HCL to $pH < 2$	OK			
1209876003-K	HCL to $pH < 2$	OK			
1209876004-A	HCL to $pH < 2$	OK			
1209876004 B	HCL to $pH < 2$	OK			
1209876004-C	HCL to $pH < 2$	OK			
1209876005-A	HCL to $pH < 2$	OK			
1209876005-C	HNO3 to $pH < 2$	OK			
1209876005-C	No Preservative Required	OK			
1209876005-D 1209876005-E	H2SO4 to pH < 2	OK			
1209876005-E 1209876005-F	HCL to pH < 2	OK			
1209876005-F	HCL to $pH < 2$	OK			
1209876005-G 1209876005-H	HCL to $pH < 2$	OK			
	HCL to $pH < 2$				
1209876005-I		OK			

<u>Container Id</u>

<u>Preservative</u>

<u>Container</u> <u>Condition</u> Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Orlando, FL

Automated Report

The results set forth herein are provided by SGS North America Inc.

Technical Report for

SGS North America, Inc

1209876

SGS Job Number: FA82049

Sampling Date: 12/16/20

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 julie.shumway@sgs.com

ATTN: Julie Shumway

Total number of pages in report: 17

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-6700

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

Table of Contents

N

ယ

4 5

6

-1-

Section 1: Sample Summary	
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	6
Section 4: Sample Results	7
4.1: FA82049-1: 20MAW-MW12-GW	8
4.2: FA82049-2: 20MAW-MW5-GW	9
Section 5: Misc. Forms	10
5.1: Chain of Custody	11
Section 6: GC Volatiles - QC Data Summaries	13
6.1: Method Blank Summary	14
6.2: Blank Spike/Blank Spike Duplicate Summary	15
6.3: Matrix Spike Summary	16
6.4: Duplicate Summary	17

Sample Summary

SGS North America, Inc

1209876

Job No: FA82049

Sample	Collected			Matr	ix	Client		
Number	Date	Time By	Received	Code	е Туре	Sample ID		
FA82049-1	12/16/20	09:45	12/24/20	AQ	Water	20MAW-MW12-GW		
FA82049-2	12/16/20	16:21	12/24/20	AQ	Water	20MAW-MW5-GW		

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	SGS North America, Inc	Job No:	FA82049
Site:	1209876	Report Date	12/31/2020 3:38:03

2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 12/16/2020 and were received at SGS North America Inc -Orlando on 12/24/2020 properly preserved, at 5.2 Deg. C and intact. These Samples received an SGS Orlando job number of FA82049. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

GC Volatiles By Method RSKSOP-147/175

Matrix: AQ

Batch ID: G1R153

All samples were analyzed within the recommended method holding time.

Sample(s) LA68517-2DUP, LA68517-3MS were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Ellen Pampel, LogIn/Safety (signature on file)

4 of 17

N

Summaryof HitsJob Number:FA82049Account:SGS North SGS North America, Inc Project: Collected: 1209876 12/16/20

	Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method
FA82049-1 20MAW-MW12-0			έW				
	Methane		568	0.50	0.25	ug/l	RSKSOP-147/175
	FA82049-2	20MAW-MW5-GV	W				
	Methane		77.2	0.50	0.25	ug/l	RSKSOP-147/175

Page 1 of 1

ယ

Orlando, FL

Section 4

Sample Results

Report of Analysis

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San	nple ID:	20MAW	/-MW12-	GW									
Lab Samp	le ID:	FA8204	9-1						Date	e Sampled	: 12	/16/20	
Matrix:		AQ - W	ater						Date	e Received	: 12	/24/20	
Method:		RSKSO	P-147/175	5					Perc	ent Solids	: n/a	a	
Project:		1209876	5										
	File ID		DF	An	alyzed	l	By	Prep l	Date	Prep Ba	tch	Analytical Bat	ch
Run #1	1R4175	5.D	1	12/	28/20	12:18	KB	n/a		n/a		G1R153	
Run #2													
	Initial	Volume	Headsp	ace Vo	lume	Volu	me Inj	ected	Tempera	ature			
Run #1	38.0 m	l	5.0 ml			500 i	ıl		25 Deg.	С			
Run #2													
CAS No.	Comp	ound		I	Result	t	LOQ	LOD	DL	Units	Q		
74-82-8	Metha	ne		:	568		0.50	0.25	0.16	ug/l			

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

SGS North America Inc.

Report of Analysis

Page 1 of 1

1													
Client San	nple ID:	20MAW	-MW5-0	θW									
Lab Samp	le ID:	FA8204	9-2						Date	e Sampled:	: 12	2/16/20	
Matrix:		AQ - W	ater						Date	e Received	: 12	2/24/20	
Method:		RSKSO	P-147/17	5					Perc	ent Solids	: n/	a	
Project:		1209876	5										
	File ID		DF	Anal	lyzed		By	Prep l	Date	Prep Ba	tch	Analytical Bate	ch
Run #1	1R4176	5.D	1	12/2	8/20 1	12:25	KB	n/a		n/a		G1R153	
Run #2													
	Initial	Volume	Headsp	ace Volu	ime	Volu	me Inj	jected	Tempera	ature			
Run #1	38.0 m	1	5.0 ml			500 u	ıl		25 Deg.	С			
Run #2													
CAS No.	Comp	ound		R	esult		LOQ	LOD	DL	Units	Q		
74-82-8	Metha	ne		77	7.2		0.50	0.25	0.16	ug/l			

 $J= \ Indicates \ an \ estimated \ value$

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide Alaska Florida New Jersey Colorado Texas North Carolina Virginia Louisiana

CLIENT:	SGS North Am	erica Inc Ala	ska Division		SG	S Refere	nce:				:	SGS	FL		Page 1 of 1
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	62-2343	Add	itional	Comm	ents	: All	soils	repo	rt ou	t in dry weig	ht unless	Page 1 of 1
PROJECT NAME:	1209876	PWSID#: NPDL#:		-	# c	Preserv- ative Used:	HCI								
REPORTS TO	: Julie Shumway	E-MAIL:	Julie.Shumw. RefLabTeam(TYPE C = COMP	RSK-175								
INVOICE TO:	SGS - Alaska	QUOTE #: P.O. #:	1209	876	AIN	A G = I GRAB N Multi E Incre- R mental S Soils	ses by R: : only)								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	ТІМЕ ННММ	MATRIX/ MATRIX CODE	R		Light Gases by F (Methane only)				MS	MSD	SGS lab #	-	ocation ID
ł	20MAW-MW12-GW	12/16/2020	09:45:00	Water	3		X						1209876001		MW12
2	20MAW-MW5-GW	12/16/2020	16:21:00	Water	3		X						1209876005	1	MW5
Relinquished I	Lyumuray By: 12)	Date 12/21/0 Date	Time 2 0908 Time ¹	Received (-x Received	By:	Yo An	10:		Report If J- Re Coole		L (J FI DL/LOD	/200.		υ	rable Requirements avel 2 + DV ial Instructions:
r' Relinquished E		Date	Time	Received		e pour	140	1100	Toma Blank *Ct		Chain of C	ustody Seal: (Circle			
Relinquished By: (4) Date		Date	Time	Received	Received For Laboratory By:									BROKEN ABSEN	

F088_COC_REF_LAB_20190411

FA82049: Chain of Custody Page 1 of 2

5.<u>1</u>

SGS Sample Receipt Summary

Job Number: FA82049 Client:			SGS ALASKA		Project: 1209876				
Date / Time Received: 12/24/20	20 10:30:00	AM	Delivery Method:	FEDEX	Airbill #'s: 148348012438				
Therm ID: IR 1;			Therm CF: 0.2;	# of Cooler	# of Coolers: 1				
Cooler Temps (Raw Measure	d) °C: Cool	er 1: (5.0);						
Cooler Temps (Corrected	d) °C: Cool	er 1: (5.2);						
Cooler Information	Y or	N		Sample Information		Y or	N	N/A	
1. Custody Seals Present	\checkmark			1. Sample labels present	t on bottles	\checkmark			
2. Custody Seals Intact	\checkmark			2. Samples preserved pr					
3. Temp criteria achieved				3. Sufficient volume/cont	ainers recvd for analysis:		\square		
4. Cooler temp verification	IR Gun			4. Condition of sample		Intact			
5. Cooler media	Ice (Bag)			5. Sample recvd within H	IT	\checkmark			
				6. Dates/Times/IDs on C	OC match Sample Label	\checkmark			
Trip Blank Information	<u>Y or</u>	<u>N</u>	N/A	7. VOCs have headspac	e		\checkmark		
1. Trip Blank present / cooler				8. Bottles received for ur	nspecified tests		\checkmark		
2. Trip Blank listed on COC				9. Compositing instruction	ons clear				
	W or	S	N/A	10. Voa Soil Kits/Jars ree	ceived past 48hrs?			\checkmark	
				11. % Solids Jar receive					
3. Type Of TB Received				12. Residual Chlorine Pr	esent?			\checkmark	
Misc. Information									
Number of Encores: 25-Gram		5-Gram	Num	ber of 5035 Field Kits:	Number of La	ab Filtered M	etals:		
Test Strip Lot #s:	рН 0-3	23031	5 <u>p</u> ł	H 10-12 219813A	Other: (Spec	cify)			
Residual Chlorine Test Strip Lot									
Comments									
SM001 Technician	: MAGALEA	ĸ	Date: 12/24/202	0 10:30:00	Reviewer:		Date:		
Rev. Date 05/24/17							2 ato.		

FA82049: Chain of Custody Page 2 of 2

12 of 17

5.1

ე

Section 6

GC Volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries ٠
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA82049

Account: Project:	SGSAKA SGS 1 1209876	North Ame	rica, Inc				
Sample G1R153-MB	File ID 1R4159.D	DF 1	Analyzed 12/28/20	By KB	Prep Date n/a	Prep Batch n/a	Analytical Batch G1R153
The QC repor FA82049-1, F.	r ted here applies t A82049-2	to the follo	wing samples:			Method: RSKS	OP-147/175
CAS No. C	ompound		Result F	RL	MDL Unit:	s Q	
74-82-8 M	lethane		ND 0	0.50	0.16 ug/l		

Page 1 of 1

Blank Spike/Blank Spike Duplicate Summary

Job Number: Account: Project:	FA82049 SGSAKA SGS 1 1209876	North Ame	erica, Inc						
Sample	File ID	DF	Analy		By	Prep Date		rep Batc	•
G1R153-BS G1R153-BSD	1R4161.D 1R4162.D	1 1	12/28/ 12/28/		KB KB	n/a n/a	n/ n/	'a 'a	G1R153 G1R153
The QC repor	ted here applies t	o the follo	owing sam	ples:			Metl	nod: RSI	KSOP-147/175
FA82049-1, FA	A82049-2								
CAS No. Co	ompound		··· I.	BSP ug/l	BSP %		BSD %	RPD	Limits Rec/RPD

108

105

97 111

103 6 62-139/30

74-82-8

Methane

79 of 81 15 of 17

Matrix Spike Summary

Methane

74-82-8

Job Number:	FA82049
Account:	SGSAKA SGS North America, Inc
Project:	1209876

Sample LA68517-3MS LA68517-3	File ID 1R4172.D 1R4165.D	DF 1 1	Analyzed 12/28/20 12/28/20	By KB KB	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch G1R153 G1R153
The QC reported	d here applies t	o the follo	wing samples:			Method: RSKS	OP-147/175
FA82049-1, FA8	2049-2						
CAS No. Com	mound		LA68517-3 S	-	MS MS	Limita	

108

132

122 62-139

1 /102049-1	, 1 A02047-2					
CAS No.	Compound	LA68517-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits

0.59

Page 1 of 1

FA82049

Duplicate Summary

Job Number:	FA82049
Account:	SGSAKA SGS North America, Inc
Project:	1209876

Sample LA68517-2DUP LA68517-2	File ID 1R4171.D 1R4164.D	DF 1 1	Analyzed 12/28/20 12/28/20	By KB KB	Prep Da n/a n/a	te Prep Batch n/a n/a	Analytical Batch G1R153 G1R153
The QC reported	here applies to	o the follo	wing samples:			Method: RSKS	DP-147/175
FA82049-1, FA82	2049-2						
CAS No. Com	pound		LA68517-2 I ug/l O u)UP 1g/l () RPD	Limits	

CAS No.	Compound	ug/l	-	Q	RPD	Limits
74-82-8	Methane	9.6	8.0		18	30

6.4.1

Laboratory Report of Analysis To: Jacobs Technology Inc. 794 University Ave #201 Fairbanks, AK 99709 Report Number: 1209879 Client Project: **Brooks Fuel Site GW Monitoring** Dear Kari Hagen, Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote. If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have. Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs. **Justin Nelson** Sincerely, SGS North America Inc. 2021.01.13 11:58:37 -09'00' Justin Nelson Date Project Manager Justin.Nelson@sgs.com

Print Date: 01/11/2021 3:48:02PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Jacobs Technology Inc. SGS Project: 1209879 Project Name/Site: Brooks Fuel Site GW Monitoring Project Contact: Kari Hagen

Refer to sample receipt form for information on sample condition.

20MAW/BFS-EB (1209879005) PS

Light Gases by RSK 175 were analyzed by SGS of Orlando, FL.

LCS for HBN 1815125 [MXX/33912 (1596736) LCS

6020B- Metals LCS recoveries for iron and manganese do not meet QC criteria. The associated sample concentrations are less than the LOQ.

1209879005MS (1596737) MS

6020B- Metals MS recovery for manganese does not meet QC criteria. The post digestion spike was successful.

1209879005MSD (1596738) MSD

6020B- Metals MSD recoveries for iron and manganese do not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/11/2021 3:48:03PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

		Report of Manual Integration	าร	
Laboratory ID	<u>Client Sample ID</u>	Analytical Batch	<u>Analyte</u>	Reason
SW8260D				
1209879003	20BFS-MW5-GW	VMS20530	4-Isopropyltoluene	SP
1209879003	20BFS-MW5-GW	VMS20530	n-Butylbenzene	SP

Manual	Integration	Reason	Code	Descriptions
manual	integration	ricuson	oouc	Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 01/11/2021 3:48:05PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. e integrated per SOP.

Print Date: 01/11/2021 3:48:06PM

Note:

Sample	Summary
--------	---------

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
20BFS-MW2-GW	1209879001	12/17/2020	12/22/2020	Water (Surface, Eff., Ground)
20BFS-MW2-GWA	1209879002	12/17/2020	12/22/2020	Water (Surface, Eff., Ground)
20BFS-MW5-GW	1209879003	12/17/2020	12/22/2020	Water (Surface, Eff., Ground)
20BFS-MW8-GW	1209879004	12/17/2020	12/22/2020	Water (Surface, Eff., Ground)
20MAW/BFS-EB	1209879005	12/18/2020	12/22/2020	Water (Surface, Eff., Ground)
20MAW/BFS-TB01	1209879006	12/17/2020	12/22/2020	Water (Surface, Eff., Ground)

Method

8270D SIM LV (PAH) AK102 AK103 AK101 EPA 300.0 SW6020B SW8260D-SIM SW8260D Method Description

8270 PAH SIM GC/MS LV DRO/RRO Low Volume Water DRO/RRO Low Volume Water Gasoline Range Organics (W) Ion Chromatographic Analysis (W) Metals by ICP-MS SW8260-SIM (W) Volatile Organic Compounds (W) FULL

Print Date: 01/11/2021 3:48:08PM

Detectable Res	sults Summary
----------------	---------------

Client Sample ID: 20BFS-MW2-GW Lab Sample ID: 1209879001	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.376J	mg/L
	Residual Range Organics	0.306J	mg/L
		0.0000	
Client Sample ID: 20BFS-MW2-GWA			
Lab Sample ID: 1209879002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.430J	mg/L
	Residual Range Organics	0.483J	mg/L
Client Sample ID: 20BFS-MW5-GW			
Lab Sample ID: 1209879003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	5.57	mg/L
J	Residual Range Organics	1.38	mg/L
Volatile Fuels	Gasoline Range Organics	1.02	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	158	ug/L
-	1,3,5-Trimethylbenzene	28.9	ug/L
	4-Isopropyltoluene	5.10	ug/L
	Benzene	308	ug/L
	Ethylbenzene	8.35	ug/L
	Isopropylbenzene (Cumene)	10.4	ug/L
	Naphthalene	18.3	ug/L
	n-Butylbenzene	4.48	ug/L
	n-Propylbenzene	12.6	ug/L
	o-Xylene	29.6	ug/L
	P & M -Xylene	106	ug/L
	sec-Butylbenzene	5.68	ug/L
	tert-Butylbenzene	0.502J	ug/L
	Xylenes (total)	136	ug/L
Client Sample ID: 20BFS-MW8-GW			
Lab Sample ID: 1209879004	Parameter	Popult	Units
Semivolatile Organic Fuels	Diesel Range Organics	<u>Result</u> 1.20	mg/L
Semivolatile Organic Fuels	Residual Range Organics	1.09	mg/L
Volatile Fuels	Gasoline Range Organics	0.0430J	mg/L
Volatile Fuels Volatile GC/MS	1,2,4-Trimethylbenzene	0.383J	ug/L
	4-Isopropyltoluene	1.80	ug/L
	Naphthalene	0.979J	ug/L
	P & M -Xylene	2.08	ug/L
	sec-Butylbenzene	1.30	ug/L
	Xylenes (total)	2.08J	uy/L

Print Date: 01/11/2021 3:48:09PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 20MAW/BFS-EB			
Lab Sample ID: 1209879005	Parameter	Result	Units
Metals by ICP/MS	Manganese	0.761J	ug/L
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0319J	ug/L
	2-Methylnaphthalene	0.0415J	ug/L
	Phenanthrene	0.0693	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.417J	mg/L
	Residual Range Organics	0.325J	mg/L

Print Date: 01/11/2021 3:48:09PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	

Diesel Range Organics 0.376 J 0.625 0.188 mg/L 1 01/06/2 Surrogates 5a Androstane (surr) 95.7 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Analytical Date/Time: 01/06/21 18:01 Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Container ID: 1209879001-F Result Qual LOQ/CL DL Units DF Limits Date A Parameter Result Qual LOQ/CL DL Units DF Limits Date A Surrogates 0.306 J 0.521 0.156 mg/L 1 01/06/2	Result Qual LOQ/CL DL Units DF Allowable Limits Date Analyzed ge Organics 0.376 J 0.625 0.188 mg/L 1 01/06/21 18:01 ane (surr) 95.7 50-150 % 1 01/06/21 18:01 rmation Prep Batch: XXX44342 Prep Method: SW3520C I Method: AK102 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL ange Organics Result Qual LOQ/CL DL Units DF Allowable ange Organics 0.306 J 0.521 0.156 mg/L 1 01/06/21 18:01 rmation 107 50-150 % 1 01/06/21 18:01 01/06/21 18:01 rmation 107 50-150 % 1 01/06/21 18:01 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 01/06/21 18:01 Prep Method: SW3520C	Client Sample ID: 20BFS-MW2-GW Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879001 Lab Project ID: 1209879	V Monitoring		Collection Da Received Da Matrix: Water Solids (%): Location: M\	te: 12/22/2 r (Surface,	20 10:32	
ParameterResult QualLOQ/CLDLUnitsDELimitsDate ADiesel Range Organics0.376 J0.6250.188mg/L101/06/2Surrogates5a Androstane (surr)95.750-150%101/06/2Batch InformationAnalytical Batch: XFC15839 Analytical Date/Time: 01/06/21 18:01 Container ID: 1209879001-FPrep Batch: XXX44342 Prep Method: SW3520CPrep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mLParameterResult QualLOQ/CLDLUnitsDE LimitsAllowable UnitsParameterResult QualLOQ/CLDLUnitsDE LimitsDate A 01/06/2Surrogates n-Triacontane-d62 (surr)10750-150%101/06/2Batch Information Analytical Batch: XFC15839 Analytical Batch: XFC15839 Analytical Batch: XFC15839 Analytical Method: AK103Prep Batch: XXX44342 Prep Method: SW3520CPrep Batch: XXX44342 Prep Method: SW3520C	Result Qual pe OrganicsLOQ/CL 0.376 JDL 0.625Units mg/LDE LimitsLimits Date Analyzed 01/06/21 18:01ane (surr)95.750-150%101/06/21 18:01rmation	Results by Semivolatile Organic Fuels	;					
Surrogates 5a Androstane (surr) 95.7 50-150 % 1 01/06/3 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Analytical Method: AK102 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Analytical Date/Time: 01/06/21 18:01 Prep Initial WL/Vol.: 240 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date A Residual Range Organics 0.306 J 0.521 0.156 mg/L 1 01/06/3 Surrogates n-Triacontane-d62 (surr) 107 50-150 % 1 01/06/3 Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Prep Batch: XXX44342 Prep Method: SW3520C	ane (surr) 95.7 50-150 % 1 01/06/21 18:01 rmation I Batch: XXC44342 Prep Batch: XXX44342 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Prep Initial Wt./Vol.: 240 mL I Date/Time: 01/06/21 18:01 Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Dete Analyzed ange Organics 0.306 J 0.521 0.156 mg/L 1 01/06/21 18:01 ne-d62 (surr) 107 50-150 % 1 01/06/21 18:01 rmation Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: 1 mL 01/06/21 18:01 rmation ID 107 50-150 % 1 01/06/21 18:01 rmation ID ID Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C VM Prep Initial Wt./Vol.: 240 mL Prep Initial Wt./Vol.: 240 mL Prep Initial Wt./Vol.: 240 mL	Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Date Analyzed
5a Androstane (surr) 95.7 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Analytical Date/Time: 01/06/21 18:01 Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DE Limits Date A Residual Range Organics 0.306 J 0.521 0.156 mg/L 1 01/06/2 Batch Information Inframeter Result Qual LOQ/CL DL Units DE Limits Date A 01/06/2 Batch Information 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C 01/06/2	Immation I Batch: XFC15839 Prep Batch: XXX44342 I Method: AK102 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL r ID: 1209879001-F Prep Extract Vol: 1 mL ange Organics Result Qual LOQ/CL DL Units DF ange Organics 0.306 J 0.521 0.156 mg/L 1 01/06/21 18:01 ne-d62 (surr) 107 50-150 % 1 01/06/21 18:01 rmation Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C I Method: AK103 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL	Diesel Range Organics	0.376 J	0.625	0.188	mg/L	1	01/06/21 18:07
Batch Information Analytical Batch: XFC15839 Analytical Method: AK102 Analytical Method: AK102 Analytical Date/Time: 01/06/21 18:01 Container ID: 1209879001-F Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date A 0.306 J 0.521 0.156 mg/L 1 01/06/2 Surrogates n-Triacontane-d62 (surr) 107 50-150 % Prep Batch: XXX44342 Prep Batch: XXX44342 Analytical Batch: XFC15839 Analytical Method: AK103	Immation I Batch: XFC15839 I Method: AK102 IVM I Date/Time: 01/06/21 18:01 r ID: 1209879001-F Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL Allowable Limits Date Analyzed 0.306 J 0.521 0.156 mg/L 10 01/06/21 18:01 ne-d62 (surr) 107 50-150 % Prep Batch: XXX44342 Prep Method: SW3520C I Method: AK103 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44	urrogates						
Analytical Batch: XFC15839 Prep Batch: XXX44342 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:01 Prep Date/Time: 12/28/20 15:44 Container ID: 1209879001-F Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 01/06/21 18:01 Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date A Residual Range Organics 0.306 J 0.521 0.156 mg/L 1 01/06/2 Surrogates n-Triacontane-d62 (surr) 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C	I Batch: XFC15839 Prep Batch: XXX44342 I Method: AK102 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./vol.: 240 mL r ID: 1209879001-F Prep Extract Vol: 1 mL ange Organics 0.306 J 0.521 0.156 mg/L 1 Date Analyzed ne-d62 (surr) 107 50-150 % 1 01/06/21 18:01 rmation I Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C I/M Prep Date/Time: 01/06/21 18:01 Prep Date/Time: 12/28/20 15:44	5a Androstane (surr)	95.7	50-150		%	1	01/06/21 18:01
Analytical Method: AK102 Prep Method: SW3520C Analyst: IVM Prep Date/Time: 12/28/20 15:44 Analytical Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL Container ID: 1209879001-F Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date A Residual Range Organics 0.306 J 0.521 0.156 mg/L 1 01/06/2 Surrogates n-Triacontane-d62 (surr) 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C	I Method: AK102 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL r ID: 1209879001-F Prep Extract Vol: 1 mL Ange Organics 0.306 J 0.521 0.306 J 0.521 0.156 me-d62 (surr) 107 50-150 I Batch: XFC15839 Prep Batch: XXX44342 I Method: AK103 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44	Batch Information						
Parameter Result Qual LOQ/CL DL Units DF Limits Date A Residual Range Organics 0.306 J 0.521 0.156 mg/L 1 01/06/2 Surrogates n-Triacontane-d62 (surr) 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C	Result QualLOQ/CLDLUnitsDFLimitsDate Analyzedange Organics0.306 J0.5210.156mg/L101/06/21 18:01ne-d62 (surr)10750-150%101/06/21 18:01rmationI Batch:XFC15839Prep Batch:XXX44342I Method:AK103Prep Method:SW3520CIVMPrep Date/Time:12/28/20 15:44I Date/Time:01/06/21 18:01Prep Initial Wt./Vol.:	Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 01/06/21 18:01			Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 240	20 15:44	
Batch Information N-Triacontane-d62 (surr) 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: XXX44342 Analytical Method: AK103 Prep Method: SW3520C Prep Method: SW3520C	ne-d62 (surr) 107 50-150 % 1 01/06/21 18:01 rmation I Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C I Method: AK103 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL							
n-Triacontane-d62 (surr) 107 50-150 % 1 01/06/2 Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Prep Method: SW3520C	Imation I Batch: XFC15839 Prep Batch: XXX44342 I Method: AK103 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL		0.306 J	0.521	0.156	mg/L	1	01/06/21 18:07
Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Prep Batch: XXX44342 Prep Method: SW3520C	Imation I Batch: XFC15839 Prep Batch: XXX44342 I Method: AK103 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL	-	107	50 150		0/.	1	01/06/21 19:04
Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520C	I Batch: XFC15839Prep Batch: XXX44342I Method: AK103Prep Method: SW3520CIVMPrep Date/Time: 12/28/20 15:44I Date/Time: 01/06/21 18:01Prep Initial Wt./Vol.: 240 mL	n-macontane-uoz (sun)	107	50-150		70	I	01/00/21 10.0
Analytical Method: AK103 Prep Method: SW3520C	I Method: AK103 Prep Method: SW3520C IVM Prep Date/Time: 12/28/20 15:44 I Date/Time: 01/06/21 18:01 Prep Initial Wt./Vol.: 240 mL	Batch Information						
		Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 01/06/21 18:01			Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 240	20 15:44	

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Member of SGS Group

SGS

Client Sample ID: 20BFS-MW2-GW Client Project ID: Brooks Fuel Site G Lab Sample ID: 1209879001 Lab Project ID: 1209879	W Monitoring	R M S	ollection Da eceived Dat atrix: Water olids (%): ocation: MV	te: 12/22/2 (Surface,	20 10:32		
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/23/20 18:08
urrogates							
4-Bromofluorobenzene (surr)	102	50-150		%	1		12/23/20 18:08
Batch Information							
Analytical Batch: VFC15474 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/23/20 18:08 Container ID: 1209879001-A		I	Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL				

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Member of SGS Group

Results of 20BFS-MW2-GW

Client Sample ID: **20BFS-MW2-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879001 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 21:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 21:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Benzene	0.200 U	0.400	0.120	ug/L	1		12/22/20 21:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 21:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW2-GW

Client Sample ID: **20BFS-MW2-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879001 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:55
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/22/20 21:55
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:55
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:55
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 21:55
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/22/20 21:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	93.9	81-118		%	1		12/22/20 21:55
4-Bromofluorobenzene (surr)	93.9	85-114		%	1		12/22/20 21:55
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 21:55

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW2-GW

Client Sample ID: **20BFS-MW2-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879001 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 21:55 Container ID: 1209879001-A Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

SGS	

Results of 20BFS-MW2-GWA Client Sample ID: 20BFS-MW2-GWA			Collection Da						
Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879002 Lab Project ID: 1209879	V Monitoring	N	Received Da Aatrix: Water Solids (%):						
		Solids (%): Location: MW2							
Results by Semivolatile Organic Fuels	;								
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed		
Diesel Range Organics	0.430 J	0.625	0.188	mg/L	1		01/06/21 18:11		
urrogates									
5a Androstane (surr)	97.5	50-150		%	1		01/06/21 18:11		
Batch Information									
Analytical Batch: XFC15839 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 01/06/21 18:11 Container ID: 1209879002-F			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/28/2 /t./Vol.: 240	20 15:44				
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.483 J	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.156	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed		
urrogates									
n-Triacontane-d62 (surr)	107	50-150		%	1		01/06/21 18:11		
Batch Information									
Analytical Batch: XFC15839 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 01/06/21 18:11 Container ID: 1209879002-F			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW3520C me: 12/28/2 /t./Vol.: 240	20 15:44				
					mL				

J flagging is activated

Collection D Received Da Matrix: Wate	ate: 12/22/			
Solids (%): Location: M				
<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/23/20 18:26
	%	1		12/23/20 18:26
Prep Metho Prep Date/T Prep Initial \	d: SW5030E ïme: 12/23/2 Nt./Vol.: 5 m	20 06:00		
	L <u>DL</u> 0.0310 Prep Batch: Prep Method Prep Date/T Prep Initial V	0.0310 mg/L % Prep Batch: VXX36761 Prep Method: SW5030E Prep Date/Time: 12/23/2	L DL Units DF 0.0310 mg/L 1 % 1 Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 06:00 Prep Initial Wt./Vol.: 5 mL	DL Units DF Limits 0.0310 mg/L 1 % 1 Prep Batch: VXX36761 Prep Method: SW5030B Prep Date/Time: 12/23/20 Prep Initial Wt./Vol.: 5 mL

J flagging is activated

Results of 20BFS-MW2-GWA

Client Sample ID: **20BFS-MW2-GWA** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879002 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 22:10
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 22:10
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Benzene	0.200 U	0.400	0.120	ug/L	1		12/22/20 22:10
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 22:10
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW2-GWA

Client Sample ID: **20BFS-MW2-GWA** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879002 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:10
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/22/20 22:10
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:10
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:10
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 22:10
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/22/20 22:10
Surrogates							
1,2-Dichloroethane-D4 (surr)	93.7	81-118		%	1		12/22/20 22:10
4-Bromofluorobenzene (surr)	92.6	85-114		%	1		12/22/20 22:10
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 22:10

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW2-GWA

Client Sample ID: **20BFS-MW2-GWA** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879002 Lab Project ID: 1209879 Collection Date: 12/17/20 09:50 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW2

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 22:10 Container ID: 1209879002-A Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Member of SGS Group

17 of 88

SGS	

Client Sample ID: 20BFS-MW5-GW Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879003 Lab Project ID: 1209879	V Monitoring		Collection Da Received Da Matrix: Wate Solids (%): Location: M	te: 12/22/2 r (Surface,	20 10:32		
Results by Semivolatile Organic Fuels	;						
Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	5.57	0.588	0.176	mg/L	1		01/06/21 18:21
urrogates							
5a Androstane (surr)	98.8	50-150		%	1		01/06/21 18:21
Batch Information							
Analytical Batch: XFC15839 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 01/06/21 18:21 Container ID: 1209879003-G			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/28/2 /t./Vol.: 255	20 15:44		
Parameter	Result Qual	LOQ/CL		<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Residual Range Organics	1.38	0.490	0.147	mg/L	1		01/06/21 18:21
urrogates							
n-Triacontane-d62 (surr)	106	50-150		%	1		01/06/21 18:21
Batch Information							
Analytical Batch: XFC15839 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 01/06/21 18:21 Container ID: 1209879003-G			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW3520C me: 12/28/2 /t./Vol.: 255	20 15:44		

J flagging is activated

Client Sample ID: 20BFS-MW5-GW Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879003 Lab Project ID: 1209879	V Monitoring	Collection Date: 12/17/20 11:55 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5						
Results by Volatile Fuels			_					
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed	
Gasoline Range Organics	1.02	0.500	0.155	mg/L	5		12/23/20 18:44	
urrogates								
4-Bromofluorobenzene (surr)	112	50-150		%	5		12/23/20 18:44	
Batch Information								
Analytical Batch: VFC15474		I	Prep Batch:	VXX36761				
Analytical Method: AK101			Prep Method: SW5030B					
Analyst: MDT		Prep Date/Time: 12/23/20 06:00						
Analytical Date/Time: 12/23/20 18:44 Container ID: 1209879003-A	Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL							

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Results of 20BFS-MW5-GW

Client Sample ID: **20BFS-MW5-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879003 Lab Project ID: 1209879 Collection Date: 12/17/20 11:55 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5

Results by Volatile GC/MS

						Alleweble	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 22:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,2,4-Trimethylbenzene	158	1.00	0.310	ug/L	1		12/22/20 22:25
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 22:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,3,5-Trimethylbenzene	28.9	1.00	0.310	ug/L	1		12/22/20 22:25
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
4-Isopropyltoluene	5.10	1.00	0.310	ug/L	1		12/22/20 22:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Benzene	308	4.00	1.20	ug/L	10		12/23/20 23:07
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 22:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW5-GW

Client Sample ID: **20BFS-MW5-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879003 Lab Project ID: 1209879 Collection Date: 12/17/20 11:55 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Ethylbenzene	8.35	1.00	0.310	ug/L	1		12/22/20 22:25
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Isopropylbenzene (Cumene)	10.4	1.00	0.310	ug/L	1		12/22/20 22:25
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Naphthalene	18.3	1.00	0.310	ug/L	1		12/22/20 22:25
n-Butylbenzene	4.48	1.00	0.310	ug/L	1		12/22/20 22:25
n-Propylbenzene	12.6	1.00	0.310	ug/L	1		12/22/20 22:25
o-Xylene	29.6	1.00	0.310	ug/L	1		12/22/20 22:25
P & M -Xylene	106	2.00	0.620	ug/L	1		12/22/20 22:25
sec-Butylbenzene	5.68	1.00	0.310	ug/L	1		12/22/20 22:25
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
tert-Butylbenzene	0.502 J	1.00	0.310	ug/L	1		12/22/20 22:25
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:25
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 22:25
Xylenes (total)	136	3.00	1.00	ug/L	1		12/22/20 22:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	90.5	81-118		%	1		12/22/20 22:25
4-Bromofluorobenzene (surr)	91.7	85-114		%	1		12/22/20 22:25
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 22:25

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW5-GW

Client Sample ID: **20BFS-MW5-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879003 Lab Project ID: 1209879

Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW5

Collection Date: 12/17/20 11:55

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 22:25 Container ID: 1209879003-A

Analytical Batch: VMS20533 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/23/20 23:07 Container ID: 1209879003-C Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX36758 Prep Method: SW5030B Prep Date/Time: 12/23/20 16:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

SGS	

Diesel Range Organics 1.20 0.612 0.184 mg/L 1 01/06/21 18:3 Surrogates 5a Androstane (surr) 98.9 50-150 % 1 01/06/21 18:3 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C Analytical Method: AK102 Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 245 mL Prep Initial Wt./Vol.: 1209879004-G Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Date Analyze Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:3	Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyzed Diesel Range Organics 1.20 0.612 0.184 mg/L 1 01/06/21 18:31 Surrogates 5a Androstane (surr) 98.9 50-150 % 1 01/06/21 18:31 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Date/Time: 12/28/20 15:44 Analytical Method: AK102 Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 1D: 1209879004-G 1.09 0.510 0.153 mg/L 1 01/06/21 18:31 Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyzed Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:31 Surrogates n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:31 Batch Information Image: Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 <td< th=""><th>Client Sample ID: 20BFS-MW8-GW Client Project ID: Brooks Fuel Site GW Lab Sample ID: 1209879004 Lab Project ID: 1209879</th><th>Monitoring</th><th> </th><th>Collection Da Received Da Matrix: Wate Solids (%): Location: M</th><th>te: 12/22/2 r (Surface,</th><th>20 10:32</th><th></th></td<>	Client Sample ID: 20BFS-MW8-GW Client Project ID: Brooks Fuel Site GW Lab Sample ID: 1209879004 Lab Project ID: 1209879	Monitoring	 	Collection Da Received Da Matrix: Wate Solids (%): Location: M	te: 12/22/2 r (Surface,	20 10:32	
ParameterResult QualLOQ/CLDLUnitsDELimitsDate AnalyzeDiesel Range Organics1.200.6120.184mg/L101/06/21 18:3Surrogates5a Androstane (surr)98.950-150%101/06/21 18:3Batch InformationAnalytical Batch: XFC15839Prep Batch: XXX44342Analytical Batch: XFC15839Prep Method: SW3520CAnalytical Date/Time: 01/06/21 18:31Prep Method: SW3520CContainer ID: 1209879004-GPrep Initial Wt./vol.: 245 mLParameterResult QualLOQ/CLDLUnitsParameterResult QualLOQ/CLDLUnitsDetParameterResult QualLOQ/CLDLUnitsDate AnalyzeResidual Range Organics1.090.5100.153mg/L101/06/21 18:3Surrogatesn-Triacontane-d62 (surr)10650-150%101/06/21 18:3Analytical Batch: XFC15839Prep Batch: XXX44342Prep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CPrep Method: SW3520CPrep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CPrep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CPrep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CPrep Method: SW3520CAnalytical Date/Time: 01/06/21 18:31Prep Method: SW3520CPrep Method: SW3520C	ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzedDiesel Range Organics1.200.6120.184mg/L101/06/21 18:37Surrogates5a Androstane (surr)98.950-150%101/06/21 18:37Batch InformationAnalytical Batch: XFC15839Prep Batch: XXX44342Analytical Batch: XFC15839Prep Method: SW3520CAnalytical Date/Time: 01/06/21 18:31Prep Date/Time: 12/28/20 15:44Prep Initial WL/Vol.: 245 mLPrep Initial WL/Vol.: 245 mLParameterResult QualLOQ/CLDLUnitsParameterResult QualLOQ/CLDLUnitsParameterResult QualLOQ/CLDLUnitsParameterResult QualLOQ/CLDLUnitsParameterResult QualLOQ/CLDLUnitsPrice Batch: XXX443420.1/06/21 18:3101/06/21 18:31Batch Information10650-150%1Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520CAnalytical Method: XFC15839Prep Method: SW3520CAnalytical Method: AK103Prep Method: SW3520CAnalytical Date/Time: 01/06/21 18:31Prep Method: SW3520CPrep Initial WL/Vol: 245 mLPrep Initial WL/Vol: 245 mL	Results by Semivolatile Organic Fuels						
5a Androstane (surr) 98.9 50-150 % 1 01/06/21 18:3 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Container ID: 1209879004-G Prep Initial Wt./vol.: 245 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:3 Surrogates n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:3 Batch Information Analytical Batch: XFC15839 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Method: AK103 Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44	5a Androstane (surr) 98.9 50-150 % 1 01/06/21 18:31 Batch Information Analytical Batch: XFC15839 Analytical Method: AK102 Prep Batch: XXX44342 Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44 Container ID: 1209879004-G Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:31 Surrogates n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:31 Batch Information Analytical Batch: XFC15839 Prep Batch: XXX44342 Prep Method: SW3520C Analytical Method: AK103 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Method: SW3520C Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Initial Wt./Vol.: 245 mL Prep Initial Wt./Vol.: 245 mL							<u>Date Analyzed</u> 01/06/21 18:31
Analytical Batch: XFC15839 Prep Batch: XXX44342 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Container ID: 1209879004-G Prep Initial Wt./vol.: 245 mL Parameter Result Qual LOQ/CL DL Units DE Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyze Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:3 Surrogates n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:3 Batch Information Prep Batch: XXX44342 Prep Method: SW3520C Analytical Method: AK103 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44	Analytical Batch: XFC15839 Prep Batch: XXX44342 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Container ID: 1209879004-G Prep Initial Wt./Vol.: 245 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyzed Residual Range Organics 1.09 0.510 0.153 mg/L 1 01/06/21 18:31 Surrogates n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:31 Batch Information Prep Batch: XXX44342 Prep Method: SW3520C Analytical Batch: XFC15839 Prep Batch: XXX44342 Analytical Method: AK103 Prep Batch: XXX44342 Prep Method: SW3520C Prep Method: SW3520C Analytical Date/Time: 01/06/21 18:31 Prep Date/Time: 12/28/20 15:44 Prep Date/Time: 12/28/20 15:44	-	98.9	50-150		%	1	01/06/21 18:31
ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzeResidual Range Organics1.090.5100.153mg/L101/06/21 18:3Gurrogatesn-Triacontane-d62 (surr)10650-150%101/06/21 18:3Batch InformationAnalytical Batch: XFC15839 Analytical Method: AK103 Analyti: IVM Analytical Date/Time: 01/06/21 18:31Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 245 mL	ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzedResidual Range Organics1.090.5100.153mg/L101/06/21 18:31Gurrogatesn-Triacontane-d62 (surr)10650-150%101/06/21 18:31Batch InformationAnalytical Batch: XFC15839 Analytical Method: AK103 Analytic I Date/Time: 01/06/21 18:31Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./vol.: 245 mL	Analytical Batch: XFC15839 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 01/06/21 18:31			Prep Method Prep Date/Ti Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 245	20 15:44	
n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:3 Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Analytical Method: AK103 Analyt: IVM Analytical Date/Time: 01/06/21 18:31 Prep Initial Wt./Vol.: 245 mL	n-Triacontane-d62 (surr) 106 50-150 % 1 01/06/21 18:31 Batch Information Analytical Batch: XFC15839 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 01/06/21 18:31 Prep Initial Wt./Vol.: 245 mL							<u>Date Analyzed</u> 01/06/21 18:31
Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 12/28/20 15:44Analytical Date/Time: 01/06/21 18:31Prep Initial Wt./Vol.: 245 mL	Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 12/28/20 15:44Analytical Date/Time: 01/06/21 18:31Prep Initial Wt./Vol.: 245 mL	-	106	50-150		%	1	01/06/21 18:31
Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 12/28/20 15:44Analytical Date/Time: 01/06/21 18:31Prep Initial Wt./Vol.: 245 mL	Analytical Batch: XFC15839Prep Batch: XXX44342Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 12/28/20 15:44Analytical Date/Time: 01/06/21 18:31Prep Initial Wt./Vol.: 245 mL	Batch Information						
		Analytical Batch: XFC15839 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 01/06/21 18:31			Prep Method Prep Date/Ti Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 245	20 15:44	

J flagging is activated

Client Sample ID: 20BFS-MW8-GW Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879004 Lab Project ID: 1209879	W Monitoring	R M S	Collection Date: 12/17/20 15:06 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8					
Results by Volatile Fuels			_					
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0430 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/23/20 19:02	
urrogates								
4-Bromofluorobenzene (surr)	101	50-150		%	1		12/23/20 19:02	
Batch Information								
Analytical Batch: VFC15474 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/23/20 19:02 Container ID: 1209879004-A		i i i i i i						

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Results of 20BFS-MW8-GW

Client Sample ID: **20BFS-MW8-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879004 Lab Project ID: 1209879 Collection Date: 12/17/20 15:06 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 22:39
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,2,4-Trimethylbenzene	0.383 J	1.00	0.310	ug/L	1		12/23/20 18:59
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 22:39
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
4-Isopropyltoluene	1.80	1.00	0.310	ug/L	1		12/23/20 18:59
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Benzene	0.200 U	0.400	0.120	ug/L	1		12/23/20 18:59
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 22:39
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW8-GW

Client Sample ID: **20BFS-MW8-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879004 Lab Project ID: 1209879 Collection Date: 12/17/20 15:06 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 22:39
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Naphthalene	0.979 J	1.00	0.310	ug/L	1		12/23/20 18:59
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/23/20 18:59
P & M -Xylene	2.08	2.00	0.620	ug/L	1		12/23/20 18:59
sec-Butylbenzene	1.30	1.00	0.310	ug/L	1		12/23/20 18:59
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 22:39
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 22:39
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 22:39
Xylenes (total)	2.08 J	3.00	1.00	ug/L	1		12/23/20 18:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	92.2	81-118		%	1		12/22/20 22:39
4-Bromofluorobenzene (surr)	92	85-114		%	1		12/22/20 22:39
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 22:39

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20BFS-MW8-GW

Client Sample ID: **20BFS-MW8-GW** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879004 Lab Project ID: 1209879 Collection Date: 12/17/20 15:06 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW8

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20533 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/23/20 18:59 Container ID: 1209879004-D

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 22:39 Container ID: 1209879004-A Prep Batch: VXX36758 Prep Method: SW5030B Prep Date/Time: 12/23/20 16:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Client Sample ID: 20MAW/BFS-EB Client Project ID: Brooks Fuel Site GV Lab Sample ID: 1209879005 Lab Project ID: 1209879	V Monitoring	R M S	ollection Da eceived Da atrix: Wate olids (%): pocation: M/	te: 12/22/2 r (Surface,	20 10:32 Eff., Gro			
Results by Metals by ICP/MS			_					
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed	
Iron	250 U	500	150	ug/L	5		12/30/20 14:39	
Manganese	0.761 J	2.00	0.620	ug/L	5		12/30/20 14:39	
Batch Information								
Analytical Batch: MMS10977		F	Prep Batch:	MXX33912				
Analytical Method: SW6020B				ep Method: SW3010A ep Date/Time: 12/29/20 09:33				
Analyst: DMM Analytical Date/Time: 12/30/20 14:39								
Container ID: 1209879005-Q		Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL						

J flagging is activated

Results of 20MAW/BFS-EB

Client Sample ID: **20MAW/BFS-EB** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879005 Lab Project ID: 1209879 Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW/BFS-EB

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0319 J	0.0568	0.0170	ug/L	1		12/23/20 20:12
2-Methylnaphthalene	0.0415 J	0.0568	0.0170	ug/L	1		12/23/20 20:12
Acenaphthene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Acenaphthylene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Anthracene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Benzo(a)Anthracene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Benzo[a]pyrene	0.0114 U	0.0227	0.00705	ug/L	1		12/23/20 20:12
Benzo[b]Fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Benzo[g,h,i]perylene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Benzo[k]fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Chrysene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Dibenzo[a,h]anthracene	0.0114 U	0.0227	0.00705	ug/L	1		12/23/20 20:12
Fluoranthene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Fluorene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Indeno[1,2,3-c,d] pyrene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Naphthalene	0.0570 U	0.114	0.0352	ug/L	1		12/23/20 20:12
Phenanthrene	0.0693	0.0568	0.0170	ug/L	1		12/23/20 20:12
Pyrene	0.0284 U	0.0568	0.0170	ug/L	1		12/23/20 20:12
Surrogates							
2-Methylnaphthalene-d10 (surr)	58.7	37-78		%	1		12/23/20 20:12
Fluoranthene-d10 (surr)	72.6	24-116		%	1		12/23/20 20:12

Batch Information

Analytical Batch: XMS12453 Analytical Method: 8270D SIM LV (PAH) Analyst: LAW Analytical Date/Time: 12/23/20 20:12 Container ID: 1209879005-O Prep Batch: XXX44333 Prep Method: SW3535A Prep Date/Time: 12/23/20 08:55 Prep Initial Wt./Vol.: 220 mL Prep Extract Vol: 1 mL

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS	

Client Sample ID: 20MAW/BFS-EB Client Project ID: Brooks Fuel Site GW Monitoring Lab Sample ID: 1209879005 Lab Project ID: 1209879 Results by Semivolatile Organic Fuels			te: 12/22/2 r (Surface, AW/BFS-El	Eff., Gro	und)	
ls						
<u>Result Qual</u> 0.417 J	<u>LOQ/CL</u> 0.652	<u>DL</u> 0.196	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 01/06/21 18:41
95.9	50-150		%	1		01/06/21 18:41
		Prep Method Prep Date/Ti Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 230	20 15:44		
<u>Result Qual</u> 0.325 J	<u>LOQ/CL</u> 0.543	<u>DL</u> 0.163	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 01/06/21 18:41
105	50-150		%	1		01/06/21 18:41
		Prep Method Prep Date/Ti Prep Initial W	: SW3520C me: 12/28/2 /t./Vol.: 230	20 15:44		
	0.417 J 95.9 <u>Result Qual</u> 0.325 J	0.417 J 0.652 95.9 50-150 Result Qual LOQ/CL 0.325 J 0.543	0.417 J 0.652 0.196 95.9 50-150 Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract Result Qual 0.325 J LOQ/CL 0.543 DL 0.163 105 50-150	0.417 J 0.652 0.196 mg/L 95.9 50-150 % Prep Batch: XXX44342 Prep Method: SW35200C Prep Date/Time: 12/28/2 Prep Initial Wt./Vol.: 230 Prep Extract Vol: 1 mL Result Qual LOQ/CL DL Units 0.325 J 0.543 0.163 mg/L 105 50-150 %	0.417 J 0.652 0.196 mg/L 1 95.9 50-150 % 1 Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL Result Qual 0.325 J LOQ/CL 0.543 DL 0.163 Units mg/L DF 1 105 50-150 % 1 Prep Batch: XXX44342 Prep Method: SW3520C 9% 1	Result Qual 0.417 JLOQ/CL 0.652DL 0.196Units mg/LDE 1Limits95.950-150%1Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mLResult Qual 0.325 JLOQ/CL 0.543DL 0.163Units mg/LDE 110550-150%1Prep Batch: XXX44342 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL10550-150%1Prep Batch: XXX44342 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Method: SW3520C Prep Date/Time: 12/28/20 15:44 Prep Initial Wt./Vol.: 230 mL

J flagging is activated

Results of 20MAW/BFS-EB Client Sample ID: 20MAW/BFS-EB Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Client Project ID: Brooks Fuel Site GW Monitoring Lab Sample ID: 1209879005 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1209879 Solids (%): Location: MAW/BFS-EB Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed Limits **Gasoline Range Organics** 0.0500 U 0.100 0.0310 mg/L 1 12/23/20 17:50 Surrogates

50-150

%

Prep Batch: VXX36761

Prep Method: SW5030B

Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Prep Date/Time: 12/23/20 06:00

1

98.5

Print Date: 01/11/2021 3:48:11PM

4-Bromofluorobenzene (surr)

Analytical Batch: VFC15474

Container ID: 1209879005-A

Analytical Date/Time: 12/23/20 17:50

Analytical Method: AK101

Batch Information

Analyst: MDT

J flagging is activated

Member of SGS Group

12/23/20 17:50

Results of 20MAW/BFS-EB

Client Sample ID: **20MAW/BFS-EB** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879005 Lab Project ID: 1209879 Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW/BFS-EB

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 21:41
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 21:41
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Benzene	0.200 U	0.400	0.120	ug/L	1		12/22/20 21:41
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 21:41
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
				-			

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW/BFS-EB

SG

Client Sample ID: **20MAW/BFS-EB** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879005 Lab Project ID: 1209879

Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW/BFS-EB

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 21:41
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/22/20 21:41
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 21:41
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 21:41
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 21:41
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/22/20 21:41
Surrogates							
1,2-Dichloroethane-D4 (surr)	94.3	81-118		%	1		12/22/20 21:41
4-Bromofluorobenzene (surr)	94.7	85-114		%	1		12/22/20 21:41
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 21:41

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW/BFS-EB

Client Sample ID: **20MAW/BFS-EB** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879005 Lab Project ID: 1209879 Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW/BFS-EB

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 21:41 Container ID: 1209879005-A Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Member of SGS Group

34 of 88

Results of 20MAW/BFS-EB

Client Sample ID: **20MAW/BFS-EB** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879005 Lab Project ID: 1209879 Collection Date: 12/18/20 15:30 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW/BFS-EB

Results by Volatile-SIM

<u>Parameter</u>	<u>Result Qual</u>	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>
1,2-Dibromoethane	0.00250 U	0.00500	0.00125	ug/L	1	<u>Limits</u>	12/26/20 20:04
Surrogates 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	89.9 98.9	85-114 89-112		% %	1 1		12/26/20 20:04 12/26/20 20:04

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 20:04 Container ID: 1209879005-C Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Results of 20MAW/BFS-EB							
Client Sample ID: 20MAW/BFS-EB Client Project ID: Brooks Fuel Site GW Monitoring Lab Sample ID: 1209879005 Lab Project ID: 1209879		C R M S L					
<u>Parameter</u> Sulfate	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/29/20 17:53
Batch Information Analytical Batch: WIC6126 Analytical Method: EPA 300.0 Analyst: A.A Analytical Date/Time: 12/29/20 17:53 Container ID: 1209879005-R			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: METHOD me: 12/29/2 't./Vol.: 10 r	20 10:00 mL		

J flagging is activated

Client Sample ID: 20MAW/BFS-TB01 Client Project ID: Brooks Fuel Site G Lab Sample ID: 1209879006 Lab Project ID: 1209879	W Monitoring	R M S	ollection Da eceived Da atrix: Water olids (%): ocation: MA	te: 12/22/2 (Surface,	20 10:32		
- Results by Volatile Fuels)——				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 12/23/20 16:02
Surrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		12/23/20 16:02
Batch Information							
Analytical Batch: VFC15474 Analytical Method: AK101 Analyst: MDT Analytical Date/Time: 12/23/20 16:02 Container ID: 1209879006-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 12/23/2 /t./Vol.: 5 m	20 06:00		

J flagging is activated

Results of 20MAW/BFS-TB01

Client Sample ID: **20MAW/BFS-TB01** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879006 Lab Project ID: 1209879 Collection Date: 12/17/20 08:00 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/22/20 20:42
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/22/20 20:42
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Benzene	0.200 U	0.400	0.120	ug/L	1		12/22/20 20:42
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Bromomethane	2.50 U	5.00	2.00	ug/L	1		12/22/20 20:42
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW/BFS-TB01

Client Sample ID: **20MAW/BFS-TB01** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879006 Lab Project ID: 1209879 Collection Date: 12/17/20 08:00 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/22/20 20:42
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/22/20 20:42
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Styrene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Toluene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/22/20 20:42
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/22/20 20:42
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/22/20 20:42
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/22/20 20:42
Surrogates							
1,2-Dichloroethane-D4 (surr)	92.7	81-118		%	1		12/22/20 20:42
4-Bromofluorobenzene (surr)	94	85-114		%	1		12/22/20 20:42
Toluene-d8 (surr)	104	89-112		%	1		12/22/20 20:42

Print Date: 01/11/2021 3:48:11PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 20MAW/BFS-TB01

Client Sample ID: **20MAW/BFS-TB01** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879006 Lab Project ID: 1209879 Collection Date: 12/17/20 08:00 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 12/22/20 20:42 Container ID: 1209879006-A Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Member of SGS Group

40 of 88

Results of 20MAW/BFS-TB01

Client Sample ID: **20MAW/BFS-TB01** Client Project ID: **Brooks Fuel Site GW Monitoring** Lab Sample ID: 1209879006 Lab Project ID: 1209879 Collection Date: 12/17/20 08:00 Received Date: 12/22/20 10:32 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MAW-TB01

Results by Volatile-SIM

<u>Parameter</u>	<u>Result Qual</u>	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>
1,2-Dibromoethane	0.00250 U	0.00500	0.00125	ug/L	1	<u>Limits</u>	12/26/20 17:48
Surrogates 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	93.7 98.5	85-114 89-112		% %	1 1		12/26/20 17:48 12/26/20 17:48

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Analyst: NRB Analytical Date/Time: 12/26/20 17:48 Container ID: 1209879006-C Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/20 16:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 01/11/2021 3:48:11PM

J flagging is activated

Blank Lab ID: 1596735 QC for Samples: 1209879005	5				
Results by SW6020B					
Parameter_	Results	LOQ/CL	DL	<u>Units</u>	
Iron Manganese	250U 1.00U	500 2.00	150 0.620	ug/L ug/L	
Analytical Batch: MM Analytical Method: S Instrument: Perkin El Analyst: DMM	W6020B	Prep Me Prep Da Prep Ini	tch: MXX33912 ethod: SW3010A te/Time: 12/29/2 tial Wt./Vol.: 25 tract Vol: 25 mL	A 2020 9:33:36AM mL	

Print Date: 01/11/2021 3:48:13PM

SGS	

Elank Spike Summary Blank Spike ID: LCS for HBN 1209879 (MXX33912) Blank Spike ID: 1599736 Date Analyzed: 12/30/2020 14:34 Matrix: Water (Surface, Eff., Ground) OC for Samples: 1209879005 Results by SW6020B Blank Spike (ugl.) Parameter Solo Solo 632 Iron 6000 Solo 632 Analytical Batch: MINS10977 Dippe Init WL/Void: Extract Voit: 25 mL Duppe Init WL/Void: Extract Voit: 25 mL Duppe Init WL/Void: Extract Voit: 25 mL	I			
Blank Spike Lab ID: 1596736 Date Analyzed: 12/30/2020 14:34 Matrix: Water (Surface, Eff., Ground) QC for Samples: 1209879005 Results by SW6020B Blank Spike (ug/L) Parameter Spike Iron 5000 500 632 Iron 500 632 126 Perp Batch: Information Analytical Batch: MMS10977 Analytical Method: SW6020B Instrument: Perkin Elmer Nexton P5 Analyst: DMM	Blank Spike Summary			
QC for Samples: 1209879005 Results by SW6020B Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Iron 5000 5970 119 * (87-118) Manganese 500 632 126 * (87-115) Batch Information Prep Batch: MXX33912 Analytical Batch: MMS10977 Prep Method: SW3010A Instrument: Perkin Elmer Nexlor P5 Prep Date/Time: 12/29/2020 09:33 Analyst: DMM Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL	Blank Spike Lab ID: 1596736		2]	Matrix: Water (Surface Eff. Ground)
Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Iron 5000 5970 119 * (87-118) Manganese 500 632 126 * (87-115) Batch Information Analytical Batch: MMS10977 Prep Batch: MXX33912 Prep Method: SW3010A Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 12/29/2020 09:33 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL	QC for Samples: 1209879005			Matin. Water (Surface, Ell., Ground)
Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Iron 5000 5970 119 * (87-118) Manganese 500 632 126 * (87-115) Batch Information Analytical Batch: MMS10977 Prep Batch: MXX33912 Prep Method: SW3010A Instrument: Perkin Elmer NexIon P5 Prep Date/Time: 12/29/2020 09:33 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL				
Parameter Spike Result Rec (%) CL Iron 5000 5970 119 * (87-118) Manganese 500 632 126 * (87-115) Batch Information Analytical Batch: MMS10977 Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Prep Batch: MXX33912 Prep Method: SW3010A Prep Date/Time: 12/29/2020 09:33 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL	Results by SW6020B		_	
Iron 500 5970 119 * (87-118) Manganese 500 632 126 * (87-115) Batch Information	_			
Manganese 500 632 126 * (87-115) Batch Information Analytical Batch: MMS10977 Prep Batch: MXX33912 Prep Method: SW3010A Analytical Method: SW6020B Prep Method: SW3010A Prep Date/Time: 12/29/2020 09:33 Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 12/29/2020 09:33 Analyst: DMM Spike Init Wt./Vol.: 5000 ug/L				
Batch Information Analytical Batch: MMS10977 Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Prep Date/Time: 12/29/2020 09:33 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL				
Analytical Batch:MMS10977Prep Batch:MXX33912Analytical Method:SW6020BPrep Method:SW3010AInstrument:Perkin Elmer NexIon P5Prep Date/Time:12/29/202009:33Analyst:DMMSpike Init Wt./Vol.:5000 ug/LExtract Vol:25 mL	Manganese	632	126 *	(87-115)
Analytical Method:SW6020BPrep Method:SW3010AInstrument:Perkin Elmer NexIon P5Prep Date/Time:12/29/202009:33Analyst:DMMSpike Init Wt./Vol.:5000 ug/LExtract Vol:25 mL	Batch Information			
	Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon	Ρ5		Prep Method: SW3010A Prep Date/Time: 12/29/2020 09:33 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL

-

Matrix Spike Summary

Original Sample ID: 1209879005 MS Sample ID: 1596737 MS MSD Sample ID: 1596738 MSD Analysis Date: 12/30/2020 14:39 Analysis Date: 12/30/2020 14:43 Analysis Date: 12/30/2020 14:48 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879005

Results by SW6020B	sults by SW6020B			Matrix Spike (ug/L) Spike Duplicate (ug/L)							
<u>Parameter</u> Iron Manganese	<u>Sample</u> 250U 0.761J	<u>Spike</u> 5000 500	<u>Result</u> 5540 588	<u>Rec (%)</u> 111 118 *	<u>Spike</u> 5000 500	<u>Result</u> 6060 641	<u>Rec (%)</u> 121 * 128 *	<u>CL</u> 87-118 87-115	<u>RPD (%)</u> 9.01 8.52	<u>RPD CL</u> (< 20) (< 20)	
Batch Information Analytical Batch: MMS10977 Analytical Method: SW6020E						WXX33912 3010 H20	2) Digest for I	Metals ICF	P-MS		

Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Analytical Date/Time: 12/30/2020 2:43:57PM Prep Batch: MXX33912 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 12/29/2020 9:33:36AM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 01/11/2021 3:48:19PM

Original Sample ID: 1209879005 MS Sample ID: 1596739 BND MSD Sample ID: QC for Samples: 1209879005					Analysis Analysis	Date: 12 Date:	2/30/2020 2/30/2020 urface, Eff.	14:53		
Results by SW6020E										
l <u>arameter</u> on langanese	<u>Sample</u> 250U 0.761J	Ma <u>Spike</u> 25000 1250	trix Spike (<u>Result</u> 30000 1400	(ug/L) <u>Rec (%)</u> 120 112	Spike <u>Spike</u>	e Duplicat <u>Result</u>	e (ug/L) <u>Rec (%)</u>	<u>CL</u> 75-125 75-125	<u>RPD (%)</u>	<u>RPD CL</u>
Analytical Method: S Instrument: Perkin E Analyst: DMM Analytical Date/Time		1PM		Prep Prep	Date/Tim Initial Wt				P-MS	

Print Date: 01/11/2021 3:48:19PM

Method Blank

Blank ID: MB for HBN 1815028 [VXX/36752] Blank Lab ID: 1596490 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

_	Results by SW8260D				
	Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
	1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
	1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
	1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
	1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
	1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
	1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
	1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
	1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
	1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
	1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
	1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
	1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
	1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
	1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
	1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
	1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
	1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
	2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
	2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
	2-Chlorotoluene	0.500U	1.00	0.310	ug/L
	2-Hexanone	5.00U	10.0	3.10	ug/L
	4-Chlorotoluene	0.500U	1.00	0.310	ug/L
	4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
	4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
	Benzene	0.200U	0.400	0.120	ug/L
	Bromobenzene	0.500U	1.00	0.310	ug/L
	Bromochloromethane	0.500U	1.00	0.310	ug/L
	Bromodichloromethane	0.250U	0.500	0.150	ug/L
	Bromoform	0.500U	1.00	0.310	ug/L
	Bromomethane	2.50U	5.00	2.00	ug/L
	Carbon disulfide	5.00U	10.0	3.10	ug/L
	Carbon tetrachloride	0.500U	1.00	0.310	ug/L
	Chlorobenzene	0.250U	0.500	0.150	ug/L
	Chloroethane	0.500U	1.00	0.310	ug/L
	Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 01/11/2021 3:48:21PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1815028 [VXX/36752] Blank Lab ID: 1596490 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

_	Results by SW8260D				
		Desults			Linita
	<u>Parameter</u> Chloromethane	<u>Results</u> 0.500U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u>
			1.00		ug/L
	cis-1,2-Dichloroethene	0.500U		0.310	ug/L
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
	Dibromochloromethane	0.250U	0.500	0.150	ug/L
	Dibromomethane	0.500U	1.00	0.310	ug/L
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
	Ethylbenzene	0.500U	1.00	0.310	ug/L
	Freon-113	5.00U	10.0	3.10	ug/L
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
	Methylene chloride	5.00U	10.0	3.10	ug/L
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
	Naphthalene	0.500U	1.00	0.310	ug/L
	n-Butylbenzene	0.500U	1.00	0.310	ug/L
	n-Propylbenzene	0.500U	1.00	0.310	ug/L
	o-Xylene	0.500U	1.00	0.310	ug/L
	P & M -Xylene	1.00U	2.00	0.620	ug/L
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L
	Styrene	0.500U	1.00	0.310	ug/L
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L
	Tetrachloroethene	0.500U	1.00	0.310	ug/L
	Toluene	0.500U	1.00	0.310	ug/L
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
	Trichloroethene	0.500U	1.00	0.310	ug/L
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
	Vinyl acetate	5.00U	10.0	3.10	ug/L
	Vinyl chloride	0.0750U	0.150	0.0500	ug/L
	Xylenes (total)	1.50U	3.00	1.00	ug/L
	Surrogates				
	1,2-Dichloroethane-D4 (surr)	91.6	81-118		%
	4-Bromofluorobenzene (surr)	93.2	85-114		%
	Toluene-d8 (surr)	105	89-112		%

Print Date: 01/11/2021 3:48:21PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank								
Blank ID: MB for HBN Blank Lab ID: 1596490		Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1209879001, 120987900	2, 1209879003, 1209879004, 120	9879005, 1209879006	;					
Results by SW8260D								
Parameter_	<u>Results</u>	LOQ/CL	DL	<u>Units</u>				
Batch Information								
Analytical Batch: VMS Analytical Method: SV Instrument: Agilent 78 Analyst: NRB Analytical Date/Time:	Prep Ba Prep Me Prep Da Prep Ini Prep Ex	0B 2/2020 6:00:00PM mL						

Print Date: 01/11/2021 3:48:21PM

Leaching Blank

Blank ID: LB for HBN 1814984 [TCLP/10943 Blank Lab ID: 1596325 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

Results by SW8260D				
Parameter Results		LOQ/CL	DL	Units
1,1-Dichloroethene	25.0U	50.0	15.5	ug/L
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
1,4-Dichlorobenzene	12.5U	25.0	7.50	ug/L
2-Butanone (MEK)	250U	500	155	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Carbon tetrachloride	25.0U	50.0	15.5	ug/L
Chlorobenzene	12.5U	25.0	7.50	ug/L
Chloroform	25.0U	50.0	15.5	ug/L
Hexachlorobutadiene	25.0U	50.0	15.5	ug/L
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Trichloroethene	25.0U	50.0	15.5	ug/L
Vinyl chloride	25.0U	50.0	15.5	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	94.9	81-118		%
4-Bromofluorobenzene (surr)	94	85-114		%
Toluene-d8 (surr)	105	89-112		%

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Analytical Date/Time: 12/22/2020 9:26:00PM Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/2020 6:00:00PM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:21PM

Blank Spike ID: LCS for HBN 1209879 [VXX36752] Blank Spike Lab ID: 1596491 Date Analyzed: 12/22/2020 18:15 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36752] Spike Duplicate Lab ID: 1596492 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

Results by SW8260D									
		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.6	105	30	31.8	106	(78-124)	0.78	(< 20)
1,1,1-Trichloroethane	30	28.7	96	30	27.9	93	(74-131)	2.90	(< 20)
1,1,2,2-Tetrachloroethane	30	27.8	93	30	29.4	98	(71-121)	5.50	(< 20)
1,1,2-Trichloroethane	30	30.5	102	30	31.8	106	(80-119)	4.20	(< 20)
1,1-Dichloroethane	30	29.4	98	30	28.9	96	(77-125)	1.80	(< 20)
1,1-Dichloroethene	30	30.5	102	30	29.2	97	(71-131)	4.30	(< 20)
1,1-Dichloropropene	30	30.2	101	30	29.2	97	(79-125)	3.50	(< 20)
1,2,3-Trichlorobenzene	30	29.9	100	30	33.0	110	(69-129)	9.80	(< 20)
1,2,3-Trichloropropane	30	27.8	93	30	29.1	97	(73-122)	4.40	(< 20)
1,2,4-Trichlorobenzene	30	30.0	100	30	32.5	108	(69-130)	8.00	(< 20)
1,2,4-Trimethylbenzene	30	28.3	94	30	28.0	93	(79-124)	1.00	(< 20)
1,2-Dibromo-3-chloropropane	30	26.2	88	30	28.2	94	(62-128)	7.30	(< 20)
1,2-Dibromoethane	30	32.0	107	30	33.2	111	(77-121)	3.90	(< 20)
1,2-Dichlorobenzene	30	29.6	99	30	30.2	101	(80-119)	2.00	(< 20)
1,2-Dichloroethane	30	25.8	86	30	26.3	88	(73-128)	1.80	(< 20)
1,2-Dichloropropane	30	30.8	103	30	30.9	103	(78-122)	0.52	(< 20)
1,3,5-Trimethylbenzene	30	28.0	93	30	27.8	93	(75-124)	0.84	(< 20)
1,3-Dichlorobenzene	30	29.7	99	30	30.3	101	(80-119)	1.90	(< 20)
1,3-Dichloropropane	30	30.1	100	30	31.2	104	(80-119)	3.40	(< 20)
1,4-Dichlorobenzene	30	29.7	99	30	30.0	100	(79-118)	1.00	(< 20)
2,2-Dichloropropane	30	25.2	84	30	24.3	81	(60-139)	3.90	(< 20)
2-Butanone (MEK)	90	94.1	105	90	98.3	109	(56-143)	4.40	(< 20)
2-Chlorotoluene	30	29.2	97	30	28.9	97	(79-122)	0.87	(< 20)
2-Hexanone	90	84.4	94	90	90.7	101	(57-139)	7.20	(< 20)
4-Chlorotoluene	30	28.0	93	30	27.7	92	(78-122)	0.99	(< 20)
4-Isopropyltoluene	30	28.6	96	30	28.9	96	(77-127)	0.89	(< 20)
4-Methyl-2-pentanone (MIBK)	90	89.9	100	90	95.5	106	(67-130)	6.10	(< 20)
Benzene	30	31.3	104	30	31.4	105	(79-120)	0.31	(< 20)
Bromobenzene	30	30.3	101	30	30.2	101	(80-120)	0.30	(< 20)
Bromochloromethane	30	31.9	106	30	32.3	108	(78-123)	1.40	(< 20)
Bromodichloromethane	30	29.6	99	30	29.8	100	(79-125)	0.74	(< 20)
Bromoform	30	32.3	108	30	33.5	112	(66-130)	3.70	(< 20)
Bromomethane	30	26.3	88	30	24.8	83	(53-141)	5.90	(< 20)
Carbon disulfide	45	44.4	99	45	41.9	93	(64-133)	5.80	(< 20)

Print Date: 01/11/2021 3:48:24PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209879 [VXX36752] Blank Spike Lab ID: 1596491 Date Analyzed: 12/22/2020 18:15 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36752] Spike Duplicate Lab ID: 1596492 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

Results by SW8260D									
L		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.3	101	30	29.4	98	(72-136)	3.10	(< 20)
Chlorobenzene	30	31.3	104	30	31.2	104	(82-118)	0.15	(< 20)
Chloroethane	30	29.9	100	30	25.8	86	(60-138)	14.60	(< 20)
Chloroform	30	29.4	98	30	29.0	97	(79-124)	1.40	(< 20)
Chloromethane	30	29.0	97	30	27.6	92	(50-139)	5.00	(< 20)
cis-1,2-Dichloroethene	30	31.7	106	30	31.3	104	(78-123)	1.30	(< 20)
cis-1,3-Dichloropropene	30	30.4	101	30	30.6	102	(75-124)	0.74	(< 20)
Dibromochloromethane	30	31.4	105	30	32.3	108	(74-126)	2.90	(< 20)
Dibromomethane	30	29.9	100	30	30.8	103	(79-123)	2.70	(< 20)
Dichlorodifluoromethane	30	30.3	101	30	28.8	96	(32-152)	5.00	(< 20)
Ethylbenzene	30	31.6	105	30	30.9	103	(79-121)	2.10	(< 20)
Freon-113	45	45.3	101	45	43.5	97	(70-136)	3.90	(< 20)
Hexachlorobutadiene	30	29.3	98	30	28.0	93	(66-134)	4.70	(< 20)
Isopropylbenzene (Cumene)	30	30.8	103	30	30.6	102	(72-131)	0.81	(< 20)
Methylene chloride	30	30.0	100	30	29.9	100	(74-124)	0.27	(< 20)
Methyl-t-butyl ether	45	44.6	99	45	45.8	102	(71-124)	2.60	(< 20)
Naphthalene	30	27.9	93	30	30.9	103	(61-128)	10.30	(< 20)
n-Butylbenzene	30	28.2	94	30	28.6	95	(75-128)	1.20	(< 20)
n-Propylbenzene	30	28.2	94	30	28.2	94	(76-126)	0.06	(< 20)
o-Xylene	30	31.3	104	30	31.2	104	(78-122)	0.33	(< 20)
P & M -Xylene	60	62.7	104	60	61.9	103	(80-121)	1.20	(< 20)
sec-Butylbenzene	30	28.9	96	30	28.9	96	(77-126)	0.09	(< 20)
Styrene	30	31.1	104	30	31.1	104	(78-123)	0.12	(< 20)
tert-Butylbenzene	30	29.2	97	30	29.0	97	(78-124)	0.85	(< 20)
Tetrachloroethene	30	32.2	107	30	31.7	106	(74-129)	1.80	(< 20)
Toluene	30	30.6	102	30	30.6	102	(80-121)	0.12	(< 20)
trans-1,2-Dichloroethene	30	31.4	105	30	30.5	102	(75-124)	3.20	(< 20)
trans-1,3-Dichloropropene	30	28.7	96	30	29.6	99	(73-127)	3.00	(< 20)
Trichloroethene	30	30.8	103	30	30.0	100	(79-123)	2.50	(< 20)
Trichlorofluoromethane	30	29.8	100	30	28.2	94	(65-141)	5.50	(< 20)
Vinyl acetate	30	32.6	109	30	33.9	113	(54-146)	3.90	(< 20)
Vinyl chloride	30	29.0	97	30	27.5	92	(58-137)	5.40	(< 20)
Xylenes (total)	90	94.0	104	90	93.1	103	(79-121)	0.91	(< 20)

Print Date: 01/11/2021 3:48:24PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209879 [VXX36752] Blank Spike Lab ID: 1596491 Date Analyzed: 12/22/2020 18:15 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36752] Spike Duplicate Lab ID: 1596492 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

Results by SW8260D

	Blank Spike (%)			Spike Duplicate (%)					
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	89.7	90	30	89.9	90	(81-118)	0.17	
4-Bromofluorobenzene (surr)	30	91.8	92	30	91.3	91	(85-114)	0.50	
Toluene-d8 (surr)	30	104	104	30	105	105	(89-112)	0.72	

Batch Information

Analytical Batch: VMS20530 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36752 Prep Method: SW5030B Prep Date/Time: 12/22/2020 18:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:24PM

Mathad Diaula							
Method Blank Blank ID: MB for HBN 181508 Blank Lab ID: 1596606 QC for Samples: 1209879005, 1209879006	Matrix: Water (Surface, Eff., Ground)						
Results by SW8260D-SIM							
<u>Parameter</u> 1,2-Dibromoethane	<u>Results</u> 0.00250U	<u>LOQ/CL</u> 0.00500	<u>DL</u> 0.00125	<u>Units</u> ug/L			
Surrogates 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	99.3 98	85-114 89-112		% %			
Analytical Batch: VMS20532 Analytical Method: SW8260D Instrument: VSA Agilent GC/N Analyst: NRB Analytical Date/Time: 12/26/2	Prep Met Prep Dat Prep Initi	ch: VXX36757 thod: SW5030B re/Time: 12/26/2 al Wt./Vol.: 25 m ract Vol: 25 mL	020 4:00:00PM hL	4:00:00PM			

Print Date: 01/11/2021 3:48:26PM

_

Blank Spike ID: LCS for HBN 1209879 [VXX36757] Blank Spike Lab ID: 1596607 Date Analyzed: 12/26/2020 16:31 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36757] Spike Duplicate Lab ID: 1596608 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879005, 1209879006

Results by SW8260D-SIM

E	Blank Spike	(ug/L)	S	pike Duplic	ate (ug/L)			
<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
0.2	0.195	97	0.2	0.198	99	(77-121)	1.40	(< 20)
30	95.6	96	30	96.4	96	(85-114)	0.88	(< 20)
30	96.5	97	30	98.3	98	(89-112)	1.80	(< 20)
	<u>Spike</u> 0.2 30	Spike Result 0.2 0.195 30 95.6	0.2 0.195 97 30 95.6 96	Spike Result Rec (%) Spike 0.2 0.195 97 0.2 30 95.6 96 30	Spike Result Rec (%) Spike Result 0.2 0.195 97 0.2 0.198 30 95.6 96 30 96.4	Spike Result Rec (%) Spike Result Rec (%) 97 0.2 0.198 99 30 95.6 96 30 96.4 96	Spike Result Rec (%) Spike Result Rec (%) CL 0.2 0.195 97 0.2 0.198 99 (77-121) 30 95.6 96 30 96.4 96 (85-114)	Spike Result Rec (%) Spike Result Result Rec (%) CL RPD (%) 0.2 0.195 97 0.2 0.198 99 (77-121) 1.40 30 95.6 96 30 96.4 96 (85-114) 0.88

Batch Information

Analytical Batch: VMS20532 Analytical Method: SW8260D-SIM Instrument: VSA Agilent GC/MS 7890B/5977A Analyst: NRB Prep Batch: VXX36757 Prep Method: SW5030B Prep Date/Time: 12/26/2020 16:00 Spike Init Wt./Vol.: 0.2 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 ug/L Extract Vol: 25 mL

Print Date: 01/11/2021 3:48:29PM

Method Blank

Blank ID: MB for HBN 1815094 [VXX/36758] Blank Lab ID: 1596639 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879003, 1209879004

Results by SW8260D

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	91.7	81-118		%
4-Bromofluorobenzene (surr)	92	85-114		%
Toluene-d8 (surr)	105	89-112		%

Batch Information

Analytical Batch: VMS20533 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Analytical Date/Time: 12/23/2020 4:03:00PM Prep Batch: VXX36758 Prep Method: SW5030B Prep Date/Time: 12/23/2020 4:00:00PM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:32PM

Blank Spike ID: LCS for HBN 1209879 [VXX36758] Blank Spike Lab ID: 1596640 Date Analyzed: 12/23/2020 16:18 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36758] Spike Duplicate Lab ID: 1596641 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879003, 1209879004

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (uɑ/L)			
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	28.3	94	30	29.0	97	(79-124)	2.20	(< 20)
4-Isopropyltoluene	30	29.1	97	30	30.2	101	(77-127)	3.70	(< 20)
Benzene	30	31.6	105	30	31.6	105	(79-120)	0.24	(< 20)
Naphthalene	30	27.5	92	30	31.6	105	(61-128)	14.00	(< 20)
o-Xylene	30	31.9	106	30	32.3	108	(78-122)	1.30	(< 20)
P & M -Xylene	60	63.4	106	60	64.6	108	(80-121)	1.80	(< 20)
sec-Butylbenzene	30	29.3	98	30	30.3	101	(77-126)	3.30	(< 20)
Xylenes (total)	90	95.3	106	90	96.9	108	(79-121)	1.60	(< 20)
Surrt f aœg									
1,2-Dichloroethane-D4 (surr)	30	88.9	89	30	89	89	(81-118)	0.14	
4-Bromofluorobenzene (surr)	30	90.6	91	30	90.7	91	(85-114)	0.10	
Toluene-d8 (surr)	30	105	105	30	106	106	(89-112)	1.00	

Baosc hlt rmaoit n

Analytical Batch: VMS20533 Analytical Method: SW8260D Instrument: Af ileno7890-75MS Analyst: NRB Prep Batch: VXX36758 Prep Method: SW5030B Prep Date/Time: 12/23/2020 16:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 01/11/2021 3:48:35PM

_	Method Blank		<u> </u>								
	Blank ID: MB for HBN 181511 Blank Lab ID: 1596704	4 [VXX/36761]	Μ	Matrix: Water (Surface, Eff., Ground)							
	QC for Samples: 1209879001, 1209879002, 1209	879003, 1209879004, 120	09879005, 1209879	006							
_	Results by AK101]								
	Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L						
	Surrogates 4-Bromofluorobenzene (surr)	99.6	50-150		%						
-[Batch Information										
	Analytical Batch: VFC15474 Analytical Method: AK101 Instrument: Agilent 7890 PID Analyst: MDT Analytical Date/Time: 12/23/2	Prep Prep Prep	Batch: VXX36 Method: SW5 Date/Time: 12 Initial Wt./Vol.: Extract Vol: 5	030B 2/23/2020 6:00:00AN 5 mL	И						

Print Date: 01/11/2021 3:48:38PM

Blank Spike ID: LCS for HBN 1209879 [VXX36761] Blank Spike Lab ID: 1596705 Date Analyzed: 12/23/2020 12:56 Spike Duplicate ID: LCSD for HBN 1209879 [VXX36761] Spike Duplicate Lab ID: 1596706 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879001, 1209879002, 1209879003, 1209879004, 1209879005, 1209879006

Print Date: 01/11/2021 3:48:40PM

Method Blank Blank ID: MB for HBN 1815125 [X / / 3195]]L Blank DG: ID: 1570318 CS for map els0: 11 / 78 / 71 / 5 y sOcb0 GUEPA 300.0 gatab Sate y SOcb0 Back Information hnatUxQai MaxTo; : _gh 91 6 hnatUxQai MaxTo; : _gh 91 6 InhatUxQai MaxTo; : _gh 91 6 InhatUxQai MaxTo; : _gh 91 6 gree Bax Tr: X//195]] gree MaxTo; : MA or The Max of Dr		
Blank ba6 ID: 157Q818 CS for map els0: 1ti 78] 7i i 5 y s0clx0 6UEPA 300.0 garap sxsr y s0clx0 mclfaxs i Gi i O i Gi i i G5i i p A3b Batch Information hnalUWAI Bax, T: X ISQIt Q hnalUWAI MsxTo): . gh 9i i G InOrcep snx 79i MsxroTp , op ea, xIS fls(hnalUX h @ grse InWAI X x04 olG 1 i p b	Method Blank	
1ti 78] 7i i 5 y s0clx0 6UEPA 300.0 garap sxsr mclfaxs y s0clx0 bP C 35b Db On W0 mclfaxs i G i i O i G i i i i G 5 i i p A3b Batch Information hnalUk/kal Bax T: X ISQit Q grse Bax T: X // 195]] hnalUk/kal Bax To :		MaxtW. X axsr umcrfa, sE. ffœd rocn) R
y s0clx0 6UEPA 300.0 garap sxsr y s0clx0 mclfaxs i Gi i O Db On W0 mclfaxs i Gi i O i Gi i i G5i i p A3b Batch Information grse Bax, T: X // 195]] grse Bax, T: X // 195]] hnalUW/kal Bax, T: X ISQ1t Q grse Bax, T: X // 195]] grse MsxTo):gh 9i i G In0xrcp snx 79i MsxroTp , op ea, xIS fls(grse Daxs3/\p/s: 113:73i ti 1i:ii:ihM grse In\WM X x3tolG 1i p b grse In\WM X x3tolG 1i p b		
garap sxsr mclfaxs y s0clx0 i Gi i O bPC3Sb i Gi i Db i Gi i OnW0 p A3b Batch Information hnalUW/Al Bax, T: X ISQ1t Q hnalUW/Al MsxTo): . gh 9i i G In0xrcp snx 79i MsxroTp , op ea, xIS fls(hnalU0x h Gi grse Bax, T: X / / 195]] grse MsxTo): M. VHPD grse Daxs3/\p/s: 1t 3t 73 i ti 1i:ii:ihM grse In\WAX X3t olG 1i p b	1t i 78] 7i i 5	
garap sxsr mclfaxs y s0clx0 i Gi i O bPC3Sb i Gi i Db i Gi i OnW0 p A3b Batch Information hnalUW/Al Bax, T: X ISQ1t Q hnalUW/Al MsxTo): . gh 9i i G In0xrcp snx 79i MsxroTp , op ea, xIS fls(hnalU0x h Gi grse Bax, T: X / / 195]] grse MsxTo): M. VHPD grse Daxs3/\0/s: 1t3 73iti 1i:ii:ihM grse In\00AX X34 olG 1i p b		
mclfaxs i Gi i O i Gi i i G 5i i p A3b Batch Information InalUW/Al Bax, T: X ISQ1t Q grse Bax, T: X // 195]] hnalUW/Al MsxTo): gh 9i i G grse MsxTo): . M. VHPD In0xrcp snx 79i MsxroTp , op ea, xIS fls(grse Daxs3/\p/s: 1t 3t 73 i ti 1i:ii:ihM hnalUW/Al grse In\WAX x34 olG 1i p b	y s0clx0 6U EPA 300.0	
hnalUW,Val Bax, T: X ISQ1t Qgrse Bax, T: X / / 195]]hnalUW,Val MsxTo): gh 9i i Ggrse MsxTo): M. VHPDIn0xrcp snx 79i MsxroTp , op ea, xIS fls(grse Daxs3/Vp/s: 1t 3t 73 i t i 1i : i i : i i hMhnalU0x hOBgrse InVXAN X 34 olG 1 i p b		
hnalUW,ValMsxTo):.gh9ii0G grseMsxTo): M.VHPD In0xrcpsnx 79iMsxroTp, opea, xISfls(grseDaxs3vAp/s: 1t3t73titi hnalU0x Ma	Batch Information	
	hnalU&Aal MsxTo): .gh 9iiG In0xrcpsnx 79i MsxroTp ,opea,xISfls(hnalU0x hOa	grse MsxTo): M. VHPD grse Daxs3V(v)/s: 1t3t73titi 1i:iiihM grse InWaMX x334olG 1i p b

grWk/Daxs: i13113tit1 9:28:29gM

mdmNorxThpsrWaln,G

SGS	

Blank Spike Summary			_	
Blank Spike ID: LCS for HB Blank Spike Lab ID: 159681 Date Analyzed: 12/29/2020	9	WXX1357	7]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 120987	9005			
Deputte by EDA 200.0				
Results by EPA 300.0	F	Blank Spike	(mg/L)	
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	CL
Sulfate	<u>5</u>	5.11	102	(90-110)
	Ũ	0		(00.00)
Batch Information				
Analytical Batch: WIC6126				Prep Batch: WXX13577
Analytical Method: EPA 300.				Prep Method: METHOD
Instrument: 930 Metrohm co Analyst: A.A	mpact IC flex	(Prep Date/Time: 12/29/2020 10:00 Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL
Analyst. AlA				Dupe Init Wt./Vol.: Extract Vol:
Print Date: 01/11/2021 3:48:46PM				
	1 200	West Datt	or Drive Anchev	rage AK 95518

Matrix Spike Summary										
Original Sample ID: 1596 MS Sample ID: 1596822 MSD Sample ID: QC for Samples: 120987	MS		_		Analysis Analysis	Date: 12 Date:	2/29/2020 2/29/2020 urface, Eff.	18:31)	
Results by EPA 300.0	Sample	Ma	trix Spike (i Result	mg/L) Rec (%)	Spike	e Duplicate Result	e (mg/L) Rec (%)	CL	RPD (%)	RPD CL
Batch Information	2.23	5.00	7.07	97			<u></u>	90-110	<u></u>	
Analytical Batch: WIC612	26				o Batch: V o Method:	NXX13577			,	

Print Date: 01/11/2021 3:48:47PM

SGS North America Inc.

SGGS Matrix Spike Summary										
Original Sample ID: 1596 MS Sample ID: 1596824 MSD Sample ID: QC for Samples: 120987	MS		_		Analysis Analysis	Date: 12 Date:	2/29/2020 2/29/2020 urface, Eff.	21:21)	
Results by EPA 300.0		Ма	trix Spike (ma/L)	Spike	e Duplicate	e (ma/L)			
<u>Parameter</u> Sulfate	<u>Sample</u> 1.93	<u>Spike</u> 5.00	<u>Result</u> 6.8	<u>Rec (%)</u> 98	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	RPD CL
Batch Information										
Analytical Batch: WIC61 Analytical Method: EPA Instrument: 930 Metrohr Analyst: A.A Analytical Date/Time: 12	300.0 n compact IC flex			Pre Pre Pre	o Method: o Date/Tim o Initial Wt		.0 Extractior 2020 10:00 .00mL		iquids	

Print Date: 01/11/2021 3:48:47PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 181541[\XXX/336667 Blank] aL ID: 15b[334

9 0 for QaC Slmp: 1e4b8sb445

) mpW2p LR8270D SIM LV (PAH)

OaraC m2m	<u>) mpW2p</u>	<u>]U9/0]</u>	<u>D]</u>	<u>y n,2</u> p
1PMm2gRnaSg2galmnm	4 ⊉ e54y	4母544	4昼154	₩/]
ePMm2gRnaSg2galmnm	4 ⊉ e54y	4년544	4昼154	₩/]
z(mnaSg2gmmm	4 ⊉ e54y	4년544	4昼154	₩/]
z(mnaSg2gRmm	4昼e54y	4월544	4日154	₩/]
zn2gra(mnm	4昼e54y	4월544	4日154	₩/]
Bmn%oxadzn2gra(mnm	4 ⊉ e54y	4母544	4日154	₩/]
Bmm%∿a7SRrmm	4 屆 144y	4昼e44	4 嵒 4[e4	₩/]
Bmm%∿L7AlWoran2gmmm	4 ⊵ e54y	4월544	4昼154	₩/]
Bmn%oVugu,7SmrRmmm	4 ⊵ e54y	4월544	4昼154	₩/]
Bmn%oWk7flWøran2gmnm	4 ⊵ e54y	4월544	4昼154	₩/]
0 grRpmnm	4 ⊒ e54y	4월544	4昼154	₩/]
D,Lmm%o\aug7an2gra(mm	4 ⊠ 144y	4 ⊡ e44	4월4[e4	₩/]
AlWoran2gmnm	4 ⊵ e54y	4월544	4昼154	₩/]
AlVormm	4 ⊵ e54y	4월544	4昼154	₩/]
In GmoViueu6R(uG7SRmmm	4 ⊵ e54y	4월544	4昼154	₩/]
NaSg2galmmm	4 ⊠ 544y	4日44	4昼614	V¥ /]
Ogman2grmm	4 ⊵ e54y	4월544	4昼154	V¥ /]
ORmm	4 昼 e54y	4母544	4昼154	V¥ /]
Surrogates				
eRMm2gRinaSg2galmnmRG14 xpWrd	53Ę	6sRs8		h
AlWøran2gmmnPG14 xpWrd	[sEs	e3PI1[h

Batch Information

z nalR2(al Ba2(g: XMQ1e356 z nalR2(al Mn2goG 8es4D QIM] F xOz Hd Inp2WCm2 QFz z - ,Im2s84/5bs5 . 0/MQ z nalRp2] z i z nalR2(al Da2n/K,Cm 1e/e6/e4e4 s:11:44OM OrmS Ba2(g: XXX33666 OrmS Mm2goG Qi 6565z OrmS Da2m/K,Cm 1e/e6/e4e4 8:55:e4z M OrmS In,2al i 227FoIE e54 C] OrmS ct 2/a(2FoI: 1 C]

Ma2,t:i a2mr xQWfa(mucffE).roWhGd

Or,n2Da2m 41/11/e4e1 6:38:3bOM

Q. Q Nor2g z Cmr,(a In(E

e44 i mp2Oo22mrDr,Tmzn (gora-muzv b5518 tb4s55[ebe636 fb4s55[155641 www55/1¢55-pfξoC

Blank Spike ID: LCS for HBN 1209879 [XXX44333] Blank Spike Lab ID: 1596441 Date Analyzed: 12/23/2020 19:31 Spike Duplicate ID: LCSD for HBN 1209879 [XXX44333] Spike Duplicate Lab ID: 1596442 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879005

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.17	58	2	1.26	63	(41-115)	7.50	(< 20)
2-Methylnaphthalene	2	1.18	59	2	1.25	63	(39-114)	6.10	(< 20)
Acenaphthene	2	1.19	59	2	1.30	65	(48-114)	9.00	(< 20)
Acenaphthylene	2	1.30	65	2	1.39	70	(35-121)	6.70	(< 20)
Anthracene	2	1.28	64	2	1.37	68	(53-119)	7.00	(< 20)
Benzo(a)Anthracene	2	1.23	62	2	1.35	68	(59-120)	9.20	(< 20)
Benzo[a]pyrene	2	1.43	72	2	1.55	78	(53-120)	8.30	(< 20)
Benzo[b]Fluoranthene	2	1.37	68	2	1.52	76	(53-126)	10.50	(< 20)
Benzo[g,h,i]perylene	2	1.45	72	2	1.56	78	(44-128)	7.60	(< 20)
Benzo[k]fluoranthene	2	1.40	70	2	1.50	75	(54-125)	7.00	(< 20)
Chrysene	2	1.36	68	2	1.47	74	(57-120)	8.30	(< 20)
Dibenzo[a,h]anthracene	2	1.40	70	2	1.49	75	(44-131)	6.30	(< 20)
Fluoranthene	2	1.38	69	2	1.53	76	(58-120)	10.20	(< 20)
Fluorene	2	1.28	64	2	1.40	70	(50-118)	8.60	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.49	75	2	1.61	80	(48-130)	7.50	(< 20)
Naphthalene	2	1.27	63	2	1.34	67	(43-114)	5.30	(< 20)
Phenanthrene	2	1.33	67	2	1.43	72	(53-115)	7.00	(< 20)
Pyrene	2	1.36	68	2	1.50	75	(53-121)	9.90	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	53.5	54	2	59.7	60	(37-78)	11.00	
Fluoranthene-d10 (surr)	2	65.7	66	2	73.5	74	(24-116)	11.20	

Batch Information

Analytical Batch: XMS12453 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: LAW Prep Batch: XXX44333 Prep Method: SW3535A Prep Date/Time: 12/23/2020 08:55 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 01/11/2021 3:48:52PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank					
Blank ID: MB for HBN 1815100 Blank Lab ID: 1596663	[XXX/44342]	Mat	trix: Water (Surfa	ice, Eff., Ground)	
QC for Samples: 1209879001, 1209879002, 120987	79003, 1209879004, 120	9879005			
Results by AK102		j			
Parameter	Results	LOQ/CL	DL	<u>Units</u>	
Diesel Range Organics	0.300U	0.600	0.180	mg/L	
Surrogates					
5a Androstane (surr)	97.4	60-120		%	
Batch Information					
Analytical Batch: XFC15839		Prep F	Batch: XXX44342		
Analytical Method: AK102			Method: SW35200		
Instrument: Agilent 7890B F			Date/Time: 12/28/		
_		Prep I	Initial Wt./Vol.: 250	0 mL	
Analyst: IVM Analytical Date/Time: 1/6/2021	5 00 00D14		Extract Vol: 1 mL		

Print Date: 01/11/2021 3:48:54PM

Blank Spike ID: LCS for HBN 1209879 [VVVXX3X26 Blank Spike La] ID: 1b9555X Date Analyzed: 01/05/2021 17:X1 Spike Duplicate ID: LCSD for HBN 1209879 [VVVXX3X26 Spike Duplicate La] ID: 1b9555b Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879001, 1209879002, 1209879003, 120987900X, 120987900b

		Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range 4 rganics	20	19.3	95	20	18.b	92	(7bCl2b)	X.20	(- 20)
Surrogates									
ba Androstane (surr)	0.X	107	107	0.X	105	105	(500120)	1.00	
Analytical Batc<: XFC15839 Analytical Met <od: <b="">AK102 Instrument: Agilent 7890B F Analyst: IVM</od:>				Pre Pre Spil	ke Init Wt./T	SW3520C e: 12/28/202 ⁻ ol.: 20 mg/l	20 15:44 _ Extract To _ Extract Tol		

Print Date: 01/11/2021 3:X8:b7PM

Method Blank]			
Blank ID: MB for HBN 181510 Blank Lab ID: 1596663	0 [XXX/44342]	Matri	x: Water (Surfa	ace, Eff., Ground)	
QC for Samples: 1209879001, 1209879002, 12098	379003, 1209879004, 120	09879005			
Results by AK103					
<u>Parameter</u> Residual Range Organics	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	
Surrogates nA riacontane <i>A</i> d62 (surr)	105	60 A 120		%	
Batch Information					
hnalytical BatcF: XKC15839 hnalytical MetFod: hV103 Instrument: hgilent 7890B K hnalyst: ITM hnalytical Date/- ime: 1/6/202	1 5:32:00PM	Prep Me Prep Da Prep Ini	ttcF: XXX44342 etFod: SW3520 ate/- ime: 12/28, tial Wt./Tol.: 25 tract Tol: 1 mL	C /2020 3:44:30PM	

Print Date: 01/11/2021 3:49:00PM

Blank Spike ID: LCS for HBN 1209879 [VVVXX3X26 Blank Spike La] ID: 1b9555X Date Analyzed: 01/05/2021 17:X1 Spike Duplicate ID: LCSD for HBN 1209879 [VVVXX3X26 Spike Duplicate La] ID: 1b9555b Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209879001, 1209879002, 1209879003, 120987900X, 120987900b

urrogates n@triacontane@152 (surr) 0.X 103 0.X 102 (50C120) 0.55 Batch Information Analytical Batch: XFC15823 Prep Batch: XXXM2M4 Analytical Method: AK102 Prep Method: SW2540C Instrument: Agilent 9830B F Prep Date/ <ime:< td=""> 14/48/4040 15:MM</ime:<>
Surrogates n@riacontane@52 (surr) 0.X 103 0.X 102 (50C120) 0.55 Batch Information Analytical Batch: XFC15823 Analytical Method: AK102 Instrument: Agilent 9830B F Prep Batch: XXXMVEM4 Prep Method: SW2540C Prep Date/ <ime: 14="" 15:mm<="" 4040="" 48="" td=""></ime:>
n@riacontane@l52 (surr) 0.X 103 103 0.X 102 (50C120) 0.55 Batch Information Analytical Batch: XFC15823 Analytical Method: Prep Batch: XXXMM2M4 Prep Method: SW2540C Prep Date/ <ime:< td=""> 14/48/4040 15:MM</ime:<>
Batch Information Analytical Batch: XFC15823 Analytical Method: AK102 Instrument: Agilent 9830B F
Analytical Method:AK102Prep Method:SW2540CInstrument:Agilent 9830B FPrep Date/ <ime:< td="">14/48/404015:MM</ime:<>
Analyst: I7V Spike Init Wt./Tol.: 20 mg/L Extract Tol: 1 mL Dupe Init Wt./Tol.: 20 mg/L Extract Tol: 1 mL

Print Date: 01/11/2021 3:X9:03PM

Collec	tion Organization: Project Number:		Site GW Mon	itoring		of-Custody: Laboratory:		FS01	Cooler ID: Bill To:	Jacobs		Number: eport To:	
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
BFS-MW2-GW	MW2	12/17/2020	0950	GW/KS	5	VOA	40mL	<6°C; HC1	GW	AK101, SW8260		14 Day	Limited Volume GRO, VOCs
BFS-MW2-GW	MW2	12/17/2020	0950	GW/KS	2	GA	250mL	<6°C; HCl	GW	AK102/103		14 Day	DRO/RRO
BFS-MW2-GWA	MW2	12/17/2020	0950	GW/KS	5	VOA	40mL	<6°C; HCI	GW	AK101, SW8260		14 Day	Limited Volume GRO, VOCs
BFS-MW2-GWA	MW2	12/17/2020	0950	GW/KS	2	GA.	250mL	<6°C; HCI	GW	AK102/103		14 Day	DRO/RRO
BFS-MW5-GW 3AF	MW5	12/17/2020	1155	GW/KS	6	VOA	40mL	<6°C; HCl	GW	AK101, SW8260		14 Day	GRO, VOCs
BFS-MW5-GW 3GH	MW5	12/17/2020	1155	GW/KS	2	GA	250mL	<6°C; HCl	GW	AK102/103		14 Day	DRO/RRO
BFS-MW8-GW (HAF)	MW8	12/17/2020	1506	GW/KS	6	VOA	40mL	<6°C; HCl	GW	AK101, SW8260		14 Day	GRO, VOCs
BES-MW8-GW (4GH)	MW8	12/17/2020	1506	GW/KS	2	GA	250mL	<6°C; HC1	GW	AK102/103		14 Day	DRO/RRO
MAW/BFS-EB	MAW/BFS-EB	12/18/2020	1530	KS	12	VOA	40mL	<6°C; HCl	GW	AK101, SW8260, SW8260 SIM, RSK 175	EB	14 Day	GRO, VOCs, EDB, Methane
MAW/BFS-EB (SMN)	MAW/BFS-EB	12/18/2020	1530	KS	2	GA	250mL	<6°C; HCl	GW	AK102/103	EB	14 Day	DRO/RRO
MAW/BFS-EB 50P	MAW/BFS-EB	12/18/2020	1530	KS	2	GA	250mL	<6°C	GW	SW8270 SIM	EB	14 Day	PAHs
MAW/BFS-EB	MAW/BFS-EB	12/18/2020	1530	KS	a.	Poly	125mL	HNO3	GW	SW6020A	EB	14 Day	Fe, Mn
MAW/BFS-EB (SR)	MAW/BFS-EB	12/18/2020	1530	KS	1	Poly	60mL	<6°C	GW	EPA 300.0	EB	14 Day	Sulfate
MAW/BFS-TB01 GAT	MAW-TB01	12/17/2020	0800	GW/KS	9	VOA	40mL	<6°C; HCl	w	AK101, SW8260, SW8260 SIM	ТВ	14 Day	GRO, VOCs, EDB
Relinquish By Relinquish By Received By:	Signature/Prilted Name	365103	20	/Kari Hager J	enautions	12/21/2020 DateTime DateTime 209	20 lb	Received By	Septemperation	TB=4.1°C	en //		S 12-21- Date: Time (22/20 10:3 Date: TB-3.3 D CS-1FIB Lynden

000	e-Sample	e Receipt F	orm FBK					
262	SGS Workorder #:	1	2098	79	1:	2098	879	
Re	view Criteria	Condition (Yes,	No, N/A	Exce	eptions Not	ed belo	w	
<u>Chain o</u>	f Custody / Temperature Requi	rements	Ye	es Exemption per	rmitted if samp	ler hand ca	arries/deliv	ers.
	Were Custody Seals intact? Note # &	location N/A						
	COC accompanied sa	amples? Yes						
DOD: Were s	amples received in COC corresponding							
	**Exemption permitted if		cted <8 hou	irs ago, or for sam	ples where chi	lling is not		
Temperat	ure blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@			D23
			Cooler ID:		@	rD.	Therm. ID:	
	temperature blank, the "cooler temperature" wil EMP" will be noted to the right. "ambient" or "ch		Cooler ID:		@		Therm. ID:	
	oted if neither is available.		Cooler ID:		@	rD.	Therm. ID:	
*lf >6	°C, were samples collected <8 hours	s ago?						
		- (ree)						
	If <0°C, were sample containers ice	e free ?						
	ers received at non-compliant tempe Use form FS-0029 if more space is n							
		ieeueu.						
	ocumentation / Sample Condition R		Note: Refer	r to form F-083 "S	ample Guide" f	ior specific	holding tir	nes.
Do samples match CO	C** (i.e.,sample IDs,dates/times colle	ected)? N/C						
	fer <1hr, record details & login per C							
	ontainers differs from COC, SGS will default to							
Were samples in g	good condition (no leaks/cracks/brea	akage)? Yes						
Were analytical requests of	clear? (i.e., method is specified for ar	nalyses						
	Itiple option for analysis (Ex: BTEX,	Metals)						
Mara Trip Blooks	(i.e., VOAs, LL-Hg) in cooler with sa	Yes						
-								
	ls free of headspace (i.e., bubbles ≤ soil VOAs field extracted with MeOH							
	fold Time, was RUSH/Short HT ema							
	ent: Any "No", answer above indicates no		with standar	rd procedures and	may impact d	ata quality		
		al notes (if a					-	
					-			
SGS Profil	e #				0			

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1209879001-A	HCL to pH < 2	ОК	1209879006-B	HCL to pH < 2	ОК
1209879001-B	HCL to $pH < 2$	OK	1209879006-C	HCL to $pH < 2$	OK
1209879001-C	HCL to $pH < 2$	OK	1209879006-D	HCL to $pH < 2$	OK
1209879001-D	HCL to $pH < 2$	OK	1209879006-E	HCL to $pH < 2$	OK
1209879001-E	HCL to $pH < 2$	OK	1209879006-F	HCL to $pH < 2$	OK
1209879001-E	HCL to $pH < 2$	OK	1209879006-G	HCL to $pH < 2$	OK
1209879001-G	HCL to $pH < 2$	OK	1209879000-G	HCL to $pH < 2$	OK
1209879001-G 1209879002-A	HCL to $pH < 2$	OK	1209879006-I	HCL to $pH < 2$	OK
1209879002-B	HCL to $pH < 2$	OK	12090790001		UK
1209879002-D	HCL to $pH < 2$	OK			
1209879002-C	HCL to $pH < 2$	OK			
1209879002-E	HCL to $pH < 2$	OK			
	HCL to $pH < 2$	OK			
1209879002-F	HCL to pH < 2	OK			
1209879002-G	HCL to $pH < 2$				
1209879003-A	HCL to $pH < 2$	OK OK			
1209879003-B	HCL to pH < 2				
1209879003-C	HCL to pH < 2	OK			
1209879003-D	HCL to pH < 2	OK			
1209879003-E	HCL to $pH < 2$	OK			
1209879003-F	HCL to $pH < 2$	OK			
1209879003-G	HCL to pH < 2	OK			
1209879003-H	HCL to $pH < 2$	OK			
1209879004-A		OK			
1209879004-B	HCL to $pH < 2$	OK			
1209879004-C	HCL to $pH < 2$	OK			
1209879004-D	HCL to $pH < 2$	OK			
1209879004-E	HCL to $pH < 2$	OK			
1209879004-F	HCL to $pH < 2$	OK			
1209879004-G	HCL to $pH < 2$	OK			
1209879004-H	HCL to $pH < 2$	OK			
1209879005-A	HCL to $pH < 2$	OK			
1209879005-B	HCL to $pH < 2$	OK			
1209879005-C	HCL to pH < 2 HCL to pH < 2	OK			
1209879005-D		OK			
1209879005-E	HCL to $pH < 2$	OK			
1209879005-F	HCL to $pH < 2$	OK			
1209879005-G	HCL to pH < 2	OK			
1209879005-H	HCL to $pH < 2$	OK			
1209879005-I	HCL to $pH < 2$	OK			
1209879005-J	HCL to $pH < 2$	OK			
1209879005-K	HCL to pH < 2	OK			
1209879005-L	HCL to pH < 2 HCL to pH < 2	OK			
1209879005-M		OK			
1209879005-N	HCL to $pH < 2$	OK			
1209879005-0	No Preservative Required	OK			
1209879005-P	No Preservative Required	OK			
1209879005-Q	HNO3 to $pH < 2$	OK			
1209879005-R	No Preservative Required	OK			
1209879006-A	HCL to pH < 2	OK			

<u>Container Id</u>

<u>Preservative</u>

<u>Container</u> <u>Condition</u> Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Orlando, FL

Automated Report

The results set forth herein are provided by SGS North America Inc.

Technical Report for

SGS North America, Inc

1209879

SGS Job Number: FA82047

Sampling Date: 12/18/20

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 julie.shumway@sgs.com

ATTN: Julie Shumway

Total number of pages in report: 16

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-6700

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

Table of Contents

N

ယ

4 5

6

-1-

Section 1: Sample Summary	
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA82047-1: 20MAW/BFS-EB	7
Section 5: Misc. Forms	8
5.1: Chain of Custody	9
5.2: QC Evaluation: DOD QSM5.x Limits	11
Section 6: GC Volatiles - QC Data Summaries	12
6.1: Method Blank Summary	13
6.2: Blank Spike/Blank Spike Duplicate Summary	14
6.3: Matrix Spike Summary	15
6.4: Duplicate Summary	16

Sample Summary

SGS North America, Inc

1209879

Sample	Collected			Matr		Client
Number	Date	Time By	Received	Code	туре	Sample ID
FA82047-1	12/18/20	15:30	12/24/20	AQ	Water	20MAW/BFS-EB

Job No: FA82047

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	SGS North America, Inc	Job No:	FA82047
Site:	1209879	Report Date	12/31/2020 10:40:10

1 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 12/18/2020 and were received at SGS North America Inc -Orlando on 12/24/2020 properly preserved, at 2.2 Deg. C and intact. These Samples received an SGS Orlando job number of FA82047. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

GC Volatiles By Method RSKSOP-147/175

Matrix: AQ

Batch ID: G1R153

All samples were analyzed within the recommended method holding time.

Sample(s) LA68517-2DUP, LA68517-3MS were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Ellen Pampel, LogIn/Safety (signature on file)

4 of 16

Summaryof HitsJob Number:FA82047Account:SGS North SGS North America, Inc Project: Collected: 1209879 12/18/20

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method
FA82047-1	20MAW/BFS-EB					
Methane		0.22 J	0.50	0.25	ug/l	RSKSOP-147/175

Page 1 of 1

ယ

Orlando, FL

Sample Results

Report of Analysis

4

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix:	•	20MAW FA8204 AQ - W						e Sampled e Received		2/18/20 2/24/20
Method: Project:		RSKSO 1209879	P-147/175)				Per	cent Solids	s: n/a	a
Run #1 Run #2	File ID 1R4174		DF 1	Analyzed 12/28/20 12	By :09 KB	Prep I n/a	Date	Prep Ba n/a	itch	Analytical Batch G1R153
Run #1 Run #2	Initial 38.0 m	Volume 1	Headspa 5.0 ml	ce Volume V 50	7 olume Inj 00 ul	ected	Temper 25 Deg.			
CAS No.	Comp	ound		Result	LOQ	LOD	DL	Units	Q	
74-82-8 74-84-0 74-85-1	Metha Ethan Ethen	e		0.22 0.50 U 0.50 U	0.50 1.0 1.0	0.25 0.50 0.50	0.16 0.32 0.43	ug/l ug/l ug/l	J	

 $J= \ Indicates \ an \ estimated \ value$

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- QC Evaluation: DOD QSM5.x Limits

5

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide

Virginia

Alaska Florida New Jersey Colorado Texas North Carolina

Louisiana

CLIENT:	SGS North Ame	rica Inc Alaska Division				SGS Reference: SGS Orlando							lando	Page 1 of 1	
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	52-2343	Add	itional	Comm	ents	: All	soils	геро	ort out	t in dry weig	ht unless	Page For F
PROJECT NAME:	1209879	PWSID#: NPDL#:			# C	Preserv- ative Used:	HCI								
REPORTS TO: J	Julie Shumway	E-MAIL: Env.Alaska.	Julie.Shumwa RefLabTeam(O N T	TYPE C = COMP	RSK-175								
INVOICE TO:	6GS - Alaska	QUOTE #: P.O. #:	1209879		AIN	G = GRAB Mi = Multi	Gases by R								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	RS	Incre- mental Solls	Light Ga		MS		MSD	SGS lab #		ocation ID	
1	20MAW/BFS-EB	12/18/2020	15:30:00	Water	3		X						1209879005	M	AW/BFS-EB
							-								
Relinguished By	<i>v</i> : (1)	Date	Time	Received	Bv:				DOD	Project	2		YES	Data Deliver	able Requirements:
Ilhi	IMIANI	12/23/2	0 0901	FX	-,.					t to DI	L (J FI	ags)? //LOQ.	YES		2 + SGS EDD
Relinguished By		Date	Time /	Received Mayah		carlin	10:3	50	Coole Rei		ed T	urnar	ound Time a	nd-or Spec	ial Instructions:
Relinquished By	y: (3)	Date	Time	Recei∳ed	By:				Temp	Blank	°C:	2.2		Chain of C	ustody Seal: (Circle)
Relinquished By	/: (4)	Date	Time	Received	For La	boratory	By:		-			mbient	[]	INTACT	BROKEN ABSENT

[X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

F088_COC_REF_LAB_20190411

FA82047: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA82047	Client:	SGS ALASKA		Project: 1209879		
Date / Time Received: 12/24/2020 1	Delivery Method: FEDEX		Airbill #'s:			
Therm ID: IR 1;		Therm CF: 0.2;		# of Coole	rs: 1	
Cooler Temps (Raw Measured) °C	: Cooler 1: (2.0);				
Cooler Temps (Corrected) °C	: Cooler 1: (2.2);				
Cooler Information Y	or N		Sample Information		Y or N	<u>N/A</u>
1. Custody Seals Present			1. Sample labels presen	t on bottles]
2. Custody Seals Intact			2. Samples preserved pr	roperly]
3. Temp criteria achieved			3. Sufficient volume/cont	tainers recvd for analysis:]
4. Cooler temp verification	Gun		4. Condition of sample		Intact	
5. Cooler media	<u>e (Bag)</u>		5. Sample recvd within H	ΗT]
			6. Dates/Times/IDs on C	COC match Sample Label		
Trip Blank Information Y	or N	N/A	7. VOCs have headspace	ce		
1. Trip Blank present / cooler			8. Bottles received for un	nspecified tests		
2. Trip Blank listed on COC			9. Compositing instruction	ons clear		
v		N//A	10. Voa Soil Kits/Jars re	ceived past 48hrs?		
		<u>N/A</u>	11. % Solids Jar receive	d?		
3. Type Of TB Received			12. Residual Chlorine Pr	resent?		
Misc. Information						
Number of Encores: 25-Gram	5-Gram	Num	ber of 5035 Field Kits:	Number of La	ab Filtered Metals	s:
Test Strip Lot #s: pH 0	-3 23031	5рн	10-12 219813A	Other: (Spec	cify)	
Residual Chlorine Test Strip Lot #: _						
Comments						
SM001 Rev. Dete 05/24/17 Technician: M	AGAI FAK	Date: 12/24/202	0 10:30:00	Reviewer:	Dat	<u>م</u>
Rev. Date 05/24/17			0.00000		Dat	

FA82047: Chain of Custody Page 2 of 2

5.1

თ

QC Evaluation: DOD QSM5.x Limits

Job Number:	FA82047
Account:	SGS North America, Inc
Project:	1209879
Collected:	12/18/20

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Unit	s Limits
G1R153	RSKSOP-147	//175					
G1R153-BS G1R153-BS G1R153-BSD G1R153-BSD G1R153-BSD G1R153-BSD G1R153-BSD G1R153-BSD	74-82-8 74-84-0 74-85-1 74-82-8 74-82-8 74-84-0 74-84-0 74-84-0 74-85-1	Methane Ethane Ethene Methane Ethane Ethane Ethane Ethane	BSP BSP BSD BSD BSD BSD BSD BSD	REC REC REC RPD REC RPD REC RPD REC	97 96 97 103 6 100 4 102	% % % % % %	73-125 74-131 72-133 73-125 30 74-131 30 72-133
G1R153-BSD	74-85-1	Ethene	BSD	RPD	5	% %	72-135 30
LA68517-3MS* LA68517-3MS* LA68517-3MS* LA68517-3MS* LA68517-2DUP* LA68517-2DUP* LA68517-2DUP*	74-82-8 74-84-0 74-85-1 74-82-8 74-84-0 74-85-1	Methane Ethane Ethene Methane Ethane Ethane	MS MS MS DUP DUP DUP	REC REC REC RPD RPD RPD	122 120 121 18 0 0	% % % % %	73-125 74-131 72-133 30 30 30

Page 1 of 1

FA82047

Section 6

GC Volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries ٠
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary Job Number: FA82047

Account: Project:	SGSAKA SGS 1 1209879	North America, I	nc			
Sample G1R153-MB	File ID 1R4159.D		nalyzed B /28/20 K	y Prep D B n/a	ate Prep Batch n/a	Analytical Batch G1R153
The QC report FA82047-1	ted here applies t	o the following s	amples:		Method: RSK	SOP-147/175
CAS No. Co	ompound	Resul	lt RL	MDL U	nits Q	

74-82-8	Methane	ND	0.50	0.16	ug/l
74-84-0	Ethane	ND	1.0	0.32	ug/l
74-85-1	Ethene	ND	1.0	0.43	ug/l

Page 1 of 1

Blank Spike/Blank Spike Duplicate Summary Job Number: FA82047

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batcl
G1R153-BS	1R4161.D	1	12/28/20	KB	n/a	n/a	G1R153
G1R153-BSD	1R4162.D	1	12/28/20	KB	n/a	n/a	G1R153

FA82047-1

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
74-82-8	Methane	108	105	97	111	103	6	62-139/30
74-84-0	Ethane	219	210	96	219	100	4	67-141/30
74-85-1	Ethene	290	282	97	295	102	5	68-141/30

Page 1 of 1

Matrix Spike Summary

Job Number:	FA82047
Account:	SGSAKA SGS North America, Inc
Project:	1209879

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
1R4172.D	1	12/28/20	KB	n/a	n/a	G1R153
1R4165.D	1	12/28/20	KB	n/a	n/a	G1R153
	1R4172.D	1R4172.D 1	1R4172.D 1 12/28/20	1R4172.D 1 12/28/20 KB	1R4172.D 1 12/28/20 KB n/a	1R4172.D 1 12/28/20 KB n/a n/a

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA82047-1

CAS No.	Compound	LA68517-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
74-82-8	Methane	0.59	108	132	122	62-139
74-84-0	Ethane	ND	219	263	120	67-141
74-85-1	Ethene	ND	290	352	121	68-141

6.3.1

Duplicate Summary

Job Number:	FA82047
Account:	SGSAKA SGS North America, Inc
Project:	1209879

Sample	File ID	DF	Analyzed 12/28/20 12/28/20	By	Prep Date	Prep Batch	Analytical Batch
LA68517-2DUP	1R4171.D	1		KB	n/a	n/a	G1R153
LA68517-2	1R4164.D	1		KB	n/a	n/a	G1R153

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FA82047-1

CAS No.	Compound	LA68517-2 ug/l Q		RPD	Limits
74-82-8	Methane	9.6	8.0	18	30
74-84-0	Ethane	ND	ND	nc	30
74-85-1	Ethene	ND	ND	nc	30

Attachment F-2 Genetic Analysis Results

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com

SITE LOGIC Report

QuantArray[®]-*Petro Study*

MI Identifier:

Contact:	Guy Wade	Phone:	907-762-1022
Address:	Jacobs 949 E. 36th Avenue Suite 500 Anchorage, AK 99508	Email:	guy.wade@jacobs.com

Report Date:

12/30/2020

Project: MarkAir Groundwater - D3414000, D3414000

096RL

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

The QuantArray[®]-Petro Approach

Comprehensive evaluation of biodegradation potential at petroleum impacted sites is inherently problematic due to two factors:

- (1) Petroleum products are complex mixtures of hundreds of aliphatic, aromatic, cyclic, and heterocyclic compounds.
- (2) Even for common classes of contaminants like benzene, toluene, ethylbenzene, and xylenes (BTEX), biodegradation can proceed by a multitude of pathways.

The QuantArray[®]-Petro has been designed to address both of these issues by providing the simultaneous quantification of the specific functional genes responsible for both aerobic and anaerobic biodegradation of BTEX, PAHs, and a variety of short and long chain alkanes.

Thus, when combined with chemical and geochemical groundwater monitoring programs, the QuantArray[®]-Petro allows site managers to simultaneously yet economically evaluate the potential for biodegradation of a spectrum of petroleum hydrocarbons through a multitude of aerobic and anaerobic pathways to give a much clearer and comprehensive view of contaminant biodegradation.

The QuantArray[®]-Petro is used to quantify specific microorganisms and functional genes to evaluate aerobic and anaerobic biodegradation of the following classes of compounds present in petroleum products:

BTEX and MTBE	Naphthalene and PAHs	Alkanes/TPH
Toluene dioxygenase (TOD) and monooxygenase (RMO, RDEG, PHE, TOL) genes for aerobic BTEX biodegradation	Includes two groups of naphtha- lene dioxygenase genes (NAH, PHN) for aerobic biodegradation	The <i>n</i> -alkanes are a substantial portion of petroleum products
Includes MTBE utilizing strain Methylibium petroleiphilum PM1 and TBA monooxygenase	Naphthylmethylsuccinate synthase (MNSSA) for anaerobic biodegra- dation of methyl-naphthalenes	The QuantArray [®] -Petro includes quantification of alkane monooxy- genase genes (ALK and ALMA)
Benzylsuccinate synthase (BSS) for anaerobic biodegradation of toluene, ethylbenzene, and xylenes	Naphthalene carboxylase	Also includes quantification of
Benzene carboxylase (ABC) for anaerobic benzene biodegradation]	(ANC) initiates the only known pathway for anaerobic naphthalene biodegradation	alkylsuccinate synthase (assA) genes to evaluate anaerobic biodegradation of alkanes

How do QuantArrays[®] work?

The QuantArray[®]-Petro in many respects is a hybrid technology combining the highly parallel detection of microarrays with the accurate and precise quantification provided by qPCR into a single platform. The key to highly parallel qPCR reactions is the nanoliter fluidics platform for low volume, solution phase qPCR reactions.

How are QuantArray[®] results reported?

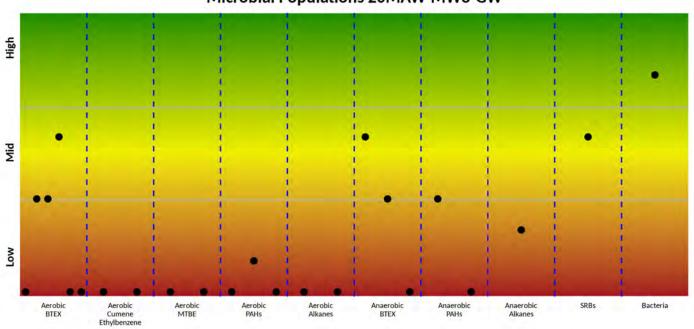
One of the primary advantages of the QuantArray[®]-Petro is the simultaneous quantification of a broad spectrum of different microorganisms and key functional genes involved in a variety of pathways for hydrocarbon biodegradation. However, highly parallel quantification combined with various metabolic and cometabolic capabilities of different target organisms can complicate data presentation. Therefore, in addition to Summary Tables, QuantArray[®]-Petro results will be presented as Microbial Population Summary and Comparison Figures to aid in the data interpretation and subsequent evaluation of site management activities.

Types of Tables and Figures:

Microbial Population Summary	Figure presenting the concentrations of QuantArray [®] - Petro target gene concentrations (e.g. toluene dioxy- genase) relative to typically observed values.
Summary Tables	Tables of target population concentrations grouped by biodegradation pathway and contaminant type.
Comparison Figures	Depending on the project, sample results can be presented to compare changes over time or examine differences in mi- crobial populations along a transect of the dissolved plume.

Results

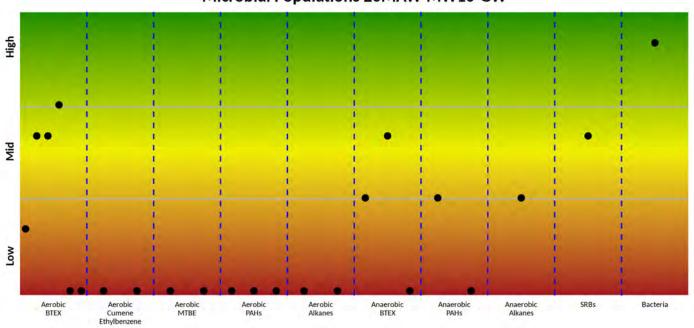
Table 1: Summary of the QuantArray[®]-Petro results obtained for samples 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW12-GW, and 20MAW-MW5-GW.


Sample Name	20MAW-MW8- GW	20MAW- MW10-GW	20MAW- MW12-GW	20MAW-MW5- GW
Sample Date	12/15/2020	12/15/2020	12/16/2020	12/16/2020
Aerobic BTEX and MTBE	cells/mL	cells/mL	cells/mL	cells/mL
Toluene/Benzene Dioxygenase (TOD)	<5.00E+00	2.43E+01	<5.00E+00	<4.50E+00
Phenol Hydroxylase (PHE)	5.07E+03	4.71E+04	2.28E+02	< 4.50E + 00
Toluene 2 Monooxygenase/Phenol Hydroxylase (RDEG)	2.70E+03	9.34E+04	<5.00E+00	<4.50E+00
Toluene Ring Hydroxylating Monooxygenases (RMO)	7.17E+03	5.09E+04	1.17E+02	< 4.50E + 00
Xylene/Toluene Monooxygenase (TOL)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Ethylbenzene/Isopropylbenzene Dioxygenase (EDO)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Biphenyl/Isopropylbenzene Dioxygenase (BPH4)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Methylibium petroleiphilum PM1 (PM1)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
TBA Monooxygenase (TBA)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Aerobic PAHs and Alkanes				
Naphthalene Dioxygenase (NAH)	5.80E+00	<7.10E+00	<5.00E+00	<4.50E+00
Naphthalene-inducible Dioxygenase (NidA)	3.99E+01	<7.10E+00	<5.00E+00	< 4.50E + 00
Phenanthrene Dioxygenase (PHN)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Alkane Monooxygenase (ALK)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Alkane Monooxygenase (ALMA)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Anaerobic BTEX				
Benzoyl Coenzyme A Reductase (BCR)	2.12E+03	9.37E+02	1.58E+03	2.13E+02
Benzylsuccinate Synthase (BSS)	6.40E+03	1.17E+04	3.80E+02	8.22E+01
Benzene Carboxylase (ABC)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Anaerobic PAHs and Alkanes				
Naphthylmethylsuccinate Synthase (MNSSA)	5.16E+03	1.33E+03	8.86E+02	<4.50E+00
Naphthalene Carboxylase (ANC)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Alkylsuccinate Synthase (ASSA)	3.90E+01	1.65E+02	6.86E+02	< 4.50E + 00
Other				
Total Eubacteria (EBAC)	2.87E+06	3.63E+07	1.01E+06	4.39E+05
Sulfate Reducing Bacteria (APS)	5.29E+04	4.09E+04	4.54E+04	3.49E+03

Legend:

NA = Not Analyzed I = Inhibited

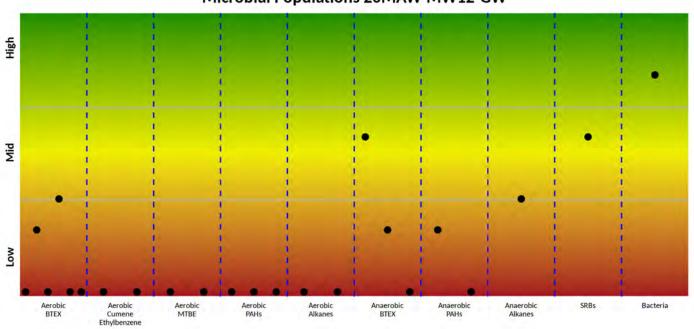
NS = Not Sampled < = Result Not Detected J = Estimated Gene Copies Below PQL but Above LQL



Microbial Populations 20MAW-MW8-GW

Figure 1: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

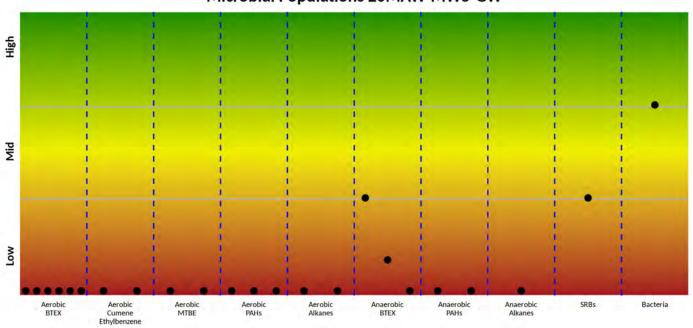
	Aerobic	An	aerobic	
BTEX Cumene, Ethylbenzene MTBE/TBA Naphthalene Phenanthrene Alkanes	TOD, PHE, RDEG, RMO, TOL, EDO EDO, BPH4 PM1, TBA NAH, NidA PHN ALK, ALMA	BTEX Naphthalene/Methylnaphthalene Alkanes	BCR, BSS, ABC MNSSA, ANC assA	



Microbial Populations 20MAW-MW10-GW

Figure 2: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

	Aerobic	An	aerobic	
BTEX Cumene, Ethylbenzene MTBE/TBA Naphthalene Phenanthrene Alkanes	TOD, PHE, RDEG, RMO, TOL, EDO EDO, BPH4 PM1, TBA NAH, NidA PHN ALK, ALMA	BTEX Naphthalene/Methylnaphthalene Alkanes	BCR, BSS, ABC MNSSA, ANC assA	



Microbial Populations 20MAW-MW12-GW

Figure 3: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

	Aerobic	An	aerobic	
BTEX Cumene, Ethylbenzene MTBE/TBA Naphthalene Phenanthrene Alkanes	TOD, PHE, RDEG, RMO, TOL, EDO EDO, BPH4 PM1, TBA NAH, NidA PHN ALK, ALMA	BTEX Naphthalene/Methylnaphthalene Alkanes	BCR, BSS, ABC MNSSA, ANC assA	

Microbial Populations 20MAW-MW5-GW

Figure 4: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

	Aerobic	An	aerobic	
BTEX Cumene, Ethylbenzene MTBE/TBA Naphthalene Phenanthrene Alkanes	TOD, PHE, RDEG, RMO, TOL, EDO EDO, BPH4 PM1, TBA NAH, NidA PHN ALK, ALMA	BTEX Naphthalene/Methylnaphthalene Alkanes	BCR, BSS, ABC MNSSA, ANC assA	

Table 2: Summary of the QuantArray[®]-Petro results for microorganisms responsible for aerobic biodegradation of BTEX and MTBE for samples 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW12-GW, and 20MAW-MW5-GW.

Sample Name Sample Date	20MAW-MW8- GW 12/15/2020	20MAW- MW10-GW 12/15/2020	20MAW- MW12-GW 12/16/2020	20MAW-MW5- GW 12/16/2020
Aerobic BTEX and MTBE	cells/mL	cells/mL	cells/mL	cells/mL
Toluene/Benzene Dioxygenase (TOD)	<5.00E+00	2.43E+01	<5.00E+00	<4.50E+00
Phenol Hydroxylase (PHE)	5.07E+03	4.71E+04	2.28E+02	< 4.50E + 00
Toluene 2 Monooxygenase/Phenol Hydroxylase (RDEG)	2.70E+03	9.34E+04	<5.00E+00	<4.50E+00
Toluene Ring Hydroxylating Monooxygenases (RMO)	7.17E+03	5.09E+04	1.17E+02	<4.50E+00
Xylene/Toluene Monooxygenase (TOL)	<5.00E+00	<7.10E+00	<5.00E+00	<4.50E+00
Ethylbenzene/Isopropylbenzene Dioxygenase (EDO)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Biphenyl/Isopropylbenzene Dioxygenase (BPH4)	<5.00E+00	<7.10E+00	<5.00E+00	<4.50E+00
Methylibium petroleiphilum PM1 (PM1)	<5.00E+00	<7.10E+00	<5.00E+00	<4.50E+00
TBA Monooxygenase (TBA)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00

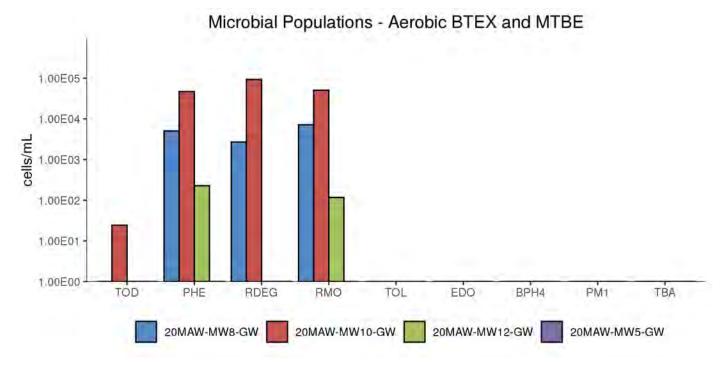


Figure 5: Comparison - microbial populations involved in aerobic biodegradation of BTEX and MTBE.

Table 3: Summary of the QuantArray[®]-Petro results for microorganisms responsible for aerobic biodegradation of PAHs and alkanes for samples 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW12-GW, and 20MAW-MW5-GW.

Sample Name	20MAW-MW8- GW	20MAW- MW10-GW	20MAW- MW12-GW	20MAW-MW5- GW
Sample Date	12/15/2020	12/15/2020	12/16/2020	12/16/2020
Aerobic PAHs and Alkanes	cells/mL	cells/mL	cells/mL	cells/mL
Naphthalene Dioxygenase (NAH)	5.80E+00	<7.10E+00	<5.00E+00	<4.50E+00
Naphthalene-inducible Dioxygenase (NidA)	3.99E+01	<7.10E+00	<5.00E+00	< 4.50E + 00
Phenanthrene Dioxygenase (PHN)	<5.00E+00	<7.10E+00	<5.00E+00	<4.50E+00
Alkane Monooxygenase (ALK)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Alkane Monooxygenase (ALMA)	<5.00E+00	<7.10E+00	<5.00E+00	<4.50E+00

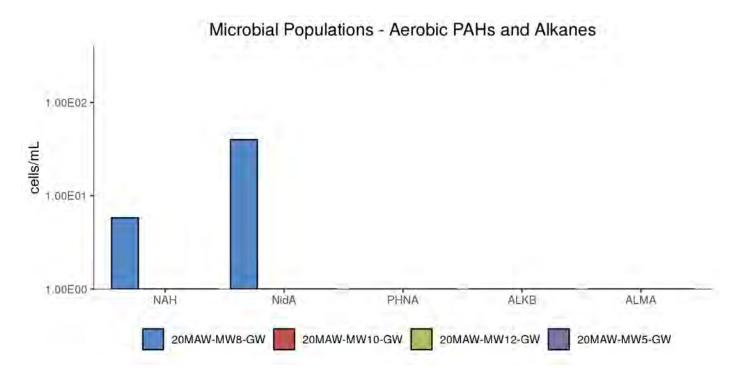


Figure 6: Comparison - microbial populations involved in aerobic biodegradation of PAHs and alkanes.

Table 4: Summary of the QuantArray[®]-Petro results for microorganisms responsible for anaerobic biodegradation of BTEX, PAHs and alkanes for samples 20MAW-MW8-GW, 20MAW-MW10-GW, 20MAW-MW12-GW, and 20MAW-MW5-GW.

Sample Name Sample Date	20MAW-MW8- GW 12/15/2020	20MAW- MW10-GW 12/15/2020	20MAW- MW12-GW 12/16/2020	20MAW-MW5- GW 12/16/2020
Anaerobic BTEX	cells/mL	cells/mL	cells/mL	cells/mL
Benzoyl Coenzyme A Reductase (BCR)	2.12E+03	9.37E+02	1.58E+03	2.13E+02
Benzylsuccinate Synthase (BSS)	6.40E+03	1.17E+04	3.80E+02	8.22E+01
Benzene Carboxylase (ABC)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Anaerobic PAHs and Alkanes				
Naphthylmethylsuccinate Synthase (MNSSA)	5.16E+03	1.33E+03	8.86E+02	<4.50E+00
Naphthalene Carboxylase (ANC)	<5.00E+00	<7.10E+00	<5.00E+00	< 4.50E + 00
Alkylsuccinate Synthase (ASS)	3.90E+01	1.65E+02	6.86E+02	< 4.50E + 00

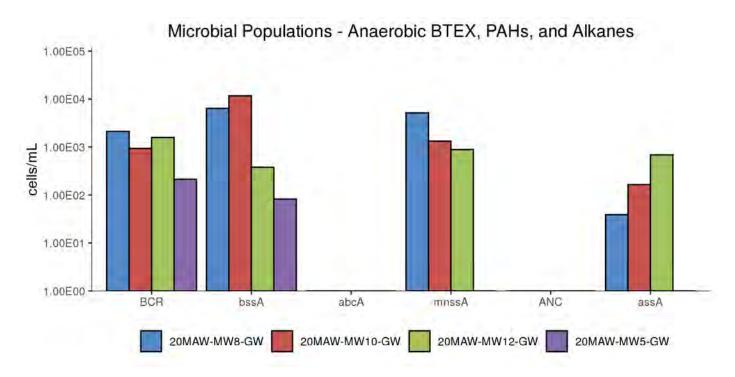
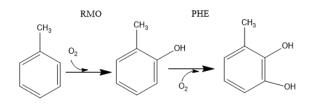


Figure 7: Comparison - microbial populations involved in anaerobic biodegradation of BTEX, PAHs and alkanes.


Interpretation

The overall purpose of the QuantArray[®]-Petro is to give site managers the ability to simultaneously yet economically evaluate the potential for biodegradation of a spectrum of contaminants found in petroleum products through a multitude of aerobic and anaerobic pathways to give a much more clear and comprehensive view of contaminant biodegradation. The following discussion describes interpretation of results in general terms and is meant to serve as a guide.

Aerobic Biodegradation - Benzene Toluene, Ethylbenzene, and Xylenes (BTEX): At sites impacted by petroleum products, aromatic hydrocarbons including BTEX are often contaminants of concern. Aerobic biodegradation of aromatic hydrocarbons has been intensively studied and multiple catabolic pathways have been well characterized. The substrate specificity of each pathway (range of compounds biodegraded via each pathway) is largely determined by the specificity of the initial oxygenase enzyme. The QuantArray[®]-Petro includes a suite of assays targeting the initial oxygenase genes of the known pathways for aerobic BTEX biodegradation.

Toluene/Benzene Dioxygenase (TOD): Toluene/benzene dioxygenase (TOD) incorporates both atoms of molecular oxygen into the aromatic ring. Although commonly called toluene dioxygenase, the substrate specificity of this enzyme is relaxed, allowing growth on toluene and benzene along with co-oxidation of a variety of compounds including ethylbenzene, *o*-xylene, *m*-xylene, and trichloroethene (TCE) when expressed.

Toluene/Benzene Monooxygenases (RMO/RDEG) and Phenol Hydroxylases (PHE): The next three known pathways for aerobic biodegradation of toluene (as well as benzene and xylenes) involve two steps: (1) an initial oxidation mediated by a toluene monooxygenase and (2) a second oxidation step catalyzed by a phenol hydroxylase. In these pathways, the toluene monooxygenases have been referred to as "ring hydroxylating monooxygenases" because they initiate biodegradation of toluene by incorporating oxygen directly into the aromatic ring rather than at a methyl group. The ring hydroxylating monooxygenases, toluene-3-monooxygenases, or toluene-4-monooxygenases based upon where they attack the aromatic ring.

In General, phenol hydroxylases (PHE) catalyze the continued oxidation of phenols produced by RMOs. However, the difference between toluene monooxygenases (RMOs) and phenol hydroxylases (PHEs) is not absolute in terms of substrate specificity and catabolic function. For example, the TbmD toluene/benzene-2-monooxygenase [1] may be responsible for both the initial and second oxidation step [2].

The RMO, RDEG, and PHE assays target groups of genes encoding enzymes which perform the critical first and/or second steps in the aerobic biodegradation of BTEX compounds. In general terms, the RMO assay quantifies families of toluene-3-monooxygenase and toluene-4-monooxygenase genes. The RDEG assay is used to quantify groups of toluene-2-monooxygenase and phenol hydroxylase genes. Similarly, the PHE assay targets phenol hydroxylase genes and several benzene monooxygenase genes which catalyze both oxidation steps.

Toluene/Xylene Monooxygenase (TOL): The final known pathway for aerobic toluene biodegradation involves initial monooxygenase attack at the methyl group by a toluene/xylene monooxygenase.

Ethylbenzene Dioxygenase (EDO): Similar to TOD, this group of aromatic oxygenases exhibits relatively broad specificity and is responsible for aerobic biodegradation of alkylbenzenes including ethylbenzene and isopropylbenzene or cumene [3].

Biphenyl Dioxygenase (BPH4): In environmental restoration, biphenyl dioxygenases are best known for cometabolism of polychlorinated biphenyls (PCBs). However, this subfamily includes benzene [4] and isopropylbenzene [5] dioxygenases from *Rhodococcus* spp.

Aerobic Biodegradation - MTBE and TBA: With increased use in the 1990s, the fuel oxygenate methyl *tert*-butyl ether (MTBE) has become one of the most commonly detected groundwater contaminants at gasoline contaminated sites. Pure cultures capable of utilizing MTBE as a growth supporting substrate have been isolated [6] and aerobic biodegradation of MTBE and the intermediate *tert*-butyl alcohol (TBA) has been reasonably well characterized. The QuantArray[®]-Petro includes quantification of two gene targets to assess the potential for aerobic biodegradation of MTBE and TBA.

Methylibium petroleiphilum PM1 (PM1): One of the few organisms isolated to date which is capable of utilizing MTBE and TBA as growth supporting substrates [6].

<u>TBA Monooxygenase (TBA)</u>: Targets the TBA monooxygenase gene responsible for oxidation of TBA by *Methylibium petroleiphilum* PM1 [7].

Aerobic Biodegradation - Naphthalene and Other PAHs:

Naphthalene Dioxygenase (NAH): Naphthalene dioxygenase incorporates both atoms of molecular oxygen into naphthalene to initiate aerobic metabolism of the compound. However, the broad substrate specificity of naphthalene dioxygenase has been widely noted. When expressed, naphthalene dioxygenase is capable of catalyzing the oxidation of larger PAHs like anthracene, phenanthrene, acenaphthylene, fluorene, and acenaphthene. For a more comprehensive list of reactions mediated by naphthalene dioxygenases, see the University of Minnesota Biocatalysis/Biodegradation Database. (http://eawag-bbd.ethz.ch/naph/ndo.html, [8]).

Phenanthrene Dioxygenases (PHN): The PHN assays quantify phenanthrene/naphthalene dioxygenase genes from a diverse collection of microorganisms including *Pseudomonas*, *Burkholderia*, *Sphingomonas*, and *Acidovorax* spp. As with other naphthalene dioxygenases, substrate specificity is relatively broad and phenanthrene dioxygenases have been implicated in the biodegradation of naphthalene, phenanthrene, and anthracene and the co-oxidation of larger PAHs. Moreover, at least one research group has suggested that the PHN group of phenanthrene/naphthalene dioxygenases may be more environmentally relevant than the classical *nah*-like naphthalene dioxygenase [9].

Aerobic Biodegradation - *n*-alkanes: The *n*-alkanes are a substantial portion of petroleum products and are a component of TPH concentrations. The QuantArray[®]-Petro also includes quantification of alkane monooxygenase genes (ALK) which allow a wide range of *Proteobacteria* and *Actinomycetals* to grow on *n*-alkanes with carbon lengths from C_5 to C_{16} [10]. The QuantArray[®]-Petro also includes a second type of alkane hydroxylase (almA) which catalyzes the aerobic biodegradation of longer chain alkanes (C_{20} - C_{32}) by some *Alcanivorax* spp. considered dominant in marine systems [11].

Anaerobic Biodegradation - Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): BTEX compounds are also susceptible to biodegradation under anoxic and anaerobic conditions although biodegradation pathways for each compound are not as well characterized as aerobic pathways. The QuantArray[®]-Petro includes sets of assays targeting a number of upper and lower pathway functional genes involved in the anaerobic catabolism of BTEX compounds for better evaluation of anaerobic biodegradation at petroleum contaminated sites.

Benzylsuccinate Synthase (BSS): Of the BTEX compounds, toluene biodegradation under anaerobic conditions is the most extensively studied and best characterized. The first step in this pathway, mediated by benzylsuccinate synthase (*bssA*) is the addition of fumarate onto the toluene methyl group to form benzylsuccinate. While additional pathways are possible, some bacterial isolates capable of anaerobic biodegradation of ethylbenzene and xylenes follow the same metabolic approach where the first step is the addition of fumarate.

Anaerobic Benzene Carboxylase (ABC): Although additional pathways are possible, the only pathway for anaerobic biodegradation of benzene elucidated to date is initiated by a benzene carboxylase enzyme.

Benzoyl Coenzyme A Reductase (BCR): Benzoyl-CoA is the central intermediate in the anaerobic biodegradation of many aromatic hydrocarbons. Benzoyl-CoA Reductase (BCR) is the essential enzyme for reducing the benzene ring structure.

Anaerobic Biodegradation - PAHs: The anaerobic biodegradation of PAHs involves analogous mechanisms to those described for anaerobic biodegradation of BTEX compounds. For example, the anaerobic biodegradation of methyl-substituted PAHs like 2-methylnaphthalene is initiated by fumarate addition to the methyl group while the only characterized pathway for anaerobic naphthalene biodegradation is initiated by a carboxylase.

Naphthylmethylsuccinate Synthase (MNSSA): MNSSA is analogous to the benzylsuccinate synthase described above for anaerobic biodegradation of toluene. Naphthylmethylsuccinate synthase catalyzes the addition of fumarate onto the methyl group of 2-methylnaphthalene [12].

Anaerobic Naphthalene Carboxylase (ANC): To date, the only pathway that has been characterized for anaerobic biodegradation of naphthalene is initiated by a naphthalene carboxylase enzyme [13].

Anaerobic Biodegradation - *n*-alkanes: As mentioned previously, the *n*-alkanes are a substantial portion of petroleum products and should be considered particularly when site cleanup goals include TPH reduction. The addition of fumarate is a common mechanism for activating and initiating biodegradation of a variety of petroleum hydrocarbons under anaerobic conditions including *n*-alkanes. The QuantArray[®]-Petro includes quantification of alkyl succinate synthase genes (assA) which have been characterized in nitrate reducing and sulfate reducing isolates utilizing *n*-alkanes from C₆ to at least C_{18} [14].

References

- 1. Johnson, G. R. & Olsen, R. H. Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from *Pseudomonas* sp. strain JS150. *Applied and environmental microbiology* **61**, 3336–3346 (1995).
- 2. Kahng, H.-Y., Malinverni, J. C., Majko, M. M. & Kukor, J. J. Genetic and functional analysis of the *tbc* operons for catabolism of alkyl-and chloroaromatic compounds in *Burkholderia* sp. strain JS150. *Applied and environmental microbiology* **67**, 4805–4816 (2001).
- 3. Pflugmacher, U., Averhoff, B. & Gottschalk, G. Cloning, sequencing, and expression of isopropylbenzene degradation genes from *Pseudomonas* sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. *Applied and environmental microbiology* **62**, 3967–3977 (1996).
- 4. Na, K.-s. *et al.* Isolation and characterization of benzene-tolerant *Rhodococcus opacus* strains. *Journal of bioscience and bioengineering* **99**, 378–382 (2005).
- 5. Dabrock, B., Kesseler, M., Averhoff, B. & Gottschalk, G. Identification and characterization of a transmissible linear plasmid from *Rhodococcus erythropolis* BD2 that encodes isopropylbenzene and trichloroethene catabolism. *Applied and environmental microbiology* **60**, 853–860 (1994).
- 6. Hanson, J. R., Ackerman, C. E. & Scow, K. M. Biodegradation of methyl tert-butyl ether by a bacterial pure culture. *Applied and Environmental Microbiology* **65**, 4788–4792 (1999).
- 7. Hristova, K. R. *et al.* Comparative transcriptome analysis of *Methylibium petroleiphilum* PM1 exposed to the fuel oxygenates methyl *tert*-butyl ether and ethanol. *Applied and environmental microbiology* **73**, 7347–7357 (2007).
- 8. Schmidt, M. University of Minnesota biocatalysis biodegradation database 1996.
- 9. Laurie, A. D. & Lloyd-Jones, G. Quantification of *phnAc* and *nahAc* in contaminated New Zealand soils by competitive PCR. *Applied and environmental microbiology* **66**, 1814–1817 (2000).
- 10. Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., Zotchev, S. B. & Throne-Holst, M. Bacterial metabolism of long-chain *n*-alkanes. *Applied microbiology and biotechnology* **76**, 1209–1221 (2007).
- 11. Liu, C. *et al.* Multiple alkane hydroxylase systems in a marine alkane degrader, *Alcanivorax dieselolei* B-5. *Environmental microbiology* **13**, 1168–1178 (2011).
- 12. Selesi, D. *et al.* Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. *Journal of bacteriology* **192**, 295– 306 (2010).
- 13. Mouttaki, H., Johannes, J. & Meckenstock, R. U. Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. *Environmental microbiology* **14**, 2770–2774 (2012).
- 14. Callaghan, A. V. *et al.* Diversity of benzyl-and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. *Environmental science & technology* **44**, 7287–7294 (2010).

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table F-2.1 Summary of Microorganisms Present In Wells

Lab Name	Sample Name	Sample Date	Date Received	Sample Matrix	LIMS Identifier	Extraction Date	Analysis Date	Analysis Method	Parameter	Result	Result Qualifier	Units	Detection Limit	Report Limit
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	abcA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	ALKB	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	ALMA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	ANC	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	APS	5.29E+04	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	assA	3.90E+01	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	BCR	2.12E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	BPH4	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	bssA	6.40E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	EBAC	2.87E+06	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	EDO	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	mnssA	5.16E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	NAH	5.80E+00	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	NidA	3.99E+01	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	PHE	5.07E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	PHNA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	PM1	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	RDEG	2.70E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	RMO	7.17E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	TBA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	TOD	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW8-GW	12/15/2020	12/16/2020	Water	096RL-1	12/16/2020	12/30/2020	Quantarray	TOL	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	abcA	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	ALKB	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	ALMA	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	ANC	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	APS	4.09E+04	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	assA	1.65E+02	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	BCR	9.37E+02	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	BPH4	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	bssA	1.17E+04	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	EBAC	3.63E+07	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	EDO	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	mnssA	1.33E+03	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	NAH	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	NidA	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	PHE	4.71E+04	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	PHNA	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	PM1	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	RDEG	9.34E+04	=	cells/mL	1.00E-01	7.10E+00

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table F-2.1 Summary of Microorganisms Present In Wells

Lab Name	Sample Name	Sample Date	Date Received	Sample Matrix	LIMS Identifier	Extraction Date	Analysis Date	Analysis Method	Parameter	Result	Result Qualifier	Units	Detection Limit	Report Limit
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	RMO	5.09E+04	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	TBA	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	TOD	2.43E+01	=	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW10-GW	12/15/2020	12/17/2020	Water	096RL-2	12/17/2020	12/30/2020	Quantarray	TOL	7.10E+00	<	cells/mL	1.00E-01	7.10E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	abcA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	ALKB	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	ALMA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	ANC	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	APS	4.54E+04	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	assA	6.86E+02	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	BCR	1.58E+03	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	BPH4	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	bssA	3.80E+02	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	EBAC	1.01E+06	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	EDO	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	mnssA	8.86E+02	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	NAH	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	NidA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	PHE	2.28E+02	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	PHNA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	PM1	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	RDEG	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	RMO	1.17E+02	=	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	TBA	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	TOD	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW12-GW	12/16/2020	12/17/2020	Water	096RL-3	12/17/2020	12/30/2020	Quantarray	TOL	5.00E+00	<	cells/mL	1.00E-01	5.00E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	abcA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	ALKB	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	ALMA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	ANC	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	APS	3.49E+03	=	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	assA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	BCR	2.13E+02	=	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	BPH4	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	bssA	8.22E+01	=	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	EBAC	4.39E+05	=	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	EDO	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	mnssA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	NAH	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	NidA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00

2020 MarkAir Warehouse Groundwater Monitoring – Fairbanks International Airport, Fairbanks, Alaska Table F-2.1 Summary of Microorganisms Present In Wells

Lab Name	Sample Name	Sample Date	Date Received	Sample Matrix	LIMS Identifier	Extraction Date	Analysis Date	Analysis Method	Parameter	Result	Result Qualifier	Units	Detection Limit	Report Limit
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	PHE	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	PHNA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	PM1	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	RDEG	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	RMO	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	TBA	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	TOD	4.50E+00	<	cells/mL	9.10E-02	4.50E+00
MI	20MAW-MW5-GW	12/16/2020	12/18/2020	Water	096RL-4	12/18/2020	12/30/2020	Quantarray	TOL	4.50E+00	<	cells/mL	9.10E-02	4.50E+00

		G	A Data			
Component	Date Received	Date Analyzed	Arrival Temperature	Positive Control	Extraction Blank	Negative Control
QA PETRO POS	12/16/2020	12/30/2020	1	110	0	0
Component QA PETRO POS	Date Received 12/17/2020	Date Analyzed 12/30/2020	Arrival Temperature 0	Positive Control 110	Extraction Blank 0	Negative Control 0
Component QA PETRO POS	Date Received 12/18/2020	Date Analyzed 12/30/2020	Arrival Temperature 0	Positive Control 110	Extraction Blank 0	Negative Control 0

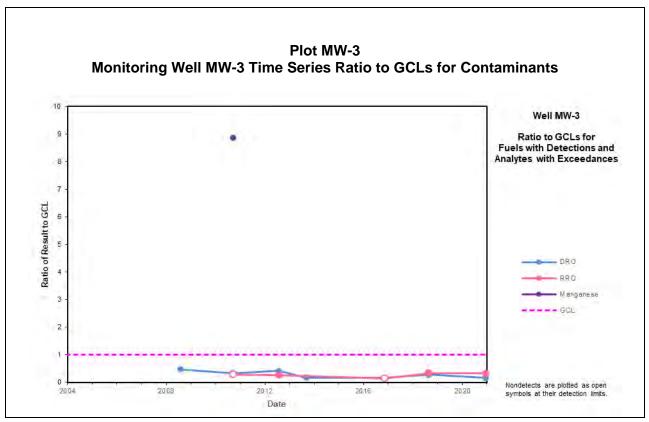
REPORT TO: Name: Company: Address:	Gruy Wade Jacobs Er 949 E. 3640 Anchorage	- - -	-L	INVO Name: Compa Addres	ny:	0: (- - -		Gu	iy of s	W	Er	e noji	Av	Fin.	5	10	H J	300	14.	~	1051	5 Res	search	n Dr	al	ins	sigi	ht	S				
email: Phone: Fax:	guy. wade (907-382-7	ejaci 774	obs.c	.DM	-		email: Phone Fax:			g	My 107		38	2(ej.	77	06	5.0	300					865-	573-8								
Project Manager: Project Name: Project No.:	Guy Wade Mark Air D 3414000	/ Aire	101+ D	σT	-		Purcha Subco MI Quo	ntract	No.				114			09								M	More		One: nples onal S						
Report Type: EDD type: Please contact us wi	Standard (default) Microbial Insights Statistic and puestions about the analy	andard (de			other a	availal	ole ED	Ds (5°	% su	rcha	rge)		Spec	ify El	DD T	ype:	service					ve Int	erpre	etive	(15%)	DH	listor	ical I	Interp	retive	e (3	%)
	Sample Inform	nation					Analy	ses		CEN	ISUS	S: Pl	lease	se	lect	the	targ	et or	gani	ism/	gene	9		_								_	
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	Total Number of Containers	PLFA	NGS	QuantArray Chlor	QuantArray Petro	DHC (Dehalococcoides)	DHC Functional genes	DHBt (Dehalobacter)	DHG (Dehalogenimonas)	DSM (Desulfuromonas)	DSB (Desulfitobacterium)	EBAC (Total)	SRB Sulfate Reducing Bactena-APS)		MOB (Methanotrophs)	OWWS	DNF (Dentrifiers-nirS and nirK)	AMO (ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	RMO (Toluene Monooxygenase)	RDEG (Toluene Monooxygenase)	PHE (Phenol Hydroxylase)	NAH (Napthalene-aerobic)	BSSA VToluene/Xvlene-Anaerobic)	add qPCR.	RNA (Expression Option)*	Other	Other.	Other.
096RL 1	20MAW-MWE-GW 20MAW-MW Vor Aller 2018/20	12/15/20		G.W	1				1																								
Relinquished by: 1		1	Date				D		d by			0			Date							1											
iveninguished by:	ait leer		12/	15/20 It is vita	al that c		_	is fille		U	ectly &	& that		1 ative	e infor	rmatio	on is p		ed.			hich M	4!					_					

Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable.

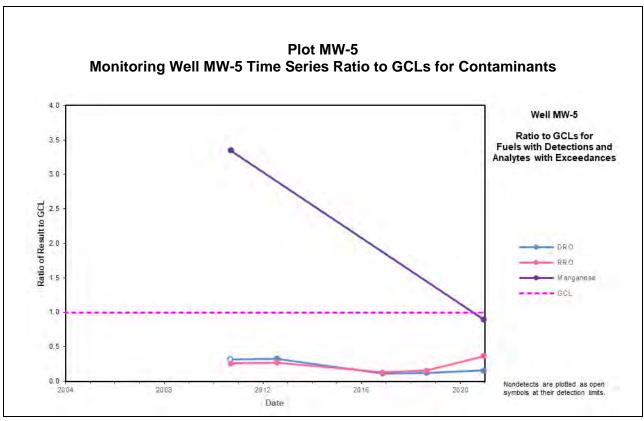
REPORT TO: Name: Company: Address: email: Phone: Fax:	Guy Wade Jacobs Er 949 E. 36 ⁴⁰ Anchorage guy. wade (907-382-7			INVO Name: Compa Addres email: Phone Fax:	iny: ss:	"O: (F	(Jo 94	An An	Y bs E.	Wa E 3 orc	de inc	A	eri k k	199	10	H = H = K	rm	14:1	~	1051 Knox 865-5	5 Res ville, 573-8	search TN 37	Dr 932	al	ins	sig	ht	S				
Project Manager: Project Name: Project No.:	Guy Wade Mark Air D 3414000	/ Airp)=r+D;	T	-		Purcha Subco MI Quo	ntract	No.		D 3					9								More		one: ples onal S						
Report Type: EDD type: Please contact us wil	Standard (default)	andard (de			other a	vailal	ble ED	Ds (5	% sur	charg	e)	S	Specify		О Туре	e:					ive Int	erpre	etive	(15%)	٦H	listor	ical I	Interp	retiv	e (35	;%)
	Sample Inform		13	Analy	ses	C	ENS	SUS:	Ple	ase s	sele	ct th	e ta	rget	orga	nism	/gen	e														
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	Total Number of Containers	PLFA	NGS	QuantArray Chlor	QuantArray Petro	DHC (Dehalococcoides) DHC Functional genes	byc, tce, vcr)	DHBt (Dehalobacter)	DHG (Dehalogenimonas)	DSM (Desulturomonas)	USB (UESUIII(ODAC(ERIUM) ERAC (Total)	SRB	Sulfate Reducing Bacteria-APS)	MOB (Methanotrophs)	OWWS	DNF (Dentrifiers-nirS and nirK)	AMO (ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	RMO (Toluene Monooxygenase)	RDEG (Toluene Monooxygenase)	PHE (Phenol Hydroxylase)	NAH (Napthalene-aerobic)	BSSA (Toluene/Xylene-Anaerobic)	gPCR:	RNA (Expression Option)*	Other:	Other:	Other.
096RL2 3	20MAW-MW10-GW 20MAW-MW12-GW	12/16/20	15:36	GW	2		_		1																							
	20maw-MW5-GW- Hould 12/16/20	12/16/20							1	•																						
Relinquished by:	fint fore		Date 12/16				0	ceive	9	H	0	6	2	_	ate				7/	21	720			113	30							

Failure to provide sufficient and/or correct information regarding reporting, involcing & analyses requested information may result in delays for which MI will not be liable.

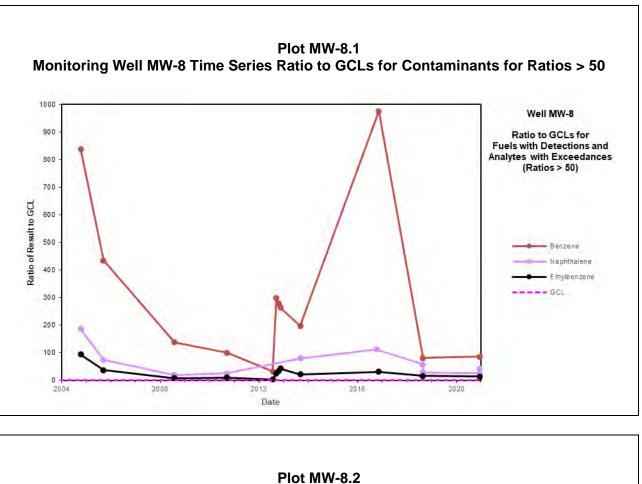
REPORT TO: Name: Company: Address:	Guy Wade Jacob 949 E. Anchorage	Jacobs / CH2m Hill 949 E. 36th Ave Ste. 50									n.						perativ	e that	all inf	ormal	ion be	provid		1051	5 Re	search		ali	ins	sig	ht	S	
email: Phone: Fax:	9 wy. wada 967-38	<u>م</u> نو م	+774	(0/	~		email: Phone: Fax:		1111	9	ny	ŀġ	20	ad	Le 1	23	ja	2	22	.c. 7	7	74		865-	573-8	TN 37 188 obe.co							
Project Manager: Project Name: Project No.:	Guy Wa Mark Ai D341400	r/	FAI	-			Purchas Subcon MI Quot	tract N	_								0 0	1			_				More		One: nples onal S						
Report Type: EDD type: Please contact us wi	Standard (default) Microbial Insights State th any questions about the analy Sample Inform	andard (de vses or filling			other a	availal 8 (9:00	ole EDE am to 5:	Os (5% 00 pm	6 sur EST,	charg	ie) . Afte	er hou	Speci Irs en	fy ED	DD Ty custo	pe: mers	-	@mic	robe.	com		ve In	erpre	etive	(15%	.)		listor	ical I	nterp	retiv	e (35	%)
MI ID (Laboratory Use Only) 096824	Sample Name	Date Sampled	Time Sampled	A Matrix	 Total Number of Containers 	PLFA	Analys SON			DHC (Dehalococcoides)	0		-		obacterium)	C (Total)	SRB (Sulfate Reducing Bacteria-APS)		MOB (Methanotrophs)	SMMO	DNF (Dentrifiers-nirS and nirK)	AMO (ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	RMO (Toluene Monooxygenase)	RDEG (Toluene Monooxygenase)	PHE (Phenol Hydroxylase)	NAH (Napthalene-aerobic)	BSSA (Toluene/Xylene-Anaerobic)	qPCR:	RNA (Expression Option)*	Other.	Other:	Other:
Relinquished by:	pii Hage		Date 12/17	It is vita	al that c	hain of	custody	ceived	ight	confec	Ctly &	2 that a		ative	Date	matio	n is p	rovide	d.			20			200								

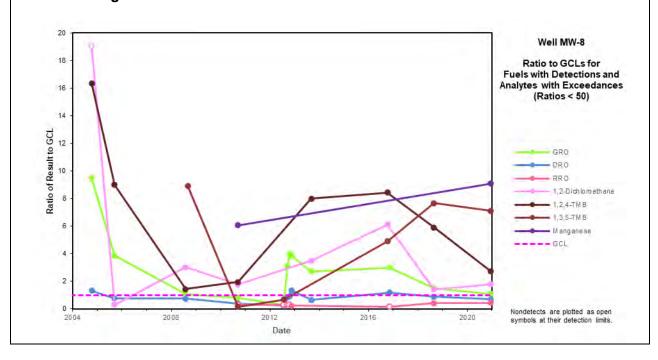

Failure to provide sufficient and/or correct information regarding reporting, hvoici66 & analyses requested information may result in delays for which MI will not be liable.

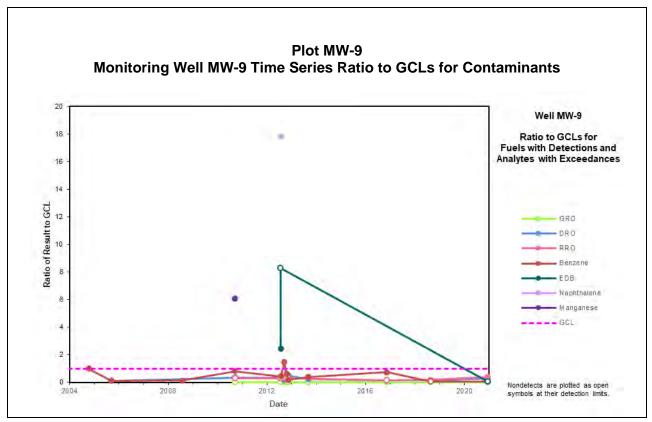
Appendix G Mann-Kendall Time-Series Plots

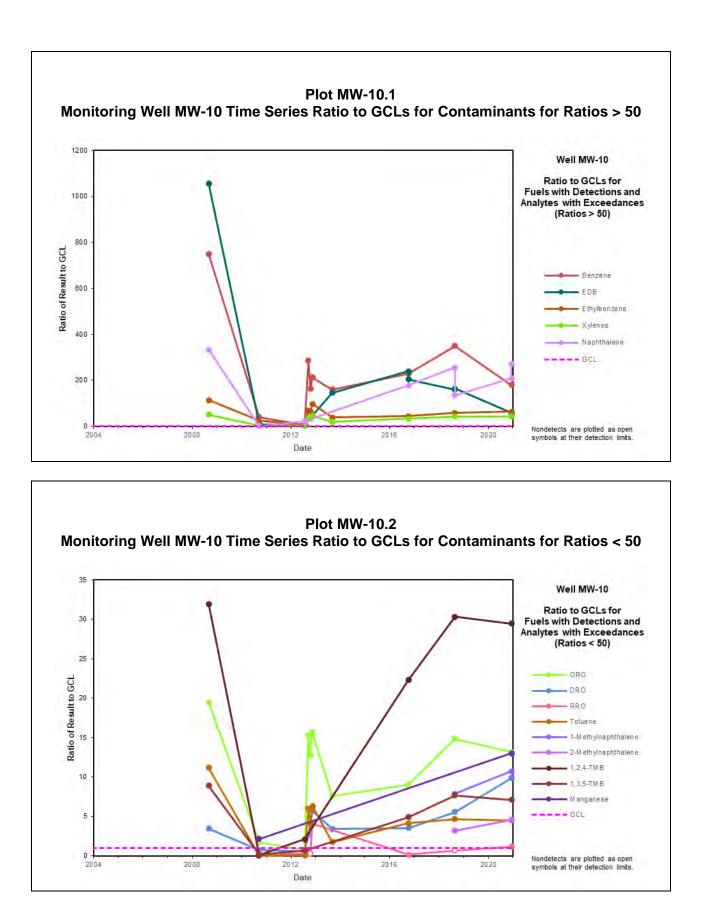

APPENDIX G Mann-Kendall Time Series Plots

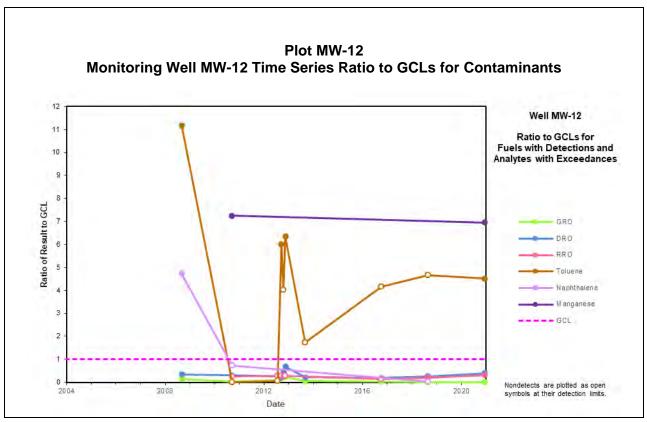
<u>Plot Number</u>	Page
Plot MW-3	Monitoring Well MW-3 Time Series Ratio to GCLs for Contaminants
Plot MW-5	Monitoring Well MW-5 Time Series Ratio to GCLs for Contaminants G-2
Plot MW-8.1	Monitoring Well MW-8 Time Series Ratio to GCLs for Contaminants for Ratios > 50
Plot MW-8.2	Monitoring Well MW-8 Time Series Ratio to GCLs for Contaminants for Ratios < 50
Plot MW-9	Monitoring Well MW-9 Time Series Ratio to GCLs for Contaminants G-4
Plot MW-10.1	Monitoring Well MW-10 Time Series Ratio to GCLs for Contaminants for Ratios > 50
Plot MW-10.2	Monitoring Well MW-10 Time Series Ratio to GCLs for Contaminants for Ratios < 50
Plot MW-12	Monitoring Well MW-12 Time Series Ratio to GCLs for Contaminants G-6
Plot MW-17	Monitoring Well MW-17 Time Series Ratio to GCLs for Contaminants G-7

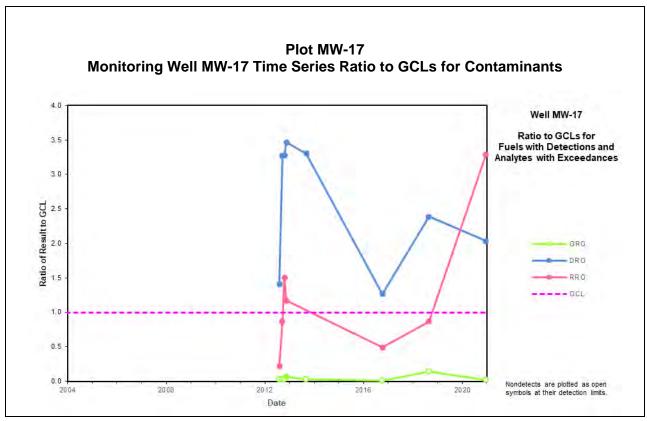

(intentionally blank)


Notes: GCLs are based on 18 AAC 75. Table C Groundwater Cleanup Levels (ADEC 2020b) For definitions, refer to the Acronyms and Abbreviations section.


Notes: GCLs are based on 18 AAC 75. Table C Groundwater Cleanup Levels (ADEC 2020b) For definitions, refer to the Acronyms and Abbreviations section.


Monitoring Well MW-8 Time Series Ratio to GCLs for Contaminants for Ratios < 50


MarkAir Warehouse Site – Mann-Kendall Time Series Plots G-3


Notes: GCLs are based on 18 AAC 75. Table C Groundwater Cleanup Levels (ADEC 2020b) For definitions, refer to the Acronyms and Abbreviations section.

MarkAir Warehouse Site – Mann-Kendall Time Series Plots G-5

Notes: GCLs are based on 18 AAC 75. Table C Groundwater Cleanup Levels (ADEC 2020b) For definitions, refer to the Acronyms and Abbreviations section.

Notes: GCLs are based on 18 AAC 75. Table C Groundwater Cleanup Levels (ADEC 2020b) For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

Appendix H Standard Operating Procedure

Standard Operating Procedure

Decontamination

Document No:	Page:
JE-SOP-2000	1 of 2
Effective Date:	Rev.
6 December 2019	0.2

TABLE OF CONTENTS

1.0	SCOPE AND APPLICATION	1
	INTERFERENCES	
3.0	EQUIPMENT	1
4.0	PROCEDURES	1
	4.1. Gross Decontamination	
	4.2. Decontamination of Sampling Equipment	2
	4.3. Quality Control	2
5.0	HEALTH AND SAFETY	2
6.0	REFERENCES	2

1.0 SCOPE AND APPLICATION

The purpose of this Standard Operating Procedure (SOP) is to describe the procedures for decontamination of re-usable equipment used during sampling activities. Non-disposable equipment shall be decontaminated between sampling locations and at the end of the work shift.

This SOP defines a standard set of procedures that may be varied or changed as required by site conditions, equipment limitations, or other factors. Actual decontamination procedures and variances from this SOP will be documented in the field logbooks.

2.0 INTERFERENCES

Improper decontamination may cause cross-contamination of field screening and analytical samples. To prevent cross-contamination of samples, sampling equipment will be disposable and used only once, or reusable but decontaminated before each use. Manufacturer and/or laboratory-certified clean glassware will be used to contain analytical samples.

3.0 EQUIPMENT

Decontamination equipment may include, but is not limited to, the following:

- Appropriate personal protective equipment (PPE) (at minimum, safety glasses and nitrile gloves)
- 5-gallon buckets
- Potable water
- Distilled water or organic free deionized (DI) water
- Alconox or similar detergent
- Stiff bristle brushes
- Other hand tools for gross decontamination (e.g. shovels and brooms)
- Logbook

4.0 PROCEDURES

Procedures for decontamination include gross decontamination and decontamination of sampling equipment.

Page 2 of 2

4.1. Gross Decontamination

Heavy equipment used onsite will undergo decontamination prior to leaving the site to eliminate contaminant migration from the site as well as the potential for cross-contamination of sites. Gross decontamination includes the removal of potentially contaminated materials with a shovel or other hand tools and stiff bristle brushes for equipment contaminated by soil. and wiping visible contamination from equipment contaminated by water or free product. Materials removed during gross decontamination will be accumulated and managed with similar waste streams according to Waste Management standard operating procedure (JE-SOP-2100).

4.2. Decontamination of Sampling Equipment

Contaminant-free disposable sampling equipment will be used whenever possible. Nondisposable equipment that may directly or indirectly contact samples (e.g., shovels, buckets, drill stem and tooling, sampling devices, and instruments) shall be decontaminated prior to sampling. Decontamination will take place over catch basins (e.g., wash tubs and buckets) to minimize the spread of contaminants. Re-usable sampling equipment that may be exposed to the samples will be decontaminated with the following steps:

- Scrub and rinse the equipment using a solution of potable water and laboratory-grade detergent (Alconox or similar product).
- Rinse the equipment with distilled or deionized water until free from suds. •

Decontamination water will be accumulated and managed according to the Waste Management standard operating procedure (JE-SOP-2100).

4.3. Quality Control

The following QC sample may be collected to verify equipment utilized was properly decontaminated before subsequent use.

- Equipment rinsate blank
- Equipment wipe sample •

5.0 **HEALTH AND SAFETY**

Procedures for working with potentially hazardous materials as well as the relevant Safety Data Sheets (SDS) for each chemical that will be used at the site are included in the Site Safety and Health Plan. Personnel using this procedure must be trained on the information contained in the SDSs, engineering controls, and the PPE used for this procedure.

6.0 REFERENCES

ADEC. 2019 (October). Field Sampling Guidance. Division of Spill Prevention and Response Contaminated Sites Program.

Appendix I Conceptual Site Model

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	FIA - MarkAir Warehouse
File Number:	ADEC File: 100.26.043 Hazard ID: 22871
Completed by:	Jennifer Davis Robinson, Jacobs Engineering

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

🗵 USTs	Vehicles			
☐ ASTs				
Dispensers/fuel loading racks	Transformers			
Drums	Other:			
Release Mechanisms (check potential release mechanisms at the site)				

⊠ Spills	Direct discharge	
🗵 Leaks	Burning	
	□ Other:	

Impacted Media (check potentially-impacted media at the site)

Surface soil (0-2 feet bgs*)	S Groundwater
Subsurface soil (>2 feet bgs)	Surface water
Air	Biota
Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

\square	Residents	(adult	or	child)	

- \boxtimes Commercial or industrial worker
- $\overline{\times}$ Construction worker
- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- Farmer

□ Recreational user

 \boxtimes Site visitor

 \boxtimes Trespasser

 \boxtimes Other: Site employee

- 2. Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)
- a) Direct Contact -

b)

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	Complete	
Comments:		
Contamination is present at concentrations exceeding ADEC cleanup le feet bgs.	evels in soil between 0 and 15	
2. Dermal Absorption of Contaminants from Soil		
Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a		the ground surface? $\boxed{\boxtimes}$
Can the soil contaminants permeate the skin (see Appendix B	in the guidance document)?	$\overline{\times}$
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
Naphthalene and 1-methylnaphthalene were detected at concentratio HH cleanup levels in soil at approximately 11 feet bgs.	ons greater than 1/10 the ADEC	
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be d or are contaminants expected to migrate to groundwater in the	0	X
Could the potentially affected groundwater be used as a currer source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.	s determined the ground-	
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
Based on the results of the 2020 results, GRO, DRO, RRO, BTEX, 1,2,4-TM and EDC are present at the site at concentrations exceeding 1/10 18 A Human Health Cleanup Levels. Groundwater is currently not used for d contamination widely known by ADEC should prohibit future use of gr	AC 75 Table C Groundwater Irinking water and areawide	

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:

Incomplete

The nearest surface water body is the Chena River, located approximately 0.3-mile from the site. It is not anticipated that the Chena River has been impacted by site contamination.
3. Ingestion of Wild and Farmed Foods
Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods?
Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)?
Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.)
If all of the boxes are checked, label this pathway complete:
Comments:
The site is paved and no trees or shrubs are present. Because the lot is paved, it is unlikely that burrowing animals are present in the subsurface. In addition, the site is not used for hunting or harvesting.
nhalation- 1. Inhalation of Outdoor Air
Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific base
Are the contaminants in soil volatile (see Appendix D in the guidance document)?

Are the contaminants in soil volatile (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Per the 2010 groundwater monitoring report CSM update, benzene and total xylenes were detected in soil above the ADEC inhalation cleanup levels and toluene and ethylbenzene were detected above the ADEC migration to groundwater cleanup levels. The detections occurred at ~10 feet bgs.

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Soil contaminated with volatiles in exceedance of cleanup levels remains in situ adjacent to the warehouse in a few places.

 \times

 $\overline{\times}$

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Groundwater depth is approximately 10-feet bgs. Exposure to naphthalene during construction activities during is possible but not likely. No construction is currently planned for the site.

There is no surface water body and no wells are used for household purposes.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Exposure to groundwater is considered for a future scenario only since no drinking water wells currently exist and this is in a commercial area and not a residential zone.

Development of new water wells for drinking or household purposes is unlikely given the known groundwater contamination status of the region.

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Site is currently paved. Fugitive dust is possible during construction, but no construction is planned for the site.

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

There is no sediment at this site because no surface water is present and asphalt covers the site.

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: FIA - MarkAir Warehouse (ADEC File: 100.26.043 Hazard ID: 22871)

Completed By: Jennifer Davis Robinson - Jacobs Engine

<u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Date Completed: <u>12/</u>								(5)			
(1) Check the media that could be directly affected by the release.	(2) For each medium identified in (1), follow the top arrow <u>and</u> check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in ((4) Check all pathways that could be complete. <u>The pathways identified in this column must</u> agree with Sections 2 and 3 of the Human <u>Health CSM Scoping Form</u> .	expo "F" fo future C	sure p or futu e rece UTTE	pathwa re rece ptors, ent &	y: Ente ptors, or "I" fo & Fu	tentially affe er "C" for cur "C/F" for boo or insignifica ture Re	rent rece th curren nt expos	eptors nt and sure.
Media	Transport Mechanisms	Exposure M	edia	Exposure Pathway/Route	/	en)	ers	spas users	orker; sister	unsu	
Surface Migra	lease to surface soil check soil tion to subsurface check soil tion to groundwater check groundwater ilization check air				Residents (aduite of the second	Commercial or indren)	Site visitors, troc	Construction users	Farmers or subsistence harvesters Subsistence	Other	
	ff or erosion check surface water	N	✓ Incide	ntal Soil Ingestion		F	F	F		F	
	ke by plants or animals <u>check biota</u> r (list) <u>:</u>	🔽 soil	V Derma	al Absorption of Contaminants from Soil		F	F	F		F	
			🗸 Inhala	tion of Fugitive Dust		F	F	F		F	
Subsurface <i>✓ Migra</i> Soil <i>✓ Volati</i> (2-15 ft bgs) <i>Uptab</i>	lease to subsurface soil check soil tion to groundwater check groundwater ilization check air ke by plants or animals check biota r (list):	groundwater	✓ Derma	ion of Groundwater al Absorption of Contaminants in Groundwater tion of Volatile Compounds in Tap Water		F	F	F		F	
Direct re	elease to groundwater check groundwater										
Ground-	ilization check air to surface water body check surface water	N	🗸 Inhala	tion of Outdoor Air		F	F	F		F	
	to sediment check sediment	🔽 air	🗸 Inhala	tion of Indoor Air		C/F	C/F	C/F		C/F	
	e by plants or animals check biota	l v	🗸 Inhala	tion of Fugitive Dust		F	F	F		F	
Other	r (list):										
Direct re	elease to surface water check surface water		Ingest	ion of Surface Water							
	ilization check air	surface water	Derma	al Absorption of Contaminants in Surface Water							
	nentation check sediment ke by plants or animals check biota	/	Inhala	tion of Volatile Compounds in Tap Water							
	(list):	N	\								
	elease to sediment check sediment	sediment	Direct	Contact with Sediment							
	spension, runoff, or erosion <u>check surface water</u>		,								
Uptak	ke by plants or animals <u>check biota</u> r (list):	biota	Ingest	tion of Wild or Farmed Foods							

Revised, 10/01/2010

Appendix J Response to Comments

ADEC Comments to 2021 MarkAir Warehouse GW Monitoring Report

Reviewer: Rebekah Reams, Environmental Program Specialist, Alaska Department of Environmental Conservation

Comment No.	Pg. #	Section	Comment/Recommendations	Response
1.	ES-2, 6-1	Executive Summary, Conclusions	Please note that Residual Range Organics (RRO) and 1,3,5-trimethylbenzene exceeded cleanup levels in MW-10 and 1,2-dichloroethane (EDC) exceeded cleanup levels in MW-8.	Agreed. The executive summary will be revised to indicate that RRO exceeded cleanup levels in MW-10 and 1,2-EDC exceeded cleanup level in MW-8. The 1,3,5-TMB exceedance is included in the 5 th bullet on page ES-2 of the Executive Summary. In addition, section 5.2.2 (pp. 5-3 and 5-4) will be revised to indicate RRO concentrations exceeded the cleanup level in MW-10. Table E-2 will be revised to include results of RRO in MW-10 in bold font.
2.	ES-2	Executive Summary	Typo: This section states that according to Mann- Kendall trend analysis, concentrations of DRO are increasing in MW-9. The information presented in the remainder of the report indicates DRO concentrations are stable in MW-9 and increasing in MW-10.	Agreed. Text on page ES-2 will be revised to read as follows: "Results of a Mann-Kendall trend analysis of contaminant concentrations indicated DRO concentrations are decreasing in monitoring well MW-3, increasing in monitoring well MW-10, and stable in the rest of the sampled wells at the MAW site."
3	2-2	Groundwater Monitoring	Please provide additional details regarding monitoring well sampling procedures, including the pump intake depth during sample collection and the order in which analytical samples were collected.	Accepted. The following text will be added to the last paragraph in Section 2.2. "The bladder pump intake depth was set to within 1 foot of the top of static groundwater within each monitoring well during sample collection, except at MW-12, where the intake was set to 1.13 feet below the static water level. Groundwater samples were collected into containers provided by the laboratory in the following analyte order: volatiles (GRO, BTEX, VOCs, EDB, and/or EDC) and then DRO/RRO. Groundwater samples were collected for analysis of MNA parameters and microbial communities (described in Sections 2.2.1 and 2.2.2) once sample collection for analysis of contaminants of concern was completed."

ADEC Comments to 2021 MarkAir Warehouse GW Monitoring Report

Reviewer: Rebekah Reams, Environmental Program Specialist, Alaska Department of Environmental Conservation

Comment No.	Pg. #	Section	Comment/Recommendations	Response
4.	2-4	Investigation- Derived Waste	Please collect analytical samples from the investigation-derived waste (IDW) prior to transport and disposal. Samples should include analysis for PFAS in addition to site contaminants of concern (COCs) due to the presence of PFAS contaminated groundwater in the area. These analytical waste characterization results should be submitted to DEC with a Contaminated Media Transport and Treatment or Disposal Approval Form that indicates the proposed final destination of the IDW.	Clarification. The IDW characterization sampling was conducted under a separate contract with a different consultant (Shannon & Wilson, Inc.). Per communication with the consultant on 12/2/2021, the drummed waste from the MarkAir and Brooks Fuel sites, both placed in the same drum (DRUM-21-02), was sampled for PFAS. Per the consultant, the results did not exceed for PFAS and the contractor will coordinate with a subcontractor (US Ecology) to determine the appropriate waste transport and disposal method.
5.	5-3	Analytical Results: DRO	Mann-Kendall analysis indicates concentrations of DRO in MW-10 are increasing and analytical results from this sampling event report the highest concentrations of DRO observed in groundwater at the site. Please provide additional discussion regarding this increase in concentration. Site photos included in the report document the presence of a trailer parked over MW-10, please note if there was any indicators suggesting that MW-10 may be acting as a preferential pathway for contaminant migration.	Accepted. A discussion of the increasing trend in DRO concentrations at MW-10 will be added to Sections 5.3 Mann- Kendall Analysis and 7.1 Conclusions (formerly Section 6.1). Part of the added discussion will include a discussion of observations at MW-10 and additional recommendations in Section 7.2.
6.	5-8	General Chemistry Parameters	Please provide additional interpretation of monitored natural attenuation (MNA) parameters and discuss how these parameters support the conclusion that natural attenuation is occurring at	Accepted. Section 5.2.3 will be expanded to include a brief discussion of each MNA parameter and the implications of the results. Conclusions drawn from the MNA parameter results will also be
7.	n/a	for MNA Attachment F-1	the site. Please provide complete analytical laboratory data packages as report attachments.	included in Section 7.1 (previously Section 6.1). Accepted. The analytical laboratory data packages will be included with the report.

ADEC Comments to 2021 MarkAir Warehouse GW Monitoring Report

Reviewer: Rebekah Reams, Environmental Program Specialist, Alaska Department of Environmental Conservation

Comment No.	Pg. #	Section	Comment/Recommendations	Response
8.	n/a	General	model?	The last CSM was drafted in 2012 using data obtained from the 2010 groundwater monitoring event and the site characterization report. New CSM graphic and scoping forms will be drafted and included in Appendix I. A summary of the updated CSM will be included in a new section (Section 6.0) in the report.
9.	n/a	General	regarding the status of MW-13 or the structure that is reportedly covering the well?	There is no new information regarding MW-13. This well was not visited as part of the groundwater monitoring event in 2020. Based on 2017 imagery in Figure A-2, the well appears to be located beneath a building or storage shed, however.