2016 Groundwater Monitoring Well Report Formerly Kobuk Feed & Fuel 2751 Picket Place Fairbanks, Alaska

Prepared for:

Gary Lundgren

Prepared by:

Alaska Resources and Environmental Services, LLC.

April 2018

Prepared by:

Dustin Stahl Environmental Specialist

INTRODUCTION

This report was prepared on behalf of Gary Lundgren, who has contracted with Alaska Resources & Environmental Services (ARES) to perform the groundwater investigation associated with the petroleum release (ADEC file #100.26.137). The work was conducted as detailed in the approved Work Plan submitted in September 2008.

The objective of our work was to obtain groundwater sample data near the site of a former petroleum release in order to determine if groundwater contamination exists on the property and/or is migrating off-site. Groundwater samples were collected from monitoring wells MW-1, MW-2, and MW-3 on October 25, 2016 in general accordance with ADEC Oil and Other Hazardous Substances Pollution Control Regulations (18 AAC 75 – amended May 8, 2016) and approved ADEC Work Plan dated September 2008.

SITE BACKGROUND

Site Description

The property located at 2751 Picket Place is an industrial lot of approximately 109,335 square feet in size. The lot contains a gravel parking lot with no structures. The legal description for the site is: Tax Lot 1740 Section 17 Township 1 South Range 1 West. The elevation of the site is 439' above mean sea level.

History

The subject property was formerly a commercial agricultural feed and fuel supply facility referenced as Kobuk Feed and Fuel. It was owned and operated by Ken Ulz, who declared bankruptcy in 1993. A Phase I Site Assessment was reportedly conducted in 1993 by a prospective purchaser and a UST system was identified with fuel reportedly still in the tanks. There had been numerous surface spills and/or releases of fuel product reported at the site with an estimated 620 cubic yards of soil possibly impacted. There was no investigation of subsurface soils associated with potential leaks from the tanks and subsurface piping.

The property was transferred to the Alaska Department of Natural Resources (ADNR) as a result of a failure to fulfill the requirements of an Agriculture Revolving Loan Fund agreement. ADNR then offered the property for sale in 1996 "as is, where is" by sealed competitive bid. The successful bidder was Global Finance and Investment Co. The current records indicate it is now owned by Castle Residence Inns, Inc.

During excavation and removal of the four UST's in May 2007, petroleum-contaminated soils were encountered of which approximately 2,190 cubic yards of contaminated soils were removed and stockpiled on-site for remediation by land farming in accordance with the ADEC approved Work Plan. As confirmed by laboratory results, soil levels for GRO, DRO, and BTEX constituents were generally below ADEC target cleanup levels between the surface and 8' bgs on the sidewalls and end walls for both excavation pits to the north, east, and south following excavation and removal of contaminated soils. The

lateral extent of contamination to the west however could not be determined. Laboratory results indicate petroleum- contaminated soils still remain along the west wall of the excavation. Excavation was forced to cease along the west wall once the property boundary limits were reached on the subject property.

The horizontal extent of contamination for the subject property was undetermined. Soils were excavated to a maximum depth of approximately 10' bgs. The seasonal high groundwater table for the surrounding area is generally 8' bgs. Sample results indicate that petroleum contaminated soils above ADEC target cleanup levels still exist within the vadose zone >8' below ground surface.

Information regarding field activities and initial Release Investigation is included in the ARES report titled *Phase II Environmental Site Assessment/ Release Investigation, Kobuk Feed and Fuel (Former) Property, July 2007.* Information regarding installation of permanent groundwater monitoring is included in the ARES report titled *Groundwater Monitoring Well Report, Kobuk Feed and Fuel Property, November 2008.*

Additional groundwater monitoring events were conducted by Alaska Resources and Environmental Services annually since 2008. A summary of recent and historical groundwater sampling data is included in Table 1 of this report. Trend analysis is included in Appendix B.

Topography

The United States Geological Survey (USGS) Fairbanks Quadrangle (D-2) SW provides topographic map coverage of the site (Figure 1). Fairbanks is located in the northern part of the Tanana Basin, which is a relatively flat floodplain of the Tanana River. The subject property is situated approximately 2.5 miles north of the Tanana River and 1.5 miles south of the Chena River. Based upon the topographic map of the Fairbanks Quadrangle, the site elevation is approximately 439 feet above the mean sea level.

Regional Hydrology

The Tanana River is the dominant influence on ground-water flow in the subject area. Two discharge peaks characterize the Tanana River: spring snowmelt runoff and late summer precipitation. The stage of nearby water bodies such as Chena Slough and Chena River typically rises and falls in response to stage changes of the Tanana River. The depth to groundwater varies in response to these controlling factors. Based on interpretation of USGS data, regional groundwater flow direction is generally to the northwest. However, the direction of flow can vary depending upon the stage of the Tanana River. The seasonal high groundwater table for the surrounding area is generally 8' bgs.

Site Hydrology

The groundwater table at the time of sampling was approximately 13.0' bgs. Well elevation measurements collected at the site confirm groundwater flow direction is to the northwest which is consistent with other data obtained in the area.

GROUNDWATER SAMPLING

Scope of Work

To achieve the stated objectives, ARES performed the following tasks:

- Collected groundwater elevations and water quality parameter measurements to include temperature, pH, conductivity, oxidation reduction potential, and dissolved oxygen;
- Collection of groundwater samples and duplicate sample. Samples were analyzed for gasoline range organics (GRO) by method AK 101, diesel range organics (DRO) by method AK 102, benzene, toluene, ethylbenzene and xylenes (BTEX) by method EPA 8260B, volatile organic compounds (VOCs) by method EPA 8260B, and polycyclic aromatic hydrocarbons (PAH) by method EPA 8270DSIM; and
- Data review and report preparation.

Sampling Method

The monitoring wells were developed, purged, and sampled in accordance with the *ADEC Field Sampling Guidance* document dated March 2016 and *ADEC Monitoring Well Guidance* document dated September 2013. The wells were purged and sampled using a QED micro-purge bladder pump with a Well Wizard 3020 compressor and a MP10 controller set at ID 103, 4 cycles per minute (CPM), and an air pressure of 15 PSI. During sampling at each 3 minute interval, the groundwater elevation was measured to 0.010 feet using a Heron Model D-T Interface Meter. A flow rate of between 0.2-0.3 L/min was maintained. Water parameters were recorded to include temperature, pH, conductivity, ORP, dissolved oxygen, and salinity using a YSI 556 MPS multimeter with a flow-through cell. Parameters were within allowable limits, the well was considered stable.

Once groundwater parameters stabilized, samples were collected in order of decreasing volatility. Volatile samples were collected to avoid any headspace in the bottle. All bottles were labeled and placed in a pre-chilled cooler (at approximately 4°C) and submitted to ADEC approved laboratory following standard chain of custody procedures.

Purge water was placed in individually labeled 5 gallon buckets with lids and stored offsite pending laboratory results. Purge water from MW-1 was returned to the ground surface. Purge water from MW-2 and MW-3 was transported to OIT for treatment by thermal remediation. Groundwater samples were collected from MW-1, MW-2, and MW-3 on October 25, 2016. A blind duplicate sample was collected from monitoring well MW-3 for quality assurance/quality control purposes.

Analytical Results

A slight petroleum odor and chemical sheen was observed from the purge water at monitoring well MW-3. The purge water from MW-3 was cloudy in appearance. Purge water from MW-2 was clear in appearance, had no fuel odor, or sheen; but it did have a musty odor. There was no petroleum odor or sheen detected from the monitoring well or the purge water during sampling activities from monitoring well MW-1. Purge water was clear in appearance. No other odors were detected. Groundwater measurements taken during the October 2016 sampling event indicated that the water table was approximately 13.0' below ground surface at the time of sampling.

All three monitoring wells were sampled and analyzed for GRO by method AK101 and DRO by method AK102. MW-1 was sampled for BTEX by method EPA 8021B. MW-2 and MW-3 were sampled for VOC's by method EPA 8260B and PAH by method EPA 8270DSIM. A summary of current and historical sample results for GRO, DRO, benzene, toluene, ethylbenzene, and total xylenes (BTEX) is listed in Table 1. An analytical summary table of all 2016 sample results including VOC's results is included in Appendix C. The complete SGS Laboratory Report and ADEC laboratory checklist is included in Appendix C.

2016 Groundwater Monitoring Well Report Former Kobuk Feed and Fuel Property / 2751 Picket Place

Sample		Date	EPA Method 8021B or 8260B					
Location	Sample ID	Sampled	Benzene in µg/L [*]	Toluene in μg/L [*]	Ethyl- benzene in μg/L [*]	Total xylenes in µg/L [*]	GRO in μ g/L [*]	DRO in µg/L [*]
	MW1-K-1008	10/22/2008	ND	ND	ND	ND	ND	ND
	MW1-K-0809	08/20/2009	ND	ND	ND	ND	N/A	480
	MW1-911	09/14/2011	1.24	ND	ND	ND	ND	ND
MW-1	MW1-1012	10/17/2012	1.77	ND	ND	ND	ND	ND
IVI VV - 1	MW1-K-0713	07/22/2013	0.772	ND	ND	ND	ND	ND
	MW1-K-0814	08/13/2014	ND	ND	ND	ND	68 B	38 B
	MW1-K-0915	09/22/2015	3.92	ND	5.20 J	2.23 J	40.0 J	439 J
	MW1-1016	10/25/2016	1.69	ND	ND	ND	ND	283
	MW2-K-1008	10/22/2008	96.4	19.4	262	268	5410	1310
	DUP-K-1008 Blind field duplicate sample to MW2-K-1008	10/22/2008	93.2	18.2	250	254	5020	1670
	MW2-K-0809	08/20/2009	98.6	ND	32.6	55.8	N/A	460
	MW2-911	09/14/2011	32.2	31.0	36.0	51.3	1930	444
MW-2	DUP1-911 Blind field duplicate sample to MW2-911	09/14/2011	34.1	34.0	41.8	65.4	2160	549
	MW2-1012	10/17/2012	31.4	20.8	44.3	53	2830	631
	MW2-K-0713	07/22/2013	51.2	47.0	33.5	131	1500	859
	MW2-K-0814	08/13/2014	21	4.9	7.5	22	2200 B	1200 B
	MW2-K-0915	09/22/2015	21.1	5.47	22.8	60.6	808	785
	MW2-1016	10/25/2016	24.7	4.51	30.0	59.6	656	2750
A	DEC Cleanup Leve	el ¹	4.6	1100	15	190	2200	1500

Table 1 - Historical Summary of Groundwater Results

¹ Title 18 of the Alaska Administrative Code, Chapter 75. Section 345.

^{*} Historical units were changed from mg/L to μ g/L to match current DEC groundwater cleanup level units.

ND = Not detected at or above the method reporting limit.

B=Analyte was detected in the associated blank and sample

J=estimated concentration

N/A = Not Analyzed.

Results above ADEC Regulatory Limit in Bold.

NOTE: 2016 VOC Results Summary Table is included in Appendix C (Table 1 is continued on the next page)

Sample		Date		PA Method 80	Alaska Method AK 101	Alaska Method AK 102		
Location	Sample ID	Date Sampled	Benzene in µg/L [*]	Toluene in µg/L [*]	Ethyl- benzene in μg/L [*]	Total xylenes in μg/L [*]	GRO in µg/L [*]	DRO in µg/L [*]
	MW3-K-1008	10/22/2008	37.9	9.00	605	1530	7910	11600
	MW3-K-0809	08/20/2009	59.4	ND	471	1060	N/A	3040
	DUP-K-0809 Blind field duplicate sample to MW3-K-0809	08/20/2009	59.4	ND	515	1170	N/A	3260
	MW3-911	09/14/2011	11.4	9.72	266	1350	5760	3910
	MW3-1012	10/17/2012	7.27	4.97	364	1430	13400	28500
	DUP1-1012 Blind field duplicate sample to MW3-1012	10/17/2012	6.53	4.65	245	1190	11000	24400
	MW3-K-0713	07/22/2013	4.27	13.0	192	668	2640	7340
MW-3	DUP-K-0713 Blind field duplicate sample to MW3-K-0814	07/22/2013	4.13	10.7	179	756	2540	5840
	MW3-K-0814	08/13/2014	0.83	1.5	86	320	2800	6100 B
	DUP-K-0814 Blind field duplicate sample to MW3-K-0814	08/13/2014	0.84	1.3	79	300	4000	6100 B
	MW3-K-0915	09/22/2015	1.76	1.18	57.5	344	1470	3440
	DUP-K-0915 Blind field duplicate sample to MW3-K-0915	09/22/2015	2.15	1.20	57.8	343	1650	3890
	MW3-1016	10/25/2016	0.500	0.600 J	33.9	246	1230	5020
	DUP-1016	10/25/2016	0.470	0.580 J	34.2	242	1250	5990
	ADEC Cleanup Lev	el ¹	4.6	1100	15	190	2200	1500

¹ Title 18 of the Alaska Administrative Code, Chapter 75. Section 345.

*Historical units were changed from mg/L to µg/L to match current DEC groundwater cleanup level units.

ND = Not detected at or above the method reporting limit.

B=Analyte was detected in the associated blank and sample

J=estimated concentration

N/A = Not Analyzed.

Results above ADEC Regulatory Limit in Bold.

NOTE: 2016 VOC Results Summary Table is included in Appendix C

Blind Duplicate Samples

Field quality control (QC) procedures for this project included the collection and analysis of a field duplicate sample. One field duplicate (DUP-1016) was collected for quality control purposes. Sample DUP-1016 was a blind field duplicate to MW3-1016. The QC sample was analyzed to assess the quality of sample collection and handling, as well as the accuracy and precision of the laboratory's analytical procedures.

Relative percent difference (RPD) calculations provide a comparison of two theoretically identical samples that are submitted blind to the laboratory to provide an un-biased measure of precision. Due to the nature of the RPD calculation, sample data for both samples must be reported for the RPD calculation to provide meaningful data. RPD calculations are computed for all compounds that had laboratory reported detections above the LOQ for both samples. RPD calculations for are shown in Table 2 below.

Sample ID /	Compound	Sample Concentration	Duplicate Concentration	RPD
Duplicate ID	compound	(µg/L water)	(µg/L water)	(%)
	GRO	1230	1250	1.6
	DRO	5020	5990	17.6
	Benzene	0.500	0.470	6.2
	Toluene	0.600	0.580	3.4
	Ethylbenzene	33.9	34.2	0.9
	Total Xylenes	246	242	1.6
	1-Methylnaphthalene	39.0	39.8	2.0
	2-Methylnaphthalene	42.3	42.7	0.9
	Acenaphthene	0.748	0.767	2.5
	Fluorene	1.62	1.54	5.1
MW3-K-0915 and DUP-K-	Naphthalene (by 8270DSIM)	48.4	50.0	3.3
0915	Phenanthrene	0.631	0.635	0.6
	1,2,4- Trimethylbenzene	163	161	1.2
	1,3,5- Trimethylbenzene	64.0	62.2	2.9
	2-Butanone	16.4	15.9	3.1
	4-Isopropyltoluene	6.38	6.23	2.4
	Isopropylbenzene	25.9	24.8	4.3
	Naphthalene (by 8260C)	74.3	74.4	0.1
	N-Propylbenzene	39.3	37.7	4.2
	sec-Butylbenzene	6.69	6.59	1.5

Table 2:	Relative	Percent	Difference	Calculations
I abit 2.	K tative	I CI CCIII	Difference	Calculations

Given two sample concentrations (X and Y) the formula to determine RPD is the absolute value of the following:

[((X - Y) / ((X + Y) / 2)] * 100 = RPD

Results above ADEC recommended range in Bold.

The ADEC limit for field duplicate RPD is 30% in water. All calculated field duplicate RPDs fell below the ADEC limit of 30% in water. Data quality and usability is not affected.

Trip Blank Samples

Field quality control (QC) procedures for this project included the analysis of one water trip blank sample which accompanied the samples in the field. The trip blank sample was analyzed to assess the quality of sample collection and handling.

Under ideal conditions, the analysis of a trip blank sample should not indicate the presence of any of the tested analytes in a quantity above the limit of quantitation (LOQ). A result above the LOQ can indicate that cross-contamination occurred between samples during sample transport or analysis, or indicate laboratory contamination.

Trip blank samples were analyzed for all volatile analysis including GRO by AK 101 and VOCs by EPA 8260B.

No analytes were detected above the LOQ in the analyzed trip blank samples. No impact on data quality or usability is expected due to trip blank analyses.

Quality Assurance / Quality Control

The ADEC Environmental Laboratory Data Quality Assurance Requirements (ADEC 2009) and United States Environmental Protection Agency (EPA) National Functional Guidelines for Organic Review (EPA 2017) were followed in this site investigation. The data were reviewed to determine the data quality and to evaluate potential impact on the usability of the data. The review was performed using Level II reports that were provided by SGS laboratory of Anchorage, AK. The analytical laboratory report and chain-of-custody record is included in Appendix C.

A complete set of quality control parameters were reviewed as listed below.

- Holding times
- Sample handling and receiving
- Surrogate percent recovery
- Field duplicate sample comparability
- Matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD)
- Laboratory control sample (LCS)/Laboratory control sample duplicate (LCSD) percent recoveries and RPD
- Method blanks
- Trip blanks
- Method Sensitivity reporting limits and limits of quantitation (LOQ)

Work order # 1168788

All reviewed quality control parameters were met for this analytical sampling event with the following exceptions:

- MW3-1016 (1168788003) PS- AK101 Surrogate recovery for 4bromofluorobenzene (202%) does not meet QC criteria due to matrix interference;
- DUP-1016 (1168788004) PS- AK101 Surrogate recovery for 4bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

Data quality and usability is not affected by the above QC errors. Laboratory quality assurance included the procedures outlined in the laboratory's ADEC-approved standard operating procedures documentation. As presented in the laboratory report's QC summary sheet, all other laboratory QC parameters fell within the acceptable limits.

Conclusions and Recommendations

Analytical results indicate that groundwater collected from MW-1 remains below ADEC groundwater cleanup levels for all tested analytes. Note: The GRO results for MW-1 from the 08-13-2014 sampling event for MW-1 were likely biased high due to method blank contamination.

Analytical results from MW-2 were below ADEC groundwater cleanup levels for all tested analytes with the following exceptions:

- Benzene (24.7µg/L);
- Ethylbenzene $(30.0/L \mu g);$
- DRO (2750 µg/L); and
- Naphthalene $(11.3 \,\mu g/L)$

The concentrations of benzene, ethylbenzene, and DRO appear to have increased since the previous sampling event (09/22/2015). The concentrations of toluene, total xylenes, and GRO have all decreased since the previous sampling event. Note: The DRO and GRO results for MW-2 from the 08-13-2014 sampling event for MW-1 were likely biased high due to method blank contamination.

Analytical results from MW-3 were below ADEC groundwater cleanup levels for all tested analytes with the following exceptions:

- DRO (5990 µg/L);
- 1-methylnaphthalene (39.8 µg/L);
- 2-methylnaphthalene (42.7 μ g/L);
- Naphthalene (74.4 μ g/L);
- 1,2,4-trimethylbenzene (163 µg/L);
- Ethylbenzene (34.2 μ g/L); and
- Total xylenes (246 μ g/L)

The concentration of DRO appears to have increased significantly since the previous sampling event. Concentrations of benzene, toluene, ethylbenzene, total xylenes, and GRO continue to decrease steadily and are below ADEC groundwater cleanup levels. Analytical results for all other analytes are below ADEC ground water cleanup levels.

MW2 is located adjacent to the former site of two (2) 10,000-gallon gasoline UST's. MW3 is located adjacent to the former site of one (1) 10,000-gallon gasoline UST and one (1) 5,000-gallon diesel UST.

A closed loop groundwater elevation survey has not been performed at this site and an actual groundwater gradient has not been calculated. The presumed groundwater flow in the area is to the west northwest. If this assumption is correct MW-1 is an up gradient well. Both MW-2 and MW-3 are only slightly down gradient from the source area, but could not be placed any further away without crossing the property boundary.

Increases in the concentration of DRO were documented in both MW-2 and MW-3 in the 2016 sampling event, however, a consistent trend has not been established over a 3-year period. A review of historical analytical results from the previous eight years of data

indicates a general decreasing trend for all analytes in MW-3. Historical MW-2 results indicate a general decreasing trend for all analytes except DRO, although concentrations of all analytes have demonstrated increasing and decreasing fluctuations over shorter intervals of time. If MW-2 is down gradient of MW-3, plume migration could be contributing to these fluctuations. Without additional down gradient groundwater data it is not possible to determine if natural attenuation is occurring or if contaminants are migrating down gradient.

ARES recommends the following:

- Schedule an annual sampling event of wells MW-1, MW-2, MW-3 during period of high seasonal groundwater conditions in August 2017. Groundwater samples should be analyzed for GRO, DRO, PAH, and VOC analysis (BTEX only for MW-1);
- Conduct a closed loop groundwater elevation survey, calculate the groundwater gradient and groundwater flow direction at the site.
- Contaminants are likely migrating off-site. Additional down-gradient samples (soil/water) would need to be collected to determine the extent of the contaminant plume. ARES recommends soil borings and well points/groundwater monitoring wells be placed down-gradient to assess potential impacts. Permission would need to be obtained from adjacent property owners prior; and
- Following groundwater gradient calculations, a well receptor survey should be conducted to identify potential receptors within a 1/2 mile of the Subject Property.

Limitations

This report presents the analytical results from a limited number of groundwater samples, and should not be construed as a comprehensive study of groundwater quality at the site. The samples were intended to evaluate the presence or absence of contaminants at the locations selected. Detectable levels of petroleum hydrocarbons may be present at other locations. It was also not the intent of our sampling and testing to detect the presence of groundwater affected by contaminants other than those for which laboratory analyses were performed. No conclusions can be drawn about the presence or absence of other contaminants. This is not a geotechnical study.

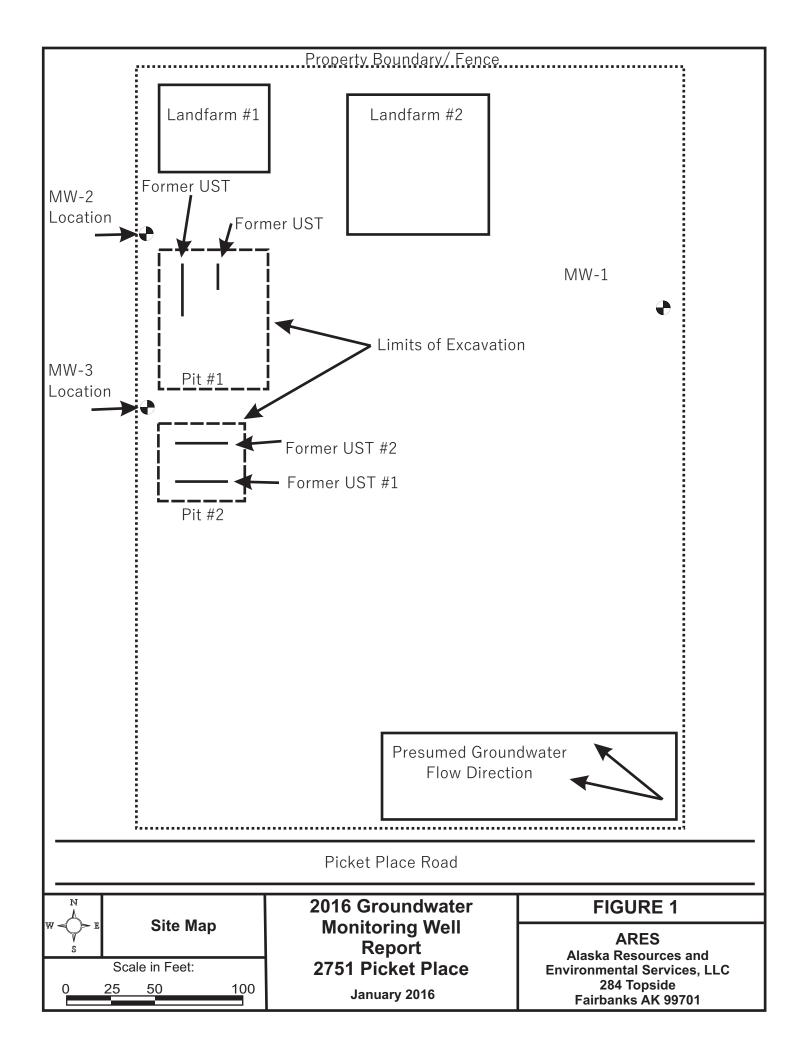
The data presented in this report should be considered representative of the time of our site observations and sample collection. Changes in site conditions can occur with time because of natural forces or human activity. ARES reserves the right to modify or alter conclusions and recommendations should additional data become available.

This report was prepared for the exclusive use of Gary Lundgren, and his representatives. If it is made available to others, it should be for information on factual data only and not as a warranty of subsurface conditions.

Qualifications & Signature of Environmental Professional

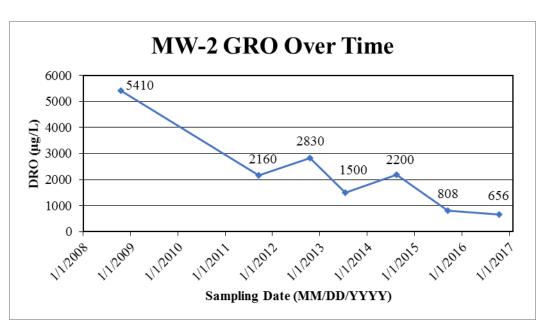
Dustin Stahl is an ADEC 'Qualified Environmental Professional' and has extensive field experience as an environmental Project Manager and has worked on all aspects of environmental assessments, release investigations, and clean-up efforts.

Dustin Stahl / Environmental Specialist

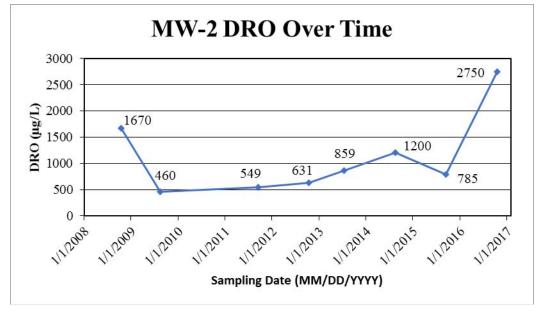

Alaska Resources and Environmental Services, LLC

Enclosure:

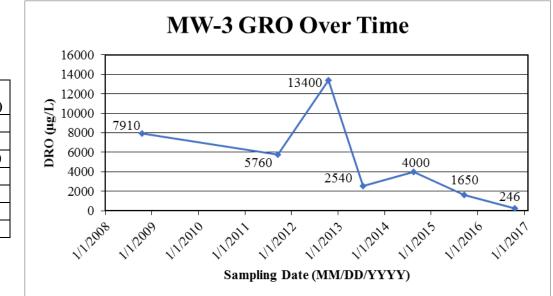
- Appendix A Figures
- Appendix B Graphical Summary of GRO and DRO results over time
- Appendix C Analytical Results Summary Table, SGS Laboratory Report and ADEC Laboratory Checklist


Appendix D – Groundwater Sampling Field Data Sheets

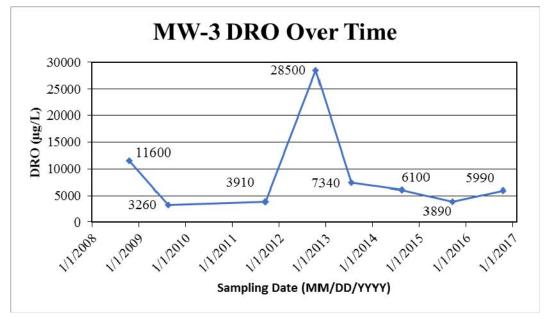
Appendix A: Figures


Appendix B: Graphical Summary of GRO and DRO results over time

MW-1 Not enough detected results to establish meaningful graphical representation of results for GRO or DRO.


MW-2

Date	GRO
	$(\mu g/L)$
10/22/2008	5410
9/14/2011	2160
10/17/2012	2830
7/22/2013	1500
8/13/2014	2200
9/22/2015	808
10/25/2016	656



Date	DRO (µg/L)
10/22/2008	1670
8/20/2009	460
9/14/2011	549
10/17/2012	631
7/22/2013	859
8/13/2014	1200
9/22/2015	785
10/25/2016	2750

Date	DRO			
Date	$(\mu g/L)$			
10/22/2008	11600			
8/20/2009	3260			
9/14/2011	3910			
10/17/2012	28500			
7/22/2013	7340			
8/13/2014	6100			
9/22/2015	3890			
10/25/2016	5990			

Appendix C:

2016 Analytical Summary Table, SGS Laboratory Report & ADEC Lab Quality Checklist

Former Kobuk Feed and Fuel, Analytical Groundwater Results Summary Table, Sampling Series 1016

		Depth (fe	Sample ID Collection Date Sample Location Area Description et below ground surface) Matrix	MW1-1010 10/25/2016 Kobuk Feed and 12.11-16.9 Water	ó d Fuel	MW2-101(10/25/2016 Kobuk Feed and 14.41-18.18 Water	5 d Fuel	MW3-101(10/25/201(Kobuk Feed an 13.00-18.0 Water	6 d Fuel	DUP-101 10/25/201 Kobuk Feed an 13.00-18.0 Water	6 nd Fuel
Method	Analyte	Units	ADEC cleanup level (July 1, 2017)	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers
4 17 101	000	-	(July 1, 2017) 2200								+
AK 101 AK 102	GRO DRO	μg/L	1500	50.0 [31.0] 283 [170]	U	656 [31.0] 2750 [176]		1230 [31.0] 5020 [173]		1250 [31.0] 5990 [170]	
AK 102	DRU	μg/L	1500	265 [170]		2/50 [1/0]		5020 [175]		5990 [170]	
EPA 8021B	Benzene	μg/L	4.6	1.69 [0.150]		NA		NA		NA	+
EPA 8021B	Ethylbenzene	μg/L μg/L	15	0.500 [0.310]	U	NA		NA		NA	+
EPA 8021B	o-Xylene	μg/L μg/L	NS	0.500 [0.310]	U	NA		NA		NA	
EPA 8021B	m-Xvlene & p-Xvlens	μg/L μg/L	NS	1.00 [0.620]	Ū	NA	i — 1	NA	<u> </u>	NA	
EPA 8021B	Toluene	μg/L μg/L	1100	0.500 [0.310]	U	NA		NA		NA	
	Toldene	ALC D	1100								1
EPA 8270D SIM	1-Methylnaphthalene	µg/L	11	NA		1.19 [0.0142]		39.0 [0.144]		39.8 [0.142]	
EPA 8270D SIM	2-Methylnaphthalene	μg/L	36	NA		0.310 [0.0142]		42.3 [0.144]		42.7 [0.142]	
EPA 8270D SIM	Acenaphthene	μg/L	530	NA		0.189 [0.0142]		0.748 [0.0144]		0.767 [0.0142]	
EPA 8270D SIM	Acenaphthylene	µg/L	260	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Anthracene	μg/L	43	NA		0.0236 [0.0142]	U	0.0514 [0.0144]		0.0573 [0.0142]	
EPA 8270D SIM	Benzo[a]anthracene	μg/L	0.12	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Benzo[a]pyrene	μg/L	0.034	NA		0.00945 [0.00585]	U	0.00960 [0.00596]	U	0.00945 [0.00585]	U
EPA 8270D SIM	Benzo[b]fluoranthene	μg/L	0.34	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Benzo[g,h,i]pervlene	μg/L	0.26	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Benzo[k]fluoranthene	μg/L	0.80	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Chrysene	µg/L	2.0	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Dibenz(a,h)anthracene	µg/L	0.034	NA		0.00945 [0.00585]	U	0.00960 [0.00596]	U	0.00945 [0.00585]	U
EPA 8270D SIM	Fluoranthene	µg/L	260	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM	Fluorene	μg/L	290	NA		0.0817 [0.0142]	T	1.62 [0.0144]	T.	1.54 [0.0142]	
EPA 8270D SIM	Indeno[1,2,3-cd]pyrene	µg/L	0.19	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EPA 8270D SIM EPA 8270D SIM	Naphthalene	μg/L	<u>1.7</u> 170	NA NA		7.32 [0.0292] 0.0236 [0.0142]	U	48.4 [0.298] 0.631 [0.0144]		50.0 [0.292] 0.635 [0.0142]	
EPA 8270D SIM	Phenanthrene Pyrene	μg/L	120	NA		0.0236 [0.0142]	U	0.0240 [0.0144]	U	0.0236 [0.0142]	U
EFA 6270D SIW	Fylelie	µg/L	120	INA		0.0250 [0.0142]	0	0.0240 [0.0144]	0	0.0230 [0.0142]	
EPA 8260C	1,1,1,2-Tetrachloroethane	µg/L	5.7	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U
EPA 8260C	1,1,1-Trichloroethane	μg/L μg/L	8000	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U U
EPA 8260C	1,1,2,2-Tetrachloroethane	μg/L μg/L	0.76	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U
EPA 8260C	1,1,2-Trichloroethane	μg/L μg/L	0.41	NA		0.500 [0.310]	Ŭ	0.500 [0.310]	Ū	0.500 [0.310]	Ū
EPA 8260C	1,1-Dichloroethane	μg/L	28	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,1-Dichloroethene	µg/L	280	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,1-Dichloropropene	μg/L	NS	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,2,3-Trichlorobenzene	μg/L	7.0	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,2,3-Trichloropropane	μg/L	0.0075	NA		0.500 [0.310]	U DL	0.500 [0.310]	U DL	0.500 [0.310]	U DL
EPA 8260C	1,2,4-Trichlorobenzene	μg/L	4.0	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,2,4-Trimethylbenzene	μg/L	15	NA		8.70 [0.310]		163 [3.10]		161 [3.10]	
EPA 8260C	1,2-Dibromo-3-Chloropropane	µg/L	NS	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U
EPA 8260C	1,2-Dibromoethane	µg/L	0.075	NA		0.500 [0.310]	U DL	0.500 [0.310]	U DL	0.500 [0.310]	U DL
EPA 8260C	1,2-Dichlorobenzene	µg/L	300	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	1,2-Dichloroethane	µg/L	1.7	NA		0.390 [0.150]	J	0.250 [0.150]	U	0.250 [0.150]	U
EPA 8260C	1,2-Dichloropropane	μg/L	4.4	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C EPA 8260C	1.3.5-Trimethylbenzene	µg/L	120	NA		5.35 [0.310] 0.500 [0.310]	U	64.0 [0.310]	U	62.2 [0.310] 0.500 [0.310]	U
EPA 8260C EPA 8260C	1,3-Dichlorobenzene	µg/L	300 NS	NA NA		0.250 [0.310]	UU	0.500 [0.310]	UU	0.500 [0.310]	U
EPA 8260C EPA 8260C	1,3-Dichloropropane	µg/L		NA		0.250 [0.310]	U	0.250 [0.310]	U	0.250 [0.310]	U
EPA 8260C	1,4-Dichlorobenzene 2,2-Dichloropropane	ug/L	4.8 NS	NA		0.230 [0.310]	U	0.230 [0.310]	U	0.500 [0.310]	U
EPA 8260C EPA 8260C	2,2-Dichloropropane 2-Butanone	μg/L μg/L	5600	NA		5.00 [3.10]	U	16.4 [3.10]	U	15.9 [3.10]	+
EPA 8260C	2-Butanone 2-Chlorotoluene	μg/L μg/L	NS	NA		0.500 [0.310]	U	0.500 [0.310]	U	0,500 [0,310]	U
EPA 8260C	2-Chlorototuene 2-Hexanone	μg/L μg/L	38	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U
EPA 8260C	4-Chlorotoluene	μg/L μg/L	NS	NA	<u> </u>	0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U
EPA 8260C	4-Chlorotototelle 4-Isopropyltoluene	μg/L μg/L	NS	NA		0.990 [0.310]	J	6.38 [0.310]		6.23 [0.310]	+
EPA 8260C	4-Methyl-2-pentanone	μg/L μg/L	6300	NA		5.00 [3.10]	U U	5.00 [3.10]	U	5.00 [3.10]	U

			Sample ID Collection Date Sample Location Area Description	MW1-1010 10/25/2016 Kobuk Feed and	i	MW2-1010 10/25/2010 Kobuk Feed an	5	MW3-101 10/25/201 Kobuk Feed ar	6	DUP-101 10/25/201 Kobuk Feed a	16	
		Depth (fe	et below ground surface) Matrix	12.11-16.9 Water	5	14.41-18.13 Water	8	13.00-18.06 Water			13.00-18.06 Water	
Method	Analyte	Units	ADEC cleanup level	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers	Analytical Results [DL]	Qualifiers	
EPA 8260C	Benzene	μg/L	4.6	NA		24.7 [0.120]		0.500 [0.120]		0.470 [0.120]		
EPA 8260C	Bromobenzene	μg/L	62	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Bromochloromethane	μg/L	NS	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Bromodichloromethane	µg/L	1.3	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U	
EPA 8260C	Bromoform	μg/L	33	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Bromomethane	μg/L	7.5	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U	
EPA 8260C	Carbon disulfide	μg/L	810	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U	
EPA 8260C	Carbon tetrachloride	μg/L	4.6	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Chlorobenzene	μg/L	78	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U	
EPA 8260C	Chloroethane	μg/L	21000	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Chloroform	μg/L	2.2	NA		0.500 [0.300]	U	0.500 [0.300]	U	0.500 [0.300]	U	
EPA 8260C	Chloromethane	μg/L	190	NA		2.37 [0.310]		0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	cis-1,2-Dichloroethene	μg/L	36	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	cis-1,3-Dichloropropene	μg/L	NS	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U	
EPA 8260C	Dibromochloromethane	µg/L	8.7	NA		0.250 [0.150]	U	0.250 [0.150]	U	0.250 [0.150]	U	
EPA 8260C	Dibromomethane	μg/L	8.3	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Dichlorodifluoromethane	μg/L	200	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Ethylbenzene	μg/L	15	NA		30.0 [0.310]		33.9 [0.310]		34.2 [0.310]	4	
EPA 8260C	Freon-113	μg/L	55000	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U	
EPA 8260C	Hexachlorobutadiene	μg/L	1.4	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Isopropylbenzene	μg/L	450	NA		2.62 [0.310]		25.9 [0.310]		24.8 [0.310]	<u> </u>	
EPA 8260C	Methylene Chloride	μg/L	110	NA		2.50 [1.00]	U	2.50 [1.00]	U	2.50 [1.00]	U	
EPA 8260C	Methyl tert-butyl ether	μg/L	140	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U	
EPA 8260C	m-Xylene & p-Xylene	μg/L	NS	NA		53.7 [0.620]	_	178 [6.20]		174 [6.20]		
EPA 8260C	Naphthalene	μg/L	1.7	NA		11.3 [3.10]	TT	74.3 [31.0]	J	74.4 [31.0]	J	
EPA 8260C	n-Butylbenzene	μg/L	1000	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]		
EPA 8260C EPA 8260C	N-Propylbenzene	μg/L	660	NA NA		3.75 [0.310]		39.3 [0.310]		37.7 [0.310]	+	
	o-Xylene	μg/L	NS			5.93 [0.310]	I	68.6 [3.10]		68.2 [3.10]	+	
EPA 8260C EPA 8260C	sec-Butylbenzene	µg/L	2000	NA NA		0.520 [0.310]	J U	6.69 [0.310]	U	6.59 [0.310] 0.500 [0.310]	U	
EPA 8260C EPA 8260C	<u>Styrene</u> t-Butylbenzene	μg/L	1200 690	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C		μg/L	41	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U U	
EPA 8260C	Tetrachloroethene	μg/L		NA		4.51 [0.310]	0	0.600 [0.310]	U	0.580 [0.310]	J	
EPA 8260C	Toluene trans-1,2-Dichloroethene	μg/L μg/L	1100 360	NA		0.500 [0.310]	U	0.500 [0.310]	J U	0.500 [0.310]	U	
EPA 8260C	trans-1,2-Dichloropropene	μg/L μg/L	NS	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U	
EPA 8260C	Trichloroethene	μg/L	2.8	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U U	
EPA 8260C	Trichlorofluoromethane	μg/L μg/L	5200	NA		0.500 [0.310]	U	0.500 [0.310]	U	0.500 [0.310]	U U	
EPA 8260C	Vinyl acetate	μg/L μg/L	410	NA		5.00 [3.10]	U	5.00 [3.10]	U	5.00 [3.10]	U	
EPA 8260C	Vinyl chloride	μg/L μg/L	0.19	NA		0.500 [0.310]	U DL	0.500 [0.310]	UDL	0.500 [0.310]	UDL	
EPA 8260C	Xylenes (total)	μg/L	190	NA		59.6 [1.00]		246 [10.0]		242 [10.0]		
		ALC D	170								1	
											1	
i												

Former Kobuck Feed and Fuel, Analytical Groundwater Results Summary Table, Sampling Series 1016 Table Definitions and Notes

Data Flag / Abbreviation	Definition
DL	Detection Limit
J	The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
LL	(Low Level) Analysis with lower reporting limits than standard methanol preservative analysis.
LOD	Limit of Detection
LOQ	Limit of Quantitation (equivelent to Method Reporting Limit)
М	Manual integrated compound.
ND	(Not Detected) Analyte not detected above the Method Detection Limit.
NS	(Not Stipulated) Cleanup level not stipulated by ADEC.
NA	Not Applicable
Q	One or more quality control criteria failed.
RL	(Reporting Limit) The analyte was undetected, however due to a LOQ above the ADEC regulatory limit, it is possible that the concentration is present below the LOQ, but above ADEC regulatory limits.
U	Undetected at the Limit of Detection

Notes

ADEC regulatory limits / cleanup levels for soil samples are the most stringent of 18 AAC 75.341 Method 2 Table B1 and B2 Cleanup Level for under 40 Inches. 18 AAC 75.341 Revison Dated March 2017)

Results column consists of the results if the compound is detected above the method detection limit. Otherwise it gives the LOD or the ND symbol. The number in brackets is the DL.

1 Cleanun levels for samples analyzed by TCLP analysis are based upon FPA regulation 40 CFR 261 24 Table 1 - Maximum Concentration of Contaminats for the Toxicity Characteris.

Laboratory Report of Analysis

To: Alaska Resources and Env. Svcs P.O. Box 83050 Fairbanks, AK 99708

Report Number: **1168788**

Client Project: 1016 Kobuk Feed & Fuel

Dear Lyle Gresehover,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Date

Print Date: 11/14/2016 2:14:32PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com SGS North America Inc.

Case Narrative

Customer: AKRESRS Project: 1168788

Alaska Resources and Env. Svcs 1016 Kobuk Feed & Fuel

Refer to the sample receipt form for information on sample condition.

1168788003 PS MW3-1016

AK101 - Surrogate recovery for 4-bromofluorobenzene (202%) does not meet QC criteria due to matrix interference.

1168788004 PS DUP-1016

AK101 - Surrogate recovery for 4-bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

Report of Manual Integrations							
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason			
SW8260B							
1168788002	MW2-1016	VMS16367	4-Isopropyltoluene	SP			
1168788003	MW3-1016	VMS16367	4-Isopropyltoluene	SP			
1168788004	DUP-1016	VMS16367	4-Isopropyltoluene	SP			

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 11/14/2016 2:14:34PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 11/14/2016 2:14:36PM

Note:

SW8260B

	Sample Summary							
Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>				
MW1-1016	1168788001	10/26/2016	10/27/2016	Water (Surface, Eff., Ground)				
MW2-1016	1168788002	10/26/2016	10/27/2016	Water (Surface, Eff., Ground)				
MW3-1016	1168788003	10/26/2016	10/27/2016	Water (Surface, Eff., Ground)				
DUP-1016	1168788004	10/26/2016	10/27/2016	Water (Surface, Eff., Ground)				
Trip Blank	1168788005	10/26/2016	10/27/2016	Water (Surface, Eff., Ground)				
Method	Method Des	scription						
8270D SIM LV (PAH)	8270 PAH S	SIM GC/MS Liq/Lic	q ext. LV					
AK101	AK101/8021	1 Combo.						
SW8021B	AK101/8021	1 Combo.						
AK102	DRO Low V	olume (W)						
AK101	Gasoline Ra	ange Organics (W)					

Volatile Organic Compounds (W) FULL

Print Date: 11/14/2016 2:14:36PM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: MW1-1016			
Lab Sample ID: 1168788001	Parameter	Result	Units
Volatile Fuels	Benzene	1.69	ug/L
Client Sample ID: MW2-1016			
Lab Sample ID: 1168788002	Devenuetor	Decult	Linite
•	Parameter 1 Methylpenhthelene	<u>Result</u> 1.19	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene		ug/L
	2-Methylnaphthalene	0.310	ug/L
	Acenaphthene	0.189	ug/L
	Fluorene	0.0817	ug/L
	Naphthalene	7.32	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.75	mg/L
Volatile Fuels	Gasoline Range Organics	0.656	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	8.70	ug/L
	1,2-Dichloroethane	0.390J	ug/L
	1,3,5-Trimethylbenzene	5.35	ug/L
	4-Isopropyltoluene	0.990J	ug/L
	Benzene	24.7	ug/L
	Chloromethane	2.37	ug/L
	Ethylbenzene	30.0	ug/L
	Isopropylbenzene (Cumene)	2.62	ug/L
	Naphthalene	11.3	ug/L
	n-Propylbenzene	3.75	ug/L
	o-Xylene	5.93	ug/L
	P & M -Xylene	53.7	ug/L
	sec-Butylbenzene	0.520J	ug/L
	Toluene	4.51	ug/L
	Xylenes (total)	59.6	ug/L

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW3-1016			
Lab Sample ID: 1168788003	Parameter	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	39.0	ug/L
-	2-Methylnaphthalene	42.3	ug/L
	Acenaphthene	0.748	ug/L
	Anthracene	0.0514	ug/L
	Fluorene	1.62	ug/L
	Naphthalene	48.4	ug/L
	Phenanthrene	0.631	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	5.02	mg/L
Volatile Fuels	Gasoline Range Organics	1.23	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	163	ug/L
	1,3,5-Trimethylbenzene	64.0	ug/L
	2-Butanone (MEK)	16.4	ug/L
	4-Isopropyltoluene	6.38	ug/L
	Benzene	0.500	ug/L
	Ethylbenzene	33.9	ug/L
	Isopropylbenzene (Cumene)	25.9	ug/L
	Naphthalene	74.3J	ug/L
	n-Propylbenzene	39.3	ug/L
	o-Xylene	68.6	ug/L
	P & M -Xylene	178	ug/L
	sec-Butylbenzene	6.69	ug/L
	Toluene	0.600J	ug/L
	Xylenes (total)	246	ug/L

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: DUP-1016			
Lab Sample ID: 1168788004	Parameter	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	39.8	ug/L
	2-Methylnaphthalene	42.7	ug/L
	Acenaphthene	0.767	ug/L
	Anthracene	0.0573	ug/L
	Fluorene	1.54	ug/L
	Naphthalene	50.0	ug/L
	Phenanthrene	0.635	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	5.99	mg/L
Volatile Fuels	Gasoline Range Organics	1.25	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	161	ug/L
	1,3,5-Trimethylbenzene	62.2	ug/L
	2-Butanone (MEK)	15.9	ug/L
	4-Isopropyltoluene	6.23	ug/L
	Benzene	0.470	ug/L
	Ethylbenzene	34.2	ug/L
	Isopropylbenzene (Cumene)	24.8	ug/L
	Naphthalene	74.4J	ug/L
	n-Propylbenzene	37.7	ug/L
	o-Xylene	68.2	ug/L
	P & M -Xylene	174	ug/L
	sec-Butylbenzene	6.59	ug/L
	Toluene	0.580J	ug/L
	Xylenes (total)	242	ug/L
Client Sample ID: Trip Blank			
Lab Sample ID: 1168788005	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	0.0362J	mg/L

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

Results of MW1-1016							
Client Sample ID: MW1-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788001 Lab Project ID: 1168788	R M S	collection Da teceived Da latrix: Wate olids (%): ocation:	ite: 10/27/	16 09:38			
Results by Semivolatile Organic Fuel	S					Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	0.283 U	0.566	0.170	mg/L	1		11/07/16 19:43
Surrogates							
5a Androstane (surr)	87.1	50-150		%	1		11/07/16 19:43
Batch Information							
Analytical Batch: XFC13048 Analytical Method: AK102 Analyst: CRA Analytical Date/Time: 11/07/16 19:43 Container ID: 1168788001-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	: SW35200 me: 11/04/1 /t./Vol.: 265	16 08:20		

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of MW1-1016	b						
Client Sample ID: MW1-1016 Client Project ID: 1016 Kobuk Feec Lab Sample ID: 1168788001 Lab Project ID: 1168788	Collection Date: 10/26/16 16:40 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzec</u> 11/01/16 07:53
Surrogates							
4-Bromofluorobenzene (surr)	91.3	50-150		%	1		11/01/16 07:5
Batch Information							
Analytical Batch: VFC13442 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 11/01/16 07:53 Container ID: 1168788001-A	3		Prep Batch: Prep Method: Prep Date/Tin Prep Initial W Prep Extract	SW5030B ne: 10/31/1 t./Vol.: 5 m	6 06:00		
<u>Parameter</u> Benzene	<u>Result Qual</u> 1.69	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 11/05/16 00:1
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/16 07:5
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/01/16 07:5
P & M -Xylene Toluene	1.00 U 0.500 U	2.00 1.00	0.620 0.310	ug/L ug/L	1 1		11/01/16 07:5 11/01/16 07:5
Surrogates			01010	~ <u>9</u> , _	·		
1,4-Difluorobenzene (surr)	103	77-115		%	1		11/01/16 07:5
Batch Information							
Analytical Batch: VFC13456 Analytical Method: SW8021B Analyst: NRO Analytical Date/Time: 11/05/16 00:13 Container ID: 1168788001-A	3		Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SW5030B ne: 11/04/1 t./Vol.: 5 m	6 06:00		
Analytical Batch: VFC13442 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 11/01/16 07:53 Container ID: 1168788001-A	3		Prep Batch: Prep Method: Prep Date/Tin Prep Initial W Prep Extract	SW5030B ne: 10/31/1 t./Vol.: 5 m	6 06:00		

SGS North America Inc.

COC

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW2-1016

Client Sample ID: **MW2-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788002 Lab Project ID: 1168788 Collection Date: 10/26/16 17:30 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1-Methylnaphthalene	1.19	0.0472	0.0142	ug/L	1	10/31/16 15:14
2-Methylnaphthalene	0.310	0.0472	0.0142	ug/L	1	10/31/16 15:14
Acenaphthene	0.189	0.0472	0.0142	ug/L	1	10/31/16 15:14
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1	10/31/16 15:14
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1	10/31/16 15:14
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Fluorene	0.0817	0.0472	0.0142	ug/L	1	10/31/16 15:14
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Naphthalene	7.32	0.0943	0.0292	ug/L	1	10/31/16 15:14
Phenanthrene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1	10/31/16 15:14
Surrogates						
2-Fluorobiphenyl (surr)	80.3	53-106		%	1	10/31/16 15:14
Terphenyl-d14 (surr)	87.1	58-132		%	1	10/31/16 15:14

Batch Information

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Analyst: S.G Analytical Date/Time: 10/31/16 15:14 Container ID: 1168788002-I Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/16 09:52 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 11 of 56

Results of MW2-1016							
Client Sample ID: MW2-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788002 Lab Project ID: 1168788	R M S	collection Da acceived Da latrix: Wate olids (%): ocation:	te: 10/27/	16 09:38			
 Results by Semivolatile Organic Fuels 	S					Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	2.75	0.588	0.176	mg/L	1		11/07/16 20:03
Surrogates							
5a Androstane (surr)	86.4	50-150		%	1		11/07/16 20:03
Batch Information Analytical Batch: XFC13048 Analytical Method: AK102			Prep Batch: Prep Method		; 6 08:20		

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of MW2-1016							
Client Sample ID: MW2-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788002 Lab Project ID: 1168788	Fuel	R M Se	ollection Da eceived Dat atrix: Water olids (%): ocation:	e: 10/27/	16 09:38		
						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Gasoline Range Organics	0.656	0.100	0.0310	mg/L	1		11/01/16 07:34
Surrogates							
4-Bromofluorobenzene (surr)	103	50-150		%	1		11/01/16 07:34
Batch Information							
Analytical Batch: VFC13442 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 11/01/16 07:34 Container ID: 1168788002-A		Prep Batch: VXX29894 Prep Method: SW5030B Prep Date/Time: 10/31/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

SGS

Results of MW2-1016

Client Sample ID: **MW2-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788002 Lab Project ID: 1168788 Collection Date: 10/26/16 17:30 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2,4-Trimethylbenzene	8.70	1.00	0.310	ug/L	1		11/04/16 21:00
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,2-Dichloroethane	0.390 J	0.500	0.150	ug/L	1		11/04/16 21:00
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,3,5-Trimethylbenzene	5.35	1.00	0.310	ug/L	1		11/04/16 21:00
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
4-Isopropyltoluene	0.990 J	1.00	0.310	ug/L	1		11/04/16 21:00
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Benzene	24.7	0.400	0.120	ug/L	1		11/04/16 21:00
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Bromomethane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 14 of 56

SGS

Results of MW2-1016

Client Sample ID: **MW2-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788002 Lab Project ID: 1168788

Collection Date: 10/26/16 17:30 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		11/04/16 21:00
Chloromethane	2.37	1.00	0.310	ug/L	1		11/07/16 18:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:00
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Ethylbenzene	30.0	1.00	0.310	ug/L	1		11/04/16 21:00
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
lsopropylbenzene (Cumene)	2.62	1.00	0.310	ug/L	1		11/04/16 21:00
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/04/16 21:00
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Naphthalene	11.3	10.0	3.10	ug/L	1		11/04/16 21:00
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
n-Propylbenzene	3.75	1.00	0.310	ug/L	1		11/04/16 21:00
o-Xylene	5.93	1.00	0.310	ug/L	1		11/04/16 21:00
P & M -Xylene	53.7	2.00	0.620	ug/L	1		11/04/16 21:00
sec-Butylbenzene	0.520 J	1.00	0.310	ug/L	1		11/04/16 21:00
Styrene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Toluene	4.51	1.00	0.310	ug/L	1		11/04/16 21:00
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:00
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:00
Xylenes (total)	59.6	3.00	1.00	ug/L	1		11/04/16 21:00
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/04/16 21:00
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/04/16 21:00
Toluene-d8 (surr)	98.6	89-112		%	1		11/04/16 21:00

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW2-1016

Client Sample ID: **MW2-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788002 Lab Project ID: 1168788

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16373 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 11/07/16 18:08 Container ID: 1168788002-F

Analytical Batch: VMS16367 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 11/04/16 21:00 Container ID: 1168788002-D Collection Date: 10/26/16 17:30 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX29947 Prep Method: SW5030B Prep Date/Time: 11/07/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX29934 Prep Method: SW5030B Prep Date/Time: 11/04/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Page 16 of 56

Results of MW3-1016

Client Sample ID: **MW3-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788003 Lab Project ID: 1168788 Collection Date: 10/26/16 18:15 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	39.0	0.481	0.144	ug/L	10		10/31/16 16:36
2-Methylnaphthalene	42.3	0.481	0.144	ug/L	10		10/31/16 16:36
Acenaphthene	0.748	0.0481	0.0144	ug/L	1		10/31/16 15:34
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Anthracene	0.0514	0.0481	0.0144	ug/L	1		10/31/16 15:34
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		10/31/16 15:34
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		10/31/16 15:34
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Fluorene	1.62	0.0481	0.0144	ug/L	1		10/31/16 15:34
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Naphthalene	48.4	0.962	0.298	ug/L	10		10/31/16 16:36
Phenanthrene	0.631	0.0481	0.0144	ug/L	1		10/31/16 15:34
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/31/16 15:34
Surrogates							
2-Fluorobiphenyl (surr)	71.8	53-106		%	1		10/31/16 15:34
Terphenyl-d14 (surr)	87.2	58-132		%	1		10/31/16 15:34

Batch Information

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Analyst: S.G Analytical Date/Time: 10/31/16 15:34 Container ID: 1168788003-I

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Analyst: S.G Analytical Date/Time: 10/31/16 16:36 Container ID: 1168788003-I Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/16 09:52 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/16 09:52 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW3-1016							
Client Sample ID: MW3-1016 Client Project ID: 1016 Kobuk Feed & Fuel Lab Sample ID: 1168788003 Lab Project ID: 1168788		F	Collection Da Received Da Matrix: Wate Solids (%): ocation:				
Results by Semivolatile Organic Fuels					55	Allowable	
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 5.02	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
Surrogates							
5a Androstane (surr)	89.5	50-150		%	1		11/07/16 20:24
Batch Information							
Analytical Batch: XFC13048 Analytical Method: AK102 Analyst: CRA Analytical Date/Time: 11/07/16 20:24			Prep Batch: Prep Methoc Prep Date/Ti Prep Initial V Prep Extract	l: SW35200 me: 11/04/1 Vt./Vol.: 260	16 08:20		

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of MW3-1016								
Client Sample ID: MW3-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788003 Lab Project ID: 1168788		R M S	eceived Da	Date: 10/26/16 18:15 Date: 10/27/16 09:38 Iter (Surface, Eff., Ground) :				
Results by Volatile Fuels								
Parameter Gasoline Range Organics	<u>Result C</u> 1.23	<u>)ual</u>	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 11/01/16 07:1
Surrogates 4-Bromofluorobenzene (surr)	202	*	50-150		%	1		11/01/16 07:1
Batch Information								
Analytical Batch: VFC13442 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 11/01/16 07:15 Container ID: 1168788003-A				Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 10/31/′ ′t./Vol.: 5 m	16 06:00		

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of MW3-1016

Client Sample ID: **MW3-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788003 Lab Project ID: 1168788 Collection Date: 10/26/16 18:15 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2,4-Trimethylbenzene	163	10.0	3.10	ug/L	10		11/04/16 19:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,3,5-Trimethylbenzene	64.0	1.00	0.310	ug/L	1		11/04/16 21:17
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
2-Butanone (MEK)	16.4	10.0	3.10	ug/L	1		11/04/16 21:17
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
4-Isopropyltoluene	6.38	1.00	0.310	ug/L	1		11/04/16 21:17
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Benzene	0.500	0.400	0.120	ug/L	1		11/04/16 21:17
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Bromomethane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW3-1016

Client Sample ID: **MW3-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788003 Lab Project ID: 1168788

Collection Date: 10/26/16 18:15 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

5	5 4 6 1					Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		11/04/16 21:17
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:17
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Ethylbenzene	33.9	1.00	0.310	ug/L	1		11/04/16 21:17
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Isopropylbenzene (Cumene)	25.9	1.00	0.310	ug/L	1		11/04/16 21:17
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/04/16 21:17
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Naphthalene	74.3 J	100	31.0	ug/L	10		11/04/16 19:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
n-Propylbenzene	39.3	1.00	0.310	ug/L	1		11/04/16 21:17
o-Xylene	68.6	10.0	3.10	ug/L	10		11/04/16 19:55
P & M -Xylene	178	20.0	6.20	ug/L	10		11/04/16 19:55
sec-Butylbenzene	6.69	1.00	0.310	ug/L	1		11/04/16 21:17
Styrene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Toluene	0.600 J	1.00	0.310	ug/L	1		11/04/16 21:17
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:17
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:17
Xylenes (total)	246	30.0	10.0	ug/L	10		11/04/16 19:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		11/04/16 21:17
1,2-Dichloroethane-D4 (surr)	108	81-118		%	10		11/04/16 19:55
4-Bromofluorobenzene (surr)	102	85-114		%	10		11/04/16 19:55
4-Bromofluorobenzene (surr)	101	85-114		%	1		11/04/16 21:17
Toluene-d8 (surr)	100	89-112		%	10		11/04/16 19:55
Toluene-d8 (surr)	98.2	89-112		%	1		11/04/16 21:17

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 21 of 56

-Results of MW3-1016							
Client Sample ID: MW3-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788003 Lab Project ID: 1168788	Fuel		Collection Da Received Da Matrix: Wate Solids (%): Location:	ind)	d)		
Results by Volatile GC/MS							
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Batch Information							
Analytical Batch: VMS16367 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 11/04/16 19:55 Container ID: 1168788003-D Analytical Batch: VMS16367 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 11/04/16 21:17 Container ID: 1168788003-D			Prep Date/Ti Prep Initial V Prep Extract Prep Batch: Prep Method Prep Date/Ti	d: SW5030B ime: 11/04/1 Vt./Vol.: 5 m Vol: 5 mL VXX29934 d: SW5030B ime: 11/04/1 Vt./Vol.: 5 m	6 06:00 L 6 06:00		

Print Date: 11/14/2016 2:14:38PM

Results of DUP-1016

Client Sample ID: **DUP-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788004 Lab Project ID: 1168788 Collection Date: 10/26/16 17:50 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Result Qual	LOQ/CL	וח	Linite	DE	Allowable	Date Analyzed
			<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	-
1-Methylnaphthalene	39.8	0.472	0.142	ug/L	10		10/31/16 16:56
2-Methylnaphthalene	42.7	0.472	0.142	ug/L	10		10/31/16 16:56
Acenaphthene	0.767	0.0472	0.0142	ug/L	1		10/31/16 15:55
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Anthracene	0.0573	0.0472	0.0142	ug/L	1		10/31/16 15:55
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		10/31/16 15:55
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		10/31/16 15:55
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Fluorene	1.54	0.0472	0.0142	ug/L	1		10/31/16 15:55
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Naphthalene	50.0	0.943	0.292	ug/L	10		10/31/16 16:56
Phenanthrene	0.635	0.0472	0.0142	ug/L	1		10/31/16 15:55
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		10/31/16 15:55
Surrogates							
2-Fluorobiphenyl (surr)	72.9	53-106		%	1		10/31/16 15:55
Terphenyl-d14 (surr)	89.3	58-132		%	1		10/31/16 15:55

Batch Information

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Analyst: S.G Analytical Date/Time: 10/31/16 15:55 Container ID: 1168788004-I

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Analyst: S.G Analytical Date/Time: 10/31/16 16:56 Container ID: 1168788004-I Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/16 09:52 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/16 09:52 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of DUP-1016							
Client Sample ID: DUP-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788004 Lab Project ID: 1168788	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	ate: 10/27/	16 09:38			
Results by Semivolatile Organic Fuels		1.00/01		Linita		Allowable	Data Analyzad
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 5.99	<u>LOQ/CL</u> 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 11/07/16 20:45
Surrogates							
5a Androstane (surr)	90.7	50-150		%	1		11/07/16 20:45
Batch Information Analytical Batch: XFC13048 Analytical Method: AK102 Analyst: CRA Analytical Date/Time: 11/07/16 20:45			Prep Batch: Prep Method Prep Date/Ti Prep Initial W	I: SW35200 me: 11/04/1	16 08:20		

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of DUP-1016		_						
Client Sample ID: DUP-1016 Client Project ID: 1016 Kobuk Feed & Fuel Lab Sample ID: 1168788004 Lab Project ID: 1168788			R M S	ollection Da eceived Dat latrix: Water olids (%): ocation:				
	Result Q	ual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Parameter	r court e	uui						Dute / maryzet
Parameter Gasoline Range Organics	1.25		0.100	0.0310	mg/L	1		11/01/16 06:5
Gasoline Range Organics	1.25		0.100	0.0310	mg/L	1		11/01/16 06:5
	1.25 201	*	0.100 50-150	0.0310	mg/L %	1		11/01/16 06:5 11/01/16 06:5

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of DUP-1016

Client Sample ID: **DUP-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788004 Lab Project ID: 1168788

Collection Date: 10/26/16 17:50 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2,4-Trimethylbenzene	161	10.0	3.10	ug/L	10		11/04/16 20:11
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,3,5-Trimethylbenzene	62.2	1.00	0.310	ug/L	1		11/04/16 21:33
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
2-Butanone (MEK)	15.9	10.0	3.10	ug/L	1		11/04/16 21:33
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
4-Isopropyltoluene	6.23	1.00	0.310	ug/L	1		11/04/16 21:33
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Benzene	0.470	0.400	0.120	ug/L	1		11/04/16 21:33
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Bromomethane	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 26 of 56

Results of DUP-1016

Client Sample ID: **DUP-1016** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788004 Lab Project ID: 1168788

Collection Date: 10/26/16 17:50 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		11/04/16 21:33
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 21:33
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Ethylbenzene	34.2	1.00	0.310	ug/L	1		11/04/16 21:33
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Isopropylbenzene (Cumene)	24.8	1.00	0.310	ug/L	1		11/04/16 21:33
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/04/16 21:33
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Naphthalene	74.4 J	100	31.0	ug/L	10		11/04/16 20:11
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
n-Propylbenzene	37.7	1.00	0.310	ug/L	1		11/04/16 21:33
o-Xylene	68.2	10.0	3.10	ug/L	10		11/04/16 20:11
P & M -Xylene	174	20.0	6.20	ug/L	10		11/04/16 20:11
sec-Butylbenzene	6.59	1.00	0.310	ug/L	1		11/04/16 21:33
Styrene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Toluene	0.580 J	1.00	0.310	ug/L	1		11/04/16 21:33
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/04/16 21:33
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 21:33
Xylenes (total)	242	30.0	10.0	ug/L	10		11/04/16 20:11
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/04/16 21:33
1,2-Dichloroethane-D4 (surr)	107	81-118		%	10		11/04/16 20:11
4-Bromofluorobenzene (surr)	102	85-114		%	10		11/04/16 20:11
4-Bromofluorobenzene (surr)	100	85-114		%	1		11/04/16 21:33
Toluene-d8 (surr)	98.1	89-112		%	10		11/04/16 20:11
Toluene-d8 (surr)	98	89-112		%	1		11/04/16 21:33

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 27 of 56

Results of DUP-1016

Client Sample ID: DUP-1016 Client Project ID: 1016 Kobuk Feed & Lab Sample ID: 1168788004 Lab Project ID: 1168788	Collection Date: 10/26/16 17:50 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Volatile GC/MS								
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed	
Batch Information								
Analytical Batch: VMS16367				: VXX29934				
Analytical Method: SW8260B				od: SW5030B				
Analyst: TJT Analytical Date/Time: 11/04/16 20:11				Time: 11/04/1 Wt./Vol.: 5 m				
Container ID: 1168788004-D				ct Vol: 5 mL	IL			
Analytical Batch: VMS16367			Prep Batch	: VXX29934				
Analytical Method: SW8260B			Prep Metho	od: SW5030E	3			
Analyst: TJT				Time: 11/04/1				
Analytical Date/Time: 11/04/16 21:33				Wt./Vol.: 5 m	IL			
Container ID: 1168788004-D			Prep Extra	ct Vol: 5 mL				

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Results of Trip Blank							
Client Sample ID: Trip Blank Client Project ID: 1016 Kobuk Feed 8 Lab Sample ID: 1168788005 Lab Project ID: 1168788	Collection Date: 10/26/16 12:00 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0362 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 11/01/16 06:1
Surrogates							
4-Bromofluorobenzene (surr)	91.2	50-150		%	1		11/01/16 06:1
Batch Information							
Analytical Batch: VFC13442 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 11/01/16 06:18 Container ID: 1168788005-A	Prep Batch: VXX29894 Prep Method: SW5030B Prep Date/Time: 10/31/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL						

Print Date: 11/14/2016 2:14:38PM

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788005 Lab Project ID: 1168788 Collection Date: 10/26/16 12:00 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Benzene	0.200 U	0.400	0.120	ug/L	1		11/04/16 18:33
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Bromomethane	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788005 Lab Project ID: 1168788 Collection Date: 10/26/16 12:00 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		11/04/16 18:33
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/04/16 18:33
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/04/16 18:33
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Naphthalene	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/04/16 18:33
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Styrene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Toluene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/04/16 18:33
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		11/04/16 18:33
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/04/16 18:33
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	81-118		%	1		11/04/16 18:33
4-Bromofluorobenzene (surr)	105	85-114		%	1		11/04/16 18:33
Toluene-d8 (surr)	98.8	89-112		%	1		11/04/16 18:33

Print Date: 11/14/2016 2:14:38PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **1016 Kobuk Feed & Fuel** Lab Sample ID: 1168788005 Lab Project ID: 1168788

Collection Date: 10/26/16 12:00 Received Date: 10/27/16 09:38 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16367 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 11/04/16 18:33 Container ID: 1168788005-C Prep Batch: VXX29934 Prep Method: SW5030B Prep Date/Time: 11/04/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:38PM

J flagging is activated

Page 32 of 56

Method Blank

Blank ID: MB for HBN 1747373 [VXX/29894] Blank Lab ID: 1362840 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1168788001,\,1168788002,\,1168788003,\,1168788004,\,1168788005$

Results by AK101 LOQ/CL Parameter Results DL Units Ethylbenzene 0.000500U 0.00100 0.000310 mg/L **Gasoline Range Organics** 0.0513J 0.100 0.0310 mg/L o-Xylene 0.000500U 0.00100 0.000310 mg/L P & M -Xylene 0.00100U 0.00200 0.000620 mg/L 0.000500U Toluene 0.00100 0.000310 mg/L Surrogates 77-115 % 1,4-Difluorobenzene (surr) 101 4-Bromofluorobenzene (surr) 91.7 50-150 %

Batch Information

Analytical Batch: VFC13442 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 10/31/2016 11:21:00PM Prep Batch: VXX29894 Prep Method: SW5030B Prep Date/Time: 10/31/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:42PM

Blank Spike ID: LCS for HBN 1168788 [VXX29894] Blank Spike Lab ID: 1362841 Date Analyzed: 10/31/2016 22:43 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29894] Spike Duplicate Lab ID: 1362842 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788001, 1168788002, 1168788003, 1168788004, 1168788005

	E	Blank Spike	(mg/L)	S	pike Duplic	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Ethylbenzene	0.100	0.107	107	0.100	0.106	106	(75-125)	1.30	(< 20)
-Xylene	0.100	0.0982	98	0.100	0.0944	94	(80-120)	3.90	(< 20)
% M -Xylene	0.200	0.204	102	0.200	0.199	100	(75-130)	2.50	(< 20)
oluene	0.100	0.107	107	0.100	0.110	110	(75-120)	3.00	(< 20)
irrogates									
,4-Difluorobenzene (surr)	0.0500	112	112	0.0500	113	113	(77-115)	0.46	
Batch Information									
Analytical Batch: VFC13442 Analytical Method: AK101 Instrument: Agilent 7890 PIL				Prep	Batch: VX	SW5030B			
Analyst: ST				Spik	e Init Wt./V	/ol.: 0.100 r	16 06:00 ng/L Extract ng/L Extract \		
Analyst: ST				Spik	e Init Wt./V	/ol.: 0.100 r	ng/L Extract		
Analyst: ST				Spik	e Init Wt./V	/ol.: 0.100 r	ng/L Extract		
Analyst: ST				Spik	e Init Wt./V	/ol.: 0.100 r	ng/L Extract		
Analyst: ST				Spik	e Init Wt./V	/ol.: 0.100 r	ng/L Extract		

Print Date: 11/14/2016 2:14:44PM

Blank Spike ID: LCS for HBN 1168788 [VXX29894] Blank Spike Lab ID: 1362843 Date Analyzed: 10/31/2016 23:02 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29894] Spike Duplicate Lab ID: 1362844 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788001, 1168788002, 1168788003, 1168788004, 1168788005

	I	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.05	105	1.00	1.00	100	(60-120)	4.20	(< 20)
urrogates									
4-Bromofluorobenzene (surr)	0.0500	98.9	99	0.0500	93.9	94	(50-150)	5.20	
Batch Information Analytical Batch: VFC13442				Prep	Batch: V	XX29894			
Analytical Method: AK101						SW5030B			
Instrument: Agilent 7890 PID/F	ID					e: 10/31/201			
Analyst: ST							g/L Extract \ g/L Extract V		

Print Date: 11/14/2016 2:14:44PM

Method Blank

Blank ID: MB for HBN 1747373 [VXX/29894] Blank Lab ID: 1362840 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168788001, 1168788002, 1168788003, 1168788004, 1168788005

Results by SW8021B					
Parameter_	Results	LOQ/CL	DL	<u>Units</u>	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
Surrogates					
1,4-Difluorobenzene (surr)	101	77-115		%	

Analytical Batch: VFC13442 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 10/31/2016 11:21:00PM Prep Batch: VXX29894 Prep Method: SW5030B Prep Date/Time: 10/31/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:47PM

Blank Spike ID: LCS for HBN 1168788 [VXX29894] Blank Spike Lab ID: 1362841 Date Analyzed: 10/31/2016 22:43 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29894] Spike Duplicate Lab ID: 1362842 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788001, 1168788002, 1168788003, 1168788004, 1168788005

		Blank Spike	e (ug/L)	ę	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Ethylbenzene	100	107	107	100	106	106	(75-125)	1.30	(< 20)
o-Xylene	100	98.2	98	100	94.4	94	(80-120)	3.90	(< 20)
P & M -Xylene	200	204	102	200	199	100	(75-130)	2.50	(< 20)
Toluene	100	107	107	100	110	110	(75-120)	3.00	(< 20)
ırrogates									
,4-Difluorobenzene (surr)	50	112	112	50	113	113	(77-115)	0.46	
Batch Information									
Analytical Batch: VFC13442 Analytical Method: SW80218 Instrument: Agilent 7890 PII Analyst: ST	В			Pre Pre Spil	ke Init Wt./\	SW5030B e: 10/31/20 1 /ol.: 100 ug	16 06:00 /L Extract V /L Extract Vo		

Print Date: 11/14/2016 2:14:48PM

Method Blank	7					
Blank ID: MB for HBN 1747717 [VXX/29929] Blank Lab ID: 1363886	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1168788001						
Results by SW8021B]					
ParameterResultsBenzene0.250U	LOQ/CL DL Units 0.500 0.150 ug/L					
Surrogates 1,4-Difluorobenzene (surr) 84.1	77-115 %					
Batch Information						
Analytical Batch: VFC13456 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: NRO Analytical Date/Time: 11/4/2016 10:40:00PM	Prep Batch: VXX29929 Prep Method: SW5030B Prep Date/Time: 11/4/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

Blank Spike ID: LCS for HBN 1168788 [VXX29929] Blank Spike Lab ID: 1363887 Date Analyzed: 11/05/2016 01:09 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29929] Spike Duplicate Lab ID: 1363888 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788001

Results by SW8021B									
	Blank Spike (ug/L) Spike Duplicate (ug/L)								
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	100	96.1	96	100	90.0	90	(80-120)	6.50	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	91.8	92	50	92.4	92	(77-115)	0.65	
Batch Information									
Analytical Batch: VFC13456				Pre	p Batch: V	XX29929			
Analytical Method: SW8021	3			Pre	p Method:	SW5030B			
Instrument: Agilent 7890A P	PID/FID			Pre	p Date/Tim	e: 11/04/201	6 06:00		
Analyst: NRO						0	L Extract V		
				Dup	pe Init Wt./V	/ol.: 100 ug/	L Extract Vo	ol: 5 mL	

Print Date: 11/14/2016 2:14:51PM

Method Blank

SG:

Blank ID: MB for HBN 1747871 [VXX/29934] Blank Lab ID: 1364079 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788003, 1168788004, 1168788005

Results by SW8260B

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	5.00U	10.0	3.10	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.300	ug/L

Print Date: 11/14/2016 2:14:53PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1747871 [VXX/29934] Blank Lab ID: 1364079 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788003, 1168788004, 1168788005

Results by SW8260B]		
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	108	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	99	89-112		%
· /				

Print Date: 11/14/2016 2:14:53PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

SG:

Blank ID: MB for HBN 1747871 [VXX/29934] Blank Lab ID: 1364079

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168788002, 1168788003, 1168788004, 1168788005

– 014/00000 ما مدار

Results by SW8260B	Results by SW8260B				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Batch Information					
Analyst: TJT		Prep Me Prep Da Prep Ini	tch: VXX2993 ethod: SW503 tte/Time: 11/4 tial Wt./Vol.: 5 tract Vol: 5 m	0B /2016 6:00:00AM 5 mL	

Print Date: 11/14/2016 2:14:53PM

Blank Spike ID: LCS for HBN 1168788 [VXX29934] Blank Spike Lab ID: 1364080 Date Analyzed: 11/04/2016 11:07 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29934] Spike Duplicate Lab ID: 1364081 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788003, 1168788004, 1168788005

Results by SW8260B

		Blank Spike	e (ug/L)	:	Spike Dupli	Duplicate (ug/L)					
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL		
1,1,1,2-Tetrachloroethane	30	31.2	104	30	32.5	108	(78-124)	4.10	(< 20)		
1,1,1-Trichloroethane	30	37.2	124	30	38.2	127	(74-131)	2.70	(< 20)		
1,1,2,2-Tetrachloroethane	30	34.1	114	30	35.2	117	(71-121)	3.10	(< 20)		
1,1,2-Trichloroethane	30	33.5	112	30	34.7	116	(80-119)	3.70	(< 20)		
1,1-Dichloroethane	30	33.1	110	30	34.2	114	(77-125)	3.00	(< 20)		
1,1-Dichloroethene	30	38.0	127	30	39.4	131	(71-131)	3.60	(< 20)		
1,1-Dichloropropene	30	35.5	118	30	36.5	122	(79-125)	2.90	(< 20)		
1,2,3-Trichlorobenzene	30	31.6	105	30	34.2	114	(69-129)	7.70	(< 20)		
1,2,3-Trichloropropane	30	34.1	114	30	35.5	118	(73-122)	4.10	(< 20)		
1,2,4-Trichlorobenzene	30	32.0	107	30	33.7	112	(69-130)	5.20	(< 20)		
1,2,4-Trimethylbenzene	30	33.9	113	30	34.8	116	(79-124)	2.60	(< 20)		
1,2-Dibromo-3-chloropropane	30	32.4	108	30	34.1	114	(62-128)	5.10	(< 20)		
1,2-Dibromoethane	30	33.9	113	30	35.1	117	(77-121)	3.50	(< 20)		
1,2-Dichlorobenzene	30	32.6	109	30	34.0	113	(80-119)	4.00	(< 20)		
1,2-Dichloroethane	30	32.5	108	30	33.5	112	(73-128)	3.00	(< 20)		
1,2-Dichloropropane	30	32.6	109	30	33.8	113	(78-122)	3.80	(< 20)		
1,3,5-Trimethylbenzene	30	34.0	113	30	35.5	118	(75-124)	4.50	(< 20)		
1,3-Dichlorobenzene	30	32.4	108	30	34.1	114	(80-119)	5.00	(< 20)		
1,3-Dichloropropane	30	33.4	111	30	34.8	116	(80-119)	4.00	(< 20)		
1,4-Dichlorobenzene	30	33.0	110	30	34.6	115	(79-118)	4.70	(< 20)		
2,2-Dichloropropane	30	33.4	111	30	34.5	115	(60-139)	3.10	(< 20)		
2-Butanone (MEK)	90	86.5	96	90	91.4	102	(56-143)	5.50	(< 20)		
2-Chlorotoluene	30	31.0	103	30	32.2	107	(79-122)	3.90	(< 20)		
2-Hexanone	90	83.8	93	90	88.3	98	(57-139)	5.10	(< 20)		
4-Chlorotoluene	30	34.1	114	30	35.7	119	(78-122)	4.60	(< 20)		
4-Isopropyltoluene	30	32.3	108	30	33.4	111	(77-127)	3.50	(< 20)		
4-Methyl-2-pentanone (MIBK)	90	84.1	93	90	90.0	100	(67-130)	6.80	(< 20)		
Benzene	30	33.5	112	30	34.6	115	(79-120)	3.10	(< 20)		
Bromobenzene	30	32.6	109	30	34.0	113	(80-120)	4.30	(< 20)		
Bromochloromethane	30	31.8	106	30	33.0	110	(78-123)	3.60	(< 20)		
Bromodichloromethane	30	35.1	117	30	36.6	122	(79-125)	4.20	(< 20)		
Bromoform	30	32.4	108	30	33.1	110	(66-130)	2.20	(< 20)		
Bromomethane	30	31.3	104	30	28.6	95	(53-141)	9.00	(< 20)		
Carbon disulfide	45	56.6	126	45	58.8	131	(64-133)	3.80	(< 20)		

Print Date: 11/14/2016 2:14:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1168788 [VXX29934] Blank Spike Lab ID: 1364080 Date Analyzed: 11/04/2016 11:07 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29934] Spike Duplicate Lab ID: 1364081 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788003, 1168788004, 1168788005

Results by SW8260B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	33.2	111	30	34.3	114	(72-136)	3.10	(< 20)
Chlorobenzene	30	32.4	108	30	33.8	113	(82-118)	4.10	(< 20)
Chloroethane	30	33.8	113	30	33.1	110	(60-138)	2.10	(< 20)
Chloroform	30	34.1	114	30	35.2	117	(79-124)	3.20	(< 20)
Chloromethane	30	23.9	80	30	28.0	93	(50-139)	15.50	(< 20)
cis-1,2-Dichloroethene	30	32.4	108	30	33.6	112	(78-123)	3.80	(< 20)
cis-1,3-Dichloropropene	30	31.0	103	30	32.3	108	(75-124)	4.10	(< 20)
Dibromochloromethane	30	31.7	106	30	32.7	109	(74-126)	3.00	(< 20)
Dibromomethane	30	33.7	112	30	35.1	117	(79-123)	4.00	(< 20)
Dichlorodifluoromethane	30	32.2	107	30	33.0	110	(32-152)	2.50	(< 20)
Ethylbenzene	30	34.0	113	30	35.1	117	(79-121)	3.10	(< 20)
Freon-113	45	53.0	118	45	54.6	121	(70-136)	2.90	(< 20)
Hexachlorobutadiene	30	32.0	107	30	33.4	111	(66-134)	4.30	(< 20)
sopropylbenzene (Cumene)	30	34.4	115	30	35.6	119	(72-131)	3.50	(< 20)
lethylene chloride	30	35.9	120	30	35.0	117	(74-124)	2.50	(< 20)
Methyl-t-butyl ether	45	46.4	103	45	48.6	108	(71-124)	4.70	(< 20)
Naphthalene	30	28.9	96	30	31.9	106	(61-128)	10.10	(< 20)
n-Butylbenzene	30	33.1	110	30	34.0	113	(75-128)	2.70	(< 20)
n-Propylbenzene	30	34.8	116	30	36.3	121	(76-126)	4.20	(< 20)
o-Xylene	30	33.9	113	30	35.3	118	(78-122)	4.10	(< 20)
^o & M -Xylene	60	67.8	113	60	71.3	119	(80-121)	5.10	(< 20)
sec-Butylbenzene	30	32.7	109	30	33.7	112	(77-126)	3.20	(< 20)
Styrene	30	32.7	109	30	34.1	114	(78-123)	4.20	(< 20)
ert-Butylbenzene	30	31.8	106	30	32.2	107	(78-124)	1.30	(< 20)
Fetrachloroethene	30	33.9	113	30	35.7	119	(74-129)	5.10	(< 20)
Toluene	30	32.5	108	30	33.7	112	(80-121)	3.60	(< 20)
rans-1,2-Dichloroethene	30	34.5	115	30	34.4	115	(75-124)	0.29	(< 20)
rans-1,3-Dichloropropene	30	34.5	115	30	35.8	119	(73-127)	3.70	(< 20)
richloroethene	30	33.9	113	30	35.1	117	(79-123)	3.50	(< 20)
Trichlorofluoromethane	30	34.5	115	30	35.4	118	(65-141)	2.50	(< 20)
/inyl acetate	30	29.8	99	30	31.1	104	(54-146)	4.20	(< 20)
/inyl chloride	30	36.6	122	30	37.8	126	(58-137)	3.30	(< 20)
Kylenes (total)	90	102	113	90	107	118	(79-121)	4.70	(< 20)

Print Date: 11/14/2016 2:14:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1168788 [VXX29934] Blank Spike Lab ID: 1364080 Date Analyzed: 11/04/2016 11:07 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29934] Spike Duplicate Lab ID: 1364081 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788003, 1168788004, 1168788005

Results by SW8260B

	Blank Spike (%)				Spike Dup	licate (%)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	104	104	(81-118)	0.67	
4-Bromofluorobenzene (surr)	30	102	102	30	99.7	100	(85-114)	2.20	
Toluene-d8 (surr)	30	98.3	98	30	97.7	98	(89-112)	0.65	

Batch Information

Analytical Batch: VMS16367 Analytical Method: SW8260B Instrument: VSA Agilent GC/MS 7890B/5977A Analyst: TJT Prep Batch: VXX29934 Prep Method: SW5030B Prep Date/Time: 11/04/2016 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:54PM

Method Blank

Blank ID: MB for HBN 1747961 [VXX/29947] Blank Lab ID: 1364256

QC for Samples: 1168788002

Results by SW8260B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	88.9	81-118		%
4-Bromofluorobenzene (surr)	98.6	85-114		%
Toluene-d8 (surr)	107	89-112		%

Batch Information

Analytical Batch: VMS16373 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: TJT Analytical Date/Time: 11/7/2016 10:38:00AM Prep Batch: VXX29947 Prep Method: SW5030B Prep Date/Time: 11/7/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 11/14/2016 2:14:56PM

Blank Spike ID: LCS for HBN 1168788 [VXX29947] Blank Spike Lab ID: 1364257 Date Analyzed: 11/07/2016 11:40 Spike Duplicate ID: LCSD for HBN 1168788 [VXX29947] Spike Duplicate Lab ID: 1364258 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002

Results by SW8260B Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) CL <u>RPD (%)</u> RPD CL Chloromethane 32.0 30 29.4 98 30 107 (50-139) 8.40 (< 20) Surrogates (81-118) 1,2-Dichloroethane-D4 (surr) 30 86.1 86 30 92.6 93 7.20 4-Bromofluorobenzene (surr) 30 102 102 30 102 102 (85-114) 0.20 30 Toluene-d8 (surr) 101 30 101 97.2 97 (89-112) 3.70

Batch Information

Analytical Batch: VMS16373 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: TJT Prep Batch: VXX29947 Prep Method: SW5030B Prep Date/Time: 11/07/2016 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/14/2016 2:14:58PM

Method Blank

Blank ID: MB for HBN 1747026 [XXX/36611] Blank Lab ID: 1362201 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788004

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0184J	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Fluorobiphenyl (surr)	87.5	53-106		%
Terphenyl-d14 (surr)	89.5	58-132		%

Batch Information

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Analytical Date/Time: 10/31/2016 11:07:00AM Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/2016 9:52:09AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/14/2016 2:15:00PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1168788 [XXX36611] Blank Spike Lab ID: 1362202 Date Analyzed: 10/31/2016 11:28 Spike Duplicate ID: LCSD for HBN 1168788 [XXX36611] Spike Duplicate Lab ID: 1362203 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788002, 1168788003, 1168788004

Results by 8270D SIM LV (PAH)

		Blank Spike (ug/L) Spike Duplicate (ug/				cate (ug/L)			
Parameter	Spike	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.89	94	2	1.86	93	(41-115)	1.20	(< 20)
2-Methylnaphthalene	2	1.83	92	2	1.81	91	(39-114)	1.30	(< 20)
Acenaphthene	2	2.09	105	2	2.05	103	(48-114)	1.90	(< 20)
Acenaphthylene	2	1.79	90	2	1.79	90	(35-121)	0.12	(< 20)
Anthracene	2	1.66	83	2	1.65	82	(53-119)	0.62	(< 20)
Benzo(a)Anthracene	2	1.76	88	2	1.72	86	(59-120)	2.40	(< 20)
Benzo[a]pyrene	2	1.82	91	2	1.79	90	(53-120)	1.70	(< 20)
Benzo[b]Fluoranthene	2	1.68	84	2	1.68	84	(53-126)	0.38	(< 20)
Benzo[g,h,i]perylene	2	1.79	89	2	1.82	91	(44-128)	1.80	(< 20)
Benzo[k]fluoranthene	2	1.64	82	2	1.67	83	(54-125)	1.50	(< 20)
Chrysene	2	1.86	93	2	1.82	91	(57-120)	2.30	(< 20)
Dibenzo[a,h]anthracene	2	1.83	92	2	1.86	93	(44-131)	1.30	(< 20)
Fluoranthene	2	1.86	93	2	1.75	87	(58-120)	6.20	(< 20)
Fluorene	2	1.75	88	2	1.72	86	(50-118)	2.00	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.80	90	2	1.83	92	(48-130)	1.50	(< 20)
Naphthalene	2	1.89	95	2	1.89	95	(43-114)	0.09	(< 20)
Phenanthrene	2	1.64	82	2	1.62	81	(53-115)	0.78	(< 20)
Pyrene	2	1.98	99	2	1.84	92	(53-121)	7.20	(< 20)
Surrogates									
2-Fluorobiphenyl (surr)	2	83.5	84	2	86.8	87	(53-106)	3.80	
Terphenyl-d14 (surr)	2	89.4	89	2	84.6	85	(58-132)	5.50	

Batch Information

Analytical Batch: XMS9727 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Prep Batch: XXX36611 Prep Method: SW3520C Prep Date/Time: 10/28/2016 09:52 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 11/14/2016 2:15:02PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank ID: MB for HBN 174 Blank Lab ID: 1363636	7617 [XXX/36645]	Matrix	k: Water (Surfa	ce, Eff., Ground)					
QC for Samples: 1168788001, 1168788002, 1	168788003, 1168788004								
Results by AK102									
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>					
Diesel Range Organics	0.300U	0.600	0.180	mg/L					
Surrogates									
5a Androstane (surr)	87.2	60-120		%					
Batch Information									
Analytical Batch: XFC130		Prep Batch: XXX36645							
Analytical Method: AK102		Prep Method: SW3520C							
Instrument: HP 7890A	FID SV E F	Prep Date/Time: 11/4/2016 8:20:50AM Prep Initial Wt./Vol.: 250 mL							
Analyst: CRA	Analytical Date/Time: 11/7/2016 3:34:00PM			Prep Extract Vol: 1 mL					

Print Date: 11/14/2016 2:15:04PM

Blank Spike ID: LCS for HBN 1168788 [XXX36645] Blank Spike Lab ID: 1363637 Date Analyzed: 11/10/2016 17:13 Spike Duplicate ID: LCSD for HBN 1168788 [XXX36645] Spike Duplicate Lab ID: 1363638 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168788001, 1168788002, 1168788003, 1168788004

Results by AK102									
		Blank Spike (mg/L)			Spike Duplicate (mg/L)				
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	18.4	92	20	19.0	95	(75-125)	3.10	(< 20)
Surrogates									
5a Androstane (surr)	0.4	99.3	99	0.4	104	104	(60-120)	4.90	
Batch Information									
Analytical Batch: XFC1304					p Batch: X				
Analytical Method: AK102 Instrument: HP 7890A	FID SV E F				p Method:		C 09.20		
Analyst: CRA	FID SV E F			Spi	ke Init Wt./\	0	Extract Vol		

Print Date: 11/14/2016 2:15:06PM

Ĵ

ARES P.O. Box 83050 Fairbanks, Alaska 99708 Phone: 907.374.2319 Fax: 907.374.2319

ł						Chain	of Cus	Chain of Custody Report	eport						
Client: Alaska Resources and Environmental Services	ironmental Ser	vices				Invoice To:		٩	I abortoo Monto	303					
Report To: Lyle Gresehover Address: ARES	eschover				4 A	ARES P.O. Box 83050	3050		Address:		300 3180 Peger Rd #190, Fairhanke AK 90700		urnar(In Bu	Turnaround Request In Business Days	ıest
Email: P.O. Box 83050 Dhone: hyle@ak-res.con	-				Щ 	airbanks, .	Fairbanks, Alaska 99708	708		(907) 474-8656	14-8656	1	ganic & I	Organic & Inorganic Analyses	alyses
	4-3226 F	Fax: (907)374-321		6	<u> </u>	P.O. Number:			-				7 5	4 3 2	1 <1
	Kobuk Feed & Fuel 1016	-					Pre	Preservative				Petro	leum Hy	Petroleum Hydrocarbon Analyses	nalyses
ber:			HCL	HCL	HCL	HCL	N/A	-				Specify Other.	ther.	1 2	⊽
Sampled By: Dustin Stahl	Stahl						Reques	Requested Analyses	ses			Report Ti	Report Tier Levels: Tier 1 requested (results + OC)	Report Tier Levels: Tier II reporting requested (results + OC)	ting
	Samulino	þ	10	aiso Xata	s t	zo	WIS								
Sample Identification	Date/ Time	me	GKO VK I	СКО/ 101/8 УК	۸OC، 85908	DKO AK 10	₽AH 8270E EPA					Matrix (W,S,O)	# of Cont.	Location / Comments	Lab ID
¹ MW1-1016	09/22/15	1640		×		X			-			A	s and a second		A-6
² MW2-1016	09/22/15	1730	X		X	X	X					8	, <u>e</u>		04-1 1
³ MW3-1016	09/22/15	1815	Х		X	X	X					В	2		A-L
, DUP-1016	09/22/15	1750	Х		X	X	×						2 2		1-4-V
, Trip Blank	09/22/15	1200	Х		X							A	4		SA-N
8															2 D
2															
9															
Released By: Print Name: Dustin Stahl		Line	Firm. ADEC		Date: 10/	Date: $10/26/2016$		Received By:	IBy: Z	21-	- i			Date: :0/26/16	71/07
Released By: 1 Mar					Date: 10/20 //2	10 111		Print Na	Print Name: Ni of war	Maner	Firm: SGS	SGS	()'	Time: /320	0
Print Name: NI cole worn	JULE	Firn	Firm: SG	S II	Time: (5	(530		Print Nai	me: Nicho	Print Name: Nicholas Wills	Firm: SGS	565		Time: 04, 38	38
													Lenci Co Co		Page 1 of 1
						Ł	AUC		(S: IF, IB	B	18:	78:1.6 #205	まで	1	

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	Condition:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes No NA	Exemption permitted if sampler hand carries/delivers.
COC accompanied samples? Temperature blank compliant* (i.e., 0-6°C) If >6°C, were samples collected <8 hours ago?	Yes No N/A Yes No Yes No N/A Yes No N/A	DExemption permitted if chilled & collected <8hrs ago Note: Identify containers received at non-compliant temperature. Use form
ambient () or chilled (). Please check one.		FS-0029 if more space is needed.
Delivery Method Client (hand carried) Other:	Tracking/AB# : Or see attached Or DA	
\rightarrow For samples received with payment, note amount (\$) and where	ether eash / check / CC (cire	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply). Bubble Wrap Separate plastic bags Vermiculite Other:	Yes No N/A	Note: some samples are sent to Anchorage without inspection by SGS Fairbanks personnel.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No N/A	· · · · · · · · · · · · · · · · · · ·
For RUSH/SHORT Hold Time , were COC/Bottles flagged	Yes No N/A	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes No MA	
Additional notes (if applicable): Profile #: 334646		
Note to Client: any "no" circled above indicates non-compliance	with standard procedures and ma	y impact data quality.

		-	116	878	88			68788	
Review Criteria	Y/I	N (yes,	/no)		Exc	eptions N	loted be	elow	
			_		exemption perr	nitted if sam	pler hand	d carries/delivers	
Were Custody Seals intact? Note # &	location	Y]			1-F, 1-B			
COC accompanied s	samples?	Y							
**exemption perm	itted if ch	nilled 8	collect	ted <8ł	nrs ago or chlling no	ot required (i.e., waste	e, oil)	
		Y	Coo	ler ID:	1	@	1.6	°C Therm ID	: 205
			Coo	ler ID:		@		°C Therm ID	:
Temperature blank compliant* (i.e., 0-6 °C a	after CF)?		Coo	ler ID:		@		°C Therm ID	:
			Coo	ler ID:		@		°C Therm ID	
			Coo	ler ID:		@		°C Therm ID	:
*If >6°C, were samples collected <8 hou	ırs ago?		ļ						
If <0°C, were sample containers	ice free?	i	1						
			IJ 【						
If samples received <u>without</u> a temperature blank, the "cooler temperat be documented in lieu of the temperature blank & " COOLER TEMP " wi			_						
noted to the right. In cases where neither a temp blank nor cooler tem									
obtained, note "ambient" or "chilled".									
Note: Identify containers received at non-compliant temperature . Use FS-0029 if more space is needed.	e form								
		-	Note:	Refer t	o form F-083 "Sam	ple Guide" f	or hold tir	nes.	
Were samples received within he	old time?	Y							
Do samples match COC** (i.e.,sample IDs,dates/times collected)?									
**Note: If times differ <1hr, record details & login per COC. Were analyses requested unambiguous?			Ï						
					***Exemption	permitted fo	r metals (e.g,200.8/6020A).
Were proper containers (type/mass/volume/preservative*	**)used?	Y	1	!					-
IF APPLICABLE			Ï						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples?	Y	Trip Bl	ank ha	s Limited volume.				
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)?	Y	i –						
Were all soil VOAs field extracted with Me	OH+BFB?								
Note to Client: Any "no" answer above indicates	s non-con	nplian	ce with	standa	ard procedures and	may impact	data qua	lity.	
Addit	ional n	otes (if app	licabl	e):				
Collection date is 9/22/15 on the COC. It is 10/26/16 on the co	ontainers	s. San	nples h	nave b	een logged in pe	r the conta	ainers.		

Sample Containers and Preservatives

1165788001-A HCL to pH < 2 OK 1165788001-B HCL to pH < 2 OK 1165788001-D HCL to pH < 2 OK 1165788001-B HCL to pH < 2 OK 1165788001-B HCL to pH < 2 OK 1165788002-A HCL to pH < 2 OK 1165788002-B HCL to pH < 2 OK 1165788002-C HCL to pH < 2 OK 1165788002-B HCL to pH < 2 OK 1165788002-C HCL to pH < 2 OK 1165788002-F HCL to pH < 2 OK 1165788002-F HCL to pH < 2 OK 1165788002-F HCL to pH < 2 OK 1165788003-F HCL to pH < 2 OK 1165788003-F HCL to pH < 2 OK 1165788003-B HCL to pH < 2 OK 1165788003-B HCL to pH < 2 OK 1165788003-C HCL to pH < 2 OK 1165788003-B HCL to pH < 2 OK 1165788003-C HCL to pH < 2 OK 1165788003-F HCL to pH < 2 OK 1165788003-F HCL to pH < 2	Container Id	Preservative	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
116578001-B HCL to pH < 2	1168788001-A	HCL to $pH < 2$	ОК			
1168788001-C HCL to PH < 2						
1168788001-D HCL to pH < 2						
1168788002-R HCL to pH < 2 OK 1168788002-R HCL to pH < 2						
1168788002-A HCL to pH < 2						
116878002-B HCL to pH < 2		HCL to pH < 2				
1163788002-C HCL to pH < 2		HCL to pH < 2				
1168788002-D HCL to pH < 2		HCL to $pH < 2$				
116878802-F HCL to pH < 2		HCL to pH < 2				
1168788002-6 HCL to pH < 2		HCL to pH < 2				
1168788002-H HCL to pH < 2	1168788002-F	HCL to pH < 2	ОК			
1168788002-1 No Preservative Required OK 1168788002-3 No Preservative Required OK 1168788003-A HCL to pH < 2	1168788002-G	HCL to $pH < 2$	ОК			
1168788002-J No Preservative Required OK 1168788003-A HCL to pH < 2	1168788002-H	HCL to pH < 2	ОК			
1168788003-A HCL to pH < 2	1168788002-I	No Preservative Required	ОК			
1168788003-B HCL to pH < 2	1168788002-J	No Preservative Required	ОК			
1168788003-C HCL to pH < 2	1168788003-A	HCL to pH < 2	ОК			
1168788003-DHCL to $pH < 2$ OK1168788003-EHCL to $pH < 2$ OK1168788003-FHCL to $pH < 2$ OK1168788003-GHCL to $pH < 2$ OK1168788003-GHCL to $pH < 2$ OK1168788003-INo Preservative RequiredOK1168788003-JNo Preservative RequiredOK1168788004-AHCL to $pH < 2$ OK1168788004-BHCL to $pH < 2$ OK1168788004-CHCL to $pH < 2$ OK1168788004-DHCL to $pH < 2$ OK1168788004-EHCL to $pH < 2$ OK1168788004-FHCL to $pH < 2$ OK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788005-AHCL to $pH < 2$ OK1168788005-BHCL to $pH < 2$ OK1168788005-CHCL to $pH < 2$ OK	1168788003-B	HCL to $pH < 2$	ОК			
1168788003-EHCL to $PH < 2$ OK1168788003-FHCL to $PH < 2$ OK1168788003-GHCL to $PH < 2$ OK1168788003-HHCL to $PH < 2$ OK1168788003-INo Preservative RequiredOK1168788003-JNo Preservative RequiredOK1168788004-AHCL to $PH < 2$ OK1168788004-BHCL to $PH < 2$ OK1168788004-BHCL to $PH < 2$ OK1168788004-CHCL to $PH < 2$ OK1168788004-EHCL to $PH < 2$ OK1168788004-FHCL to $PH < 2$ OK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788004-FNo Preservative RequiredOK1168788005-AHCL to $PH < 2$ OK1168788005-BHCL to $PH < 2$ OK1168788005-CHCL to $PH < 2$ OK	1168788003-C	HCL to $pH < 2$	ОК			
1168788003-F HCL to pH < 2	1168788003-D	HCL to $pH < 2$	OK			
1168788003-G HCL to pH < 2	1168788003-E	HCL to $pH < 2$	ОК			
1168788003-H HCL to pH < 2	1168788003-F	HCL to $pH < 2$	OK			
1168788003-I No Preservative Required OK 1168788003-J No Preservative Required OK 1168788004-A HCL to pH < 2	1168788003-G	HCL to $pH < 2$	OK			
1168788003-J No Preservative Required OK 1168788004-A HCL to pH < 2	1168788003-H	HCL to $pH < 2$	ОК			
1168788004-A HCL to pH < 2	1168788003-I	No Preservative Required	ОК			
1168788004-B HCL to pH < 2	1168788003-J	No Preservative Required	ОК			
1168788004-C HCL to pH < 2	1168788004-A	HCL to $pH < 2$	ОК			
1168788004-D HCL to pH < 2	1168788004-B	HCL to $pH < 2$	ОК			
1168788004-E HCL to pH < 2	1168788004-C	HCL to $pH < 2$	ОК			
1168788004-F HCL to pH < 2	1168788004-D	HCL to $pH < 2$	OK			
1168788004-G HCL to pH < 2	1168788004-E	HCL to $pH < 2$	OK			
1168788004-H HCL to pH < 2	1168788004-F		OK			
1168788004-I No Preservative Required OK 1168788004-J No Preservative Required OK 1168788005-A HCL to pH < 2	1168788004-G		OK			
1168788004-J No Preservative Required OK 1168788005-A HCL to pH < 2	1168788004-H	HCL to $pH < 2$	OK			
1168788005-A HCL to pH < 2	1168788004-I		OK			
1168788005-B HCL to pH < 2	1168788004-J		OK			
1168788005-C HCL to pH < 2 OK	1168788005-A		ОК			
1168788005-D HCL to pH < 2 OK						
	1168788005-D	HCL to $pH < 2$	ОК			

Container Id

<u>Preservative</u>

Container Condition Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Perceipt Form for details on the amount and let # of the preservative added

Laboratory Data Review Checklist

Completed By:

Alyson McPhetres

Title:

Environmental Scientist

Date:

July 2017

CS Report Name:

October Groundwater Monitoring Well Report Formerly Kobuk Feed & Fuel 2751 Picket Place, Fairbanks, Alaska

Report Date:

July 14, 2017

Consultant Firm:

Alaska Resources and Environmental Services

Laboratory Name:

SGS North America Inc.

Laboratory Report Number:

116788

ADEC File Number:

100.26.137

Hazard Identification Number:

116788

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	C Yes	C No	Comments:
		1	as the laboratory performing the analyses ADEC CS approved?
	🖸 Yes	🖸 No	Comments:
Tł	he samples w	ere not subcom	tracted or transferred
<u>Chai</u>	in of Custody	(CoC)	
a.	CoC inform	nation complete	ed, signed, and dated (including released/received by)?
	🖸 Yes	🖸 No	Comments:
Tl	he incorrect s	ampling date w	as listed on the COC. It should be 10/25/2016 for all samples.
b.	. Correct Ana	alyses requeste	d?
	🖸 Yes	🖸 No	Comments:
Labo	oratory Sampl	le Receipt Doct	umentation
Labo a.		-	umentation e documented and within range at receipt (0° to 6° C)?
		-	
	Sample/coo	ler temperature	e documented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})$?
a.	Sample/coo	oler temperature	e documented and within range at receipt (0° to 6° C)? Comments: btable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	Sample/coo	oler temperature	e documented and within range at receipt (0° to 6° C)? Comments: btable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	Sample/coo Yes Sample pres Volatile Ch	oler temperature No servation acception acce	e documented and within range at receipt (0° to 6° C)? Comments: otable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ents, etc.)?
a.	Sample/coo Yes Sample pres Volatile Ch	ler temperature No servation accep lorinated Solve No	e documented and within range at receipt (0° to 6° C)? Comments: otable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ents, etc.)?

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

E Yes I No Comments: The incorrect collection date was listed on the COC, which was documented by the laboratory.

e. Data quality or usability affected?

Comments:

Data quality and usability is not affected.

- 4. Case Narrative
 - a. Present and understandable?

🖸 Yes 🛛 No

Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes No Comments:

1168788003 PS MW3-1016 AK101 - Surrogate recovery for 4-bromofluorobenzene (202%) does not meet QC criteria due to matrix interference.

1168788004 PS DUP-1016 AK101 - Surrogate recovery for 4-bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

c. Were all corrective actions documented?

Yes No Comments:

No corrective actions were required

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not discuss the effect on data quality or usability.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes No Comments:	
------------------	--

b. All applicable holding times met?

💽 Yes	🖸 No	Comments:

c. All soils reported on a dry weight basis?

C Yes	🖸 No	Comments:
The matrix wa	s water for all	samples.
d. Are the rep the project	-	ess than the Cleanup Level or the minimum required detection level for
C Yes	🖸 No	Comments:
e. Data qualit	y or usability a	affected?
C Yes	🖸 No	Comments:
Data quality an	nd usability is	not affected.
C Samples		
a. Method Bl	ank	
i. One	e method blank	k reported per matrix, analysis and 20 samples?
C Yes	🖸 No	Comments:
ii A11	method blank	results less than limit of quantitation (LOQ)?
C Yes	🖸 No	Comments:
iii. If a	bove LOQ, wh	nat samples are affected?
		Comments:
N/A		
iv. Do	the affected sa	mple(s) have data flags? If so, are the data flags clearly defined?
🖸 Yes	C No	Comments:
No samples we	ere affected.	
v Dat	a quality or us	ability affected?
v. Du	a quality of us	Comments:

Data quality and usability is not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

	1	1	
	🖸 Yes	🖸 No	Comments:
		tals/Inorgar samples?	nics – one LCS and one sample duplicate reported per matrix, analysis and
	🖸 Yes	🖸 No	Comments:
The s	amples w	vere not ana	alyzed for metals/inorganics.
	An	d project sp	l percent recoveries (%R) reported and within method or laboratory limits? pecified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, 25%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	🖸 Yes	🖸 No	Comments:
	lab LC	oratory limi S/LCSD, M	l relative percent differences (RPD) reported and less than method or its? And project specified DQOs, if applicable. RPD reported from IS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all see the laboratory QC pages)
	🖸 Yes	C No	Comments:
	v. If %	6R or RPD	is outside of acceptable limits, what samples are affected?
			Comments:
N/A			
	vi. Do	the affected	d sample(s) have data flags? If so, are the data flags clearly defined?
	🖸 Yes	C No	Comments:
No sa	mples w	ere affected	1.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability is not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

Yes No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No Comments:

1168788003 PS MW3-1016 AK101 - Surrogate recovery for 4-bromofluorobenzene (202%) does not meet QC criteria due to matrix interference.

1168788004 PS DUP-1016 AK101 - Surrogate recovery for 4-bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

iii. Do the sample results with failed surrogate recoverieshave data flags? If so, are the data flags clearly defined?

🖸 Yes 🛛 No

Comments:

The samples are flagged with an "*" in the laboratory report.

iv. Data quality or usability affected?

Comments:

Data quality may be affected, but data usability is not affected.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

🖸 Yes	🖸 No	Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes No Comments:

All samples were shipped in a single cooler.

iii. All results less than LOQ?

Yes No Comments:

iv. If above LOQ, what samples are affected?	
Comments:	
N/A	
v. Data quality or usability affected?	
Comments:	
Data quality and usability is not affected.	
e. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples?	
Yes No Comments:	
ii. Submitted blind to lab?	
Yes No Comments:	
iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration	
$R_2 = 1$ for Duphene Concentration	
E Yes I No Comments:	
iv. Data quality or usability affected? (Use the comment box to explain why or why no	ot.)
Comments:	
The data quality and usability is not affected because the RPDs were less than the specified De	QOs.
f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be e below).	ntered
🖸 Yes 🖸 No 🖾 Not Applicable	

An equipment blank was not required for this sampling event.

	i. All 1	results less t	han LOQ?	
	🖸 Yes	C No	Comments:	
N/A				
	ii. If ab	ove LOQ, v	vhat samples are affected?	
			Comments:	
N/A				
	iii. Data	ι quality or ι	asability affected?	
			Comments:	
N/A				
7. Other Da	ta Flags/Q	Qualifiers (A	COE, AFCEE, Lab Specific, etc.)	
a. D	efined and	d appropriate	e?	
	🖸 Yes	C No	Comments:	

Appendix D: Groundwater Sampling Field Data Sheets

ALASKA RESOURCES AND ENVIRONMENTAL SERVICES

			Gi	round Wat	er Monitor	ring Well I	Data Sheet					
	Site Name:	KOBUK	FEED+	FUEL	Well/Sample ID: MWI / MWI - 1016							
	Location:				Initial Depth to Water (DTW): 12.11							
	Client:					Total Well Depth (TD): 16.95						
	Sampler:)-5TAH	L		Well Diameter:							
	Date: 10			1: 	Purge Method: BLADDER AVMP MPIO CONTROLOR							
	Sample Me	ethod:			Flow Rate: 0.2 L/min							
	Time	ph	SC	DO	Temp (°C)	ORP	DTW (feet)	Cumulative Volume	Observations			
1606	4TEES	6.59	0.761	2.10	4.31	52.6	12,12	1.5				
	1609	6.69	0,750	1.40	4,21	32.9	12.11	1.7				
	1612	6.73	0,743	0.95	4.07	19.5	12.11	1.9	· ·			
	1615	6.76	0,736	2.63	4.11	9.4	12.11	2.1				
	1618	6,81	0:723	2.58	425	-1.5	12.1	2.3				
	1621	6.83	0.725	2.05	4.05	-6.5	12.11	2.5				
	1624	6.86	0.724	1.52	4.04	-9.4	12.12	2.7				
	1627	6.54	6.727	1.11	4,16	-19.3	12.11	3.9				
	1630	6.86	8:726	1.00	4.25	-25,6	12.11	4.7				
	1633	6.86	0.724	0.61	4.19	-33.0	12.11	4.3				
	1636	6.87	0,723	0.60	4.23	-496	12.11	4.5				
	1639	6.38	0.723	0.50	4.22	-42.8	12.11	4.7				
	Did Well Dewater? Start Pur				e Time:		DTW prio	r to sample:				
	Odor: No	ME	-	Stop Purge Time:			Start Sample Time:					
	Color: CLEAR Total Pu				e Volume:		Total Sample Volume:					
			Model: V		6 MPS							
Water Level Indicator Model: 5021M157 Serial ID:												

Ground Water Monitoring Well Data Sheet

Notes: WELL WIZARD 3020 COMPRESSOR + MPID CONTROLLER

ALASKA RESOURCES AND ENVIRONMENTAL SERVICES

	G	iounu wai		0						
KOBUCK	FEED) +	FUR	Well/Sample ID: MWZ / MWZ - 1016							
		<u> </u>								
			Total Well Depth (TD): 16,18 Well Diameter: 14,19 Purge Method: BLADOER							
). STAN	10									
ph	SC	DO	Temp (°C)	ORP	DTW	Cumulative Volume	Observations			
6.64	0.906	1.42	4,07	1.0	14.41	1.3				
6.61	0.844	5.1	3.91	-1.1	14.41	1.6				
4.61	0.823	0.46	3.64	-6.5	14.41	1.9				
6.62	0.811	0.36	3-53	-10,0	14.41	2.3				
6.61	0.600	0.35	3.58	-11.7	14,41	2,6				
						18				
*							5			
ewater?		Start Purge	Time:		DTW prior to sample:					
ery sock	s"Mold	Stop Purge	Time:	Start Sample Time:						
		Total Purge	e Volume:	Total Sample Volume:						
ity Meter	Model:			Serial ID:						
I Indicator				Serial ID:						
	0.577+ 125/20 thod: Low ph 6.64 6.64 6.64 6.62 6	KOBUCK FEED + N.STAME $125/2016$ thod: LOWFLOW ph SC 6.64 6.706 6.64 0.844 6.64 0.844 6.64 0.844 6.64 0.844 6.62 0.811 6.62 0.811 6.62 0.800 <td>Kobuck FEED + FUR0.5TAMC$125/201b$thod: LowFLOWphSCDO$6.64$$6.706$$1.422$$6.64$$6.923$$0.844$$5.1$$6.61$$0.844$$5.12$$6.62$$0.811$$6.62$$0.811$$0.800$$0.35$$0.800$$0.35$$0.800$$0.35$$0.920$$0.35$$0.920$$0.35$$0.920$$0.35$$0.900$$0.900$</td> <td>Kobuck FED NUCFUEWell/SamInitial DepTotal WellInitial DepTotal Well$0.577M$Well Diam$0.577M$Well Diam$0.577M$Well Diam$0.577M$Well Diam$0.577M$Well Diam$0.577M$Flow RatesphSCDO$125/2016$Flow RatesphSCDO$125/2016$Temp (°C)$0.644$$5.1$$500$$7.64$$0.644$$5.1$$3.61$$3.64$$6.62$$0.811$$0.811$$0.34$$3.67$$3.58$$0.62$$0.35$$0.62$$0.35$$0.61$$0.61$$0.61$$0$</td> <td>Kobyck FEB) + FVELWell/Sample ID: Mail Initial Depth to Water (Total Well Depth (TD)0.57711Well Diameter:$1'L_1'$Well Diameter:$1'L_1'$Purge Method:$125/2016$Purge Method:$125/2016$Purge Method:$125/2016$Purge Method:$125/2016$Purge Method:1000Flow Rate:0.57711Flow Rate:<</td> <td>Initial Depth to Water (DTW): $1/4$Total Well Depth (TD): $1/6, 1/6$OSTANCWell Diameter: $1^{1}/4^{1/4}$Flow Rate: 0.3 $4/m'n$phSCDOTemp (°C)ORPDTW (feet)L.L4L.L4L.L4L4L4L4L4CDOTemp (°C)ORPDTW (feet)L4<td co<="" td=""><td>Kobuck FEEN + FUEL Well/Sample ID: $hwz 2$ $hwz 2 - 101$ Initial Depth to Water (DTW): $14, 41$ Total Well Depth (TD): $16, 16$ ON TOTAL Well Diameter: $11/4, 41$ ON TOTAL Well Diameter: $11/4, 47$ IV: 1/4 IV: 1/4 Purge Method: $6A = 0.672$ IV: 1/4 Purge Method: $6A = 0.672$ DO Temp (°C) ORP DTW (feet) Cumulative Volume Low FLOCE Flow Rate: 0.3 $1/76$ Low FLOCE DTW Cumulative Volume Low FLOCE Low FLOCE Low FLOCE Low FLOCE</td></td></td>	Kobuck FEED + FUR0.5TAMC $125/201b$ thod: LowFLOWphSCDO 6.64 6.706 1.422 6.64 6.923 0.844 5.1 6.61 0.844 5.12 6.62 0.811 6.62 0.811 0.800 0.35 0.800 0.35 0.800 0.35 0.920 0.35 0.920 0.35 0.920 0.35 0.900 0.900	Kobuck FED NUCFUEWell/SamInitial DepTotal WellInitial DepTotal Well $0.577M$ Well Diam $0.577M$ Flow RatesphSCDO $125/2016$ Flow RatesphSCDO $125/2016$ Temp (°C) 0.644 5.1 500 7.64 0.644 5.1 3.61 3.64 6.62 0.811 0.811 0.34 3.67 3.58 0.62 0.35 0.62 0.35 0.61 0.61 0.61 0	Kobyck FEB) + FVELWell/Sample ID: Mail Initial Depth to Water (Total Well Depth (TD) 0.57711 Well Diameter: $1'L_1'$ Well Diameter: $1'L_1'$ Purge Method: $125/2016$ Purge Method: $125/2016$ Purge Method: $125/2016$ Purge Method: $125/2016$ Purge Method: 1000 Flow Rate: 0.57711 Flow Rate:<	Initial Depth to Water (DTW): $1/4$ Total Well Depth (TD): $1/6, 1/6$ OSTANCWell Diameter: $1^{1}/4^{1/4}$ Flow Rate: 0.3 $4/m'n$ phSCDOTemp (°C)ORPDTW (feet)L.L4L.L4L.L4L4L4L4L4CDOTemp (°C)ORPDTW (feet)L4 <td co<="" td=""><td>Kobuck FEEN + FUEL Well/Sample ID: $hwz 2$ $hwz 2 - 101$ Initial Depth to Water (DTW): $14, 41$ Total Well Depth (TD): $16, 16$ ON TOTAL Well Diameter: $11/4, 41$ ON TOTAL Well Diameter: $11/4, 47$ IV: 1/4 IV: 1/4 Purge Method: $6A = 0.672$ IV: 1/4 Purge Method: $6A = 0.672$ DO Temp (°C) ORP DTW (feet) Cumulative Volume Low FLOCE Flow Rate: 0.3 $1/76$ Low FLOCE DTW Cumulative Volume Low FLOCE Low FLOCE Low FLOCE Low FLOCE</td></td>	<td>Kobuck FEEN + FUEL Well/Sample ID: $hwz 2$ $hwz 2 - 101$ Initial Depth to Water (DTW): $14, 41$ Total Well Depth (TD): $16, 16$ ON TOTAL Well Diameter: $11/4, 41$ ON TOTAL Well Diameter: $11/4, 47$ IV: 1/4 IV: 1/4 Purge Method: $6A = 0.672$ IV: 1/4 Purge Method: $6A = 0.672$ DO Temp (°C) ORP DTW (feet) Cumulative Volume Low FLOCE Flow Rate: 0.3 $1/76$ Low FLOCE DTW Cumulative Volume Low FLOCE Low FLOCE Low FLOCE Low FLOCE</td>	Kobuck FEEN + FUEL Well/Sample ID: $hwz 2$ $hwz 2 - 101$ Initial Depth to Water (DTW): $14, 41$ Total Well Depth (TD): $16, 16$ ON TOTAL Well Diameter: $11/4, 41$ ON TOTAL Well Diameter: $11/4, 47$ IV: 1/4 IV: 1/4 Purge Method: $6A = 0.672$ IV: 1/4 Purge Method: $6A = 0.672$ DO Temp (°C) ORP DTW (feet) Cumulative Volume Low FLOCE Flow Rate: 0.3 $1/76$ Low FLOCE DTW Cumulative Volume Low FLOCE Low FLOCE Low FLOCE Low FLOCE		

Ground Water Monitoring Well Data Sheet

Notes: WELL CAPT LOCK MISSING

ALASKA RESOURCES AND ENVIRONMENTAL SERVICES

		G	round Wat	ter Monito	ring Well I	Data Sheet					
Site Name	KOBUCK	FEED+	FUEL	Well/Sample ID: MW3 MW3-1016 + DUP							
Location:				Initial Depth to Water (DTW): 13,00 Total Well Depth (TD): 18,06 Well Diameter: 14							
Client:											
Sampler:	D. STAH	C									
Date: 10	0/25/16	9		Purge Method: BLADDER							
Sample M	ethod: La	VFIOW		Flow Rate	0.3/m	· N					
Time	ph	SC	DO	Temp (°C)	ORP	DTW (feet)	Cumulative Volume	Observations			
1758	6.88	0.984	1.60	5.23	-47.4	13.05	6.5				
1801	6.87	0.901	2.15	5.09	-47,2	13.01	0.8				
1804	6.84	0.858	2.64	4.89	-44.6	B00	1.1				
1807	6.82	0.833	3.27	4.83	-42.3	13.00	1.4				
1810	6,80	0.920	3.29	4.80	-40.3	13.00	1.7				
1813	6.78	6.811	3.46	4.67	-38.)	13.00	2.0				
Did Well Dewater? Start Purge T				e Time:		DTW prior to sample:					
Odor: Fu	EL+ SUL	FUR	Stop Purge	e Time:		Start Sample Time:					
				ge Volume:		Total Sample Volume:					
	-	Model:			Serial ID:						
Water Lev	el Indicator	Model:		Serial ID:							

Ground Water Monitoring Well Data Sheet

SHEEN WAS OBSERVED ON ARGE WATER (LIGHT TO MED) DUP (OLLECTED FROM THIS LOCATION Notes: