

Mr. James Frechione Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, Alaska 99709 2300 Eastlake Avenue East Suite 200 Seattle Washington 98102 Tel 206.325.5254 Fax 206.325.8218

ARCADIS U.S., Inc.

ENVIRONMENTAL

www.arcadis-us.com

Subject:

2007 Site Assessment Report Former Chevron Facility 92114 3350 College Road Fairbanks, Alaska Reckey: 1992310013301

Dear Mr. Frechione:

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS U.S., Inc. (ARCADIS BBLES, formerly known as Blasland, Bouck & Lee, Inc.) has prepared this report for the additional delineation of soil and groundwater impacts conducted in July 2007 at former Chevron Facility 92114, located at 3350 College Road in Fairbanks, Alaska (Figure 1). This report outlines the completion of five monitoring wells, including two monitoring well replacements, and four shallow soil borings near potential source areas as shown on Figure 2.

Site Description

Former Chevron Facility 92114 is a vacant lot located in a commercial area. The site operated as the College Auto Service gas station from 1949 to 1974 when the name was changed to Al's Chevron. The station operated as Denny's Chevron from 1975 through 1977 and then as Mike's University Chevron from 1978 through 1986. The site facilities are known to have included six underground storage tanks (USTs) and one above ground storage tank (AST). In 1986, the USTs and buildings associated with the Chevron facility were removed. In 2001, during over-excavation activities, a previously unknown UST and a partially crushed AST were discovered and removed. The UST was in good condition and contained approximately 20 gallons of weathered gasoline. The AST was empty, but contained gasoline at one time as indicated on the labeling on the tank. Approximately 800 tons of hydrocarbon

Date:

January 18, 2008

Contact:

Rebecca K. Andresen

Phone:

206.726.4717

Email:

Rebecca.Andresen @arcadis-us.com

Our ref: B0045501

Mr. James Frechione January 18, 2008

impacted soil were excavated and removed from site. Known facilities associated with the retail petroleum operations have been removed from the site.

Between 1993 and 2002, 10 monitoring wells, four dual-phase extraction treatment (DPET) wells, 11 direct push air sparge (AS) wells, and 42 soil borings were drilled onsite and offsite. Two of the monitoring wells have been destroyed, and eight remain. The AS wells have not been connected to a system or used for remediation, and cannot currently be located.

The DPET system was operated discontinuously since it was initially started-up on May 27, 2003. The system was taken offline on June 24, 2003, pending receipt of the wastewater discharge permit. Full-time operation of the DPET system began on September 24, 2004. The groundwater extraction (GWE) system was shutdown on June 23, 2005 due to odor complaints. The GWE system was restarted several times briefly, but has been shutdown since August 2005. The SVE system was shut down in February 2007 due to frozen influent SVE lines. Due to the difficulties keeping the system operational, Chevron requested and received permission from ADEC to leave the system deactivated pending an evaluation of alternative remedial options at the site. Quarterly reports were submitted under separate cover, summarizing operation, maintenance, and performance of the DPET system, but have been suspended pending system reactivation or replacement.

Additional Soil Delineation

Very little soil data are present in site files. Dissolved-phase concentrations have remained very stable, despite active remediation, which suggests that a residual source, outside of the influence of the current DPET system, may still be present.

ARCADIS BBLES installed four (4) soil borings (SB-1 through SB-4) at locations as shown on **Figure 2** and described below:

- Soil Borings SB-1 and SB-2 were completed near the former location of the dispenser islands, to evaluate the potential releases from the dispenser pumps.
- Soil Borings SB-3 and SB-4 were completed near the former location of three underground storage tanks, to evaluate potential releases from the USTs.

After each boring location was manually cleared to an approximate depth of 8-feet below ground surface (bgs), the soil borings were advanced to a final depth of 15 feet bgs using a hollow-stem auger rig and a continuous split-spoon soil sampler.

Discrete soil samples were collected approximately every 2 feet bgs, using modified split spoon samplers. The samples were screened in the field using a photoionization detector (PID), and described by the supervising geologist using visual and manual methods of the Unified Soil Classification System (USCS). Soil samples were submitted to an Alaska state-certified laboratory, Lancaster Laboratories (Lancaster) for analysis to determine concentrations of gasoline range organics (GRO) by Alaska Method AK 101, diesel range organics (DRO) by Alaska Method AK 102, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by US EPA Method 8021B.

Soil Boring Analytical Results

Two samples from each soil boring were submitted to the laboratory for analysis of the constituents described above. From SB-1 and SB-2, samples from the 9-foot to 11-foot, and 11-foot to 13-foot depth intervals were submitted for analysis. Samples from the 11-foot to 13-foot and 13-foot to 15-foot depth intervals from SB-3 and SB-4 were submitted for analysis. Soil boring logs, including soil descriptions are included as **Appendix A**. Analyses are summarized in **Table 1** and the Analysis Report from the laboratory is included as **Appendix B**.

Analysis of the SB-1 soil sample from the 9-foot to 11-foot interval indicated a concentration of DRO above the ADEC soil cleanup level (250 milligrams per kilogram, mg/kg) at a concentration of 590 mg/kg. In addition, for the analysis of the SB-1 soil sample in the 9-foot to 11-foot interval, the reporting limits for benzene were raised above the ADEC soil cleanup level (0.02 mg/kg), which may provide an explanation for this sample exceeding the cleanup level, with an approximate concentration of less than 0.2 mg/kg. Analysis of samples from SB-2, SB-3 and SB-4, indicated that there were no detectable exceedances of GRO, DRO or BTEX.

Additional Groundwater Delineation

Dissolved-phase concentrations of GRO, DRO, and benzene have been detected in samples collected from site monitoring wells at concentrations exceeding the applicable standards. Of particular concern are elevated dissolved-phase concentrations detected in monitoring wells RM-4, RM-6 and MW-2. In order to further assess the lateral extent of groundwater contamination, three additional monitoring wells were installed, two to the west of the site (MW-8 and MW-9) and one up-gradient well in the northwest portion of the site (MW-10).

Mr. James Frechione January 18, 2008

ARCADIS BBLES

In addition to the three monitoring well installations, the existing wells MW-1 and MW-4 were replaced and named MW-1R and MW-4R, respectively. The monitoring well locations are depicted on **Figure 2**. MW-1 was decommissioned in June of 1997 and was replaced to the northwest of its current position, in the location of the former dispenser islands. MW-4 did not regularly produce sufficient amounts of water for sample analysis and the replacement well, MW-4R, was re-installed slightly to the south of its current position. Subsequently, MW-4 was decommissioned in place. This process was completed by an Alaska certified driller and consisted of backfilling the boring with bentonite and finishing the boring to match the existing grade.

After the boring locations were manually cleared to an approximate depth of 8-feet bgs, the monitoring wells were drilled with a hollow-stem auger rig. Soil samples were collected at 5-ft intervals using modified split spoons and logged as described above. Based on the results of field screening with a PID, select soil samples were submitted to an Alaska state-certified laboratory for analysis to determine concentrations of GRO by Alaska Method AK 101, DRO by Alaska Method AK 102, and BTEX by US EPA Method 8021B. Analysis of soil samples from MW-1R (15-foot to 17-foot), MW-4R (14-foot to 16-foot and 19-foot to 21-foot), MW-8 (21-foot to 23-foot), MW-9 (19-foot to 21-foot) and MW-10 (14.5-foot to 16.5-foot) indicated exceedances of the ADEC soil cleanup levels for benzene (0.02 mg/kg). In addition, the soil sample from MW-10 (14.5-foot to 16.5-foot) was in exceedance of the cleanup level for DRO (250 mg/kg). There were no detectable exceedances of ADEC soil cleanup levels for GRO, toluene, ethylbenzene or total xylenes. The analytical results are summarized in **Table 1** and the analysis report is included in **Appendix A**.

Historically, depths to groundwater in the monitoring wells at this site have ranged from 9.70 to 18.50 feet below the top of casing (TOC) of each well. In addition, since February 1995, the average depth to groundwater in the monitoring wells is approximately 14.80 feet below TOC. Groundwater elevations are summarized in **Table 2**. Based on the historical groundwater data and past subsurface investigations, the proposed wells were installed to an approximate depth of 23 feet bgs and were completed with 2-inch ID Schedule 40 PVC casing with 15 feet of 0.010-inch slotted screen. The screen was packed with coarse sand and the screen pack extended approximately 2 feet above the top of the screen. The annular space of the well was then sealed with hydrated bentonite chips to approximately 2 feet bgs and the balance of the annulus was filled with clean native fill. The monitoring well was completed with a locking cap and concrete monument.

Monitoring Well Development, Sampling, and Surveying

Well development took place after the wells were completed. Well development was performed by surging the well over the length of the screen interval, then purging until the water was relatively free of suspended sediments, and pH, conductivity, and temperature have stabilized, and/or until approximately 10 well volumes have been removed.

Groundwater samples were collected from each of the new wells approximately two weeks after installation. Collected groundwater samples were submitted for laboratory analysis to determine the concentrations of GRO by Alaska Method AK 101, DRO by Alaska Method AK 102, and BTEX by US EPA Method 8021B.

A licensed surveyor was obtained to survey the new well locations relative to existing site features, and to determine top-of-casing well elevations relative to an established geodetic datum to the nearest 0.01-ft. The surveyed elevations for the new wells are shown in **Table 2**.

Groundwater Analytical Results

Analytical results for monitoring well MW-10 did not indicate concentrations above the applicable ADEC Groundwater Cleanup Levels (GCLs) for GRO and DRO, and results were below the laboratory method detection limit for BTEX. This well is located on the upgradient side of the site. Groundwater samples from monitoring wells MW-1R, MW-4R, MW-8 and MW-9 exceeded the ADEC GCL for benzene (5.0 μ g/L), ranging from 40 μ g/L (MW-8) to 800 μ g/L (MW-1R). Monitoring wells MW-9 and MW-1R exceeded the ADEC GCL for GRO (1,300 μ g/L) at 2,200 μ g/L and 35,000 μ g/L, respectively. Groundwater samples from monitoring well MW-1R also exceeded the ADEC GCLs for DRO, toluene and ethylbenzene. Analytical results from the replacement well for MW-1, MW-1R, are consistent with the decreasing concentrations from the original well which were present prior to the decommissioning of the well in 1997. A summary of groundwater analytical data has been summarized in **Table 3**.

Management of Investigation-Derived Wastes (IDW)

Development water, purge water and soil cuttings generated during the soil boring and monitoring well installation activities were containerized in labeled 55-gallon steel drums. Subsequent to proper characterization and disposal, soil cuttings were

transported to Alaska Soil Recycling (ASR) in Anchorage for treatment. Development and purge water were taken to Golden Heart Utilities for supervised disposal.

Laboratory Data Quality Assurance Summary

As required by ADEC (Technical Memorandum 06-002, dated May 18, 2006), ARCADIS BBLES completed laboratory data review checklists for the Lancaster laboratory reports from the 2007 site assessment. The laboratory reports and the data review checklists are included as **Appendix B and C**.

The following quality assurance (QA) summary describes six parameters, related to the quality and usability of the data presented in this report.

- Precision Based on the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) relative percent differences, the data meet precision objectives.
- Accuracy The data meet accuracy objectives as indicated by the laboratory quality control samples, which were within method/laboratory limits. Trip blanks were also collected during sampling and the results were less than the laboratory detection limits.
- 3. Representativeness The data appear to be representative of site conditions and are generally consistent with historical groundwater monitoring results.
- 4. Comparability Comparability is not applicable to these laboratory results.
- 5. Completeness The results appear to be valid and usable, and thus the laboratory results have less than 100% completeness.
- 6. Sensitivity The sensitivity of the analyses was adequate for the samples, with the exception of the following: The detection limits were raised for the benzene analyses for soil boring SB-1, MW-1R (14.5-foot to 16.5-foot), MW-4R (14-foot to 16-foot), and MW-10 (14.5-foot to 16.5-foot). See lab reports and QA checklists in **Appendix B**.

Mr. James Frechione January 18, 2008

ARCADIS BBLES

Conceptual Site Model (CSM)

The site is currently an empty lot with impacted groundwater extending off-site to a paved commercial area. The petroleum impacts appear to have originated from the original USTs or dispenser islands, which were located on the southwestern portion of the site. The environmental impact caused by the release of petroleum hydrocarbons at the site is believed to be limited to the impacts to groundwater, soil, and possibly air. The current potential receptors are commercial or industrial workers and site visitors or trespassers.

The future potential receptors include residents and construction workers. Other receptors which were considered and were ruled out include farmers or subsistence harvesters and subsistence consumers. These receptors were excluded because the site is developed and is located in a commercial area of Fairbanks. An ADEC CSM scoping form and graph are included as **Appendix D**. A general receptor survey was completed during the well installation activities, and the CSM was reviewed to verify accuracy. The results of the receptor survey did not identify potable wells within 1,000 feet of the site. Based on these results, the CSM was not modified at this time.

Conclusions

The analytical results of the sampling event for the new monitoring wells are consistent with previous sampling events for other on-site wells. During this monitoring event, concentrations of GRO, DRO, benzene, toluene, and ethylbenzene were greater than the applicable ADEC GCLs in at least one groundwater sample. In addition, soil samples from the development of wells and soil borings indicated concentrations greater than the applicable ADEC soil cleanup levels for DRO and benzene.

ARCADIS BBLES recommends a continuation of the current semi-annual sampling program with the addition of the new wells. The second semi-annual sampling event occurred in September 2007, and included MW-1R, MW-2, MW-4R, MW-6, MW-8, MW-9, MW-10, RM-4, RM-6 and RM-7A. These wells were analyzed for GRO, DRO and BTEX. In addition, MW-4R and RM-4 was also analyzed for methyl-tert-butyl ether (MTBE), ethylene dibromide (EDB), arsenic, lead, and select volatile organic compounds (VOCs). The report for the second semi-annual sampling event will be submitted under separate cover.

Mr. James Frechione January 18, 2008

If you have any questions, or require additional information, please feel free to contact Rebecca Andresen with ARCADIS BBLES at 206.726.4717.

Project Manager

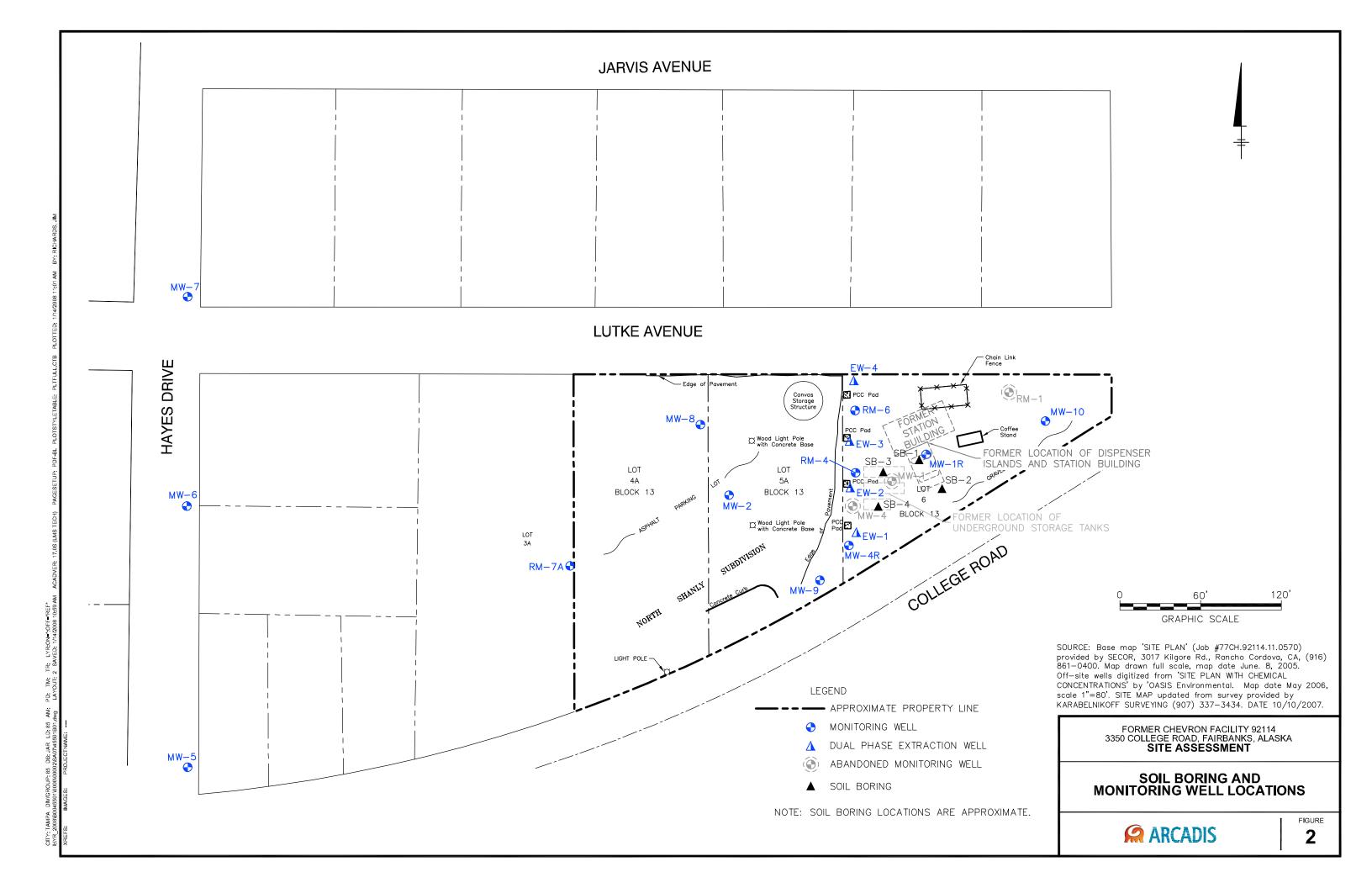
Sincerely,

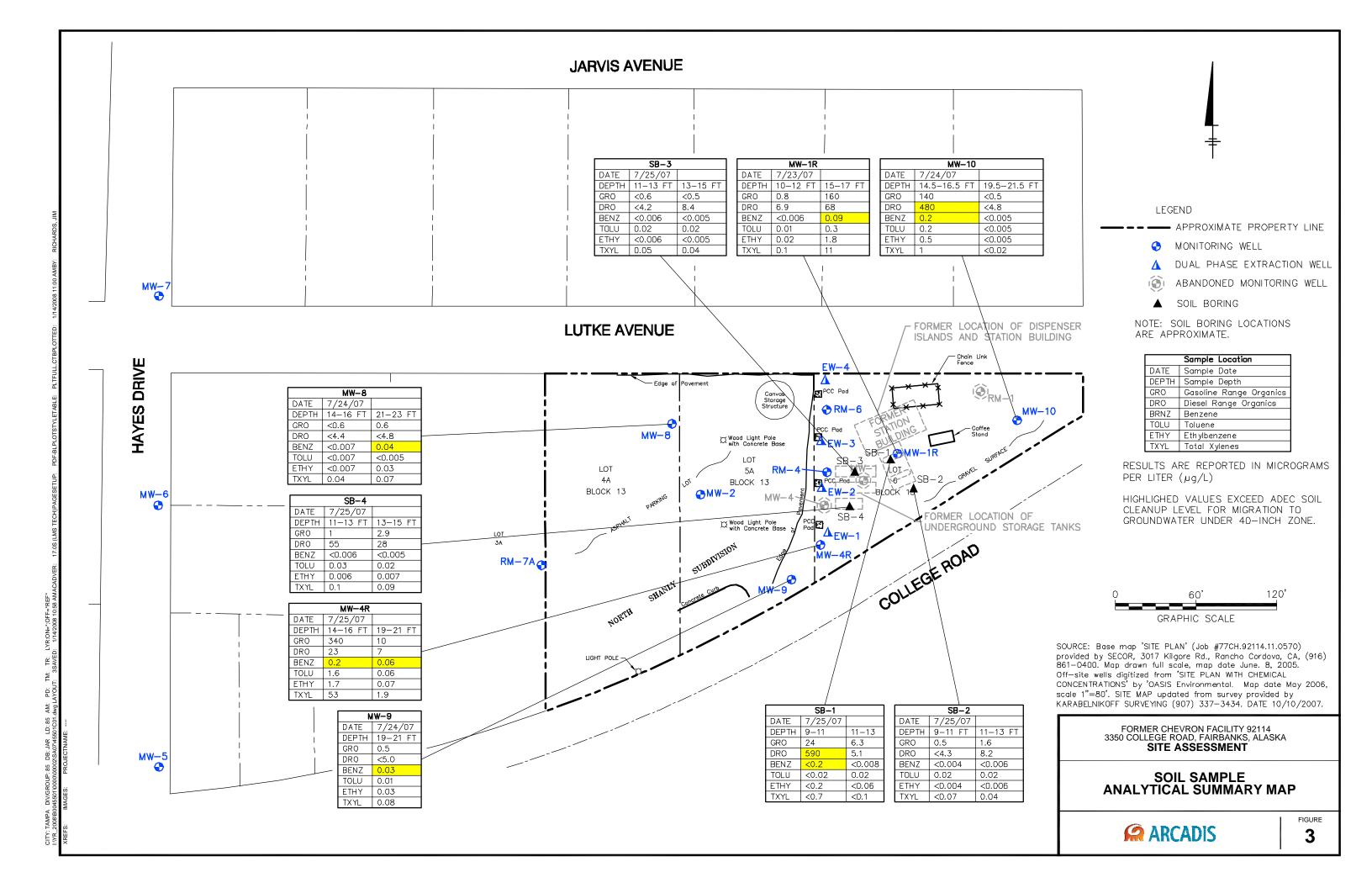
ARCADIS U.S., Inc.

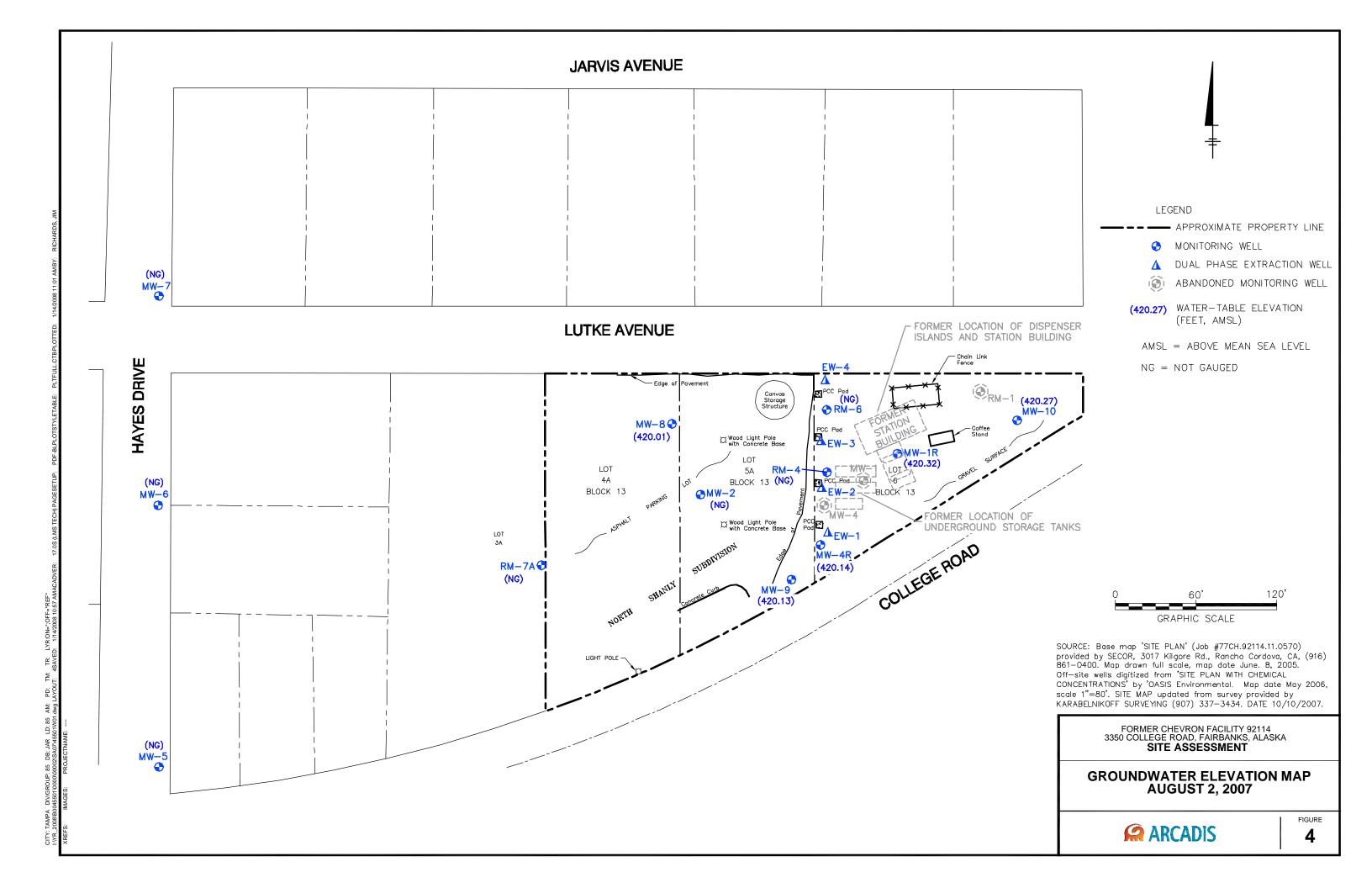
For Vanessa R. Varbel

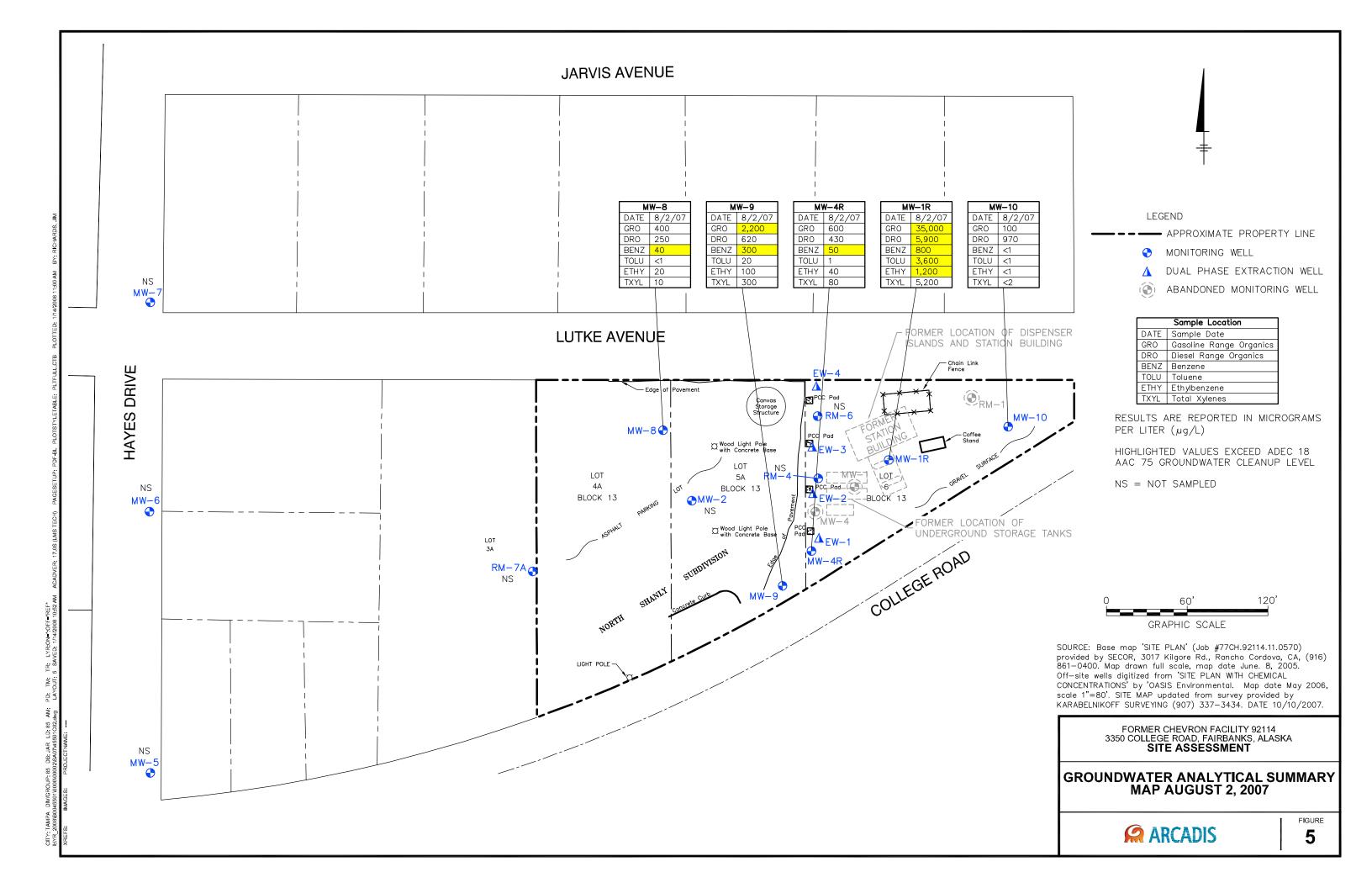
Project Engineer in Training

Copies:


Ms. Stacie Frerichs, Chevron


Mr. Mark A. Nielsen, Fairbanks, Alaska


File


Page: 8/8

Figures

Tables

Table 1 Soil Boring Analytical Results

Former Chevron Facility 92114 3350 College Road Fairbanks, Alaska

Boring	Depth below ground surface (feet)	Date Sampled	GRO ¹	DRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
ADE	ADEC Soil Cleanup Level (Migration to groundwater)			250	0.02	5.4	5.5	78
MW-1R	10-12	07/23/07	0.8	6.9	<0.006	0.01	0.02	0.1
MW-1R	15-17	07/23/07	160	68	0.09	0.3	1.8	11
MW-4R	14-16	07/25/07	340	23	0.2	1.6	1.7	53
MW-4R	19-21	07/25/07	10	7	0.06	0.06	0.07	1.9
MW-8	14-16	07/24/07	<0.6	<4.4	<0.007	<0.007	< 0.007	0.04
MW-8	21-23	07/24/07	0.6	<4.8	0.04	<0.005	0.03	0.07
MW-9	19-21	07/24/07	0.5	<5.0	0.03	0.01	0.03	0.08
MW-10	14.5-16.5	07/24/07	140	480	0.2	0.2	0.5	1
MW-10	19.5-21.5	07/24/07	<0.5	<4.8	<0.005	<0.005	< 0.005	<0.02
SB-1	9-11	07/25/07	24	590	<0.2	<0.2	<0.24	< 0.74
SB-1	11-13	07/25/07	6.3	5.1	<0.008	0.02	< 0.064	<0.14
SB-2	9-11	07/25/07	0.5	<4.3	<0.004	0.02	<0.004	0.07
SB-2	11-13	07/25/07	1.6	8.2	<0.006	0.02	<0.006	0.04
SB-3	11-13	07/25/07	<0.6	<4.2	<0.006	0.02	<0.006	0.05
SB-3	13-15	07/25/07	<0.5	8.4	<0.005	0.02	< 0.005	0.04
SB-4	11-13	07/25/07	1	55	<0.006	0.03	0.006	0.1
SB-4	13-15	07/25/07	2.9	28	<0.005	0.02	0.007	0.09

Notes

All results reported in milligrams per kilogram (mg/kg)

Highlighted concentrations are greater than the ADEC soil cleanup level for migration to groundwater, under 40-inch zone.

- < = not detected greater than the laboratory reporting limit
- -- = not analyzed
- D = Duplicate sample

¹Gasoline range organics (GRO) was analyzed by AK Method 101.

²Diesel range organics (DRO) was analyzed by AK Method 102

 $^{^3}$ Benzene, toluene, ethylbenzene, and total xylenes (BTEX) were analyzed by EPA Method 8021B

⁴Due to the presence of interferents near their retention time, normal reporting limits were not attained.

		Well	Depth to	Groundwater
		Elevation	Groundwater	Elevation
Well	Sample Date	(feet amsl)	(feet bgs)	(feet msl)
MW-1	02/27/95	102.84	18.50	84.34
	05/31/95		17.19	85.65
	08/14/95		16.58	86.26
	10/10/95		15.79	87.05
	02/26/96		18.12	84.72
		Well Decom	nmissioned June 199	97
MW-1R	8/2/2007	433.47	13.15	420.32
MW-2	02/27/95	101.15	16.70	84.45
	05/31/95	101.15	15.72	85.43
	08/14/95	101.2	14.86	86.34
	10/10/95	101.2	14.05	87.15
	02/26/96	101.2		
	10/22/97	101.2	15.64	85.56
	10/15/98	101.2	14.87	86.33
	05/05/99	101.2	17.11	84.09
	10/15/99	101.2	15.57	85.63
	05/06/00	101.2	17.10	84.1
	01/16/01	101.2	15.70	85.5
	05/02/01	98.75	Well	
	07/24/01	98.75	14.50	84.25
	11/21/02	98.75	14.54	84.21
	04/22/03	98.75	15.88	82.87
	09/19/03	98.75	13.03	85.72
	03/30/04	98.75	16.71	82.04
	09/30/04	435.48	15.04	420.44
	04/14/05	435.48	17.22	418.26
	09/14/05	435.48	14.35	421.13
	04/03/06	435.36	Well	
	09/19/06	435.36	14.74	420.62
	03/22/07	435.36	17.13	418.23
	10/07	435.36		
MW-4	11/21/02	97.05	12.98	84.07
	04/22/03	97.05	Well	Dry
	09/19/03	97.05	11.27	85.78
	03/30/04	97.05	Well	Dry
	09/30/04	433.78	Well	Dry
	04/14/05	433.78	Well	Dry
	09/14/05	433.78	12.62	421.16
	04/03/06	433.78	Well	Dry
	09/19/06	433.78	Well	Dry
	03/22/07	433.78	Well	Dry
				,

		Well	Depth to	Groundwater
		Elevation	Groundwater	Elevation
Well	Sample Date	(feet amsl)	(feet bgs)	(feet msl)
MW-4R	08/02/07	433.33	13.19	420.14
MW-5	05/03/01	96.88	15.26	81.62
	07/24/01	95.16	13.93	81.23
	11/21/02	96.88		
	09/30/04	433.65	14.06	419.59
	04/14/05	433.65	15.96	417.69
	09/14/05	433.65	13.11	420.54
	04/03/06	433.65	16.08	417.57
	09/19/06	433.65	13.52	420.13
	03/22/07	433.65	16.06	417.59
	10/07	433.65		
MW-6	05/03/01	96.86	14.62	82.24
	07/24/01	95.13	12.69	82.44
	09/30/04	433.81	13.11	420.70
	04/14/05	433.81	15.89	417.92
	09/14/05	433.81	12.64	421.17
	04/03/06	433.57	15.63	417.94
	09/19/06	433.57	12.89	420.68
	03/22/07	433.57	15.70	417.87
	10/07	433.57		
MW-7	05/03/01	97.29	14.97	82.32
	07/24/01	95.55	13.04	82.51
	11/21/02	97.29	12.63	84.66
	04/22/03	97.29	14.10	83.19
	09/19/03	97.29	9.70	87.59
	03/30/04	97.29	14.98	82.31
	09/30/04	434.01	13.27	420.74
	04/14/05	434.01	15.87	418.14
	09/14/05	434.01	12.75	421.26
	04/03/06	434.01	15.82	418.19
	09/19/06	434.01	13.06	420.95
	03/22/07	434.01	15.97	418.04
	10/07	434.01		
MW-8	08/02/07	435.11	15.10	420.01
MW-9	08/02/07	433.28	13.15	420.13
MW-10	08/02/07	433.32	13.05	420.27

		Well	Depth to	Groundwater
		Elevation	Groundwater	Elevation
Well	Sample Date	(feet amsl)	(feet bgs)	(feet msl)
RM-1	02/27/95	98.53	14.10	84.43
	05/31/95	98.53		
	08/15/95	98.53	12.23	86.3
	10/10/95	98.53	11.45	87.08
	11/21/02		Destroyed	
RM-4	02/27/95	99.88	15.55	84.33
	05/31/95	99.88	14.24	85.64
	08/15/95	99.94	13.65	86.29
	10/10/95	99.94	12.85	87.09
	02/26/96	99.94	15.22	84.72
	10/22/97	99.94	14.49	85.45
	10/15/98	99.94	13.62	86.32
	05/05/99	99.94	16.00	83.94
	10/15/99	99.94	14.33	85.61
	05/06/00	99.94	15.77	84.17
	01/16/01	99.94	14.48	85.46
	05/02/01	97.44	15.27	82.17
	07/23/01	95.71	14.01	81.7
	11/21/02	97.44	13.29	84.15
	04/22/03	97.44	14.45	82.99
	09/19/03	97.44	11.61	85.83
	03/30/04	97.44	15.37	82.07
	09/30/04	434.19	13.64	420.55
	04/14/05	434.19	15.93	418.26
	09/14/05	434.19	13.00	421.19
	04/04/06	434.19	15.89	418.30
	09/19/06	434.19	13.50	420.69
	03/23/07	434.57	15.87	418.70
	10/07	434.57		

		Well	Depth to	Groundwater
		Elevation	Groundwater	Elevation
Well	Sample Date	(feet amsl)	(feet bgs)	(feet msl)
RM-6	02/27/95	100.23	15.95	84.28
	05/31/95	100.23	14.55	85.68
	08/15/95	100.27	14.01	86.26
	10/10/95	100.27	13.22	87.05
	02/26/96	100.27	15.62	84.65
	10/22/97	100.27	14.89	85.38
	10/15/98	100.27	14.00	86.27
	05/05/99	100.27	16.38	83.89
	10/15/99	100.27	14.72	85.55
	05/06/00	100.27	16.14	84.13
	01/16/01	100.27	14.85	85.42
	05/02/01	97.81		
	07/24/01	96.09	14.32	81.77
	11/21/02	97.81	13.73	84.08
	04/22/03	97.81	14.88	82.93
	09/19/03	97.81	11.97	85.84
	03/30/04	97.81	15.80	82.01
	09/30/04	434.57	13.87	420.70
	04/14/05	434.57	16.34	418.23
	09/14/05	434.57	13.20	421.37
	04/04/06	434.57	16.28	418.29
	09/19/06	434.57	13.89	420.68
	03/23/07	434.57	16.27	418.30
	10/07	434.57		

Former Chevron Facility 92114 3350 College Road Fairbanks, Alaska

		Well	Depth to	Groundwater
		Elevation	Groundwater	Elevation
Well	Sample Date	(feet amsl)	(feet bgs)	(feet msl)
RM-7A	04/17/95			
	05/31/95	101	15.56	85.44
	08/14/95	101.03	14.89	86.14
	10/10/95	101.03	14.14	86.89
	02/26/96	101.03	16.80	84.23
	10/23/97	101.03	15.98	85.05
	10/15/98	101.03	15.17	85.86
	05/05/99	101.03	17.49	83.54
	10/15/99	101.03	15.81	85.22
	05/06/00	101.03	17.21	83.82
	01/16/01	101.03	16.09	84.94
	05/02/01		16.80	
	07/24/01	96.85	15.50	81.35
	11/21/02	96.85	15.00	81.85
	04/22/03	96.85	15.90	80.95
	09/19/03	96.85	12.92	83.93
	03/30/04	96.85	17.07	79.78
	09/30/04	435.36	15.60	419.76
	04/14/05	435.36	17.54	417.82
	09/14/05	435.36	14.62	420.74
	04/03/06	435.36	17.59	417.77
	09/19/06	435.36	15.06	420.30
	03/22/07	435.36	17.26	418.10
	10/07	435.36		

Notes:

Depth to groundwater is measured from the top of casing

bgs = below ground surface

msl = mean sea level

-- = data not available

Bold Type = most recent sampling event

Well elevations surveyed in August 2007 and October 2007 use a local grid as the coordinate system. Assumed elevation of 100.00 feet of local datum (metal luminary pole).

	Sample							Total	
Well	Date	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylenes	
ADEC	GCL:	1,300	1,300 1,500 1,100 5.0 1,00				700	10,000	
MW-1	02/27/95	52,000	7,200		9,200	9,800	880	4,100	
	05/31/95	111,000	8,200		14,000	14,000	2,400	14,000	
	08/14/95	120,000	12,000		8,800	11,000	2,000	11,000	
	10/10/95	111,000	9,000		13,000	21,000	2,100	13,000	
	02/26/96	69,000	9		9,500	3,900	1,900	6,700	
				W		sioned June 19			
MW-1R	08/04/07	35,000	5,900		800	3,600	1,200	5,200	
MW-2	02/27/95	1,800			750	4.2	5	16	
	05/31/95	3,000	130		1,100	<25	<25	32	
	08/14/95	17,000	1,400		4,300	650	230	720	
	10/10/95	41,000	1,600		10,000	7,700	720	3,100	
	02/26/96								
	10/22/97	42,200	4,010		8,830	6,280	798	3,520	
	10/15/98	26,700	8,940		7,010	4,030	665	2,830	
	05/05/99								
	10/15/99	20,400	4,500		4,360	<100	474	1,110	
	05/06/00								
	01/16/01	9,380	4,080		2,570	94	517	715	
	05/02/01								
	07/24/01								
	11/21/02	27,200	3,120		2,800	3,030	769	2,580	
	04/22/03	27,000	8,200		4,200	2,100	910	2,300	
	09/19/03	46,000	7,500		5,000	6,800	1,100	4,200	
	03/30/04	12,000	6,200		1,900	170	620	1,300	
	09/30/04	2,300	2,900		1,700	790	640	2,300	
	04/14/05					ter No samp			
	09/14/05	5,500	1,900	380	810	63	280	480	
	04/03/06		-	•		ll Dry	<u>-</u>		
	09/19/06	4,900	1400	380	550	13	300	530	
	03/22/07					ll Dry			
MW-4	11/21/02		_		Insuffici	ent water			
	04/22/03			-	_	Frozen			
	09/19/03	170,000	26,000		8,900	34,000	2,000	20,000	
	03/30/04					ll Dry			
	09/30/04					ll Dry			
	04/14/05			-		ll Dry			
	09/14/05	82,000	16,000	<190		11,000	850	15,000	
	04/03/06					ll Dry			
	09/19/06		Well Dry						
	03/22/07		Well Dry						
	07/24/07			W	ell Decommis	sioned July 20	007		
MW-4R	08/02/07	600	430		50	1	40	80	

	Sample	000	222	22.0	_	- .	- 4 "	Total		
Well	Date	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylenes		
	GCL:	1,300	1,500	1,100	5.0	1,000	700	10,000		
MW-5	05/03/01 07/24/01	100	 -E04		40.1	 <2	 <2	 <4		
		103	<521				<2	<4		
	11/21/02 04/22/03		Well covered by asphalt							
	04/22/03		Well covered by asphalt							
	03/30/04		Well covered by asphalt Well covered by asphalt							
	09/30/04	30	240		2.0	<0.5	<0.5	<1.5		
	09/30/04	55	350		1.1	<0.5	<0.5 <0.5	<1.5		
	04/14/05	24	360	550	1.0	<0.5	<0.5 <0.5	<1.5		
	04/03/06	24	410	720	0.9	<0.5	<0.5 <0.5	<1.5		
	09/19/06	29	280	330	0.9	<0.5	<0.5 <0.5	<1.5		
	03/22/07	20	290		1.0	<1	<0.5 <1	<2		
MW-6	05/03/01	201	8420		57.6	0.701	5.98	27.5		
"""	07/24/01	192	4380		38.6	<2	2.25	46.2		
	11/21/02	102	4000	l Well co		snow, and fro		40.2		
	04/22/03			vvoii oc		ed by asphalt	2011 3011			
	09/19/03					ed by asphalt				
	03/30/04					ed by asphalt				
	09/30/04	1,500	5,800		140	0.6	72	320		
	04/14/05	92	2,800		17	<0.5	4.5	13		
	09/14/05	67	1,300	920	14	<0.5	0.8	11		
	04/03/06	88	980	940	14	<0.5	0.8	17		
	09/19/06	690	1,100	890	31	2.1	25	210		
	03/22/07	200	1,900		20	<1	2	80		
MW-7	05/03/01	<50	893		<2	<0.5	<0.5	<1		
	07/24/01	<90	517		<5	<2	<2	<4		
	11/21/02	<50.0	214		<0.200	< 0.500	<0.500	<1.00 (2)		
	11/21/2002 ^D	<50.0	284		<0.200	<0.500	<0.500	<1.00 (2)		
	04/22/03	11	930		<0.5	<0.5	<0.5	<1.5		
	09/19/03	<10	330		<0.5	<0.5	<0.5	<1.5		
	03/30/04	<10	360		<0.5	<0.5	<0.5	<1.5		
	09/30/04	<10	310		<0.5	<0.5	<0.5	<1.5		
	04/14/05	<10	80		<0.5	<0.5	<0.5	<1.5		
	09/14/05	<10	230	390	<0.5	<0.5	<0.5	<1.5		
	04/03/06	<10	340	590	<0.5	<0.5	<0.5	<1.5		
	09/19/06	<10	270	550	<0.5	<0.5	<0.5	<1.5		
	03/22/07	<10	600		<1	<1	<1	<2		
MW-8	08/04/07	400	250	1	40	<1	20	10		
MW-9	08/02/07	2,200	620	-	300	20	100	300		
MW-10	08/02/07	100	970		<1	<1	<1	<2		

	Cample							Total
Well	Sample Date	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylenes
	C GCL:	1,300	1,500	1,100	5.0	1,000	700	10,000
RM-1	02/27/95	53	130		<0.5	<0.5	<0.5	<0.5
IZIVI- I	05/31/95				<0.5 	<0.5 	<0.5 	<0.5
	03/31/93	100	44		9	<0.5	<0.5	<1.0
	10/10/95	240	1,700		34	0.72	<0.5 <0.5	<1.0 <1.0
	02/26/96	2 4 0 	1,700			0.72	<0.5 	<1.0
	10/22/97	<u></u>						
	10/22/97							
	05/05/99							
	10/15/99							
	05/06/00							
	01/16/01							
	05/02/01							
	07/24/01							
	11/21/02				Destroyed			
RM-4	02/27/95	180,000	12,000		23,000	39,000	2,700	15,000
	05/31/95	23,000	880		4,400	4,200	450	1,800
	08/15/95	37,000	2,000		5,000	4,000	410	2,000
	10/10/95	60,000	6,200		13,000	10,000	530	4,000
	02/26/96	52,000	6,200		7,900	7,000	820	3,200
	10/22/97	23,700	5,450		4,220	2,970	762	2,690
	10/15/98	34,300	13,300		5,820	6,960	841	4,260
	05/05/99	47,200	7,030		6,560	7,380	1,110	4,780
	10/15/99							,
	05/06/00	53,800	3,690		6,070	10,700	1,570	5,290
	01/16/01	36,700	7,880		4,810	6,900	1,180	3,740
	05/02/01	26,500	4,460		3,540	2,510	1,220	3,130
	07/23/01	14,100	2,190		2,280	1,130	641	1,710
	11/21/02	38,100	6,850		2,950	6,540	831	3,840
	04/22/03	55,000	17,000		3,500	4,400	1,200	8,500
	09/19/03	8,600	1,600		800	1,200	200	, 710
	03/30/04	48,000	12,000		6,000	2,000	1,600	8,100
	09/30/04	85,000	10,000		4,900	13,000	1,000	8,600
	04/14/05	38,000	13,000		4,300	1,400	1,400	5,000
	09/14/05	37,000	4,500	<210	2,600	5,900	730	3,600
	04/04/06	27,000	11,000	460	2,900	170	1,000	3,300
	09/19/06	59,000	7,300	<490	2,600	12,000	1,100	5,200
	03/23/07	35,000	10,000		3,100	600	1,300	4,600

ir i					ı			
Well	Sample Date	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Total Xylenes
ADEC	GCL:	1,300	1,500	1,100	5.0	1,000	700	10,000
RM-6	02/27/95	7,900	13,000		2900	930	150	570
	05/31/95	19,000	7,100		4000	1,300	380	1,100
	08/15/95	12,000	17,000		2900	430	170	390
	10/10/95	15,000	11,000		3100	280	210	430
	02/26/96	16,000	14,000		2700	210	150	390
	10/22/97	6,800	7,070		2100	60	143	189
	10/15/98	6,330	10,300		1850	59.5	168	212
	05/05/99	8,120	17,400		2950	127	397	528
	10/15/99	<16,000	30,100		2080	<100	220	258
	05/06/00	13,400	8,780		2850	53.5	503	618
	01/16/01	6,410	9,320		2220	<25	167	234
	05/02/01							
	07/24/01	8,660	8,280		1,620	102	430	622
	11/21/02	5,760	6,970		1,120	19.2	207	268
	04/22/03	8,400	7,200		1,500	23	380	450
	04/22/03 ^D	7,800	9,000		1,400	21	370	440
	09/19/03	9,300	6,100		1,100	30	550	660
	09/19/03 ^D	9,200	5,500		1,100	27	530	630
	03/30/04	6,600	20,000		1,100	24	410	440
	03/30/04 ^D	7,200	19,000		1,200	24	430	460
	09/30/04	7,300	6,300		730	26	380	450
	09/30/04 ^D	7,100	6,200		730	38	380	450
	04/14/05	7,500	10,000		1,000	55	600	720
	04/14/05 ^D	7,200	10,000		1,000	33	590	670
	09/14/05	3,300	6,200	<210	180	6.7	190	200
	04/04/06	6,900	5,100	<220	640	26	550	660
	04/04/06 ^D	7,100	4,000	280	640	29	570	690
	09/16/06	5,000	33,000	<100	250	16	370	460
	03/23/07	7,300	4,700		400	30	600	700
	03/23/07 ^D	5,600	4,600		300	20	500	600

Former Chevron Facility 92114 3350 College Road Fairbanks, Alaska

	Sample							Total
Well	Date	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylenes
	C GCL:	1,300	1,500	1,100	5.0	1,000	700	10,000
RM-7A	04/17/95	1,700	<100		880	16	29	62
I KW 7A	05/31/95	4,100	110		1200	55	55 55	140
	08/14/95	2,300	690		630	1.1	18	26
	10/10/95	1,900	520		730	1.4	15	25
	02/26/96	950	330		400	0.81	2.5	3.9
	10/23/97	930	570		487	<0.5	1.15	4.01
	10/15/98	1,200	1,100		529	<10	30.1	37
	05/05/99	580	670		652	<5	49.4	61.1
	10/15/99	2,060	597		541	<5	21	27.8
	05/06/00	2,670	454		835	5.7	82.1	119
	01/16/01	513	612		221	<2.5	9.83	9.53
	05/02/01	2,700	1,030		744	12	78.5	113
	07/24/01	2,950	944		880	<20	116	<114
	11/21/02	1,350	409		461	< 0.500	7.46	9.04
	04/22/03	2,200	420		500	1.7	64	47
	9/19/2003	2,400	660		520	2.9	93	64
	3/30/2004	1,400	610		350	18	43	65
	9/30/2004	1,900	460		460	<2.5	34	36
	9/14/05 ^D	2,600	690	460	500	2.3	79	85
	04/03/06	1,200	590	490	200	1.6	49	39
	09/19/06	2,300	550	310	380	2.7	120	99
	09/19/06 ^D	2,300	560	420	370	2.6	120	98
	03/22/07	1,300	500		200	2	60	40
Trip Blank		<50.0			0.304	0.618	< 0.500	<1.00
	11/21/02	<50.0			0.406	0.875	< 0.500	1.16
	04/22/03	<10			<0.5	<0.5	<0.5	<0.5
	09/19/03	<10			<0.5	<0.5	<0.5	<0.5
	03/30/04	<10			<0.5	<0.5	<0.5	<0.5
	09/30/04	<10			<0.5	<0.5	<0.5	<0.5
	04/14/05	<10			<0.5	<0.5	<0.5	<0.5
	09/14/05	<10			<0.5	<0.5	<0.5	<1.5
	04/04/06	<10			<0.5	<0.5	<0.5	<1.5
	09/19/06	<10			<0.5	<0.5	<0.5	<1.5
	03/23/07	<10			<1	<1	<1	<2

Notes:

All results are reported in micrograms per liter (µg/L)

GCL = ADEC 18 AAC 75 Groundwater Cleanup Level

GRO = Gasoline range organics analyzed by AK 101

DRO = Diesel range organics analyzed by AK 102

RRO = Residual range organics analyzed by AK 103

Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analyzed by US EPA 8021B or 8260

Highlighted cell= exceeds GCL

-- = sample was not analyzed for this compound

Bold Type = most recent sampling event

<25 = result did not exceed indicated method reporting limit; an elevated reporting limit indicates sample was diluted

D - duplicate of preceding sample

Appendix A

Soil Boring & Well Completion Logs

WELL NO.

MW-1R

DEPTH (FT BGS)

0-8

0-2

2-6

6-23

8-23

23

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98102

Tel: 206.325.5254 Fax: 206.325.8218

WELL COMPLETION DETAILS

TYPES

Page 1 of 1

PROJECT NUMBER: B0045501.0000

DATE COMPLETED: 7/23/07

PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY: WELL CASING: 2" Schedule 40 PVC Jason Luckett SURFACE CASING GROUT TYPE: DRILLING CO: Discovery Drilling Native Fill DRILLER: Dick Banzhap SEAL TYPE: Bentonite chips DRILLING METHOD: Hollow Stem Auger SAND PACK: Colorado Silica Sand No. 10/20 WELL SCREEN: 15', 2" PVC screen, 0.010" slots DATE BEGUN: 7/23/07 TOTAL DEPTH DRILLED:

DEPTH	TO WATE	R BELOW	TOC/ (DAT	ΓE): 13.15	ft (8/2/07)
TOP OF	- PVC CAS	SING ELEV	ATION (TO	C): Not m	neasured

ОЕРТН	SAMPLE INTERVAL	PID READING (PPM)	U.S.C.S. CLASS	LITHOLOGY	DESCRIPTION	WELL INSTALLATION
-------	-----------------	-------------------	----------------	-----------	-------------	----------------------

WELL NO.

MW-4R

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98102

Tel: 206.325.5254 Fax: 206.325.8218

Page 1 of 1

PROJECT NUMBER: B0045501.0000

PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY: Jason Luckett

DRILLING CO: Discovery Drilling

DRILLER: Dick Banzhap

DRILLING METHOD: Hollow Stem Auger

DATE BEGUN: 7/25/07

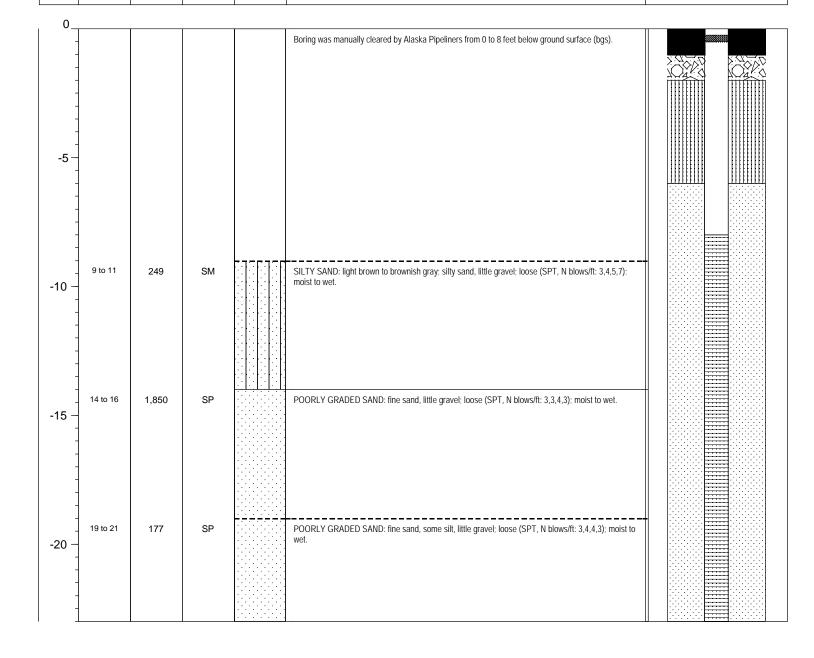
DATE BEGUN: 7/25/07

DATE COMPLETED: 7/25/07

TOP OF PVC CASING ELEVATION (TOC): Not measured.

TYPES DEPTH (FT BGS)

WELL CASING: 2" Schedule 40 PVC 0-8
SURFACE CASING GROUT TYPE: Native Fill 0-2
SEAL TYPE: Bentonite chips 2-6


SAND PACK: Colorado Silica Sand No. 10/20 6-23
WELL SCREEN: 15', 2" PVC screen, 0.010" slots 8-23
TOTAL DEPTH DRILLED: 23

DEPTH TO WATER BELOW TOC / (DATE): 13.19 ft (8/2/07)

WELL INSTALLATION

DESCRIPTION

WELL INSTALLATION

WELL NO.

MW-8

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98102 Tel: 206.325.5254 Fax: 206.325.8218

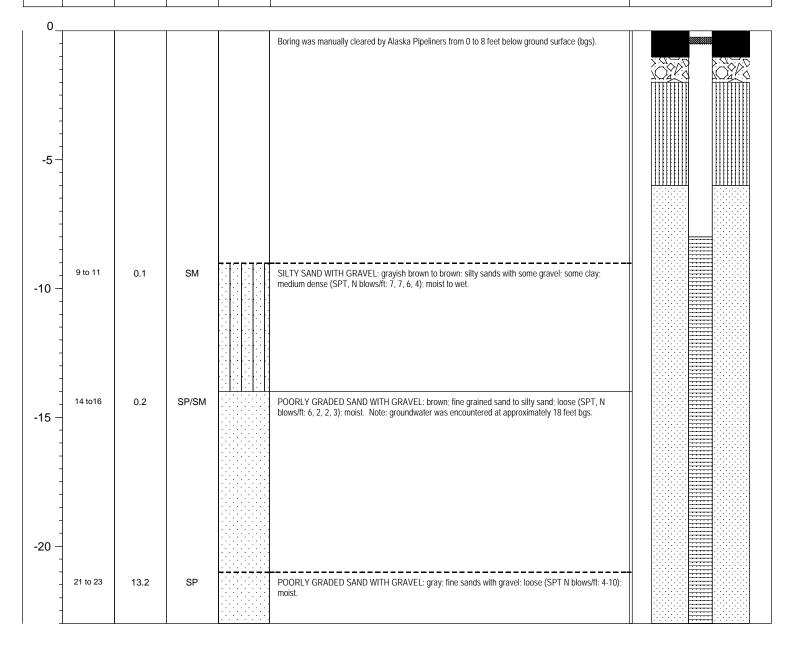
WELL COMPLETION DETAILS

TYPES

Page 1 of 1

DEPTH (FT BGS)

PROJECT NUMBER: B0045501.0000


PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

WELL CASING: 2" Schedule 40 PVC LOGGED BY: Jason Luckett 0-8 DRILLING CO: SURFACE CASING GROUT TYPE: 0-2 Discovery Drilling Native Fill DRILLER: Dick Banzhap SEAL TYPE: Bentonite chips 2-6 DRILLING METHOD: Hollow Stem Auger SAND PACK: Colorado Silica Sand No. 10/20 6-23 WELL SCREEN: 15', 2" PVC screen, 0.010" slots 8-23 DATE BEGUN: 7/24/07 DATE COMPLETED: 7/24/07 TOTAL DEPTH DRILLED: 23

TOP OF PVC CASING ELEVATION (TOC): Not measured. DEPTH TO WATER BELOW TOC / (DATE): 15.10 ft (8/2/07)

DEPTH	SAMPLE INTERVAL	PID READING (PPM)	U.S.C.S. CLASS	LITHOLOGY	DESCRIPTION	WELL INSTALLATION
-------	-----------------	-------------------	----------------	-----------	-------------	----------------------

DATE BEGUN:

BORING / WELL COMPLETION LOG

WELL NO.

MW-9 Page 1 of 1

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98102 Tel: 206.325.5254 Fax: 206.325.8218

PROJECT NUMBER: B0045501.0000

WELL COMPLETION DETAILS

PROJECT NAME: Former Chevron No. 92114 SITE LOCATION:

3245 College Road, Fairbanks, Alaska

LOGGED BY: Jason Luckett DRILLING CO: Discovery Drilling DRILLER: Dick Banzhap DRILLING METHOD: Hollow Stem Auger

SAND PACK: WELL SCREEN: TOTAL DEPTH DRILLED:

WELL CASING: SURFACE CASING GROUT TYPE: SEAL TYPE:

Native Fill Bentonite chips Colorado Silica Sand No. 10/20

TYPES

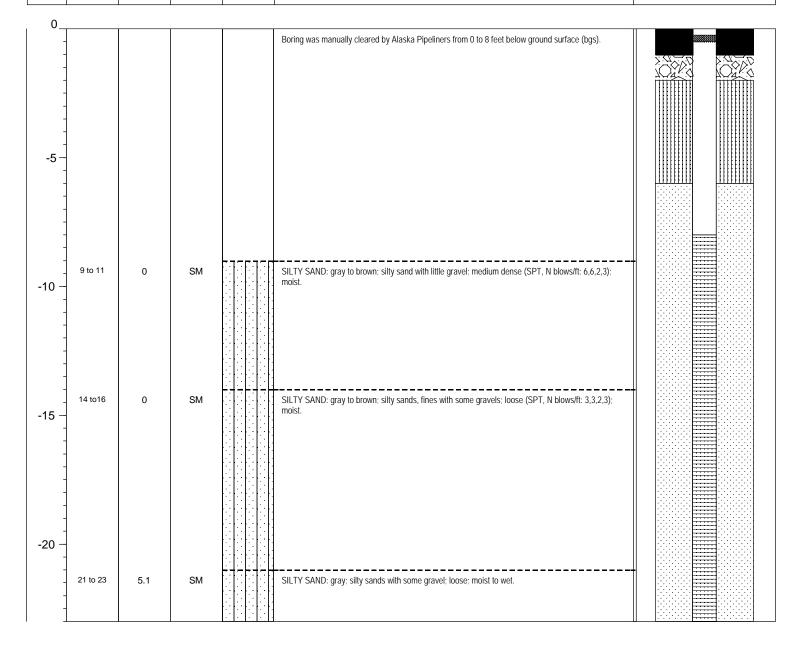
2" Schedule 40 PVC

15', 2" PVC screen, 0.010" slots

2-6 6-23 8-23 23

DEPTH (FT BGS)

0-8


0-2

DATE COMPLETED: 7/24/07 TOP OF PVC CASING ELEVATION (TOC): 123.92 FT

7/24/07

DEPTH TO WATER BELOW TOC / (DATE): 13.15 (8/2/07)

ОЕРТН	SAMPLE INTERVAL	PID READING (PPM)	U.S.C.S. CLASS	ПТНОСОБУ	DESCRIPTION	WELL INSTALLATION
-------	-----------------	-------------------	----------------	----------	-------------	----------------------

WELL NO.

MW-10

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98102 Tel: 206.325

Tel: 206.325.5254 Fax: 206.325.8218

Page 1 of 1

PROJECT NUMBER: B0045501.0000

PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY: Jason Luckett

DRILLING CO: Discovery Drilling

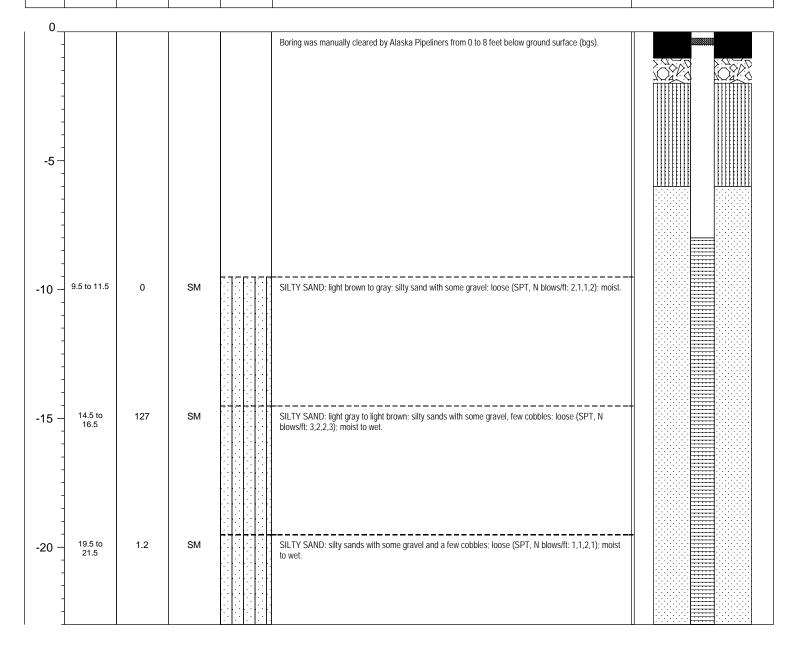
DRILLER: Dick Banzhap

DRILLING METHOD: Hollow Stem Auger

DATE BEGUN: 7/24/07

DATE COMPLETED: 7/24/07
TOP OF PVC CASING ELEVATION (TOC): Not measured.
DEPTH TO WATER BELOW TOC / (DATE):13.05 ft (8/2/07)

WELL COMPLETION DETAILS


TYPES DEPTH (FT BGS)

WELL CASING: 2" Schedule 40 PVC 0-8
SURFACE CASING GROUT TYPE: Native Fill 0-2

SEAL TYPE: Bentonite chips 2-6
SAND PACK: Colorado Silica Sand No. 10/20 6-23

WELL SCREEN: 15', 2" PVC screen, 0.010" slots 8-23
TOTAL DEPTH DRILLED: 23

DEPTH	SAMPLE INTERVAL	PID READING (PPM)	U.S.C.S. CLASS	LITHOLOGY	DESCRIPTION	WELL INSTALLATION
-------	-----------------	-------------------	----------------	-----------	-------------	----------------------

BORING NO.

SB-1

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98006

Tel: 206.325.5254 Fax: 206.325.8218

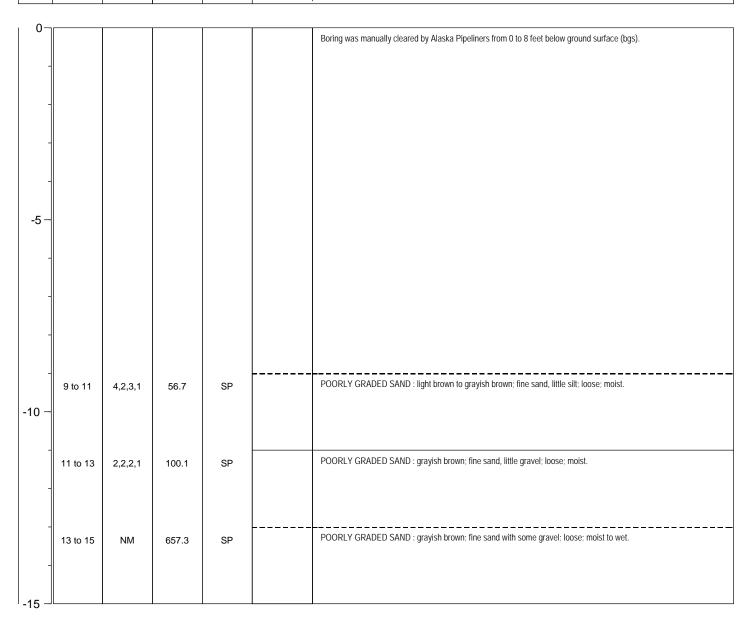
Page 1 of 1

PROJECT NUMBER: B0045501.0000

PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY: Jason Luckett


Hollow Stem Auger DRILLING METHOD:

Modified Split Spoon Sampler SAMPLING METHOD:

BORING DIAMETER: 8.25 inches

TOTAL DEPTH BGS: 15

DR	ILLING COM	PANY: D	iscovery Dri	lling D	RILLER:	Dick Banzhap	DATE BEGUN: 7/25/0)7	DATE COMPLETED:	7/25/07
ОЕРТН	SAMPLE INTERVAL	SPT, N (BLOWS/FT)	PID READING (PPM)	U.S.C.S. CLASS	ГІТНОLОGY		DESCRIF	PTION		

SB-2

BORING NO.

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98006

Tel: 206.325.5254 Fax: 206.325.8218

Page 1 of 1

PROJECT NUMBER: B0045501.0000

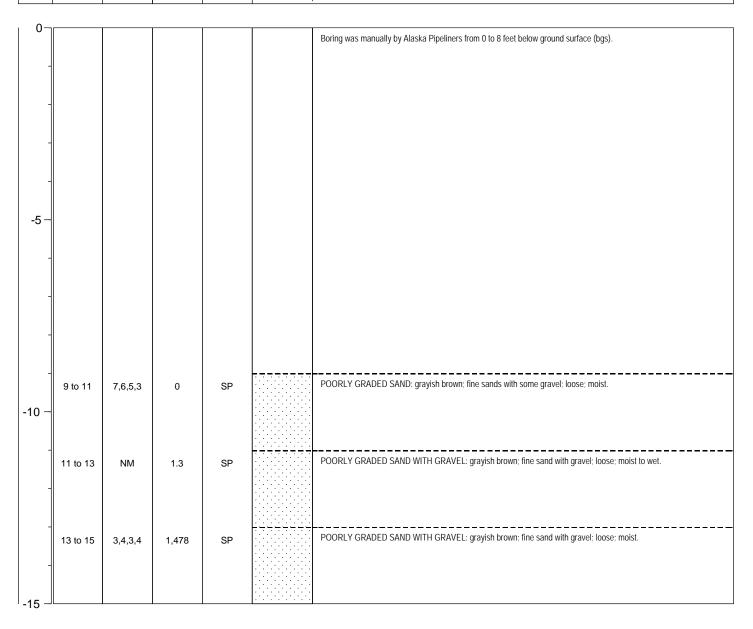
PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY:

Jason Luckett

DRILLING METHOD:


Hollow Stem Auger

Modified Split Spoon Sampler SAMPLING METHOD:

BORING DIAMETER: 8.25 inches

TOTAL DEPTH BGS: 15

DRII	LLING COM	PANY: D	iscovery Dri	lling D	RILLER: D	Dick Banzhap	DATE BEGUN: 7/25/07	7 DATE COMPLETED:	7/25/07
ОЕРТН	SAMPLE INTERVAL	SPT, N (BLOWS/FT)	PID READING (PPM)	U.S.C.S. CLASS	ГІТНОГОĞҮ		DESCRIP	PTION	

SB-3

BORING NO.

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98006 Tel: 206.325.5254 Fax: 206.325.8218 Page 1 of 1

PROJECT NUMBER: B0045501.0000

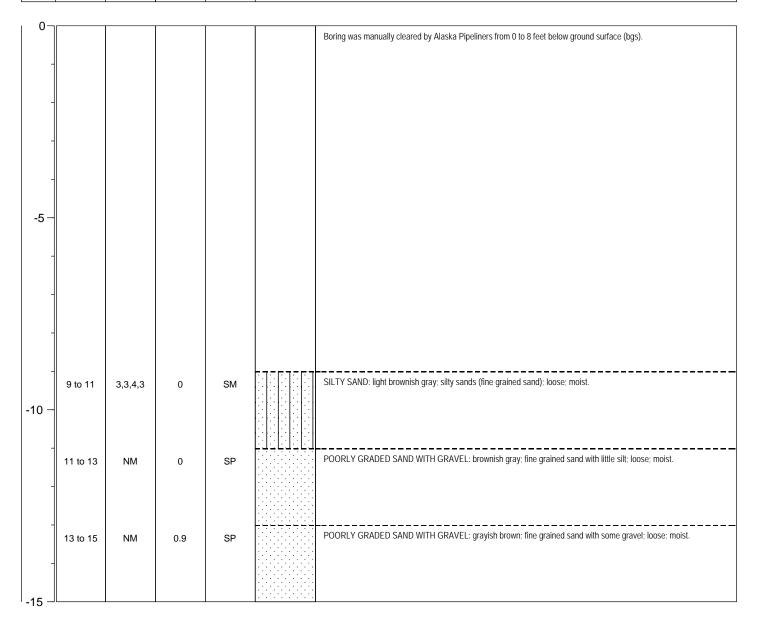
PROJECT NAME: Former Chevron No. 92114

SITE LOCATION: 3245 College Road, Fairbanks, Alaska

LOGGED BY:

Jason Luckett

DRILLING METHOD: SAMPLING METHOD: Hollow Stem Auger


Modified Split Spoon Sampler

BORING DIAMETER:

8.25 inches

TOTAL DEPTH BGS: 15

DF	RILLING COM	PANY: Di	iscovery Dri	lling D	RILLER:	Dick Banzhap	DATE BEGUN: 7/3	/25/07	DATE COMPLETED:	7/25/07
ОЕРТН	SAMPLE INTERVAL	SPT, N (BLOWS/FT)	PID READING (PPM)	U.S.C.S. CLASS	ПТНОГОСУ		DESC	CRIPTION		

BORING NO.

SB-4

2300 Eastlake Avenue East, Suite 200, Seattle, WA 98006

DRILLING METHOD:

Tel: 206.325.5254 Fax: 206.325.8218 Page 1 of 1

PROJECT NUMBER: PROJECT NAME:

B0045501.0000

Former Chevron No. 92114

SAMPLING METHOD:

Modified Split Spoon Sampler

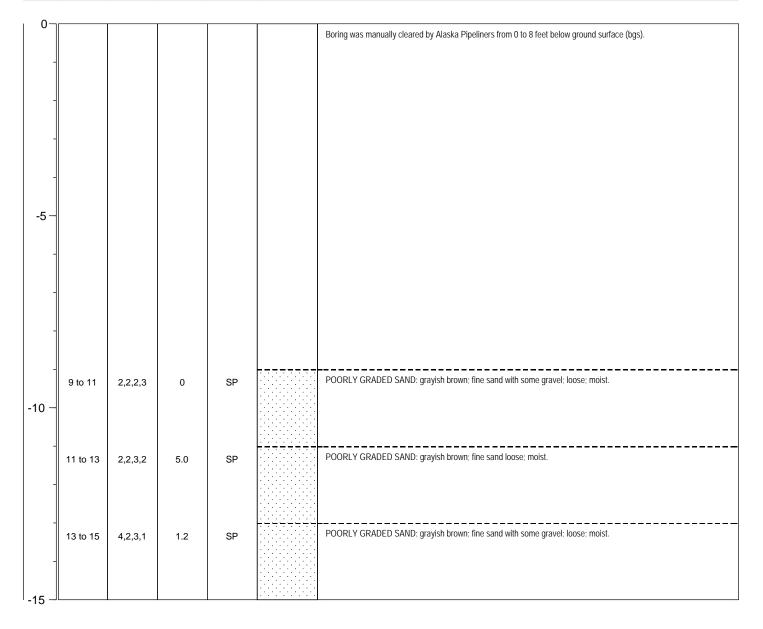
Hollow Stem Auger

SITE LOCATION:

3245 College Road, Fairbanks, Alaska

BORING DIAMETER:

8.25 inches


LOGGED BY:

Jason Luckett

TOTAL DEPTH BGS:

15

DRII	LLING COM	PANY: Di	scovery Dri	lling D	RILLER:	Dick Banzhap	DATE BEGUN: 7/25/07	DATE COMPLETED:	7/25/07
ОЕРТН	SAMPLE INTERVAL	SPT, N (BLOWS/FT)	PID READING (PPM)	U.S.C.S. CLASS	LITHOLOGY		DESCRIPTION		

ARCADIS BBLES

Appendix B

Soil Laboratory Reports & ADEC Data Review Checklists

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1049347. Samples arrived at the laboratory on Sunday, July 29, 2007. The PO# for this group is 0015014445 and the release number is HARTUNG-FRERICH.

Client Description	<u>Lancaster Labs Number</u>
SB 2 11'-13' Grab Soil Sample	5116707
SB 3 11'-13' Grab Soil Sample	5116708
SB 4 13'-15' Grab Soil Sample	5116709
SB 1 9'-11' Grab Soil Sample	5116710
SB 3 13'-15' Grab Soil Sample	5116711
SB 2 9'-11' Grab Soil Sample	5116712
SB 1 11'-13' Grab Soil Sample	5116713
SB 4 11'-13' Grab Soil Sample	5116714

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC	Blasland, Bouck & Lee	Attn: Rebecca Andresen
COPY TO		
ELECTRONIC	Arcadis BBL	Attn: Vanessa Varbel
COPY TO		
1 COPY TO	Data Package Group	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Rebecca J Shettel at (717) 656-2300

Respectfully Submitted,

Melissa A. McDermott Senior Chemist

Melissa a Mc Sernott

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116707

SB 2 11'-13' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 12:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:23 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB2-B SDG#: ALK48-01

			Dry		
		Dry	Method		Dilution
Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
TPH-DRO (AK) in soil	n.a.	8.2	4.4	mg/kg	1
Moisture	n.a.	9.2	0.50	ે	1
Alaska AK101 GRO (soils)					
Alaska AK101 GRO (soils)	n.a.	1.6	0.5	mg/kg	24.4
BTEX					
Benzene	71-43-2	N.D.	0.006	mg/kg	24.4
Toluene	108-88-3	0.02	0.006	mg/kg	24.4
Ethylbenzene	100-41-4	N.D.	0.006	mg/kg	24.4
Total Xylenes	1330-20-7	0.04	0.02	mg/kg	24.4
	TPH-DRO (AK) in soil Moisture "Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) BTEX Benzene Toluene Ethylbenzene	TPH-DRO (AK) in soil n.a. Moisture n.a. "Moisture" represents the loss in weight of the sar-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) BTEX Benzene 71-43-2 Toluene 108-88-3 Ethylbenzene 100-41-4	Analysis Name CAS Number Result TPH-DRO (AK) in soil n.a. 8.2 Moisture n.a. 9.2 "Moisture" represents the loss in weight of the sample after of 103 - 105 degrees Celsius. The moisture result reported above as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) BTEX Benzene 71-43-2 N.D. Toluene 108-88-3 0.02 Ethylbenzene 100-41-4 N.D.	Analysis Name CAS Number Result Detection Limit TPH-DRO (AK) in soil n.a. 8.2 4.4 Moisture n.a. 9.2 0.50 "Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) BTEX Benzene 71-43-2 N.D. 0.006 Toluene 108-88-3 0.02 0.006 Ethylbenzene	Dry Method Dry Method Detection Units Limit Detection Units Detection Detection

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08	/02 1	08/03/2007 20:21	Heather E Williams	1
00111	Moisture	SM20 2540 G	2	08/03/2007 17:02	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 00:03	Linda C Pape	24.4
05878	BTEX	SW-846 8021B	1	08/02/2007 00:03	Linda C Pape	24.4
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08	/02 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 12:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116708

SB 3 11'-13' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 13:30 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:23 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB3-A SDG#: ALK48-02

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.2	mg/kg	1
00111	Moisture	n.a.	5.6	0.50	ે	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The ras-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	N.D.	0.6	mg/kg	30.64
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.006	mg/kg	30.64
02177	Toluene	108-88-3	0.02	0.006	mg/kg	30.64
02178	Ethylbenzene	100-41-4	N.D.	0.006	mg/kg	30.64
02182	Total Xylenes	1330-20-7	0.05	0.02	mg/kg	30.64

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	1	08/03/2007 20:45	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 00:43	Linda C Pape	30.64
05878	BTEX	SW-846 8021B	1	08/02/2007 00:43	Linda C Pape	30.64
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 13:30	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116709

SB 4 13'-15' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 14:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB4-B SDG#: ALK48-03

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	28.	4.3	mg/kg	1
00111	Moisture	n.a.	7.1	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	2.9	0.5	mg/kg	24.71
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.005	mg/kg	24.71
02177	Toluene	108-88-3	0.02	0.005	mg/kg	24.71
02178	Ethylbenzene	100-41-4	0.007	0.005	mg/kg	24.71
02182	Total Xylenes	1330-20-7	0.09	0.02	mg/kg	24.71

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/0	2 1	08/03/2007 23:33	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 23:46	Linda C Pape	24.71
05878	BTEX	SW-846 8021B	1	08/02/2007 23:46	Linda C Pape	24.71
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/0	2 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 14:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 5116710

SB 1 9'-11' Grab Soil Sample Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 11:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB1-A SDG#: ALK48-04

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	590.	87.	mg/kg	20
00111	Moisture	n.a.	7.8	0.50	ે	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The ras-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	24.	15.	mg/kg	28.17
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.2	mg/kg	28.17
02177	Toluene	108-88-3	N.D.	0.2	mg/kg	28.17
02178	Ethylbenzene	100-41-4	N.D.	0.2	mg/kg	28.17
02182	Total Xylenes	1330-20-7	N.D.	0.7	mg/kg	28.17
	Due to the presence of interfere					

Due to the presence of interferents near their retention time, normal reporting limits were not attained for ethylbenzene and total xylenes. The presence or concentration of these compounds cannot be determined below the reporting limits due to the presence of these interferents.

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/	02 1	08/07/2007 07:12	Heather E Williams	20
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 16:05	Linda C Pape	28.17
05878	BTEX	SW-846 8021B	1	08/02/2007 16:05	Linda C Pape	28.17
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/	02 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 11:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 5116710

SB 1 9'-11' Grab Soil Sample Facility #92114 3245 College Rd. - Fairbanks, AK Collected:07/25/2007 11:00 by J

Submitted: 07/29/2007 10:00 Reported: 08/14/2007 at 09:24

Discard: 09/14/2007

SB1-A SDG#: ALK48-04

Account Number: 11964

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116711

SB 3 13'-15' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 13:30 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB3-B SDG#: ALK48-05

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	8.4	4.6	mg/kg	1
00111	Moisture	n.a.	13.1	0.50	%	1
	"Moisture" represents the loss in 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	N.D.	0.5	mg/kg	22.42
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.005	mg/kg	22.42
02177	Toluene	108-88-3	0.02	0.005	mg/kg	22.42
02178	Ethylbenzene	100-41-4	N.D.	0.005	mg/kg	22.42
02182	Total Xylenes	1330-20-7	0.04	0.01	mg/kg	22.42

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/0	2 1	08/03/2007 21:09	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 18:07	Linda C Pape	22.42
05878	BTEX	SW-846 8021B	1	08/02/2007 18:07	Linda C Pape	22.42
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/0	2 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 13:30	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116712

SB 2 9'-11' Grab Soil Sample Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 12:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB2-A SDG#: ALK48-06

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.3	mg/kg	1
00111	Moisture	n.a.	7.8	0.50	%	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The ras-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	0.5	0.4	mg/kg	18.28
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.004	mg/kg	18.28
02177	Toluene	108-88-3	0.02	0.004	mg/kg	18.28
02178	Ethylbenzene	100-41-4	N.D.	0.004	mg/kg	18.28
02182	Total Xylenes	1330-20-7	0.07	0.01	mg/kg	18.28

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/0)2 1	08/03/2007 21:33	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 18:48	Linda C Pape	18.28
05878	BTEX	SW-846 8021B	1	08/02/2007 18:48	Linda C Pape	18.28
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/0)2 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 12:00	Client Supplied	1

Drv

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 5116713

SB 1 11'-13' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 11:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB1-B SDG#: ALK48-07

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	5.1	4.4	mg/kg	1
00111	Moisture	n.a.	9.5	0.50	%	1
	"Moisture" represents the loss: 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	6.3	0.7	mg/kg	32.5
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.008	mg/kg	32.5
02177	Toluene	108-88-3	0.02	0.008	mg/kg	32.5
02178	Ethylbenzene	100-41-4	N.D.	0.06	mg/kg	32.5
02182	Total Xylenes	1330-20-7	N.D.	0.1	mg/kg	32.5
	Due to the presence of interfere	ents near their	retention time,	normal		
	reporting limits were not attain	ed for ethylbe	enzene and total s	vilenes The		

reporting limits were not attained for ethylbenzene and total xylenes. The presence or concentration of these compounds cannot be determined below the reporting limits due to the presence of these interferents.

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/	02 1	08/03/2007 21:57	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 19:28	Linda C Pape	32.5
05878	BTEX	SW-846 8021B	1	08/02/2007 19:28	Linda C Pape	32.5
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/	02 1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 11:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 5116713

SB 1 11'-13' Grab Soil Sample Facility #92114 3245 College Rd. - Fairbanks, AK Collected:07/25/2007 11:00 by

Submitted: 07/29/2007 10:00

Reported: 08/14/2007 at 09:24

Discard: 09/14/2007

SB1-B SDG#: ALK48-07

Account Number: 11964

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5116714

SB 4 11'-13' Grab Soil Sample

Facility #92114

3245 College Rd. - Fairbanks, AK

Collected: 07/25/2007 14:00 by JL Account Number: 11964

Submitted: 07/29/2007 10:00 Chevron

Reported: 08/14/2007 at 09:24 6001 Bollinger Canyon Rd L4310

Discard: 09/14/2007 San Ramon CA 94583

SB4-A SDG#: ALK48-08

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	55.	4.2	mg/kg	1
00111	Moisture	n.a.	5.4	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	1.	0.7	mg/kg	31.68
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.006	mg/kg	31.68
02177	Toluene	108-88-3	0.03	0.006	mg/kg	31.68
02178	Ethylbenzene	100-41-4	0.006	0.006	mg/kg	31.68
02182	Total Xylenes	1330-20-7	0.1	0.02	mg/kg	31.68

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	1	08/03/2007 22:21	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	08/02/2007 16:46	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	08/02/2007 20:22	Linda C Pape	31.68
05878	BTEX	SW-846 8021B	1	08/02/2007 20:22	Linda C Pape	31.68
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	08/02/2007 06:30	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 14:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron Group Number: 1049347

Reported: 08/14/07 at 09:24 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 072130026A TPH-DRO (AK) in soil	Sample num	mber(s): 4.0	5116707-513 mg/kg	16714 86	90	75-125	5	50
Batch number: 07213A02A Alaska AK101 GRO (soils)	Sample num	mber(s):	5116707-51: mg/kg	16708,5116 91	5710 93	60-120	0	20
Benzene Toluene	N.D. N.D.	0.005	mg/kg mg/kg	100 94	105 97	76-118 72-115	4	3 0 3 0
Ethylbenzene Total Xylenes	N.D. N.D.	0.005 0.02	mg/kg mg/kg	99 101	103 104	77-115 78-115	3	3 0 3 0
Batch number: 07213A02B	Sample nur	mber(s):	5116709,513	16711-5116	714			
Alaska AK101 GRO (soils) Benzene	N.D. N.D.	0.5 0.005	mg/kg mg/kg	91 100	93 105	60-120 76-118	0 4	20 30
Toluene Ethylbenzene	N.D. N.D.	0.005 0.005	mg/kg mg/kg	94 99	97 103	72-115 77-115	3 3	30 30
Total Xylenes	N.D.	0.02	mg/kg	101	104	78-115	3	30
Batch number: 07214820002B Moisture	Sample nur	mber(s):	5116708-51	16714 100		99-101		
Batch number: 07215820001A Moisture	Sample nur	mber(s):	5116707	100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS MSD <u>%REC</u> <u>%REC</u>	MS/MSD <u>Limits RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD Max
Batch number: 072130026A TPH-DRO (AK) in soil	Sample number(s): 5116707-51167 60-140 6	14 UNSPF 50	K: P116414			
Batch number: 07214820002B Moisture	Sample number(s): 5116708-51167	14 BKG:	: P116707 7.9	16.7	71*	15
Batch number: 07215820001A Moisture	Sample number(s): 5116707 BKG:	5116707	7 9.2	10.1	9	15

Surrogate Quality Control

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Group Number: 1049347 Client Name: Chevron

Reported: 08/14/07 at 09:24 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-DRO (AK) in soil Batch number: 072130026A

Orthoterphenyl

5116707	97	
5116708	97	
5116709	88	
5116710	97	
5116711	113	
5116712	99	
5116713	99	
5116714	94	
Blank	98	
LCS	102	
LCSD	109	
MS	82	
MSD	82	

Limits: 50-150

Analysis Name: Alaska AK101 GRO (soils)

Batch number: 07213A02A Trifluorotoluene-F

5116707	86	103
5116708	91	113
5116710	103	100
Blank	96	98
LCS	105	96
LCSD	102	94
Limits:	60-120	55-124

Trifluorotoluene-P

Analysis Name: Alaska AK101 GRO (soils)

Batch number: 07213A02B
Trifluorotoluene-F

	Trifluorotoluene-F	Trifluorotoluene-P
5116709	86	86
5116711	81	87
5116712	86	92
5116713	90	98
5116714	89	98
Blank	102	101
LCS	105	96
LCSD	102	94
Limits:	60-120	55-124

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

Lancaster Laboratories Group # 1049347

For Lancaster Laboratories use only Acct. #: 11964 Sample #: 5116707 -

Analyses Requested Facility #: 92114, 306456 Matrix **Preservation Codes** Site Address: 3245 College Road, 328.5 Illinois St. Preservative Codes Chevron PM: Stacie Frerichs Lead Consultant: Rebecco And ABBU H = HCI T = Thiosulfate Naphth [N = HNO₃ B = NaOH Consultant/Office: Seattle, WA S = H₂SO₄ O = Other Containers Extended Rng.
Silica Gel Cleanup
Diss. Method 8260 🗆 ☐ J value reporting needed Consultant Prj. Mgr.: Rebecca Andresen ☐ Method quantification TRRD ☐ Must meet lowest detection limits 995 Consultant Phone #: 206 295 3273 possible for 8260 compounds 8021 Sampler: Jason Clavitt, Jocelyn Hastain 8021 MTBE Confirmation Total Number DRO Oxygenates 0 ☐ Confirm MTBE + Naphthalene Composite NWTPH H HCID Service Order #: _00/5014445 BTEX + MTBE DR □Non SAR: TPH G TPHD Confirm highest hit by 8260 8TEX ead Total ☐ Confirm all hits by 8260 □ lio Grab Date Time Sample Identification Soil Run ____ oxy's on highest hit Collected Collected SB 2 11'-13 Run ____ oxy's on all hits 7/25/07 1200 2 SB3 11'-13' 7/25/07 Comments / Remarks 1330 2 13-15' SRY 7/25/07 NWRTB 1400 1112 2 9'-11' 2B 1 7/25/07 11 00 2 0306456-0-AL **SB3** 13'-15' 7/25/07 1330 2 SB 2 9'-11' 7/25/07 92114 - College Road 1200 2 11-13 SBI 7/25/07 1100 2 SB4 7/25/07 1400 306456-FormerUnocal 2 306456 mw 13 9,5'-11.5' 7/26/07 1030 2 BTEX 8021 MW 13 7/26/07 1030 2 GRO AKIO Der RA RUS 7/31/07 Turnaround Time Requested (TAT) (please circle) Relinquished by: Date OZ/O Received by: STD. TAT 140 Time 72 hour 48 hour 24 hour Relinquished by: 4 day 5 day Date Time Received by: Date Time Data Package Options (please circle if required) Relinquished by: Date Time Received/by: QC Summary Type I - Full Time Type VI (Raw Data) Relinquished by Commercial Carrier: Disk / EDD Receive by: WIP (RWQCB) Standard Format Time Other Disk Other. Waln Temperature Upon Receipt מפכול Custody Seal Intact? Nα

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

3566 Rev. 1/31/02

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1048664. Samples arrived at the laboratory on Thursday, July 26, 2007. The PO# for this group is 0015014445 and the release number is HARTUNG-FRERICH.

<u>Lancaster Labs Number</u>
5112356
5112357
5112358
5112359
5112360
5112361
5112362
5112363
5112364
5112365

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC	Blasland, Bouck & Lee	Attn: Rebecca Andresen
COPY TO		
ELECTRONIC	Arcadis BBL	Attn: Vanessa Varbel
COPY TO		
1 COPY TO	Data Package Group	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Rebecca J Shettel at (717) 656-2300

Respectfully Submitted,

Melissa A. McDermott Senior Chemist

Melissa a Mc Sernott

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112356

MW_1R_15'-17' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/23/2007 13:45 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF115 SDG#: ALK41-01

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	68.	4.9	mg/kg	1
00111	Moisture	n.a.	18.4	0.50	ે	1
	"Moisture" represents the loss i 103 - 105 degrees Celsius. The m as-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	160.	4.6	mg/kg	186.12
05878	BTEX					
02174	Benzene	71-43-2	0.09	0.05	mg/kg	186.12
02177	Toluene	108-88-3	0.3	0.05	mg/kg	186.12
02178	Ethylbenzene	100-41-4	1.8	0.05	mg/kg	186.12
02182	Total Xylenes	1330-20-7	11.	0.1	mg/kg	186.12

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	2 1	07/31/2007 19:26	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/28/2007 12:27	Linda C Pape	186.12
05878	BTEX	SW-846 8021B	1	07/28/2007 12:27	Linda C Pape	186.12
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/23/2007 13:45	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112357

MW 1R 10'-12' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Account Number: 11964 Collected: 07/23/2007 13:45

Submitted: 07/26/2007 09:50

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Chevron

Discard: 09/07/2007 San Ramon CA 94583

CF110 SDG#: ALK41-02

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	6.9	4.3	mg/kg	1
00111	Moisture	n.a.	7.4	0.50	ે	1
	"Moisture" represents the loss: 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	0.8	0.6	mg/kg	27.84
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.006	mg/kg	27.84
02177	Toluene	108-88-3	0.01	0.006	mg/kg	27.84
02178	Ethylbenzene	100-41-4	0.02	0.006	mg/kg	27.84
02182	Total Xylenes	1330-20-7	0.1	0.02	mg/kg	27.84

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	2 1	07/31/2007 20:15	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/28/2007 09:41	Linda C Pape	27.84
05878	BTEX	SW-846 8021B	1	07/28/2007 09:41	Linda C Pape	27.84
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/23/2007 13:45	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112358

MW_8_14'-16' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/24/2007 08:30 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF814 SDG#: ALK41-03

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.4	mg/kg	1
00111	Moisture	n.a.	9.2	0.50	ે	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The ras-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	N.D.	0.6	mg/kg	27.85
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.007	mg/kg	27.85
02177	Toluene	108-88-3	N.D.	0.007	mg/kg	27.85
02178	Ethylbenzene	100-41-4	N.D.	0.007	mg/kg	27.85
02182	Total Xylenes	1330-20-7	0.04	0.02	mg/kg	27.85

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	1	07/31/2007 16:38	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/27/2007 21:25	Linda C Pape	27.85
05878	BTEX	SW-846 8021B	1	07/27/2007 21:25	Linda C Pape	27.85
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/24/2007 08:30	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112359

 $MW_8_21'-23'$ Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/24/2007 08:30 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF821 SDG#: ALK41-04

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.8	mg/kg	1
00111	Moisture	n.a.	16.7	0.50	%	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The ras-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	0.6	0.5	mg/kg	20.76
05878	BTEX					
02174	Benzene	71-43-2	0.04	0.005	mg/kg	20.76
02177	Toluene	108-88-3	N.D.	0.005	mg/kg	20.76
02178	Ethylbenzene	100-41-4	0.03	0.005	mg/kg	20.76
02182	Total Xylenes	1330-20-7	0.07	0.01	mg/kg	20.76

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	1	07/31/2007 15:49	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/27/2007 22:06	Linda C Pape	20.76
05878	BTEX	SW-846 8021B	1	07/27/2007 22:06	Linda C Pape	20.76
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/24/2007 08:30	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112360

MW_9_19'-21' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/24/2007 09:00 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF919 SDG#: ALK41-05

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	5.0	mg/kg	1
00111	Moisture	n.a.	20.6	0.50	%	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	0.5	0.5	mg/kg	21.04
05878	BTEX					
02174	Benzene	71-43-2	0.03	0.005	mg/kg	21.04
02177	Toluene	108-88-3	0.01	0.005	mg/kg	21.04
02178	Ethylbenzene	100-41-4	0.03	0.005	mg/kg	21.04
02182	Total Xylenes	1330-20-7	0.08	0.02	mg/kg	21.04

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	2 1	07/31/2007 15:01	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/27/2007 22:48	Linda C Pape	21.04
05878	BTEX	SW-846 8021B	1	07/27/2007 22:48	Linda C Pape	21.04
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/24/2007 09:00	Client Supplied	1

Drv

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112361

MW_10_14.5'-16.5' Grab Soil Sample Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/24/2007 14:00 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

C1014 SDG#: ALK41-06

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	480.	110.	mg/kg	20
00111	Moisture	n.a.	26.8	0.50	%	1
	"Moisture" represents the loss in 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	140.	3.1	mg/kg	114.1
05878	BTEX					
02174	Benzene	71-43-2	0.2	0.03	mg/kg	114.1
02177	Toluene	108-88-3	0.2	0.03	mg/kg	114.1
02178	Ethylbenzene	100-41-4	0.5	0.03	mg/kg	114.1
02182	Total Xylenes	1330-20-7	1.	0.09	mg/kg	114.1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/0	2 1	08/01/2007 15:21	Heather E Williams	20
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/28/2007 13:08	Linda C Pape	114.1
05878	BTEX	SW-846 8021B	1	07/28/2007 13:08	Linda C Pape	114.1
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/0	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/24/2007 14:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112362

MW_10_19.5'-21.5' Grab Soil Sample Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/24/2007 14:30 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

C1019 SDG#: ALK41-07

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.8	mg/kg	1
00111	Moisture	n.a.	15.9	0.50	ે	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	N.D.	0.5	mg/kg	21.78
05878	BTEX					
02174	Benzene	71-43-2	N.D.	0.005	mg/kg	21.78
02177	Toluene	108-88-3	N.D.	0.005	mg/kg	21.78
02178	Ethylbenzene	100-41-4	N.D.	0.005	mg/kg	21.78
02182	Total Xylenes	1330-20-7	N.D.	0.02	mg/kg	21.78

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	2 1	07/31/2007 16:13	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/28/2007 10:25	Linda C Pape	21.78
05878	BTEX	SW-846 8021B	1	07/28/2007 10:25	Linda C Pape	21.78
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/24/2007 14:30	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112363

MW_4R_14'-16' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/25/2007 08:00 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF414 SDG#: ALK41-08

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01742	TPH-DRO (AK) in soil	n.a.	23.	5.1	mg/kg	1
00111	Moisture	n.a.	21.1	0.50	%	1
	"Moisture" represents the loss: 103 - 105 degrees Celsius. The mas-received basis.					
01451	Alaska AK101 GRO (soils)					
01452	Alaska AK101 GRO (soils)	n.a.	340.	12.	mg/kg	477.25
05878	BTEX					
02174	Benzene	71-43-2	0.2	0.1	mg/kg	477.25
02177	Toluene	108-88-3	1.6	0.1	mg/kg	477.25
02178	Ethylbenzene	100-41-4	1.7	0.1	mg/kg	477.25
02182	Total Xylenes	1330-20-7	53.	0.4	mg/kg	477.25

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	1	07/31/2007 17:02	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/30/2007 09:45	Linda C Pape	477.25
05878	BTEX	SW-846 8021B	1	07/30/2007 09:45	Linda C Pape	477.25
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 08:00	Client Supplied	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 5112364

MW_4R_19'-21' Grab Soil Sample

Facility# 92114

3245 College Road - Fairbanks, AK

Collected: 07/25/2007 08:30 by JL Account Number: 11964

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CF419 SDG#: ALK41-09

			Dry		
		Dry	Method		Dilution
Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
TPH-DRO (AK) in soil	n.a.	7.0	5.2	mg/kg	1
Moisture	n.a.	22.8	0.50	ે	1
Alaska AK101 GRO (soils)					
Alaska AK101 GRO (soils)	n.a.	10.	2.4	mg/kg	90.84
BTEX					
Benzene	71-43-2	0.06	0.02	mg/kg	90.84
Toluene	108-88-3	0.06	0.02	mg/kg	90.84
Ethylbenzene	100-41-4	0.07	0.02	mg/kg	90.84
Total Xylenes	1330-20-7	1.9	0.07	mg/kg	90.84
	TPH-DRO (AK) in soil Moisture "Moisture" represents the loss of the second seco	TPH-DRO (AK) in soil n.a. Moisture n.a. "Moisture" represents the loss in weight of the 103 - 105 degrees Celsius. The moisture result as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) n.a. BTEX Benzene 71-43-2 Toluene 108-88-3 Ethylbenzene 100-41-4	Analysis Name CAS Number Result TPH-DRO (AK) in soil n.a. 7.0 Moisture n.a. 22.8 "Moisture" represents the loss in weight of the sample after or 103 - 105 degrees Celsius. The moisture result reported above as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) n.a. 10. BTEX Benzene 71-43-2 0.06 Toluene 108-88-3 0.06 Ethylbenzene 100-41-4 0.07	Analysis Name CAS Number Result Detection Limit TPH-DRO (AK) in soil n.a. 7.0 5.2 Moisture n.a. 22.8 0.50 "Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis. Alaska AK101 GRO (soils) Alaska AK101 GRO (soils) BTEX Benzene 71-43-2 0.06 0.02 Toluene 108-88-3 0.06 0.02 Ethylbenzene	Dry Method Dry Method Detection Units Limit Detection Units Detection Units Detection Units Limit Detection Units Limit Detection Detection Units Detection Units Limit Detection Detection

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01742	TPH-DRO (AK) in soil	AK 102/AK 103 04/08/02	2 1	07/31/2007 15:25	Heather E Williams	1
00111	Moisture	SM20 2540 G	1	07/27/2007 15:41	Scott W Freisher	1
01451	Alaska AK101 GRO (soils)	AK 101	1	07/28/2007 11:46	Linda C Pape	90.84
05878	BTEX	SW-846 8021B	1	07/28/2007 11:46	Linda C Pape	90.84
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	2 1	07/31/2007 06:00	Jason A Heisey	1
06119	GC - Field Preserved (AK- 101)	AK 101	1	07/25/2007 08:30	Client Supplied	1

Account Number: 11964

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5112365

Trip_Blank Water Sample Facility# 92114 3245 College Road - Fairbanks, AK

Collected: 07/23/2007

Submitted: 07/26/2007 09:50 Chevron

Reported: 08/07/2007 at 15:31 6001 Bollinger Canyon Rd L4310

Discard: 09/07/2007 San Ramon CA 94583

CFTRB SDG#: ALK41-10TB*

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	N.D.	0.01	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	N.D.	0.001	mg/l	1
01592	Toluene	108-88-3	N.D.	0.001	mg/1	1
01593	Ethylbenzene	100-41-4	N.D.	0.001	mg/1	1
01723	Total xylenes	1330-20-7	N.D.	0.002	mg/l	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			2	Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
01440	Alaska AK101 GRO (waters)	AK 101	1	07/31/2007 14:48	Martha L Seidel	1	
01588	BTEX	SW-846 8021B	1	07/31/2007 14:48	Martha L Seidel	1	
01146	GC VOA Water Prep	SW-846 5030B	1	07/31/2007 14:48	Martha L Seidel	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1048664

Reported: 08/07/07 at 03:31 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 07208820005A Moisture	Sample	number(s):	5112356-51	12360 100		99-101		
Batch number: 07208820005B Moisture	Sample	number(s):	5112361-51	12364 100		99-101		
Batch number: 07208A02A Alaska AK101 GRO (soils) Benzene Toluene Ethylbenzene Total Xylenes	Sample N.D. N.D. N.D. N.D. N.D.	number(s): 0.5 0.005 0.005 0.005 0.005	5112356-51 mg/kg mg/kg mg/kg mg/kg mg/kg	12362,511 95 89 83 88 89	2364 98 98 91 96 98	60-120 76-118 72-115 77-115 78-115	0 9 9 9	20 30 30 30 30
Batch number: 07208A02B Alaska AK101 GRO (soils) Benzene Toluene Ethylbenzene Total Xylenes	Sample N.D. N.D. N.D. N.D. N.D.	number(s): 0.5 0.005 0.005 0.005 0.02	5112363 mg/kg mg/kg mg/kg mg/kg mg/kg	95 89 83 88	98 98 91 96 98	60-120 76-118 72-115 77-115 78-115	0 9 9 9	20 30 30 30 30
Batch number: 072110022A TPH-DRO (AK) in soil	Sample: N.D.	number(s):	5112356-51 mg/kg	12364 85	78	75-125	8	50
Batch number: 07212A53A Alaska AK101 GRO (waters) Benzene Toluene Ethylbenzene Total xylenes	Sample: N.D. N.D. N.D. N.D. N.D.	number(s): 0.01 0.001 0.001 0.001 0.002	5112365 mg/l mg/l mg/l mg/l mg/l	85 110 113 114 116	85 109 111 113 114	60-120 86-119 82-119 81-119 82-120	0 0 1 1	20 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD Max
Batch number: 07208820005A Moisture	Sample 1	number(s)	: 5112356	-511236	0 BKG:	P111873 9.1	8.8	3	15
Batch number: 07208820005B Moisture	Sample 1	number(s)	: 5112361	-511236	4 BKG:	5112363 21.1	19.4	9	15
Batch number: 072110022A TPH-DRO (AK) in soil	Sample 1 165*	number(s) 116	: 5112356 60-140	-511236 25	4 UNSPI 50	K: 5112363			

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1048664

Reported: 08/07/07 at 03:31 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

DUP MS MSD MS/MSD BKG DUP RPD Dup RPD %REC RPD Analysis Name %REC <u>Limits</u> MAX Conc Conc RPD Max_

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Alaska AK101 GRO (soils) Batch number: 07208A02A

	Trifluorotoluene-F	Trifluorotoluene-P
5112356	103	42*
5112357	90	93
5112358	81	87
5112359	80	83
5112360	74	80
5112361	77	44*
5112362	79	83
5112364	23*	20*
Blank	91	95
LCS	102	96
LCSD	102	95
Limits:	60-120	55-124

Analysis Name: Alaska AK101 GRO (soils)

Batch number: 07208A02B

Daggir Irania	Trifluorotoluene-F	Trifluorotoluene-P
5112363	54*	23*
Blank	95	96
LCS	102	96
LCSD	102	95
Limits:	60-120	55-124

Analysis Name: TPH-DRO (AK) in soil Batch number: 072110022A

Orthoterphenyl

5112356	101
5112357	96
5112358	99
5112359	95
5112360	95
5112361	142
5112362	98
5112363	106
5112364	100
Blank	96
LCS	101

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1048664

69-129

Reported: 08/07/07 at 03:31 PM

Surrogate Quality Control

LCSD 98 MS 110 MSD 106

Limits:

Analysis Name: Alaska AK101 GRO (waters)

50-150

60-120

Batch number: 07212A53A

Trifluorotoluene-F Trifluorotoluene-P

5112365 86 89
Blank 86 89
LCS 90 91
LCSD 91 90

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

Acct. #: 11964 | For Lancaster Laboratories use only Sample #: 5113356-65

											Α	naly	ses	Req	uesi	ted				G# 1049	300H	
Facility #: 92/14					Matri	ix					F	rese	rvat	ion	Cod	les				Preservat	ive Code	es
Site Address: 3245 College Roa	d, Fairbar	uks AK				er i solutione di Agrico							Τ						\dashv	N = HNO ₃	T = Thios B = NaOl	4
Chevron PM: Stave Facult Lead	Consultant:					4	S	Vaph.													O = Othe	
Consultant/Office: Arcadis / Seaffe ,					Potable NPDES		Containers	8021 🔲 8260 🔲 Naphth				ng. eanup	_ pou		ation					☐ J value reportin☐ Must meet low	_	1
Consultant Prj. Mgr.: <u>Rebecca Andr</u>	rese n						on	382				Sed R] Me		antific	္ခ				possible for 82		
Consultant Phone #: 206 295 3273	_ Fax #: <u>206</u>	325 82	18			4	Jo J	221				Extend Silica	Ss.			GRO				8021 MTBE Conf		
Sampler: Jason Lucket			9	2		۹ir□	_		_	Oxygenates	C)			j	용	+				☐ Confirm MTBE		
Service Order#: <u>OOLS 014445</u> DN	on SAR:			3	_	Ā	N	₩	Sca	Oxyg	Ĭ.	FE	otal	문	포	싫	0			☐ Confirm all hits	by 8260	
Sample Identification	Date Collected	Time Collected	Grab	Soil	Water	ö	Total Number	BTEX + MTBE	8260 full scan			TPH D Extended Rng.	ead T	УРН/ЕРН	NWTPH H HCID	8TE	DRO			Run oxy'		
MW 1R 15'-17'		1345	7	1,							Ť	•	_			1	T			Comments / R		
MW 1R 10'-12'	7/23/07	1345	V	7		1										l	1					
MW 8: 14'-16'	7/24/07	0830	1	٧	1		1.5									ı	١					
MW 8. 21'-23'	7/24/07	0830	/	V												ŀ	l			NWRT8		
mw 9. 19-21'		0900	/	1	1											ı	1			0092114-0	>- AIL	
MW 10. 14.5'-16.5'		1400	V	<u> </u>												1	1					
MW 10. 195'215'		1430	1	1	<u> </u>	1_	-									1	١					
MW 4R, 14'-16'		0800	/	1	1	<u> </u>	<u></u>		<u> </u>							١	1					
MW 4R 19'-21'	7/25/07	0830	$ \mathcal{A} $	✓	<u> </u>											ļ	1					
				1	<u> </u>	4		ļ														
			\vdash	4	<u> </u>			<u> </u>							ļļ							
				+	-	+													4	•		
Turnaround Time Requested (TAT) (please cir	cie)	Relinqui	shed by			7	7	<u> </u>			Date		Fime ろう	L F ∂	Recei	ved.	oy:	□			Date	Time
STD. TAT~10days 72 hour 48 hour 24 hour 4 day 5 day		Relinqui	shed by	:	~	\ \	<u> </u>			i	Date	_	Time		Recei	ved I	by:		_		Date	Time
Data Package Options (please circle if required)		Relinqui	shed by	:				<u></u>	_	Ti	Date	-	Time	F	Recei	ved I	by:				Date	Time
QC Summary Type I - Full		Relinqui	shed by	- CONO	mercia	al Car	rier			٧	-			-	Recei	v&d I	hv.				Date	Time
Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format		UPS	- /	dEx	١.		her_						_	'	K	Š	1	١.	ሌ	inkles	Date 7-26-	3950
DiskOther.		Temper	ature U	on R	eceipt	_2	.5		o°					C	Custo					Yes		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

lifier	(uu	9	 u	, ı ç	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Laboratory Data Review Checklist

Completed by: Vanessa Varbel			
Title: Project Engineer in Training	Date:	Nov 1	5, 2007
CS Report Name: 2007 Site Assessment	Report	Date:	Aug 14, 2007
Consultant Firm: ARCADIS BBLES			
Laboratory Name: Lancaster Laboratories Laboratory Report	Number: 10	49347	
ADEC File Number: 100.26.139 ADEC RecKey Number: 19	9231001330)1	
1. <u>Laboratory</u>			
a. Did an ADEC CS approved laboratory receive and perform al Yes O No Comments:	l of the subm	nitted s	sample analyses?
b. If the samples were transferred to another "network" laborator laboratory, was the laboratory performing the analyses ADEC O Yes O No Comments:			d to an alternate
N/A			
2. Chain of Custody (COC)			
a. COC information completed, signed, and dated (including released Yes O No Comments:	sed/received	by)?	
b. Correct analyses requested?			
• Yes O No Comments:			
3. Laboratory Sample Receipt Documentation			
a. Sample/cooler temperature documented and within range at rece • Yes O No Comments:	eipt $(4^{\circ} \pm 2^{\circ})$	C)?	

Yes	O No	Comments:
100		
c. Sample co	ndition documented	d - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
N/A		
	• •	es, were they documented? - For example, incorrect sample container e ouside of acceptance range, insufficient or missing samples, etc.? Comments:
N/A		
,	1:1:4 66	4 10 E 1 '
e. Data quali	ty or usability affec	cted? Explain. Comments:
NT/A		Comments:
N/A		
ase Narrative		
a Dragant and	d undoraton doblo'	
a. Present and		Comments
a. Present and Yes	d understandable? O No	Comments:
	○ No	Comments:
• Yes	O No	
• Yes IN LAB NOTE: b. Discrepance	O No S cies, errors or QC f	ailures identified by the lab?
• Yes	O No	
• Yes IN LAB NOTE: b. Discrepance • Yes	○ No S cies, errors or QC f ○ No ormal reporting lim	ailures identified by the lab? Comments:
b. Discrepand Yes SB-1 (9'-11'): no	○ No S cies, errors or QC f ○ No ormal reporting limewels	ailures identified by the lab? Comments: its not attained for ethylbenzene and total xylenes, MDL below ADE
b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le	○ No S cies, errors or QC f ○ No ormal reporting limewels orrective actions do	Tailures identified by the lab? Comments: its not attained for ethylbenzene and total xylenes, MDL below ADE ocumented?
b. Discrepand Yes SB-1 (9'-11'): no	○ No S cies, errors or QC f ○ No ormal reporting limewels	ailures identified by the lab? Comments: its not attained for ethylbenzene and total xylenes, MDL below ADI
b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le	○ No S cies, errors or QC f ○ No ormal reporting limewels orrective actions do	Tailures identified by the lab? Comments: its not attained for ethylbenzene and total xylenes, MDL below ADI ocumented?
b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le c. Were all co	O No S cies, errors or QC f O No cormal reporting limevels corrective actions do O No	ailures identified by the lab? Comments: its not attained for ethylbenzene and total xylenes, MDL below ADI ocumented? Comments:
b. Discrepand Yes b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le c. Were all co Yes d. What is the	○ No Scies, errors or QC f ○ No Ormal reporting limevels Orrective actions do ○ No e effect on data qua	Failures identified by the lab? Comments: Lits not attained for ethylbenzene and total xylenes, MDL below ADE ocumented? Comments: Comments: Comments:
b. Discrepand Yes b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le c. Were all co Yes d. What is the	O No S cies, errors or QC f O No cormal reporting limevels corrective actions do O No	Failures identified by the lab? Comments: Lits not attained for ethylbenzene and total xylenes, MDL below ADI Documented? Comments: Ality/usability according to the case narrative? Comments:
b. Discrepand Yes b. Discrepand Yes SB-1 (9'-11'): no Soil Cleanup Le c. Were all co Yes d. What is the	○ No Scies, errors or QC f ○ No Ormal reporting limevels Orrective actions do ○ No e effect on data qua	Failures identified by the lab? Comments: Lits not attained for ethylbenzene and total xylenes, MDL below ADE ocumented? Comments: Comments: Comments:
b. Discrepance Yes SB-1 (9'-11'): no Soil Cleanup Le c. Were all co Yes d. What is the Effect on quality	No Scies, errors or QC f No Ormal reporting limevels Orrective actions do No e effect on data qua	Failures identified by the lab? Comments: Lits not attained for ethylbenzene and total xylenes, MDL below ADE ocumented? Comments: Comments: Comments:

b. All applic • Yes	able holding times r	net? Comments:
c. All soils r • Yes	eported on a dry we	ight basis? Comments:
d. Are the re project?	ported PQLs less th	an the Cleanup Level or the minimum required detection level for the
O Yes	No	Comments:
SB-1 (9'-11'): b	enzene MDL>Soil (Cleanup Level
e. Data qual	ity or usability affec	ted? Explain. Comments:
Unknown		
OC Samples		
a. Method B i. One m • Yes		d per matrix, analysis and 20 samples? Comments:
ii. All m	ethod blank results l	ess than PQL? Comments:
iii. If abo	ove PQL, what samp	les are affected? Comments:
N/A		
iv. Do th	e affected sample(s)	have data flags? If so, are the data flags clearly defined? Comments:
N/A		
v. Data c	quality or usability a	ffected? Explain. Comments:
N/A		

6.

	i. Organic	○ No	Comments:
	ii. Metals, samples?	/Inorganics - One L	CS and one sample duplicate reported per matrix, analysis and 20
	O Yes	○ No	Comments:
N/A			
	project sp	ecified DQOs, if ap	coveries (%R) reported and within method or laboratory limits? And oplicable. (AK Petroleum methods: AK101 60%-120%, AK102 0%; all other analyses see the laboratory QC pages)
	• Yes	○ No	Comments:
	limits? An	•	rcent differences (RPD) reported and less than method or laboratory DQOs, if applicable. (AK Petroleum methods 20%; all other analyses Comments:
	v. If %R o	or RPD is outside or	f acceptable limits, what samples are affected? Comments:
N/A			
	vi. Do the	affected samples(s) have data flags? If so, are the data flags clearly defined? Comments:
N/A			
N/A	vii. Data o	quality or usability	affected? Explain. Comments:
		quality or usability a	Comments:
	ct on Qualit		Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	project spe		coveries (%R) reported and within method or laboratory limits? And opplicable. (AK Petroleum methods 50-150 %R; all other analyses se
	• Yes	O No	Comments:
	iii. Do the clearly def	-	ch failed surrogate recoveries have data flags? If so, are the data flag
	O Yes	O No	Comments:
N/A			
	iv. Data qu	uality or usability	affected? Explain. Comments:
N/A			
d. Sc		- Volatile analyse	s only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
<u> </u>	i. One trip		r matrix, analysis and cooler?
	O Yes	⊙ No	Comments:
		lts less than PQL	
	O Yes	O No	Comments:
N/A			
	iii. If abov	e PQL, what sam	oles are affected?
			Comments:
N/A			
	iv. Data qu	ality or usability	affected? Explain. Comments:
N/A			
e.	Field Duplic	cate	
	i. One field	d duplicate submi	ted per matrix, analysis and 10 project samples?
	O Yes	⊙ No	Comments:
		ed blind to lab?	
	O Yes	O No	Comments:
N/A			

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute Value of: $(R_1 - R_2)_{x=100}$ $((R_{1+} R_2)/2)$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration O Yes O No Comments: N/A iv. Data quality or usability affected? Explain. O Yes Comments: O No N/A f. Decontamination or Equipment Blank (if applicable) Not Applicable O Yes O No i. All results less than PQL? Comments: O Yes O No N/A ii. If above PQL, what samples are affected? Comments: N/A iii. Data quality or usability affected? Explain. Comments: N/A 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? Comments: O Yes O No N/A

Reset Form

Laboratory Data Review Checklist

Completed by: Vanessa Varbel			
Title: Project Engineer in Training	Date:	Nov 1	15, 2007
CS Report Name: 2007 Site Assessment	Report	Date:	Aug 7, 2007
Consultant Firm: ARCADIS BBLES			
Laboratory Name: Lancaster Laboratories Laboratory Re	eport Number: 10	048664	
ADEC File Number: 100.26.139 ADEC RecKey Number	:: 19923100133	01	
1. <u>Laboratory</u>			
a. Did an ADEC CS approved laboratory receive and perfor • Yes O No Comments:	m all of the sub	nitted s	sample analyses?
b. If the samples were transferred to another "network" laboratory, was the laboratory performing the analyses A. O Yes O No Comments:			d to an alternate
N/A			
2. Chain of Custody (COC)			
a. COC information completed, signed, and dated (including r • Yes O No Comments:	eleased/received	l by)'?	
b. Correct analyses requested?			
• Yes O No Comments:			
3. Laboratory Sample Receipt Documentation			
a. Sample/cooler temperature documented and within range at • Yes O No Comments:	t receipt (4° ± 2°	C)?	

• Yes	O No	Comments:
- C1	1:4: 1	4. harlan 1-1in (Mathemat) hardanaa (VOC -i-1-)9
c. Sample co	No	d - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
N/A		
		es, were they documented? - For example, incorrect sample containere ouside of acceptance range, insufficient or missing samples, etc.?
O Yes	O No	Comments:
N/A		
e. Data quali	ty or usability affec	eted? Explain.
1	J	Comments:
N/A		
ase Narrative		
	d understandable?	
• Yes	O No	Comments:
IN LAB NOTE	S	
h Discrenan	cies errors or OC f	ailures identified by the lab?
O Yes	No	Comments:
- 117 11		
	orrective actions do O No	Comments:
O Yes	~ · -	
N/A		
N/A	e effect on data qua	ality/usability according to the case narrative?
N/A d. What is th	e effect on data qua	ality/usability according to the case narrative? Comments:
N/A	e effect on data qua	•
N/A d. What is th	e effect on data qua	•
N/A d. What is th N/A amples Results		•

	O No	Comments:
c. All soils re • Yes	ported on a dry we	ight basis? Comments:
1 A	. I DOL 1 . I	
d. Are the rep	oorted PQLs less th	an the Cleanup Level or the minimum required detection level for the
O Yes	⊙ No	Comments:
MW-1R [15'-17' [19'-21'] (benzer		10 [14.5'-16.5'] (benzene); MW-4R [14'-16'] (benzene); MW-4R
e. Data qualit	y or usability affec	ted? Explain.
		Comments:
Effect on data qu	uality or usability u	nknown.
C Samples		
	thod blank reported	d per matrix, analysis and 20 samples? Comments:
i. One me • Yes	thod blank reported No	Comments:
i. One me • Yes	thod blank reported	Comments:
i. One me ● Yes	thod blank reported No	Comments:
i. One me • Yes ii. All me • Yes	thod blank reported No	Comments: less than PQL? Comments:
i. One me • Yes ii. All me • Yes	thod blank reported No No thod blank results l	Comments: less than PQL? Comments: bles are affected?
i. One me • Yes ii. All me • Yes iii. If abov	thod blank reported No thod blank results l No ve PQL, what samp	Comments: less than PQL? Comments: bles are affected?
i. One me • Yes ii. All me • Yes iii. If above N/A iv. Do the • Yes	thod blank reported No thod blank results l No ve PQL, what samp	Comments: less than PQL? Comments: bles are affected? Comments: O have data flags? If so, are the data flags clearly defined?
i. One me • Yes ii. All me • Yes iii. If above N/A iv. Do the • Yes	thod blank reported No thod blank results l No ve PQL, what samp	Comments: less than PQL? Comments: bles are affected? Comments:) have data flags? If so, are the data flags clearly defined? Comments:

	• Yes	O No	Comments:
	ii. Metals samples?	/Inorganics - One L	CS and one sample duplicate reported per matrix, analysis and 20
	• Yes	○ No	Comments:
Ά			
	project sp	ecified DQOs, if ap	ecoveries (%R) reported and within method or laboratory limits? And oplicable. (AK Petroleum methods: AK101 60%-120%, AK102 0%; all other analyses see the laboratory QC pages)
	• Yes	O No	Comments:
		-	ercent differences (RPD) reported and less than method or laboratory
		boratory QC pages)	•
	see the la	boratory QC pages)	
	see the la	boratory QC pages) O No	
7/A	see the la	boratory QC pages) O No	Comments: If acceptable limits, what samples are affected?
//A	see the la Yes v. If %R	boratory QC pages) O No or RPD is outside o	Comments: If acceptable limits, what samples are affected?
	see the la Yes v. If %R	boratory QC pages) O No or RPD is outside of affected samples(s	Comments: of acceptable limits, what samples are affected? Comments: s) have data flags? If so, are the data flags clearly defined?
/A /A	vi. Do the	boratory QC pages) O No or RPD is outside of affected samples(s	Comments: If acceptable limits, what samples are affected? Comments: S) have data flags? If so, are the data flags clearly defined? Comments:
	vi. Do the	boratory QC pages) No or RPD is outside of affected samples(s	Comments: If acceptable limits, what samples are affected? Comments: S) have data flags? If so, are the data flags clearly defined? Comments: affected? Explain.
/A /A	vi. Do the O Yes	boratory QC pages) No or RPD is outside of affected samples(s	Comments: If acceptable limits, what samples are affected? Comments: S) have data flags? If so, are the data flags clearly defined? Comments: affected? Explain.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	project spe	•	coveries (%R) reported and within method or laboratory limits? And oplicable. (AK Petroleum methods 50-150 %R; all other analyses see
	O Yes	No No	Comments:
TFTI	F; TFTP		
	iii. Do the clearly def	-	h failed surrogate recoveries have data flags? If so, are the data flags
	• Yes	○ No	Comments:
	iv. Data qu	ality or usability	affected? Explain. Comments:
Effec	t on quality/	usability unknow	1
d. <u>So</u>	<u>oil</u>	·	only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and matrix, analysis and cooler?
	• Yes	O No	Comments:
		lts less than PQL	Comments:
	• Yes	O No	Comments:
]	iii. If above	e PQL, what sam	les are affected? Comments:
N/A			Comments.
,	iv. Data qu	ality or usability	affected? Explain. Comments:
N/A			
e.	Field Duplic	cate	
		duplicate submi	ted per matrix, analysis and 10 project samples?
	O Yes	⊙ No	Comments:
	ji. Submitte	ed blind to lab?	
	O Yes	O No	Comments:
N/A			

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute Value of: $(R_1 - R_2)_{x=100}$ $((R_{1+} R_2)/2)$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration O Yes O No Comments: N/A iv. Data quality or usability affected? Explain. O Yes Comments: O No N/A f. Decontamination or Equipment Blank (if applicable) Not Applicable O Yes O No i. All results less than PQL? Comments: O Yes O No N/A ii. If above PQL, what samples are affected? Comments: N/A iii. Data quality or usability affected? Explain. Comments: N/A 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? Comments: O Yes O No N/A

Reset Form

ARCADIS BBLES

Appendix C

Groundwater Laboratory Report & ADEC Data Review Checklist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1051047. Samples arrived at the laboratory on Saturday, August 04, 2007. The PO# for this group is 0015014445 and the release number is HARTUNG-FRERICH.

<u>Client Description</u>	<u>Lancaster Labs Number</u>
MW-8 Grab Water Sample	5125649
MW-9 Grab Water Sample	5125650
MW-4R Grab Water Sample	5125651
MW-1R Grab Water Sample	5125652
MW-10 Grab Water Sample	5125653
Purge_Water-College_Rd Composite Water Sample	5125654
QA Water Sample	5125655

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC Blasland, Bouck & Lee Attn: Rebecca Andresen

COPY TO

ELECTRONIC Arcadis BBL Attn: Vanessa Varbel

COPY TO

1 COPY TO Data Package Group

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Rebecca J Shettel at (717) 656-2300

Respectfully Submitted,

Valerie L. Tomayko Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125649

MW-8 Grab Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 10:00 by JL Account Number: 11964

Submitted: 08/04/2007 10:30 Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FAMW8 SDG#: ALK64-01

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01741	TPH-DRO (AK) in water	n.a.	0.25	0.023	mg/l	1
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	0.4	0.01	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	0.04	0.001	mg/l	1
01592	Toluene	108-88-3	N.D.	0.001	mg/l	1
01593	Ethylbenzene	100-41-4	0.02	0.001	mg/l	1
01723	Total xylenes	1330-20-7	0.01	0.002	mg/l	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01741	TPH-DRO (AK) in water	AK 102/AK 103	04/08/02 1	08/15/2007 08:38	Heather E Williams	1
01440	Alaska AK101 GRO (waters)	AK 101	1	08/14/2007 02:58	Martha L Seidel	1
01588	BTEX	SW-846 8021B	1	08/14/2007 02:58	Martha L Seidel	1
01146	GC VOA Water Prep	SW-846 5030B	1	08/14/2007 02:58	Martha L Seidel	1
02135	Extraction - DRO Water Special	AK 102/AK 103	04/08/02 2	08/13/2007 19:30	Mitchell B Crawford	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125650

MW-9 Grab Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 10:15 by JL Account Number: 11964

Submitted: 08/04/2007 10:30 Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FAMW9 SDG#: ALK64-02

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01741	TPH-DRO (AK) in water	n.a.	0.62	0.022	mg/l	1
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	2.2	0.05	mg/l	5
01588	BTEX					
01591	Benzene	71-43-2	0.3	0.005	mg/l	5
01592	Toluene	108-88-3	0.02	0.005	mg/l	5
01593	Ethylbenzene	100-41-4	0.1	0.005	mg/l	5
01723	Total xylenes	1330-20-7	0.3	0.01	mg/l	5

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
01741	TPH-DRO (AK) in water	AK 102/AK 103	04/08/02 1	08/15/2007 10:15	Heather E Williams	1	
01440	Alaska AK101 GRO (waters)	AK 101	1	08/14/2007 19:07	Martha L Seidel	5	
01588	BTEX	SW-846 8021B	1	08/14/2007 19:07	Martha L Seidel	5	
01146	GC VOA Water Prep	SW-846 5030B	1	08/14/2007 19:07	Martha L Seidel	5	
02135	Extraction - DRO Water Special	AK 102/AK 103	04/08/02 2	08/13/2007 19:30	Mitchell B Crawford	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125651

MW-4R Grab Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 10:30 by JL Account Number: 11964

Submitted: 08/04/2007 10:30 Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FMW4R SDG#: ALK64-03

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01741	TPH-DRO (AK) in water	n.a.	0.43	0.023	mg/l	1
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	0.6	0.01	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	0.05	0.001	mg/l	1
01592	Toluene	108-88-3	0.001	0.001	mg/l	1
01593	Ethylbenzene	100-41-4	0.04	0.001	mg/l	1
01723	Total xylenes	1330-20-7	0.08	0.002	mg/l	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
01741	TPH-DRO (AK) in water	AK 102/AK 103	04/08/02 1	08/15/2007 11:03	Heather E Williams	1	
01440	Alaska AK101 GRO (waters)	AK 101	1	08/14/2007 03:20	Martha L Seidel	1	
01588	BTEX	SW-846 8021B	1	08/14/2007 03:20	Martha L Seidel	1	
01146	GC VOA Water Prep	SW-846 5030B	1	08/14/2007 03:20	Martha L Seidel	1	
02135	Extraction - DRO Water Special	AK 102/AK 103	04/08/02 2	08/13/2007 19:30	Mitchell B Crawford	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125652

MW-1R Grab Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 10:45 by JL Account Number: 11964

Submitted: 08/04/2007 10:30 Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FMW1R SDG#: ALK64-04

~~-				As Received		-12
CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit	Units	Dilution Factor
01741	TPH-DRO (AK) in water	n.a.	5.9	0.23	mg/l	10
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	35.	0.3	mg/l	25
01588	BTEX					
01591	Benzene	71-43-2	0.8	0.03	mg/l	25
01592	Toluene	108-88-3	3.6	0.03	mg/l	25
01593	Ethylbenzene	100-41-4	1.2	0.03	mg/l	25
01723	Total xylenes	1330-20-7	5.2	0.05	mg/l	25

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis			
No.	Analysis Name	Method	Tr	ial#	Date and Time	Analyst	Factor
01741	TPH-DRO (AK) in water	AK 102/AK 103	04/08/02	1	08/15/2007 21:36	Heather E Williams	10
01440	Alaska AK101 GRO (waters)	AK 101		1	08/14/2007 19:28	Martha L Seidel	25
01588	BTEX	SW-846 8021B		1	08/14/2007 19:28	Martha L Seidel	25
01146	GC VOA Water Prep	SW-846 5030B		1	08/14/2007 19:28	Martha L Seidel	25
02135	Extraction - DRO Water Special	AK 102/AK 103	04/08/02	2	08/13/2007 19:30	Mitchell B Crawford	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125653

MW-10 Grab Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 11:00 by JL Account Number: 11964

Submitted: 08/04/2007 10:30 Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FMW10 SDG#: ALK64-05

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01741	TPH-DRO (AK) in water	n.a.	0.97	0.022	mg/l	1
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	0.1	0.01	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	N.D.	0.001	mg/l	1
01592	Toluene	108-88-3	N.D.	0.001	mg/1	1
01593	Ethylbenzene	100-41-4	N.D.	0.001	mg/l	1
01723	Total xylenes	1330-20-7	N.D.	0.002	mg/l	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			Analysis				Dilution
No.	Analysis Name	Method	Tri	al#	Date and Time	Analyst	Factor
01741	TPH-DRO (AK) in water	AK 102/AK 103	04/08/02	1	08/15/2007 09:02	Heather E Williams	1
01440	Alaska AK101 GRO (waters)	AK 101		1	08/14/2007 03:42	Martha L Seidel	1
01588	BTEX	SW-846 8021B		1	08/14/2007 03:42	Martha L Seidel	1
01146	GC VOA Water Prep	SW-846 5030B		1	08/14/2007 03:42	Martha L Seidel	1
02135	Extraction - DRO Water Special	AK 102/AK 103	04/08/02	2	08/13/2007 19:30	Mitchell B Crawford	1

Account Number: 11964

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW

Purge_Water-College_Rd Composite Water Sample

Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007 12:00

Submitted: 08/04/2007 10:30

Chevron

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FAPW- SDG#: ALK64-06

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00430	Flash Point for Liquids	n.a.	No Flash Observed		Degrees F	1
	No flash observed below 165F.					
	Test flame extinguished at 145F	•				
	Flash point was determined using	g Pensky Marte	ns closed cup app	paratus.		
08079	HEM (oil & grease)	n.a.	3.4	1.4	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	0.3	0.005	mq/l	5
					<u>.</u>	
01592	Toluene	108-88-3	1.0	0.005	mg/1	5
01593	Ethylbenzene	100-41-4	0.4	0.005	mg/1	5
01723	Total xylenes	1330-20-7	1.7	0.01	mg/l	5

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
00430	Flash Point for Liquids	ASTM D93-90	1	08/14/2007 20:00	Geraldine C Smith	1	
08079	HEM (oil & grease)	EPA 1664A	1	08/14/2007 06:18	Valerie J Trout	1	
01588	BTEX	SW-846 8021B	1	08/14/2007 19:49	Martha L Seidel	5	
01146	GC VOA Water Prep	SW-846 5030B	1	08/14/2007 19:49	Martha L Seidel	5	

Account Number: 11964

Chevron

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5125655

QA Water Sample Facility# 92114

3245 College Rd. - Fairbanks, AK

Collected: 08/02/2007

Submitted: 08/04/2007 10:30

Reported: 08/17/2007 at 10:40 6001 Bollinger Canyon Rd L4310

Discard: 09/17/2007 San Ramon CA 94583

FATB- SDG#: ALK64-07TB*

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01440	Alaska AK101 GRO (waters)					
01442	Alaska AK101 GRO (waters)	n.a.	N.D.	0.01	mg/l	1
01588	BTEX					
01591	Benzene	71-43-2	N.D.	0.001	mg/l	1
01592	Toluene	108-88-3	N.D.	0.001	mg/l	1
01593	Ethylbenzene	100-41-4	N.D.	0.001	mg/l	1
01723	Total xylenes	1330-20-7	N.D.	0.002	mg/l	1

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
01440	Alaska AK101 GRO (waters)	AK 101	1	08/14/2007 01:52	Martha L Seidel	1	
01588	BTEX	SW-846 8021B	1	08/14/2007 01:52	Martha L Seidel	1	
01146	GC VOA Water Prep	SW-846 5030B	1	08/14/2007 01:52	Martha L Seidel	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron Group Number: 1051047

Reported: 08/17/07 at 10:40 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 072250012A TPH-DRO (AK) in water	Sample n N.D.	umber(s): 0.024	5125649-51 mg/l	25653 84	81	75-125	3	20
Batch number: 07225B53A Alaska AK101 GRO (waters)	Sample n	umber(s):	5125649,51 mg/l	25651,51 60	25653,5125 62	6655 60-120	2	20
Benzene Toluene	N.D. N.D.	0.001	mg/l mg/l	106 110	108 111 112	86-119 82-119	1 1	30 30 30
Ethylbenzene Total xylenes	N.D. N.D.	0.001	mg/l mg/l	110 113	114	81-119 82-120	1 1	30
Batch number: 07226043001A Flash Point for Liquids	Sample n	umber(s):	5125654	102	99	97-103	2	4
Batch number: 07226807901A HEM (oil & grease)	Sample no	umber(s): 1.4	5125654 mg/l	91	89	78-114	2	20
Batch number: 07226A54A	Sample n	umber(s):	5125650,51	25652,51	25654			
Alaska AK101 GRO (waters)	N.D.	0.01	mg/l	95	96	60-120	1	20
Benzene	N.D.	0.001	mg/l	98	95	86-119	3	30
Toluene Ethylbenzene	N.D. N.D.	0.001 0.001	mg/l mg/l	101 105	98 102	82-119 81-119	3 3	30 30
Total xylenes	N.D.	0.001	mg/l	107	104	82-120	3	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 07226A54A Alaska AK101 GRO (waters)	Sample 98	number(s)	: 5125650 60-120	,51256	52,5125	654 UNSPK:	P125383,	P125385	
Benzene	110		78-131						
Toluene	110		78-129						
Ethylbenzene	111		75-133						
Total xylenes	110		84-131						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed $\ensuremath{\mathsf{QC}}$ unless attributed to dilution or otherwise noted on the Analysis Report.

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Group Number: 1051047 Client Name: Chevron

Reported: 08/17/07 at 10:40 AM

Surrogate Quality Control

Analysis Name: TPH-DRO (AK) in water

Batch number: 072250012A

Orthoterphenyl

5125649	102
5125650	102
5125651	103
5125652	91
5125653	103
Blank	100
LCS	106
LCSD	99

Limits:

Analysis Name: Alaska AK101 GRO (waters) Batch number: 07225B53A Trifluorotoluene-F

	Trifluorotoluene-F	Trifluorotoluene-P
5125649	78	93
5125651	77	94
5125653	82	88
5125655	83	90
Blank	85	90
LCS	87	91
LCSD	86	90
Timits:	60-120	69-129

Analysis Name: Alaska AK101 GRO (waters)

Batch numb	per: 07226A54A		
	Trifluorotoluene-F	Trifluorotoluene-P	
5125650	78	95	
5125652	85	93	
5125654		94	
Blank	89	92	
LCS	98	92	
LCSD	97	91	
MS	93	91	
Limits:	60-120	69-129	

*- Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

For Lancaster Laboratories use only

/IN I proceed all aboutouries

Where quality is a science.							190	04	_ Sa	ample	e#:_	<i>51</i> 2	25	64	9	<u> </u>	<u>ک</u> رک	5_scr#:		
••• vvi ere quality is a science.			10	5,	104	7	Г			Α	naly	ses F	Reque	sted						
Facility#: Former Chevron # 92114 Site Address: 3245 College Rd / 622 Chevron PM: Stacy Freshs Lead C Consultant/Office: Arab RBL Consultant Prj. Mgr.: Rebeca Andrese	Old Air, Consultant: A	port Ro			Potable NPDES	of Containers	8021 🗆 8260 🗆 Naphth				LD Silica Gel Cleanup		on Co			rease		$N = HNO_3$	T = Thiosi B = NaOh O = Other ng needed vest detection	ulfate
Consultant Phone #: 286 325 5254 Sampler:	on SAR:	Time Collected	Grab	4	150	Oil	BTEX + MTBE 8021	8260 full scan	Oxygenates	TPH G	TPH D Exter	Lead Total □Diss. (VPH/EPH NWTPH H HCID	BTEX (ARD	7.ex	2	न्रह्म	8021 MTBE Con Confirm MTBE Confirm highe Confirm all hit Run oxy Run oxy	E + Naphtha st hit by 82 s by 8260 's on highe	60 st hit
MW-8 MW-9 MW-4R MW-1R MW-10 MW-1 MW-2 MW-2 MW-3 MW-3 MW-5 purgewater-college Rd pargewater-Saupe Site	8/2/07	1000 1015 1030 1045 1100 1840 1840 1900 1928 1200	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXX		2 2 2 2							X X X X X X X X X X X	X	X	X	Comments / F Surpe site high PN NWRTB 0092114- 0309152	1W-3 21 -shen, 0-AIL -0-AIL	odo
Turnaround Time Requested (TAT) (please circ STD. TAT 72 hour 48 hour 24 hour 4 day 5 day	le)	1	ished by		Su	M			ز _	Date Date	m 6	Time 770 Time		eived					Date Date	Time
Data Package Options (please circle if required) QC Summary Type I - Full Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format Disk Other.		Relinqu UPS	ished by ished by Fe rature Up	Com		Othe	r	©		Date		Time	Rec	eived eived tody	by:	Intac		attone ves No	Date Date	Time Time

009008

Chevron Generic Analysis Request/Chain of Custody

Acct. #: 11964 For Lancaster Laboratories use only Sample #: 5125649-55 SCR#:

				IC	151	04	- ! :				Α	naly	ses l	Requ	uest	ed	1				
Facility#: CollegeRd # 92114				Т	Matri	x					F	rese	rvat	on (Cod	es		Prese		e Code	
Site Address: 3245 College Pol								⊒ ‡	-	-							N	I = HCI I = HNO3 S = H2SO4	В:	= Thios = NaOl = Othei	1
Chevron PM: Stacy French Lead Co Consultant/Office: Arcadis BBL Consultant Prj. Mgr.: Roberts Andrews Consultant Phone #: 206 325 5254	in				☐ Potable ☐ NPDES		of Containers	8021 🗌 8260 🔲 Naphth				D Extended Rng.	s. Method] quantification	(AK 102)		J value rep Must meet possible fo	t lowes or 8260	t detecti compo	
Sampler: Luckett Service Order #: Non		Time Collected	Grab	Soil	Water	Oil □ Air □	Total Number of Containers		8 900 ii m an	Oxygenates	ТРН С	THO OHAL	Lead Total 🗆 Dis	VPH/EPH	NWTPH H HCID	DRD (Ax		Confirm M Confirm hi Confirm al Run	ighest h II hits b oxy's c	hit by 82 y 8260 on highe	60 st hit
	8/1/67	(000 (015 (030 (030 (045 (100	X		X X X X		2 2 2 2 2 2 2	8	8					>		X	C	Comments	/ Ren	narks	
Turnaround Time Requested (TAT) (please circle STD. TAT 72 hour 48 hour 24 hour 5 day))	Relinquis	/	1	l	L)	M			_	Date Date	_	Time			ved by: ved by:				Date Date	Time
Data Package Options (please circle if required) QC Summary Type I - Fuil Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format Disk Other.		Relinquis UPS Tempera	shed b	edEx	ļ	Ot	her_				Date		Time	F	ecei	ved by: ved by: ty Seal:	 	Hove (Yes)		Date Date	Time Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Laboratory Data Review Checklist

Completed by: Michael Strickler		
Title: Scientist	Date: D	ec 4, 2007
CS Report Name: 2007 Site Assessment	Report Da	Dec 4, 2007
Consultant Firm: ARCADIS BBLES		
Laboratory Name: Lancaster Laboratories Laboratory Report No.	umber: 1051	047
ADEC File Number: 100.26.139 ADEC RecKey Number: 1992	310013301	
1. <u>Laboratory</u>		
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of • Yes O No Comments:	f the submit	ted sample analyses?
b. If the samples were transferred to another "network" laboratory of laboratory, was the laboratory performing the analyses ADEC Comments:		
N/A		
2. Chain of Custody (COC)		
a. COC information completed, signed, and dated (including released • Yes • No Comments:	/received by	7)?
b. Correct analyses requested?		
• Yes O No Comments:		
3. Laboratory Sample Receipt Documentation		
	+ (10 + 20 C)	2
a. Sample/cooler temperature documented and within range at receipt • Yes O No Comments:	ι (4° ± 2° C)	(·
4.5 and 4.6 Degrees Celsius		

Yes	O No	Comments:
C 1	12.2 1	
c. Sample co	ondition documented No	d - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
Γ		
N/A		
	•	es, were they documented? - For example, incorrect sample container ouside of acceptance range, insufficient or missing samples, etc.? Comments:
NT/A		
N/A		
e. Data quali	ty or usability affect	eted? Explain.
		Comments:
N/A		
asa Namatina		
ase Narrative		
a. Present and	d understandable?	
• Yes	O No	Comments:
1 5:	cies errors or OC f	failures identified by the lab?
h L)iscrenan	• No	Comments:
b. Discrepan	U INO	
O Yes		t de la compa
O Yes	es, errors or QC fail	lures identified.
O Yes		
O Yes	es, errors or QC fail	
O Yes No discrepancie c. Were all coordinates	es, errors or QC fail	ocumented?
O Yes No discrepancie c. Were all c	es, errors or QC fail	ocumented?
O Yes No discrepancie c. Were all coo Yes	es, errors or QC fail orrective actions do	Comments: ality/usability according to the case narrative?
O Yes No discrepancie c. Were all c O Yes N/A d. What is th	es, errors or QC fail orrective actions do	ocumented? Comments:
O Yes No discrepancie c. Were all coo Yes	es, errors or QC fail orrective actions do	Comments: ality/usability according to the case narrative?
O Yes No discrepancie c. Were all c O Yes N/A d. What is th	es, errors or QC fail orrective actions do	Comments: ality/usability according to the case narrative?
No discrepancie c. Were all c Yes N/A d. What is th	es, errors or QC fail orrective actions do O No	Comments: ality/usability according to the case narrative?

b.		ble holding times	
	• Yes	O No	Comments:
c.	All soils re	ported on a dry we	eight basis?
	O Yes	O No	Comments:
N/A			
	Are the repoject?	oorted PQLs less th	nan the Cleanup Level or the minimum required detection level for the
1	• Yes	○ No	Comments:
e.	Data qualit	y or usability affec	cted? Explain.
		•	Comments:
N/A			
000			
QC San	<u>nples</u>		
a .]	Method Bla	ank	
	i. One me	thod blank reporte	ed per matrix, analysis and 20 samples?
	• Yes	O No	Comments:
	ii. All met	thod blank results	less than PQL?
	Yes	O No	Comments:
	iii. If aboy	ve PQL, what sam	nles are affected?
	111. 11 400	, v 1 Q2, , , , i ac sam	Comments:
N/A			
1 1/11			
	iv. Do the	e affected sample(s	s) have data flags? If so, are the data flags clearly defined? Comments:
N/A			
	** Data	101itry on 12001211i4-	affacted 9 Dynaloin
	v. Data qı	uality or usability a	affected? Explain. Comments:

	i. Organic • Yes	○ No	Comments:				
	ii. Metals/	Inorganics - One L	CS and one sample duplicate reported per matrix, analysis and 20				
	O Yes	○ No	Comments:				
N/A							
	iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)						
	• Yes	○ No	Comments:				
	limits? Ar	•	rcent differences (RPD) reported and less than method or laboratory DQOs, if applicable. (AK Petroleum methods 20%; all other analyses Comments:				
	v. If %R o	or RPD is outside o	f acceptable limits, what samples are affected? Comments:				
N/A							
	vi. Do the	affected samples(s	s) have data flags? If so, are the data flags clearly defined? Comments:				
N/A							
	vii. Data o	quality or usability	affected? Explain. Comments:				
N/A							
,	Surrogates	- Organics Only					

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? An project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses the laboratory report pages)					
	• Yes	O No	Comments:			
	iii. Do the clearly def	-	h failed surrogate recoveries have data flags? If so, are the data flags			
	O Yes	O No	Comments:			
N/A						
	iv. Data qu	ality or usability	offected? Explain. Comments:			
N/A						
d. Sc		Volatile analyse	only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and			
	i. One trip		matrix, analysis and cooler?			
	• Yes	○ No	Comments:			
		lts less than PQL				
	• Yes	O No	Comments:			
	iii. If above PQL, what samples are affected?					
			Comments:			
N/A						
	iv. Data qu	ality or usability	offected? Explain. Comments:			
N/A						
e.	Field Duplic	eate				
	i. One field	l duplicate submi	ted per matrix, analysis and 10 project samples?			
	O Yes	⊙ No	Comments:			
		ed blind to lab?				
	O Yes	O No	Comments:			
N/A						

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute Value of: $(R_1 - R_2)_{x=100}$ $((R_{1+} R_2)/2)$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration O Yes O No Comments: N/A iv. Data quality or usability affected? Explain. O Yes Comments: O No N/A f. Decontamination or Equipment Blank (if applicable) Not Applicable O Yes O No i. All results less than PQL? Comments: O Yes O No N/A ii. If above PQL, what samples are affected? Comments: N/A iii. Data quality or usability affected? Explain. Comments: N/A 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? Comments: O Yes O No N/A

Reset Form

ARCADIS BBLES

Appendix D

CSM Scoping Form & Graph

Human Health Conceptual Site Model Scoping Form

Site Name:	
File Number:	
Completed by:	
Introduction The form should be used to reach agreement with the Al Conservation (DEC) about which exposure pathways sh characterization. From this information, a CSM graphic characterization work plan. General Instructions: Follow the italicized instruction	ould be further investigated during site and text must be submitted with the site
1. General Information:	
Sources (check potential sources at the site)	
USTs	☐ Vehicles
☐ ASTs	Landfills
Dispensers/fuel loading racks	Transformers
☐ Drums	Other:
Release Mechanisms (check potential release mechanisms)	hanisms at the site)
☐ Spills	☐ Direct discharge
Leaks	☐ Burning
	Other:
Impacted Media (check potentially-impacted media	a at the site)
Surface soil (0-2 feet bgs*)	Groundwater
Subsurface Soil (>2 feet bgs)	Surface water
☐ Air	Other:
Receptors (check receptors that could be affected by	y contamination at the site)
Residents (adult or child)	☐ Site visitor
Commercial or industrial worker	Trespasser
Construction worker	Recreational user
☐ Subsistence harvester (i.e., gathers wild foods)	Farmer
☐ Subsistence consumer (i.e., eats wild foods)	Other:

1 3/16/06

^{*} bgs – below ground surface

2.	con		Pathways: (The answers to the following questions will identify osure pathways at the site. Check each box where the answer to the question					
	a)	Direct Contact – 1 Incidental Soil Ingestion						
		Is soil contaminated anywhere between 0 and 15 feet bgs?						
		Do people use the site or is there a chance future?	they will use the site in the					
		If both boxes are checked, label this pathway complete:						
		2 Dermal Absorption of Contaminants from Soil						
Is soil contaminated anywhere between 0 and 15 fee			and 15 feet bgs?					
		Do people use the site or is there a chance they will use the site in the future?						
		Can the soil contaminants permeate the skin? (Contaminants listed below, or within the groups listed below, should be evaluated for dermal absorption).						
		Arsenic Cadmium Chlordane 2,4-dichlorophenoxyacetic acid Dioxins DDT	Lindane PAHs Pentachlorophenol PCBs SVOCs					
		If all of the boxes are checked, label this p	of the boxes are checked, label this pathway complete:					
	b)	b) Ingestion – 1 Ingestion of Groundwater						
		Have contaminants been detected or are they expected to be detected in the groundwater, OR are contaminants expected to migrate to groundwater in the future? Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if ADEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.						
		If both the boxes are checked, label this pathway complete:						

2 3/16/06

Ingestion of Surface Water Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). *If both boxes are checked, label this pathway complete:* **Ingestion of Wild Foods** Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food? Do the site contaminants have the potential to bioaccumulate (see Appendix A)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that **could be** connected to surface water, etc.) *If all of the boxes are checked, label this pathway complete:* c) Inhalation 1 Inhalation of Outdoor Air Is soil contaminated anywhere between 0 and 15 feet bgs? Do people use the site or is there a chance they will use the site in the future? Are the contaminants in soil volatile (*See Appendix B*)? *If all of the boxes are checked, label this pathway complete:* **Inhalation of Indoor Air** Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, or subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures) Are volatile compounds present in soil or groundwater (See Appendix C)? *If both boxes are checked, label this pathway complete:*

3/16/06

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

o Climate permits recreational use of waters for swimming,

Check the box if further evaluation of this pathway is needed:

o Climate permits exposure to groundwater during activities, such as construction,

without protective clothing, or O Groundwater or surface water is used for household purposes.
Check the box if further evaluation of this pathway is needed:
Comments:
Inhalation of Volatile Compounds in Household Water
Exposure from this pathway may need to be assessed only in cases where DEC water-quality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include: O The contaminated water is used for household purposes such as showering, laundering, and dish washing, and O The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)
Check the box if further evaluation of this pathway is needed:
Comments:
Inhalation of Fugitive Dust
 Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include: Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles. Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete.

3/16/06

Comments:
Direct Contact with Sediment
This pathway involves people's hands being exposed to sediment, such as during recreational or some types of subsistence activities. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if people come in contact with sediment and the contaminants are able to permeate the skin (see dermal exposure to soil section). This type of exposure is rare but it should be investigated if: • Climate permits recreational activities around sediment, and/or • Community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.
ADEC soil ingestion cleanup levels are protective of direct contact with sediment. If they are determined to be over-protective for sediment exposure at a particular site, other screening levels could be adopted or developed.
Check the box if further evaluation of this pathway is needed:
Comments:

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

5 3/16/06

HUMAN HEALTH CONCEPTUAL SITE MODEL

Site:			Follow the directions below. <u>Do not</u> or land use controls when describ				ering	•		
(1) Check the media that could be directly affectly the release. Media	For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms or reference the report for details. Transport Mechanisms Direct release to surface soil check soil Migration or leaching to subsurface check groundwater Volatilization check air		Check exposure pathways that are complete or need further evaluation. The pathways identified must agree with Sections 2 and 3 of the CSM Scoping Form. Exposure Pathways	e re b	dentify the repair of children industrial of	eceptor ire path of for fur and fut	way: E ture rec	nter "C eptors eptors • Rec	C" for c s, or "C s. cepto	urrent E/F" for
	Runoff or erosion	soil	Incidental Soil Ingestion Dermal Absorption of Contaminants from Soil							
Subsurface Soil (2-15 ft bgs)	Migration to groundwater check air Volatilization check air Other (list):	groundwater	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water							
Ground- water	Volatilization check groundwater Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust							
Surface Water	Direct release to surface water Volatilization	surface water	Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water							
Sediment	Direct release to sediment Resuspension, runoff, or erosion Uptake by plants or animals Other (list):		Direct Contact with Sediment Ingestion of Wild Foods							