

Ahtna Engineering Services, LLC

110 W. 38th Avenue. Suite 200A Anchorage, AK 99503 <u>www.ahtnaes.com</u> Phone: (907) 646-2969

Phone: (907) 646-2969 Fax: (907) 868-8285

Design-Build • Construction • Environmental • Government Services

February 4, 2022

Jim Fish Contaminated Sites Program 610 University Avenue Fairbanks, AK 99709

Subject: 2021 Gaffney Road Remediation and Monitoring Report

Dear Mr. Fish:

Ahtna Engineering Services, LLC (Ahtna) is submitting this report to document the groundwater sampling, analytical results, and sub-slab depressurization (SSD) system operation and maintenance conducted in 2021. This work was performed under the Alaska Department of Environmental Conservation (ADEC) term contract #18-3007-18 for the Gaffney West site, ADEC Hazard ID 4503, ADEC File ID 102.38.084. Tables of results are in Attachment 1 and site figures are in Attachment 2.

GAFFNEY WEST SITE BACKGROUND

In 1999, a former ADEC term contractor drilled and installed groundwater monitoring well MW-9 and confirmed a source of tetrachloroethene (PCE) was present in vadose zone soil behind Good News Bible and Book Store (GNBBS), which had formerly been Royal Masters Launderette at 617 Gaffney Road, Fairbanks, Alaska. In 2007, an ADEC term contractor performed a detailed source area investigation around GNBBS, which revealed that the sanitary sewer network, constructed of wood-stave pipe, acted as a source with releases of PCE from the sewer. PCE likely settled in sludge and even possibly absorbed into the wood-stave piping. Leaks likely occurred at elbows and junctions in the sewer system. Surface releases also likely occurred behind GNBBS.

These multiple sources have resulted in a groundwater plume of chlorinated ethenes extending approximately 3,000 feet to the northwest. The end of the plume is approximately 1,000 feet upgradient from the Golden Heart Utilities well field. Approximately thirty monitoring wells exist at the site. Degradation of PCE is occurring as trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and trans-1,2-dichloroethene (tDCE) are present in downgradient wells; however, vinyl chloride has not been detected in groundwater at the site in 20 years of monitoring. Vinyl chloride has only been detected in soil gas at the site.

A combined SSD/soil vapor extraction (SVE) system began operation in January 2010 at GNBBS to mitigate the movement of contaminant vapors into the commercial building and remove vapor phase contaminants from the vadose zone. The SSD system was modified in 2016 to a less-power-intensive inline depressurization fan; its efficacy has been documented. The SVE system

contaminant removal rate became asymptotic in 2012, and the SVE system operated intermittently from 2012 to 2017. In May 2019, the SVE system was modified to operate passively, without electric power.

The VI pathway currently presents the most risk for exposure to the contaminants of concern (COCs) as PCE degrades into TCE. Multiple VI evaluations and monitoring events have been performed at the source area and downgradient buildings, most recently in fall 2017. Well surveys conducted in 1999, 2011, and 2017 documented that all but one private well in the contaminant plume area were not operable, and the owners did not intend to put it into service. The single operable private well was found to be no longer in use in 2020.

FIELD ACTIVITIES

Fieldwork was conducted on behalf of the ADEC at the Gaffney West site in 2021. Field activities consisted of purging monitoring wells and collecting groundwater samples at three source area wells and conducting monitoring of the sub-slab depressurization (SSD) system. All work was conducted in accordance with ADEC's *Field Sampling Guidance* (ADEC, 2019) and the approved work plan addendum (Ahtna, 2020). Field notes are included in Attachment 3.

Groundwater Sampling

Ahtna purged and sampled monitoring wells MW-9, MW-29R, and TW-46 on August 31, 2021. Groundwater samples were collected using a bladder pump and low-flow purge and sample techniques in accordance with the ADEC *Field Sampling Guidance* (ADEC, 2019). The bladder pump was connected to Teflon-lined polyethylene tubing and placed in the well with the intake within the screened interval of the well. Drawdown was minimized by routinely monitoring the depth to groundwater and adjusting flow rate to compensate. Once a flow rate was established, the depth to groundwater was repeatedly measured during purging to ensure that drawdown was stable in the well. A water quality meter with flow-through cell was connected to the pump discharge line, and water quality measurements were recorded every three to five minutes. During purging, water quality parameters were monitored until at least three of the four following parameters were stable based on the following criteria:

- 1. Potential of hydrogen (pH) within 0.1
- 2. Specific conductivity within 3%
- 3. Oxidation reduction potential within 10 millivolts
- 4. Dissolved oxygen within 10%

All measurements were recorded on the groundwater sample data sheets provided in Attachment 3.

Once purging was complete, the water quality meter was disconnected, and groundwater samples were collected directly from the tubing connected to the pump. Each water sample volume was collected into three 40-milliliter vials pre-preserved with hydrochloric acid for VOC analysis by 8260. A duplicate sample was collected from TW-46. Samples were analyzed by SGS in Anchorage, Alaska.

SSD Monitoring

Ahtna performed SSD system operation and maintenance (O&M) assessments to ensure operation of the SSD system continues to be effective at mitigating the VI pathway in GNBBS. The inspections included an overall assessment of the SSD system (extraction wells, conveyance piping, inline fan, and exhaust stack) to document real or potential operating concerns. Monitoring was performed on February 19 and November 9, 2021. Assessments included the following:

- Electrical meter reading from the Kill-A-Watt® EZ Meter located on the GNBBS south wall
- Flow rates and vacuums at each of the five depressurization wells using a Dwyer® 471B digital thermo-anemometer and dial vacuum gauge
- Percent the ball valves are open
- Flow rate and vacuum at the manifold near the depressurization fan using the Dwyer 471B digital thermo-anemometer and dial vacuum gauge
- Differential pressure readings at eight sub-slab monitoring points (SS-1, SS-2, SS-3, SS-4, SS-36, SS-37, SS-38, and SS-44) using a Dwyer Series 475 Mark III digital manometer
- Observations of the exhaust stack (frosting or no frosting)

Well Maintenance

Ahtna performed maintenance on monitoring wells, SVE wells, and the SVE manifold in June and July of 2021. Monitoring wells MW-29M, MW-29D, and MW-8 were found to be frost jacked and had pushed up their covers. Approximately 2.5 inches of casing were cut off from MW-29M and MW-8, and 1.5 inches of casing were cut off MW-29D. The well cover and skirt were replaced on MW-29M, and traction rock was added to the annular space. The condensate trap on the western-most SVE manifold was replaced because it had cracked. Staff trimmed 6 inches of casing off EW-13 and 3 inches of casing off TW-46, added a well cover and skirt to EW-4, and added pea gravel in the annular space of EW-4. Staff trimmed an additional approximately 2.5 inches of casing from MW-8.

Investigation-Derived Waste Management

Investigation-derived waste included disposable sampling materials such as tubing, personal protective equipment, and incidental garbage generated on site (paper towels, waste plastic, etc.), and purge water. IDW was managed as F-listed hazardous waste from the Gaffney West site with ID AKR000003566 where the ADEC is a small quantity generator. Wastes were placed in 55-gallon steel drums, segregating by liquid and solid and waste streams, and locked inside the fenced area behind GNBBS, serving as a Central Accumulation Area. Ahtna documented weekly inspections of the waste in the field book. NRC Alaska was subcontracted to manifest, transport, and dispose of the IDW. The drums were transported to US Ecology Idaho, Inc., in Grand View, Idaho, for disposal. The waste manifest is included in Attachment 4.

RESULTS

The SSD system O&M data sheets are included in Attachment 3. The average negative pressure beneath the GNBBS foundation slab was 0.0547 inches of water in February 2021 and 0.044 inches of water in November 2021. The average vacuum from individual SSD wells was 13.6 inches of water in February 2021 and 13 inches of water in November 2021. The average flow rate from individual SSD wells was 8.29 cubic feet per minute in February 2021 and 7.45 cubic feet per minute in November 2021.

Analytical results of the August 2021 groundwater sampling are summarized in Table 1 in Attachment 1. The complete laboratory report is in Attachment 5. Concentrations of PCE and TCE exceeded ADEC cleanup levels in all three source area wells. All other VOC concentrations were less than cleanup levels.

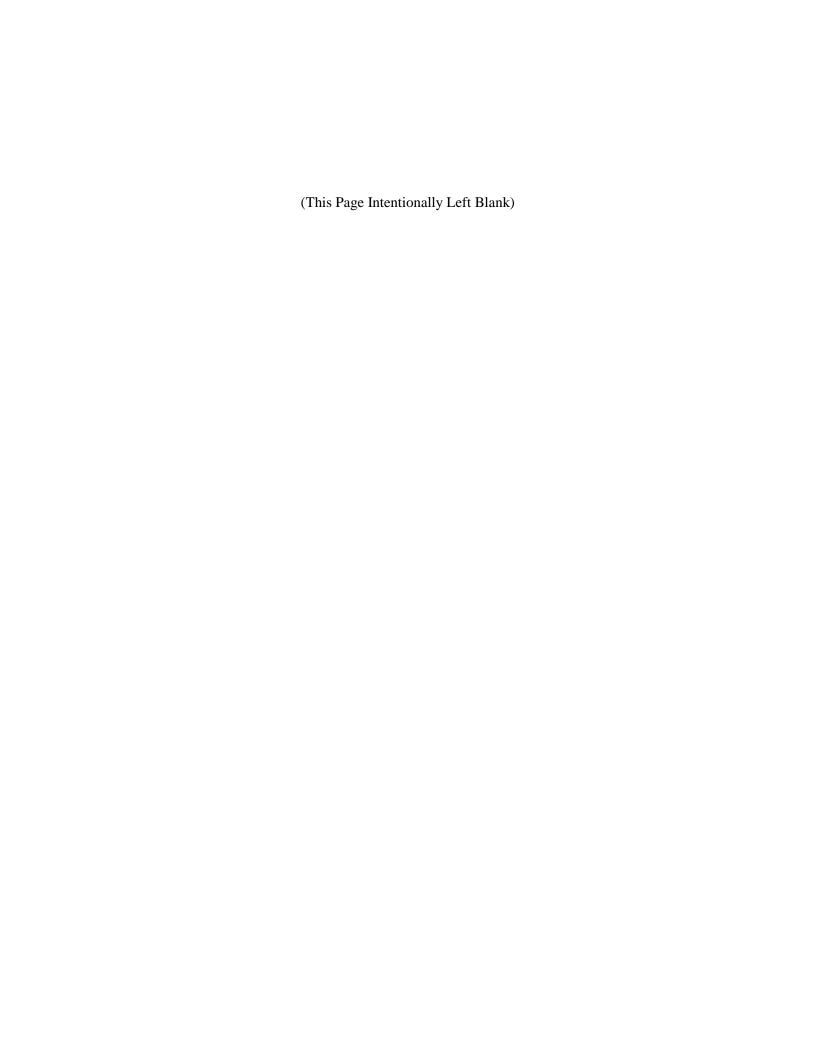
Quality Assurance/Quality Control

An ADEC Laboratory Data Review Checklist was completed for the groundwater results and is included in Attachment 6. Quality control samples included a field duplicate collected from TW-46, an equipment blank, and a trip blank. There were no detections in the equipment blank or trip blank. Results greater than the detection limit but less than the limit of quantitation were qualified "J" as estimated. Results for cis-1,2-dichloroethene, PCE, and TCE in sample 21-GRW-002-GW from MW-9 are qualified "J+" as estimated biased high because of a failed surrogate recovery. No other qualifications were assigned. Data are considered usable as qualified. No data were rejected.

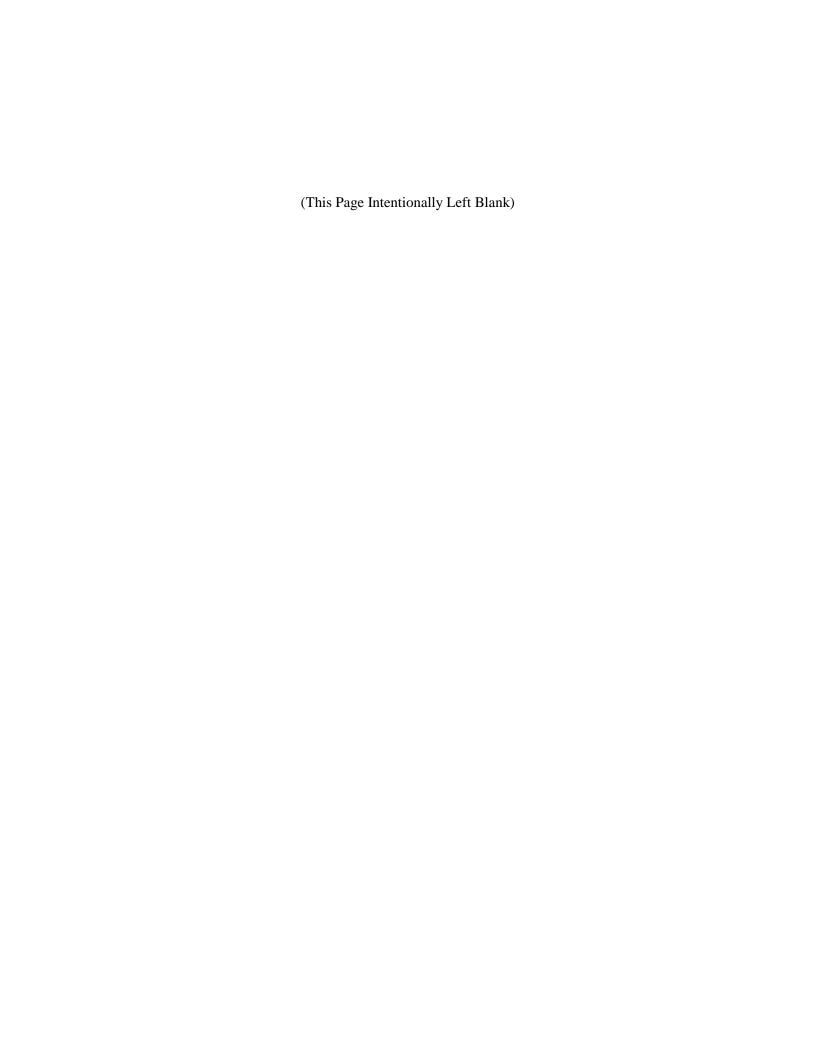
CONCLUSIONS/RECOMMENDATIONS

The SSD system continues to maintain a negative pressure envelope beneath GNBBS. Flow rates and vacuums are similar to previous O&M events. PCE and TCE concentrations in source area groundwater monitoring wells MW-9, MW-29R, and TW-46 continue to exceed ADEC cleanup levels and were similar to previous sampling events. Much of the source area monitoring infrastructure was found to be damaged by frost-jacking.

Semiannual SSD system O&M visits should continue to ensure the system maintains a negative pressure envelope beneath GNBBS. Source area monitoring wells MW-9, MW-29R, and TW-46 should be sampled again in late summer of 2022. A trend analysis can then be completed on results to observe the effect of modifying the SVE system from active to passive operation. Unnecessary source area monitoring infrastructure should be decommissioned in accordance with ADEC guidelines and federal regulations.


Sincerely,

Ahtna Engineering Services, LLC


Project Manager

Attachments:

- 1. Tables
- 2. Figures
- 3. Field Notes
- 4. Disposal Documents
- 5. Laboratory Report
- 6. ADEC Laboratory Data Review Checklist

Tables

Table 1: August 2021 Groundwater Analytical Results

Gaffney Road Remediation and Monitoring Fairbanks, Alaska

			Location:	MW-29R	MW-9	TW	-46	Equipment Blank	Trip Blank
			Client Sample ID:	21-GRW-001-GW	21-GRW-002-GW	21-GRW-003-GW	21-GRW-903-GW	21-GRW-004-EB	21-GRW-005-TB
			Lab Sample ID:	1215678001	1215678002	1215678003	1215678004	1215678005	1215678006
			Matrix:	Water	Water	Water	Water	Water	Water
			Collection Date:	8/31/2021 12:50 PM	8/31/2021 1:50 PM	8/31/2021 2:50 PM	8/31/2021 2:55 PM	8/31/2021 4:10 PM	9/1/2021 9:00 AM
Analysis	Analyte	Unit	Cleanup Level						
SW8260D	1,1,1,2-Tetrachloroethane	ug/L	5.7	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	1,1,1-Trichloroethane	ug/L	8000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,1,2,2-Tetrachloroethane	ug/L	0.76	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	1,1,2-Trichloroethane	ug/L	0.41	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
SW8260D	1,1-Dichloroethane	ug/L	28	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,1-Dichloroethene	ug/L	280	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,1-Dichloropropene	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2,3-Trichlorobenzene	ug/L	7	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2,3-Trichloropropane	ug/L	0.0075	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2,4-Trichlorobenzene	ug/L	4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2,4-Trimethylbenzene	ug/L	56	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2-Dibromo-3-chloropropane	ug/L		ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	1,2-Dibromoethane	ug/L	0.075	ND (0.0375)	ND (0.0375)	ND (0.0375)	ND (0.0375)	ND (0.0375)	ND (0.0375)
SW8260D	1,2-Dichlorobenzene	ug/L	300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,2-Dichloroethane	ug/L	1.7	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	1,2-Dichloropropane	ug/L	8.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,3,5-Trimethylbenzene	ug/L	60	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,3-Dichlorobenzene	ug/L	300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	1,3-Dichloropropane	ug/L		ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	1,4-Dichlorobenzene	ug/L	4.8	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	2,2-Dichloropropane	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	2-Butanone (MEK)	ug/L	5600	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	2-Chlorotoluene	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	2-Hexanone	ug/L	38	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	4-Chlorotoluene	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	4-Isopropyltoluene	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	4-Methyl-2-pentanone (MIBK)	ug/L	6300	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	Benzene	ug/L	4.6	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
SW8260D	Bromobenzene	ug/L	62	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Bromochloromethane	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Bromodichloromethane	ug/L	1.3	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	Bromoform	ug/L	33	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Bromomethane	ug/L	7.5	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)	ND (3)
SW8260D	Carbon disulfide	ug/L	810	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	Carbon tetrachloride	ug/L	4.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Chlorobenzene	ug/L	78	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	Chloroethane	ug/L	21000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Chloroform	ug/L	2.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	0.545 J	ND (0.5)
SW8260D	Chloromethane	ug/L	190	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Dibromochloromethane	ug/L	8.7	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	Dibromomethane	ug/L	8.3	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Dichlorodifluoromethane	ug/L	200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Ethylbenzene	ug/L	15	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Freon-113	ug/L	10000	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Table 1: August 2021 Groundwater Analytical Results

Gaffney Road Remediation and Monitoring Fairbanks, Alaska

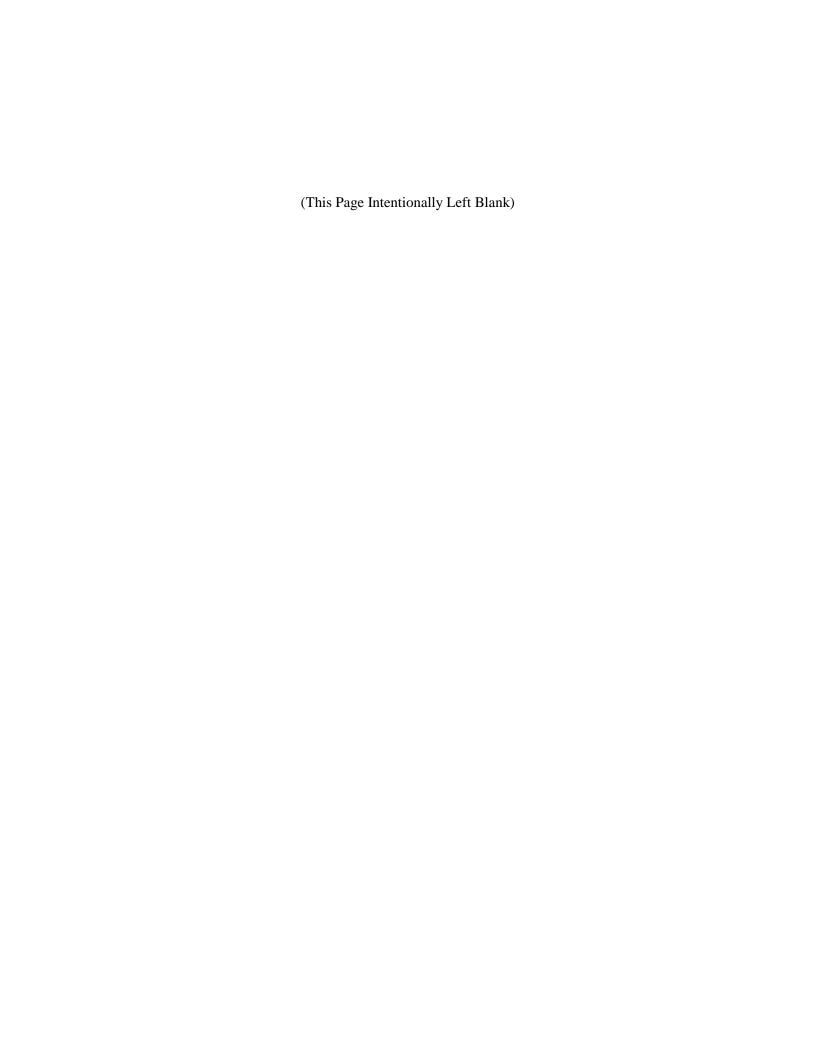
			Location:	MW-29R	MW-9	TV	<i>I</i> -46	Equipment Blank	Trip Blank
			Client Sample ID:	21-GRW-001-GW	21-GRW-002-GW	21-GRW-003-GW	21-GRW-903-GW	21-GRW-004-EB	21-GRW-005-TB
			Lab Sample ID:	1215678001	1215678002	1215678003	1215678004	1215678005	1215678006
			Matrix:	Water	Water	Water	Water	Water	Water
			Collection Date:	8/31/2021 12:50 PM	8/31/2021 1:50 PM	8/31/2021 2:50 PM	8/31/2021 2:55 PM	8/31/2021 4:10 PM	9/1/2021 9:00 AM
Analysis	Analyte	Unit	Cleanup Level						
SW8260D	Hexachlorobutadiene	ug/L	1.4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Isopropylbenzene (Cumene)	ug/L	450	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Methyl-t-butyl ether	ug/L	140	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	Methylene chloride	ug/L	110	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	Naphthalene	ug/L	1.7	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	P & M -Xylene	ug/L		ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
SW8260D	Styrene	ug/L	1200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	Tetrachloroethene	ug/L	41	271	184 J+	196	182	ND (0.5)	ND (0.5)
SW8260D	Toluene	ug/L	1100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	0.381 J	ND (0.5)
SW8260D	Trichloroethene	ug/L	2.8	4.83	8 J+	3.25	3.3	ND (0.5)	ND (0.5)
SW8260D	Trichlorofluoromethane	ug/L	5200	2.71	ND (0.5)	2.71	2.75	ND (0.5)	ND (0.5)
SW8260D	Vinyl acetate	ug/L	410	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
SW8260D	Vinyl chloride	ug/L	0.19	ND (0.075)	ND (0.075)	ND (0.075)	ND (0.075)	ND (0.075)	ND (0.075)
SW8260D	Xylenes (total)	ug/L	190	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)
SW8260D	cis-1,2-Dichloroethene	ug/L	36	7.79	1.32 J+	11.4	10	ND (0.5)	ND (0.5)
SW8260D	cis-1,3-Dichloropropene	ug/L	4.7	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
SW8260D	n-Butylbenzene	ug/L	1000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	n-Propylbenzene	ug/L	660	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	o-Xylene	ug/L		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	sec-Butylbenzene	ug/L	2000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	tert-Butylbenzene	ug/L	690	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
SW8260D	trans-1,2-Dichloroethene	ug/L	360	ND (0.5)	ND (0.5)	0.907 J	0.504 J	ND (0.5)	ND (0.5)
SW8260D	trans-1,3-Dichloropropene	ug/L	4.7	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)

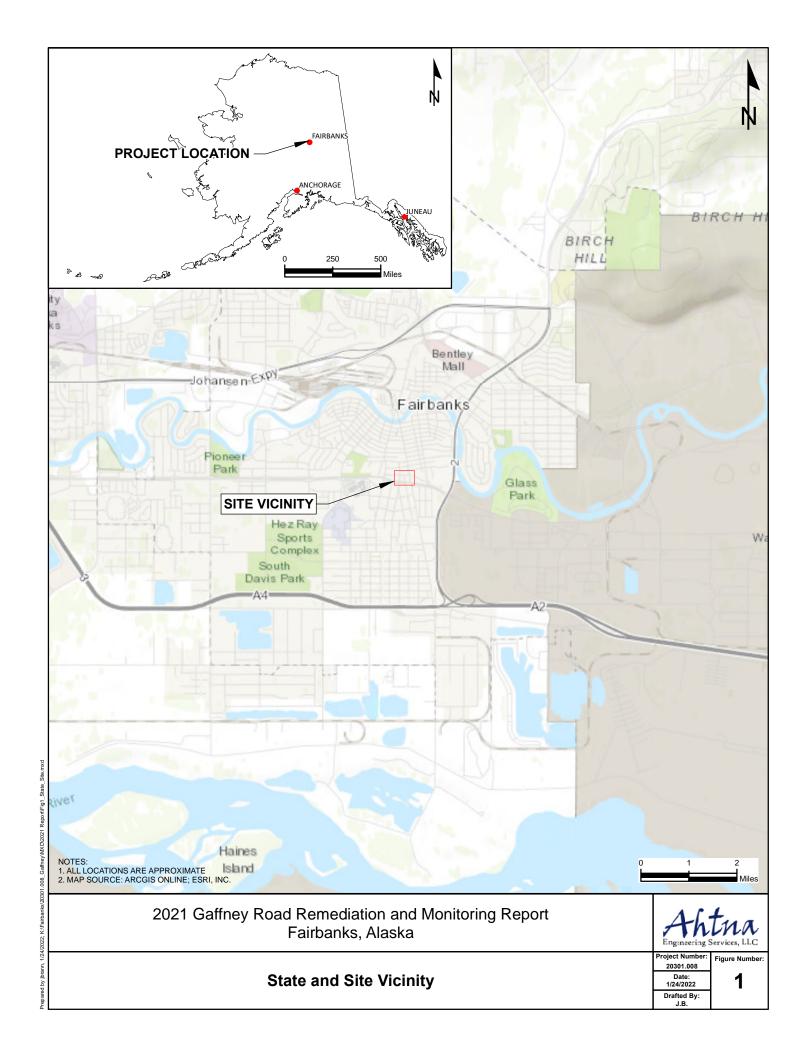
Key:

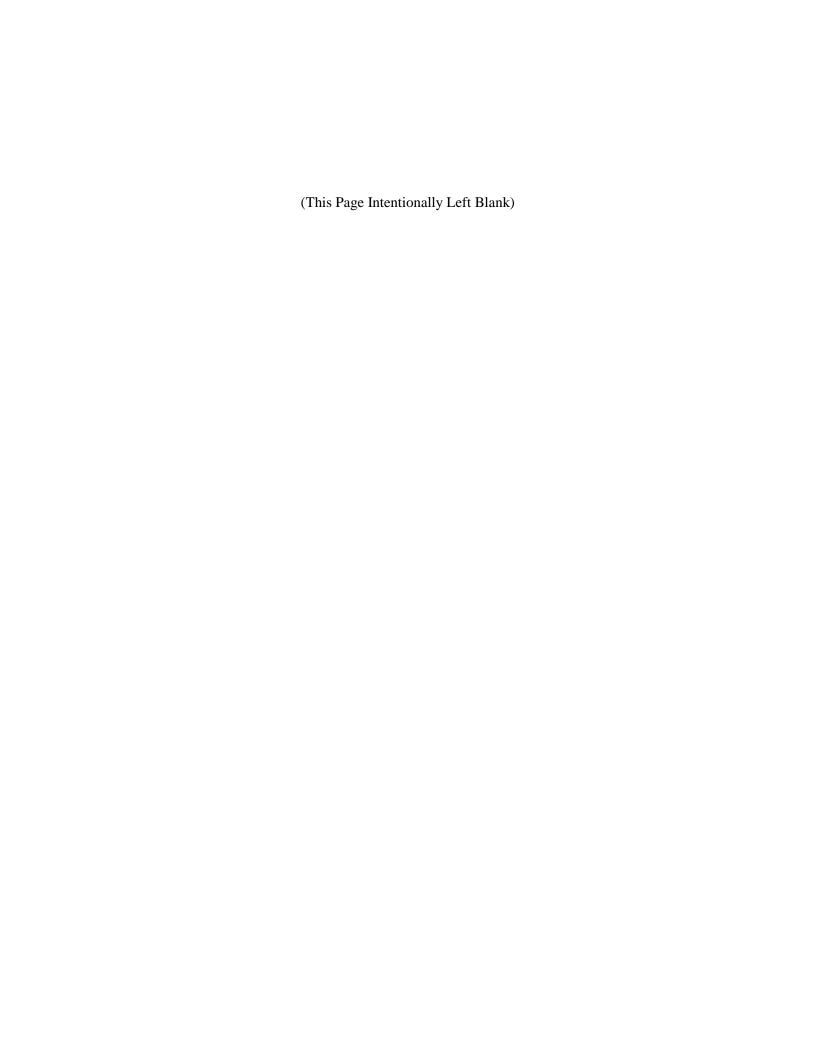
Detections are bold

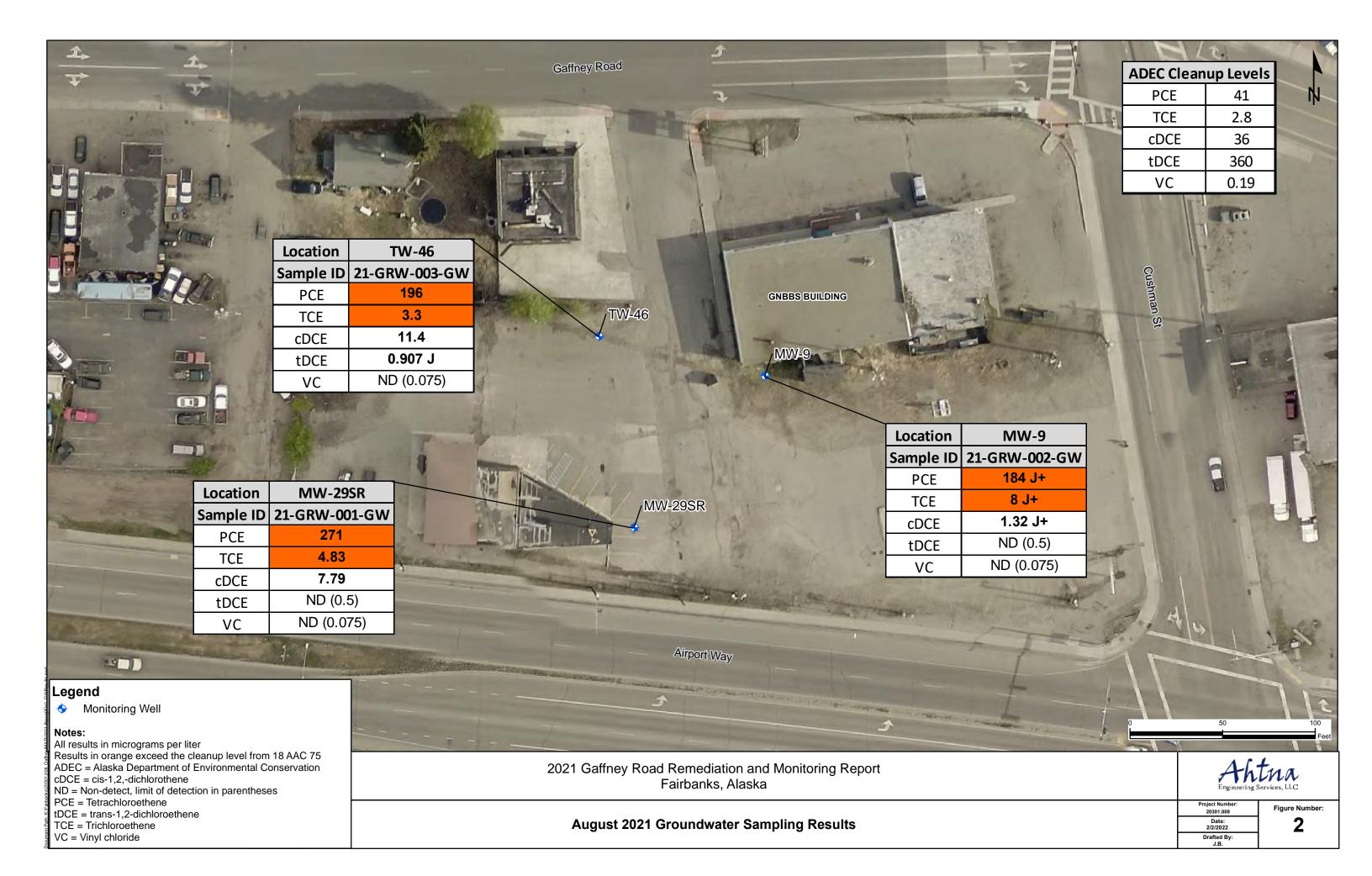
Exceedances of cleanup levels are highlighted in orange

Limits of detection that exceed the cleanup level are highlighted in blue

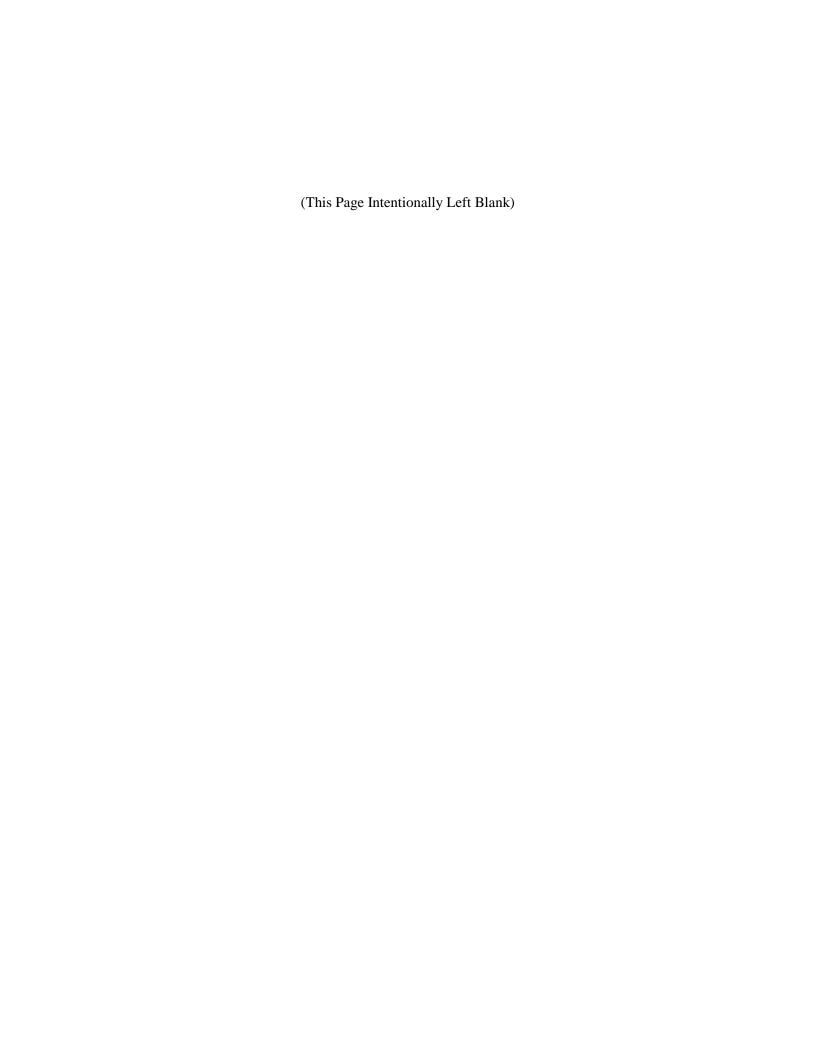

Cleanup levels are based on 18 AAC 75 Table C groundwater cleanup levels

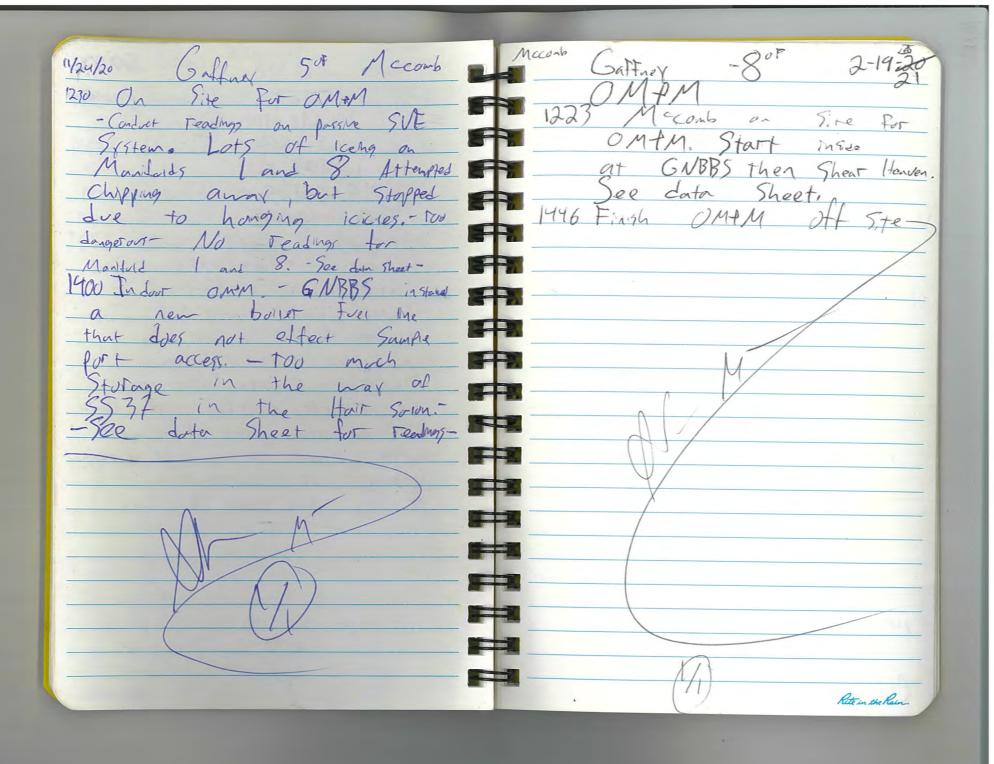

J+ = Value is estimated, biased high

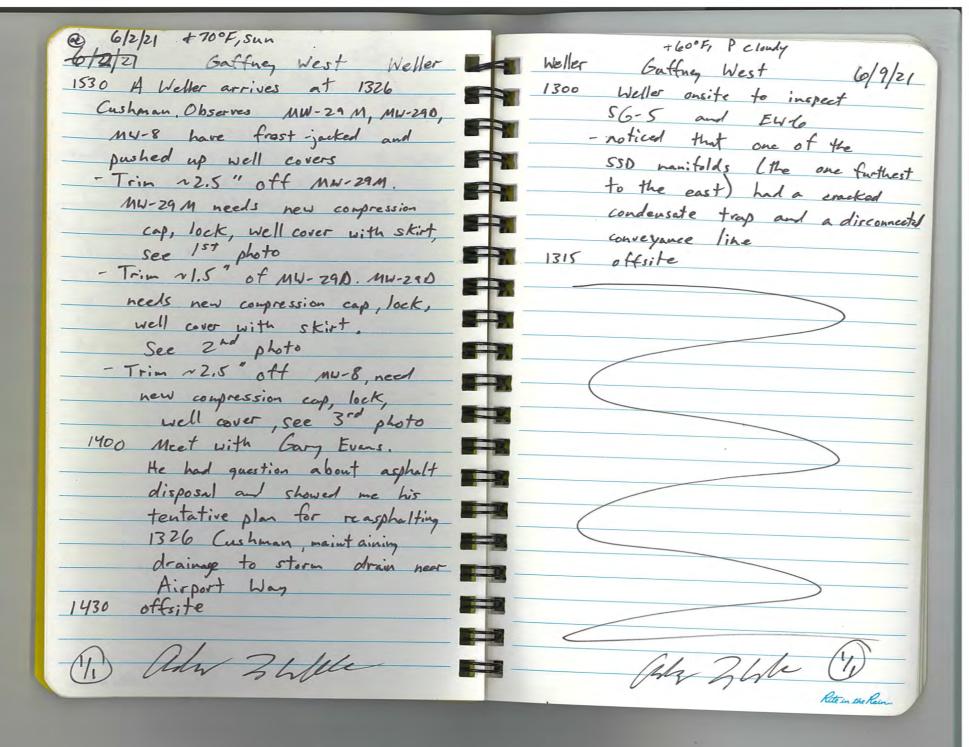

ND = Not detected at the limit of detection in parentheses

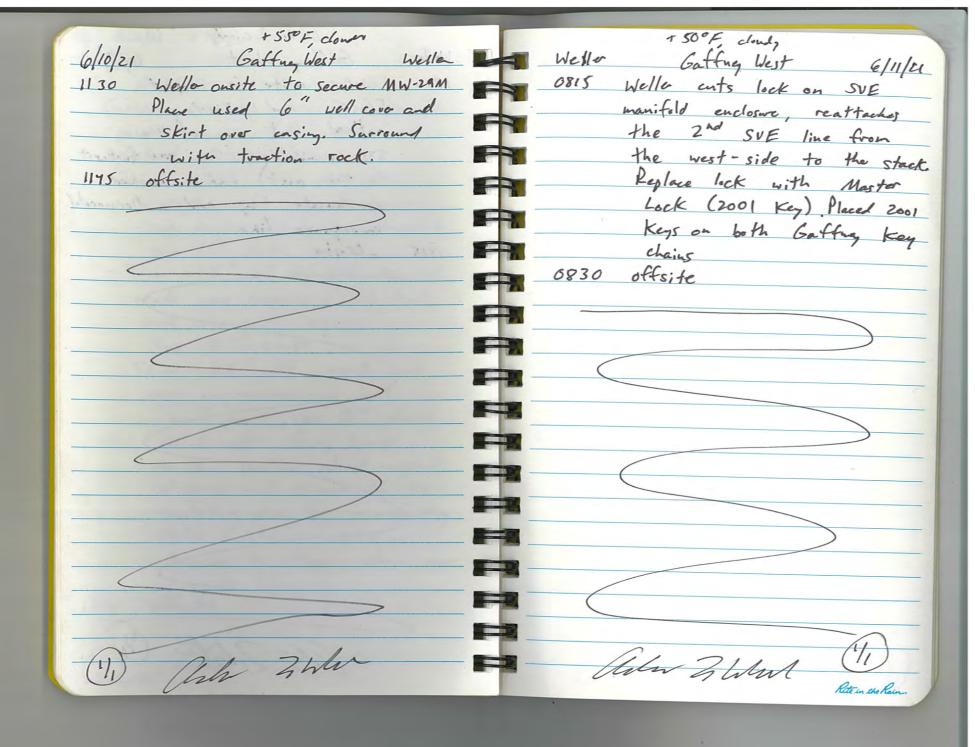

ug/L = micrograms per liter

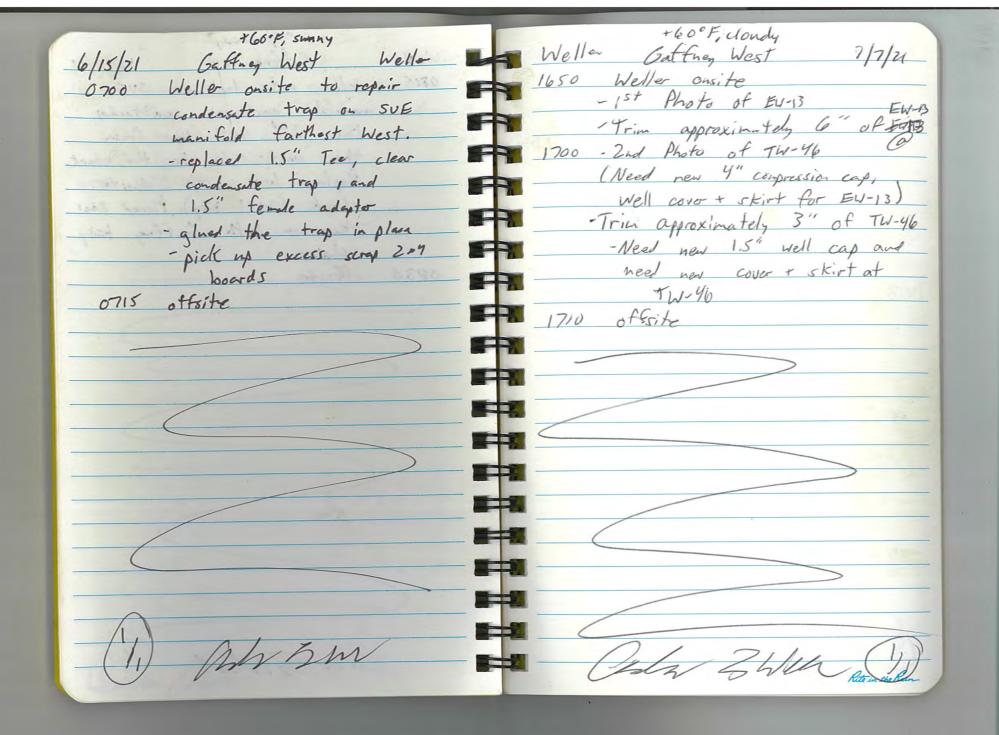

Figures

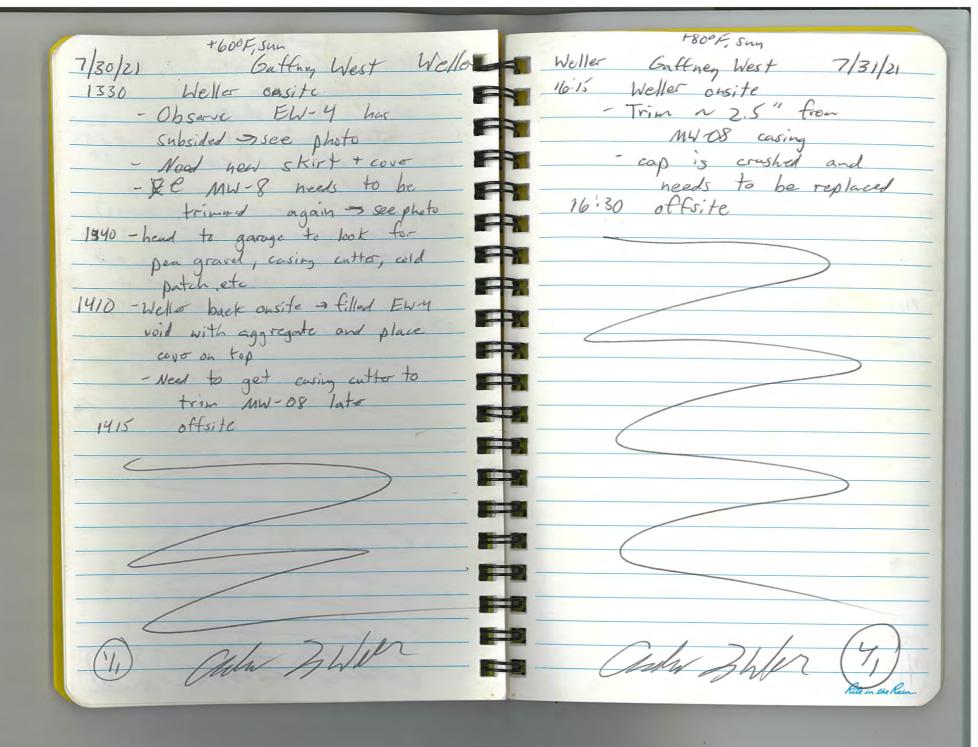


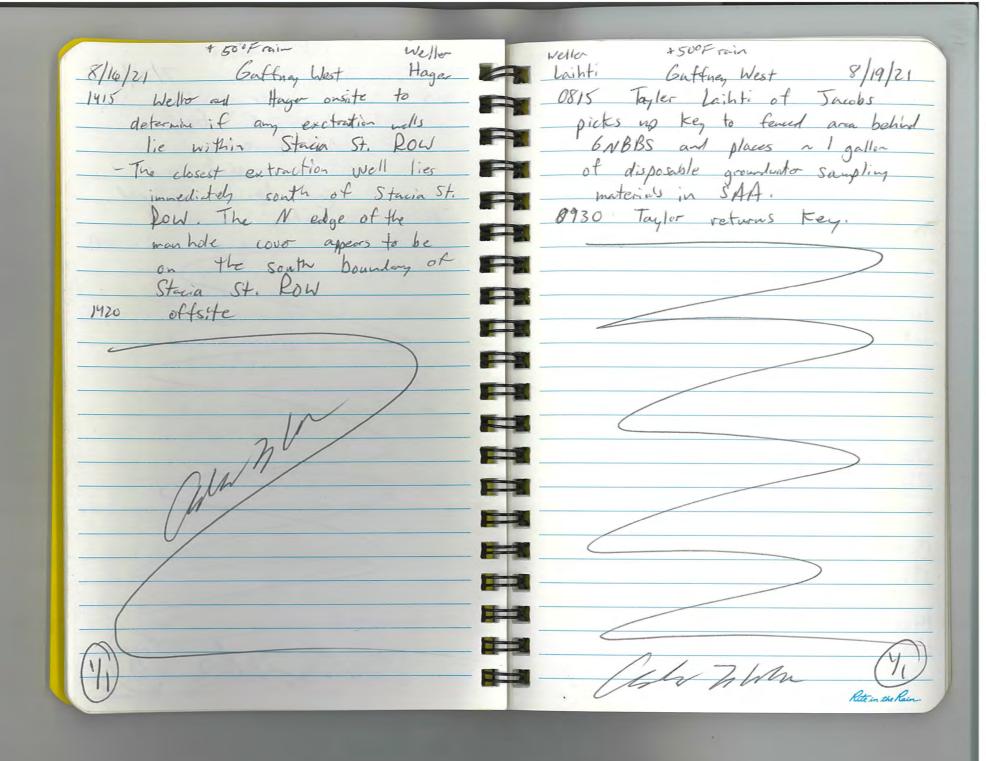


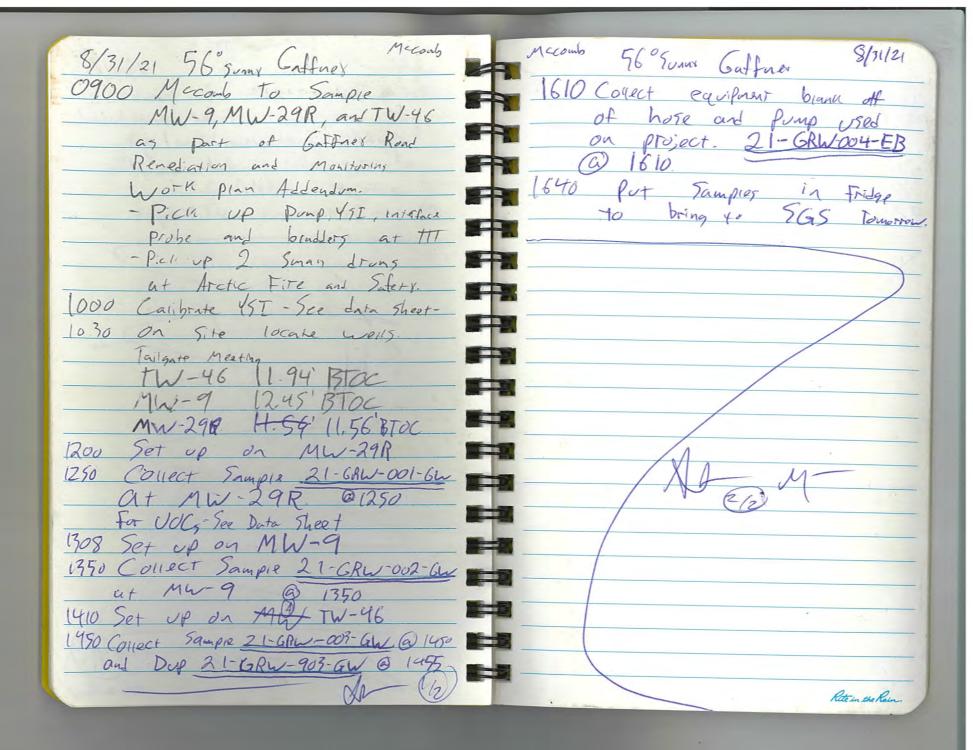


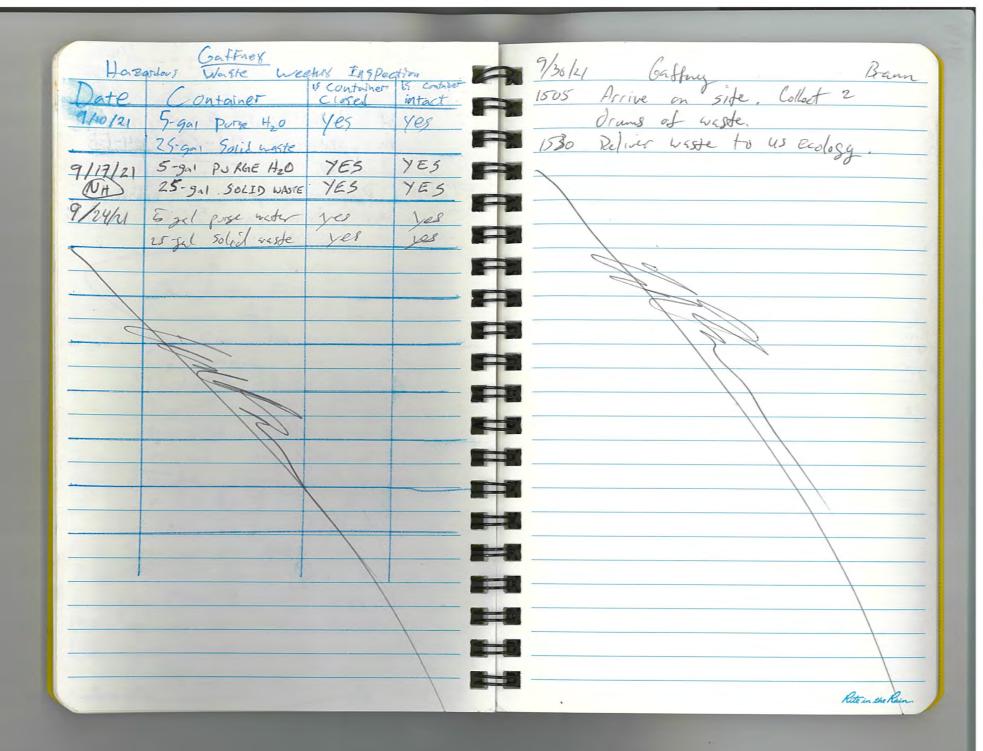



Field Notes









1	1-6+	11 0	r	GROU	JNDWA	TER SAM	IPLING	PROJE	V.5.	WELL NUM	IBER:	-	SHEET:
Engi	neering Serv	rices, L.L.	C		FC	DRM		20301.	800	TW-4	6	l	of (
PROJECT NAME	Gaft	ney			W	ELL CONDITION	Brokkin	Leu	Cap	NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	-	C				ft FROM TOC)	18.9	2		1"	1.315"	1.049"	0.04
DATE	8/31	121				PTH TO WATER ft FROM TOC)	11 90	i.		1.5"	1.9"	1.610"	0.11
AOC	We	ST			HE	IGHT OF WATER COLUMN (ft)	6,0	18		(2")	2.375"	2.067"	0.17
SCIENTIST	1.1	1000	inst		WE	LL VOLUME (gal)	1.1.	866		3"	3.5"	3.068"	0.38
WEATHER/	50	5.	inn X		3 W	ELL VOLUMES (gal)	-3.5			4"	4.5"	4.026"	0.66
WIND		ne											
	1												
	IPINTAKE (2					SAMPLING DA	TA						
SAMPLING D PROCEDU SAMPLE DESCR	DECON JRE: A RIPTION:	Teflon (Cono) (D1	- PQ	Disp	osable LDPE		-	Other, Sp	pecify:			
(color, free p thickness, c turbidit	odor,				FIELD WAT	ER QUALITY P	ARAMETERS	3					
							tabilization Requi				1		
Time	Purged Volume	Purge Rate	Water Level	Draw Down	Temperature	± 3% Spec. Cond.	± 10% D.O.	± 0.1	± 10 mV ORP	± 10%	Co	olor	Odor
1430	(Gal)	(mL/min)	11,95	(ft) 0.01	(°c)	(μS/cm) ^c ~	9.75	6.54	(mV),	(NTU)	Tai	120	none
435	0.6	250	11.91	0.01	4.1	504	10.40	6.51	174.6	ion	Tou		1000
1440	6.9	250	11.91	0.01	3.6	497.4	9,56	6.53	173.6	10 L	Tav	1	mae
1445	1.5	250	11.91	0.01	3.6	497.6	9.27	6.55	172.8	ion	ta	^	None
												-	
		-											
										1			
					ANIALVIIC	AL CARADIE IN	FORMATICAL						
					ANALYTIC	AL SAMPLE IN	FURIVIATION			Sampling I	Notes:		
21-G1	Rh/-003	-GW		Time 1450	Analy	rtes RRO GRO BTEX	PAH VOC	PEST HERB				03-6	4 3
21-6	RW-003 RW-903	-Gh	_	1455		RRO GRO BTEX	0			21-GA	orte ow-0	03-0	au is
						RRO GRO BTEX	PAH VOCs I	PEST HERB					

1	tht	no	L	GROU		TER SAM	IPLING	PROJECT NUMBE 20301	R:	WELL NUM		5	Of /
PROJECT NAME	neering Ser	vices, LI					Messins W	/	-	NOMINAL	O.D.	I.D.	VOLUME
CLIENT	ADF	nev				EPTH TO BASE	19.4		15 107M	DIAMETER 1"	1.315"	1.049"	(GAL/LIN FT) 0.04
DATE	AUF	. / /				ft FROM TOC) PTH TO WATER	1150	1		1.5"	1.9"	1.610"	0.11
AOC	8/1	1/21				ft FROM TOC) GHT OF WATER	11.90			(2")			
	wes		2			COLUMN (ft)	+8)	155	_		2.375"	2.067"	0.17
SCIENTIST WEATHER/	A.M	CCON	rb		WEI	LL VOLUME (gal)	1.55	45		3"	3.5"	3.068"	0.38
TEMPERATURE	_56°	50	ran l		3 WE	LL VOLUMES (gal)	24			4"	4.5"	4.026"	0.66
WIND	non	e											
		1 17	plan.		S	AMPLING DA	TA						
SAMPLE COLL WITH: MADE OF SAMPLING DE PROCEDUE SAMPLE DESCR	F: <u>X</u> ECON RE:	Stainless Teflon	0×/		PVC Dispo	o, Type: R	adder (Other, Sp				
(color, free pr thickness, o turbidity	doi,	lear	-NO	dor		ER QUALITY F	ARAMETERS						
							tabilization Requi						
Time	Purged Volume	Purge Rate	Water Level	Draw Down	Temperature	± 3% Spec. Cond.	± 10% D.O.	± 0.1	± 10 mV	± 10% Turbidity	Col	lor	Odor
12.25	(Gal)	(mL/min)	1157	0.01	4.5	(µS/cm)°./	7.91	6.35	(mV) -	(NTU)	Tan		1,000
1230	0.4	210	11.57	0.01	4.0	559	729	, ,	114.7	100			None
1235											Ceca		
1	1,0	250	11.57	0.01	3.8	559	2.01	657	103.9	Ion	Tay		None
1240	1.4	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
	1.4					174	2.01	657	103.9	Ion	Ta-	1	
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	553	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8	557 549	2.01	6.60	103.9	100	Ta.	1	None
1240	100	250	11.57	0.01	3.8 3.9	174 557 549	2.01	6.60	103.9	10 w 10 w	Ta.	1	None
12 40 12 45	100	250	11.57	0.01	ANALYTICA Analyt	174 557 549	2.01 1.93 1.91	657 6.60 661	103.9	100	Ta.	1	None
1240 1245	2.0	250	11.57	0.0 0.0	ANALYTICA Analyt DRO 1	S S S S S S S S S S S S S S S S S S S	FORMATION PAH VOCS P	6 57 G.60 G G i	103.9	10 w 10 w	Ta.	1	None

Engi	that ineering Serv	MO ices, LI	L .c	GRO		TER SAN	IPLING	PROJE NUMB	BER:	WELL NUN			SHEET:
PROJECT NAM	E Galfo	el			w	ELL CONDITION	600	٦		NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	ADEC					EPTH TO BASE (ft FROM TOC)	19.0	14		1"	1.315"	1.049"	0.04
DATE	8/3/	121			DI	EPTH TO WATER (ft FROM TOC)	174	5		1.5"	1.9"	1.610"	0.11
AOC	1/100	L			HE	IGHT OF WATER	1 50	-		2"	2.375"	2.067"	0.17
SCIENTIST	1 10		1			COLUMN (ft)	600	12		3"	3.5"	3.068"	2000
WEATHER/	14.101	Cou	nb				1.12	0)					0.38
TEMPERATURE	-/-		nax		3 WI	ELL VOLUMES (gal)	5.36			4"	4.5"	4.026"	0.66
WIND	Non	P											
		3.50				SAMPLING DA	TA						
SAMPLING E PROCEDU	DECON A	Stainless Teflon	Steel	J I	PVC Dispo	osable LDPE		-	Other, Sp	pecify:			
SAMPLE DESCI (color, free p	/	lear	-, /	No 0.	lor								
thickness, o			,										
					FIELD WAT	ER QUALITY F	ARAMETERS						
							tabilization Requi			1			
Time		Purge Rate	Water Level	Draw Down	Temperature	± 3% Spec. Cond.	± 10% D.O.	± 0.1	± 10 mV	± 10% Turbidity	Co	lor	Odor
1325	(Gal)	(mL/min)	12.47	(ft) (ft)	6.2	(μS/cm) ^c / 441.5	7.64	6.52	(mV)	(NTU)			
1330	09105	250	12.46	0.01	5.3	501	4.78	6.52	140.0	CA CA	Clea		MORR
1335	09	250	12.46	0.01	5.0	562	3.62	6.58	151.2	1010	Cis		2010
1340			12-46	0.01	5.0	578	2.30	17.0	153.9	tow	CIR	er	none
1345	1.9	250	12.46	0.01	4.9	583	2.11	6.58	153.3	loin	Cce	^	1040
			L										
			L		i i			/ T T					
1													
										-			
					-			11 -					
					ANALYTICA	AL SAMPLE IN	FORMATION	_		1	_		
7.7.78				6.			TORIVIATION	91		Sampling N	lotes:	_	
Sample ID	RW-00	2-G	w.	1350	Analy	RRO GRO BTEX	PAH VOCS P	EST HERB		PH real	dina rem	at	Pron Fron Field.
					DRO	RRO GRO BTEX	PAH VOCs P	EST HERB		200	9	date	a field.
1										1			

				Gaff	ney West ON	I&M Data Sheet			
Date: 2-1	19-21	Time: 122 7		Ambient Temp.(°F):		Technician:	comb		Series 475 Digital Manometer ital Thermo Anemometer
			services and the services are the services and the services and the services and the services are the services are the services and the services are the servic		Inline Fan S	SD System			
		De	pressurization Wells					Indoo	Vapor Monitoring Points
Line	Vacuum ("WC)	Flow (fpm)	Valve % open	Diameter Sch 80	Calculated Flow (cfm)	Manifold Vacuum ("WC):	15	Location	Vacuum (*WC)
DW 1	12	545,7	1000	1.5"	0	Hourmeter reading (KW-hr)/Time:	1571KU/15	SS1	0.000
DW 2	14	1661-0	No valve	1.5"	D	Exhaust stack hoarfrost?		SS2	0.000
DW 3	14	756,8	100	1.5"	0] _		SS3	0.000
DW 4	14	589,9	30%	1.5"	0	_		SS4	0.013
DW 5	14	464,3	100 Y.	2*	0			SS36	0.137
Notes:	7	M.Cl.	f. Tivid	ire Store	d on	top of	5537	[*] SS37	
	100	11000	COLNERO	- 170.6			// / /-	SS38	0.192
	to a	ccess	futnitu Sample	Post. To.	1/1 Phoi	is on phone	<i>2</i> .		
				•		•			

NOTES:

45 / 53 = "f" between readings indicates gauge reading "before" and "after" adjustment

NR = Not Recorded

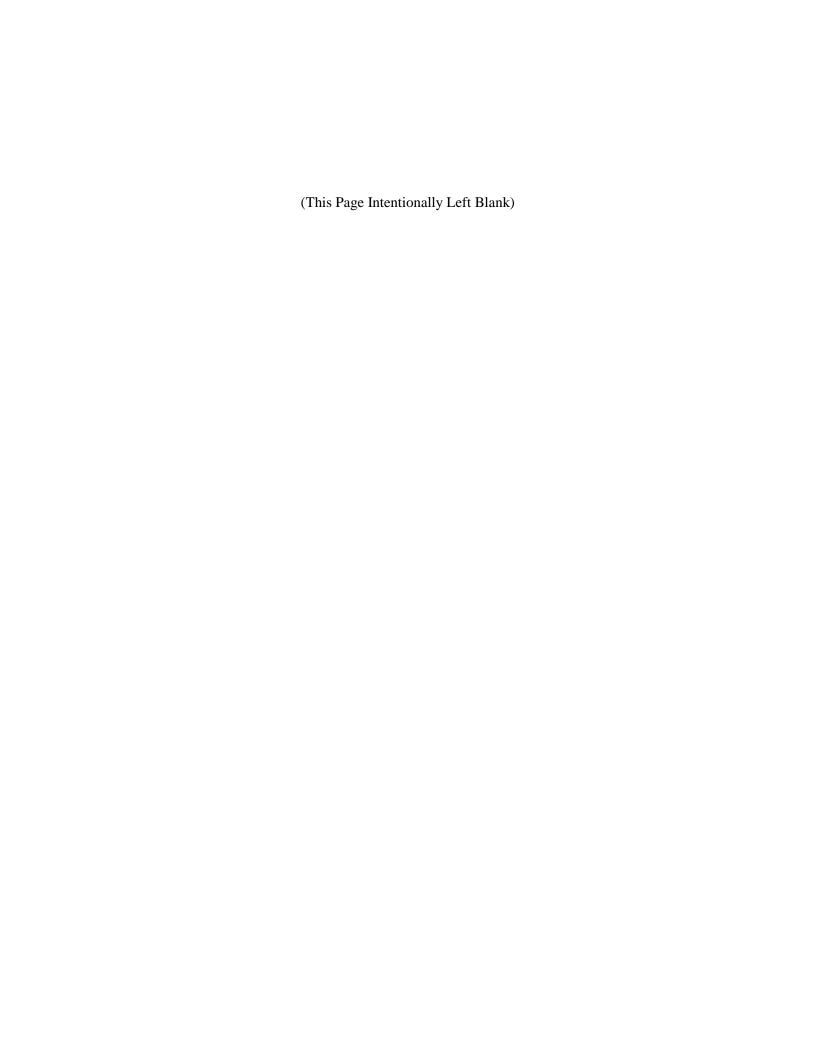
				Gaf	fney West ON	/I&M Data Sheet			-	
Date:	19/21	Time:	250	Ambient Temp.(°F):		Technic A	ian: Mccomb			Series 475 Digital Manometer gital Thermo Anemometer
					Inline Fan S	SD System				
		D	epressurization Wells		***				Indoo	r Vapor Monitoring Points
Line	Vacuum ("WC)	Flow (fpm)	Valve % open	Diameter Sch 80	Calculated Flow (cfm)	Manifold Vacuum ("WC):	15		Location	Vacuum ("WC)
DW 1	-11	563.8	100	1.5"	0	Hourmeter reading (KW-l	hr)/Time: 3 <i>8</i> 3	(a) 1250	SS1	0.000
DW 2	-13	618.1	No valve	1.5"	0	Exhaust stack hoarfrost?	NONE		SS2	0,000
DW 3	-13	5129	100	1.5"	0				SS3	(7.000
DW 4	-/3.	580.7	ンシラ	1.5"	0				SS4	0.003
DW 5	-15	428.4	100	2"	0	1			SS36	1.047
Notes:	٠, ١		066065	<c 77<="" td=""><td></td><td></td><td></td><td></td><td>SS37</td><td></td></c>					SS37	
(_001d	not	acces)	55-37					SS38	0.214

NOTES:

45 / 53 = "/" between readings indicates gauge reading "before" and "after" adjustment

NR = Not Recorded

1250

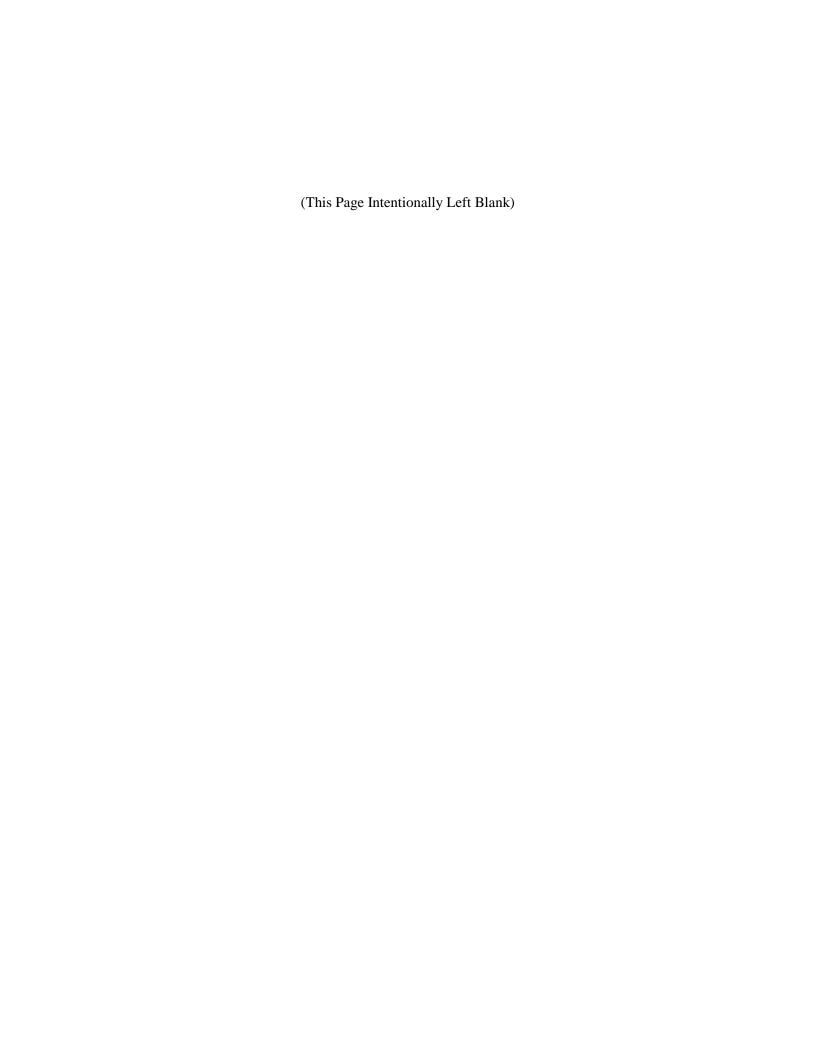

Date:		Tech:			Ambient	Wea	ther:	
2-19-	21	A. M.	Cons		Temp.(°F): — [<i>Ø</i>		light	5 non
					Pa	ssive SVE Syste	m	
Manifold	Extraction Well	Vacuum ("WC)	Flow (fpm)	Vacuum ("WC)	Flow (fpm)	Flow Indicator* (mm)	Solar Fan Operating	Notes
1	3	0 Jas	20,0			0	N/A	
	11	().000	19.3			C.	10/10	Ice bunt of on Man, Fold
2	7	$C_i o ii$	16 a	2 160	0,40	<u>(i</u>		
	6	(1,003	19.	0.010	242			7-A-1114
3	8	1,009	(3.7	0.008	051	0	N/A	
	5	0,000	17-4	~ ~ ()	2/11			
4	9	0.004	17.6	00 io		$\langle \gamma \rangle$		
	12	().005	17.5		<u> </u>		minusconorous escala la sación a ministra de	
5	15 (7.000	25.5	3,00.7	175	1	N/A	
	1	0.000	24.5	,,,,,,,	XX11			
6	10	0-000	<u> 25.1 </u>	0.000	1221	1		
	13	0.000	24		55X,7	(/		
7	14	0.000	27.6	0.000	271		N/A	
	2	000 C		C) ((017	C		
8	16	0-000	25.1		~	0		Tee built upon Municipal
	4	0.000	25.1					The Day of the Market
Equipment: Dwyer Mark III Series	s 475 Digital Manomete	ar .						
Dwyor 471B Digital Ti	harmo Anemometer							
Notes:			,			f****		,
De-	fu-e	en	Mari	n. Folc	1 4	1945	<u>i</u>	Te-Zerold innometer
10	-10	v	21Urs	Cre	38.019	CY	a	TE-Zerold innometer
	*	•			•			
								İ

45 / 53 = "/" between readings indicates gauge reading "before" and "after" adjustment

NR = Not Recorded

^{*}Distance in millimeters between ping pong ball seat and ping pong ball

Disposal Documents



Ple	ase pi	rint or type. (Form desig	ned for use on elite (12-pitch) typ	ewriter.)								OMB No. 20	50-003
\uparrow	V	FORM HAZARDOUS VASTE MANIFEST	1. Generator ID Number AKROCO003566		2. Page 1 of 2			se Phone 99-4672	0.0	1489		2 FL	E
	61 F/	DEC GAFFNE O UNIVERSITY AIRBANKS, AK (907)	AVENUE		- 1	610 C	BAFFNE	Y ROAD AK 9970	SADWES	3T)			
	6. Tr	erator's Phone: ansporter 1 Company Nam S ECOLOGY AL						-	AKRO	Number 20004184	4		
$\ $	₹ ₩	EAVERBROTH	ĒRS						ANDO	1284837	2		
	US QC GI	esignaled Facility Name and B ECOLOGY IDA 1400 LEMLEY R RAND VIEW, ID ity's Phone: (208)	AHO, INC.						U.S. EPA ID	Number 3 114654			
	9a. HM	9b. U.S. DOT Description and Packing Group (if a	on (including Proper Shipping Name, H ny))	azard Class, ID Number,			10. Conta	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13. \	Vaste Codes	
GENERATOR —	x	liquid, n.o.s. (Waste Environmentally IRICHLOROETHENE, SOETHENE), 9 PGIII,			3,	1	DM	10	Р	F002		
- GENE	х	² RQ, UN3077, solid, n.o.s. (T	Waste Environmentally RICHLOROETHENE,	/ hazardous su	ibstances	s, E),	1	DM	40	Р	F002		
	-	3. PGIII, RQ=	100 ERG#171										
	-	[4.											
	44.8	nesiel Handling Instructions	ZTPURGETWATER			D3857	75						
		marked and labeled/placard Exporter, I certify that the co		ondition for transport acco the terms of the attached	ording to applica d EPA Acknowle e quantity gener	able interna edgment of	ational and na Consent.	tional governme	ental regulations	ripping name, s. If export ship	and are classoment and I a	m the Primary	d, Year
NT.L	Trans	temational Shipments sporter signature (for export			Export from U.	.s.	Port of er	-					
TR ANSPORTER	Trans	ansporter Acknowledgment porter 1 Prioted/Typed Nam	Wintt		Signa	971	mn i	Wy	M		19	1301	Year 21 Year
TR AN	1		ecenario		Sign	1.1	cena	m .			Mont		9
		screpancy Discrepancy Indication Space	Quantity	Туре			Residue		Partial Rej	ection		Full Rejectio	n
FACILITY .	18b. <i>A</i>	Alternate Facility (or Genera	tor)			Mani	fest Reference	Number:	U.S. EPAID I	vemps:			
NATED FAC		y's Phone: Signature of Alternate Facilit	y (or Generator)								Mon	h Day	Year
- DESIGNATED	19, Ha	azardous Waste Report Mar	nagement Method Codes (i.e., codes f	or hazardous waste treatr	ment, disposal, a	and recycli	ing systems)		4.		,		
		esignated Facility Owner or	Operator: Certification of receipt of ha	zardous materials covered	d by the manifes		s noted in Iten	18a			Mons	12 F	Year Z
EPA	Form		revious editions are obsolete.		1								EF C

DESIGNATED FACILITY TO EPA E-MANIFEST

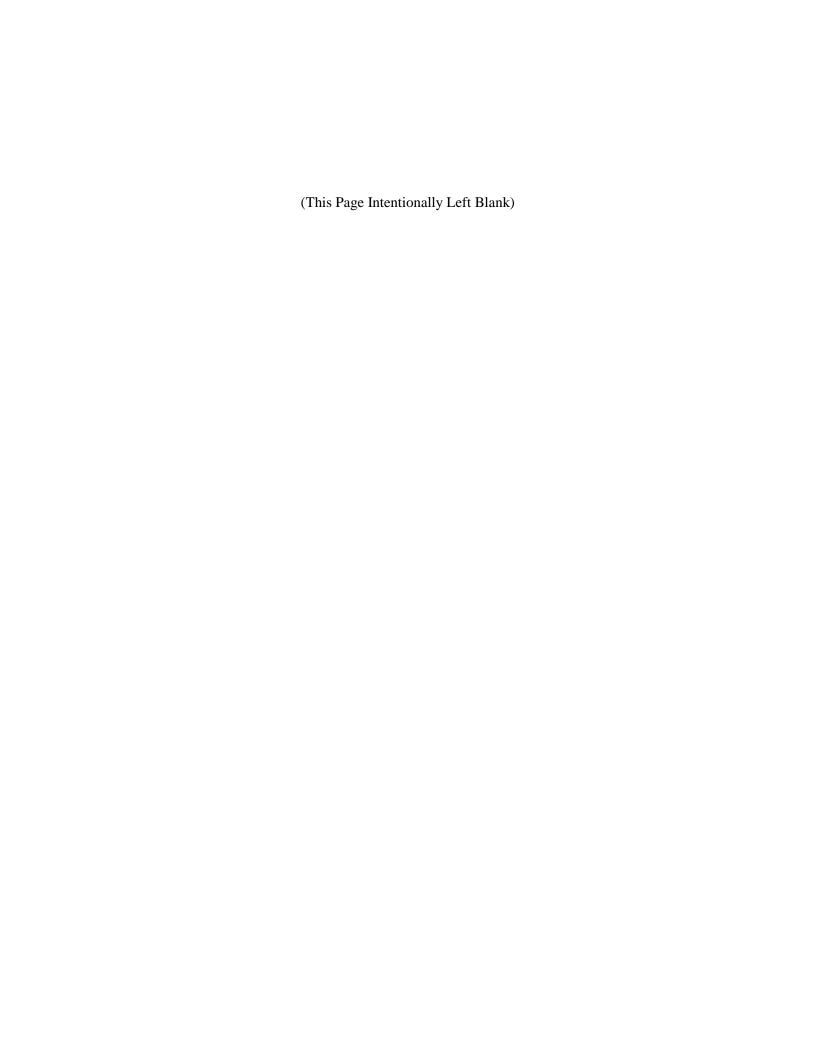
	rint or type. FORM HAZARDOUS WASTE MANIFEST	21. Generator ID Number	22 Page	23. Man	Ifest Tracking N		Approved, OMB	
01.4	(Continuation Sheet)	AKR000003566		2	0048990	82FLE		
24. (610 GAFFNEY F FAIRBANKS, AK	99701						
25.	(907) 452-2192 TransporterCompany Name				U.S. EPAID			
	3 TOTE MARITIME	ALASKA, LLC.			U.S. EPAID	07039795	15	
26.	TransporterCompany Name				1	***************************************		
27a	4 EQ INDUSTRIA 27b. U.S. DOT Description (including Proper Shi		28. Conta	iners	29. Total	35642742 30. Unit	31. Waste C	des
IM	and Packing Group (if any))		No.	Туре	Quantity	Wt./Vol.	31. Waste C	odes
ī								
			_			F		1
_						\vdash		+
			- 1					
-								+
				111		-		-
			-11-					
								1
-						-		+
								4
								1
						-	_	+
S	pecial Handling Instructions and Additional Informat	on						
	<i>h</i>							
. Tr	ansporter3_Acknowledgment of Receipt of M d/Typed Name	aterials Sign	nature A				Months D	avo Y
	n0	1	1011				1/0/	112
4. Tr	ansporter Acknowledgment of Receipt of M		100				174	
rinte	d/Typed Name	Sign	nature	-	1			ay Ye
5 Di	MAZK KACZ	nasti	100	- an			1/0/2	9/2
J. U	so shappel							
		* 102.000						
ō_Ha	azardous Waste Report Management Method Code	s (i.e., codes for hazardous waste treatment, disposal,	and recycling systems)			Ĭ		
_								_
	1	1	1			1		

Ple	ease p	rint or type.					Form A	pproved.	OMB No.	2050-003
1	UNI	FORM HAZARDOUS WASTE MANIFEST	21. Generator ID Number	22. Page		ifest Tracking N				
Ш		(Continuation Sheet)	AKR 00000 3566	3	1 6	0048	9908	25	ELE	
	24. (Generator's Name AOEC								
П	25	Transporter S Company Name		75 4		U.S. EPA ID	Number			
П	20.	5+	eve Forler True	ckins		IDA	-000	20.	568	5
	26,	Transporter Company Name				U.S. EPA ID	Number			
	27a. HM	27b, U.S. DOT Description (including Proper Sh and Packing Group (if any))	pping Name, Hazard Class, ID Number,	28. Conta No.	Type	29. Total Quantity	30. Unit Wt./Vol.	31. V	Vaste Code:	5
							-	-4	-	-
							-			
OR				T						
GENERATOR										
- GEN										
	-							\dashv		
								-		
							-	-		
							-			
ľ	32. S	pecial Handling Instructions and Additional Information	tion							
-						-1				
	33. Tr	ansporter Acknowledgment of Receipt of I	Materials Signature		1			Month	n Day	Year
PORT		Logan.	Lower 1	1/	11			11	118	121
TRANSPORTER		ansporter Acknowledgment of Receipt of I d/Typed Name	Materials Signature					Month	Day	Year
7	35. Di	screpancy							-	1
DESIGNATED FACILITY										
GNATE	36. Ha	azardous Waste Report Management Method Code	es (i.e., codes for hazardous waste treatment, disposal, and rec	cycling systems)			1			
DESI							1			

US Ecology, Inc. Land Disposal Restriction Form

400		
	112	lann
-	US -	log

Shipment EPA WASTE CODES (from 40 CFR 268.40) UHC's (Underlying Hazardous Constitutif yes, list: Does a subcategory apply per 40 CFR2 If yes, list: Constituents requiring treatment in FO If yes, list: See Profile for analysis (if any). A. Restricted Waste Meets The The restricted waste identified all 40 CFR268.49 and can be landfill of a philosophic penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprisons. B. Restricted Waste Treated The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I pe support this certification. Based on meen operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dillegal and contact the certification and CFR 268.49 without impermissible dillegal and contact the certification and CFR 268.49 without impermissible dillegal and contact the certification and CFR 268.49 without impermissible dillegal and contact the certification and CFR 268.49 without impermissible dillegal and contact the certification and CFR 268.49 without impermissible dillegal and contact the contac	SA Wastewater c15 TSS and TOC Non-wastewater Debris Debri				
NOTIFICATION FREQUENCY: Shipment EPA WASTE CODES (from 40 CFR 268.40) UHC's (Underlying Hazardous Constitution of the consti	REAM or PROPILE NUMBER: \$273a-0				
Shipment EPA WASTE CODES (from 40 CFR 268.40) UHC's (Underlying Hazardous Constitutif yes, list: Does a subcategory apply per 40 CFR2 if yes, list: Constituents requiring treatment in FO if yes, list: See Profile for analysis (if any). A. Restricted Waste Meets Transplicable, under 268.49, this can a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprisons. B. Restricted Waste Treated To the treatment residue, or extract of sapplicable treatment standards in 40. I certify under penalty of law that I per support this certification. Based on machine the support this certification and the support this certification and certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dillegal and certify under penalty of law that I have used to support this certification and certify under penalty of law that I have used to support this certification and certify under penalty of law that I have used to support this certification and certify under penalty of law that I have used to support this certification and certification and certification and certification and certification without impermissible dillegal and certification.	ONE TIME F002 ents 40 CFR 268.48)? 68.48? 01-5,F039,debris, and alternative alternative actions and alternative actions are alternative actions.	ate soils?	Yes	JIRED	WITH EACH SHIPMENT
Shipment EPA WASTE CODES (from 40 CFR 268.40) UHC's (Underlying Hazardous Constitution of the constitutio	F002 ents 40 CFR 268.48)? 68.48? 01-5,F039,debris, and alternative and alternative actions are alternative at the control of the control o	ate soils?	Yes	8	Νσ
UHC's (Underlying Hazardous Constitution of the constitution of th	ents 40 CFR 268.48)? 68.48 ? 01-5,F039,debris, and alternates			8	
UHC's (Underlying Hazardous Constitution If yes, list: Does a subcategory apply per 40 CFR2 If yes, list: Constituents requiring treatment in FO If yes, list: See Profile for analysis (if any). A. Restricted Waste Meets Treatment in FO The restricted waste identified all 40CFR268.49 and can be landfill of a policable, under 268.49, this of a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprisons B. Restricted Waste Treated To The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I possupport this certification. Based on make operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I haved to support this certification and CFR 268.49 without impermissible dilitation.	68.48 ? 01-5,F039,debris, and alternates eatment Standards (40 CFR 2			8	
If yes, list: Does a subcategory apply per 40 CFR2 If yes, list: Constituents requiring treatment in FO If yes, list: See Profile for analysis (if any). A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of If applicable, under 268.49, this of a characteristic of hazardous waste I certify under penalty of law that waste to support this certification information I submitted is true, and possibility of a fine and imprison. B. Restricted Waste Treated The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I per support this certification. Based on more been operated and maintained prope waste. I am aware there are significant. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible diliteration.	68.48 ? 01-5,F039,debris, and alternates eatment Standards (40 CFR 2			8	
Does a subcategory apply per 40 CFR2 If yes, list: Constituents requiring treatment in FO If yes, list: See Profile for analysis (if any). A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of if applicable, under 268.49, this of a characteristic of hazardous wasted to support this certification information I submitted is true, a possibility of a fine and imprisons B. Restricted Waste Treated The treatment residue, or extract of applicable treatment standards in 40 I certify under penalty of law that I per support this certification. Based on more period and maintained proper waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dilitation.	01-5,F039,debris, and alternated		Yes		Nσ
Constituents requiring treatment in Fourth Properties of See Profile for analysis (if any). A. Restricted Waste Meets Trust The restricted waste identified all 40CFR268.49 and can be landfill of applicable, under 268.49, this can a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprison. B. Restricted Waste Treated To The treatment residue, or extract of sapplicable treatment standards in 40. I certify under penalty of law that I per support this certification. Based on more than the properties of the support this certification. Based on more perated and maintained properties. I am aware there are significant of the support this certification and certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dillegated.	01-5,F039,debris, and alternated		Yes		No
Constituents requiring treatment in FO If yes, list: See Profile for analysis (if any). A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of If applicable, under 268.49, this of a characteristic of hazardous was I certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprisons B. Restricted Waste Treated T The treatment residue, or extract of s applicable treatment standards in 40 I certify under penalty of law that I po support this certification. Based on in been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dili-	eatment Standards (40 CFR 2		Ō	Var	
See Profile for analysis (if any). A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of if applicable, under 268.49, this of a characteristic of hazardous was can be certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprison. B. Restricted Waste Treated T The treatment residue, or extract of s applicable treatment standards in 40 I certify under penalty of law that I pe support this certification. Based on in been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dili	eatment Standards (40 CFR 2			Voc	
See Profile for analysis (if any). A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of if applicable, under 268.49, this of a characteristic of hazardous was can be certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprison. B. Restricted Waste Treated T The treatment residue, or extract of s applicable treatment standards in 40 I certify under penalty of law that I pe support this certification. Based on in been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dili	eatment Standards (40 CFR 2				CI No.
See Profile for analysis (if any). A. Restricted Waste Meets Tr. The restricted waste identified al 40CFR268.49 and can be landfill of if applicable, under 268.49, this can a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprison. B. Restricted Waste Treated To The treatment residue, or extract of applicable treatment standards in 40 I certify under penalty of law that I persupport this certification. Based on in been operated and maintained proper waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dillegal and control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and CFR 268.49 without impermissible dillegal and can be control of the certification and certification.	eatment Standards (40 CFR 2			165	(A) (40)
A. Restricted Waste Meets Tr The restricted waste identified al 40CFR268.49 and can be landfill of If applicable, under 268.49, this of a characteristic of hazardous was I certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprison B. Restricted Waste Treated T The treatment residue, or extract of s applicable treatment standards in 40 I certify under penalty of law that I pe support this certification. Based on in been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dili	eatment Standards (40 CFR 2				
The restricted waste identified al 40CFR268.49 and can be landfill of landscape. If applicable, under 268.49, this can characteristic of hazardous was a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprisons. B. Restricted Waste Treated The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I possupport this certification. Based on management of the support this certification. Based on management of the support this certification and certify under penalty of law that I have to support this certification and CFR 268.49 without impermissible dillocare.	eatment Standards (40 CFR 2				
The restricted waste identified al 40CFR268.49 and can be landfill of if applicable, under 268.49, this can a characteristic of hazardous waste to support this certification information I submitted is true, a possibility of a fine and imprison B. Restricted Waste Treated The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I posupport this certification. Based on a been operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dilitations.	and the second of the second o	268.7(a) (3))			
If applicable, under 268.49, this can a characteristic of hazardous was a characteristic of hazardous was I certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprisons. B. Restricted Waste Treated The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I posupport this certification. Based on a been operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dili	isposed without further treatme	ards in AD CEP 2	68.40 or	Altern	ative LDR treatment standards for contaminated soil
a characteristic of hazardous was I certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprisons. B. Restricted Waste Treated T The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I posupport this certification. Based on a been operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible diliteration.	ontaminated soil does or	door water	a4.35.36.4	49	
I certify under penalty of law that waste to support this certification information I submitted is true, a possibility of a fine and imprisons. Restricted Waste Treated T The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I posupport this certification. Based on a been operated and maintained prope waste. I am aware there are significated. Restricted Waste Soil Treat I certify under penalty of law that I had used to support this certification and CFR 268.49 without impermissible dilitation.		atment standar	ntain iist	ed haz	tardous waste and does or dose not exhibit
information I submitted is true, a possibility of a fine and imprison: B. Restricted Waste Treated T The treatment residue, or extract of sapplicable treatment standards in 40 I certify under penalty of law that I posupport this certification. Based on n been operated and maintained prope waste. I am aware there are significated. C. Restricted Waste Soil Treat I certify under penalty of law that I have used to support this certification and CFR 268.49 without impermissible dili					
B. Restricted Waste Treated T The treatment residue, or extract of s applicable treatment standards in 40 I certify under penalty of law that I pe support this certification. Based on n been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dil	ccurate and complete I am away				
I certify under penalty of law that I pe support this certification. Based on n been operated and maintained prope waste. I am aware there are signification. Restricted Waste Soil Treat I certify under penalty of law that I had used to support this certification and CFR 268.49 without impermIssible dili					
been operated and maintained prope waste. I am aware there are significa C. Restricted Waste Soil Treat I certify under penalty of law that I had used to support this certification and CFR 268.49 without impermissible dil	uch residue, or the restricted wa	eta identified -	have be	Garage	 tested to assure that the treatment residues or extract meet al
C. Restricted Waste Soil Treat I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dili	rly so as to comply with the trea	tment standard	onsible t	or obta	aining this information, I believe that the treatment process has
I certify under penalty of law that I ha used to support this certification and CFR 268.49 without impermissible dil					
CFR 268.49 without impermissible dil	ve personally examined and am	familiar with th		ent te	echnology and growties of the
including the possibility of a fine and	ition of the prohibited wastes. I	ned and operate am aware that	ed prope there are	rly so a	as to comply with treatment standards specifed in 40 ficant penalties for submitting a false certification,
D. Restricted Waste Decharact	erized But Requires Treatme	ent For UHC (4	0 CER 20	8 7/h	N/AViv)
characteristic. This decharacterized w	waste has been treated in accor	dance with the	requiren	nents o	of 40 CFR 268.40 or 268.49 to remove the hazardous
	o state satisfied in the least	raing the hossin	mry of a	iine ar	na imprisonment.
NOTIFICATION FREQUENCY: ONE TIME REQUIRED WITH EACH SHIPMENT Shipment EPA WASTE CODES from 40 F002 FOR 288.40 F002 F002 F003 FVes F104 F003 F003 FVes F104 F003 F003 FVes F105 F003 FVES F105 F003 F003 FVES F105 F003 F003 FVES					
		200,45 (C).			
		treatment stan	ntain list	ed ha	zardous waste and does or does not exhibit
Hazardous Debris Subject To	Treatment (40 CFR 268.45)				
This hazardous debris identified above	must be treated to the alternat	tive treatment s	tandard	in 40	CFR 268.45.
			ed docu on pers	ments onal e	s, is true and correct. I have correctly indicated how my examination of the information submitted, or is based or
4-177-03	1 10-1	Pryje	ct	Ma	Date 9/2/2


US Ecology, Inc. Land Disposal Restriction Form

agen.	
Lis	logy
C ro	1001

	ADEC - GAFFNEY ROAD WEST EPA I.D. NUMBER: AKROOO003566
WA	ASTE STREAM OF PROFILE NUMBER: 52736-0 Manifest Doc. No.00489082FLE Line No. 2
WA	ASTE IS A: Wastewater (<1% TSS and TOC) Non-wastewater Debris
NO	TIFICATION FREQUENCY: ONE TIME REQUIRED WITH EACH SHIPMENT
Shi	pment EPA WASTE CODES (from 40 F002
	268.40)
ÚН	C's (Underlying Hazardous Constituents 40 CFR 268.48)?
	es, list:
Do	es a subcategory apply per 40 CFR268.48 ? ☐ Yes ☑ No
If y	es, list:
Cor	istituents requiring treatment in F001-5,F039,debris, and alternate soils? Yes Ve
	es, list:
_	
4	See Profile for analysis (if any).
A.	Restricted Waste Meets Treatment Standards (40 CFR 268,7(a) (3))
	The restricted waste identified above meets the treatment standards in 40 CFR 268.40 or Alternative LDR treatment standards for contaminated soil 40 CFR 268.49 and can be landfill disposed without further treatment.
	If applicable, under 268.49, this contaminated soil [] docs as [] docs as []
	a characteristic of hazardous waste and complies with the soil treatment standards as provided by 268.49 (c) or the universal treatment standards.
	I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the
	waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D. I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.
В.	
ь.	Restricted Waste Treated To Treatment Standards (40 CFR 268.7(b) (1) & 268.7 (b) (2)) The treatment residue, or extract of such residue, or the restricted waste identified above has been tested to assure that the treatment residues or extract meet all applicable treatment standards in 40 CFR 268.40 and /or performance treatment and the contract meet all
	applicable treatment standards in 40 CFR 268.40 and/or performance standards in 40 CFR 268.45.
	certify under penalty of law that I personally have examined and am familiar with the treatment technology and operation of the treatment process used to
	been operated and maintained properly so as to comply with the treatment standards specified in 40 CFR 268.40 without impermissible dilution of the prohibited waste. I am aware there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment.
C.	Restricted Waste Soil Treated To Alternative Standards (40 CFR 268.7(b) (4))
	certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process
	CFR 268.49 without impermissible dilution of the prohibited wastes. I am aware that there are significant population for the prohibited wastes. I am aware that there are significant population for the prohibited wastes.
	and the state interest and inte
D.	Restricted Waste Decharacterized But Requires Treatment For UHC (40 CFR 268,7(b)(4)(iv))
	I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 258.40 or 268.49 to remove the hazardous characteristic. This decharacterized waste contains Underlying Hazardous Constituents that require further treatment to meet treatment standards. I am aware that there are significant penalties for submitting a false certification including the second contains that require further treatment to meet treatment standards. I am aware that
	there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.
E.	Restricted Waste Subject To Treatment (40 CFR 268.7(a) (2))
	The restricted waste identified above must be treated to the applicable treatment standards in 40 CER 200 At a section of the
	(c).
	if applicable, under 268.49, this contaminated soil does or does not contain listed hazardous waste and does or does not exhibit
	a characteristic of hazardous wastewater and is subject to the soil treatment standards as provided by 268.49(c) or the universal treatment standards.
F.	Hazardous Debris Subject To Treatment (40 CFR 268.45) This hazardous debris identified above must be treated to the alternative treatment standards in 40 CFR 268.45.
l cer	tify and warrant that the information that appears on this form, and appended documents is two and appears in
	te is to be managed in accordance with 40 CFR 268. My certification is based on personal examination of the information submitted, or is based on inquiries of those individuals responsible for obtaining the information.
	portion Simpature + TS
	James (113 Property Manager Vate 9/21/21
	UHC and Subcategory list from 40 CFR Part 268 48 and 268 40 available upon variety

ATTACHMENT 5

Laboratory Report

Laboratory Report of Analysis

To: Ahtna Engineering Sys

110 W 38th Ave Suite 200A Anchorage, AK 99503 (907)433-0720

Report Number: 1215678

Client Project: Gaffney 20301.008

Dear Joel Brann,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 09/15/2021 11:13:58AM Results via Engage

Case Narrative

SGS Client: Ahtna Engineering Svs SGS Project: 1215678 Project Name/Site: Gaffney 20301.008 Project Contact: Joel Brann

Refer to sample receipt form for information on sample condition.

21-GRW-002-GW (1215678002) PS

8260D - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria. The analytes associated with this surrogate were not reported above the LOQ.

LCS for HBN 1825365 [VXX/37808 (1635667) LCS

8260D - LCS recovery for methylene chloride does not meet QC criteria. This analyte was not reported above the LOQ in the associated samples.

LCSD for HBN 1825365 [VXX/3780 (1635668) LCSD

8260D - LCSD recovery for methylene chloride does not meet QC criteria. This analyte was not reported above the LOQ in the associated samples.

LCSD for HBN 1825390 [VXX/3781 (1635753) LCSD

8260D - LCS/LCSD RPD for 1,2-dibromo-3-chloropropane does not meet QC criteria. This analyte was not reported above the LOQ in the associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/15/2021 11:13:59AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/15/2021 11:14:01AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Janipie Juninia y	Samp	le Summary
-------------------	------	------------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
21-GRW-001-GW	1215678001	08/31/2021	09/02/2021	Water (Surface, Eff., Ground)
21-GRW-002-GW	1215678002	08/31/2021	09/02/2021	Water (Surface, Eff., Ground)
21-GRW-003-GW	1215678003	08/31/2021	09/02/2021	Water (Surface, Eff., Ground)
21-GRW-903-GW	1215678004	08/31/2021	09/02/2021	Water (Surface, Eff., Ground)
21-GRW-004-EB	1215678005	08/31/2021	09/02/2021	Water (Surface, Eff., Ground)
21-GRW-005-TB	1215678006	09/01/2021	09/02/2021	Water (Surface, Eff., Ground)

Method Description

SW8260D Volatile Organic Compounds (W) FULL

Print Date: 09/15/2021 11:14:02AM

Detectable Results Summary

Client Sample ID: 21-GRW-001-GW			
Lab Sample ID: 1215678001	Parameter	Result	Units
Volatile GC/MS	cis-1,2-Dichloroethene	7.79	ug/L
	Tetrachloroethene	271	ug/L
	Trichloroethene	4.83	ug/L
	Trichlorofluoromethane	2.71	ug/L
Client Sample ID: 21-GRW-002-GW			
Lab Sample ID: 1215678002	Parameter	Result	Units
Volatile GC/MS	cis-1,2-Dichloroethene	1.32	ug/L
	Tetrachloroethene	184	ug/L
	Trichloroethene	8.00	ug/L
Client Sample ID: 21-GRW-003-GW			
Lab Sample ID: 1215678003	Parameter	Result	Units
Volatile GC/MS	cis-1,2-Dichloroethene	11.4	ug/L
	Tetrachloroethene	196	ug/L
	trans-1,2-Dichloroethene	0.907J	ug/L
	Trichloroethene	3.25	ug/L
	Trichlorofluoromethane	2.71	ug/L
Client Sample ID: 21-GRW-903-GW			
Lab Sample ID: 1215678004	Parameter	Result	Units
Volatile GC/MS	cis-1,2-Dichloroethene	10.0	ug/L
	Tetrachloroethene	182	ug/L
	trans-1,2-Dichloroethene	0.504J	ug/L
	Trichloroethene	3.30	ug/L
	Trichlorofluoromethane	2.75	ug/L
Client Sample ID: 21-GRW-004-EB			
Lab Sample ID: 1215678005	Parameter	Result	Units
Volatile GC/MS	Chloroform	0.545J	ug/L
	Toluene	0.381J	ug/L

Print Date: 09/15/2021 11:14:04AM

Results of 21-GRW-001-GW

Client Sample ID: **21-GRW-001-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678001 Lab Project ID: 1215678 Collection Date: 08/31/21 12:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/10/21 17:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/10/21 17:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		09/10/21 17:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Benzene	0.200 U	0.400	0.120	ug/L	1		09/10/21 17:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Bromomethane	3.00 U	6.00	3.00	ug/L	1		09/10/21 17:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-001-GW

Client Sample ID: **21-GRW-001-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678001 Lab Project ID: 1215678 Collection Date: 08/31/21 12:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
cis-1,2-Dichloroethene	7.79	1.00	0.310	ug/L	1		09/10/21 17:55
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 17:55
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/10/21 17:55
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Styrene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Tetrachloroethene	271	10.0	3.10	ug/L	10		09/10/21 18:25
Toluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:55
Trichloroethene	4.83	1.00	0.310	ug/L	1		09/10/21 17:55
Trichlorofluoromethane	2.71	1.00	0.310	ug/L	1		09/10/21 17:55
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:55
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/10/21 17:55
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/10/21 17:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	110	81-118		%	1		09/10/21 17:55
4-Bromofluorobenzene (surr)	107	85-114		%	1		09/10/21 17:55
Toluene-d8 (surr)	98.9	89-112		%	1		09/10/21 17:55

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-001-GW

Client Sample ID: 21-GRW-001-GW Client Project ID: Gaffney 20301.008

Lab Sample ID: 1215678001 Lab Project ID: 1215678 Collection Date: 08/31/21 12:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21161 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/10/21 17:55 Container ID: 1215678001-A

Analytical Batch: VMS21161 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/10/21 18:25 Container ID: 1215678001-A Prep Batch: VXX37810
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX37810
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Results of 21-GRW-002-GW

Client Sample ID: **21-GRW-002-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678002 Lab Project ID: 1215678 Collection Date: 08/31/21 13:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/10/21 18:10
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/10/21 18:10
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/10/21 18:10
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1	09/10/21 18:10
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/10/21 18:10
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/10/21 18:10
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/10/21 18:10
Benzene	0.200 U	0.400	0.120	ug/L	1	09/10/21 18:10
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
Bromomethane	3.00 U	6.00	3.00	ug/L	1	09/10/21 18:10
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/10/21 18:10
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/10/21 18:10
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 18:10

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-002-GW

Client Sample ID: **21-GRW-002-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678002 Lab Project ID: 1215678 Collection Date: 08/31/21 13:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits Date An	محبراد
<u>Chloroform</u>	0.500 U	1.00	0.310	ug/L	1	09/10/2	-
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/10/2	
cis-1,2-Dichloroethene	1.32	1.00	0.310	ug/L	1	09/10/2	
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1	09/10/2	
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/10/2	
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/10/2	
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L ug/L	1	09/10/2	
Ethylbenzene	0.500 U	1.00	0.310	ug/L ug/L	1	09/10/2	
Freon-113	5.00 U	1.00	3.10	ŭ	1	09/10/2	
				ug/L			
lexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/10/21	
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	09/10/21	
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	09/10/21	
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/10/21	
laphthalene	0.500 U	1.00	0.310	ug/L	1	09/10/21	
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21	
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/2	
p-Xylene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/10/2	18:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
Styrene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21	18:
Гetrachloroethene	184	1.00	0.310	ug/L	1	09/10/2	18:
Гoluene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
Trichloroethene	8.00	1.00	0.310	ug/L	1	09/10/2	18:
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/10/2	18:
/inyl acetate	5.00 U	10.0	3.10	ug/L	1	09/10/21	18:
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/10/2	18:
Kylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/10/2	18:
urrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1	09/10/2	18:
1-Bromofluorobenzene (surr)	117 *	85-114		%	1	09/10/21	18:
Foluene-d8 (surr)	105	89-112		%	1	09/10/2	18:

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-002-GW

Client Sample ID: **21-GRW-002-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678002 Lab Project ID: 1215678 Collection Date: 08/31/21 13:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21161 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/10/21 18:10 Container ID: 1215678002-A Prep Batch: VXX37810
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Results of 21-GRW-003-GW

Client Sample ID: **21-GRW-003-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678003 Lab Project ID: 1215678 Collection Date: 08/31/21 14:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/10/21 17:53
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/10/21 17:53
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/10/21 17:53
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1	09/10/21 17:53
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/10/21 17:53
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/10/21 17:53
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/10/21 17:53
Benzene	0.200 U	0.400	0.120	ug/L	1	09/10/21 17:53
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
Bromomethane	3.00 U	6.00	3.00	ug/L	1	09/10/21 17:53
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/10/21 17:53
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/10/21 17:53
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/10/21 17:53

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-003-GW

Client Sample ID: **21-GRW-003-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678003 Lab Project ID: 1215678 Collection Date: 08/31/21 14:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
<u>Farameter</u> Chloroform	0.500 U	1.00	0.310	ug/L	<u> </u>	LIIIIIS	09/10/21 17:5
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
cis-1,2-Dichloroethene	11.4	1.00	0.310	ug/L ug/L	1		09/10/21 17:5
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1		09/10/21 17:5
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		09/10/21 17:5
				ŭ			
Dibromomethane	0.500 U	1.00 1.00	0.310	ug/L	1		09/10/21 17:5
Dichlorodifluoromethane	0.500 U		0.310	ug/L	1		09/10/21 17:5
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:5
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/10/21 17:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
Styrene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
Tetrachloroethene	196	10.0	3.10	ug/L	10		09/10/21 18:3
Toluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:
rans-1,2-Dichloroethene	0.907 J	1.00	0.310	ug/L	1		09/10/21 17:
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 17:5
Trichloroethene	3.25	1.00	0.310	ug/L	1		09/10/21 17:5
Trichlorofluoromethane	2.71	1.00	0.310	ug/L	1		09/10/21 17:
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/10/21 17:5
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/10/21 17:
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/10/21 17:
urrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/10/21 17:5
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/10/21 17:5
Toluene-d8 (surr)	104	89-112		%	1		09/10/21 17:5

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-003-GW

Client Sample ID: **21-GRW-003-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678003 Lab Project ID: 1215678 Collection Date: 08/31/21 14:50 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21159 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/10/21 17:53 Container ID: 1215678003-A

Analytical Batch: VMS21159 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/10/21 18:37 Container ID: 1215678003-A Prep Batch: VXX37808
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX37808
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Results of 21-GRW-903-GW

Client Sample ID: **21-GRW-903-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678004 Lab Project ID: 1215678 Collection Date: 08/31/21 14:55 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	<u></u>	09/10/21 18:07
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/10/21 18:07
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/10/21 18:07
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		09/10/21 18:07
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
Benzene	0.200 U	0.400	0.120	ug/L	1		09/10/21 18:07
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Bromomethane	3.00 U	6.00	3.00	ug/L	1		09/10/21 18:07
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-903-GW

Client Sample ID: **21-GRW-903-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678004 Lab Project ID: 1215678 Collection Date: 08/31/21 14:55 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIIG	09/10/21 18:07
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
cis-1,2-Dichloroethene	10.0	1.00	0.310	ug/L	1		09/10/21 18:07
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:07
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:07
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:07
n-Butylbenzene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
n-Propylbenzene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
o-Xylene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
P & M -Xylene	1.00 U	2.00	0.620	ug/L ug/L	1		09/10/21 18:07
sec-Butylbenzene	0.500 U	1.00	0.020	ug/L ug/L	1		09/10/21 18:07
Styrene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
Tetrachloroethene	182	10.0	3.10	ug/L ug/L	10		09/10/21 18:52
Toluene	0.500 U	1.00	0.310	ug/L ug/L	10		09/10/21 18:07
trans-1,2-Dichloroethene	0.504 J	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	-	1		09/10/21 18:07
Trichloroethene	3.30	1.00	0.310	ug/L ug/L	1		09/10/21 18:07
Trichlorofluoromethane	2.75	1.00	0.310	ug/L ug/L	1		09/10/21 18:0
Vinyl acetate	5.00 U	10.0	3.10	ug/L ug/L	1		09/10/21 18:0
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L ug/L	1		09/10/21 18:0
•	1.50 U	3.00	1.00	ug/L ug/L	1		09/10/21 18:07
Xylenes (total)	1.50 0	3.00	1.00	ug/L	ı		09/10/21 10.0
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/10/21 18:07
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/10/21 18:07
Toluene-d8 (surr)	106	89-112		%	1		09/10/21 18:07

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-903-GW

Client Sample ID: **21-GRW-903-GW**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678004 Lab Project ID: 1215678 Collection Date: 08/31/21 14:55 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21159 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/10/21 18:07 Container ID: 1215678004-A

Analytical Batch: VMS21159 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/10/21 18:52 Container ID: 1215678004-A Prep Batch: VXX37808
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX37808
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Results of 21-GRW-004-EB

Client Sample ID: **21-GRW-004-EB**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678005 Lab Project ID: 1215678 Collection Date: 08/31/21 16:10 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/10/21 18:22
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:22
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/10/21 18:22
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		09/10/21 18:22
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:22
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:22
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:22
Benzene	0.200 U	0.400	0.120	ug/L	1		09/10/21 18:22
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
Bromomethane	3.00 U	6.00	3.00	ug/L	1		09/10/21 18:22
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:22
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/10/21 18:22
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:22

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-004-EB

Client Sample ID: **21-GRW-004-EB**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678005 Lab Project ID: 1215678 Collection Date: 08/31/21 16:10 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyze
<u>Parameter</u> Chloroform	0.545 J	1.00	<u>DL</u> 0.310	ug/L	<u>DF</u> 1	·	09/10/21 18:2
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2 09/10/21 18:2
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L ug/L	1		09/10/21 18:2 09/10/21 18:2
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1		09/10/21 16.2 09/10/21 18:2
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		09/10/21 16.2 09/10/21 18:2
Dibromocnioromethane	0.500 U	1.00	0.130	J	1		09/10/21 16.2 09/10/21 18:2
Distribilitiemane Dischlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 16.2 09/10/21 18:2
				ug/L			
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:2
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:2
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:2
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:
-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	09/10/21 18:
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	1	09/10/21 18:
o-Xylene	0.500 U	1.00	0.310	ug/L	1	1	09/10/21 18:
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/10/21 18:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2
Styrene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:2
Гetrachloroethene	0.500 U	1.00	0.310	ug/L	1	1	09/10/21 18:
Toluene	0.381 J	1.00	0.310	ug/L	1	1	09/10/21 18:
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	1	09/10/21 18:
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/10/21 18:
/inyl acetate	5.00 U	10.0	3.10	ug/L	1		09/10/21 18:2
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/10/21 18:
(ylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/10/21 18:
urrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		09/10/21 18:2
1-Bromofluorobenzene (surr)	102	85-114		%	1		09/10/21 18:2
Foluene-d8 (surr)	103	89-112		%	1		09/10/21 18:2

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-004-EB

Client Sample ID: 21-GRW-004-EB
Client Project ID: Gaffney 20301.008

Lab Sample ID: 1215678005 Lab Project ID: 1215678 Collection Date: 08/31/21 16:10 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21159 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/10/21 18:22 Container ID: 1215678005-A Prep Batch: VXX37808
Prep Method: SW5030B
Prep Date/Time: 09/10/21 10:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Results of 21-GRW-005-TB

Client Sample ID: **21-GRW-005-TB**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678006 Lab Project ID: 1215678 Collection Date: 09/01/21 09:00 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/11/21 16:56
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/11/21 16:56
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/11/21 16:56
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1	09/11/21 16:56
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/11/21 16:56
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/11/21 16:56
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/11/21 16:56
Benzene	0.200 U	0.400	0.120	ug/L	1	09/11/21 16:56
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
Bromomethane	3.00 U	6.00	3.00	ug/L	1	09/11/21 16:56
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/11/21 16:56
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/11/21 16:56
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/11/21 16:56

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-005-TB

Client Sample ID: **21-GRW-005-TB**Client Project ID: **Gaffney 20301.008**

Lab Sample ID: 1215678006 Lab Project ID: 1215678 Collection Date: 09/01/21 09:00 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/11/21 16:56
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/11/21 16:56
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/11/21 16:56
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/11/21 16:56
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/11/21 16:56
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/11/21 16:56
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Styrene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Toluene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/11/21 16:56
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/11/21 16:56
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/11/21 16:56
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/11/21 16:56
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		09/11/21 16:56
4-Bromofluorobenzene (surr)	106	85-114		%	1		09/11/21 16:56
Toluene-d8 (surr)	97.9	89-112		%	1		09/11/21 16:56

Print Date: 09/15/2021 11:14:05AM

Results of 21-GRW-005-TB

Client Sample ID: 21-GRW-005-TB
Client Project ID: Gaffney 20301.008

Lab Sample ID: 1215678006 Lab Project ID: 1215678 Collection Date: 09/01/21 09:00 Received Date: 09/02/21 09:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21162 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/11/21 16:56 Container ID: 1215678006-A Prep Batch: VXX37815
Prep Method: SW5030B
Prep Date/Time: 09/11/21 13:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:05AM J flagging is activated

Blank ID: MB for HBN 1825365 [VXX/37808]

Blank Lab ID: 1635666

QC for Samples:

1215678003, 1215678004, 1215678005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/15/2021 11:14:07AM

Blank ID: MB for HBN 1825365 [VXX/37808]

Blank Lab ID: 1635666

QC for Samples:

1215678003, 1215678004, 1215678005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	102	89-112		%
• •				

Print Date: 09/15/2021 11:14:07AM

Blank ID: MB for HBN 1825365 [VXX/37808]

Blank Lab ID: 1635666

QC for Samples:

1215678003, 1215678004, 1215678005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS21159 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: MDT

Analytical Date/Time: 9/10/2021 10:26:00AM

Prep Batch: VXX37808 Prep Method: SW5030B

Prep Date/Time: 9/10/2021 10:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:07AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215678 [VXX37808]

Blank Spike Lab ID: 1635667 Date Analyzed: 09/10/2021 10:41 Spike Duplicate ID: LCSD for HBN 1215678

[VXX37808]

Spike Duplicate Lab ID: 1635668 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1215678003, 1215678004, 1215678005

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	32.7	109	30	32.4	108	(78-124)	1.00	(< 20)
1,1,1-Trichloroethane	30	32.8	109	30	30.4	101	(74-131)	7.60	(< 20)
1,1,2,2-Tetrachloroethane	30	32.6	109	30	32.9	110	(71-121)	0.68	(< 20)
1,1,2-Trichloroethane	30	33.1	110	30	32.8	109	(80-119)	0.81	(< 20)
1,1-Dichloroethane	30	33.8	113	30	30.6	102	(77-125)	9.90	(< 20)
1,1-Dichloroethene	30	33.3	111	30	34.7	116	(71-131)	3.90	(< 20)
1,1-Dichloropropene	30	33.5	112	30	30.8	103	(79-125)	8.50	(< 20)
1,2,3-Trichlorobenzene	30	32.5	108	30	32.8	109	(69-129)	0.84	(< 20)
1,2,3-Trichloropropane	30	31.3	104	30	31.9	106	(73-122)	1.80	(< 20)
1,2,4-Trichlorobenzene	30	32.1	107	30	32.2	107	(69-130)	0.28	(< 20)
1,2,4-Trimethylbenzene	30	33.6	112	30	33.4	111	(79-124)	0.59	(< 20)
1,2-Dibromo-3-chloropropane	30	30.3	101	30	31.1	104	(62-128)	2.50	(< 20)
1,2-Dibromoethane	30	33.1	110	30	33.2	111	(77-121)	0.21	(< 20)
1,2-Dichlorobenzene	30	31.8	106	30	31.4	105	(80-119)	1.30	(< 20)
1,2-Dichloroethane	30	31.8	106	30	29.1	97	(73-128)	8.80	(< 20)
1,2-Dichloropropane	30	31.5	105	30	31.9	106	(78-122)	1.20	(< 20)
1,3,5-Trimethylbenzene	30	33.3	111	30	33.0	110	(75-124)	0.85	(< 20)
1,3-Dichlorobenzene	30	32.0	107	30	32.4	108	(80-119)	1.40	(< 20)
1,3-Dichloropropane	30	33.0	110	30	32.6	109	(80-119)	1.10	(< 20)
1,4-Dichlorobenzene	30	32.3	108	30	32.3	108	(79-118)	0.08	(< 20)
2,2-Dichloropropane	30	34.4	115	30	31.6	105	(60-139)	8.50	(< 20)
2-Butanone (MEK)	90	90.4	100	90	85.1	95	(56-143)	6.00	(< 20)
2-Chlorotoluene	30	32.9	110	30	32.4	108	(79-122)	1.50	(< 20)
2-Hexanone	90	94.8	105	90	94.5	105	(57-139)	0.31	(< 20)
4-Chlorotoluene	30	32.5	108	30	32.8	109	(78-122)	0.96	(< 20)
4-Isopropyltoluene	30	29.5	98	30	29.7	99	(77-127)	0.59	(< 20)
4-Methyl-2-pentanone (MIBK)	90	94.1	105	90	94.7	105	(67-130)	0.61	(< 20)
Benzene	30	33.9	113	30	30.8	103	(79-120)	9.50	(< 20)
Bromobenzene	30	30.9	103	30	31.2	104	(80-120)	0.77	(< 20)
Bromochloromethane	30	33.4	111	30	30.7	102	(78-123)	8.50	(< 20)
Bromodichloromethane	30	31.9	106	30	31.8	106	(79-125)	0.39	(< 20)
Bromoform	30	30.6	102	30	30.5	102	(66-130)	0.48	(< 20)
Bromomethane	30	32.6	109	30	34.2	114	(53-141)	4.90	(< 20)
Carbon disulfide	45	50.0	111	45	55.4	123	(64-133)	10.30	(< 20)

Print Date: 09/15/2021 11:14:10AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215678 [VXX37808]

Blank Spike Lab ID: 1635667 Date Analyzed: 09/10/2021 10:41 Spike Duplicate ID: LCSD for HBN 1215678

[VXX37808]

Spike Duplicate Lab ID: 1635668 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1215678003, 1215678004, 1215678005

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	32.9	110	30	31.0	103	(72-136)	6.00	(< 20)
Chlorobenzene	30	31.8	106	30	31.5	105	(82-118)	1.10	(< 20)
Chloroethane	30	38.8	129	30	38.5	128	(60-138)	0.80	(< 20)
Chloroform	30	32.5	108	30	29.3	98	(79-124)	10.20	(< 20)
Chloromethane	30	25.0	83	30	28.4	95	(50-139)	12.60	(< 20)
cis-1,2-Dichloroethene	30	32.9	110	30	29.1	97	(78-123)	12.10	(< 20)
cis-1,3-Dichloropropene	30	32.2	107	30	32.4	108	(75-124)	0.71	(< 20)
Dibromochloromethane	30	33.6	112	30	33.6	112	(74-126)	0.16	(< 20)
Dibromomethane	30	31.7	106	30	30.9	103	(79-123)	2.70	(< 20)
Dichlorodifluoromethane	30	31.7	106	30	34.1	114	(32-152)	7.30	(< 20)
Ethylbenzene	30	32.5	108	30	32.0	107	(79-121)	1.60	(< 20)
Freon-113	45	50.6	112	45	54.1	120	(70-136)	6.70	(< 20)
Hexachlorobutadiene	30	32.4	108	30	32.7	109	(66-134)	0.83	(< 20)
Isopropylbenzene (Cumene)	30	32.8	109	30	32.5	108	(72-131)	0.99	(< 20)
Methylene chloride	30	38.4	128	* 30	40.4	135	* (74-124)	5.00	(< 20)
Methyl-t-butyl ether	45	50.0	111	45	53.6	119	(71-124)	6.80	(< 20)
Naphthalene	30	28.5	95	30	29.4	98	(61-128)	3.20	(< 20)
n-Butylbenzene	30	30.9	103	30	30.5	102	(75-128)	1.00	(< 20)
n-Propylbenzene	30	32.9	110	30	32.9	110	(76-126)	0.07	(< 20)
o-Xylene	30	32.4	108	30	31.9	106	(78-122)	1.70	(< 20)
P & M -Xylene	60	64.5	108	60	64.6	108	(80-121)	0.07	(< 20)
sec-Butylbenzene	30	33.4	111	30	33.6	112	(77-126)	0.64	(< 20)
Styrene	30	33.6	112	30	33.5	112	(78-123)	0.45	(< 20)
tert-Butylbenzene	30	32.4	108	30	32.5	108	(78-124)	0.09	(< 20)
Tetrachloroethene	30	32.0	107	30	31.8	106	(74-129)	0.70	(< 20)
Toluene	30	31.2	104	30	30.9	103	(80-121)	0.81	(< 20)
trans-1,2-Dichloroethene	30	32.6	109	30	34.4	115	(75-124)	5.30	(< 20)
trans-1,3-Dichloropropene	30	34.1	114	30	34.1	114	(73-127)	0.19	(< 20)
Trichloroethene	30	30.5	102	30	30.3	101	(79-123)	0.64	(< 20)
Trichlorofluoromethane	30	34.1	114	30	33.8	113	(65-141)	0.88	(< 20)
Vinyl acetate	30	33.8	113	30	31.6	105	(54-146)	6.50	(< 20)
Vinyl chloride	30	33.5	112	30	33.0	110	(58-137)	1.60	(< 20)
Xylenes (total)	90	96.9	108	90	96.4	107	(79-121)	0.52	(< 20)

Print Date: 09/15/2021 11:14:10AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215678 [VXX37808]

Blank Spike Lab ID: 1635667 Date Analyzed: 09/10/2021 10:41 Spike Duplicate ID: LCSD for HBN 1215678

[VXX37808]

Spike Duplicate Lab ID: 1635668 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1215678003, 1215678004, 1215678005

Results by SW8260D

	Blank Spike (%)		Spike Duplicate (%)						
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		108	30		99	(81-118)	8.10	
4-Bromofluorobenzene (surr)	30		101	30		102	(85-114)	0.99	
Toluene-d8 (surr)	30		104	30		103	(89-112)	0.56	

Batch Information

Analytical Batch: VMS21159
Analytical Method: SW8260D
Instrument: VPA 780/5975 GC/MS

Analyst: MDT

Prep Batch: VXX37808
Prep Method: SW5030B

Prep Date/Time: 09/10/2021 10:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:10AM

Blank ID: MB for HBN 1825390 [VXX/37810]

Blank Lab ID: 1635751

QC for Samples:

1215678001, 1215678002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Doromotor	Populto	LOQ/CL	<u>DL</u>	Units
Parameter 1,1,1,2-Tetrachloroethane	Results 0.250U	0.500	<u>DL</u> 0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/15/2021 11:14:12AM

Blank ID: MB for HBN 1825390 [VXX/37810]

Blank Lab ID: 1635751

QC for Samples:

1215678001, 1215678002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	106	85-114		%
Toluene-d8 (surr)	102	89-112		%
• •				

Print Date: 09/15/2021 11:14:12AM

Blank ID: MB for HBN 1825390 [VXX/37810]

Blank Lab ID: 1635751

QC for Samples:

1215678001, 1215678002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS21161 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 9/10/2021 10:28:00AM

Prep Batch: VXX37810 Prep Method: SW5030B

Prep Date/Time: 9/10/2021 10:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:12AM

Blank Spike ID: LCS for HBN 1215678 [VXX37810]

Blank Spike Lab ID: 1635752 Date Analyzed: 09/10/2021 10:43

QC for Samples: 1215678001, 1215678002

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37810]

Spike Duplicate Lab ID: 1635753 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	31.1	104	30	30.1	100	(78-124)	3.20	(< 20)
1,1,1-Trichloroethane	30	31.2	104	30	32.8	109	(74-131)	4.80	(< 20)
1,1,2,2-Tetrachloroethane	30	28.9	97	30	33.2	111	(71-121)	13.80	(< 20)
1,1,2-Trichloroethane	30	30.9	103	30	29.2	97	(80-119)	5.90	(< 20)
1,1-Dichloroethane	30	30.1	100	30	30.1	100	(77-125)	0.03	(< 20)
1,1-Dichloroethene	30	30.9	103	30	29.9	100	(71-131)	3.30	(< 20)
1,1-Dichloropropene	30	32.7	109	30	32.9	110	(79-125)	0.75	(< 20)
1,2,3-Trichlorobenzene	30	30.1	100	30	35.5	118	(69-129)	16.50	(< 20)
1,2,3-Trichloropropane	30	29.0	97	30	33.5	112	(73-122)	14.30	(< 20)
1,2,4-Trichlorobenzene	30	30.3	101	30	34.7	116	(69-130)	13.40	(< 20)
1,2,4-Trimethylbenzene	30	30.6	102	30	34.5	115	(79-124)	12.00	(< 20)
1,2-Dibromo-3-chloropropane	30	26.6	89	30	33.4	111	(62-128)	22.90	* (< 20)
1,2-Dibromoethane	30	29.7	99	30	30.0	100	(77-121)	0.71	(< 20)
1,2-Dichlorobenzene	30	29.3	98	30	30.2	101	(80-119)	2.90	(< 20)
1,2-Dichloroethane	30	31.1	104	30	27.5	92	(73-128)	12.30	(< 20)
1,2-Dichloropropane	30	31.0	103	30	29.6	99	(78-122)	4.70	(< 20)
1,3,5-Trimethylbenzene	30	29.8	99	30	33.7	112	(75-124)	12.40	(< 20)
1,3-Dichlorobenzene	30	29.9	100	30	33.6	112	(80-119)	11.70	(< 20)
1,3-Dichloropropane	30	31.8	106	30	29.3	98	(80-119)	8.40	(< 20)
1,4-Dichlorobenzene	30	29.7	99	30	33.5	112	(79-118)	12.00	(< 20)
2,2-Dichloropropane	30	34.3	114	30	33.7	112	(60-139)	1.80	(< 20)
2-Butanone (MEK)	90	97.0	108	90	96.4	107	(56-143)	0.65	(< 20)
2-Chlorotoluene	30	30.5	102	30	34.6	115	(79-122)	12.70	(< 20)
2-Hexanone	90	88.6	99	90	78.6	87	(57-139)	12.00	(< 20)
4-Chlorotoluene	30	30.8	103	30	34.9	116	(78-122)	12.40	(< 20)
4-Isopropyltoluene	30	29.3	98	30	32.9	110	(77-127)	11.70	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.1	97	90	86.6	96	(67-130)	0.63	(< 20)
Benzene	30	31.7	106	30	30.6	102	(79-120)	3.70	(< 20)
Bromobenzene	30	28.7	96	30	33.0	110	(80-120)	14.00	(< 20)
Bromochloromethane	30	29.5	98	30	29.1	97	(78-123)	1.20	(< 20)
Bromodichloromethane	30	30.8	103	30	29.5	98	(79-125)	4.10	(< 20)
Bromoform	30	28.6	95	30	29.9	100	(66-130)	4.40	(< 20)
Bromomethane	30	32.8	109	30	34.6	115	(53-141)	5.30	(< 20)
Carbon disulfide	45	47.0	104	45	46.0	102	(64-133)	2.20	(< 20)

Print Date: 09/15/2021 11:14:14AM

Blank Spike ID: LCS for HBN 1215678 [VXX37810]

Blank Spike Lab ID: 1635752 Date Analyzed: 09/10/2021 10:43

QC for Samples: 1215678001, 1215678002

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37810]

Spike Duplicate Lab ID: 1635753 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD (%) Carbon tetrachloride 30 31.7 106 30 31.8 106 (72-136) 0.26 (<2) Chlorobenzene 30 30.0 100 30 29.9 100 (82-118) 0.24 (<2) Chloroterhane 30 35.7 119 30 35.4 118 (60-138) 0.83 (<2) Chloromethane 30 30.4 101 30 30.6 102 (79-124) 0.70 (<2) cis-1,2-Dichloroethane 30 28.9 100 30 29.2 97 (78-124) 3.30 (<2) cis-1,3-Dichloropropene 30 31.7 106 30 30.7 102 (75-124) 3.30 (<2) Dibromochloromethane 30 30.4 101 30 29.9 100 (79-123) 1.60 (<2) Dibromoch	\ CI
Chlorobenzene 30 30.0 100 30 29.9 100 (82-118) 0.24 (52-11) CL
Chloroethane 30 35.7 119 30 35.4 118 (60-138) 0.83 (5.2) Chloroform 30 30.4 101 30 30.6 102 (79-124) 0.70 (5.2) Chloromethane 30 28.9 97 30 26.8 89 (50-139) 7.80 (5.2) cis-1,2-Dichloroethene 30 29.9 100 30 29.2 97 (78-123) 2.50 (5.2) cis-1,3-Dichloropropene 30 31.7 106 30 30.7 102 (75-124) 3.30 (5.2) Dibromochloromethane 30 30.0 100 30 30.0 100 (74-126) 0.14 (5.2) Dichlorodiffluoromethane 30 36.3 121 30 35.1 117 (32-152) 3.40 (5.2) Ethylbenzene 30 32.6 109 30 31.1 104 (79-121) 4.60 (5.2) Hexachlorobutadien	0)
Chloroform 30 30.4 101 30 30.6 102 (79-124) 0.70 (52) Chloromethane 30 28.9 97 30 26.8 89 (50-139) 7.80 (52) cis-1,2-Dichloroethene 30 29.9 100 30 29.2 97 (78-123) 2.50 (52) cis-1,3-Dichloropropene 30 31.7 106 30 30.7 102 (75-124) 3.30 (52) Dibromochloromethane 30 30.0 100 30 30.0 100 (79-123) 1.60 (52) Dibromomethane 30 30.4 101 30 29.9 100 (79-123) 1.60 (52) Dibromomethane 30 36.3 121 30 35.1 117 (32-152) 3.40 (52) Ethylbenzene 30 32.6 109 30 31.1 104 (79-121) 4.60 (52) Hexachlorobutadiene <	0)
Chloromethane 30 28.9 97 30 26.8 89 (50-139) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 (50-134) 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.	0)
cis-1,2-Dichloroethene 30 29.9 100 30 29.2 97 (78-123) 2.50 (5.2) cis-1,3-Dichloropropene 30 31.7 106 30 30.7 102 (75-124) 3.30 (5.2) Dibromochloromethane 30 30.0 100 30 30.0 100 (74-126) 0.14 (5.2) Dibromochloromethane 30 30.4 101 30 29.9 100 (79-123) 1.60 (5.2) Dichlorodifluoromethane 30 36.3 121 30 35.1 117 (32-152) 3.40 (5.2) Ethylbenzene 30 32.6 109 30 31.1 104 (79-121) 4.60 (5.2) Ethylbenzene 30 32.6 109 30 31.1 104 (79-121) 4.60 (5.2) Hexachlorobutadiene 30 30.8 103 30 34.0 113 (66-134) 10.00 (5.2)	0)
cis-1,3-Dichloropropene 30 31.7 106 30 30.7 102 (75-124) 3.30 (<2)	0)
Dibromochloromethane 30 30.0 100 30 30.0 100 (74-126) 0.14 (<2)	0)
Dibromomethane 30 30.4 101 30 29.9 100 (79-123) 1.60 (<2)	0)
Dichlorodifluoromethane 30 36.3 121 30 35.1 117 (32-152) 3.40 (<2)	0)
Ethylbenzene 30 32.6 109 30 31.1 104 (79-121) 4.60 (<2)	0)
Freon-113 45 47.5 106 45 46.6 103 (70-136) 2.00 (<2) Hexachlorobutadiene 30 30.8 103 30 34.0 113 (66-134) 10.00 (<2) Isopropylbenzene (Cumene) 30 33.7 112 30 31.8 106 (72-131) 5.90 (<2) Methylene chloride 30 29.6 99 30 28.2 94 (74-124) 5.00 (<2) Methyl-t-butyl ether 45 45.8 102 45 46.8 104 (71-124) 2.20 (<2) Naphthalene 30 27.7 92 30 33.5 112 (61-128) 18.90 (<2) n-Butylbenzene 30 27.4 91 30 31.9 106 (75-128) 15.10 (<2) n-Propylbenzene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2) o-Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 <td< th=""><th>0)</th></td<>	0)
Hexachlorobutadiene 30 30.8 103 30 34.0 113 (66-134) 10.00 (<2.2) Isopropylbenzene (Cumene) 30 33.7 112 30 31.8 106 (72-131) 5.90 (<2.2) Methylene chloride 30 29.6 99 30 28.2 94 (74-124) 5.00 (<2.2) Methyl-t-butyl ether 45 45.8 102 45 46.8 104 (71-124) 2.20 (<2.2) Naphthalene 30 27.7 92 30 33.5 112 (61-128) 18.90 (<2.2) n-Butylbenzene 30 27.4 91 30 31.9 106 (75-128) 15.10 (<2.2) n-Propylbenzene 30 32.5 108 30 36.7 122 (76-126) 12.10 (<2.2) o-Xylene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2.2) P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) <t< th=""><th>0)</th></t<>	0)
Isopropylbenzene (Cumene) 30 33.7 112 30 31.8 106 (72-131) 5.90 (<2.20) Methylene chloride 30 29.6 99 30 28.2 94 (74-124) 5.00 (<2.20) Methyl-t-butyl ether 45 45.8 102 45 46.8 104 (71-124) 2.20 (<2.20) Naphthalene 30 27.7 92 30 33.5 112 (61-128) 18.90 (<2.20) n-Butylbenzene 30 27.4 91 30 31.9 106 (75-128) 15.10 (<2.20) n-Propylbenzene 30 32.5 108 30 36.7 122 (76-126) 12.10 (<2.20) o-Xylene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2.20) P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 (<2.20) sec-Butylbenzene 30 30.4 101 30 34.2 114 (.77-126)	0)
Methylene chloride 30 29.6 99 30 28.2 94 (74-124) 5.00 (<2.20)	0)
Methyl-t-butyl ether 45 45.8 102 45 46.8 104 (71-124) 2.20 (<2.20)	0)
Naphthalene 30 27.7 92 30 33.5 112 (61-128) 18.90 (<2000)	0)
n-Butylbenzene 30 27.4 91 30 31.9 106 (75-128) 15.10 (<2.000) n-Propylbenzene 30 32.5 108 30 36.7 122 (76-126) 12.10 (<2.000) o-Xylene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2.000) P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 (<2.000) sec-Butylbenzene 30 30.4 101 30 34.2 114 (77-126) 11.80 (<2.000) Styrene 30 30.5 102 30 30.4 101 (78-123) 0.47 (<2.000)	0)
n-Propylbenzene 30 32.5 108 30 36.7 122 (76-126) 12.10 (<2.20) o-Xylene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2.20) P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 (<2.20) sec-Butylbenzene 30 30.4 101 30 34.2 114 (77-126) 11.80 (<2.20) Styrene 30 30.5 102 30 30.4 101 (78-123) 0.47 (<2.20)	0)
o-Xylene 30 30.7 102 30 31.4 105 (78-122) 2.20 (<2.20) P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 (<2.20) sec-Butylbenzene 30 30.4 101 30 34.2 114 (77-126) 11.80 (<2.20) Styrene 30 30.5 102 30 30.4 101 (78-123) 0.47 (<2.20)	0)
P & M -Xylene 60 68.2 114 60 64.6 108 (80-121) 5.40 (<2000)	0)
sec-Butylbenzene 30 30.4 101 30 34.2 114 (77-126) 11.80 (< 2.2) Styrene 30 30.5 102 30 30.4 101 (78-123) 0.47 (< 2.2)	0)
Styrene 30 30.5 102 30 30.4 101 (78-123) 0.47 (<2	0)
	0)
tert-Butylbenzene 30 31.4 105 30 35.4 118 (78-124) 12.10 (<2	0)
	0)
Tetrachloroethene 30 27.8 93 30 31.4 105 (74-129) 12.10 (<2	0)
Toluene 30 31.6 105 30 29.3 98 (80-121) 7.60 (<2	0)
trans-1,2-Dichloroethene 30 30.5 102 30 28.6 95 (75-124) 6.50 (<2	O)
trans-1,3-Dichloropropene 30 32.5 108 30 29.8 99 (73-127) 8.70 (<2	O)
Trichloroethene 30 30.4 101 30 30.3 101 (79-123) 0.50 (<2	0)
Trichlorofluoromethane 30 34.3 114 30 33.6 112 (65-141) 2.00 (< 2	0)
Vinyl acetate 30 33.2 111 30 32.1 107 (54-146) 3.30 (< 2	O)
Vinyl chloride 30 33.7 112 30 31.9 106 (58-137) 5.70 (<2	0)
Xylenes (total) 90 98.9 110 90 96.0 107 (79-121) 2.90 (<2	O)

Print Date: 09/15/2021 11:14:14AM

Blank Spike ID: LCS for HBN 1215678 [VXX37810]

Blank Spike Lab ID: 1635752 Date Analyzed: 09/10/2021 10:43

1215678001, 1215678002

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37810]

Spike Duplicate Lab ID: 1635753 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

QC for Samples:

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		110	30		95	(81-118)	14.10	
4-Bromofluorobenzene (surr)	30		100	30		113	(85-114)	12.20	
Toluene-d8 (surr)	30		108	30		100	(89-112)	7.10	

Batch Information

Analytical Batch: VMS21161 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37810
Prep Method: SW5030B

Prep Date/Time: 09/10/2021 10:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:14AM

Blank ID: MB for HBN 1825406 [VXX/37815]

Blank Lab ID: 1635832

QC for Samples: 1215678006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Doromotor	Populto	LOQ/CL	<u>DL</u>	Units
Parameter 1,1,1,2-Tetrachloroethane	Results 0.250U	0.500	<u>DL</u> 0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/15/2021 11:14:16AM

Blank ID: MB for HBN 1825406 [VXX/37815]

Blank Lab ID: 1635832

QC for Samples: 1215678006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	109	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	101	89-112		%

Print Date: 09/15/2021 11:14:16AM

Blank ID: MB for HBN 1825406 [VXX/37815]

Blank Lab ID: 1635832

QC for Samples: 1215678006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS21162 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 9/11/2021 1:42:00PM

Prep Batch: VXX37815 Prep Method: SW5030B

Prep Date/Time: 9/11/2021 1:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:16AM

Blank Spike ID: LCS for HBN 1215678 [VXX37815]

Blank Spike Lab ID: 1635833 Date Analyzed: 09/11/2021 13:57

QC for Samples: 1215678006

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37815]

Spike Duplicate Lab ID: 1635834 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameler		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)				
1.1.1-Trichloroethane 30 30.9 103 30. 30.6 102 (74-131) 0.87 (< 20)	<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane 30 28.2 94 30 30.3 101 (71-121) 7.10 (< 20)	1,1,1,2-Tetrachloroethane	30	29.5	98	30	28.0	93	(78-124)	5.40	(< 20)
1,1,2-Trichloroethane 30 29.3 98 30 29.9 100 (80-119) 2.00 (< 20)	1,1,1-Trichloroethane	30	30.9	103	30	30.6	102	(74-131)	0.87	(< 20)
1,1-Dichloroethane 30 29.7 99 30 30.2 101 (77-125) 1.70 (<20)	1,1,2,2-Tetrachloroethane	30	28.2	94	30	30.3	101	(71-121)	7.10	(< 20)
1,1-Dichloroethene 30 29.2 97 30 28.6 96 (71-131) 1.90 (<20)	1,1,2-Trichloroethane	30	29.3	98	30	29.9	100	(80-119)	2.00	(< 20)
1,1-Dichloropropene 30 30.6 102 30 30.9 103 (79-125) 0.97 (<20)	1,1-Dichloroethane	30	29.7	99	30	30.2	101	(77-125)	1.70	(< 20)
1,2,3-Trichlorobenzene 30 28.8 96 30 29.8 99 (69-129) 3.50 (<20) 1,2,3-Trichloropropane 30 28.2 94 30 31.2 104 (73-122) 10.10 (<20) 1,2,4-Trichlorobenzene 30 27.3 91 30 28.4 95 (69-130) 4.00 (<20) 1,2,4-Trimethylbenzene 30 29.2 97 30 32.2 107 (62-128) 9.70 (<20) 1,2-Dibromo-3-chloropropane 30 29.6 99 30 30.0 100 (77-121) 1.50 (<20) 1,2-Dibriorobethane 30 29.0 97 30 29.6 99 (80-119) 2.10 (<20) 1,2-Dichlorobetzene 30 29.6 99 30 30.2 101 (78-124) 8.50 (<20) 1,2-Dichlorobetzene 30 29.1 97 30 30.7 102 (73-124) 8.50 (<20)	1,1-Dichloroethene	30	29.2	97	30	28.6	96	(71-131)	1.90	(< 20)
1,2,3-Trichloropropane 30 28.2 94 30 31.2 104 (73-122) 10.10 (<20)	1,1-Dichloropropene	30	30.6	102	30	30.9	103	(79-125)	0.97	(< 20)
1,2,4-Trichlorobenzene 30 27.3 91 30 28.4 95 (69-130) 4.00 (<20)	1,2,3-Trichlorobenzene	30	28.8	96	30	29.8	99	(69-129)	3.50	(< 20)
1,2,4-Trimethylbenzene 30 30.3 101 30 31.9 106 (79-124) 5.00 (<20)	1,2,3-Trichloropropane	30	28.2	94	30	31.2	104	(73-122)	10.10	(< 20)
1,2-Dibromo-3-chloropropane 30 29.2 97 30 32.2 107 (62-128) 9.70 (<20)	1,2,4-Trichlorobenzene	30	27.3	91	30	28.4	95	(69-130)	4.00	(< 20)
1,2-Dibromoethane 30 29.6 99 30 30.0 100 (77-121) 1.50 (<20)	1,2,4-Trimethylbenzene	30	30.3	101	30	31.9	106	(79-124)	5.00	(< 20)
1,2-Dichlorobenzene 30 29.0 97 30 29.6 99 (80-119) 2.10 (< 20)	1,2-Dibromo-3-chloropropane	30	29.2	97	30	32.2	107	(62-128)	9.70	(< 20)
1,2-Dichloroethane 30 30.7 102 30 29.1 97 (73-128) 5.60 (< 20)	1,2-Dibromoethane	30	29.6	99	30	30.0	100	(77-121)	1.50	(< 20)
1,2-Dichloropropane 30 29.6 99 30 30.2 101 (78-122) 2.10 (< 20) 1,3,5-Trimethylbenzene 30 28.1 94 30 30.7 102 (75-124) 8.50 (< 20) 1,3-Dichlorobenzene 30 29.1 97 30 30.7 102 (80-119) 5.40 (< 20) 1,3-Dichloropropane 30 29.5 99 30 30.1 100 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 28.8 96 30 30.7 102 (79-118) 6.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 31.5 105 (79-112) 9.50 (< 20) 2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (< 20) <	1,2-Dichlorobenzene	30	29.0	97	30	29.6	99	(80-119)	2.10	(< 20)
1,3,5-Trimethylbenzene 30 28.1 94 30 30.7 102 (75-124) 8.50 (< 20) 1,3-Dichlorobenzene 30 29.1 97 30 30.7 102 (80-119) 5.40 (< 20) 1,3-Dichloropropane 30 29.5 99 30 30.1 100 (80-119) 1.80 (< 20) 1,4-Dichloropropane 30 28.8 96 30 30.7 102 (79-118) 6.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (< 20) 2-Butanone (MEK) 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Soprop	1,2-Dichloroethane	30	30.7	102	30	29.1	97	(73-128)	5.60	(< 20)
1,3-Dichlorobenzene 30 29.1 97 30 30.7 102 (80-119) 5.40 (< 20) 1,3-Dichloropropane 30 29.5 99 30 30.1 100 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 28.8 96 30 30.7 102 (79-118) 6.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2,2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (< 20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Chlorotoluene 30 28.6 95 30 30.2 101 (77-127)	1,2-Dichloropropane	30	29.6	99	30	30.2	101	(78-122)	2.10	(< 20)
1,3-Dichloropropane 30 29.5 99 30 30.1 100 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 28.8 96 30 30.7 102 (79-118) 6.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (< 20) 2-Chlorotoluene 30 28.6 96 30 31.5 105 (79-122) 9.50 (< 20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 9.60 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130)	1,3,5-Trimethylbenzene	30	28.1	94	30	30.7	102	(75-124)	8.50	(< 20)
1,4-Dichlorobenzene 30 28.8 96 30 30.7 102 (79-118) 6.40 (< 20) 2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (< 20) 2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (< 20) 2-Chlorotoluene 30 28.6 96 30 31.5 105 (79-122) 9.50 (< 20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Bromobenzene 30 28.4 95 30 30.8 103 (80-120)	1,3-Dichlorobenzene	30	29.1	97	30	30.7	102	(80-119)	5.40	(< 20)
2,2-Dichloropropane 30 32.7 109 30 32.0 107 (60-139) 2.40 (<20) 2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (<20) 2-Chlorotoluene 30 28.6 96 30 31.5 105 (79-122) 9.50 (<20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (<20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (<20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (<20) Bromobenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (<20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 </th <td>1,3-Dichloropropane</td> <td>30</td> <td>29.5</td> <td>99</td> <td>30</td> <td>30.1</td> <td>100</td> <td>(80-119)</td> <th>1.80</th> <td>(< 20)</td>	1,3-Dichloropropane	30	29.5	99	30	30.1	100	(80-119)	1.80	(< 20)
2-Butanone (MEK) 90 95.5 106 90 104 115 (56-143) 8.10 (<20) 2-Chlorotoluene 30 28.6 96 30 31.5 105 (79-122) 9.50 (<20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (<20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (<20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (<20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (<20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (<20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (<2	1,4-Dichlorobenzene	30	28.8	96	30	30.7	102	(79-118)	6.40	(< 20)
2-Chlorotoluene 30 28.6 96 30 31.5 105 (79-122) 9.50 (< 20) 2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20) Bromochloromethane 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20) Bromodichloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92	2,2-Dichloropropane	30	32.7	109	30	32.0	107	(60-139)	2.40	(< 20)
2-Hexanone 90 82.5 92 90 93.2 104 (57-139) 12.30 (< 20) 4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20) Bromoblenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (< 20) Bromomethane 30 36.2 121 30 36.5 122 (53-141) 0.90	2-Butanone (MEK)	90	95.5	106	90	104	115	(56-143)	8.10	(< 20)
4-Chlorotoluene 30 29.6 99 30 31.6 105 (78-122) 6.60 (< 20) 4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20) Bromobenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (< 20) Bromomethane 30 36.2 121 30 36.5 122 (53-141) 0.90 (< 20)	2-Chlorotoluene	30	28.6	96	30	31.5	105	(79-122)	9.50	(< 20)
4-Isopropyltoluene 30 28.6 95 30 30.2 101 (77-127) 5.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20) Bromobenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20) Bromodichloromethane 30 30.2 101 30 30.4 101 (79-125) 0.63 (< 20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (< 20) Bromomethane 30 36.2 121 30 36.5 122 (53-141) 0.90 (< 20)	2-Hexanone	90	82.5	92	90	93.2	104	(57-139)	12.30	(< 20)
4-Methyl-2-pentanone (MIBK) 90 90.5 101 90 95.0 106 (67-130) 4.80 (< 20) Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20) Bromobenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20) Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20) Bromodichloromethane 30 30.2 101 30 30.4 101 (79-125) 0.63 (< 20) Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (< 20) Bromomethane 30 36.2 121 30 36.5 122 (53-141) 0.90 (< 20)	4-Chlorotoluene	30	29.6	99	30	31.6	105	(78-122)	6.60	(< 20)
Benzene 30 29.2 97 30 29.9 100 (79-120) 2.50 (< 20)	4-Isopropyltoluene	30	28.6	95	30	30.2	101	(77-127)	5.50	(< 20)
Bromobenzene 30 28.4 95 30 30.8 103 (80-120) 8.00 (< 20)	4-Methyl-2-pentanone (MIBK)	90	90.5	101	90	95.0	106	(67-130)	4.80	(< 20)
Bromochloromethane 30 28.0 93 30 29.5 98 (78-123) 5.40 (< 20)	Benzene	30	29.2	97	30	29.9	100	(79-120)	2.50	(< 20)
Bromodichloromethane 30 30.2 101 30 30.4 101 (79-125) 0.63 (< 20)	Bromobenzene	30	28.4	95	30	30.8	103	(80-120)	8.00	(< 20)
Bromoform 30 28.9 96 30 29.2 97 (66-130) 0.92 (< 20)	Bromochloromethane	30	28.0	93	30	29.5	98	(78-123)	5.40	, ,
Bromomethane 30 36.2 121 30 36.5 122 (53-141) 0.90 (< 20)	Bromodichloromethane	30	30.2	101	30	30.4	101	(79-125)	0.63	
	Bromoform	30	28.9	96	30	29.2	97	(66-130)	0.92	
Carbon disulfide 45 44.1 98 45 43.5 97 (64-133) 1.30 (< 20)	Bromomethane	30	36.2	121	30	36.5	122	(53-141)	0.90	
	Carbon disulfide	45	44.1	98	45	43.5	97	(64-133)	1.30	(< 20)

Print Date: 09/15/2021 11:14:19AM

Blank Spike ID: LCS for HBN 1215678 [VXX37815]

Blank Spike Lab ID: 1635833 Date Analyzed: 09/11/2021 13:57

QC for Samples: 1215678006

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37815]

Spike Duplicate Lab ID: 1635834 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	30.1	100	30	29.8	99	(72-136)	0.84	(< 20)
Chlorobenzene	30	29.1	97	30	29.1	97	(82-118)	0.13	(< 20)
Chloroethane	30	33.3	111	30	32.2	107	(60-138)	3.30	(< 20)
Chloroform	30	29.1	97	30	28.9	96	(79-124)	0.73	(< 20)
Chloromethane	30	26.9	90	30	26.5	88	(50-139)	1.30	(< 20)
cis-1,2-Dichloroethene	30	28.4	95	30	29.4	98	(78-123)	3.40	(< 20)
cis-1,3-Dichloropropene	30	31.0	103	30	30.4	101	(75-124)	2.20	(< 20)
Dibromochloromethane	30	29.6	99	30	29.9	100	(74-126)	1.00	(< 20)
Dibromomethane	30	29.5	98	30	30.1	100	(79-123)	2.30	(< 20)
Dichlorodifluoromethane	30	32.1	107	30	31.4	105	(32-152)	2.20	(< 20)
Ethylbenzene	30	30.5	102	30	29.1	97	(79-121)	5.00	(< 20)
Freon-113	45	45.0	100	45	44.5	99	(70-136)	1.10	(< 20)
Hexachlorobutadiene	30	28.5	95	30	27.1	90	(66-134)	5.00	(< 20)
Isopropylbenzene (Cumene)	30	31.0	103	30	31.1	104	(72-131)	0.24	(< 20)
Methylene chloride	30	28.6	95	30	28.5	95	(74-124)	0.21	(< 20)
Methyl-t-butyl ether	45	46.6	104	45	47.1	105	(71-124)	1.10	(< 20)
Naphthalene	30	27.0	90	30	30.3	101	(61-128)	11.40	(< 20)
n-Butylbenzene	30	27.3	91	30	28.4	95	(75-128)	3.90	(< 20)
n-Propylbenzene	30	31.4	105	30	33.3	111	(76-126)	5.70	(< 20)
o-Xylene	30	31.0	103	30	30.5	102	(78-122)	1.50	(< 20)
P & M -Xylene	60	63.5	106	60	60.6	101	(80-121)	4.60	(< 20)
sec-Butylbenzene	30	29.6	99	30	31.2	104	(77-126)	5.10	(< 20)
Styrene	30	30.3	101	30	30.3	101	(78-123)	0.17	(< 20)
tert-Butylbenzene	30	30.3	101	30	32.3	108	(78-124)	6.40	(< 20)
Tetrachloroethene	30	29.4	98	30	28.4	95	(74-129)	3.30	(< 20)
Toluene	30	29.0	97	30	28.2	94	(80-121)	2.80	(< 20)
trans-1,2-Dichloroethene	30	29.1	97	30	29.0	97	(75-124)	0.59	(< 20)
trans-1,3-Dichloropropene	30	30.9	103	30	31.6	105	(73-127)	2.10	(< 20)
Trichloroethene	30	28.9	96	30	29.8	99	(79-123)	2.80	(< 20)
Trichlorofluoromethane	30	32.4	108	30	32.0	107	(65-141)	1.20	(< 20)
Vinyl acetate	30	31.9	106	30	32.4	108	(54-146)	1.40	(< 20)
Vinyl chloride	30	31.5	105	30	31.0	103	(58-137)	1.80	(< 20)
Xylenes (total)	90	94.5	105	90	91.1	101	(79-121)	3.60	(< 20)

Print Date: 09/15/2021 11:14:19AM

Blank Spike ID: LCS for HBN 1215678 [VXX37815]

Blank Spike Lab ID: 1635833 Date Analyzed: 09/11/2021 13:57

QC for Samples: 1215678006

Spike Duplicate ID: LCSD for HBN 1215678

[VXX37815]

Spike Duplicate Lab ID: 1635834 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spik	(e (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		108	30		102	(81-118)	5.90	
4-Bromofluorobenzene (surr)	30		100	30		104	(85-114)	3.70	
Toluene-d8 (surr)	30		100	30		97	(89-112)	3.60	

Batch Information

Analytical Batch: VMS21162 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37815
Prep Method: SW5030B

Prep Date/Time: 09/11/2021 13:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/15/2021 11:14:19AM

SGS North America Inc. CHAIN OF CUSTODY RECORD

1215678

P# 365949

														www.us.	sgs.com
	CLIENT: Ahtney Frai	ing Option	Service	25									filled ou nalysis.	t.	
-	Ahtner Engi contact: Joel Brann	PHONE #: (907) 77	1-440	+	Sec	tion 3					Pres	ervative			Page <u>1</u> of <u>1</u>
-		PROJECT/ PWSID/ PERMIT#: 2030 E-MAIL: 3870			# C			150	, kc	≥ Age of the same			//		
	REPORTS TO: 3001 Brann Anthaiabbahtm. net INVOICE TO: ACSAPAAhtma	Profile #:9h+n	a labara	intra, aet	0 N T A I N	Grab MI (Multi-incre-	101	102	09	AH 8270-SIM.	Analys	is*			NOTE: *The following analyses require specific method and/or compound list: BTEX,
	RESERVED for lab use SAMPLE IDENTIFIC	DATE	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	mental)	ano AK101	DRO-AK102	VOC 8260	PAH 82					Metals, PFAS REMARKS/LOC ID
	1 AC 21-GRW-001-0		1250	W	3	Grab			X						
	DAL 21-GRW-002-1 3 AL 21-GRW-003-1 4) AL 21-GRW-903-0 DAL 21-GRW-004- 6) AL 21-GRW-005-			W	3	Grab			$\frac{1}{2}$						
on 2	4) AL 21-GRW-903-0	-	1455	W	3	Grab			X						
Section	DAL 21-GRW-004-	EB 08/31/21	1610	W	3	Glub			X						
0,	6 AL 21-GRW-005-	TB 69/1/21	0900	W	1	Grab			X						Trip Blank
								2	Secti	on 1	DOD D	roject?	Yes (No)	Data Do	liverable Requirements:
	Relinquished By: (1)	Date 4[1[202]	Time <i>0</i> 900	Received By			//		Coole		DODF	Tojectr	165 (10)	Data De	ilverable nequirements.
ion 5	Relinquished By (2)	Date 9-1-21	Time	Received By)			Reque:	sted Tu Jard	rnaround TA†		and/or Spe	cial Instruc	tions:
) Seo	Relinquished By: (3)	Date	Time	Received By	:	•			Ah	c:4.0	Ats	<u>~</u> ,	$\widehat{\wedge}$	Chain o	f Custody Seal: (Circle)
	Relinquished By: (4)	Date	Time	Received Fo	r Labor	atory By:	1/1/	ı	Temp		c: Mbie			ANC: 15	
		9/2/21	0948	Mual	M	Mu	. MK			Deli	very Metl	nod: Ha	nd Delivery	[] Comme	rical Delivery []

e-Sample Receipt Form FBK

1215678

SGS Workorder #:

Ahtna

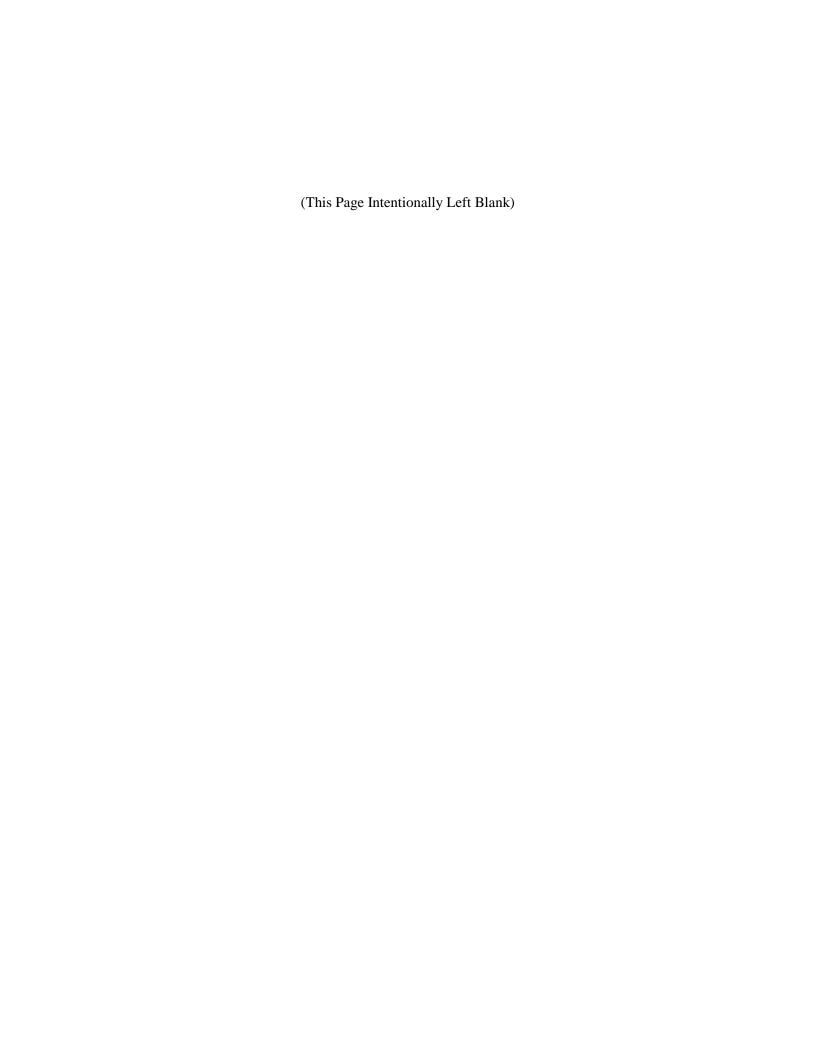
Chain of Custody / Temperature Requirements Were Custody Seals intact? Note # & location Vere COC accompanied samples? For poor in the samples received in COC corresponding coolers? NA **Exemption permitted if sampler hand carries/description of the samples received in COC corresponding coolers? Temperature blank compliant* (i.e., 0-6 °C after CF)? If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted if neither is available. **If >6 °C, were samples collected <8 hours ago? If <0 °C, were sample containers ice free? Use form FS-0029 if more space is needed.	lelivers.
COC accompanied samples? Ves	
DOD: Were samples received in COC corresponding coolers? **Exemption permitted if chilled & collected <8 hours ago, or for samples where chilling is not required to the right. "ambient" or "chilled" will be noted if neither is available. *If <6°C, were samples collected <8 hours ago? *If <0°C, were sample containers ice free? *If <0°C, were sample at non-compliant temperature. *If <0°C, were sample at non-compliant temperature. *If <0°C, were sample containers ice free? *If <0°C, were sample at non-compliant temperature. *If <0°C, were sample containers ice free? *If <0°C, were s	
**Exemption permitted if chilled & collected <8 hours ago, or for samples where chilling is not required to the reperture blank compliant* (i.e., 0-6 °C after CF)? Temperature blank compliant* (i.e., 0-6 °C after CF)? Temperature blank compliant* (i.e., 0-6 °C after CF)? Cooler ID: Cooler	
Temperature blank compliant* (i.e., 0-6 °C after CF)? If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted if neither is available. *If >6°C, were samples collected <8 hours ago? If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature .	
If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted if neither is available. *If >6°C, were samples collected <8 hours ago? If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature.	ed
If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted if neither is available. *If >6°C, were samples collected <8 hours ago? If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature.	ID: D62
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted if neither is available. *If >6°C, were samples collected <8 hours ago? If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature.	ID:
be noted if neither is available. *If >6°C, were samples collected <8 hours ago? If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature .	ID:
If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature.	ID:
If <0°C, were sample containers ice free? Note: Identify containers received at non-compliant temperature .	
Note: Identify containers received at non-compliant temperature .	
Note: Identify containers received at non-compliant temperature .	
USC IOTH F3-0029 II HIOTE SPACE IS NEEDED.	
4、表面表現である。2015年19日2日 2月1日 (1915年19日2日) 1915年19日 (1915年19日2日) 1915年19日 (1915年19日 - 1915年19日 -	
Holding Time / Documentation / Sample Condition Requirements Note: Refer to form F-083 "Sample Guide" for specific holding	a timos
Do samples match COC** (i.e.,sample IDs,dates/times collected)? N/C	g urnes.
**Note: If times differ <1hr, record details & login per COC.	
***Note: If sample information on containers differs from COC, SGS will default to COC information	
Were samples in good condition (no leaks/cracks/breakage)? Yes	
Were analytical requests clear? (i.e., method is specified for analyses	
with multiple option for analysis (Ex: BTEX, Metals)	
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Yes	
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? N/C	
Were all soil VOAs field extracted with MeOH+BFB? N/A	
For Rush/Short Hold Time, was RUSH/Short HT email sent? N/A	
Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.	
Additional notes (if applicable):	
SGS Profile # 0	

e-Sample Receipt Form

SGS Workorder #:

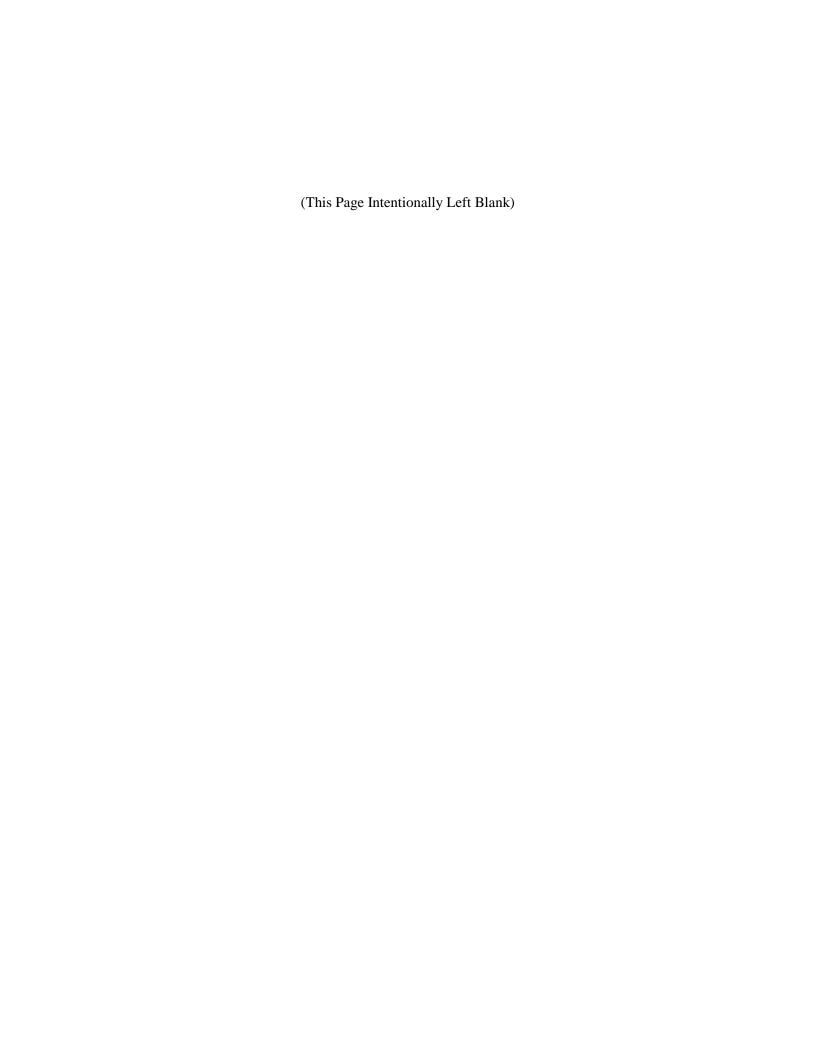
1215678

Review Criteria	Condition (Yes	es, No, N/A Exceptions Noted below						
Chain of Custody / Temperature Requi	<u>irements</u>		N/A	Exemption permitted	if sampler h	nand carries/deliv	ers.	
Were Custody Seals intact? Note # &	location	1F, 1B						
COC accompanied s	amples? Yes							
DOD: Were samples received in COC corresponding	coolers? N/A							
Yes **Exemption permitted if	f chilled & colle	ected <8 l	nours	ago, or for samples wi				
Temperature blank compliant* (i.e., 0-6 °C aft	er CF)? Yes	Cooler	ID:	1	@ 4	°C Therm. ID:	D58	
		Cooler	ID:	ı	@	°C Therm. ID:		
If samples received without a temperature blank, the "cooler temperature" w documented instead & "COOLER TEMP" will be noted to the right. "ambient" or		Cooler	ID:		@	°C Therm. ID:		
will be noted if neither is available.		Cooler	_		@	°C Therm. ID:		
		Cooler	ID:		@	°C Therm. ID:		
*If >6°C, were samples collected <8 hour	s ago?	Į						
W 000	(0 ll							
If <0°C, were sample containers ic	e free? N/A	Į						
Note: Identify containers received at non-compliant temperatur	o Hee							
form FS-0029 if more space is i								
·								
Holding Time / Documentation / Sample Condition R	Requirements	Note: Re	fer to fo	orm F-083 "Sample Guide	e" for specific	holding times.		
Were samples received within holding	ng time? Yes							
	-							
Do samples match COC** (i.e.,sample IDs,dates/times coll								
**Note: If times differ <1hr, record details & login per C								
***Note: If sample information on containers differs from COC, SGS will default to								
Were analytical requests clear? (i.e., method is specified for a with multiple option for analysis (Ex: BTEX,								
man manapro option for analysis (Ext. 512),	otaloj							
			N/A	***Exemption permitt	ed for meta	ls (e.g.200.8/602	0B).	
Were proper containers (type/mass/volume/preservative**	*)used? Yes		1				/-	
2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,	1						
Volatile / LL-Hg Red	quirements							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa	amples? Yes							
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? Yes							
Were all soil VOAs field extracted with MeOF	H+BFB? N/A							
Note to Client: Any "No", answer above indicates no	on-compliance	with star	dard	procedures and may ir	mpact data	quality.		
Addition	al notes (if	applicat	ole):					
			,-					


Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1215678001-A	HCL to pH < 2	ОК			
1215678001-B	HCL to pH < 2	ОК			
1215678001-C	HCL to pH < 2	OK			
1215678002-A	HCL to pH < 2	ОК			
1215678002-B	HCL to pH < 2	ОК			
1215678002-C	HCL to pH < 2	ОК			
1215678003-A	HCL to pH < 2	OK			
1215678003-B	HCL to pH < 2	ОК			
1215678003-C	HCL to pH < 2	ОК			
1215678004-A	HCL to pH < 2	ОК			
1215678004-B	HCL to pH < 2	OK			
1215678004-C	HCL to pH < 2	ОК			
1215678005-A	HCL to pH < 2	ОК			
1215678005-B	HCL to pH < 2	ОК			
1215678005-C	HCL to pH < 2	OK			
1215678006-A	HCL to pH < 2	ОК			
1215678006-B	HCL to pH < 2	ОК			
1215678006-C	HCL to pH < 2	OK			

Container Condition Glossary


Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

ATTACHMENT 6

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed By:
Alexander Thompson
Title:
Chemist
Date:
September 29, 2021
Consultant Firm:
Arctic Data Services, LLC for Ahtna Engineering Services, LLC
Laboratory Name:
SGS North America, Inc. – Anchorage, AK
Laboratory Report Number:
1215678
Laboratory Report Date:
September 15, 2021
CS Site Name:
Gaffney West
ADEC File Number:
102.38.084
Hazard Identification Number:
4503

Note: Any N/A or No box checked must have an explanation in the comments box.

1.	Laboratory
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	Samples were received and analyzed by SGS North America, Inc. in Anchorage, Alaska.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \square No \square N/A \boxtimes Comments:$
	No samples were transferred to another laboratory.
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3.	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes⊠ No□ N/A□ Comments:
	The samples were dropped off in a single cooler at the SGS Fairbanks receiving office and received with intact custody seals and within the acceptable temperature range. The cooler was shipped to the SGS Anchorage laboratory and received within the acceptable temperature range.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	$Yes \square No \square N/A \boxtimes Comments:$
	There were no sample receiving discrepancies.

 e. Data quality or t 	isability affect	red?
		Comments:
Data quality and usa	ability were no	ot affected.
Case Narrative		
a. Present and und	derstandable?	
Yes⊠ No		Comments:
10323 110		Comments.
b. Discrepancies,	errors, or QC	failures identified by the lab?
Yes⊠ No	\square N/A \square	Comments:
The laboratory repo		ive identified a number of QC anomalies which are addressed in the s checklist.
c. Were all correc	tive actions do	ocumented?
Yes□ No	\square N/A \boxtimes	Comments:
No corrective action	ons were report	ted or performed.
d. What is the effe	ect on data qua	ality/usability according to the case narrative?
		Comments:
The case narrative	makes no cond	clusions regarding data quality or usability.
mples Results		
a Correct analyses	os parformad/r	eported as requested on COC?
-	•	•
Yes⊠ No	□ N/A□	Comments:
b. All applicable h	nolding times 1	met?
Yes⊠ No	□ N/A□	Comments:
c. All soils reporte	ed on a dry we	eight basis?
	□ > T/ > □	Comments:
Yes□ No	\square N/A \boxtimes	
Yes□ No No soil samples we		
No soil samples we	ere reported in	

Refer to the table below for further details (* denotes a limit exceeds the GCL).

Client Sample ID	Method	Analyte	Units	DL		LOD		LOQ		PAL
21-GRW-001-GW	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075
21-GRW-002-GW	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075
21-GRW-003-GW	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075
21-GRW-903-GW	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075
21-GRW-004-EB	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075
21-GRW-005-TB	8260D	1,2,3-Trichloropropane	mg/L	0.00031	*	0.0005	*	0.001	*	0.0000075

e. Data quality or usability affected?

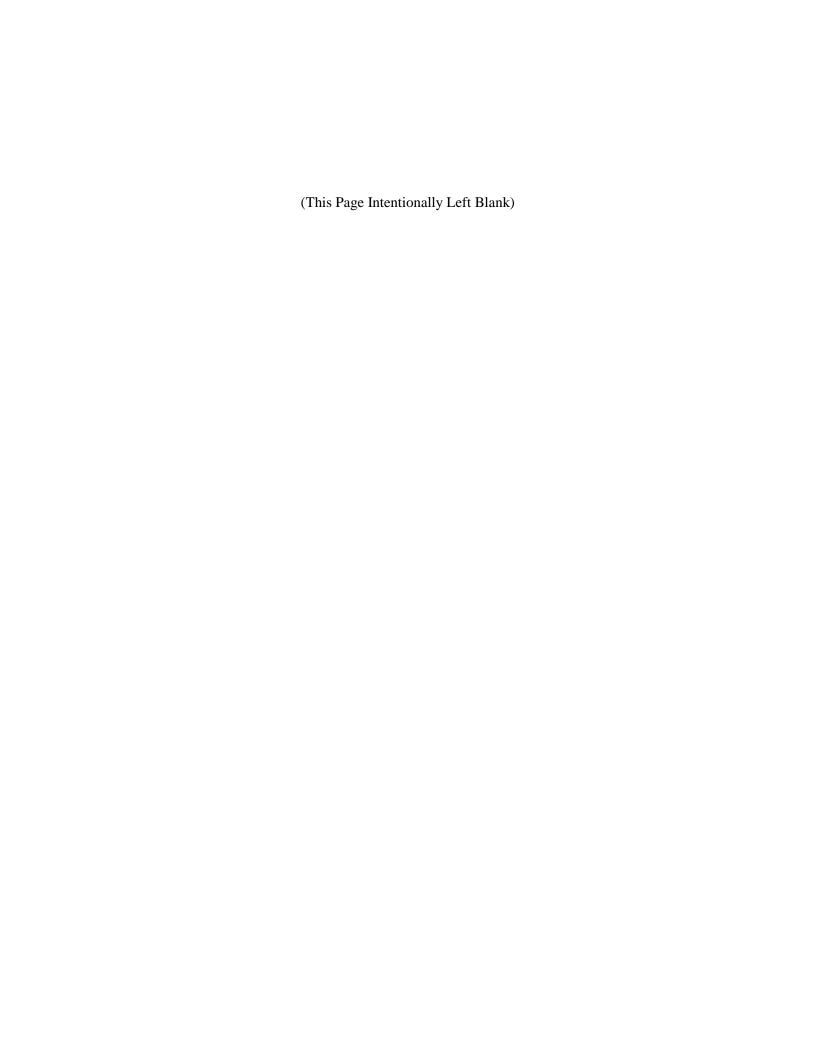
Data quality is not affected. Non-detect results cannot be used to rule out the presence of TCP at concentrations above the cleanup level for the sampled locations. Project sample concentrations of tetrachloroethene (PCE) exceed GCLs, and TCP is not a contaminant of concern for the site, so there is no impact to data usability from poor sensitivity of TCP.

6. QC Samples

a. Method Blank	
i. One method blank repo	rted per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□	Comments:
ii. All method blank result	s less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□	Comments:
iii. If above LOQ or projec	t specified objectives, what samples are affected? Comments:
No samples were affected.	
iv. Do the affected sample	(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠	Comments:
NA; see above.	
v. Data quality or usability	y affected? Comments:
Data quality and usability were	not affected.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
No metals/inorganic hazardous substance analyses were performed in this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes□ No⊠ N/A□ Comments:
Methylene chloride was recovered above laboratory control limits in the LCS and LCSD associated with 8260D prep batch VXX37808. However, the analyte was not detected in any associated project samples, thus data quality is not affected.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \square No \boxtimes N/A \square Comments:
The LCS/LCSD RPD for 1,2-dibromo-3-chloropropane was above laboratory control limits for the LCS/LCSD associated with prep batch VXX37810. 1,2-Dibromo-3-chloropropane was not detected in any associated project samples, thus data quality is not affected.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
No samples were affected.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
NA; see above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality and usability were not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)


Note: Leave blank if not required for project

i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \square Comments:
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \square$ Comments:
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes \square No \square N/A \square Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
Yes \square No \square N/A \square Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \square Comments:
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
$Yes \boxtimes No \square N/A \square$ Comments:

ii.		d objectives, i	f applicabl	le? (A	rted and within r K Petroleum me other analyses se	thods:	50-150	%R fo	or field
	Yes□ No⊠	N/A□ C	omments:						
	260D surrogate 4	-bromofluorob	enzene (4-					ory co	ntrol limits
	in sample 21-GRW-002-GW. Refer to the table below for further information.								
	Client Sample	ID Surro	D Surrogate DF PercentRecovery LCL UCL recovery					ery	
	21-GRW-002-G	W 4-Bromofluo	probenzene	1.0	117.0	85.0	114.0	high	
Affect	 iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes ⋈ No ⋈ N/A ⋈ Comments: Affected results are qualified as estimated, biased high, and flagged 'J+'. Refer to the table below for a full list of affected results. 								
	Client Sample ID	Lab Sample ID	Method		Analyte	CAS			QC Flag
	21-GRW-002-GW	1215678002			!-Dichloroethene	156-59			
	21-GRW-002-GW	1215678002		Tetrachloroethene (PCE)		127-18			+
	21-GRW-002-GW	1215678002	8260D	Trichloroethene (TCE)		79-01-6 8.00)() J	+
Data q	iv. Data quality or usability affected? Comments: Data quality is affected as described above. Usability of the cis-1,2-dichloroethene result is minimal, as the estimated concentration is below the GCL, despite the high bias. Tetrachloroethene and trichloroethene results should be used with a degree of caution, as the results are within an order of								
magni	tude above the re	levant GCL ar	d are bias	ed hig	gh.				
e. Tri	ip Blanks One trip blank (If not, enter ex			ysis a	and for each cool	er cont	taining	volati	le samples?
	Yes \boxtimes No \square N/A \square Comments:								
Sampl	e 21-GRW-005-7			ip bla	nk sample and ar	nalyzed	d for V	OCs b	y 8260D.
ii.		ed to transport ent explaining	the trip b	lank a	and VOA samples				
Sampl	es were submitte								
Sampl	es were submitte	u iii a siligic co							

iii. All results less than LOQ and project specified objectives?
Yes⊠ No□ N/A□ Comments:
No analytes were detected in the trip blank sample.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
No samples were affected.
v. Data quality or usability affected? Comments:
Data quality and usability were not affected.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes \boxtimes No \square N/A \square Comments:
Sample 21-GRW-903-GW was submitted as a field duplicate of sample 21-GRW-003-GW.
ii. Submitted blind to lab?
Yes \boxtimes No \square N/A \square Comments:
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = Sample Concentration$
R_2 = Field Duplicate Concentration
Yes \square No \boxtimes N/A \square Comments:
RPDs were compared to the 30% recommended measurement quality objective (MQO) for water samples. RPDs were calculated where an analyte was quantitatively detected (above the LOQ) in at least one sample. No RPDs exceeded the 30% recommended MQOs, where calculated.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Data quality and usability were not affected.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes⊠ No□ N/A□ Comments:
Sample 21-GRW-004-EB was submitted as an equipment blank sample, associated with all collected samples for this work order.

	1. All results less than LOQ and project specified objectives?
	Yes \square No \boxtimes N/A \square Comments:
	Chloroform and toluene were detected below the LOQ in the EB sample.
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	Chloroform and toluene were not detected in any associated project samples, thus no results are considered affected.
	iii. Data quality or usability affected? Comments:
	Data quality and usability were not affected.
7. <u>O</u>	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes \square No \square N/A \boxtimes Comments:
	There were no additional laboratory-specific qualifiers applied.

