

July 2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

ADEC File Number: 2616.38.005

SLR Ref: 105.00151.21001

October 2021

2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

Prepared for:

NORTH PACIFIC SEAFOODS INCORPORATED

4 Nickerson Street, Suite 400 Seattle, WA 98109

This document has been prepared by SLR International Corporation. The material and data in this Report were prepared under the supervision and direction of the undersigned.

Stan Flagel Principal Scientist

EXECUTIVE SUMMARY

Field work was completed by SLR International Corporation (SLR) on July 30 and 31, 2021. Field activities included gauging depth to groundwater, installation of a well point beneath the Cold Storage Building, collection of groundwater samples for analytical test from the nine existing monitoring well network, and collection of surface water samples from two seeps located on the north side of the Cold Storage Building. A groundwater sample could not be collected at the well point beneath the Cold Storage Building due to insufficient water volume.

SLR measured depth to groundwater to the nearest 0.01 feet (ft) at all nine permanent monitoring wells. The groundwater elevations measured in August 2021 were consistent with previous summer and fall sampling events, but higher than those measured in March 2021. The March 2021 groundwater elevations were between 0.25 ft and 2 ft lower than those measured during the summer and fall, likely the result of the frozen ground and reduced recharge during the winter months.

Gasoline range organics (GRO) were detected in three of six primary groundwater samples. The reported concentrations ranged from 108 micrograms per liter (μ g/L) to 168 μ g/L. All report GRO detections were below the ADEC groundwater cleanup level of 2,200 μ g/L.

Diesel range organics (DRO) were reported in groundwater samples in eight of nine samples with concentrations ranging from 258 μ g/L at MW-9 to 24,000 μ g/L at MW-1. Severn of the eight samples had reported DRO concentrations exceeding the ADEC groundwater cleanup level of 1,500 μ g/L.

Residual range organics (RRO) were reported in seven groundwater samples with concentrations ranging from 196 μ g/L at MW-1 to 1,780 μ g/L at MW-2. Three groundwater samples, MW-2, MW-3 and MW-6, had reported RRP concentrations above the ADEC cleanup level of 1,100 μ g/L..

One or more benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds were reported in groundwater from monitoring wells MW-1, MW-2, and MW-8; however, all BTEX compound concentrations reported were below their respective ADEC groundwater cleanup levels.

The samples collected from MW-1 and MW-2 were analyzed for the full suite of petroleum related volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). In addition to BTEX, four VOCs, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-isopropyltoluene, and isopropylbenzene (Cumene), were reported at low concentrations below their respective ADEC cleanup levels. Naphthalene with reported concentrations at MW-1 and MW-2, 5.15 μ g/L and 19.7 μ g/L, respectively, exceeded the ADEC groundwater cleanup level of 1.7 μ g/L. Two PAHs, 1-methylnaphthalene and fluorene, were reported at low concentrations below their respective ADEC cleanup levels

Analytical results from samples collected in 2021 indicate that petroleum hydrocarbon concentrations in groundwater in spring of 2021 were generally consistent with concentrations measured in previous years during the late summer or fall.

CONTENTS

EXE	ECUTIN	VE SUMMARY	i					
ACI	RONYI	MS	iv					
1.	INTR	RODUCTION	5					
	1.1	Physical Setting	5					
	1.2	Project Background						
		1.2.1 2014 Investigation Activities						
		1.2.2 2015 Investigation and Remediation Activities						
		1.2.3 2016 Investigation and Remediation Activities						
		1.2.4 2017 Investigation and Remediation Activities						
		1.2.6 2019 Groundwater Monitoring						
		1.2.7 2020 Groundwater Monitoring						
		1.2.8 March 2021 Groundwater Monitoring						
	1.3	Objectives and Scope of Work	10					
2.	REG	ULATORY CRITERIA	11					
3.	FIEL	.D ACTIVITIES	12					
	3.1	Groundwater Gauging and Sampling	12					
		3.1.1 Low-Flow Well Sampling Methodology						
		3.1.2 Purge and Sample Well Sampling Methodology						
	3.2	Surface Water Seep Sampling	13					
	3.3	Sample Management	13					
	3.4	Analytical Sampling Program	13					
	3.5	Field Notebook						
	3.6	Quality Assurance and Quality Control	15					
	3.7	Calibration Procedures	15					
	3.8	Decontamination and Waste Management	15					
	3.9	Work Plan Deviations	15					
4.	INVE	ESTIGATION RESULTS						
	4.1	Groundwater Gauging and Sampling	16					
		4.1.1 Groundwater Gauging						
		4.1.2 Groundwater Sampling						
	4.2	Seep Sampling	17					
5.	SUM	IMARY AND RECOMMENDATIONS	18					
	5.1	Groundwater	18					
	5.2	Surface Water	18					
	5.3	Conceptual Site Model	18					
	5.4	Recommendations	19					
6	RFFI	FRENCES	20					

CONTENTS (CONTINUED)

LIMITATIONS	2	21
-------------	---	----

FIGURES

Figure 1 Site Location and Facility Map
Figure 2 Groundwater Monitoring Well Map
Figure 3 Groundwater Elevation and DRO Results

TABLES

Table 1 Groundwater Elevations
 Table 2 Groundwater Analytical Results
 Table 3 Historical DRO and BTEX Results
 Table 4 Surface Water Analytical Results

APPENDICES

Appendix A Photograph Log

Appendix B Field Notes and Field Forms

Appendix C Quality Assurance Report, ADEC Checklists, and Laboratory data

Appendix D Conceptual Site Model

ACRONYMS

plus or minusC degrees Celsius

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AWQS Alaska Water Quality Standards

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and total xylenes

COC chain of custody

CSM Conceptual Site Model

CY cubic yards

DRO diesel-range organics

EPA United States Environmental Protection Agency

ft feet

GRO gasoline-range organics

LOD limit of detection

LOQ limit of quantitation

µg/l micrograms per liter

mg/kg milligrams per kilogram

ml milliliters

ND not detected

NPSI North Pacific Seafoods Incorporated PAH polycyclic aromatic hydrocarbons

PID photoionization detector
RRO residual-range organics
SGS SGS North America, Inc.
SIM Selective Ion Monitoring
Site Red Salmon Facility

SLR SLR International Corporation
TAH total aromatic hydrocarbons
TAqH total aqueous hydrocarbons
VOC volatile organic compound

1. INTRODUCTION

SLR International Corporation (SLR) was contracted by North Pacific Seafoods Incorporated (NPSI) to monitor groundwater impacts at the Red Salmon Facility (Site) located in Naknek, Alaska and identified by Alaska Department Environmental Conservation (ADEC) Hazard Identification Number 26421. This report provides a description of field activities conducted in July 2021 including groundwater analytical results and recommendations for future management of the Site.

1.1 PHYSICAL SETTING

The Site is located at Mile Marker 1.5 of the Alaska Peninsula Highway between the highway and the north shore of the tidally influenced Naknek River (Figure 1). The Site consists of multiple buildings used for fish processing, equipment storage, offices, and worker billeting. The Site was constructed on a south facing slope leading to the Naknek River. The measured depth to groundwater varies from approximately 1 to 2 feet (ft) below ground surface (bgs) in monitoring wells located nearest the river, to approximately 10 ft bgs in the upslope monitoring wells. The Site receives approximately 20 inches of annual precipitation.

1.2 PROJECT BACKGROUND

Petroleum hydrocarbon-impacted soil was first observed in spring 2014 near a former valve box adjacent to the Fisherman Gear Storage Building. The valve box was connected by above-ground piping to above-ground Bunker C storage tanks (Figure 2). The source for the impacted soil is believed to be releases of petroleum products from the inactive valve box. The valve box was dismantled and removed. The Bunker C fueling tanks were taken out of service many years ago and are mostly empty except for a small volume of residual product. When the spill was first observed in spring 2014, onsite NPSI personnel excavated visibly impacted soil from around the valve box and placed the excavated soil in fish totes for disposal. The impacted soil was shipped to the Lower 48 for disposal.

Since 2014, four additional releases have been identified in the vicinity of the Generator Building (Figure 1). Soil and groundwater investigations, as well as soil removal activities, have been completed at the Site to address environmental impacts of these releases. Investigation and remediation activities are summarized in the following sections.

1.2.1 2014 INVESTIGATION ACTIVITIES

SLR conducted subsurface investigation activities in the vicinity of the former valve box release adjacent to the Fisherman Gear Storage Building (Figure 1) in September 2014 (SLR, 2014). The investigation activities included:

- Excavating one test pit in the source area;
- Advancing 17 hand auger soil borings to delineate the lateral extent of contaminated soil;

- Collecting soil samples for field and/or laboratory analysis from each test pit and soil boring; and
- Collecting soil samples for disposal profiling.

The analytical results indicated that soil from the test pit and borings contained diesel range organics (DRO) concentrations that exceeded the ADEC Method Two soil cleanup level of 250 milligrams per kilogram (mg/kg) (SLR, 2014). None of the soil samples collected contained residual range organics (RRO) or polycyclic aromatic hydrocarbons (PAHs) concentrations greater than their respective ADEC Method Two soil cleanup levels.

1.2.2 2015 INVESTIGATION AND REMEDIATION ACTIVITIES

Based on the 2014 results, additional investigation and remediation activities were planned and completed in 2015 and included:

- Inspecting areas downslope of the Fisherman Gear Storage Building (Figure 2) to identify seeps and potential discharges to the Naknek River;
- Excavating and removing approximately 50 cubic yard (CY) of hydrocarbon impacted soil on the west side of the Fisherman Gear Storage Building;
- Collecting and analyzing confirmation samples from the excavation floor and side walls;
- Completing and sampling two step-out test pits north-northwest of the excavation area;
- Installing four groundwater monitoring wells (MW1 through MW4) upslope and downslope of the excavation area; and
- Groundwater and seep water sampling and analysis.

Results from soil confirmation samples reported DRO concentrations above the most stringent ADEC Method Two soil cleanup level (i.e., migration to groundwater) after the excavation work was completed (SLR, 2015a). Expansion of the excavation was halted once 50 CY of impacted soil had been removed due to limitations with storage and transportation, and consistent with the Work Plan (SLR, 2105b). Excavated soil was transported to Seattle, Washington via Alaska Marine Lines and then transported to CEMEX (now CADMAN) in Everett, Washington for final disposal.

Analytical results from the two test pits showed no hydrocarbon impacts approximately 50 and 160 ft north-northwest of the excavation. To the east-southeast, soil screening and analytical testing completed in 2014 delineated the extent of soil impacts to approximately 20- to 25-ft southeast of the Fisherman Gear Storage Building (SLR, 2014).

During excavation activities, vertical digging below the depth of the water table was not considered practical for source removal. Hydrocarbon impacts below the water table were assessed by groundwater and seep water sampling. Regenesis ORC®, an oxygenated compound engineered to accelerate the biological attenuation of remaining petroleum hydrocarbon concentrations in groundwater, was spread across the floor of the excavation prior to backfilling as a treatment for impacted groundwater.

Three of four groundwater samples contained dissolved phase DRO concentrations exceeding ADEC groundwater cleanup levels. Analytical results from one of the seep water samples collected showed that, in addition to dissolved phase DRO, concentrations of RRO and benzene also exceeded ADEC groundwater cleanup levels (SLR, 2015a). The occurrence of dissolved phase benzene and RRO in the seep water was inconsistent with impacts reported in groundwater where benzene and RRO concentrations were below ADEC groundwater cleanup levels (SLR, 2015b).

1.2.3 2016 INVESTIGATION AND REMEDIATION ACTIVITIES

Based on the 2015 results, additional monitoring and remediation was implemented in 2016 as follows:

- Collection of seep water samples and analysis at Seep 1 and Seep 2 (Figure 2);
- Installation of a monitoring well (MW5) on the bank of the Naknek River beneath the Cold Storage Building;
- Groundwater sampling and analysis at five monitoring wells; and
- Removal of approximately five cubic yards of impacted soil from the Laundry Facility area.

Analytical results from the 2016 seep water samples were consistent with the 2015 results (SLR, 2016). Benzene exceeded ADEC groundwater cleanup levels and total aromatic hydrocarbon (TAH) and total aqueous hydrocarbon (TAqH) values exceeded Alaska Water Quality Standards (AWQS). The occurrence of dissolved phase benzene in the seep water was again inconsistent with the impacts reported for groundwater. The concentration of benzene in Seep 1 relative to the monitoring wells sampled suggested a potentially unique and localized source area for the impacts reported at Seep 1.

Similar to the 2015 results, DRO concentrations in groundwater from MW1 and MW2 (Figure 2) exceeded ADEC groundwater cleanup levels but were not detected (ND) in MW4. Benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations in MW1 and MW2 were only detected at low concentrations below the ADEC groundwater cleanup levels, and were ND at MW4. At MW5, low concentrations of DRO were detected, below the ADEC groundwater cleanup level, and all BTEX compound concentrations were ND.

Five cubic yards of soil excavated from the area near the Laundry Facility was transported to Seattle, Washington via Alaska Marine Lines and then transported to CEMEX (now CADMAN) in Everett, Washington for final disposal. Hydrocarbon impacted soil exceeding the ADEC Method Two soil cleanup levels and located beneath an active above ground fuel tank was left in place. Removing the soil below the tank safely without damaging existing infrastructure was not possible.

1.2.4 2017 INVESTIGATION AND REMEDIATION ACTIVITIES

SLR mobilized to the Site twice in 2017. The first mobilization occurred in May to investigate the extent of petroleum hydrocarbon-impacted soil associated with reported releases in April and May 2017, and to assess potential source areas associated with the existing fuel pipeline system (SLR, 2017a). The following activities were conducted between May 26 and May 29:

- Established a 40-ft by 100-ft square grid, with nodes on 10-ft centers, topographically downslope of the Generator Building as a guide for soil screening and sampling (Figure 2);
- Screened soil in-situ for the presence/absence of hydrocarbons at each grid node (49 points) using visual and olfactory observations and a photoionization detector (PID);
- Conducted additional headspace screening at grid node locations where in-situ PID readings were above background levels (1 part per million).
- Collected nine soil samples for laboratory analysis based on in-situ and headspace screening. Samples were selected from a range of PID results to assess a concentration range for hydrocarbon related compounds and delineate an area of impact;
- Created a preliminary map of fuel pipeline system identifying tanks, valves, couplings, and elbows; and
- Conducted in-situ and headspace screening at each valve, coupling, and elbow location using a PID to identify potential point sources.

In September 2017, SLR staff returned to the Site to evaluate the nature and extent of hydrocarbon impacts to soil and groundwater in the vicinity of the Fisherman Gear Storage Building, the Former Tank Farm, and the Generator Building (Figure 2), as well as to characterize impacts from the May 29, 2017 heating oil release (SLR, 2017b). In September 2017, the following activities were conducted at the Site:

- Completed 13 soil test pit/borings in the vicinity of the Fisherman Gear Storage Building, the Former Tank Farm, and the Generator Building;
- Field screened all soil samples for hydrocarbon impacts and submitted one sample from each of 12 soil test pit/borings for analytical testing;
- Completed four of the test pits downgradient of the Generator Building and Fisherman Gear storage Building as monitoring wells (MW6 to MW9);
- Collected groundwater samples from four new and five existing monitoring wells;
- Collected surface water from the two seeps;
- Analyzed all groundwater samples and surface water samples for hydrocarbon constituents; and
- Re-established and extended the 40 ft by 100 ft square grid with nodes on 10 ft centers
 created in May 2017 to 70 ft by 110 ft, conducted in-situ PID screening at all 76 nodes,
 collected 37 soil samples for PID heated headspace screening, and collected 10 soil
 samples for laboratory analysis of hydrocarbon-related compounds.

Soil results from test pits, borings, and grid sampling, showed concentrations of petroleum hydrocarbon constituents, DRO, GRO, RRO, BTEX, 1-methylnaphthalene, 2-methylnaphthalene, and/or naphthalene exceeding the most stringent ADEC Method Two soil cleanup levels in one

or more locations. Exceedances were within a limited area extending to the southeast from the Generator Building downslope to the Cold Storage Building.

Groundwater and seep water samples collected from wells MW-1 through MW-8 and seeps SW-1 and SW-2 delineate the boundaries of the dissolved phase petroleum hydrocarbon plume with concentrations of DRO, GRO, RRO, BTEX, and/or naphthalene exceeding ADEC cleanup levels at one or more well. The plume of impacted groundwater extends from the Generator Building to Cold Storage Building and is bound to the south by wells MW-4 and MW-9, to the east by well MW-5, and to the north by seep SW-2, well MW-6, and topography (i.e., hillside).

1.2.5 2018 ASSESSMENT ACTIVITIES

In 2018, one new monitoring well, MW-10, and three temporary wells, TW-1, TW-2, and TW3, were installed (Figure 2) to evaluate the upgradient and eastern limits of the dissolved phase contaminant plume. Concentrations of DRO, BTEX, and PAHs in groundwater samples collected at MW-10 were all below laboratory reporting limits and were designated non-detect (ND) (SLR, 2018). Similarly, the results from groundwater samples collected from temporary well points TW-1 and TW-2 during the 2018 event were ND. Temporary well TW-3 did not produce water and could not be sampled.

In 2018, the DRO concentrations reported at MW-4 and MW-9 represented historical highs and first-time exceedances of ADEC's groundwater cleanup levels (SLR, 2018). The DRO concentration reported for MW-9 in 2018 was inconsistent with historical results, groundwater flow patterns (i.e., MW-9 is located upgradient of known release areas), and nearby analytical results. As a result, ADEC requested that MW-9 be sampled twice in 2019, once following breakup in May and again as part of the annual sitewide monitoring event in September.

1.2.6 2019 GROUNDWATER MONITORING

SLR completed two rounds for groundwater sampling at the Red Salmon facility in 2019 (SLR, 2019a). Groundwater samples were collected at MW-9 in May, as requested by ADEC, and again in September during the annual sitewide monitoring event. Groundwater samples were collected at all nine permanent monitoring wells and at one temporary well point under the Cold Storage Building where monitoring well MW-5 had once been located.

In 2019, DRO concentrations in the vicinity of the Fisherman Gear Storage Building and former tank farm, MW-1, MW-2, and MW-4, increased relative to 2018 levels and exceeded the ADEC groundwater cleanup level at MW-1, MW-2, MW-3, MW-4, MW-5R, and MW-8. Benzene concentrations increased in 2019 relative to the 2018 levels and exceeded the ADEC groundwater cleanup level of 4.6 µg/L at monitoring wells MW-1, MW-2, and MW-7; however, at monitoring well MW-3 and MW-8, benzene concentrations decreased to below cleanup levels. The higher concentration of dissolved phase contaminates reported in 2019 were from the topographically lower area of the Site in the vicinity of the Fisherman Gear Storage Building.

1.2.7 2020 GROUNDWATER MONITORING

Groundwater and surface water samples were not collected during 2020 due to COVID-19 travel restriction in Alaska.

1.2.8 MARCH 2021 GROUNDWATER MONITORING

SLR completed a groundwater sampling event at the Red Salmon facility in March 2021. Groundwater samples were collected at six of nine permanent monitoring wells. The purpose of groundwater monitoring was to assess current hydrocarbon concentrations at the facility.

Groundwater elevations measured in March 2021 confirmed that groundwater flow is to the southeast toward the Naknek River, as has been previously reported (SLR, 2018 and SLR, 2019a). However, the depth to groundwater ranged from 0.25 ft to 2 ft lower than the 2019 fall sampling event. These differences are due to the low recharge resulting from winter conditions.

Analytical results from March 2021 were consistent with historical results from the previous fall sampling events, indicating that there is minimal temporal variation due to seasonal climate conditions (SLR, 2021a). Notable changes from fall 2019 include decreases in DRO concentrations at MW-1, MW-2, MW-4, and MW-8, as well as a lack of benzene exceedance at MW-1, MW-2, and MW-7.

1.3 OBJECTIVES AND SCOPE OF WORK

The objectives for July 2021 were to continue monitoring the extent of hydrocarbon impacts in groundwater. To satisfy the project objectives the following scope of work was proposed in 2021:

- Gauge all existing groundwater wells prior to sampling;
- Collect groundwater samples from all existing monitoring wells;
- Install a well point beneath the Cold Storage Building and collect a groundwater sample;
- Collect two surface water samples from known seeps; and
- Analyze all surface water and groundwater samples for petroleum hydrocarbon constituents.

2. REGULATORY CRITERIA

ADEC Method Two groundwater cleanup levels are specified in Title 18 of the Alaska Administrative Code (AAC), Chapter 75 (18 AAC 75) *Oil and Other Hazardous Substances Pollution Control* as amended through June 24, 2020 (ADEC, 2021).

The applicable groundwater cleanup levels for the Site are provided in Table C of 18 AAC 75.345 and are as follows:

- Benzene: 4.6 micrograms per liter (µg/l);
- Toluene: 1,100 μg/l;
- Ethylbenzene: 15 μg/l;
- Total xylenes: 190 µg/l;
- GRO: 2,200 µg/l;
- DRO: 1,500 μg/l;
- RRO: 1,100 μg/l; and
- PAHs (individual compound cleanup levels as specified in Table C).

For surface water collected from seeps, the AWQS for Designated Uses (18 AAC 70.020[b]) (ADEC, 2020) are applicable to the Site. The water quality standards for the applicable compounds analyzed are as follows:

- TAH: 10 μg/l
- TAqH: 15 μg/l

3. FIELD ACTIVITIES

Field work was completed by SLR on July 30 and 31, 2021. The SLR field lead met the requirements of "qualified environmental professionals" under 18 AAC 75.333. All field activities were completed consistent with the 2021 Groundwater Monitoring Work Plan (Work Plan; SLR, 2021b) and the ADEC Field Sampling Guidance (ADEC, 2019). Field photos documenting field activities are provided in Appendix A.

3.1 GROUNDWATER GAUGING AND SAMPLING

Groundwater gauging was completed at nine permanent well locations. Groundwater samples were collected from each of the nine permanent well locations (Figure 2). Depth to groundwater was gauged using an electronic oil/water interface probe prior to sampling. All measurements were made to the nearest 0.01 ft and recorded on Groundwater Sampling Forms provided in Appendix B.

3.1.1 LOW-FLOW WELL SAMPLING METHODOLOGY

The low-stress, low-flow groundwater sampling method was used to collect samples at five of the nine wells, MW-2, MW-4, MW-7, MW-8, and MW-10. The low-flow groundwater sampling method requires purging at a low rate to maintain minimal drawdown (ADEC, 2019). The purge and sample method were used at the remaining four wells, MW-1, MW-3, MW-6, and MW-9. Monitoring wells MW-1, MW-3, MW-4, MW-7, MW-8, and MW-9 were sampled using a peristaltic pump and Teflon-lined tubing. Monitoring wells MW-2, MW-6, and MW-10 were sampled with a downhole monsoon pump. The purge and sample method required purging a well dry and allowing it to recharge to 80% of its pre-purge volume before sampling. The sampling equipment used at each well was documented on Groundwater Sampling Forms provided in Appendix B.

Water quality parameters were measured at regular intervals, approximately every 4 to 5 minutes during purging and were recorded on the Groundwater Sampling Forms. Purging was considered complete once water quality parameters and drawdown had stabilized after three successive discrete measurements. Parameters included the following:

- Temperature (°C), plus or minus (±) 3 percent (minimum of ± 0.2 °C);
- pH, ± 0.1 standard units;
- Specific conductance, ± 3 percent;
- Oxidation-reduction potential, ± 10 millivolts;
- Dissolved oxygen, ± 10 percent; and
- Turbidity, qualitative observations of visual clarity.

Water quality parameters and drawdown were recorded on Groundwater Sampling Forms, provided in Appendix B.

3.1.2 PURGE AND SAMPLE WELL SAMPLING METHODOLOGY

At monitoring wells MW-1, MW-3, MW-6, and MW-9, the water yield was insufficient to maintain continuous pumping without purging the well dry. In these cases, a sample was collected from the well after it was purged dry and had recharged to at least 80 percent of its pre-purge volume, if practicable. After sufficient recharge had occurred (up to 24 hours after purging dry), water was pumped directly into the sample containers without any additional purging.

3.2 SURFACE WATER SEEP SAMPLING

Two surface water samples were collected, one each from Seep 1 and Seep 2 (Figure 2). Samples were collected by filling a laboratory cleaned, non-preserved, amber bottle at the discharge point of each seep. Care was taken to minimize contact with vegetation and sediment. Water from the non-preserved bottle was transferred into preserved volatile organic analysis vials, and the non-preserved bottle was then topped off and capped. Seep conditions were noted in the field notebook and Seep Sampling Forms, provided in Appendix B.

3.3 SAMPLE MANAGEMENT

All water samples were labeled and placed into a chilled cooler under Chain of custody (COC) procedures before being transported to SGS in Anchorage. Sample and cooler temperatures were maintained between 0 °C and 6 °C throughout transport to the laboratory. Samples were handled and transported in a manner that maintained sample integrity and did not exceed specified holding times. Each sample and any accompanying trip blank(s) were documented on a COC form.

Information on the sample container labels was reviewed to verify that the information was consistent with information on the COC form and in the field notebook or field forms. The COC form was sealed in the sample cooler during transport to the laboratory. Each cooler was sealed with a signed custody seal for shipment. COC forms are provided as part of the laboratory deliverable provided in Appendix C.

3.4 ANALYTICAL SAMPLING PROGRAM

Groundwater samples collected at the Site were analyzed for the following constituents associated with petroleum hydrocarbons:

- GRO by Alaska Method AK101;
- DRO by Alaska Method AK102;
- RRO by Alaska Method AK103;
- BTEX by EPA Method 8260;
- Samples from MW-1 and MW-2, were analyzed for the full list of VOCs by EPA Method 8260; and
- Samples from MW-1 and MW-2, were analyzed for PAHs by EPA Method 8270-SIM.

Seep surface water samples collected at the Site were analyzed for the following constituents:

- GRO by Alaska Method AK101;
- DRO by Alaska Method AK102;
- RRO by Alaska Method AK103;
- BTEX by EPA Method 8260; and
- PAHs by EPA Method 8270-SIM.

The results of surface water analyses were used to calculate TAH and TAqH values using the methodology described below.

- The TAH value for each surface water sample was calculated by summing detected concentrations of BTEX. For compounds that were ND, the limit of detection (LOD) was used in place of the ND value in the summation.
- The TAqH value for each surface water sample was calculated by summing the calculated TAH value (or the LOD of the TAH value if it was ND) and the detected concentrations of PAHs. For compounds that were ND, the LOD was used in place of the ND value in the summation.

Total xylenes were calculated using the sum of p- and m-xylenes and o-xylene, or by the summation of LOD values for p and m-xylenes and o-xylene in place of any ND values.

3.5 FIELD NOTEBOOK

A field notebook was maintained on a daily basis to document field activities, including the collection of all samples. The field notebook contains the following information:

- Date and time that work commenced:
- Name and location of site:
- Dates and times of sample collection or event;
- Name(s) of SLR field personnel;
- Field observations such as weather conditions or issues that may have affected sample results;
- Explanations of any deviations from the Work Plan, with rationale for deviation; and
- Problems encountered and their resolution.

In addition to field notes, photographs were used to document site conditions and are contained in Appendix A.

3.6 QUALITY ASSURANCE AND QUALITY CONTROL

Field quality assurance and quality control was maintained by adhering to the 2021 Work Plan procedures. SLR personnel collecting samples printed their full name on any field sampling forms used during site work. Each sample was documented on a COC form and submitted to SGS.

Duplicate samples were collected to represent ten percent of the total samples collected.

SLR completed an ADEC Laboratory Data Review Checklist and a Quality Assurance Review in accordance with the ADEC Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum (ADEC, 2017a). The data were considered to be of good quality and met the requirement for investigation. No data were rejected, and all data were considered usable as qualified. The Quality Assurance Review, ADEC Laboratory Data Review Checklist, and the SGS Analytical Data Reports are provided in Appendix C.

3.7 CALIBRATION PROCEDURES

Field instruments were calibrated daily according to manufacturer specifications and periodically during sampling if instrument drift was suspected. Calibration was documented on a Calibration Log, provided in Appendix B.

3.8 DECONTAMINATION AND WASTE MANAGEMENT

Whenever possible, clean, single-use, disposable equipment was used to eliminate the need for decontamination. Reusable field equipment (e.g., oil/water interface probe) was decontaminated prior to use by washing with an Alconox® solution, rinsing with potable water, and rinsing with deionized water. The oil/water interface probe was washed between use at each well.

Disposable sampling material such as tubing, gloves, paper towels, etc. were disposed of using a garbage bag and placed in an appropriate receptacle at the Site. No hazardous waste was generated during this field effort.

3.9 WORK PLAN DEVIATIONS

Deviations from the Work Plan (SLR, 2021b) are noted here:

- Due to insufficient recharge no sample was collected from temporary well point MW-5R.
- Production Well #3 was not in use during the 2021 groundwater sampling event and therefore was not sampled.

4. INVESTIGATION RESULTS

The results from groundwater monitoring and seep sampling are described in the following sections. Fluid level gauging results are provided in Table 1. Groundwater analytical results from the 2021 sampling event are provided in the Table 2, and historical analytical results are provided in Table 3. Seep sample analytical results are provided in Table 4. All groundwater sample locations and DRO exceedances as well as relative groundwater elevation contours are shown on Figure 3.

4.1 GROUNDWATER GAUGING AND SAMPLING

Groundwater gauging and analytical results are discussed in the following sections.

4.1.1 GROUNDWATER GAUGING

SLR measured depth to groundwater to the nearest 0.01 ft at nine permanent monitoring wells. Relative groundwater elevations were calculated based on top of casing elevations determined by the level loop survey conducted in 2018 (SLR, 2018). Depth to groundwater and relative elevations are provided in Table 1. Relative groundwater elevations were used to generate a potentiometric map (Figure 3). Based on the August 2021 gauging event, groundwater flow is to the southeast toward the Naknek River. The gradient in the lower area of the Site between the Generator Building (MW-3) and Cold Storage Building (MW-2) is approximately 0.03 ft/ft.

The depths to groundwater measured in August 2021 ranged from 10.81 ft bgs at MW-10 to 4.12 ft bgs at MW-4, and were higher than those measured in March 2021. The lower groundwater elevations reported in March 2021 are attributed to winter conditions when the ground was still frozen and groundwater recharge was at a seasonal low. Depth to water measurements for 2019, March 2021, and July 2021 are provided in Table 1.

4.1.2 GROUNDWATER SAMPLING

In 2021, a total of nine primary groundwater samples and one duplicate sample were collected at the Site. The duplicate sample was collected from MW-1 and identified as RS-MW99-073121.

GRO was reported at concentrations above the limit of quantitation (LOQ) of 50 μ g/L in three of nine primary groundwater samples: MW-1 at 141 μ g/L; MW-2 at 108 μ g/L; and MW-8 at 168 μ g/L. All detectable GRO concentrations were below the ADEC groundwater cleanup level of 2,200 μ g/L (Table 2).

DRO was reported at concentrations above the LOQ of 300 μ g/L in seven of the nine groundwater samples: MW-1 at 24,000 μ g/L, MW-2 at 4,870 μ g/L, MW-3 at 3,880 μ g/L, MW-4 at 2,370 μ g/L, MW-6 at 1,660 μ g/L, MW-7 at 1,640 μ g/L, and MW-8 at 4,020 μ g/L. The reported concentration of DRO at MW-9 of 258 μ g/L was flagged as an estimated value between the LOQ and method detection limit. The DRO concentration at MW-10 was reported as non-detect (i.e., below the LOQ of 300 μ g/L). All seven samples with reported DRO concentrations exceeding the LOQ also exceeded the ADEC groundwater cleanup level of 1,500 μ g/L (Table 2).

RRO was reported with concentrations exceeding the LOQ of 250 μ g/L in seven of nine samples: MW-1 at 196 μ g/L, MW-2 at 1,780 μ g/L, MW-3 at 1,110 μ g/L, MW-4 at 710 μ g/L, MW-6 at 1,380 μ g/L, MW-7 at 494 μ g/L, and MW-8 at 864 μ g/L. Of these, three exceeded the ADEC groundwater cleanup level of 1,100 μ g/L (Table 2).

One or more BTEX compounds were reported in groundwater above the LOQ from monitoring wells MW-1, MW-2, and MW-8; however, all BTEX compound concentrations reported were below their respective ADEC groundwater cleanup levels (Table 2). Historical BTEX results are provided in Table 3.

The groundwater sample collected from MW-1 and MW-2 were analyzed for the full suite of petroleum related VOCs and PAHs. VOCs and PAHs reported above the LOQ included, 1,3,5-trimethylbenzene, 4-isopropyltoluene, isopropylbenzene (cumene), n-propylbenzene, naphthalene, 1-methylnaphthalene, fluorene, and pyrene (Table 2). However, only naphthalene with reported concentrations of 5.15 μ g/L and 19.7 μ g/L at monitoring wells MW-1 and MW-2 respectively, exceeded the ADEC cleanup level of 1.7 μ g/L. All other VOCs and PAHs exceeding to LOQ were reported below their respective ADEC cleanup level.

4.2 SEEP SAMPLING

Two surface water seep samples were collected, one each from Seep 1 and Seep 2 and analyzed for fuels, BTEX, and PAHs (Figures 2 and 3). TAH and TAqH values were calculated from the analytical results. TAH, TAqH, BTEX, and PAHs results were compared with the ADEC AWQS for freshwater (Table 4).

No individual BTEX constituent was report above LOQ (Table 4) and the TAH (sum of BTEX constituent concentrations) value from seep sample SW-1 and SW-1 were both below the AWQS of $10 \mu g/L$.

The TAqH value from SW-1 and SW-2 were also below the AWQS of 15 μ g/L although benzo[g,h,i]perylene, fluorene, and phenanthrene, were reported at very low concentrations. Additionally, DRO and RRO were reported in SW-2 at concentrations exceeding the ADEC groundwater cleanup levels (Table 4).

5. SUMMARY AND RECOMMENDATIONS

SLR completed a second round of groundwater sampling at the Red Salmon facility in 2021 on July 30 and 31. Groundwater samples were collected at nine permanent monitoring wells. Groundwater monitoring locations are shown on Figures 2 and 3. The purpose of groundwater monitoring was to assess current hydrocarbon concentrations at the facility.

5.1 GROUNDWATER

Groundwater elevations measured in August 2021 confirmed that groundwater flow is to the southeast toward the Naknek River (Figure 3) as has been previously reported (SLR, 2018 and SLR, 2019a, and SLR, 2021a).

Analytical results from August 2021 were generally consistent with historical results; however, reported DRO concentrations were overall higher in all wells except MW-9 and MW-10 where reported concentrations are typically below the LOQ. The DRO concentration at MW-6 was reported as exceeding the ADEC groundwater cleanup level for the first time, but this value was considered "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the LOQ and the method detection limit. This exceedance has not been confirmed and should be considered anomalous until additional sampling is conducted.

5.2 SURFACE WATER

Surface water results were inconsistent with previous sampling events. Water collected at Seep 1 had previously exceeded the AWQS for TAH and TAqH. However, during the 2021 sampling event TAH and TAqH results reported for both SW-1 and SW-2 were below AWQS. These results will need to be confirmed with additional monitoring.

5.3 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) provides a way to describe how people, animals, and plants may come in contact with contaminants. Health risks to humans and the environment cannot exist unless chemicals detected at a given site can cause an adverse effect and come into contact with a human or ecological receptor. The presence of potentially complete pathways alone, however, does not imply the existence of unacceptable risks.

The Red Salmon CSM was initially prepared on October 25, 2018, following ADEC guidance (ADEC, 2017b) and presents exposure pathways for chemicals of potential concern, routes of migration, and potential current and future receptors. The Site CSM is reviewed after each sampling event and updated as needed. The current ADEC Human Health scoping forms and graphical representations of the CSM are provided in Appendix D.

There are no current permanent residents at the Red Salmon facility. The facility has restricted access which precludes recreational activities. There are two deep water production wells

upgradient of the excavation area that are occasionally used. The facility property is fully developed with gravel roads, gravel and concrete pads, and buildings. It is heavily used several months of the year. As a result, the facility provides little to no ecological habitat. The lack of habitat and presence of access restrictions eliminates any potential for subsistence activities. The only potential receptors at the facility are indoor and outdoor commercial workers, construction workers, site visitors, and trespassers.

One well, identified as Pump 3 (Figure 1), is located onsite west of the area of impacted groundwater. Pump 3 is operated only intermittently, when canning operations are running, and was not operational in 2021. The impacted groundwater at the Site is located between 0 and 15 ft bgs, while the screened interval of Pump 3 is significantly deeper (likely greater than 100 ft bgs). Drilling logs from other production wells at the Site report layers of high permeability (sands and gravels) are interbedded with layers of low permeability (silts and clays) throughout the boring. Given the presence of multiple aquitards and the depth of the screen, Pump 3, even when pumping, is likely too deep to have an impact on the shallow groundwater impacts.

Potential exposure media include groundwater, surface water, soil, and outdoor air. Potentially complete pathways include exposure to groundwater, surface water, soil, and indoor and outdoor air to site commercial workers, construction workers, and site visitors or trespassers.

5.4 RECOMMENDATIONS

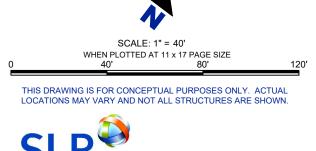
SLR considers the current well network adequate for ongoing monitoring of the groundwater plume. Additional monitoring in fall of 2022 is recommended to confirm the results in 2021 and to continue monitoring the stability and extent of the plume. Additionally, future sampling events should include attempts to install and sample beneath the Cold Storage Building.

6. REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2021a. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control, as amended through June 24.
- ADEC, 2020. 18 AAC 70, Water Quality Standards. March 5.
- ADEC, 2019. Field Sampling Guidance. October.
- ADEC, 2017a. Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. Technical Memorandum. March.
- ADEC, 2017b. Guidance on Developing Conceptual Site Models. January.
- SLR International Corporation (SLR), 2021a. 2021Groundwater Monitoring Report, Red Salmon Facility, Naknek, Alaska. April.
- SLR, 2021b. 2021 Groundwater Monitoring Work Plan, Red Salmon Facility, Naknek, Alaska. June 21.
- SLR, 2019a. Groundwater Monitoring Report, Red Salmon Facility, Naknek, Alaska. October.
- SLR, 2019b. Groundwater Monitoring Work Plan, Red Salmon Facility, Naknek, Alaska. January 31.
- SLR, 2018. Soil and Groundwater Assessment Report, Red Salmon Facility, Naknek, Alaska. November.
- SLR, 2017a. Preliminary Assessment Report, Red Salmon Facility, Naknek, Alaska. August.
- SLR, 2017b. Soil and Groundwater Assessment Report, Red Salmon Facility, Naknek, Alaska, November.
- SLR, 2016. Soil and Groundwater Assessment and Remediation Report, Red Salmon Facility, Naknek, Alaska, November.
- SLR, 2015a. Soil and Groundwater Assessment and Remediation Report, Red Salmon Facility, Naknek, Alaska, November.
- SLR, 2015b. Soil and Groundwater Assessment and Remediation Work Plan, Red Salmon Facility, Naknek, Alaska, February.
- SLR, 2014. Subsurface Investigation Report, Red Salmon Facility, Naknek, Alaska, November.

LIMITATIONS


The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.


The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. As such, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, it is not guaranteed that these materials are completely absent from the site. Such observations are the result of the services performed within the scope, practical limitations, and cost of the work performed.

FIGURES

Figure 1	Site Location and Facility Map
Figure 2	Groundwater Monitoring Well Map
Figure 3	Groundwater Elevation and DRO Results

Drawing

2021 GROUNDWATER AND SURFACE WATER RESULTS

Date October 2021 File Name F3 NPS Soil & GW RPT_21v2

Scale 1" = 40 Feet Project No. 105.00151.21001

TABLES

Table 1	Groundwater Elevations
Table 2	Groundwater Analytical Results
Table 3	Historical DRO and BTEX Results
Table 4	Surface Water Analytical Results

Table 1 - 2021 Red Salmon Facility Groundwater Elevations

Well	Top of Casing Elevation ¹	DTW Measurement Sept 2019	Groundwater Elevation Sept 2019	DTW Measurement March 2021	Groundwater Elevation March March 2021	DTW Measurement August 2021	Groundwater Elevation August 2021	August 2021 Analytical Sample ID
MW-1	40.16	4.83	35.33	6.90	33.26	5.50	34.66	RS-MW1-073121
MW-2	35.71	6.55	29.16	7.02	28.69	6.35	29.36	RS-MW2-073021
MW-3	51.85	9.62	42.23	9.85	42.00	9.40	42.45	RS-MW3-073121
MW-4	35.82	4.17	31.65	5.08	30.74	4.12	31.70	RS-MW4-073021
MW-5R	NM	NM	NM	NM	NM	5.70	No TOC	no sample
MW-6	36.98	5.71	31.27	6.60	30.38	5.71	31.27	RS-MW6-073021
MW-7	47.17	9.45	37.72	11.55	35.62	9.40	37.77	RS-MW7-073021
MW-8	44.21	4.87	39.34	4.45	39.76	4.85	39.36	RS-MW8-073021
MW-9	49.12	5.75	43.37	6.30	42.82	5.49	43.63	RS-MW9-073021
MW-10	66.35	10.82	55.53	NM	NM	10.81	55.54	RS-MW10-073021

Notes

- 1 Well casings were surveyed using the level loop method with relative accuracy of 0.02 feet. The survey was not tied in to a known benchmark, however a temporary benchmark (Point 100) was established with an estimated elevation of 70 feet above mean sea level, based on lidar data.
- 2 The original MW-5 was destroyed during the winter of 2017-2018 and MW-5R was established in the former location of MW-5 in 2019.

Abbreviations

DTW depth to water NM Not measured TOC top of casing

Table 2- 2021 Red Salmon Facility **Groundwater Analytical Results**

	Screening Criteria Sample Identification ²						Trip Blank																	
Compound in 18 AAC 75, Primary: RS-MW1-073121 Duplicate: RS-MW9-073121 RS-MW2-073021 RS-MW3-073121 RS-MW4-073021 RS-MW6-073021				1W6-073021 RS-MW7-073021 RS-MW8-073021				73021	RS-MW9-0	73021	RS-MW10-0	RS-MW10-073021		3021										
micrograms per liter	Table C,		RS-MW1-0 31-Jul-		RS-MW99-0 31-Jul-1		30-Jul-		31-Jul-2		30-Jul-2		30-Jul-2		30-Jul-		30-Jul-2		30-Jul-2		30-Jul-2		30-Jul-	
(μg/L)	Groundwater	1214771		1214771		1214771	.002	12147710	003	12147710	004	1214771	005	1214771	006	1214771	007	1214771	800	1214771	009	1214771	.011	
	Cleanup Levels ¹	Conc. ³	Flag	Conc. ³	Flag	Conc.3	Flag	Conc. ³	Flag	Conc. ³	Flag	Conc.3	Flag	Conc.3	Flag	Conc.3	Flag	Conc. ³	Flag	Conc. ³	Flag	Conc.3	Flag	
Fuels (AK101, 102, and 103)	2200	141	Τ=	120	=	100	=	[50]	U	[50]	U	[50]	U	[50]		100	l =	[[0]	U	[50]	I	[50]	U	
Gasoline Range Organics Diesel Range Organics	1500	141 24000	=	139 23800	=	108 4870	=	[50] 3880	=	[50] 2370	=	[50] 1660	J	[50] 1640	U =	168 4020	=	[50] 258	J	[50] [300]	U	[50]		
Residual Range Organics	1100	196	=	2080	=	1780	=	1110	=	710	=	1380	J	494	J	864	=	[261]	U	[250]	U			
VOCs (SW8260D)	F 7	[0.25]		[0.25]		[0.25]				ı	1	I		1	1 1		ı		ı	ı		[0.25]		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5.7 8000	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
1,1,2,2-Tetrachloroethane	0.76	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
1,1,2-Trichloroethane	0.41	[0.2]	U	[0.2]	U	[0.2]	U							-								[0.2]	U	
1,1-Dichloroethane	28 280	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,1-Dichloroethene 1,1-Dichloropropene		[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,2,3-Trichlorobenzene	7	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,2,3-Trichloropropane	0.0075	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	4 56	[0.5] 9.15	U =	[0.5] 10.1	U =	[0.5] 30.2	U =															[0.5]	U	
1,2-Dibromo-3-chloropropane		[5]	U	[5]	U	[5]	U							-								[5]	U	
1,2-Dibromoethane	0.075	[0.0375]	U	[0.0375]	U	[0.0375]	U	-						-								[0.0375]	U	
1,2-Dichlorobenzene	300 1.7	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,2-Dichloroethane 1,2-Dichloropropane	8.2	[0.25]	U	[0.25]	U	[0.25]	U							-								[0.5]	U	
1,3,5-Trimethylbenzene	60	6.01	=	6.59	=	6.35	=															[0.5]	U	
1,3-Dichlorobenzene	300	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
1,3-Dichloropropane 1,4-Dichlorobenzene	4.8	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
2,2-Dichloropropane	4.8	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
2-Butanone (MEK)	5600	[5]	U	[5]	U	[5]	U															[5]	U	
2-Chlorotoluene		[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
2-Hexanone 4-Chlorotoluene	38	[5] [0.5]	U	3.53 [0.5]	J	[5] [0.5]	U															[5] [0.5]	U	
4-Isopropyltoluene		1.37	=	1.57	=	3.34	=															[0.5]	U	
4-Methyl-2-pentanone (MIBK)	6300	[5]	U	[5]	U	[5]	U															[5]	U	
Benzene Bromobenzene	4.6 62	1.93	= U	2.06	= U	0.284	J	[0.2]	U 	[0.2]	U	[0.2]	U	[0.2]	U 	0.966	=	[0.2]	U 	[0.2]	U	[0.2]	U	
Bromochloromethane		[0.5]	U	[0.5]	U	[0.5]	U	-														[0.5]	U	
Bromodichloromethane	1.3	[0.25]	U	[0.25]	U	[0.25]	U	-						-								[0.25]	U	
Bromoform	33	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
Bromomethane Carbon disulfide	7.5 810	[2.5] [5]	U	[2.5] [5]	U	[2.5] [5]	U															[2.5] [5]	U	
Carbon tetrachloride	4.6	[0.5]	U	[0.5]	U	[0.5]	U							-								[0.5]	U	
Chlorobenzene	78	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
Chloroethane Chloroform	21000 2.2	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
Chloromethane	190	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
cis-1,2-Dichloroethene	36	[0.5]	U	[0.5]	U	[0.5]	U	-						-								[0.5]	U	
cis-1,3-Dichloropropene	4.7	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
Dibromochloromethane Dibromomethane	8.7 8.3	[0.25]	U	[0.25]	U	[0.25]	U															[0.25]	U	
Dichlorodifluoromethane	200	[0.5]	U	[0.5]	U	[0.5]	U	-						-				-				[0.5]	U	
Ethylbenzene	15	4.17	=	4.41	=	1.01	=	[0.5]	U	[0.5]	U	[0.5]	U	[0.5]	U	2.97	=	[0.5]	U	[0.5] U		[0.5]	U	
Freon-113	10000 1.4	[5]	U	[5]	U	[5] [0.5]	U															[5]	U	
Hexachlorobutadiene Isopropylbenzene (Cumene)	450	[0.5] 0.473	U	[0.5] 0.52	J	3.75	=															[0.5]	U	
Methylene chloride	110	[5]	U	[5]	U	[5]	U	-						-				-				[5]	U	
Methyl-t-butyl ether	140	[5]	U	[5]	U	[5]	U															[5]	U	
Naphthalene n-Butylbenzene	1.7 1000	5.15 [0.5]	= U	5.96 [0.5]	= U	19.7 [0.5]	= U															[0.5]	U	
n-Propylbenzene	660	0.595	J	0.635	J	6.69	=															[0.5]	U	
o-Xylene		11.4	=	12.7	=	1.48	=	[0.5]	U	[0.5]	U	[0.5]	U	[0.5]	U	14	=	[0.5]	U	[0.5]	U	[0.5]	U	
P & M -Xylene	2000	10.1	=	10.9	= U	3.18	=	[1]	U 	[1]	U 	[1]		[1]	U 	17.3	=	[1]	U 	[1]	U 	[1]	U	
sec-Butylbenzene Styrene	1200	[0.5]	U	[0.5]	U	1.19 [0.5]	= U															[0.5]	U	
tert-Butylbenzene	690	[0.5]	U	[0.5]	U	[0.5]	U	-														[0.5]	U	
Tetrachloroethene	41	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
Toluene trans-1,2-Dichloroethene	1100 360	0.836	U	0.911	U	[0.5]	U	[0.5]		[0.5]	U 	[0.5]		[0.5]	U 	[0.5]	U 	[0.5]	U 	[0.5]	U 	[0.5]	U	
trans-1,3-Dichloropropene	4.7	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
Trichloroethene	2.8	[0.5]	U	[0.5]	U	[0.5]	U															[0.5]	U	
Trichlorofluoromethane Vinyl acetate	5200 410	[0.5] [5]	U	[0.5] [5]	U	[0.5] [5]	U															[0.5] [5]	U	
Vinyl chloride	0.19	[0.075]	U	[0.075]	U	[0.075]	U															[0.075]	U	
Xylenes (total)	190	21.6	=	23.6	=	4.66	=	[1]	U	[1]	U	[1]	U	[1]	U	31.3	=	[1]	U	[1]	U	[1]	U	
PAH SIM (SW8270D LV)	44	[0.054]	1	[0.0404]		0.143	1.0								, ,		1		1	ı				
1-Methylnaphthalene 2-Methylnaphthalene	11 36	[0.051]	U	[0.0481]	U	0.143	J, Q- UJ																	
Acenaphthene	530	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Acenaphthylene	260	[0.051]	U	[0.0481]	U	[0.096]	UJ	-																
Anthracene Benzo(a)Anthracene	43 0.3	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Benzo(a)Antifracene Benzo[a]pyrene	0.25	[0.0204]	U	[0.0481]	U	[0.0384]	UJ																	
Benzo[b]Fluoranthene	2.5	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Benzo[g,h,i]perylene	0.26	[0.051]	U	[0.0481]	U	[0.096]	UJ																-	
Benzo[k]fluoranthene Chrysene	0.8	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Dibenzo[a,h]anthracene	0.25	[0.0204]	U	[0.0481]	U	[0.0384]	UJ																	
Fluoranthene	260	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Fluorene	290	0.0846	J	0.14	=	[0.096]	UJ	-						-										
Indeno[1,2,3-c,d] pyrene Naphthalene	0.19 1.7	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Phenanthrene	170	[0.051]	U	[0.0481]	U	[0.096]	UJ																	
Pyrene	120	[0.051]	U	[0.0481]	U	0.174	J, Q-																	
Notes:													Abbro	viations:										

- Notes:

 1 This screening level corresponds to ADEC 18 AAC 75.345 Table C, June 24, 2021.

 2 The field sample identification number, date collected, and laboratory sample identification number are provided.

 3 For detected results, the sample result is listed in this column. For results of non-detect, the LOD is listed in [].

 4 Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Sample results above the screening level are shown shaded yellow to indicate exceexance of screening criteria. Shaded green indicates that the LOD did not meet project cleanup levels.

Data Flags:

- Analyte detected at concentration listed in column to the left.
- Associated blank detection, value is biased high.

 Result is considered an estimated value because the level is below the laboratory LOQ, but above the DL.

 Nondetect, LOD is in brackets in the concentration column.

 Result is an estimated value. An additional "+" or "-" indicates a high or low bias, respectively

- Abbreviations: ABDREVIATIONS:

 Not applicable or screening criteria does not exist for this compound
 AAC Alaska Administrative Code
 ADEC Alaska Department of Environmental Conservation
 DL Detection Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- μg/L micrograms per liter
 VOCs volatile organic compounds

Table 3 - 2021 Red Salmon Facility Historical DRO and BTEX Results

Δης	alyte	DRO	Benzene	Toluene	Ethylbenzene	Xylenes
	•				_	•
Groundwater Cle	anup Level¹ (μg/L)	1500	4.6	1100	15	190
Well ID	Sample Date			Result ² (μg/L)		
MW-01	8/3/2015	5490	4.39	6.33	7.16	60.1
MW-01	7/27/2016	11100	1.2	4.33	7.65	42.8
MW-01	9/5/2017	10400	5.42	9.58	4.35	34.8
MW-01	9/11/2018	3420	1.94	3.33	7.1	51.2
MW-01	9/6/2019	14100	5.08	0.44 J	5.33	19.1
MW-01	3/17/2021	12800	2.27	0.93 J	14	32.6
MW1	7/31/2021	24000	2.06	0.911 J	4.41	23.6
MW-02	8/3/2015	4020	1.56	ND	ND	1.25 J
MW-02	7/27/2016	2710	0.9	2.96	3.08	5.42
MW-02	9/4/2017	2490	0.17 J	0.51	2.03	4.05
MW-02	9/12/2018	1570	0.19 J	ND	2.01	5.84
MW-02	9/5/2019	5340	4.98	0.34 J	4.9	19.1
MW-02	3/17/2021	1860	0.53	ND	0.904 J	5.48
MW2	7/30/2021	4870	0.284 J	ND	1.01	4.66
MW-03	8/3/2015	3250	1.42	ND	ND	ND
MW-03	9/5/2017	2890	0.2 J	ND	ND	ND
MW-03	9/10/2018	2880	6.37	ND	0.89 J	1.26 J
MW-03	9/6/2019	1580	1.27	ND	ND	ND
MW3	7/31/2021	3880	ND	ND	ND	ND
MW-04	8/3/2015	422 J	ND	0.41 J	3.69	8.54
MW-04	7/27/2016	ND	ND	ND	ND	ND
MW-04	9/4/2017	841	1.43	ND	ND	ND
MW-04	9/11/2018	1620	ND	ND	ND	ND
MW-04	9/5/2019	2320	ND	ND	ND	ND
MW-04	3/17/2021	1680	ND	ND	ND	ND
MW4	7/30/2021	2370	ND	ND	ND	ND
MW-05	7/27/2016	422 J	ND	ND	ND	ND
MW-05	9/5/2017	970	ND	ND	ND	ND
MW-05			Destroye	d 2018	1	
MW-5R ³	9/7/2019	1590	0.2 J,B	ND	ND	ND
MW-06	9/7/2017	823	ND	ND	ND	ND
MW-06	9/12/2018	472 J	ND	ND	ND	ND
MW-06	9/5/2019	395 J	ND	ND	ND	ND
MW-06	3/17/2021	641	ND	ND	ND	ND
MW6	7/30/2021	1660 J	ND	ND	ND	ND
MW-07	9/6/2017	1540	0.17 J	ND	ND	ND
MW-07	9/10/2018	2210	5.26	ND	ND	ND
MW-07	9/6/2019	608 J	10.1	ND	ND	ND
MW-07	3/17/2021	1290 Q-	ND	ND	ND	ND
MW7	7/30/2021	1640	ND	ND	ND	ND
MW-08	9/6/2017	1870	8.71	19.6	13.1	60.6
MW-08	9/14/2018	4120	28.2	0.38 J	7.9	61
MW-08	9/6/2019	3640	ND	ND	ND	ND
MW-08	3/17/2021	2930	1.64	ND	8.72	63.6
MW8	7/30/2021	4020	0.966	ND	2.97	31.3
MW-09	9/7/2017	912	ND	ND	ND	ND
MW-09	9/14/2018	7480	0.52	0.42 J	1.01	146
MW-09	5/1/2019	805	ND	ND	ND	ND
MW-09	9/7/2019	544 J	ND	ND	ND	ND
MW9	7/30/2021	258 J	ND	ND	ND	ND
MW-10	9/14/2018	ND	ND	ND	ND	ND
MW-10	9/6/2019	184 J	3.63	ND	3.61	32.3
MW10	7/30/2021	ND	ND	ND	ND	ND

Notes:

- 1 ADEC Method Two Groundwater Cleanup Levels, 18 AAC 75.345, Table C (October 27, 2018).
- 2 If a duplicate sample was collected, the higher of the two values is listed.
- 3 The original MW-5 was destroyed during the winter of 2017-2018 and MW-5R was established in the former location of MW-5 in 2019.

Table 3 - 2021 Red Salmon Facility Historical DRO and BTEX Results

Abbreviations:

	Exceeds cleanup criteria	DRO	Diesel range organics					
BTEX	benzene, toluene, ethylbenzene, and xylenes	LOQ	Limit of Quantitation					
DL	Detection Limit	μg/L	micrograms per liter					
Data Flags:								
В	Associated blank detection, value is biased high.							
J	Result is considered an estimated value because the I	evel is below the	e laboratory LOQ, but above the DL.					
ND	Analyte not detected							
Q	Result is an estimated value. An additional "+" or "-" indicates a high or low bias, respectively							

Table 4 - 2021 Red Salmon Facility Surface Water Analytical Results

	Screening Criteria			Sample Location ³							
Compound in micrograms per liter (µg/L)	Primary; 18 AAC 70, Water Quality Standards ¹	Reference Only: 18 AAC 75, Table C, Groundwater	Primary RS-SW1-073121 31-Jul-21 1214774001		Duplica RS-SW99-0 31-Jul-2 1214774	73121 !1	RS-SW2-0 31-Jul- 121477	21	TRIP2-073021 30-Jul-21 1214774004		
	Standards	Cleanup Levels ²	Conc.4	Flag	Conc.4	Flag	Conc.4	Flag	Conc.4	Flag	
Fuels (AK101, 102, and 103)						1		1		•	
Gasoline Range Organics		2200	[50]	U	[50]	U	[50]	U	[50]	U	
Diesel Range Organics		1500	747	=	675	=	14900	=			
Residual Range Organics		1100	449	J	421	J	59500	=			
BTEX (SW8260D)						•					
Benzene		4.6	[0.2]	U	[0.2]	U	[0.2]	U	[0.2]	U	
Toluene		1100	[0.5]	U	[0.5]	U	[0.5]	U	[0.5]	U	
Ethylbenzene		15	[0.5]	U	[0.5]	U	[0.5]	U	[0.5]	U	
o-Xylene			[0.5]	U	[0.5]	U	[0.5]	U	[0.5]	U	
P & M -Xylene			[1]	U	[1]	U	[1]	U	[1]	U	
Xylenes (total) ⁵		190	[1.5]	U	[1.5]	U	[1.5]	U	[1.5]	U	
Total BTEX ⁵ (TAH)	10		[2.7]	U	[2.7]	U	[2.7]	U	[2.7]	U	
PAH SIM (SW8270D LV)											
1-Methylnaphthalene		11	[0.0232]	UJ	0.219	Q-	[0.266]	U			
2-Methylnaphthalene		36	[0.0232]	UJ	[0.024]	UJ	[0.266]	U			
Acenaphthene		530	0.094	Q-	0.24	Q-	[0.266]	U			
Acenaphthylene		260	[0.0232]	UJ	[0.024]	UJ	[0.266]	U			
Anthracene		43	[0.0232]	UJ	[0.024]	UJ	[0.266]	U			
Benzo(a)Anthracene		0.3	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Benzo[a]pyrene		0.25	[0.00925]	U	[0.0096]	UJ	[0.107]	U			
Benzo[b]Fluoranthene		2.5	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Benzo[g,h,i]perylene		0.26	[0.0232]	U	[0.024]	UJ	1.25 Q	=			
Benzo[k]fluoranthene		0.8	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Chrysene		2	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Dibenzo[a,h]anthracene		0.25	[0.00925]	U	[0.0096]	UJ	[0.107]	U			
Fluoranthene		260	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Fluorene		290	0.421	Q-	1.45	Q-	[0.266]	U			
Indeno[1,2,3-c,d] pyrene		0.19	[0.0232]	U	[0.024]	UJ	[0.266]	U			
Naphthalene		1.7	[0.0463]	UJ	[0.0481]	UJ	[0.53]	U			
Phenanthrene		170	[0.0232]	UJ	0.157	Q-	[0.266]	U			
Pyrene		120	[0.0232]	U	[0.024]	UJ	[0.266]	U			
PAH			0.835	Q-	2.15	Q-	5.19	=			
TAqH	15		3.54	Q-	4.85	Q-	7.89	=			

Notes:

- 1 This screening level corresponds to ADEC 18 AAC 70.020, March 5, 2020.
- 2 -This screening level corresponds to ADEC 18 AAC 75.345 Table C, October 27, 2018.
- 3 The field sample identification number, date collected, and laboratory sample identification number are provided.
- 4 For detected results, the sample result is listed in this column. For results of non-detect, the LOD is listed in [].
- 5 Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Sample results above the screening level are shown shaded yellow to indicate exceexance of screening criteria. Shaded green indicates that the LOD did not meet project cleanup levels.

Data Flags:

Analyte detected at concentration listed in column to the left.
 Associated blank detection, value may be biased high.

J Result is considered an estimated value because the level is below the laboratory LOQ, but above the DL.

U Nondetect, LOD is in brackets in the concentration column.

Q Result is an estimated value. An additional "+" or "-" indicates a high or low bias, respectively

Abbreviations:

	Not applicable or screening criteria does not exist for this compound	LV	low volume
AAC	Alaska Administrative Code	PAH	polycyclic aromatic hydrocarbons
ADEC	Alaska Department of Environmental Conservation	SIM	Selective Ion Monitoring
BTEX	benzene, toluene, ethylbenzene, and xylenes	TAH	total aromatic huydrocarbons
DL	Detection Limit	TAqH	total aqueous hydrocarbons
LOD	Limit of Detection	μg/L	micrograms per liter
LOQ	Limit of Quantitation		

APPENDIX A PHOTOGRAPH LOG

2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

October 2021

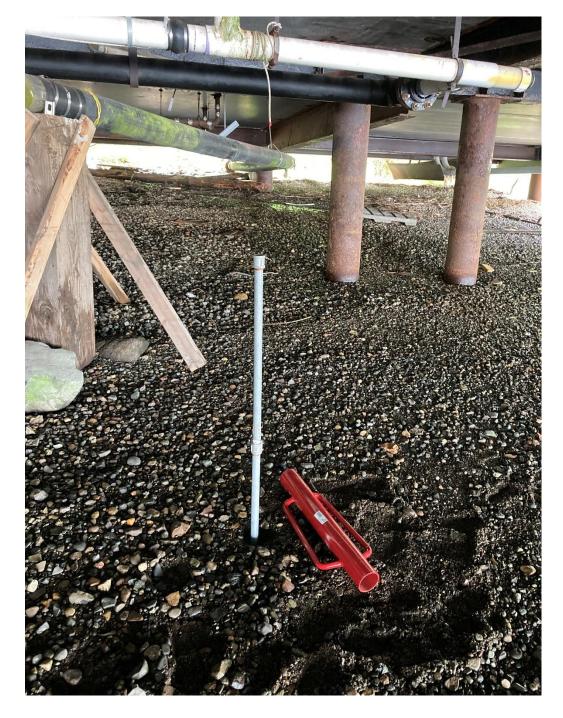


Photo 1: Monitoring Well 5R

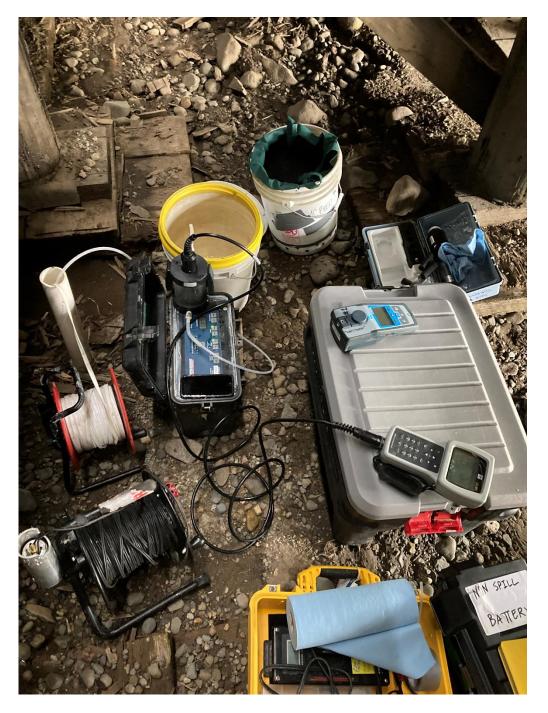


Photo 2: Monitoring Well 6 sampling set up.

2021Groundwater Monitoring Report Red Salmon Facility, Naknek, Alaska

Job No: 105.00151.21001

Photo 3: Sampling at Monitoring Well 9.

Job No: 105.00151.21001

APPENDIX B FIELD NOTES AND FIELD FORMS

2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

October 2021

SLR ALASKA TAILGATE SAFETY MEETING FORM

	Section 1: G	eneral Information		
	: IO 100	Project #: 105.0	0015	1. 21001
Project Name: Red Salu	NON GW	Saupling		
Project Location:		Remote 🗆	Urban	☐ Other
		Construction 🗆 Ot		
HSE Documents: ✓ SLR HSEP □	SLR JHA ☐ Clie	ent H&S Plan 🔲 Clie	ent JHA	A/JSA 🛘 Work Permit
Other:	None	(explain):		
	Section 2:	Task Description		
(JU) Samplino				
OU Soupling -Slip, Tilo, to				
- Long oby Pla - 1255, by va	hour			
-135KISU 10	EN.		*	
Section 3:	Hazard Identificat	ion & Control (check	all app	licable)
Environmental:	Chemical Expos		Physi	
Remote Travel	☐ Ingestion		🔾 Slij	o/trip/fall
	ሺ Inhalation		□Не	avy Machinery
☐ Temperature Extremes	☐ Dermal Conta	act	☐ Cla	ssified (FRC) areas
☐ Wildlife (bears, moose, etc.)	Chemical Type		□ No	
☐ Insects (mosquitoes, etc.)	Hydrocarbon,	/voc	□Du	
☐ Poisonous plants	☐ Metals/PCB/F			petitive stress
□ Other:	☐ Other:			her:
Section 4: I		e Equipment (check a		
General:	Gloyes:	e equipment (check a	an appi	Miscellaneous:
Safety Glasses (required)	Nitrile (di	snosahla)	1	☐ LEL/VOC/H ₂ S Monitor
□ Hardhat		•		
Safety toe boots			ene)	☐ Dust mask (N95)
Reflective clothing		ant (e.g. Kevlar®)	.	☐ ½ Face respirator
☐ Hearing protection		resistant (e.g. leath	er)	☐ Fall protection
☐ Arctic Gear (boot/jacket/pant)	☐ Insulating	(hot/cold)		☐ Bear Spray
☐ Flame-resistant (FRC) outerwear	Other:			☐ Other:
	ATT	ENDEES:	T T	
Name / /	/ Signature	Name		/ Signature
Stan Hagel	w/ h	MEGHAN DOTTE	N	CUV
	117			
		-		

SLR ALASKA TAILGATE SAFETY MEETING FORM

	Section 1: G	eneral Information	
Date: 7-/31/1\	Time: 0728	Project #: 105.	20151,21001
Project Name: Red	balmon Gl	2 Sompline	Q.
	eK AK		Urban □ Other
Type of Work: Sampling	☐ Excavation ☐	Construction 🛮 Ot	ther (describe below)
HSE Documents: SLR HSE	P 🗆 SLR JHA 🗀 Clie	ent H&S Plan 🔲 Cli	ient JHA/JSA 🔲 Work Permit
☐ Other:	None	(explain):	
		Task Description	
Glo Sampling - Lifting - Slip, Tris	, demobil	iZation _Driving	3
Sect	ion 3: Hazard Identifica	tion & Control (check	k all applicable)
Environmental: Remote Travel Driving Temperature Extremes Wildlife (bears, moose, etc.) Insects (mosquitoes, etc.) Poisonous plants Other:	.) ☐ Hydrocarbor ☐ Metals/PCB/	act n/VOC 'PFAS	Physical: □ Slip/trip/fall □ Heavy Machinery □ Classified (FRC) areas □ Noise □ Dust □ Repetitive stress □ Other:
	on 4: Personal Protecti	ve Equipment (check	all applicable)
General: Safety Glasses (required) Hardhat Safety toe boots Reflective clothing Hearing protection Arctic Gear (boot/jacket/pa	☐ Cut-resis☐ Abrasion☐ Insulating	l resistant (e.g. neopr tant (e.g. Kevlar®) -resistant (e.g. leath	Miscellaneous: □ LEL/VOC/H₂S Monitor □ Dust mask (N95) □ ½ Face respirator her) □ Bear Spray □ Other:
Nama		TENDEES:	Ciamatura
Name / Star Flage!	Signature	Name MEMHAN DUTTE	Signature

YSI

Ped Salmon Date 7/31/21

30 Stan Flage 1 + meghan Patter weather - Sucrest, breeze 5+215mph; Temp 55°F Arnive at gen staging orea complete Tollgated softy welting collarate

05 Swing ties to MW-10

13,2

Mw-10 Swing Thes Hose 13:16 Handle-13,2 Sign Post 20.5

set up MW-1, Delicated souple 8:50

Corner of OFFice.

131da

0:25 peturn to MW-3 to get samples. Flow < 50m1, no poverue ters

9:56 completed MW-3 samples. Dig out Slep 1 & Seep 2 to be sampled

Sample Seep 1, Dolicato Suple 10:42 Sample Seep 2

11/12 Mw-52 not sompled not everyh water in well purges dung < 500ml

bottle netrolized with baking soda and Di water

both were despesed of

Site/Client No.	no. I	O A					4						
Site/Client Nam		Salmor	\sim		Well ID: MW (
Project # : 105		1 12 (2)	41		Sample ID: PS- M W 1-0731Z1 Sample Time: 9:45 Sample Date: 07/31/21								
Sampled By: 5	· + lage	\$ 14. 0	10HCM		Sampl	le Time: 🦞	1:45	Sample	Date: 07/	31/21			
Weather Condition	ons: Pain	y love	const		Duplic	ate ID: 🔑	5-MW9	9-0731	21				
Sampling Method:	Low Flov	w Other_			MS/MS	MS/MSD ☐ Yes ☐ No Trip Blank Required: ☐ Yes ☐ No							
Well Type:	manent T	Temporary		Well In Well In Well Diameter	formation	T Serson In	tonial:	# DC	20.4	* 700			
Well Condition:			f fair or poor	explain in Notes)			terval:		_	ft BGS			
					in in Notes) Stickup Yes No; If yes, 3 ft above ground auging/Purging Information								
Depth to Water (ft I					Tubing/	/Pump Dept							
Total Depth (ft BTo Depth to Product (f		59				Start Time (2							
Product Thickness						End Time (2		<u> </u>					
LOW FLOW: Ma	x Draw Down	n = (Tubing D	epth - Top of	Screen Depth)	X 0.25	urge Time (profile not know	en or water tabl	e is below top of			
scr	reen, then use	default value of	of 0.3 ft. 1 gal	= 3.785L, 1L = 0.26	4 gal					e is below top or			
Min. purge volume if Well Diameter –	required: pu	rge volume (g: 1" - 0.0	al) = volume of 041 gal/ft	water/ft(gal/	ft) X Water co 163 gal/ft	lumn thicknes	ss(ft)	X # of casing v		=gal			
				Water Quali	ity Paramete	O.F.D.	4" - 0.653			169 gal/ft			
(Achieve stabl	le parameters	for 3 consecut	ive reading, 4	parameters if practic	al [each read	ers ling taken afte	er pumping a	minimum of 1 fl	low through cell	volume])			
Time	Flow	Purge	Temp	Specific	DO	рН	ORP	Turbidity	DTW	Drawdown			
(24-hr)	Rate (mL/minute)	(L or Ga)	(°C)	Conductance (μS/cm°)	(mg/L)		(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)			
/2		Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0, 1)	(± 10mV)	<5 NTU)		(Maxft)			
8:20									5.50				
8:23	200	.25	10.45	783	.45	5.87	164.3	11.8	5.35				
8:28	200	05	10.72	759	.47	6.01	148.3	8.25	5.60				
8:31	200	.75	11.2	750	.42	6.14	120.3	7.36	5.81				
8:34	200	i	11.59	755	,39	6.19	116.2	8.79	6.0				
8:37	175	1.25	11.95	756	.42	6.23	104.4	7.74	6.12				
8:41	175	1.5	12.04	761	.37	6.25	97.6	7.03	6.31				
		. 1		1. %		VI US	11.0	1.00	017				
12													
			• . ^										
Parameter Stable	Check app	olicable)	AND		./	1		1					
Sample Color:		measie,	V.	Committee Orders	V	V							
ouniple delicit	NOV.			Sample Odor:		scienbon	Sheer	n: yes					
	Analys	ses			Sampling Applicable			Commer	nto				
600	A	W 101			ppiious.			Comme	its				
DROIPRO	A	K 102	193			-							
BTEX FUIL V	00	836				-							
PAH		80-	O										
Notes:	deoli	icated to	Ubina_										
	-		8										
Equipment.													
Equipment: Tubing: □Polyethyle	no MPETI	Elipad 🗀 O	46			t.	_	_		•			
Pump/Bailer - PDA	MAMO	U		Multi Dozova		O.D. [4]	4" 🔲 3/8"	☐ 1/2"	Left in well	Yes 🗌 No			
W.L. Indicator	ANT DELLA	Turbidity M	eter (Makers	N#) SLR# /	eter weter it	nake/SN#) _		6 14D 10					
Purge Water Handli					ated (how?)	GNC	Fillered	I 🔲 Yes 🛶 N	0 LOT#				
						-							

Site/Client Nam	ie: feel S	almor	\sim		Well ID: MW-Z								
Project #: 105.	00151.210	ן פכ			Sample	e ID: RS-	MW2-	073021					
Sampled By: 3					Sample	e Time: 💔	157	Sample	e Date: 07/3	30/2 (
Weather Conditi			١		Duplica	ate ID:							
Sampling Method:	Low Flov	v Other_			MS/MS	SD 🗌 Yes	X No	Trip Blank F	Required: 💢	Yes No			
Edn.		Lance Control House			formation			272 12 12					
Well Type: Per				Well Diameter	2 in.	Screen In			3S to	ft BGS			
Well Condition: 💆	Good Li Fai	Ir 🗆 Poor (II	fair or poor		in in Notes) Stickup 🐧 Yes 🗌 No; If yes, <u>3</u> ft above ground auging/Purging Information								
Depth to Water (ft	BTOC): 6.2	55		Gauging/r urg			th (ft. BTOC): 7.5					
Total Depth (ft BT	roc): 🖁 🐧				Purge S	Start Time (2	24-hr) (83	Q					
Depth to Product (24-hr) 1 185	5					
Product Thickness	. ,	= (Tubing D	enth - Top of	Screen Depth)		urge Time (enal is not know	en or water table	e is below top of			
sc	creen, then use o	default value o	of 0.3 ft. 1 gal	= 3.785L, 1L = 0.26	4 gal								
Min. purge volume i Well Diameter -	if required: pur	ge volume (ga	al) = volume of 041 gal/ft	water/ft(gal/	ft) X Water co	lumn thicknes	ss (ft) 4" – 0.653	X # of casing v	volumes	= <u>gal</u> 469 gal/ft			
VVEII DIAMIGICI	- gaint	1 - 0.0	141 yairit	Water Quali			4 - 0.000	gaint	0 - 1.4	169 gaint			
(Achieve stat	ole parameters f	or 3 consecut	ive reading, 4	parameters if practic	al (each read	ing taken afte	er pumping a	minimum of 1 f	flow through cell	volume])			
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	рН	ORP (mV)	Turbidity	DTW (# BTOC)	Drawdown			
(24-111)	(mL/minute)	(L or ga)		(μS/cm²)			2 1	(NTU) (± 10%, or	(ft BTOC)	(ft)			
Circle one) (± 3 %) (± 10%) (± 0.1) (± 10mV) <5 NTU) (Maxft)													
18:28	15.0		~ 50			10			6.56				
18:30	100	.20	9.99	193	2.30	6.32	101.1	125	6.40				
18:35	200	•5	10.21	189	2.83	6.35	89.6	49.4	6.91				
18: 39	200	.7	10.09	198	1,14	6.41	70.7	29.6	6.91				
18:44	400		9.66	202	.54	6.49	60.4	81.7	7.25				
18:47	400	1.25	9.03	192	.33	6.43	62.1	13.0	7.23				
18:51	200	1,5	9.12	191	35	6.45	60.9	8.12	7.02				
18:55	406	2.00	9,37	196	.36	6.46	59.6	19.6	7.20				
					, ,								
Parameter Stab		olicable)			8V	V	V						
Sample Color: (lear			Sample Odor:			Shee	en: slight D	heen				
	Analy				al Sampling								
	Analys	ses		Спеск	Applicable			Comme	nts				
DFO/FFO	/tr	TIO	nation?										
	VOCS	20	Ed Mos			_							
VA.F	1	2	330										
Notes:			The state of the s										
=													
Equipment: Tubing: Polyethy	ulono MPET	'⊑ Lined □(Other			00.01	/A" 🗆 3/Q"	(N 4/9"	Loft in wolf	Yes □ No			
Pump/Bailer 1000			Jiner		meter Meter i	U.U. ∐ 1. make/SN#)	14" \(3/8" \)	# 14 DIOL	Left in wein.	1 Yes □ INO			
W.L. Indicator			/leter (Make/	SN#) 5LR#)	icici iviote.	Hanco Ci tin		ed 🗆 Yes 🔯 I					
Purge Water Hand					eated (how?	GAC							

Site/Client Name:	led (Calmo	n			Well II	D: MW-	B	i i	20 5 - 1	MUD 3 - 072		
Project #: 105. (Sample	e ID: Res	MW3-	073021		MO		
Sampled By: 9 , F	LAGEL É	M. DOTT	EN			Sample	e Time:	1020	Sample	Date: 7/30	721		
Weather Condition	15: overce	ast;≈6	Do: calv	n w	ingles	Duplica	ate ID:	9:25		7/:	31/21		
Sampling Method:						MS/MSD ☐ Yes ☐ No Trip Blank Required: ☐ Yes ☐ No							
	VALUE OF	VI XII NI	ward!			ormation			HEISER US		TWO DEED		
Well Type: Perma						2 in.	Screen In		ft BG	S to	ft BGS		
Well Condition: 💢 G	ood 🗌 Fai	ir 🗌 Poor (if	f fair or poor					Yes 🗐 N	e; if yes,	3ft abov	e ground		
Double to Water (# DT	TOC): /- /	MA		Ga	uging/Purg			L /A DTOC	270				
Depth to Water (ft BT Total Depth (ft BTO)		1						24-hr) (3:4	13 Lt				
Depth to Product (ft.								4-hr) w/					
Product Thickness (ft								min) < i					
		= (Tubing D default value o				X 0.25 = 1 gal	:(ft);	if screen inte	rval is not know	vn or water tabl	le is below top of		
Min. purge volume if required: purge volume (gal) = volume of water/ft (gal/ft) X Water column thickness (ft) X # of casing volumes = gal Well Diameter - gal/ft 1" - 0.041 gal/ft 2" - 0.163 gal/ft 4" - 0.653 gal/ft 6" - 1.469 gal/ft													
vveii Diameter – g	αι/π	1 - 0.0)41 gai/π			- Maria		4" - 0.653	gal/ft	6" – 1,4	169 gal/ft		
(Achieve stable	parameters f	or 3 consecut	ive reading, 4	parame	Vater Qualit ters if practica	ty Paramete al [each read	e rs ing taken afte	er pumping a	minimum of 1 f	low through cell	l volume])		
Time	Flow	Purge	Temp		pecific	DO	pН	ORP	Turbidity	DTW	Drawdown		
(24-hr)	Rate (mL/minute)	Volume (L or gal	(°C)		ductance	(mg/L)		(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)		
	(memmate)	Circle one)	(± 3 %)		(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)		
3.43										9.4			
manny	moton	1-112	re mo	A	colle	cloud	1000	1 20	Chara	0 1	ne 8		
town Now	~ 0	7 10.	110011	na.	10000	1 ment	011	Daga	day	Tany	100		
antuan	On	tal	to ago	11	0 200	la ara	o on	ageir.	and of	300	2-1		
Outu Coo	7 0	were c	and, a	10:	VI CO	000	1-1800	mpre	Mar	coecic	The state of the s		
any ere	Jugar	- min	or her	P	Je gov	The same of	Jacos	Thou	To go	paso	UL UL		
7/31/21 01:25	40			ļ .			V			9.78			
11 1 25	10									1.10			
				-									
4.5													
									70				
2.													
Daniel of the Other	(Ob 1 -	P. 41.							У.				
Parameter Stable	, , , , , , ,		,	<u> </u>			_	<u> </u>					
Sample Color: 1	ghilly	Cloud	ly	Sam	ple Odor:	NA		Shee	en: N/△				
	Analis		V			I Sampling		-	0		vite.		
()0.0	Analys	562			Check	Applicable			Comme	ents			
	AKION	103			1					<u> </u>			
	8360	103	- A			-	-						
DIE X	Sales	1		•	La C								
Notes: And in to	1-1.1.	E 10 1	0.00		- 1	mr.l.	1 71	21121 1	nort c	:4 Oak	Medi		
to not be	of orble	my (be	adoler	21/2	10/21	recure	ac TI	31/4 1	oget Si	mples	- oue		
Notes: dedicated tubing (bladder pump). Felurned 7/31/21 to get samples one to not being able to get than 7/30/21													
Equipment: Tubing: Polyethyle	no Hort	Elipod Cl	Othor	.00		•1	00 -	/4" X3/8"	□ 4/0"	1 a4 : 1 Å	C(Vac Class		
Pump/Bailer				. 1	Multi-Daras	neter Motor			□ 1/2" 6 14Dil		☑ Yes ☐ No		
W.L. Indicator Colin						ierei inierei i	make/SIN#)	8.5	ed [Yes []				
Purge Water Handlin	na: 🗆 Disc	harged to s	urface □Cc	ntainer	ized M Tre	eated (how?	GAC	_ intere		LUL#			
		3			7								

Site/Client Name	e: Red S	almon	J.		Well II	D: MW-L	1					
Project #: 105.	00151.2	1001			Sample ID: 85-MW4-073021							
Sampled By: S			then			e Time: 2		<u> </u>	Date: 7/30	121		
Weather Condition				wind	Duplic	ate ID:		·		7-1		
Sampling Method:					MS/MS	SD 🗌 Yes	- No	Trip Blank F	Required: 🔯	Yes No		
The same of the sa			100		ormation		TX L.T	Ant, M				
Well Type: 🙀 Pern Well Condition: 💢					in.	Screen In		ft BG	S to	ft BGS		
vveii Condition: [X	Good Fa	Ir [_] Poor (I	r tair or poor		Stickup Yes Yes, If yes, 3 ft above ground							
Depth to Water (ft E	3TOC): 412			Gauging/Purgi			h (ft. BTOC): 8,5				
Total Depth (ft BTC		19			Purge S	Start Time (2	24-hr)20: 2	8				
Depth to Product (fit Product Thickness							4-hr) 70 :	47				
	. ,	= (Tubina D	epth - Top of	Screen Depth)		urge Time (nyal is not know	in hi water table	is holow top of		
SCI	een, then use	detault value	of 0.3 ft. 1 gal	= 3.785L, 1L = 0.264	gal					: is below top of		
Min. purge volume if Well Diameter –	qal/ft	rge volume (g 1" – 0.0	al) = volume o 041 gal/ft	f water/ft(gal/ft] 2" - 0.1	X Water co		4" - 0.653			=gal 69 gal/ft		
				Water Quality	Paramete	ers						
				parameters if practical	[each read	ing taken afte	er pumping a	minimum of 1 f	ow through cell	volume])		
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)		
` ′	(mL/minute)	(L or ga) Circle one)	(± 3 %)	(μS/cm²)		(1.0.4)	, ,	(± 10%, or	(1100)			
20:20:08		Circle drie)	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)	11 10	(Maxft)		
20:28	200	. 25	9.93	269	,77	6.56	68.1	CFF	4.12			
20:36	150	.35	10.00	258	.77	6.54		555				
20:40	200	.5	10.28	254	.61	6.53	64.7	244	5.25			
20:44	200	,75	10.4	252	.70	6.53	62.0	178	5.26			
20:47	200	1	10,45	251	.70	6,53	61.6	94	5,26			
20 17			(=1.10		,10	Ψ, σ, σ	61.0	-11	7120			
-												
		5"					1.90					
Parameter Stable	(Check app	licable)	~	✓		V	V		1			
Sample Color:	ear			Sample Odor: A	J/A		Shee	n: Slight	sheen			
				Analytical	Sampling							
	Analy	ses		Check A	pplicable			Comme	nts			
GRO	AK	101	• • • • • • • • • • • • • • • • • • • •									
DRO PRO BIEX	MX	102	101									
DICX.		D101				-						
Notes: (NEM m	eeds ne	u nous	1 (1 0 0 0	ed 112	1 to 00	10 12	co le al	L 17 11	200:0			
0 01().		P	r) wysp	ed w/ Duc	riogse	, order	across	TUBING (F	a pun	$p \setminus $		
								_				
Equipment: Tubing: Polyethyle	More	Ellery Tr	N45				4	124 - 1/694 144 - 1/694	10 July 1	2 000		
Pump/Bailer				Multi-Parame	tor Mates		4"-F 3/8"		Left in well	Yes 🗆 No		
W.L. Indicator	water	Turbidity N	leter (Make/	SN#) SCR # \	ici ivieter r	nake/SIN#)	- 11/2	d 🗆 Yes 🔯				
Purge Water Handl					ted (how?)	GAC	i iiteret	100 FX	COL TT			

Site/Client Nam	- P. J C	Λ				13/-11 1	<u></u>	241.12	*** 1/7		K			
Project # : 105.0						Sample ID: MW ~ 5 R SY								
			HT.						-100 9 K	- A	7/4	Souple		
Sampled By: S					/			Time:	NA	Sample	e Date: 7/ 30	1/21		
Weather Condition			means	wie	$\overline{\mathcal{L}}$	Duplic			77.1	= . 5				
Sampling Method:	LOW Flow	/ U Otner_			- 15/all lad			D 🗌 Yes	; ∐xr No	Trip Blank F	Required: 💢	Yes No		
Well Type: Perr	nanent MT	emporary		Well Di	iameter	formation 2 in	Т	Screen In	terval:	29 ft BC	3S to 6-7	ft BGS		
Well Condition:						2"18	+		Yes A	o; If yes, 3	ff abov	e ground		
		13-16-E		_		ging/Purging Information								
Depth to Water (ft I						Tubing	g/F	oump Dept	th (ft. BTOC)					
Total Depth (ft BT		9							24-hr) 165	5				
Depth to Product (f Product Thickness								nd Time (2		-				
LOW FLOW: Ma	ax Draw Down	= (Tubing D	epth - Top of	Screen	Depth)	Total Purge Time (min) Depth) X 0.25 (ft); if screen interval is not known or water table is below top								
scr	reen, then use	default value o	of 0.3 ft. 1 gal	= 3.785	5L, 1L = 0.264	4 gal						3 13 001011 1.Dp 5.		
Min. purge volume if Well Diameter –	required: pur	ge volume (ga 1" - 0.0	al) = volume of 041 gal/ft	water/f	t(gal/ft	t) X Water co 163 gal/ft	olu		4" - 0.653			=gal 169 gal/f t		
	Sant		TTI Years	V	Vater Qualit		to		4 - 0.000	yanı	0 - 1	69 gavit		
(Achieve stab	le parameters f	for 3 consecuti	ive reading, 4	parame	ters if practica	al [each read	dir	ng taken afte	er pumping a	minimum of 1 f	flow through cell	volume])		
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)		Specific	DO (mg/l.)		рН	ORP	Turbidity	DTW (# BTOC)	Drawdown		
(24-111)	(mL/minute)	(L orga)			nductance µS/cm°)	(mg/L)			(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)		
		Circle one)	(± 3 %)	(-	(± 3%)	(± 10%)		(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)		
16:50			-						0 1		9.70			
19:15											5.30			
.1000														
							Ī							
			-				T							
							1			98				
		-					1							
		-					1							
							+							
							+							
							+							
Parameter Stable	e (Check and	olicable)					+							
	e (Check app	ilicable)					_							
Sample Color:				Sam	ple Odor:		_		Shee	n:				
	Analy	202			Analytical	l Sampling Applicable	_	1		Comme	anto.			
GRO	- Allany				Olleck A	фрисаые	_			Comme	mis			
DPOIPPO								12		1	0	- 1		
BIEX	-					-	_	Sw	som	AGE C	21004	<u>eo</u>		
OICK						1.	_							
Notes: MADD N	wind had	1.000.1	A) O	0	0	d -	_	. 01		1 15 1				
Notes: well p	guive in	HULLEN.	. 100 Ser	wpl	2 - Pur	ep ary	f	after	LSom	cusch	wrige	> .		
						•					٧			
Equipment:	1													
Tubing: □Polyethyl		E-Lined □C	Other						/4" 🗆 3/8"	1/2 "	Left in well [☐ Yes ☐ No		
Pump/Bailer_Peru					Multi-Parame	eter Meter	m	nake/SN#)	20110	J				
	/wate				NIN	<		11/	Filtered	d 🗌 Yes 💢 N	No Lot#			
Purge Water Hand	inig. Disc	narged to su	irrace 🔲 Con	itaineri	zed 🔲 irea	ated (now?	()_							

Site/Client Nam	a. Dod C	- A 100000	_		Wall I	D. Mint	-10						
Project # : 105.0			<u> </u>		Well ID: MW-6 Sample ID: P5-MW6-07302								
Sampled By: 9			tlon.			le Time:				0/21			
Weather Condition	ons: Mone	und : ~ (20° : 100-il	o de wird	Sample Time: (6'09 Sample Date: 7/30/2) Duplicate ID:								
Sampling Method:					MS/MSD ☐ Yes ☐ No Trip Blank Required: ☑ Yes ☐ No								
	<u> </u>			Well In	formation								
Well Type: 🛛 Pern	nanent 🔲 T	emporary		Well Diameter 2		in. Screen Interval: ft BGS to ft BGS							
Well Condition: 🛚	Good ☐ Fa	ir 🗌 Poor (if	fair or poor			1	Yes DN	o; If yes,	3ft abov	e ground			
Donth to Water (ft I	DTOCN := :	7)		Gauging/Purg	ing Inform	ation	" " PTOO	5.0					
Depth to Water (ft E Total Depth (ft BT)							th (ft. BTOC) 24-hr) (5						
Depth to Product (f							24-hr) (6						
Product Thickness	14.1.5				Total P	urge Time ((min) 32						
LOW FLOW: Ma	x Draw Down reen, then use	= (Tubing De default value o	apth – Top of of 0.3 ft. 1 gal	Screen Depth) = 3.785L, 1L = 0.264	X 0.25	=(ft);	if screen inte	rval is not know	vn or water table	e is below top of			
Min. purge volume if Well Diameter –		rge volume (ga 1" – 0.0		water/ft(gal/f	ft) X Water co				olumes				
vven Diameter	gant	1 - 0.0	41 gaint	Water Qualit			4" - 0.653	gai/it	b - 1.4	169 gal/ft			
(Achieve stabl	le parameters f	ior 3 consecuti	ve reading, 4	parameters if practical	al [each read	ding taken after	er pumping a	minimum of 1 f	low through cell	volume])			
Time (24-hr)	Flow Rate (mL/minute)	Purge Volume (L or gal)	Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU) (± 10%, or	DTW (ft BTOC)	Drawdown (ft)			
		Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0,1)	(± 10mV)	<5 NTU)		(Maxft)			
15:28 5.71													
* 15:32									5.57				
15:36	200	.25	12.67	107	1,77	5.76	115	785	6.32				
15:40	175	SO	12.43	105	1.65	5.72	111.3	OR	7.10				
15: 52	100	.75	12.87	119	1.85	5.82	106.3	OP	7.82				
16:00	200	.85	13.88	ill8	1.34	5.81	105.7	OR	8.45				
-													
Parameter Stable													
Sample Color: nu	urby bot	whish o	range	Sample Odor:			Shee	in: YOU	2				
	Analys	SAS			l Sampling Applicable			Comme	nte				
GRO	Alloy	A	101	Olleck	-тррпсавів	-		Comme	1115				
DROIRRO	4	W. The	07/103			-							
BTEX	*	3360	MIN										
Notes: 0p = outo	frange	ion rec	herrege.	Rumping St	opped	for 5	minute	S. Samp	les Colle	ected			
Notes: 0p = out o 1316/21 expired = Switched Equipment:	to Peri	Pump !	12 way +	hrough san	pling.	Needs	new 5	ilicone to	bing,				
Tubing: ☐Polyethyl							/ 4 " 📉 3/8"		100	Yes 🗆 No			
Pump/Bailer 100	moon	1 Peri			neter Meter			,# 14D id		X 162 1110			
W.L. Indicator Sch				SN#) SLP-# 1			- 0.		No Lot#				
Purge Water Handl	ling: 🗌 Disc	harged to su	ırface Cor	ntainerized 💢 Tre	ated (how?	GAC							

Ott- /Oliont Non	Val	0 //44	weight.			T							
Site/Client Nam			m			Well ID: WW-7							
Project # : 105,			~ 717.							1-073c			
Sampled By: 5			. Dotter	_		Sampl	le Time: 2	1:34	Sample	e Date: 7/3	0/21		
Weather Conditi						Duplic	ate ID:				16		
Sampling Method:	Low Flov	N ☐ Other_			45		SD 🗌 Yes	No	Trip Blank I	Required.	Yes No		
Mall Time Do		-/ 11 11 1			Well In	formation	XFRX			الأزراك			
Well Type: Per						<u> </u>	Screen In			GS to	ft BGS		
Well Condition:			f fair or poor					Yes 🗆 N	lo; If yes,	ft abov	e ground		
Depth to Water (ft	BTOC): 9	MY 9	.40	Gau	Sauging/Purging Information Tubing/Pump Depth (ft. BTOC):								
Total Depth (ft BT	OC): 12	.20	. 10					(24-hr) 21					
Depth to Product (24-hr) 21:					
Product Thickness	_ , ,					Total Pi	urge Time ((min)					
SC	reen, then use	detault value i	or 0.3 π. 1 gal	1 = 3.785L	L, 1L = 0.26	i4 gal					e is below top of		
Min. purge volume i Well Diameter -	f required: pur - gal/ft	rge volume (g	jal) = volume o 041 gal/ft	f water/ft_	2" - 0	ft) X Water co 163 gal/ft	lumn thickne				=gal		
	gaint	1 0.0	J4 i gain	W		ity Paramete		4" - 0.653	gai/π	b" - 1.4	169 gal/ft		
(Achieve stat	ale parameters f	for 3 consecut	tive reading, 4	paramete	ers if practic	al [each read	ers ling taken aft	er pumping a	minimum of 1	flow through cell	volume])		
Time (24-hr)	Flow Rate (mL/minute)	Purge Volume (L or gal	Temp (°C)	Sp Cond	oecific Juctance	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)		
	,	Circle one)	(± 3 %)		S/cmº) ± 3 %)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)		
21: 25										9.40			
21:25	300	.25	7.93	160	4	1,79	6.16	90,3	58.8	9.59			
21:28	200	04	7.98	16	_	1,72	6.12	80.4		9.59			
21:32	200	.0	7.94	163		1.91	6.12	79.9	21.2	9.60			
		6.4	1.1	10.	<u> </u>	DIL	0.12	77.1	2116	4.00			
	-		-										
	-												
											8		
						· ·							
Parameter Stabl		ilicable)		_ V	/	-6	V	/	55				
Sample Color: 0	lear			Samp	le Odor:	W NO	w	Shee	n: ///	well			
					Analytica	I Sampling							
	Analys					Applicable			Comme	ents			
GPO	AKIC)(.											
DEO/PRO	AKI	ON 103											
BIEY	8	260											
Notes: dedicat	ed tubir	z (peri	pump	,7 NO	silice	ne							
Equipment:	26						×1			A) 3			
Tubing: Polyethyl			Other				O.D. 🔼 1/	/4" 🔲 3/8"	<u> </u>	Left in well	¥es ☐ No		
Pump/Bailer per			- Mark Monophorola	M	lulti-Param	eter Meter n	nake/SN#)		6 #14D10				
W.L. Indicator							1.00	_ Filtere	d 🗌 Yes 🔯	No Lot #			
Purge Water Hand	ling: 📙 Discr	narged to su	ırface ∐Cor	ntaineriz	ed 💢 Tre	ated (how?)	41						

	2 1 1	4				_						
Site/Client Nam							D: 10 W- 9					
Project #: i05.									07302			
Sampled By: 🥞	Flage	L+M,	DoHer)		Sampl	le Time: 23	2:10	Sample	e Date: 07/	30/21	
Weather Condition	ons: ove	reast				Duplic	ate ID:					
Sampling Method:	Low Flov	w ☐ Other_				MS/MS	SD 🗌 Yes	No	Trip Blank F	Required: 🔯	Yes No	
						ormation						
Well Type: Perr				Well Diame		in.				3S to		
Well Condition: 🗵	Good 🗌 Fa	iir 🗌 Poor (if	f fair or poor		PROPERTY AND STREET AND STREET							
Depth to Water (ft I	PTOCY: //	ac	01	Gaugir	ng/Purgi	ing Inform		" # DTOO				
Total Depth (ft BT							/Pump Dept Start Time (2					
Depth to Product (f							End Time (2					
Product Thickness							urge Time (Φ			
	ax Draw Down creen, then use					X 0.25			rval is not know	vn or water table	e is below top of	
Min. purge volume if	f required: pur	rge volume (g:	al) = volume o				olumn thicknes	ss(ft)	X # of casing v		gal gal	
Well Diameter -	gal/tt	1" - 0.0	041 gal/ft			63 gal/ft		4" - 0.653	gal/ft	6" - 1.4	469 gal/ft	
(Achieve stat	ole parameters	for 3 consecut	tive reading, 4	Wate parameters	or Quality if practice	y Paramet al [each read	ers ding taken afte	er pumping a	minimum of 1 f	flow through cell	volumel)	
Time	Flow	Purge	Temp	Speci		DO	pH -	ORP	Turbidity	DTW	Drawdown	
(24-hr)	Rate (mL/minute)	Volume	(°C)	Conduct	tance	(mg/L)	,	(mV)	(NTU) Î	(ft BTOC)	(ft)	
	(IIIL/IIIIIIIII)	(L or gal) Circle one)	(± 3 %)	(μS/cr (± 3%		(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)	
21:50					-		n n	<u> </u>		5,14 4.8	-	
21.53 200 .1 9.91 281 .82 6.53 74.7 101 5.14												
21:59	200	.25	9.99	278		.70	6.37	70,1	79.3	5.21		
22:02	200	. 5	10.02	277		346				5.21		
22:05	200						6.38	669	184.6			
12:08		-6	10.03	277		.56	6.38			5.21	2	
16 08	200	, 7	10.02	270	1	.48	6.30	62,5	12.5	5.21		
					9							
*												
							251	7.6				
Parameter Stabl	le (Check apr	plicable)	J	V		. 4	/		8			
Sample Color: 🕑	elar		-	Sample	Odor:		NOW	Shee	n: 10/10	var	0	
						Sampling		2	ine per je		4	
	Analy	ses				Applicable			Comme	ents		
GPO	AK	IQI										
DROIRPO	Ak	102/1	03		۵							
BTEX	3	B266										
	15	30000										
Notes:	Lol A. N	MD.	Nº Silve	- d	ledica	tent t	ubina					
· October		0	June 31 III			-	0					
Equipment:	2.1						10				4 4	
Tubing: Polyethy			Other				O.D. 🚺 1	/4" 🔲 3/8"	□ 1/2"	Left in well	X Yes ☐ No	
Pump/Bailer per			0203-031-0				make/SN#)		6# 14D	ATT.		
W.L. Indicator							P-AC	Filtere	d 🗌 Yes 🔯	No Lot#		
Purge Water Hand	ılling: 🔲 Disc	charged to si	urface ∐Co	/ntainerizeď	∬ Tre:	ated (how?	19AC	ri.				

Site/Client Name	: Red Sa	almen	D: MW	-9									
Project #: 105.				4	Sampl	Sample ID: RS-MW9-073021							
Sampled By: 😏	Florgel	3M.	Jotten	j'		Sample Time: 14:31 Sample Date: 7/30/21							
Weather Condition	ns: vercu	A: ×60°:	mild i	rind	Duplic	ate ID:				7-1			
Sampling Method:			,,, , , , , , , , , , , , , , , , , ,			SD Yes	L'VNo	Trin Blank B	Required:	Ves 🗆 No			
	() - I		7 3 3 1 1 1	Well	Information								
Well Type: 🔼 Pern	nanent 🔲 Te	emporary		Well Diameter	in.	Screen In	terval:	ft BG	S to	ft BGS			
Well Condition: 😾	Good 🗌 Fa	ir 🗌 Poor (if	fair or poor	explain in Note	s)	Stickup Yes King If yes, 3 ft above ground							
التالية والتراجية				Gauging/P	urging Inform	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I				ID. June			
Depth to Water (ft E							th (ft. BTOC)			0			
Total Depth (ft BT0 Depth to Product (ft		<u>t</u>					24-hr) 14:1						
Product Thickness						urge Time (2	24-hr) [4];	4					
LOW FLOW: Ma	x Draw Down	= (Tubing D	epth - Top of	Screen Depth)	X 0.25			rval is not know	n or water table	e is below top of			
scr	een, then use	default value o	of 0.3 ft. 1 gal	= 3.785L, 1L = 0	.264 gal								
Min. purge volume if Well Diameter –			al) = volume o 41 gal/ft		gal/ft) X Water co 0.163 gal/ft	olumn thickne	ss(ft) 4" - 0.653		olumes	= <u>g</u> al 69 gal/ft			
VVOII BIGITION	gant	1 0.0	+1 gaint		ality Paramet	ore	4 - 0.000	gairit	0 - 1,4	os gaint			
(Achieve stabl	e parameters f	or 3 consecut	ve reading, 4	parameters if pra	ctical [each read	ding taken aft	er pumping a	minimum of 1 fl	low through cell	volume])			
Time	Flow	Purge	Temp	Specific	DO	pН	ORP	Turbidity	DTW	Drawdown			
(24-hr)	Rate (mL/minute)	Volume (L or ga)	(°C)	Conductance (μS/cm ^c)	e (mg/L)		(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)			
Circle one) (± 3 %) (± 3%) (± 10%) (± 0.1) (± 10mV) <5 NTU) (Maxft)													
14:03 (2016) (2016) (2017) (2017) (10117) 51.16)													
14:10 75 4 9.2 170 7.1 6.15 149 293 6.29													
14:17	60	v 3	9.27	172	5.01	617	118.2	213	6.21				
14:22	60	v35	9.15	174	7.55	6.19	113,8	116	6.21				
14:27	75	,5	9.14		7.33	6.21	iitil	54.1	6.21				
1-(-21	1 5	, ,	1.19	175	1170	0.21	([U]	2-61	0.21				
			-				1		,				
Parameter Stable		,				V							
Sample Color: D	ightly c	loude	1-	Sample Odo	r: NAONE		Shee	n: NAODI					
	1)	Analyt	ical Sampling								
	Analy	ses		Chec	k Applicable			Comme	nts				
GRO	A	101 21											
DROIRRO		is all	7/103										
BIEX		12 26°)										
wed instead Dedicated tubing (Peri Pump)													
used inst	end. De	dicate	el tubi	of (Peril	Zump\	, ,		0 0 0 1	o a pour				
			The state of the s	0 0000	F)								
Equipment: Tubing: Polyethyl	one Mort	Elipod Elip	Mhos			0.5	M0 /4" ⊠ 3/8"	D 4.00	1 -0 1 2 2	",			
Pump/Bailer_P.2/14			uler	Maria: D-	omotor Mart-					XYes □ No			
			eter (Make)	SN#) S/D #	ameter Meter	make/SN#)		11,000,000					
	L. Indicator Slims #122 Turpidity Meter (Make/SN#) SLP # Filtered Yes No Lot # Irge Water Handling: Discharged to surface Containerized Treated (how?) GAC												
runge water manuf	ing. Disc	naiged to st	mace LICO	itali lelizeu	Heateu (How	June -							

Site/Client Nan					Well I	Well ID: MW-10							
Project #: 105					Samp	Sample ID: £ 5 " MWID-07 3021							
Sampled By: 9			an Deller	N		le Time: 📭			e Date: 7/30	121			
Weather Condit					Duplic	ate ID:	1 2 3						
Sampling Method					MS/M	SD 🗌 Yes	No No	Trip Blank F	Required	Yes 🗌 No			
		72 de 30			formation		1			N J MAK LA			
Well Type: Per				Nell Diameter		Screen In			GS to	ft BGS			
Well Condition: K	Į Good ∐ Fa	ir ∐ Poor (if	fair or poor e				Yes N	lo; If yes,	ft abov	e ground			
Depth to Water (ft	BTOC): 10.5	4 16		Gauging/Pur		/Pump Dept	th (ft. BTOC	D: 13					
Total Depth (ft B1	TOC): 15.1	15				Start Time (
Depth to Product		is froduct	Τ		Purge I	End Time (2	24-hr) 2	57					
Product Thickness		- /Tubing D	anth Top of	Screen Depth)		urge Time (
Sc	creen, then use	default value o	of 0.3 ft. 1 gal:	= 3.785L, 1L = 0.26	34 gal	=(n),	if screen inte	irval is not know	wn or water tabl	e is below top of			
Min. purge volume Well Diameter			al) = volume of 041 gal/ft	water/ft(gal/	/ft) X Water co								
Well Diameter	- gaint	1 - 0.0	41 gaint	Water Quali	.163 gal/ft		4" – 0,653	gairit	0 - 1,4	469 gal/ft			
(Achieve sta	ble parameters	for 3 consecuti	ve reading, 4 r	parameters if practic	cal [each read	ding taken aft	er pumping a	minimum of 1	flow through cell	volume])			
Time	Flow	Purge	Temp	Specific	DO (mg/l.)	pH .	ORP	Turbidity	DTW (#.BTOC)	Drawdown			
(24-hr)	Rate (mL/minute)	(L or gal)	(°C)	Conductance (µS/cm ^c)	(mg/L)		(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)			
		Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0,1)	(± 10mV)	<5 NTU)		(Maxft)			
12.06													
12:28	500	gal z 2gal 3	5.34	121	13.7			45.5	10.99	10.99			
12:34	400	galiz	5.84 5.75	117	12.29	5.7	132.8	36.8	10.95				
12.41		2 gal	5.75	115	11.98	5.94	131.1	36.4	19.91	55			
12:45	500	3	5.12	116	12.5	5.47	124,7	21.5	10.99				
			Y										
					190								
				- 1			,		,				
Parameter Stab		olicable)					V		\vee				
Sample Color: C	lear			Sample Odor:	Moore		Shee	en: MOV	e				
	1				al Sampling								
	Analy	k .		Check	Applicable			Comme	ents				
GP0		-	<u>01</u>	1									
DRO/PRO BTEX		250	105/10	5									
DICK		صحوو	ي			-							
Notes: dedicated	of tubing 1	bladden i	Jump)										
CCO. CO. (C	2	- 1	1)										
Equipment:	Home						¥		1				
Tubing: ☐Polyethy Pump/Bailer_Mon	in a set					O.D. [] 1	/4" [A] 3/8"	1/2"	Left in welly	✓ Yes ☐ No			
W.L. Indicator So	IN, 5 +# 122	4 loop	leter (Make)!	Wulti-Paran	neter Meter	make/SN#)	Filters	ed 🗆 Yes 🛚	No. Lot#				
Purge Water Hand					eated (how?	GAC		.0	140 LOT#	-			

Surface Water Sampling Form

Site/Client N	Name: fled Salv	vor		L	ocation:	5W-1			
Project #: la	05.00151.2100	1	(S	ample ID	PS-	5W1-1	73121	
	S.Flagel+M.			_					te: 07/31/21
Weather Cor	nditions: overeust	windy						1-073121	0 (13.4)
Other:	~	, , ,							red: Yes No
	44		Loca		nformatio		X.	The Blank Hodgi	100, 100
	Bank (ft): /U/4	Depth of Wate	er (ft): 4.5	F	owing Wa	ter: R	apid	☐ Slow	Stagnant Pool
Co-Located Se	ediment Sample: 🗌 Yes	No	GPS Coordinate	es: N	orthing		art.	Easting	
□ No Shoop	Chan Observed (size	de breek. DOI		Shee	n Test			المستران الأنسان	
140 Sheen	Sheen Observed (circ	de type); POI			Biogeni y Parame		Other (describe)	
Temp	Specific Conductance	DO	ORP	T	pH		bidity		
(°C)	(μS/cm)	(mg/L)	(mV)		td unit)		ITU)	Color	Odor
NN	NM	NM	Nu	1	M	N	M	NM	NW
	No. of the second			ytica	Samplin	g			
Analyses	Number/Type of Bottle		eservative/ omments		Anal	yses		per/Type of Bottle	Preservative/
GRO/BTEX	10 m/x3	HC			PAHs		ax.	3:50W1	Comments
DRO	2x 250m	HC			Total Me		-		
VOCs VOCs	40M ×3	110			Dis. Meta	als			
SVOCs	MCAMI X3	HZ							
Notes (indicate	collection method):								
Site/Client N	ame: Red Selv	2020		Tie	cation:	101 -73			
	05,00151. 2100			_			1, 100	122171	
	S. Flagel + M.							1518F0	and the last
Weather Con-	ditions: Overcest, o	100/10			uplicate II		482	Sample Dat	te: 07/31/21
Other:	Coverust, o	Ulitare		_	S/MSD		1/1-	Sin Dinas D	
Ourior:	THE RESIDENCE OF THE PARTY OF T		14				INO	rip Blank Requir	red: Yes 🗌 No
Distance from E	Bank (ft): W/ A	Depth of Water	r (ft)	ION II	nformatio	n or DR:	anid	☐ Slow	Stagnant Pool
Co-Located Se	diment Sample: Yes	No C	GPS Coordinate	s: No	rthing	CI. [] [K	più	Easting	Stagnant Pool
			J. J. J. J. S.	Sheer	Test				
☐ No Sheen	Sheen Observed (circ	e type): POL					/ Other (d	escribe)	
Temp	Specific Conductance	DO	ORP	uanty	Paramet pH		oidity		
(°C)	(μS/cm)	(mg/L)	(mV)	(st	d unit)		TU)	Color	Odor
NU	NI	MM	Nu	N	M	N	M	NW	NM
	Number/Type of		Analy servative/	/tical	Sampling	}			
Analyses	Bottle		mments		Analy	/ses		er/Type of Bottle	Preservative/ Comments
GRO/BTEX	40m13 x3		ント		PAHs			MIXZ	Gommenta
RRO	250M27	H	CL		Total Met				
/OCs	40.mi 23	HC	1		Dis. Meta	IS			
SVOCs		N.T.							
Notes (indicate o	collection method):								
Equipment Used	d: Pump Type N/A		Tubing (Ty	mall -	anath) A	/A		T	Name -
		//A	rubing (ry	/pe/Le		/ Man		Transfer E	ottie
	IVICIOI (IVIANO/SIVIII)	ZV				oldity Mete	r (Make/SI	N#) N/A	
SPS Type: Rev. 2016	A		F	ılter 8	Lot#	1/			

APPENDIX C QUALITY ASSURANCE REPORT, ADEC CHECKLISTS, AND LABORATORY DATA

2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

October 2021

LABORATORY DATA QUALITY ASSURANCE REVIEW NORTH PACIFIC SEAFOODS

2021 GROUNDWATER MONITORING RED SALMON FACILITY (NAKNEK, AK)

September 2021

Prepared by: Jennifer McLean

SLR Project Number: 105.00151.21001

ADEC Number: 2616.38.005

Hazard ID: 26421

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 9950

ACRONYMS AND ABBREVIATIONS

 $^{\circ}\text{C} \qquad \qquad \text{degrees Celsius} \\ \mu\text{g/L} \qquad \qquad \text{micrograms per liter}$

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska

BTEX benzene, toluene, ethylbenzene, and xylenes

CCV continuing calibration verification

COC chain of custody DL detection limit

DRO diesel range organics
EDD electronic data deliverable
GRO gasoline range organics
LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection LOQ limit of quantitation

LV low volume MS matrix spike

MSD matrix spike duplicate

NA not applicable

NFG National Functional Guidelines
PAH polycyclic aromatic hydrocarbons

PARCS precision, accuracy, representativeness, comparability, and sensitivity

PDF portable document format

QA quality assurance

QAR quality assurance review

QC quality control

RPD relative percent difference
RRO residual range organics
SDG sample delivery group
SGS SGS North America, Inc.
SIM selective ion monitoring
SLR SLR International Corporation

SW surface water

TAH total aromatic hydrocarbons
TAqH total aqueous hydrocarbons

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

Introduction

This report summarizes a review of analytical data for samples collected on July 30, 2021, and July 31, 2021 in support of the Red Salmon Facility groundwater monitoring. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1 Sample Summary

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank¹
1214771	7/30/2021 - 7/31/2021	8/2/2021	0.5°C	GW	AK101 AK102/103 SW8260D SW8260D SW8270D LV	GRO DRO/RRO BTEX VOCs PAH SIM	Required NA Required Required NA
1214774	7/31/2021	8/2/2021	0.4°C	SW	AK101 AK102/103 SW8260D SW8270D LV	GRO DRO/RRO BTEX (TAH) PAH SIM (TAqH)	Required NA Required NA

Notes:

1 - This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody.

Acronyms:

AK – Alaska BTEX – benzene, toluene, ethylbenzene, and xylenes

°C – degrees Celsius DRO – diesel range organics

GRO – gasoline range organics GW – groundwater LV – low volume NA – not applicable

PAH – polynuclear aromatic hydrocarbons
SDG – sample delivery group
SW – surface water
TAqH - total aqueous hydrocarbons

RRO – residual range organics
SIM – selective ion monitoring
TAH - total aromatic hydrocarbons
VOCs – volatile organic compounds

The laboratory final reports were presented as Level II deliverables and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided for each SDG. The portable document format (PDF) laboratory reports are provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with the 2021 Groundwater Monitoring Work Plan, Red Salmon Facility, Naknek, Alaska (SLR, 2021), ADEC Technical Memorandum Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data (ADEC, 2019), National Functional Guidelines (NFG, United States Environmental Protection Agency [USEPA], 2017), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and is included as Attachment 1. A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability and sensitivity (PARCS) are noted in this quality assurance review QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals, reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), Laboratory Control Sample Duplicates (LCSD), Matrix Spikes (MS), and Matrix Spike Duplicates (MSD) were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSDs, and MS/MSDs; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2 Data Qualifiers

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for, but was not detected above the Detection Limit (DL). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	υJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В, ИВ	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection or both the blank detection and sample detection were below the limit of detection (LOD), and the result is likely a false positive. The greater of the sample detection or LOD was reported as non-detect in brackets, and the result should be considered undetectable.

Notes:

A discussion of the project data quality relative to PARCS goals and summary of any anomalies or failures requiring data qualifiers follows.

^{1 -} Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

^{2 -} Only flags in **bold** were applicable and appended to data for this project.

Data Validation

Data Packages

The data packages were checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data packages, except as noted below.

For SDGs 1214771 and 1214774

 The PDF laboratory reports included data for one benzene leaching blank (1214771) and two benzene leaching blanks (1214774) that were not applicable to any samples or QC for with this project. Data was not impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. Any issues with regards to the receipt of samples are noted below.

For SDG 1214771

• The first page of the two page COC noted two cooler receipt temperatures, 0.5°C and 0.2°C. The second page of the COC noted only the thermometer ID, with no temperatures. The Sample Receipt Form noted only the temperature of 0.5°C. It was verified with SLR personnel that only one cooler was delivered to SGS laboratory for groundwater samples. It was assumed that the 0.2°C was erroneously written on the first page of the COC. Data were not impacted.

For SDG 1214774

 The second of two containers provided for DRO/RRO for sample RS-SW1-073121 arrived at the laboratory with a cracked lid. Semi-volatile DRO/RRO analysis was not impacted. All data were usable without qualification.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. All method holding times were satisfied for all samples, except as noted below.

For SDG 1214774

• For PAH SIM analysis, sample RS-SW1-073121 and field duplicate RS-SW99-073121 were both re-extracted past hold time due to low 2-methylnaphthalene-d10 surrogate recovery. For sample RS-SW1-073121, results confirmed, and the in-hold data was reported. The laboratory report does not indicate if the past hold time surrogate recovery was within acceptable limits. For sample RS-SW99-073121, the re-extracted results did not confirm the initial results, but the surrogate recovery was within acceptable limits. Both sets of data for sample RS-SW99-073121 were included in the laboratory report. The past hold time extract had higher results for four analytes associated with 2-methylnaphthalene-d10 surrogate. To err on the conservative, the higher of the two data sets for RS-SW99-073121 was reported with appropriate "Q-" or "UJ" flags for detections and non-detected values, to indicate a potential low bias due to extraction past hold time. Even with the highest result reported for PAH, the parent/field duplicate pair value for TAqH of 4.85 micrograms per liter (μg/L) was well below the applicable ADEC TAqH regulatory criteria of 15 μg/L. As such, data usability was not impacted. All data were usable as qualified.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Except as noted below, all method blanks had results of non-detect (ND) below the limit of detection (LOD) and detection limit (DL). Sample detections within five times that of the associated blank were considered affected and were appropriately qualified.

For SDG 1214771

• For PAH SIM by Method SW8270D, phenanthrene was detected in the method blank between the LOD and limit of quantitation (LOQ). Since a high bias was indicated and all associated samples had results of ND for this analyte, no data were affected.

For SDG 1214774

- For PAH SIM by Method SW8270D, phenanthrene was detected in method blank 1627703 between the LOD and LOQ. Two of the three associated samples had results of non-detect for phenanthrene; therefore, data was not affected. The initial extract of sample RS-SW99-073121 had a phenanthrene result of 0.0292 J μg/L, below that of the method blank detection of 0.03 μg/L. Per NFG guidelines, where the blank detection was greater than the sample detection, the result is likely a false positive and the greater of the sample detection or LOD was reported as non-detect in brackets. The phenanthrene result for the initial analysis of sample SW99-073121 if reported should be flagged as [0.0292] UB μg/L. The result should be considered non-detect. The re-extract for this sample was reported by SLR: therefore, data usability was not impacted.
- For PAH SIM by Method SW8270D, phenanthrene was detected in method blank 1630847 between the DL and LOD. The only associated sample had a phenanthrene result greater than five times that of the blank; therefore, data was not affected. All data was usable without qualification.

Trip Blanks

Trip blanks were analyzed at the appropriate frequencies for VOCs by Method SW8260D, BTEX by SW8260D, and GRO by Method AK101. Analytes were not detected at or above the LOD or DL in any trip blanks.

For SDG 1214771

 For the trip blank, the sample date of the first sample collected was written on the COC, but no sample collection time nor analysis was indicated. The laboratory correctly analyzed the trip blank for GRO and full list VOCs and assigned a collection time matching that of the first sample. Data was not impacted.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs for groundwater samples were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2021). LODs for surface water samples were compared to 18 AAC 70.020, Water Quality Standards (ADEC, 2020). All analytes with results of non-detect had LODs at or below applicable regulatory criteria, except as discussed below.

For SDGs 1214771 and 1214774

• 1,2,3-Trichloropropane by Method SW8260D had LODs above ADEC cleanup levels for all samples. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. 1,2,3-Trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted, and all data were usable without qualification.

For SDG 1214774

 For Method SW8270D, the LOD for indeno[1,2,3-c,d] pyrene of 0.266 μg/L did not meet ADEC groundwater criteria of 0.19 μg/L due to necessary dilution due to the dark extract. Only 18 AAC 70 TAH and TAqH criteria are applicable to this surface water sample. Data usability was not impacted.

Continuing Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDDs, not in the case narratives. All CCV recoveries were within acceptable limits.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. Surrogate recoveries were within acceptable limits except as shown in Table 3, with associated qualifiers. Data were not qualified, when the sample was analyzed at a dilution of greater than five-fold, as surrogate may not accurately quantitate at such dilutions.

The re-extract of sample RS-SW99-073121 had a fluoranthene-d10 surrogate recovery of 49.5%, which rounds up to 50%, meeting the lower control limit of 50%. This recovery was considered within acceptable limits and was not shown in Table 3.

While surrogate recovery failures indicated low biases, the impact to data usability was minimal because all impacted results had either detected values well below ADEC criteria or ND results with LODs well below ADEC criteria. Data usability was not impacted.

Table 3 Surrogate Recovery Exceedances

Sample ID	Method	Analyte	Surrogate	Percent Rec. (%)	Rec. Limits (%)	Dil.	Flag
			SDG 1214771 - GW				
RS-MW2-073021	SW8270D	All PAH	Fluoranthene-d10	32	50-97	4	Q- or UJ ^{1,2}
RS-IVIVV2-073021	30002700	SIM	2-Methylnaphthalene-d10	21	42-86	4	Q- or UJ ^{1,2}
	SDG1214774 - SW						
RS-SW1-073121	SW8270D	Various ²	2-Methylnaphthalene-d10	41	42-86	1	Q- or UJ ^{1,3,4}
RS-SW2-073121	SW8270D	AII PAH	Fluoranthene-d10	45	50-97	10	NA ⁵
RS-SW2-073121	3002/00	SIM	2-Methylnaphthalene-d10	34	42-86	10	NA ⁵
RS-SW99-073121	SW8270D	Various ²	2-Methylnaphthalene-d10	29	42-86	1	Q- or UJ ^{1'3,6}

Notes:

- 1 NFG surrogate recovery limits are 30-130%. Conservatively, the more stringent laboratory limits were used for flagging purposes. For detected values a "Q-" was appended, and for non-detects a "UJ" was assigned to affected data.
- 2 The surrogate recovery exceedance was likely due in part to the four-fold dilution.
- 3 The sample was re-extracted and re-analyzed past hold time. Analytes associated with this surrogate are 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene.
- 4 Sample results confirmed, and the in-hold data was reported.
- 5 Data were not qualified, as the surrogate may not accurately quantitate at a ten-fold dilution.
- 6 Data shown in this table was from the initial analysis of this sample. The re-extracted data (with higher reported results) was used by SLR for reporting purposes. If this data is reported, the flags noted should be applied.

Laboratory Control Samples and Laboratory Control Sample Duplicates

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS/LCSD recoveries and RPDs were within acceptable limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD recoveries or RPDs were within acceptable limits, except as noted below. Non-detect results were not impacted by RPD exceedances, as precision measures quantity, not presence or absence of an analyte.

For SDGs 1214771 and 1214774

- For PAH SIM by Method SW8270D, the MS/MSD for batch XXX45308 recovered below acceptable limits for several analytes. As the LCS established batch precision, only the parent sample, not from this project, was affected. No project data was impacted, and all data were usable without qualification.
- For PAH SIM by Method SW8270D, MS/MSD RPDs for several analytes exceeded the acceptable laboratory limit of 20% in batch XXX45308. Analytes with RPD exceedances were benzo(a)anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d] pyrene, and naphthalene. Failing RPDs ranged from 22% to 49%. (It should be noted that the 2-methylnaphthalene surrogate recovery of 20.4% rounds to 20% and is considered within acceptable limits.) As there was no acceptable measure of laboratory precision for the impacted analytes, detected results in batch associated samples were impacted. Only benzo[g,h,i]perylene in sample RS-SW2-073121 had a detection for any impacted analytes. This data was flagged "Q" to indicate estimated with unknown bias. Since only 18 AAC 70 surface water criteria are applicable for the affected sample and the TAqH result well below the limit of 15 μg/L, data usability was not affected.

Field Duplicates

The field duplicate sample frequency is presented in Table 4. Parent sample and field duplicates are presented in Table 5. Field duplicate RPD exceedances are presented in Table 6 and Table 7. Data were qualified as shown in Tables 6 and 7, with associated samples noted in the footnotes. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

Non-detect results are not affected by field precision, as precision measures quantity, not presence or absence of an analyte. Regarding the parent/duplicate pairs shown in Tables 6 and 7, laboratory precision was established via an MS/MSD with acceptable RPDs for all impacted analytes; therefore, data were considered minimally impacted. Also, all affected data were well below applicable ADEC cleanup levels. For these reasons, all data were usable as qualified.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Table 4 Field Duplicate Count

Matrix	Number of Primary Samples	Number of Field Duplicates	Method	Analytes
	9	1	AK101	GRO
	9	1	AK 102/103	DRO/RRO
GW	7	0	SW8260D	BTEX
	2	1	SW8260D	VOCs
	2	1	SW8270D LV	PAH SIM
	2	1	AK101	GRO
SW	2	1	AK 102/103	DRO/RRO
SVV	2	1	SW8260D	BTEX (TAH)
	2	1	SW8270D LV	PAH SIM

Table 5 Parent Samples and Field Duplicates

Parent Sample	Field Duplicate	All RPDs acceptable (Y/N)
RS-MW1-073121	RS-MW99-073121	N
RS-SW1-073121	RS-SW99-073121	N

Table 6 SDG 1214771 - Field Duplicate RPD Exceedances

Method SW8260D Analytes	Parent Sample: RS-MW1-073121 Result (µg/L)	Duplicate: RS-MW99-073121 Result (µg/L)	RPD (%)	Flag (Parent/ Duplicate)	Cleanup Level (µg/L)
Fluorene	0.0846 J	0.14	49%	J/Q	290

Notes:

^{1 –} Sample RS-MW99-073121 was qualified "Q" to indicate the result is an estimated value with an unknown bias. Sample RS-MW1-073121 was already "J" flagged as estimated due to the low level of detection. Additional qualification indicating estimated with unknown bias was not necessary. Associated sample RS-MW2-073121 had a fluorene result of ND, thus was not flagged.

Table 7 SDG 1214774 - Field Duplicate RPD Exceedances

Sample ID	Extraction Date	Method SW8270D Analyte	Result (µg/L)	Lab Flag	RPD	Flag
Compariso		on of RS-SW99-073121 Reported by SLR ¹	, Data Repo	rted by	Lab,	
RS-SW1-073121	8/4/2021 14:27	Acenaphthene	0.094	=	37%	Q- ³
RS-SW99-073121	8/4/2021 14:27	Acenaphthene	0.0649	=	31 /0	Q-3
RS-SW1-073121	8/4/2021 14:27	Fluorene	0.421	=	56%	Q- ³
RS-SW99-073121	8/4/2021 14:27	Fluorene	0.236	=	30%	Q- ³
Comparison with	th Re-Extraction of R	S-SW99-073121, Data F	Reported by	Lab and	d by SL	R
RS-SW1-073121	8/4/2021 14:27	1-Methylnaphthalene	[0.0232]	U	130%	NA
RS-SW99-073121	8/18/2021 13:00	1-Methylnaphthalene	0.219	=	130%	Q- ⁴
RS-SW1-073121	8/4/2021 14:27	Acenaphthene	0.094	=	87%	Q-3
RS-SW99-073121	8/18/2021 13:00	Acenaphthene	0.24	=	0170	Q- ⁴
RS-SW1-073121	8/4/2021 14:27	Fluorene	0.421	=	110%	Q-3
RS-SW99-073121	8/18/2021 13:00	Fluorene	1.45	=	110%	Q- ⁴
RS-SW1-073121	8/4/2021 14:27	Phenanthrene	[0.0232]	U	109%	NA
RS-SW99-073121	8/18/2021 13:00	Phenanthrene	0.157	=	109%	Q- ⁴

Notes:

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the MS/MSD and Field Duplicates sections.
- Accuracy: Accuracy goals were met, except as noted in the Surrogate Recovery and MS/MSD sections.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Sensitivity: Sensitivity goals were met, except as noted in the Method Blanks and Reporting Limits sections.

LODs for 1,2,3-trichloropropane by Method SW8260D did not meet ADEC cleanup levels for all samples due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. Data usability was considered minimally impacted, and all data was usable without qualification.

^{1 –} This data was not reported by SLR. It was only shown here for comparison purposes.

^{2 –} Detected results above the LOQ would typically be qualified "Q" to indicate that the result is an estimated value with an unknown bias. Non-detect values are not affected by field precision. Sample RS-SW2-073121 was associated with this field duplicate pair but had results of non-detectable for all impacted analytes; therefore, data was not affected and was not qualified.

^{3 -} This data were already flagged "Q-" due to low surrogate recovery. Conservatively, only the "Q-" flag was appended.

^{4 –} This data were already flagged "Q-" due to analysis past hold time.

Overall, this data were considered of good quality and acceptable for use with the noted qualifications and limitations. The data were 100% complete with respect to analysis. No data were rejected.

References

- ADEC, 2019. Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data. Technical Memorandum. October.
- ADEC, 2020. 18 AAC 70, Water Quality Standards. March 5.
- ADEC, 2021. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. As amended through June 24.
- SLR, 2021. 2021 Groundwater Monitoring Work Plan, Red Salmon Facility, Naknek, Alaska. June 21.
- U.S. Environmental Protection Agency (USEPA), 2017. National Functional Guidelines for Superfund Organic Methods Data Review. January.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklists

Attachment 2 – Laboratory Deliverables

Attachment 1

ADEC Laboratory Data Review Checklists

Laboratory Data Review Checklist

Completed By:	
Jennifer McLean	
Title:	
Associate Scientist	
Date:	
September 10, 2021	
Consultant Firm:	
SLR International Corporation	
Laboratory Name:	
SGS North America, Inc., Anchorage, Alaska	
Laboratory Report Number:	
1214774	
Laboratory Report Date:	
September 7, 2021	
CS Site Name:	
Red Salmon Groundwater Monitoring	
ADEC File Number:	
2616.38.005	
Hazard Identification Number:	
26421	

May 2020 Page 1

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
 a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments:
All samples were submitted to and analyzed at SGS in Anchorage Alaska, CS #17-021.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
Yes□ No□ N/A⊠ Comments:
No samples were transferred.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
Yes \boxtimes No \square N/A \square Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \boxtimes No \square N/A \square Comments:

September 2021 Page 2

1214774		
Laboratory Re	port Date:	
September	7, 2021	
CS Site Name:	:	
Red Salmo	on Groundwater Monitori	ing
c. Sam	ple condition documented	ed – broken, leaking (Methanol), zero headspace (VOC vials)?
	Yes⊠ No□ N/A□	Comments:
		ovided for DRO/RRO for sample RS-SW1-073121 arrived at the mi-volatile DRO/RRO analysis was not impacted.
cont	• •	es, were they documented? For example, incorrect sample ple temperature outside of acceptable range, insufficient or missing
	Yes⊠ No□ N/A□	Comments:
Noted in	1 3c.	
e. Data	quality or usability affec	cted?
c. Buta	equality of associaty affect	
		Comments:
Sample qualifica		nple integrity was not compromised, and all data were usable without
qualifica		nple integrity was not compromised, and all data were usable without
qualifica 4. <u>Case N</u>	ation. Iarrative	
qualifica 4. <u>Case N</u> a. Pres	ation. Varrative sent and understandable?	?
qualifica 4. <u>Case N</u> a. Pres	ation. Iarrative	
qualifica 4. <u>Case N</u> a. Pres	ation. Varrative sent and understandable?	?
qualifica 4. <u>Case N</u> a. Pres	ation. Varrative sent and understandable? Yes⊠ No□ N/A□	?
qualifica 4. Case N a. Pres b. Disc	ation. Varrative sent and understandable? Yes⊠ No□ N/A□	Comments:
dualifica 4. Case N a. Pres b. Disconnection The PE	ation. Narrative sent and understandable? Yes⊠ No□ N/A□ crepancies, errors, or QC Yes⊠ No□ N/A□ DF laboratory report inclu	Comments: C failures identified by the lab?
dualifica 4. Case N a. Pres b. Disc The PE any sar	ation. Narrative sent and understandable? Yes⊠ No□ N/A□ crepancies, errors, or QC Yes⊠ No□ N/A□ DF laboratory report inclu	Comments: C failures identified by the lab? Comments: Ided data for two benzene leaching blanks that are not applicable to a project. Data was not impacted.
dualifica 4. Case N a. Pres b. Disc The PE any sar c. We	sent and understandable? Yes No N/A crepancies, errors, or QC Yes No N/A DF laboratory report inclumples or QC for with this are all corrective actions desired.	Comments: C failures identified by the lab? Comments: Ided data for two benzene leaching blanks that are not applicable to a project. Data was not impacted. Ided documented?
dualifica 4. Case N a. Pres b. Disc The PD any sar c. We	sent and understandable? Yes No N/A crepancies, errors, or QC Yes No N/A DF laboratory report inclumples or QC for with this are all corrective actions decreased.	Comments: C failures identified by the lab? Comments: Ided data for two benzene leaching blanks that are not applicable to a project. Data was not impacted.
dualifica 4. Case N a. Pres b. Disc The PE any sar c. We Sample	sent and understandable? Yes No N/A crepancies, errors, or QC Yes No N/A DF laboratory report inclumples or QC for with this are all corrective actions decreased where the corrective and reserve the correction of the corrective and reserve the correction of the corrective actions decreased and reserve the correction of the corrective actions decreased and reserve the correction of th	Comments: C failures identified by the lab? Comments: Ided data for two benzene leaching blanks that are not applicable to a project. Data was not impacted. Idocumented? Comments:
dualifica 4. Case N a. Pres b. Disc The PE any sar c. We Sample	sent and understandable? Yes No N/A crepancies, errors, or QC Yes No N/A DF laboratory report inclumples or QC for with this are all corrective actions decreased where the corrective and reserve the correction of the corrective and reserve the correction of the corrective actions decreased and reserve the correction of the corrective actions decreased and reserve the correction of th	Comments: C failures identified by the lab? Comments: Ided data for two benzene leaching blanks that are not applicable to sproject. Data was not impacted. Idocumented? Comments: The analyzed past hold for PAH SIM. Refer to 6d.

September 2021 Page 3

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
5. <u>Samples Results</u>
a. Correct analyses performed/reported as requested on COC?
Yes⊠ No□ N/A□ Comments:
b. All applicable holding times met?
Yes⊠ No□ N/A□ Comments:
Hold Times: For PAH SIM analysis, sample RS-SW1-073121 and field duplicate RS-SW99-073121 were both re-extracted past hold time then re-analyzed due to low 2-methylnaphthalene-d10 surrogate recovery. For sample RS-SW1-073121, results confirmed, and the in-hold data was reported. For sample RS-SW99-073121, the re-extracted results did not confirm the initial results, but the surrogate recovery was within acceptable limits. Both sets of data for sample RS-SW99-073121 were included in the laboratory report. The past hold time extract had higher results for four analytes associated with 2-methylnaphthalene-d10 surrogate and higher LODs for ND results. To err on the conservative, the higher of the two sets of RS-SW99-073121 data was reported with a "Q-" flag to indicate a potential low bias due to extraction past hold time.
c. All soils reported on a dry weight basis?
$Yes \square No \square N/A \boxtimes Comments:$
Only water samples were analyzed.
 d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes□ No⊠ N/A□ Comments:
Reporting Limits: For Method SW8270D, the LOD for indeno[1,2,3-c,d] pyrene of 0.266 µg/L did no meet ADEC groundwater criteria of 0.19 µg/L due to necessary dilution due to the dark extract.
e. Data quality or usability affected?

Hold Times: Even with the highest result reported for PAH (thus the highest TAqH reported), the parent/duplicate pair result for TAqH of 4.85 micrograms per liter (μ g/L) was well below the applicable ADEC TAqH regulatory criteria of 15 μ g/L. As such, data usability was not impacted. All data were usable as qualified.

Reporting Limits: Only 18 AAC 70 criteria are applicable to this surface water sample, and the total TAqH result was well below the applicable criteria of 15 μ g/L. Data usability was not impacted.

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□ Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
For PAH SIM by Method SW8270D, phenanthrene was detected in: 1 - one method blank between the LOD and LOQ, and 2 - another method blank between the DL and LOD.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
 1 – Two of the three associated samples had results of non-detect for phenanthrene; therefore, data was not affected. The initial extract of sample RS-SW99-073121 had a phenanthrene result of 0.0292 J μg/L, below that of the method blank detection of 0.03 μg/L. 2 - Since a high bias was indicated and the only associated sample had a result of ND for this analyte, no data were affected.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \boxtimes No \square N/A \square Comments:
$1-$ Per NFG guidelines, where the blank detection was greater than the sample detection, the result is likely a false positive, thus the greater of the sample detection or LOD is reported as non-detect in brackets. The phenanthrene result for the initial analysis of sample SW99-073121 was flagged as $[0.0292]$ UB μ g/L. The result should be considered non-detect. $2-$ No data was affected.
v. Data quality or usability affected? Comments:
1 – The re-extract for this sample was reported; therefore, data usability was not impacted. 2 - No impact.

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes□ No□ N/A⊠ Comments:
No inorganics were analyzed.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
All recoveries and RPDs were within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
All recoveries and RPDs were within acceptable limits.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
No impact.

1214774
aboratory Report Date:
September 7, 2021
S Site Name:
Red Salmon Groundwater Monitoring
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
No inorganics were analyzed.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes \square No \square N/A \square Comments:
For PAH SIM by Method SW8270D, the MS/MSD for batch XXX45308 recovered below acceptable limits for several analytes. As the LCS established batch precision, only the parent sample, not from this project, was affected. No project data was impacted, and all data were usable without qualification
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
Yes□ No⊠ N/A□ Comments:
For PAH SIM by Method SW8270D, several analytes had MS/MSD RPDs exceeding the acceptable laboratory limit of 20% in batch XXX45308. Analytes with RPD exceedances were benzo(a)anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d] pyrene, and naphthalene. Exceeding RPDs ranged from 22% to 49%. (It should be noted that the 2-methylnaphthalene surrogate recovery of 20.4% rounds to 20% and is considered within acceptable limits).
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

As there was no acceptable measure of laboratory precision for the impacted analytes, batch associated samples RS-SW1-073121, and RS-SW2-073121 were impacted.

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \boxtimes No \square N/A \square Comments:
Results of non-detect were not qualified due to precision failures. Only benzo[g,h,i]perylene in sample RS-SW2-073121 had a detection for the impacted analytes, therefore was qualified. The benzo[g,h,i]perylene result for sample RS-SW2-073121 was flagged "Q" to indicate estimated with unknown bias.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The only flagged result was surface water, with no ADEC criteria for the impacted analyte, and a TAqH result well below the limit of 15 μ g/L; therefore, data usability was not affected.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes No N/A Comments:
For SW8270D, NFG surrogate recovery limits are 30-130%. Conservatively, the more stringent laboratory limits were used for flagging purposes. Surrogate recovery exceedances (ranging from 29-45%) were: 1 - 2-Methylnaphthalene-d10 in sample RS-SW1-073121
2 - Fluoranthene-d10 and 2-methylnaphthalene in sample RS-SW2-073121 3 - 2-Methylnaphthalene-d10 in sample RS-SW99-073121
Also, it should be noted that he re-extract of sample RS-SW99-073121 had a fluoranthene-d10 surrogate recovery of 49.5%, which rounds up to 50%, meeting the lower control limit of 50%. This recovery was considered within acceptable limits.

1214774				
Laboratory Report Date:				
September 7, 2021				
CS Site Name:				
Red Salmon Groundwater Monitor	ring			
iii. Do the sample results flags clearly defined?	with failed surrogate/IDA recoveries have data flags? If so, are the data			
Yes⊠ No□ N/A□	Comments:			
recoveries confirmed, and the imethylnaphthalene, 2-methylnaphthalene, and phenanthrene was assigned to impacted result 2 – Sample RS-SW2-073121 with extract. Data were not qual	ple was re-extracted and re-analyzed past hold time. Surrogate in-hold data was reported. Analytes associated with this surrogate are 1-aphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, a. For detected values a "Q-" was appended, and for non-detects a "UJ" ats. Its. was analyzed at a ten-fold dilution for PAH SIM due to the dark color of ified, when the sample was analyzed at a dilution of greater than five-parately quantitate at such dilutions.			
3 - RS-SW99-073121: The san	nple was re-extracted and re-analyzed past hold time, with the re-extract			
reported. The re-extract was re	ported with qualifiers assigned in 5b.			
iv. Data quality or usabil	ity affected? Comments:			
All impacted results had either well below ADEC criteria. Dat	detected values well below ADEC criteria or ND results with LODs			
	a usability was not impacted.			
e. Trip Blanks i. One trip blank reported (If not, enter explanati Yes⊠ No□ N/A□	d per matrix, analysis and for each cooler containing volatile samples? on below.) Comments:			
	Comments.			
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)				
Yes⊠ No□ N/A□	Comments:			
iii. All results less than LO	OQ and project specified objectives?			
Yes⊠ No□ N/A□	Comments:			
iv. If above LOQ or proje	ect specified objectives, what samples are affected? Comments:			
Not applicable.				

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
v. Data quality or usability affected? Comments:
Data was not impacted.
 f. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes⊠ No□ N/A□ Comments:
ii. Submitted blind to lab? Yes□ No□ N/A□ Comments:
RS-SW99-073121 was a duplicate of RS-SW1-073121.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = Sample Concentration$ $R_2 = Field Duplicate Concentration$
Yes□ No⊠ N/A□ Comments: For PAH SIM, for the re-extracted data that was reported, analytes with failing RPDs were 1-
iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Detected results above the LOQ were qualified "Q" to indicate that the result is an estimated value with an unknown bias. Non-detect values are not impacted by field precision, as precision measures the quantity, not the presence or absence of an analyte. Sample RS-SW2-073121 was associated with this field duplicate pair but had results of non-detectable for all impacted analytes; therefore, data was not affected and was not qualified. As the TAqH result for this sample was well below the ADEC criteria of 15 ug/L, data usability was not impacted.

1214774
Laboratory Report Date:
September 7, 2021
CS Site Name:
Red Salmon Groundwater Monitoring
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes \square No \square N/A \boxtimes Comments:
Dedicated or disposable equipment was used for the collection of all samples.
i. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
Not applicabe.
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
Not applicable.
iii. Data quality or usability affected? Comments:
No impact.
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
Yes \boxtimes No \square N/A \square Comments:

Attachment 2

Laboratory Deliverable

(Data package)

Laboratory Report of Analysis

To: SLR Alaska-Anchorage

2700 Gambell Street, Suite 200 Anchorage, AK 99503

(907)222-1112

Corrected Report - Revision 1

This report has been revised to correct the Sample ID on sample 1214771004. No other changes have been made.

AD 08/25/21

Report Number: 1214771

Client Project: 105.00151.21001 Red Salmon

Dear Stan Flagel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Alexandra at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Alexandra Daniel
Project Manager
Alexandra.Daniel@sgs.com

Date

Print Date: 08/25/2021 2:02:40PM Results via Engage

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1214771

Project Name/Site: 105.00151.21001 Red Salmon

Project Contact: Stan Flagel

Refer to sample receipt form for information on sample condition.

RS-MW1-073121 (1214771001) PS

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was analyzed at a dilution due to high concentrations of non-target compounds.

RS-MW2-073021 (1214771002) PS

8270D SIM - PAH surrogate recoveries for fluoranthene-d10 and 2-methylnaphthalene-d10 do not meet QC criteria due to sample dilution.

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was analyzed at a dilution due to high concentrations of non-target compounds.

RS-MW99-073121 (1214771010) PS

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was analyzed at a dilution due to high concentrations of non-target compounds.

MB for HBN 1823448 [XXX/45308] (1627703) MB

8270D SIM - Phenanthrene is detect in the PAH method blank at less than the LOQ. Associated samples contain this analyte at less than the LOQ.

1214798010MS (1627705) MS

8270D SIM - PAH MS recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

1214798010MSD (1627706) MSD

8270D SIM - PAH MSD recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH MS/MSD RPD for multiple analytes does not meet QC criteria. These analytes are not detected above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 08/25/2021 2:02:42PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT Less Than

MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 08/25/2021 2:02:44PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
RS-MW1-073121	1214771001	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW2-073021	1214771002	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW3-073121	1214771003	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW4-073021	1214771004	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW6-073021	1214771005	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW7-073021	1214771006	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW8-073021	1214771007	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW9-073021	1214771008	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW10-073021	1214771009	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-MW99-073121	1214771010	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
TRIP1-073021	1214771011	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO/RRO Low Volume WaterAK103DRO/RRO Low Volume WaterAK101Gasoline Range Organics (W)SW8260DVolatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: RS-MW1-073121			
Lab Sample ID: 1214771001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Fluorene	0.0846J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	24.0	mg/L
-	Residual Range Organics	1.96	mg/L
Volatile Fuels	Gasoline Range Organics	0.141	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	9.15	ug/L
	1,3,5-Trimethylbenzene	6.01	ug/L
	4-Isopropyltoluene	1.37	ug/L
	Benzene	1.93	ug/L
	Ethylbenzene	4.17	ug/L
	Isopropylbenzene (Cumene)	0.473J	ug/L
	Naphthalene	5.15	ug/L
	n-Propylbenzene	0.595J	ug/L
	o-Xylene	11.4	ug/L
	P & M -Xylene	10.1	ug/L
	Toluene	0.836J	ug/L
	Xylenes (total)	21.6	ug/L
Client Sample ID: RS-MW2-073021			
Lab Sample ID: 1214771002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.143J	ug/L
	Pyrene	0.174J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	4.87	mg/L
3	Residual Range Organics	1.78	mg/L
Volatile Fuels	Gasoline Range Organics	0.108	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	30.2	ug/L
	1,3,5-Trimethylbenzene	6.35	ug/L
	4-Isopropyltoluene	3.34	ug/L
	Benzene	0.284J	ug/L
	Ethylbenzene	1.01	ug/L
	Isopropylbenzene (Cumene)	3.75	ug/L
	Naphthalene	19.7	ug/L
	n-Propylbenzene	6.69	ug/L
	o-Xylene	1.48	ug/L
	P & M -Xylene	3.18	ug/L
	sec-Butylbenzene	1.19	ug/L
	Xylenes (total)	4.66	ug/L
Client Sample ID: RS-MW3-073121			
Lab Sample ID: 1214771003	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	·		mg/L
2	Residual Range Organics	3.88 1.11	mg/L
Client Sample ID: RS-MW4-073021	-		
Lab Sample ID: 1214771004	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	<u>Farameter</u> Diesel Range Organics	2.37	mg/L
John Volatile Organic I dels	Residual Range Organics	0.710	mg/L
	1 to stade 1 tally o organico	5.7 10	9/ =

Print Date: 08/25/2021 2:02:48PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

	Detectable Results Summary
Client Sample ID: RS-MW6-073021	

Client Sample ID: RS-MW6-073021			
Lab Sample ID: 1214771005	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.66J	mg/L
-	Residual Range Organics	1.38J	mg/L
Client Sample ID: RS-MW7-073021			
Lab Sample ID: 1214771006	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1.64	mg/L
	Residual Range Organics	0.494J	mg/L
Client Sample ID: RS-MW8-073021			
Lab Sample ID: 1214771007	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	4.02	mg/L
commendation of game a decident	Residual Range Organics	0.864	mg/L
Volatile Fuels	Gasoline Range Organics	0.168	mg/L
Volatile GC/MS	Benzene	0.966	ug/L
	Ethylbenzene	2.97	ug/L
	o-Xylene	14.0	ug/L
	P & M -Xylene	17.3	ug/L
	Xylenes (total)	31.3	ug/L
Client Sample ID: RS-MW9-073021			
Lab Sample ID: 1214771008	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.258J	mg/L
Client Sample ID: RS-MW99-073121			
Lab Sample ID: 1214771010	<u>Parameter</u>	Result	Units
Polynuclear Aromatics GC/MS	Fluorene	0.140	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	23.8	mg/L
, and the second	Residual Range Organics	2.08	mg/L
Volatile Fuels	Gasoline Range Organics	0.139	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	10.1	ug/L
	1,3,5-Trimethylbenzene	6.59	ug/L
	2-Hexanone	3.53J	ug/L
	4-Isopropyltoluene	1.57	ug/L
	Benzene	2.06	ug/L
	Ethylbenzene	4.41	ug/L
	Isopropylbenzene (Cumene)	0.520J	ug/L
	Naphthalene	5.96	ug/L
	n-Propylbenzene	0.635J	ug/L
	o-Xylene	12.7	ug/L
	P & M -Xylene	10.9	ug/L
	Toluene	0.911J	ug/L
	Xylenes (total)	23.6	ug/L

Print Date: 08/25/2021 2:02:48PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Danamastan	Deput Ovel	1.00/01	DI	l laita	DE	Allowable	Data Analysis d
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
2-Methylnaphthalene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Acenaphthene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Acenaphthylene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Anthracene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Benzo(a)Anthracene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Benzo[a]pyrene	0.0204 U	0.0408	0.0127	ug/L	2		08/14/21 21:40
Benzo[b]Fluoranthene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Benzo[g,h,i]perylene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Benzo[k]fluoranthene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Chrysene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Dibenzo[a,h]anthracene	0.0204 U	0.0408	0.0127	ug/L	2		08/14/21 21:40
Fluoranthene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Fluorene	0.0846 J	0.102	0.0306	ug/L	2		08/14/21 21:40
Indeno[1,2,3-c,d] pyrene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Naphthalene	0.102 U	0.204	0.0633	ug/L	2		08/14/21 21:40
Phenanthrene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Pyrene	0.0510 U	0.102	0.0306	ug/L	2		08/14/21 21:40
Surrogates							
2-Methylnaphthalene-d10 (surr)	53.1	42-86		%	2		08/14/21 21:40
Fluoranthene-d10 (surr)	50.1	50-97		%	2		08/14/21 21:40

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/14/21 21:40 Container ID: 1214771001-C Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 24.0	LOQ/CL 0.625	<u>DL</u> 0.188	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/10/21 11:57
Surrogates 5a Androstane (surr)	121	50-150		%	1		08/10/21 11:57

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 11:57 Container ID: 1214771001-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.96	0.521	0.156	mg/L	1		08/10/21 11:57
Surrogates							
n-Triacontane-d62 (surr)	116	50-150		%	1		08/10/21 11:57

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 11:57 Container ID: 1214771001-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.141	0.100	0.0450	mg/L	1		08/06/21 01:58
Surrogates							
4-Bromofluorobenzene (surr)	85.9	50-150		%	1		08/06/21 01:58

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 01:58 Container ID: 1214771001-E Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08/06/21 15:29
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,2,4-Trimethylbenzene	9.15	1.00	0.310	ug/L	1	08/06/21 15:29
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08/06/21 15:29
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/06/21 15:29
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,3,5-Trimethylbenzene	6.01	1.00	0.310	ug/L	1	08/06/21 15:29
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	08/06/21 15:29
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	08/06/21 15:29
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
4-Isopropyltoluene	1.37	1.00	0.310	ug/L	1	08/06/21 15:29
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	08/06/21 15:29
Benzene	1.93	0.400	0.120	ug/L	1	08/06/21 15:29
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
Bromoform	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
Bromomethane	2.50 U	5.00	2.00	ug/L	1	08/06/21 15:29
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	08/06/21 15:29
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/21 15:29
Chloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 15:29

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:29
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:29
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Ethylbenzene	4.17	1.00	0.310	ug/L	1		08/06/21 15:29
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:29
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Isopropylbenzene (Cumene)	0.473 J	1.00	0.310	ug/L	1		08/06/21 15:29
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:29
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:29
Naphthalene	5.15	1.00	0.310	ug/L	1		08/06/21 15:29
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
n-Propylbenzene	0.595 J	1.00	0.310	ug/L	1		08/06/21 15:29
o-Xylene	11.4	1.00	0.310	ug/L	1		08/06/21 15:29
P & M -Xylene	10.1	2.00	0.620	ug/L	1		08/06/21 15:29
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Styrene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Toluene	0.836 J	1.00	0.310	ug/L	1		08/06/21 15:29
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:29
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:29
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/06/21 15:29
Xylenes (total)	21.6	3.00	1.00	ug/L	1		08/06/21 15:29
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/06/21 15:29
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/06/21 15:29
Toluene-d8 (surr)	100	89-112		%	1		08/06/21 15:29
` '							

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771001 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/06/21 15:29 Container ID: 1214771001-H Prep Batch: VXX37606 Prep Method: SW5030B Prep Date/Time: 08/06/21 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

	5 40 4					Allowable	5
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.143 J	0.192	0.0577	ug/L	4		08/14/21 22:01
2-Methylnaphthalene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Acenaphthene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Acenaphthylene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Anthracene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Benzo(a)Anthracene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Benzo[a]pyrene	0.0384 U	0.0769	0.0238	ug/L	4		08/14/21 22:01
Benzo[b]Fluoranthene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Benzo[g,h,i]perylene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Benzo[k]fluoranthene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Chrysene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Dibenzo[a,h]anthracene	0.0384 U	0.0769	0.0238	ug/L	4		08/14/21 22:01
Fluoranthene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Fluorene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Indeno[1,2,3-c,d] pyrene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Naphthalene	0.193 U	0.385	0.119	ug/L	4		08/14/21 22:01
Phenanthrene	0.0960 U	0.192	0.0577	ug/L	4		08/14/21 22:01
Pyrene	0.174 J	0.192	0.0577	ug/L	4		08/14/21 22:01
Surrogates							
2-Methylnaphthalene-d10 (surr)	21.4 *	42-86		%	4		08/14/21 22:01
Fluoranthene-d10 (surr)	32.3 *	50-97		%	4		08/14/21 22:01

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/14/21 22:01 Container ID: 1214771002-C Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Diesel Range Organics	4.87	0.600	0.180	mg/L	1		08/10/21 12:07
Surrogates							
5a Androstane (surr)	99.4	50-150		%	1		08/10/21 12:07

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:07 Container ID: 1214771002-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.78	0.500	0.150	mg/L	1		08/10/21 12:07
Surrogates							
n-Triacontane-d62 (surr)	104	50-150		%	1		08/10/21 12:07

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:07 Container ID: 1214771002-A

Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.108	0.100	0.0450	mg/L	1		08/06/21 02:16
Surrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		08/06/21 02:16

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 02:16 Container ID: 1214771002-E Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/06/21 15:44
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,2,4-Trimethylbenzene	30.2	1.00	0.310	ug/L	1		08/06/21 15:44
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:44
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/06/21 15:44
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,3,5-Trimethylbenzene	6.35	1.00	0.310	ug/L	1		08/06/21 15:44
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:44
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:44
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
4-Isopropyltoluene	3.34	1.00	0.310	ug/L	1		08/06/21 15:44
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:44
Benzene	0.284 J	0.400	0.120	ug/L	1		08/06/21 15:44
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/06/21 15:44
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:44
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:44
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:44
				J			

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIIIS	08/06/21 15:4
Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:4
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:4
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
Ethylbenzene	1.01	1.00	0.310	ug/L	1		08/06/21 15:4
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:4
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L ug/L	1		08/06/21 15:4
	3.75	1.00	0.310		1		08/06/21 15:4
sopropylbenzene (Cumene)				ug/L			
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:4
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:4
Naphthalene	19.7	1.00	0.310	ug/L	1		08/06/21 15:4
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
n-Propylbenzene	6.69	1.00	0.310	ug/L	1		08/06/21 15:4
p-Xylene	1.48	1.00	0.310	ug/L	1		08/06/21 15:4
P & M -Xylene	3.18	2.00	0.620	ug/L	1		08/06/21 15:4
ec-Butylbenzene	1.19	1.00	0.310	ug/L	1		08/06/21 15:4
Styrene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
oluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
richloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
richlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:4
/inyl acetate	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:4
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/06/21 15:4
(ylenes (total)	4.66	3.00	1.00	ug/L	1		08/06/21 15:4
ırrogates							
I,2-Dichloroethane-D4 (surr)	104	81-118		%	1		08/06/21 15:4
I-Bromofluorobenzene (surr)	101	85-114		%	1		08/06/21 15:4
Foluene-d8 (surr)	99.8	89-112		%	1		08/06/21 15:4

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771002 Lab Project ID: 1214771 Collection Date: 07/30/21 18:57 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/06/21 15:44 Container ID: 1214771002-H Prep Batch: VXX37606 Prep Method: SW5030B Prep Date/Time: 08/06/21 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: RS-MW3-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771003 Lab Project ID: 1214771 Collection Date: 07/31/21 09:25 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	3.88	0.638	0.191	mg/L	1		08/10/21 12:17
Surrogates							
5a Androstane (surr)	95.3	50-150		%	1		08/10/21 12:17

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:17 Container ID: 1214771003-A Prep Batch: XXX45329 Prep Method: SW3520C Prep Date/Time: 08/06/21 15:05 Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.11	0.532	0.160	mg/L	1		08/10/21 12:17
Surrogates							
n-Triacontane-d62 (surr)	102	50-150		%	1		08/10/21 12:17

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:17 Container ID: 1214771003-A

Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 235 mL
Prep Extract Vol: 1 mL

Client Sample ID: RS-MW3-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771003 Lab Project ID: 1214771 Collection Date: 07/31/21 09:25 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 02:34
Surrogates							
4-Bromofluorobenzene (surr)	88	50-150		%	1		08/06/21 02:34

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 02:34 Container ID: 1214771003-C Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: RS-MW3-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771003 Lab Project ID: 1214771 Collection Date: 07/31/21 09:25 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 19:59
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 19:59
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 19:59
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 19:59
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 19:59
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 19:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 19:59
4-Bromofluorobenzene (surr)	106	85-114		%	1		08/10/21 19:59
Toluene-d8 (surr)	102	89-112		%	1		08/10/21 19:59

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 19:59 Container ID: 1214771003-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW4-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771004 Lab Project ID: 1214771 Collection Date: 07/30/21 20:51 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	2.37	0.638	0.191	mg/L	1		08/10/21 12:27
Surrogates							
5a Androstane (surr)	98.4	50-150		%	1		08/10/21 12:27

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:27 Container ID: 1214771004-A Prep Batch: XXX45329 Prep Method: SW3520C Prep Date/Time: 08/06/21 15:05 Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.710	0.532	0.160	mg/L	1		08/10/21 12:27
Surrogates							
n-Triacontane-d62 (surr)	107	50-150		%	1		08/10/21 12:27

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:27 Container ID: 1214771004-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 235 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW4-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771004 Lab Project ID: 1214771 Collection Date: 07/30/21 20:51 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 02:52
Surrogates							
4-Bromofluorobenzene (surr)	90.8	50-150		%	1		08/06/21 02:52

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 02:52 Container ID: 1214771004-C Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: RS-MW4-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771004 Lab Project ID: 1214771 Collection Date: 07/30/21 20:51 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 20:14
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:14
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:14
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 20:14
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:14
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 20:14
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 20:14
4-Bromofluorobenzene (surr)	104	85-114		%	1		08/10/21 20:14
Toluene-d8 (surr)	100	89-112		%	1		08/10/21 20:14

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 20:14 Container ID: 1214771004-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW6-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771005 Lab Project ID: 1214771 Collection Date: 07/30/21 16:09 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	1.66 J	3.00	0.900	mg/L	1		08/11/21 13:18
Surrogates							
5a Androstane (surr)	81.2	50-150		%	1		08/11/21 13:18

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/11/21 13:18 Container ID: 1214771005-A Prep Batch: XXX45345 Prep Method: SW3520C Prep Date/Time: 08/09/21 16:41 Prep Initial Wt./Vol.: 50 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.38 J	2.50	0.750	mg/L	1		08/11/21 13:18
Surrogates							
n-Triacontane-d62 (surr)	89.3	50-150		%	1		08/11/21 13:18

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/11/21 13:18 Container ID: 1214771005-A Prep Batch: XXX45345
Prep Method: SW3520C
Prep Date/Time: 08/09/21 16:41
Prep Initial Wt./Vol.: 50 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW6-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771005 Lab Project ID: 1214771 Collection Date: 07/30/21 16:09 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> ma/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/06/21 03:45
Surrogates 4-Bromofluorobenzene (surr)	84.6	50-150		%	1		08/06/21 03:45

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 03:45 Container ID: 1214771005-C Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: RS-MW6-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771005 Lab Project ID: 1214771 Collection Date: 07/30/21 16:09 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 20:29
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:29
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:29
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 20:29
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:29
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 20:29
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.4	81-118		%	1		08/10/21 20:29
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/10/21 20:29
Toluene-d8 (surr)	100	89-112		%	1		08/10/21 20:29

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 20:29 Container ID: 1214771005-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW7-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771006 Lab Project ID: 1214771 Collection Date: 07/30/21 21:34 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/10/21 12:37
Diesel Range Organics	1.64	0.625	0.188	mg/L	1	<u>Limits</u>	
Surrogates 5a Androstane (surr)	101	50-150		%	1		08/10/21 12:37

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:37 Container ID: 1214771006-A

Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.494 J	0.521	0.156	mg/L	1		08/10/21 12:37
Surrogates							
n-Triacontane-d62 (surr)	110	50-150		%	1		08/10/21 12:37

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:37 Container ID: 1214771006-A

Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW7-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771006 Lab Project ID: 1214771 Collection Date: 07/30/21 21:34 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 04:03
Surrogates							
4-Bromofluorobenzene (surr)	87.4	50-150		%	1		08/06/21 04:03

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/06/21 04:03 Container ID: 1214771006-C Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: RS-MW7-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771006 Lab Project ID: 1214771 Collection Date: 07/30/21 21:34 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 20:44
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:44
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:44
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 20:44
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:44
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 20:44
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 20:44
4-Bromofluorobenzene (surr)	107	85-114		%	1		08/10/21 20:44
Toluene-d8 (surr)	99.6	89-112		%	1		08/10/21 20:44

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 20:44 Container ID: 1214771006-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW8-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771007 Lab Project ID: 1214771 Collection Date: 07/30/21 22:10 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	4.02	0.600	0.180	mg/L	1		08/10/21 12:47
Surrogates							
5a Androstane (surr)	102	50-150		%	1		08/10/21 12:47

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:47 Container ID: 1214771007-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.864	0.500	0.150	mg/L	1		08/10/21 12:47
Surrogates							
n-Triacontane-d62 (surr)	109	50-150		%	1		08/10/21 12:47

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:47 Container ID: 1214771007-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW8-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771007 Lab Project ID: 1214771 Collection Date: 07/30/21 22:10 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.168	0.100	0.0450	mg/L	1		08/06/21 04:21
Surrogates							
4-Bromofluorobenzene (surr)	97.4	50-150		%	1		08/06/21 04:21

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 04:21 Container ID: 1214771007-C

Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: RS-MW8-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771007 Lab Project ID: 1214771 Collection Date: 07/30/21 22:10 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.966	0.400	0.120	ug/L	1		08/10/21 21:29
Ethylbenzene	2.97	1.00	0.310	ug/L	1		08/10/21 21:29
o-Xylene	14.0	1.00	0.310	ug/L	1		08/10/21 21:29
P & M -Xylene	17.3	2.00	0.620	ug/L	1		08/10/21 21:29
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 21:29
Xylenes (total)	31.3	3.00	1.00	ug/L	1		08/10/21 21:29
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 21:29
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/10/21 21:29
Toluene-d8 (surr)	98.6	89-112		%	1		08/10/21 21:29

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 21:29 Container ID: 1214771007-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW9-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771008 Lab Project ID: 1214771 Collection Date: 07/30/21 14:31 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.258 J	0.625	0.188	mg/L	1		08/10/21 12:56
Surrogates							
5a Androstane (surr)	93.9	50-150		%	1		08/10/21 12:56

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 12:56 Container ID: 1214771008-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.261 U	0.521	0.156	mg/L	1		08/10/21 12:56
Surrogates							
n-Triacontane-d62 (surr)	104	50-150		%	1		08/10/21 12:56

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 12:56 Container ID: 1214771008-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW9-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771008 Lab Project ID: 1214771

Collection Date: 07/30/21 14:31 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/06/21 04:39
Surrogates 4-Bromofluorobenzene (surr)	82.3	50-150		%	1		08/06/21 04:39

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/06/21 04:39 Container ID: 1214771008-C

Prep Batch: VXX37588 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: RS-MW9-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771008 Lab Project ID: 1214771 Collection Date: 07/30/21 14:31 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 20:59
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:59
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:59
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 20:59
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 20:59
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 20:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/10/21 20:59
4-Bromofluorobenzene (surr)	105	85-114		%	1		08/10/21 20:59
Toluene-d8 (surr)	99.2	89-112		%	1		08/10/21 20:59

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 20:59 Container ID: 1214771008-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Results of RS-MW10-073021

Client Sample ID: RS-MW10-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771009 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.300 U	0.600	0.180	mg/L	1		08/10/21 13:06
Surrogates							
5a Androstane (surr)	93.6	50-150		%	1		08/10/21 13:06

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 13:06 Container ID: 1214771009-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.250 U	0.500	0.150	mg/L	1		08/10/21 13:06
Surrogates							
n-Triacontane-d62 (surr)	110	50-150		%	1		08/10/21 13:06

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 13:06 Container ID: 1214771009-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Results of RS-MW10-073021

Client Sample ID: RS-MW10-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771009 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

	D # 0 1	1.00/01	D.		D.E.	<u>Allowable</u>	D . A
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 04:57
Surrogates							
4-Bromofluorobenzene (surr)	86.3	50-150		%	1		08/06/21 04:57

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 04:57 Container ID: 1214771009-C Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Results of RS-MW10-073021

Client Sample ID: RS-MW10-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771009 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 21:14
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 21:14
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 21:14
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 21:14
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 21:14
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 21:14
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 21:14
4-Bromofluorobenzene (surr)	105	85-114		%	1		08/10/21 21:14
Toluene-d8 (surr)	99.2	89-112		%	1		08/10/21 21:14

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 21:14 Container ID: 1214771009-F Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

5	D 110 1	1.00/01	- DI		D.F.	<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
1-Methylnaphthalene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
2-Methylnaphthalene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Acenaphthene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Acenaphthylene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Anthracene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Benzo(a)Anthracene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Benzo[a]pyrene	0.0193 U	0.0385	0.0119	ug/L	2		08/14/21 22:22
Benzo[b]Fluoranthene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Benzo[g,h,i]perylene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Benzo[k]fluoranthene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Chrysene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Dibenzo[a,h]anthracene	0.0193 U	0.0385	0.0119	ug/L	2		08/14/21 22:22
Fluoranthene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Fluorene	0.140	0.0962	0.0288	ug/L	2		08/14/21 22:22
Indeno[1,2,3-c,d] pyrene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Naphthalene	0.0960 U	0.192	0.0596	ug/L	2		08/14/21 22:22
Phenanthrene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Pyrene	0.0481 U	0.0962	0.0288	ug/L	2		08/14/21 22:22
Surrogates							
2-Methylnaphthalene-d10 (surr)	47.3	42-86		%	2		08/14/21 22:22
Fluoranthene-d10 (surr)	53.8	50-97		%	2		08/14/21 22:22

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/14/21 22:22 Container ID: 1214771010-C Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	23.8	0.612	0.184	mg/L	1		08/10/21 13:16
Surrogates							
5a Androstane (surr)	109	50-150		%	1		08/10/21 13:16

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 13:16 Container ID: 1214771010-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	2.08	0.510	0.153	mg/L	1		08/10/21 13:16
Surrogates							
n-Triacontane-d62 (surr)	106	50-150		%	1		08/10/21 13:16

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 13:16 Container ID: 1214771010-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771

Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.139	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/06/21 05:15
Surrogates							
4-Bromofluorobenzene (surr)	83.1	50-150		%	1		08/06/21 05:15

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/06/21 05:15 Container ID: 1214771010-E

Prep Batch: VXX37588 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Nama atau	Deault O	1.00/61	DI	l lista	DE	Allowable	Data Analysis d
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		08/06/21 15:59
,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,2,4-Trimethylbenzene	10.1	1.00	0.310	ug/L	1		08/06/21 15:59
,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:59
,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/06/21 15:59
,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,3,5-Trimethylbenzene	6.59	1.00	0.310	ug/L	1		08/06/21 15:59
,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:5
,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:5
-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
-Hexanone	3.53 J	10.0	3.10	ug/L	1		08/06/21 15:5
-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
-Isopropyltoluene	1.57	1.00	0.310	ug/L	1		08/06/21 15:5
-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:5
Benzene	2.06	0.400	0.120	ug/L	1		08/06/21 15:5
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:5
Bromoform	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
Bromomethane	2.50 U	5.00	2.00	ug/L	1		08/06/21 15:59
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:5
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:5
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:5
Chloroethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/21 15:59
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Ethylbenzene	4.41	1.00	0.310	ug/L	1		08/06/21 15:59
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:59
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Isopropylbenzene (Cumene)	0.520 J	1.00	0.310	ug/L	1		08/06/21 15:59
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:59
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:59
Naphthalene	5.96	1.00	0.310	ug/L	1		08/06/21 15:59
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
n-Propylbenzene	0.635 J	1.00	0.310	ug/L	1		08/06/21 15:59
o-Xylene	12.7	1.00	0.310	ug/L	1		08/06/21 15:59
P & M -Xylene	10.9	2.00	0.620	ug/L	1		08/06/21 15:59
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Styrene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Toluene	0.911 J	1.00	0.310	ug/L	1		08/06/21 15:59
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/21 15:59
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/06/21 15:59
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/06/21 15:59
Xylenes (total)	23.6	3.00	1.00	ug/L	1		08/06/21 15:59
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/06/21 15:59
4-Bromofluorobenzene (surr)	101	85-114		%	1		08/06/21 15:59
Toluene-d8 (surr)	101	89-112		%	1		08/06/21 15:59

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: RS-MW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771010 Lab Project ID: 1214771 Collection Date: 07/31/21 08:45 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/06/21 15:59 Container ID: 1214771010-H Prep Batch: VXX37606 Prep Method: SW5030B Prep Date/Time: 08/06/21 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: TRIP1-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771011 Lab Project ID: 1214771

Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 17:38
Surrogates							
4-Bromofluorobenzene (surr)	90.3	50-150		%	1		08/05/21 17:38

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 17:38 Container ID: 1214771011-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Client Sample ID: TRIP1-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771011 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08/06/21 12:41
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08/06/21 12:41
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/06/21 12:41
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	08/06/21 12:41
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	08/06/21 12:41
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	08/06/21 12:41
Benzene	0.200 U	0.400	0.120	ug/L	1	08/06/21 12:41
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
Bromoform	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
Bromomethane	2.50 U	5.00	2.00	ug/L	1	08/06/21 12:41
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	08/06/21 12:41
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/21 12:41
Chloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/21 12:41

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: TRIP1-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771011 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits Date	e Analyzed
Chloroform	0.500 U	1.00	<u>0.3</u> 0.310	ug/L	1)6/21 12:41
Chloromethane	0.500 U	1.00	0.310	ug/L	1)6/21 12:41
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/21 12:41
sis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1)6/21 12:41
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1)6/21 12:41
Dibromomethane	0.500 U	1.00	0.310	ug/L	1)6/21 12:4°
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1)6/21 12:4°
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/0	06/21 12:4
Freon-113	5.00 U	10.0	3.10	ug/L	1)6/21 12:4°
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1)6/21 12:4°
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1)6/21 12:4 ⁻¹
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		06/21 12:4
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1)6/21 12:4 ⁻¹
Naphthalene	0.500 U	1.00	0.310	ug/L	1	08/0	6/21 12:4
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
p-Xylene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/21 12:4
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
Styrene	0.500 U	1.00	0.310	ug/L	1	08/0	06/21 12:4
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		6/21 12:4
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
Toluene	0.500 U	1.00	0.310	ug/L	1		6/21 12:4
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		6/21 12:4
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		06/21 12:4
Frichloroethene	0.500 U	1.00	0.310	ug/L	1	08/0	06/21 12:4
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	08/0	06/21 12:4
/inyl acetate	5.00 U	10.0	3.10	ug/L	1		6/21 12:4
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1	08/0	06/21 12:4
(ylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/21 12:4
ırrogates							
I,2-Dichloroethane-D4 (surr)	103	81-118		%	1	08/0	06/21 12:4
4-Bromofluorobenzene (surr)	101	85-114		%	1)6/21 12:4)6/21 12:4
Foluene-d8 (surr)	102	89-112		%	1)6/21 12:4)6/21 12:4

Print Date: 08/25/2021 2:02:50PM

Client Sample ID: TRIP1-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214771011 Lab Project ID: 1214771 Collection Date: 07/30/21 12:50 Received Date: 08/02/21 14:16 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/06/21 12:41 Container ID: 1214771011-B Prep Batch: VXX37606 Prep Method: SW5030B Prep Date/Time: 08/06/21 10:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/25/2021 2:02:50PM J flagging is activated

Blank ID: MB for HBN 1823607 [VXX/37587]

Blank Lab ID: 1628353

QC for Samples: 1214771011

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 83.9 50-150 %

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Analytical Date/Time: 8/5/2021 10:47:00AM

Prep Batch: VXX37587

Prep Method: SW5030B

Prep Date/Time: 8/5/2021 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1214771 [VXX37587]

Blank Spike Lab ID: 1628354 Date Analyzed: 08/05/2021 11:40

QC for Samples: 1214771011 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37587]

Spike Duplicate Lab ID: 1628355 Matrix: Water (Surface, Eff., Ground)

Results by AK101

	I	Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.991	99	1.00	1.09	109	(60-120)	9.10	(< 20)

Surrogates

0.0500 4-Bromofluorobenzene (surr) 0.0500 99 104 (50-150) 4.30

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37587 Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Blank ID: MB for HBN 1823608 [VXX/37588]

Blank Lab ID: 1628356

QC for Samples:

1214771001, 1214771002, 1214771003, 1214771004, 1214771005, 1214771006, 1214771007, 1214771008, 1214771009,

Matrix: Water (Surface, Eff., Ground)

1214771010

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0450mg/L

Surrogates

4-Bromofluorobenzene (surr) 88.7 50-150 %

Batch Information

Analytical Batch: VFC15751 Prep Batch: VXX37588
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/5/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/6/2021 12:11:00AM Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1214771 [VXX37588]

Blank Spike Lab ID: 1628359 Date Analyzed: 08/06/2021 03:28 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37588]

Spike Duplicate Lab ID: 1628360 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771003, 1214771004, 1214771005, 1214771006, 1214771007,

1214771008, 1214771009, 1214771010

Results by AK101

		Blank Spike	(mg/L)	S	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.998	100	1.00	1.02	102	(60-120)	2.30	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 **93** 0.0500 **93** (50-150) **0.71**

Batch Information

Analytical Batch: VFC15751
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37588
Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Blank ID: MB for HBN 1823791 [VXX/37606]

Blank Lab ID: 1628874

QC for Samples:

1214771001, 1214771002, 1214771010, 1214771011

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Blank ID: MB for HBN 1823791 [VXX/37606]

Blank Lab ID: 1628874

QC for Samples:

1214771001, 1214771002, 1214771010, 1214771011

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	101	89-112		%
` '				

Blank ID: MB for HBN 1823791 [VXX/37606]

Blank Lab ID: 1628874

QC for Samples:

1214771001, 1214771002, 1214771010, 1214771011

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Analytical Date/Time: 8/6/2021 10:22:00AM

Prep Batch: VXX37606 Prep Method: SW5030B

Prep Date/Time: 8/6/2021 10:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Leaching Blank

Blank ID: LB for HBN 1823225 [TCLP/11308

Blank Lab ID: 1626662

QC for Samples:

1214771001, 1214771002, 1214771010, 1214771011

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1-Dichloroethene	25.0U	50.0	15.5	ug/L
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
1,4-Dichlorobenzene	12.5U	25.0	7.50	ug/L
2-Butanone (MEK)	250U	500	155	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Carbon tetrachloride	25.0U	50.0	15.5	ug/L
Chlorobenzene	12.5U	25.0	7.50	ug/L
Chloroform	25.0U	50.0	15.5	ug/L
Hexachlorobutadiene	25.0U	50.0	15.5	ug/L
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Trichloroethene	25.0U	50.0	15.5	ug/L
Vinyl chloride	25.0U	50.0	15.5	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	108	81-118		%
4-Bromofluorobenzene (surr)	98.4	85-114		%
Toluene-d8 (surr)	98.9	89-112		%

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D

Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Analytical Date/Time: 8/6/2021 6:01:00PM

Prep Batch: VXX37606 Prep Method: SW5030B

Prep Date/Time: 8/6/2021 10:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1214771 [VXX37606]

Blank Spike Lab ID: 1628875 Date Analyzed: 08/06/2021 10:37 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37606]

Spike Duplicate Lab ID: 1628876 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771010, 1214771011

Results by SW8260D

1,1,1,2-Tetrachloroethane 30 31.3 104 30 30.3 101 (78-124) 3.40 (<20) 1,1,1-Trichloroethane 30 30.2 101 30 29.5 98 (74-131) 2.40 (<20) 1,1,2-Trichloroethane 30 29.8 99 30 28.7 96 (71-121) 3.80 (<20) 1,1-Dichloroethane 30 29.4 98 30 28.4 95 (77-125) 3.30 (<20) 1,1-Dichloroethane 30 30.4 101 (71-131) 0.24 (<20) 1,1-Dichloroethane 30 30.5 102 30 29.8 99 (79-125) 2.10 (<20) 1,2-Bichloroethane 30 31.3 104 30 29.6 99 (<9-125) 2.10 (<20) 1,2-Bichloroethane 30 31.7 106 30 30.3 101 (<0 (<0 (<0 (<0 (<0 (<0 (<0 (<0 <th></th> <th></th> <th>Blank Spike</th> <th>e (ug/L)</th> <th>;</th> <th>Spike Dupli</th> <th>cate (ug/L)</th> <th></th> <th></th> <th></th>			Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
1,1,1-Trichloroethane 30 30.2 101 30 29.5 98 (74-131) 2.40 (<20) 1,1,2,2-Tetrachloroethane 30 29.8 99 30 28.7 96 (71-121) 3.80 (<20) 1,1-Dichloroethane 30 30.5 102 30 29.1 97 (80-119) 4.90 (<20) 1,1-Dichloroethane 30 30.4 101 30 28.4 95 (77-125) 3.0 (<20) 1,1-Dichloroptopane 30 30.5 102 30 29.8 99 (79-125) 2.10 (<20) 1,2,3-Trichlorobenzene 30 31.3 104 30 29.6 99 (69-129) 5.70 (<20) 1,2,4-Trichlorobenzene 30 31.7 106 30 30.3 101 (69-130) 4.60 (<20) 1,2-Loribriorobenzene 30 30.5 102 30 30.5 102 (79-124) 0.92 (<20) 1,2-Dichlorobenzene 30 29.5 98 30 22.7 99 <t< th=""><th><u>Parameter</u></th><th>Spike</th><th>Result</th><th>Rec (%)</th><th>Spike</th><th>Result</th><th>Rec (%)</th><th><u>CL</u></th><th>RPD (%)</th><th>RPD CL</th></t<>	<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane 30 29.8 99 30 28.7 96 (71-121) 3.80 (<20)	1,1,1,2-Tetrachloroethane	30	31.3	104	30	30.3	101	(78-124)	3.40	(< 20)
1,1,2-Trichloroethane 30 30.5 102 30 29.1 97 (80-119) 4.90 (<20)	1,1,1-Trichloroethane	30	30.2	101	30	29.5	98	(74-131)	2.40	(< 20)
1,1-Dichloroethane 30 29.4 98 30 28.4 95 (77-125) 3.30 (<20)	1,1,2,2-Tetrachloroethane	30	29.8	99	30	28.7	96	(71-121)	3.80	(< 20)
1,1-Dichloroethene 30 30.4 101 30 30.4 101 (< 20)	1,1,2-Trichloroethane	30	30.5	102	30	29.1	97	(80-119)	4.90	(< 20)
1,1-Dichloropropene 30 30.5 102 30 29.8 99 (79-125) 2.10 (<20)	1,1-Dichloroethane	30	29.4	98	30	28.4	95	(77-125)	3.30	(< 20)
1,2,3-Trichlorobenzene 30 31.3 104 30 29.6 99 (69-129) 5.70 (<20)	1,1-Dichloroethene	30	30.4	101	30	30.4	101	(71-131)	0.24	(< 20)
1,2,3-Trichloropropane 30 30.1 100 30 28.4 95 (73-122) 5.60 (<20)	1,1-Dichloropropene	30	30.5	102	30	29.8	99	(79-125)	2.10	(< 20)
1,2,4-Trichlorobenzene 30 31.7 106 30 30.3 101 (69-130) 4.60 (<20)	1,2,3-Trichlorobenzene	30	31.3	104	30	29.6	99	(69-129)	5.70	(< 20)
1,2,4-Trimethylbenzene 30 30.8 103 30 30.5 102 (79-124) 0.92 (<20)	1,2,3-Trichloropropane	30	30.1	100	30	28.4	95	(73-122)	5.60	(< 20)
1,2-Dibromo-3-chloropropane 30 30.5 102 30 28.2 94 (62-128) 7.70 (< 20)	1,2,4-Trichlorobenzene	30	31.7	106	30	30.3	101	(69-130)	4.60	(< 20)
1,2-Dibromoethane 30 31.6 105 30 29.7 99 (77-121) 6.20 (< 20)	1,2,4-Trimethylbenzene	30	30.8	103	30	30.5	102	(79-124)	0.92	(< 20)
1,2-Dichlorobenzene 30 29.5 98 30 28.8 96 (80-119) 2.10 (< 20)	1,2-Dibromo-3-chloropropane	30	30.5	102	30	28.2	94	(62-128)	7.70	(< 20)
1,2-Dichloroethane 30 28.9 97 30 27.6 92 (73-128) 4.80 (< 20)	1,2-Dibromoethane	30	31.6	105	30	29.7	99	(77-121)	6.20	(< 20)
1,2-Dichloropropane 30 30.2 101 30 28.9 97 (78-122) 4.30 (< 20)	1,2-Dichlorobenzene	30	29.5	98	30	28.8	96	(80-119)	2.10	(< 20)
1,3,5-Trimethylbenzene 30 30.9 103 30 30.2 101 (75-124) 2.10 (< 20)	1,2-Dichloroethane	30	28.9	97	30	27.6	92	(73-128)	4.80	(< 20)
1,3-Dichlorobenzene 30 29.9 100 30 29.3 98 (80-119) 1.80 (< 20)	1,2-Dichloropropane	30	30.2	101	30	28.9	97	(78-122)	4.30	(< 20)
1,3-Dichloropropane 30 30.6 102 30 29.1 97 (80-119) 5.10 (< 20)	1,3,5-Trimethylbenzene	30	30.9	103	30	30.2	101	(75-124)	2.10	(< 20)
1,4-Dichlorobenzene 30 29.5 98 30 29.1 97 (79-118) 1.20 (< 20)	1,3-Dichlorobenzene	30	29.9	100	30	29.3	98	(80-119)	1.80	(< 20)
2,2-Dichloropropane 30 30.6 102 30 29.8 99 (60-139) 2.70 (<20)	1,3-Dichloropropane	30	30.6	102	30	29.1	97	(80-119)	5.10	(< 20)
2-Butanone (MEK) 90 86.9 97 90 76.7 85 (56-143) 12.50 (< 20) 2-Chlorotoluene 30 30.0 100 30 29.7 99 (79-122) 1.20 (< 20) 2-Hexanone 90 92.3 103 90 83.2 93 (57-139) 10.30 (< 20) 4-Chlorotoluene 30 30.0 100 30 29.6 99 (78-122) 1.40 (< 20) 4-Isopropyltoluene 30 31.5 105 30 31.0 103 (77-127) 1.80 (< 20) 4-Methyl-2-pentanone (MIBK) 90 94.9 105 90 85.4 95 (67-130) 10.50 (< 20) 8-Benzene 30 29.8 99 30 28.9 96 (79-120) 3.00 (< 20) 8-Bromobenzene 30 29.6 99 30 28.9 96 (80-120) 0.24 (< 20) 8-Bromochloromethane 30 29.6 99 30 28.4 95 (78-123) 3.90 (< 20) 8-Bromochloromethane 30 30.9 103 30 29.7 99 (79-125) 3.90 (< 20) 8-Bromoform 30 32.1 107 30 29.9 100 (66-130) 7.10 (< 20) 8-Bromomethane 30 28.7 96 30 29.1 97 (53-141) 1.40 (< 20)	1,4-Dichlorobenzene	30	29.5	98	30	29.1	97	(79-118)	1.20	(< 20)
2-Chlorotoluene 30 30.0 100 30 29.7 99 (79-122) 1.20 (< 20) 2-Hexanone 90 92.3 103 90 83.2 93 (57-139) 10.30 (< 20) 4-Chlorotoluene 30 30.0 100 30 29.6 99 (78-122) 1.40 (< 20) 4-Isopropyltoluene 30 31.5 105 30 31.0 103 (77-127) 1.80 (< 20) 4-Methyl-2-pentanone (MIBK) 90 94.9 105 90 85.4 95 (67-130) 10.50 (< 20) 8-Enzene 30 29.8 99 30 28.9 96 (79-120) 3.00 (< 20) 8-Enzene 30 28.8 96 30 28.9 96 (80-120) 0.24 (< 20) 8-Enzene 30 29.6 99 30 28.4 95 (78-123) 3.90 (< 20) 8-Enzene 30 30.9 103 30 29.7 99 (79-125) 3.90 (< 20) 8-Enzene 30 30.9 103 30 29.7 99 (79-125) 3.90 (< 20) 8-Enzene 30 32.1 107 30 29.9 100 (66-130) 7.10 (< 20) 8-Enzene 30 32.1 107 30 29.9 100 (66-130) 7.10 (< 20) 8-Enzene 30 32.7 96 30 29.1 97 (53-141) 1.40 (< 20)	2,2-Dichloropropane	30	30.6	102	30	29.8	99	(60-139)	2.70	(< 20)
2-Hexanone 90 92.3 103 90 83.2 93 (57-139) 10.30 (< 20)	2-Butanone (MEK)	90	86.9	97	90	76.7	85	(56-143)	12.50	(< 20)
4-Chlorotoluene 30 30.0 100 30 29.6 99 (78-122) 1.40 (< 20)	2-Chlorotoluene	30	30.0	100	30	29.7	99	(79-122)	1.20	(< 20)
4-Isopropyltoluene 30 31.5 105 30 31.0 103 (77-127) 1.80 (< 20)	2-Hexanone	90	92.3	103	90	83.2	93	(57-139)	10.30	(< 20)
4-Methyl-2-pentanone (MIBK) 90 94.9 105 90 85.4 95 (67-130) 10.50 (< 20)	4-Chlorotoluene	30	30.0	100	30	29.6	99	(78-122)	1.40	(< 20)
Benzene 30 29.8 99 30 28.9 96 (79-120) 3.00 (< 20)	4-Isopropyltoluene	30	31.5	105	30	31.0	103	(77-127)	1.80	(< 20)
Bromobenzene 30 28.8 96 30 28.9 96 (80-120) 0.24 (< 20)	4-Methyl-2-pentanone (MIBK)	90	94.9	105	90	85.4	95	(67-130)	10.50	(< 20)
Bromochloromethane 30 29.6 99 30 28.4 95 (78-123) 3.90 (< 20) Bromodichloromethane 30 30.9 103 30 29.7 99 (79-125) 3.90 (< 20)	Benzene	30	29.8	99	30	28.9	96	(79-120)	3.00	(< 20)
Bromodichloromethane 30 30.9 103 30 29.7 99 (79-125) 3.90 (< 20) Bromoform 30 32.1 107 30 29.9 100 (66-130) 7.10 (< 20)	Bromobenzene	30	28.8	96	30	28.9	96	(80-120)	0.24	(< 20)
Bromoform 30 32.1 107 30 29.9 100 (66-130) 7.10 (< 20)	Bromochloromethane	30	29.6	99	30	28.4	95	(78-123)	3.90	(< 20)
Bromomethane 30 28.7 96 30 29.1 97 (53-141) 1.40 (< 20)	Bromodichloromethane	30	30.9	103	30	29.7	99	(79-125)	3.90	(< 20)
	Bromoform	30	32.1	107	30	29.9	100	(66-130)	7.10	(< 20)
Carbon disulfido 45 463 103 45 472 105 (64.122.) 1.00 (2.20.)	Bromomethane	30	28.7	96	30	29.1	97	(53-141)	1.40	(< 20)
Calibration distribute 40 40.5 100 45 47.2 100 (04-105) 1.90 (< 20)	Carbon disulfide	45	46.3	103	45	47.2	105	(64-133)	1.90	(< 20)

Blank Spike ID: LCS for HBN 1214771 [VXX37606]

Blank Spike Lab ID: 1628875 Date Analyzed: 08/06/2021 10:37 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37606]

Spike Duplicate Lab ID: 1628876 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771010, 1214771011

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	30.8	103	30	30.3	101	(72-136)	1.50	(< 20)
Chlorobenzene	30	29.8	99	30	28.5	95	(82-118)	4.60	(< 20)
Chloroethane	30	33.0	110	30	33.5	112	(60-138)	1.40	(< 20)
Chloroform	30	29.1	97	30	28.2	94	(79-124)	3.30	(< 20)
Chloromethane	30	27.7	92	30	27.2	91	(50-139)	1.90	(< 20)
cis-1,2-Dichloroethene	30	28.9	97	30	27.9	93	(78-123)	3.60	(< 20)
cis-1,3-Dichloropropene	30	31.6	105	30	30.1	100	(75-124)	4.90	(< 20)
Dibromochloromethane	30	32.1	107	30	30.5	102	(74-126)	5.10	(< 20)
Dibromomethane	30	30.4	101	30	28.2	94	(79-123)	7.70	(< 20)
Dichlorodifluoromethane	30	26.9	90	30	26.4	88	(32-152)	1.90	(< 20)
Ethylbenzene	30	30.2	101	30	29.3	98	(79-121)	3.00	(< 20)
Freon-113	45	46.4	103	45	46.7	104	(70-136)	0.74	(< 20)
Hexachlorobutadiene	30	31.1	104	30	29.9	100	(66-134)	3.90	(< 20)
Isopropylbenzene (Cumene)	30	31.4	105	30	30.1	100	(72-131)	4.20	(< 20)
Methylene chloride	30	30.8	103	30	28.5	95	(74-124)	7.90	(< 20)
Methyl-t-butyl ether	45	48.6	108	45	43.9	98	(71-124)	10.20	(< 20)
Naphthalene	30	28.4	95	30	26.5	88	(61-128)	7.00	(< 20)
n-Butylbenzene	30	31.8	106	30	30.9	103	(75-128)	2.90	(< 20)
n-Propylbenzene	30	30.3	101	30	30.1	100	(76-126)	0.66	(< 20)
o-Xylene	30	30.3	101	30	29.3	98	(78-122)	3.20	(< 20)
P & M -Xylene	60	60.6	101	60	58.6	98	(80-121)	3.40	(< 20)
sec-Butylbenzene	30	31.1	104	30	30.7	102	(77-126)	1.50	(< 20)
Styrene	30	31.4	105	30	30.2	101	(78-123)	3.90	(< 20)
tert-Butylbenzene	30	30.3	101	30	30.1	100	(78-124)	0.72	(< 20)
Tetrachloroethene	30	30.2	101	30	29.6	99	(74-129)	2.20	(< 20)
Toluene	30	29.3	98	30	28.3	94	(80-121)	3.40	(< 20)
trans-1,2-Dichloroethene	30	31.1	104	30	28.8	96	(75-124)	7.60	(< 20)
trans-1,3-Dichloropropene	30	29.3	98	30	28.1	94	(73-127)	4.40	(< 20)
Trichloroethene	30	29.8	99	30	28.9	96	(79-123)	3.00	(< 20)
Trichlorofluoromethane	30	30.1	100	30	29.6	99	(65-141)	1.80	(< 20)
Vinyl acetate	30	28.9	96	30	26.6	89	(54-146)	8.30	(< 20)
Vinyl chloride	30	28.6	95	30	27.9	93	(58-137)	2.40	(< 20)
Xylenes (total)	90	90.8	101	90	87.9	98	(79-121)	3.30	(< 20)

Blank Spike ID: LCS for HBN 1214771 [VXX37606]

Blank Spike Lab ID: 1628875 Date Analyzed: 08/06/2021 10:37 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37606]

Spike Duplicate Lab ID: 1628876 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771010, 1214771011

Results by SW8260D

		Blank Spik	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		101	30		96	(81-118)	5.00	
4-Bromofluorobenzene (surr)	30		99	30		100	(85-114)	0.13	
Toluene-d8 (surr)	30		101	30		101	(89-112)	0.45	

Batch Information

Analytical Batch: VMS21031 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Prep Batch: VXX37606
Prep Method: SW5030B

Prep Date/Time: 08/06/2021 10:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1823913 [VXX/37619]

Blank Lab ID: 1629327

QC for Samples:

1214771003, 1214771004, 1214771005, 1214771006, 1214771007, 1214771008, 1214771009

Results by SW8260D

Results	LOQ/CL	<u>DL</u>	<u>Units</u>
0.200U	0.400	0.120	ug/L
0.500U	1.00	0.310	ug/L
0.500U	1.00	0.310	ug/L
1.00U	2.00	0.620	ug/L
0.500U	1.00	0.310	ug/L
1.50U	3.00	1.00	ug/L
103	81-118		%
106	85-114		%
99.7	89-112		%
	0.200U 0.500U 0.500U 1.00U 0.500U 1.50U	0.200U 0.400 0.500U 1.00 0.500U 1.00 1.00U 2.00 0.500U 1.00 1.50U 3.00 103 81-118 106 85-114	0.200U 0.400 0.120 0.500U 1.00 0.310 0.500U 1.00 0.310 1.00U 2.00 0.620 0.500U 1.00 0.310 1.50U 3.00 1.00 103 81-118 106 85-114

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/10/2021 2:16:00PM

Prep Batch: VXX37619 Prep Method: SW5030B

Prep Date/Time: 8/10/2021 2:00:00PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1214771 [VXX37619]

Blank Spike Lab ID: 1629328 Date Analyzed: 08/10/2021 14:31 Spike Duplicate ID: LCSD for HBN 1214771

[VXX37619]

Spike Duplicate Lab ID: 1629329 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771003, 1214771004, 1214771005, 1214771006, 1214771007, 1214771008, 1214771009

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	31.3	104	30	30.1	100	(79-120)	3.70	(< 20)
Ethylbenzene	30	30.9	103	30	30.9	103	(79-121)	0.12	(< 20)
o-Xylene	30	30.8	103	30	30.6	102	(78-122)	0.75	(< 20)
P & M -Xylene	60	60.4	101	60	60.1	100	(80-121)	0.42	(< 20)
Toluene	30	31.0	103	30	30.1	100	(80-121)	2.80	(< 20)
Xylenes (total)	90	91.2	101	90	90.7	101	(79-121)	0.53	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		99	30		97	(81-118)	2.50	
4-Bromofluorobenzene (surr)	30		103	30		104	(85-114)	0.59	
Toluene-d8 (surr)	30		101	30		99	(89-112)	1.60	

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37619
Prep Method: SW5030B

Prep Date/Time: 08/10/2021 14:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1823448 [XXX/45308]

Blank Lab ID: 1627703

QC for Samples:

1214771001, 1214771002, 1214771010

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0300J	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	63.2	42-86		%
Fluoranthene-d10 (surr)	81.4	50-97		%

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/14/2021 8:59:00PM

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214771 [XXX45308]

Blank Spike Lab ID: 1627704 Date Analyzed: 08/14/2021 21:20

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771010

Results by 8270D SIM LV (PAH)

7				
		Blank Spike	e (ug/L)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	2	1.12	56	(41-115)
2-Methylnaphthalene	2	1.12	56	(39-114)
Acenaphthene	2	1.25	63	(48-114)
Acenaphthylene	2	1.27	64	(35-121)
Anthracene	2	1.32	66	(53-119)
Benzo(a)Anthracene	2	1.41	71	(59-120)
Benzo[a]pyrene	2	1.48	74	(53-120)
Benzo[b]Fluoranthene	2	1.46	73	(53-126)
Benzo[g,h,i]perylene	2	1.58	79	(44-128)
Benzo[k]fluoranthene	2	1.51	75	(54-125)
Chrysene	2	1.48	74	(57-120)
Dibenzo[a,h]anthracene	2	1.59	80	(44-131)
Fluoranthene	2	1.33	66	(58-120)
Fluorene	2	1.30	65	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.56	78	(48-130)
Naphthalene	2	1.14	57	(43-114)
Phenanthrene	2	1.31	65	(53-115)
Pyrene	2	1.33	67	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2		55	(42-86)
Fluoranthene-d10 (surr)	2		68	(50-97)

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 08/04/2021 14:27

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/25/2021 2:03:15PM

Matrix Spike Summary

Original Sample ID: 1214798010 MS Sample ID: 1627705 MS MSD Sample ID: 1627706 MSD

QC for Samples: 1214771001, 1214771002, 1214771010 Analysis Date: 08/15/2021 4:12 Analysis Date: 08/15/2021 4:33 Analysis Date: 08/15/2021 4:54 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Matrix Spike (ug/L)		Spik	ce Duplicat	e (ug/L)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%	RPD CL
1-Methylnaphthalene	0.0232U	1.92	1.2	62	1.82	0.985	54	41-115	19.60	(< 20)
2-Methylnaphthalene	0.0232U	1.92	1.11	58	1.82	0.907	50	39-114	20.40	* (< 20)
Acenaphthene	0.0232U	1.92	1.26	66	1.82	1.04	57	48-114	19.40	(< 20)
Acenaphthylene	0.0232U	1.92	1.27	66	1.82	1.08	59	35-121	16.90	(< 20)
Anthracene	0.0232U	1.92	1.25	65	1.82	1.06	58	53-119	16.70	(< 20)
Benzo(a)Anthracene	0.0232U	1.92	1.12	58 *	1.82	0.800	44 *	59-120	33.60	* (< 20)
Benzo[a]pyrene	0.00925U	1.92	.765	40 *	1.82	0.465	26 *	53-120	48.80	* (< 20)
Benzo[b]Fluoranthene	0.0232U	1.92	1.06	55	1.82	0.733	40 *	53-126	36.50	* (< 20)
Benzo[g,h,i]perylene	0.0232U	1.92	.377	20 *	1.82	0.258	14 *	44-128	37.50	* (< 20)
Benzo[k]fluoranthene	0.0232U	1.92	.749	39 *	1.82	0.457	25 *	54-125	48.50	* (< 20)
Chrysene	0.0232U	1.92	.948	49 *	1.82	0.601	33 *	57-120	44.90	* (< 20)
Dibenzo[a,h]anthracene	0.00925U	1.92	.358	19 *	1.82	0.252	14 *	44-131	34.80	* (< 20)
Fluoranthene	0.0232U	1.92	1.38	72	1.82	1.13	62	58-120	19.60	(< 20)
Fluorene	0.0232U	1.92	1.3	68	1.82	1.11	61	50-118	15.60	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0232U	1.92	.487	25 *	1.82	0.313	17 *	48-130	43.40	* (< 20)
Naphthalene	0.0463U	1.92	1.22	64	1.82	0.976	54	43-114	22.40	* (< 20)
Phenanthrene	0.0232U	1.92	1.26	65	1.82	1.09	60	53-115	14.00	(< 20)
Pyrene	0.0232U	1.92	1.38	72	1.82	1.15	63	53-121	18.20	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.92	1.28	67	1.82	1.04	57	42-86	21.30	
Fluoranthene-d10 (surr)		1.92	1.43	75	1.82	1.21	67	50-97	17.00	

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/15/2021 4:33:00AM

Prep Batch: XXX45308

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 260.00mL Prep Extract Vol: 1.00mL

Print Date: 08/25/2021 2:03:16PM

Method Blank

Blank ID: MB for HBN 1823661 [XXX/45329]

Blank Lab ID: 1628537

QC for Samples:

1214771001, 1214771002, 1214771003, 1214771004, 1214771006, 1214771007, 1214771008, 1214771009, 1214771010, 1214771000, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771000, 1214

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 87.8 60-120 %

Batch Information

Analytical Batch: XFC16039 Prep Batch: XXX45329
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 8/6/2021 3:05:52PM

Analyst: IVM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 8/10/2021 11:28:00AM Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:18PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214771 [XXX45329]

Blank Spike Lab ID: 1628538 Date Analyzed: 08/10/2021 11:38 Spike Duplicate ID: LCSD for HBN 1214771

[XXX45329]

Spike Duplicate Lab ID: 1628539

Matrix: Water (Surface, Eff., Ground)

1214771001, 1214771002, 1214771003, 1214771004, 1214771006, 1214771007, 1214771008, QC for Samples:

1214771009, 1214771010

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	20.1	101	20	20.4	102	(75-125)	1.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4		102	0.4		107	(60-120)	4.60	

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45329 Prep Method: SW3520C

Prep Date/Time: 08/06/2021 15:05

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:20PM

Method Blank

Blank ID: MB for HBN 1823661 [XXX/45329]

Blank Lab ID: 1628537

QC for Samples:

1214771001, 1214771002, 1214771003, 1214771004, 1214771006, 1214771007, 1214771008, 1214771009, 1214771010, 1214771000, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771010, 1214771000, 1214

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 101 60-120 %

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: IVM

Analytical Date/Time: 8/10/2021 11:28:00AM

Prep Batch: XXX45329 Prep Method: SW3520C

Prep Date/Time: 8/6/2021 3:05:52PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL

Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:23PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214771 [XXX45329]

Blank Spike Lab ID: 1628538

Date Analyzed: 08/10/2021 11:38

Spike Duplicate ID: LCSD for HBN 1214771

[XXX45329]

Spike Duplicate Lab ID: 1628539

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214771001, 1214771002, 1214771003, 1214771004, 1214771006, 1214771007, 1214771008,

1214771009, 1214771010

Results by AK103

		Blank Spike (mg/L)			Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	20	20.5	103	20	20.6	103	(60-120)	0.22	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		103	0.4		109	(60-120)	6.10	

Batch Information

Analytical Batch: XFC16039
Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45329
Prep Method: SW3520C

Prep Date/Time: 08/06/2021 15:05

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:25PM

Method Blank

Blank ID: MB for HBN 1823761 [XXX/45345]

Blank Lab ID: 1628762

QC for Samples: 1214771005

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 95.1 60-120 %

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 8/11/2021 12:09:00PM

Prep Batch: XXX45345 Prep Method: SW3520C

Prep Date/Time: 8/9/2021 4:41:59PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:27PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214771 [XXX45345]

Blank Spike Lab ID: 1628763 Date Analyzed: 08/11/2021 12:19

QC for Samples: 1214771005

Spike Duplicate ID: LCSD for HBN 1214771

[XXX45345]

Spike Duplicate Lab ID: 1628764 Matrix: Water (Surface, Eff., Ground)

Results by AK102

		Blank Spike (mg/L)			Spike Duplicate (mg/L)				
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	20.4	102	20	19.7	98	(75-125)	3.50	(< 20)
Surrogates									
5a Androstane (surr)	0.4		101	0.4		101	(60-120)	0.18	

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: **XXX45345**Prep Method: **SW3520C**

Prep Date/Time: 08/09/2021 16:41

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:30PM

Method Blank

Blank ID: MB for HBN 1823761 [XXX/45345]

Blank Lab ID: 1628762

QC for Samples: 1214771005

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 106 60-120 %

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 8/11/2021 12:09:00PM

Prep Batch: XXX45345 Prep Method: SW3520C

Prep Date/Time: 8/9/2021 4:41:59PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:32PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214771 [XXX45345]

Blank Spike Lab ID: 1628763 Date Analyzed: 08/11/2021 12:19

QC for Samples: 1214771005 Spike Duplicate ID: LCSD for HBN 1214771

[XXX45345]

Spike Duplicate Lab ID: 1628764 Matrix: Water (Surface, Eff., Ground)

Results by AK103

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	21.2	106	20	21.1	105	(60-120)	0.83	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		96	0.4		107	(60-120)	10.30	

Batch Information

Analytical Batch: XFC16040 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX45345 Prep Method: SW3520C

Prep Date/Time: 08/09/2021 16:41

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 08/25/2021 2:03:34PM

200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301

5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide

Alaska

£#352267×10

Maryland

New Jersey

New York

North Carolina West Virgina

Indiana

Kentucky

www.us.sgs.com Instructions: Sections 1 - 5 must be filled out. CLIENT: SLR Omissions may delay the c Page 1 of 2 PHONE NO: 907-748-6287 Section 3 contact: Stan Flage Pres **PROJECT** PWSID/ 王 ずれ 1 ガガ NAME: Red Salmon PERMIT#: 105 00151,21001 С Jmclean@stronsulting.com Sxlagel@stronsulting.com QUOTE#: REPORTS TO: Jen WcLean Type C= EN VOCS BROOD PAH-SIW COMP INVOICE TO: GRAB Stan Flage P.O. #: Multi N Е MATRIX/ DATE mental RESERVED TIME R **REMARKS/ SAMPLE IDENTIFICATION MATRIX** mm/dd/vv HH:MM for lab-use CODE s LOC ID G RS-MW1-073121 10 0845 G 07/30/21 18:57 10 RS-MW2-07302 07/31/21 0925 RS-MW3-07312 (25-MW4-07302 205 b7 30/21 W G 2 2134 4 S -MWW-073021 07/31/21 0845 -MW99-073121 DOD Project? Yes No Section 4 **Data Deliverable Requirements:** Relinguished By: (1) Date Time Received By: 1417 Cooler ID: Received By: Time Requested Turnaround Time and/or Special Instructions: Relinquished By: (2) Received By: Date Time_ Relinquished By: (3) Chain of Custody Seal: (Circle) Temp Blank °C: Received For Laboratory By: Relinquished By: (4) Date Time INTACT BROKEN ABSENT or Ambient [] (See attached Sample Receipt Form) (See attached Sample Receipt Form)

http://www.sgs.com/terms-and-conditions

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide

Alaska

Maryland

New Jersey

New York

North Carolina West Virgina Indiana

Kentucky

www.us.sgs.com

	CLIENT: 51									Section									, ,
_	CONTACT:		ONE NO: 9_{\odot}	7-748	-6287	Sec	tion 3	11331	ons n	iay uc	siay t		rvative	JI am	aryon	> 1		Page <u></u>	2 of 2
Section	PROJECT NAME: PORTS TO	d Salwon PERI D: Jen McLean E-M Stan Flage	MIT#: (O) S C AIL: DTE #:	X0151.7		# C O N T A I	Type C = COMP G = GRAB WI = Multi	(620 AK10(X Baloo										
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	incre- mental Soils	029	BTEX										ARKS/ C ID
ļ	(119	TRIP1-073021	/S05F0		W	4													
on 2						-													
Section 2																			
"																			
ŀ																			
_										Secti	ion 4	DOF	Projec	+2 Va	•	Deta	Dolivo	rable Requ	iromonts:
	Relinquished		Date	Time	Received By					Secu	1011 4	DOL	Projec	er res		Dala	Delive	iable Requ	nements.
	Pose H	W}	08/04/11	MIT	Received By			>		Coole		rnarou	and Tim	o and/	or Spec	ial Instr	ructions		
	Reinquisned	nquished By: (2) Date Time Received			Reserved by					Neque	steu ru	ii iiai ou	1110 11111	e allu/	or Spec	iai ilisti	uctions		
ection 5	Relinquished	Relinquished By: (3) Date Time Received By:			:														
Ň									Temp Blank °C: D23				Cha	in of C	ustody Sea	l: (Circle)			
	Relinquished By: (4) Date Time Received Fo				Labora	tory By:	. /					bient [NT4	CT I	BROKEN	ABSENT	
	8/2/21 1416				WINWALL			(See attached Sample Receipt Form) (See attached					Sample Re	eceipt Form)					

e-Sample Receipt Form

SGS Workorder #:

1214771

1214771

Review Criteria	Condition (Yes,				otions Not		
Chain of Custody / Temperature Requi	<u>irements</u>	Y	'es Ex	emption perm	nitted if samp	ler hand carries/del	ivers.
Were Custody Seals intact? Note # &	location Yes						
COC accompanied sa	amples? Yes						
DOD: Were samples received in COC corresponding	coolers? N/A						
N/A **Exemption permitted if	f chilled & colle	cted <8 ho	urs ago	, or for sampl	les where chi	lling is not required	
Temperature blank compliant* (i.e., 0-6 °C afte				1	@	0.5 °C Therm. ID	
is inportation of the interest (i.e., or or or and	0. 0. /.	Cooler ID			@	°C Therm. ID	
If samples received without a temperature blank, the "cooler temperature" wil	ll be	Cooler ID	-		@	°C Therm. ID	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl		Cooler ID			@	°C Therm. ID	
be noted if neither is available.							
th coo war as well a called a lower		Cooler ID			@	°C Therm. ID):
*If >6°C, were samples collected <8 hours	s ago? N/A						
If <0°C, were sample containers ice	e free? N/A						
Note: Identify containers received at non-compliant tempe							
Use form FS-0029 if more space is r	needed.						
Holding Time / Documentation / Sample Condition R	equirements	Note: Refer	to form I	-083 "Sample	Guide" for spec	cific holding times.	
Were samples received within holding	g time? Yes						
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes						
**Note: If times differ <1hr, record details & login per C		l					
***Note: If sample information on containers differs from COC, SGS will default to							
Were analytical requests clear? (i.e., method is specified for a							
with multiple option for analysis (Ex: BTEX,							
		ı,	1/A ***	Evomotica	rmittad far	otala (c. ~ 200 0/00	20P)
Mana mana a santaina na (4 / / - 1 /	*)		I/A ***	Exemption pe	ennicea for m	netals (e.g,200.8/60	ZUB).
Were proper containers (type/mass/volume/preservative***	jused? Yes						
V-1-01-11-11-B							
Volatile / LL-Hg Rec							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa	1						
Were all water VOA vials free of headspace (i.e., bubbles ≤	· ·						
Were all soil VOAs field extracted with MeOH	I+BFB? N/A						
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd proc	edures and n	nay impact d	ata quality.	
A dditions	al notes (if a	nnlicable	١٠				
Additiona	al notes (if a	ppiicable).				
							_

Sample Containers and Preservatives

1214771001-A	Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1214771001-B	1214771001-Δ	HCL to pH < 2	OK	1214771006-F	HCL to pH < 2	OK
1214771001-C		•			•	
1214771001-D						
1214771001-E		•				
1214771001-F						
1214771001-G						
1214771001-H		•				
1214771001-1						
1214771001-J						
1214771002-A HCL to pH < 2 OK 1214771008-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 1214771003-B HCL to pH < 2 OK 1214771009-B HCL to pH < 2 OK 121477						
1214771002-B		•				
1214771002-C					•	
1214771002-D		·				
1214771002-E		•				
1214771002-F						
1214771002-G					•	
1214771002-H		•				
1214771002-1						
1214771002-J HCL to pH < 2						
1214771003-A						
1214771003-B						
1214771003-C		•			·	
1214771003-D HCL to pH < 2 OK 1214771009-E HCL to pH < 2 OK 1214771003-E HCL to pH < 2 OK 1214771003-F HCL to pH < 2 OK 1214771009-F HCL to pH < 2 OK 1214771003-F HCL to pH < 2 OK 1214771003-F HCL to pH < 2 OK 1214771003-G HCL to pH < 2 OK 1214771003-G HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771010-B HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-B HCL to pH < 2 OK 1214771004-C HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-D HCL to pH < 2 OK 1214771010-B HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771010-E HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771010-I HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 121477						
1214771003-E HCL to pH < 2 OK 1214771009-F HCL to pH < 2 OK 1214771003-F HCL to pH < 2 OK 1214771003-F HCL to pH < 2 OK 1214771009-G HCL to pH < 2 OK 1214771003-G HCL to pH < 2 OK 1214771009-H HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771009-H HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771000-B HCL to pH < 2 OK 1214771000-B HCL to pH < 2 OK 1214771000-B HCL to pH < 2 OK 1214771000-C HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-D HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771010-E HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771010-J HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 121477101-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 121477101-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 121477101-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 121477101-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 121477101-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 12147771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006		·				
1214771003-F HCL to pH < 2 OK 1214771009-G HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771003-H HCL to pH < 2 OK 1214771001-A HCL to pH < 2 OK 1214771004-A HCL to pH < 2 OK 1214771010-B HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-B HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-C HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771010-E HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-B HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771010-J HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771015-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 121477	1214771003-D	·		1214771009-E		
1214771003-G	1214771003-E	•		1214771009-F		
1214771003-H	1214771003-F			1214771009-G		
1214771004-A	1214771003-G					
1214771004-B	1214771003-H		OK	1214771010-A		OK
1214771004-C HCL to pH < 2 OK 1214771010-D HCL to pH < 2 OK 1214771004-D HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771004-E HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-G HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771010-J HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-C HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771004-A	•	OK	1214771010-B		OK
1214771004-D	1214771004-B	HCL to pH < 2	OK	1214771010-C	HCL to pH < 2	OK
1214771004-E HCL to pH < 2 OK 1214771010-F HCL to pH < 2 OK 1214771004-F HCL to pH < 2 OK 1214771010-G HCL to pH < 2 OK 1214771004-G HCL to pH < 2 OK 1214771010-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771010-J HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-C HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771004-C	HCL to pH < 2	OK	1214771010-D	HCL to pH < 2	OK
1214771004-F HCL to pH < 2 OK 1214771010-G HCL to pH < 2 OK 1214771004-G HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771004-H HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-C HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771004-D		OK	1214771010-E	<u>=</u>	OK
1214771004-G	1214771004-E	HCL to pH < 2	OK	1214771010-F	HCL to pH < 2	OK
1214771004-H HCL to pH < 2 OK 1214771010-I HCL to pH < 2 OK 1214771005-A HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-C HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-E HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771004-F	HCL to pH < 2	OK	1214771010-G	HCL to pH < 2	OK
1214771005-A HCL to pH < 2 OK 1214771010-J HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771011-A HCL to pH < 2 OK 1214771005-C HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771005-E HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771005-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771004-G	HCL to pH < 2	OK	1214771010-H	HCL to pH < 2	OK
1214771005-B	1214771004-H	HCL to pH < 2	OK	1214771010-I	HCL to pH < 2	OK
1214771005-C HCL to pH < 2 OK 1214771011-B HCL to pH < 2 OK 1214771005-D HCL to pH < 2 OK 1214771011-C HCL to pH < 2 OK 1214771005-E HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK 121477	1214771005-A	HCL to pH < 2	OK	1214771010-J	HCL to pH < 2	OK
1214771005-D HCL to pH < 2 OK 1214771005-E HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-B	HCL to pH < 2	OK	1214771011-A	HCL to pH < 2	OK
1214771005-E HCL to pH < 2 OK 1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-C	HCL to pH < 2	OK	1214771011-B	HCL to pH < 2	OK
1214771005-F HCL to pH < 2 OK 1214771005-G HCL to pH < 2 OK 1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-D	HCL to pH < 2	OK	1214771011-C	HCL to pH < 2	OK
1214771005-G	1214771005-E	HCL to pH < 2	OK			
1214771005-H HCL to pH < 2 OK 1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-F	HCL to pH < 2	OK			
1214771006-A HCL to pH < 2 OK 1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-G	HCL to pH < 2	OK			
1214771006-B HCL to pH < 2 OK 1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771005-H	HCL to pH < 2	OK			
1214771006-C HCL to pH < 2 OK 1214771006-D HCL to pH < 2 OK	1214771006-A	HCL to pH < 2	OK			
1214771006-D HCL to pH < 2 OK	1214771006-B	HCL to pH < 2	OK			
1214771006-D HCL to pH < 2 OK	1214771006-C	HCL to pH < 2	OK			
	1214771006-D	HCL to pH < 2	ОК			
	1214771006-E	HCL to pH < 2	OK			

Page 77 of 78

Container IdPreservativeContainerContainer IdPreservativeContainerConditionCondition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Report of Analysis

To: SLR Alaska-Anchorage

2700 Gambell Street, Suite 200 Anchorage, AK 99503 (907)222-1112

Report Number: 1214774

Client Project: 105.00151.21001 Red Salmon

Dear Stan Flagel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Alexandra at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Alexandra Daniel
Project Manager
Alexandra.Daniel@sgs.com

Date

Print Date: 09/07/2021 3:09:11PM Results via Engage

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1214774

Project Name/Site: 105.00151.21001 Red Salmon

Project Contact: Stan Flagel

Refer to sample receipt form for information on sample condition.

RS-SW1-073121 (1214774001) PS

8270D SIM - PAH surrogate recovery for 2-methylnaphthalene-d10 does not meet QC criteria. Sample was re-extracted past 14 hold-time to confirm results. Re-analysis confirms original results. In-hold data is reported.

RS-SW2-073121 (1214774002) PS

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was diluted due to the dark color of the extract.

8270D SIM - PAH surrogate recoveries for fluoranthene-d10 and 2-methylnaphthalene-d10 do not meet QC criteria due to sample dilution.

RS-SW99-073121 (1214774003) PS

8270D SIM - PAH surrogate recovery for 2-methylnaphthalene-d10 does not meet QC criteria. The sample was re-extracted outside of hold time and results do not confirm. Both sets of data are being reported.

MB for HBN 1823448 [XXX/45308] (1627703) MB

8270D SIM - Phenanthrene is detect in the PAH method blank at less than the LOQ. Associated samples contain this analyte at less than the LOQ.

1214798010MS (1627705) MS

8270D SIM - PAH MS recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

1214798010MSD (1627706) MSD

8270D SIM - PAH MSD recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH MS/MSD RPD for multiple analytes does not meet QC criteria. These analytes are not detected above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/07/2021 3:09:13PM

Report of Manual Integrations

<u>Laboratory ID</u> <u>Client Sample ID</u> <u>Analytical Batch</u> <u>Analyte</u> <u>Reason</u>

8270D SIM LV (PAH)

 1631511
 CVC for HBN 1824432 [XMS/12840
 XMS12840
 Anthracene
 RP

 1631511
 CVC for HBN 1824432 [XMS/12840
 XMS12840
 Phenanthrene
 BLC

Manual Integration Reason Code Descriptions

Code Description

O Original Chromatogram
M Modified Chromatogram
SS Skimmed surrogate
BLG Closed baseline gap
RP Reassign peak name
PIR Pattern integration required

IT Included tail SP Split peak

RSP Removed split peak FPS Forced peak start/stop BLC Baseline correction

PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 09/07/2021 3:09:14PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOG

LOD Limit of Detection (i.e., 1/2 of the LOQ)
LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/07/2021 3:09:16PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
RS-SW1-073121	1214774001	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-SW2-073121	1214774002	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
RS-SW99-073121	1214774003	07/31/2021	08/02/2021	Water (Surface, Eff., Ground)
TRIP2-073021	1214774004	07/30/2021	08/02/2021	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO/RRO Low Volume WaterAK103DRO/RRO Low Volume WaterAK101Gasoline Range Organics (W)SW8260DVolatile Organic Compounds (W)

Print Date: 09/07/2021 3:09:17PM

Detectable Results Summary

Client Sample ID: RS-SW1-073121			
Lab Sample ID: 1214774001	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	Acenaphthene	0.0940	ug/L
	Fluorene	0.421	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.747	mg/L
	Residual Range Organics	0.449J	mg/L
Client Sample ID: RS-SW2-073121			
Lab Sample ID: 1214774002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Benzo[g,h,i]perylene	1.25	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	14.9	mg/L
	Residual Range Organics	59.5	mg/L
Client Sample ID: RS-SW99-073121			
Lab Sample ID: 1214774003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.219	ug/L
	Acenaphthene	0.240	ug/L
	Acenaphthene	0.0649	ug/L
	Fluorene	0.236	ug/L
	Fluorene	1.45	ug/L
	Phenanthrene	0.157	ug/L
	Phenanthrene	0.0292J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.675	mg/L
_	Residual Range Organics	0.421J	mg/L

Print Date: 09/07/2021 3:09:19PM

Client Sample ID: RS-SW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774001 Lab Project ID: 1214774

Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		08/18/21 19:57
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		08/18/21 19:57
Acenaphthene	0.0940	0.0463	0.0139	ug/L	1		08/18/21 19:57
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		08/18/21 19:57
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		08/18/21 19:57
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		08/15/21 01:48
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		08/15/21 01:48
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Fluorene	0.421	0.0463	0.0139	ug/L	1		08/18/21 19:57
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		08/18/21 19:57
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		08/18/21 19:57
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		08/15/21 01:48
Surrogates							
2-Methylnaphthalene-d10 (surr)	40.7 *	42-86		%	1		08/18/21 19:57
Fluoranthene-d10 (surr)	64	50-97		%	1		08/15/21 01:48

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 01:48 Container ID: 1214774001-C

Analytical Batch: XMS12840

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/18/21 19:57 Container ID: 1214774001-C

Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774001 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.747	0.588	0.176	mg/L	1		08/10/21 13:26
Surrogates							
5a Androstane (surr)	97.7	50-150		%	1		08/10/21 13:26

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 13:26 Container ID: 1214774001-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.449 J	0.490	0.147	mg/L	1		08/10/21 13:26
Surrogates							
n-Triacontane-d62 (surr)	109	50-150		%	1		08/10/21 13:26

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 13:26 Container ID: 1214774001-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774001 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 05:50
Surrogates							
4-Bromofluorobenzene (surr)	84.2	50-150		%	1		08/06/21 05:50

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 05:50 Container ID: 1214774001-H

Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Client Sample ID: RS-SW1-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774001 Lab Project ID: 1214774

Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/12/21 00:38
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:38
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:38
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/12/21 00:38
Toluene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:38
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/12/21 00:38
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		08/12/21 00:38
4-Bromofluorobenzene (surr)	96.1	85-114		%	1		08/12/21 00:38
Toluene-d8 (surr)	99.7	89-112		%	1		08/12/21 00:38

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/12/21 00:38

Container ID: 1214774001-E

Prep Batch: VXX37630 Prep Method: SW5030B Prep Date/Time: 08/11/21 19:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Client Sample ID: RS-SW2-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774002 Lab Project ID: 1214774 Collection Date: 07/31/21 10:42 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Developates	Deault Ovel	1.00/01	DI	Llaita	DE	Allowable	Data Analysis
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
2-Methylnaphthalene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Acenaphthene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Acenaphthylene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Anthracene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Benzo(a)Anthracene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Benzo[a]pyrene	0.107 U	0.213	0.0660	ug/L	10		08/14/21 22:42
Benzo[b]Fluoranthene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Benzo[g,h,i]perylene	1.25	0.532	0.160	ug/L	10		08/14/21 22:42
Benzo[k]fluoranthene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Chrysene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Dibenzo[a,h]anthracene	0.107 U	0.213	0.0660	ug/L	10		08/14/21 22:42
Fluoranthene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Fluorene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Indeno[1,2,3-c,d] pyrene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Naphthalene	0.530 U	1.06	0.330	ug/L	10		08/14/21 22:42
Phenanthrene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Pyrene	0.266 U	0.532	0.160	ug/L	10		08/14/21 22:42
Surrogates							
2-Methylnaphthalene-d10 (surr)	34 *	42-86		%	10		08/14/21 22:42
Fluoranthene-d10 (surr)	44.5 *	50-97		%	10		08/14/21 22:42

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/14/21 22:42 Container ID: 1214774002-C Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW2-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774002 Lab Project ID: 1214774

Collection Date: 07/31/21 10:42 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	14.9	5.77	1.73	mg/L	10		08/10/21 23:54
Surrogates							
5a Androstane (surr)	95.8	50-150		%	10		08/10/21 23:54

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 23:54 Container ID: 1214774002-A

Prep Batch: XXX45329 Prep Method: SW3520C Prep Date/Time: 08/06/21 15:05 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	59.5	4.81	1.44	mg/L	10		08/10/21 23:54
Surrogates							
n-Triacontane-d62 (surr)	103	50-150		%	10		08/10/21 23:54

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 23:54 Container ID: 1214774002-A

Prep Batch: XXX45329 Prep Method: SW3520C Prep Date/Time: 08/06/21 15:05 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Client Sample ID: RS-SW2-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774002 Lab Project ID: 1214774 Collection Date: 07/31/21 10:42 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics Surrogates	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 06:08
4-Bromofluorobenzene (surr)	89	50-150		%	1		08/06/21 06:08

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/06/21 06:08 Container ID: 1214774002-H Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW2-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774002 Lab Project ID: 1214774 Collection Date: 07/31/21 10:42 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/11/21 23:54
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/11/21 23:54
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/11/21 23:54
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/11/21 23:54
Toluene	0.500 U	1.00	0.310	ug/L	1		08/11/21 23:54
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/11/21 23:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/11/21 23:54
4-Bromofluorobenzene (surr)	98.8	85-114		%	1		08/11/21 23:54
Toluene-d8 (surr)	100	89-112		%	1		08/11/21 23:54

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/11/21 23:54 Container ID: 1214774002-E Prep Batch: VXX37630 Prep Method: SW5030B Prep Date/Time: 08/11/21 19:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774003 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Posult Oual	1.00/01	DI	Unite	<u>DF</u>	Allowable	Data Analyzad
<u>Parameter</u> 1-Methylnaphthalene	<u>Result Qual</u> 0.219	<u>LOQ/CL</u> 0.0481	<u>DL</u> 0.0144	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	<u>Date Analyzed</u> 08/19/21 18:59
1-Methylnaphthalene	0.219 0.0236 U	0.0472	0.0144	ug/L ug/L	1		08/15/21 02:09
, i	0.0236 U	0.0472	0.0142	-	1		08/15/21 02:09
2-Methylnaphthalene 2-Methylnaphthalene	0.0240 U	0.0472	0.0142	ug/L ug/L	1		08/19/21 18:59
, i	0.240	0.0481	0.0144	ug/L ug/L	1		08/19/21 18:59
Acenaphthene	0.240			Ū	1		
Acenaphthylana	0.0649 0.0236 U	0.0472	0.0142 0.0142	ug/L	1		08/15/21 02:09
Acenaphthylene		0.0472		ug/L			08/15/21 02:09
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/19/21 18:59
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		08/15/21 02:09
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		08/15/21 02:09
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/19/21 18:59
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Fluorene	0.236	0.0472	0.0142	ug/L	1		08/15/21 02:09
Fluorene	1.45	0.0481	0.0144	ug/L	1		08/19/21 18:59
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Naphthalene	0.0471 U	0.0943	0.0292	ug/L	1		08/15/21 02:09
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		08/19/21 18:59
Phenanthrene	0.157	0.0481	0.0144	ug/L	1		08/19/21 18:59
Phenanthrene	0.0292 J	0.0472	0.0142	ug/L	1		08/15/21 02:09
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/15/21 02:09
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/19/21 18:59
Survey mater							

Surrogates

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774003 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

					<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u> <u>L</u>	<u>Jnits</u> <u>DF</u>	Limits	Date Analyzed
2-Methylnaphthalene-d10 (surr)	28.7 *	42-86	9/	6 1		08/15/21 02:09
2-Methylnaphthalene-d10 (surr)	65.3	42-86	9/	6 1		08/19/21 18:59
Fluoranthene-d10 (surr)	49.5 *	50-97	9/	6 1		08/19/21 18:59
Fluoranthene-d10 (surr)	50.1	50-97	9/	6 1		08/15/21 02:09

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 02:09 Container ID: 1214774003-C

Analytical Batch: XMS12836

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/19/21 18:59 Container ID: 1214774003-B Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Prep Batch: XXX45402 Prep Method: SW3535A Prep Date/Time: 08/18/21 13:00 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM

Client Sample ID: RS-SW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774003 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/10/21 13:36
Diesel Range Organics	0.675	0.667	0.200	mg/L	1	Limits	
Surrogates 5a Androstane (surr)	93.9	50-150		%	1		08/10/21 13:36

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/10/21 13:36 Container ID: 1214774003-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 225 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.421 J	0.556	0.167	mg/L	1		08/10/21 13:36
Surrogates							
n-Triacontane-d62 (surr)	103	50-150		%	1		08/10/21 13:36

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/10/21 13:36 Container ID: 1214774003-A Prep Batch: XXX45329
Prep Method: SW3520C
Prep Date/Time: 08/06/21 15:05
Prep Initial Wt./Vol.: 225 mL
Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Client Sample ID: RS-SW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774003 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/06/21 06:26	
Surrogates								
4-Bromofluorobenzene (surr)	86.7	50-150		%	1		08/06/21 06:26	

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/06/21 06:26 Container ID: 1214774003-G Prep Batch: VXX37588
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Client Sample ID: RS-SW99-073121

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774003 Lab Project ID: 1214774 Collection Date: 07/31/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/12/21 00:53
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:53
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:53
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/12/21 00:53
Toluene	0.500 U	1.00	0.310	ug/L	1		08/12/21 00:53
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/12/21 00:53
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		08/12/21 00:53
4-Bromofluorobenzene (surr)	97.1	85-114		%	1		08/12/21 00:53
Toluene-d8 (surr)	98.5	89-112		%	1		08/12/21 00:53

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/12/21 00:53 Container ID: 1214774003-D Prep Batch: VXX37630
Prep Method: SW5030B
Prep Date/Time: 08/11/21 19:30
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM

Results of TRIP2-073021

Client Sample ID: TRIP2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774004 Lab Project ID: 1214774 Collection Date: 07/30/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/05/21 17:56
Surrogates							
4-Bromofluorobenzene (surr)	91.1	50-150		%	1		08/05/21 17:56

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 17:56 Container ID: 1214774004-A Prep Batch: VXX37587
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM J flagging is activated

Results of TRIP2-073021

Client Sample ID: TRIP2-073021

Client Project ID: 105.00151.21001 Red Salmon

Lab Sample ID: 1214774004 Lab Project ID: 1214774 Collection Date: 07/30/21 10:28 Received Date: 08/02/21 14:09 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 16:00
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 16:00
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 16:00
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 16:00
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 16:00
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 16:00
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/10/21 16:00
4-Bromofluorobenzene (surr)	106	85-114		%	1		08/10/21 16:00
Toluene-d8 (surr)	99.6	89-112		%	1		08/10/21 16:00

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 16:00 Container ID: 1214774004-B Prep Batch: VXX37619
Prep Method: SW5030B
Prep Date/Time: 08/10/21 14:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:21PM

Blank ID: MB for HBN 1823607 [VXX/37587]

Blank Lab ID: 1628353

QC for Samples: 1214774004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 83.9 50-150 %

Batch Information

Analytical Batch: VFC15751 Prep Batch: VXX37587
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/5/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/5/2021 10:47:00AM Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:23PM

Blank Spike ID: LCS for HBN 1214774 [VXX37587]

0.0500

Blank Spike Lab ID: 1628354 Date Analyzed: 08/05/2021 11:40

QC for Samples: 1214774004

Spike Duplicate ID: LCSD for HBN 1214774

[VXX37587]

Spike Duplicate Lab ID: 1628355 Matrix: Water (Surface, Eff., Ground)

Results by AK101

	Blank Spike) Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.991	99	1.00	1.09	109	(60-120)	9.10	(< 20)
Surrogates									

99

0.0500

Batch Information

4-Bromofluorobenzene (surr)

Analytical Batch: VFC15751
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37587
Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

104

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

(50-150) 4.30

Print Date: 09/07/2021 3:09:29PM

Blank ID: MB for HBN 1823608 [VXX/37588]

Blank Lab ID: 1628356

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 88.7 50-150 %

Batch Information

Analytical Batch: VFC15751 Prep Batch: VXX37588
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/5/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/6/2021 12:11:00AM Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:31PM

Blank Spike ID: LCS for HBN 1214774 [VXX37588]

Blank Spike Lab ID: 1628359 Date Analyzed: 08/06/2021 03:28 Spike Duplicate ID: LCSD for HBN 1214774

[VXX37588]

Spike Duplicate Lab ID: 1628360 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774001, 1214774002, 1214774003

Results by AK101

		Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.998	100	1.00	1.02	102	(60-120)	2.30	(< 20)
_									

Surrogates

4-Bromofluorobenzene (surr) 0.0500 **93** 0.0500 **93** (50-150) **0.71**

Batch Information

Analytical Batch: VFC15751
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37588
Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

Print Date: 09/07/2021 3:09:34PM

Blank ID: MB for HBN 1823913 [VXX/37619]

Blank Lab ID: 1629327

QC for Samples: 1214774004

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	106	85-114		%
Toluene-d8 (surr)	99.7	89-112		%

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/10/2021 2:16:00PM

Prep Batch: VXX37619 Prep Method: SW5030B

Prep Date/Time: 8/10/2021 2:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:36PM

Blank Spike ID: LCS for HBN 1214774 [VXX37619]

Blank Spike Lab ID: 1629328 Date Analyzed: 08/10/2021 14:31

QC for Samples: 1214774004

Spike Duplicate ID: LCSD for HBN 1214774

[VXX37619]

Spike Duplicate Lab ID: 1629329 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	31.3	104	30	30.1	100	(79-120)	3.70	(< 20)
Ethylbenzene	30	30.9	103	30	30.9	103	(79-121)	0.12	(< 20)
o-Xylene	30	30.8	103	30	30.6	102	(78-122)	0.75	(< 20)
P & M -Xylene	60	60.4	101	60	60.1	100	(80-121)	0.42	(< 20)
Toluene	30	31.0	103	30	30.1	100	(80-121)	2.80	(< 20)
Xylenes (total)	90	91.2	101	90	90.7	101	(79-121)	0.53	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		99	30		97	(81-118)	2.50	
4-Bromofluorobenzene (surr)	30		103	30		104	(85-114)	0.59	
Toluene-d8 (surr)	30		101	30		99	(89-112)	1.60	

Batch Information

Analytical Batch: VMS21036 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37619
Prep Method: SW5030B

Prep Date/Time: 08/10/2021 14:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:39PM

Blank ID: MB for HBN 1823986 [VXX/37630]

Blank Lab ID: 1629629

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	81-118		%
4-Bromofluorobenzene (surr)	98	85-114		%
Toluene-d8 (surr)	99.6	89-112		%

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D

Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Analytical Date/Time: 8/11/2021 7:58:00PM

Prep Batch: VXX37630 Prep Method: SW5030B

Prep Date/Time: 8/11/2021 7:30:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:41PM

Leaching Blank

Blank ID: LB for HBN 1823853 [TCLP/11332

Blank Lab ID: 1629095

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	81-118		%
4-Bromofluorobenzene (surr)	98.6	85-114		%
Toluene-d8 (surr)	99.1	89-112		%

Batch Information

Analytical Batch: VMS21042
Analytical Method: SW8260D

Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Analytical Date/Time: 8/11/2021 10:55:00PM

Prep Batch: VXX37630 Prep Method: SW5030B

Prep Date/Time: 8/11/2021 7:30:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:41PM

Leaching Blank

Blank ID: LB for HBN 1823948 [TCLP/11335

Blank Lab ID: 1629421

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	99.5	85-114		%
Toluene-d8 (surr)	99.3	89-112		%

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D

Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Analytical Date/Time: 8/11/2021 11:10:00PM

Prep Batch: VXX37630 Prep Method: SW5030B

Prep Date/Time: 8/11/2021 7:30:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:41PM

Blank Spike ID: LCS for HBN 1214774 [VXX37630]

Blank Spike Lab ID: 1629630 Date Analyzed: 08/11/2021 20:13 Spike Duplicate ID: LCSD for HBN 1214774

[VXX37630]

Spike Duplicate Lab ID: 1629631 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774001, 1214774002, 1214774003

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	32.4	108	30	32.0	107	(79-120)	1.30	(< 20)
Ethylbenzene	30	32.3	108	30	31.8	106	(79-121)	1.70	(< 20)
o-Xylene	30	32.8	109	30	32.1	107	(78-122)	2.10	(< 20)
P & M -Xylene	60	64.9	108	60	63.4	106	(80-121)	2.30	(< 20)
Toluene	30	31.4	105	30	30.9	103	(80-121)	1.70	(< 20)
Xylenes (total)	90	97.7	109	90	95.5	106	(79-121)	2.20	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		101	30		99	(81-118)	2.00	
4-Bromofluorobenzene (surr)	30		98	30		96	(85-114)	1.30	
Toluene-d8 (surr)	30		99	30		99	(89-112)	0.27	

Batch Information

Analytical Batch: VMS21042 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Prep Batch: VXX37630
Prep Method: SW5030B

Prep Date/Time: 08/11/2021 19:30

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/07/2021 3:09:43PM

Blank ID: MB for HBN 1823448 [XXX/45308]

Blank Lab ID: 1627703

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0300J	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	63.2	42-86		%
Fluoranthene-d10 (surr)	81.4	50-97		%

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/14/2021 8:59:00PM

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:47PM

Blank Spike ID: LCS for HBN 1214774 [XXX45308]

Blank Spike Lab ID: 1627704 Date Analyzed: 08/14/2021 21:20

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774001, 1214774002, 1214774003

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	CL
1-Methylnaphthalene	2	1.12	56	(41-115)
2-Methylnaphthalene	2	1.12	56	(39-114)
Acenaphthene	2	1.25	63	(48-114)
Acenaphthylene	2	1.27	64	(35-121)
Anthracene	2	1.32	66	(53-119)
Benzo(a)Anthracene	2	1.41	71	(59-120)
Benzo[a]pyrene	2	1.48	74	(53-120)
Benzo[b]Fluoranthene	2	1.46	73	(53-126)
Benzo[g,h,i]perylene	2	1.58	79	(44-128)
Benzo[k]fluoranthene	2	1.51	75	(54-125)
Chrysene	2	1.48	74	(57-120)
Dibenzo[a,h]anthracene	2	1.59	80	(44-131)
Fluoranthene	2	1.33	66	(58-120)
Fluorene	2	1.30	65	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.56	78	(48-130)
Naphthalene	2	1.14	57	(43-114)
Phenanthrene	2	1.31	65	(53-115)
Pyrene	2	1.33	67	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2		55	(42-86)
Fluoranthene-d10 (surr)	2		68	(50-97)

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 08/04/2021 14:27

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/07/2021 3:09:49PM

Matrix Spike Summary

Original Sample ID: 1214798010 MS Sample ID: 1627705 MS MSD Sample ID: 1627706 MSD

QC for Samples: 1214774001, 1214774002, 1214774003

Analysis Date: 08/15/2021 4:12
Analysis Date: 08/15/2021 4:33
Analysis Date: 08/15/2021 4:54
Matrix: Water (Surface Eff. Cround

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Ма	trix Spike (ug/L)	Spik	Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%	RPD CL
1-Methylnaphthalene	0.0232U	1.92	1.2	62	1.82	0.985	54	41-115	19.60	(< 20)
2-Methylnaphthalene	0.0232U	1.92	1.11	58	1.82	0.907	50	39-114	20.40	* (< 20)
Acenaphthene	0.0232U	1.92	1.26	66	1.82	1.04	57	48-114	19.40	(< 20)
Acenaphthylene	0.0232U	1.92	1.27	66	1.82	1.08	59	35-121	16.90	(< 20)
Anthracene	0.0232U	1.92	1.25	65	1.82	1.06	58	53-119	16.70	(< 20)
Benzo(a)Anthracene	0.0232U	1.92	1.12	58 *	1.82	0.800	44 *	59-120	33.60	* (< 20)
Benzo[a]pyrene	0.00925U	1.92	.765	40 *	1.82	0.465	26 *	53-120	48.80	* (< 20)
Benzo[b]Fluoranthene	0.0232U	1.92	1.06	55	1.82	0.733	40 *	53-126	36.50	* (< 20)
Benzo[g,h,i]perylene	0.0232U	1.92	.377	20 *	1.82	0.258	14 *	44-128	37.50	* (< 20)
Benzo[k]fluoranthene	0.0232U	1.92	.749	39 *	1.82	0.457	25 *	54-125	48.50	* (< 20)
Chrysene	0.0232U	1.92	.948	49 *	1.82	0.601	33 *	57-120	44.90	* (< 20)
Dibenzo[a,h]anthracene	0.00925U	1.92	.358	19 *	1.82	0.252	14 *	44-131	34.80	* (< 20)
Fluoranthene	0.0232U	1.92	1.38	72	1.82	1.13	62	58-120	19.60	(< 20)
Fluorene	0.0232U	1.92	1.3	68	1.82	1.11	61	50-118	15.60	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0232U	1.92	.487	25 *	1.82	0.313	17 *	48-130	43.40	* (< 20)
Naphthalene	0.0463U	1.92	1.22	64	1.82	0.976	54	43-114	22.40	* (< 20)
Phenanthrene	0.0232U	1.92	1.26	65	1.82	1.09	60	53-115	14.00	(< 20)
Pyrene	0.0232U	1.92	1.38	72	1.82	1.15	63	53-121	18.20	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.92	1.28	67	1.82	1.04	57	42-86	21.30	
Fluoranthene-d10 (surr)		1.92	1.43	75	1.82	1.21	67	50-97	17.00	

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/15/2021 4:33:00AM

Prep Batch: XXX45308

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 260.00mL Prep Extract Vol: 1.00mL

Print Date: 09/07/2021 3:09:50PM

Blank ID: MB for HBN 1823661 [XXX/45329]

Blank Lab ID: 1628537

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 87.8 60-120 %

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: IVM

Analytical Date/Time: 8/10/2021 11:28:00AM

Prep Batch: XXX45329

Prep Method: SW3520C

Prep Date/Time: 8/6/2021 3:05:52PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:52PM

Blank Spike ID: LCS for HBN 1214774 [XXX45329]

Blank Spike Lab ID: 1628538 Date Analyzed: 08/10/2021 11:38 Spike Duplicate ID: LCSD for HBN 1214774

[XXX45329]

Spike Duplicate Lab ID: 1628539 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774001, 1214774002, 1214774003

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	20.1	101	20	20.4	102	(75-125)	1.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4		102	0.4		107	(60-120)	4.60	

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45329
Prep Method: SW3520C

Prep Date/Time: 08/06/2021 15:05

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:54PM

Blank ID: MB for HBN 1823661 [XXX/45329]

Blank Lab ID: 1628537

QC for Samples:

1214774001, 1214774002, 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 101 60-120 %

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: IVM

Analytical Date/Time: 8/10/2021 11:28:00AM

Prep Batch: XXX45329 Prep Method: SW3520C

Prep Date/Time: 8/6/2021 3:05:52PM

Prep Initial Wt./Vol.: 250 mL

Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:57PM

Blank Spike ID: LCS for HBN 1214774 [XXX45329]

Blank Spike Lab ID: 1628538 Date Analyzed: 08/10/2021 11:38 Spike Duplicate ID: LCSD for HBN 1214774

[XXX45329]

Spike Duplicate Lab ID: 1628539 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774001, 1214774002, 1214774003

Results by AK103

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	20	20.5	103	20	20.6	103	(60-120)	0.22	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		103	0.4		109	(60-120)	6.10	

Batch Information

Analytical Batch: XFC16039 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45329
Prep Method: SW3520C

Prep Date/Time: 08/06/2021 15:05

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/07/2021 3:09:59PM

Blank ID: MB for HBN 1824290 [XXX/45402]

Blank Lab ID: 1630847

QC for Samples: 1214774003

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0177J	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	59.9	42-86		%
Fluoranthene-d10 (surr)	75.6	50-97		%

Batch Information

Analytical Batch: XMS12836

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 8/19/2021 6:18:00PM

Prep Batch: XXX45402 Prep Method: SW3535A

Prep Date/Time: 8/18/2021 1:00:13PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/07/2021 3:10:02PM

Blank Spike ID: LCS for HBN 1214774 [XXX45402]

Blank Spike Lab ID: 1630848 Date Analyzed: 08/19/2021 18:38

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214774003

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	CL
1-Methylnaphthalene	2	1.20	60	(41-115)
2-Methylnaphthalene	2	1.14	57	(39-114)
Acenaphthene	2	1.34	67	(48-114)
Acenaphthylene	2	1.35	68	(35-121)
Anthracene	2	1.38	69	(53-119)
Benzo(a)Anthracene	2	1.39	70	(59-120)
Benzo[a]pyrene	2	1.46	73	(53-120)
Benzo[b]Fluoranthene	2	1.45	73	(53-126)
Benzo[g,h,i]perylene	2	1.58	79	(44-128)
Benzo[k]fluoranthene	2	1.50	75	(54-125)
Chrysene	2	1.43	72	(57-120)
Dibenzo[a,h]anthracene	2	1.58	79	(44-131)
Fluoranthene	2	1.43	72	(58-120)
Fluorene	2	1.39	70	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.54	77	(48-130)
Naphthalene	2	1.19	59	(43-114)
Phenanthrene	2	1.45	72	(53-115)
Pyrene	2	1.41	70	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2		64	(42-86)
Fluoranthene-d10 (surr)	2		77	(50-97)

Batch Information

Analytical Batch: XMS12836

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Prep Batch: XXX45402 Prep Method: SW3535A

Prep Date/Time: 08/18/2021 13:00

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/07/2021 3:10:04PM

Matrix Spike Summary

Original Sample ID: 1632898 MS Sample ID: 1631049 MS MSD Sample ID: 1631050 MSD

QC for Samples: 1214774003

Analysis Date: 08/19/2021 19:19 Analysis Date: 08/19/2021 19:40 Analysis Date: 08/19/2021 20:00

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Ma	trix Spike ((ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0240U	1.96	1.14	58	2.00	1.23	62	41-115	7.40	(< 20)
2-Methylnaphthalene	0.0240U	1.96	1.1	56	2.00	1.20	60	39-114	8.90	(< 20)
Acenaphthene	0.0240U	1.96	1.26	64	2.00	1.37	68	48-114	7.90	(< 20)
Acenaphthylene	0.0240U	1.96	1.29	66	2.00	1.39	69	35-121	7.10	(< 20)
Anthracene	0.0240U	1.96	1.29	66	2.00	1.32	66	53-119	2.60	(< 20)
Benzo(a)Anthracene	0.0240U	1.96	1.27	65	2.00	1.25	63	59-120	1.70	(< 20)
Benzo[a]pyrene	0.00960U	1.96	1.37	70	2.00	1.35	68	53-120	1.40	(< 20)
Benzo[b]Fluoranthene	0.0240U	1.96	1.42	73	2.00	1.39	70	53-126	2.30	(< 20)
Benzo[g,h,i]perylene	0.0240U	1.96	1.5	76	2.00	1.47	73	44-128	2.00	(< 20)
Benzo[k]fluoranthene	0.0240U	1.96	1.38	70	2.00	1.36	68	54-125	1.20	(< 20)
Chrysene	0.0240U	1.96	1.34	68	2.00	1.32	66	57-120	1.10	(< 20)
Dibenzo[a,h]anthracene	0.00960U	1.96	1.51	77	2.00	1.48	74	44-131	1.90	(< 20)
Fluoranthene	0.0240U	1.96	1.27	65	2.00	1.27	64	58-120	0.37	(< 20)
Fluorene	0.0240U	1.96	1.33	68	2.00	1.37	69	50-118	2.80	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0240U	1.96	1.46	74	2.00	1.44	72	48-130	1.60	(< 20)
Naphthalene	0.0481U	1.96	1.15	59	2.00	1.24	62	43-114	7.20	(< 20)
Phenanthrene	0.0272J	1.96	1.4	70	2.00	1.40	69	53-115	0.52	(< 20)
Pyrene	0.0240U	1.96	1.27	65	2.00	1.29	65	53-121	1.60	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.96	1.15	59	2.00	1.30	65	42-86	12.30	
Fluoranthene-d10 (surr)		1.96	1.38	71	2.00	1.40	70	50-97	1.40	

Batch Information

Analytical Batch: XMS12836

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 8/19/2021 7:40:00PM

Prep Batch: XXX45402

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 8/18/2021 1:00:13PM

Prep Initial Wt./Vol.: 255.00mL Prep Extract Vol: 1.00mL

Print Date: 09/07/2021 3:10:06PM

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide

Alaska

Maryland

New Jersey

New York

North Carolina

Indiana

West Virgina Kentucky www.us.sgs.com

#352267 SD

Instructions: Sections 1 - 5 must be filled out. CLIENT: SLR Omissions may delay the onset of analysis. Page I of I PHONE NO: 907-748-6187 Section 3 CONTACTISHOW Flage Preservative 五 PERMIT#: \05.99151,21001 E-MAIL: JMC12an PSI reansoiting: Com REPORTS TO: Jen McLean Type SPIGGERSITEONSULTING, COM C= GRO AKIOL COMP G = INVOICE TO: ORDIDAY GRAB P.O. #: Multi 的下版 Incre-MATRIX/ mental RESERVED DATE TIME R **REMARKS/ MATRIX SAMPLE IDENTIFICATION** mm/dd/vv HH:MM for lab use CODE s LOC ID × 073121 10 \times 10:28 W 10 10:42 1009 W 07/31/21 10:28 PS-SW99-073121 197130121 6 DOD Project? Yes No Data Deliverable Requirements: Section 4 Time Received By: Relinquished By: (1) 00/01/24 1-10-4 1409 Cooler ID: Requested Turnaround Time and/or Special Instructions: Received By: Time Standard Received By: Relinquished By: (3) Date Time Chain of Custody Seal: (Circle) Temp Blank °C: Received For Laboratory By: Relinquished By: (4) Time INTACT BROKEN ABSENT or Ambient [] (See attached Sample Receipt Form) (See attached Sample Receipt Form)

[] 200 W. Potter Drive Anchorage, AK 99518 Tel. (907) 562-2343 Fax. (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel. (910) 350-1903 Fax. (910) 350-1557

http://www.sgs.com/terms-and-conditions

e-Sample Receipt Form

SGS Workorder #:

1214774

1214774

<u> </u>									
Review Criteria	Condition (Yes	s, No, N/A		E	ceptions	Noted b	elow		
Chain of Custody / Temperature Requi	irements		Ye	Exemption	permitted if	sampler ha	nd carrie	es/deliv	ers.
Were Custody Seals intact? Note # &		1F							
COC accompanied s									
· ·									
DOD: Were samples received in COC corresponding									
N/A **Exemption permitted if	f chilled & coll	ected <8	hour	s ago, or for s	samples who	ere chilling is	s not req	uired	
Temperature blank compliant* (i.e., 0-6 °C after	er CF)? Yes	Cooler	ID:	1	@	0.4	°C Ther	rm. ID:	D23
		Cooler	ID:		@		°C Ther	rm. ID:	
If samples received without a temperature blank, the "cooler temperature" wil	II be	Cooler	ID:		@	-	°C Ther	m ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl		-					°C Ther		
be noted if neither is available.		Cooler			@				
		Cooler	ID:		@		°C Ther	rm. ID:	
*If >6°C, were samples collected <8 hours	s ago?								
		Ī							
If <0°C, were sample containers ice	e free? N/A	1							
	14/	4							
Note: Identify containing was a second of the second of th		1							
Note: Identify containers received at non-compliant tempe									
Use form FS-0029 if more space is r	ieeaea.								
Holding Time / Documentation / Sample Condition R	equirements	Note: Re	efer to	form F-083 "Sa	mple Guide"	for specific ho	oldina time	s.	
Were samples received within holdin							g		
Were campion received within riciality	9 11110 1								
Do samples match COC** (i.e.,sample IDs,dates/times coll	ected)? Yes								
**Note: If times differ <1hr, record details & login per C	COC.								
***Note: If sample information on containers differs from COC, SGS will default to	COC informatio	n							
Were analytical requests clear? (i.e., method is specified for a	nalvaca Ves								
with multiple option for analysis (Ex: BTEX,		4							
with multiple option for analysis (Ex. BTEX,	iviciais)								
			N/A			d for metals	(e.g,200	.8/602	0A).
Were proper containers (type/mass/volume/preservative***	*)used? No	sample	1B v	was received	l with a cra	cked lid.			
		7							
Volatile / LL-Hg Red	nuirements								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa									
Were all water VOA vials free of headspace (i.e., bubbles ≤	· ·								
Were all soil VOAs field extracted with MeOH	I+BFB? N/A	\							
Note to Client: Any "No", answer above indicates no	on-compliance	with sta	ndard	procedures	and may im	pact data du	uality.		
•				'	,		· ·		
Additiona	al notes (if	applical	ole):						

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u>	Container Id	<u>Preservative</u>	Container
		<u>Condition</u>			<u>Condition</u>
1214774001-A	HCL to pH < 2	ОК			
1214774001-B	HCL to $pH < 2$	OK			
1214774001-C	No Preservative Required	OK			
1214774001-D	No Preservative Required	OK			
1214774001-E	HCL to pH < 2	OK			
1214774001-F	HCL to $pH < 2$	OK			
1214774001-G	HCL to pH < 2	OK			
1214774001-H	HCL to pH < 2	OK			
1214774001-I	HCL to $pH < 2$	OK			
1214774001-J	HCL to $pH < 2$	OK			
1214774002-A	HCL to pH < 2	OK			
1214774002-B	HCL to pH < 2	OK			
1214774002-C	No Preservative Required	OK			
1214774002-D	No Preservative Required	OK			
1214774002-E	HCL to pH < 2	OK			
1214774002-F	HCL to pH < 2	OK			
1214774002-G	HCL to pH < 2	OK			
1214774002-H	HCL to pH < 2	OK			
1214774002-I	HCL to pH < 2	OK			
1214774002-J	HCL to pH < 2	OK			
1214774003-A	HCL to pH < 2	OK			
1214774003-B	HCL to pH < 2	OK			
1214774003-C	No Preservative Required	OK			
1214774003-D	HCL to pH < 2	OK			
1214774003-E	HCL to pH < 2	OK			
1214774003-F	HCL to pH < 2	OK			
1214774003-G	HCL to pH < 2	OK			
1214774003-H	HCL to pH < 2	OK			
1214774003-I	HCL to pH < 2	OK			
1214774004-A	HCL to pH < 2	OK			
1214774004-B	HCL to pH < 2	OK			
1214774004-C	HCL to pH < 2	OK			

<u>Container Id Preservative Container Id Preservative Container Id Cont</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

APPENDIX D CONCEPTUAL SITE MODEL

2021 Groundwater Monitoring Report Red Salmon Facility Naknek, Alaska

October 2021

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	
File Number:	
Completed by:	
about which exposure pathways should be further i	
1. General Information: Sources (check potential sources at the site)	
USTs	☐ Vehicles
☐ ASTs	☐ Landfills
☐ Dispensers/fuel loading racks	☐ Transformers
☐ Drums	☐ Other:
Release Mechanisms (check potential release mec	hanisms at the site)
☐ Spills	☐ Direct discharge
Leaks	☐ Burning
	□ Other:
Impacted Media (check potentially-impacted medi	ia at the site)
☐ Surface soil (0-2 feet bgs*)	☐ Groundwater
☐ Subsurface soil (>2 feet bgs)	☐ Surface water
☐ Air	☐ Biota
☐ Sediment	□ Other:
Receptors (check receptors that could be affected by	by contamination at the site)
Residents (adult or child)	☐ Site visitor
Commercial or industrial worker	☐ Trespasser
Construction worker	☐ Recreational user
☐ Subsistence harvester (i.e. gathers wild foods)	☐ Farmer
☐ Subsistence consumer (i.e. eats wild foods)	☐ Other:

^{*} bgs - below ground surface

2.	Exposure Pathways: (The answers to the following questions will identify con exposure pathways at the site. Check each box where the answer to the question							
a)	Direct Contact - 1. Incidental Soil Ingestion							
	Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site-specific basis.)	the ground surface						
	If the box is checked, label this pathway complete:							
	Comments:							
	2. Dermal Absorption of Contaminants from Soil Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site specific basis.)	the ground surface						
	Can the soil contaminants permeate the skin (see Appendix B in the guidance document)?							
	If both boxes are checked, label this pathway complete: Comments:							
b)	Ingestion - 1. Ingestion of Groundwater							
	Have contaminants been detected or are they expected to be detected in the groundwater, or are contaminants expected to migrate to groundwater in the future?							
	Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if DEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.							
	If both boxes are checked, label this pathway complete:							
	Comments:							

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). If both boxes are checked, label this pathway complete: Comments: 3. Ingestion of Wild and Farmed Foods Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods? Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: Comments: c) Inhalation-1. Inhalation of Outdoor Air Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.) Are the contaminants in soil volatile (see Appendix D in the guidance document)? If both boxes are checked, label this pathway complete: Comments:

2. Ingestion of Surface Water

2. Inhalation of Indoor Air		
Are occupied buildings on the site or reasonably expected to be the site in an area that could be affected by contaminant vapor or vertical feet of petroleum contaminated soil or groundwater non-petroleum contaminted soil or groundwater; or subject to which promote easy airflow like utility conduits or rock fractu	rs? (within 30 horizontal r; within 100 feet of "preferential pathways,"	
Are volatile compounds present in soil or groundwater (see Agdocument)?	ppendix D in the guidance	
If both boxes are checked, label this pathway complete:		
Comments:		

3.	Additional Exposure Pathways:	(Although there are no	definitive questions provid	ded in this section,
	these exposure pathways should also be	considered at each site.	Use the guidelines provide	ded below to
	determine if further evaluation of each p	athway is warranted.)		

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- o Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

	ck the box if further evaluation of this pathway is needed:	
Comm	ents:	
Inhalat	ion of Volatile Compounds in Tap Water	
Inha o	lation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, l washing.	aundering, and dish
0	The contaminants of concern are volatile (common volatile contaminants are listed guidance document.)	in Appendix D in t
_	oundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway becaus during normal household activities is incorporated into the groundwater exposure equat	
Che	ck the box if further evaluation of this pathway is needed:	
Comm	ents:	

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Oust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation. Check the box if further evaluation of this pathway is needed: Comments: **Direct Contact with Sediment** This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if: Climate permits recreational activities around sediment. 0 The community has identified subsistence or recreational activities that would result in exposure to the 0 sediment, such as clam digging. Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment. Check the box if further evaluation of this pathway is needed: Comments:

1.)	 comments as necessary	

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site:		Instructions: Follow the numbered consider contaminant concentration use controls when describing path	ons or	engine					
Completed By: Date Completed:	:		(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors, "F" for future receptors, "C/F" for both current and future receptors, or "I" for insignificant exposure. Current & Future Receptors						
Check the media that For each medium identified in (1), follow the could be directly affected top arrow <u>and</u> check possible transport by the release. mechanisms. Check additional media under									
Media Transport Mechanisms Direct release to surface soil check soil Surface Migration to subsurface check soil Soil Migration to groundwater check groundwater	Exposure Media	Exposure Pathway/Route	Residents (adulto	Commercial or industrial workers	ecreational users	Farmers or subsider	Subsistence	Other	
(0-2 ft bgs) Volatilization check air Runoff or erosion check surface water Uptake by plants or animals check biota Other (list):	soil De	cidental Soil Ingestion ermal Absorption of Contaminants from Soil nalation of Fugitive Dust	Re (ao	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· / ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Fa	Sul	Ø O	/
Direct release to subsurface soil Check soil	☐ Ing	gestion of Groundwater rmal Absorption of Contaminants in Groundwater nalation of Volatile Compounds in Tap Water							
Ground- water Flow to surface water body Flow to sediment Uptake by plants or animals Check groundwater check air check surface water check sediment	Inh	nalation of Outdoor Air nalation of Indoor Air nalation of Fugitive Dust							
Surface Water Other (list): Direct release to surface water Volatilization Sedimentation Check sediment Uptake by plants or animals Check biota	surface water De	pestion of Surface Water rmal Absorption of Contaminants in Surface Water halation of Volatile Compounds in Tap Water							
Other (list): Direct release to sediment Sediment Resuspension, runoff, or erosion check sediment Check sediment		ect Contact with Sediment							
Uptake by plants or animals check biota Other (list):	biota Inc	gestion of Wild or Farmed Foods							