

April 28, 2023

Mrs. Rebekah Reams (rebekah.reams@alaska.gov) Contaminated Sites Program Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, AK 99709

FINAL Groundwater Investigation Report, University Park Condos, 656 Fairbanks Street, Fairbanks, Alaska

This report describes the groundwater investigation activities for the University Park Condominiums (U-Park Condos) site at 656 Fairbanks Street in Fairbanks, Alaska. Arctic Data Services, LLC (ADS) has been contracted by the University Park Condo Association to perform this groundwater investigation. The site is managed by the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program (CSP) under file number 100.38.162, hazard ID 3806.

Site Description

U-Park Condos is located at 656 Fairbanks Street, near the Fairbanks Street-Geist Road intersection south of the University of Alaska-Fairbanks campus, in Fairbanks, Alaska (see Figure 1 for site location and vicinity). The property consists of three multi-unit condo buildings, a central laundry building, and an administrative office. The condos and laundry are heated with oil-fired boilers; the boiler room is at the rear of the building facing Fairbanks Street. The condos are served by College Utilities for water and wastewater; there are no on-site wells for irrigation or other purposes.

Immediately north of the property is the former College Inn, which burned down in September 2019, and has yet to be demolished and cleaned up. Further to the north is a Holiday gas station, which is the University Car Care Center - Williams #5026 contaminated site (hazard ID 23798). To the northeast is the Geist Road post office, which is also a contaminated site (hazard ID 27192). These sites are roughly 500 to 750 feet away from the subject property, with the Geist Road post office likely up-gradient and the University Car Care Center likely cross-gradient in terms of groundwater flow (see below). To the east is a residential development, and to the west is largely undeveloped land. There is one residence, associated with the Light of the World Lutheran Church at 4155 Geist Road, that is approximately 200 feet to the northwest across a seasonal slough channel. The site is located roughly 150 feet from Deadman Slough, and roughly 2000 feet from the Chena River.

Alaska Department of Environmental Conservation April 28, 2023 Page 2 of 8

Project Background

On April 17, 2001, an unknown volume of heating oil (estimated at 500 to 1,000 gallons per the ADEC CSP database summary) was released from a day-tank vent to the exterior of the boiler room. An unknown portion of the released heating oil also may have been released inside the boiler room, which would have flowed into the floor drains that lead to the municipal sewer system. A small amount of heating oil (estimated at less than 5 gallons by ADEC response staff per the ADEC CSP database summary) reportedly entered the nearby seasonal slough. According to the ADEC CSP and Preparedness, Prevention, and Response (PPR) databases, a cleanup was performed following the release, which included excavation and off-site thermal remediation of an estimated 100 cubic yards (cy) of contaminated soil. However, there is no report in the ADEC file documenting this cleanup, and the consultant who oversaw the cleanup has since deceased.

In 2021, ADS advanced and sampled soil borings to characterize the extent of soil contamination and determine if contamination had reached the groundwater interface. Analytical soil sample results from the source-area soil boring were above the ADEC migration to groundwater soil cleanup levels (MTG SCLs) for project contaminants of concern, including diesel range organics (DRO), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, naphthalene, total xylenes, 1-methylnaphthalene, and 2-methylnaphthalene. Historic photographs showed fuel flowing to the north-northwest from the release point. Analytical soil sample results from a second soil boring in this direction, and field screening from four shallow soil along the edge of the dry slough channel, confirmed that contamination did not extend in this direction. It was concluded that the only soil contamination remaining following the undocumented 2001 cleanup is immediately adjacent to, and possibly underneath, the boiler room foundation. Presumably, excavation of contaminated soil at this location was not feasible due to risk of undermining the building foundation.

Soil borings in 2021 encountered the presence of groundwater, with water level at the time of sampling between 10 to 13 feet below ground surface (bgs). Based on visual/olfactory observations, photoionization detector readings, and analytical sample results from near the groundwater interface in the source-area soil boring, groundwater is likely to have been impacted. Refer to the 2021 Soil Investigation Report for details. The direction of groundwater flow at the site is suspected to be roughly southwest. The nearby gas station site (hazard ID: 23798) located just north of the University Park Condos reported a groundwater flow direction of southwest with a gradient of 0.0006 feet per foot in a 2021 groundwater report prepared by Arcadis.

Objective and Scope of Work

The primary objective of the groundwater investigation was to determine if contamination is present in groundwater at the point of release, if groundwater contamination is migrating off the property downgradient from the source release point (if contamination is present in groundwater), and to calculate the groundwater gradient and flow direction at the site. To complete this objective the scope included the following activities to characterize groundwater:

Alaska Department of Environmental Conservation April 28, 2023 Page 3 of 8

- install and sample a monitoring well at the source area/release point to determine whether groundwater contamination exists;
- install and sample three monitoring wells in the presumed downgradient direction, near the property boundary toward the seasonal slough channel, to determine if groundwater contamination may be migrating toward the property boundary; and
- survey wells and measure groundwater elevations to calculate an accurate groundwater gradient and flow direction for the site, at the time of sampling.

Contaminants of Potential Concern

Contaminants of potential concern (COPCs) include DRO, gasoline range organics (GRO), polycyclic aromatic hydrocarbons (PAHs), and petroleum-related volatile organic compounds (VOCs). Applicable cleanup levels are derived from 18 AAC 75.345 (2023) Table C Groundwater Cleanup Levels (GCLs). Analytical results from groundwater samples collected during fieldwork are listed in Table 1 (attached), for comparison with applicable individual GCLs.

Field Activities and Observations

Field activities were completed in accordance with the ADEC approved Groundwater Investigation Work Plan (ADS 2022). Site photographs and detailed field notes are provided in Attachment A and Attachment B respectively.

Well Installation

Four monitoring wells were installed on April 19, 2022, by GeoTek Alaska, Inc. (GeoTek) using a Geoprobe 6620DT direct push drill rig with oversight from ADS. One monitoring well (MW-1) was installed directly adjacent to the boiler room, near the original point of release, and three monitoring wells (MW-2, MW-3, and MW-4) were installed at presumed downgradient locations. Monitoring well locations are shown in Figure 2.

Immediately upon opening a soil core, field-screening samples were collected from 2.5-foot intervals and immediately placed in Ziploc bags, which were sealed and allowed to warm for at least 10 minutes, then read with a photoionization detector.

Soil borings were collected during the drilling process and soil lithology and PID field screenings were recorded at various depth intervals. Depth to water at the site was initially gauged at 13.5 feet bgs at MW-4 using a water level indicator. Monitoring wells consisted of 2-inch PVC with prepacked 0.010-inch slotted well screens. The 10-foot screened intervals were set to approximately 9 to 19 feet bgs for all except MW-4, which was set from approximately 8 to 18 feet bgs. Depth to water after installation ranged from 13 to 14 feet bgs for all wells. Refer to monitoring well installation field logs (Attachment B) for well construction diagrams, soil lithology, and PID readings.

Well Development and Sampling

Monitoring wells were developed and sampled by ADS on June 17, 2022. Well-development took place immediately before sampling. Wells were developed by first using Waterra tubing with a foot valve to remove the bulk sediment and then completed using a submersible pump. Turbidity was measured periodically throughout the well development process. Groundwater samples were collected following well development using low-flow sampling procedures in accordance with ADEC's Field Sampling Guidance (ADEC, 2022). Monitoring wells were purged and sampled using a low-flow technique with submersible pump and dedicated 3/8-inch tubing. Field parameters were monitored during purging activities with a YSI multiparameter water quality meter with a flow-through cell. Samples were collected after sufficient stabilization of field parameters or at least three well volumes were purged. See groundwater development logs and groundwater sample data sheets (Attachment B) for additional details. A reusable submersible pump was used to collect the samples and was decontaminated between sampling locations. The pump was decontaminated by running it in an Alconox® solution, then tap water, followed by three distilled-water rinses. Wells were sampled in the order of least likely to be contaminated to most likely, and no equipment blank was collected, in accordance with the ADEC approved work plan.

Samples were submitted to the ADEC approved laboratory SGS North America, Inc. in Anchorage, Alaska (SGS Anchorage) for analysis of the following:

- GRO by Alaska Method 101 (AK101);
- DRO by Alaska Method 102 (AK102);
- petroleum-related VOCs by EPA Method 8260D; and
- PAHs by EPA Method 8270D-SIM.

Well Elevation Survey

A well elevation survey was conducted on August 1, 2022, by Windy Creek Surveys, LLC, a licensed professional surveyor in the State of Alaska. The survey report is provided in Attachment C.

Work Plan Deviations

Water quality field parameters were not taken during sampling at MW-1 due to the presence of sheen. Three well volumes were purged prior to sampling.

Investigation Derived Waste Management

Investigation derived waste (IDW) consisted of disposable gloves, tubing, and other disposable resources from the groundwater sampling; these were disposed of in the Fairbanks North Star Borough (FNSB) landfill. Purge water from well development and sampling was contained in two 55-gallon drums staged on-site pending receipt of sample results. One drum containing purge water from MW-1 and MW-2 is being disposed of as non-hazardous

Alaska Department of Environmental Conservation April 28, 2023 Page 5 of 8

waste via U.S. Ecology. The certificate of disposal will be included with the final report or sent as an addendum once disposal is complete. The remaining drum containing uncontaminated purge water (MW-3 and MW-4) froze before it could be disposed of. Purge water from this drum will be discharged to the ground surface at the site, at least 100 feet away from the seasonal slough channel, during the field season of 2023.

No soil IDW was planned, however the drillers did not have the correct tooling to advance the wells without sampling. Since sampling occurred, the soil cores did generate some soil IDW. The volume of soil generated during well installation was minimal and was used to backfill the boreholes around the well above the seal, consistent with prior soil IDW management from the 2021 soil investigation. At MW-1, where field screening readings exceeded 20 ppm, care was taken to ensure the soil was placed below 2 ft. bgs, then the remainder of the borehole filled with pea gravel to the surface.

Results & Discussion

Analytical results with comparison to applicable GCLs are listed in Table 1. For detailed analytical results and data validation findings, refer to the SGS Laboratory Report 1223225 and the completed ADEC laboratory data review checklist (Attachment D).

Analytical Results

The analytical results of the sample and field duplicate taken from MW-1 confirm groundwater contamination is present at the point of release. DRO, 1,2,4-trimethylbenzene, and naphthalene were detected above GCLs (highlighted in Table 1). The results of samples collected from the downgradient wells (MW-2, MW-3, and MW-4) were below GCLs when detected.

Quality Assurance / Quality Control

Data quality was generally acceptable with two results qualified as estimates ('J') due to field-duplicate relative percent differences and 28 results qualified as low-biased estimates ('J-') due to low surrogate recovery; see Summary of Qualified Results Table in Attachment C for details. Qualified results are still considered usable for the purposes of this project.

Naphthalene was reported by both 8260D and 8270D-SIM for all samples. The 8260D results for naphthalene in MW-1 were significantly higher than those for 8270D-SIM. Potentially due to field preservation and reduced volatilization prior to analysis provided by the 8260D method. In all cases, the higher of the two analytical results should be used.

Overall precision, accuracy, representativeness, comparability, completeness, and sensitivity of the data were adequate for the purposes of this project.

Groundwater Gradient

Survey results and depth to water measurements recorded during the June 2022 sampling event were used to determine groundwater elevations. Gradient and flow direction were calculated using the EPA On-line Tools for Site Assessment Calculation (EPA, 2021). The hydraulic gradient was calculated to be 0.00065 feet per foot with flow to the west-southwest (275.5° from north; see Figure 2).

Conclusions

This investigation confirms that contamination is present in the groundwater at the point of release. Based on the calculated groundwater flow and analytical results for the downgradient wells, contamination is not migrating outside of the source area. Based on this investigation and the previous soil investigation, contamination is still present in the soil and groundwater despite former removal actions. A conceptual site model is included in Attachment E, that visually presents the potential current and future exposure pathways described below.

The previous soil investigation determined that there is minimal risk of exposure to contaminated soil via direct contact pathways. The building, while close to the release location, is in the upgradient direction of the original point of release and risk of exposure via vapor intrusion is minimal, due to the separation between the source area and inhabited building spaces. The only interior space that is within 30 feet of the source area, and thus potentially impacted, is the boiler room. The only significant open exposure pathway is ingestion of contaminated groundwater. The groundwater at the site is not a current source of drinking water, so all exposure routes are currently controlled.

Recommendations

ADS recommends the following actions at this site:

- quarterly groundwater monitoring of DRO and petroleum-related VOCs in MW-1 to evaluate seasonal highs and lows of source-area groundwater concentrations (for one year, in March, June, September, and December of 2023);
- quarterly measurement of groundwater elevations in all wells and recalculation of groundwater gradient and flow direction to determine if there are seasonal variations (concurrent with the above monitoring);
- annual groundwater monitoring of DRO and petroleum-related VOCs in all monitoring wells (starting in June 2023); and
- well casing elevation surveys in accordance with the ADEC Monitoring Well Guidance (2013) on an annual basis if frostjacking of well casings is observed.

Since the impacts to groundwater are isolated to the source area, natural attenuation with long-term monitoring of the site is the proposed remedial action. Annual groundwater monitoring results will be used to calculate trends in groundwater contaminant concentrations after a minimum of 4 annual monitoring events.

250 Cushman Street Suite 3D Fairbanks, AK 99701 907-457-3147

Sincerely,
Arctic Data Services, LLC

Prepared by:

Reviewed by:

Leslie Brooks

Rodney Guritz
Environmental Scientist

Principal Chemist

Attachments:

Table 1 Groundwater Sample Results
Figure 1 Site Location and Vicinity

Figure 2 Site Plan with Monitoring Well Locations

Attachment A Site Photograph Log Attachment B Scanned Field Notes Attachment C Survey Report

Attachment D Laboratory Report and ADEC Laboratory Data Review Checklist

Attachment E Conceptual Site Model

Attachment F ADEC comments

cc:

Victor Behling, University Park Condo Association (<u>victorjbehling@gmail.com</u>)
Robert Burgess, ADEC (<u>robert.burgess@alaska.gov</u>)

Alaska Department of Environmental Conservation April 28, 2023 Page 8 of 8

References

ADEC. Monitoring Well Guidance (September, 2013).

ADEC. Field Sampling Guidance (January, 2022).

ADS. Site Characterization Work Plan, University Park Condos, 656 Fairbanks St, Fairbanks, Alaska. (August, 2021).

ADS. Soil Investigation Report, Heating Oil Tank Release, University Park Condos, 656 Fairbanks St, Fairbanks AK. (November, 2021).

ADS. Groundwater Investigation Work Plan, University Park Condos, 656 Fairbanks St, Fairbanks, Alaska. (March, 2022).

EPA. EPA On-line Tools for Site Assessment Calculation. https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-ns.html. (August, 2021).

TABLE 1 GROUNDWATER SAMPLE RESULTS

				Client Sample ID	UPC-MW1	UPC-MW2	UPC-MW3	UPC-MW4	UPC-MW11	Trip Blank 1
				SDG	1223225	1223225	1223225	1223225	1223225	1223225
	TABLE 1			Lab Sample ID	1223225001	1223225002	1223225003	1223225004	1223225005	1223225006
	University Park Condominiums			Matrix	Ground Water	Ground Water	Ground Water	Ground_Water	Ground Water	Ground Water
	Groundwater Results Table			QC Type	Field_Sample	Field_Sample	Field_Sample	Field_Sample	Field Duplicate of 1223225001	Trip_Blank
				Collected Date	06/17/2022 14:15:00	06/17/2022 12:48:00	06/17/2022 11:30:00	06/17/2022 10:30:00	06/17/2022 15:15:00	06/17/2022 08:00:00
Method	Analyte	CAS	Units	PAL			Res	sult		
	1,2,4-Trimethylbenzene	95-63-6	μg/L	56	71.0	0.500 U	0.352 J	2.65	70.5	0.500 U
	1,2-Dibromoethane	106-93-4	μg/L	0.075	0.0375 U	0.0375 U				
	1,2-Dichloroethane	107-06-2	μg/L		0.250 U	0.231 J	0.281 J	0.252 J	0.267 J	0.250 U
	1,3,5-Trimethylbenzene	108-67-8	μg/L	60	33.8	0.500 U	0.500 U	0.500 U	33.0	0.500 U
	Benzene	71-43-2	μg/L	4.6	3.51	0.200 U	0.225 J	1.37	3.60	0.200 U
	Ethylbenzene	100-41-4	μg/L		9.17	0.500 U	0.500 U	1.40	8.58	0.500 U
	Isopropylbenzene	98-82-8	μg/L	450	3.20	0.500 U	0.904 J	1.17	3.21	0.500 U
8260D	Methyl-tert-butyl ether (MTBE)	1634-04-4	μg/L		5.00 U	5.00 U				
0200D	Naphthalene	91-20-3	μg/L	1.7	69.6	0.500 U	0.500 U	0.500 U	65.5	0.500 U
	Toluene	108-88-3	μg/L	1100		0.500 U	0.500 U	0.644 J	10.6	0.500 U
	Xylene, Isomers m & p	179601-23-1	μg/L	NA	100	1.00 U	1.00 U	2.13	88.3	1.00 U
	Xylenes	1330-20-7	μg/L	190	170	1.50 U	1.50 U	6.24	151	1.50 U
	n-Butylbenzene	104-51-8	μg/L	1000	0.500 U	0.500 U				
	o-Xylene	95-47-6	μg/L	NA	69.6	0.500 U	0.500 U	4.11	62.9	0.500 U
	sec-Butylbenzene	135-98-8	μg/L	2000	0.500 U	0.500 U	0.452 J	0.500 U	2.08	0.500 U
	tert-Butylbenzene	98-06-6	μg/L	690	0.500 U	0.500 U	0.333 J	0.500 U	0.375 J	0.500 U
	1-Methylnaphthalene	90-12-0	μg/L	11	1.48 J	0.0250 U	0.0250 U	0.183	0.710 J	NA
	2-Methylnaphthalene	91-57-6	μg/L	36	0.0250 UJ	0.0250 U	0.0250 U	0.0245 U	0.0250 U	NA
	Acenaphthene	83-32-9	μg/L	530	0.0783 J-	0.0250 U	0.0838	0.0245 U	0.0785	NA
	Acenaphthylene	208-96-8	μg/L	260	0.0250 UJ	0.0250 U	0.0250 U	0.0245 U	0.0250 U	NA
	Anthracene	120-12-7	μg/L	43	0.0250 UJ	0.0250 U	0.0250 U	0.0245 U	0.0250 U	NA
	Benzo(a)anthracene	56-55-3	μg/L	0.3	0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
	Benzo(a)pyrene	50-32-8	μg/L	0.25	0.0100 UJ	0.0100 UJ	0.0100 U	0.00980 U	0.0100 U	NA
	Benzo(b)fluoranthene	205-99-2	μg/L	2.5	0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
8270DSIM	Benzo(g,h,i)perylene	191-24-2	μg/L	0.26	0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
3270031101	Benzo(k)fluoranthene	207-08-9	μg/L	0.8	0.0250 UJ		0.0250 U	0.0245 U	0.0250 U	NA
	Chrysene	218-01-9	μg/L	2	0.0250 UJ		0.0250 U	0.0245 U	0.0250 U	NA
	Dibenzo(a,h)anthracene	53-70-3	μg/L		0.0100 UJ	0.0100 UJ	0.0100 U	0.00980 U	0.0100 U	NA
	Fluoranthene	206-44-0	μg/L	260	0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
	Fluorene	86-73-7	μg/L		0.0340 J-		0.378	0.0738	0.0250 U	NA
	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L		0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
	Naphthalene	91-20-3	μg/L		0.168 J-	0.0500 U		0.102	0.0500 U	NA
	Phenanthrene	85-01-8	μg/L	170	0.0500 UJ	0.0500 U	0.102	0.0490 U	0.0500 U	NA
	Pyrene	129-00-0	μg/L	120	0.0250 UJ	0.0250 UJ	0.0250 U	0.0245 U	0.0250 U	NA
AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L		0.483	0.0467 J	0.0500 U	0.0500 U	0.478	0.0500 U
AK102	Diesel Range Organics (C10-C25)	DRO-C10-C25	mg/L	1.5	11.7	0.530 J	1.28	1.01	13.4	NA

Notes:

Bold Analyte was detected.

Red Highlight Analyte was detected above PALs.

Definitions:

µg/L micrograms per liter
mg/L miligrams per liter
SDG sample delivery group

CAS Chemical Abstract Service registry number

QC quality control NA not applicable

Flags:

The quantitation is considered estimated, with an indeterminate direction of bias.

UJ The analyte was not detected, however there is uncertainty in the presence or absence of the analyte due to a QC anomaly.

J- The quantitation is considered estimated, biased low, due to a QC anomaly.

U The analyte was not detected.

PAL Sources:

ADEC Table C GCL ADEC 18 AAC 75.345 Table C Groundwater Cleanup Levels

FIGURES

FIGURE 1	SITE LOCATION AND	VICINITY
----------	-------------------	-----------------

FIGURE 2 SITE PLAN WITH MONITORING WELL LOCATIONS

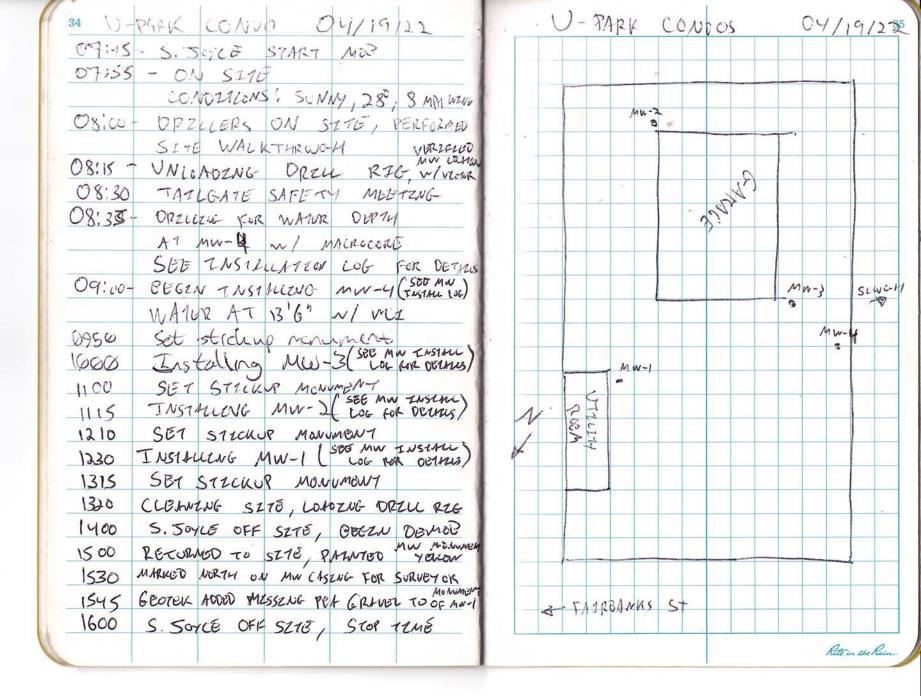
ATTACHMENT A

SITE PHOTOGRAPH LOG

2022 Monitoring well installation and sampling at U-Park Condos

Photo 1. Monitoring well installation. April 19, 2022

Photo 2. Sampling at MW-4 facing west. June 16, 2022


Photo 3. Well development at MW-3 facing south. June 16, 2022

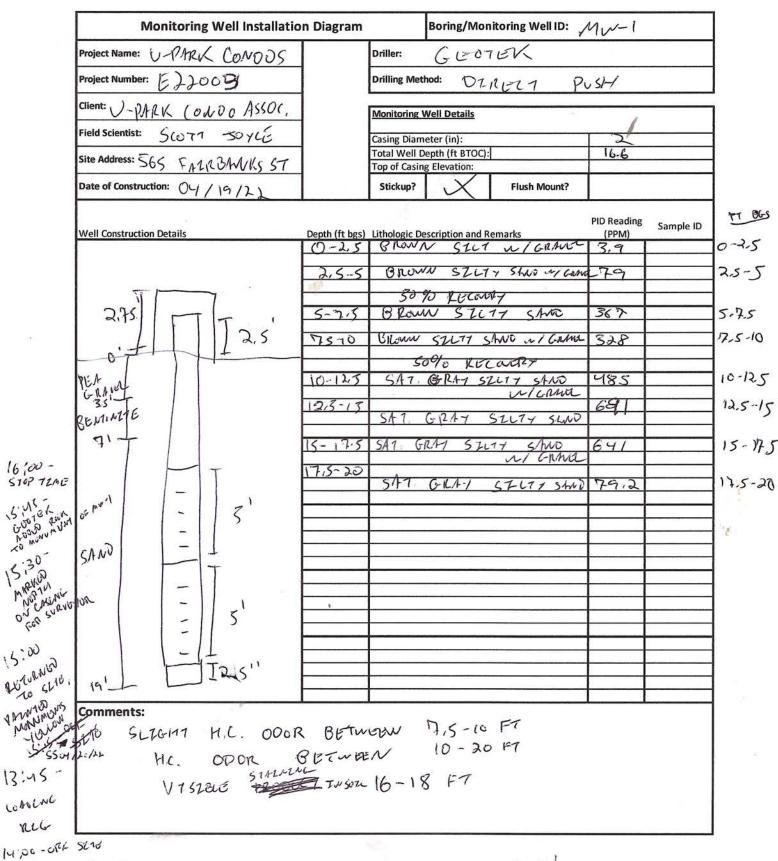


Photo 4. Waste containers at MW-3 facing south. June 16, 2022

ATTACHMENT B

SCANNED FIELD NOTES

13:20 - CLOWNER

5218

16:00 -

15:30

15:00

LOMING RIG

12:30 - BECIN TNIMILAG MUNT

16.6 = Bloc WATER = 14,1

13,15-MVV-1 TNSMIC

6 5.							
Monitoring Well Installat	ion Diagram		Boring/Mo	nitoring Well ID:	MW-	1	7
Project Name: U-PARV_CONDO		Driller:	GEOTE	=K			1
Project Number: E42003		Drilling Method: 0712EC7 PUSI-1					
client: U-PARVL CONOC ASSOC		Monitoring W					_
ield Scientist: SCOTT Joy (E	7	Casing Diame					
ite Address: 565 KAZRBA-NNS 57		Total Well De	pth (ft BTOC	:	17.2		-
ate of Construction: 04/19/22		Stickup?	Elevation:	Flush Mount?	1		-
Vell Construction Details				100000000000000000000000000000000000000	PID Reading		F1_5
ven construction Details	Depth (ft bgs)	Lithologic Des	Cription and F	Remarks SAUCY SZLT	(PPM)	Sample ID	0-2
	0-5				0, 0		1
n					0.9		2.5-5
3,51	5-10	SAT, T	Pronn	SANOY SELT	0.3		5-7
11111120	7-10				0.0		7.
PLA TILLY		SAT. 6	ROW	CAIDIG	0,8		7,5-
Profit Construction of the	10-15	5/4/: (Coor	SANDY SZLT	1.2		10-12
					1,0		13.5
7,25		S47. 8	ROWN (ANON SILI	1,2		15-1
1 1-1	15-20		W/GF	Avec			
-					1,7		17.5
-							
cano -							
-	9						
-							
9,25'		The Water land					
mments:							
Superior described TVT TV							
		÷.					
		1	E				

os - MOLNG Sho

4.25' - 0 = PEA GRAMEZ

7.25' -4.25' - BENTINE

- TASINITAL 19.25 - 7,25 = SANO

WATER = 14' 810c = 17,000

Monitoring Well In	stallation Diagram		Boring/Mor	nitoring Well ID:	1W-3		
Project Name: U. Part Cond	v.e.	Driller:	GEOTER	4			
Project Number: E11009		Drilling Method: OTRETT PUSH					
client: U Pash Condos		Monitoring \	Nell Details				
Field Scientist: RDG / SJ		Casing Diam					
Site Address: 565 FALRS	10000	Total Well D	epth (ft BTOC):		16.11		
Date of Construction: 04/15/2		Top of Casin Stickup?	g Elevation;	Flush Mount?			
04/14/7)	Juneaup.	~	. 1.53711155111.			
Well Construction Details	Depth (ft bgs)	Lithologic De	escription and R	emarks	PID Reading (PPM)	Sample ID	
	1651	2 cu	t =/iu		1.0		
	2-3.5	Gr.A.	Sandwar	It to grow.	0.8		
	3.5-5	- ôn s	dty Ban	Ly gravel			
+	5-10	bra.	Silty Fai	dy gravei	101		
3 17 2.4'					0.7		
0 \$ 111							
REA C-RANGE	13-145		and/sit	Jamered	0.9		
o-liver 1	195.5	bra		gavel	1.0		
Se proper				3			
71 +	15-14	gree	, sandy	tive drange	2.0		
	17-20	aren	med-coal	rse sand, set	,1,5		
		00					
1: 5'							
SANO 5	*						
-							
1 = 0							
191 1 1 12,5						×	
**							
Comments:		L				h	
	c. ocor e	10 10	_				
· · · · · · · · · · · · · · · · · · ·	L. OWOR E	15-17/	7				

WATER 13/611

9-19

MW-4: 20,8' BTOC

Monitoring Well Installation	n Diagram		Boring/Mon	itoring Well ID:	MW-C	1	
Project Name: U-PARK COADO		Driller: (.	EOTEV	(1
Project Number: E12003		Drilling Method: DTRECT PUSH					
Client: U-PARK CONDO ASSELMIGI	ı	Monitoring Well Details					
Field Scientist: SCOTT JOYCE		Casing Diam	eter (in):		2		
Site Address: 656 TATIZZANKS ST		Total Well D	epth (ft BTOC): g Elevation:		30.5	15.3	
Date of Construction: 04/19/2012		Stickup?	X	Flush Mount?		-1	•
			383		PID Reading	Sample ID	F1 86
Well Construction Details	Depth (ft bgs)		SCription and R		(PPM)	IA	0-2
	0	CRAY	STIT	3090 hursely	1/->		0.2
	0017	GRAY	SAMO1 CE	MUST GRIM	00	2	2.52
	2,53	CHUNI	COF WH	115 YOUR ATUSE	0.5		
[][2'14"		RVA	m sh	NOY 70%	0.6	3	5-75
sea Total	3-10	010	GRAVE	, , , , ,			7.5
traipf			Olehve	, Keeser /	01		1
	10-12			Lit	0.4		10-12
34 11-1	12-12,5	Chon		D RAVEL	0.9		10-1
stantle 7 9.5"			WATER	UETNEEN	017		12.5.
6'4	14-15		CROWN	14 C-RMa	0.2		13-16
1 11	15-17	VVL	C 1000010	SAVVV			
\ \ \ \ \ \ \ \	17-19	BROW	W SANG	Y 5661	0.4		16-19
	171						
[5]							
Sand =		-					
MIN 1 1 1 1							
[5]		 					
- 5 '							
		ļ					
18' \$ 1 12.5"							
Comments:							
Comments: Water at 13-14	and (: hely	(ans;	setting	well		
9-19' Afer in						stoc	
					fe. b	643	
WATER AT 13611	N7111	wiI			eren 2000 C000	U	

SAND HEAVE, WELL OUPTH NON ~ 18'

18-6 = SAND

18-6 = SAND

3-0 = YEA GRANT

13465 Purgona Mw-1 youb, pump sheen on purge water not using YSI to avoid danagnes mentranes contamo Slow-through cell See sampling logs for details sevall wells and sup. UPC-MWIL @ 1515 Rite in the Rain.

			Gr	roundwater Dev	elopment L	.oq	
Project Number:	EZZO	03		Sample Location	• 11.		ww-l
Project Name:	U-PAH	K CON	2005	Sample ID :	9	-	N/A
Client:	U-PARK	Couro	Assc.	 _Date Sample Coll	lected:	= 91	6/12/22
Sampler:	R6/	55		Time sampled:	and a Ministration		NA
				Well Information	14 7 17 17		
Groundwater:	Yes		Casing _Diameter (in):	2		_a) Well Depth (ft): b) Water Depth (ft):	21.44
Other:		- 155 	- 0			c) Water Column (ft): d) Pump Depth (ft):	16: 21
			FIEL	D MEASUREMEN	ITS		
Time	Volume (gallons)	DTW	Turbidity	Temperature (C)	Color	Notes	
1230	Sco	t us	19 wat	erra to	remov	N	3000
1300	12	1 6	J		darkar	ey	
1340	Twite	ned to	546. PI	1	gerty	problem	many,
1345	16	4~	464.2	3 301	aleng	TENOTON 24	- School Long
1350	17		357.8				
1355	(8		1188				
	See	Sampl	e lag				
		2		<u> </u>			
Total Volume Purg					- 5 .		
Odor:	ea:				Free Produc Sheen (y/n):	N. 1. 1 M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Purge Method (dis	posable bailer,	peristaltic pu	mp, submersible	e pump, etc.)	Sheen (y/h).		
Sample Method (d	isposable baile	er, peristaltic p	oump, submersib	ole pump, etc.)			
Well Integrity (cond	dition of casing	, flush mount	sealing properly	y, cement seal intac	ct, etc.)		
Remarks (well reco	overy, unusual	conditions/ob	servations):				
Duplicate Sample	e ID:						
Split Sample ID:	9				į		
Signed:	M	14	-11 11			- 00	1m 12 s
	VAV		ZILIV			Date: <u>06</u>	117/22
Signed/reviewer:			0			Date:	

SEE

		GROUNDW	VATER SAMPLE	DATA SHE	FT			
Project Number:	E22003	100000	Sample Location			MI	0-1	
Project Name:		andos	Sample ID :			UPC-	Mbi	-
Client:	UPARK, CONDO		Date Sample Coll	ected:		1/5	1/17	<u>-0</u>
Sampler:	R6/55		Time sampled:	00.00.		14:15	1/2-	_
	, ,		Well Information					
2000 00 0	(09)	Casing			Marie Services Services			•
Groundwater:	Yes	Diameter (in):		11 E	_a) Well Depth (ft		21.44	1
Other:					b) Water Depth (c) Water Column		9:15	
		_			d) Pump Depth (~13	
		FIEL	D MEASUREMEN	TS	+340000			
Time	Volume (gallons) pH	Conductivity (mS)	Temperature (C)		T. rebielib.	D - d	10	T
Due			le ctina	Color	Turbidity	Redox	Dissolved O ₂	DTW
Par	ana till i	vater c	clear,	>3×	well vol	unes		
1488	Q #2\				46.02			13.35
14:05			-		30.53			1
140			 		16.23			4
					10.53	114		
					-			
Total Volume Purge				Free Produc		N		-
Purge Method (dis	posable bailer, peristaltic p	ump, submersible	e pump, etc.)	Sheen (y/n)	: 1			
	Sub, pump							
Sample Method (di	isposable bailer, peristaltic	pump, submersil	ble pump, etc.)					
	Same							ij
Well Integrity (cond	dition of casing, flush moun	t sealing properly	y, cement seal intac	ot, etc.)				
	Goodcon		Stroke	Ap				
Remarks (well reco	overy, unusual conditions/o			-				
	Good recove	ry. sl	ou to de	ear my	O .			
Duplicate Sample		11WM.	@ 15:15	· ·	1			
Split Sample ID:	V 							
Cianad:	SIAT	mn				MOUNT	120	
Signed:	2000	AVV			Date:	06/17	122	- 0
Signed/reviewer:	U				Date:			

			G	roundwater Deve	elonment l	00		
Project Number:	E2200	03		Sample Location	8.5	- 10 m	w-2	
Project Name:		carros	3	Sample ID :	(IC. IVIVI).		RC-MW2	
Client:			o Assc.	Date Sample Colle	lected.	06/17/22		
Sampler:	RG/55		11000	Time sampled:	eolea.			
or sality of sales		SZZATISEZ						
			Casing	Well Information				
Groundwater:	Yes		Diameter (in):			_a) Well Depth (ft):	21.86	
Other:						b) Water Depth (ft):c) Water Column (ft):	12.50	
Other.			k			d) Pump Depth (ft):	06.01	
		7376 2 10	FIEI	LD MEASUREMEN	ITS			
Time	Volume (gallons)	DTW	Turbidity	Temperature (C)	T	Notes		
~1140	10	pun		Waterra		nemove but	k sedment	
~12666	275	, 6M	mored	5 and po	Wigh.		pinno along	
	100	+0		fr 3-450		k	111	
1215	17.5	11 04	304		right 7	1king		
1218	18	12.84	208					
1225	19		114		deas			
1238	20	ういして		to sample		VST		
) 1			
			-					
Total Volume Purge	ed:				Free Produc			
Odor: Purge Method (dis	posable bailer,	peristaltic pu	ımp, submersib	le pump, etc.)	Sheen (y/n)	i:		
		F Allert a Control of the Control of	11.61	- Pa				
Sample Method (di	isposable baile	r, peristaltic r	oump, submersi	ible pump, etc.)				
Well Integrity (cond	dition of casing,	, flush mount	sealing properl	ly, cement seal intac	ct, etc.)			
Remarks (well reco	overy, unusual	conditions/ob	servations):					
Duplicate Sample	e ID:					BIII.		
Split Sample ID:	-				-			
	11	11						
Signed:	_00	4-0	m	8	-	Date:	117/22	
Signed/reviewer:						Date:		

SEE SAMPE LCG

Project Number:	EJ2	003	GROUNDW	ATER SAMPLE I		ET.	M	N-Z	
Project Name:	u lar	h Co	205	Sample ID :			UPC-	Mu)2	-
Client:	UPark	obro)	Assoc.	Date Sample Colle	ected:		6/17/22		
Sampler:	26	155		Time sampled:			1248		
	6			Well Information					
Groundwater:	Yes		Casing Diameter (in):	2		a) Well Depth (f		21.86	
Other:	4		23 72			b) Water Depthc) Water Columnd) Pump Depth	n (ft):	9.06	
And the second second				D MEASUREMEN	TO				
	Volume		Conductivity	11 541				mg/L	
1236	(gallons)	5.38	(ms) 43	Temperature (C)	Color	Turbidity 64.3	Redox	Dissolved O ₂	DTW
1233	21	5.25	517	2.22	21	47.6	397,4	1.89	12.85
1236	21.5	5,29	Sic	7.26	1	39.14	392.00	1.48	12.88
1234	32	5.47	518	7.39	61	27,24	325.7	1.31	
1243	22.5	6.76	SIBV	7,25	- U	24662	347.5	1.28	12.86
1270	23	5.90	5131	7.i8	11		394.30	1.24	_
								11-11-11-11-11-11-11-11-11-11-11-11-11-	
Total Volume Purge Odor:	ONE				Free Produc Sheen (y/n):	t (y/n):	h		-0
Purge Method (disp	pump 1	TO GE	105mb 2					7,218	
Sample Method (di	sposable bailer	, peristaltic	pump, submersit	le pump, etc.)					
Well Integrity (cond	lition of casing.	flush moun	t sealing properly	cement seal intac	t etc)			7031	
Go	od cor	ditie	on sti	chup	ι, στο./				
Remarks (well reco	very, unusual o	conditions/o	bservations):	-	_				
		CVCOCV	ge cle	an wate	<i>x</i>				
Duplicate Sample Split Sample ID:	• ID:		190						
Signed:	Du	4	Jun			Date:	06/1	7/22	
Signed/reviewer:		0				Date:			

		G	roundwater Deve	elopment L	og	N/ D	
Project Number:	E75003		_Sample Location	(ie. MW1):		W-3	
Project Name:	U-PARK COM	OON	_Sample ID :		_ 4	(-MW3	
Client:	U-PARK COM		_Date Sample Coll	ected:	MW-3 URC-MW3 06/17/22		
Sampler:	SCOTT 5	OYLE /RG	Time sampled:	2	11	:30	
			Well Information				
Groundwater:	Yes	Casing Diameter (in):	2''		_a) Well Depth (ft):	2178	
					b) Water Depth (ft):	11.85	
Other:		<u></u>			c) Water Column (ft):	9.93	
					d) Pump Depth (ft):	~12.5	
	Volume	FIEL	D MEASUREMEN	тѕ			
Time	(gallons) DTW	Turbidity	Temperature (C)	Color	Notes		
10:15	71	OR		OSRN, CU		1.C, OOOR	
10:55	8	191,9		Screnny			
11,00	21:5	191.8	-	CLONE			
11:10	-13	83.8		CLEAR			
11:5	215	32,7		11			
505	italina to	samples	a (sq 18	nnect	CAO YSI		
		1) 3,0				
1-0-1							
Total Volume Purg	The same of the sa	Ò		Free Produc	ct 6000		
Odor:	posable bailer, peristaltic	numa submoroibl	o numa eta \	Sheen (y/n)	5		
ė.			150 150 150				
Sample Method (d	TUBLV6 w isposable bailer, peristalti	coump submersi	VALVE.	Subi	nerszole pu	MP	
Vell Integrity (cond	RSZ PE PUR	nt sealing properl	v cement seal inta	ot etc.)			
600) N	are scaling propert	y, cement sear intac	λί, Θίο.)			
Charles and the contract of th	overy, unusual conditions	observations):				X	
			25-A				
	ECHARGE CO	th wa	768				
Duplicate Sample Split Sample ID:	e ID:						
opiii Sample ID.				. *			
Y	11. 1	0				18 00	
	11111	1911			Date:	11722	
Signed:		an	2000			11. 11.2	

	/ Ul Par	a). C		ATER SAMPLE		ET	Mic	1-5	
Project Number:	(OC POL	n Can	dos	_Sample Location ((ie. MW1):	9	1100	1-)	-
Project Name:		ci.		_Sample ID :	· · · · · · · · · · · · · · · · · · ·		UPC- 6/17/2	2000	- /
Client:	Dr 1			_ Date Sample Colle	ected:	9	OUT	2	- !
Sampler:	RG/	53		Time sampled:			1/21	<i>D</i>	
				Well Information					
Groundwater:	Yes		Casing Diameter (in):	2		a) Well Depth (ft)	۵:	21.78	
The state of the s	-	-111				b) Water Depth (11.85	
Other:	5/ 		!			c) Water Column		9 9 3	6
						d) Pump Depth (ft): 17	DE-12	·· 5T
	Volume		FIEL Conductivity	D MEASUREMEN	TS	T 4041			
Time	(gallons)	pН	(MS) MS		Color	MTU Turbidity	Redox	Dissolved O ₂	DTW
	75-30	5.32	564	4.90	clear	25.8	373.)	3.80	11.87
1118	22	4.86	505	4,57		18.47	772 2	4.70	11.89
1124		4.78	5061	4.57		12.96	377.8/	0.45	11.89
1127	~26	9.80	507/	4.64	10	18.11	377.41	0.31	11.87
		-		<u> </u>					-
	-	-				ļ	 	 	+
						A			
Total Volume Purg	aed:	, ~20	χ		Free Produc	ct (y/n):	N		
Odor: Faint Purge Method (di	hudracerto	Nancer	المراد عرام	_	Sheen (y/n)		N		
				e pump, etc.)					
Sample Method (pump	(Gas	13cb 0)	"He summ oto)					
Sample Metriod (disposable balle	76% C 55.	iump, subiliersi	ble pump, etc.,					
Mell Integrity (cor			sealing properl	ly, cement seal inta	ct etc.)				
	ADD- CON		ticky	D Comon Source	JI, 610./				
Remarks (well red									
(2)	od rech			water					
Duplicate Samp	ole ID:				<u></u>				
Split Sample ID	.				-				
	4	111-	MA O				Mell	17/17	
Signed:		W.	gru	<u> </u>	â	Date:	0011	17/22	-
Signed/reviewer	r.	3				Date:			

			Gı	oundwater Deve	lopment Lo	og	20
Project Number:	E2200]	3		Sample Location ((ie. MW1):	M	W-4
Project Name:	U-PARI	k Ce	ocus	Sample ID :		^	J/A
Client:	U-PARK (30NO	Assc.	_ Date Sample Colle	ected:		
Sampler:		JOYLE	1001	Time sampled:			\$
				Well Information			
Groundwater:	Yes		Casing Diameter (in):			a) Well Depth (ft):	20.69
Other:			·			b) Water Depth (ft): c) Water Column (ft): d) Pump Depth (ft):	9.58 Part N/A
			FIEL	D MEASUREMEN			
Time	Volume	DTW	Turbidity			N. A	
7ime	(gallons)	DIVV	OR	Temperature (C)	Color DARK,((wy	Notes	the state of the s
69:35	12				danique	4	
0940	13		492		darharz		
220-			50.05		U) suitched to	sub pump
6956	~19		58,93		close		
1863	28		24.33				
1007	119		24.88				
1810	263		16.40				
	1						
			4,				
Total Volume Purge Odor:					Free Product	t (y/g)	
Purge Method (disp							
WHERE	1 tubina	+ four	t statue,	Followed	by su	6. Pump (6	Bosut)
Sample Method (di	isposable bailer,	eristaltic	oump, submersi	ble pump, etc.)	sub o		
				dung to		ump i	
Well Integrity (cond	dition of casing, flu	ush mount	sealing properl	y, cement seal intac	ct, etc.)		
6000							
Remarks (well reco		nditions/ob	oservations):				
Duplicate Sample Split Sample ID:	e ID:	230 100					
Signed:	SIL	_	gr			Date:	17/22
Signed/reviewer:			~			Date:	
						uti.	

GROUNDWATER SAMPLE DATA SHEET											
Project Number:	Project Name: Whathe Condos			_Sample Location (ie. MW1): Sample ID :			MW-4 UC-MW4 6/17/22				
Project Name:											
Client:				Date Sample Collected:							
Sampler:	ROG/	5.7		Time sampled:			1838	<u>, </u>	-8		
Cumpler:							100		- Noderaneous		
			Casing	Well Information		•					
Groundwater:	Yes		Diameter (in):			a) Well Depth (f	t):	26.69	BTOC		
2000						b) Water Depth		11.11			
Other:	***********		0.			c) Water Colum		9.58	Ft.		
Access poster control and a second				500 S 50 80 80 10 80 80 10 80 80 80 80 80 80 80 80 80 80 80 80 80		d) Pump Depth	(II).	7/2	· C.		
	Volume		FIEL Conductivity	D MEASUREMEN	TS		I nu	1			
Time	(gallons)	рН	(ms)MS	Temperature (C)	Color	Turbidity	Redox	Dissolved O ₂	DTW		
1015	20	5,21	464	\$.50	clear	N/A					
1818	16.5	4.58	449	U.73	11	*	395.1	40.55			
1621	21.5	4.41	447	4.53	11		394.9	0.34	11.13		
1628	22	4.28	428	5.52	ii		386-1	0.24	11.12		
>Z×	Mary.	volume	Durace	sand			3091.3	0.12	11.00		
		0	10								
						+					
					201 TO 101 TO		N				
Total Volume Purged: 22.5			Free Product (y/n): Sheen (y/n):								
Odor: Purge Method (dispe	osable bailer	, peristaltic pu	imp, submersible	e pump, etc.)	Sheen (y/n)):	N				
Sub. & s											
Sample Method (dis	posable baile	er, peristaltic	oump, submersil	ole pump, etc.)							
Sam	e										
Well Integrity (condi-	tion of casing	g, flush mount	sealing properly	y, cement seal inta	ct, etc.)						
Good	L Cond	4tien	streh	D							
Remarks (well recov	ery, unusual	conditions/of	oservations):	-							
Developed great, clear water											
Duplicate Sample		0-00									
Split Sample ID:	ID.										
× ×		11									
Signed:	See	0	Ch			Date:	06/1	7/27			
Signed/reviewer:		6				Date:					

ATTACHMENT C

SURVEY REPORT

"Survey support for environmental monitoring"

Phone: (907) 455-6776, Fax: (907) 455-6776 Email: ejc@windycreeksurveys.com

August 27, 2022

Mr. Rodney Guritz Arctic Data Services 250 Cushman Street, Suite 3D Fairbanks, AK 99701

Dear Mr. Guritz,

This letter is to serve as our Survey Report for the University Park Condominiums Site monitor well survey.

The Horizontal Datum utilized to establish the coordinates for this project is NAD_83(2011) Epoch 2010.0000, and the Vertical Datum is NAVD88 computed using Geiod12B. The Basis of Coordinates for this work is the 2022 OPUS solution for August 1, 2022 data on Point 600 (see attached NGS OPUS solution).

The monitor well locations static GNSS field survey was conducted on August 1, 2022 utilizing 5 JAVAD Triumph GNSS receivers. A least squares adjustment was performed in JAVAD's Justin software on the post-processed static GNSS data for all environmental points positioned, and the Root Mean Square Error (RMSE) did not exceed 0.006 feet on the northing, easting and/or ground elevation determinations. This is well within the Alaska Department of Environmental Conservation's – Monitoring Well Guidance (2013) Survey Quality Specifications of 1 foot for horizontal positioning.

The Basis of Elevations is the August 1st OPUS Solution on Point 600 with its NAVD88 orthometric height (computed using Geoid12B) listing of 132.489 meters (refer to attached NGS OPUS solution). Elevations were established on the top of PVC of each well. A Leica DNA03 level and a fiberglass Leica rod were utilized on August 1, 2022 to complete the level loops that established these elevations.

Windy Creek Surveys - Monitor Well Survey Data Arctic Data Services - University Park Condominiums

NAD83(2	2011) Alaska State	NAVD88 Elevation		
Point ID	Northing	Easting	Ground	Top of PVC
MW-1	3968297.0523	1355317.4278	435.51	436.43
MW-2	3968248.6985	1355303.8694	435.71	436.94
MW-3	3968280.7952	1355272.4472	434.53	435.94
MW-4	3968304.8907	1355265.1562	433.80	435.24

Survey Data deliverables include a comma delimited file including all of the monitor wells positions, along with a .pdf copy of the OPUS solution.

Sincerely,

Eric J. Cousino, PLS

Fix & Gusto

ATTACHMENT D

LABORATORY REPORT AND ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Report of Analysis

To: Arctic Data Services LLC

250 Cushman Street, Suite 3D Fairbanks, AK 99701 (907)457-3147

Report Number: 1223225

Client Project: 2022-U-Park GW Investigation

Dear Rodney Guritz,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen C. Ede

Staphen C. Ede 2022.07.26

09:10:42 -08'00'

Jennifer Dawkins Project Manager

Jennifer.Dawkins@sgs.com

Date

Print Date: 07/25/2022 12:22:36PM Results via Engage

Case Narrative

SGS Client: Arctic Data Services LLC
SGS Project: 1223225
Project Name/Site: 2022-U-Park GW Investigation
Project Contact: Rodney Guritz

Refer to sample receipt form for information on sample condition.

UPC-MW1 (1223225001) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 and Fluoranthene-d10 do not meet QC criteria. Sample was re-extracted outside of hold time and results confirm. The in-hold data is reported.

UPC-MW2 (1223225002) PS

8270D SIM - PAH surrogate recovery for Fluoranthene-d10 does not meet QC criteria. Sample was re-extracted outside of hold time and results confirm. The in-hold data is reported.

LCS for HBN 1839011 [VXX/38769 (1670660) LCS

8260D - LCS recoveries for bromomethane and methyl iodide do not meet QC criteria.

LCSD for HBN 1839011 [VXX/3876 (1670661) LCSD

8260D - LCSD recoveries for bromomethane and methyl iodide do not meet QC criteria.

8260D - LCSD RPD for methyl iodide does not meet QC criteria.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/25/2022 12:22:38PM

Report of Manual Integrations

<u>Laboratory ID</u> <u>Client Sample ID</u> <u>Analytical Batch</u> <u>Analyte</u> <u>Reason</u>

8270D SIM LV (PAH)

 1669578
 MB for HBN 1838638 [XXX/46478]
 XMS13235
 Phenanthrene
 BLC

 1673614
 CVC for HBN 1839956 [XMS/13235
 XMS13235
 Benzo[k]fluoranthene
 RP

Manual Integration Reason Code Descriptions

Code Description

O Original Chromatogram
M Modified Chromatogram
SS Skimmed surrogate
BLG Closed baseline gap
RP Reassign peak name
PIR Pattern integration required

IT Included tail SP Split peak

RSP Removed split peak
FPS Forced peak start/stop
BLC Baseline correction

PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 07/25/2022 12:22:39PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/31/2022 for Nitrate as N by SM 4500NO3-F) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LUQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 07/25/2022 12:22:40PM

SGS North America Inc. | 200 West Potter Drive, Anchorage, AK 99518

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
UPC-MW1	1223225001	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)
UPC-MW2	1223225002	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)
UPC-MW3	1223225003	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)
UPC-MW4	1223225004	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)
UPC-MW11	1223225005	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)
Trip Blank 1	1223225006	06/17/2022	06/21/2022	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO Low Volume (W)AK101Gasoline Range Organics (W)

SW8260D Volatile Organic Compounds (W) FULL

Print Date: 07/25/2022 12:22:42PM

Detectable Results Summary

Client Sample ID: UPC-MW1			
Lab Sample ID: 1223225001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	1.48	ug/L
	Acenaphthene	0.0783	ug/L
	Fluorene	0.0340J	ug/L
	Naphthalene	0.168	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	11.7	mg/L
Volatile Fuels	Gasoline Range Organics	0.483	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	71.0	ug/L
	1,3,5-Trimethylbenzene	33.8	ug/L
	Benzene	3.51	ug/L
	Ethylbenzene	9.17	ug/L
	Isopropylbenzene (Cumene)	3.20	ug/L
	Naphthalene	69.6	ug/L
	o-Xylene	69.6	ug/L
	P & M -Xylene	100	ug/L
	Toluene	11.4	ug/L
	Xylenes (total)	170	ug/L
Client Sample ID: UPC-MW2			
Lab Sample ID: 1223225002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Fluorene	0.0272J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.530J	mg/L
Volatile Fuels	Gasoline Range Organics	0.0467J	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2-Dichloroethane	0.231J	ug/L
Client Sample ID: UPC-MW3			
Lab Sample ID: 1223225003	Parameter	Result	Units
Polynuclear Aromatics GC/MS	Acenaphthene	0.0838	ug/L
,	Fluorene	0.378	ug/L
	Phenanthrene	0.102	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	1.28	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	0.352J	ug/L
	1,2-Dichloroethane	0.281J	ug/L
	Benzene	0.225J	ug/L
	Isopropylbenzene (Cumene)	0.904J	ug/L
	sec-Butylbenzene	0.452J	ug/L
	tert-Butylbenzene	0.333J	ug/L
	·		-

Print Date: 07/25/2022 12:22:43PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: UPC-MW4			
Lab Sample ID: 1223225004	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.183	ug/L
-	Fluorene	0.0738	ug/L
	Naphthalene	0.102	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	1.01	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	2.65	ug/L
	1,2-Dichloroethane	0.252J	ug/L
	Benzene	1.37	ug/L
	Ethylbenzene	1.40	ug/L
	Isopropylbenzene (Cumene)	1.17	ug/L
	o-Xylene	4.11	ug/L
	P & M -Xylene	2.13	ug/L
	Toluene	0.644J	ug/L
	Xylenes (total)	6.24	ug/L
Client Sample ID: UPC-MW11			
Lab Sample ID: 1223225005	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.710	ug/L
1 diyiladida Ardinalida domio	Acenaphthene	0.0785	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	13.4	mg/L
Volatile Fuels	Gasoline Range Organics	0.478	mg/L
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	70.5	ug/L
Volutile Commo- i etroleum Voo Croup	1,2-Dichloroethane	0.267J	ug/L
	1,3,5-Trimethylbenzene	33.0	ug/L
	Benzene	3.60	ug/L
	Ethylbenzene	8.58	ug/L
	Isopropylbenzene (Cumene)	3.21	ug/L
	Naphthalene	65.5	ug/L
	o-Xylene	62.9	ug/L
	P & M -Xylene	88.3	ug/L
	sec-Butylbenzene	2.08	ug/L
	tert-Butylbenzene	0.375J	ug/L
	Toluene	10.6	ug/L
	Xylenes (total)	151	ug/L
			~g· =

Print Date: 07/25/2022 12:22:43PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Client Sample ID: UPC-MW1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225001 Lab Project ID: 1223225 Collection Date: 06/17/22 14:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	1.48	0.0500	0.0150	ug/L	1		07/14/22 19:15
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Acenaphthene	0.0783	0.0500	0.0150	ug/L	1		07/14/22 19:15
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		07/14/22 19:15
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		07/14/22 19:15
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Fluorene	0.0340 J	0.0500	0.0150	ug/L	1		07/14/22 19:15
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Naphthalene	0.168	0.100	0.0310	ug/L	1		07/14/22 19:15
Phenanthrene	0.0500 U	0.100	0.0310	ug/L	1		07/14/22 19:15
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:15
Surrogates							
2-Methylnaphthalene-d10 (surr)	28.7 *	42-86		%	1		07/14/22 19:15
Fluoranthene-d10 (surr)	38.7 *	50-97		%	1		07/14/22 19:15

Batch Information

Analytical Batch: XMS13235

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 07/14/22 19:15 Container ID: 1223225001-I Prep Batch: XXX46478
Prep Method: SW3535A
Prep Date/Time: 06/23/22 20:48
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225001 Lab Project ID: 1223225 Collection Date: 06/17/22 14:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	11.7	0.588	0.196	mg/L	1		06/29/22 23:28
Surrogates							
5a Androstane (surr)	89.3	50-150		%	1		06/29/22 23:28

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/29/22 23:28 Container ID: 1223225001-G Prep Batch: XXX46498
Prep Method: SW3520C
Prep Date/Time: 06/27/22 16:30
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Client Sample ID: UPC-MW1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225001 Lab Project ID: 1223225 Collection Date: 06/17/22 14:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.483	0.100	0.0450	mg/L	1		06/29/22 07:36
Surrogates							
4-Bromofluorobenzene (surr)	106	50-150		%	1		06/29/22 07:36

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/29/22 07:36 Container ID: 1223225001-A Prep Batch: VXX38779
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225001 Lab Project ID: 1223225 Collection Date: 06/17/22 14:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	71.0	1.00	0.310	ug/L	1		06/23/22 17:26
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/23/22 17:26
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		06/23/22 17:26
1,3,5-Trimethylbenzene	33.8	1.00	0.310	ug/L	1		06/23/22 17:26
Benzene	3.51	0.400	0.120	ug/L	1		06/23/22 17:26
Ethylbenzene	9.17	1.00	0.310	ug/L	1		06/23/22 17:26
Isopropylbenzene (Cumene)	3.20	1.00	0.310	ug/L	1		06/23/22 17:26
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/23/22 17:26
Naphthalene	69.6	1.00	0.310	ug/L	1		06/23/22 17:26
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 17:26
o-Xylene	69.6	1.00	0.310	ug/L	1		06/23/22 17:26
P & M -Xylene	100	2.00	0.620	ug/L	1		06/23/22 17:26
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 17:26
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 17:26
Toluene	11.4	1.00	0.310	ug/L	1		06/23/22 17:26
Xylenes (total)	170	3.00	1.00	ug/L	1		06/23/22 17:26
Surrogates							
1,2-Dichloroethane-D4 (surr)	115	81-118		%	1		06/23/22 17:26
4-Bromofluorobenzene (surr)	99.2	85-114		%	1		06/23/22 17:26
Toluene-d8 (surr)	101	89-112		%	1		06/23/22 17:26

Batch Information

Analytical Batch: VMS21721 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/23/22 17:26 Container ID: 1223225001-D Prep Batch: VXX38736 Prep Method: SW5030B Prep Date/Time: 06/23/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW2

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225002 Lab Project ID: 1223225 Collection Date: 06/17/22 12:48
Received Date: 06/21/22 09:30
Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		07/14/22 19:36
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		07/14/22 19:36
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Fluorene	0.0272 J	0.0500	0.0150	ug/L	1		07/14/22 19:36
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1		07/14/22 19:36
Phenanthrene	0.0500 U	0.100	0.0310	ug/L	1		07/14/22 19:36
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		07/14/22 19:36
Surrogates							
2-Methylnaphthalene-d10 (surr)	47.4	42-86		%	1		07/14/22 19:36
Fluoranthene-d10 (surr)	46.7 *	50-97		%	1		07/14/22 19:36

Batch Information

Analytical Batch: XMS13235

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 07/14/22 19:36

Container ID: 1223225002-I

Prep Batch: XXX46478 Prep Method: SW3535A Prep Date/Time: 06/23/22 20:48

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW2

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225002 Lab Project ID: 1223225 Collection Date: 06/17/22 12:48 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

	Parameter Diesel Range Organics	Result Qual 0.530 J	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.192	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/29/22 23:38
l	Surrogates							
ı	5a Androstane (surr)	94.1	50-150		%	1		06/29/22 23:38

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/29/22 23:38 Container ID: 1223225002-G Prep Batch: XXX46498
Prep Method: SW3520C
Prep Date/Time: 06/27/22 16:30
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Client Sample ID: UPC-MW2

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225002 Lab Project ID: 1223225 Collection Date: 06/17/22 12:48
Received Date: 06/21/22 09:30
Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0467 J	0.100	0.0450	mg/L	1	Limits	06/29/22 07:54
Surrogates 4-Bromofluorobenzene (surr)	84.5	50-150		%	1		06/29/22 07:54

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/29/22 07:54 Container ID: 1223225002-A Prep Batch: VXX38779
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW2

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225002 Lab Project ID: 1223225 Collection Date: 06/17/22 12:48 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/29/22 20:50
1,2-Dichloroethane	0.231 J	0.500	0.200	ug/L	1		06/29/22 20:50
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
Benzene	0.200 U	0.400	0.120	ug/L	1		06/29/22 20:50
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/29/22 20:50
Naphthalene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/29/22 20:50
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
Toluene	0.500 U	1.00	0.310	ug/L	1		06/29/22 20:50
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/29/22 20:50
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		06/29/22 20:50
4-Bromofluorobenzene (surr)	102	85-114		%	1		06/29/22 20:50
Toluene-d8 (surr)	99.3	89-112		%	1		06/29/22 20:50

Batch Information

Analytical Batch: VMS21738 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/29/22 20:50 Container ID: 1223225002-B Prep Batch: VXX38769
Prep Method: SW5030B
Prep Date/Time: 06/29/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW3

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225003 Lab Project ID: 1223225 Collection Date: 06/17/22 11:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Acenaphthene	0.0838	0.0500	0.0150	ug/L	1		06/29/22 11:37
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		06/29/22 11:37
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		06/29/22 11:37
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Fluorene	0.378	0.0500	0.0150	ug/L	1		06/29/22 11:37
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1		06/29/22 11:37
Phenanthrene	0.102	0.100	0.0310	ug/L	1		06/29/22 11:37
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 11:37
Surrogates							
2-Methylnaphthalene-d10 (surr)	60.1	42-86		%	1		06/29/22 11:37
Fluoranthene-d10 (surr)	61.4	50-97		%	1		06/29/22 11:37

Batch Information

Analytical Batch: XMS13204

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 06/29/22 11:37 Container ID: 1223225003-I Prep Batch: XXX46481 Prep Method: SW3535A Prep Date/Time: 06/24/22 10:53 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW3

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225003 Lab Project ID: 1223225 Collection Date: 06/17/22 11:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qu	ual LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	1.28	0.577	0.192	mg/L	1		06/29/22 23:48
Surrogates							
5a Androstane (surr)	84.2	50-150		%	1		06/29/22 23:48

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/29/22 23:48 Container ID: 1223225003-G Prep Batch: XXX46498
Prep Method: SW3520C
Prep Date/Time: 06/27/22 16:30
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Client Sample ID: UPC-MW3

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225003 Lab Project ID: 1223225 Collection Date: 06/17/22 11:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0450	mg/L	1	<u>Limits</u>	06/29/22 08:12
Surrogates 4-Bromofluorobenzene (surr)	88.4	50-150		%	1		06/29/22 08:12

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/29/22 08:12 Container ID: 1223225003-A Prep Batch: VXX38779
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW3

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225003 Lab Project ID: 1223225 Collection Date: 06/17/22 11:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.352 J	1.00	0.310	ug/L	1		06/29/22 21:05
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/29/22 21:05
1,2-Dichloroethane	0.281 J	0.500	0.200	ug/L	1		06/29/22 21:05
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
Benzene	0.225 J	0.400	0.120	ug/L	1		06/29/22 21:05
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
Isopropylbenzene (Cumene)	0.904 J	1.00	0.310	ug/L	1		06/29/22 21:05
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/29/22 21:05
Naphthalene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/29/22 21:05
sec-Butylbenzene	0.452 J	1.00	0.310	ug/L	1		06/29/22 21:05
tert-Butylbenzene	0.333 J	1.00	0.310	ug/L	1		06/29/22 21:05
Toluene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:05
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/29/22 21:05
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		06/29/22 21:05
4-Bromofluorobenzene (surr)	100	85-114		%	1		06/29/22 21:05
Toluene-d8 (surr)	97.9	89-112		%	1		06/29/22 21:05

Batch Information

Analytical Batch: VMS21738 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/29/22 21:05 Container ID: 1223225003-B Prep Batch: VXX38769
Prep Method: SW5030B
Prep Date/Time: 06/29/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW4

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225004 Lab Project ID: 1223225 Collection Date: 06/17/22 10:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.183	0.0490	0.0147	ug/L	1		06/29/22 11:57
2-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		06/29/22 11:57
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		06/29/22 11:57
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Fluorene	0.0738	0.0490	0.0147	ug/L	1		06/29/22 11:57
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Naphthalene	0.102	0.0980	0.0304	ug/L	1		06/29/22 11:57
Phenanthrene	0.0490 U	0.0980	0.0304	ug/L	1		06/29/22 11:57
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		06/29/22 11:57
Surrogates							
2-Methylnaphthalene-d10 (surr)	60.9	42-86		%	1		06/29/22 11:57
Fluoranthene-d10 (surr)	62.5	50-97		%	1		06/29/22 11:57

Batch Information

Analytical Batch: XMS13204

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 06/29/22 11:57 Container ID: 1223225004-I Prep Batch: XXX46481 Prep Method: SW3535A Prep Date/Time: 06/24/22 10:53 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW4

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225004 Lab Project ID: 1223225 Collection Date: 06/17/22 10:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	<u>Result Qual</u> 1.01	LOQ/CL 0.577	<u>DL</u> 0.192	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/29/22 23:58
Surrogates							
5a Androstane (surr)	90.8	50-150		%	1		06/29/22 23:58

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/29/22 23:58 Container ID: 1223225004-G Prep Batch: XXX46498
Prep Method: SW3520C
Prep Date/Time: 06/27/22 16:30
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Client Sample ID: UPC-MW4

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225004 Lab Project ID: 1223225 Collection Date: 06/17/22 10:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0450	mg/L	1	Limits	06/29/22 08:30
Surrogates 4-Bromofluorobenzene (surr)	88.8	50-150		%	1		06/29/22 08:30

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/29/22 08:30 Container ID: 1223225004-A Prep Batch: VXX38779
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW4

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225004 Lab Project ID: 1223225 Collection Date: 06/17/22 10:30 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	2.65	1.00	0.310	ug/L	1		06/29/22 21:20
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/29/22 21:20
1,2-Dichloroethane	0.252 J	0.500	0.200	ug/L	1		06/29/22 21:20
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:20
Benzene	1.37	0.400	0.120	ug/L	1		06/29/22 21:20
Ethylbenzene	1.40	1.00	0.310	ug/L	1		06/29/22 21:20
Isopropylbenzene (Cumene)	1.17	1.00	0.310	ug/L	1		06/29/22 21:20
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/29/22 21:20
Naphthalene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:20
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:20
o-Xylene	4.11	1.00	0.310	ug/L	1		06/29/22 21:20
P & M -Xylene	2.13	2.00	0.620	ug/L	1		06/29/22 21:20
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:20
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:20
Toluene	0.644 J	1.00	0.310	ug/L	1		06/29/22 21:20
Xylenes (total)	6.24	3.00	1.00	ug/L	1		06/29/22 21:20
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		06/29/22 21:20
4-Bromofluorobenzene (surr)	101	85-114		%	1		06/29/22 21:20
Toluene-d8 (surr)	99.3	89-112		%	1		06/29/22 21:20

Batch Information

Analytical Batch: VMS21738 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/29/22 21:20 Container ID: 1223225004-B

Prep Batch: VXX38769
Prep Method: SW5030B
Prep Date/Time: 06/29/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW11

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225005 Lab Project ID: 1223225 Collection Date: 06/17/22 15:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.710	0.0500	0.0150	ug/L	1		06/29/22 12:18
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Acenaphthene	0.0785	0.0500	0.0150	ug/L	1		06/29/22 12:18
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		06/29/22 12:18
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		06/29/22 12:18
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1		06/29/22 12:18
Phenanthrene	0.0500 U	0.100	0.0310	ug/L	1		06/29/22 12:18
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		06/29/22 12:18
Surrogates							
2-Methylnaphthalene-d10 (surr)	45.5	42-86		%	1		06/29/22 12:18
Fluoranthene-d10 (surr)	52.3	50-97		%	1		06/29/22 12:18

Batch Information

Analytical Batch: XMS13204

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 06/29/22 12:18 Container ID: 1223225005-I Prep Batch: XXX46481 Prep Method: SW3535A Prep Date/Time: 06/24/22 10:53 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:22:45PM

Client Sample ID: UPC-MW11

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225005 Lab Project ID: 1223225 Collection Date: 06/17/22 15:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	13.4	0.612	0.204	mg/L	1	Limits	06/30/22 00:08
Surrogates 5a Androstane (surr)	102	50-150		%	1		06/30/22 00:08

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/30/22 00:08 Container ID: 1223225005-G Prep Batch: XXX46498
Prep Method: SW3520C
Prep Date/Time: 06/27/22 16:30
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Client Sample ID: UPC-MW11

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225005 Lab Project ID: 1223225 Collection Date: 06/17/22 15:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Davisaria	De cult Ouel	1.00/01	DI	1.1-24-	DE	<u>Allowable</u>	Data Arabanad
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.478	0.100	0.0450	mg/L	1		06/29/22 08:48
Surrogates							
4-Bromofluorobenzene (surr)	107	50-150		%	1		06/29/22 08:48

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/29/22 08:48 Container ID: 1223225005-A Prep Batch: VXX38779
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: UPC-MW11

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225005 Lab Project ID: 1223225 Collection Date: 06/17/22 15:15 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	70.5	1.00	0.310	ug/L	1		06/29/22 21:35
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/29/22 21:35
1,2-Dichloroethane	0.267 J	0.500	0.200	ug/L	1		06/29/22 21:35
1,3,5-Trimethylbenzene	33.0	1.00	0.310	ug/L	1		06/29/22 21:35
Benzene	3.60	0.400	0.120	ug/L	1		06/29/22 21:35
Ethylbenzene	8.58	1.00	0.310	ug/L	1		06/29/22 21:35
Isopropylbenzene (Cumene)	3.21	1.00	0.310	ug/L	1		06/29/22 21:35
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/29/22 21:35
Naphthalene	65.5	1.00	0.310	ug/L	1		06/29/22 21:35
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/29/22 21:35
o-Xylene	62.9	1.00	0.310	ug/L	1		06/29/22 21:35
P & M -Xylene	88.3	2.00	0.620	ug/L	1		06/29/22 21:35
sec-Butylbenzene	2.08	1.00	0.310	ug/L	1		06/29/22 21:35
tert-Butylbenzene	0.375 J	1.00	0.310	ug/L	1		06/29/22 21:35
Toluene	10.6	1.00	0.310	ug/L	1		06/29/22 21:35
Xylenes (total)	151	3.00	1.00	ug/L	1		06/29/22 21:35
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		06/29/22 21:35
4-Bromofluorobenzene (surr)	105	85-114		%	1		06/29/22 21:35
Toluene-d8 (surr)	100	89-112		%	1		06/29/22 21:35

Batch Information

Analytical Batch: VMS21738 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/29/22 21:35 Container ID: 1223225005-B Prep Batch: VXX38769
Prep Method: SW5030B
Prep Date/Time: 06/29/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:45PM

Results of Trip Blank 1

Client Sample ID: Trip Blank 1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225006 Lab Project ID: 1223225 Collection Date: 06/17/22 08:00 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		06/28/22 20:40
Surrogates							
4-Bromofluorobenzene (surr)	87.8	50-150		%	1		06/28/22 20:40

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/28/22 20:40 Container ID: 1223225006-A

Prep Batch: VXX38778
Prep Method: SW5030B
Prep Date/Time: 06/28/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of Trip Blank 1

Client Sample ID: Trip Blank 1

Client Project ID: 2022-U-Park GW Investigation

Lab Sample ID: 1223225006 Lab Project ID: 1223225 Collection Date: 06/17/22 08:00 Received Date: 06/21/22 09:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/23/22 16:11
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		06/23/22 16:11
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
Benzene	0.200 U	0.400	0.120	ug/L	1		06/23/22 16:11
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/23/22 16:11
Naphthalene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/23/22 16:11
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
Toluene	0.500 U	1.00	0.310	ug/L	1		06/23/22 16:11
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/23/22 16:11
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		06/23/22 16:11
4-Bromofluorobenzene (surr)	100	85-114		%	1		06/23/22 16:11
Toluene-d8 (surr)	101	89-112		%	1		06/23/22 16:11

Batch Information

Analytical Batch: VMS21721 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 06/23/22 16:11 Container ID: 1223225006-B Prep Batch: VXX38736
Prep Method: SW5030B
Prep Date/Time: 06/23/22 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1838556 [VXX/38736]

Blank Lab ID: 1669551

QC for Samples:

1223225001, 1223225006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	99.4	89-112		%

Batch Information

Analytical Batch: VMS21721 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Analytical Date/Time: 6/23/2022 12:40:00PM

Prep Batch: VXX38736 Prep Method: SW5030B

Prep Date/Time: 6/23/2022 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:47PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [VXX38736]

Blank Spike Lab ID: 1669552 Date Analyzed: 06/23/2022 12:55

QC for Samples: 1223225001, 1223225006

Spike Duplicate ID: LCSD for HBN 1223225

[VXX38736]

Spike Duplicate Lab ID: 1669553 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	30	27.7	92	30	27.9	93	(79-124)	0.88	(< 20)
1,2-Dibromoethane	30	28.6	95	30	29.7	99	(77-121)	3.90	(< 20)
1,2-Dichloroethane	30	30.7	102	30	31.7	106	(73-128)	3.40	(< 20)
1,3,5-Trimethylbenzene	30	29.0	97	30	29.7	99	(75-124)	2.30	(< 20)
Benzene	30	30.2	101	30	30.9	103	(79-120)	2.60	(< 20)
Ethylbenzene	30	30.0	100	30	30.1	100	(79-121)	0.39	(< 20)
Isopropylbenzene (Cumene)	30	28.9	96	30	29.4	98	(72-131)	1.50	(< 20)
Methyl-t-butyl ether	45	45.2	101	45	47.1	105	(71-124)	4.10	(< 20)
Naphthalene	30	27.5	92	30	28.6	95	(61-128)	3.80	(< 20)
n-Butylbenzene	30	26.8	90	30	27.6	92	(75-128)	2.80	(< 20)
o-Xylene	30	30.3	101	30	30.9	103	(78-122)	2.00	(< 20)
P & M -Xylene	60	61.2	102	60	62.4	104	(80-121)	1.90	(< 20)
sec-Butylbenzene	30	27.0	90	30	27.5	92	(77-126)	1.80	(< 20)
tert-Butylbenzene	30	28.1	94	30	28.9	96	(78-124)	2.80	(< 20)
Toluene	30	30.4	101	30	31.3	104	(80-121)	2.60	(< 20)
Xylenes (total)	90	91.5	102	90	93.3	104	(79-121)	2.00	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		101	30		102	(81-118)	1.40	
4-Bromofluorobenzene (surr)	30		97	30		97	(85-114)	0.86	
Toluene-d8 (surr)	30		101	30		102	(89-112)	0.70	

Batch Information

Analytical Batch: VMS21721
Analytical Method: SW8260D
Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Prep Batch: VXX38736
Prep Method: SW5030B

Prep Date/Time: 06/23/2022 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:49PM

Method Blank

Blank ID: MB for HBN 1839011 [VXX/38769]

Blank Lab ID: 1670659

QC for Samples:

1223225002, 1223225003, 1223225004, 1223225005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	99.3	89-112		%

Batch Information

Analytical Batch: VMS21738 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: JMG

Analytical Date/Time: 6/29/2022 2:08:00PM

Prep Batch: VXX38769 Prep Method: SW5030B

Prep Date/Time: 6/29/2022 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:51PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [VXX38769]

Blank Spike Lab ID: 1670660 Date Analyzed: 06/29/2022 14:23 Spike Duplicate ID: LCSD for HBN 1223225

[VXX38769]

Spike Duplicate Lab ID: 1670661 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1223225002, 1223225003, 1223225004, 1223225005

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	30	30.5	102	30	30.5	102	(79-124)	0.03	(< 20)
1,2-Dibromoethane	30	29.6	99	30	29.6	99	(77-121)	0.12	(< 20)
1,2-Dichloroethane	30	27.7	92	30	28.1	94	(73-128)	1.60	(< 20)
1,3,5-Trimethylbenzene	30	30.8	103	30	30.8	103	(75-124)	0.17	(< 20)
Benzene	30	29.3	98	30	29.3	98	(79-120)	0.22	(< 20)
Ethylbenzene	30	30.0	100	30	29.8	99	(79-121)	0.59	(< 20)
Isopropylbenzene (Cumene)	30	30.6	102	30	30.3	101	(72-131)	1.10	(< 20)
Methyl-t-butyl ether	45	43.1	96	45	43.9	98	(71-124)	1.80	(< 20)
Naphthalene	30	29.0	97	30	32.6	109	(61-128)	11.60	(< 20)
n-Butylbenzene	30	32.2	107	30	32.0	107	(75-128)	0.53	(< 20)
o-Xylene	30	29.8	99	30	29.7	99	(78-122)	0.25	(< 20)
P & M -Xylene	60	60.9	102	60	60.8	101	(80-121)	0.14	(< 20)
sec-Butylbenzene	30	31.8	106	30	31.7	106	(77-126)	0.32	(< 20)
tert-Butylbenzene	30	31.2	104	30	31.0	103	(78-124)	0.50	(< 20)
Toluene	30	29.0	97	30	28.5	95	(80-121)	2.00	(< 20)
Xylenes (total)	90	90.7	101	90	90.5	101	(79-121)	0.18	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		98	30		99	(81-118)	1.10	
4-Bromofluorobenzene (surr)	30		102	30		102	(85-114)	0.44	
Toluene-d8 (surr)	30		101	30		100	(89-112)	1.20	

Batch Information

Analytical Batch: VMS21738
Analytical Method: SW8260D
Instrument: Agilent 7890-75MS

Analyst: JMG

Prep Batch: VXX38769
Prep Method: SW5030B

Prep Date/Time: 06/29/2022 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:54PM

Method Blank

Blank ID: MB for HBN 1839076 [VXX/38778]

Blank Lab ID: 1671018

QC for Samples: 1223225006

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0450mg/L

Surrogates

4-Bromofluorobenzene (surr) 92.7 50-150 %

Batch Information

Analytical Batch: VFC16144 Prep Batch: VXX38778
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890 PID/FID Prep Date/Time: 6/28/2022 6:00:00AM

Analyst: PHK Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 6/28/2022 3:29:00PM Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:56PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [VXX38778]

Blank Spike Lab ID: 1671021 Date Analyzed: 06/28/2022 16:24

QC for Samples: 1223225006 Spike Duplicate ID: LCSD for HBN 1223225

[VXX38778]

Spike Duplicate Lab ID: 1671022 Matrix: Water (Surface, Eff., Ground)

Results by AK101

	ļ	Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.03	103	1.00	0.953	95	(60-120)	8.20	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 99 0.0500 88 (50-150) 12.20

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: PHK

Prep Batch: VXX38778 Prep Method: SW5030B

Prep Date/Time: 06/28/2022 06:00

Spike Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL

Print Date: 07/25/2022 12:22:58PM

Method Blank

Blank ID: MB for HBN 1839077 [VXX/38779]

Blank Lab ID: 1671023

QC for Samples:

1223225001, 1223225002, 1223225003, 1223225004, 1223225005

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 81.1 50-150 %

Batch Information

Analytical Batch: VFC16144 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: PHK

Analytical Date/Time: 6/29/2022 3:40:00AM

Prep Batch: VXX38779 Prep Method: SW5030B

Prep Date/Time: 6/28/2022 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/25/2022 12:23:01PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [VXX38779]

Blank Spike Lab ID: 1671024

Date Analyzed: 06/29/2022 03:21

Spike Duplicate ID: LCSD for HBN 1223225

[VXX38779]

Spike Duplicate Lab ID: 1671025

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1223225001, 1223225002, 1223225003, 1223225004, 1223225005

Results by AK101

	i i	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.954	95	1.00	0.918	92	(60-120)	3.80	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 88 0.0500 90 (50-150) 2.80

Batch Information

Analytical Batch: VFC16144
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: PHK

Prep Batch: VXX38779
Prep Method: SW5030B

Prep Date/Time: 06/28/2022 06:00

Spike Init Wt./Vol.: 0.0500 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.0500 mg/L $\,$ Extract Vol: 5 mL

Print Date: 07/25/2022 12:23:02PM

Method Blank

Blank ID: MB for HBN 1838638 [XXX/46478]

Blank Lab ID: 1669578

QC for Samples:

1223225001, 1223225002

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0500U	0.100	0.0310	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	43.2	42-86		%
Fluoranthene-d10 (surr)	56.1	50-97		%

Batch Information

Analytical Batch: XMS13235

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 7/14/2022 12:04:00PM

Prep Batch: XXX46478 Prep Method: SW3535A

Prep Date/Time: 6/23/2022 8:48:15PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:05PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [XXX46478]

Blank Spike Lab ID: 1669579 Date Analyzed: 07/14/2022 12:25

QC for Samples: 1223225001, 1223225002

Spike Duplicate ID: LCSD for HBN 1223225

[XXX46478]

Spike Duplicate Lab ID: 1669580 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.27	63	2	1.25	63	(41-115)	1.30	(< 20)
2-Methylnaphthalene	2	1.23	61	2	1.22	61	(39-114)	0.63	(< 20)
Acenaphthene	2	1.47	73	2	1.50	75	(48-114)	2.10	(< 20)
Acenaphthylene	2	1.41	71	2	1.44	72	(35-121)	2.40	(< 20)
Anthracene	2	1.55	77	2	1.61	80	(53-119)	3.80	(< 20)
Benzo(a)Anthracene	2	1.41	70	2	1.41	70	(59-120)	80.0	(< 20)
Benzo[a]pyrene	2	1.51	76	2	1.50	75	(53-120)	0.66	(< 20)
Benzo[b]Fluoranthene	2	1.47	73	2	1.46	73	(53-126)	0.68	(< 20)
Benzo[g,h,i]perylene	2	1.71	85	2	1.73	87	(44-128)	1.50	(< 20)
Benzo[k]fluoranthene	2	1.73	87	2	1.77	88	(54-125)	2.00	(< 20)
Chrysene	2	1.62	81	2	1.63	81	(57-120)	0.25	(< 20)
Dibenzo[a,h]anthracene	2	1.70	85	2	1.71	86	(44-131)	0.55	(< 20)
Fluoranthene	2	1.40	70	2	1.44	72	(58-120)	2.70	(< 20)
Fluorene	2	1.49	75	2	1.56	78	(50-118)	4.10	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.65	83	2	1.68	84	(48-130)	1.50	(< 20)
Naphthalene	2	1.34	67	2	1.33	66	(43-114)	0.52	(< 20)
Phenanthrene	2	1.50	75	2	1.57	78	(53-115)	4.40	(< 20)
Pyrene	2	1.42	71	2	1.45	73	(53-121)	2.10	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		50	2		51	(42-86)	0.82	
Fluoranthene-d10 (surr)	2		56	2		59	(50-97)	5.30	

Batch Information

Analytical Batch: XMS13235

Analytical Method: 8270D SIM LV (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX46478
Prep Method: SW3535A

Prep Date/Time: 06/23/2022 20:48

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:07PM

Method Blank

Blank ID: MB for HBN 1838656 [XXX/46481]

Blank Lab ID: 1669652

QC for Samples:

1223225003, 1223225004, 1223225005

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0500U	0.100	0.0310	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	58.3	42-86		%
Fluoranthene-d10 (surr)	70.5	50-97		%

Batch Information

Analytical Batch: XMS13204

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 6/29/2022 10:35:00AM

Prep Batch: XXX46481 Prep Method: SW3535A

Prep Date/Time: 6/24/2022 10:53:07AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:09PM

QC for Samples:

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [XXX46481]

Blank Spike Lab ID: 1669653 Date Analyzed: 06/29/2022 10:55

M

1223225003, 1223225004, 1223225005

Spike Duplicate ID: LCSD for HBN 1223225

[XXX46481]

Spike Duplicate Lab ID: 1669654 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.37	68	2	1.38	69	(41-115)	1.40	(< 20)
2-Methylnaphthalene	2	1.34	67	2	1.36	68	(39-114)	1.90	(< 20)
Acenaphthene	2	1.55	78	2	1.53	77	(48-114)	1.40	(< 20)
Acenaphthylene	2	1.56	78	2	1.60	80	(35-121)	2.50	(< 20)
Anthracene	2	1.67	83	2	1.63	82	(53-119)	2.30	(< 20)
Benzo(a)Anthracene	2	1.58	79	2	1.56	78	(59-120)	1.10	(< 20)
Benzo[a]pyrene	2	1.70	85	2	1.71	85	(53-120)	0.12	(< 20)
Benzo[b]Fluoranthene	2	1.69	84	2	1.63	81	(53-126)	3.70	(< 20)
Benzo[g,h,i]perylene	2	1.86	93	2	1.89	95	(44-128)	1.70	(< 20)
Benzo[k]fluoranthene	2	1.77	89	2	1.84	92	(54-125)	3.80	(< 20)
Chrysene	2	1.70	85	2	1.73	87	(57-120)	1.80	(< 20)
Dibenzo[a,h]anthracene	2	1.87	93	2	1.90	95	(44-131)	2.00	(< 20)
Fluoranthene	2	1.59	80	2	1.57	78	(58-120)	1.70	(< 20)
Fluorene	2	1.64	82	2	1.62	81	(50-118)	1.10	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.84	92	2	1.87	93	(48-130)	1.50	(< 20)
Naphthalene	2	1.36	68	2	1.41	70	(43-114)	3.30	(< 20)
Phenanthrene	2	1.74	87	2	1.71	86	(53-115)	1.80	(< 20)
Pyrene	2	1.62	81	2	1.60	80	(53-121)	1.10	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		55	2		56	(42-86)	2.00	
Fluoranthene-d10 (surr)	2		65	2		64	(50-97)	1.30	

Batch Information

Analytical Batch: XMS13204

Analytical Method: 8270D SIM LV (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX46481 Prep Method: SW3535A

Prep Date/Time: 06/24/2022 10:53

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:11PM

Method Blank

Blank ID: MB for HBN 1838879 [XXX/46498]

Blank Lab ID: 1670115

QC for Samples:

1223225001, 1223225002, 1223225003, 1223225004, 1223225005

Matrix: Water (Surface, Eff., Ground)

Results by AK102

LOQ/CL <u>Units</u> **Parameter** Results Diesel Range Organics 0.300U 0.600 0.200 mg/L

Surrogates

5a Androstane (surr) 81.7 60-120 %

Batch Information

Analytical Batch: XFC16272 Prep Batch: XXX46498 Analytical Method: AK102 Prep Method: SW3520C Instrument: Agilent 7890B R

Prep Date/Time: 6/27/2022 4:30:40PM

Prep Initial Wt./Vol.: 250 mL Analyst: MDT Analytical Date/Time: 6/29/2022 10:17:00PM Prep Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:13PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1223225 [XXX46498]

Blank Spike Lab ID: 1670116 Date Analyzed: 06/29/2022 22:27 Spike Duplicate ID: LCSD for HBN 1223225

[XXX46498]

Spike Duplicate Lab ID: 1670117

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1223225001, 1223225002, 1223225003, 1223225004, 1223225005

Results by AK102

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	20	18.8	94	20	19.2	96	(75-125)	1.90	(< 20)
Surrogates									
5a Androstane (surr)	0.4		89	0.4		97	(60-120)	9.00	

Batch Information

Analytical Batch: XFC16272 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: MDT

Prep Batch: XXX46498
Prep Method: SW3520C

Prep Date/Time: 06/27/2022 16:30

Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL

Print Date: 07/25/2022 12:23:15PM

SGS

Park Condominium Association

CLIENT:

SGS North America Inc. CHAIN OF CUSTODY RECORD

Profile #:

Instructions: Sections 1 - 5 must be filled out.

1223225

SGS 200 \ Anch enga

www.

Int.:

CONTACT: Rodney Guritz PHONE #: 907-451-3147 Section 3 Preservative PROJECT NAME: 2022 U-Park GW Investigation NPDL Number: NPDL Number(DOD): REPORTS TO: Rodney Guritz E-MAIL: rodney@arcticdataservices.com N T A Comp T A Comp Grab Preservative C V V V V V V V V V	NOTE: *The following analyses require specific method and/or compound list: BTEX, Metals, PFAS
INVOICE TO: Actio Data Sonitors LLC QUOTE #:	*The following analyses require specific method and/or compound list: BTEX, Metals,
INVOICE TO: Actic Data Sonitors LLC QUOTE #:	*The following analyses require specific method and/or compound list: BTEX, Metals,
I INVOICE TO: Arctic Data Somicos II C I OUDTE #:	specific method and/or compound list: BTEX, Metals,
N M 2 2 E 6	
INVOICE TO: Arctic Data Services, LLC QUOTE #: P.O. #: RESERVED for lab use SAMPLE IDENTIFICATION DATE mm/dd/yy HH:MM SAMPLE IDENTIFICATION DATE mm/dd/yy HI:MM SAMPLE IDENTIFICATION DATE mm/dd/yy HI:MM SAMPLE IDENTIFICATION DATE mm/dd/yy HI:MM SAMPLE MM/d	REMARKS/LOC ID
(I)AJ UPC-MW1 6/17/2022 14:15 GW 10 Grab X X X X	
②行 UPC-MW2 6/17/2022 12:48 GW 10 Grab X X X X	
3HT UPC-MW3 6/17/2022 11:30 GW 10 Grab X X X X	
Carabara	
6/17/2022 15:15 GW 10 Grab X X X X	
(b)AC Trip Blank 1 6/17/2022 8:00 GW 3 TB X X X	
Comments:	
Turnaround Time Requested SGS Sample Receipt // ah Use O	Only) stody Seal Condition
DataView Level 2 SEDD EQUIS Rush Did each cooler have a Children INTA	ACT BROKEN ABSENT
RECEIVED BY: DATE: TIME: RECEIVED BY: Cooler ID Temperature (°C) Therm. ID	
66/20/2) 11:31 (Dans Q AMARANTH 40 052	If more than three coolers are
3.4 Dez	received, or for documentation of non- compliant coolers, use form FS-0029.
Note: If temp. Is outside 0-6° and samples were not taken <8 hours ago OR are waste samples, Client or PM should initial here or attach an email change order to proceed with analysis. If ice is present, note on form F102B.	Intials:
Laboratory Use Only http://www.sgs.com/terms-and-conditions	Page 44 of 48

e-Sample Receipt Form FBK

SGS Workorder #:

Arctic Data | Arctic Data

Review Criteri	a	on (Yes,	No, N/A	Excep	tions No	ted below		
Chain of Custody /	Temperature Requiremen	ts	Ye	s Exemption perm			ies/delive	ers.
Were Custoo	dy Seals intact? Note # & location	N/A						
	COC accompanied samples?	Yes						
DOD: Were samples receive	ed in COC corresponding coolers?	N/A					,	
	**Exemption permitted if chilled &	colle	cted <8 hours	s ago, or for sample	es where c	hilling is not re	quired	
Temperature blank cor	npliant* (i.e., 0-6 °C after CF)?	Yes	Cooler ID:	Amaranth	@	4.0 °C The	erm. ID:	D52
			Cooler ID:		@	°C The	erm. ID:	
If samples received without a temperature blan			Cooler ID:		@	°C The	erm. ID:	
documented instead & "COOLER TEMP" will be note be noted if neither is a			Cooler ID:		@	°C The	erm. ID:	
*If >6°C, were sam	ples collected <8 hours ago?							
lf <0°C, wer	e sample containers ice free?							
Note: Identify containers received a				-				
Use form FS-	0029 if more space is needed.							
			1					
			N . B .					41,11
Do samples match COC** (i.e.,sam)	n / Sample Condition Requiren	_	Note: Refer	to form F-083 "San	nple Guide	for specific h	olding tin	nes.
		N/C						
**Note: If times differ <1hr, reco	그림들이 점점 생각하는 것 같아. 그는 그 사람들은 사람들이 나는 것							
***Note: If sample information on containers differs f								
Were samples in good conditio	ii (no leaks/cracks/breakage)?	res						
Were analytical requests clear? (i.e., m	ethod is specified for analyses							
with multiple option f	or analysis (Ex: BTEX, Metals)	Yes						
Were Trip Blanks (i.e., VOAs, I	_L-Hg) in cooler with samples?		<u> </u>					
Were all water VOA vials free of hea								
National Control (1997) 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	eld extracted with MeOH+BFB?							
	as RUSH/Short HT email sent?				<u></u>	:	F	
	answer above indicates non-comp	11	ran and a galactic	d procedures and n	nav imnact	data quality		y megasa
Note to Sherit. Any No ;	Additional notes				пау шірасі	uata quality.		
		- ,,, 0	FPIIOGDIO).			Γ		
SGS Profile #	349350			349	350			
				·				

e-Sample Receipt Form

SGS Workorder #: 1223225 1223225

Review Criteria	Condition (Yes, N	No, N/A	Exceptions Noted below
Chain of Custody / Temperature Requirements		Note: T	emperature and COC seal information is found on the chain of custody form
DOD only: Did all sample coolers have a corresponding C	COC? N/A		
If <0°C, were sample containers ice	free? N/A		
Note containers receive	d with ice:		
Identify any containers received at non-compliant ten	s needed)		
lolding Time / Documentation / Sample Condition Req		Note: R	efer to form F-083 "Sample Guide" for specific holding times and sample containers.
Were samples received within analytical holding to Do sample labels match COC? Record discrepare			
Note: If information on containers differs from COC, default to information for login. If times differ <1hr, record details & login p			
Were analytical requests of	lear? Yes		
(i.e. method is specified for analyses with multiple option for me (Eg, BTEX 8021 vs 8260, Metals 6020 vs 200.8)	ethod		
Were proper containers (type/mass/volume/preservative)us Note: Exemption for metals analysis by 200.8/6020 in war			
Volatile Analysis Requirements (VOC, GRO, LL-Hg	, etc.)		
Vere all soil VOAs received with a corresponding % solids conta	iner? N/A		
Were Trip Blanks (e.g., VOAs, LL-Hg) in cooler with sam			
Were all water VOA vials free of headspace (e.g., bubbles ≤ 6r			
Were all soil VOAs field extracted with Methanol+I			
Note to Client: Any "No", answer above indicates non-c			
Additional r	otes (if a	pplic	cable):

F102b_SRFpm_20210526 Page 46 of 48

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1223225001-A	HCL to pH < 2	ОК	1223225005-J	No Preservative Required	OK
1223225001 A	HCL to pH < 2	OK	1223225005 J	HCL to pH < 2	OK
1223225001 B	HCL to pH < 2	OK	1223225000 A	HCL to pH < 2	OK
1223225001 C	HCL to pH < 2	OK	1223225000 B	HCL to pH < 2	OK
1223225001 B	HCL to pH < 2	OK	1223223000 C		OK
1223225001 E	HCL to pH < 2	OK			
1223225001 T	HCL to pH < 2	OK			
1223225001 G	HCL to pH < 2	OK			
1223225001 TI	No Preservative Required	OK			
1223225001 T	No Preservative Required	OK			
1223225001 5 1223225002-A	HCL to pH < 2	OK			
1223225002 A	HCL to pH < 2	OK			
1223225002 B	HCL to pH < 2	OK			
1223225002 C	HCL to pH < 2	OK			
1223225002 B	HCL to pH < 2	OK			
1223225002 E	HCL to pH < 2	OK			
1223225002 T	HCL to pH < 2	OK			
1223225002 G	HCL to pH < 2	OK			
1223225002 TI	No Preservative Required	OK			
1223225002 I	No Preservative Required	OK			
1223225002 5	HCL to pH < 2	OK			
1223225003 A	HCL to pH < 2	OK			
1223225003 B	HCL to pH < 2	OK			
1223225003-D	HCL to pH < 2	OK			
1223225003 E	HCL to pH < 2	OK			
1223225003 E	HCL to pH < 2	OK			
1223225003 ·G	HCL to pH < 2	OK			
1223225003-H	HCL to pH < 2	OK			
1223225003-I	No Preservative Required	OK			
1223225003-J	No Preservative Required	OK			
1223225004-A	HCL to pH < 2	OK			
1223225004-В	HCL to pH < 2	ОК			
1223225004-C	HCL to pH < 2	OK			
1223225004-D	HCL to pH < 2	OK			
1223225004-E	HCL to pH < 2	OK			
1223225004-F	HCL to pH < 2	ОК			
1223225004-G	HCL to pH < 2	OK			
1223225004-H	HCL to pH < 2	OK			
1223225004-I	No Preservative Required	OK			
1223225004-J	No Preservative Required	OK			
1223225005-A	HCL to pH < 2	OK			
1223225005-B	HCL to pH < 2	OK			
1223225005-C	HCL to pH < 2	ОК			
1223225005-D	HCL to pH < 2	ОК			
1223225005-E	HCL to pH < 2	ОК			
1223225005-F	HCL to pH < 2	OK			
1223225005-G	HCL to pH < 2	OK			
1223225005-H	HCL to pH < 2	OK			
1223225005-I	No Preservative Required	OK			

Page 47 of 48 6/21/2022

<u>Container Id Preservative Container Container Id Preservative Container Condition</u>

<u>Condition</u>

<u>Container Id Preservative Container Id Preservative Condition</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:
Enigma Swan Adams
Title:
Data Scientist
Date:
August 19, 2022
Consultant Firm:
Arctic Data Services, LLC
Laboratory Name:
SGS North America, Inc Anchorage, AK
Laboratory Report Number:
Laboratory Report Number: 1223225
1223225
1223225 Laboratory Report Date:
1223225 Laboratory Report Date: July 26, 2022
1223225 Laboratory Report Date: July 26, 2022 CS Site Name:
Laboratory Report Date: July 26, 2022 CS Site Name: University Park Condos Spill
1223225 Laboratory Report Date: July 26, 2022 CS Site Name: University Park Condos Spill ADEC File Number:

., <u>Laboi</u>	<u>ratory</u>	
a) Did an ADE	C CS approved la	aboratory receive and perform all of the submitted sample analyses?
Yes	O No	O N/A
comments:		
		nalyzed by SGS North America, Inc Anchorage, AK (SGS Anchorage). The laboratory is ADEC erformed, where required.
		I to another 'network' laboratory or sub-contracted to an alternate laboratory, was the yees ADEC CS approved?
O Yes	○ No	
Comments:		
No complee we		
	n of Cust	or analyzed by another laboratory.
2.) <u>Chair</u>	n of Cust	
2.) <u>Chair</u> 2.a) CoC inform • Yes	of Custon completed	ody d, signed, and dated (including released/received by)?
2.) Chair a.a) CoC inform • Yes comments:	of Custon completed	ody d, signed, and dated (including released/received by)?
2.) Chair a.a) CoC inform • Yes comments:	n of Custonation completed	ody d, signed, and dated (including released/received by)?
2.) Chair 2.a) CoC inform • Yes Comments:	n of Custonation completed	ody d, signed, and dated (including released/received by)?
2.) Chair 2.a) CoC inform • Yes 2.b) Correct and • Yes	n of Custonation completed	ody d, signed, and dated (including released/received by)?

12/30/22, 11:11 AM 2 of 14

3.a) Sample/coo	oler temperatur	e documented and	within range at receipt (0° to 6° C)?
Yes	○ No	○ N/A	
Comments:			
Samples were r	eceived within th	ne acceptable tempe	rature range.
3.b) Sample pre Solvents, etc.)?		otable – acidified w	aters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated
Yes	O No	○ N/A	
Comments:			
3.c) Sample con	dition documer	ted – broken, leaki	ng (Methanol), zero headspace (VOC vials)?
Yes	O No	O N/A	
Comments:			
Samples were r	eceived in good	condition.	
			cumented? For example, incorrect sample containers/preservation, insufficient or missing samples, etc.?
O Yes	O No	N/A	
Comments:			
There were no	sample receiving	discrepancies.	
3.e) Data quality	y or usability af	ected?	
Data quality and	d usability were	not affected.	
4.) <u>Case</u>	Narrativ	<u>e</u>	
4.a) Present and	l understandsh	le?	
• Yes	O No	O N/A	

12/30/22, 11:11 AM 3 of 14

.b) Discrepancie			
.b) Discrepancie			
	es, errors, or G	C failures identified by the l	ab?
Yes	O No	○ N/A	
comments:			
The laboratory resections of this of		ative documented a number of	QC anomalies which are addressed in the following relevant
.c) Were all corr	ective actions	documented?	
Yes	O No	○ N/A	
omments:			
UPC-MW2 " 827 outside of hold ti	OD SIM - PAH sime and results	urrogate recovery for Fluoran confirm. The in-hold data is required	o the case narrative?
The laboratory m			
The laboratory m		Sions regarding data quality o	a dodomity.
5.) <u>Sampl</u>	le Resul		
5.) <u>Sampl</u> 5.a) Correct analy • Yes	le Resul	tS d/reported as requested on	
5.) <u>Sampl</u> .a) Correct analy • Yes	le Resul	tS d/reported as requested on	
5.) Samples. 6.a) Correct analy • Yes Comments:	Ie Resul yses performe	d/reported as requested on	
5.) <u>Sampl</u>	Ie Resul yses performe	d/reported as requested on	

12/30/22, 11:11 AM 4 of 14

	O No	
omments:		
No soil sample	s were analyzed i	in this work order.
.d) Are the rep	orted LOQs less	s than the Cleanup Level or the minimum required detection level for the project
Yes	O No	○ N/A
Comments:		
		results were compared to the following project action limits (PALs): roundwater Cleanup Levels for groundwater samples.
LOQs and LOD	s were below PAL	Ls for all non-detect results.
	v or usabilitv aff	fected?
5.e) Data qualit	,	icotou.

12/30/22, 11:11 AM 5 of 14

Method/L	ab Blank		
6.a.i) One meth	nod blank report	ed per matrix, analys	is and 20 samples?
Yes	O No	○ N/A	
Comments:			
Comments:			
6.a.ii) All meth	od blank results	less than limit of qua	ntitation (LOQ) or project specified objectives?
Yes	○ No	○ N/A	
Comments:			
There were no	method blank de	etections identified.	
6.a.iii) If above	LOQ or project	specified objectives,	what samples are affected?
No results wer	re affected by me	thod blank contaminat	ion
6.a.iv) Do the a	affected sample((s) have data flags? If	so, are the data flags clearly defined?
O Yes	○ No	N/A	
Comments:			
	re affected. See a	bove.	
6.a.v) Data qua	ality or usability a	affected?	
Data quality ar	nd usability were	not affected.	
Laborator	y Control S	Sample/Duplic	eate (LCS/LCSD)
6.b.i) Organics required per SV		D reported per matrix	, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS
• Yes	O No	O N/A	
Comments:			

12/30/22, 11:11 AM 6 of 14

6.b.ii) Metals/In	organics – one l	.CS and one sample o	duplicate reported per matrix, analysis and 20 samples?
O Yes	O No	N/A	
Comments:			
There were no i	inorganic analyse	es performed in this wo	ork order.
	plicable? (AK Pe	etroleum methods: A	ted and within method or laboratory limits and project specified K101 60%%-120%%, AK102 75%%-125%%, AK103 60%%-120%%; all
Yes	O No	○ N/A	
Comments:			
specified object	ives, if applicab		PPD) reported and less than method or laboratory limits and project m LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods
Comments:			
6.b.v) If %R or R	RPD is outside of	i acceptable limits, w	hat samples are affected?
There were no I	LCS/LCSD recove	ery failures. There wer	re no LCSD RPD failures.
6.b.vi) Do the af	fected sample(s	s) have data flags? If	so, are the data flags clearly defined?
O Yes	O No	N/A	
Comments:			
No results were	e affected by LCS	/LCSD recovery or RP	D failures.

6.b.vii) Data quality or usability affected?

12/30/22, 11:11 AM 7 of 14

Data quality an	d usability were ı	not affected.	
Matrix Spi	ke/Duplica	ite (MS/MSD))
Note: Select N/A	if MS/MSDs are	not required for the	project.
6.c.i) Organics -	– One MS/MSD r	eported per matrix	, analysis and 20 samples?
O Yes	O No	N/A	
Comments:			
Project-specific	c MS/MSD analys	sis was not required	for the organic methods performed in this work order.
6.c.ii) Metals/In	organics – one I	MS and one MSD re	ported per matrix, analysis and 20 samples?
O Yes	○ No	N/A	
Comments:			
There were no	inorganic analyse	es performed in this	work order.
	plicable? (AK P	etroleum methods:	orted and within method or laboratory limits and project specified AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other
O Yes	O No	N/A	
Comments:			
N/A; see above			
specified object	tives, if applicat		(RPD) reported and less than method or laboratory limits and project rom MS/MSD, and or sample/sample duplicate. (AK Petroleum methods es)
Yes	O No	O N/A	
Comments:			
N/A; see above			

6.c.v) If $\%\mbox{R}$ or RPD is outside of acceptable limits, what samples are affected?

12/30/22, 11:11 AM 8 of 14

N/A; see above			
6.c.vi) Do the af	fected sample(s	s) have data flags	s? If so, are the data flags clearly defined?
O Yes	○ No	N/A	
Comments:			
N/A; see above			
6.c.vii) Data qua	ality or usability	affected?	
Data quality an	d usability were r	not affected.	
Surrogates	S		
Note: Surrogates	s for organic analy	ses only or Isoto	pe Dilution Analytes (IDA) for isotope dilution methods
6.d.i) Are surro	gate/IDA recover	ries reported for	organic analyses – field, QC and laboratory samples?
Yes	○ No	○ N/A	
Comments:			
objectives, if ap		etroleum method	eported and within method or laboratory limits and project specified is 50-150 %R for field samples and 60-120 %R for QC samples; all other
O Yes	No	O N/A	
Comments:			
There were thre	ee surrogate reco	overy failures iden	tified in project samples. Refer to the table below for details.

lab_id	Method	Sample ID	Surrogate	DF	%R	LCL	UCL	Recovery
SGSA	8270DSIM	UPC-MW1	2-Methylnaphthalene-d10	1	29	42	86	Low
SGSA	8270DSIM	UPC-MW1	Fluoranthene-d10	1	39	50	97	Low
SGSA	8270DSIM	UPC-MW2	Fluoranthene-d10	1	47	50	97	Low

12/30/22, 11:11 AM 9 of 14

6.d.iii) Do the sam	ple results v	with failed su	rrogate/ID/	A recoveries have	e data flags? If so	. are the data flac	gs clearly defined?

Yes	O No	O N/A
-----------------------	------	-------

Comments:

There were 28 results affected by surrogate recovery failures. Project-sample results are not considered affected if the associated surrogate was recovered high and the associated analyte was non-detect.

Detected results affected by low surrogate recovery failures (Recovery < LCL) are qualified 'J-' as estimated with a low bias. Non-detect results affected by low surrogate recovery failures (Recovery < LCL) are qualified 'UJ', indicating there is uncertainty in the presence or absence of the analyte at the listed reporting limit, due to potential low bias.

12/30/22, 11:11 AM 10 of 14

Method	Sample ID	Analyte	Units	Result	QC Flag
8270DSIM	UPC-MW1	1-Methylnaphthalene	ug/L	1.48	J-
8270DSIM	UPC-MW1	2-Methylnaphthalene	ug/L	0.0250 U	ΟJ
8270DSIM	UPC-MW1	Acenaphthene	ug/L	0.0783	J-
8270DSIM	UPC-MW1	Acenaphthylene	ug/L	0.0250 U	ΟJ
8270DSIM	UPC-MW1	Anthracene	ug/L	0.0250 U	ΟJ
8270DSIM	UPC-MW1	Benzo(a)anthracene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Benzo(a)pyrene	ug/L	0.0100 U	UJ
8270DSIM	UPC-MW1	Benzo(b)fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Benzo(g,h,i)perylene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Benzo(k)fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Chrysene	ug/L	0.0250 U	ΟJ
8270DSIM	UPC-MW1	Dibenzo(a,h)anthracene	ug/L	0.0100 U	UJ
8270DSIM	UPC-MW1	Fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Fluorene	ug/L	0.0340 J	J-
8270DSIM	UPC-MW1	Indeno(1,2,3-cd)pyrene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW1	Naphthalene	ug/L	0.168	J-
8270DSIM	UPC-MW1	Phenanthrene	ug/L	0.0500 U	UJ
8270DSIM	UPC-MW1	Pyrene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Benzo(a)anthracene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Benzo(a)pyrene	ug/L	0.0100 U	UJ
8270DSIM	UPC-MW2	Benzo(b)fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Benzo(g,h,i)perylene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Benzo(k)fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Chrysene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Dibenzo(a,h)anthracene	ug/L	0.0100 U	UJ
8270DSIM	UPC-MW2	Fluoranthene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Indeno(1,2,3-cd)pyrene	ug/L	0.0250 U	UJ
8270DSIM	UPC-MW2	Pyrene	ug/L	0.0250 U	UJ

Data quality is a usability.	affected as desc	ribed above. Refei	to the data quality assessment for discussion of potential impacts to data
Trip Blanks	6		
Note: Only requir		nalyses	
6.e.i) One trip b below.)	lank reported p	er matrix, analys	s and for each cooler containing volatile samples? (If not, enter explanation
Yes	○ No	O N/A	
Comments:			
One trip blank v	was submitted al	longside field sam	ples for the following volatile organic analyses: 8260D, AK101.
explaining why i	must be entered	d below)	nk and VOA samples clearly indicated on the COC? (If not, a comment
explaining why i			nk and VOA samples clearly indicated on the COC? (if not, a comment
• Yes Comments:	must be entered ○ No	d below)	
explaining why r • Yes Comments: 6.e.iii) All result	must be entered ○ No	d below) ON/A and project spec	cified objectives?
explaining why r • Yes Comments: 6.e.iii) All result • Yes	No No	d below) ON/A and project spec	
explaining why r • Yes Comments: 6.e.iii) All result • Yes Comments:	s less than LOQ	o N/A and project spec	
explaining why r Yes Comments: 6.e.iii) All result Yes Comments:	s less than LOQ No	o N/A and project spec	cified objectives?
explaining why r • Yes Comments: 6.e.iii) All result • Yes Comments:	s less than LOQ No No	o N/A and project specified objective ny trip blank samp	es, what samples are affected?

Field Duplicate(s) or Replicates

6 f i) One field du	nlicate subm	nitted per matrix, analysis and 10 project san	nnles?
• Yes	O No	O N/A	ilpico.
Comments:			
		ed and submitted, compared to four primary sa red collection frequency. Refer to the table belo	amples (25% collection frequency), meeting or ow for a full list of primary samples and associated
	Sample	Association Type	Associated Samples
UPC-MW11		Field_Duplicate	UPC-MW1
6.f.ii) Submitted I • Yes Comments:	Olind to lab?	○ N/A	
6.f.iii) Precision – Water/Air, 50% S		percent differences (RPD) less than specifie	d project objectives? (Recommended: 30%
O Yes	No	○ N/A	
Comments:			

RPDs for each field duplicate sample pair were calculated and compared to the ADEC recommended measurement quality objectives (MQO) for the sample medium (30%), where an analyte was quantitatively detected (above the LOQ) in at least one sample. There were one field duplicate sample pair RPD failures identified. Refer to the table below for details.

Method	Analyte	Sample	Sample Result	Associated Sample	Associated Result	RPD	Sample QC Flag	Associated QC Flag
8270DSIM	1-Methylnaphthalene	UPC- MW11	0.71	UPC-MW1	1.48	70.3	J	J

6.f.iv) Data quality or usability affected?

Affected results are qualified 'J' (for detections) or 'UJ' (for non-detects), indicating the result is estimated with an indeterminate direction of bias. The higher of duplicate results should be used as the estimated concentration of the analyte at the sampled location for project decision-making purposes.

Decontamination/Rinsate or Equipment Blanks

6.g.i) Decontamination or Equipment Blank submitted and analyzed (If not applicable, a comment stating why must be entered below)?								
O Yes	O No	N/A						
Comments:								
An equipment/o	decontamination	plank was not required nor submitted for the matrix and methods performed for this	work order.					
o.g.ii) All result	s less than LOQ	and project specified objectives?						
O Yes	O No	N/A						
Comments:								
N/A; No equipm	nent/decontamina	tion blank samples were submitted.						
6.g.iii) If above		pecified objectives, what samples are affected?						
N/A; see above								
N/A; see above		iffected?						
N/A; see above	Ility or usability	iffected?						
N/A; see above 6.g.iv) Data qua Data quality an	Ility or usability d usability were r	ot affected.	etc.)					
N/A; see above 6.g.iv) Data qua Data quality an	Ility or usability d usability were r	iffected?	etc.)					
N/A; see above 6.g.iv) Data qua Data quality an 7.) Other 7.a) Defined and	d usability Data Fla	ot affected. gs/Qualifiers (ACOE, AFCEE, Lab Specific, e	etc.)					
N/A; see above 6.g.iv) Data qua Data quality an	llity or usability d usability were r	ot affected.	etc.)					
N/A; see above 6.g.iv) Data qua Data quality an 7.) Other 7.a) Defined and	d usability Data Fla	ot affected. gs/Qualifiers (ACOE, AFCEE, Lab Specific, e	etc.)					

Summary of Qualified Data

2022 Groundwater Investigation Data Quality Assessment

Table 1	- Summary	of Qualified Data															
Lab	SDG	Client_Sample_ID	Matrix	Method	Analyte	CAS	Units	DL	LOD	LOQ	Result	Lab Flag	QC Flags	Note	Final QC Flag	Final Qualified Result	PAL
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	1-Methylnaphthalene	90-12-0	μg/L	0.0150	0.0250	0.0500	1.48	NA	J,J-	FD_RPD,SURR_%R	J	1.48 J	11.0
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	2-Methylnaphthalene	91-57-6	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	36.0
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Acenaphthene	83-32-9	μg/L	0.0150	0.0250	0.0500	0.0783	NA	J-	SURR_%R	J-	0.0783 J-	530
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Acenaphthylene	208-96-8	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	260
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Anthracene	120-12-7	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	43.0
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Benzo(a)anthracene	56-55-3	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.300
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Benzo(a)pyrene	50-32-8	μg/L	0.00620	0.0100	0.0200	ND	NA	UJ	SURR_%R	UJ	0.0100 UJ	0.250
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Benzo(b)fluoranthene	205-99-2	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	2.50
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Benzo(g,h,i)perylene	191-24-2	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.260
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Benzo(k)fluoranthene	207-08-9	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.800
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Chrysene	218-01-9	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	2.00
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Dibenzo(a,h)anthracene	53-70-3	μg/L	0.00620	0.0100	0.0200	ND	NA	UJ	SURR_%R	UJ	0.0100 UJ	0.250
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Fluoranthene	206-44-0	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	260
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Fluorene	86-73-7	μg/L	0.0150	0.0250	0.0500	0.0340	J	J-	SURR_%R	J-	0.0340 J-	290
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.190

Summary of Qualified Data

Notes:

FD_RPD: Field duplicate relative percent difference failure SURR_%R: Surrogate spike percent recovery failure

QC Flags:

- $\mbox{\bf J}\!\!:$ The quantitation is considered estimated, with an indeterminate direction of bias.
- UJ: The analyte was not detected, however there is uncertainty in the presence or absence of the analyte due to a QC anomaly
- J-: The quantitation is considered estimated, biased low, due to a QC anomaly.

Definitions:

Yellow highlight indicates a result should be used with caution

Light red highlight indicates a result was flagged for rejection

μg/L: micrograms per liter

SDG: sample delivery group

CAS: Chemical Abstract Service registry number

DL: detection limit LOD: limit of detection

LOQ: limit of quantitation
QC: quality control

ND/U: non-detect NA: not applicable

PAL Sources:

 ${\bf Ground_Water\ ADEC\ Table\ C\ GCL}: \ ADEC\ 18\ AAC\ 75.345\ Table\ C\ Groundwater\ Cleanup\ Levels$

Table 1	ble 1 - Summary of Qualified Data																
Lab	SDG	Client_Sample_ID	Matrix	Method	Analyte	CAS	Units	DL	LOD	LOQ	Result	Lab Flag	QC Flags	Note	Final QC Flag	Final Qualified Result	PAL
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Naphthalene	91-20-3	μg/L	0.0310	0.0500	0.100	0.168	NA	J-	SURR_%R	J-	0.168 J-	1.70
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Phenanthrene	85-01-8	μg/L	0.0310	0.0500	0.100	ND	NA	UJ	SURR_%R	UJ	0.0500 UJ	170
SGSA	1223225	UPC-MW1	Ground_Water	8270DSIM	Pyrene	129-00-0	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	120
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Benzo(a)anthracene	56-55-3	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.300
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Benzo(a)pyrene	50-32-8	μg/L	0.00620	0.0100	0.0200	ND	NA	UJ	SURR_%R	UJ	0.0100 UJ	0.250
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Benzo(b)fluoranthene	205-99-2	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	2.50
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Benzo(g,h,i)perylene	191-24-2	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.260
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Benzo(k)fluoranthene	207-08-9	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.800
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Chrysene	218-01-9	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	2.00
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Dibenzo(a,h)anthracene	53-70-3	μg/L	0.00620	0.0100	0.0200	ND	NA	UJ	SURR_%R	UJ	0.0100 UJ	0.250
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Fluoranthene	206-44-0	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	260
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	0.190
SGSA	1223225	UPC-MW2	Ground_Water	8270DSIM	Pyrene	129-00-0	μg/L	0.0150	0.0250	0.0500	ND	NA	UJ	SURR_%R	UJ	0.0250 UJ	120
SGSA	1223225	UPC-MW11	Ground_Water	8270DSIM	1-Methylnaphthalene	90-12-0	μg/L	0.0150	0.0250	0.0500	0.710	NA	J	FD_RPD	J	0.710 J	11.0

ATTACHMENT E

CONCEPTUAL SITE MODEL

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: University Park Condos, 656 Fairbanks, Alaska 9970 ADEC File Number 100.38.162 Completed By: Leslie Brooks, Arctic Data Services, LLC	9	<u>Instructions</u> : Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.							
Completed By: Leslie Brooks, Arctic Data Services, LLC Date Completed: 01/06/2023 (1) (2) Check the media that could be directly affected by the release. For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	(5) Identify the receptors potentially affected by eac exposure pathway: Enter "C" for current recepto "F" for future receptors, "C/F" for both current an future receptors, or "I" for insignificant exposure. Current & Future Receptor						
Media Transport Mechanisms Direct release to surface soil Check soil Surface Migration to subsurface Check soil Soil Migration to groundwater Check groundwater (0-2 ft bgs) Volatilization Check air	Exposure Media	Exposure Pathway/Route	Residents (adult	Commercial or industrial workers	or recreational users	Farmers or subsistence	Other		
Runoff or erosion check surface water Uptake by plants or animals check biota Other (list): Direct release to subsurface soil check soil	soil [ncidental Soil Ingestion Dermal Absorption of Contaminants from Soil nhalation of Fugitive Dust	I	I	I				
Subsurface Soil Volatilization Check groundwater check groundwater check groundwater check air check biota Other (list):	groundwater v	ngestion of Groundwater Dermal Absorption of Contaminants in Groundwater nhalation of Volatile Compounds in Tap Water	F	F	F				
Ground- water Direct release to groundwater Check groundwater	□ air	nhalation of Outdoor Air nhalation of Indoor Air nhalation of Fugitive Dust	I I	I I	I I				
Surface Water Direct release to surface water Check sediment Check biota Other (list):	surface water	ngestion of Surface Water Dermal Absorption of Contaminants in Surface Water nhalation of Volatile Compounds in Tap Water							
Sediment Direct release to sediment Check sediment		Direct Contact with Sediment ngestion of Wild or Farmed Foods							

Print Form

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	University Park Condos, 656 Fairbanks S	t Fairbanks, AK 99709
File Number:	100.38.162	
Completed by:	Leslie Brooks, Arctic Data Services, LLC	
about which exposure summary text about about text about the characterization of the characterization	osure pathways should be further in	•
1. General In Sources (check)	nformation: potential sources at the site)	
☐ USTs		☐ Vehicles
⊠ ASTs		☐ Landfills
☐ Dispensers/fu	el loading racks	☐ Transformers
☐ Drums		Other:
Release Mechan	isms (check potential release mech	anisms at the site)
⊠ Spills		☐ Direct discharge
☐ Leaks		☐ Burning
		☐ Other:
Impacted Media	a (check potentially-impacted medic	a at the site)
✓ Surface soil (€	0-2 feet bgs*)	⊠ Groundwater
Subsurface so Sub	oil (>2 feet bgs)	☐ Surface water
☐ Air		☐ Biota
☐ Sediment		☐ Other:
Receptors (check	k receptors that could be affected b	y contamination at the site)
⊠ Residents (ad	ult or child)	⊠ Site visitor
☐ Commercial o	or industrial worker	⊠ Trespasser
⊠ Construction	worker	☐ Recreational user
☐ Subsistence h	arvester (i.e. gathers wild foods)	Farmer
☐ Subsistence c	onsumer (i.e. eats wild foods)	☐ Other:

^{*} bgs - below ground surface

2.	Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)							
a)	Direct Contact - 1. Incidental Soil Ingestion							
	Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a s	the ground surface?						
	If the box is checked, label this pathway complete:	Complete						
	Comments:							
	Based on the results of analytical sampling, the incidental soil ingestion insignificant, as contaminant levels are below human health soil cleanup							
	2. Dermal Absorption of Contaminants from Soil							
	Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a s		the ground surface?					
	Can the soil contaminants permeate the skin (see Appendix B i	n the guidance document)?	X					
	If both boxes are checked, label this pathway complete:	Complete						
	Comments:							
	Based on the results of analytical sampling, the dermal absorption of coldeemed insignificant, as contaminant levels are below human health so							
b)	Ingestion - 1. Ingestion of Groundwater							
	Have contaminants been detected or are they expected to be de or are contaminants expected to migrate to groundwater in the		×					
	Could the potentially affected groundwater be used as a current source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.	determined the ground-	\boxtimes					
	If both boxes are checked, label this pathway complete:	Complete						
	Comments:							
	Bases on the results of analytical sampling, GW contaminants are above at the source area. Contaminated GW on the site is not a current source the future.	•						

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).						
If both boxes are checked, label this pathway complete:	Incomplete					
Comments:						
The nearest body of surface water is Deadman Slough, 150 feet to the w not to migrating to Deadman Slough. Analytical results and field screeni groundwater and surface contamination adjacent the closer seasonal ch	ing confirmed absence of					
3. Ingestion of Wild and Farmed Foods						
s the site in an area that is used or reasonably could be used for arvesting of wild or farmed foods?	or hunting, fishing, or					
On the site contaminants have the potential to bioaccumulate (slocument)?	see Appendix C in the guidance					
Are site contaminants located where they would have the poter piota? (i.e. soil within the root zone for plants or burrowing de groundwater that could be connected to surface water, etc.)	<u>*</u>					
If all of the boxes are checked, label this pathway complete	Incomplete					
Comments:						
nhalation-						
Are contaminants present or potentially present in surface soil						
Are contaminants present or potentially present in surface soil	•					
Are contaminants present or potentially present in surface soil ground surface? (Contamination at deeper depths may require	•					

2. Ingestion of Surface Water

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminated soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

 $\overline{\times}$

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

 $\overline{\times}$

If both boxes are checked, label this pathway complete:

Complete

Comments:

The inhalation of indoor air (vapor intrusion) pathway is deemed insignificant due to the results of analytical sampling, and the separation of the boiler room where the release occurred from the rest of the building.

3.	Additional Exposure Pathways:	(Although there are no	definitive questions prov	ided in this section,
	these exposure pathways should also be	considered at each site.	Use the guidelines prov	ided below to
	determine if further evaluation of each p	pathway is warranted.)		

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- o Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

	ck the box if further evaluation of this pathway is needed:	
Comm	ents:	
Inhalat	ion of Volatile Compounds in Tap Water	
Inha o	lation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, l washing.	aundering, and dish
0	The contaminants of concern are volatile (common volatile contaminants are listed guidance document.)	in Appendix D in t
_	oundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway becaus during normal household activities is incorporated into the groundwater exposure equat	
Che	ck the box if further evaluation of this pathway is needed:	
Comm	ents:	

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Oust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation. Check the box if further evaluation of this pathway is needed: Comments: **Direct Contact with Sediment** This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if: Climate permits recreational activities around sediment. 0 The community has identified subsistence or recreational activities that would result in exposure to the 0 sediment, such as clam digging. Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment. Check the box if further evaluation of this pathway is needed: Comments:

1.)	 comments as necessary	

ATTACHMENT F

ADEC COMMENTS

ADEC Comments to *Groundwater Investigation Report* for University Park Condos Spill

Reviewer: Rebekah Reams, Alaska Department of Environmental Conservation, Contaminated Sites Program

Comment No.	Pg. #	Section	Comment / Recommendations	Response (4/24/2023, Arctic Data Services)
1.	5	Well Sampling	Was disposable sampling equipment used during this monitoring event? If not, was equipment decontamination between sample locations?	No disposable equipment was used. A reusable submersible pump was used to collect the samples and was decontaminated between sampling locations. The pump was decontaminated by running it in an Alconox solution, then tap water, followed by three distilled-water rinses. Wells were sampled in the order of least likely to be contaminated to most likely, and no equipment blank was collected, in accordance with the ADEC approved work plan. The report will be revised to note the decontamination procedure.
2.	3	Well Installation	Please provide a brief description of the field screening methods that were implemented during monitoring well installation.	Immediately upon opening a soil core, field-screening samples were collected from 2.5-foot intervals and immediately placed in Ziploc bags, which were sealed and allowed to warm for at least 10 minutes, then read with a photoionization detector. The report will be revised to note the field screening procedure.
3.	4	Investigation Derived Waste Management	Was soil investigative derived waste generated during this site characterization work? If so, please describe how soil waste was managed.	No soil IDW was planned, however the drillers did not have the correct tooling to advance the wells without sampling. Since sampling occurred, we field screened the soil cores and did generate some soil IDW. The volume of soil generated

4.	6	Recommendations	ADEC concurs with the recommendations outlined in this section of the report. Please submit a work plan that details how these recommendations will be	during well installation was minimal and was used to backfill the boreholes around the well above the seal, consistent with prior soil IDW management from the 2021 soil investigation. At MW-1, where field screening readings exceeded 20 ppm, care was taken to ensure the soil was placed below 2 ft. bgs, then the remainder of the borehole filled with pea gravel to the surface. Acknowledged.
5.	6	Recommendations	implemented at this site. This section of the report notes that natural attenuation with long-term monitoring is the proposed remedial action.	Acknowledged, thank you for clarifying the process.
			Please note that ADEC considers the long-term groundwater monitoring proposed in this section of the report to be the next step in the site characterization process under 18 AAC 75.335, rather than the selection of a remedial action under 18 AAC 75.360. Evaluating seasonal variations in	
			groundwater depth and flow direction and establishing contaminant trends over time is an integral step in the site characterization process. When selecting natural attenuation as a site cleanup technique, monitoring activities should include elements outlined in 18 AAC 75.360 (11)(E) in order	
			to evaluate the viability of the selected remedy and ensure this approach is expected to achieve site cleanup goals. The data collected during upcoming groundwater monitoring can be used to support the selection of	
			remedial techniques at the site.	

6.	Figure 2	Please note what the asterisks applied to MW-1	Asterisks indicate the PAL was exceeded. A note
		results in the data table on Figure 2 represent.	will be added to the legend defining this.