Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Brice Environmental Project Number: 210101

January 2017

Prepared for:

Bureau of Land Management

SITE CHARACTERIZATION AND CONTAMINATION ASSESSMENT REPORT, KOLMAKOF MINE SITE, ALASKA

Prepared for:

Bureau of Land Management Alaska State Office 4700 BLM Road Anchorage, AK 99507-2591

This document has been prepared by Brice Environmental Services Corporation. The material and data in this report were prepared under the supervision and direction of the undersigned.

er

Carl Benson Environmental Scientist / Project Manager

CONTENTS

ACF	RONYN	ΛS	v	
1	INTRODUCTION			
	1.1	Site Description	1-1	
	1.2	Site Background	1-2	
	1.3	Project Objectives	1-4	
2	REG	ULATORY CRITERIA	2-1	
	2.1	Soil Regulatory Criteria	2-1	
3	FIEL	FIELD ACTIVITIES		
	3.1	Mobilization	3-1	
	3.2	Test Pit Installation and Sampling Activities	3-1	
		3.2.1 Field Screening	3-2	
		3.2.2 Test Pit Soil Sampling	3-2	
	3.3	Demobilization	3-3	
	3.4	Quality Assurance and Quality Control		
	3.5	Waste Management	3-3	
4	FIEL	D SCREENING AND ANALYTICAL RESULTS	4-1	
	4.1	Retort Mound Area (IA-1) Test Pit Sampling Results	4-1	
	4.2	Waste Characterization Sampling for TCLP Metals	4-2	
	4.3	Analytical Data Quality	4-2	
5	CONCLUSIONS AND RECOMMENDATIONS			
	5.1	Conclusions	5-1	
	5.2	Recommendations	5-2	
6	REFE	ERENCES	6-1	
Figu		State and Site Vicinity		
		Site Overview		

- Figure 2 Site Overview
- Retort Mound (IA-1) Test Pit Sampling Results Diagram Retort Mound Cross-Section A A'
- Figure 3 Figure 4
- Figure 5 Retort Mound Cross-Section B – B'

TABLES

Table 1Test Pit Soil Sample Analytical Results	
--	--

Waste Characterization Sample TCLP Analytical Results Table 2

APPENDICES

- Appendix A Field Log Book
- Appendix B Project Photographs
- Appendix C Laboratory Analytical Data Reports Appendix D ADEC Checklists and Data Quality Review

Appendix E Sample Location Survey Data

ACRONYMS

°C	degrees Celsius
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AK	Alaska Method
bgs	below ground surface
BLM	Bureau of Land Management
Brice	Brice Environmental Services Corporation
Calista	Calista Corporation
CFR	Code of Federal Regulations
COC	constituent of concern
DRO	diesel range organics
DQR	data quality review
EE/CA	engineering evaluation / cost analysis
E&E	Ecology & Environment
J	indicates an estimated quantity
KMS	Kolmakof mine site
LOD	limit of detection
mg/kg	milligrams per kilogram
NAC	Northern Air Cargo
PA/SI	preliminary assessment/site investigation
QA/QC	quality assurance/quality control
RCRA	Resource Conservation and Recovery Act
RPD	relative percent difference
RSI	removal site inspection
SGS	SGS North America, Inc.
TCLP	Toxicity Characteristic Leaching Procedure
ТКС	The Kuskokwim Corporation
USEPA	U.S. Environmental Protection Agency
XRF	X-ray fluorescence analyzer

During the fall of 2016, Brice Environmental Services Corporation (Brice) conducted characterization activities in association with the former Kolmakof Mine Site (KMS or Site) near Aniak, Alaska (Figure 1). These activities were performed under a work plan prepared in August, 2016 (Brice, 2016).

1.1 SITE DESCRIPTION

The KMS is an abandoned cinnabar mine on the north bank of the Kuskokwim River. The site is located approximately 19.5 miles east of Aniak and approximately 10 miles west of Napaimute, Alaska, (the nearest known inhabited area). The legal description for the KMS is: North ½, Section 6, Township 17N, Range 53W, Seward Meridian, Alaska. A small, unnamed creek passes by portions of the site and flows into the Kuskokwim River near the Camp Area portion of the site (Figure 2). There are no roads to the site or aircraft landing strip nearby; access is by boat only.

The mine has three developed areas: a "Camp Area" on the bank of the Kuskokwim River; an upland "Mill Area"; and an open-pit/surface stripping mining area on the bluff above the river where waste rock was dumped down the bluff onto the river bank. The Camp Area is approximately 1.75 miles from the Mill Area. (Figure 2). The two areas are connected by a dirt road which parallels an unnamed creek that drains directly into the Kuskokwim River. From the Mill Area, the road continues uphill to the Mine Pit. Since the mine closure, the KMS became overgrown with vegetation and the roads narrowed to foot paths. During the 2006 BLM site inspection, the Mill Area was found to contain a collapsing ball mill structure with water flowing under and through it. Two sheds were found nearby, one containing about a dozen metal bottles which appeared to be empty mercury flasks. USEPA correspondence to BLM had mentioned a retort operation at the "upper camp" so it was assumed that the flasks indicated that the shed may have housed a retort or that one was nearby. Photos taken during the 2000 BLM site visit showed the larger shed housed an electric generator that had been removed by persons unknown by the 2006 BLM site visit. Numerous empty drums and fuel cans were found scattered around both inside and outside the sheds. The unnamed creek formed a small pond a few feet from the mill, and the source of the creek was reported to be water coming to the ground surface above and around the mill building from the steep hillside/berm immediately adjacent. An old pickup truck was found abandoned a short distance away. The former dynamite shed was represented by a pile of ash and burned metal debris. No evidence of spills, stains, odors or distressed vegetation beyond the ash at the former dynamite shed was noted by BLM. It also appeared that waste rock and tailings were dumped over the bluff into the Kuskokwim River from the mill building and the mining pit areas uphill and behind the river bluff.

The Camp Area structures were observed by the BLM to be deteriorating and contained a significant volume of discarded household debris. The remnant of a potential mercury retort, consisting of a metallic beer keg secured to rotting wood beams was found near the Camp Area. A firebrick pit was found located adjacent to the keg.

1.2 SITE BACKGROUND

The KMS is an abandoned cinnabar (mercury ore) mine on the North Bank of the Kuskokwim river near the village of Napaimute, Alaska, and is scheduled to be conveyed to The Kuskokwim Corporation (TKC) (surface estate) and Calista Corporation (Calista) (subsurface estate) in accordance with the Alaska Native Claims Settlement Act. Until conveyance, the land is administered by the U.S. Bureau of Land Management (BLM). A preliminary assessment/site investigation (PA/SI) was initiated by the United States Environmental Protection Agency (USEPA) in 1999, and two site inspections and removal actions were conducted by the BLM in 2000 and 2006. A Removal Site Inspection (RSI) was subsequently performed by Ecology and Environment, Inc. (E&E) in 2007 to identify facility features, inventory abandoned mine-related equipment and debris, and identify contaminants requiring possible remediation and or removal prior to transfer of the land to TKC and Calista. The RSI identified mercury as the primary contaminant of concern and identified the need for further investigation to further characterize the site for metals, petroleum hydrocarbons, and explosives, as well as the need for characterization and removal of hazardous and non-hazardous site materials. The RSI identified four areas of concern (AOC) within the site: Camp Area, Mill Area, Mine Pit, and Waste Rock/Tailings Dump Areas.

MACTEC Engineering and Consulting Inc. (MACTEC) conducted initial investigative removal activities in 2008, including metal background concentration investigations, a geophysical survey for a potential mono-fill location, explosives residue sampling, mercury speciation analysis, and an asbestos and lead-based paint survey. Field activities included removal and disposal of various hazardous and non-hazardous materials from abandoned waste containers and equipment.

In 2011, AMEC Environment & Infrastructure (AMEC, formerly MACTEC) prepared an Engineering Evaluation/Cost Analysis (EE/CA) work plan to complete site characterization activities required to delineate the extent of remaining contamination in each of the areas of concern (AOC) (AMEC, 2011). Field work including investigation of metals, petroleum hydrocarbons, and other contaminants of concern as well as a biological survey was conducted between September 25th and October 1st, 2011.

The EE/CA, completed in 2012 and subsequent 2013 Removal Action Memorandum identified oil, hazardous substances, and non-hazardous solid waste removal actions that were warranted within the mill, mine pit, and camp areas. The EE/CA results showed that removals of constituent of concern (COC) metals-contaminated soils were warranted in Investigation Areas (IAs) IA-1, IA-2, IA-3, IA-4, IA-5, IA-6, IA-8, and IA-13. IA-8 also required DRO impacted soil removal. Hazardous substances to be removed included mercury, arsenic, and chromium in soil as the contaminants of concern in both the Camp Area and the Mill Area, and localized petroleum hydrocarbon contamination of soil in the Mill Area (IA-8 only). Non-hazardous solid waste located within the Mine Pit, Mill Area, and Camp Area required removal as well (AMEC, 2012).

In 2012 BLM contracted with Brice to conduct Limited Removal Actions at the KMS during the 2013 field season. During the 2013 field season, Brice removed all camp buildings, infrastructure, and waste materials. Limited excavation was performed during the 2013 field activities to remove metals and fuel-contaminated soil in the areas noted in the EE/CA. Soil sampling analytical results indicated closure was obtained at all areas except IA-1 and IA-2. A

total of 46 cubic yards of COC metals-contaminated soil (including cinnabar residue from decontamination) was removed from IA-2, IA-3, IA-5, IA-6, and IA-8 of the Mill Area. An additional 14 cubic yards were removed from IA-1 at the Camp Area. This material was loaded into supersacks and transported off site for proper disposal. A landspread area was constructed with 23 cubic yards of DRO-impacted soil from IA-8. Initial baseline DRO concentrations were documented for the landspread area. Initial sampling of the landspread area indicated DRO concentrations exceeding the cleanup level of 250 milligrams per kilogram (mg/kg) and continued sampling was warranted. A landspread area maintenance and sampling and analysis plan was developed to formalize continued operation of the landspread area (Brice, 2014a).

In 2014, BLM contracted with Brice to conduct additional removal at the KMS during the 2014 field season. Brice prepared an addendum to the work plan used for the Limited Removal Actions performed in 2013 to plan the 2014 field activities (Brice, 2014b). During the 2014 season, Brice removed 6 cubic yards of soil from the site at the Upper Mill Area (IA-2) and 94 cubic yards of soil from the Retort Mound (IA-1). Confirmation sampling conducted at IA-2 indicated exceedance of the Alaska Department of Environmental Conservation (ADEC) cleanup level for mercury along the northeast sidewall of the excavation, and exceedances of the cleanup levels for chromium and mercury along the southwest sidewall of the excavation. Excavation confirmation soil sampling conducted at IA-1 indicated lateral exceedances of cleanup levels for mercury, arsenic, and chromium in soils surrounding the 2014 excavation area. Bedrock was encountered along the north and northeast walls of the excavation and further excavation in these directions should be limited to lateral removal to depths of placed material only. The presence of the firebrick platform, beads of elemental mercury, and buried burned ore suggest the retort facility described in the original PA/SI may be present in this area, but was buried by mine operations before the "beer keg retort" was placed there. Bedrock was encountered across the floor of the 2014 excavation limits at IA-1, and further removal of soil in this area is not warranted. Sampling results at the landspread area indicated DRO concentrations were reduced below the applicable cleanup level of 250 mg/kg and that final site closure had been met (Brice, 2014c).

In 2015, BLM contracted with Brice to conduct additional removal and characterization at IA-1 and IA-2 under an ADEC-approved work plan (Brice, 2015a). Confirmation samples collected from the excavation floor and sidewalls following the removal of 10 cubic yards of soil from IA-2 indicated residual COC metal concentrations meeting mill-area cleanup levels. Brice recommended closure of IA-2 based on analytical results. At IA-1, Brice installed fifteen characterization test pits and sampled fourteen of them for COC metals in an effort to fully characterize the distribution of COC metals in the vicinity of the retort mound. In addition, four cubic yards of soils were removed from the eastern sidewall of the 2013 excavation area and disposed of with soils from IA-2. The areal extent of mercury contamination yielded an estimated 3,800 square feet impacted to an average depth of 3 feet below ground surface (bgs) or approximately 422 cubic yards of in-situ soil exceeding the cleanup level for mercury. After deducting the 110 ex-situ, or 88 cubic yards of in-situ soil, removed in 2014 and 2015, the remaining soil in the vicinity of the retort mound was estimated to be approximately 334 cubic yards of in-situ, or 418 cubic yards of ex-situ soil. An additional 50 in-situ cubic yards were included to serve as contingency for areas of the characterization limit that were inferred due to mercury concentrations exceeding the camp area cleanup level in the outer-most test pits along the southwestern and northern areas of the estimated excavation perimeter (Brice, 2015b).

1.3 PROJECT OBJECTIVES

The objectives of the work performed and discussed in this report include:

- Advancing test pits and sampling soils in the immediate vicinity of the Retort Mound to re-characterize the area for additional past retort activities; and,
- Advancing test pits to assess the distribution of arsenic, chromium, mercury, and nickel in soils within and beyond the limits documented following assessment activities conducted in 2015 in this area.

ADEC regulations applicable to this project are contained in Title 18 of the Alaska Administrative Code (AAC), Chapter 75, Oil and Other Hazardous Substances Pollution Control (18 AAC 75), as updated on November 6, 2016 (ADEC, 2016a).

2.1 SOIL REGULATORY CRITERIA

At the KMS, arsenic, chromium (total), mercury, and nickel have been identified as COCs. Background sampling of AOCs determined that naturally occurring metal concentrations at some of the AOCs is higher than the ADEC's most stringent action level (Method 2 Migration to Groundwater). For purposes of defining cleanup levels as they pertain to background metal concentrations, the AOCs have been divided into the Camp Area and the Mill Area. Since cleanup has been completed at the mill area, a summary of the action levels for COC metals at the Camp Area, or IA-1, are presented below:

Parameter	Method	Camp Area Soil Cleanup Level (mg/Kg)
Arsenic	EPA Method SW6020	10.7
Chromium, (Total)	EPA Method SW6020	29.2
Mercury	EPA Method SW7471	1.4
Nickel	EPA Method SW6020	86

Analytical results for arsenic, chromium, mercury and nickel were screened and evaluated using the site-specific cleanup levels calculated during the background study (AMEC, 2011) and ADEC Method Two, Table B1, Migration to Groundwater, whichever was greater for each metal.

A flyover of the site was performed by the BLM project manager on July 14, 2016 to inspect the conditions of the landing ramp. Based on photographs of the observed site conditions, the BLM and Brice project managers agreed that no ramp repair work would be necessary prior to mobilization for the field effort in 2016.

On September 12, 2016, Brice mobilized to the Site to load the barge for starting work on September 13, 2016. Field activities continued until demobilization on September 20, 2016. All activities were performed under the ADEC-approved work plan prepared in August, 2016 (Brice, 2016). BLM Project Manager Larry Beck performed on-site Project Inspector duties from September 13, to September 19, 2016.

Field activities were recorded in a bound field logbook. A photocopy of the field logbook is presented in Appendix A. Photographs of field activities are presented in Appendix B.

3.1 MOBILIZATION

On September 12, 2016, Brice Site Superintendent Carl Benson mobilized to Aniak to support equipment logistics for the work at the KMS. Equipment, fuel, and supplies were staged at the Aniak barge landing on the morning of September 13 for delivery to the site in the crew boat while the Kubota[®] BX25 tractor was loaded and transported to the site by a landing craft.

The Kubota[®] tractor, and the totes of supplies were mobilized from Anchorage and Fairbanks using Northern Air Cargo (NAC) prior to crew mobilization in September, 2016. All other equipment used on this project originated in Aniak. Brice mobilized one equipment operator to the site on September 13, and the barge was unloaded at the KMS barge ramp while the IA-1 test pit sampling locations were being established. No ramp improvements were required after landing.

3.2 TEST PIT INSTALLATION AND SAMPLING ACTIVITIES

Contamination assessment activities were conducted at the Retort Mound Area (IA-1) from September 13 through September 19, 2016. Contamination assessment activities at IA-1 commenced on September 13 with the excavation and sampling of five test pits located radially around the retort mound area. On September 14, the remaining eight test pits of the first full set of contamination assessment test pits, pits TP-16 through TP-28, surrounding the retort mound were installed and sampled. One primary soil sample was collected from each of these first thirteen test pits. Communications with the laboratory on September 14 determined that 24-hour turnaround analytical results would not be available due to equipment malfunction. Therefore, the first set of perimeter test pit results would not be available to plan the necessity or location of any subsequent contamination assessment test pits, and the soil samples for test pits TP-16 through TP-28 were submitted on a standard turnaround time basis. Test pit depths ranged from 1 foot bgs at Test Pits TP-16 and TP-28, to 5.5 feet bgs at TP-23 (Figure 3).

On September 15 and 16, nine characterization test pits were installed within the boundary of the retort mound for the purpose of characterizing past activities and determining the distribution of COC metal contamination. Test pits within the retort mound were sampled at two depths

each. Test pits within the retort mound area ranged in depth from 3.0 feet bgs at test pit M1, to 5.0 feet bgs at test pits M5, M6, and M7 (Figure 3).

A second set of contamination assessment step out test pits were installed and sampled on September 16 and 17. The second set of step out test pits comprised ten test pits, TP-29 through TP-38, arranged around the retort mound perimeter beyond test pits sampled in 2015 that did not meet the mercury cleanup level. These test pits ranged in depth from 1 foot bgs at TP-32 to 4 feet bgs at TP-35 (Figure 3). Two soil samples were collected from each of the ten second-step out test pits. Only one soil sample was collected from test pits TP-32 and TP-36 where excavations were not more than one foot bgs in total depth.

Bedrock or native silt soil was encountered at the total depth of all test pits. Figure 3 shows the location of test pits excavated during 2016 contamination and characterization work conducted at IA-1. Photographs of a typical installation and a test pit profile are presented in the photo log in Appendix B.

3.2.1 FIELD SCREENING

Soil was screened using both visual observation and an XRF. Field screening samples were screened ex-situ in plastic bags at a frequency of one per foot, or upon noted changes in observed lithology. Samples were collected directly from the test pit sidewalls. Test pits were screened at each depth indicating a visual change in soil type or suspected COC metals contamination as indicated by color.

Soil was screened for arsenic, chromium, mercury and nickel using a handheld XRF analyzer, and visual observation for red staining indicative of cinnabar-impacted soil. The Thermo Scientific Niton® Model XL3t 600 XRF was used according to SW-846 Method 6200 for in-situ field screening analysis (USEPA, 2007). This unit has limits of detection (LOD) below the action levels for arsenic, chromium and nickel; however, the lowest anticipated LOD for mercury with this instrument was approximately 5 parts per million (ppm) which is above the mercury cleanup level of 1.4 mg/Kg for the Camp Area. None of the XRF instruments available on the market can attain sensitivity down to 1.4 ppm. Therefore, a non-detect reading for mercury did not confirm that mercury cleanup levels had been achieved. Test pit characterization and contamination assessment soil samples for COC metals analyses were collected from the locations where XRF field screening results indicated both non-detect for mercury and the highest levels of arsenic and chromium.

3.2.2 TEST PIT SOIL SAMPLING

Soil sampling was conducted along the sidewall of each test pit following installation which included measurement of total depth, logging of soil lithology, and photographing the test pit sidewall. Test pit soil samples were collected from the locations along the sidewall yielding the highest field screening results for the COC metals. Soil sampling was performed using disposable sampling equipment and new sampling gloves. New disposable sampling scoops were used to expose material for sampling in the test pits at each location and depth. Up to two soil samples were collected from each test pit based on the depth of the highest screening result or visual changes in the soil lithology.

Characterization and contamination assessment soil samples were collected in amber jars and placed into coolers at the Site. One set of contamination assessment soil samples were transported to Anchorage via air cargo and submitted to SGS on September 15, 2016. The remaining samples were flown to Fairbanks during demobilization where they were submitted on September 22 and 28, 2016 as follows. The retort mound characterization samples were submitted to SGS in Fairbanks on September 22, 2016. Following receipt and evaluation of the analytical results from test pits TP-16 through TP-28, the final set of contamination assessment samples for test pits TP-29 through TP-38 were selected and submitted to SGS in Fairbanks on September 29, 2016. Analytical results were compared to the cleanup levels established for the site as shown in Section 2.

Field duplicate samples were collected for field precision evaluation at a rate of one per 10 soil samples collected. Sampling protocols, sample handling, custody, and transporting procedures followed those specified in the work plan.

3.3 DEMOBILIZATION

In preparation for site demobilization, a horizontal site survey of sampling locations was conducted following the completion of sampling activities on September 17, 2016. Staked test pit locations were field verified and an elevation survey was performed on September 19, 2016. The field sampling equipment was demobilized from the Site on September 19, 2016 following the completion of the site survey. The Brice Site Superintendent left Aniak for Fairbanks on September 20, 2016. The Kubota[®] tractor was loaded on the landing craft by the Brice operator and transported back to Aniak on September 26, 2016. The Kubota[®] tractor was flown back to Anchorage on October 1, 2016 using NAC, and delivered to the BLM warehouse by Sourdough Express on October 3, 2016.

3.4 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance/quality control (QA/QC) procedures were maintained throughout the sampling activities. The QC procedures included the analysis of field duplicates and preparation of a laboratory data quality report (DQR) by qualified Brice staff. The DQR included the completion of an ADEC Laboratory Data Review Checklist for each analytical report included in Appendix C. The QA procedures included adherence to appropriate sample collection methodology as described in Brice's ADEC approved work plan (Brice, 2016). Any reported data discrepancies associated with the soil samples collected from the Site were identified in the DQR (Appendix D) and are summarized in Section 4.2.

3.5 WASTE MANAGEMENT

The laboratory disposed of all sample material submitted for analysis, and all used sampling and PPE materials from on-site activities were disposed of in the Aniak landfill.

In addition to submitting discrete analytical samples for analysis, aliquots of all soils sampled in 2016 were used to comprise four composite samples for waste characterization purposes. A north and a south composite of the contamination assessment test pit samples was prepared for Toxicity Characteristic Leaching Procedure (TCLP) analysis of COC metals. In addition, two

composite samples, north and south, were prepared from aliquots of the retort mound characterization samples. These samples were collected to characterize the general waste stream to be generated during future site excavation and disposal. In prior years, soils from the site were disposed of under facility-approved waste profiles developed for the soils from the same AOC in 2013 and renewed by the receiving facility in 2014. The purpose of the composite sample collection in 2016 was for renewal of the waste profile for 2017 using composite soil samples comprising soil spanning the estimated area of excavation.

4 FIELD SCREENING AND ANALYTICAL RESULTS

This section describes the findings of sampling conducted in support of the 2016 characterization and contamination assessment performed at the KMS. The nomenclature for sample IDs and AOCs for this project are defined in the example below:

16KRM-16(1) = 2016 sample from Kolmakof Retort Mound (IA-1) collected at test pit TP-16 at a depth of 1-foot bgs.

Field notes included in Appendix A provide a detailed account of the field screening and sampling activities conducted at the Site. The following sections detail the results for sampling conducted at each area at KMS in 2016.

4.1 RETORT MOUND AREA (IA-1) TEST PIT SAMPLING RESULTS

Three sets of test pits were installed and sampled around the retort mound at IA-1 in 2016. The first step-out test pits TP-16 through TP-28 were installed on September 13th and 14th. Test pits M-1 through M-9 were installed and sampled on September 15th and 16th to characterize conditions, including evidence of past retort activities or discarded equipment, in the retort mound. Test Pits TP-29 through TP-38, the second step-out test pits, were installed and sampled on September 16th and 17th. Analytical results for the first step-out test pits were not available until after demobilization and the second set of step-out test pits, TP-29 through TP-38, were installed to support potential exceedances at all of the first step-out test pits.

Metal concentrations in soil samples collected from test pits in the vicinity of the Retort Mound are presented in Table 1. Complete laboratory analytical reports are provided in Appendix C. Completed ADEC laboratory data checklists and a quality assurance review of the laboratory data are included as Appendix D. The estimated horizontal limits of excavation at the retort mound and soil analytical data are presented on Figure 3. Cross-sections depicting local lithology, soil analytical data, and estimated vertical limits of excavation are presented on Figures 4 and 5. Test pit location data including soil sample depths, and horizontal and vertical locations are presented in the summary of survey data in Appendix E.

Detectable concentrations of all target metal analytes were found in all samples.

Arsenic concentrations ranged from 3.78 mg/kg in sample 16KRM-29(0.75) to 20.9 mg/kg in sample 16KRM-26(1.5).

Chromium concentrations ranged from 22.1 mg/kg in sample 16KRM-29(0.75) to 36.3 mg/kg in sample 16KRM-33(1).

Mercury concentrations ranged from an estimated concentration of 0.135 mg/kg in the duplicate sample collected from test Pit M-9 at 1.5 feet bgs, 16KRM-M9(10), to 28.1 mg/kg in sample 16KRM-M2(2.5).

Nickel concentrations ranged from 18.4 mg/kg in sample 16KRM-M2(2.5) to 49.3 mg/kg in sample 16KRM-16(1).

Confirmation soil sampling indicated the exceedances of ADEC cleanup levels for one or more of the target metals at all sample locations except 16KRM-25(0.75) at TP-25, 16KRM-27(1.5) at

TP-27, 16KRM-33(2) at TP-33, 16KRM-M1(0.75) at M-1, and 16KRM-M9(10) the duplicate sample collected from 1.5 feet bgs at M-9.

4.2 WASTE CHARACTERIZATION SAMPLING FOR TCLP METALS

Two sets of composite samples were collected from within and surrounding the retort mound at IA-1 in 2016. Composite samples were prepared from aliquots of all analytical soil samples collected from the northern and southern halves of the retort mound, or "M" test pits. A second set of composite samples were comprised analytical soil sample aliquots from all northern and southern step-out, or "TP" test pits installed beyond the toe of the retort mound.

Results for TCLP analysis of composite waste characterization soil samples are presented in Table 2.

Arsenic was not detected above the method detection limit concentration of 0.0750 mg/L in TCLP leachate prepared from any of the waste characterization samples collected from within or surrounding the retort mound area.

Chromium was detected at estimated concentrations ranging from 0.0922 mg/L in the composite soil sample collected from the southern portion within the retort mound, to 0.129 mg/L in the composite sample of all contamination assessment samples collected south of the retort mound limits.

Mercury was not detected above the method detection limit concentration of 0.00310 mg/L in TCLP leachate prepared from any of the waste characterization samples collected from within or surrounding the retort mound area.

Nickel was detected in only one of the four waste characterization composite samples at an estimated concentration of 0.0328 mg/L in the composite of contamination assessment samples collected north of the retort mound area.

None of the composite samples analyzed for COC TCLP metals exceeded toxicity characteristic threshold concentrations, as defined in the Resource Conservation and Recovery Act (RCRA) under Title 40, Chapter I, Subchapter I, Part 261.24 of the Code of Federal Regulations (40 CFR 261.24), for arsenic, chromium, or mercury. There is no RCRA TCLP concentration defined for nickel.

4.3 ANALYTICAL DATA QUALITY

The laboratory reports for all samples are presented in Appendix C. Although the data were deemed acceptable for use, there were precision goals for mercury in work order 1168620 that were not met by the analytical laboratory. These are described in detail in Brice's DQR in Appendix D and discussed briefly here:

• The RPD between primary samples and the field duplicates were in agreement in all cases except for mercury in work order 1168620. The RPD of 60% for mercury between parent sample 16KRM-M5(2) (0.724 mg/kg) and duplicate sample 16KRM-M5(10) (1.35

mg/kg) was greater than 50%. The RPD of 63% for mercury between parent sample 16KRM-M9(1.5) (0.258 mg/kg) and duplicate sample 16KRM-M9(10) (0.135 mg/kg) was greater than 50%. Both sets of primary/duplicate results were considered estimates for mercury with an unknown bias due to sample heterogeneity.

Conclusions and recommendations are presented below.

5.1 CONCLUSIONS

Test pit confirmation soil sampling conducted in the vicinity of the retort mound at IA-1 indicate that further contaminated media removal is required. The test pits installed at IA-1 in 2016 did not extend to soils meeting cleanup levels generally to the north or southwest despite extending significantly beyond the limits of excavation identified in the 2015 investigation report (Brice, 2015b).

Analytical results for arsenic and chromium in soil samples collected from test pits within and on the outer perimeter of the estimated excavation limits were within or near the upper range of values observed from soil samples collected from the Camp Area during the background study conducted by AMEC in 2008 (AMEC, 2011). Concentrations of arsenic and chromium that are elevated relative to the cleanup levels established for the Camp Area do not correlate with exceedances for the mercury cleanup level established for that area. Therefore, elevated arsenic and chromium concentrations are likely associated with background variation in the occurrence of these COC metals and are not associated with the distribution of cinnabar ore at the Site.

The inferred area of soil at IA-1 with mercury concentrations exceeding the Camp Area cleanup level of 1.4 mg/kg is presented in Figure 3. Cross-sections of the retort mound area show the depth of soils impacted above the Camp Area cleanup level of 1.4 mg/kg. As shown in Figure 3, the total area bounded by the analytically-determined and inferred limits of theestimated excavation boundary, based on sample analytical results, is approximately 5,271 square feet. Based on an east-to-west average soil thickness of approximately 3.5 feet to bedrock or undisturbed soil meeting cleanup levels (Figure 4), and a north-to-south average soil thickness of approximately 2.5 feet to bedrock or undisturbed soil meeting cleanup levels (Figure 5), Brice estimates an average site-wide depth of removal of 3.0 feet bgs. Removal of soil to this depth involve approximately 586 in-situ cubic yards of soil exceeding the Camp Area cleanup level.

During soil removal actions in 2013 and 2014, 110 cubic yards of ex-situ soils were removed from within this area. Based on a 25 percent swell factor of excavated soils, the prior removal efforts deduct 88 cubic yards from the 586 in-situ cubic yards estimated above. The resulting insitu volume of soil remaining above the Camp Area cleanup level for mercury is approximately 497 cubic yards. Assuming an excavated soil swell factor of 25 percent, the volume of soils requiring ex-situ management to attain cleanup levels is estimated at approximately 622 cubic yards. This estimate does not include additional excavation beyond the inferred limits of estimated excavation presented in Figure 3.

5.2 RECOMMENDATIONS

Brice recommends the use of mercury data only as guide for cleanup at IA-1. The spatial occurrence of remaining COC metals do not correlate with mercury concentrations and, therefore, do not appear to indicate the presence of cinnabar ore.

Brice recommends the removal, transport, and disposal of up to 497 cubic yards of in-situ soil not meeting the mercury cleanup level of 1.4 mg/kg from the vicinity of the retort mound at IA-1 as referenced on Figures 3, 4, and 5. This volume corresponds to an approximate ex-situ volume of 622 cubic yards after imposition of a swell factor of 25 percent to determine the volume of soil requiring handling. Removal of this material should be limited by the occurrence of underlying bedrock or undisturbed soils documented to contain mercury concentrations below the Camp Area cleanup level of 1.4 mg/kg as depicted in Figures 3, 4, and 5.

Given the linear extent of excavation perimeter characterized as "inferred" due to analytical results in outer test pits exceeding the 1.4 mg/kg cleanup level (Figure 3), Brice recommends an additional 50 cubic yard in-situ contingency factor for planning purposes. This volume corresponds to an additional 65 cubic yards of ex-situ soil requiring management as a contingency toward attainment of the mercury cleanup level.

- Alaska Department of Environmental Conservation (ADEC), 2016a. Alaska Administrative Code (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control*, as amended through November 6.
- ADEC, 2016b, Field Sampling Guidance. March.
- AMEC Environmental & Infrastructure, Inc. (AMEC), 2011. Engineering Evaluation/Cost Analysis Work Plan, Kolmakof Mine Site, Napaimute, Alaska. August.
- AMEC, 2012. Engineering Evaluation/Cost Analysis, Kolmakof Mine Site, Napaimute, Alaska. May.
- Brice Environmental Services Corporation (Brice), 2013. BLM, Kolmakof Mine Site Interim Removal Action Work and Management Plan, Final. May.
- Brice, 2014a. Kolmakof Mine Site Interim Removal Action. April.
- Brice, 2014b. Proposed Addendum to Kolmakof Mine Site 2013 Interim Removal Action, BLM Contract No. L12PC00215, Work and Management Plan. July.
- Brice, 2014c. 2014 Kolmakof Mine Site Interim Removal Action Report, Kolmakof Mine Site, Alaska. December.
- Brice, 2015a. Site Characterization and Limited Soil Removal, Kolmakof Mine Site, Near Aniak, Alaska, Work and Management Plan. May.
- Brice, 2015b. Site Characterization and Limited Soil Removal Report, Kolmakof Mine Site, Alaska. November.
- Brice, 2016. Site Characterization and Contamination Assessment Work Plan, Kolmakof Mine Site, Near Aniak, Alaska. August.
- United States Environmental Protection Agency, 2007. *Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment*, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846, (3rd edition, final update IV).

FIGURES

DRAWN:

D.H.

P.M.:

C.B.

- FILL PLACED BEFORE 2013 (GP-GM)

-FILL PLACED IN 2013 (GP-GM)

BEDROCK

- NATIVE SILT (ML)

-MERCURY CONC. IN SOIL, mg/Kg (Bold where exceeding cleanup level of 1.4 mg/kg)

COBBLE AND COARSE GRAVEL (GP)

SITE CHARACTERIZATION AND CONTAMINATION ASSESSMENT REPORT KOLMAKOF MINE SITE, ALASKA

RETORT MOUND CROSS SECTION A - A'

VERTICAL EXAGGERATION 2:1

0	SCALE IN FEET
DATE: 11.21.16	FIGURE:
 PROJECT No.: 210101	4
DRAWN: D.H.	

LEGEND:

- ESTIMATED DEPTH OF EXCAVATION (DASHED WHERE INFERRED)

- FILL PLACED BEFORE 2013 (GP-GM)

-FILL PLACED IN 2013 (GP-GM)

- COBBLE WITH SILT (GP-GM)

- BEDROCK

, ,

- NATIVE SILT (ML)

-MERCURY CONC. IN SOIL, mg/Kg (Bold where exceeding cleanup level of 1.4 mg/kg)

SITE CHARACTERIZATION AND CONTAMINATION ASSESSMENT REPORT KOLMAKOF MINE SITE, ALASKA

RETORT MOUND CROSS-SECTION B - B'

VERTICAL EXAGGERATION 2:1

TABLES

Table 1

Test Pit Soil Sample Analytical Results 2016 Kolmakof Mine Site Retort Mound Characterization

				USEPA Me	thod 6020A	
Field Sample ID	Sample Location	Date Sampled	Arsenic (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)
ADEC Cleanup L	evels		10.7	29.2	1.4	86
First Step-Out Te	est Pit Samples					
16KRM-16(1)	Test Pit 16 @ 1'bgs	9/13/2016	11.2	30.6	0.171	53.5
16KRM-17(2)	Test Pit 17 @ 2'bgs	9/13/2016	11.5	29.6	1.96	36.7
16KRM-18(3)	Test Pit 18 @ 3'bgs	9/13/2016	9.96	30.1	14.3	40.2
16KRM-19(2)	Test Pit 19 @ 2'bgs	9/13/2016	11.5	29.5	4.05	34.6
16KRM-20(2)	Test Pit 20 @ 2'bgs	9/14/2016	10.3	29.7	4.19	35.8
16KRM-20(10)*	Dup of Test Pit 20 @ 2'bgs	9/14/2016	9.72	29.4	3.36	36.1
16KRM-21(3)	Test Pit 21 @ 3'bgs	9/13/2016	8.02	26.9	0.161	18.8
16KRM-22(2)	Test Pit 22 @ 2'bgs	9/14/2016	10.3	30.9	2.87	36.3
16KRM-23(2)	Test Pit 23 @ 2'bgs	9/14/2016	9.57	28.5	2.81	34.1
16KRM-23(4)	Test Pit 23 @ 4'bgs	9/14/2016	-			
16KRM-24(1.25)	Test Pit 24 @ 1.25'bgs	9/14/2016	9.94	29.6	5.83	35.5
16KRM-24(4)	Test Pit 24 @ 4'bgs	9/14/2016				
16KRM-25(0.75)	Test Pit 25 @ 0.75'bgs	9/14/2016	9.39	26.8	0.213	22.6
16KRM-25(2.5)	Test Pit 25 @ 2.5'bgs	9/14/2016				
16KRM-26(1.5)	Test Pit 26 @ 1.5'bgs	9/14/2016	20.9	28.7	2.76	36.8
16KRM-27(1.5)	Test Pit 27 @ 1.5'bgs	9/14/2016	6.39	23.1	0.168	19.3
16KRM-28(1)	Test Pit 28 @ 1'bgs	9/14/2016	8.99	29.6	2.38	39.1
16KRM-28(10)*	Dup of Test Pit 28 @ 1' bgs	9/14/2016	9.72	30.7	1.62	41.6
Second Step-Ou	t Test Pit Samples					
16KRM-29(0.75)	Test Pit 29 @ 0.75" bgs	9/16/2016	3.78	22.1	3.66	20.3
16KRM-29(1.5)	Test Pit 29 @ 1.5'bgs	9/16/2016	9.73	34.1	2.49	41.4
16KRM-30(1)	Test Pit 30 @ 1'bgs	9/16/2016	3.99	22.9	1.73	20.0
16KRM-30(2)	Test Pit 30 @ 2'bgs	9/16/2016	9.48	33.4	9.05	46.3
16KRM-31(1)	Test Pit 31 @ 1'bgs	9/16/2016	9.52	31.5	3.39	41.3
16KRM-31(2)	Test Pit 31 @ 2'bgs	9/16/2016	10.5	35.5	1.46	41.9
16KRM-32(0.75)	Test Pit 32 @ 0.75'bgs	9/16/2016				
16KRM-33(1)	Test Pit 33 @ 1'bgs	9/16/2016	10.5	36.3	1.47	49.3
16KRM-33(2)	Test Pit 33 @ 2'bgs	9/16/2016	9.77	27.9	0.239	22.9
16KRM-34(1)	Test Pit 34 @ 1'bgs	9/17/2016	9.3	34.1	2.89	42.2
16KRM-34(10)*	Dup of Test Pit 34 @ 1'bgs	9/17/2016	9.19	34.7	2.82	43.5
16KRM-34(2.5)	Test Pit 34 @ 2.5'bgs	9/17/2016	8.63	31.8	2.13	34.4
16KRM-35(1)	Test Pit 35 @ 1'bgs	9/17/2016	8.14	32.7	0.754	45
16KRM-35(2)	Test Pit 35 @ 2'bgs	9/17/2016	9.78	32.5	0.425	33.3

Table 1

Test Pit Soil Sample Analytical Results 2016 Kolmakof Mine Site Retort Mound Characterization

				USEPA Me	thod 6020A	
Field Sample ID	Sample Location	Date Sampled	Arsenic (mg/kg)	Chromium (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)
16KRM-36(1)	Test Pit 36 @ 1'bgs	9/17/2016	9.02	33.8	1.55	47.5
ADEC Cleanup L	evels		10.7	29.2	1.4	86
Second Step-Ou	t Test Pit Samples (continued)					
16KRM-37(1.5)	Test Pit 37 @ 1.5' bgs	9/17/2016	9.31	33	3.14	45.6
16KRM-37(2.5)	Test Pit 37@ 2.5' bgs	9/17/2016	7.57	31.6	1.77	21.6
16KRM-38(1)	Test Pit 38@ 1' bgs	9/17/2016	10.4	33.2	3.09	39.9
16KRM-38(2.5)	Test Pit 38@ 2.5' bgs	9/17/2016	13.1	35.1	0.328	37.1
Retort Mound Sa	mples					
16KRM-M1(0.75)	Test Pit M1@ 0.75' bgs	9/15/2016	9.32	28.4	1.34	23.3
16KRM-M1(2)	Test Pit M1@ 2.0' bgs	9/15/2016	9.34	30.5	0.832	31.9
16KRM-M2(1)	Test Pit M2@ 1' bgs	9/15/2016	8.82	26.7	11.5	30
16KRM-M2(2.5)	Test Pit M2@ 2.5' bgs	9/15/2016	7.77	28.1	28.1	18.4
16KRM-M3(1)	Test Pit M3@ 1' bgs	9/15/2016	9.76	31.1	1.28	31.5
16KRM-M3(4)	Test Pit M3@ 4' bgs	9/15/2016	11.9	29.7	0.492	32.1
16KRM-M4(1)	Test Pit M4@ 1' bgs	9/15/2016	7.25	27.5	10.6	25
16KRM-M4(2)	Test Pit M4@ 2' bgs	9/15/2016	10.9	29.5	0.473	31.2
16KRM-M5(2)	Test Pit M5@ 2' bgs	9/15/2016	11.7	30.9	0.724 J	35.9
16KRM-M5(10)*	Dup of Test Pit M5@ 2' bgs	9/15/2016	10.2	30.6	1.35 J	32
16KRM-M5(4)	Test Pit M5@ 4' bgs	9/15/2016	8.75	30.2	16.6	33.4
16KRM-M6(1)	Test Pit M6@ 1' bgs	9/15/2016	12.3	34.2	0.179	35.9
16KRM-M6(3)	Test Pit M6@ 3' bgs	9/15/2016	10.5	33.3	0.236	30.9
16KRM-M7(0.5)	Test Pit M7@ 0.5' bgs	9/15/2016	10.5	30.5	17.9	32.9
16KRM-M7(2)	Test Pit M7@ 2' bgs	9/15/2016	8.36	31.4	0.317	22.9
16KRM-M8(0.75)	Test Pit M8@ 0.75' bgs	9/16/2016	9.06	30.6	4.91	36.7
16KRM-M8(1.5)	Test Pit M8@ 1.5' bgs	9/16/2016	9.3	31.6	0.394	24.1
16KRM-M9(0.5)	Test Pit M9@ 0.5' bgs	9/16/2016	10.9	30.9	9.34	37.9
16KRM-M9(1.5)	Test Pit M9@ 1.5' bgs	9/16/2016	7.7	29.9	0.258 J	21.2
16KRM-M9(10)*	Dup of Test Pit M9@ 1.5' bgs	9/16/2016	7.89	28.6	0.135 J	20

Notes:

Duplicate of preceeding sample

Results in bold exceed ADEC cleanup levels

Abbreviations:

-- - not analyzed

ADEC - Alaska Department of Environmental Conservation bgs - below ground surface J - estimated value mg/kg - milligrams per kilogram

USEPA - United States Environmental Protection Agency

Table 2

Waste Characterization Sample TCLP Analytical Results 2016 Kolmakof Mine Site Retort Mound Characterization

				USEPA Metho	od 1311/6020A	
Field Sample ID	Sample Location	Date Sampled	Arsenic (mg/L)	Chromium (mg/L)	Mercury (mg/L)	Nickel (mg/L)
RCRA Hazardous Wa	ste Threshold Concentrat	ion	5.0	5.0	0.2	N/A
Site Characterization	Composite Samples					
TCLP Comp North	Northern half composite of characterization samples	9/19/2016	ND [0.0750]	0.0989 J	ND [0.00310]	0.0328 J
TCLP Comp South	Southern half composite of characterization samples	9/19/2016	ND [0.0750]	0.129 J	ND [0.00310]	ND [0.0310]
Retort Mound Compo	site Samples					
TCLP Mound North	Northern half composite of mound samples	9/19/2016	ND [0.0750]	ND [0.0650]	ND [0.00310]	ND [0.0310]
TCLP Mound South	Southern half composite of mound samples	9/19/2016	ND [0.0750]	0.0922 J	ND [0.00310]	ND [0.0310]

Abbreviations:

J - estimated value between method reporting limit and method detection limit

mg/L - milligrams per liter

N/A - not applicable

ND - not detected at or above the [Limit of Detection]

RCRA - Resource Conservation Recovery Act

TCLP - Toxicity Characteristic Leaching Procedure

USEPA - United States Environmental Protection Agency

APPENDIX A

FIELD LOG BOOK

Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Bureau of Land Management Alaska State Office

4700 BLM Road

Anchorage, AK 99507-2591

January 2017

Doug Moffer : 676 -0669 . (23) 287-1140 NAC: 243-3331 Amile 675-4295 Anne Marie (A) EC) Palmieri -766-3184 240-5261 (cell) DATE Larry Beek (31M) - 267-122(0) Alley Simea : 675-4216 .r 676-0591 Journ Velsan 550-3205 Julie Shumway Osgs. Com Avel (Bus) 266-2394 Dove a Jacen : 675-4464 but 444-6421 Cell Sundamy Esperis 243-2545 Strumon Marindale Rob Rus Kinkale: 299-3503 Colin Dollan: Acet # : 101630 CONTENTS RAVN: 675-4572 REFERENCE 565: 562-2343 6 ACCT# PAGE hTTP 5:// time . calista . com/DeltokTC/velome, Project Kolmukof Mine Site Characterize. MSU Clear Vinyl Protective Slipcovers (Item No. 30) are available for this style of notebook. Helps protect your notebook from wear & tear. Contact your dealer or the J. L. Darling Corporation Address SUI Cushman ST., Suite 300 Fred , 24 4 799-4342 Pairboules, Alx 9970 Brice Eminumental Kite in the Rain ALL-WEATHER WITING PAPER SOIS Business felholid Brie Projeer # 210101 Name Corl Beuson SPE Zin Presus Phone 459 - 3052 18 H S-882 INCH

Benser Hus Rom SUT 3 when Rucled mich his hides and Rite in sue Pain 0730, Anne high Hummun's work. Kubara hadre Riched ulter to ser y Touch veneral, wel town " it. Among @ 1815 hr pickup. the Lendy carls was ? un loaded breezer hund 0 Show OGus Start Frummer End of Day Leve Ruberhac Ollos Purlesed 3 up tructur and Cherlick ins 12/2vib 2000-8 SGS Month American Que Anchover, Ala 99518 200 W, Porter Drive 2

- 1602 Exemply 7218 Dion of Ruse at 18" by in 7018 welling Dre 2013 andle, TID CTP-18 = 48" hole is Billing from below with work. Filling Bon below with work. Filling Bon below with work. I 710 Ereavening TP-19. Fill to 6" to 1 2" on Martin and 2 Fit weler mad. -18W Stating Or compared of TD-21, Fill TO W" bys, Sult loan with morthing (and time stationing to 4' 4' 4' by 5. 1958 miles (pedactic excounting Deserved Spurge Number unertial to bedrack OTOOF 3.5 Sangle Nill side Souple Colletta 2 bas Kime 4' bys. 19 20 benny 2 to 2030 Anie Anie Cud of Dam Jucken 12" bys. Souple = 16 km5-16 12" bas, TD 2 12" bys ro bedrock @ 1500 TP-1 7. Dur due - 1520 6× marthy 1.5 2 Out burdenand 177-16+ 12" - Sarey Or" 20 unto include tely collecting Spie 0 whitewer, KMS, 7/13/226, 40t von Sample =16k RM-1900 1745 at 2333 7764 12" ١ 0730 Podrie geer the day prisons puls 9/13/2416 Car 1 Beuss, Kus, 40°F cloudy 1000-1300 Re-ognifed all Zus Test pirs and wapped the clean and inferred buildings and 1320- Establishing stated locations for 2516 ter Pirs. test pros TP-16 Alray it-20. Place 1400 pubber Anived , 13 holed, and beny lived and Allen on N/S divider cost to wer CBZs Vering AUde Kar Laus TCLP collection. (Plan #1) Consmeden Nors Hage War 1330 hund Antice ι

	Ni	an	an	S	an	Ar.	A	M	CIM	02	d/v	W	der	63/vib					0	•		*		
- 2-1	S	851	89	H	22	12	59	28	44	2	82	20	66	tt/ts										
we lo	34	Z	an	CM	AN	AN	AN	S	00	ON	GN	0	en	M		-				-				
Scree	The second	M	an	an	GN	an	an	SN	CIV	CIN	ON	av	an	an										
- XIZF	Doru	Sio	1.25	4.0	0.5	5.1	3.0	Gizz	1.5	3, 0	1.0	0,25	orts	2.5									-	
	et to	+2 017 t	12 117	41 24	143 26	44 26	4526	+5 27	12 23	42 64	51 28	52 25	53 25	52 45										
	(1)1/1/	SN	an	CW	ON	SW	an	CIN	AN	ar	div	dr	M	da)	AN	on	Sur	dn	Chr	M	ON	an	AN	
. 1	Corus	80	106	37	(7)	33	to	82	89	77	88	145-	63	86	75	40	29	34	1/	14	99	00	02	
alle	ASO	. 11	CUV	S	an	11	ON	25	SW	ON	ON	m	AN	0	UN	SW	an	an	CIN	UN	an	CNA	11	
enny 1	He (1)	SIN	CIN	CIN	AN	SIN	NO	CIN	GNN	ON	SIN	Gan	ON ON	CM	. CMV	S	dN	ON	SIV	01	W	UNY .	dr	
212 Sur	1)epr-	12''	12"	2.5	0'2	20	2,0	3,0	4.0	3,0	2,0	0'1	20	30	4.0	1 4:11	50 5.1	いっと	ZIU SIL	2.0	40 511	1.0 800	20 016	THE ON
9 1 8	CL	316.	t1	T IF	314	416	810	270	818	13 19	· 19.	12 (9)	17 21	12 181	12 (31)	2 (24	222	2 [20	22 A-1	(25) 23	(20) 23	22 (24)	22 [2]	20 21

80	(ŀ		1		abut.
11 2	they -	ling lab	5	17	1.0	0 1. 1.0. 1.1 1.0.
11 1 North 11	111	- LOW	nubri	1.01	alisti	now hill to hill and have been and brown of and brown
16km-17/2	0110	1600	2,0,	2.5	5/ 15/16	Be tweelveer & HALP ween &
1642M-1813	18	Cont 1	3,0	4.0'	E/ 13/16	Be dur. 210w.
1943431	(A21	1 800	SiO	4.5	413/16	1015 - Soonia 17220
16kRw-F	219	SHEI	2,0'	3,51	5/ 13/16	Zais Fill Leven - Orst 0'-1'
15-MRX101	1218	1900	3,0'	24,4"	9/12/16	Matural below R/1 = Coran mande CAE- 1'-1.5'
16 hism -2	2(2) 20	1115	2,0	3,6	8/14/16	total sapetres reduct silrage lis's'
* BLERM-	25 [1] 20	0300	20	3.5'	9/14/16	below 2' 2 Norwe when by silt
1614RM-	23(2)23	12000	20	55	9/14/16	11 20. Sterring Openanion 315-23
16kRM-2.	3(4) 23	1245	40	5.5	9/14/16	2013 Fill deoptice o'- 1' bas
16 LRM-2	20/22	1330	2.0	4.5'	8/14/16	Siltanuch = 1' - 2 5' by Gismbed be Rue
16 LARM-	2 4/12/21	00416	1.2.1	4.0 9	F/14/66	Silt = 25'-5.5' bys Altern when
16 KRM-	12/12/12	1415	4.0	4.0 0	7/14/16	Sundle - 16KRM23 @ 2' Sars "P. 12113
16 kR.M.	26/23/26	SHHI	5.1	4.5 9	ILY LIC	Roseve z 164RM 23C 4' begs Qizis
16 KRM-2	2(57)t	7 1530	ارح	5,0 2	14/16	
ILLERM-	261132	20101 3	0.1	2 0.1	أرابا ارا	1220 - Starting M-22. M 22 Par All
+6KCRN-	2 (01) 92	2 1615	1.0	1,0	2/14/16	0- 1.5' 2014 Placed Rill
16 LeRM2	5 (075) 21	SHOI S	0.75	4.0	7/14/26	15-25' Pre-2013 RIVI luner
164PAR	5 (25)2	WEL	2.5	4.0	1/14/16	25-4.5 Silt TD2 4.5 alere
			i.			Sundle = 164RM 22 (2) @1330
		1			121	1300 Strature 19-7.4 TP 24 P.m.P. 10.2
						(over)
*- 1 11	C			-		

19ev - 12mg off dele a fill one mue led 2030 - Rinsh conferry COC Rushyng 8/14/2016 Coll Drate in the Rain Test Pits Capletd Kiding Suple = 16 (2 Ruzs (0.75) @ 1645 Record = 16 KRUZE (2.5) @ 1700 Cleany of Site & proving truey ged, 1730 - hearing Si to 1830 - Annie Aniala 1600 Duplicate = 1660M 28 (12) 1615 ver placed gravel overhunde Cy Busy Line Connetsizon 30 State 128. 05-0.75 612 Sintere Suple 2 166RM 281 1630 Steam TP-25 TP25 Parle: AU Plans of TP28 1'TD = 13cdrv cl TO 4 By 25:14 +D= 4' Silk, 0-0.5 1 35 1530 Cert Benson KMS clutheram 1/14/226 2,5-5:0 - Puempetent Decle in Sult Cill Dowy M. W Lulling Address 4 TI) 2 S.O with wore long cour Pick · Bedrovle @ 41.5' bys. TD. Pesen = 16 Khazy (4) @ 1415 Sample : 16 KRM 24 (12) @ 1400 1440 Stating TP27 TP27 Profile. 0-1 Ail+ rewarrad material Saufle 2 16/2RM 26 (1.5) @ 14415 Sample = 16KRM27(1.5)01530 0.5- 2.0' Pre-2213 full working 0-015' 2013 PLACE RIL 0-0.5' 2013 Rill langer Co.5'-1.5' Prezus All 1.5'-4.5' 5217 70 = 4.0' 5:1+ it kalad 2.3-4.0' S.1t TP26 Prodice: 1-2.5

13 Rite in the Rain. (tore 17102 75 X - Ermete 9 Y M • 1015 al W 250 The vous the ×. PM0 5102 Swad A W F 2 9/15/2016 Cold Date, huns, 60°F Pricky. Up to to test Pits in the lived - AT Checking Ede Price to belinens Services on RAVN, Air huendsi'l NO: 808 7139624 Annew Areh C 11:30 · river and sach larges rel pit necony 4 vienus leubur. 0730 Saugher Muskued to RAUN Ros Shipping to Anelwoode. 0830 bewing male ... · 2 gred Engles if Norre 0630 anidropsig what had and OR333 bewing the Crew.

Lard 15			-								-									•			
Scheenus												N	ł)								/	/
or sound												V	N/X	(AX)	2	/							
6 Rem							-	/					-										
3/2/	1	_	1				_																
									-				-				÷			*			
	Ni	day	OW	GW	NO	ON	ND	dN	CN	CN	ON	CIN	ON	m	CUN	NP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ar	ON	AN	GN	,	
in the second	er Ni	69 MD	BC MO	63 MD	73 NO	an Ht	SB NO	66 NP	CM 82	Cur HB	CM FF	CIN Sol	ON 28	W bt	65 MD	dn 15	an 19	BS ND	dy no	60 ND	CN 62		
Screening	the and Ni	m 69 m	an 35 an	ND 63 ND	NO 73 NO	an Ht an	ON SS CAN	ND 66 ND	an ge an	un pg an	ON 27 11	CIN SOI ON	ON 28 ON	m bt on	NO 65 MD	AN 15 AN	ND 67 ND .	an as an	ND &Y NO	ND 60 ND	UN 79 NY	(N)	
hynd Screening	the the the Cr Ni	No no 69 no	an 38 an an	and 63 and	NO NO 73 NO	an Ht an ON	ON 35 CM CM	ND ND 66 ND	an ge an an	on the an an	ON the 11 ON	CIN SOI ON ON	CIN 28 CN CIN	m bt on m	AND NO 65 MD	dn 15 dn an	ND ND 67 ND	an so an an	AN NO EY NO	ND ND 60 ND	(N) 79 NO	W AN	
ctust sugged Screening	Bear to the the the Cr Ni	orizsi No mo 69 NO	2,0' NO NO 82 NO	1,0 we we 63 mo	Zis in ro 73 NO	an Ht an on Oil	ON 85 CM CIN 0.12	1,0 NP NP 66 NP	UN 86 and an 02	on the an on or	ON EZ 11 ON OT	CIN SOI aN ON 15	CIN 28 CIN CIN 5\$	ois wo wo 79 w	Z MA NO 65 MD	JN 15 UN AN '22.	1.5 ND ND 67 ND	ois no ND BS ND	1 is an at it we	75' ND ND 60 ND	(15 NU NU 79 NU	io' ND ND	

17	then showed them	WIL = MI, MS, MG,	N8, M9		Mh = M2, M3, M4, #	SHE.									4									Rite in the Rein
	ICLP Composi	TCLP Comp Sou			TCLP Cano Mo	-	14																	
Souding	Date	9/15/2015	- 7/15/2015	2/16/2016	7/16/2016	2 1cz/21/6	9/15/2216	9/15/2216	9/15/2mb	9/15/2216	- 9/15/221/P	0 9/15/22 6	7/15/22/6	1/15/2216	Sket Jake	- 9/15/2.16	9/16/226	Slik/Zul	9/16/251	9/16/2016	9/16/2016	1.1		
Mond	Time	escol 1	1083	- 1(40	2411	1310	1315	0141	SOHI	1530	1575	154	16 Zc	1625	1650	1655	6 1045	sol si	5 1015	2211 2	25 1125			
IZebart	Depthe TD	1 (0.75). 3,0	WI (2.0) . 3.0	-w2(1) · 3.5	N-M2 (26) 3,5	1-M3(1) . 41	1- 13 (H) · 1	4-M4/(1)1 4	- M4(2), 4	u-M5(2) 5	M-M5 (6) 5	SW-WS (A) SN-WY	zu-nb(i). 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2. 1263. 5	M-MZ1.5	M-M9(75). 3.	M-M8 (13. 3	- M9 (US) . 32	4 - M9 A.51. 32	1 - M9/10) . 3:			

due no inverses stape to weet on the 12 ppr 04 745 12 maps how 5' bys to 5' bys 511 trous 2 3 rock accurite 65 45 (2) @ 1580 Souples = 16 kert - M5 (2) @ 1580 * 16 kert - M5 (10) @ 1535 | 6 kRM - M5 (2) @ 1535 niked and appressly vendled. Seuprostlickin - M7(015) @ 1655 Caten se Run. 19 50-1000 116k Rul-M6(1) 201620 16 KRM - M 6 (3)0 1625 Silt tony and which to 1' bas 0-015 Silt to be done TD Reddish Color te 3' an cost Deputed Silt loom TO 3' bgs 511t how 3 bys ru s' bys with Tear Pir MS Test P/T N6 Ter Pir M7 EML TD= 5 3 9/15/16 Corl Bruen KML 55° Ry cldy Tess 12:7 MI 3' TO, Disnubed vorval No 1' Sqs, Divertying 2' of Silt w/ mich bedroch in self @ 3'395: Test Dip M2 3.5 TD Distuded Natrial TD 2' Jas Numbe Sult to Bedroch C 3.5' Jas 1 Scuple = 16 kRm-M2 (1) C 1140 16 kRm-M2 (2) C 1145 Olgande horizon at approximately Silt town with colder to 4' bas 1 200 2010 16 10 - M3(1) C 1310 Damples: 16 10 - M3(1) C 1310 517 locur worn roch cossle to weathered bedrach @ 4' basi Sougher: 16/nRM - M4 (1) @ 4400 16 KRM - MH (2) 0 (HOS (6KRM-M1 (2.0) @ 1355 Sagles = (6 LR LN-MI (075) @ 1050 Silt loan to 1' bys Test Pit M3. lest Rit MA

to 7 23 * hand-Mg (10), 2002 - 21 NS 0-0.5'-012 placed escreel pre-2013 0.5'-3'-517 and Submuded graved 3'-3.5'- Channel Coble and a cyre O'-0.25' Organic Meterial 0.25- 0.75' izeck and silt underry prior Suplea: LaRWIG-M9 (0.5) estats 1115 MANIG-M9 (1.5) estato 1120 1015 Pulyofe Meeting tree p. 13 in Samples = (h R. M - M 8 (b. 75) 2 1045 (6KRM-M8 (1.5) C-1050 Runs Star when other dustrubonce. 9/16/2216 Carl Barnes Amir O la us Olew pick yo crew 35- izedrock TD = 25 0.76- 35 Silt Jess Pir MB 3.25' - 10 est it M9 wound. Sec 201 purclose, take the the lower former 132 Ansve Analy unpoel bust, fre to Strudord TAT. V . Convert lown Sheen W/ Way Kin V . Soud Inling address to lown. V . Cer Aller Ser yous vender. · Contained inversion Red May. V Sangles on 9/15 1732 benchurs 2002 1900 20

(reher) Ar Mue Rein. gliblert Curl Baun mars, sorr cl - Swall chip of Conceber found low se Soundle = 16 hRul - 32 (0, 755) @ 1445 End of Tosr ?+ = 5' bys in silt. Scuples = 16 kRM - 33 (1) @ 1515 0-11 bys - Coldle 95/17 1.0 = TD = bedroche refused 0-1' 5' 511 45:14 0-6"=2013 6:11 1' - 5' 5114 with law words and 16 KRM - 33 (2) @ 1520 1600 1Sadifuting test pits 29-33 16KRW-31/230 1425 0-2' bys Siltand colle Iver Coucherlous, Leeny MAS Ante Aniah 16 tal m- 31 COTPITS1. Test P. 53 Ten P.+ 32 In hale, 9/16/2016 Cellena KMS 559 cloudy 1/30 Called ibre Notheri wither Mon para Norther intern diffrimed that this on the diffrimed that hill typ on the back Cafe will typ on the back Cities. 1342 Selceted Sap-cus bound lucionos To collect Mals" Souples Rol Popurial Subutino bead on RD-16 0-1,5 Rillow eld organic Matter 0-1' bys Rilf Astraled Manual Souples 2 16464-29 (0.75) 1320 16464-29 (1.5) 1325 15-2,0 Sult and bedrock rind 2.0 - bedrock (1) @1340 16 KRM - 30 (1) @1340 16 KRM - 30 (2) @1345 through 77-28 results. 1.5' bys = bedach Ter 2, 7 30 TCST Pit 29

3 6	5/16	5/16/	- Plisk	9/16/2	2/16/2	9/06/2d	9/16/20	9/16/20	1.1.	1 1	9/17/2	9/17/2	6/1-2/2en	52/21/20	5-2/41/2	9/12/200	glit/20	9/17/200	9/17/20	102/2/10			
1) Marc	1325	1340	1345	1420	1425	1445	2121 -	1520	S	G	10 25	1030	0900	1130	(135	221	1330	1335	0241	1425			
- 11	0	C	2	2	2	-	S	's															
E A	15	-	2	1	N	54' (42	12	120		10	2	Fo	-	~	0	0	(2)	(5:	()	(5.2)		•	1
SEU	5)		N	10	5	a los	33 (1)	2>(2)	33	336	34 (1	4 (24	1 (10	3-11	35-72	36 (1	37(1	37 (2	-36 (- 36			
M-29	N-29	N-30	N-30	M-3	2M-3/	S-W	R.M-J	c-nz	P.M.	- Ku-	RW- 3	Ru-3	RM ~2	GM-	RM-	RM-	- VNY	Ru-	RM	RM-			
Sup	6LeR	BLAR	5KR	BURR	1620	1648	164	164	tot	104	1616	16 K	2191:	191	1660	16 6	16/24	16 14	16 1	2 X			
(-							!	N	4	-	Ê		Ĺ						-				
	0		0		0								k										
N	IN	NL	NI	an	2	ND		AN	ND	UNV	CIN		an	an	AN	ND	W	an					
300	79	65	- 12	340	63	81		102	78	74	94		83	44	93	64 .	95.	50					
NO	AN	DN	QN	AD	CIN	QN		QN	ALA	11	17	[6	14	DN	on	5	U	•		- 3	**	
E 3	AN	ND	4N	S	CUY	AN		dN	DN	and	an		S	CN	CUV	W	an	av					
AL A	2	*				K			S		10		7		5	15	1	Sis					
1078	83 1	H	2 28	1 98	2 45	92 0	9	343	394 .	76 /2	4 2	h	14	201	1 50	2 501	3	1 40	1				
279	29	202	25	231	PZI	732	730	53	503	123.	23	P 3	P35	P36	trc	737	1238	038					
	TOTABLOIDE NO NO GO NO CAN PARA-29/0.251 .25 7 1.22.	TO29 82 0.75 NU ND 60 ND 16 KRM-29(0.75) 755 2 1525 TP29 83 15 ND ND ND 79 ND 16 KRM-29(0.75) 755 2 1525	TP29 82 0135 NU NU 60 NU 60 NU 640 NU 29 05 NU 10 Mun 10 Mun 1729 82 0135 NU NU 60 NU 66 NU 164 29 (15) 15 2 1325 155 155 155 155 155 155 155 155 155 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

0.25 - 0.25. 2013 l'autre les 1 0-0.25 2013 Kill colored to colle 0.25-2.0 5.14 Waved to colle 2.0-2.75 5.14 Waved to colle 2013 Paving lange how hillighte 20°F Clark 16 KIM- 38 (2.5)0 1212. Run S 6.0 2'-3, K' Silt with laurerous 9 Sift with lewinestons 4 Sample = 16 WRW- 37 (1.5) (D 1330 16 hran-37 (2.5) E135 19-36 Suple= 16/22436(1)0124 I we concretions. Sarryte = 16 have - 38 (202) 16 kau -38 2.5 70-38 Description 2013 P.11 TD z 3,36 bys. Cast Burson, 9/17/2016, KMS Deenprion P2-38 Description 2,02334-2.76 3 Colographic Colographics TP-37 0-1-0 observen 0 F. burned one claudes. 218 pun 19 34 4150F cldy C 1025 16 LX KM - 34 (2,5) @ 1030 Pleching . 1' - 3' - Silt + wildle (ad walked Bill) Badrel rhuer C 4'25 (1) C 1130 16hpm - 35 (2) C1135-Step out hun' TP-34 due to Carl Benzer 9/17/2216 hurs 0-475- 2013 Que FW 0 - 1' - Zuis Lover Fill Matrial SIT 9 Caldle Againth 0,75-4' - 51+4 Lable Pick of Aller & Leny Soupes = 16 KRM - 334(1) # 16KRM - 34 (10) TT2-34 Desciprio theath 9 stery 1'- bedruch proved Anive C hus TP-35 Deciptur 3'- Refused bedarock TP-36 Description here Anuch 0-1 (2 C) 0945 0 2000 0230 1012

29	Blev.	212"	698	6 312*	6.212	4, 7, 14	"12 E		3' 9 2"	S' 71/2	5 5"	5' 5"	3 1124	3' 11"	4' \$ 4"	3' 4 '2'	2' 8 14	1, 1, 1, B	3' 10'12"	3 1/4	3.9"	3 842	11 7 .	3' 10 3/8"	103 615 "
	w s	30.1	24,3	24.1	19.6	Sits-	0.75 J	•	HON .	15,51	20.75	6,25	5,0	A					-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.1.1	2 N E	105	95	22.5	21,57	/ 11,1/	2.6	西	24,2	29.2	32.2	34,3	54,9	St.1 15.94	452 2,0	215.2 15	45,2 28,75	35.8 35	34.8 11.5	39,8 25,5	32,4 24,0	0,75 4,6	2,75 12,5	した くた	on Central Serve
	Point R	79-21	07-24	M-dt.	12-4	M-4	M-2	-	M-3	p1-97	75-37	tp-3 /	. tp. 36	12234	19-18	17-12	T7-16	Bd1	241	70-15	1-05	1-W.	MJS	TD-8	Inserved.
	Elev	31.11 7/2	3, 6.	4. 4. M	4. 4"	4, 6"	3, 4,	2. 6.	4'354	5. 6"	51 10 12	<1. 81."	たた	7' 34'	81 9"	0,74	·· 5' 73/4	· 7' 1/2"	·· 5' 6'2"	· 4' 10'2	·· 4' 3'2"	·· 5' 5 7/8"	8.6.	5'11 34	7, 2"
	5	4'S	5.75	6.75	57	20.5	12.3	532.5	26.5	40,5	33,6	24,6	30,2	20,2	25.8	30,2	5,25	16.5	16.5	4,0	310	16	16.0	3.5	
	M		26.8	1				22.		5.25	5.5	6:75	12,75	14,0	23,0	25.0	349	3013	32,4	32,4	26,0	22.5	27.2	11	3312
	11	20.5	26.8	17,0	9'61	21	4,5	20	13.5							· · · ·				-1				-	5
	K M N	12									2			•.											112
28	Two	62-c4	17.30	t-df	rout	TP-28	9-W	the	togi	TP-32	tr-1	M-7	70-13	×-6	TP26	tp-33	fp-38	7P-25	H2-JT-	TP-23	22-04	いみ	the	P-M	42-37

APPENDIX B

PROJECT PHOTOGRAPHS

Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Bureau of Land Management Alaska State Office

4700 BLM Road

Anchorage, AK 99507-2591

January 2017

Photo 1 - Excavating at test pit TP-22

Photo 2 - Soil profile at TP-22.

Page 1 of 4

Photo 3 - Soil profile at TP-38 - new coarse material overlying silt and gravel mix overlying native silt.

Photo 4 - South end of retort mound viewed from east.

Photo 5 – East side of retort mound viewed from south.

Photo 6 – East side of retort mound viewed from north.

Photo 7 – West side of retort mound viewed from north.

APPENDIX C

LABORATORY ANALYTICAL DATA REPORTS

Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Bureau of Land Management Alaska State Office

4700 BLM Road

Anchorage, AK 99507-2591

January 2017

Laboratory Report of Analysis

To: Brice Environmental Srv Co. 301 Cushman St., Suite 200 Fairbanks, AK 99701 (907)459-3052

Report Number: **1165493**

Client Project: 210101 Kolmakof Mine Site

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 09/26/2016 1:32:12PM

SGS North America Inc.

Case Narrative

SGS Client: Brice Environmental Srv Co. SGS Project: 1165493 Project Name/Site: 210101 Kolmakof Mine Site Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

1165493001(1353312MS) (1353313) MS

6020A - Metals MS recovery for barium (136%) does not meet QC criteria. The post digestion spike was successful.

1165493001(1353312MSD) (1353314) MSD

6020A - Metals MSD recovery for barium (143%) does not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/26/2016 1:32:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
11	Indicates the analyte was analyzed for but not detected.

Print Date: 09/26/2016 1:32:15PM

Note:

	Ś	Sample Summary	,	
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
16KRM-16(1)	1165493001	09/13/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-17(2)	1165493002	09/13/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-18(3)	1165493003	09/13/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-19(2)	1165493004	09/13/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-20(2)	1165493005	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-20(10)	1165493006	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-21(3)	1165493007	09/13/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-22(2)	1165493008	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-23(2)	1165493009	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-24(1.25)	1165493010	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-25(0.75)	1165493011	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-26(1.5)	1165493012	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-27(1.5)	1165493013	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-28(1)	1165493014	09/14/2016	09/15/2016	Soil/Solid (dry weight)
16KRM-28(10)	1165493015	09/14/2016	09/15/2016	Soil/Solid (dry weight)

Method SW6020A SM21 2540G Method Description

Metals by ICP-MS (S) Percent Solids SM2540G

Print Date: 09/26/2016 1:32:16PM

SGS North America Inc.

Detectable Results Summary Client Sample ID: 16KRM-16(1) Lab Sample ID: 1165493001 Parameter Result Units Arsenic 11.2 mg/Kg Metals by ICP/MS Chromium 30.6 mg/Kg Mercury 0.171 mg/Kg Nickel 53.5 mg/Kg Client Sample ID: 16KRM-17(2) Lab Sample ID: 1165493002 Parameter Result Units Arsenic 11.5 mg/Kg Metals by ICP/MS Chromium 29.6 mg/Kg 1.96 Mercury mg/Kg Nickel 36.7 mg/Kg Client Sample ID: 16KRM-18(3) Lab Sample ID: 1165493003 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 9.96 mg/Kg Chromium 30.1 mg/Kg Mercury 14.3 mg/Kg Nickel 40.2 mg/Kg Client Sample ID: 16KRM-19(2) Lab Sample ID: 1165493004 Parameter Result Units 11.5 Metals by ICP/MS Arsenic mg/Kg 29.5 Chromium mg/Kg Mercury 4.05 mg/Kg Nickel 34.6 mg/Kg Client Sample ID: 16KRM-20(2) Lab Sample ID: 1165493005 Parameter **Result** <u>Units</u> Arsenic 10.3 mg/Kg Metals by ICP/MS Chromium 29.7 mg/Kg Mercury 4.19 mg/Kg Nickel 35.8 mg/Kg Client Sample ID: 16KRM-20(10) Lab Sample ID: 1165493006 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 9.72 mg/Kg Chromium 29.4 mg/Kg Mercury 3.36 mg/Kg Nickel 36.1 mg/Kg Client Sample ID: 16KRM-21(3) Lab Sample ID: 1165493007 Parameter Result Units Arsenic 8.02 Metals by ICP/MS mg/Kg Chromium 26.9 mg/Kg Mercury 0.161 mg/Kg Nickel 18.8 mg/Kg

SGS North America Inc.

Detectable Results Summary Client Sample ID: 16KRM-22(2) Lab Sample ID: 1165493008 Parameter Result Units Arsenic 10.3 mg/Kg Metals by ICP/MS Chromium 30.9 mg/Kg Mercury 2.87 mg/Kg Nickel 36.3 mg/Kg Client Sample ID: 16KRM-23(2) Lab Sample ID: 1165493009 Parameter Result Units Arsenic 9.57 mg/Kg Metals by ICP/MS Chromium 28.5 mg/Kg 2.81 Mercury mg/Kg Nickel 34.1 mg/Kg Client Sample ID: 16KRM-24(1.25) Lab Sample ID: 1165493010 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 9.94 mg/Kg Chromium 29.6 mg/Kg Mercury 5.83 mg/Kg Nickel 35.5 mg/Kg Client Sample ID: 16KRM-25(0.75) Lab Sample ID: 1165493011 Parameter Result Units Metals by ICP/MS Arsenic 9.39 mg/Kg 26.8 Chromium mg/Kg Mercury 0.213 mg/Kg Nickel 22.6 mg/Kg Client Sample ID: 16KRM-26(1.5) Lab Sample ID: 1165493012 Parameter **Result** <u>Units</u> Arsenic 20.9 mg/Kg Metals by ICP/MS Chromium 28.7 mg/Kg Mercury 2.76 mg/Kg Nickel 36.8 mg/Kg Client Sample ID: 16KRM-27(1.5) Lab Sample ID: 1165493013 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 6.39 mg/Kg Chromium 23.1 mg/Kg Mercury 0.168 mg/Kg Nickel 19.3 mg/Kg Client Sample ID: 16KRM-28(1) Lab Sample ID: 1165493014 Parameter Units Result Arsenic 8.99 Metals by ICP/MS mg/Kg Chromium 29.6 mg/Kg Mercury 2.38 mg/Kg Nickel 39.1 mg/Kg

SGS North America Inc.

Detectable Results Summary

Client Sample ID: 16KRM-28(10) Lab Sample ID: 1165493015 Metals by ICP/MS	<u>Parameter</u> Arsenic	<u>Result</u> 9.72	<u>Units</u> mg/Kg
	Chromium	30.7	mg/Kg
	Mercury	1.62	mg/Kg
	Nickel	41.6	mg/Kg

Print Date: 09/26/2016 1:32:17PM

SGS North America Inc.

Results of 16KRM-16(1)

Client Sample ID: 16KRM-16(1) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493001 Lab Project ID: 1165493	Collection Date: 09/13/16 15:00 Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):83.4 Location:						
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium	<u>Result Qual</u> 11.2 30.6	<u>LOQ/CL</u> 1.16 0.465	<u>DL</u> 0.360 0.151	<u>Units</u> mg/Kg mg/Kg	<u>DF</u> 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/23/16 10:17 09/23/16 10:17
Mercury Nickel	0.171 53.5	0.0465 0.232	0.0139 0.0720	mg/Kg mg/Kg	10 10		09/23/16 10:17 09/23/16 10:17
Batch Information Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 10:17 Container ID: 1165493001-A		F F F					

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-17(2)

Client Sample ID: 16KRM-17(2) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493002 Lab Project ID: 1165493	ine Site	Collection Date: 09/13/16 16:00 Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):80.9 Location:					
Results by Metals by ICP/MS	DesultQuel			Linita	DE	Allowable	Data Analyzad
Arsenic	11 5	<u>LOQ/CL</u> 1 20	<u>DL</u> 0.371	<u>Units</u> ma/Ka	<u>DF</u> 10	Limits	09/23/16 11:07
Chromium	29.6	0.479	0.156	ma/Ka	10		09/23/16 11:07
Mercury	1.96	0.0479	0.0144	mg/Kg	10		09/23/16 11:07
Nickel	36.7	0.239	0.0742	mg/Kg	10		09/23/16 11:07
Batch Information							
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL	Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/16 07:39						
Analytical Date/Time: 09/23/16 11:07 Container ID: 1165493002-A		Prep Initial Wt./Vol.: 1.033 g Prep Extract Vol: 50 mL					

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-18(3)

Client Sample ID: 16KRM-18(3) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493003 Lab Project ID: 1165493	C R M S L	ollection Da eceived Dat atrix: Soil/S olids (%):82 ocation:	te: 09/13/ [^] te: 09/15/1 olid (dry we .1	16 17:00 6 16:54 eight)			
Results by Metals by ICP/MS			_				
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.96 30.1 14.3 40.2	LOQ/CL 1.20 0.481 0.120 0.241	<u>DL</u> 0.373 0.156 0.0361 0.0746	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	DF 10 10 25 10	<u>Allowable</u> Limits	Date Analyzed 09/23/16 11:11 09/23/16 11:11 09/23/16 13:01 09/23/16 11:11
Batch Information							
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 11:11 Container ID: 1165493003-A	Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/16 07:39 Prep Initial Wt./Vol.: 1.013 g Prep Extract Vol: 50 mL						

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-19(2)

Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493004 Lab Project ID: 1165493	ine Site	Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):82.1 Location:						
Results by Metals by ICP/MS								
Deservation	Desult		DI	1.1 14		Allowable	Data Arabasat	
Parameter		LOQ/CL		<u>Units</u>		Limits	Date Analyzed	
Arsenic	11.5	1.14	0.354	mg/Kg	10		09/23/16 11:15	
Chromium	29.5	0.456	0.148	mg/Kg	10		09/23/16 11:15	
Mercury	4.05	0.0456	0.0137	mg/Kg	10		09/23/16 11:15	
Nickel	34.6	0.228	0.0707	mg/Kg	10		09/23/16 11:15	
Batch Information								
Analytical Batch: MMS9546		F	Prep Batch:	MXX30214				
Analytical Method: SW6020A		F	Prep Method: SW3050B					
Analyst: VDL		ŀ	Prep Date/Time: 09/21/16 07:39					
Analytical Date/Time: 09/23/16 11:15 Container ID: 1165493004-A		1	Prep Initial WL/VOL: 1.008 g Prep Extract Vol: 50 ml					

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-20(2)

Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493005 Lab Project ID: 1165493	ine Site	Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):84.0 Location:						
Results by Metals by ICP/MS								
						Allowable		
Parameter	Result Qual	LOQ/CL	DL	Units		Limits	Date Analyzed	
Arsenic	10.3	1.18	0.366	mg/Kg	10		09/23/16 11:20	
Chromium	29.7	0.472	0.153	mg/Kg	10		09/23/16 11:20	
Mercury	4.19	0.0472	0.0142	mg/Kg	10		09/23/16 11:20	
Nickel	35.8	0.236	0.0732	mg/Kg	10		09/23/16 11:20	
Batch Information								
Analytical Batch: MMS9546		F	Prep Batch:	MXX30214				
Analytical Method: SW6020A		F	Prep Method: SW3050B					
Analyst: VDL		F	Prep Date/Time: 09/21/16 07:39					
Container ID: 1165/03005-A		1	Prep Initial VVI./VOI.: 1.008 g					

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-20(10)

	_	0	allastian Da	ta: 00/11/	0.00.00			
Client Sample ID: 16KRM-20(10) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493006 Lab Project ID: 1165493	ine Site	Collection Date: 09/14/16 08:00 Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):84.0 Location:						
Results by Metals by ICP/MS								
Parameter Arcania	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed	
Chromium	9.72 29.4	0.465	0.360	mg/Kg	10		09/23/16 11:24	
Mercury	3.36	0.0465	0.0139	mg/Kg	10		09/23/16 11:24	
Nickel	36.1	0.232	0.0720	mg/Kg	10		09/23/16 11:24	
Batch Information								
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 11:24	Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/16 07:39							
Container ID: 1165493006-A		F	Prep Initial WL/Vol.: 1.025 g Prep Extract Vol: 50 mL					

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-21(3)

Client Sample ID: 16KRM-21(3) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493007 Lab Project ID: 1165493	C R M S L							
Results by Metals by ICP/MS			_					
Parameter			וח	Unite	DE	Allowable	Data Analyzad	
Arsenic	8 02	1.37	0 424	ma/Ka	10	LIIIIIIS	09/23/16 11:29	
Chromium	26.9	0.547	0.178	ma/Ka	10		09/23/16 11:29	
Mercury	0.161	0.0547	0.0164	mg/Kg	10		09/23/16 11:29	
Nickel	18.8	0.273	0.0847	mg/Kg	10		09/23/16 11:29	
Batch Information								
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL		F	Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/16 07:39					
Analytical Date/Time: 09/23/16 11:29 Container ID: 1165493007-A		Prep Initial Wt./Vol.: 1.019 g Prep Extract Vol: 50 mL						

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-22(2)

Client Sample ID: 16KRM-22(2) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493008 Lab Project ID: 1165493	ine Site	C R M Si Lo	ollection Da eceived Dat atrix: Soil/S olids (%):84 ocation:	te: 09/14/ e: 09/15/1 olid (dry we .5	16 13:30 6 16:54 eight)		
Results by Metals by ICP/MS							
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Arsenic	10.3	1.16	0.359	mg/Kg	10		09/23/16 11:33
Chromium	30.9	0.464	0.151	mg/Kg	10		09/23/16 11:33
Mercury	2.87	0.0464	0.0139	mg/Kg	10		09/23/16 11:33
Nickel	36.3	0.232	0.0719	mg/Kg	10		09/23/16 11:33
Batch Information							
Analytical Batch: MMS9546 Analytical Method: SW6020A	Prep Batch: MXX30214 Prep Method: SW3050B						
Analytical Date/Time: 09/23/16 11:33		F	Prep Date/Till	t./Vol.: 1.02	1 a		
Container ID: 1165493008-A		F	Prep Extract \	Vol: 50 mL	5		

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-23(2)

Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493009 Lab Project ID: 1165493	Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):84.1 Location:						
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.57 28.5 2.81 34.1	LOQ/CL 1.12 0.446 0.0446 0.223	<u>DL</u> 0.346 0.145 0.0134 0.0692	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/23/16 11:51 09/23/16 11:51 09/23/16 11:51 09/23/16 11:51
Batch Information Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 11:51 Container ID: 1165493009-A			Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX30214 SW3050B ne: 09/21/1 t./Vol.: 1.06 Vol: 50 mL	6 07:39 5 g		

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Client Sample ID: 16KRM-24(1.25) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493010 Lab Project ID: 1165493	C R M S	ollection Da eceived Dat atrix: Soil/S olids (%):85 ocation:	te: 09/14/ te: 09/15/1 olid (dry we 5.0	16 14:00 6 16:54 eight)			
Results by Metals by ICP/MS							
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.94 29.6 5.83 35.5	LOQ/CL 1.11 0.443 0.111 0.221	<u>DL</u> 0.343 0.144 0.0332 0.0686	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 25 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/23/16 11:56 09/23/16 11:56 09/23/16 13:06 09/23/16 11:56
Batch Information Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 11:56 Container ID: 1165493010-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	MXX30214 SW3050B ne: 09/21/1 t./Vol.: 1.06 Vol: 50 mL	6 07:39 3 g		

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

- Results of 16KRM-25(0.75)

Client Sample ID: 16KRM-25(0.75) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493011 Lab Project ID: 1165493	C R M S	ollection Da eceived Dat atrix: Soil/S olids (%):71 ocation:	te: 09/14/ ⁻ te: 09/15/1 olid (dry we .9	16 16:45 6 16:54 eight)			
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic	<u>Result Qual</u> 9.39	<u>LOQ/CL</u> 1.35	<u>DL</u> 0.420	<u>Units</u> mg/Kg	<u>DF</u> 10	<u>Allowable</u> Limits	Date Analyzed 09/23/16 12:00
Chromium	26.8	0.542	0.176	mg/Kg	10		09/23/16 12:00
Mercury	0.213	0.0542	0.0162	mg/Kg	10		09/23/16 12:00
Nickel	22.6	0.271	0.0839	mg/Kg	10		09/23/16 12:00
Batch Information							
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 12:00 Container ID: 1165493011-A		i i i i i i i i i i i i i i i i i i i	Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	WXX30214 SW3050B ne: 09/21/1 t./Vol.: 1.02 Vol: 50 mL	6 07:39 7 g		

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-26(1.5)

Client Sample ID: 16KRM-26(1.5) Client Project ID: 210101 Kolmakof M	ine Site	C	ollection Da eceived Dat	te: 09/14/ [,] te: 09/15/1	16 14:45 6 16:54				
Lab Sample ID: 1165493012 Lab Project ID: 1165493		M S	atrix: Soil/S olids (%):81 ocation:	olid (dry we .7	eight)				
Results by Metals by ICP/MS									
						Allowable			
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed		
Arsenic	20.9	1.22	0.377	mg/Kg	10		09/23/16 12:05		
Chromium	28.7	0.487	0.158	mg/Kg	10		09/23/16 12:05		
Mercury	2.76	0.0487	0.0146	mg/Kg	10		09/23/16 12:05		
Nickel	36.8	0.244	0.0755	mg/Kg	10		09/23/16 12:05		
Batch Information									
Analytical Batch: MMS9546		I	Prep Batch: I	MXX30214					
Analytical Method: SW6020A		I	Prep Method: SW3050B						
Analyst: VDL Applytical Data/Time: 00/22/16 12:05			Prep Date/Time: 09/21/16 07:39 Prep Initial Wt (Vol : 1 005 g						
		1	Pren Extract V	Vol: 50 ml	Jġ				

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-27(1.5)

Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493013 Lab Project ID: 1165493	Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):66.4 Location:							
Results by Metals by ICP/MS								
Deservation	De suit Quel		DI	1.1 14		Allowable	Data Arabumad	
Parameter Armonia	Result Qual	<u>LOQ/CL</u>	<u>DL</u> 0.442	<u>Units</u>	<u>DF</u> 10	Limits	Date Analyzed	
Chromium	0.39	1.43	0.443	mg/Kg	10		09/23/16 12:09	
Moreup	23.1	0.072	0.100	mg/Kg	10		09/23/10 12:09	
Nickel	19.3	0.286	0.0886	mg/Kg	10		09/23/16 12:09	
Batch Information								
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL		F F	Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/16 07:39					
Analytical Date/Time: 09/23/16 12:09 Container ID: 1165493013-A		F	Prep Initial W Prep Extract \	t./Vol.: 1.05 Vol: 50 mL	4 g			

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-28(1)

Client Sample ID: 16KRM-28(1) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493014 Lab Project ID: 1165493	Collection Date: 09/14/16 16:00 Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:						
Results by Metals by ICP/MS			_				
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 8.99 29.6 2.38 39.1	LOQ/CL 1.07 0.429 0.0429 0.215	<u>DL</u> 0.333 0.140 0.0129 0.0666	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 09/23/16 12:14 09/23/16 12:14 09/23/16 12:14 09/23/16 12:14
Batch Information							
Analytical Batch: MMS9546 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/23/16 12:14 Container ID: 1165493014-A		F F F	Prep Batch: 1 Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30214 SW3050B ne: 09/21/1 t./Vol.: 1.08 Vol: 50 mL	6 07:39 8 g		

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Results of 16KRM-28(10)

Client Project ID: 210101 Kolmakof M Lab Sample ID: 1165493015 Lab Project ID: 1165493	Received Date: 09/15/16 16:54 Matrix: Soil/Solid (dry weight) Solids (%):85.7 Location:							
Results by Metals by ICP/MS								
					55	Allowable		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>		Limits	Date Analyzed	
Arsenic	9.72	1.12	0.346	mg/Kg	10		09/23/16 12:18	
Chromium	30.7	0.446	0.145	mg/Kg	10		09/23/16 12:18	
Mercury	1.62	0.0446	0.0134	mg/Kg	10		09/23/16 12:18	
Nickel	41.6	0.223	0.0692	mg/Kg	10		09/23/16 12:18	
Batch Information								
Analytical Batch: MMS9546		F	Prep Batch:	MXX30214				
Analytical Method: SW6020A		F	Prep Method: SW3050B					
Analyst: VDL Pre			Prep Date/Time: 09/21/16 07:39					
Analytical Date/Time: 09/23/16 12:18 Container ID: 1165403015 A	Prep Initial Wt./Vol.: 1.046 g							

Print Date: 09/26/2016 1:32:17PM

J flagging is activated

Method Blank

Blank ID: MB for HBN 1743427 [MXX/30214] Blank Lab ID: 1353310 Matrix: Soil/Solid (dry weight)

QC for Samples:

1165493001, 1165493002, 1165493003, 1165493004, 1165493005, 1165493006, 1165493007, 1165493008, 1165493009, 1165493010, 1165493011, 1165493012, 1165493013, 1165493014, 1165493015

Results by SW6020A

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/Kg
Chromium	0.200U	0.400	0.130	mg/Kg
Mercury	0.0200U	0.0400	0.0120	mg/Kg
Nickel	0.100U	0.200	0.0620	mg/Kg

Batch Information

Analytical Batch: MMS9546 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 9/23/2016 10:58:02AM Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 9/21/2016 7:39:22AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 09/26/2016 1:32:22PM

S	GS

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165493 [MXX30214] Blank Spike Lab ID: 1353311 Date Analyzed: 09/23/2016 11:02

Matrix: Soil/Solid (dry weight)

QC for Samples: 1165493001, 1165493002, 1165493003, 1165493004, 1165493005, 1165493006, 1165493007, 1165493008, 1165493009, 1165493010, 1165493011, 1165493012, 1165493013, 1165493014, 1165493015

Results by SW6020A				
	E	Blank Spike	(mg/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	50	48.3	97	(82-118)
Chromium	20	19.5	97	(83-119)
Mercury	0.5	0.518	104	(74-126)
Nickel	50	49.9	100	(84-119)

Batch Information

Analytical Batch: MMS9546 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Prep Batch: MXX30214 Prep Method: SW3050B Prep Date/Time: 09/21/2016 07:39 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/26/2016 1:32:24PM

SGS	
	_

Matrix Spike Summary

Original Sample	ID: 1353312					Analysis	Date: 09	9/23/2016	10:17		
MSD Sample ID:	1353314 MS	П				Analysis	Date: 0	2/23/2010	10.22		
MOD Gampie ID.	1000014 100	D				Matrix:	Solid/Soil	(Wet Weig	ght)		
QC for Samples:	1165493001, 1165493008, 1165493015	116549300 116549300	02, 116549 09, 116549	03003, 116 03010, 116	5493004, 11 5493011, 11	65493005 65493012	5, 1165493 2, 1165493	3006, 11654 3013, 11654	93007, 93014,		
Results by SW60)20A			_							
			Matr	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	<u>.</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	ç	9.37	50.0	54.4	90	48.2	56.2	97	82-118	3.36	(< 20)
Chromium	2	25.6	20.0	46.7	106	19.3	46.8	110	83-119	0.14	(< 20)
Mercury	(0.143	0.500	.635	98	0.482	0.614	98	74-126	3.30	(< 20)

93

48.2

91.3

50.0

91.1

Batch Information

Nickel

Analytical Batch: MMS9546 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/23/2016 10:22:07AM

44.7

Prep Batch: MXX30214 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 9/21/2016 7:39:22AM Prep Initial Wt./Vol.: 1.00g Prep Extract Vol: 50.00mL

97

Print Date: 09/26/2016 1:32:26PM

(< 20)

84-119 **0.15**

SGS

Method Blank					
Blank ID: MB for HI Blank Lab ID: 1353	BN 1743451 [SPT/10003] 418	Matrix	k: Soil/Solid (dry weight)	
QC for Samples: 1165493001, 116549 1165493010, 116549	3002, 1165493003, 1165493004, 116 3011, 1165493012, 1165493013, 116	5493005, 1165493006 5493014, 1165493015	5, 1165493007 5	7, 1165493008, 1165493009,	
Results by SM21 2	540G				
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information Analytical Batch: Analytical Method Instrument: Analyst: IAS Analytical Date/Tir	SPT10003 : SM21 2540G me: 9/20/2016 5:55:00PM				

uplicate Sample Summ	ary				
Driginal Sample ID: 1165 Duplicate Sample ID: 135	553003 53419		Analysis Date: Matrix: Soil/So	09/20/2016 17:55 lid (dry weight)	
QC for Samples:					
		LORANA 116540RANS	1165493006, 116	5493007, 1165493	8008,
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G	2, 1165493003, 11654), 1165493011, 11654	93012, 1165493013,	1165493014, 116	5493015	
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G <u>NAME</u>	2, 1165493003, 11654 0, 1165493011, 11654 <u>Original</u>	193012, 1165493013, Duplicate	1165493014, 116	5493015 <u>RPD (%)</u>	RPD CL
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G <u>NAME</u> Total Solids	2, 1165493003, 11654 0, 1165493011, 11654 <u>Original</u> 85.8	1004930004, 11054930003, 193012, 1165493013, Duplicate 85.9	1165493014, 116 <u>Units</u> %	5493015 <u>RPD (%)</u> 0.08	<u>RPD CL</u> (< 15)
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G <u>NAME</u> Total Solids Batch Information	2, 1165493003, 11654 0, 1165493011, 11654 <u>Original</u> 85.8	193012, 1165493013, Duplicate 85.9	1165493014, 116 <u>Units</u> %	5493015 <u>RPD (%)</u> 0.08	<u>RPD CL</u> (< 15)
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G <u>NAME</u> Total Solids Batch Information	2, 1165493003, 11654 0, 1165493011, 11654 <u>Original</u> 85.8	193012, 1165493013, Duplicate 85.9	1165493014, 116	5493015 <u>RPD (%)</u> 0.08	<u>RPD CL</u> (< 15)
1165493001, 1165493002 1165493009, 1165493010 Results by SM21 2540G <u>NAME</u> Total Solids Batch Information Analytical Batch: SPT1000 Analytical Method: SM21 2	2, 1165493003, 11654 0, 1165493011, 11654 <u>Original</u> 85.8 13 2540G	193012, 1165493013, Duplicate 85.9	1165493014, 116	55493015 <u>RPD (%)</u> 0.08	<u>RPD CL</u> (< 15)

Print Date: 09/26/2016 1:32:28PM

SGS North America Inc.

S	
9	
S	

SGS North America Inc. CHAIN OF CUSTODY RECORD

.ocations Nationwide a Maryland Jersey New York Carolina Indiana Virgina Kentucky

L											1100.0
						Inst	ructions: 5	sections 1	- 5 must be filled	out.	
		rice Eminorum	eutel			Ō	missions m	ay delay t	he onset of analys	is.	Pane 7 of 2
ŀ	соитаст: (Cerl Benson PHO	NE NO: $\frac{7}{3\xi}$	79-548	2 (Kiell)	Section 3			Preservative		5
noitoe	PROJECT K	dured of hime perm	uecii Idi 2101 MIT#:	10		* υ					
5	REPORTS TO	Carl Benzan E-M.	АІІ: Се. 15	Chricea	אינרטעש	ton Type	5				
	INVOICE TO:	Carl 13 Pur North OUG)TE # 32	5662		A COMP	?//´. S†∕`				
	Brice E	Zurilanmentel P.O.)) #	(Nutti Nutti) (Y - 0				
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R mental Solis	ر ر دە2				REMARKS/ LOC ID
	(TDA	16KRM-16(1)	09/13/16	15:00	S	16	X				
	₿.A	18 MRM-17(2)	04/13/16	16:00	Ś	5 1	×				
5	QA	16 MRM-18(3)	09/13/16	14:00	З	ب ۲	\times				
uoi	A(P)	16KRU-19(2)	09/12/16	SH:21	S	୍ୟ 	X				
jo98	E)A	16 WRM- 20(2)	01/17/10	11:15	S	ر ا	X				
5	64	16KRUN-20(10)	ORINHIL	00;60	S	5	×				
	DA A	164,RM-21 (3)	29/13/16	19 i W	S	5	X				
	B A	164 RUL-22 (2)	69/14/16	13:30	Ś	1	\times				
	(g) A	16 KRM-23 (2)	CH/14/16	12:00	λ	-5 1	\times				
	A ()	16KRM -24(1,25)	04/14/16	14,00	ν	5 -	X				
	Relinquished	1 By: (1)	Date	Time	Received By:			Section 4	DOD Project? Yes No) Data Deliv∈	erable Requirements:
	Call	Judan	4/15/16	0730				Cooler ID:)		
9	Relinquished	By: (2)	Date	Time	Received By:			Requested Tu	Irnaround Time and/or Sp	ecial Instruction	S:
; uoij								27	1-Ho TAS	T STAN	
၁ခင	Relinquished	By: (3)	Date	Time	Received By:					, Arid	74/171
<u> 28</u>								Temp Blank °	ö	Chain of C	Custody Seal: (Circle)
3 of 33	Relinquished	By: (4)	9/15/16	Time [6,54	Received For	Laboratory By	juu	(See attach	or Ambient	(See attached	よ,{
	[] 200 W. P. [] 5500 Bus	otter Drive Anchorage, AK 995 iness Drive Wilmington, NC 26	18 Tel: (907) 3405 Tel: (910	562-2343 Fax) 350-1903 Fa	c: (907) 561-53 ax: (910) 350-5	101 1557		http://www.sgs	.com/terms-and-conditions		

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

S	
Č	

SGS North America Inc. CHAIN OF CUSTODY RECORD

New York Maryland Kentucky Indiana Locations Nationwide rth Carolina est Virgina w Jersey iska

IS.COM	, ,						REMARKS/	2								erable Requirements:		ns:	MARD FAT	NTICAC	Custody Seal: (Circle)	BROKEN ABSENT
	Sections 1 - 5 must be filled out. nav delav the onset of analysis.		Preservative													Section 4 DOD Project? Yes No) Data Delive	Cooler ID:	Requested Turnaround Time and/or Special Instructions	1 24-Hr TAT Simon	1211	Temp Blank °C:	or Ambient [] INTACT E
	Instructions: Omissions r	Section 3		** 0			R Incre- mental Sois	I G X	X V -	- C	I G X	1 G X					\wedge					Laboratory By:
		(Kell)	Cell		ento (viu		MATRIX/ MATRIX CODE	Ś	S	S	S	S				Received By:		Received By:		Received By:		Received For
		19-13412	1842-38	101	Chuilbuin	5662	TIME HH:MM	16:415	54:1-1	15:30	16:00	16:15				Time	0730	Time		Time		тіте 16:5 У
	eutal	ONF NO:	S.	SIDI 20	NAIL: 166 brice	оте <i>н</i> : 33 0.#: 33	DATE mm/dd/yy	04/1-1/19	91/1-1/199	09/14/16	09/14/16	09/14/16	-			Date	9/12/119	Date	\	Date		Date 9//15//6
	MCC Eaul Manuar	Hd	el Denson	Windled Mine PW	s: Et Jeusan Ced	Znutrumental P.C	SAMPLE IDENTIFICATION	16 LARM-25 (0.75)	16 Lx RM-26 (1.5)	16 KRM - 27(1,5)	16 LARM-28(1)	164RM-28(10)				1 By: (1)	- Ard	l By: (2)		By: (3)		(t) BX:(t)
	CLIENT: $/S_{\mathfrak{s}}$				Cent 1	INVOICE TO: Brice &	RESERVED for lab use	(I) V	A(J)	N (I)A	V(h) JO	000 (IS)A	3			Relinquished	Certh	Relinquished	e noit	C Relinquished	29	Relinquished

http://www.sgs.com/terms-and-conditions

(See attached Sample Receipt Form)

200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

(See attached Sample Receipt Form)

	AIRPORT DEPARTU	OF AN	1	09/15/16	07:26	3 004	4548		808	7139624	Frgt
SHIPP CA	er's nam RL BEI	IE, ADDR	ESS & PH	ÖNE		SHIPPER	S ACCOUNT NUMBE B2822	ER (AIR	NOT AIR WAYBILL CONSIGNMENT NOT	Ravne	4700 Old International Airport Road Anchorage, Alaska 99502
AN CONS SG	IAK IGNEE'S N S NOR	AME, AD	DRESS &	AK PHONE		CONSIGNE	E'S ACCOUNT NUME	BER liabil	agreed that the goods opt as noted) for carris COMPANIES TARIFF CERNING CARRIER (by by declaring a high ived in Good Condition	described herein are accepted by the subject to the CO ge SUBJECT TO THE CO S. THE SHIPPER'S ATTE VIMITATION OF LIABILI er value for carriage and p	oted in apparent good order and condition NDITIONS OF CONTRACT AS LISTED IN NTION IS DRAWN TO THE NOTICE IY. Shipper may increase such limitation of aying a supplemental charge if required.
200 AN	WEST	POTE RGE	er dri	VE AK 99	518	90	75622343	Place TO EX RULE	KPEDITE MOVEMENT, SI UNLESS SHIPPER GIVE	IPMENT MAY BE DIVERTED	Date TO MOTOR OR OTHER CARRIER AS PER TARIFF EON
ISSUIN		ER'S AGE	NT NAME	, CITY & PHC	NE			ALSO	D NOTIFY NAME & A	DDRESS	
AIRPOR					Declared Va	NO.	lineured Amount	ACC	WITING INFORMAT	Environmental S	ervices Corp Acc#: B2822
Aniak		TURE			\$ 0.0	0	\$ 0.00	Brid	e Environmen	tal Services Corp	Acc#: B2822 Brice
	BY FI	RST F DESTINA horage	TION					СОМ	MENTS		
No. Of Pieces Rop	Gross Weight	kg Ib	Rate Class Col	nmodity em No.	Chargeabl	e Weight	Rate/Charge		Total	Na	ture and Quantity of Goods
1	13		WEIGHT	CHARGE					\$29.18	. 11	65493
	\$29	9.18					AMOUNT		DESCRIPTION		
	\$0. \$1. \$0.(.00 .82 	FEDERAL E	KGES DUE AG	ENT	•••••		-		HA	ZMAT No
STATION ANCHORA ANIAK - (9 BARROW BETHEL -{ DEADHOR	\$0. LIDIAL F \$31 NUMBERS GE - (907) 252-5 907) 852-5 907) 543-365 SE - (907) 8	TOTAL C 00 REPAID .00 43-2761 2300 25 59-9222	THER CHAI	FAIRBANKS GALENA - (90 KOTZEBUE NOME - (907 ST. MARYS UNALAKLEE	- (907) 450-72 - (907) 450-72 - (907) 450-72 - (907) 450-72 - (907) 452-32 - (907) 442-30 - (907) 438-22 - (907) 624-7 - (907) 624-7	21 250 20 47 3595	Shipper certifies th COMPANIES TAR unless a higher va part of the consign by air according to Air Transport Asso Paid By Ship Printed Name and T	nat the partic RIFFS, accep alue for carria ment contail o applicable i ociation's Re OPEF Title	ulars on the face here te that carrier's llabilit age is declared on the ns restricted articles, s national governmental stricted Articles Regul	of are correct, agrees to th / is limited as stated in the face hereof subject to an a such part is described by n regulations, and for intern ations.	e CONDITIONS AS LISTED IN THE companies teriffs and accepts such value dditional charge and that insofar as any ame and is in proper condition for carriage ational shipments, the current international
Printed	at 07:36:	31 on 9/	15/2016	at ANI-3 10.	6.0.9		Signature				

Consignee Copy

		Alert Expeditors Inc.	#368849
		Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99	502
		Date 9 15 16	
		From Carl Benson	
•		Prepay D	Advance Charges
		Collect □ Account □ Job # PO#	
	•	1 cooler @ 17	5
×		4465493	
· · · · · · · · ·			
			7(1
、		1 <u>570</u>	<u> </u>
		Snipped Signature	21 - + 22

		1	16549	93		1 1 6 5 4 9 3
Review Criteria	1\Y	N (yes/n	o)	Exc	eptions Note	d below
				exemption perr	mitted if sampler	hand carries/delivers.
Were Custody Seals intact? Note # 8	location	Y			1-F, 1-B	
COC accompanied	samples?	Y				
Y **exemption perm	itted if ch	illed & c	ollected <8	hrs ago or chlling no	ot required (i.e., v	waste, oil)
			Cooler ID:		@	°C Therm ID:
	6		Cooler ID:		@	°C Therm ID:
Temperature blank compliant* (i.e., 0-6 °C a	after CF)?		Cooler ID:		@	°C Therm ID:
		┝━┥┝	Cooler ID:		@	°C Therm ID:
*If >6°C ware samples collected <8 hor	urs ano?		Cooler ID:		(U)	^c Therm ID:
1 >0 C, were samples conecieu <0 not	us ugo:		indent			
If <0°C, were sample containers	ice free?					
If samples received <u>without</u> a temperature blank, the "cooler temperat be documented in lieu of the temperature blank & " COOLER TEMP " wi noted to the right. In cases where neither a temp blank nor cooler tem obtained, note "ambient" or "chilled".	ure" will ll be p can be					
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form					
		N	lote: Refer t	to form F-083 "Sam	ple Guide" for ho	old times.
Were samples received within he	old time?	Y				
Do samples match COC** (i.e.,sample IDs,dates/times co	Υ					
**Note: If times differ <1hr, record details & login	per COC.					
Were analyses requested unam	biguous?	Y				
				***Exemption	permitted for me	tals (e.g,200.8/6020A).
Were proper containers (type/mass/volume/preservative*	**)used?	Y				
IF APPLICABLE						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples?					
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)?					
Were all soil VOAs field extracted with Me	OH+BFB?					
Note to Client: Any "no" answer above indicates	s non-con	npliance	with standa	ard procedures and	may impact data	quality.
Addit	ional no	otes (if	applicabl	le):		
WO is standard TAT per JAN.						

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1165493001-A	No Preservative Required	ОК			
1165493002-A	No Preservative Required	ОК			
1165493003-A	No Preservative Required	ОК			
1165493004-A	No Preservative Required	ОК			
1165493005-A	No Preservative Required	ОК			
1165493006-A	No Preservative Required	ОК			
1165493007-A	No Preservative Required	ОК			
1165493008-A	No Preservative Required	ОК			
1165493009-A	No Preservative Required	ОК			
1165493010-A	No Preservative Required	ОК			
1165493011-A	No Preservative Required	ОК			
1165493012-A	No Preservative Required	ОК			
1165493013-A	No Preservative Required	ОК			
1165493014-A	No Preservative Required	ОК			
1165493015-A	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Report of Analysis

To: Brice Environmental Srv Co. 301 Cushman St., Suite 200 Fairbanks, AK 99701 (907)459-3052

Report Number: **1168620**

Client Project: 210101 Kolmakof Mine Character

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/20/2016 4:41:49PM

SGS North America Inc.

Case Narrative

SGS Client: Brice Environmental Srv Co. SGS Project: 1168620 Project Name/Site: 210101 Kolmakof Mine Character Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

1168620001(1355482MS) (1355487) MS

6020A - Metals MS recoveries for chromium (129%) and mercury (2080%) do not meet QC criteria. The post digestion spike was successful.

1165696011(1355465MSD) (1355467) MSD

6020A - Metals MSD recoveries for and chromium (124%) does not meet QC criteria. The post digestion spike was successful.

1168620001(1355482MSD) (1355488) MSD

6020A - Metals MSD recovery for mercury (72.8%) does not meet QC criteria. The post digestion spike was successful. 6020A - Metals MS/MSD RPD for mercury (158) does not meet QC criteria. Refer to sample duplicate for RPD requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/20/2016 4:41:53PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
U Sample summaries which All DRO/RRO analyses are	Indicates the analyte was analyzed for but not detected. include a result for "Total Solids" have already been adjusted for moisture conte

Print Date: 10/20/2016 4:41:59PM

Note:

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
16KRM-M1(0.75)	1168620001	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M1(2)	1168620002	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M2(1)	1168620003	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M2(2.5)	1168620004	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M3(1)	1168620005	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M3(4)	1168620006	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M4(1)	1168620007	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M4(2)	1168620008	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M5(2)	1168620009	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M5(10)	1168620010	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M5(4)	1168620011	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M6(1)	1168620012	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M6(3)	1168620013	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M7(0.5)	1168620014	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M7(2)	1168620015	09/15/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M8(0.75)	1168620016	09/16/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M8(1.5)	1168620017	09/16/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M9(0.5)	1168620018	09/16/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M9(1.5)	1168620019	09/16/2016	09/23/2016	Soil/Solid (dry weight)
16KRM-M9(10)	1168620020	09/16/2016	09/23/2016	Soil/Solid (dry weight)
TCLP Mound North	1168620021	09/19/2016	09/23/2016	Solid/Soil (Wet Weight)
TCLP Mound South	1168620022	09/19/2016	09/23/2016	Solid/Soil (Wet Weight)
TCLP Comp North	1168620023	09/19/2016	09/23/2016	Solid/Soil (Wet Weight)
TCLP Comp South	1168620024	09/19/2016	09/23/2016	Solid/Soil (Wet Weight)

Method SW6020A TCLP

SW6020A SM21 2540G Method Description Metals by ICP-MS Metals by ICP-MS (S)

Percent Solids SM2540G

Print Date: 10/20/2016 4:42:03PM

SGS North America Inc.

Detectable Results Summary Client Sample ID: 16KRM-M1(0.75) Lab Sample ID: 1168620001 Parameter Result Units Arsenic 9.32 mg/Kg Metals by ICP/MS Chromium 28.4 mg/Kg Mercury 1.34 mg/Kg Nickel 23.3 mg/Kg Client Sample ID: 16KRM-M1(2) Lab Sample ID: 1168620002 Parameter Result Units Arsenic 9.34 mg/Kg Metals by ICP/MS Chromium 30.5 mg/Kg 0.832 Mercury mg/Kg Nickel 31.9 mg/Kg Client Sample ID: 16KRM-M2(1) Lab Sample ID: 1168620003 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 8.82 mg/Kg Chromium 26.7 mg/Kg Mercury 11.5 mg/Kg Nickel 30.0 mg/Kg Client Sample ID: 16KRM-M2(2.5) Lab Sample ID: 1168620004 Parameter Result Units Metals by ICP/MS Arsenic 7.77 mg/Kg 28.1 Chromium mg/Kg Mercury 28.1 mg/Kg Nickel 18.4 mg/Kg Client Sample ID: 16KRM-M3(1) Lab Sample ID: 1168620005 Parameter **Result** <u>Units</u> Arsenic 9.76 mg/Kg Metals by ICP/MS Chromium 31.1 mg/Kg 1.28 Mercury mg/Kg Nickel 31.5 mg/Kg Client Sample ID: 16KRM-M3(4) Lab Sample ID: 1168620006 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 11.9 mg/Kg Chromium 29.7 mg/Kg Mercury 0.492 mg/Kg 32.1 Nickel mg/Kg Client Sample ID: 16KRM-M4(1) Lab Sample ID: 1168620007 Parameter Result Units Arsenic 7.25 Metals by ICP/MS mg/Kg Chromium 27.5 mg/Kg Mercury 10.6 mg/Kg Nickel 25.0 mg/Kg

Print Date: 10/20/2016 4:42:05PM

SGS North America Inc.

Detectable Results Summary Client Sample ID: 16KRM-M4(2) Lab Sample ID: 1168620008 Parameter Result Units Arsenic 10.9 mg/Kg Metals by ICP/MS Chromium 29.5 mg/Kg Mercury 0.473 mg/Kg Nickel 31.2 mg/Kg Client Sample ID: 16KRM-M5(2) Lab Sample ID: 1168620009 Parameter Result Units Arsenic 11.7 mg/Kg Metals by ICP/MS Chromium 30.9 mg/Kg 0.724 Mercury mg/Kg Nickel 35.9 mg/Kg Client Sample ID: 16KRM-M5(10) Lab Sample ID: 1168620010 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 10.2 mg/Kg 30.6 Chromium mg/Kg Mercury 1.35 mg/Kg Nickel 32.0 mg/Kg Client Sample ID: 16KRM-M5(4) Lab Sample ID: 1168620011 Parameter Result Units 8.75 Metals by ICP/MS Arsenic mg/Kg 30.2 Chromium mg/Kg Mercury 16.6 mg/Kg Nickel 33.4 mg/Kg Client Sample ID: 16KRM-M6(1) Lab Sample ID: 1168620012 Parameter **Result** <u>Units</u> Arsenic 12.3 mg/Kg Metals by ICP/MS Chromium 34.2 mg/Kg Mercury 0.179 mg/Kg Nickel 35.9 mg/Kg Client Sample ID: 16KRM-M6(3) Lab Sample ID: 1168620013 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 10.5 mg/Kg Chromium 33.3 mg/Kg Mercury 0.236 mg/Kg 30.9 Nickel mg/Kg Client Sample ID: 16KRM-M7(0.5) Lab Sample ID: 1168620014 Parameter Result Units Arsenic 10.5 Metals by ICP/MS mg/Kg Chromium 30.5 mg/Kg Mercury 17.9 mg/Kg Nickel 32.9 mg/Kg

Print Date: 10/20/2016 4:42:05PM

SGS North America Inc.

Detectable Results Summary Client Sample ID: 16KRM-M7(2) Lab Sample ID: 1168620015 Parameter Result Units Arsenic 8.36 mg/Kg Metals by ICP/MS Chromium 31.4 mg/Kg Mercury 0.317 mg/Kg Nickel 22.9 mg/Kg Client Sample ID: 16KRM-M8(0.75) Lab Sample ID: 1168620016 Parameter Result Units Arsenic 9.06 mg/Kg Metals by ICP/MS Chromium 30.6 mg/Kg 4.91 Mercury mg/Kg Nickel 36.7 mg/Kg Client Sample ID: 16KRM-M8(1.5) Lab Sample ID: 1168620017 Parameter Result <u>Units</u> 9.30 Metals by ICP/MS Arsenic mg/Kg Chromium 31.6 mg/Kg Mercury 0.394 mg/Kg Nickel 24.1 mg/Kg Client Sample ID: 16KRM-M9(0.5) Lab Sample ID: 1168620018 Parameter Result Units Arsenic 10.9 mg/Kg Metals by ICP/MS 30.9 Chromium mg/Kg Mercury 9.34 mg/Kg Nickel 37.9 mg/Kg Client Sample ID: 16KRM-M9(1.5) Lab Sample ID: 1168620019 Parameter **Result** <u>Units</u> Arsenic 7.70 mg/Kg Metals by ICP/MS Chromium 29.9 mg/Kg 0.258 Mercury mg/Kg Nickel 21.2 mg/Kg Client Sample ID: 16KRM-M9(10) Lab Sample ID: 1168620020 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 7.89 mg/Kg Chromium 28.6 mg/Kg Mercury 0.135 mg/Kg 20.0 Nickel mg/Kg Client Sample ID: TCLP Mound North Lab Sample ID: 1168620021 Parameter Result Units Chromium 0.0930J mg/L **TCLP Constituents Metals** Client Sample ID: TCLP Mound South Lab Sample ID: 1168620022 **Parameter Result** Units 0.0922J **TCLP Constituents Metals** Chromium mg/L

Print Date: 10/20/2016 4:42:05PM

SGS North America Inc.

	Detectable Results Summary	etectable Results Summary						
Client Sample ID: TCLP Comp North Lab Sample ID: 1168620023 TCLP Constituents Metals	<u>Parameter</u> Chromium Nickel	<u>Result</u> 0.0989J 0.0328J	<u>Units</u> mg/L mg/L					
Client Sample ID: TCLP Comp South Lab Sample ID: 1168620024 TCLP Constituents Metals	<u>Parameter</u> Chromium	<u>Result</u> 0.129J	<u>Units</u> mg/L					

SGS North America Inc.

Results of 16KRM-M1(0.75)								
Client Sample ID: 16KRM-M1(0.75) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620001 Lab Project ID: 1168620			Collection Date: 09/15/16 10:50 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):71.8 Location:					
Results by Metals by ICP/MS								
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.32 28.4 1.34 23.3	LOQ/CL 1.30 0.520 0.0520 0.260	<u>DL</u> 0.403 0.169 0.0156 0.0806	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/06/16 12:52 10/06/16 12:52 10/06/16 12:52 10/06/16 12:52	
Batch Information								
Analytical Batch: MMS9565 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/06/16 12:52 Container ID: 1168620001-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 : SW3050B me: 10/03/1 /t./Vol.: 1.07 Vol: 50 mL	6 08:41 '1 g			

Results of 16KRM-M1(2)							
Client Sample ID: 16KRM-M1(2) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620002 Lab Project ID: 1168620	Collection Date: 09/15/16 10:55 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):82.5 Location:						
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.34 30.5 0.832 31.9	LOQ/CL 1.14 0.456 0.0456 0.228	<u>DL</u> 0.354 0.148 0.0137 0.0707	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/06/16 13:57 10/06/16 13:57 10/06/16 13:57 10/06/16 13:57
Batch Information Analytical Batch: MMS9565 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/06/16 13:57 Container ID: 1168620002-A		F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.06 Vol: 50 mL	6 08:41 2 g		

Print Date: 10/20/2016 4:42:08PM

Results of 16KRM-M2(1)							
Client Sample ID: 16KRM-M2(1) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620003 Lab Project ID: 1168620	C R M S L	ollection Da eceived Dat latrix: Soil/S olids (%):76 ocation:					
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 8.82 26.7 11.5 30.0	LOQ/CL 1.11 0.446 0.111 0.223	<u>DL</u> 0.345 0.145 0.0334 0.0691	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 25 10	<u>Allowable</u> Limits	Date Analyzed 10/06/16 14:02 10/06/16 14:02 10/07/16 11:04 10/06/16 14:02
Batch InformationAnalytical Batch: MMS9565Analytical Method: SW6020AAnalyst: VDLAnalytical Date/Time: 10/06/16 14:02Container ID: 1168620003-AAnalytical Batch: MMS9567Analytical Method: SW6020AAnalyst: VDLAnalytical Date/Time: 10/07/16 11:04Container ID: 1168620003-A			Prep Batch: 1 Prep Method: Prep Date/Tir Prep Initial W Prep Extract Prep Batch: 1 Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 : SW3050B ne: 10/03/1 (t./Vol.: 1.17 Vol: 50 mL MXX30236 : SW3050B ne: 10/03/1 (t./Vol.: 1.17 Vol: 50 mL	6 08:41 2 g 6 08:41 2 g		

Print Date: 10/20/2016 4:42:08PM

Results of 16KRM-M2(2.5)							
Client Sample ID: 16KRM-M2(2.5) Client Project ID: 210101 Kolmakof N Lab Sample ID: 1168620004 Lab Project ID: 1168620	Collection Date: 09/15/16 11:45 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):66.6 Location:						
Results by Metals by ICP/MS							
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 7.77 28.1 28.1 18.4	LOQ/CL 1.28 0.513 0.256 0.256	<u>DL</u> 0.397 0.167 0.0769 0.0795	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 50 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/06/16 14:06 10/06/16 14:06 10/07/16 11:35 10/06/16 14:06
Batch Information							
Analytical Batch: MMS9565 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/06/16 14:06 Container ID: 1168620004-A		i i i i i i i i i i i i i i i i i i i	Prep Batch: 1 Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.17 Vol: 50 mL	6 08:41 2 g		
Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 11:35 Container ID: 1168620004-A		i i i i i i i i i i i i i i i i i i i	Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.17 Vol: 50 mL	6 08:41 2 g		

Results of 16KRM-M3(1)							
Client Sample ID: 16KRM-M3(1) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620005 Lab Project ID: 1168620	C R M S	Collection Date: 09/15/16 13:10 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):76.9 Location:					
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.76 31.1 1.28 31.5	LOQ/CL 1.28 0.512 0.0512 0.256	<u>DL</u> 0.397 0.166 0.0154 0.0794	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/06/16 14:11 10/06/16 14:11 10/06/16 14:11 10/06/16 14:11
Batch Information Analytical Batch: MMS9565 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/06/16 14:11 Container ID: 1168620005-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract 1	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.01 Vol: 50 mL	6 08:41 6 g		

Print Date: 10/20/2016 4:42:08PM

SGS							
Client Sample ID: 16KRM-M3(4) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620006 Lab Project ID: 1168620		C R M S L	ollection Da eceived Da latrix: Soil/S olids (%):81 ocation:				
Results by Metals by ICP/MS							
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Arsenic	11.9	1.17	0.364	mg/Kg	10		10/06/16 14:15
Chromium	29.7	0.470	0.153	mg/Kg	10		10/06/16 14:15
Mercury	0.492	0.0470	0.0141	mg/Kg	10		10/06/16 14:15
Nickel	32.1	0.235	0.0728	mg/Kg	10		10/06/16 14:15
Batch Information							
Analytical Batch: MMS9565 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/06/16 Container ID: 1168620006-A	14:15		Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 : SW3050B me: 10/03/1 't./Vol.: 1.04 Vol: 50 mL	6 08:41 2 g		

Results of 16KRM-M4(1)							
Client Sample ID: 16KRM-M4(1) Client Project ID: 210101 Kolmako Lab Sample ID: 1168620007 Lab Project ID: 1168620	Collection Date: 09/15/16 14:00 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):71.8 Location:						
Results by Metals by ICP/MIS						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Arsenic	7.25	1.30	0.404	mg/Kg	10		10/07/16 09:57
Chromium	27.5	0.521	0.169	mg/Kg	10		10/07/16 09:57
Mercury	10.6	0.130	0.0391	mg/Kg	25		10/07/16 11:13
Nickel	25.0	0.261	0.0808	mg/Kg	10		10/07/16 09:57
Batch Information							
Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 09:57 Container ID: 1168620007-A	7		Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 : SW3050B ne: 10/03/1 't./Vol.: 1.06 Vol: 50 mL	6 08:41 9 g		

Results of 16KRM-M4(2)							
Client Sample ID: 16KRM-M4(2) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620008 Lab Project ID: 1168620	C R M S	ollection Da eceived Da latrix: Soil/S olids (%):75 ocation:	te: 09/15/ te: 09/23/1 olid (dry w 5.7	16 14:05 6 09:15 eight)			
Results by Metals by ICP/MS			_				
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 10.9 29.5 0.473 31.2	LOQ/CL 1.18 0.473 0.0473 0.236	<u>DL</u> 0.366 0.154 0.0142 0.0733	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/07/16 10:01 10/07/16 10:01 10/07/16 10:01 10/07/16 10:01
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:01 Container ID: 1168620008-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.11 Vol: 50 mL	6 08:41 7 g		

Print Date: 10/20/2016 4:42:08PM

SGS							
Client Sample ID: 16KRM-M5 (Client Project ID: 210101 Kolr Lab Sample ID: 1168620009 Lab Project ID: 1168620	C R M S L	ollection Da eceived Dat latrix: Soil/S olids (%):76 ocation:					
Results by Metals by ICP/MS						Alla	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	11.7	1.21	0.374	mg/Kg	10		10/07/16 10:06
Chromium	30.9	0.483	0.157	mg/Kg	10		10/07/16 10:06
Mercury	0.724	0.0483	0.0145	mg/Kg	10		10/07/16 10:06
Nickel	35.9	0.241	0.0748	mg/Kg	10		10/07/16 10:06
Batch Information							
Analytical Batch: MMS9567 Analytical Method: SW6020A		I	Prep Batch: I Prep Method:	MXX30236 SW3050B			

Prep Date/Time: 10/03/16 08:41

Prep Initial Wt./Vol.: 1.091 g

Prep Extract Vol: 50 mL

Analyst: VDL

Analytical Date/Time: 10/07/16 10:06

Container ID: 1168620009-A

SGS	
	_

Results of 16KRM-M5(10)							
Client Sample ID: 16KRM-M5(10) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620010 Lab Project ID: 1168620	C R M S L						
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 10.2 30.6 1.35 32.0	LOQ/CL 1.20 0.478 0.0478 0.239	<u>DL</u> 0.371 0.156 0.0144 0.0742	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/07/16 10:10 10/07/16 10:10 10/07/16 10:10 10/07/16 10:10
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:10 Container ID: 1168620010-A		F F F	Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.09 Vol: 50 mL	6 08:41 16 g		

Print Date: 10/20/2016 4:42:08PM

aracter	С	ollection Da	te: 09/15/1	C 4 E . 4 O		
	R M Si Lo					
ult Qual 75 .2 .6	LOQ/CL 1.06 0.424 0.212 0.212	<u>DL</u> 0.329 0.138 0.0636	<u>Units</u> mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 50	Allowable Limits	Date Analyzed 10/07/16 10:14 10/07/16 10:14 10/07/16 11:55 10/07/16 10:14
	F F F F F	Prep Batch: I Prep Method: Prep Date/Tin Prep Initial W Prep Extract \	MXX30236 SW3050B ne: 10/03/1/ t./Vol.: 1.18 /ol: 50 mL	6 08:41 6 g		
	<u>ult Qual</u> 75 .2 .6 .4	<u>ult Qual</u> <u>LOQ/CL</u> 75 1.06 .2 0.424 .6 0.212 .4 0.212	It Qual LOQ/CL DL 75 1.06 0.329 .2 0.424 0.138 .6 0.212 0.0636 .4 0.212 0.0658	It Qual LOQ/CL DL Units 75 1.06 0.329 mg/Kg .2 0.424 0.138 mg/Kg .6 0.212 0.0636 mg/Kg .4 0.212 0.0658 mg/Kg .4 0.212 0.0658 mg/Kg .4 0.212 0.0658 mg/Kg	It Qual LOQ/CL DL Units DF 75 1.06 0.329 mg/Kg 10 .2 0.424 0.138 mg/Kg 10 .6 0.212 0.0636 mg/Kg 10 .4 0.212 0.0658 mg/Kg 10 Prep Batch: MXX30236 Prep Date/Time: 10/03/16 08:41 Prep Initial Wt./vol.: 1.186 g Prep Extract Vol: 50 mL	Matrix. Soli/Solid (dry weight) Solids (%):79.5 Location: <u>Allowable</u> <u>Location:</u> <u>Allowable</u> Location: <u>Allowable</u> Location: <u>Allowable</u> Limits 75 1.06 0.329 mg/Kg 10 .2 0.424 0.138 mg/Kg 10 .6 0.212 0.0636 mg/Kg 50 .4 0.212 0.0658 mg/Kg 10 Prep Batch: MXX30236 Prep Date/Time: 10/03/16 08:41 Prep Initial Wt./Vol.: 1.186 g Prep Extract Vol: 50 mL

Print Date: 10/20/2016 4:42:08PM

SGS								
Client Sample ID: 16KRM-M6(1) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620012 Lab Project ID: 1168620		Collection Date: 09/15/16 16:20 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):80.8 Location:						
Results by Metals by ICP/MS								
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed	
Arsenic	12.3	1.10	0.341	mg/Kg	10		10/07/16 10:19	
Chromium	34.2	0.440	0.143	mg/Kg	10		10/07/16 10:19	
Mercury	0.179	0.0440	0.0132	mg/Kg	10		10/07/16 10:19	
Nickel	35.9	0.220	0.0682	mg/Kg	10		10/07/16 10:19	
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:19 Container ID: 1168620012-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 : SW3050B ne: 10/03/1 /t./Vol.: 1.12 Vol: 50 mL	6 08:41 24 g			

Results of 16KRM-M6(3)							
Client Sample ID: 16KRM-M6(3) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620013 Lab Project ID: 1168620		Collection Date: 09/15/16 16:25 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):79.6 Location:					
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	10.5	1.19	0.368	mg/Kg	10		10/07/16 10:23
Chromium	33.3	0.474	0.154	mg/Kg	10		10/07/16 10:23
Mercury	0.236	0.0474	0.0142	mg/Kg	10		10/07/16 10:23
Nickel	30.9	0.237	0.0735	mg/Kg	10		10/07/16 10:23
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDI		F	Prep Batch: I Prep Method: Prep Date/Tir	WXX30236 SW3050B ne: 10/03/1	6 08·41		

Analytical Date/Time: 10/07/16 10:23 Container ID: 1168620013-A Prep Method: SW3050B Prep Date/Time: 10/03/16 08:4 Prep Initial Wt./Vol.: 1.059 g Prep Extract Vol: 50 mL

Print Date: 10/20/2016 4:42:08PM

Results of 16KRM-M7(0.5)	
Client Sample ID: 16KRM-M7(0.5) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620014 Lab Project ID: 1168620	Collection Date: 09/15/16 16:50 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):77.9 Location:
Results by Metals by ICP/MS	

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	10.5	1.09	0.338	mg/Kg	10		10/07/16 10:28
Chromium	30.5	0.436	0.142	mg/Kg	10		10/07/16 10:28
Mercury	17.9	0.218	0.0654	mg/Kg	50		10/07/16 11:59
Nickel	32.9	0.218	0.0676	mg/Kg	10		10/07/16 10:28

Batch Information

Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:28 Container ID: 1168620014-A Prep Batch: MXX30236 Prep Method: SW3050B Prep Date/Time: 10/03/16 08:41 Prep Initial Wt./Vol.: 1.178 g Prep Extract Vol: 50 mL

Print Date: 10/20/2016 4:42:08PM

Results of 16KRM-M7(2)							
Client Sample ID: 16KRM-M7(2) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620015 Lab Project ID: 1168620	Collection Date: 09/15/16 16:55 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):70.5 Location:						
Results by Metals by ICP/MS			_				
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 8.36 31.4 0.317 22.9	LOQ/CL 1.37 0.550 0.0550 0.275	<u>DL</u> 0.426 0.179 0.0165 0.0852	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/07/16 10:32 10/07/16 10:32 10/07/16 10:32 10/07/16 10:32
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:32 Container ID: 1168620015-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.03 Vol: 50 mL	6 08:41 32 g		

Print Date: 10/20/2016 4:42:08PM

Results of 16KRM-M8(0.75)								
Client Sample ID: 16KRM-M8(0.75) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620016 Lab Project ID: 1168620	ine Character	C R M S	Collection Date: 09/16/16 10:45 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):77.9 Location:					
Results by Metals by ICP/MS			_					
Parameter Arsenic Chromium Mercury Nickel Batch Information	Result Qual 9.06 30.6 4.91 36.7	LOQ/CL 1.17 0.468 0.0468 0.234	<u>DL</u> 0.363 0.152 0.0140 0.0726	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/07/16 10:37 10/07/16 10:37 10/07/16 10:37 10/07/16 10:37	
Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:37 Container ID: 1168620016-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 't./Vol.: 1.09 Vol: 50 mL	6 08:41 7 g			

Results of 16KRM-M8(1.5)							
Client Sample ID: 16KRM-M8(1.5) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620017 Lab Project ID: 1168620	C R M So Lo	ollection Da eceived Da atrix: Soil/S blids (%):64 pocation:	te: 09/16/ [,] te: 09/23/1 olid (dry we 3	16 10:50 6 09:15 eight)			
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.30 31.6 0.394 24.1	LOQ/CL 1.27 0.509 0.0509 0.254	<u>DL</u> 0.394 0.165 0.0153 0.0789	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/07/16 10:50 10/07/16 10:50 10/07/16 10:50 10/07/16 10:50
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:50 Container ID: 1168620017-A		F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.22 Vol: 50 mL	6 08:41 3 g		

SGS							
Client Sample ID: 16KRM-M9(0.5) Client Project ID: 210101 Kolmakof Mine Character Lab Sample ID: 1168620018 Lab Project ID: 1168620		C R M S L	Collection Date: 09/16/16 11:15 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):85.9 Location:				
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	10.9	1.03	0.319	mg/Kg	10		10/07/16 10:55
Chromium	30.9	0.412	0.134	mg/Kg	10		10/07/16 10:55
Mercury	9.34	0.103	0.0309	mg/Kg	25		10/07/16 11:26
Nickel	37.9	0.206	0.0639	mg/Kg	10		10/07/16 10:55
Batch Information							
Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:55		I I I	Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.13	6 08:41 a		

Prep Extract Vol: 50 mL

Print Date: 10/20/2016 4:42:08PM

Container ID: 1168620018-A

Results of 16KRM-M9(1.5)							
Client Sample ID: 16KRM-M9(1.5) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620019 Lab Project ID: 1168620	C R M S L	collection Da Received Dat Iatrix: Soil/S colids (%):69 ocation:	te: 09/16/ [,] te: 09/23/1 olid (dry we .5	16 11:20 6 09:15 eight)			
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	Result Qual 7.70 29.9 0.258 21.2	LOQ/CL 1.34 0.536 0.0536 0.268	DL 0.415 0.174 0.0161 0.0830	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/07/16 10:59 10/07/16 10:59 10/07/16 10:59 10/07/16 10:59
Batch Information Analytical Batch: MMS9567 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/07/16 10:59 Container ID: 1168620019-A			Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30236 SW3050B ne: 10/03/1 t./Vol.: 1.07 Vol: 50 mL	6 08:41 5 g		

Results of 16KRM-M9(10)							
Client Sample ID: 16KRM-M9(10) Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620020 Lab Project ID: 1168620	Collection Date: 09/16/16 11:25 Received Date: 09/23/16 09:15 Matrix: Soil/Solid (dry weight) Solids (%):69.5 Location:						
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 7.89 28.6 0.135 20.0	LOQ/CL 1.37 0.549 0.0549 0.275	<u>DL</u> 0.425 0.178 0.0165 0.0851	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/10/16 13:43 10/10/16 13:43 10/10/16 13:43 10/10/16 13:43
Batch Information Analytical Batch: MMS9571 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/10/16 13:43 Container ID: 1168620020-A			Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	MXX30235 SW3050B ne: 09/30/1 t./Vol.: 1.04 Vol: 50 mL	6 09:50 9 g		

Results of TCLP Mound North							
Client Sample ID: TCLP Mound Nort Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620021 Lab Project ID: 1168620	Collection Date: 09/19/16 14:45 Received Date: 09/23/16 09:15 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:						
Results by TCLP Constituents Metals	6						
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 0.125 U 0.0930 J 0.00500 U 0.0500 U	LOQ/CL 0.250 0.200 0.0100 0.100	<u>DL</u> 0.0750 0.0650 0.00310 0.0310	<u>Units</u> mg/L mg/L mg/L mg/L	<u>DF</u> 25 25 25 25	<u>Allowable</u> <u>Limits</u> (<5) (<5) (<0.2)	Date Analyzed 10/13/16 11:28 10/13/16 11:28 10/13/16 11:28 10/13/16 11:28
Batch Information Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Analyst: VDL Analytical Date/Time: 10/13/16 11:28 Container ID: 1168620021-A		F F F F	Prep Batch: N Prep Method: Prep Date/Tim Prep Initial Wt Prep Extract V	/IXT5446 SW3010A ne: 10/12/1 ./Vol.: 2.5 /ol: 25 mL	16 12:02 mL		

Results of TCLP Mound South							
Client Sample ID: TCLP Mound Sout Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620022 Lab Project ID: 1168620	Ci Ri M Si Lo	ollection Dat eceived Date atrix: Solid/S olids (%): ocation:	te: 09/19/ e: 09/23/ [,] Soil (Wet \	'16 14:4 16 09:1 Weight)	0 5		
Results by TCLP Constituents Metals	3						
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 0.125 U 0.0922 J 0.00500 U 0.0500 U	LOQ/CL 0.250 0.200 0.0100 0.100	<u>DL</u> 0.0750 0.0650 0.00310 0.0310	<u>Units</u> mg/L mg/L mg/L mg/L	<u>DF</u> 25 25 25 25	<u>Allowable</u> <u>Limits</u> (<5) (<5) (<0.2)	Date Analyzed 10/13/16 11:33 10/13/16 11:33 10/13/16 11:33 10/13/16 11:33
Batch Information Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Analyst: VDL Analytical Date/Time: 10/13/16 11:33 Container ID: 1168620022-A		F F F F F	Prep Batch: N Prep Method: Prep Date/Tim Prep Initial Wt Prep Extract V	//XT5446 SW3010A ne: 10/12/1 ./Vol.: 2.5 /ol: 25 mL	(16 12:02 mL		

Results of TCLP Comp North							
Client Sample ID: TCLP Comp North Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620023 Lab Project ID: 1168620	C R M Se	ollection Dat eceived Dat atrix: Solid/S olids (%): ocation:	te: 09/19/ e: 09/23/ [.] Soil (Wet \	16 14:3 16 09:1 Weight)	35 5		
Results by TCLP Constituents Metals	3						
Parameter Arsenic Chromium Mercury Nickel	Result Qual 0.125 U 0.0989 J 0.00500 U 0.0328 J	LOQ/CL 0.250 0.200 0.0100 0.100	<u>DL</u> 0.0750 0.0650 0.00310 0.0310	<u>Units</u> mg/L mg/L mg/L mg/L	DF 25 25 25 25	<u>Allowable</u> <u>Limits</u> (<5) (<5) (<0.2)	Date Analyzed 10/13/16 11:37 10/13/16 11:37 10/13/16 11:37 10/13/16 11:37
Batch Information Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Analyst: VDL Analytical Date/Time: 10/13/16 11:37 Container ID: 1168620023-A		F F F F	Prep Batch: N Prep Method: Prep Date/Tim Prep Initial Wt Prep Extract V	//XT5446 SW3010A ne: 10/12/1 ./Vol.: 2.5 /ol: 25 mL	n 16 12:02 mL		

Results of TCLP Comp South							
Client Sample ID: TCLP Comp South Client Project ID: 210101 Kolmakof M Lab Sample ID: 1168620024 Lab Project ID: 1168620	Collection Date: 09/19/16 14:30 Received Date: 09/23/16 09:15 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:						
Results by TCLP Constituents Metals	5						
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 0.125 U 0.129 J 0.00500 U 0.0500 U	LOQ/CL 0.250 0.200 0.0100 0.100	<u>DL</u> 0.0750 0.0650 0.00310 0.0310	<u>Units</u> mg/L mg/L mg/L mg/L	<u>DF</u> 25 25 25 25	<u>Allowable</u> <u>Limits</u> (<5) (<5) (<0.2)	Date Analyzed 10/13/16 11:57 10/13/16 11:57 10/13/16 11:57 10/13/16 11:57
Batch Information Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Analyst: VDL Analytical Date/Time: 10/13/16 11:57 Container ID: 1168620024-A		F F F F F	Prep Batch: N Prep Method: Prep Date/Tim Prep Initial Wt Prep Extract V	/IXT5446 SW3010A ne: 10/12/1 ./Vol.: 2.5 /ol: 25 mL	16 12:02 mL		

Method Blank

Blank ID: LB1 for HBN 1745097 [TCLP/8562 Blank Lab ID: 1357653 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1168620022, 1168620023, 1168620024

Results by SW6020A TCLP

Parameter Results LOQ/CL DL vrsenic 0.0500U 0.100 0.0300 Chromium 0.0632J 0.0800 0.0260 Aercury 0.00200U 0.00400 0.00124 lickel 0.0200U 0.0400 0.0124	1			
Arsenic 0.0500U 0.100 0.0300 Chromium 0.0632J 0.0800 0.0260 Mercury 0.00200U 0.00400 0.00124 Jickel 0.0200U 0.0400 0.0124	Parameter	Results	LOQ/CL	<u>DL</u>
Chromium 0.0632J 0.0800 0.0260 /lercury 0.00200U 0.00400 0.00124 lickel 0.0200U 0.0400 0.0124	Arsenic	0.0500U	0.100	0.0300
Aercury 0.00200U 0.00400 0.00124 lickel 0.0200U 0.0400 0.0124	Chromium	0.0632J	0.0800	0.0260
lickel 0.0200U 0.0400 0.0124	Mercury	0.00200U	0.00400	0.00124
	Nickel	0.0200U	0.0400	0.0124

Batch Information

Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 10/13/2016 10:06:42AM Prep Batch: MXT5446 Prep Method: SW3010A Prep Date/Time: 10/12/2016 12:02:00PM Prep Initial Wt./Vol.: 6.25 mL Prep Extract Vol: 25 mL

Print Date: 10/20/2016 4:43:41PM

Method Blank

Blank ID: MB for HBN 1745350 [MXT/5446] Blank Lab ID: 1357932 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168620022, 1168620023, 1168620024

Results by SW6020A TCLP

Image:				
senic 0.0125U 0.0250 0.00750 iromium 0.00832J 0.0200 0.00650 ercury 0.000500U 0.00100 0.000310 ckel 0.00500U 0.0100 0.00310	Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>
Iromium 0.00832J 0.0200 0.00650 Ircury 0.000500U 0.00100 0.000310 Ickel 0.00500U 0.0100 0.00310	Arsenic	0.0125U	0.0250	0.00750
Prcury 0.000500U 0.00100 0.000310 kel 0.00500U 0.0100 0.00310	Chromium	0.00832J	0.0200	0.00650
xel 0.00500U 0.0100 0.00310	Mercury	0.000500U	0.00100	0.000310
	Nickel	0.00500U	0.0100	0.00310

Batch Information

Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 10/13/2016 9:57:44AM Prep Batch: MXT5446 Prep Method: SW3010A Prep Date/Time: 10/12/2016 12:02:00PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/20/2016 4:43:41PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1168620 [MXT5446] Blank Spike Lab ID: 1357933 Date Analyzed: 10/13/2016 10:02

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168620021, 1168620022, 1168620023, 1168620024

Results by SW6020A TCLP

Blank Spike (mg/L)									
Spike	Result	Rec (%)							
1	1.01	101							
0.4	0.407	102							
0.01	0.00990	99							
4	4 0 =	105							
	<u>Spike</u> 1 0.4 0.01	Blank Spike Spike Result 1 1.01 0.4 0.407 0.01 0.00990							

Batch Information

Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Instrument: Perkin Elmer NexIon P5 Analyst: VDL Prep Batch: MXT5446 Prep Method: SW3010A Prep Date/Time: 10/12/2016 12:02 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/20/2016 4:43:45PM

Matrix Spike Summary

Original Sample ID: 1357934 MS Sample ID: 1357936 MS MSD Sample ID: 1357937 MSD Analysis Date: 10/13/2016 10:11 Analysis Date: 10/13/2016 10:15 Analysis Date: 10/13/2016 10:20 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1168620021, 1168620022, 1168620023, 1168620024

Results by SW6020A TCLP

		Matrix Spike (mg/L)			Spike Duplicate (mg/L)					
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.125U	10.0	10.1	101	10.0	10.1	101	84-116	0.53	(< 20)
Chromium	0.104J	4.00	4.31	105	4.00	4.28	104	85-116	0.68	(< 20)
Mercury	0.00500U	0.100	.106	106	0.100	0.104	104	70-124	2.25	(< 20)
Nickel	0.0580J	10.0	10.6	105	10.0	10.7	107	85-117	1.30	(< 20)

Batch Information

Analytical Batch: MMS9578 Analytical Method: SW6020A TCLP Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 10/13/2016 10:15:42AM Prep Batch: MXT5446 Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 10/12/2016 12:02:00PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 20.00mL

Print Date: 10/20/2016 4:43:47PM

SGS Method Blank

Blank ID: MB for HBN 1744272 [MXX/30235] Blank Lab ID: 1355463

QC for Samples: 1168620020

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	
Arsenic	0.500U	1.00	
Chromium	0.200U	0.400	
Mercury	0.0200U	0.0400	
Nickel	0.100U	0.200	

Batch Information

Analytical Batch: MMS9567 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 10/7/2016 2:35:25PM Prep Batch: MXX30235 Prep Method: SW3050B Prep Date/Time: 9/30/2016 9:50:19AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Matrix: Soil/Solid (dry weight)

Print Date: 10/20/2016 4:43:48PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1168620 [MXX30235] Blank Spike Lab ID: 1355464 Date Analyzed: 10/07/2016 12:14

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168620020

Results by SW6020A

	_		
	E	Blank Spike	(mg/Kg)
Parameter	Spike	Result	<u>Rec (%)</u>
Arsenic	50	50.7	101
Chromium	20	21.6	108
Mercury	0.5	0.561	112
Nickel	50	52.3	105

Batch Information

Analytical Batch: MMS9567 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Prep Batch: MXX30235 Prep Method: SW3050B Prep Date/Time: 09/30/2016 09:50 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/20/2016 4:43:50PM

Matrix Spike Summary

Original Sample ID: 1355465 MS Sample ID: 1355466 MS MSD Sample ID: 1355467 MSD Analysis Date: 10/07/2016 12:19 Analysis Date: 10/07/2016 12:23 Analysis Date: 10/07/2016 12:28 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1168620020

Results by SW6020A

		Matrix Spike (mg/Kg)			Spike Duplicate (mg/Kg)					
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
Arsenic	8.55	49.6	57.6	99	49.7	56.9	97	82-118	1.20	(< 20)
Chromium	19.0	19.8	41.1	111	19.9	43.7	124 *	83-119	6.19	(< 20)
Mercury	0.0730	0.496	.534	93	0.497	0.565	99	74-126	5.71	(< 20)
Nickel	21.7	49.6	69.5	96	49.7	72.9	103	84-119	4.87	(< 20)

Batch Information

Analytical Batch: MMS9567 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 10/7/2016 12:23:38PM Prep Batch: MXX30235 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 9/30/2016 9:50:19AM Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Print Date: 10/20/2016 4:43:51PM
Driginal Sample ID: 13	y 55465 68 BND				Analysis Analysis	Date: 1	0/07/2016 0/07/2016	12:19 12:32		
MSD Sample ID:	620020				Analysis Matrix:	Date: Solid/Soi	l (Wet Weig	ght)		
Results by SW6020A		Matri	x Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
arameter nromium	<u>Sample</u> 19.0	<u>Spike</u> 120	<u>Result</u> 150	<u>Rec (%)</u> 109	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 80-120	<u>RPD (%)</u>	<u>RPD C</u>
Instrument: Perkin Eln Analyst: VDL Analytical Date/Time:	ner Nexlon P5 10/7/2016 12:32:38	BPM		Prep Prep Prep	Date/Tim Initial Wt Extract \	ne: 9/30/2 t./Vol.: 1.0 /ol: 50.00	016 9:50:1 ⁾⁴ g mL	9AM		

Method Blank

Blank ID: MB for HBN 1744275 [MXX/30236] Blank Lab ID: 1355480

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168620001, 1168620002, 1168620003, 1168620004, 1168620005, 1168620006, 1168620007, 1168620008, 1168620009, 1168620010, 1168620011, 1168620012, 1168620013, 1168620014, 1168620015, 1168620016, 1168620017, 1168620018, 1168620019

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	DL
Arsenic	0.500U	1.00	0.310
Chromium	0.246J	0.400	0.130
Mercury	0.0200U	0.0400	0.0120
Nickel	0.100U	0.200	0.0620

Batch Information

Analytical Batch: MMS9565 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 10/6/2016 1:32:24PM

Prep Batch: MXX30236 Prep Method: SW3050B Prep Date/Time: 10/3/2016 8:41:35AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 10/20/2016 4:43:52PM

Duplicate Sample Sum	mary				
Original Sample ID: 135 Duplicate Sample ID: 13	55482 355490		Analysis Date: ´ Matrix: Solid/So	0/06/2016 14:39 il (Wet Weight)	
QC for Samples:					
1168620001, 11686200	02,1168620003,1168 10 1168620011 1168	620004, 1168620005, 620012, 1168620013	1168620006, 1168	620007, 1168620	008,
Results by SW6020A	10, 1100020011, 1100		1108020014, 1100	620015, 1166620	016,
Results by SW6020A	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	016, <u>RPD CL</u>
Results by SW6020A <u>NAME</u> Mercury	<u>Original</u> 0.951	Duplicate 0.797	<u>Units</u> mg/Kg	<u>RPD (%)</u> 17.60	016, <u>RPD CL</u> (< 20)

Print Date: 10/20/2016 4:43:54PM

Blank Spike Summary

SG

Blank Spike ID: LCS for HBN 1168620 [MXX30236] Blank Spike Lab ID: 1355481 Date Analyzed: 10/06/2016 12:48

Matrix: Soil/Solid (dry weight)

1168620001, 1168620002, 1168620003, 1168620004, 1168620005, 1168620006, 1168620007, QC for Samples: 1168620008, 1168620009, 1168620010, 1168620011, 1168620012, 1168620013, 1168620014, 1168620015, 1168620016, 1168620017, 1168620018, 1168620019

Results by SW6020A				
	E	Blank Spike	(mg/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	CL
Arsenic	50	46.9	94	(82-1
Chromium	20	21.0	105	(83-1
Mercury	0.5	0.517	103	(74-1
Nickel	50	52.5	105	(84-1

Batch Information

Analytical Batch: MMS9565 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL

Prep Batch: MXX30236 Prep Method: SW3050B Prep Date/Time: 10/03/2016 08:41 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/20/2016 4:43:56PM

Matrix Spike Sun	nmary									
Original Sample I MS Sample ID: 1 MSD Sample ID:	D: 1355482 355487 MS 1355488 MSD				Analysis Analysis Analysis Matrix:	Date: 10 Date: 10 Date: 10 Date: 10	0/06/2016 0/06/2016 0/06/2016 (Wet Weig	12:52 12:57 13:01 ght)		
QC for Samples:	1168620001, 11686200 1168620008, 11686200 1168620015, 11686200	02, 116862 09, 116862 16, 116862	20003, 116 20010, 116 20017, 116	8620004, 11 8620011, 11 8620018, 11	6862000 68620012 68620019	5, 1168620 2, 1168620 9	0006, 11686 0013, 11686	20007, 20014,		
Results by SW60	20A									
		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%</u>) RPD CL
Arsenic	6.69	48.1	51.8	94	47.3	51.7	95	82-118	0.34	(< 20)
Chromium	20.4	19.2	45.2	129 *	18.9	41.9	114	83-119	7.54	(< 20)
<i>l</i> ercury	0.951	0.481	10.9	2080 *	0.473	1.29	73 *	74-126	158.00	* (< 20)
lickel	16.7	48.1	63.8	98	47.3	62.3	96	84-119	2.38	(< 20)
Batch Informatio	n									
Analytical Batch: Analytical Metho Instrument: Perk Analyst: VDL Analytical Date/T	MMS9565 d: SW6020A kin Elmer Nexlon P5 Time: 10/6/2016 12:57:0	2PM		Prep Prep Prep Prep Prep	Batch: Method: Date/Tin Initial Wt	/IXX30236 Soils/Soli ne: 10/3/2 t./Vol.: 1.0 /ol: 50.00	ds Digest fc 016 8:41:3 4g mL	or Metals b 5AM	y ICP-MS	

Print Date: 10/20/2016 4:43:57PM

Bench Spike Summary										
Original Sample ID: 1355 MS Sample ID: 1355489 MSD Sample ID:	482 BND				Analysis Analysis Analysis Matrix:	Date: 1 Date: 1 Date: 1 Date: Solid/Soi	0/06/2016 0/06/2016 I (Wet Weig	12:52 13:05 ght)		
QC for Samples: 116862 116862 116862	20001, 11686200 20008, 11686200 20015, 11686200	02, 116862 09, 116862 16, 116862	20003, 116 20010, 116 20017, 116	8620004, 11 8620011, 11 8620018, 11	6862000 6862001 6862001	5, 1168620 2, 1168620 9	0006, 11686 0013, 11686	620007, 620014,		
Results by SW6020A										
		Mat	rix Spike (ı	mg/Kg)	Spike	Duplicate	(mg/Kg)			
<u>'arameter</u> Chromium	<u>Sample</u> 20.4	<u>Spike</u> 117	<u>Result</u> 135	<u>Rec (%)</u> 98	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 80-120	<u>RPD (%)</u>	RPD CL
<i>l</i> ercury	0.951	11.7	12.1	96				80-120		
Batch Information										
Analytical Batch: MMS98 Analytical Method: SW60 Instrument: Perkin Elmer Analyst: VDL Analytical Date/Time: 10	565 020A 1 NexIon P5 /6/2016 1:05:59	PM		Preș Preș Preș Preș Preș	9 Batch: 1 9 Method: 9 Date/Tin 9 Initial W 9 Extract V	MXX30236 Soils/Sol ne: 10/3/2 t./Vol.: 1.0 /ol: 50.00	ids Digest fo 016 8:41:3 07g mL	or Metals b 35AM	by ICP-MS	

SGS	
Method Blank	

Blank Lab ID: 135500 QC for Samples: 1168620001, 11686200 1168620010, 11686200 1168620019, 11686200	3 02, 1168620003, 1168620004, 11686 11, 1168620012, 1168620013, 11686 20	20005, 1168620006 20014, 1168620015	6, 1168620007, 5, 1168620016,	1168620008, 1168620009, 1168620017, 1168620018,	
Results by SM21 254()G				
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
atch Information					
Analytical Batch: SP Analytical Method: S Instrument:	T10008 M21 2540G				

Print Date: 10/20/2016 4:43:59PM

Duplicate Sample Summar Driginal Sample ID: 116860 Duplicate Sample ID: 1355 QC for Samples:	'y 09031 006		Analysis Date: Matrix: Soil/So	09/27/2016 17:46 lid (dry weight)	
Results by SM21 2540G					
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	74.5	75.0	%	0.72	(< 15)
Analytical Batch: SPT10008 Analytical Method: SM21 25 Instrument: Analyst: IAS	40G				

Print Date: 10/20/2016 4:44:00PM

ouplicate Sample Sum	mary				
Driginal Sample ID: 11 Duplicate Sample ID: 1	68617002 355007		Analysis Date: Matrix: Soil/So	09/27/2016 17:46 lid (dry weight)	
100020001, 11000200	102, 1100020003, 1100	620004, 1168620005, 620012, 1168620013,	1168620006, 116 1168620014, 116	8620007, 1168620 8620015, 1168620	008, 016.
Results by SM21 25400	3				
Results by SM21 25400	<u>Original</u>	Duplicate	Units	<u>RPD (%)</u>	RPD CL
Results by SM21 25400 <u>JAME</u> Total Solids	<u>Original</u> 87.4	Duplicate 88.2	<u>Units</u> %	<u>RPD (%)</u> 0.97	<u>RPD CL</u> (< 15)
Results by SM21 25400 <u>VAME</u> Total Solids Batch Information	<u>Original</u> 87.4	Duplicate 88.2	<u>Units</u> %	<u>RPD (%)</u> 0.97	<u>RPD CL</u> (< 15)

Print Date: 10/20/2016 4:44:00PM

Locations Nationwide	Alaska Maryland	New Jersey New York	North Carolina Indiana West Virgina Kentucky	www.us.sgs.com	ctions 1 - 5 must be filled out.	Preservative															ection 4 DOD Project? Yes No Data Deliverable Requirements:	ooler ID: Level IL EDD	quested Turnaround Time and/or Special Instructions:	Stonderd	nb Blank °C:	or Ambient 1 INTACT BROKEN ABSENT	See attached Sample Receipt Form) (See attached Sample Receipt Form)	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	AnL [i/ UV F083-Kti_Request_and_COC_Templates-Blank Revised 2013-03-24
1168620					Instructions: Sections Omissions may delay	Section 3	₩ 0			RIX E Incre- RIX R mental RIX Solis Solis Solis Solis M602 DE Solis M602		1 G X		× ×	× 	×× ط				5 -	ad By: Section 4	22 Cooler ID	ed By: Requested	ad By:	Temp Blan	ed For Laboratory By:	Control (See atta	561-5301 <u>http://www.s</u>) 350-1557 <u>/</u>	A.
7					Emportante	Bensen PHONE NO: 388-5481	FAULE PERMIT* ZIUIU	E-MAIL: Benden Corlbebriegunnum	QUOTE #: DAMENTO P.O. #: 335662	EIDENTIFICATION DATE TIME MATI mm/dd/yy HH:MM COE	W ~MI (0,75) 9/15/16 1050 5	M-M1(2) 9/15/16 1055 5	U-M2(1) 9/15/16 1140 5	W-M2(25) 9/15/16 1145 5	<u>M-M3(1) 9/15/16 1310 5</u>	u - M3(4) 9/15/16 1315 5	M-MH(1) 9/15/16 1400 5	u - Mul (2) 9/15/16 1405 5	M-MS(2) 9/15/16 1530	M-M5(16) 7/15/16 1535	Date, Time Receiv	9/22/16 1000 5mg	Date Time Réceiv			Date Time Receiv	at sit skot -	∨ / • Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) •e Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910	
					CLIENT: BRICE	- CONTACT: Cont	E PROJECT Ko [malus] E NAME: Clenred	REPORTS TO:	INVOICE TO: Brice Eurin	RESERVED SAMPLE for lab use	DA 16 Ker	3A INKR	N 3A 166R	164RA	Sec 54 1642	UN IBLAR	DA 1640	(3) 16KRA	OA 16KR	NUA 1666	Relinquished By: (1)	les bon	Relinquished By: (2)	Beinquished By: (3)	, To	Relinquished By: (4)		[] 200 W. Potter Drive [] 5500 Business Driv	

	マピン		• ≣ C	1168	620		Alaska	.ocations Natio a	nwide Maryland	
I			5				New J North West	Jersey Carolina Virgina www.us.sos	New York Indiana Kentucky	
CLIEN	VT: Brice Environmente	2			Instructions Omissions	: Sections 1 - 5 may delay the o	must be filled ones of analysis	out. s.	C	
	ACT: Cerl Beusen PHG	one no: $SBU - G$	5481	Section		Prese	ervative		Page 1.	
Section NAME	ECT Kalmerkes F Minc PWS :: Cherefeizerrun	MIT#: 2/010		¥ U						
C REPC	ятя то: E=N (13си Son Con 13G	AAL: Durceuui	onmerto 1.6	0 z ⊢ ·	ν γ γ γ γ γ γ γ γ γ γ γ γ γ					
Sn	ice To: Ce Fuji Qumente/ P.O	ote# ^#`33566	2	 d − z 	つ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
RESE for la	ERVED SAMPLE IDENTIFICATION	DATE T mm/dd/yy HF	IME MATRI) IME MATRI) I:MM CODE	<u>-</u> Е Ш К. О					REMARKS/	
	<u>A 166RM-M5(4)</u>	9/15/16 15	YO S		X X					
Ľ	<u>M 164RM - M6(1)</u>	9/15/16 16	3	- -	×' ×'					
	$\frac{M}{N} \frac{16000 - M}{16000} - \frac{10000}{10000}$	9/1/11 11	25 V FO S							
ecti	N 16474 - M7 (2)	6/12/16 16	55 S		X					
	H IGLAAM - MB (0.75)	9/16/16 10	4S S		×:					
X	A 164RM - M8(1.5) A 164RM - M8(1.5)	4/16/16 1C	20 2 2 2							
E	A 164644 - M9 (1.5)	11 91/91/6	20 02 S		< × 4 5					
્ર	DA 16/x R.M - M9 (10)	9/16/16 11	25 S	/	C X -S					
Relin	quished By: (1)	Date Time	Received	By:	$\langle \rangle$	Section 4 DOI	D Project? Yes No	Data Delive	rable Requirements:	
S	A de	9/22/16 10C	5			Cooler ID:		Level	CICIZ II	
	quustnear By: (2)	ate Time	Recteived	By:	I	Requested Turnaro	und Time and/or Spec $\mathcal{I}_{\mathcal{I}}$	cial Instruction	ö	
ecti E	quišhed By: (3)	Date Time	Received	By:			9			
3						Temp Blank °C:		Chain of C	ustody Seal: (Circle)	
Relin	quished By: (4)	Date Time $\frac{Q}{2}$	K Received	For Laborator	∠ By:	Or Am (See attached Sar	bient KU	INTACT	BROKEN ABSENT	
2	00 W. Potter Drive Anchorage, AK 995 500 Business Drive Wilmington, NC 2	518 Tel: (910) 350-2 8405 Tel: (910) 350-2	343 Fax: (907) 56 1903 Fax: (910) 3	1-5301 50-1557		http://www.sqs.com/tr	$e_{\rm rms-and-conditions}$	$1\frac{1}{1}$	COC Temolates-Blank	

$\label{eq:constraints} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	U			č		686	50			Ala	Locations aska	k Nationwid Mary	and
Neuronal control Neuronal control Neuronal control Outern: Sirie Excitonatesetz/ Demissions may delay the onset of analysis, mental control Instructions: Sections 1 - 5 must be filled out. Outern: Sirie Excitonatesetz/ Instructions: Section 3 Instructions: Section 3 Instructions: Section 3 Contract (J 1 (Section 2002) Section 3 Instructions: Section 3 Instructions: Section 3 Contract (J 1 (Section 2003) Section 3 Instructions: Section 3 Instructions: Section 3 Excitor Excitonatesetz Excitor 2003 Section 3 Instructions: Section 3 Excitor Excitonatesetz Instructions: Section 3 Instructions: Section 3 Instructions: Section 3 Excitor Excitonatesetz Excitor 2003 Instructions: Section 3 Instructions: Section 3 Excitor Excitonatesetz Excitor 2003 Instructions: Section 4 Instructions: Section 4 Excitor Excitoration 2003 Excitor 2003 Instructions: Section 4 Instructions: Section 4 Excitor Excitoration 2003 Excitor 2003 Instructions: Section 4 Instructions: Section 4 Excitor Excitoration 2003 Excitor 2003 Instructions: Section 4 Instructions: Section 4 Excitor 2004 Excitor 2004 Instructions: Section 4 Instructions: Section 4 Excitor 2003 Excitor 4 In	2	りフ		5						S S	w Jersey	New	York
Montantial Contraction Contraction <tr< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ο. Me</td><td>est Virgina</td><td>Kent</td><td>na Jocky</td></tr<>		-								ο. Me	est Virgina	Kent	na Jocky
Differ Differ Extructions: Sections are defined out. Differ Section 3 reservity Domusticing Property Section 3 Domusticing Property Reservity Domusticing Property Section 3 Domusticing Property Reservity Domusticing Property Property											www	.us.sgs.com	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLIENT:	Srice Environmen	Ital			Sul	tructions: missions	Sectior may del	is 1 - 5 r av the or	nust be fille iset of analv	d out. 'sis.		r N
PROJECTION Landows of Murch Mur	CONTACT: (Curl Benson PHO	one no: SB	8-5-48	1	Section 3			Preser	vative]	age <u>0 of </u>
Of The Structure Carl below Carl be	PROJECT <i>K</i> NAME: <i>CLe</i>	elluelest Mine PRO	deci 1d Mit#: Zlol() 0		a # υ(
RESERVED SAME LE IDENTIFICATION DATE minilogy THE MATRIX REMARKS/ is an ATRIX Matrix for inbusic ADD TCL/ FL Matrix And ADD TCL/ FL Matrix ADD FL Matrix ADD FL FL Matrix ADD FL Matrix ADD FL FL Matrix ADD FL Matrix ADD FL Matrix ADD FL	PORTS T PANDICE TO BUICE TO	0: E-M 21501 CorlbChi :: QUIVON MENTE (P.O	AlL: <u>ссе</u> и и лами лте #: 335	662	DUA		((V ' 5) -5/42W						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E Incre- R menta Solis Solis	5√ ⁵ ₩ d72!						REMARKS/ LOC ID
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4(no)	TCLP Mound North	91/61/6	1445	S		X						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TCLP Mound South	9/19/16	01140	Ś		\times						
Relinquished By: (1) Date Time Received By: Section 4 DOD Project? Yes (No Data Deliverable Requirements: Relinquished By: (1) Bate Time Received By: Section 4 DOD Project? Yes (No Data Deliverable Requirements: Relinquished By: (2) G24/16 / (DO / (DO / (DO / (DO) / (DO) Relinquished By: (3) Date Time Received By: Cooler ID: / (DO) / (DO) Relinquished By: (3) Date Time Received By: Requested Turnaround Time and/or Special Instructions: Relinquished By: (3) Date Time Received By: / (DO) / (DO) Relinquished By: (3) Date Time Received By: / (DO) / (DO) Relinquished By: (3) Date Time Received By: / (DO) / (DO) Relinquished By: (3) Date Time Received By: / (DO) / (DO) Relinquished By: (4) Date Time Received By: / (DO) / (DO) Relinquished By: (4) Date Time Received By: / (DO) / (DO) Relinquished By: (4) Date Time Received By: / (DO) / (DO)	L'AR	TLLP Camp South	9/14/16 1/14/16	1430	νN	(our	$\langle \times \rangle$						
Relinquished By: (1) Date Time Received By: Conder Date Time Received By:		-				-							
Relinquished By: (1) Date Time Received By: Relinquished By: (2) Date Time Received By: Constraints Section 4 DOD Project? Yes (No) Data Deliverable Requirements: Constraints Section 4 DOD Project? Yes (No) Data Deliverable Requirements: Constraints Section 4 DOD Project? Yes (No) Data Deliverable Requirements: Constraints Cooler ID: Cooler ID: Level II: S/D/D Requested Turnaround Time and/or Special Instructions: Section 4 DOD Project? Yes (No) Requested By: (3) Date Time Received By: Requested Turnaround Time and/or Special Instructions: Section 4 Dot Andre II: S/D/D Refunduished By: (3) Date Time Received By: Section 4 Refunduished By: (3) Date Time Received By: Section 4 Refunduished By: (3) Date Time Received By: Section 4 Refunduished By: (3) Date Time Received By: Section 4 Refuncted By: (4) Date Time Received By: Section 4 Refuncted By: (4) Referend For Laboratory By: or Ambient W Intercted Sample Receiption <td></td>													
Relinquished By: (1) Date Time Received By: Relinquished By: (2) Date Time Received By: CM 7/22/1/6 1/D*C Cooler ID: Level IL E/D/D CM 200 Project? Yes (No Data Deliverable Requirements: CM 7/22/1/6 1/D*C Cooler ID: Level IL E/D/D CM 7/22/1/6 1/D*C Requested Turnaround Time and/or Special Instructions: CM 7/20/Level By: 3) Date Time Received By: 7/20/Level 2 Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Level IL E/D/D Celinquished By: 3) Date Time Received By: Relinquished By: (3) Date Time Received By: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Level IL E/D/D Cooler ID: Cooler ID: Cooler ID: Cooler ID: Level ID Requested Turnaround Time and/or Special Instructions: Cooler ID: Cooler ID: Level ID Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: Cooler ID: <td></td>													
Relinquished By: (1) Date Time Received By: Section 4 DOD Project? Yes (No) Data Deliverable Requirements: C_{1} γ_{2} γ_{1} γ_{1} γ_{1} γ_{2} γ_{2} γ_{1} γ_{2} γ_{2} γ_{1} γ_{2} γ_{1} γ_{1} γ_{2} γ_{2} γ_{1} γ_{2} γ_{1} γ_{2} γ_{2} γ_{1} γ_{2} γ_{2} γ_{1} γ_{2} γ_{1}													
Constrained By: 1/21/16 1/DO 1/DO Cooler ID: Level L Lovel L Lovel L telinquished By: 0,7 0,7 10 10 10 10 10 telinquished By: 0,7 0,7 10 10 10 10 telinquished By: 0,7 0,7 10 10 10 telinquished By: 0,7 10 10 10 telinquished By: 13 10 10 10 telinquished By: 10 10 10 10	Relinquishe	ed By: (1)	Date	ine	Received By:			Sectio	dod 4 c	Project? Yes/N	o) Data	Deliverable	Requirements:
Tellinguished By: (2) Date Time Redeived By: Requested Turnaround Time and/or Special Instructions: Requested Turnaround Time and/or Special Instructions: Refinduished By: (3) Date Time Received By: Time Received By: Refinduished By: (3) Date Time Received By: Temp Blank °C: Chain of Custody Seal; (Circle) Relinquished By: (4) Date Time Received For Laboratory By: or Ambient W INTACT Relinquished By: (4) Pate N.M.	d'	(Jus-	9/22/1C 1	ഹി				Cooler] ë)	Lei	E I E	CICIS
Matrix Matrix Matrix Matrix Matrix Relinquished By: (3) Date Time Received By: Chain of Custody Sed: (Circle) Relinquished By: (4) Date Time Received For Laboratory By: or Ambient W INTACT BROKEN Relinquished By: (4) PAU P.S Matrix (See attached Sample, Receipt Form) (See attached Sample, Receipt Form)	Relinquishe	d By: (2)	Date' T	ime i	Sectived By:			Requeste	∋d Turnarou	nd Time and/or S	pecial Instr	uctions:	
Relinquished By: (4) Date Time Received For Laboratory By: Temp Blank °C: Chain of Custody Seal: (Circle) Relinquished By: (4) Date Time Received For Laboratory By: or Ambient M INTACT BROKEN ABSENT Relinquished By: (4) 0 Ambient M (See attached Sample, Receipt Form) (See attached Sample, Receipt Form) (See attached Sample, Receipt Form)	elinquishe	d By: (3)	−1, <i>M</i> (() Date T		Received By:			Ś	ander	لے ا			
Relinquished By: (4) Bate Time Received For Laboratory By: or Ambient (1) INTACT BROKEN ABSENT Or Ambient (1) INTACT BROKEN ABSENT (See attached Sample Receipt Form) (See attached Sample Receipt Form)				\ \				Temp Bl	ank °C:		Cha	in of Custo	ly Seal: (Circle)
	Relinquishe	cd By: (4)	Pate T	ime 9.55	Received For	Laboratory B	ä t	See at	or Amt tached Sam	vient M ple,Receipt Form	n) (See at	ACT BRO	(EN ABSENT Die Receipt Form)
										> >	F083-Kit_Reque	est_and_COC_	Femplates-Blank ised 2013-03-24

168620

SGS North America Inc. 200 W. Potter Drive, Anchorage, AK 99518 phone (907) 562-2343, fax (907) 561-5301

Characterization of TCLP Samples for LIMS Login

Date Characterized:	9/23/16		Analyst:	NCW
Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:
A A A A A	Xylene miscible (Top layer * = matrix 3 **) Water miscible (Middle layer = matrix 6) (Bottom layer = matrix 7 or 2 if % solids required) Xylene miscible	100%	Yes No	If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ***? Yes / No / NA Sample description/other observations: Sol If multiple jars were received, were they consistent? Yes / No / NA
	(Top layer = matrix 3) Water miscible (Middle layer = matrix 6) Solid (Bottom layer = matrix 7 or 2 if % solids required)		Yes / No	If biphasic, was there only one layer with sufficient sample ***? Yes / No / NA Sample description/other observations:
	Xylene miscible (Top layer * = matrix 3 **) Water miscible (Middle layer = matrix 6) Solid (Bottom layer = matrix 7 or 2 if % solids required)		Yes / No	If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ***? Yes / No / NA Sample description/other observations:
	Xylene miscible (Top layer * = matrix 3 **) Water miscible (Middle layer = matrix 6) Solid (Bottom layer = matrix 7 or 2 if % solids required)		Yes / No	If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ***? Yes / No / NA Sample description/other observations:
	Xylene miscible (Top layer * = matrix 3 **) Water miscible (Middle layer = matrix 6) Solid (Bottom layer = matrix 7 or 2 if % solids required)	avier than water an	Yes / No	If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ***? Yes / No / NA Sample description/other observations: m later.

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

*** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	C	onditi	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	NIA	Exomption permitted if sampler hand
COC accompanied samples?	(Yes)	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes	No	_	□Exemption permitted if chilled &
If >6°C, were samples collected <8 hours ago?	Yes	No	\$HAD	collected <8hrs ago
If <0°C, were all sample containers ice free?	Yes	No	N/A)	
Cooler ID:@w/Therm. ID:			\mathcal{O}	
Cooler ID:@w/Therm. ID:				
Cooler ID:@W/Therm. ID:				
Cooler ID: @ w/ Therm. ID:				
Cooler ID:@W/ I nerm. ID:				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to				Note: Identify containers received at
the right. In cases where neither a temp blank nor cooler temp can be obtained, note				non-compliant temperature. Use form
ambient () or chilled (). Please check one.				FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:	Trac	king//	AB# :	
	Or s	ee atta	ched	
		Or N4	Ř	
\rightarrow For samples received with payment, note amount (\$) and wh	ether cash	/ chec	k / CC (cir	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Fes	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply). Bubble Wrap	\mathcal{C}			Anchorage without inspection by SGS
Separate plastic bags Vermiculite Other:				Fairbanks personnei.
			0	
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes	No	AV/A	
For RUSH/SHORT Hold Time , were COC/Bottles flagged	Yes	No	CATA .	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	N/A	
Additional notes (if applicable):	1			
Profile #:				
	•.• •			• , • , •,
Note to Client: any "no" circled above indicates non-compliance	with standar	a proce	aures and mo	iy impact data quality.

		11	L <mark>686</mark>	20			6 8 6 ž	2 0	
Review Criteria	Y/I	N (yes/no)	Exc	eptions N	oted be	low		
				exemption perr	nitted if sam	<mark>pler hand</mark>	carries	/delivers.	
Were Custody Seals intact? Note # &	location	Y			1-F, 1-B				
COC accompanied s	samples?	Y	" t- d 20	billing pi	in the second diagonal di		:1)		
	itted if ch			hrs ago or chiling no	ot required (i	.e., waste	, oil)	Thorm ID:	De
			Cooler ID:	1	@	1.7	י ט יר זי	Therm ID:	Do
Temperature blank compliant* (i.e., 0-6 °C a	after CF)?	╞══┨═	Cooler ID:		<u>س</u> @		°C 1	Therm ID:	
	,	╞═╞╴	Cooler ID:		@		°C 1	Therm ID:	
			Cooler ID:		@		°C 1	Therm ID:	
*If >6°C, were samples collected <8 hou	ırs ago?								
If <0°C, were sample containers i	ice free?								
If samples received <u>without</u> a temperature blank, the "cooler temperat	ure" will								
be documented in lieu of the temperature blank & "COULER LEMP will noted to the right. In cases where neither a temp blank nor cooler tem	l be								
obtained, note "ambient" or "chilled".	P								
Note: Identify containers received at non-compliant temperature. Use	e form								
FS-0029 if more space is needed.									
		No	o <mark>te: Refer</mark>	to form F-083 "Sam	i <mark>ple Guide" f</mark> c	o <mark>r hold tin</mark>	nes.		
Were samples received within he	old time?	Y							
Do samples match COC ** (i.e.,sample IDs,dates/times co	llected)?	Y							
**Note: If times differ <1hr, record details & login	per COC.								
were analyses requested unami	olguousr								
				***Exemption	permitted for	metals (e	<mark>a.g,200</mark> .	. <mark>8/6020A).</mark>	
Were proper containers (type/mass/volume/preservative**	**)used?	Y							
IF APPLICABLE		┍═┥╴							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with s	samples?	┝═┼╴							
Were all VOA viais tree of neadspace (i.e., bubbles	$\leq 6 \text{mm}$	┢═┥┝							
	JH+DFD:		'the store de	Luna and	·····	lata gual			
NOTE TO CHERT: ANY NO answer above multares	s hon-con	npliance w	/itn stanua	ard procedures and	may impact	data quai	ity.		
Addit	ional no	otes (if a	applicab	le):					
The container for Sample 24A was broken at the lab. The sample	es was m	noved to	a new co	ntainer and analy	sis will proc	eed. The	: sampl	le was uni	narmed

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1168620001-A	No Preservative Required	ОК			
1168620002-A	No Preservative Required	ОК			
1168620003-A	No Preservative Required	ОК			
1168620004-A	No Preservative Required	ОК			
1168620005-A	No Preservative Required	ОК			
1168620006-A	No Preservative Required	ОК			
1168620007-A	No Preservative Required	ОК			
1168620008-A	No Preservative Required	ОК			
1168620009-A	No Preservative Required	ОК			
1168620010-A	No Preservative Required	ОК			
1168620011-A	No Preservative Required	ОК			
1168620012-A	No Preservative Required	ОК			
1168620013-A	No Preservative Required	ОК			
1168620014-A	No Preservative Required	ОК			
1168620015-A	No Preservative Required	ОК			
1168620016-A	No Preservative Required	ОК			
1168620017-A	No Preservative Required	ОК			
1168620018-A	No Preservative Required	ОК			
1168620019-A	No Preservative Required	ОК			
1168620020-A	No Preservative Required	ОК			
1168620021-A	No Preservative Required	ОК			
1168620022-A	No Preservative Required	ОК			
1168620023-A	No Preservative Required	ОК			
1168620024-A	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Report of Analysis

To: Brice Environmental Srv Co. 301 Cushman St., Suite 200 Fairbanks, AK 99701 (907)459-3052

Report Number: **1168646**

Client Project: Kolmakof Mine Characterization

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/14/2016 4:46:12PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Brice Environmental Srv Co. SGS Project: 1168646 Project Name/Site: Kolmakof Mine Characterization Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/14/2016 4:46:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
M	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Print Date: 10/14/2016 4:46:14PM

Note:

Sample	Summary
--------	---------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
16KRM-29(0.75)	1168646001	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-29(1.5)	1168646002	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-30(1)	1168646003	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-30(2)	1168646004	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-31(1)	1168646005	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-31(2)	1168646006	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-33(1)	1168646007	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-33(2)	1168646008	09/16/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-34(1)	1168646009	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-34(10)	1168646010	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-34(2.5)	1168646011	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-35(1)	1168646012	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-35(2)	1168646013	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-36(1)	1168646014	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-37(1.5)	1168646015	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-37(2.5)	1168646016	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-38(1)	1168646017	09/17/2016	09/29/2016	Soil/Solid (dry weight)
16KRM-38(2.5)	1168646018	09/17/2016	09/29/2016	Soil/Solid (dry weight)

Method SW6020A SM21 2540G <u>Method Description</u> Metals by ICP-MS (S) Percent Solids SM2540G

Print Date: 10/14/2016 4:46:15PM

Detectable Results Summary Client Sample ID: 16KRM-29(0.75) Lab Sample ID: 1168646001 Parameter Result Units Arsenic 3.78 mg/Kg Metals by ICP/MS Chromium 22.1 mg/Kg Mercury 3.66 mg/Kg Nickel 20.3 mg/Kg Client Sample ID: 16KRM-29(1.5) Lab Sample ID: 1168646002 Parameter Result Units Arsenic 9.73 mg/Kg Metals by ICP/MS Chromium 34.1 mg/Kg 2.49 Mercury mg/Kg Nickel 41.4 mg/Kg Client Sample ID: 16KRM-30(1) Lab Sample ID: 1168646003 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 3.99 mg/Kg Chromium 22.9 mg/Kg Mercury 1.73 mg/Kg Nickel 20.0 mg/Kg Client Sample ID: 16KRM-30(2) Lab Sample ID: 1168646004 Parameter Result Units Metals by ICP/MS Arsenic 9.48 mg/Kg 33.4 Chromium mg/Kg Mercury 9.05 mg/Kg Nickel 46.3 mg/Kg Client Sample ID: 16KRM-31(1) Lab Sample ID: 1168646005 Parameter **Result** <u>Units</u> Arsenic 9.52 mg/Kg Metals by ICP/MS Chromium 31.5 mg/Kg 3.39 Mercury mg/Kg Nickel 41.3 mg/Kg Client Sample ID: 16KRM-31(2) Lab Sample ID: 1168646006 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 10.5 mg/Kg Chromium 35.5 mg/Kg Mercury 1.46 mg/Kg Nickel 41.9 mg/Kg Client Sample ID: 16KRM-33(1) Lab Sample ID: 1168646007 Parameter Result Units Arsenic 10.5 Metals by ICP/MS mg/Kg Chromium 36.3 mg/Kg Mercury 1.47 mg/Kg Nickel 49.3 mg/Kg

Print Date: 10/14/2016 4:46:16PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary Client Sample ID: 16KRM-33(2) Lab Sample ID: 1168646008 Parameter Result Units Arsenic 9.77 mg/Kg Metals by ICP/MS Chromium 27.9 mg/Kg Mercury 0.239 mg/Kg Nickel 22.9 mg/Kg Client Sample ID: 16KRM-34(1) Lab Sample ID: 1168646009 Parameter Result Units Arsenic 9.30 mg/Kg Metals by ICP/MS Chromium 34.1 mg/Kg 2.89 Mercury mg/Kg Nickel 42.2 mg/Kg Client Sample ID: 16KRM-34(10) Lab Sample ID: 1168646010 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 9.19 mg/Kg Chromium 34.7 mg/Kg Mercury 2.82 mg/Kg Nickel 43.5 mg/Kg Client Sample ID: 16KRM-34(2.5) Lab Sample ID: 1168646011 Parameter Result Units Metals by ICP/MS Arsenic 8.63 mg/Kg 31.8 Chromium mg/Kg Mercury 2.13 mg/Kg Nickel 34.4 mg/Kg Client Sample ID: 16KRM-35(1) Lab Sample ID: 1168646012 Parameter **Result** <u>Units</u> Arsenic 8.14 mg/Kg Metals by ICP/MS Chromium 32.7 mg/Kg Mercury 0.754 mg/Kg Nickel 45.0 mg/Kg Client Sample ID: 16KRM-35(2) Lab Sample ID: 1168646013 Parameter Result <u>Units</u> Metals by ICP/MS Arsenic 9.78 mg/Kg Chromium 32.5 mg/Kg Mercury 0.425 mg/Kg 33.3 Nickel mg/Kg Client Sample ID: 16KRM-36(1) Lab Sample ID: 1168646014 Parameter Result Units Arsenic 9.02 Metals by ICP/MS mg/Kg Chromium 33.8 mg/Kg Mercury 1.55 mg/Kg Nickel 47.5 mg/Kg

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	Detectable Results Summary			
Client Sample ID: 16KRM-37(1.5)				
Lab Sample ID: 1168646015	Parameter	Result	<u>Units</u>	
Metals by ICP/MS	Arsenic	9.31	mg/Kg	
	Chromium	33.0	mg/Kg	
	Mercury	3.14	mg/Kg	
	Nickel	45.6	mg/Kg	
Client Sample ID: 16KRM-37(2.5)				
Lab Sample ID: 1168646016	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	7.57	mg/Kg	
-	Chromium	31.6	mg/Kg	
	Mercury	1.77	mg/Kg	
	Nickel	21.6	mg/Kg	
Client Sample ID: 16KRM-38(1)				
Lab Sample ID: 1168646017	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	10.4	mg/Kg	
-	Chromium	33.2	mg/Kg	
	Mercury	3.09	mg/Kg	
	Nickel	39.9	mg/Kg	
Client Sample ID: 16KRM-38(2.5)				
Lab Sample ID: 1168646018	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	13.1	mg/Kg	
	Chromium	35.1	mg/Kg	
	Mercury	0.328	mg/Kg	
	Nickel	37.1	mg/Kg	

Print Date: 10/14/2016 4:46:16PM

SGS North America Inc.

Results	of	16KR	M-29	(0.75))
---------	----	------	------	--------	---

acterization	C R M S Lo	ollection Da eceived Dat atrix: Soil/S olids (%):77 ocation:	te: 09/16/ ² te: 09/29/1 olid (dry we .0	l6 13:20 6 09:22 eight)		
Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
3.78	1.22	0.379	mg/Kg	10		10/14/16 09:16
22.1	0.488	0.159	mg/Kg	10		10/14/16 09:16
3.66	0.0488	0.0147	mg/Kg	10		10/14/16 09:16
20.3	0.244	0.0757	mg/Kg	10		10/14/16 09:16
	F F F	Prep Batch: I Prep Method: Prep Date/Tin Prep Initial W	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.06	6 10:03 3 g		
	Acterization Result Qual 3.78 22.1 3.66 20.3	Acterization R M Si Locy/CL 3.78 3.78 1.22 22.1 0.488 3.66 0.0488 20.3 0.244	Acterization Received Date Matrix: Soil/S Solids (%):77 Location: Result Qual LOQ/CL DL 3.78 1.22 0.379 22.1 0.488 0.159 3.66 0.0488 0.0147 20.3 0.244 0.0757 Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W	acterizationReceived Date: 09/29/1 Matrix: Soil/Solid (dry we Solids (%):77.0 Location:Result QualLOQ/CLDLUnits3.781.220.379mg/Kg22.10.4880.159mg/Kg3.660.04880.0147mg/Kg20.30.2440.0757mg/KgPrep Batch: MXX30253 Prep Date/Time: 10/05/14 Prep Initial Wt./Vol.: 1.06	Received Date: 09/29/16 09:22 Matrix: Solids (%):77.0 Location: Result Qual LOQ/CL DL Units DF 3.78 1.22 0.379 mg/Kg 10 22.1 0.488 0.159 mg/Kg 10 3.66 0.0488 0.0147 mg/Kg 10 20.3 0.244 0.0757 mg/Kg 10 Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.063 g	acterization Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):77.0 Location: Result Qual LOQ/CL DL Units DE 3.78 1.22 0.379 mg/Kg 10 22.1 0.488 0.159 mg/Kg 10 3.66 0.0488 0.0147 mg/Kg 10 20.3 0.244 0.0757 mg/Kg 10

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results	of '	16KRN	1-29(1.5)	
---------	------	-------	-------	------	--

Client Sample ID: 16KRM-29(1.5) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646002 Lab Project ID: 1168646	racterization	Collection Date: 09/16/16 13:25 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):84.7 Location:					
Results by Metals by ICP/MS			_				
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.73 34.1 2.49 41.4	LOQ/CL 1.17 0.468 0.0468 0.234	<u>DL</u> 0.363 0.152 0.0141 0.0726	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 09:20 10/14/16 09:20 10/14/16 09:20 10/14/16 09:20
Batch Information							
Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 09:20 Container ID: 1168646002-A		Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.008 g Prep Extract Vol: 50 mL					

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-30(1)

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646003 Lab Project ID: 1168646 Results by Metals by ICP/MS	Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):72.0 Location:						
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 3.99 22.9 1.73 20.0	LOQ/CL 1.31 0.523 0.0523 0.262	<u>DL</u> 0.406 0.170 0.0157 0.0811	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/14/16 09:43 10/14/16 09:43 10/14/16 09:43 10/14/16 09:43
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 09:43 Container ID: 1168646003-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30253 : SW3050B me: 10/05/1 (t./Vol.: 1.06 Vol: 50 mL	6 10:03 2 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-30(2)							
Client Sample ID: 16KRM-30(2) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646004 Lab Project ID: 1168646	aracterization	C R M S					
Results by Metals by ICP/MS			<u> </u>				
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
Arsenic	9.48	1.10	0.340	mg/Kg	10		10/14/16 09:47
Chromium	33.4	0.438	0.142	mg/Kg	10		10/14/16 09:47
Mercury	9.05	0.110	0.0329	mg/Kg	25		10/14/16 11:05
Nickel	46.3	0.219	0.0679	mg/Kg	10		10/14/16 09:47
Batch Information							
Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 09:47 Container ID: 1168646004-A		Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.067 g Prep Extract Vol: 50 mL					

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-31(1)

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646005 Lab Project ID: 1168646	racterization	Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):85.8 Location:					
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.52 31.5 3.39 41.3	LOQ/CL 1.13 0.453 0.0453 0.227	<u>DL</u> 0.351 0.147 0.0136 0.0703	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/14/16 09:52 10/14/16 09:52 10/14/16 09:52 10/14/16 09:52
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 09:52 Container ID: 1168646005-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30253 : SW3050B ne: 10/05/1 t./Vol.: 1.02 Vol: 50 mL	6 10:03 8 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-31(2)

Client Sample ID: 16KRM-31(2) Client Project ID: Kolmakof Mine Characterization Lab Sample ID: 1168646006 Lab Project ID: 1168646			Received Date: 09/16/16 14:25 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):85.5 Location:					
Results by Metals by ICP/MS			_					
Parameter Arsenic Chromium Mercury	<u>Result Qual</u> 10.5 35.5 1.46	<u>LOQ/CL</u> 1.08 0.434 0.0434	<u>DL</u> 0.336 0.141 0.0130	<u>Units</u> mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 09:56 10/14/16 09:56 10/14/16 09:56	
Nickel	41.9	0.217	0.0672	mg/Kg	10		10/14/16 09:56	
Batch Information								
Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 09:56 Container ID: 1168646006-A		Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.078 g Prep Extract Vol: 50 mL						

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-33(1)

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646007 Lab Project ID: 1168646	R M S L	eceived Dat latrix: Soil/S olids (%):86 ocation:	te: 09/29/1 olid (dry wo	6 09:22 eight)			
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 10.5 36.3 1.47 49.3	LOQ/CL 1.14 0.455 0.0455 0.227	DL 0.352 0.148 0.0136 0.0705	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 10/14/16 10:01 10/14/16 10:01 10/14/16 10:01 10/14/16 10:01
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:01 Container ID: 1168646007-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.02 Vol: 50 mL	6 10:03 2 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-33(2)

haracterization	Collection Date: 09/16/16 15:20 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):74.0 Location:					
<u>Result Qual</u> 9.77	<u>LOQ/CL</u> 1.32	<u>DL</u> 0.409	<u>Units</u> mg/Kg	<u>DF</u> 10	Allowable Limits	Date Analyzed
27.9	0.528	0.172	mg/Kg mg/Kg	10		10/14/16 10:05
22.9	0.264	0.0819	mg/Kg	10		10/14/16 10:05
5	F F F	Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.02	6 10:03 3 g		
	haracterization <u>Result Qual</u> 9.77 27.9 0.239 22.9	Image:	Result Qual LOQ/CL DL 9.77 1.32 0.409 27.9 0.528 0.172 0.239 0.0528 0.0158 22.9 0.264 0.0819	Collection Date: 09/16/7 Received Date: 09/29/1 Matrix: Soil/Solid (dry we Solids (%):74.0 Location: 9.77 1.32 0.409 mg/Kg 27.9 0.528 0.172 mg/Kg 0.239 0.0528 0.239 0.264 Description mg/Kg Prep Batch: MXX30253 Prep Date/Time: 10/05/1 Prep Date/Time: 10/05/1	Collection Date: 09/16/16 15:20 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):74.0 Location: Result Qual LOQ/CL 9.77 1.32 0.409 mg/Kg 27.9 0.528 0.172 mg/Kg 0.239 0.0528 0.0528 0.0158 mg/Kg 10 22.9 0.264 Prep Batch: MXX30253 Prep Date/Time: 10/05/16 10:03 Prep Date/Time: 10/05/16 10:03	Image: SharacterizationCollection Date: 09/16/16 15:20 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):74.0 Location:Result QualLOQ/CLDLUnitsDE Limits9.771.320.409mg/Kg1027.90.5280.172mg/Kg100.2390.05280.0158mg/Kg1022.90.2640.0819mg/Kg10Prep Batch: MXX30253 Prep Date/Time: 10/05/16 10:03 Drem Infield Wt 0/04 to 4023 or

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-34(1)

Client Sample ID: 16KRM-34(1) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646009 Lab Project ID: 1168646	Client Sample ID: 16KRM-34(1) Client Project ID: Kolmakof Mine Characterization Lab Sample ID: 1168646009 Lab Project ID: 1168646 Results by Metals by ICP/MS			Collection Date: 09/17/16 10:25 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):84.7 Location:						
Results by Metals by ICP/MS			_							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.30 34.1 2.89 42.2	LOQ/CL 1.16 0.465 0.0465 0.233	<u>DL</u> 0.361 0.151 0.0140 0.0721	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:10 10/14/16 10:10 10/14/16 10:10 10/14/16 10:10			
Batch Information										
Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:10 Container ID: 1168646009-A		Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.015 g Prep Extract Vol: 50 mL								

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

SGS	
the second se	

Results of 16KRM-34(10)							
Client Sample ID: 16KRM-34(10) Client Project ID: Kolmakof Mine Characterization Lab Sample ID: 1168646010 Lab Project ID: 1168646		Collection Date: 09/17/16 08:00 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):85.4 Location:					
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.19 34.7 2.82 43.5	LOQ/CL 1.10 0.442 0.0442 0.221	<u>DL</u> 0.342 0.144 0.0133 0.0685	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/14/16 10:14 10/14/16 10:14 10/14/16 10:14 10/14/16 10:14
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:14 Container ID: 1168646010-A	1		Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30253 : SW3050B me: 10/05/1 /t./Vol.: 1.06 Vol: 50 mL	6 10:03 9 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results	of	16KRM-34(2	2.5)
---------	----	------------	------

Client Sample ID: 16KRM-34(2.5) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646011 Lab Project ID: 1168646	racterization	C R M Si La	ollection Da eceived Dat atrix: Soil/S olids (%):81 ocation:	te: 09/17/ [/] :e: 09/29/1 olid (dry we .7	16 10:30 6 09:22 eight)		
Results by Metals by ICP/MS							
Parameter Arsenic Chromium	<u>Result Qual</u> 8.63 31.8	LOQ/CL 1.19 0.477	<u>DL</u> 0.370 0.155	<u>Units</u> mg/Kg mg/Kg	<u>DF</u> 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:19 10/14/16 10:19
Nickel	2.13 34.4	0.238	0.0739	mg/Kg mg/Kg	10		10/14/16 10:19
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:19 Container ID: 1168646011-A		F F F F	Prep Batch: 1 Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.02 Vol: 50 mL	6 10:03 7 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-35(1)

Client Sample ID: 16KRM-35(1) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646012 Lab Project ID: 1168646	Collection Date: 09/17/16 11:30 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):85.4 Location:						
Parameter Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 8.14 32.7 0.754 45.0	LOQ/CL 1.08 0.431 0.0431 0.215	<u>DL</u> 0.334 0.140 0.0129 0.0667	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:34 10/14/16 10:34 10/14/16 10:34 10/14/16 10:34
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:34 Container ID: 1168646012-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	MXX30253 SW3050B ne: 10/05/1 (t./Vol.: 1.08 Vol: 50 mL	6 10:03 8 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of 16KRM-35(2)

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646013 Lab Project ID: 1168646	Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):81.1 Location:						
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.78 32.5 0.425 33.3	LOQ/CL 1.20 0.478 0.0478 0.239	<u>DL</u> 0.371 0.155 0.0143 0.0741	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/14/16 10:38 10/14/16 10:38 10/14/16 10:38 10/14/16 10:38
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:38 Container ID: 1168646013-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30253 : SW3050B ne: 10/05/1 ít./Vol.: 1.03 Vol: 50 mL	6 10:03 1 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated
SGS

Results of 16KRM-36(1)							
Client Sample ID: 16KRM-36(1) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646014 Lab Project ID: 1168646	racterization	C R M S	ollection Da eceived Dat latrix: Soil/S olids (%):86 ocation:	te: 09/17/ [.] te: 09/29/1 olid (dry wo 5.7	16 12:00 6 09:22 eight)		
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 9.02 33.8 1.55 47.5	LOQ/CL 1.13 0.453 0.0453 0.227	<u>DL</u> 0.351 0.147 0.0136 0.0702	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> Limits	Date Analyzed 10/14/16 10:43 10/14/16 10:43 10/14/16 10:43 10/14/16 10:43
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:43 Container ID: 1168646014-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract 1	MXX30253 : SW3050B ne: 10/05/1 t./Vol.: 1.01 Vol: 50 mL	6 10:03 8 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of	of 16KR	M-37(1.	5)
------------	----------------	---------	----

racterization	C R M Se Lo	ollection Da eceived Dat atrix: Soil/S olids (%):84 ocation:	te: 09/17/ [/] e: 09/29/1 olid (dry we .5	16 13:30 6 09:22 eight)		
) — —				
<u>Result Qual</u> 9.31 33.0 3.14 45.6	LOQ/CL 1.12 0.447 0.0447 0.224	<u>DL</u> 0.346 0.145 0.0134 0.0693	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:47 10/14/16 10:47 10/14/16 10:47 10/14/16 10:47
	F F F F	Prep Batch: I Prep Method: Prep Date/Tin Prep Initial W Prep Extract	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.05 Vol: 50 mL	6 10:03 9 g		
	racterization Result Qual 9.31 33.0 3.14 45.6	Result Qual LOQ/CL 9.31 1.12 33.0 0.447 3.14 0.0447 45.6 0.224	racterizationCollection Da Received Dat Matrix: Soil/S Solids (%):84 Location:Result QualLOQ/CLDL9.311.120.34633.00.4470.1453.140.04470.013445.60.2240.0693Prep Batch: I Prep Date/Tin Prep Initial W Prep Extract V	racterizationCollection Date: 09/17/7 Received Date: 09/29/1 Matrix: Soil/Solid (dry we Solids (%):84.5 Location:Result QualLOQ/CLDLUnits Matrix: Soil/Solid Solids (%):84.5 Location:9.311.120.346mg/Kg3.300.4470.145mg/Kg3.140.04470.0134mg/Kg45.60.2240.0693mg/KgPrep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/1 Prep Initial Wt./Vol.: 1.05 Prep Extract Vol: 50 mL	racterization Collection Date: 09/17/16 13:30 Received Date: 09/29/16 09:22 Matrix: Soil/Solid (dry weight) Solids (%):84.5 Location: Note: Note: 1 1.12 0.31 1.12 0.346 mg/Kg 3.14 0.0447 0.145 mg/Kg 45.6 0.224 0.0693 mg/Kg Prep Batch: MXX30253 Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./Vol.: 1.059 g Prep Extract Vol: 50 mL	racterizationCollection Date: $09/17/16 13:30$ Received Date: $09/29/16 09:22$ Matrix: Soil/Solid (dry weight) Solids (%):84.5 Location:Result QualLOQ/CLDLUnitsDE Limits9.311.120.346mg/Kg1033.00.4470.145mg/Kg103.140.04470.0134mg/Kg1045.60.2240.0693mg/Kg10Prep Batch: MXX30253 Prep Date/Time: 10/05/16 10:03 Prep Initial Wt./vol.: 1.059 g Prep Extract Vol: 50 mL

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of	16KRM-37	(2.5)
------------	----------	-------

Client Sample ID: 16KRM-37(2.5) Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646016 Lab Project ID: 1168646	racterization	C R M So Lo	ollection Da eceived Dat atrix: Soil/S olids (%):73 ocation:	te: 09/17/2 te: 09/29/1 olid (dry we	l6 13:35 6 09:22 eight)		
Results by Metals by ICP/MS							
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 7.57 31.6 1.77 21.6	LOQ/CL 1.28 0.511 0.0511 0.255	<u>DL</u> 0.396 0.166 0.0153 0.0792	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:52 10/14/16 10:52 10/14/16 10:52 10/14/16 10:52
Batch Information							
Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:52 Container ID: 1168646016-A		F F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	MXX30253 SW3050B ne: 10/05/1 t./Vol.: 1.06 Vol: 50 mL	6 10:03 4 g		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

SGS

Results of 16KRM-38(1)

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646017 Lab Project ID: 1168646 Results by Metals by ICP/MS	racterization	R M S L	eceived Da latrix: Soil/S olids (%):84 ocation:	te: 09/29/1 colid (dry we	6 09:22 eight)		
<u>Parameter</u> Arsenic Chromium Mercury Nickel	<u>Result Qual</u> 10.4 33.2 3.09 39.9	LOQ/CL 1.16 0.465 0.0465 0.233	<u>DL</u> 0.360 0.151 0.0140 0.0721	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg	<u>DF</u> 10 10 10 10	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/16 10:56 10/14/16 10:56 10/14/16 10:56 10/14/16 10:56
Batch Information Analytical Batch: MMS9580 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 10/14/16 10:56 Container ID: 1168646017-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	MXX30253 : SW3050B ne: 10/05/1 /t./Vol.: 1.02 Vol: 50 mL	6 10:03 9		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Results of	of 16KF	XM-38	(2.5)
------------	----------------	-------	-------

Client Project ID: Kolmakof Mine Cha Lab Sample ID: 1168646018 Lab Project ID: 1168646	racterization	R M S Lo	eceived Dat atrix: Soil/S olids (%):72 ocation:	te: 09/29/1 olid (dry we 0	6 09:22 eight)		
Results by Metals by ICP/MS							
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	13.1	1.35	0.417	mg/Kg	10		10/14/16 11:01
Chromium	35.1	0.538	0.175	mg/Kg	10		10/14/16 11:01
Mercury	0.328	0.0538	0.0161	mg/Kg	10		10/14/16 11:01
Nickel	37.1	0.269	0.0834	mg/Kg	10		10/14/16 11:01
Batch Information							
Analytical Batch: MMS9580		F	Prep Batch: I	MXX30253			
Analytical Method: SW6020A		F	Prep Method:	SW3050B	- /		
Analyst: VDL		ŀ	Prep Date/Tir	ne: 10/05/1	6 10:03		
Container ID: 1168646018-A		1	Prep Initial VV	1./V01 1.03 Vol: 50 ml	зg		

Print Date: 10/14/2016 4:46:17PM

J flagging is activated

Method Blank

Blank ID: MB for HBN 1744632 [MXX/30253] Blank Lab ID: 1356409 Matrix: Soil/Solid (dry weight)

QC for Samples:

1168646001, 1168646002, 1168646003, 1168646004, 1168646005, 1168646006, 1168646007, 1168646008, 1168646009, 1168646010, 1168646011, 1168646012, 1168646013, 1168646014, 1168646015, 1168646016, 1168646017, 1168646018

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>
Arsenic	0.500U	1.00	0.310
Chromium	0.200U	0.400	0.130
Mercury	0.0200U	0.0400	0.0120
Nickel	0.100U	0.200	0.0620

Batch Information

Analytical Batch: MMS9580 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 10/14/2016 9:38:47AM Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/5/2016 10:03:44AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 10/14/2016 4:46:20PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1168646 [MXX30253] Blank Spike Lab ID: 1356410 Date Analyzed: 10/14/2016 08:44

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168646001, 1168646002, 1168646003, 1168646004, 1168646005, 1168646006, 1168646007, 1168646008, 1168646009, 1168646010, 1168646011, 1168646012, 1168646013, 1168646014, 1168646015, 1168646016, 1168646017, 1168646018

Results by SW6020A			
	В	lank Spike	(mg/Kg
Parameter	<u>Spike</u>	Result	<u>Rec (%</u>
Arsenic	50	48.7	97
Chromium	20	20.7	103
Mercury	0.5	0.532	106
Nickel	50	51.5	103

Batch Information

Analytical Batch: MMS9580 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Prep Batch: MXX30253 Prep Method: SW3050B Prep Date/Time: 10/05/2016 10:03 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/14/2016 4:46:21PM

Original Sample MS Sample ID: MSD Sample IE	 ID: 1356411 1356412 MS D: 1356413 MSD 				Analysis Analysis Analysis Matrix:	Date: 10 Date: 10 Date: 10 Date: 10 Solid/Soil	0/14/2016 0/14/2016 0/14/2016 (Wet Weig	8:49 8:53 8:58 ght)		
QC for Samples:	1168646001, 11686460 1168646008, 11686460 1168646015, 11686460	002, 116864 009, 116864 016, 116864	46003, 116 46010, 116 46017, 116	8646004, 11 8646011, 11 8646018	68646009 68646012	5, 1168646 2, 1168646	8006, 11686 8013, 11686	46007, 46014,		
Results by SW6	3020A									
		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
rsenic	4.19	46.0	47.4	94	46.6	48.5	95	82-118	2.46	(< 20)
Chromium	11.2	18.4	30	102	18.7	31.2	107	83-119	3.91	(< 20)
lercury	0.0463	0.460	.498	98	0.466	0.526	103	74-126	5.38	(< 20)
lickel	12.4	46.0	56.2	95	46.6	57.4	96	84-119	2.05	(< 20)
Batch Informat	ion									
Analytical Bato Analytical Metl Instrument: Po Analyst: VDL	:h: MMS9580 tod: SW6020A erkin Elmer NexIon P5	38AM		Prep Prep Prep Prep Prep	Batch: Method: Date/Tin Date/Tin	MXX30253 Soils/Soli ne: 10/5/2 t./Vol.: 1.0	ds Digest fo 016 10:03:4 9g	or Metals b 44AM	y ICP-MS	

Print Date: 10/14/2016 4:46:23PM

3lank ID: MB for HBN 1 Blank Lab ID: 1356584	1744699 [SPT/10014]	Matrix	x: Soil/Solid (dry weight)	
⊋C for Samples: 1168646001, 1168646002 1168646010, 1168646011 Results by SM21 2540(2, 1168646003, 1168646004, 1 1, 1168646012, 1168646013, 1 G	168646005, 1168646006 168646014, 1168646015	5, 1168646007 5, 1168646016	, 1168646008, 1168646009, , 1168646017, 1168646018	
<u>,</u>	Depulto		וח	Lipito	
<u>Parameter</u>	Results	LUQ/UL		Units	
<u>Parameter</u> Fotal Solids	100			%	
Parameter Fotal Solids atch Information	<u>resuits</u> 100		<u></u>	%	

Print Date: 10/14/2016 4:46:23PM

_

Priginal Sample ID: 1165 Puplicate Sample ID: 135 PC for Samples:	ary 773001 6588		Analysis Date: Matrix: Soil/So	10/04/2016 17:54 lid (dry weight)	
Results by SM21 2540G					
AME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	<u>RPD CL</u>
Analytical Batch: SPT1001 Analytical Method: SM212 Instrument: Analyst: RJA	4 2540G				

Print Date: 10/14/2016 4:46:24PM

uplicate Sample Sumn	nary				
Driginal Sample ID: 116 Duplicate Sample ID: 13	5779015 56589		Analysis Date: Matrix: Soil/So	10/04/2016 17:54 lid (dry weight)	
QC for Samples:					
1168646009, 116864600	10, 1168646011, 1168 10, 1168646011, 1168	646012, 1168646003, 646012, 1168646013,	1168646014, 116	8646007, 1168646	008, 016,
Results by SM21 2540G					
Results by SM21 2540G	Original	 Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Results by SM21 2540G <u>VAME</u> Fotal Solids	<u>Original</u> 86.4	Duplicate 86.5	<u>Units</u> %	<u>RPD (%)</u> 0.14	<u>RPD CL</u> (< 15)
Results by SM21 2540G <u>VAME</u> Fotal Solids 3atch Information	<u>Original</u> 86.4	Duplicate 86.5	<u>Units</u> %	<u>RPD (%)</u> 0.14	<u>RPD CL</u> (< 15)
Results by SM21 2540G <u>VAME</u> Fotal Solids 3atch Information Analytical Batch: SPT100	<u>Original</u> 86.4	Duplicate 86.5	<u>Units</u> %	<u>RPD (%)</u> 0.14	<u>RPD CL</u> (< 15)
Results by SM21 2540G <u>VAME</u> Fotal Solids Batch Information Analytical Batch: SPT100 Analytical Method: SM21	<u>Original</u> 86.4	Duplicate 86.5	<u>Units</u> %	<u>RPD (%)</u> 0.14	<u>RPD CL</u> (< 15)

Print Date: 10/14/2016 4:46:24PM

SGS North America Inc.

GS					
Duplicate Sample Sum	imary				
Original Sample ID: 11 Duplicate Sample ID: 1	68648002 356590		Analysis Date: Matrix: Soil/So	10/04/2016 17:54 lid (dry weight)	
QC for Samples:					
1169646001 11696460	00 1160646000 1160	646004 116964600F	1169646006 116	9646007 1169646	2000
1168646001, 11686460 1168646009, 11686460 Results by SM21 25400	002, 1168646003, 1168 010, 1168646011, 1168 3	646004, 1168646005, 646012, 1168646013,	1168646006, 116 1168646014, 116	8646007, 1168646 8646015, 1168646	6008, 6016,
1168646001, 11686460 1168646009, 11686460 Results by SM21 25400 <u>NAME</u>	002, 1168646003, 1168 010, 1168646011, 1168 G <u>Original</u>	646004, 1168646005, 646012, 1168646013, Duplicate	1168646006, 116 1168646014, 116 <u>Units</u>	8646007, 1168646 8646015, 1168646 <u>RPD (%)</u>	5008, 5016, <u>RPD CL</u>
1168646001, 11686460 1168646009, 11686460 Results by SM21 25400 <u>NAME</u> Total Solids	002, 1168646003, 1168 010, 1168646011, 1168 G Original 78.4	646004, 1168646005, 646012, 1168646013, Duplicate 79.5	1168646006, 116 1168646014, 116 <u>Units</u> %	8646007, 1168646 8646015, 1168646 <u>RPD (%)</u> 1.40	6008, 6016, <u>RPD CL</u> (< 15)

Print Date: 10/14/2016 4:46:24PM

SGS North America Inc.

C				311	3864	ڡ			Loi Alaska	cations Natic	onwide Marvland	
			-			n ~	Q		New Je	rsev	New York	
									North C	arolina	Indiana	
									West Vi	irgina	Kentucky	
						1				WWW.US.SQ	<u>s.com</u>	
SLIENT: J	Wice Eulin	atrol .			-	Omissio	ns: Sectio	ns 1 - 5 must be lav the onset of	e filled ou	ut.		_
		ONE NO. 7			Continu				allalyolo		Page L of Z	
CONTACT:	Levi l'écusion	S IN AND	272-542	//	Section	r		Preservative				
PROJECT ∕ NAME: CL	When when the point of the poin	SID/ SID/ MIT#: 24 (/ ೧ / ೧		₩ 0							
REPORTS T	0: EI Deusen Carlochni : au	AAIL: CECUUIA OTE#:	ou meula	1.6021	ᅌᇂᅌᅆ	<u>8</u> " <u>8</u> "						
Brice	iEwi muneute/ P.C	1:#:3357	562		- Z	_(() }// - 8≞ ≅						
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	ы	、 うてのタ 点 雇 単					REMARKS/	
0 A	164RM-29(0.75)	04/16/16	1320	S	1						2	
ð A	16KRM-29(1.5)	09/16/16	1325	S	1 6	X						_
3A	16KRM-30(1)	09/16/16	1340	Ś) J	X						
A V	16KRM- 50(2)	09/16/16	13 45	S	5	X						_
A Q Q	[6KRM-31(1)	09/16/16	1420	\sqrt{l}		×`						
4 - 9 (-	16 KKM~ 31(4)	07/16/16	14 25	ΛV	5 <	X						
	(() 22 -11 8/19/1	1110/10	15.2.	γv								
4	1612RM-34(1)	91/21/20	1025									
(OA	16KRM-34(10)	01/11/10	0300	5	/ 6							
Relinquishe	id By: (1)	Date	Time	Received By	6	(astr	Sectic	on 4 DOD Project?	Yes (No)	Data Deliv	erable Requirements:	-
6	J2-	3/22/16	(2w2)		N	1255	Coole	ä)	LEUI	ZII EDD	
Relinquisher	g/By: (2)	Date	Time	Received By			Reques	ted Turnaround Time	and/or Speci	al Instructio	ls:	-
N.		ghske	6881			\wedge		Stendar	1 2 1	6		
Relinquishe	d By: (3)	Date	Time	Received By						/-		
							Temp B	llank °C:		Chain of (Custody Seal: (Circle)	
Relinquishe	d By: (d)	Date 9/29/16	Time (1, 1)	Received Fo	r Laboratory	By: CU		or Ambient [\hat{V}		INTACT	BROKEN ABSENT	
			10.10) (See	attached Sample Rece	ipt Form)	(See attache	d Sample Receipt Form	~
[] 200 W. F [] 5500 Bu	Potter Drive Anchorage, AK 99. Isiness Drive Wilmington, NC 2	518 Tel: (907) :8405 Tel: (910	562-2343 Fa)) 350-1903 F _i	x: (907) 561-5 ax: (910) 350-	301 1557		http://ww	w.sgs.com/terms-and-c	ionditions	ANC	11万18	
							へて	シートレート	5083-4	Gt_Request_and	_COC_Templates-Blank Revised 2013-03-24	

SGS	CHA	1168646	l Alask New North	.ocations Nationwide a Maryland Jersey New York Carolina Indiana Virgina Kentucky	
mmRVin	verdal	Instructior Omissio	Is: Sections 1 - 5 must be filled is may delay the onset of analysi	out.	~
uson P	HONE NO: 388 ~ 54 81	Section 3	Preservative	∫ aɓe⊿	<u>ار</u> تو
MINE P	ERMIT*: 240101	₩ U			
Cor 1606	:ман: Miceewinnumenal.c Wote #: to.#: 835662				
DENTIFICATION	I DATE TIME MAT mm/dd/yy HH:MM CO	TRIX E Intre- TRIX R mental - Sols Sols Sols - DE S Sols -		REM	RKS/
-34(2.5)	03/(7/16 1030 5	- L - L - L		2	2
-35(1)	09/17/16 1130	<u>ک</u>			
(7) <5 - 1	135 135 135 135 135 135 135 135 135 135				
-37(1.5) 109/13/16 1330	1 J			
1-37(2,	5) C9/17/16 1335	S [6			
<u>(-38(1)</u>	09/17/16 14/20	5 / 5			
22)82-) DOY THIS 1425	5			
	Date, Time Recei	4/18/1 g/18/11	Section 4 DOD Project? Yes MG	Data Deliverable Requ	rements:
1	9/24/11 1 2W	125 125	Cooler ID:	Level II	CCE
	Date Time Receiv	ved By:	Requested Turnaround Time and/or Spe	cial Instructions:	\$
	9/he/14 1836	$\left \right $	Strudo. 1	LL	
١	Date Time Receiv	ved By:			
			Temp Blank °C:	Chain of Custody Sea	(Circle)
	9/29/16 09:23	ved For Laboratory By:	or Ambient [() (See attached Sample Receipt Form)	INTACT BROKEN <	ABSENT ceipt Form)
Anchorage, AK 5 Wilmington, NC	9518 Tel: (907) 562-2343 Fax: (907) : 28405 Tel: (910) 350-1903 Fax: (91) 561-5301 0) 350-1557	http://www.sqs.com/terms-and-conditions		

-

F083-Kt_Request_and_COC_Templates-Blank Revised 2013-03-24

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

n • <i>a</i> • •	<u> </u>	
Keview Criteria:	Condition:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes No N/A	Exemption permitted if sampler hand
COC accompanied samples?	Yes No N/A	
Temperature blank compliant* (i.e., 0-6°C)	(Yes > No	$\Box Exemption permitted if chilled &$
If $>6^{\circ}C$, were samples collected <8 hours ago?	Yes No NTA	collected <8hrs ago
If <0°C, were all sample containers ice free?	Yes No 🕅	
Cooler ID:@w/Therm. ID:		
If samples are received without a temperature blank, the "cooler temperature" will be		
documented in lieu of the temperature blank and "COULER TEMP" will be noted to the right. In cores where neither a temp blank nor cooler temp can be obtained note		Note: Identify containers received at
ambient (Vor chilled ()). Please check one.		non-compliant temperature. Use form
		FS-0029 If more space is needed.
Delivery Method Client (hand carried) Other:	Tracking/AB# :	
	Or see attached	
	Or N/A	
\rightarrow For samples received with payment, note amount (\$) and where \rightarrow	ether cash / check / CC (cir	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Yes No N/A	Note: some samples are sent to
Packing material used (specify all that apply); Bubble Wrap		Anchorage without inspection by SGS
Separate plastic bags Vermiculite Other: box		r aroanks personnei.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes No N/A	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes No N/A	
Additional notes (if applicable):	L	L
Additional notes (11 applicable).		
$\mathbf{D}_{\mathbf{r}}$ $\mathbf{C}^{\mathbf{r}}\mathbf{I}_{\mathbf{r}}$ \mathbf{H}		
Profile #:		
Note to Client: any "no" circled above indicates non-compliance	with standard procedures and ma	y impact data quality.

		11	686	46			686	6 4 6	
Review Criteria	Y/N	(yes/no)		Exc	eptions N	oted be	elow		
				exemption perr	nitted if sam	pler hand	carri	es/delivers.	
Were Custody Seals intact? Note # 8	& location	Y			1F, 1B				
COC accompanied	samples?	Y							
**exemption perm	hitted if chil	led & col	lected <8	hrs ago or chlling no	ot required (i	.e., waste	e, oil)		
		Y (cooler ID:	1	@ 	1.4	°C °C	Therm ID:	200
Temperature blank compliant* (i.e., 0-6 °C :	after CE)?		ooler ID:		س ۵		°C	Therm ID:	
			ooler ID:		ي ۵		°C	Therm ID:	
	ľ		Cooler ID:		@		°C	Therm ID:	
*If >6°C, were samples collected <8 ho	urs ago?				C			-	
	Ľ								
If <0°C, were sample containers	ice free?								
If samples received without a temperature black the "cooler temperat	ture" will								
be documented in lieu of the temperature blank, the 'COOLER TEMP' wi	ill be								
noted to the right. In cases where neither a temp blank nor cooler tem	np can be								
obtained, note ambient or chilled .									
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form								
	F	No	te: Refer	to form F-083 "Sam	ple Guide" fo	or hold tin	nes.		
Were samples received within h	old time?	Y							
Do samples match COC ** (i.esample IDs.dates/times co	ollected)?	Y							
**Note: If times differ <1hr, record details & login	per COC.								
Were analyses requested unam	biguous?	Y							
				***Exemption	permitted for	r metals (e g 2(0.8/60204)	
Were proper containers (type/mass/volume/preservative*	**)used?	Y		Exemption		inclus (<u>,</u>	0.0/002014.	
IF APPLICABLE									
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples?								
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)?								
Were all soil VOAs field extracted with Me	OH+BFB?								
Note to Client: Any "no" answer above indicate	s non-com	pliance w	ith standa	ard procedures and	may impact	data qual	ity.		
lippa	tional not	tes (if a	nnlicah	le).					
			ppileub						
							_		

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1168646001-A	No Preservative Required	ОК			
1168646002-A	No Preservative Required	ОК			
1168646003-A	No Preservative Required	ОК			
1168646004-A	No Preservative Required	ОК			
1168646005-A	No Preservative Required	ОК			
1168646006-A	No Preservative Required	ОК			
1168646007-A	No Preservative Required	ОК			
1168646008-A	No Preservative Required	ОК			
1168646009-A	No Preservative Required	ОК			
1168646010-A	No Preservative Required	ОК			
1168646011-A	No Preservative Required	ОК			
1168646012-A	No Preservative Required	ОК			
1168646013-A	No Preservative Required	ОК			
1168646014-A	No Preservative Required	ОК			
1168646015-A	No Preservative Required	ОК			
1168646016-A	No Preservative Required	ОК			
1168646017-A	No Preservative Required	ОК			
1168646018-A	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

APPENDIX D

ADEC CHECKLISTS AND DATA QUALITY REVIEW

Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Bureau of Land Management Alaska State Office

4700 BLM Road

Anchorage, AK 99507-2591

January 2017

Laboratory Data Review Checklist

Comp	leted by:	Carl Benson			Carl Benson				
Title:		Environmental	Scientist			Date:	10/27/2016		
CS Re	eport Name:	Kolmakof Min	e Site Characteri	zation		Report Date:	09/26/2016		
Consu	lltant Firm:	Brice Environr	nental Services (Corporation					
Labora	atory Name:	SGS Anchorag	je	Laboratory Re	eport Nu	mber: 1165493			
ADEC	File Number:	2404.383.014		ADEC RecKe	ey Numb	er:			
1. <u>L</u>	aboratory								
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?								
	● Yes ○ No ○ NA (Please explain.) Comments:								
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?						d to an alternate		
	⊖ Yes	\bigcirc No	• NA (Pleas	se explain)		Comments:			
	Samples were n	ot transferred							
2. <u>Ch</u>	nain of Custody	<u>(COC)</u>							
	a. COC infor	mation complet	ed, signed, and c	lated (including r	eleased/1	received by)?			
Г	• Yes	⊖ No	○NA (Pleas	se explain)		Comments:			
	h Correct an	alusas raquasta	49						
	• Yes	O No	○NA (Ple	ase explain)		Comments:			
3. <u>La</u>	boratory Sampl	e Receipt Docu	mentation						
	a. Sample/co	oler temperature	e documented an	d within range at	receipt	$(4^\circ \pm 2^\circ \mathrm{C})?$			
	⊖ Yes	○ No	• NA (Ple	ease explain)		Comments:			
]	Metals analysis	only, cool prese	ervation conditio	ns not required.					

b. Sample preservation acceptable - ac	cidified waters, Methano	l preserved VOC soil	(GRO, BTEX,
Volatile Chlorinated Solvents, etc.)	?		

• Yes	⊖ No	○NA (Please explain)	Comments:
c. Sample con	dition docume	ented - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	⊖ No	○NA (Please explain)	Comments:
d. If there wer preservation, s	e any discrepa sample temper	ncies, were they documented? - For ature outside of acceptance range,	or example, incorrect sample containe insufficient or missing samples, etc.?
○ Yes	\bigcirc No	•NA (Please explain)	Comments:
Conditions were r	eviewed, but r	o discrepancies were noted.	
a Data quality	v or usshility s	ffootod? (Ploase evaluin)	
e. Data quality	y of usability a	incucu: (ricase explain)	Comments.
No			connents.
a. Present and • Yes	understandabl	e? ○NA (Please explain)	Comments:
b. Discrepance	ies, errors or Q ○ No	C failures identified by the lab? ○NA (Please explain)	Comments:
All QC goals wer digestion spike.	re met for targ	et analytes. Non target metals had l	MS/MSD issues resolved through po
c. Were all co	rrective action	s documented?	-
• Yes	⊖ No	○NA (Please explain)	Comments:
Not required for	target analytes	, but reported for non-target analyt	es.
d. What is the	effect on data	quality/usability according to the c	case narrative?
			Comments:

None.

5. Samples Results

a. Correct analyses	performed/reported as	requested on COC?
	r mr m	

• Yes	⊖ No	○ NA (Please explain)	Comments:
b. All applical	ble holding tim	es met?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
• Yes	○ No	○NA (Please explain)	Comments:
d. Are the repoproject?	orted PQLs less	s than the Cleanup Level or the mini	mum required detection level for the
• Yes	⊂ No	○NA (Please explain)	Comments:
No. <u>(C Samples</u> a. Method Blar	ık		Comments:
i. One me	ethod blank rep	orted per matrix, analysis and 20 sar	mples?
• Ye	s 🔿 No	○NA (Please explain)	Comments:
ii. All met	hod blank resu es O No	lts less than PQL? ONA (Please explain)	Comments:
iii. If abov	e PQL, what sa	amples are affected?	Comments:

6.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

	\bigcirc Yes	\bigcirc No	• NA (Please explain)	Comments:	
No	flags/qualifie	ers necessary			
	v. Data qu	ality or usabil	ity affected? (Please explain)	Comments:	
No).				

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:

Inorganic analyses only in Work Order 1165493.

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 $\textcircled{O} Yes \qquad \bigcirc No \qquad \bigcirc NA (Please explain) \qquad Comments:$

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes	⊖ No	○NA (Please explain)	Comments:	

iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes	\bigcirc No	○NA (Please explain)	Comments:	

v. If %R or RPD is outside of acceptable limits, what samples are affected?

	Comments:
N/A	

vi. Do the affected samples(s) have data flags? If so,	are the data flags clearly defined?
------------------------------	----------------------------	-------------------------------------

[○ No	• NA (Please explain)	Comments:
vii. Data c	juality or usab	ility affected? (Please explain)	Comments:
No			
c. Surrogates	- Organics On	ly	
i. Are surre	ogate recoveri	es reported for organic analyses - fie	ld, QC and laboratory samples?
⊖ Yes	⊖ No	•NA (Please explain)	Comments:
Inorganic analys	ses only in Wo	ork Order 1165493.	
ii. Accurae project spe the labora	cy - All percer ecified DQOs, tory report pag	nt recoveries (%R) reported and with , if applicable. (AK Petroleum methoges)	in method or laboratory limits? And ds 50-150 %R; all other analyses see
\bigcirc Yes	\bigcirc No	• NA (Please explain)	Comments:
iii. Do the clearly de	sample result	s with failed surrogate recoveries hav	ve data flags? If so, are the data flags
iii. Do the clearly de ○ Yes	sample result fined? () No	s with failed surrogate recoveries hav	ve data flags? If so, are the data flags Comments:
iii. Do the clearly de O Yes iv. Data qu	sample result fined? O No uality or usabi	s with failed surrogate recoveries hav • NA (Please explain) lity affected? (Use the comment box	ve data flags? If so, are the data flags Comments: to explain.). Comments:
iii. Do the clearly de O Yes iv. Data qu	sample result fined? O No uality or usabi	s with failed surrogate recoveries hav • NA (Please explain) lity affected? (Use the comment box	ve data flags? If so, are the data flags Comments: to explain.). Comments:
iii. Do the clearly de: O Yes iv. Data qu N/A d. Trip Blank <u>Soil</u> i. One trip (If not, en	sample result fined? No uality or usabi - Volatile ana blank reporte ter explanation	 s with failed surrogate recoveries hav NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each constraint of the below.) 	ve data flags? If so, are the data flags Comments: to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples?
iii. Do the clearly de: ○ Yes iv. Data qu N/A d. Trip Blank <u>Soil</u> i. One trip (If not, en ○ Yes	sample result fined? No uality or usabi Volatile ana blank reporte ter explanation No	 s with failed surrogate recoveries hav NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each constraint of the below.) NA (Please explain.) 	ve data flags? If so, are the data flags Comments: to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments:
iii. Do the clearly de: O Yes iv. Data qu N/A d. Trip Blank <u>Soil</u> i. One trip (If not, en O Yes	sample result fined? No uality or usabi volatile ana blank reporte ter explanation No s only in Worl	 s with failed surrogate recoveries hav NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each con n below.) NA (Please explain.) k Order 1165493. 	ve data flags? If so, are the data flags Comments: to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments:
iii. Do the clearly de: O Yes iv. Data qu N/A d. Trip Blank <u>Soil</u> i. One trip (If not, en O Yes horganic analyse ii. Is the co (If not,	sample result fined? No uality or usabi - Volatile ana blank reporte ter explanation No s only in Worl ooler used to t a comment ex	 s with failed surrogate recoveries hav NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each control below.) NA (Please explain.) k Order 1165493. ransport the trip blank and VOA sam plaining why must be entered below.) 	ve data flags? If so, are the data flags Comments: to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments:

	111. All resu	ilts less than I	PQL?	
	⊖ Yes	⊖ No	• NA (Please explain.)	Comments:
	iv. If abov	ve PQL, what	samples are affected?	
				Comments:
[/A				
	v. Data qu	ality or usabil	ity affected? (Please explain.)	
				Comments:
No				
e. F	ield Duplica	ate		
	i. One field	l duplicate sul	bmitted per matrix, analysis and 10 p	project samples?
	• Yes	\bigcirc No	○NA (Please explain)	Comments:
	ii. Submit	ted blind to la	b?	
	• Yes	⊖ No	○ NA (Please explain.)	Comments:
6KR	RM-20(10) v	was a duplicat	e of sample 16KRM-10(2), and 16K	RM-28(10) was a duplicate of sample
	iii. Precisi (Recon	on - All relati nmended: 30% I	ve percent differences (RPD) less th 6 water, 50% soil) RPD (%) = Absolute Value of: (R_{1-}) $((R_{1+}) R_{2})$	an specified DQOs? $\frac{R_2}{x}$ 100 $\frac{(x)}{2}$
	Where R R ₂	$_1 = $ Sample Co $_2 = $ Field Dupl	oncentration licate Concentration	
	• Yes	\bigcirc No	○NA (Please explain)	Comments:
	iv. Data qu O Yes	uality or usabi	ility affected? (Use the comment boy ONA (Please explain)	x to explain why or why not.) Comments:

f.	Decontamina	ation or Equip	oment Blank (if applicable)	
	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
Disp	osable sampl	ing equipmen	t used to collect all soil samples.	
	i. All result	ts less than PQ	QL?	
	⊖ Yes	⊖ No	• NA (Please explain)	Comments:
	ii. If above	PQL, what sa	amples are affected?	Comments:
N/A				
	iii. Data qu	ality or usabil	lity affected? (Please explain.)	Comments:
N/A				
Other I	Data Flags/Qı	ualifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
a.	Defined and	appropriate?		
	○ Yes	• No	○NA (Please explain)	Comments:

Reset Form

Laboratory Data Review Checklist

Comp	leted by:	Carl Benson					
Title:		Environmental Scientist				Date:	10/27/2016
CS Re	eport Name:	e: Kolmakof Mine Site Characterization				Report Date:	10/20/2016
Consu	onsultant Firm: Brice Environmental Services Corporation						
Labora	boratory Name: SGS Anchorage Laboratory Report Number: 1168620						
ADEC	File Number:	2404.383.014		ADEC RecKe	ey Numb	er:	
1. <u>L</u>	aboratory	L					
	a. Did an A	ADEC CS appro	oved laboratory r	receive and perform	<u>rm</u> all of	the submitted	sample analyses?
	• Yes	⊖ No	○ NA (Plea	ase explain.)		Comments:	
	b. If the sat laborato	mples were tran ry, was the labo	sferred to anothe ratory performin	er "network" labo ag the analyses Al	oratory of DEC CS	r sub-contracted approved?	d to an alternate
	⊖ Yes	\bigcirc No	• NA (Pleas	se explain)		Comments:	
•	Samples were n	ot transferred					
2. <u>Ch</u>	nain of Custody	<u>(COC)</u>					
	a. COC infor	mation complet	ed, signed, and c	lated (including r	eleased/	received by)?	
Г	• Yes	⊖ No	⊖NA (Pleas	se explain)		Comments:	
	b. Correct an	alyses requested	d?			~	
Г	• Yes	⊖ No	○NA (Ple	ase explain)		Comments:	
3. <u>La</u>	boratory Sampl	e Receipt Docu	mentation				
	a. Sample/co	oler temperature	e documented an	d within range at	t receipt	$(4^\circ \pm 2^\circ \mathrm{C})?$	
	○ Yes	○ No	• NA (Ple	ease explain)		Comments:	
	Metals analysis	only, cool prese	ervation conditio	ns not required.			

b. Sample preservation ac	ceptable - acidified waters	, Methanol preserved	VOC soil (GRO,	BTEX,
Volatile Chlorinated Sc	lvents, etc.)?			

• Yes	⊖ No	○NA (Please explain)	Comments:
c. Sample con	dition docume	ented - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	⊖ No	○NA (Please explain)	Comments:
d. If there were preservation, s	e any discrepa ample temper	ncies, were they documented? - Fo ature outside of acceptance range, i	r example, incorrect sample container nsufficient or missing samples, etc.?
○ Yes	\bigcirc No	•NA (Please explain)	Comments:
Conditions were re	eviewed, but n	o discrepancies were noted.	
a Data quality		ffootod? (Diagon avriain)	
e. Data quanty	or usability a	frected? (Please explain)	Commenter
N			Comments:
INO.			
Case Narrative			
a Present and	understandahl	e?	
• Yes	() No	() NA (Please explain)	Comments:
	es, errors or Ç	C failures identified by the lab?	
b. Discrepanci			
b. Discrepanci• Yes	⊖ No	○NA (Please explain)	Comments:
 Discrepanci Yes All QC goals wer through post dige 	○ No e met for targ stion spikes. (○NA (Please explain) et analytes, except some target meta QC failures due to soil heterogeneit	Comments: als had MS/MSD issues resolved y instead of systematic analytical issu
 Discrepanci Yes All QC goals wer through post dige c. Were all con 	○ No e met for targ stion spikes. (rective action	○NA (Please explain) et analytes, except some target meta QC failures due to soil heterogeneity s documented?	Comments: als had MS/MSD issues resolved y instead of systematic analytical issu
 b. Discrepanci Yes All QC goals wer through post dige c. Were all con Yes 	○ No re met for targ stion spikes. (rective action ○ No	 ○ NA (Please explain) et analytes, except some target meta QC failures due to soil heterogeneity s documented? ○ NA (Please explain) 	Comments: als had MS/MSD issues resolved y instead of systematic analytical issu Comments:
 b. Discrepanci Yes All QC goals werthrough post dige c. Were all con Yes Yes, post digestic 	 No re met for targestion spikes. (Construction action in spikes met (Construction in spikes met (Construction)) 	 ○ NA (Please explain) et analytes, except some target meta <u>QC failures due to soil heterogeneity</u> s documented? ○ NA (Please explain) QC goals. 	Comments: als had MS/MSD issues resolved y instead of systematic analytical issu Comments:

ect on data quality/usability according to the case narrative? d. Wi

Comments:

None.

5. Samples Results

a. Correct analyses	performed/reported as	requested on COC?
	r mr m	

• Yes	⊖ No	○ NA (Please explain)	Comments:
b. All applical	ble holding tim	es met?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
• Yes	○ No	○NA (Please explain)	Comments:
d. Are the repoproject?	orted PQLs less	s than the Cleanup Level or the mini	mum required detection level for the
• Yes	⊂ No	○NA (Please explain)	Comments:
No. <u>(C Samples</u> a. Method Blar	ık		Comments:
i. One me	ethod blank rep	orted per matrix, analysis and 20 sar	mples?
• Ye	s 🔿 No	○NA (Please explain)	Comments:
ii. All met	hod blank resu es O No	lts less than PQL? ONA (Please explain)	Comments:
iii. If abov	e PQL, what sa	amples are affected?	Comments:

6.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

\bigcirc Ye	es 🔿 No	• NA (Please explain)	Comments:	
No flags/qua	lifiers necessary			
v. Dat	a quality or usabi	lity affected? (Please explain)	Comments:	
No.				

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
-------	---------------	-----------------------	-----------

Inorganic analyses only in Work Order 1168620.

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?

• Yes	\bigcirc No	\bigcirc NA (Please explain)	Comments:
-------	---------------	--------------------------------	-----------

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

○ Yes ● No ○ NA (Please explain) Comments:

MS/MSD recovery issues for chromium and mercury were resolved with post-digestion spikes.

iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

⊖ Yes	• No	○NA (Please explain)	Comments:
-------	------	----------------------	-----------

MS/MSD RPD for mercury did not meet QC limit. A duplicate sample was analyzed for mercury which met precision RPD goal.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

N/A

vi. Do the affected sa	imples(s) have a	data flags? If so, a	re the data flags	clearly defined?
------------------------	------------------	----------------------	-------------------	------------------

	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
N/A				
	vii. Data q	uality or usab	ility affected? (Please explain)	Comments:
No				
	_			
с.	Surrogates -	· Organics On	ly	
	i. Are surro	ogate recoverie	es reported for organic analyses - fie	eld, QC and laboratory samples?
	⊖ Yes	\bigcirc No	•NA (Please explain)	Comments:
Inorg	ganic analys	es only in Wo	rk Order 1168620.	
	ii. Accurac project spe the laborat	cy - All percer ecified DQOs, eory report pag	nt recoveries (%R) reported and with if applicable. (AK Petroleum metho ges)	hin method or laboratory limits? And ods 50-150 %R; all other analyses see
	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
	iii. Do the clearly def	sample result	s with failed surrogate recoveries hav	ve data flags? If so, are the data flags
	iii. Do the clearly def○ Yes	sample results ined? () No	• with failed surrogate recoveries har • NA (Please explain)	ve data flags? If so, are the data flags Comments:
	iii. Do the clearly def ○ Yes	sample results ined? O No	s with failed surrogate recoveries ha	ve data flags? If so, are the data flags Comments:
	iii. Do the clearly def O Yes iv. Data qu	sample results ined? O No ality or usabi	• with failed surrogate recoveries har • NA (Please explain) lity affected? (Use the comment box	ve data flags? If so, are the data flags Comments: a to explain.). Comments:
 	iii. Do the clearly def O Yes iv. Data qu	sample results	• with failed surrogate recoveries har • NA (Please explain) lity affected? (Use the comment box	ve data flags? If so, are the data flags Comments: a to explain.). Comments:
N/A d. <u>So</u>	 iii. Do the clearly def Yes iv. Data qu Trip Blank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sample results ined? O No ality or usabi	• with failed surrogate recoveries har • NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each c h below.)	ve data flags? If so, are the data flags Comments: a to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples?
N/A d. <u>So</u>	 iii. Do the clearly def Yes iv. Data qu Trip Blank 0 One trip 0 One trip 0 One trip 0 Yes 	sample results ined? No No ality or usabi - Volatile ana blank reporte rer explanation O No	 with failed surrogate recoveries have NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Classical distribution of the second of the second	ve data flags? If so, are the data flags Comments: a to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> cooler containing volatile samples? Comments:
N/A d. <u>So</u> norga	 iii. Do the clearly def Yes iv. Data qu Trip Blank 0 Yes 0 Yes nic analyses 	sample results ined? No No No No Sonly in Work	 with failed surrogate recoveries have NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Classical distribution of the second second	ve data flags? If so, are the data flags Comments: a to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> cooler containing volatile samples? Comments:
N/A d. So	 iii. Do the clearly def Yes iv. Data qu Trip Blank 0 Yes 1 One trip (If not, ent Yes nic analyses ii. Is the co (If not, a) 	sample results ined? No No No No No Sonly in Work poler used to ta a comment explanation	 with failed surrogate recoveries have NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Classical distribution of the second second	ve data flags? If so, are the data flags Comments: a to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> cooler containing volatile samples? Comments:

	iii. All rest	ilts less than F	YQL?	
	⊖ Yes	○ No	• NA (Please explain.)	Comments:
	iv. If abox	ve POL what	samples are affected?	
	IV. II abov	c I QL, what	samples are arrected?	
				Comments:
J/A				
	v. Data qu	ality or usabil	ity affected? (Please explain.)	
				Comments:
No				
e.]	Field Duplic	ate		
	i. One field	l duplicate sul	omitted per matrix, analysis and 10	project samples?
	Ves	\bigcirc No	\bigcirc NA (Please explain)	Comments:
	0 103	0110		
	ii. Submit	ted blind to la	b?	
	• Yes	⊖ No	○ NA (Please explain.)	Comments:
6K amj	RM-M5(10) ple 16KRM-	was a duplica M9(1.5).	te of sample 16KRM-M5(2), and 1	6KRM-M9(10) was a duplicate of
	iii. Precisi (Recon	on - All relati nmended: 30%	ve percent differences (RPD) less tl 6 water, 50% soil)	nan specified DQOs?
		I	RPD (%) = Absolute Value of: (\underline{R}_{1-})	<u>R_2)</u> x 100
			$((R_{1+} R_{1+} R_{1+$	₂)/2)
	Where R	$_1 =$ Sample Co	oncentration	
	R	$_2 =$ Field Dupl	licate Concentration	

M5(10)/16KRM-M5(2) was 60%, and 63% for 16KRM-M9(10)/16KRM-M9(1.5).

iv.	Data quality of	or usability	affected?	(Use 1	the comment	box to	explain	why o	r why not.))
	1 2	~					1	2	J /	

	⊖ Yes	• No	○NA (Please explain)	Comments:
Mero were	cury results f qualified "J	or samples 16 ' to indicate e	5KRM-M5(10), 16KRM-M5(2), 16K estimated concentrations.	CRM-M9(10) and 16KRM-M9(1.5)
f.	Decontamina	ation or Equip	oment Blank (if applicable)	
	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
Disp	osable sampl	ing equipmer	nt used to collect all soil samples.	
	i. All result	ts less than PO	QL?	
	⊖ Yes	○ No	•NA (Please explain)	Comments:
	ii. If above	PQL, what s	amples are affected?	
N/Δ				Comments:
1 1/ 2 1				
	iii. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
N/A				
ther I	Data Flags/Q	ualifiers (ACC	OE, AFCEE, Lab Specific, etc.)	
a.	Defined and	appropriate?		
	○ Yes	• No	○NA (Please explain)	Comments:

Reset Form

Laboratory Data Review Checklist

Comp	leted by:	Carl Benson					
Title:		Environmental	Scientist			Date:	10/27/2016
CS Re	eport Name:	Kolmakof Min	e Site Characteri	zation		Report Date:	10/14/2016
Consu	lltant Firm:	Brice Environr	nental Services (Corporation			
Labora	atory Name:	SGS Anchorag	je	Laboratory Re	eport Nu	mber: 1168646	
ADEC	File Number:	2404.383.014		ADEC RecKe	ey Numb	er:	
1. <u>L</u>	aboratory						
	a. Did an A	ADEC CS appro	oved laboratory r	eceive and <u>perfor</u>	<u>rm</u> all of	the submitted	sample analyses?
	• Yes	\bigcirc No	○ NA (Plea	ase explain.)		Comments:	
	b. If the sat laborato	mples were tran ry, was the labo	sferred to anothe ratory performin	er "network" labo ag the analyses Al	oratory of DEC CS	r sub-contracted approved?	l to an alternate
	⊖ Yes	\bigcirc No	• NA (Pleas	se explain)		Comments:	
	Samples were n	ot transferred					
2. <u>Ch</u>	nain of Custody	<u>(COC)</u>					
	a. COC infor	mation complet	ed, signed, and c	lated (including r	eleased/	received by)?	
Г	• Yes	⊖ No	○NA (Pleas	se explain)		Comments:	
		1 /	10				
	b. Correct an• Yes	$\bigcirc No$	a? ○NA (Ple	ase explain)		Comments:	
Г							
3. <u>La</u>	boratory Sampl	e Receipt Docu	mentation				
	a. Sample/co	oler temperature	e documented an	d within range at	t receipt	$(4^\circ \pm 2^\circ \mathrm{C})?$	
	○ Yes	\bigcirc No	• NA (Ple	ease explain)		Comments:	
	Metals analysis	only, cool prese	ervation conditio	ns not required.			

b. Sample preservation acceptable - a	acidified waters, Methano	ol preserved VOC soi	l (GRO, BTEX,
Volatile Chlorinated Solvents, etc	.)?		

0.100	⊖ No	○NA (Please explain)	Comments:
c. Sample con	dition docume	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	○ No	○NA (Please explain)	Comments:
d. If there wer preservation, s	e any discrepar sample tempera	ncies, were they documented? - Fo ature outside of acceptance range, i	r example, incorrect sample containe insufficient or missing samples, etc.?
○ Yes	\bigcirc No	•NA (Please explain)	Comments:
onditions were r	eviewed, but n	o discrepancies were noted.	
	, , , , , , , , , , , , , , , , , , ,		
e. Data quality	or usability af	ffected? (Please explain)	
			Comments:
No.			
sa Narrativa			
se Narrative			
<u>se Narrative</u> a. Present and	understandable	e?	
se Narrative a. Present and • Yes	understandable ○ No	e? ○NA (Please explain)	Comments:
se Narrative a. Present and Yes	understandable O No	e? ○NA (Please explain)	Comments:
se Narrative a. Present and • Yes b. Discrepanci	understandable O No ies, errors or Q	e? ○NA (Please explain) C failures identified by the lab?	Comments:
se Narrative a. Present and • Yes b. Discrepance • Yes	understandable	e? ○NA (Please explain) C failures identified by the lab? ○NA (Please explain)	Comments: Comments:
se Narrative a. Present and • Yes b. Discrepance • Yes None noted durin	understandable O No ies, errors or Q O No ng review.	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	Comments: Comments:
se Narrative a. Present and • Yes b. Discrepance • Yes None noted durin	understandable No ies, errors or Q No ng review. rrective actions	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain) a documented?	Comments: Comments:
se Narrative a. Present and • Yes b. Discrepance • Yes None noted durin c. Were all con • Yes	understandable No ies, errors or Q No ng review. rrective actions No	e? O NA (Please explain) C failures identified by the lab? O NA (Please explain) s documented? • NA (Please explain)	Comments: Comments:
se Narrative a. Present and • Yes b. Discrepance • Yes None noted durin c. Were all co • Yes None required.	understandable O No ies, errors or Q O No ng review. rrective actions O No	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain) s documented? • NA (Please explain)	Comments: Comments:

Comments:

None.
5. Samples Results

a. Correct analyses	performed/reported as	requested on COC?
	r mr m	

• Yes	⊖ No	○ NA (Please explain)	Comments:
b. All applical	ble holding tim	es met?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
• Yes	○ No	○NA (Please explain)	Comments:
d. Are the repoproject?	orted PQLs less	s than the Cleanup Level or the mini	mum required detection level for the
• Yes	⊂ No	○NA (Please explain)	Comments:
No. <u>(C Samples</u> a. Method Blar	ık		Comments:
i. One me	ethod blank rep	orted per matrix, analysis and 20 sar	mples?
• Ye	s 🔿 No	○NA (Please explain)	Comments:
ii. All met	hod blank resu es O No	lts less than PQL? ONA (Please explain)	Comments:
iii. If abov	e PQL, what sa	amples are affected?	Comments:

6.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

	\bigcirc Yes	\bigcirc No	• NA (Please explain)	Comments:	
No	flags/qualifie	ers necessary			
	v. Data qu	ality or usabil	ity affected? (Please explain)	Comments:	
No).				

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

lain) Comments:
lain) Comments:

Inorganic analyses only in Work Order 1168646.

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?

• Yes	\bigcirc No	\bigcirc NA (Please explain)	Comments:
-------	---------------	--------------------------------	-----------

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes	⊖ No	○NA (Please explain)	Comments:	

iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes	⊖ No	○NA (Please explain)	Comments:	

v. If %R or RPD is outside of acceptable limits, what samples are affected?

	Comments:
N/A	

vi. Do the affected	samples(s) hav	e data flags? If so	, are the data flags	clearly defined?
---------------------	----------------	---------------------	----------------------	------------------

	\bigcirc No	• NA (Please explain)	Comments:
N/A - none req	uired data flags	5.	
vii. Data	quality or usab	ility affected? (Please explain)	Comments:
No			
c. Surrogates	s - Organics On	ly	
i. Are sur	rogate recoveri	es reported for organic analyses - fie	ld, QC and laboratory samples?
⊖ Yes	⊖ No	•NA (Please explain)	Comments:
norganic analy	vses only in Wo	ork Order 1168646.	
ii. Accura project sj the labor	acy - All percer pecified DQOs, atory report pag	nt recoveries (%R) reported and with if applicable. (AK Petroleum methoges)	in method or laboratory limits? And ods 50-150 %R; all other analyses see
⊖ Yes	s 🔿 No	• NA (Please explain)	Comments:
iii Do th		a with failed aumonate measuration has	us data flags? If so, are the data flags
clearly d	e sample result efined?	s with failed surrogate recoveries hav	ve data flags? If so, are the data flags
⊖ Yes	⊖ No	• NA (Please explain)	Comments:
iv. Data o	quality or usabi	lity affected? (Use the comment box	to explain.). Comments:
J/A			
V/A d. Trip Blanl <u>Soil</u> i. One tri (If not, en	k - Volatile ana p blank reporte nter explanation	lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each co 1 below.)	hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples?
I/A d. Trip Blanl <u>Soil</u> i. One tri (If not, er ○ Yes	k - Volatile ana p blank reporte nter explanation ○ No	lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each co n below.) • NA (Please explain.)	hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments:
I/A d. Trip Blanl <u>Soil</u> i. One tri (If not, en O Yes organic analyse	k - Volatile ana p blank reporte nter explanation O No es only in Worl	lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each co n below.)	hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments:
J/A d. Trip Blanl <u>Soil</u> i. One tri (If not, en ○ Yes organic analyse ii. Is the o (If not	k - Volatile ana p blank reporte nter explanation O No es only in Worl cooler used to t , a comment ex	lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each co n below.)	hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? Comments: nples clearly indicated on the COC?

	III. All rest	ints less than I		
	⊖ Yes	⊖ No	• NA (Please explain.)	Comments:
	iv. If abov	e PQL, what	samples are affected?	
				Comments:
J/A				
	v. Data qu	ality or usabil	ity affected? (Please explain.)	
				Comments:
No				
e. F	ield Duplica	ate		
	i. One field	l duplicate sub	omitted per matrix, analysis and 10 j	project samples?
	• Yes	⊖ No	○NA (Please explain)	Comments:
	ii. Submit	ted blind to la	b?	
	• Yes	⊖ No	○ NA (Please explain.)	Comments:
6KR	2M-34(10) v	vas a duplicat	e of sample 16KRM-34(1).	
	iii. Precisi (Recon	on - All relation	ve percent differences (RPD) less th 6 water, 50% soil)	an specified DQOs?
		ŀ	RPD (%) = Absolute Value of: (R_{1-})	$\frac{R_2}{100} \times 100$
	Where R	$_1 = $ Sample Co	$((K_{1+} K_{2}))$	<u>2)/</u> 2)
	R ₂	= Field Dupl	icate Concentration	
		0 N		
	• Yes	\bigcirc No	○NA (Please explain)	Comments:
	• Yes		ONA (Please explain)	Comments:

f.	Decontamina	ation or Equip	oment Blank (if applicable)	
	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
Disp	osable sampl	ing equipmen	t used to collect all soil samples.	
	i. All result	ts less than PQ	QL?	
	○ Yes	⊖ No	• NA (Please explain)	Comments:
	ii. If above	PQL, what sa	amples are affected?	Comments:
N/A				
	iii. Data qu	ality or usabil	lity affected? (Please explain.)	Comments:
N/A				
Other I	Data Flags/Qı	ualifiers (ACC	DE, AFCEE, Lab Specific, etc.)	
a.	Defined and	appropriate?		
	○ Yes	• No	○NA (Please explain)	Comments:

Reset Form

Date: 10/27/2016

Project: Kolmakof Mine Site Characterization Laboratory: SGS North America, Inc. (SGS) - Anchorage SDG#s: 1165493, 1168620, 1168646 Receipt Dates: 09/26/2016, 10/20/2016, 10/14/2016 Analyses: Total and TCLP arsenic, chromium, mercury, and nickel Reviewer Name: Carl Benson Reviewer Title: Environmental Scientist

INTRODUCTION

Table 1 lists the field sample numbers, corresponding laboratory sample identification numbers, requested analyses, and identifies quality control (QC) samples.

TABLE 1: FIELD SAMPLE PLAN OVERVIEW

Field Sample ID	Lab Sample	Analyses Requested	QC
	ID		
Work Order 1165493			
16KRM-16(1)	1165493001	Total Metals	
16KRM-17(2)	1165493002	Total Metals	
16KRM-18(3)	1165493003	Total Metals	
16KRM-19(2)	1165493004	Total Metals	
16KRM-20(2)	1165493005	Total Metals	
16KRM-20(10)	1165493006	Total Metals	Field duplicate of sample
			16KRM-20(2)
16KRM-21(3)	1165493007	Total Metals	
16KRM-22(2)	1165493008	Total Metals	
16KRM-23(2)	1165493009	Total Metals	
16KRM-24(1.25)	1165493010	Total Metals	
16KRM-25(0.75)	1165493011	Total Metals	
16KRM-26(1.5)	1165493012	Total Metals	
16KRM-27(1.5)	1165493013	Total Metals	
16KRM-28(1)	1165493014	Total Metals	
16KRM-28(10)	1165493015	Total Metals	Field duplicate of sample
			16KRM-28(1)
Work Order 1168620			
16KRM-M1(0.75)	1168620001	Total Metals	
16KRM-M1(2)	1168620002	Total Metals	
16KRM-M2(1)	1168620003	Total Metals	
16KRM-M2(2.5)	1168620004	Total Metals	
16KRM-M3(1)	1168620005	Total Metals	
16KRM-M3(4)	1168620006	Total Metals	
16KRM-M4(1)	1168620007	Total Metals	
16KRM-M4(2)	1168620008	Total Metals	
16KRM-M5(2)	1168620009	Total Metals	

Field Sample ID	Lab Sample ID	Analyses Requested	QC
Work Order 1168620			
(Continued)			
16KRM-M5(10)	1168620010	Total Metals	Field duplicate of sample 16KRM-M5(2)
16KRM-M5(4)	1168620011	Total Metals	
16KRM-M6(1)	1168620012	Total Metals	
16KRM-M6(3)	1168620013	Total Metals	
16KRM-M7(0.5)	1168620014	Total Metals	
16KRM-M7(2)	1168620015	Total Metals	
16KRM-M8(0.75)	1168620016	Total Metals	
16KRM-M8(1.5)	1168620017	Total Metals	
16KRM-M9(0.5)	1168620018	Total Metals	
16KRM-M9(1.5)	1168620019	Total Metals	
16KRM-M9(10)	1168620020	Total Metals	Field duplicate of sample 16KRM-M9(1.5)
TCLP Mound North	1168620021	TCLP Metals	
TCLP Mound South	1168620022	TCLP Metals	
TCLP Comp North	1168620023	TCLP Metals	
TCLP Comp South	1168620024	TCLP Metals	
Work Order 1168646			
16KRM-29(0.75)	1168646001	Total Metals	
16KRM-29(1.5)	1168646002	Total Metals	
16KRM-30(1)	1168646003	Total Metals	
16KRM-30(2)	1168646004	Total Metals	
16KRM-31(1)	1168646005	Total Metals	
16KRM-31(2)	1168646006	Total Metals	
16KRM-33(1)	1168646007	Total Metals	
16KRM-33(2)	1168646008	Total Metals	
16KRM-34(1)	1168646009	Total Metals	
16KRM-34(10)	1168646010	Total Metals	Field duplicate of sample 16KRM-34(1)
16KRM-34(2.5)	1168646011	Total Metals	
16KRM-35(1)	1168646012	Total Metals	
16KRM-35(2)	1168646013	Total Metals	
16KRM-36(1)	1168646014	Total Metals	
16KRM-37(1.5)	1168646015	Total Metals	
16KRM-37(2.5)	1168646016	Total Metals	
16KRM-38(1)	1168646017	Total Metals	
16KRM-38(2.5)	1168646018	Total Metals	

Key:

TCLP Toxicity Characteristic Leaching Procedure

DATA QUALIFIER DEFINITIONS

For the purpose of data validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met. "J+" is used when the quantity is biased high, and "J-" is used when the quantity is biased low.
- UJ The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalysis.

DATA REVIEW

Data quality review is a process for evaluating the completeness, correctness, consistency, compliance with method procedures and quality control requirements, and identification of anomalous data. This quality assurance (QA) summary includes a review, where appropriate, of the following parameters.

- Sample receipt conditions
 - o Sample preservation
 - Cooler receipt forms
 - Chan of Custody condition
- Extraction and analytical procedures
 - o Holding times
 - Analytical reporting limits
 - o Method blanks
 - Laboratory control samples and duplicates
 - Matrix spike samples and duplicates
 - Laboratory duplicate samples (when reported)
 - Surrogate recoveries (organics only)
- Sampling procedures
 - Field blanks (where applicable)
 - Trip blanks (where applicable)
 - Equipment blanks (where applicable)
 - Field duplicate samples
- Correspondence to method criteria and project data quality objectives (DQOs)

Each analysis that was performed is evaluated in the following subsections of this report, and only the criteria exceedances that impact data qualification or require assessment beyond laboratory documentation are discussed.

This project did not have a project-specific quality assurance plan with specified data quality objectives. Validation was conducted in accordance with the following documents.

- USEPA document "Test Methods for Evaluating Solid Wastes, SW-846, revision 6" (February, 2007 and updates),
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic (October, 1994) and Organic (October, 1999) Review,
- ADEC Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum (March, 2009),
- Department of Defense Quality Systems Manual for Environmental Laboratories, Version 3 (DoD QSM) (January, 2006), where and when applicable.

This review document summarizes the precision, accuracy, representativeness, comparability, completeness, and sensitivity as required by ADEC guidelines. An ADEC Laboratory Data Review Checklist is included for the three Sample Delivery Groups (SDGs).

Sample Receipt Conditions

Fifty-seven (57) soil samples, including five blind field duplicates and four waste characterization samples, were submitted to SGS in Anchorage in three coolers in three laboratory batches. Samples for SGS Work Orders 1165493, 1168620, and 1168646 were submitted on September 15, 2016, September 22, 2016, and September 28, 2016 respectively. All soil samples were analyzed at SGS's laboratory in Anchorage, Alaska. The samples were received by SGS on the same day they were submitted. All samples were received with proper preservation and in good condition.

All holding time criteria specified by the individual methods were met.

Precision

Precision was assessed by calculating the relative percent difference (RPD) between the primary and duplicate of field samples, matrix spike and matrix spike duplicate (MS/MSD) samples, and laboratory duplicate samples.

As shown in Table 1, forty-eight (48) primary soil samples were collected for total metals analysis along with five (5) blind field duplicates. This represents a duplicate soil sample collection rate for total metals analysis of 10%. The duplicate sample collection rate met or exceeded the DQO of a 10% duplicate sample collection rate for all combined total metals analyses in Work Orders 1165493, 1168620, and 1168646. Duplicate samples were not collected with the four waste characterization soil samples analyzed for TCLP metals.

RPDs were calculated for all analytes detected at or above their respective limit of quantitation (LOQ) for the primary and duplicate field sample pairs using the following equation. Results are shown in Table 2 below.

RPD (%) = Absolute Value of: $(R_1-R_2)_{X \ 100}$ ((R_1+R_2)/2)

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Table 2: Primary and Duplicate Sample RPD Results

Analyte	Units	16KRM-20(2) (1165493005) Primary	16KRM020(10) (1165493006) Duplicate	RPD ≤ 50%	Flag
Arsenic	mg/Kg	10.3	9.72	6%	
Chromium	mg/Kg	29.7	29.4	1%	
Mercury	mg/Kg	4.19	3.36	22%	
Nickel	mg/Kg	35.8	36.1	1%	
		16KRM-28(1) (1165493014) Primary	16KRM-28(10) (1165493015) Duplicate		
Arsenic	mg/Kg	8.99	9.72	8%	
Chromium	mg/Kg	29.6	30.7	4%	
Mercury	mg/Kg	2.38	1.62	38%	
Nickel	mg/Kg	39.1	41.6	6%	
		16KRM-M5(2) (1168620009) Primary	16KRM-M5(10) (1168620010) Duplicate		
Arsenic	mg/Kg	11.7	10.2	14%	
Chromium	mg/Kg	30.9	30.6	1%	
Mercury	mg/Kg	0.724	1.35	60%	J
Nickel	mg/Kg	35.9	32	11%	
		16KRM-M9(1.5) (1168620019)	16KRM-M9(10) (1168620020)		
Arsenic	mg/Kg	7.7	7.98	4%	
Chromium	mg/Kg	29.9	28.6	4%	
Mercury	mg/Kg	0.258	0.135	63%	J
Nickel	mg/Kg	21.2	20	6%	
		16KRM-34(1)	16KRM-34(10)		
		(1168646010)	(1168646010)		
		Primary	Duplicate		
Arsenic	mg/Kg	9.3	9.19	1%	
Chromium	mg/Kg	34.1	34.1	0%	
Mercury	mg/Kg	2.89	2.82	2%	
Nickel	mg/Kg	42.2	43.5	3%	

Notes:

mg/Kg milligrams per kilogram

RPD relative percent difference

The calculated RPDs were less than 50% for all analytes detected at or above their respective LOQ with the exception of mercury in primary/duplicate pairs 16KRM-M5(2)/16KRM-M5(10), and 16KRM-M9(1.5)/16KRM-M9(10). Detections of mercury in these samples were considered estimated values and assigned a "J" qualifier.

RPDs for LCS/LCSD pairs were not calculable since the laboratory only performed LCS spikes on method blank samples. Laboratory precision was measured using MS/MSD analyses and laboratory duplicate samples.

Calculated RPDs for the MS/MSD pairs were within the recommended RPD limit of 20% with the exception of mercury in SGS Work Order No. 1168620. The sample duplicate pair for this parent sample had an RPD% meeting the laboratory QC limit of 20% and no qualification was necessary.

Accuracy

Accuracy was assessed by calculating the percent recovery for LCS, MS, and MSD analyses.

The LCS recoveries associated with all samples and analytes were within QC control limits and no data qualification was necessary.

Recovery of MS/MSD spike compounds were within QC control limits for all compounds except chromium and mercury in SGS Work Order No. 1168620. Post digestions spikes were successful for these metals and no data qualification was necessary. Successful post-digestion spikes indicate sample heterogeneity was the likely cause of percent recovery variations for chromium and mercury in the MS/MSD samples, and that the recovery issues were not related to systematic problems with laboratory measurement.

Representativeness

Soil samples were collected from multiple locations at the site in accordance with the approved work plan. Results are considered representative of site conditions.

Comparability

To ensure comparability to field conditions, X-Ray fluorescence field screening was conducted during the collection of soil samples. In addition, visual observations were noted on the test pit logs and profile photographs were taken of each test pit. Only one laboratory was used, and only one SDG was created for each distinct phase of sampling conducted during the field effort; Work Order No. 1165493 comprised samples collected from the first full set of step-out test pits, Work Order No. 1168620 comprised all retort mound and waste characterization samples, and Work Order No. 1168646 comprised all samples submitted in association with the second set of step-out site characterization test pits.

Completeness

All data necessary to complete a level II data validation on these SDGs were provided. No data were rejected, so 100% of results are usable.

Sensitivity

All results were evaluated to the reporting limit. These limits were comparable to the project-specific cleanup levels specified in Tables B1 and B2 of Chapter 75 of Title 18 of the Alaska Administrative Code (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control*, as updated on May 8, 2016. The most conservative (i.e., lowest) cleanup level values associated with the ADEC Method three soil cleanup levels for the ingestion/direct contact, outdoor inhalation, and migration to groundwater exposure pathways were applicable.

No trip blank was submitted with these SDGs since all analyses were performed to evaluate metal concentrations.

The method blanks (MBs) were analyzed at the required frequencies of one per matrix, analysis, and 20 samples. No analytes were detected in the MB at quantities over the LOQ.

No equipment blanks or field blanks were submitted for these SDGs.

OVERALL ASSESSMENT

Based on the review completed on the three SDG's data, no data were rejected. Data qualifications for analytical data in SGS Work Orders 1165493, 1168620, and 1168646 are as summarized above. All sample results are considered to be valid with data qualifiers assigned.

APPENDIX E

SAMPLE LOCATION SURVEY DATA

Site Characterization and Contamination Assessment Report Kolmakof Mine Site, Alaska

Bureau of Land Management Alaska State Office

4700 BLM Road

Anchorage, AK 99507-2591

January 2017

Horizontal Datum:0.0Coodinate System:feeVertical Datum:100Units:U.S

0.0 at C - arbitrary feet local 100 at C - arbitrary U.S. Survey Feet Data Collection Equipment: tape (horizontal) and laser level (vertical)

		<u>Sample</u>	<u>Ground</u>		<u>Instrument</u>	<u>Measured</u>				
<u>Test Pit</u>	<u>TD (feet)</u>	<u>Deph</u>	Elevation	<u>Datum</u>	<u>Height</u>	Elevation	<u>North</u>	<u>East</u>	<u>West</u>	<u>South</u>
С			100.0	100.00	3.54	3.54	0.00	0.00	0.00	0.00
16	1.0	1.0	100.9	100.00	3.54	2.69	45.20	28.75		
17	2.5	2.0	100.2	100.00	3.54	3.38	45.20	15.00		
18	4.0	3.0	99.2	100.00	3.54	4.33	45.20	2.00		
19	3.5	2.0	97.9	100.00	3.54	5.63	29.20		15.50	
20	3.5	2.0	96.8	100.00	3.54	6.75	9.50		24.30	
20	3.5	2.0								
21	4.3	3.0	96.4	100.00	3.54	7.17	10.50		30.10	
22	4.5	2.0	95.9	100.00	3.54	7.6			26.00	3.00
23	5.5	2.0	95.4	100.00	3.54	8.19			32.40	4.00
23	5.5	4.0								
24	4.0	1.3	94.7	100.00	3.54	8.85			32.40	16.50
24	4.0	4.0								
25	4.0	0.8	93.1	100.00	3.54	10.44			38.30	16.50
25	4.0	2.5								
26	4.5	1.5	94.8	100.00	3.54	8.75			23.00	25.80
27	5.0	1.5	97.7	100.00	3.54	5.88			5.50	33.60
28	1.0	1.0	99.0	100.00	3.54	4.5		21.00		20.50
28	1.0	1.0								
29	2.0	0.8	99.6	100.00	3.54	3.99		20.50		4.50
29	2.0	1.5								
30	2.0	1.0	99.9	100.00	3.54	3.67		26.80		5.75

Horizontal Datum:	0.0 at C - arbitrary
Coodinate System:	feet local
Vertical Datum:	100 at C - arbitrary
Units:	U.S. Survey Feet

Data Collection Equipment: tape (horizontal) and laser level (vertical)

		<u>Sample</u>	<u>Ground</u>		<u>Instrument</u>	<u>Measured</u>				
<u>Test Pit</u>	<u>TD (feet)</u>	<u>Deph</u>	Elevation	<u>Datum</u>	<u>Height</u>	Elevation	<u>North</u>	<u>East</u>	<u>West</u>	<u>South</u>
30	2.0	2.0								
31	2.0	1.0	99.2	100.00	3.54	4.31		13.50		28.50
31	2.0	2.0								
32	1.0	0.8	98.0	100.00	3.54	5.5			5.25	40.50
33	5.0	1.0	95.0	100.00	3.54	8.58			25.00	30.20
33	5.0	2.0								
34	3.0	1.0	99.6	100.00	3.54	3.92	49.50	1.75		
34	3.0	1.0								
34	3.0	2.5								
35	4.0	1.0	98.1	100.00	3.54	5.42	32.20		20.75	
35	4.0	2.0								
36	1.0	1.0	99.6	100.00	3.54	3.98	59.90		5.00	
37	3.8	1.5	96.4	100.00	3.54	7.17	11.50		33.20	
37	3.8	2.5								
38	2.8	1.0	94.6	100.00	3.54	8.96			37.90	5.25
38	2.8	2.5								
M1	3.0	0.8	99.8	100.00	3.54	3.71	0.75	4.60		
M1	3.0	2.0								
M2	3.5	1.0	100.4	100.00	3.54	3.19	2.60		0.75	
M2	3.5	2.5								
M3	4.0	1.0	99.8	100.00	3.54	3.79	24.20		4.00	
M3	4.0	4.0								
M4	4.0	1.0	98.9	100.00	3.54	4.63	11.10		5.75	

Horizontal Datum:	0.0 at
Coodinate System:	feet lo
Vertical Datum:	100 at
Units:	U.S. St

D.0 at C - arbitrary feet local 100 at C - arbitrary U.S. Survey Feet Data Collection Equipment: tape (horizontal) and laser level (vertical)

		Sample_	<u>Ground</u>		<u>Instrument</u>	Measured				
<u>Test Pit</u>	<u>TD (feet)</u>	<u>Deph</u>	Elevation	<u>Datum</u>	<u>Height</u>	Elevation	<u>North</u>	<u>East</u>	<u>West</u>	<u>South</u>
M4	4.0	2.0								
M5	5.0	2.0	102.0	100.00	3.54	1.58	2.75	12.50		
M5	5.0	2.0								
M6	5.0	1.0	99.8	100.00	3.54	3.75		4.50		13.30
M6	5.0	3.0								
M7	5.0	0.5	98.8	100.00	3.54	4.71			6.25	24.50
M7	5.0	2.0								
M8	3.5	0.8	96.5	100.00	3.54	7.06			14.00	20.20
M8	3.5	1.5								
M9	3.3	0.5	97.6	100.00	3.54	5.98			11.00	3.50
M9	3.3	1.5								
TP-7			99.2	100.00	3.54	4.4		17.00		8.75
TP-14			99.0	100.00	3.54	4.5		18.60		15.00
TP-6			97.9	100.00	3.54	5.67		3.00		22.50
TP-13			96.4	100.00	3.54	7.17			12.75	30.20
TP-12			94.7	100.00	3.54	8.8			27.50	16.00
TP-5			95.0	100.00	3.54	8.5			22.20	16.00
TP-11			97.3	100.00	3.54	6.29	22.50		24.10	
TP-4			97.3	100.00	3.54	6.21	21.50		19.60	
TP-3			98.1	100.00	3.54	5.42	34.30		6.25	
TP-9			98.9	100.00	3.54	4.63	35.80	3.50		
TP-2			99.7	100.00	3.54	3.88	34.80	11.50		
TP-15			100.5	100.00	3.54	3.02	39.80	25.50		
TP-1			99.8	100.00	3.54	3.75	32.40	24.00		

Horizontal Datum:	0.0 at C - arbitrary	Data Collection Equipment: tape (horizontal) and
Coodinate System:	feet local	laser level (vertical)
Vertical Datum:	100 at C - arbitrary	
Units:	U.S. Survey Feet	

		Sample_	<u>Ground</u>		<u>Instrument</u>	Measured				
<u>Test Pit</u>	<u>TD (feet)</u>	<u>Deph</u>	Elevation	<u>Datum</u>	<u>Height</u>	Elevation	<u>North</u>	<u>East</u>	West	<u>South</u>
TP-8			99.7	100.00	3.54	3.86	7.50	27.20		