

October 22, 2018

Michael Hooper Alaska Department of Environmental Conservation 610 University Ave Fairbanks, AK 99709-3643

Re: 2018 Groundwater Sampling at the Carrs-Foodland Site in Fairbanks, AK. ADEC File 102.38.02.

Dear Mr. Hooper,

This letter report was prepared by SLR International Corporation (SLR) on behalf of the Bachner Company, Inc. to present the 2018 groundwater monitoring results at the former Carrs-Foodland Site in Fairbanks, Alaska (Site). The Site is listed in the Alaska Department of Environmental Conservation Contaminated Sites Database under Hazard ID 1397 (file 102.38.02). The Site is reportedly impacted by historical release(s) from a former 500 gallon underground heating oil tank (former Bakery UST) removed in 1991 (Shannon and Wilson 2002). The tank was located next to the Foodland Building, and is the current location of monitoring well MW-3. ADEC requested that groundwater is sampled at the source area (MW-3) and at least one downgradient well on an annual basis until a stable and decreasing trend can be established for DRO concentrations or until the result are less than the DRO groundwater cleanup level in 18 AAC 75.345 Table C (ADEC 2017b).

2018 Groundwater Sampling Activities

The work was performed in accordance with the ADEC approved Work Plan for the project (SLR 2018), which followed the ADEC field sampling guidance (ADEC 2017a). Per the Work Plan, two wells were sampled:

- Monitoring well MW-3 on north side of the Foodland Building where the UST was reportedly located; and.
- Monitoring well MW-34A, which is approximately 200 feet northwest and hydrologically downgradient of the MW-3 (Figure 1). MW-34A (formerly called TB124A) is the shallowest well in a downgradient well cluster. This well is known to be impacted by a chlorinated solvent plume from a former laundromat located upgradient from the Carrs-Foodland Site, referred to as the Gaffney Road East Coin King Site (ADEC Hazard ID 2573), (Athna 2014).

An SLR scientist, Mr. Austin Johnston, who is a qualified environmental professional as defined by 18 AAC 75.333 collected the samples for laboratory analysis. The sampling was completed on September 20 and 21, 2018. Groundwater sampling forms documenting the sampling of the Former Carrs Foodland Site-2018 Groundwater Sampling Report Page 2

wells are included in Appendix E of this report. A photograph log is also included documenting the site conditions during the sampling event (Appendix A).

Groundwater samples were collected using low-flow sampling methodology. The low-flow sampling method consists of purging the well at a low flow rate (between 0.05 and 0.5 liters per minute [L/min]), while maintaining a drawdown of less than 0.3 feet, if possible. During the purging, up to six water quality parameters are measured (temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity) at three to five minute intervals. Purging is considered complete once water drawdown and water quality parameters are considered stable. Water quality parameters are considered stable when three consecutive discrete readings of at least three parameters (or four if temperature is used) are within the following criteria:

- Temperature (°C), plus minus (±) 3 percent (minimum of ± 0.2 °C);
- pH, ± 0.1 standard units;
- Specific conductance, ± 3 percent;
- Oxidation-reduction potential, ± 10 millivolts;
- Dissolved oxygen, ± 10 percent; and
- Turbidity, ± 10 percent, or below 10 nephelometric turbidity units.

The three MW-34 wells were gauged with a water level tape prior to purging to verify which of the three was the shallow well. Purging and sampling was completed with a down-hole pump with an adjustable flow rate. The two monitoring wells sustained near constant water levels during purging, at flow rates of around 0.4 L/min and attained stable parameters. The water quality parameters were measured using a YSI 556 multi-parameter instrument. Water quality parameters were measured at periodic intervals, allowing for at least one volume of the YSI flow-through cell to be fully replaced between readings. After stability was attained, samples for laboratory analysis were collected. A primary and duplicate sample was collected from MW-3, and a primary sample from the downgradient MW-34A well. The purge water was containerized in a 10-gallon drum. After receipt of laboratory results, the purge water was transported to NRC Alaska in Fairbanks for subsequent transportation to the designated disposal facility (Clean Harbors Argonate LLC, Aroganate, Utah. USEPA ID Number UT961552177).

Sampling Handing and Laboratory Analysis

Upon collection groundwater samples were labeled and placed into a chilled cooler with a trip blank. Samples were transported to the SGS North America (SGS) laboratory in Fairbanks under chain of custody (COC) procedures.

Former Carrs Foodland Site-2018 Groundwater Sampling Report Page 3

Groundwater samples were analyzed for the following:

- Diesel range organics (DRO) by Alaska Method AK102 (MW-3 and MW-34A);
- Volatile organic compounds (VOCs) by EPA Method 8260c (MW-3 and MW-34A); and
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270-SIM (MW-3 only).

Analytical data was reviewed for consistency with the ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance Requirements (ADEC 2009). Appendices B, C, and D contain a Data Quality Assessment (DQA), ADEC Laboratory Data Review Checklist, and the laboratory analytical data package. Based on the DQA, the data were considered to be of good quality and acceptable for use with the noted qualifications. No data were rejected, and no issues were noted with regards to the data package, except as discussed below:

Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-9 were 77 microgram per liter (µg/L) and 73.3 µg/L. The SW8270D naphthalene results for these samples were 30.7 µg/L and 22.9 µg/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D, samples MW-3 and MW-9 at five-fold dilutions, the laboratory case narrative reported matrix interference, and the associated surrogate recovered slightly below acceptable limits (refer to the Surrogate Recovery section of the QAR). Due to these contributing factors, the SW8260C naphthalene results are considered to be more accurate representation of the true concentration.

Analytical Results and Discussion

The 2018 analytical results are provided in Table 1. Table 2 provides a summary of current and previous analytical results for MW-3 for selected parameters of interest. The results were screened against the current ADEC ground water cleanup levels (18 AAC 75.345, Table C, revised September 2018).

- In MW-3, groundwater cleanup levels were exceeded for DRO, ethylbenzene, 1,2,4-Trimethylbenzene, 1-Methylynaphthalente and naphthalene as shown on Table 1. The DRO and ethylbenzene were only slightly above their respective cleanup levels, while the other compounds exceed by more than twice the cleanup levels. The compound exhibiting the greatest exceedance of the cleanup level was naphthalene, with a detected concentration of up 77 ug/l versus a groundwater cleanup level of 1.7 ug/l. Chlorinated VOCs, perchloroethylene (PCE) and related daughter products including trichloroethylene (TCE) and vinyl chloride, were below detection limits
- In MW-34A, groundwater cleanup levels were exceeded for a single analyte, a chlorinated VOC, trichloroethylene (TCE). The analytes that exceeded groundwater cleanup level in MW-3 (noted above) were non-detectable, with the exception of DRO.

Former Carrs Foodland Site-2018 Groundwater Sampling Report Page 4

However, the detected DRO concentration was significantly lower in MW-34A (0.435J mg/L) than MW-3 (2.480 mg/L), and well below the groundwater cleanup level (1.5 mg/L).

Discussion

The 2018 sample results indicate that the petroleum hydrocarbon contamination attributed to the former Carrs Foodland UST site has not caused significant downgradient impacts as evidenced by the non-detectable or nearly non-detectable concentrations of fuel related analytes in the downgradient well MW-34A. This suggests the petroleum hydrocarbon plume which was likely present since at least 1991 (when the leaking UST was removed), is stable and not migrating.

The presence of the TCE in MW-34A is attributed to a Gaffney Road site and not associated with the Former Carrs Foodland UST release. As noted, MW-3 had non-detectable chlorinated VOCs.

A comparison of the 2018 results in MW-3 with the cumulative historical results (Table 2) indicates contaminants of concern have been gradually decreasing over time, with occasional oscillations. This is particularly evident in the benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations which have the longest data set. However, the DRO concentrations show a similar pattern since 2012.

Conclusions

The 2018 groundwater monitoring at the Carrs Foodland Site indicates that petroleum hydrocarbons concentration in the groundwater at the former UST location exceed ADEC groundwater cleanup levels but have decreased over time. The petroleum impacted groundwater plume does not appear to have migrated appreciably since the UST (source) was removed in 1991 and is considered stable. This is evidenced by the sample results in the nearest downgradient well (MW-34A).

Sincerely, SLR International Corporation

ery h

Bret Berglund, C.P.G. Principal Scientist/Project Manager

Cc: John Bachner, Bachner Company, Inc.

Former Carrs Foodland Site-2018 Groundwater Sampling Report Page 5

References:

- Ahtna Engineering. 2014. SFY 2104 Gaffney East: Groundwater Monitoring and Limited Addition Characterization Report. October.
- Alaska Department of Environmental Conservation (ADEC). 2009. Environmental Laboratory Data and Quality Assurance Requirements. Technical Memorandum. March. August.
- ADEC. 2017a. Field Sampling Guidance. August.
- ADEC. 2017b. Groundwater Monitoring-Former Carrs Foodland (file 102.38.027). Letter from Michael Hooper to J. Andrew Bachner. August 24.
- Shannon and Wilson (S&W). 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks Alaska. November 18.
- SLR International Corporation (SLR). 2018. Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK. August 7.

Attachments

- Figure 1 Site Map
- Table 12018 Groundwater Monitoring Results
- Table 2
 Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3

Appendices

- A Photograph Log
- B Data Quality Assessment
- C ADEC Laboratory Data Review Checklist
- D SGS Laboratory Data Reports
- E Groundwater Sampling Forms and YSI Calibration Log

Table 1 - 2018 Groundwater Monitoring ResultsFormer Carrs Foodland Site

Compand Ball, second to DIO which in mayle, all Camp Land T, Decemp Land		Screening Criteria		Trip Blank		
auß excent (DR) The C. Group start) Xxxyy 21 (1977) (1977	Compound	19 440 75	Primary:	Duplicate:	MW-34A	Trip Blank
Computed 111976201 113976202 110970030 100000004 Fack LMM20 Conc. ¹	units in μg/L, except for DRO which is in mg/L).	Table C, Groundwater	MW-3 20-Sep-18	MW-9 20-Sep-18	21-Sep-18	20-Sep-18
Constraints Const." Const." Const." Const." Const." Valiab Cogara Compounds (WARDED)		Cleanup Level ¹	1189788001	1189788002	1189788003	1189788004
Blast Act Supering1.1.3. Frank Character Supering1.3.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Fuels (AK102)		Conc. ³	Conc.	Conc. [°]	Conc. [°]
No. 10 Section 2000 10 Sec	Diesel Range Organics	1.5	24.8	20.7	0.435 J	
1.1.3-Trickhoresham 1000 (0.5) U	1,1,1,2-Tetrachloroethane	5.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
11.2.F. Finducedone thane 0.75 (0.251)<	1,1,1-Trichloroethane	8000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1.9.000 1.9.0000 1.9.000 <	1,1,2,2-Tetrachloroethane	0.76	[0.25] U [0.2] U	[0.25] U	[0.25] U [0.21 U	[0.25] U [0.21 U
1, abchargener 280 (b) 3/0	1,1-Dichloroethane	28	[0.5] U	[0.5] U	[0.5] U	[0.5] U
2.3.3 2.3.4 <th< td=""><td>1,1-Dichloroethene</td><td>280</td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td></th<>	1,1-Dichloroethene	280	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1.3-3-Indicorporate 0.075 0.51 0.51 0.51 0.51 2.2.4 Trindicorporative - 65 111 165 0.51 0.51 2.2.4 Trindicorporative - 610 101 150 0.51 0.51 2.2.6 Maron-3-formoprative D07 102371 1003751	1,2,3-Trichlorobenzene	7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1.4.4-finitedivation 0.510 0.510 0.510 0.510 0.510 0.510 1.2.0 2.5.0 0.0.075 0.0.0275	1,2,3-Trichloropropane	0.0075	[0.5] U	[0.5] U	[0.5] U	[0.5] U
32-0000000-3-000000-3-00000-3-0000-3-0000-3-00000-3-00000-3-00000-3-00000-3-0000-3-0000-3-0000-3-0000-3-0000-3-0000-3-0000-3-0	1,2,4-Trichlorobenzene	4 56	[0.5] U 111	[0.5] U 105	[0.5] U	[0.5] U [0.5] U
1.2 - Diverse 0.075 0.0375 U 0.0371 U 0.0375 U 0.0371	1,2-Dibromo-3-chloropropane		[5] U	[5] U	[5] U	[5] U
1.2-Boltionsethane 1.7 [0.23] U	1,2-Dibromoethane	0.075	[0.0375] U	[0.0375] U	[0.0375] U	[0.0375] U
1.2 bickhorprogene 8.2 [05] U [05] U <t< td=""><td>1,2-Dichloroethane</td><td>1.7</td><td>[0.25] U</td><td>[0.25] U</td><td>[0.25] U</td><td>[0.25] U</td></t<>	1,2-Dichloroethane	1.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
J.S. 3 HA (D.S.) HA (D.S.)	1,2-Dichloropropane	8.2	[0.5] U	[0.5] U	[0.5] U	[0.5] U
13.9 Behöregropping - [0.25] U [0.5] U [0.2] U <td>1,3-Dichlorobenzene</td> <td>300</td> <td>46.5 [0.5] U</td> <td>44.4 [0.5] U</td> <td>[0.5] U [0.5] U</td> <td>[0.5] U [0.5] U</td>	1,3-Dichlorobenzene	300	46.5 [0.5] U	44.4 [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
1.4-b6/nordememe 4.8 (0.25) U (0.5) U	1,3-Dichloropropane		[0.25] U	[0.25] U	[0.25] U	[0.25] U
Barbonic Mirkly Dot Dot Dot Dot Dot Dot Dot 2-Charantolene [0,5] U <	1,4-Dichlorobenzene	4.8	[0.25] U	[0.25] U	[0.25] U	[0.25] U
2-charanne	2-Butanone (MEK)	5600	4.5 J	4.67 J	[5] U	[5] U
2 Hoxanoe 38 [5] U [5] U [5] U [5] U [5] U [6] U <t< td=""><td>2-Chlorotoluene</td><td></td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td></t<>	2-Chlorotoluene		[0.5] U	[0.5] U	[0.5] U	[0.5] U
4-sogroyIslatene 15.4 14.7 [D5]U	2-Hexanone 4-Chlorotoluene		[5] U [0.5] U	[5] U [0.5] U	[5] U [0.5] U	[5] U [0.5] U
4-Methyl-2pentanene (MBK) 6300 [5] U [5] U [5] U [5] U [5] U Bornzene 6.6 0.41 0.331 [0.2] U [0.5] U	4-Isopropyltoluene		15.4	14.7	[0.5] U	[0.5] U
Context 4.0 0.91 0.921 <th0< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>6300</td><td>[5] U</td><td>[5] U</td><td>[5] U</td><td>[5] U</td></th0<>	4-Methyl-2-pentanone (MIBK)	6300	[5] U	[5] U	[5] U	[5] U
Bromechanemethane 10.5 U 10.5 U <th1< td=""><td>Bromobenzene</td><td>62</td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td><td>[0.5] U</td></th1<>	Bromobenzene	62	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Bromodicinoromethane 1.3 10.25 U 10.25 U <th10.25 th="" u<=""> 10.25 U <th10.25 th="" u<=""></th10.25></th10.25>	Bromochloromethane		[0.5] U	[0.5] U	[0.5] U	[0.5] U
Biomomethane 7.5 [2.5] U <	Bromodichloromethane Bromoform	1.3 33	[0.25] U	[0.25] U [0.5] U	[0.25] U [0.5] U	[0.25] U [0.5] U
Carbon disulfide 810 [5] U [5] U [5] U [5] U [5] U [0.5] U [0.	Bromomethane	7.5	[2.5] U	[2.5] U	[2.5] U	[2.5] U
Cardion Instructure (Cardion Instructure (Cardion Instructure (Cardion Instructure (Cardion Instructure (Cardion Cardion (Cardion (Cardion Cardion (Cardion (Carbon disulfide	810	[5] U	[5] U	[5] U	[5] U
Chicorebrane 21000 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Chioronethane 190 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U cis1_3-Dichloropropene 4.7 [0.25] U [0.5] U	Chlorobenzene	78	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Chioronethane 2.2 (0.5) U (0.25) U (0.5) U	Chloroethane	21000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
cis1,2.Dichloroethene 36 (0.5] U (0.5] U (0.5] U (0.25] U (0.5] U	Chloroform Chloromethane	2.2 190	[0.5] U	[0.5] U [0.5] U	0.83 J [0.5] U	[0.5] U [0.5] U
dis-13-bichloropropene 4.7 [0.25] U [0.25] U [0.25] U [0.25] U [0.25] U Dibromochtomethane 8.3 [0.5] U [0.5]	cis-1,2-Dichloroethene	36	[0.5] U	[0.5] U	2.71	[0.5] U
Did Motion Motion Dot 3 Dot 3 <thdot 3<="" th=""> <thdot 3<="" th=""> Dot 3</thdot></thdot>	cis-1,3-Dichloropropene	4.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Dichlorodifluoromethane 200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Ethylbenzene 15 15.9 14.9 [0.5] U [0.5] U [0.5] U Freon-113 550 [5] U [5] U [5] U [5] U [5] U [5] U Isporpylbenzene (Cumene) 450 5.36 5.99 [0.5] U [0.5] U [0.5] U Methylene chloride 110 [2.5] U [2.5] U [2.5] U [2.5] U [2.5] U Naphthalene 1.7 77 73.3 [0.5] U [0.5] U [0.5] U Nettylbenzene 1000 [0.5] U [0.5] U [0.5] U [0.5] U -#Gryblenzene 1000 24.2 22.8 [0.5] U [0.5] U o-Xylene 190 46.8 44.2 [1] U [1] U [1] U sec-Butylbenzene 2000 2.77 2.59 [0.5] U [0.5] U Styrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U <td>Dibromomethane</td> <td>8.3</td> <td>[0.23] U</td> <td>[0.23] U</td> <td>[0.23] U</td> <td>[0.23] U</td>	Dibromomethane	8.3	[0.23] U	[0.23] U	[0.23] U	[0.23] U
Ethylberzene 15 15.9 14.9 [0,5] U [0,5] U Hexachlorobutadiene 1.4 [0,5] U [5] U [5] U [5] U Hexachlorobutadiene 1.4 [0,5] U [0,5] U [0,5] U [0,5] U Isopropylbenzene (Cumene) 450 5.36 5.09 [0,5] U [0,5] U Methylene chloride 110 [2,5] U [2,5] U [2,5] U [2,5] U Naphthalene 1.7 77 73.3 [0,5] U [0,5] U [0,5] U -Propylbenzene 660 1.0.1 9.45 [0,5] U [0,5] U [0,5] U or-Xylene 190 24.2 22.8 [0,5] U [0,5] U [0,5] U or-Xylene 190 46.8 44.2 [1] U [1] U [1] U sec-Butylbenzene 2000 2.77 2.59 [0,5] U [0,5] U Styrene 1200 [0,5] U [0,5] U [0,5] U [0,5] U Tetrachoroethene 41 [0,5] U [Dichlorodifluoromethane	200	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Instruct Dot Dot Dot Dot Dot Hexachiorobutadiene 1.4 [0,5] U [0,5] U [0,5] U [0,5] U Isopropylenzene (Cumene) 450 5.36 5.09 [0,5] U [0,5] U Methylene chloride 110 [2,5] U [2,5] U [2,5] U [2,5] U Naphthalene 1.7 77 73.3 [0,5] U [0,5] U [0,5] U Naphthalene 1.7 77 73.3 [0,5] U [0,5] U [0,5] U n-Protylbenzene 660 10.1 9.45 [0,5] U [0,5] U [0,5] U or.Yiene 190 24.2 22.8 [0,5] U [0,5] U [0,5] U or.Sylence 2000 2.77 2.59 [0,5] U [0,5] U [0,5] U Styrene 1200 [0,5] U [0,5] U [0,5] U [0,5] U [0,5] U Tetrachoroethene 41 [0,5] U [0,5] U [0,5] U [0,5] U Tetrachororethene	Ethylbenzene Freon-113	15 550	<u>15.9</u>	14.9 [5] []	[0.5] U	[0.5] U
isoproylbenzene (Cumene) 450 5.36 5.09 [0.5] U [0.5] U Methylene chloride 110 [2.5] U [2.5] U [2.5] U [2.5] U Naphthalene 1.7 77 73.3 [0.5] U [5] U Naphthalene 1.7 77 73.3 [0.5] U [0.5] U n-Butylbenzene 1000 [0.5] U [0.5] U [0.5] U [0.5] U n-Propylbenzene 660 10.1 9.45 [0.5] U [0.5] U o-Xylene 190 24.2 22.8 [0.5] U [0.5] U o-Xylene 190 24.2 22.8 [0.5] U [0.5] U sec-Butylbenzene 2000 2.77 2.59 [0.5] U [0.5] U fyrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U tars-t_12-Dichloroethene 41 [0.5] U [0.5] U [0.5] U Toturea 1100 [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.	Hexachlorobutadiene	1.4	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Wethylene Chlorinde 110 [2:3] U [3] U <th[3] th="" u<=""></th[3]>	Isopropylbenzene (Cumene)	450	5.36	5.09	[0.5] U	[0.5] U
Naphthalene 1.7 77 73.3 [0.5] U [0.5] U n-Butylbenzene 1000 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U n-Propylbenzene 660 10.1 9.45 [0.5] U [0.5] U [0.5] U o-Xylene 190 24.2 22.8 [0.5] U [0.5] U [0.5] U P & M -Xylene 190 46.8 44.2 [1] U [1] U [1] U sec-Butylbenzene 2000 2.77 2.59 [0.5] U [0.5] U Styrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U Tetra-Butylbenzene 690 [0.5] U [0.5] U [0.5] U [0.5] U Tetra-Chloroethene 41 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8<	Methyl-t-butyl ether	140	[2.5] U	[2.5] U	[2.5] U	[2.5] U
n-Butyloenzene 1000 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U n-Propylbenzene 660 10.1 9.45 [0.5] U [0.5] U P & M -Xylene 190 24.2 22.8 [0.5] U [0.5] U P & M -Xylene 190 46.8 44.2 [1] U [1] U [1] U sec-Butylbenzene 2000 2.77 2.59 [0.5] U [0.5] U [0.5] U Styrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Tetrachloroethene 411 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroppopene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U [0.5] U	Naphthalene	1.7	77	73.3	[0.5] U	[0.5] U
Trick Toto Toto <thtoto< th=""> Toto Toto <th< td=""><td>n-Butylbenzene n-Propylbenzene</td><td>1000 660</td><td>[0.5] U 10 1</td><td>[0.5] U 9 45</td><td>[0.5] U [0.5] U</td><td>[0.5] U [0.5] U</td></th<></thtoto<>	n-Butylbenzene n-Propylbenzene	1000 660	[0.5] U 10 1	[0.5] U 9 45	[0.5] U [0.5] U	[0.5] U [0.5] U
P & M -Xylene 190 46.8 44.2 [1] U [1] U sec-Butylbenzene 2000 2.77 2.59 [0.5] U [0.5] U Styrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U tert-Butylbenzene 690 [0.5] U [0.5] U [0.5] U [0.5] U Tetrachloroethene 41 [0.5] U [0.5] U [0.5] U [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U trans-1,3-Dichloroptopene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U Trichlorofluoromethane 2.8 [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U Vinyl choride 0.19 [0.075] U [0.075] U [0.075] U [0.075] U Vinyl acetate 110 37.2 Q- 27.4 Q- -	o-Xylene	190	24.2	22.8	[0.5] U	[0.5] U
Sectory Derizence 2000 2.77 2.99 [U.5] U [0.5] U Styrene 1200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U tert-Butylbenzene 690 [0.5] U [0.5] U [0.5] U [0.5] U Toluene 41 [0.5] U [0.5] U [0.5] U [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U trans-1,3-Dichloropropene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U [0.5] U [0.5] U Trichlorofluoromethane 5200 [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U Vinyl choride 0.19 [0.75] U [0.075] U [0.075] U Vylenes (total) ⁴ 190 71 66.9 [1.0] U <td< td=""><td>P & M -Xylene</td><td>190</td><td>46.8</td><td>44.2</td><td>[1] U</td><td>[1] U</td></td<>	P & M -Xylene	190	46.8	44.2	[1] U	[1] U
tert-Butylbenzene 690 [0.5] U [0.5] U [0.5] U [0.5] U Tetrachloroethene 41 [0.5] U [0.5] U 1.03 [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,3-Dichloropropene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trichloroefluoromethane 5200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U [5] U Vinyl choride 0.19 [0.75] U [0.075] U [0.075] U [0.075] U Xylenes (total) ⁴ 190 71 66.9 [1.0] U <td>Styrene</td> <td>1200</td> <td>2.77 [0.5] U</td> <td>[0.5] U</td> <td>[0.5] U</td> <td>[0.5] U [0.5] U</td>	Styrene	1200	2.77 [0.5] U	[0.5] U	[0.5] U	[0.5] U [0.5] U
Tetrachloroethene 41 [0.5] U [0.5] U 1.03 [0.5] U Toluene 1100 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,2-Dichloroethene 360 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U trans-1,3-Dichloropropene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Trichlorofluoromethane 5200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U [5] U Vinyl chloride 0.19 [0.075] U [0.075] U [0.075] U [0.075] U Yelnes (total) ⁴ 190 71 66.9 [1.0] U [1.0] U PAH SIM (SW8270D LV) 1 37.2 Q- 27.4 Q- 2-Methylnaphthalene 36 32.7 Q- 24 Q-	tert-Butylbenzene	690	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Instruct	Tetrachloroethene Toluene	41 1100	[0.5] U	[0.5] U	1.03	[0.5] U
trans-1,3-Dichloropropene 4.7 [0.5] U [0.5] U [0.5] U [0.5] U Trichloroethene 2.8 [0.5] U [0.5] U 11 [0.5] U Trichlorofluoromethane 5200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U [5] U Vinyl chloride 0.19 [0.075] U [0.075] U [0.075] U [0.075] U Xylenes (total) ⁴ 190 71 66.9 [1.0] U [1.0] U PAH SIM (SW8270D LV) 11 37.2 Q- 27.4 Q- 1-Methylnaphthalene 36 32.7 Q- 24 Q- 2-Methylnaphthalene 36 32.7 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 0.3 [0.024] U [0.024] U	trans-1,2-Dichloroethene	360	[0.5] U	[0.5] U	6.04	[0.5] U
Incluoroethene 2.8 [0.5] U [0.5] U 11 [0.5] U Trichlorofluoromethane 5200 [0.5] U [0.5] U [0.5] U [0.5] U [0.5] U Vinyl acetate 410 [5] U [5] U [5] U [5] U [5] U Vinyl chloride 0.19 [0.075] U [0.075] U [0.075] U [0.075] U Xylenes (total) ⁴ 190 71 66.9 [1.0] U [1.0] U PAH SIM (SW8270D LV) 11 37.2 Q- 27.4 Q- 1-Methylnaphthalene 11 37.2 Q- 24 Q- 2-Methylnaphthalene 36 32.7 Q- 24 Q- Acenaphthene 530 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.0096] U	trans-1,3-Dichloropropene	4.7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Vinyl acetate 410 [5] U [5] U [5] U [5] U [5] U [5] U Vinyl chloride 0.19 [0.075] U [1.0] U	Trichlorofluoromethane	2.8	[U.5] U [0.5] U	[0.5] U [0.5] U	11 [0.5] U	[0.5] U [0.5] U
Vinyl chloride 0.19 [0.075] U [0.075] U [0.075] U [0.075] U Xylenes (total) ⁴ 190 71 66.9 [1.0] U [1.0] U PAH SIM (SW8270D LV) 1-Methylnaphthalene 11 37.2 Q- 27.4 Q- 2-Methylnaphthalene 36 32.7 Q- 24 Q- Acenaphthene 530 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	Vinyl acetate	410	[5] U	[5] U	[5] U	[5] U
Ayrenes (total) 190 71 66.9 [1.0] U [1.0] U PAH SIM (SW8270D LV) 1-Methylnaphthalene 11 37.2 Q- 27.4 Q- 2-Methylnaphthalene 36 32.7 Q- 24 Q- Acenaphthene 530 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	Vinyl chloride	0.19	[0.075] U	[0.075] U	[0.075] U	[0.075] U
1-Methylnaphthalene 11 37.2 Q- 27.4 Q- 2-Methylnaphthalene 36 32.7 Q- 24 Q- Acenaphthene 530 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	Aylenes (total) PAH SIM (SW8270D LV)	190	/1	66.9	[1.0] U	[1.0] U
2-Methylnaphthalene 36 32.7 Q- 24 Q- Acenaphthene 530 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	1-Methylnaphthalene	11	37.2 Q-	27.4 Q-		
Acenaphtiylene 350 0.871 Q- 0.714 Q- Acenaphthylene 260 [0.024] UJ [0.024] UJ Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	2-Methylnaphthalene	36	32.7 Q-	24 Q-		
Anthracene 43 [0.024] UJ [0.024] UJ Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	Acenaphthylene	260	[0.024] UJ	[0.024] UJ		
Benzo(a)Anthracene 0.3 [0.024] U [0.024] U Benzo[a]pyrene 0.25 [0.0096] U [0.0096] U	Anthracene	43	[0.024] UJ	[0.024] UJ		
	Benzo(a)Anthracene Benzo[a]pvrene	0.3	[U.024] U [0.0096] U	[U.024] U [0.0096] U		

Table 1 - 2018 Groundwater Monitoring ResultsFormer Carrs Foodland Site

	Screening Criteria		Sample Locations ²				
Compound (units in µg/L, except for DRO which is in mg/L).	18 AAC 75, Table C, Groundwater Cleanup Level ¹	Primary: MW-3 20-Sep-18 1189788001	Duplicate: MW-9 20-Sep-18 1189788002	MW-34A 21-Sep-18 1189788003	Trip Blank 20-Sep-18 1189788004		
		Conc. ³	Conc. ³	Conc. ³	Conc. ³		
Benzo[b]Fluoranthene	2.5	[0.024] U	[0.024] U				
Benzo[g,h,i]perylene	0.26	[0.024] U	[0.024] U				
Benzo[k]fluoranthene	0.8	[0.024] U	[0.024] U				
Chrysene	2.0	[0.024] U	[0.024] U				
Dibenzo[a,h]anthracene	0.25	[0.0096] U	[0.0096] U				
Fluoranthene	260	[0.024] U	[0.024] U				
Fluorene	290	1.78 Q-	1.43 Q-				
Indeno[1,2,3-c,d] pyrene	0.19	[0.024] U	[0.024] U				
Naphthalene	1.7	30.7 Q-	22.9 Q-				
Phenanthrene	170	1.21 Q-	1.03 Q-				
Pyrene	120	[0.024] U	[0.024] U				

Notes:

Bold and yellow values indicate an exceedance of Method Two Groundwater Cleanup Levels (footnote 1).

[0.0005] - Orange values indicate undetectable results with LODs above applicable ADEC screening criteria.

1 ADEC Method Two Groundwater Cleanup Levels , 18 AAC 75.345, Table C (September 29, 2018).

2 The field sample identification number, date collected, and laboratory sample identification number are provided.

3 Detected results are listed in µg/L in this column, except for DRO which is in mg/L. For non-detect analytes, the highest LOD is shown in [brackets].

4 Total values were the summation of detected compounds only. The highest LOD was listed for non-detect compounds.

Data Flags

a Flags		
U	Undetectable, LOD is listed in brackets to the right.	
J	Estimated value because the level is below the laboratory LOQ, but above the DL.	
UJ	Undetectable result with an estimated LOD.	
Q	Estimated value due to one or more quality control failures. Where applicable a "+" or "-" was appended to indicate a high or low bias.	

Abbreviations

-- Not applicable or screening criteria does not exist for this compound

AAC	Alaska Administrative Code	LOQ	limit of quantitation
ADEC	Alaska Department of Environmental Conservation	LV	low volume
AK	Alaska method	μg/L	micrograms per liter
DL	detection limit	mg/L	milligrams per liter
LOD	limit of detection	PAH	polycyclic aromatic hydrocarbons
		SIM	selective ion monitoring

Carrs FoodLand Site 2018 GW Monitoring Rpt

Table 2: Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3 Former Carrs Foodland Site

An	alyte	DRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethylbenzene	PCE	TCE	Naphthalene ³	
Groundwa	ater Cleanup										
Level ⁴ (µg,	/L except for	1.5 (mg/L)	4.6	1100	15	190	56	41	2.8	1.7	Reference
D	RO)										
Sample Beauth ^{1/2} (up (1)											
weirid	Date					Result	(µg/L)				
MW-3	Jan-94		35	1	52	180					1
MW-3	Apr-94		38	2	51	230					1
MW-3	Jul-94		8	<1	42	140					1
MW-3	Oct-94		28	2	44	250					1
MW-3	Jan-95		32	1	62	260					1
MW-3	Oct-95		10	1	40	124					1
MW-3	11/20/2002	11.8	3.7	<2	32	121					1
MW-3	9/4/2009	13.6	1.62	ND	27	108					2
MW-3	9/1/2012	96.3	3.12	1.92	15.8	83.2					3
MW-3	10/16/2013	66.4	2.61	0.82	20.1	82.7					4
MW-3	9/20/2018	24.8	0.41	ND	15.9	71	111	ND	ND	77	5

Abbreviations

Exceeds screening criteria

DRO Diesel range organics

μg/L micrograms per liter

mg/L milligrams per liter

-- Sample not analyzed for this compound.

ND Analyte not detected

PCE tetrachloroethylene

TCE trichloroethylene

Notes

1-If a duplicate sample was collected, the higher of the two values is listed.

2-All results reported in μ g/L except for DRO which is reported in mg/L.

3-Naphthalene was analyzed by methods SW8260C and SW8270D LV. The higher of the two values is listed.

4-ADEC Method Two Groundwater Cleanup Levels, 18 AAC 75.345, Table C (September 29, 2018). All units in µg/L except for DRO which is in mg/L. References

1- Shannon & Wilson, Inc., 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks, Alaska. November 18.

2- SGS North America, Inc. (SGS), 2009. Laboratory Report of Analysis. September 17.

3- SLR International Corp, 2012. Bachner/Foodland Site Transmittal of Validated Data. October 4.

4- SGS , 2013. Laboratory Report of Analysis. Report Number 1138619. October 29.

5- SGS, 2018. Laboratory Report of Analysis. Report Number 1189788. October 2.

Appendix A

Photograph Log

Photo 1: Location of monitoring well MW-3.

Photo 2: Monitoring well MW-3 during purging.

Groundwater Sampling at the Former Carrs-Foodland Site Fairbanks, Alaska

Job No: 105.00774.18001

Photo 3: Location of monitoring well MW-34A.

Photo 4: Monitoring well MW-34A during purging and runoff water removal.

Appendix B

Data Quality Assessment

LABORATORY DATA QUALITY ASSURANCE REVIEW BACHNER

2018 GROUNDWATER MONITORING AT THE FORMER CARRS-FOODLAND SITE IN FAIRBANKS, AK

OCTOBER 2018

Prepared by: Nicholas Wells Reviewed by: Jennifer McLean

SLR Project Number: 105.00774.18001 ADEC Number: 102.38.027 ADEC Hazard ID: 1397

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

Groundwater Monitoring at the Former Carrs-Foodland Site

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
AK	Alaska
ADEC	Alaska Department of Environmental Conservation
BTEX	benzene, toluene, ethylbenzene, xylenes
°C	degrees Celsius
CCV	continuing calibration verification
COC	chain of custody
DL	detection limit
DRO	diesel range organics
EDD	electronic data deliverable
GRO	gasoline range organics
GW	groundwater
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
LV	low volume
MS	matrix spike
MSD	matrix spike duplicate
NA	not applicable
NFG	National Functional Guidelines
PAH	polynuclear aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness, and
	sensitivity
QA	quality assurance
QAR	quality assurance review
QC	quality control
RPD	relative percent difference
SDG	sample delivery group
SIM	selective ion monitoring
SLR	SLR International Corporation
SGS	SGS North America, Inc.
UCL	upper control limit
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
VOCs	volatile organic compounds

This report summarizes a review of analytical data for samples collected on September 20, 2018 and September 21, 2018 in support of the groundwater monitoring activities at the former Carrs-Foodland site in Fairbanks, Alaska. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (UST-005) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank ¹
1189788	9/20/2018,	9/22/2018	1.0°C	GW	SW8260C AK102 LV	VOCs DRO	Required NA
	9/21/2010				SW8270D LV	PAH SIM	NA

Notes:

1 - This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody.

Acronyms: °C – degrees Celsius

DRO – diesel range organics

GW – groundwater

PAH – polynuclear aromatic hydrocarbons

SDG – sample delivery group SIM – selective ion monitoring

VOCs – volatile organic compounds

The laboratory final report was presented as a Level II deliverable and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided. The PDF laboratory report is provided electronically as Appendix D.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the Work Plan (SLR 2018), ADEC Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (ADEC 2017a), National Functional Guidelines (NFG, United States Environmental Protection Agency [USEPA] 2014), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and is included as Appendix C. A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals; Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD), and Matrix Spike (MS) and Matrix Spike Duplicate (MSD), were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, MS/MSD, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for, but was not detected above the limit of detection (LOD). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the Detection Limit (DL). This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection is greater than the sample detection and the result is likely a false positive.

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package, except as noted below.

• Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-9 were 77 µg/L and 73.3 µg/L. The SW8270D naphthalene results for these samples were 30.7 µg/L and 22.9 µg/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D, samples MW-3 and MW-9 at five-fold dilutions, the laboratory case narrative reported matrix interference, and the associated surrogate recovered slightly below acceptable limits (refer to the Surrogate Recovery section of this QAR for discussion). Due to these contributing factors, the SW8260C naphthalene results are considered to be more accurate quantitations of the true concentration.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples, except as noted below.

• The trip blank was not noted on the COC. One trip blank was included in the cooler, and the trip blank accompanied the sample containers and samples at all times during transit from and to the laboratory and in the field. The laboratory assigned the trip blank the ID of "Trip Blank" with a collection date and time of 9/20/18 at 17:45, which matches that of the earliest sample collected. The trip blank was analyzed appropriately, for VOCs by SW8260C, the same method and analytes as the other samples on the SDG. Data was not impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted with regards to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the limit of detection (LOD) in any method blanks.

Trip Blanks

One trip blank was analyzed for VOCs by Method SW8260C. Analytes were not detected at or above the LOD in the trip blank.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). Except as noted below, all analytes with results of non-detect had LODs at or below applicable regulatory criteria.

The LODs for 1,2,3-trichloropropane by Method SW8260C did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the reported LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted. All data was usable without qualification.

Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted below.

For PAH SIM by Method 8270D, the 2-methylnaphthalene-d10 surrogate recovered at • 46% in sample MW-3, 39% in sample MW-9, 45% in the MS, and 46% in the MSD. These limits met the NFG (NFG, 2014) limits of 30%-130%, but did not meet the more stringent laboratory limits of 47%-106%. The primary samples were noted by the laboratory as having matrix interference and were analyzed at five-fold dilutions, both of which likely contributed to the low surrogate recoveries. Target analytes associated with this surrogate are 1-methylnaphthalene, 2-methylnaphthalene, acenaphthalene, acenaphthylene, anthracene, flourene, naphthalene, and phenanthrene. Impacted analytes for samples MW-3 and MW-9 were qualified with a "Q-" for detectable results and a "UJ" for undetectable results. With the exception of 2-methylnaphthalene, all affected results were well above or well below ADEC cleanup criteria; therefore data usability was not affected. The 2-methylnaphthalene results for samples MW-3 and MW-9 were limited in usability, as the detections of 32.7 Q- μ g/L and 24.0 Q- μ g/L, were just below the ADEC cleanup level of 36 μ g/L, with a low bias indicated. This data is usable for determining the approximate quantity of analyte present, but it is not possible to state with certainty that 2-methylnaphthalene levels in sample MW-3 and duplicate MW-9 were below ADEC cleanup levels. The 1-methylnaphthalene and naphthalene results for these samples were well above the ADEC cleanup criteria, establishing definitive ADEC clean up level exceedances for PAH SIM target analytes. Overall, data was considered minimally impacted, and all data was usable as gualified.

Laboratory Control Samples and Laboratory Control Duplicate Samples done

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within acceptable limits.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD RPDs were within acceptable limits, establishing batch precision. Several MS/MSD recoveries exceeded allowable limits for a non-project specific parent sample. All LCS recoveries were within acceptable limits, establishing batch accuracy; therefore, only the non-project parent sample was considered affected. All project data was considered usable without qualification.

Field Duplicates

The field duplicate sample frequency is presented in Table 3. Parent sample and field duplicates are presented in Table 4. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters, except as noted in Table 5. Parent sample/duplicate results were qualified as shown in the table. Only the parent sample/field duplicate pair were analyzed for PAH SIM, so no other affected samples were affected.

2-Methylnaphthalene results for samples MW-3 and MW-9 were already qualified "Q-" as discussed in the surrogate recovery section. It was considered inappropriate to additionally qualify these samples as estimated with unknown bias due to the low bias already indicated by surrogate recovery.

Laboratory precision for 2-methylnaphthalene was established by the acceptable MS/MSD RPD, thus the impact of the field precision failure to data was considered minimal. All data was usable as qualified in Table 5.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Number of Primary	Number of Field Duplicates	Method	Analytes
2	1	AK 102 LV	DRO
2	1	SW8260C	VOCs
1	1	SW8270D LV	PAH SIM

Table 3Field Duplicate Count

 Table 4
 Parent Samples and Field Duplicates

Matrix	Parent Sample	Field Duplicate	Method	Analytes
Groundwater	MW-3	MW-9	SW8260C AK102 LV SW8270D LV	VOCs DRO PAH SIM

Table 5 Field Duplicate RPD Exceedances

Method	Analyte	Primary: MW-3	Duplicate: MW-9	RPD	Flag	ADEC Cleanup	
Wethod	Analyte	Result	Result	(%)	Tiay	Level (ug /L) ¹	
		(µg/∟)	(µg/L)			(~9/-/	
SW8270D LV	2-Methylnaphthalene	32.7	24	31	Q-2	36	

Bold indicates an exceedance of ADEC criteria.

Notes:

1 – Limits shown are 18 AAC 75, Table C (ADEC, 2018).

2 – Refer to the Surrogate Recovery section of this QAR.

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

This data were considered of good quality acceptable for use with the noted qualifications. No data were rejected.

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Field Duplicates section.
- Accuracy: Accuracy goals were met, except as noted in the Surrogate Recovery section.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis.
- Sensitivity: Sensitivity goals were met, except as noted in the Reporting Limits section.

References

ADEC (Alaska Department of Environmental Conservation), 2017a. Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling.* March.

ADEC. 2018. 18 AAC (Alaska Administrative Code) 75, Oil and Other Hazardous Substances Pollution Control. September 29.

SLR International Corporation (SLR). 2018. Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK. August 7.

U.S. Environmental Protection Agency (USEPA). 2014. *National Functional Guidelines for Superfund Organic Methods Data Review.* August.

Appendix C

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed	by:
-----------	-----

Nicholas Wells

Title:

Staff Engineer

Date:

October 8, 2018

CS Report Name:

2018 Groundwater Monitoring at the Former Carrs-Foodland Site

Report Date:

October 2, 2018

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS North America, Inc

Laboratory Report Number:

1189788

ADEC File Number:

102.38.027

Hazard Identification Number:

1397

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
 Yes No Comments:

SGS North America, Inc is ADEC CS approved, approval number UST-005, and performed all analysis.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes No Comments:

All analyses performed at SGS North America, Inc.

2. Chain of Custody (COC)

1 1 1 1

a. COC information completed, signed, and dated (including released/received by)?

	🖸 Yes	L NO	Comments:	
b.	Correct anal	lyses requested?		
	🖸 Yes	🖸 No	Comments:	
-				

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

	🖸 Yes	🖸 No	Comments:	
b.	Sample pres Volatile Chi	servation accelorinated Solv	eptable – acidified waters, Movents, etc.)?	ethanol preserved VOC soil (GRO, BTEX,
	🖸 Yes	C No	Comments:	

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
 Yes No Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

The trip blank was not noted on the COC. One trip blank was included in the cooler, and the trip blank accompanied the sample containers and samples at all times during transit from and to the laboratory and in the field. The laboratory assigned the trip blank the ID of "Trip Blank" with a collection date and time of 9/20/18 at 17:45, which matches that of the earliest sample collected.

🖸 Yes	💽 No
-------	------

Comments:

e. Data quality or usability affected?

Comments:

The trip blank was analyzed appropriately, for VOCs by SW8260C, the same method and analytes as the other samples on the SDG. Data was not impacted.

4. Case Narrative

a. Present and understandable?

🖸 Yes	C No	Comments:

b. Discrepancies, errors or QC failures identified by the lab?

c. Were all corrective actions documented?

YesNoComments:

d. What is the effect on data quality/usability according to the case narrative? Comments:

No impact.			
	No impact.		

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes No Comments:

Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-9 were 77 μ g/L and 73.3 μ g/L. The SW8270D naphthalene results for these samples were 30.7 μ g/L and 22.9 μ g/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D, samples MW-3 and MW-9 at five-fold dilutions, the laboratory case narrative reported matrix interference, and the associated surrogate recovered slightly below acceptable limits (refer to the SW8260C naphthalene results are considered to be more accurate quantitations of the true concentration.

- b. All applicable holding times met?
 - Yes No Comments:

c. All soils reported on a dry weight basis?

🖸 Yes	🖸 No	Comments:
-------	------	-----------

No soils analyzed.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes No Comments:

Except as noted below, yes.

The LODs for 1,2,3-trichloropropane by Method SW8260C did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations.

e. Data quality or usability affected?

Comments:

For this compound it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - YesNoComments:

ii. All method blank results less than limit of quantitation (LOQ)?

☑ Yes☑ NoComments:

iii. If above LOQ, what samples are affected?

Comments:

Not applicable.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

Not applicable.

v. Data quality or usability affected?

Comments:

No impact.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

-	-	-	-	·		
🖸 Yes	🖸 No	Comments:				

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No Comments:

No inorganics were analyzed.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes No Con	mments:
------------	---------

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

🖸 Yes	🖸 No	Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

🖸 Yes	🖸 No	Comments:
-------	------	-----------

Not applicable.

vii. Data quality or usability affected?

Comments:

No impact.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

Yes No Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No Comments:

For PAH SIM by Method 8270D, 2-Methylnaphthalene-d10 surrogate recovered at 46% in sample MW-3, 39% in sample MW-9, 45% in the MS, and 46% in the MSD. These limits met the NFG (NFG, 2014) limits of 30%-130%, but did not meet the more stringent laboratory limits of 47%-106%. The primary samples were noted by the laboratory as having matrix interference.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No Comments:

Impacted analytes for samples MW-3 and MW-9 were qualified with a "Q-" for detectable results and a "UJ" for undetectable results.

iv. Data quality or usability affected?

Comments:

With the exception of 2-methylnaphthalene, all affected results were well above or well below ADEC cleanup criteria; therefore data usability was not affected. The 2-methylnaphthalene results for samples MW-3 and MW-9 were limited in usability, as the detections of 32.7 Q- μ g/L and 24.0 Q- μ g/L, were just below the ADEC cleanup level of 36 μ g/L, with a low bias indicated. This data is usable for determining the approximate quantity of analyte present, but it is not possible to state with certainty that 2-methylnaphthalene levels in sample MW-3 and duplicate MW-9 were below ADEC cleanup levels. The 1-methylnaphthalene and naphthalene results for these samples were well above the ADEC cleanup criteria, establishing definitive ADEC clean up level exceedances for PAH SIM target analytes. Overall, data was considered minimally impacted, and all data was usable as qualified.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?

Yes No Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes No Comments:

Only one cooler was used for this SDG. The trip blank was not noted on the COC. One trip blank was included in the cooler, and the trip blank accompanied sample containers and samples at all times during transit from and to the laboratory and in the field. The laboratory assigned the trip blank the ID of "Trip Blank" with a collection date and time of 9/20/18 at 17:45, which matches that of the earliest sample collected. The trip blank was analyzed appropriately, for VOCs by SW8260C, the same method and analytes as the other samples on the SDG. Data was not impacted.

iii. All results less than LOQ?

Yes No Comments:

Yes

iv. If above LOQ, what samples are affected? Comments:

Not applicable.

v. Data quality or usability affected?

Comments:

No impact.

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- Yes No Comments:
- ii. Submitted blind to lab?
- Yes No Comments:

Sample MW-9 was a duplicate of primary sample MW-3.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes No Comments:

Except as noted below, yes.

2-Methylnaphthalene slightly exceeded the recommended RPD limit with an RPD of 31%.

iv. Data quality or usability affected?

Comments:

2-Methylnaphthalene results for samples MW-3 and MW-9 were already qualified "Q-" as discussed in 6.c.ii through iv. It was considered inappropriate to additionally qualify these samples as estimated with unknown bias due to the low bias (Q- qualifier) already indicated by surrogate recovery. Laboratory precision for 2-methylnaphthalene was established by the acceptable MS/MSD RPD, thus the impact of the field precision failure to data was considered minimal. Only these 3 samples were analyzed for PAH SIM, so no other data was affected.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)

below.)

Yes No Not Applicable

i. All results less than LOQ?

Yes No Comments:

Not applicable.

ii. If above LOQ, what samples are affected?

Comments:

Not Applicable.

iii. Data quality or usability affected?

Comments:

No impact.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No C

Comments:

Appendix D

SGS Laboratory Data Reports

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell Street, Suite 200 Anchorage, AK 99503 907-222-1112

Report Number: **1189788**

Client Project: 105.00774.18001 Carrs Foodland

Dear Bret Berglund,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/02/2018 12:15:09PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1189788 Project Name/Site: 105.00774.18001 Carrs Foodland Project Contact: Bret Berglund

Refer to sample receipt form for information on sample condition.

MW-3 (1189788001) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 does not meet QC criteria due to matrix interference.

MW-9 (1189788002) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 does not meet QC criteria due to matrix interference.

1185436002-H(1477494MS) (1477495) MS

8270D SIM - PAH MS recovery for several analytes does not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 does not meet QC criteria.Confirmed in BMS/BMSD.

1185442004(1478594MS) (1478595) MS

8260C - MS recoveries for 1,1,2-trichloroethane, 2-chlorotoluene, and n-butylbenzene do not meet QC criteria. These analytes were not detected in the parent sample.

1185436002-H(1477494MSD) (1477496) MSD

8270D SIM - PAH MSD recovery for several analytes does not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 does not meet QC criteria.Confirmed in BMS/BMSD.

1185442004(1478594MSD) (1478596) MSD

8260C - MSD recoveries for 1,1,2-trichloroethane, 2-chlorotoluene, and n-butylbenzene do not meet QC criteria. These analytes were not detected in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/02/2018 12:15:10PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.	
!	Surrogate out of control limits.	
В	Indicates the analyte is found in a blank associated with the sample.	
CCV/CVA/CVB	Continuing Calibration Verification	
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification	
CL	Control Limit	
DF	Analytical Dilution Factor	
DL	Detection Limit (i.e., maximum method detection limit)	
E	The analyte result is above the calibrated range.	
GT	Greater Than	
IB	Instrument Blank	
ICV	Initial Calibration Verification	
J	The quantitation is an estimation.	
LCS(D)	Laboratory Control Spike (Duplicate)	
LLQC/LLIQC	Low Level Quantitation Check	
LOD	Limit of Detection (i.e., 1/2 of the LOQ)	
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)	
LT	Less Than	
MB	Method Blank	
MS(D)	Matrix Spike (Duplicate)	
ND	Indicates the analyte is not detected.	
RPD	Relative Percent Difference	
U	Indicates the analyte was analyzed for but not detected.	
Sample summaries which i	include a result for "Total Solids" have already been adjusted for moisture content.	

Print Date: 10/02/2018 12:15:11PM

Note:

All DRO/RRO analyses are integrated per SOP.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SW8260C

		Sample Summary	1	
Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-3	1189788001	09/20/2018	09/22/2018	Water (Surface, Eff., Ground)
MW-9	1189788002	09/20/2018	09/22/2018	Water (Surface, Eff., Ground)
MW-34A	1189788003	09/21/2018	09/22/2018	Water (Surface, Eff., Ground)
Trip Blank	1189788004	09/20/2018	09/22/2018	Water (Surface, Eff., Ground)
Method	Method Des	scription		
8270D SIM LV (PAH)	8270 PAH S	SIM GC/MS Liq/Lic	q ext. LV	
AK102	DRO Low V	olume (W)		

Volatile Organic Compounds (W) FULL

Print Date: 10/02/2018 12:15:12PM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW-3			
Lab Sample ID: 1189788001	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	37.2	ug/L
	2-Methylnaphthalene	32.7	ug/L
	Acenaphthene	0.871	ug/L
	Fluorene	1.78	ug/L
	Naphthalene	30.7	ug/L
	Phenanthrene	1.21	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	24.8	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	111	ug/L
	1,3,5-Trimethylbenzene	46.5	ug/L
	2-Butanone (MEK)	4.50J	ug/L
	4-Isopropyltoluene	15.4	ug/L
	Benzene	0.410	ug/L
	Ethylbenzene	15.9	ug/L
	Isopropylbenzene (Cumene)	5.36	ug/L
	Naphthalene	77.0	ug/L
	n-Propylbenzene	10.1	ug/L
	o-Xylene	24.2	ug/L
	P & M -Xylene	46.8	ug/L
	sec-Butylbenzene	2.77	ug/L
	Xylenes (total)	71.0	ug/L
Client Sample ID: MW-9			
Lab Sample ID: 1189788002	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	27.4	ua/L
	2-Methylnaphthalene	24.0	ug/L
	Acenaphthene	0.714	ug/L
	Fluorene	1.43	ug/L
	Naphthalene	22.9	ug/L
	Phenanthrene	1.03	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	20.7	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	105	ug/L
	1,3,5-Trimethylbenzene	44.4	ug/L
	2-Butanone (MEK)	4.67J	ug/L
	4-Isopropyltoluene	14.7	ug/L
	Benzene	0.390J	ug/L
	Ethylbenzene	14.9	ug/L
	Isopropylbenzene (Cumene)	5.09	ug/L
	Naphthalene	73.3	ug/L
	n-Propylbenzene	9.45	ug/L
	o-Xylene	22.8	ug/L
	P & M -Xylene	44.2	ug/L
	sec-Butylbenzene	2.59	ug/L
	Xylenes (total)	66.9	ug/L
			-

Print Date: 10/02/2018 12:15:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

11.0

ug/L

Client Sample ID: MW-34A			
Lab Sample ID: 1189788003	Parameter_	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.435J	mg/L
Volatile GC/MS	Chloroform	0.830J	ug/L
	cis-1,2-Dichloroethene	2.71	ug/L
	Tetrachloroethene	1.03	ug/L
	trans-1,2-Dichloroethene	6.04	ug/L

Trichloroethene

Print Date: 10/02/2018 12:15:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-3

Client Sample ID: **MW-3** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788001 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1-Methylnaphthalene	37.2	0.240	0.0721	ug/L	5		10/01/18 17:10
2-Methylnaphthalene	32.7	0.240	0.0721	ug/L	5		10/01/18 17:10
Acenaphthene	0.871	0.0481	0.0144	ug/L	1		09/28/18 15:58
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/28/18 15:58
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/28/18 15:58
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Fluorene	1.78	0.0481	0.0144	ug/L	1		09/28/18 15:58
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Naphthalene	30.7	0.481	0.149	ug/L	5		10/01/18 17:10
Phenanthrene	1.21	0.0481	0.0144	ug/L	1		09/28/18 15:58
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 15:58
Surrogates							
2-Methylnaphthalene-d10 (surr)	45.8 *	47-106		%	1		09/28/18 15:58
Fluoranthene-d10 (surr)	38	24-116		%	1		09/28/18 15:58

Batch Information

Analytical Batch: XMS11111 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 09/28/18 15:58 Container ID: 1189788001-F

Analytical Batch: XMS11116 Analytical Method: 8270D SIM LV (PAH) Analyst: BMZ Analytical Date/Time: 10/01/18 17:10 Container ID: 1189788001-F Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 09/24/18 08:45 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 09/24/18 08:45 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-3							
Client Sample ID: MW-3 Client Project ID: 105.00774.18001 Ca Lab Sample ID: 1189788001 Lab Project ID: 1189788	Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	•					Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	24.8	0.577	0.173	mg/L	1		09/25/18 13:15
Surrogates							
5a Androstane (surr)	78.8	50-150		%	1		09/25/18 13:15
Batch Information Analytical Batch: XFC14646 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/25/18 13:15 Container ID: 1189788001-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX40554 : SW3520C me: 09/23/1 /t./Vol.: 260 Vol: 1 mL	; 18 08:57 1 mL		

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Results of MW-3

SG:

Client Sample ID: MW-3 Client Project ID: 105.00774.18001 Carrs Foodland Lab Sample ID: 1189788001 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/26/18 18:37
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,2,4-Trimethylbenzene	111	1.00	0.310	ug/L	1		09/26/18 18:37
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/26/18 18:37
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,3,5-Trimethylbenzene	46.5	1.00	0.310	ug/L	1		09/26/18 18:37
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
2-Butanone (MEK)	4.50 J	10.0	3.10	ug/L	1		09/26/18 18:37
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
4-Isopropyltoluene	15.4	1.00	0.310	ug/L	1		09/26/18 18:37
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
Benzene	0.410	0.400	0.120	ug/L	1		09/26/18 18:37
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/26/18 18:37
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-3

SG:

Client Sample ID: **MW-3** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788001 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:37
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Ethylbenzene	15.9	1.00	0.310	ug/L	1		09/26/18 18:37
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Isopropylbenzene (Cumene)	5.36	1.00	0.310	ug/L	1		09/26/18 18:37
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/26/18 18:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
Naphthalene	77.0	1.00	0.310	ug/L	1		09/26/18 18:37
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
n-Propylbenzene	10.1	1.00	0.310	ug/L	1		09/26/18 18:37
o-Xylene	24.2	1.00	0.310	ug/L	1		09/26/18 18:37
P & M -Xylene	46.8	2.00	0.620	ug/L	1		09/26/18 18:37
sec-Butylbenzene	2.77	1.00	0.310	ug/L	1		09/26/18 18:37
Styrene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Toluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:37
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:37
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/26/18 18:37
Xylenes (total)	71.0	3.00	1.00	ug/L	1		09/26/18 18:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		09/26/18 18:37
4-Bromofluorobenzene (surr)	104	85-114		%	1		09/26/18 18:37
Toluene-d8 (surr)	105	89-112		%	1		09/26/18 18:37

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-3

Client Sample ID: **MW-3** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788001 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18372 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/26/18 18:37 Container ID: 1189788001-A Prep Batch: VXX33208 Prep Method: SW5030B Prep Date/Time: 09/26/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Member of SGS Group

11 of 43

Results of MW-9

Client Sample ID: **MW-9** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788002 Lab Project ID: 1189788 Collection Date: 09/20/18 18:15 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	27.4	0.240	0.0721	ug/L	5		10/01/18 17:31
2-Methylnaphthalene	24.0	0.240	0.0721	ug/L	5		10/01/18 17:31
Acenaphthene	0.714	0.0481	0.0144	ug/L	1		09/28/18 16:19
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/28/18 16:19
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/28/18 16:19
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Fluorene	1.43	0.0481	0.0144	ug/L	1		09/28/18 16:19
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Naphthalene	22.9	0.481	0.149	ug/L	5		10/01/18 17:31
Phenanthrene	1.03	0.0481	0.0144	ug/L	1		09/28/18 16:19
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/28/18 16:19
Surrogates							
2-Methylnaphthalene-d10 (surr)	39.1 *	47-106		%	1		09/28/18 16:19
Fluoranthene-d10 (surr)	27.7	24-116		%	1		09/28/18 16:19

Batch Information

Analytical Batch: XMS11111 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 09/28/18 16:19 Container ID: 1189788002-F

Analytical Batch: XMS11116 Analytical Method: 8270D SIM LV (PAH) Analyst: BMZ Analytical Date/Time: 10/01/18 17:31 Container ID: 1189788002-F Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 09/24/18 08:45 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 09/24/18 08:45 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS							
Client Sample ID: MW-9 Client Project ID: 105.00774.18001 Ca Lab Sample ID: 1189788002 Lab Project ID: 1189788	Collection Date: 09/20/18 18:15 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	5						
Parameter Diesel Range Organics	<u>Result Qual</u> 20.7	<u>LOQ/CL</u> 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 09/25/18 13:25
Surrogates 5a Androstane (surr)	92.7	50-150		%	1		09/25/18 13:25
Batch Information Analytical Batch: XFC14646 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/25/18 13:25 Container ID: 1189788002-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX40554 : SW3520C me: 09/23/1 /t./Vol.: 265 Vol: 1 mL	; 8 08:57 mL		

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Results of MW-9

SG:

Client Sample ID: **MW-9** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788002 Lab Project ID: 1189788 Collection Date: 09/20/18 18:15 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/26/18 18:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,2,4-Trimethylbenzene	105	1.00	0.310	ug/L	1		09/26/18 18:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/26/18 18:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,3,5-Trimethylbenzene	44.4	1.00	0.310	ug/L	1		09/26/18 18:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
2-Butanone (MEK)	4.67 J	10.0	3.10	ug/L	1		09/26/18 18:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
4-Isopropyltoluene	14.7	1.00	0.310	ug/L	1		09/26/18 18:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
Benzene	0.390 J	0.400	0.120	ug/L	1		09/26/18 18:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/26/18 18:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-9

SG:

Client Sample ID: **MW-9** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788002 Lab Project ID: 1189788 Collection Date: 09/20/18 18:15 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 18:55
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Ethylbenzene	14.9	1.00	0.310	ug/L	1		09/26/18 18:55
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Isopropylbenzene (Cumene)	5.09	1.00	0.310	ug/L	1		09/26/18 18:55
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/26/18 18:55
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
Naphthalene	73.3	1.00	0.310	ug/L	1		09/26/18 18:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
n-Propylbenzene	9.45	1.00	0.310	ug/L	1		09/26/18 18:55
o-Xylene	22.8	1.00	0.310	ug/L	1		09/26/18 18:55
P & M -Xylene	44.2	2.00	0.620	ug/L	1		09/26/18 18:55
sec-Butylbenzene	2.59	1.00	0.310	ug/L	1		09/26/18 18:55
Styrene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Toluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 18:55
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/26/18 18:55
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/26/18 18:55
Xylenes (total)	66.9	3.00	1.00	ug/L	1		09/26/18 18:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1		09/26/18 18:55
4-Bromofluorobenzene (surr)	108	85-114		%	1		09/26/18 18:55
Toluene-d8 (surr)	105	89-112		%	1		09/26/18 18:55

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-9

Client Sample ID: **MW-9** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788002 Lab Project ID: 1189788 Collection Date: 09/20/18 18:15 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18372 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/26/18 18:55 Container ID: 1189788002-A Prep Batch: VXX33208 Prep Method: SW5030B Prep Date/Time: 09/26/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Member of SGS Group

16 of 43

SGS							
Results of MW-34A							
Client Sample ID: MW-34A Client Project ID: 105.00774.18001 Ca Lab Sample ID: 1189788003 Lab Project ID: 1189788	R M S L	Collection Da Received Da Matrix: Wate Colids (%): ocation:	ate: 09/21/ ate: 09/22/ ⁻ r (Surface,	18 11:00 18 11:45 Eff., Gro	und)		
Series by Serievolatile Organic i den	5					Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.435 J	0.577	0.173	mg/L	1		09/25/18 13:36
Surrogates							
5a Androstane (surr)	83.9	50-150		%	1		09/25/18 13:36
Batch Information Analytical Batch: XFC14646 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 09/25/18 13:36 Container ID: 1189788003-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX40554 I: SW3520C me: 09/23/1 Vt./Vol.: 260 Vol: 1 mL) 18 08:57) mL		

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Results of MW-34A

SG:

Client Sample ID: MW-34A Client Project ID: 105.00774.18001 Carrs Foodland Lab Sample ID: 1189788003 Lab Project ID: 1189788 Collection Date: 09/21/18 11:00 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/26/18 19:12
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/18 19:03
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/26/18 19:12
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
Benzene	0.200 U	0.400	0.120	ug/L	1		09/26/18 19:12
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/26/18 19:12
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-34A

SG:

Client Sample ID: **MW-34A** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788003 Lab Project ID: 1189788 Collection Date: 09/21/18 11:00 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.830 J	1.00	0.310	ug/L	1		09/26/18 19:12
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
cis-1,2-Dichloroethene	2.71	1.00	0.310	ug/L	1		09/26/18 19:12
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 19:12
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/26/18 19:12
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/27/18 19:03
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/26/18 19:12
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Styrene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Tetrachloroethene	1.03	1.00	0.310	ug/L	1		09/26/18 19:12
Toluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
trans-1,2-Dichloroethene	6.04	1.00	0.310	ug/L	1		09/26/18 19:12
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Trichloroethene	11.0	1.00	0.310	ug/L	1		09/26/18 19:12
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 19:12
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/26/18 19:12
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/26/18 19:12
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/26/18 19:12
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/26/18 19:12
4-Bromofluorobenzene (surr)	104	85-114		%	1		09/26/18 19:12
Toluene-d8 (surr)	103	89-112		%	1		09/26/18 19:12

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-34A

Client Sample ID: **MW-34A** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788003 Lab Project ID: 1189788

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18378 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/27/18 19:03 Container ID: 1189788003-A

Analytical Batch: VMS18372 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/26/18 19:12 Container ID: 1189788003-A Collection Date: 09/21/18 11:00 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX33216 Prep Method: SW5030B Prep Date/Time: 09/27/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX33208 Prep Method: SW5030B Prep Date/Time: 09/26/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Member of SGS Group

20 of 43

Results of Trip Blank

SG

Client Sample ID: **Trip Blank** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788004 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/26/18 12:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/26/18 12:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
Benzene	0.200 U	0.400	0.120	ug/L	1		09/26/18 12:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/26/18 12:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

SG

Client Sample ID: **Trip Blank** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788004 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/26/18 12:55
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/26/18 12:55
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/26/18 12:55
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Styrene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Toluene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/26/18 12:55
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/26/18 12:55
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/26/18 12:55
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/26/18 12:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/26/18 12:55
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/26/18 12:55
Toluene-d8 (surr)	103	89-112		%	1		09/26/18 12:55

Print Date: 10/02/2018 12:15:15PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **105.00774.18001 Carrs Foodland** Lab Sample ID: 1189788004 Lab Project ID: 1189788 Collection Date: 09/20/18 17:45 Received Date: 09/22/18 11:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18372 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/26/18 12:55 Container ID: 1189788004-A Prep Batch: VXX33208 Prep Method: SW5030B Prep Date/Time: 09/26/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:15PM

J flagging is activated

Method Blank

Blank ID: MB for HBN 1786833 [VXX/33208] Blank Lab ID: 1478591 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788003, 1189788004

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 10/02/2018 12:15:17PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1786833 [VXX/33208] Blank Lab ID: 1478591 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

Results by SW8260C				
Parameter	Results	LOQ/CL	DL	Units
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	104	89-112		%

Print Date: 10/02/2018 12:15:17PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank					
Blank ID: MB for HB Blank Lab ID: 14785	N 1786833 [VXX/33208] 591	Matri	x: Water (Su	rface, Eff., Ground)	
QC for Samples: 1189788001, 1189788	3002, 1189788003, 1189788004				
Results by SW8260	c				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Batch Information]				
	/MS18372	Pren Ba	atch: VXX332	08	
Analytical Batch: \	10010012	1100 00			
Analytical Batch: \ Analytical Method:	SW8260C	Prep M	ethod: SW50	30B	
Analytical Batch: \ Analytical Method: Instrument: VPA 7	SW8260C 80/5975 GC/MS	Prep M Prep D Prep D	ethod: SW503 ate/Time: 9/26	30B 5/2018 12:00:00AM	

Print Date: 10/02/2018 12:15:17PM

Blank Spike ID: LCS for HBN 1189788 [VXX33208] Blank Spike Lab ID: 1478592 Date Analyzed: 09/26/2018 09:19

Spike Duplicate ID: LCSD for HBN 1189788 [VXX33208] Spike Duplicate Lab ID: 1478593 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003, 1189788004

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	pike Duplicate (ug/L)				
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL	
1,1,1,2-Tetrachloroethane	30	28.9	96	30	28.7	96	(78-124)	0.38	(< 20)	
1,1,1-Trichloroethane	30	28.7	96	30	28.6	95	(74-131)	0.42	(< 20)	
1,1,2,2-Tetrachloroethane	30	31.3	104	30	31.8	106	(71-121)	1.80	(< 20)	
1,1,2-Trichloroethane	30	30.3	101	30	30.8	103	(80-119)	1.60	(< 20)	
1,1-Dichloroethane	30	28.8	96	30	29.1	97	(77-125)	1.20	(< 20)	
1,1-Dichloroethene	30	29.4	98	30	28.8	96	(71-131)	2.10	(< 20)	
1,1-Dichloropropene	30	30.0	100	30	29.8	99	(79-125)	0.74	(< 20)	
1,2,3-Trichlorobenzene	30	28.4	95	30	23.5	79	(69-129)	18.50	(< 20)	
1,2,3-Trichloropropane	30	30.8	103	30	30.6	102	(73-122)	0.72	(< 20)	
1,2,4-Trichlorobenzene	30	30.5	102	30	27.4	91	(69-130)	10.70	(< 20)	
1,2,4-Trimethylbenzene	30	31.9	106	30	32.6	109	(79-124)	2.10	(< 20)	
1,2-Dibromo-3-chloropropane	30	27.7	93	30	25.9	86	(62-128)	6.90	(< 20)	
1,2-Dibromoethane	30	30.3	101	30	30.5	102	(77-121)	0.46	(< 20)	
1,2-Dichlorobenzene	30	31.7	106	30	31.5	105	(80-119)	0.57	(< 20)	
1,2-Dichloroethane	30	27.8	93	30	27.8	93	(73-128)	0.04	(< 20)	
1,2-Dichloropropane	30	29.3	98	30	29.0	97	(78-122)	0.96	(< 20)	
1,3,5-Trimethylbenzene	30	31.7	106	30	32.0	107	(75-124)	0.97	(< 20)	
1,3-Dichlorobenzene	30	32.2	107	30	32.3	108	(80-119)	0.16	(< 20)	
1,3-Dichloropropane	30	30.8	103	30	31.0	103	(80-119)	0.74	(< 20)	
1,4-Dichlorobenzene	30	31.9	106	30	32.1	107	(79-118)	0.59	(< 20)	
2,2-Dichloropropane	30	27.5	92	30	27.5	92	(60-139)	0.07	(< 20)	
2-Butanone (MEK)	90	84.3	94	90	79.8	89	(56-143)	5.40	(< 20)	
2-Chlorotoluene	30	32.3	108	30	33.0	110	(79-122)	2.20	(< 20)	
2-Hexanone	90	89.4	99	90	86.6	96	(57-139)	3.20	(< 20)	
4-Chlorotoluene	30	32.1	107	30	32.5	108	(78-122)	1.30	(< 20)	
4-Isopropyltoluene	30	32.1	107	30	32.2	107	(77-127)	0.44	(< 20)	
4-Methyl-2-pentanone (MIBK)	90	88.2	98	90	86.2	96	(67-130)	2.20	(< 20)	
Benzene	30	30.1	100	30	29.9	100	(79-120)	0.57	(< 20)	
Bromobenzene	30	31.1	104	30	31.7	106	(80-120)	2.00	(< 20)	
Bromochloromethane	30	30.0	100	30	30.1	100	(78-123)	0.03	(< 20)	
Bromodichloromethane	30	29.2	97	30	29.1	97	(79-125)	0.24	(< 20)	
Bromoform	30	28.1	94	30	28.4	95	(66-130)	0.99	(< 20)	
Bromomethane	30	29.6	99	30	29.8	99	(53-141)	0.88	(< 20)	
Carbon disulfide	45	43.6	97	45	43.0	96	(64-133)	1.50	(< 20)	

Print Date: 10/02/2018 12:15:18PM

200 West Potter Drive Anchorage, AK 95518 SGS North America Inc.

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1189788 [VXX33208] Blank Spike Lab ID: 1478592 Date Analyzed: 09/26/2018 09:19

Spike Duplicate ID: LCSD for HBN 1189788 [VXX33208] Spike Duplicate Lab ID: 1478593 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003, 1189788004

Results by SW8260C

	Blank Spike (ug/L) Spi			Spike Duplic	pike Duplicate (ug/L)				
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	27.8	93	30	28.0	93	(72-136)	0.79	(< 20)
Chlorobenzene	30	30.4	101	30	29.8	99	(82-118)	2.10	(< 20)
Chloroethane	30	31.3	104	30	30.3	101	(60-138)	3.20	(< 20)
Chloroform	30	29.3	98	30	29.2	97	(79-124)	0.24	(< 20)
Chloromethane	30	28.4	95	30	32.0	107	(50-139)	11.90	(< 20)
cis-1,2-Dichloroethene	30	29.9	100	30	30.1	100	(78-123)	0.77	(< 20)
cis-1,3-Dichloropropene	30	27.9	93	30	28.0	93	(75-124)	0.47	(< 20)
Dibromochloromethane	30	29.4	98	30	29.5	98	(74-126)	0.44	(< 20)
Dibromomethane	30	29.2	97	30	29.5	98	(79-123)	1.20	(< 20)
Dichlorodifluoromethane	30	29.8	100	30	30.1	100	(32-152)	0.80	(< 20)
Ethylbenzene	30	30.9	103	30	30.5	102	(79-121)	1.50	(< 20)
Freon-113	45	45.9	102	45	44.4	99	(70-136)	3.30	(< 20)
Hexachlorobutadiene	30	27.9	93	30	27.4	91	(66-134)	1.70	(< 20)
Isopropylbenzene (Cumene)	30	31.7	106	30	30.9	103	(72-131)	2.40	(< 20)
Methylene chloride	30	29.6	99	30	29.9	100	(74-124)	1.20	(< 20)
Methyl-t-butyl ether	45	41.9	93	45	42.2	94	(71-124)	0.93	(< 20)
Naphthalene	30	30.0	100	30	24.9	83	(61-128)	18.50	(< 20)
n-Butylbenzene	30	32.5	108	30	33.4	111	(75-128)	2.80	(< 20)
n-Propylbenzene	30	33.0	110	30	32.9	110	(76-126)	0.24	(< 20)
o-Xylene	30	30.6	102	30	30.2	101	(78-122)	1.20	(< 20)
P & M -Xylene	60	61.8	103	60	61.0	102	(80-121)	1.30	(< 20)
sec-Butylbenzene	30	32.5	108	30	32.8	109	(77-126)	0.98	(< 20)
Styrene	30	31.2	104	30	31.0	103	(78-123)	0.93	(< 20)
tert-Butylbenzene	30	31.9	106	30	32.3	108	(78-124)	1.20	(< 20)
Tetrachloroethene	30	30.8	103	30	30.4	101	(74-129)	1.30	(< 20)
Toluene	30	29.6	99	30	29.6	99	(80-121)	0.20	(< 20)
trans-1,2-Dichloroethene	30	29.4	98	30	29.6	99	(75-124)	0.92	(< 20)
trans-1,3-Dichloropropene	30	28.3	94	30	28.9	97	(73-127)	2.30	(< 20)
Trichloroethene	30	30.2	101	30	29.7	99	(79-123)	1.70	(< 20)
Trichlorofluoromethane	30	28.8	96	30	28.1	94	(65-141)	2.40	(< 20)
Vinyl acetate	30	26.1	87	30	26.7	89	(54-146)	2.20	(< 20)
Vinyl chloride	30	29.5	98	30	30.5	102	(58-137)	3.30	(< 20)
Xylenes (total)	90	92.4	103	90	91.2	101	(79-121)	1.30	(< 20)

Print Date: 10/02/2018 12:15:18PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1189788 [VXX33208] Blank Spike Lab ID: 1478592 Date Analyzed: 09/26/2018 09:19 Spike Duplicate ID: LCSD for HBN 1189788 [VXX33208] Spike Duplicate Lab ID: 1478593 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003, 1189788004

Results by SW8260C

	Blank			pike (%) Spike Duplicate (%)					
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98.7	99	30	97.8	98	(81-118)	0.92	
4-Bromofluorobenzene (surr)	30	99.8	100	30	103	103	(85-114)	3.20	
Toluene-d8 (surr)	30	102	102	30	102	102	(89-112)	0.62	

Batch Information

Analytical Batch: VMS18372 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Prep Batch: VXX33208 Prep Method: SW5030B Prep Date/Time: 09/26/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:18PM

Matrix Spike Summary

Original Sample ID: 1478594 MS Sample ID: 1478595 MS MSD Sample ID: 1478596 MSD Analysis Date: 09/26/2018 14:04 Analysis Date: 09/26/2018 11:30 Analysis Date: 09/26/2018 11:47 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003, 1189788004

Results by SW8260C										
		Ма	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	0.250U	30.0	29.4	98	30.0	29.3	98	78-124	0.38	(< 20)
1,1,1-Trichloroethane	0.500U	30.0	29.5	98	30.0	29.2	98	74-131	0.89	(< 20)
1,1,2,2-Tetrachloroethane	0.250U	30.0	33	110	30.0	32.9	110	71-121	0.30	(< 20)
1,1,2-Trichloroethane	0.200U	30.0	37.6	125 *	30.0	38.2	127 *	80-119	1.50	(< 20)
1,1-Dichloroethane	0.500U	30.0	29.9	100	30.0	29.8	100	77-125	0.27	(< 20)
1,1-Dichloroethene	0.500U	30.0	29.2	97	30.0	28.6	95	71-131	2.30	(< 20)
1,1-Dichloropropene	0.500U	30.0	30.9	103	30.0	30.7	102	79-125	0.58	(< 20)
1,2,3-Trichlorobenzene	0.500U	30.0	33	110	30.0	33.7	112	69-129	2.20	(< 20)
1,2,3-Trichloropropane	0.500U	30.0	31.7	106	30.0	31.1	104	73-122	1.90	(< 20)
1,2,4-Trichlorobenzene	0.500U	30.0	35.3	118	30.0	35.4	118	69-130	0.31	(< 20)
1,2,4-Trimethylbenzene	66.8	30.0	96.8	100	30.0	99.6	109	79-124	2.80	(< 20)
1,2-Dibromo-3-chloropropane	5.00U	30.0	33.5	112	30.0	33.1	110	62-128	1.20	(< 20)
1,2-Dibromoethane	0.0375U	30.0	31	103	30.0	31.4	105	77-121	1.30	(< 20)
1,2-Dichlorobenzene	0.500U	30.0	32.9	110	30.0	33.1	110	80-119	0.58	(< 20)
1,2-Dichloroethane	0.250U	30.0	27.7	92	30.0	27.8	93	73-128	0.18	(< 20)
1,2-Dichloropropane	0.500U	30.0	29.7	99	30.0	29.9	100	78-122	0.67	(< 20)
1,3,5-Trimethylbenzene	20.1	30.0	53.1	110	30.0	53.8	112	75-124	1.40	(< 20)
1,3-Dichlorobenzene	0.500U	30.0	33.7	112	30.0	33.8	113	80-119	0.21	(< 20)
1,3-Dichloropropane	0.250U	30.0	31.3	104	30.0	31.8	106	80-119	1.40	(< 20)
1,4-Dichlorobenzene	0.250U	30.0	33.4	111	30.0	33.8	113	79-118	1.20	(< 20)
2,2-Dichloropropane	0.500U	30.0	29.3	98	30.0	28.9	96	60-139	1.20	(< 20)
2-Butanone (MEK)	5.00U	90.0	87.8	98	90.0	86.4	96	56-143	1.50	(< 20)
2-Chlorotoluene	0.500U	30.0	43.5	145 *	30.0	43.1	144 *	79-122	0.99	(< 20)
2-Hexanone	5.00U	90.0	95.5	106	90.0	93.9	104	57-139	1.70	(< 20)
4-Chlorotoluene	0.500U	30.0	33.5	112	30.0	33.8	113	78-122	0.89	(< 20)
4-Isopropyltoluene	20.6	30.0	56.1	118	30.0	57.0	121	77-127	1.60	(< 20)
4-Methyl-2-pentanone (MIBK)	5.00U	90.0	91.2	101	90.0	90.3	100	67-130	0.91	(< 20)
Benzene	0.200U	30.0	30.7	102	30.0	30.6	102	79-120	0.39	(< 20)
Bromobenzene	0.500U	30.0	32.6	109	30.0	33.0	110	80-120	1.10	(< 20)
Bromochloromethane	0.500U	30.0	30.2	101	30.0	30.3	101	78-123	0.36	(< 20)
Bromodichloromethane	0.250U	30.0	29.2	97	30.0	29.3	98	79-125	0.24	(< 20)
Bromoform	0.500U	30.0	28.1	94	30.0	28.1	94	66-130	0.07	(< 20)
Bromomethane	2.50U	30.0	29.5	98	30.0	29.1	97	53-141	1.40	(< 20)
Carbon disulfide	5.00U	45.0	43.8	97	45.0	42.8	95	64-133	2.20	(< 20)
Carbon tetrachloride	0.500U	30.0	28.7	96	30.0	28.5	95	72-136	0.66	(< 20)
Chlorobenzene	0.250U	30.0	30.6	102	30.0	30.5	102	82-118	0.39	(< 20)
Chloroethane	0.500U	30.0	30	100	30.0	29.3	98	60-138	2.40	(< 20)

Print Date: 10/02/2018 12:15:19PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1478594 MS Sample ID: 1478595 MS MSD Sample ID: 1478596 MSD Analysis Date: 09/26/2018 14:04 Analysis Date: 09/26/2018 11:30 Analysis Date: 09/26/2018 11:47 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003, 1189788004

Results by SW8260C										
		Matrix Spike (ug/L)		Spike	e Duplicate	e (ug/L)				
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Chloroform	0.500U	30.0	29.7	99	30.0	29.7	99	79-124	0.03	(< 20)
Chloromethane	0.500U	30.0	33.6	112	30.0	34.1	114	50-139	1.60	(< 20)
cis-1,2-Dichloroethene	0.500U	30.0	30.5	102	30.0	30.3	101	78-123	0.69	(< 20)
cis-1,3-Dichloropropene	0.250U	30.0	28.3	94	30.0	28.7	96	75-124	1.30	(< 20)
Dibromochloromethane	0.250U	30.0	29.9	100	30.0	30.1	100	74-126	0.70	(< 20)
Dibromomethane	0.500U	30.0	29	97	30.0	29.1	97	79-123	0.24	(< 20)
Dichlorodifluoromethane	0.500U	30.0	29.2	97	30.0	28.6	95	32-152	2.10	(< 20)
Ethylbenzene	10.8	30.0	41.8	103	30.0	42.0	104	79-121	0.36	(< 20)
Freon-113	5.00U	45.0	45	100	45.0	43.9	98	70-136	2.30	(< 20)
Hexachlorobutadiene	0.500U	30.0	34.3	114	30.0	35.5	118	66-134	3.50	(< 20)
Isopropylbenzene (Cumene)	10.4	30.0	42.5	107	30.0	42.9	108	72-131	1.00	(< 20)
Methylene chloride	2.50U	30.0	29.7	99	30.0	30.1	100	74-124	1.40	(< 20)
Methyl-t-butyl ether	5.00U	45.0	42.7	95	45.0	43.4	97	71-124	1.60	(< 20)
Naphthalene	36.9	30.0	69.7	109	30.0	70.9	113	61-128	1.60	(< 20)
n-Butylbenzene	0.500U	30.0	43.3	144 *	30.0	44.0	147 *	75-128	1.70	(< 20)
n-Propylbenzene	16.5	30.0	50.8	114	30.0	52.0	118	76-126	2.40	(< 20)
o-Xylene	27.5	30.0	57.2	99	30.0	58.5	104	78-122	2.30	(< 20)
P & M -Xylene	18.1	60.0	80	103	60.0	81.1	105	80-121	1.40	(< 20)
sec-Butylbenzene	5.09	30.0	40	117	30.0	40.7	119	77-126	1.50	(< 20)
Styrene	0.500U	30.0	32	107	30.0	32.3	108	78-123	0.99	(< 20)
tert-Butylbenzene	0.710J	30.0	34.7	113	30.0	34.9	114	78-124	0.60	(< 20)
Tetrachloroethene	0.500U	30.0	31.5	105	30.0	31.2	104	74-129	0.86	(< 20)
Toluene	0.310J	30.0	30.7	101	30.0	30.5	101	80-121	0.65	(< 20)
trans-1,2-Dichloroethene	0.500U	30.0	30.4	101	30.0	30.5	102	75-124	0.33	(< 20)
trans-1,3-Dichloropropene	0.500U	30.0	29	97	30.0	29.7	99	73-127	2.20	(< 20)
Trichloroethene	0.500U	30.0	30.6	102	30.0	30.4	101	79-123	0.59	(< 20)
Trichlorofluoromethane	0.500U	30.0	27.9	93	30.0	27.2	91	65-141	2.70	(< 20)
Vinyl acetate	5.00U	30.0	26.8	89	30.0	27.2	91	54-146	1.20	(< 20)
Vinyl chloride	0.0750U	30.0	30.4	101	30.0	29.7	99	58-137	2.50	(< 20)
Xylenes (total)	45.6	90.0	137	102	90.0	140	104	79-121	1.70	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		30.0	29	97	30.0	29.2	97	81-118	0.52	
4-Bromofluorobenzene (surr)		30.0	31.3	104	30.0	32.0	107	85-114	2.20	
Toluene-d8 (surr)		30.0	30.7	102	30.0	30.7	102	89-112	0.03	

Print Date: 10/02/2018 12:15:19PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS							
Matrix Spike Summary		<u> </u>					
Original Sample ID: 1478594 MS Sample ID: 1478595 MS MSD Sample ID: 1478596 MSD	-		Analysis Analysis Analysis Matrix: N	Date: Date: 09 Date: 09 Water (Si	9/26/2018 9/26/2018 urface, Eff.	11:30 11:47 ., Ground)	
QC for Samples: 1189788001, 1189788002	2, 11897880	03, 1189	9788004				
Results by SW8260C	Matr	ix Snike	(%)	Snil	ke Dunlica	ute (%)	
Parameter Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>

Prep Batch: VXX33208 Prep Method: Volatiles Extraction 8240/8260 FULL Prep Date/Time: 9/26/2018 12:00:00AM Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 10/02/2018 12:15:19PM

Batch Information

Analyst: FDR

Analytical Batch: VMS18372

Analytical Method: SW8260C

Instrument: VPA 780/5975 GC/MS

Analytical Date/Time: 9/26/2018 11:30:00AM

SGS North America Inc.

RPD (%) RPD CL

Method Blank

Blank ID: MB for HBN 1786918 [VXX/33216] Blank Lab ID: 1478997

QC for Samples: 1189788003

Results by SW8260C

Parameter	Results		וח	Units
1 2 4-Trimethylbenzene	0.500U	1 00	0.310	ua/l
Naphthalene	0.500U	1.00	0.310	ug/L
Surrogates				-
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	103	89-112		%

Batch Information

Analytical Batch: VMS18378 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Analytical Date/Time: 9/27/2018 1:29:00PM Prep Batch: VXX33216 Prep Method: SW5030B Prep Date/Time: 9/27/2018 12:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 10/02/2018 12:15:20PM

Blank Spike ID: LCS for HBN 1189788 [VXX33216] Blank Spike Lab ID: 1478998 Date Analyzed: 09/27/2018 13:46 Spike Duplicate ID: LCSD for HBN 1189788 [VXX33216] Spike Duplicate Lab ID: 1478999 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788003

Results by SW8260C

				opine Dupin	cale (ug/L)			
<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
30	32.1	107	30	32.7	109	(79-124)	1.70	(< 20)
30	28.9	96	30	29.3	98	(61-128)	1.30	(< 20)
30	98.1	98	30	96.9	97	(81-118)	1.30	
30	99.9	100	30	103	103	(85-114)	3.30	
30	102	102	30	103	103	(89-112)	0.20	
	<u>Spike</u> 30 30 30 30 30	Spike Result 30 32.1 30 28.9 30 98.1 30 99.9 30 102	Spike Result Rec (%) 30 32.1 107 30 28.9 96 30 98.1 98 30 99.9 100 30 102 102	Spike Result Rec (%) Spike 30 32.1 107 30 30 28.9 96 30 30 98.1 98 30 30 99.9 100 30 30 102 102 30	Spike Result Rec (%) Spike Result 30 32.1 107 30 32.7 30 28.9 96 30 29.3 30 98.1 98 30 96.9 30 99.9 100 30 103 30 102 102 30 103	Spike Result Rec (%) Spike Result Rec (%) 30 32.1 107 30 32.7 109 30 28.9 96 30 29.3 98 30 98.1 98 30 96.9 97 30 99.9 100 30 103 103 30 102 102 30 103 103	Spike Result Rec (%) Spike Result Rec (%) CL 30 32.1 107 30 32.7 109 (79-124) 30 28.9 96 30 29.3 98 (61-128) 30 98.1 98 30 96.9 97 (81-118) 30 99.9 100 30 103 103 (85-114) 30 102 102 30 103 103 (89-112)	Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 30 32.1 107 30 32.7 109 (79-124) 1.70 30 28.9 96 30 29.3 98 (61-128) 1.30 30 98.1 98 30 96.9 97 (81-118) 1.30 30 99.9 100 30 103 103 (85-114) 3.30 30 102 102 30 103 103 (89-112) 0.20

Batch Information

Analytical Batch: VMS18378 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Prep Batch: VXX33216 Prep Method: SW5030B Prep Date/Time: 09/27/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/02/2018 12:15:22PM

– Method Blank										
Blank ID: MB for HBN 1786566 [XXX/40554] Blank Lab ID: 1477465		Matrix	Matrix: Water (Surface, Eff., Ground)							
QC for Samples: 1189788001, 1189788002, 1	189788003									
Results by AK102										
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>						
Diesel Range Organics	0.300U	0.600	0.180	mg/L						
Surrogates										
5a Androstane (surr)	79.2	60-120		%						
Batch Information										
Analytical Batch: XFC14	646	Prep Ba	tch: XXX40554							
Analytical Method: AK10	2	Prep Me	Prep Method: SW3520C							
Instrument: Agilent 7890	B F	Prep Da	Prep Date/Time: 9/23/2018 8:57:29AM							
Analyst: CMS		Prep Init	Prep Initial Wt./Vol.: 250 mL							
Analytical Date/Time: 9/25/2018 12:12:00PM		Prep Ex	tract Vol: 1 mL							

Print Date: 10/02/2018 12:15:23PM

Blank Spike ID: LCS for HBN 1189788 [XXX40554] Blank Spike Lab ID: 1477466 Date Analyzed: 09/25/2018 12:22 Spike Duplicate ID: LCSD for HBN 1189788 [XXX40554] Spike Duplicate Lab ID: 1477467 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002, 1189788003

		_						
Blank Spike				Spike Dupli				
Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
20	20.2	101	20	20.4	102	(75-125)	0.69	(< 20)
0.4	94.9	95	0.4	99.1	99	(60-120)	4.30	
			Pre Pre Pre Spi Dup	p Batch: X p Method: p Date/Tim ke Init Wt./\ pe Init Wt./\	XX40554 SW3520C e: 09/23/201 /ol.: 20 mg/l /ol.: 20 mg/l	8 08:57 _ Extract Vo	l: 1 mL : 1 mL	
	<u>Spike</u> 20 0.4	SpikeResult2020.20.494.9	Blank Spike (mg/L)SpikeResultRec (%)2020.21010.494.995	Blank Spike (mg/L) Spike Result Rec (%) Spike 20 20.2 101 20 0.4 94.9 95 0.4	Blank Spike (mg/L) Spike Duplie Spike Result Rec (%) Spike Result 20 20.2 101 20 20.4 0.4 94.9 95 0.4 99.1 Prep Batch: X Prep Method: Prep Date/Tim Spike Init Wt./N	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) 20 20.2 101 20 20.4 102 0.4 94.9 95 0.4 99.1 99 Prep Batch: XXX40554 Prep Method: SW3520C Prep Date/Time: 09/23/201 Spike Init Wt./Vol.: 20 mg/L Dupe Init Wt./Vol.: 20 mg/L	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) CL 20 20.2 101 20 20.4 102 (75-125) 0.4 94.9 95 0.4 99.1 99 (60-120) Prep Batch: XXX40554 Prep Method: SW3520C Prep Date/Time: 09/23/2018 08:57 Spike Init Wt./Vol.: 20 mg/L Extract Vod	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 20 20.2 101 20 20.4 102 (75-125) 0.69 0.4 94.9 95 0.4 99.1 99 (60-120) 4.30 Prep Batch: XXX40554 Prep Method: SW3520C Prep Date/Time: 09/23/2018 08:57 Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L

Print Date: 10/02/2018 12:15:25PM

Method Blank

Blank ID: MB for HBN 1786572 [XXX/40558] Blank Lab ID: 1477481

QC for Samples: 1189788001, 1189788002

Results by 8270D SIM LV (PAH)

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	70.9	47-106		%
Fluoranthene-d10 (surr)	70	24-116		%

Batch Information

Analytical Batch: XMS11111 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 9/28/2018 12:14:00PM Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 9/24/2018 8:45:48AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 10/02/2018 12:15:27PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1189788 [XXX40558] Blank Spike Lab ID: 1477482 Date Analyzed: 09/28/2018 12:34

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189788001, 1189788002

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
1-Methylnaphthalene	2	1.27	63	(41-115)
2-Methylnaphthalene	2	1.20	60	(39-114)
Acenaphthene	2	1.40	70	(48-114)
Acenaphthylene	2	1.25	63	(35-121)
Anthracene	2	1.36	68	(53-119)
Benzo(a)Anthracene	2	1.33	66	(59-120)
Benzo[a]pyrene	2	1.37	68	(53-120)
Benzo[b]Fluoranthene	2	1.49	74	(53-126)
Benzo[g,h,i]perylene	2	1.31	66	(44-128)
Benzo[k]fluoranthene	2	1.51	76	(54-125)
Chrysene	2	1.44	72	(57-120)
Dibenzo[a,h]anthracene	2	1.25	62	(44-131)
Fluoranthene	2	1.27	63	(58-120)
Fluorene	2	1.34	67	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.37	69	(48-130)
Naphthalene	2	1.17	59	(43-114)
Phenanthrene	2	1.28	64	(53-115)
Pyrene	2	1.31	65	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	63.8	64	(47-106)
Fluoranthene-d10 (surr)	2	66.2	66	(24-116)

Batch Information

Analytical Batch: XMS11111 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Prep Batch: XXX40558 Prep Method: SW3520C Prep Date/Time: 09/24/2018 08:45 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/02/2018 12:15:29PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1477494 MS Sample ID: 1477495 MS MSD Sample ID: 1477496 MSD

QC for Samples: 1189788001, 1189788002

Analysis Date: 09/28/2018 14:16 Analysis Date: 09/28/2018 14:37 Analysis Date: 09/28/2018 14:57 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (P	AH)		_									
		Ма	Matrix Spike (ug/L)			Spike Duplicate (ug/L))			
Parameter	Sample	Spike	Result	Rec (%)		Spike	Result	<u>Rec (%)</u>		CL	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	0.00650U	0.552	.244	44		0.549	0.245	45		41-115	0.35	(< 20)
2-Methylnaphthalene	0.00650U	0.552	.233	42		0.549	0.231	42		39-114	0.78	(< 20)
Acenaphthene	0.00650U	0.552	.255	46	*	0.549	0.254	46	*	48-114	0.34	(< 20)
Acenaphthylene	0.00650U	0.552	.237	43		0.549	0.237	43		35-121	0.19	(< 20)
Anthracene	0.0227	0.552	.238	39	*	0.549	0.228	37	*	53-119	4.20	(< 20)
Benzo(a)Anthracene	0.168	0.552	.136	-6	*	0.549	0.134	-6	*	59-120	1.80	(< 20)
Benzo[a]pyrene	0.215	0.552	.0762	-25	*	0.549	0.0757	-25	*	53-120	0.64	(< 20)
Benzo[b]Fluoranthene	0.326	0.552	.0867	-43	*	0.549	0.0849	-44	*	53-126	2.00	(< 20)
Benzo[g,h,i]perylene	0.181	0.552	.0483	-24	*	0.549	0.0480	-24	*	44-128	0.62	(< 20)
Benzo[k]fluoranthene	0.101	0.552	.0833	-3	*	0.549	0.0800	-4	*	54-125	4.10	(< 20)
Chrysene	0.211	0.552	.151	-11	*	0.549	0.146	-12	*	57-120	3.40	(< 20)
Dibenzo[a,h]anthracene	0.0373	0.552	.0509	3	*	0.549	0.0506	2	*	44-131	0.57	(< 20)
Fluoranthene	0.389	0.552	.199	-34	*	0.549	0.197	-35	*	58-120	1.10	(< 20)
Fluorene	0.0101J	0.552	.247	43	*	0.549	0.246	43	*	50-118	0.50	(< 20)
Indeno[1,2,3-c,d] pyrene	0.156	0.552	.0491	-19	*	0.549	0.0497	-19	*	48-130	1.20	(< 20)
Naphthalene	0.0130U	0.552	.222	40	*	0.549	0.225	41	*	43-114	1.80	(< 20)
Phenanthrene	0.145	0.552	.24	17	*	0.549	0.236	17	*	53-115	1.40	(< 20)
Pyrene	0.310	0.552	.204	-19	*	0.549	0.199	-20	*	53-121	2.50	(< 20)
Surrogates												
2-Methylnaphthalene-d10 (surr)		0.552	.246	45	*	0.549	0.250	46	*	47-106	1.80	
Fluoranthene-d10 (surr)		0.552	.209	38		0.549	0.209	38		24-116	0.03	

Batch Information

Analytical Batch: XMS11111 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 9/28/2018 2:37:00PM Prep Batch: XXX40558 Prep Method: 3520 Liq/Liq Ext for 8270 PAH SIM LV Prep Date/Time: 9/24/2018 8:45:48AM Prep Initial Wt./Vol.: 905.00mL Prep Extract Vol: 1.00mL

Print Date: 10/02/2018 12:15:30PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS North America Inc. CHAIN OF CUSTODY RECORD

REVIEWED 4

Locations Na	ationwide
--------------	-----------

Alaska Maryland New York New Jersey North Carolina Indiana West Virgina Kentucky

www.us.sgs.com

Γ	CLIENT:	<i>sl</i> r					Instr On	ructio nissio	ns: ons n	Sectio nay de	ons 1 elay tl	- 5 n he or	nust iset o	be fill of ana	ed o Iysis	ut. s.		Page) of	
L	CONTACT:	Bret Berglund F	PHONE NO: 90	17-222-11	12	Sec	tion 3					Preser	vative				_		_
section .	PROJECT NAME:	Carrs Foodland P	ROJECT/ WSID/ ERMIT#: 10 ⁴	<i>0</i> 0774 5. 00704 .1	8001	# C		Hcl	HcJ	J₀ h									
Ű	REPORTS T	o: E Bret Berglund	-MAIL: bbergl	undastroom	sulting com	O N T	Type C = COMP		0c	5									
ĺ	INVOICE TO	singer service servic	QUOTE #: ?.O. #:			I N	GRAB MI= Multi		826	15-									
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	Incre- mental Soils	D& C	νος	P4H 8270								REMARKS LOC ID	5/
	OA-G	MW-3	9/20/18	1745	GW	7	6	×	У	\star									
	DA-G	MW-9	9/20/18	1815	GW	7	6	+	×	X									
2	3)A-E	MW-34A	9/21/18	1100	GW	5	6	*	X										
tion	YDA-C					ļ													,
Sec	-																		
┢	Relinquishe	d By: (1)	Date	Time	Received By	 	(Vəil	18	Section	on 4	DOD	Projec	ct? Yes(No	Data	Delivera	able Requireme	ents:
	austry	Janion	9/21/10	1300	$ \mathcal{V} $	L		130	0	Coole	er ID: _								
	Relinquishe	d By: (2)	Date	Time	Received By	:				Reques	sted Tu	rnarou	nd Tim	e and/or	r Spec	ial Instr	ructions:		
ц			9/21/18	1400								540	andard	Į					
Secti	Relinquishe	d By: (3)	Date	Time	Received By														
ľ										Temp E	3lank °C	C: '	0.1	°C		Cha	in of Cu	stody Seal: (Ci	rcle)
	Relinquishe	d By: (4)	Date	Time	Received Fo	r Labora	atory By:				C	or Amb	oient ſ	1		INTA	АСТ В	ROKEN ABS	ENT
			9/22/18	1145	att	who	n			(See	attache	ed Sam	ple Re	- ceipt Fo	orm)	(See at	tached S	ample Receipt	t Form)

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
[] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions

لہ

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	Condition:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes No N/A	Exemption permitted if sampler hand
COC accompanied samples?	🔗 No N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes No	□Exemption permitted if chilled &
If >6°C, were samples collected < 8 hours ago?	Yes No Ma	collected <8hrs ago
If $<0^{\circ}$ C, were all sample containers ice free?	Yes No NZA	
Cooler ID: @() (// w/Therm. ID:		
Cooler ID:w/Therm. ID:		
Cooler ID:w/Therm. ID:		
Cooler ID:@w/Therm. ID:		
Cooler ID:@w/Therm. ID:		
If samples are received without a temperature blank, the "cooler temperature" will be documented in lieu of the temperature blank and "COOLER TEMP" will be noted to the right. In cases where neither a temp blank nor cooler temp can be obtained, note ambient () or chilled (). Please check one.		Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:	Tracking/AB# :	
	Or see attached	
	Or MA	
\rightarrow For samples received with payment, note amount (\$) and where \rightarrow	ether cash / check / CC (cir	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Kos No N/A	Note: some samples are sent to
Packing material used (specify all that apply): Buble Wrap	-	Anchorage without inspection by SGS
Separate plastic bags Vermiculite Other:		Fairdanks personnei.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes No 🕰A	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes No NA	
	1	

Additional notes (if applicable):

Profile #:

Note to Client: any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

e-Sam<u>ple Receipt Form</u>

e-Sam	ple F
SGS Workorder #:	

1189788

Deview: Oriteria									
Review Criteria	Condition	n (Yes, I	No, N/A		EXC	eptions No	ted below		
Chain of Custody / Temperature Requi	rement	<u>s</u>		n/a	Exemption pe	ermitted if samp	oler hand car	ries/deliv	ers.
Were Custody Seals intact? Note # &	location	yes	1-front, 1	I-bac	ĸ				
COC accompanied sa	amples?	yes							
n/a **Exemption permitted if	chilled &	colle	cted <8 h	ours	ago, or for san	nples where ch	<mark>illing is not r</mark>	equired	
		yes	Cooler II	D:	1	@	1.0 °C Th	nerm. ID:	D35
		n/a	Cooler II	D:		@	°CTł	nerm. ID:	
Temperature blank compliant* (i.e., 0-6 °C after	er CF)?	n/a	Cooler II	D:		@	°CTł	nerm. ID:	
		n/a	Cooler II	D:		@	°C Tł	nerm. ID:	
		n/a	Cooler II	D:		@	°C Tł	nerm. ID:	
*If >6°C, were samples collected <8 hours	s ago?	n/a							
If <0°C, were sample containers ice	e free?	n/a							
If samples received without a temperature blank, the	"cooler								
temperature" will be documented in lieu of the temperature t	blank &								
temp blank nor cooler temp can be obtained note "amb	either a								
"C	chilled".								
Note: Identify containers received at non-compliant tempe	rature .								
Use form FS-0029 if more space is n	ieeaea.								
Holding Time / Documentation / Sample Condition Re	equireme	ents	Note: Re	fer to	form F-083 "S	Sample Guide"	for specific h	nolding tir	nes.
Were samples received within holding	g time?	yes							
Do samples match COC** (i.e., sample IDs, dates/times colle	ected)?	yes							
**Note: If times differ <1hr, record details & login pe	r COC.								
Were analyses requested unambiguous? (i.e., method is speci	ified for	yes							
analyses with >1 option for ar	nalysis)								
				n/a	***Exemption	permitted for r	netals (e.g.2	00.8/602	DA).
Were proper containers (type/mass/volume/preservative***)used?	ves							
Volatile / LI -Ha Rea	uireme	nts							ľ
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa	mples?	ves							
Were all water VOA vials free of headspace (i.e., hubbles <	6mm)?	ves							
Were all soil VOAs field extracted with MeOH	+BEB?	n/a							
		nnco i	with store	hard .	vrocoduros co	d may impact a	lata quality		
Note to Chefit: Any INO , answer above indicates no	n-compila	ance \	with stand	and	nocedures and	u may impact c	iata quality.		
Additiona	al notes	(if a	pplicabl	e):					

Sample Containers and Preservatives

<u>Container Id</u>	Preservative	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1189788001-A	HCL to pH < 2	ОК			
1189788001-B	HCL to pH < 2	OK			
1189788001-C	HCL to $pH < 2$	OK			
1189788001-D	HCL to $pH < 2$	OK			
1189788001-E	HCL to $pH < 2$	OK			
1189788001-F	No Preservative Required	OK			
1189788001-G	No Preservative Required	OK			
1189788002-A	HCL to $pH < 2$	OK			
1189788002-B	HCL to $pH < 2$	OK			
1189788002-C	HCL to pH < 2	OK			
1189788002-D	HCL to $pH < 2$	OK			
1189788002-E	HCL to $pH < 2$	OK			
1189788002-F	No Preservative Required	OK			
1189788002-G	No Preservative Required	OK			
1189788003-A	HCL to $pH < 2$	OK			
1189788003-B	HCL to $pH < 2$	OK			
1189788003-C	HCL to pH < 2	OK			
1189788003-D	HCL to $pH < 2$	OK			
1189788003-E	HCL to $pH < 2$	OK			
1189788004-A	HCL to $pH < 2$	OK			
1189788004-B	HCL to pH < 2	OK			
1189788004-C	HCL to $pH < 2$	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized
- container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Appendix E

Groundwater Sampling Forms and YSI Calibration Log

Groundwater Sampling Form

Site/Client Nam	e: Carry	Foodland	Bachner	~	Well II	D: MI	w-3			
Project # :	is annu.	10,001	- Desetter		Sampl	e ID: M	W-3			
Sampled By:	ATha	10001			Sampl	e Time:	1745	Sample	Date: 9/20	18
Weather Conditio	Ons: L coin	LICOF			Duplic	ate ID:	1010-9	Q , Q15		1.0
Sampling Method:	I ow Flow	Cther *	-		MS/MS		No.	Trip Blank R	equired: 🕅	Yes 🗆 No
Cumping Method.	<u>A</u> <u>row</u> row			Well Inf	ormation					
Well Type: 🗗 Perr	manent 🗌 Te	emporary	1	Well Diameter	2 in.	Screen Int	erval:	ft BG	S to	ft BGS
Well Condition: 💢	Good 🗌 Fai	ir 🗌 Poor (if	fair or poor	explain in Notes)		Stickup	Yes 🕅 N	o; If yes, 2,18	🔒ft abov	e ground
	Sold and the second			Gauging/Purg	ing Inform	ation	RI 36 6 M	wi		
Depth to Water (ft	BTOC): 5	.56			Tubing	Pump Dept	h (ft. BTOC)): 18.0		
Depth to Product (BTOC)	2.10			Purge	End Time (2)	4-nr)	1722		
Product Thickness	(ft)	-			Total P	urge Time (r	min)	19		
LOW FLOW: Ma	ax Draw Down reen, then use	= (Tubing De default value o	epth – Top of f 0.3 ft.;	Screen Depth)	X 0.25	=(ft);	if screen inte	rval is not know	n or water tabl	e is below top of
Min. purge volume i	f required: pur	rge volume (ga	l) = volume o	f water/ft(gal/f	t) X Water co	olumn thicknes	ss(ft)	X # of casing v	olumes	= <u> </u>
Well Diameter -	- gal/ft	1" - 0.0	41 gal/ft	2" - 0.1	63 gal/ft		4" - 0.653	gal/ft	6" - 1.4	169 gal/π
(Achieve stat	ble parameters f	for 3 consecuti	ve reading, 4	water Qualit parameters if practica	ty Paramet al [each read	iers ding taken afte	er pumping a	minimum of 1 fl	ow through cell	volume])
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU) (± 10%, or	DTW (ft BTOC)	Drawdown (ft)
	minute)	(901)	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Max 0.3_ft)
1727	0.38	0.5	8.40	1898	0.61	6.20	33.8	4	15.57	0.01
1732	1	1.0	8.56	1893	0.30	6.23	20.3	-	15.57	0.01
1735		1.3	8.62	1887	0.28	6.26	5.8	-	15.58	0.02
1738		1.6	8.61	1882	0.29	6.27	0.7	-	15.58	0.02
1741		1.9	A.63	19.73	0.30	6-27	-3.4		15.57	0.00
							(
Parameter Stab	le (Check app	olicable)	1	1	1	1	J			J
Sample Color:	1. Lak	20.00		Sample Odor:	Fiel		Shee	en: Là h+		
	light Di	own		Analytica	Sampling	1		ngni		
	Analy	ses		Check	Applicable	,		Comme	nts	
DRO					J					
VAC 8260-					J					
PAH 8270-	SIM				J					
Notes:	- Tura - 1941	46700		Tubing (Tu	oo/l opoth)	3/0"+254		Roiler Type	-	
Water Level Meter	y type mo	4		I ubing (Ty Multi-Parame	ter Meter (Make/SN#)	YSE 55	_ baller Type		
Turbidity Meter (M	ake/SN#)	-				viane/Siv#)_	F	ilter Lot #	-	
A dividity weter (W										
Purge Water Han	dling: 🗌 Dis	charged to s	urface 🖾 Co	ontainerized 🗌 Tre	eated (how	?)				

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Groundwater Sampling Form

Site/Client Nam	e. (- Marth	Backson		Well I): ^^.	1-74A			
Project #	Carry	incon	Deckinel.		Sample	e ID: 400	NI-711			
Sampled But	12,00,74	18001			Sample	e Time	1100	Sample	Date: al-	1.0
Sampled By.	A.Johng	non			Duralia	e nine.	1100	Campie	Date. 9/2	118
weather Conditio	ons: light	rain, 45°	(-		Dupiica			Trip Diards D	aquirad 57	
Sampling Method:	Low Flow	/ M Other			MS/MS		X NO	I rip Blank R	equirea: 🖂	
Well Type: 🕅 Perm	nanent 🗆 T	emporary	V	Vell Diameter	Z in.	Screen In	terval:	- ft BG	S to	ft BGS
Well Condition:	Good 🗌 Fa	ir 🗌 Poor (if	fair or poor e	explain in Notes)		Stickup	Yes 🕅 No	; If yes,	ft abov	e ground
				Gauging/Purg	ing Informa	ation	and the second			
Depth to Water (ft I	BTOC):	.92			Tubing/	Pump Dept	h (ft. BTOC)	: 14.0		
Total Depth (ft BT	OC): 18	.10			Purge S	Start Time (2	24-hr)	1036		
Product Thickness	(ff)	NA			Total P	urae Time (2	min)	1055		
LOW FLOW: Ma	ax Draw Down	= (Tubing De	epth - Top of	Screen Depth)	X 0.25 =	=(ft);	if screen inter	val is not know	n or water table	e is below top of
SCI	frequired: pu	default value o	f 0.3 ft.;	water/ft - (gal/f	t) X Water co	lumn thickne	ss — (ft)	X # of casing v	olumes 🔶	= gal
Well Diameter -	- gal/ft	1" - 0.0	41 gal/ft	2" - 0.1	63 gal/ft		4" – 0.653 g	gal/ft	6" – 1.4	69 gal/ft
				Water Qualit	y Paramet	ers		minimum of 1.0	au through call	volume))
(Achieve stab	Flow	for 3 consecuti	Ve reading, 4	Specific	al leach read	ing taken aπ		Turbidity		Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	pri	(mV)	(NTU)	(ft BTOC)	(ft)
	(liter/ minute)	(gal)	(+ 3 %)	(µS/cm°) (+ 3%)	(± 10%)	(± 0,1)	(± 10mV)	(± 10%, or <5 NTU)		(Max 0.3 ft)
intel		0.0		2 110	(1.20)	600	1422		11.07	6.04
1091	0.58	0.5	5.06	570	0.77	7.73	192.2	2	11.10	0.05
10 46		1.0	5.40	599	0.26	6.06	128.0		11.97	0.05
1044		1.5	5.55	410	0.22	0.12	113.9		11.96	0.09
10 52		1,6	5.29	432	0.22	6-16	109.8	-	11.96	0.09
1055		1.9	5.24	437	0.21	6.19	105.2	-	11.95	0.03
Decemptor Stab	la (Chask an	plicable				-	1	(
Parameter Stab	ole (Check ap	plicable)	1	J	J	1	J	7		V
Sample Color:	light b	nown		Sample Odor:	none	16	Shee	n: None	2	
	Analy	/ses		Analytica Check	l Sampling Applicable	1		Comme	ents	
DRO										
V0C 9260-					<i>i</i>					
VUC 02000										
Notes:										
Equipment: Pum		1.1500n		Tubing (Ty	pe/Length)	3/8" tot	lon lind	Bailer Type	_	
Water Level Meter	501	inst		Multi-Parame	ter Meter (M	Make/SN#)	YSI 556)
Turbidity Meter (M	ake/SN#)	_					Fi	Iter Lot #	-	
	1.									
Purge Water Han	dling: 🗌 Dis	charged to s	urface 🖾 Co	ntainerized 🗌 Tre	eated (how?	?)				

		Water I	Paramet	er Meter (Calibratio	on Log	SLI	२३
Date: Meter Man	ufacturer and	T Identification #:	ime: <u>09</u> 45.F s	30 (556 075100	Calibration By:	A. Johnson		
Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.04	VOI	6/20/18	12/2019	7.13	7.04	± 0.10
рН	4.00	4,00	US/	\$\$2002011	9/2018	4.08	4.00	± 0.10
	10.00	10.18	VQI	6/20/18	10/2019	16.14	10.17	± 0.10
Sp Cond (mS/cm)	1.413	1,413	USI	6/20/18	9/2018	1.322	1. 414	± 10%
ORP (mV)	240	240.0	1422	רו/מר	4/2022	230,9	240.0	00
DO*	H20	baro 760.7	-	-	-	89.4	100.2	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	VTI	7/10/18	7/2019	7.24	7.01	± 0.10
pН	4.00	4.00	USI	7/10/17	9/2018	4.02	4.00	± 0.10
	10.00	10.06	V51	7/10/18	8/2019	10.05	10.06	± 0.10
Sp Cond (mS/cm)	1.413	1.413	USI	6/2418	9/2018	1,288	1.412	± 10%
ORP (mV)	240	240.0	1422	רולרור	4/2027	228.2	240.1	
DO*	1+20	baro 75.8	-		_	103.6	99.5	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	VTI	7/10/18	7/2019	7.04	7.01	± 0.10
pН	4.00	4.00	USI	7/10/17	9/2018	4.05	4.00	± 0.10
BALK!	10.00	10.06	VSI	7/10/18	0/2019	10.19	10.08	± 0.10
Sp Cond (mS/cm)	1.413	1.413	(151	6/20/18	9/2018	1.520	1.413	± 10%
ORP (mV)	240	240.0	1422	רו/חר	4)2022	237.1	z 40.0	
DO*	HZO	baro 751.3	~	~	-	99.6	98.9	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table