

November 18, 2019

Michael Hooper Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, Alaska 99709-3643

Re: 2019 Groundwater Sampling at the Carrs-Foodland Site in Fairbanks, Alaska, ADEC File 102.38.02.

Dear Mr. Hooper,

This letter report was prepared by SLR International Corporation (SLR) on behalf of the Bachner Company, Inc. (Bachner) to present the 2019 groundwater monitoring results at the Former Carrs-Foodland Site in Fairbanks, Alaska (Site).

Background

The Site is listed in the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Database under Hazard ID 1397 (File No. 102.38.02). The Site is reportedly impacted by historical release(s) from a former 500-gallon underground heating oil tank (former bakery underground storage tank [UST]) removed in 1991 (Shannon and Wilson 2002). The tank was located next to the Foodland Building, and is the current location of monitoring well MW-3. In a letter from ADEC to Bachner (ADEC, 2017b), ADEC requested that groundwater be sampled at the source area (MW-3) and at least one downgradient well on an annual basis until a stable and decreasing trend can be established for DRO concentrations, or until the results are less than the DRO groundwater cleanup level in Table C in subpart 345 of Chapter 75 of Title 18 of Alaska Administrative Code (18 AAC 75.345) (ADEC, 2018).

2019 Groundwater Sampling Activities

The work was performed in accordance with the ADEC approved Work Plan for the project (SLR, 2018), and was consistent with the ADEC field sampling guidance (ADEC, 2017a). Per the Work Plan, two wells were sampled:

- Monitoring well MW-3 on the north side of the Foodland Building where the bakery UST was formerly located; and,
- Monitoring well MW-34A, which is approximately 200 feet northwest and hydrologically downgradient of the MW-3 (Figure 1). MW-34A (formerly called TB124A) is the shallowest well in a downgradient well cluster. This well is known to be impacted by a chlorinated solvent plume from a former laundromat located upgradient from the Carrs-Foodland Site, referred to as the Gaffney Road East Coin King Site (ADEC Hazard ID 2573), (Ahtna, 2014).

An SLR scientist, Mr. Austin Johnston, who is a qualified environmental professional as defined by 18 AAC 75.333, collected the samples for laboratory analysis. The sampling was completed on September 19, 2019. A photograph log documenting the site conditions during the sampling event is included as Appendix A. Field notes, groundwater sampling forms, and instrument calibration documentation completed during the site work are presented as Appendix B of this report.

Groundwater samples were collected using low-flow sampling methodology. The low-flow sampling method requires purging the well at a low flow rate (between 0.05 and 0.5 liters per minute [L/min]), while maintaining a drawdown of less than 0.3 feet, if possible. During the purging, up to six water quality parameters are measured (temperature, pH, conductivity, oxidation-reduction potential [ORP], dissolved oxygen [DO], and turbidity) at three to five-minute intervals. Purging is considered complete once water drawdown and water quality parameters are considered stable. Water quality parameters are considered stable when three consecutive discrete readings of at least three parameters (or four if temperature is used) are within the following criteria:

- Temperature (°C), plus minus (±) 3 percent (minimum of ± 0.2 °C);
- pH, ± 0.1 standard units;
- Specific conductance, ± 3 percent;
- Oxidation-reduction potential, ± 10 millivolts;
- Dissolved oxygen, ± 10 percent; and
- Turbidity, ± 10 percent, or below 10 nephelometric turbidity units.

The MW-34 well identified for sampling in 2018 was sampled in 2019 to assure sampling the same well in this cluster. Purging and sampling was completed with a down-hole ProActive[®] Monsoon stainless-steel pump with an adjustable flow rate. The two monitoring wells maintained near constant water levels during purging at flow rates of around 0.4 L/min and attained stable parameters. The water quality parameters were measured using a YSI 556 multi-parameter instrument. Water quality parameters were measured at periodic intervals, allowing for at least one volume of the YSI flow-through cell to be fully replaced between readings. After stability was attained, samples for laboratory analysis were collected. Primary and duplicate samples were collected from MW-3, and a primary sample was collected from the downgradient well MW-34A. The purge water was containerized in a 10-gallon drum. After field activities were complete, the purge water was transported to NRC Alaska in Fairbanks for transportation to the designated disposal facility (Clean Harbors Aragonite LLC, Aragonite, Utah; USEPA ID Number UTD961552177).

Sample Handling and Laboratory Analysis

Upon collection, groundwater samples were labeled and placed into a chilled cooler with a trip blank. Samples were transported to the SGS North America (SGS) laboratory in Fairbanks

under chain of custody (COC) procedures. Groundwater samples were analyzed for the following:

- Diesel range organics (DRO) by Alaska Method AK102 (MW-3 and MW-34A);
- Volatile organic compounds (VOCs) by EPA Method 8260C (MW-3 and MW-34A); and,
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM (MW-3 only).

Analytical data were reviewed for consistency with the ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance Requirements (ADEC, 2009). Appendix C contains a Data Quality Assessment (DQA), ADEC Laboratory Data Review Checklist, and the laboratory analytical data package. Based on the DQA, the data were of good quality and acceptable for use with the noted qualifications. No data were rejected, and no issues were noted with regards to the data package, except as discussed below:

Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-4 were 99 microgram per liter (µg/L) and 109 µg/L. The SW8270D naphthalene results for these samples were 43.7 µg/L and 36.4 µg/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D, the associated surrogate for MW-4 recovered slightly below acceptable limits (refer to Surrogate Recovery section of this QAR for discussion) and LCSD RPD exceeded acceptable limits (see LCS and LCSD section for discussion). Due to these contributing factors, the SW8260C naphthalene results are considered to be more accurate representation of the true concentration.

Analytical Results

The 2019 analytical results are provided in Table 1. Table 2 provides a summary of current and previous analytical results for MW-3 for selected parameters of interest. The results were screened against the current ADEC groundwater cleanup levels (ADEC, 2018).

- In MW-3, groundwater cleanup levels were exceeded for DRO, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as shown on Table 1. The 1,3,5-trimethylbenzene, ethylbenzene, and 2-methylnaphthalene detections were only slightly above their respective cleanup levels, while the other compounds exceeded the cleanup levels by more than a factor of three. The compounds exhibiting the greatest exceedance of the cleanup level were DRO and naphthalene, with detected concentrations of 18.5 mg/L and 109 μg/L versus groundwater cleanup levels of 1.5 mg/L and 1.7 μg/L, respectively. Chlorinated VOCs, perchloroethylene (PCE) and related daughter products including trichloroethylene (TCE) and vinyl chloride, were below detection limits in the groundwater sample collected from MW-3.
- The only analyte detected above ADEC cleanup levels in the groundwater sample collected from MW-34A was TCE at a concentration of 16.2 μg/L. In 2018, TCE was

detected in the sample from MW-34A at a similar concentration of 11 μ g/L. The analytes that exceeded groundwater cleanup levels in the sample from MW-3 (noted above) were non-detectable with the exception of DRO. The detected DRO concentration was significantly lower in the sample from MW-34A (0.424J mg/L) than MW-3 (18.5 mg/L), and well below the groundwater cleanup level (1.5 mg/L). The observed concentration of DRO in the groundwater sample from MW-34A was slightly lower than the concentration measured in the sample from this well in 2018 (0.435 mg/L).

Discussion

The 2019 sample results indicate that the petroleum hydrocarbon contamination attributed to the Former Carrs-Foodland UST site has not caused significant downgradient impacts as evidenced by the non-detectable or nearly non-detectable concentrations of fuel related analytes in the downgradient well MW-34A. This suggests the petroleum hydrocarbon plume which was likely present since at least 1991 (when the leaking UST was removed), is stable and not migrating. Concentrations of target analytes observed in the sample from MW-3 were generally similar to those observed in 2018, indicating a stable groundwater plume in the former UST source area.

The presence of the TCE in MW-34A is attributed to a Gaffney Road site and not associated with the Former Carrs-Foodland UST release. As noted, MW-3 had non-detectable chlorinated VOCs.

A comparison of the 2019 results in MW-3 with the cumulative historical results (Table 2) indicates contaminants of concern have been gradually decreasing over time, with occasional oscillations. This is particularly evident in the benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations which have the longest data set; however, the DRO concentrations show a similar pattern since 2012.

Conclusions

The 2019 groundwater monitoring at the Carrs-Foodland Site indicates that petroleum hydrocarbon concentrations in the groundwater at the former UST location exceed ADEC groundwater cleanup levels but have decreased over time. The petroleum impacted groundwater plume does not appear to have migrated appreciably since the UST (source) was removed in 1991 and is considered stable. This is evidenced by the sample results in the nearest downgradient well (MW-34A).

Sincerely, SLR International Corporation

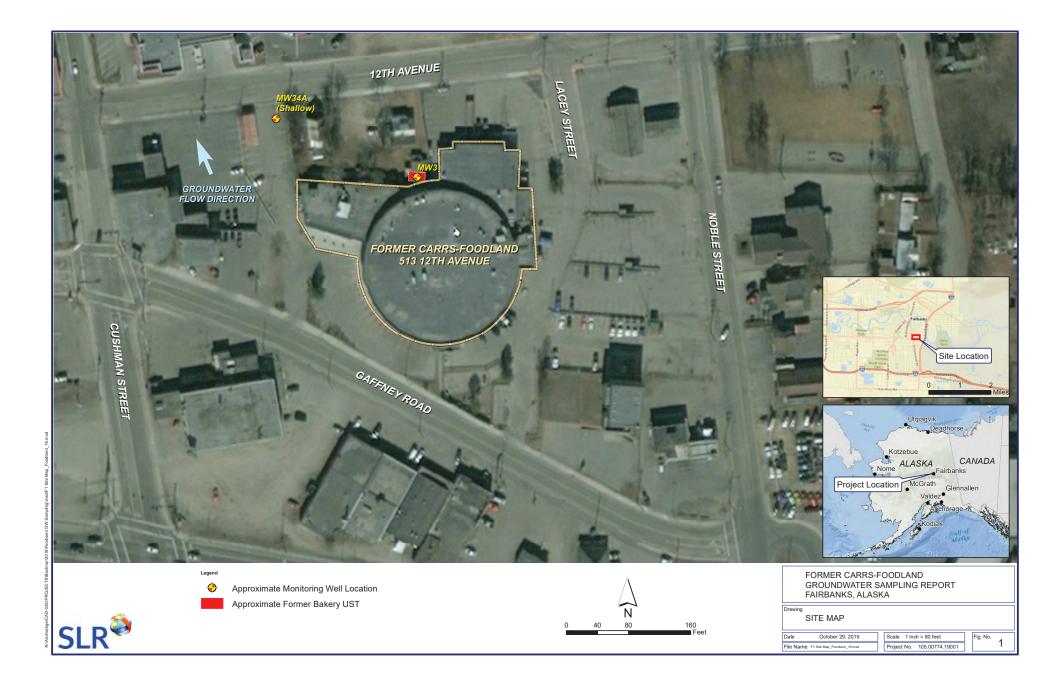
Call Danson

Carl Benson Principal Scientist/Project Manager

Cc: John Bachner, Bachner Company, Inc.

References

- Ahtna Engineering. 2014. SFY 2104 Gaffney East: Groundwater Monitoring and Limited Addition Characterization Report. October.
- Alaska Department of Environmental Conservation (ADEC). 2009. Environmental Laboratory Data and Quality Assurance Requirements. Technical Memorandum. August.
- ADEC. 2017a. Field Sampling Guidance. August.
- ADEC. 2017b. Groundwater Monitoring-Former Carrs Foodland (file 102.38.027). Letter from Michael Hooper to J. Andrew Bachner. August 24.
- ADEC. 2018. Oil and Other Hazardous Substances Pollution Control. October 27.
- Shannon and Wilson (S&W). 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks Alaska. November 18.
- SLR International Corporation (SLR). 2018. Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK. August 7.


Attachments

- Figure 1 Site Map
- Table 12019 Groundwater Monitoring Results
- Table 2
 Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3

Appendices

- A Photograph Log
- B Field Notes, Groundwater Sampling Forms, and YSI Calibration Log
- C Data Quality Assessment, ADEC Checklist, SGS Laboratory Data Report

	Screening Criteria		Sample Locations ²		Trip Blank
Compound in micrograms per Liter (µg/L)	18 AAC 75, Table C, Groundwater Cleanup Level ¹	Primary: MW-3 19-Sep-19 1199795002 Conc. ³	Duplicate: MW-4 19-Sep-19 1199795003 Conc. ³	MW-34A 19-Sep-19 1199795001 Conc.³	Trip Blank 19-Sep-19 1199795004 Conc.³
Fuels (AK102)			·	•	•
Diesel Range Organics	1500	12100 Q	18500 Q	424 J,Q	
Volatile Organic Compounds (SW8260			1	r	1
1,1,1,2-Tetrachloroethane	5.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
1,1,1-Trichloroethane	8000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,1,2,2-Tetrachloroethane	0.76	[0.25] U	[0.25] U	[0.25] U	[0.25] U
1,1,2-Trichloroethane	0.41	[0.2] U	[0.2] U	[0.2] U	[0.2] U
1,1-Dichloroethane 1,1-Dichloroethene	28 280	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,1-Dichloropropene		[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
1,2,3-Trichlorobenzene	7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,2,3-Trichloropropane	0.0075	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,2,4-Trichlorobenzene	4	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,2,4-Trimethylbenzene	56	145	155	[0.5] U	[0.5] U
1,2-Dibromo-3-chloropropane		[5] U	[5] U	[5] U	[5] U
1,2-Dibromoethane	0.075	[0.0375] U	[0.0375] U	[0.0375] U	[0.0375] U
1,2-Dichlorobenzene	300	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,2-Dichloroethane	1.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
1,2-Dichloropropane	8.2	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,3,5-Trimethylbenzene	60	62.6	67.6	[0.5] U	[0.5] U
1,3-Dichlorobenzene	300	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,3-Dichloropropane		[0.25] U	[0.25] U	[0.25] U	[0.25] U
1,4-Dichlorobenzene	4.8	[0.25] U	[0.25] U	[0.25] U	[0.25] U
2,2-Dichloropropane		[0.5] U	[0.5] U	[0.5] U	[0.5] U
2-Butanone (MEK)	5600	10.5	12.1	[5] U	[5] U
2-Chlorotoluene		[0.5] U	[0.5] U	[0.5] U	[0.5] U
2-Hexanone	38	[5] U	[5] U	[5] U	[5] U
4-Chlorotoluene		[0.5] U	[0.5] U	[0.5] U	[0.5] U
4-Isopropyltoluene	6300	7.24 [5] U	7.75 [5] U	[0.5] U [5] U	[0.5] U [5] U
4-Methyl-2-pentanone (MIBK) Benzene	4.6	0.34 J	0.36 J	[3] U	[0.2] U
Bromobenzene	62	[0.5] U	[0.5] U	[0.2] U	[0.2] U
Bromochloromethane		[0.5] U	[0.5] U	[0.5] U	[0.5] U
Bromodichloromethane	1.3	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Bromoform	33	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Bromomethane	7.5	[2.5] U	[2.5] U	[2.5] U	[2.5] U
Carbon disulfide	810	[5] U	[5] U	[5] U	[5] U
Carbon tetrachloride	4.6	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chlorobenzene	78	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Chloroethane	21000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chloroform	2.2	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chloromethane	190	[0.5] U	[0.5] U	[0.5] U	[0.5] U
cis-1,2-Dichloroethene	36	[0.5] U	[0.5] U	4.06	[0.5] U
cis-1,3-Dichloropropene	4.7	[0.25] U	[0.25] U	[0.25] U [0.25] U	[0.25] U
Dibromochloromethane	8.7	[0.25] U	[0.25] U		[0.25] U
Dibromomethane Dichlorodifluoromethane	8.3 200	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
Ethylbenzene	15	[0.5] 0 20	21.2	[0.5] U	[0.5] U
Freon-113	10000	[5] U	[5] U	[0.5] U	[5] U
Hexachlorobutadiene	1.4	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Isopropylbenzene (Cumene)	450	7.24	7.7	[0.5] U	[0.5] U
Methylene chloride	110	[2.5] U	[2.5] U	[2.5] U	[2.5] U
Methyl-t-butyl ether	140	[5] U	[5] U	[5] U	[5] U
Naphthalene	1.7	99	109	[0.5] U	[0.5] U
n-Butylbenzene	1000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
n-Propylbenzene	660	13.3	14.5	[0.5] U	[0.5] U
o-Xylene		30.2	32.4	[0.5] U	[0.5] U
P & M -Xylene		58.3	62.2	[1] U	[1] U
sec-Butylbenzene	2000	3.61	3.95	[0.5] U	[0.5] U
Styrene	1200	[0.5] U	[0.5] U	[0.5] U	[0.5] U
tert-Butylbenzene	690	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Tetrachloroethene	41	[0.5] U	[0.5] U	0.76 J	[0.5] U
Toluene	1100	0.31 J	[0.5] U	[0.5] U	[0.5] U

Table 1 - 2019 Former Carrs-Foodland Site Groundwater Monitoring Results

	Screening Criteria		Sample Locations ²		Trip Blank
Compound in micrograms per Liter (μg/L)	18 AAC 75, Table C, Groundwater Cleanup Level ¹	Primary: MW-3 19-Sep-19 1199795002	Duplicate: MW-4 19-Sep-19 1199795003	MW-34A 19-Sep-19 1199795001	Trip Blank 19-Sep-19 1199795004
		Conc. ³	Conc. ³	Conc. ³	Conc. ³
Volatile Organic Compounds (SW8260C)	Continued		<u>.</u>		
trans-1,2-Dichloroethene	360	[0.5] U	[0.5] U	10.7	[0.5] U
trans-1,3-Dichloropropene	4.7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Trichloroethene	2.8	[0.5] U	[0.5] U	16.2	[0.5] U
Trichlorofluoromethane	5200	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Vinyl acetate	410	[5] U	[5] U	[5] U	[5] U
Vinyl chloride	0.19	[0.075] U	[0.075] U	[0.075] U	[0.075] U
Xylenes (total) ⁴	190	88.5	94.7	[1] U	[1] U
PAH SIM (SW8270D LV)				•	•
1-Methylnaphthalene	11	49.4 Q	42 Q-		
2-Methylnaphthalene	36	42.4 Q	35.5 Q-		
Acenaphthene	530	0.846 Q	0.703 Q-		
Acenaphthylene	260	[0.024] U	[0.024] UJ		
Anthracene	43	[0.024] U	[0.024] UJ		
Benzo(a)Anthracene	0.3	[0.024] U	[0.024] UJ		
Benzo[a]pyrene	0.25	[0.0096] U	[0.0096] UJ		
Benzo[b]Fluoranthene	2.5	[0.024] U	[0.024] U		
Benzo[g,h,i]perylene	0.26	[0.024] U	[0.024] UJ		
Benzo[k]fluoranthene	0.8	[0.024] U	[0.024] UJ		
Chrysene	2.0	[0.024] U	[0.024] UJ		
Dibenzo[a,h]anthracene	0.25	[0.0096] U	[0.0096] UJ		
Fluoranthene	260	[0.024] U	[0.024] U		
Fluorene	290	2.18 Q	1.77 Q-		
Indeno[1,2,3-c,d] pyrene	0.19	[0.024] U	[0.024] UJ		
Naphthalene	1.7	43.7 Q	36.4 Q-		
Phenanthrene	170	1.24 Q	0.98 Q-		
Pyrene	120	[0.024] U	[0.024] U		

Notes:

Bold and yellow values indicate an exceedance of Method Two Groundwater Cleanup Levels (footnote 1).

[0.0005] - Orange values indicate undetectable results with LODs above applicable ADEC screening criteria.

1 ADEC Method Two Groundwater Cleanup Levels , 18 AAC 75.345, Table C (October 27, 2018).

2 The field sample identification number, date collected, and laboratory sample identification number are provided.

3 Detected results are listed in µg/L in this column. For non-detect analytes, the highest LOD is shown in [brackets].

4 Total values were the summation of detected compounds only. The highest LOD was listed for non-detect compounds.

Data Flags:

- U Undetectable, LOD is listed in brackets to the right.
- J Estimated value because the level is below the laboratory LOQ, but above the DL.
- UJ Undetectable result with an estimated LOD.

Q Estimated value due to one or more quality control failures. Where applicable, a "+" or "-" was appended to indicate a high or low bias.

Abbre	viations:		
	Not applicable or screening criteria does not exist for this compound	LOQ	limit of quantitation
AAC	Alaska Administrative Code	LV	low volume
ADEC	Alaska Department of Environmental Conservation	μg/L	micrograms per liter
AK	Alaska method	PAH	polycyclic aromatic hydrocarbons
DL	detection limit	SIM	selective ion monitoring
LOD	limit of detection		

Table 2: Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3 Former Carrs Foodland Site

An	alyte	DRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethylbenzene	PCE	TCE	Naphthalene ³	
Level ⁴ (µg	ater Cleanup /L except for PRO)	1.5 (mg/L)	4.6	1100	15	190	56	41	2.8	1.7	Reference
Well ID	Sample Date					Result ^{1,2}	(µg/L)				
MW-3	Jan-94		35	1	52	180					1
MW-3	Apr-94		38	2	51	230					1
MW-3	Jul-94		8	<1	42	140					1
MW-3	Oct-94		28	2	44	250					1
MW-3	Jan-95		32	1	62	260					1
MW-3	Oct-95		10	1	40	124					1
MW-3	11/20/2002	11.8	3.7	<2	32	121					1
MW-3	9/4/2009	13.6	1.62	ND	27	108					2
MW-3	9/1/2012	96.3	3.12	1.92	15.8	83.2					3
MW-3	10/16/2013	66.4	2.61	0.82	20.1	82.7					4
MW-3	9/20/2018	24.8	0.41	ND	15.9	71	111	ND	ND	77	5
MW-3	9/19/2019	18.5	0.36 J	0.31 J	21.2	94.7	155	ND	ND	109	6

Abbreviations

Exceeds screening criteria

DRO Diesel range organics

J Flag indicating the value is estimated below the limit of quantitation (LOQ).

μg/L micrograms per liter

mg/L milligrams per liter

-- Sample not analyzed for this compound.

ND Analyte not detected

PCE tetrachloroethylene

TCE trichloroethylene

Notes

1-If a duplicate sample was collected, the higher of the two values is listed.

2-All results reported in μ g/L except for DRO which is reported in mg/L.

3-Naphthalene was analyzed by methods SW8260C and SW8270D LV. The higher of the two values is listed.

4-ADEC Method Two Groundwater Cleanup Levels, 18 AAC 75.345, Table C (October 27, 2018). All units in µg/L except for DRO which is in mg/L.

References

1- Shannon & Wilson, Inc., 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks, Alaska. November 18.

2- SGS North America, Inc. (SGS), 2009. Laboratory Report of Analysis. September 17.

3- SLR International Corp, 2012. Bachner/Foodland Site Transmittal of Validated Data. October 4.

4- SGS , 2013. Laboratory Report of Analysis. Report Number 1138619. October 29.

5-SGS, 2018. Laboratory Report of Analysis. Report Number 1189788. October 2.

6-SGS, 2019. Laboratory Report of Analysis. Report Number 1199795. October 17.

Appendix A

Photograph Log

Photo 1: Location of monitoring well MW-3.

Photo 2: Monitoring well MW-3 during purging.



Groundwater Sampling at the Former Carrs-Foodland Site Fairbanks, Alaska

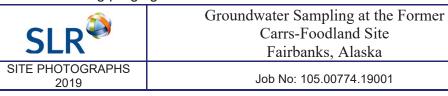

Job No: 105.00774.19001

Photo 3: Location of monitoring well MW-34A.

Photo 4: Monitoring well MW-34A during purging and runoff water removal.

Appendix B

Field Notes, Groundwater Sampling Forms, and YSI Calibration Log

Reter in the Rain		
		/
		· auti Jernen
	×	
		the second s
		2020 de una establica decenta eculament
		ZICC Samaletine Mw-4, dug of MW-3
		1915 replace mangled well glug MW-34A
27		4/10/19 A.Jahnson Cares Faultand . clouda 50°P

Date: <u>Al</u>	20 10 10	Wate	r Paramete Time: <u>14 20</u> <u> </u>		Calibration By:			२🍣
Parameter	Standard	しつでし True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.06	0000000	5130/1A	3/12/2021	6:80	7.07	± 0.10
pH	4.00	4.00	(C599844	9/19/2019	1/14/21	4.16	3.98	± 0.10
	10.00	10.18	4568774	718/19	7/6/20	10.18	10.18	± 0.10
Sp Cond (mS/cm)	1.413	1.251	CC 17956	7/10/19	12/15/19	1.300	1.251	± 10%
ORP (mV)	240	240	1600	Falia	05/22	242	240.1	
DO*	H20	100%	-	-	-	94.4 %-	98.3	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable) * Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Calibration By: Course - willis Date: 9/18/19 Time: 0720 Meter Manufacturer and Identification #: YST 556 07710065

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	CL610590	5/30/19	3/19/21	7.03	7.01	± 0.10
pH	4.00	4.00	CC599844	9/17/19	1/14/21	4.04	4.00	± 0.10
	10.00	10.06	CC568774	7/8/19	7/6/20	10:20	10.09	± 0.10
Sp Cond (mS/cm)	1.413	1.365	417956	7/10/19	12/15/14	1252	1.305	± 10%
ORP (mV)	240	240	1600	7/9/19	5/22	234.4	240.2	
DO*	H20	100	-	-	-	104-196.4	46.6	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.0/	((610590	5/30/19	3/19/21	6.86	7.01	± 0.10
рН	4.00	4.00	< (599 844	9/17/19	1/14/21	4.17	4.00	± 0.10
	10.00	10.16	CC568774	7/0/19	7/6/20	10:25	10.18	± 0,10
Sp Cond (mS/cm)	1.413	1413	<(17956	7/10/19	12/15/19	1,272	1.413	± 10%
ORP (mV)	240	Z 40	1600	7/9/19	5/2022	238.1	240.0	
DO*	H20	baro 740.5	-	-	~	95.9	98.7	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Groundwater Sampling Form

Site/Client Name	: Carrs	Foodland /	Bachner		Well ID: MW-3						
	14,0077		s all sure lis			e ID: MW					
Sampled By:	A. Johnso					e Time: 💡		Sample	Date: 9/19	19	
Weather Conditio		ILV NAT				ate ID: M		2100			
Sampling Method:	and the second se				-	SD 🗌 Yes		Frip Blank Re	equired: 🔀	Yes 🗌 No	
camping Method.	2 2011 101		WIII BERNING	Well Infe	ormation						
Well Type: 🔀 Perm	nanent 🗌 Te	emporary	V	Vell Diameter	<u>z</u> in.	Screen Int	erval:	- ft BGS	S to 🦰	ft BGS	
Well Condition: 🔀			fair or poor e	explain in Notes)		Stickup 🔀	Yes 🗌 No	; If yes, <u>z</u>	.18_ft above	ground	
Second Second				Gauging/Purg	ing Inform	ation	ALY SHE				
Depth to Water (ft E	BTOC): I	6.33				Pump Dept	the second s				
Total Depth (ft BTC		2.10			0	Start Time (2		1930			
Depth to Product (fl	and the second se	-			Purge End Time (24-hr) 1999 Total Purge Time (min) 19						
Product Thickness		= (Tubing De	oth - Top of	Screen Depth)					n or water table	is below top o	
scr	een, then use a	default value of	0.3 ft.;								
Min. purge volume if Well Diameter –		ge volume (ga 1" – 0.04	l) = volume of 41 gal/ft	water/ft(gal/f	t) X Water co 63 gal/ft	olumn thicknes	s - (ft) 4" - 0.653 g	X # of casing vo gal/ft	olumes — 6" – 1.4	_= <u>g</u> al 69 gal/ft	
and a strength of the	A CANADA C			Water Qualit	v Paramet	ers					
(Achieve stabl	le parameters f	for 3 consecutiv	ve reading, 4	parameters if practic	al [each read			and the second se	and the second se		
Time	Flow	Purge	Temp	Specific Conductance	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU)	(ft BTOC)	Drawdown (ft)	
(24-hr)	Rate (mL/minute)	(L or gal)	(°C)	(μS/cm°)				(± 10%, or	A.C	10792510	
		Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Max <mark>0,3</mark> ft)	
1935	450	0.6	8.66	1875	1.09	6.70	2.6	-	16.55	0.22	
1940		1.2	57.8	1854	0.71	6.74	-14.5	*	16.55	0.22	
1943		1.3	8.77	1840	0.63		-19.3	-	16.56	0.23	
1946		1.7	8.71	1837	0.60	10.00	- 22.0	-	16.57	0.24	
			8.71	1831	0.59		- 23.1	-	16.56	0.23	
1949		2.1	0.11	1031	0.57						
Parameter Stat	ble (Check ap	plicable)	1	1	1	1	1			1	
Sample Color:	light b.	Courses		Sample Odor:	fuel		She	en: light	f		
	- grit of	00011	MA CIR.	Analytic	al Samplin	Ig		and the second second		2	
	Anal	yses		Check	Applicabl	e		Comm	ents		
DRO					1						
VUC 8260	c				1						
PAH 8270	- SIM				1						
in the state of th											
Notes: Equipment: Pun Water Level Mete	and a second s	Nonsoon		Tubing (T Multi-Param			YSIS				
Turbidity Meter (N			surface 🔽	ontainerized 🔲 T	reated (boy	w?)		Filter Lot #	-		

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Groundwater Sampling Form

Site/Client Name	e: Caris	Fralland	Bachner		Well ID: MW-34A						
Project # :	104.0077		pacriter		Sample ID: MW - 34 A						
Sampled By:		The state of the second			Sample	e Time:	Address of the Addres	Sample	Date: 9/19	19	
	A Joh				Duplica	and the second se	100				
Weather Condition		Jy 50°1-			MS/MSD 🗌 Yes 🖾 No 🛛 Trip Blank Required: 🔀 Yes 🗋 No						
Sampling Method:	Low Flow	U Other		Well Info		DLlies		пр Банк К	squired. 🖂		
Well Type: 🗹 Perr		morani		And a second sec	z in.	Screen Inte	erval	- ft BGS	S to -	ft BGS	
Well Condition:	and the second state of th	and the second diversion of th			<u> </u>				ft above	and the second se	
Vell Condition:	Good L Fai	r 🛛 Poor (ii i	all of poor e	Gauging/Purgi	ng Informs		Teo ja no	,		J	
Depth to Water (ft	BTOC):	2.85		Gauging/Furgi	Tubing/	Pump Depth	(ft. BTOC)	15.0			
Total Depth (ft BT		8.10				Start Time (2		1841			
Depth to Product (Contraction of the Owner of the	-			Purge E	Ind Time (24	1-hr)	1900			
Product Thickness	(ft)	-			Total Purge Time (min) 19 X 0.25 =(ft); if screen interval is not known or water table is below top of						
SC	reen, then use	default value of	0.3 ft.;	4 8-		A					
Min. purge volume i Well Diameter -		rge volume (ga 1" – 0.04	i) = volume of 41 gal/ft	water/ft(gal/ft 2" - 0.1) X Water co 63 gal/ft	lumn thicknes	s(ft) 4" – 0.653 g	X # of casing vo gal/ft	olumes 6" – 1.4	= <u> </u>	
				Water Qualit	y Paramete	ers	ng aver				
(Achieve stat	ble parameters			parameters if practica	the second s	and the second se	and the second se				
Time	Flow	Purge	Temp (°C)	Specific Conductance	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)	
(24-hr)	Rate (mL/minute)	Volume (L or gal)	(-C)	(μS/cm ^c)	NUT NUT NUT	64 5 M 10 M 10 M 10 M 10 M	97997527201	(± 10%, or		M M	
	1212-01/2007/2007/2007	Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0,1)	(± 10mV)	<5 NTU)		(Max <u>0.3</u> ft)	
1846	450	0.6	6.94	1084	1.41	6.25	156.4	~	12.90	0.05	
185/		1.2	5.97	1012	1.59	6.38	130.1	-	12.92	0.07	
1854		1.4	5.93	1010	1.39	6.41	119.1	-	12.96	0.11	
A CONTRACTOR OF		1.8	5.89	1009	1.32	6.44	116.2	-	12.98	0.13	
1857			5.92	10 02	1.16	6.48	114.1		12.98	0.13	
1900		2.2	2.42	1002	1.10	0.10	., .,		12110		
	_										
						_					
							,			1	
Parameter Sta	ble (Check ap	plicable)	1	~		J				J.	
Sample Color:	light b.	NWIN		Sample Odor:	non	2	Shee	en: ho	n		
		yses			al Samplin Applicable			Comm	ents		
D. 0.0	even en				J						
DRO					1						
VOC 8260	c.				V						
	mp Type <u>h</u> er <u>s</u>	nonsoon plinst		uas mangled. Tubing (T Multi-Param	ype/Length) <u>²/ȝ ''₊c</u> €. (Make/SN#)	YSI SS	Bailer Typ	e		
8 8			surface 🕅 C	ontainerized 🔲 T	reated (hov	v?)					

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Appendix C

Data Quality Assessment, ADEC Checklist, and Laboratory Report

LABORATORY DATA QUALITY ASSURANCE REVIEW BACHNER

2019 GROUNDWATER MONITORING AT THE FORMER CARRS-FOODLAND SITE IN FAIRBANKS, AK

OCTOBER 2019

Prepared by: Francesca Risse Reviewed by: Jennifer McLean

SLR Project Number: 104.00774.19001 ADEC Number: 102.38.027 ADEC Hazard ID: 1397

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
AK	Alaska
ADEC	Alaska Department of Environmental Conservation
°C	degrees Celsius
CCV	continuing calibration verification
COC	chain of custody
DL	detection limit
DRO	diesel range organics
EDD	electronic data deliverable
GW	groundwater
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
LV	low volume
MS	matrix spike
MSD	matrix spike duplicate
NFG	National Functional Guidelines
PAH	polynuclear aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness, and sensitivity
QA	quality assurance
QAR	quality assurance review
QC	quality control
RPD	relative percent difference
SDG	sample delivery group
SIM	selective ion monitoring
SLR	SLR International Corporation
SGS	SGS North America, Inc.
UCL	upper control limit
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
VOCs	volatile organic compounds

Introduction

This report summarizes a review of analytical data for samples collected on September 19, 2019 in support of the groundwater monitoring activities at the former Carrs-Foodland site in Fairbanks, Alaska. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1Sample Summary

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank ¹
1199795	9/19/19	Fairbanks: 9/20/19 Anchorage: 9/24/19	Fairbanks ² : 0.3°C Anchorage ² : 2.8°C 4.6°C	GW	SW8260C AK102 LV SW8270D LV	VOCs DRO PAH SIM	Required NA NA

Notes:

1 – This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody (COC).

2 – All samples arrived at SGS Fairbanks in one cooler and was repackaged for shipment to SGS Anchorage in two coolers.

Acronyms:

AK - Alaska °C – degrees Celsius DRO – diesel range organics GW – groundwater LV – low volume NA – not applicable PAH – polynuclear aromatic hydrocarbons SDG – sample delivery group SIM – selective ion monitoring VOCs – volatile organic compounds The laboratory final report was pre-

The laboratory final report was presented as a Level II deliverable and included documentation of the delivery group COC and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided. The laboratory report is provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the Work Plan (SLR, 2018), ADEC Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (ADEC, 2017), *National Functional Guidelines for Superfund Organic Methods Data Review* (NFG, United States Environmental Protection Agency [USEPA] 2017), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and is included as Attachment 1 to this quality assurance review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD) were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, and LCS/LCSDs; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for but was not detected above the detection limit (DL). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection or both the blank detection and sample detection were below the limit of detection (LOD), and the result is likely a false positive. The greater of the sample detection or LOD was reported as non-detect in brackets.

Table 2Data Qualifiers

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package, except as noted below.

- Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-4 were 99 µg/L and 109 µg/L. The SW8270D naphthalene results for these samples were 43.7 µg/L and 36.4 µg/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D: the associated surrogate for MW-4 recovered slightly below acceptable limits (refer to the Surrogate Recovery section of this QAR for discussion) and LCSD RPD exceeded acceptable limits (see LCS and LCSD section for discussion). Due to these contributing factors, the SW8260C naphthalene results are considered more accurate quantitations of the true concentration.
- The case narrative noted that the laboratory report had been revised to include additional comments. No data were impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples, except as noted below.

• The trip blank was not recorded on the COC. One trip blank was included in the cooler and accompanied the VOA vials and volatile samples during transit from and to the laboratory and in the field. The laboratory assigned the trip blank the ID of "Trip Blank" with a collection date and time of 9/19/19 at 19:00, which matches that of the earliest sample collected. The trip blank was analyzed appropriately, for VOCs by SW8260C, the same volatile method and analytes as the other samples on the SDG. No data were impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted with regards to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the LOD in any method blanks.

Trip Blanks

One trip blank was analyzed for VOCs by Method SW8260C. Analytes were not detected at or above the LOD in the trip blank. The trip blank was not recorded on the COC. Refer to the Sample Receipt section for discussion.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). Except as noted below, all analytes with results of non-detect had LODs at or below applicable regulatory criteria.

The LODs for 1,2,3-trichloropropane by Method SW8260C did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the reported LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted. All data were usable without qualification.

Continuing Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD, except as noted below.

• For bromomethane and chloroethane by Method SW8260C, one CCV recovered at 148% and 124% exceeding the upper control limit (UCL) of 120%. Since a high bias was indicated and all associated samples had results of non-detect for the impacted analytes, no data were affected. All data were usable without qualification.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted below.

For PAH SIM by Method SW8270D, the 2-methylnaphthalene-d10 surrogate recovered • at 44% in sample MW-4. This was slightly below the laboratory lower control limit (LCL) of 47%, but within NFG advisory limits of 30-130%. Analytes associated with the surrogate were: 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene. The sample was re-extracted two weeks past hold time per the laboratory case narrative, with the surrogate within criteria and comparable results. However, as this was well past the hold time the re-extraction and re-analysis does not indicate accurate results. The data from the original within hold time analysis were reported with detected results for the impacted analytes qualified "Q-" to indicate estimated values with a low bias, and nondetect results were qualified "UJ" to indicate estimated reporting limits. Except for 2methylnaphthalene for sample MW-4, all impacted data were either well above or well below applicable cleanup levels; therefore, the impact to data usability was considered minimal. All data were usable as qualified.

For sample MW-4, the 2-methylnaphthalene result of $35.5 \text{ Q}-\mu g/L$ was slightly below the ADEC cleanup level of 36 micrograms per liter ($\mu g/L$). It is considered likely that with a more accurate result the field duplicate could have exceeded the ADEC cleanup level for this analyte. This data is usable only to determine an approximate, estimated low value for 2-methylnaphthalene. However, sample MW-4 is the field duplicate to parent sample MW-3, which exceeded cleanup level for this analyte. As the higher of the parent or field duplicate value is reported, the parent sample/duplicate pair result is already an exceedance of the ADEC cleanup level. The overall project data usability was not impacted.

Laboratory Control Samples and Laboratory Control Sample Duplicates

LCS and LCSDs were analyzed at the appropriate frequencies. Any LCS and LCSD recovery and RPD exceedances are noted below.

- For bromomethane by Method SW8260C, the LCS recovered at 148%, exceeding the acceptable UCL of 141%. Since all associated results were non-detectable, data were not impacted. All data were usable without qualification.
- For PAH SIM analytes shown in Table 3, LCS recoveries were slightly below the lower control limits (LCLs). An LCSD included in the batch had recoveries within acceptable limits for the affected analytes. Samples MW-3 and MW-4 were associated with this LCS/LCSD pair and were re-extracted two weeks past hold time, per the laboratory case narrative, with LCS recoveries within criteria and comparable results. As the re-extraction was well past the hold time, it is not indicative of accurate results. The data from the original within hold time analysis were reported. All associated results were non-detectable and were qualified "UJ" to indicated estimated reporting limits. As all affected data had LODs at least ten-fold below ADEC cleanup levels, data usability was not impacted. All data were usable as qualified.
- For PAH SIM analytes shown in Table 4, LCS/LCSD RPDs exceeded the UCL of 20%. Impacted analytes for associated samples MW-3 and MW-4 were qualified with "Q" for detected results to indicated estimated values with unknown bias. Non-detect results were considered unaffected by laboratory precision exceedances, thus qualification was considered unnecessary. While laboratory precision was not established for the affected analytes, a field duplicate pair was included in the batch and established field precision for all impacted analytes; therefore, data were minimally impacted. Results previously qualified "Q-" due to surrogate failure were not additionally qualified as estimated with unknown bias. Except for 2-methylnaphthalene, discussed in the Surrogate Recovery section, all affected data were either well above or well below applicable ADEC cleanup levels; therefore, data usability was not impacted. All data were usable as qualified.

Sample Type	Batch	Method	Analyte	Recovery (%)	Lower – Upper Recovery Limits (%)
			Benzo(a)Anthracene	56.6	59 - 120
		8270D SIM LV	Benzo[a]pyrene	49.2	53 - 120
	XXX		Benzo[g,h,i]perylene	39.5	44 - 128
LCS	42332		Benzo[k]fluoranthene	50.7	54 - 125
	42332		Chrysene	52.8	57 - 120
			Dibenzo[a,h]anthracene	32.8	44 - 131
			Indeno[1,2,3-c,d] pyrene	44.5	48 - 130

Table 3 LCS Recovery Exceedances

Table 4 LCSD RPD Exceedances

Sample Type	Batch	Method	Analyte	RPD (%)	RPD Limit (%)
			1-Methylnaphthalene	30.9	20
			2-Methylnaphthalene	32.2	20
			Acenaphthene	32.4	20
			Acenaphthylene	30.8	20
			Anthracene	29.6	20
			Benzo(a)Anthracene	26.8	20
			Benzo[a]pyrene	26.6	20
			Benzo[b]Fluoranthene	30.3	20
LCS/LCSD	XXX 42332	8270D SIM	Benzo[g,h,i]perylene	34.5	20
LCS/LCSD	AAA 42332	LV	Benzo[k]fluoranthene	29.2	20
			Chrysene	27	20
			Dibenzo[a,h]anthracene	33.5	20
			Fluoranthene	26.2	20
			Fluorene	33	20
			Indeno[1,2,3-c,d] pyrene	31.1	20
			Naphthalene	33.9	20
			Phenanthrene	28.9	20
			Pyrene	25.9	20

Matrix Spike and Matrix Spike Duplicate Samples

No matrix spikes (MSs) or matrix spike duplicates (MSDs) were analyzed in association with these samples.

Field Duplicates

The field duplicate sample frequency is presented in Table 5. Parent sample and field duplicates are presented in Table 6. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters, except for one DRO exceedance noted in Table 7. DRO results for the parent sample, the field duplicate, and associated sample MW-34A were qualified "Q" to indicate estimated values with unknown bias. Because laboratory precision was established via the LCS/LCSD pair with an acceptable RPD, the impact to data was considered minimal. Additionally, all impacted results were either well above or well below the ADEC cleanup level. All data were usable as qualified.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Number of Primary	Number of Field Duplicates	Method	Analytes
2	1	AK 102 LV	DRO
2	1	SW8260C	VOCs
1	1	SW8270D LV	PAH SIM

Table 5Field Duplicate Count

Table 6 Parent Samples and Field Duplicates

Matrix	Parent Sample	Field Duplicate	Method	Analytes
Groundwater	MW-3	MW-4	SW8260C AK102 LV SW8270D LV	VOCs DRO PAH SIM

Table 7 Field Duplicate RPD Exceedances

Mathad	Analyto Primary: MW-		Analyte Primary: MW-3 Duplicate: MW-4 RPD FI		Elea	ADEC Cleanup Level
Method	Analyte	Result (µg/L)	Result (µg/L)	(%)	Flag	(µg/L) ¹
AK 102	DRO	12100	18500	42	Q	1500

Notes:

1 – Limits shown are 18 AAC 75, Table C (ADEC, 2018).

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Field Duplicates and LCS/LCSD sections.
- Accuracy: Accuracy goals were met, except as noted in the Data Packages, CCV, Surrogate Recovery, and LCS/LCSD sections.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis.
- Sensitivity: Sensitivity goals were met, except as noted in the Reporting Limits section.

Several factors indicated inaccurate, primarily low recovery for numerous PAH SIM analytes. Anomalies included low surrogate recovery, low LCS recoveries, LCS/LCSD RPD failures, and Method SW8270D naphthalene results below those indicated by Method SW8260C. Data were appropriately qualified and is considered usable as described in this QAR.

Overall, this data were considered of good quality acceptable for use with the noted limitations and qualifications. No data were rejected.

References

ADEC (Alaska Department of Environmental Conservation), 2017. Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling.* March.

ADEC, 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. October 27.

SLR International Corporation (SLR), 2018. *Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK.* August 7.

U.S. Environmental Protection Agency (USEPA), 2017. *National Functional Guidelines for Superfund Organic Methods Data Review.* January.

Attachment 1

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed By:

Francesca Risse

Title:

Staff Engineer

Date:

October 17, 2019

CS Report Name:

2019 Groundwater Monitoring at the Former Carrs-Foodland Site

Report Date:

October 17, 2019

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1199795

ADEC File Number:

102.38.027

Hazard Identification Number:

1397

1199795

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

• Yes O No Comments:

SGS North America, Inc is ADEC CS approved, approval number 17-021, and performed all analysis.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

• Yes • No Comments:

All analyses performed at SGS North America, Inc.

2. Chain of Custody (CoC)

a. CoC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:

b. Correct Analyses requested?

• Yes O No	Comments:
------------	-----------

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

\odot	Yes O	No	Comments:		

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

	Yes	O No	Comments:	
c.	Sample con	dition documente	ed – broken, leaking (Methanol), zero headspace (VOC vi	als)?
	• Yes	O No	Comments:	

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

• Yes • No Comments:

The trip blank was not noted on the COC. One trip blank was included in the cooler, and the trip blank accompanied the sample containers and samples at all times during transit from and to the laboratory and in the field. The laboratory assigned the trip blank the ID of "Trip Blank" with a collection date and time of 9/19/19 at 19:00, which matches that of the earliest sample collected.

e. Data quality or usability affected?

Comments:

The trip blank was analyzed appropriately, for VOCs by SW8260C, the same method and analytes as the other samples on the SDG. No data were impacted.

4. <u>Case Narrative</u>

a. Present and understandable?

• Yes • No Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes O No

The case narrative noted a revised report to include additional comments.

c. Were all corrective actions documented?

• Yes • No Comments:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Comments:

No impact.

5. Samples Results

- a. Correct analyses performed/reported as requested on COC?
 - Yes No Comments:

Naphthalene was analyzed by Methods SW8260C and SW8270D. The SW8260C naphthalene results for parent sample MW-3 and field duplicate MW-4 were 99 μ g/L and 109 μ g/L. The SW8270D naphthalene results for these samples were 43.7 μ g/L and 36.4 μ g/L, approximately 30% to 40% of the SW8260C reported values. For naphthalene by Method SW8270D, the associated surrogate for MW-4 recovered slightly below acceptable limits (refer to the Surrogates section for discussion) and LCSD RPDs exceeded acceptable limits (see LCS and LCSD section for discussion). Due to these contributing factors, the SW8260C naphthalene results are considered to be more accurate quantitations of the true concentration.

b. All applicable holding times met?

• Yes O No

Comments:

c. All soils reported on a dry weight basis?

○ Yes ⊙ No Comments:

Not applicable. Only water samples were analyzed for this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

○ Yes ⊙ No Comments:

Except as noted below, yes.

The LODs for 1,2,3-trichloropropane by Method SW8260C did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations.

e. Data quality or usability affected?

🖲 Yes 🛛 No

Comments:

For 1,2,3-trichloropropane it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. This data is limited in usability for that purpose. All data were considered usable without qualification.

6. <u>QC Samples</u>

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii.	All method blank	results less	than limit of	quantitation	(LOQ)?
-----	------------------	--------------	---------------	--------------	--------

	II. AII		results less than limit of quantitation (LOQ)?
	Yes	🔿 No	Comments:
	iii. If al	oove LOQ, w	hat samples are affected?
			Comments:
N/A			
	iv. Do	the affected s	ample(s) have data flags? If so, are the data flags clearly defined?
	• Yes	O No	Comments:
N/A			
	v. Data	a quality or us	sability affected?
			Comments:
No in	npact.		
b. La	aboratory	Control Sam	ple/Duplicate (LCS/LCSD)
	-		LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD methods, LCS required per SW846)
	• Yes	C No	Comments:
		als/Inorganics amples?	s – one LCS and one sample duplicate reported per matrix, analysis and
	© Yes	No	Comments:
No m	etals or in	organics wer	e analyzed for this workorder.
	And	l project spec	ercent recoveries (%R) reported and within method or laboratory limits? ified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, %, AK103 60%-120%; all other analyses see the laboratory QC pages)
	O Yes	• No	Comments:
		nane by Meth limit of 1419	od SW8260C, the LCS recovered at 148%, exceeding the acceptable %.
	table reco		the LCS for batch XXX 42332, recoveries were slightly below the lower refer to the LCS/LCSD section, Table 3 of the QAR for full list of affected

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes [®] No Comments:

For all PAH analytes in the LCSD for batch XXX 42332, RPDs exceeded the upper acceptable limit.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

For the bromomethane %R exceedance, all associated results were non-detect and a high bias was indicated; therefore, no data were impacted.

For the PAH %R and RPD exceedances, samples MW-3 and MW-4 were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

For the PAH %R and RPD exceedances, all affected samples were qualified "Q" for detected results to indicate estimated values with unknown bias and "UJ" for non-detect results to indicated estimated reporting limits. Results previously qualified "Q-" due to surrogate failure were not additionally qualified as estimated with unknown bias.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

For the PAH %R exceedances, associated samples were re-extracted past hold time per the laboratory case narrative, with LCS recoveries within criteria and comparable results; however, this does not indicate accurate results as it was well past the hold time. The data from the original in hold time analysis were reported. An LCSD included in the batch had recoveries within acceptable limits for the affected analytes. All associated results were non-detect, with LODs at least 10-fold below the ADEC cleanup levels; therefore, data usability was not impacted. All data were usable as qualified.

For the PAH RPD exceednaces, a field duplicate pair was included in the batch and established field precision for all analytes with RPDs within acceptable limits; therefore, data were minimally impacted. All data were usable as qualified.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

• Yes • No Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

○ Yes ● No Comments:

The surrogate 2-methylnaphthalene-d10 recovered at 44% in sample MW-4 for PAH, slightly below the acceptable lower laboratory limit of 47%, but within acceptable NFG limits of 30-130%.

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
- Yes No Comments:

The associated PAH detected results were qualified "Q-" to indicated estimated values with low bias, and non-detect results were qualified "UJ" to indicate estimated reporting limits.

iv. Data quality or usability affected?

Comments:

Analytes associated with the surrogate failure were: 1-methylnaphthalene, 2-methylnaphthalene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene. The sample was re-extracted two weeks past hold time per the laboratory case narrative, with the surrogate within criteria and comparable results. However, as this was well past the hold time the re-extraction and re-analysis does not indicate accurate results. The data from the original within hold time analysis were reported. Except for 2-methylnaphthalene for sample MW-4, all impacted data were either well above or well below applicable cleanup levels; therefore, the impact to data usability was considered minimal. All data were usable as qualified.

For sample MW-4, the 2-methylnaphthalene result of 35.5 Q- $\mu g/L$ was slightly below the ADEC cleanup level of 36 micrograms per liter ($\mu g/L$). It is considered likely that with a more accurate result the field duplicate could have exceeded the ADEC cleanup level for this analyte. This data is usable only to determine an approximate, estimated low value for 2-methylnaphthalene. However, sample MW-4 is the field duplicate to parent sample MW-3, which exceeded cleanup level for this analyte. As the higher of the parent or field duplicate value is reported, the parent sample/duplicate pair result is already an exceedance of the ADEC cleanup level. The overall project data usability was not impacted.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - One trip blank reported per matrix, analysis and for each cooler containing volatile samples?
 (If not, opter explanation below.)

(If not, enter explanation below.)

• Yes O No

Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes	O No	Comments:
iii. All 1	esults less than LOC	Q?
Yes	© No	Comments:
iv. If ab	ove LOQ, what sam	ples are affected?
		Comments:
N/A		
v. Data	quality or usability	affected?
		Comments:
No impact.		
e. Field Dupli	cate	
i. One	field duplicate subm	nitted per matrix, analysis and 10 project samples?
Yes	© No	Comments:
ii. Subi	nitted blind to lab?	
Yes	C No	Comments:
MW-4 was a du	uplicate of MW-3.	
	commended: 30% w	percent differences (RPD) less than specified DQOs? ater, 50% soil) poslute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	W	here R_1 = Sample Concentration R_2 = Field Duplicate Concentration

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The parent sample/duplicate results and the associated sample MW-34A were qualified "Q" to indicate an estimated result with unknown bias. Laboratory precision was established by an acceptable LCS/LCSD RPD, thus the impact of the field precision failure to data was considered minimal. All data were usable as qualified.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ○ No ④ Not Applicable

Dedicated or disposable equipment was used for the collection of all samples.

i. All results less than LOQ?

○ Yes ● No Comments:

N/A

ii. If above LOQ, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected?

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes • No Comments:

Attachment 2

Laboratory Deliverable

(Data package)

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 543 3rd Ave, Suite 235 Fairbanks, AK 99701 (907) 452-2252

Report Number: **1199795**

Client Project: 104.00774.19001 - Foodland

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs

Justin Nelson

11:33:37 -08'00'

2019.10.17

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/17/2019 11:25:05AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: **SLR Alaska-Anchorage** SGS Project: **1199795** Project Name/Site: **104.00774.19001 - Foodland** Project Contact: **Carl Benson**

Refer to sample receipt form for information on sample condition.

MW-3 (1199795002) PS

8270D SIM - LCS recovery for several analytes did not meet QC criteria. The sample was re-extracted past hold-time. LCS recovery was within QC criteria and results are comparable. The in-hold data is reported

MW-4 (1199795003) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene d10 does not meet QC criteria. The sample was re-extracted past hold-time. Surrogate recovery was within QC criteria and results are comparable. The in-hold data is reported.

8270D SIM - LCS recovery for several analytes did not meet QC criteria. The sample was re-extracted past hold-time. LCS recovery was within QC criteria and results are comparable. The in-hold data is reported

LCS for HBN 1799947 [XXX/42332 (1534131) LCS

8270D SIM - PAH LCS recovery for several analytes do not meet QC criteria.

LCS for HBN 1800230 [VXX/34986 (1535558) LCS

8260C - LCS recovery for bromomethane does not meet QC criteria. This analyte was not detected above the LOQ in the associated samples.

LCSD for HBN 1799947 [XXX/4233 (1534132) LCSD

8270D SIM - PAH LCS/LCSD RPD for several analytes do not meet QC criteria.

Revised Report - This report has been reissued to include additional case narrative comments.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/17/2019 11:25:06AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Report of Manual Integrations						
Laboratory ID	Client Sample ID	Analytical Batch	Analyte	Reason		
8270D SIM LV (P	PAH)					
1534131	LCS for HBN 1799947 [XXX/42332	XMS11778	Benzo[a]pyrene	BLC		
1534131	LCS for HBN 1799947 [XXX/42332	XMS11778	Benzo[b]Fluoranthene	RP		
1534131	LCS for HBN 1799947 [XXX/42332	XMS11778	Benzo[k]fluoranthene	BLC		
1534132	LCSD for HBN 1799947 [XXX/4233	XMS11778	Benzo[a]pyrene	BLC		
1534132	LCSD for HBN 1799947 [XXX/4233	XMS11778	Benzo[b]Fluoranthene	RP		
1534132	LCSD for HBN 1799947 [XXX/4233	XMS11778	Benzo[k]fluoranthene	PNF		
1536917	CVC for HBN 1800521 [XMS/11778	XMS11778	Benzo[b]Fluoranthene	RP		
1536917	CVC for HBN 1800521 [XMS/11778	XMS11778	Benzo[k]fluoranthene	PNF		
SW8260C						
1199795002	MW-3	VMS19508	4-Isopropyltoluene	SP		
1199795003	MW-4	VMS19508	4-Isopropyltoluene	SP		

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 10/17/2019 11:25:08AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification, and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which in All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. integrated per SOP.


Print Date: 10/17/2019 11:25:09AM

Note:

	:	Sample Summary	,	
Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-34A	1199795001	09/19/2019	09/24/2019	Water (Surface, Eff., Ground)
MW-3	1199795002	09/19/2019	09/24/2019	Water (Surface, Eff., Ground)
MW-4	1199795003	09/19/2019	09/24/2019	Water (Surface, Eff., Ground)
Trip Blank	1199795004	09/19/2019	09/24/2019	Water (Surface, Eff., Ground)
Method	Method Des	scription		
8270D SIM LV (PAH)	8270 PAH S	SIM GC/MS Liq/Lic	q ext. LV	
AK102	DRO Low V	′olume (W)		
SW8260C	Volatile Org	anic Compounds ((W) FULL	

Print Date: 10/17/2019 11:25:11AM

Detectable Results Summary

Client Sample ID: MW-34A			
Lab Sample ID: 1199795001	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.424J	mg/L
Volatile GC/MS	cis-1,2-Dichloroethene	4.06	ug/L
	Tetrachloroethene	0.760J	ug/L
	trans-1,2-Dichloroethene	10.7	ug/L
	Trichloroethene	16.2	ug/L
Client Sample ID: MW-3			
Lab Sample ID: 1199795002	Parameter	<u>Result</u>	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	49.4	ug/L
Folynuclear Aromatics GC/MS	2-Methylnaphthalene	42.4	ug/L
	Acenaphthene	0.846	ug/L
	Fluorene	2.18	ug/L
	Naphthalene	43.7	ug/L
	Phenanthrene	1.24	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	12.1	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	145	ug/L
Volatile CO/MO	1,3,5-Trimethylbenzene	62.6	ug/L
	2-Butanone (MEK)	10.5	ug/L
	4-Isopropyltoluene	7.24	ug/L
	Benzene	0.340J	ug/L
	Ethylbenzene	20.0	ug/L
	Isopropylbenzene (Cumene)	7.24	ug/L
	Naphthalene	99.0	ug/L
	n-Propylbenzene	13.3	ug/L
	o-Xylene	30.2	ug/L
	P & M -Xylene	58.3	ug/L
	sec-Butylbenzene	3.61	ug/L
	Toluene	0.310J	ug/L
	Xylenes (total)	88.5	ug/L
	,,		

Print Date: 10/17/2019 11:25:12AM

SGS

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW-4			
Lab Sample ID: 1199795003	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	42.0	ug/L
	2-Methylnaphthalene	35.5	ug/L
	Acenaphthene	0.703	ug/L
	Fluorene	1.77	ug/L
	Naphthalene	36.4	ug/L
	Phenanthrene	0.980	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	18.5	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	155	ug/L
	1,3,5-Trimethylbenzene	67.6	ug/L
	2-Butanone (MEK)	12.1	ug/L
	4-Isopropyltoluene	7.75	ug/L
	Benzene	0.360J	ug/L
	Ethylbenzene	21.2	ug/L
	Isopropylbenzene (Cumene)	7.70	ug/L
	Naphthalene	109	ug/L
	n-Propylbenzene	14.5	ug/L
	o-Xylene	32.4	ug/L
	P & M -Xylene	62.2	ug/L
	sec-Butylbenzene	3.95	ug/L
	Xylenes (total)	94.7	ug/L

Print Date: 10/17/2019 11:25:12AM

SGS

SGS North America Inc.

Results of MW-34A Client Sample ID: MW-34A Client Project ID: 104.00774.19001 - Fo Lab Sample ID: 1199795001 Lab Project ID: 1199795		Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels						Allowerble	
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.424 J	LOQ/CL 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates				5			
5a Androstane (surr)	73.5	50-150		%	1		10/07/19 23:51
Analyst: CMS Analytical Date/Time: 10/07/19 23:51 Container ID: 1199795001-A		F	Prep Date/Tii Prep Initial W Prep Extract	/t./Vol.: 260			

Print Date: 10/17/2019 11:25:14AM

J flagging is activated

SG

Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/30/19 15:48
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/30/19 15:48
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/30/19 15:48
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 15:48
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/30/19 15:48
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 15:48
Benzene	0.200 U	0.400	0.120	ug/L	1		09/30/19 15:48
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/30/19 15:48
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/30/19 15:48
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 15:48
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 15:48

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
cis-1,2-Dichloroethene	4.06	1.00	0.310	ug/L	1	09/30/19 15:48
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/30/19 15:48
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/30/19 15:48
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/30/19 15:48
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/30/19 15:48
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/30/19 15:48
Naphthalene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
o-Xylene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/30/19 15:48
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Styrene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Tetrachloroethene	0.760 J	1.00	0.310	ug/L	1	09/30/19 15:48
Toluene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
trans-1,2-Dichloroethene	10.7	1.00	0.310	ug/L	1	09/30/19 15:48
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Trichloroethene	16.2	1.00	0.310	ug/L	1	09/30/19 15:48
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 15:48
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/30/19 15:48
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/30/19 15:48
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/30/19 15:48
Surrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1	09/30/19 15:48
4-Bromofluorobenzene (surr)	101	85-114		%	1	09/30/19 15:48
Toluene-d8 (surr)	98	89-112		%	1	09/30/19 15:48

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-34A** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795001 Lab Project ID: 1199795 Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19508 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 09/30/19 15:48 Container ID: 1199795001-C Prep Batch: VXX34986 Prep Method: SW5030B Prep Date/Time: 09/30/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:14AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: MW-3
Client Project ID: 104.00774.19001 - Foodland
Lab Sample ID: 1199795002
Lab Project ID: 1199795

Collection Date: 09/19/19 20:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	49.4	0.481	0.144	ug/L	10		10/08/19 19:39
2-Methylnaphthalene	42.4	0.481	0.144	ug/L	10		10/08/19 19:39
Acenaphthene	0.846	0.0481	0.0144	ug/L	1		10/07/19 21:20
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		10/07/19 21:20
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		10/07/19 21:20
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Fluorene	2.18	0.0481	0.0144	ug/L	1		10/07/19 21:20
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Naphthalene	43.7	0.962	0.298	ug/L	10		10/08/19 19:39
Phenanthrene	1.24	0.0481	0.0144	ug/L	1		10/07/19 21:20
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/07/19 21:20
Surrogates							
2-Methylnaphthalene-d10 (surr)	53.7	47-106		%	1		10/07/19 21:20
Fluoranthene-d10 (surr)	46.4	24-116		%	1		10/07/19 21:20

Batch Information

Analytical Batch: XMS11781 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/08/19 19:39 Container ID: 1199795002-C

Analytical Batch: XMS11778 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/19 21:20 Container ID: 1199795002-C Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 09/25/19 07:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 09/25/19 07:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Diesel Range Organics 12.1 0.577 0.173 mg/L 1 10/08/19 C Surrogates 5a Androstane (surr) 74.5 50-150 % 1 10/08/19 C Batch Information Analytical Batch: XFC15377 Prep Batch: XXX42382 Prep Method: SW3520C Prep Method: SW3520C Analyst: CMS Prep Date/Time: 10/02/19 08:49 Prep Date/Time: 10/02/19 08:49 Prep Date/Time: 10/02/19 08:49	Results of MW-3 Client Sample ID: MW-3 Client Project ID: 104.00774.19001 Lab Sample ID: 1199795002 Lab Project ID: 1199795	- Foodland	Collection Date: 09/19/19 20:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:				
Parameter Result Qual LOQ/CL DL Units DF Limits Date Analy Diesel Range Organics 12.1 0.577 0.173 mg/L 1 10/08/19 0 Surrogates 5a Androstane (surr) 74.5 50-150 % 1 10/08/19 0 Batch Information Analytical Batch: XFC15377 Prep Batch: XXX42382 Prep Method: SW3520C Prep Method: SW3520C Analyst: CMS Prep Date/Time: 10/02/19 08:49 10/02/19 08:49 10/02/19 08:49	Results by Semivolatile Organic Fu	els					
Surrogates 5a Androstane (surr) 74.5 50-150 % 1 10/08/19 0 Batch Information Analytical Batch: XFC15377 Prep Batch: XXX42382 Analytical Method: AK102 Prep Method: SW3520C Analyst: CMS Prep Date/Time: 10/02/19 08:49							<u>Date Analyzed</u> 10/08/19 00:01
5a Androstane (surr) 74.5 50-150 % 1 10/08/19 C Batch Information					0		
Analytical Batch: XFC15377Prep Batch: XXX42382Analytical Method: AK102Prep Method: SW3520CAnalyst: CMSPrep Date/Time: 10/02/19 08:49	-	74.5	50-150		%	1	10/08/19 00:07
Analytical Date/Time:10/08/1900:01Prep Initial Wt./Vol.:260 mLContainer ID:1199795002-APrep Extract Vol:1 mL	Analytical Batch: XFC15377 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 10/08/19 00:01			Prep Method Prep Date/Til Prep Initial W	: SW35200 me: 10/02/1 /t./Vol.: 260	9 08:49	

Print Date: 10/17/2019 11:25:14AM

J flagging is activated

SG

Collection Date: 09/19/19 20:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	LIIIIIS	09/30/19 16:03
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/30/19 16:03
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,2,4-Trimethylbenzene	145	1.00	0.310	ug/L	1		09/30/19 16:03
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/30/19 16:03
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,3,5-Trimethylbenzene	62.6	1.00	0.310	ug/L	1		09/30/19 16:03
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
2-Butanone (MEK)	10.5	10.0	3.10	ug/L	1		09/30/19 16:03
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
4-Isopropyltoluene	7.24	1.00	0.310	ug/L	1		09/30/19 16:03
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
Benzene	0.340 J	0.400	0.120	ug/L	1		09/30/19 16:03
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/30/19 16:03
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Collection Date: 09/19/19 20:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:03
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Ethylbenzene	20.0	1.00	0.310	ug/L	1		09/30/19 16:03
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Isopropylbenzene (Cumene)	7.24	1.00	0.310	ug/L	1		09/30/19 16:03
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/30/19 16:03
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
Naphthalene	99.0	1.00	0.310	ug/L	1		09/30/19 16:03
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
n-Propylbenzene	13.3	1.00	0.310	ug/L	1		09/30/19 16:03
o-Xylene	30.2	1.00	0.310	ug/L	1		09/30/19 16:03
P & M -Xylene	58.3	2.00	0.620	ug/L	1		09/30/19 16:03
sec-Butylbenzene	3.61	1.00	0.310	ug/L	1		09/30/19 16:03
Styrene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Toluene	0.310 J	1.00	0.310	ug/L	1		09/30/19 16:03
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:03
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:03
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/30/19 16:03
Xylenes (total)	88.5	3.00	1.00	ug/L	1		09/30/19 16:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/30/19 16:03
4-Bromofluorobenzene (surr)	110	85-114		%	1		09/30/19 16:03
Toluene-d8 (surr)	101	89-112		%	1		09/30/19 16:03

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-3** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795002 Lab Project ID: 1199795 Collection Date: 09/19/19 20:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19508 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 09/30/19 16:03 Container ID: 1199795002-E Prep Batch: VXX34986 Prep Method: SW5030B Prep Date/Time: 09/30/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:14AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: MW-4
Client Project ID: 104.00774.19001 - Foodland
Lab Sample ID: 1199795003
Lab Project ID: 1199795

Collection Date: 09/19/19 21:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed	<u>t</u>
1-Methylnaphthalene	42.0	0.481	0.144	ug/L	10	10/08/19 19:59	9
2-Methylnaphthalene	35.5	0.481	0.144	ug/L	10	10/08/19 19:59	9
Acenaphthene	0.703	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1	10/07/19 21:4	0
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1	10/07/19 21:4	0
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Fluorene	1.77	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Naphthalene	36.4	0.962	0.298	ug/L	10	10/08/19 19:59	9
Phenanthrene	0.980	0.0481	0.0144	ug/L	1	10/07/19 21:4	0
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/07/19 21:40	0
Surrogates							
2-Methylnaphthalene-d10 (surr)	44 *	47-106		%	1	10/07/19 21:4	0
Fluoranthene-d10 (surr)	40.7	24-116		%	1	10/07/19 21:4	0

Batch Information

Analytical Batch: XMS11781 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/08/19 19:59 Container ID: 1199795003-C

Analytical Batch: XMS11778 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/19 21:40 Container ID: 1199795003-C Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 09/25/19 07:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 09/25/19 07:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-4 Client Sample ID: MW-4 Client Project ID: 104.00774.19001 - F Lab Sample ID: 1199795003 Lab Project ID: 1199795	oodland	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	ite: 09/24/	19 10:21		
Results by Semivolatile Organic Fuel	S		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 18.5	<u>LOQ/CL</u> 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates							
5a Androstane (surr)	83.9	50-150		%	1		10/08/19 00:11
Batch Information							
Analytical Batch: XFC15377 Analytical Method: AK102 Analyst: CMS Analytical Date/Time: 10/08/19 00:11 Container ID: 1199795003-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 10/02/1 /t./Vol.: 260	9 08:49		

Print Date: 10/17/2019 11:25:14AM

J flagging is activated

SGS

Results of MW-4

Client Sample ID: **MW-4** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795003 Lab Project ID: 1199795 Collection Date: 09/19/19 21:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/30/19 16:17
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,2,4-Trimethylbenzene	155	1.00	0.310	ug/L	1		09/30/19 16:17
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:17
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/30/19 16:17
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,3,5-Trimethylbenzene	67.6	1.00	0.310	ug/L	1		09/30/19 16:17
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
2-Butanone (MEK)	12.1	10.0	3.10	ug/L	1		09/30/19 16:17
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:17
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
4-Isopropyltoluene	7.75	1.00	0.310	ug/L	1		09/30/19 16:17
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:17
Benzene	0.360 J	0.400	0.120	ug/L	1		09/30/19 16:17
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/30/19 16:17
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/30/19 16:17
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 16:17
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 16:17

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Collection Date: 09/19/19 21:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/30/19 16:17
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/30/19 16:17
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Ethylbenzene	21.2	1.00	0.310	ug/L	1	09/30/19 16:17
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/30/19 16:17
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Isopropylbenzene (Cumene)	7.70	1.00	0.310	ug/L	1	09/30/19 16:17
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/30/19 16:17
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/30/19 16:17
Naphthalene	109	1.00	0.310	ug/L	1	09/30/19 16:17
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
n-Propylbenzene	14.5	1.00	0.310	ug/L	1	09/30/19 16:17
o-Xylene	32.4	1.00	0.310	ug/L	1	09/30/19 16:17
P & M -Xylene	62.2	2.00	0.620	ug/L	1	09/30/19 16:17
sec-Butylbenzene	3.95	1.00	0.310	ug/L	1	09/30/19 16:17
Styrene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Toluene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/30/19 16:17
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/30/19 16:17
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/30/19 16:17
Xylenes (total)	94.7	3.00	1.00	ug/L	1	09/30/19 16:17
Surrogates						
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1	09/30/19 16:17
4-Bromofluorobenzene (surr)	111	85-114		%	1	09/30/19 16:17
Toluene-d8 (surr)	101	89-112		%	1	09/30/19 16:17

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Results of MW-4

Client Sample ID: **MW-4** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795003 Lab Project ID: 1199795 Collection Date: 09/19/19 21:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19508 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 09/30/19 16:17 Container ID: 1199795003-E Prep Batch: VXX34986 Prep Method: SW5030B Prep Date/Time: 09/30/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:14AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

SG

Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/30/19 12:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/30/19 12:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
Benzene	0.200 U	0.400	0.120	ug/L	1		09/30/19 12:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/30/19 12:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

SG

Client Sample ID: **Trip Blank** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795004 Lab Project ID: 1199795 Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/30/19 12:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/30/19 12:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/02/19 14:21
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/30/19 12:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Styrene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Toluene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/30/19 12:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/30/19 12:52
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/30/19 12:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/30/19 12:52
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		09/30/19 12:52
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/30/19 12:52
Toluene-d8 (surr)	100	89-112		%	1		09/30/19 12:52

Print Date: 10/17/2019 11:25:14AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **104.00774.19001 - Foodland** Lab Sample ID: 1199795004 Lab Project ID: 1199795

Collection Date: 09/19/19 19:00 Received Date: 09/24/19 10:21 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19508 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 09/30/19 12:52 Container ID: 1199795004-A

Analytical Batch: VMS19518 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 10/02/19 14:21 Container ID: 1199795004-B Prep Batch: VXX34986 Prep Method: SW5030B Prep Date/Time: 09/30/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34998 Prep Method: SW5030B Prep Date/Time: 10/02/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:14AM

J flagging is activated

Method Blank

SG:

Blank ID: MB for HBN 1800230 [VXX/34986] Blank Lab ID: 1535557 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795003, 1199795004

Results by SW8260C

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 10/17/2019 11:25:15AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

SG:

Blank ID: MB for HBN 1800230 [VXX/34986] Blank Lab ID: 1535557 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795003, 1199795004

Results by SW8260C				
<u>Parameter</u>	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	98.6	89-112		%

Print Date: 10/17/2019 11:25:15AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Method Blank				
Blank ID: MB for HBN 1 Blank Lab ID: 1535557	800230 [VXX/34986]	Matrix	k: Water (Sur	face, Eff., Ground)
QC for Samples: 1199795001, 1199795002	2, 1199795003, 1199795004			
Results by SW8260C				
Parameter_	Results	LOQ/CL	DL	<u>Units</u>
atch Information				
Analytical Batch: VMS Analytical Method: SW Instrument: VPA 780/5 Analyst: CMC	/8260C	Prep Me Prep Da Prep Init	tch: VXX3498 ethod: SW503 ite/Time: 9/30 tial Wt./Vol.: 5 tract Vol: 5 m	0B /2019 6:00:00AM 5 mL

Print Date: 10/17/2019 11:25:15AM

_

Blank Spike ID: LCS for HBN 1199795 [VXX34986] Blank Spike Lab ID: 1535558 Date Analyzed: 09/30/2019 11:03 Spike Duplicate ID: LCSD for HBN 1199795 [VXX34986] Spike Duplicate Lab ID: 1535559 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795002, 1199795003, 1199795004

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	34.8	116	30	33.1	110	(78-124)	5.20	(< 20)
1,1,1-Trichloroethane	30	33.9	113	30	32.3	108	(74-131)	4.90	(< 20)
1,1,2,2-Tetrachloroethane	30	31.6	105	30	30.8	103	(71-121)	2.50	(< 20)
1,1,2-Trichloroethane	30	32.2	107	30	31.3	104	(80-119)	2.80	(< 20)
1,1-Dichloroethane	30	32.5	108	30	31.3	104	(77-125)	3.80	(< 20)
1,1-Dichloroethene	30	33.1	110	30	31.6	105	(71-131)	4.60	(< 20)
1,1-Dichloropropene	30	33.9	113	30	32.3	108	(79-125)	5.00	(< 20)
1,2,3-Trichlorobenzene	30	32.1	107	30	32.4	108	(69-129)	1.10	(< 20)
1,2,3-Trichloropropane	30	32.0	107	30	31.6	105	(73-122)	1.30	(< 20)
1,2,4-Trichlorobenzene	30	33.0	110	30	33.0	110	(69-130)	0.12	(< 20)
1,2,4-Trimethylbenzene	30	33.5	112	30	32.5	108	(79-124)	3.00	(< 20)
1,2-Dibromo-3-chloropropane	30	32.2	107	30	32.7	109	(62-128)	1.70	(< 20)
1,2-Dibromoethane	30	33.8	113	30	33.0	110	(77-121)	2.20	(< 20)
1,2-Dichlorobenzene	30	31.9	106	30	31.4	105	(80-119)	1.60	(< 20)
1,2-Dichloroethane	30	30.9	103	30	30.1	100	(73-128)	2.70	(< 20)
1,2-Dichloropropane	30	31.9	106	30	32.3	108	(78-122)	1.00	(< 20)
1,3,5-Trimethylbenzene	30	33.5	112	30	32.3	108	(75-124)	3.60	(< 20)
1,3-Dichlorobenzene	30	32.6	109	30	31.8	106	(80-119)	2.60	(< 20)
1,3-Dichloropropane	30	32.5	108	30	32.0	107	(80-119)	1.60	(< 20)
1,4-Dichlorobenzene	30	32.2	107	30	32.0	107	(79-118)	0.65	(< 20)
2,2-Dichloropropane	30	33.1	110	30	32.0	107	(60-139)	3.40	(< 20)
2-Butanone (MEK)	90	95.2	106	90	99.0	110	(56-143)	3.90	(< 20)
2-Chlorotoluene	30	32.6	109	30	31.4	105	(79-122)	3.50	(< 20)
2-Hexanone	90	91.8	102	90	92.8	103	(57-139)	1.00	(< 20)
4-Chlorotoluene	30	33.1	110	30	31.2	104	(78-122)	5.90	(< 20)
4-Isopropyltoluene	30	34.4	115	30	32.8	109	(77-127)	4.80	(< 20)
4-Methyl-2-pentanone (MIBK)	90	100	111	90	98.8	110	(67-130)	1.30	(< 20)
Benzene	30	32.7	109	30	31.3	104	(79-120)	4.30	(< 20)
Bromobenzene	30	32.3	108	30	31.4	105	(80-120)	3.00	(< 20)
Bromochloromethane	30	31.5	105	30	30.8	103	(78-123)	2.00	(< 20)
Bromodichloromethane	30	34.3	114	30	33.2	111	(79-125)	3.30	(< 20)
Bromoform	30	34.6	115	30	33.6	112	(66-130)	2.90	(< 20)
Bromomethane	30	44.5	148	* 30	38.2	127	(53-141)	15.20	(< 20)
Carbon disulfide	45	47.5	105	45	45.2	100	(64-133)	5.00	(< 20)
)

Print Date: 10/17/2019 11:25:18AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199795 [VXX34986] Blank Spike Lab ID: 1535558 Date Analyzed: 09/30/2019 11:03 Spike Duplicate ID: LCSD for HBN 1199795 [VXX34986] Spike Duplicate Lab ID: 1535559 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795002, 1199795003, 1199795004

Results by SW8260C

		Blank Spike	e (ug/L)	5	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	34.6	115	30	32.7	109	(72-136)	5.60	(< 20)
Chlorobenzene	30	31.7	106	30	30.7	102	(82-118)	3.10	(< 20)
Chloroethane	30	37.1	124	30	30.4	101	(60-138)	19.90	(< 20)
Chloroform	30	32.6	109	30	31.3	104	(79-124)	3.90	(< 20)
Chloromethane	30	32.0	107	30	30.8	103	(50-139)	3.70	(< 20)
cis-1,2-Dichloroethene	30	31.9	106	30	31.4	105	(78-123)	1.70	(< 20)
cis-1,3-Dichloropropene	30	33.9	113	30	33.0	110	(75-124)	2.70	(< 20)
Dibromochloromethane	30	33.8	113	30	33.0	110	(74-126)	2.30	(< 20)
Dibromomethane	30	31.8	106	30	31.1	104	(79-123)	2.20	(< 20)
Dichlorodifluoromethane	30	32.0	107	30	29.8	100	(32-152)	6.90	(< 20)
Ethylbenzene	30	33.1	110	30	32.0	107	(79-121)	3.30	(< 20)
Freon-113	45	49.2	109	45	47.0	104	(70-136)	4.70	(< 20)
Hexachlorobutadiene	30	35.0	117	30	34.5	115	(66-134)	1.50	(< 20)
Isopropylbenzene (Cumene)	30	32.9	110	30	31.5	105	(72-131)	4.30	(< 20)
Methylene chloride	30	31.3	104	30	30.9	103	(74-124)	1.40	(< 20)
Methyl-t-butyl ether	45	48.2	107	45	47.9	106	(71-124)	0.67	(< 20)
Naphthalene	30	27.9	93	30	29.8	99	(61-128)	6.50	(< 20)
n-Butylbenzene	30	31.8	106	30	30.8	103	(75-128)	3.30	(< 20)
n-Propylbenzene	30	33.3	111	30	31.8	106	(76-126)	4.70	(< 20)
o-Xylene	30	32.3	108	30	31.0	103	(78-122)	4.10	(< 20)
P & M -Xylene	60	66.1	110	60	63.9	106	(80-121)	3.40	(< 20)
sec-Butylbenzene	30	33.3	111	30	32.6	109	(77-126)	2.20	(< 20)
Styrene	30	32.9	110	30	32.2	107	(78-123)	2.20	(< 20)
tert-Butylbenzene	30	33.7	112	30	31.9	106	(78-124)	5.40	(< 20)
Tetrachloroethene	30	33.6	112	30	32.0	107	(74-129)	4.80	(< 20)
Toluene	30	32.2	107	30	30.7	102	(80-121)	4.70	(< 20)
trans-1,2-Dichloroethene	30	32.4	108	30	31.0	103	(75-124)	4.20	(< 20)
trans-1,3-Dichloropropene	30	30.9	103	30	30.5	102	(73-127)	1.50	(< 20)
Trichloroethene	30	33.5	112	30	31.9	106	(79-123)	4.70	(< 20)
Trichlorofluoromethane	30	35.2	117	30	30.8	103	(65-141)	13.30	(< 20)
Vinyl acetate	30	31.7	106	30	31.1	104	(54-146)	1.90	(< 20)
Vinyl chloride	30	32.4	108	30	30.1	100	(58-137)	7.30	(< 20)
Xylenes (total)	90	98.4	109	90	94.9	105	(79-121)	3.60	(< 20)

Print Date: 10/17/2019 11:25:18AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1199795 [VXX34986] Blank Spike Lab ID: 1535558 Date Analyzed: 09/30/2019 11:03 Spike Duplicate ID: LCSD for HBN 1199795 [VXX34986] Spike Duplicate Lab ID: 1535559 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795002, 1199795003, 1199795004

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.1	99	30	98.4	98	(81-118)	0.64	
4-Bromofluorobenzene (surr)	30	99.2	99	30	98.7	99	(85-114)	0.57	
Toluene-d8 (surr)	30	101	101	30	102	102	(89-112)	0.20	

Batch Information

Analytical Batch: VMS19508 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Prep Batch: VXX34986 Prep Method: SW5030B Prep Date/Time: 09/30/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:18AM

SGS

lank ID: MB for HBN 18003 lank Lab ID: 1535986	41 [VXX/34998]	Matri	x: Water (Surfa	ice, Eff., Ground)	
C for Samples: 199795004					
esults by SW8260C					
arameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>	
aphthalene	0.500U	1.00	0.310	ug/L	
uor ateg					
2-Dichloroethane-D4 (surr)	102	81-118		%	
Bromofluorobenzene (surr)	101	85-114		%	
bluene-d8 (surr)	99.4	89-112		%	
tsh onloumation					
Analytical Batch: VMS19518		Prep Ba	atch: VXX34998		
Analytical Method: SW8260	C	Prep Me	ethod: SW5030I	3	
Instrument: Agilent 7890-75	MS			019 6:00:00AM	
Analyst: CMC Analytical Date/Time: 10/2/2	019 10·34·00AM		tial Wt./Vol.: 5 n tract Vol: 5 mL	nL	

Print Date: 10/17/2019 11:25:21AM

-

Blank Spike ID: LCS for HBN 1199795 [VXX34998] Blank Spike Lab ID: 1535987 Date Analyzed: 10/02/2019 11:05 Spike Duplicate ID: LCSD for HBN 1199795 [VXX34998] Spike Duplicate Lab ID: 1535988 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795004

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Naphthalene	30	28.6	95	30	24.2	81	(61-128)	16.50	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	95.7	96	30	97	97	(81-118)	1.40	
4-Bromofluorobenzene (surr)	30	105	105	30	104	104	(85-114)	0.73	
Toluene-d8 (surr)	30	98.7	99	30	101	101	(89-112)	1.90	
							```		

# **Batch Information**

Analytical Batch: VMS19518 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: CMC Prep Batch: VXX34998 Prep Method: SW5030B Prep Date/Time: 10/02/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/17/2019 11:25:22AM

#### Method Blank

SG:

Blank ID: MB for HBN 1799947 [XXX/42332] Blank Lab ID: 1534130

QC for Samples: 1199795002, 1199795003

#### Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	69.8	47-106		%
Fluoranthene-d10 (surr)	77.7	24-116		%

## **Batch Information**


Analytical Batch: XMS11778 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Analytical Date/Time: 10/7/2019 6:16:00PM Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 9/25/2019 7:14:31AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 10/17/2019 11:25:25AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com





Blank Spike ID: LCS for HBN 1199795 [XXX42332] Blank Spike Lab ID: 1534131 Date Analyzed: 10/07/2019 18:36 Spike Duplicate ID: LCSD for HBN 1199795 [XXX42332] Spike Duplicate Lab ID: 1534132 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795002, 1199795003

### Results by 8270D SIM LV (PAH)

		Blank Spike	ə (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.02	51	2	1.40	70	(41-115)	30.90	* (< 20)
2-Methylnaphthalene	2	0.997	50	2	1.38	69	(39-114)	32.20	* (< 20)
Acenaphthene	2	1.03	51	2	1.43	71	(48-114)	32.40	* (< 20)
Acenaphthylene	2	1.09	55	2	1.49	74	(35-121)	30.80	* (< 20)
Anthracene	2	1.13	56	2	1.52	76	(53-119)	29.60	* (< 20)
Benzo(a)Anthracene	2	1.13	57	* 2	1.48	74	(59-120)	26.80	* (< 20)
Benzo[a]pyrene	2	0.985	49	* 2	1.29	64	(53-120)	26.60	* (< 20)
Benzo[b]Fluoranthene	2	1.13	57	2	1.54	77	(53-126)	30.30	* (< 20)
Benzo[g,h,i]perylene	2	0.790	40	* 2	1.12	56	(44-128)	34.50	* (< 20)
Benzo[k]fluoranthene	2	1.01	51	* 2	1.36	68	(54-125)	29.20	* (< 20)
Chrysene	2	1.06	53	* 2	1.39	69	(57-120)	27.00	* (< 20)
Dibenzo[a,h]anthracene	2	0.655	33	* 2	0.918	46	(44-131)	33.50	* (< 20)
Fluoranthene	2	1.21	60	2	1.57	79	(58-120)	26.20	* (< 20)
Fluorene	2	1.08	54	2	1.51	76	(50-118)	33.00	* (< 20)
Indeno[1,2,3-c,d] pyrene	2	0.890	45	* 2	1.22	61	(48-130)	31.10	* (< 20)
Naphthalene	2	0.957	48	2	1.35	67	(43-114)	33.90	* (< 20)
Phenanthrene	2	1.09	55	2	1.46	73	(53-115)	28.90	* (< 20)
Pyrene	2	1.26	63	2	1.63	82	(53-121)	25.90	* (< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	51.2	51	2	67.6	68	(47-106)	27.60	
Fluoranthene-d10 (surr)	2	62.1	62	2	80.1	80	(24-116)	25.30	

#### **Batch Information**

Analytical Batch: XMS11778 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Prep Batch: XXX42332 Prep Method: SW3520C Prep Date/Time: 09/25/2019 07:14 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 10/17/2019 11:25:26AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

# SGS

Blank ID: MB for HBN 180 Blank Lab ID: 1535685	0266 [XXX/42382]	Matrix	k: Water (Surfa	ce, Eff., Ground)	
QC for Samples: 1199795001, 1199795002, 1	199795003				
Results by AK102					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Diesel Range Organics	0.300U	0.600	0.180	mg/L	
Surrogates					
5a Androstane (surr)	81.5	60-120		%	
Batch Information					
Analytical Batch: XFC153	377	Prep Ba	tch: XXX42382		
Analytical Method: AK102			thod: SW35200		
Instrument: Agilent 7890E Analyst: CMS	3 R			019 8:49:46AM	
			ial Wt./Vol.: 250 tract Vol: 1 mL	) mL	

Print Date: 10/17/2019 11:25:29AM



Blank Spike ID: LCS for HBN 1199795 [XXX42382] Blank Spike Lab ID: 1535686 Date Analyzed: 10/07/2019 19:31 Spike Duplicate ID: LCSD for HBN 1199795 [XXX42382] Spike Duplicate Lab ID: 1535687 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199795001, 1199795002, 1199795003

Results by AK102			_						
		Blank Spike	e (mg/L)	S	Spike Duplic	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	18.1	91	20	18.1	91	(75-125)	0.17	(< 20)
Surrogates									
5a Androstane (surr)	0.4	93.1	93	0.4	93.2	93	(60-120)	0.08	
Batch Information Analytical Batch: XFC15377 Analytical Method: AK102 Instrument: Agilent 7890B R Analyst: CMS				Pre Pre Spil	ke Init Wt./\	<b>SW3520C</b> e: <b>10/02/201</b> /ol.: 20 mg/l	9 08:49 _ Extract Vo		

Print Date: 10/17/2019 11:25:31AM

CB
5

SGS CHAIN O



Revised Report - Revision 1

CLIENT:	27 B						Instr	Instructions: Omissions	Sections 1 - may delay the	1 - 5 must	istructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	<b>t</b>	
CONTACT:		PHONE #:	#:										Page i of
-	Carl Benson		-	22-254-206	151	Section 3	on 3			Preservative	ative		
ection NAME:	Foodland	PROJECT/ PWSID/ PERMIT#:		10061 . HLLDO . HOI	1005	# U		34	,,, ,,,,				
L.	TO:	E-MAIL:	~ hand	CONOCITIC	0.15UHIME	o z	Comp			Analysis*			NOTE:
	Carl Benson	Profile #	#: 3626	I ACPI	Profile #: 36261400		~		WI:				*The following analyses require
INVOICE TO	0: 56 R	QUOTE #: P.O. #:	#:	· /				2.0	5-002				specific method and/or compound list: BTEX.
RESERVED for lab use	<b>"</b>		DATE mm/dd/yy	TIME HH:MM		шсо	mental)	-28ms H¥6 8ms 2011 V¥K D&Q	-zams Htrd				Metals, PFAS REMARKS/LOC ID
A) A-E	2 MW 344		9/19/19	1900	Gw	ŝ	ى	× ×					
D.4-(1)				ZØDU	GW	5	0	X X	×				
212-1				2100	GW	2	0	×	×				
MA-C													
Secti													
								1					
Relinquished By: (1)	led By: (1)	Dat	<	Time	Received By:	$\left \right\rangle$			Section 4		DOD Project? Yes No		Data Deliverable Requirements:
aner (	In Arman	0	4-20-14	10201		1			Cooler ID:				
Relir	ed (By: (2)	// Date		Time	Beceived By:				Requested	Turnaround T	Requested Turnaround Time and/or Special Instructions:	cial Instructic	ins:
C noit	od Bur (3)	<u>A</u>	1319		Received By:					5	Standard		
						_			Temp Blank °C:		N	Chain of (	Chain of Custody Seal: (Circle)
Relinquished By: (4)	ed By: (4)	Date	14.66	Time [0:2]	Received For Laboratory By:	Laborat	Boratory By:			or Ambient [ ]	or Ambient [ ]	INTACT	BROKEN ABSENT
				ANG	IF IB	1.1	7 2 2	17					4
					21			ė	http://	ww.sgs.com/te	http://www.sgs.com/terms-and-conditions	SUC	
						Х. Г	1	<b>144</b>				F	37 of 40 F083-Blank_COC_20181228

000	e-Sam	ole Receipt	Form			Revised Re	eport - Revi	ision 1	
262	SGS Workorder #:	1	1997	795	5		99	79	5
	Review Criteria	Condition (Yes,	No, N/A		Exce	eptions N	oted bel	ow	
<u>Chair</u>	n of Custody / Temperature Requi	rements		N/A E	exemption per	rmitted if sar	npler hand	carries/deliv	/ers.
	Were Custody Seals intact? Note # & I	location Yes	1 front 1	back					
	COC accompanied sa								
DOD: We	re samples received in COC corresponding c								
-	N/A **Exemption permitted if			_					DC4
lempe	erature blank compliant* (i.e., 0-6 °C afte				1	@		Therm. ID:	
If samples received without	ut a temperature blank, the "cooler temperature" will	Yes	Cooler II	_	2	@		Therm. ID:	D44
documented instead & "COOLE	R TEMP" will be noted to the right. "ambient" or "ch		Cooler II	_		@		Therm. ID:	
k	be noted if neither is available.		Cooler I			@ @		Therm. ID: Therm. ID:	
*/f	>6°C, were samples collected <8 hours	ago? N/A	COOLEI IL	J.		<u>u</u>			
"		N/A							
	If <0°C, were sample containers ice	e free? N/A							
Note: Identify conta	ainers received at non-compliant temper Use form FS-0029 if more space is no								
Holding Time	/ Documentation / Sample Condition Re	equirements	Note: Refe	r to form	n F-083 "Sampl	e Guide" for s	pecific holdir	ng times.	
	Were samples received within holding							-	
Do samples match (	<b>COC</b> ** (i.e.,sample IDs,dates/times colle	ected)? Yes							
**Note: If times	differ <1hr, record details & login per Co	OC.							
***Note: If sample information of	on containers differs from COC, SGS will default to C	COC information							
	ts clear? (i.e., method is specified for an multiple option for analysis (Ex: BTEX, N								
				N/A **	**Exemption	permitted for	<u>metals (e</u> .	.g,200.8/602	<u>0A).</u>
Were proper contai	ners (type/mass/volume/preservative***)	)used? Yes							
	<u>Volatile / LL-Hg Req</u>	<u>uirements</u>							
	ks (i.e., VOAs, LL-Hg) in cooler with sar								
	vials free of headspace (i.e., bubbles $\leq 6$								
Were	all soil VOAs field extracted with MeOH	+BFB? N/A							
Note to	Client: Any "No", answer above indicates not	n-compliance	with stand	lard pro	ocedures and	may impact	data quali	ty.	
	Additiona	ll notes (if a	pplicabl	e):					

e-Sample	e Receipt	Form	FBK

COC	e-Sample	e-Sample Receipt Form FBK Revised Report - Revision			eport - Revision 1		
262	SGS Workorder #:	1	199795		1199795		
R	eview Criteria	Condition (Yes,	No, N/A	Exce	eptions N	oted below	
Chain Chain	of Custody / Temperature Require			Exemption per	ermitted if sampler hand carries/delivers.		
	Were Custody Seals intact? Note # & lo						
	COC accompanied sar						
DOD: Were	samples received in COC corresponding co					ale illinear in the state state of	
Tompor	ature blank compliant* (i.e., 0-6 °C after			s ago, or for sam	ipies where a	0.3 °C Therm. ID: D23	
Tempera		CF): Tes	Cooler ID:		@	°C Therm. ID:	
If samples received without	a temperature blank, the "cooler temperature" will b	be	Cooler ID:		@	°C Therm. ID:	
	TEMP" will be noted to the right. "ambient" or "chil noted if neither is available.	led" will	Cooler ID:		@	°C Therm. ID:	
*/f >	6°C, were samples collected <8 hours a	ago?	I				
	If <0°C, were sample containers ice	free?					
Note: Identify contain	ners received at non-compliant tempera						
	Use form FS-0029 if more space is ne	eded.					
Holding Time /	Documentation / Sample Condition Red	quirements	Note: Refer	to form F-083 "S	ample Guide	e" for specific holding times.	
	<b>C</b> ** (i.e.,sample IDs,dates/times collec						
**Note: If times d	liffer <1hr, record details & login per CC	C.					
***Note: If sample information on	containers differs from COC, SGS will default to CO	OC information					
Were samples in	good condition (no leaks/cracks/break	age)? Yes					
Were analytical requests	clear? (i.e., method is specified for ana	alvses					
	ultiple option for analysis (Ex: BTEX, M	letals)					
		Ý Yes					
	s (i.e., VOAs, LL-Hg) in cooler with sam als free of headspace (i.e., bubbles ≤ 6						
	Il soil VOAs field extracted with MeOH+						
	Hold Time, was RUSH/Short HT email		PAHs brea	k hold: 9/26/19			
	ient: Any "No", answer above indicates non				may impac	t data quality.	
	Additional	notes (If a	pplicable)				
SGS Profi	le#				0		
					-		



# **Sample Containers and Preservatives**

<u>Container Id</u>	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1199795001-A	HCL to $pH < 2$	ОК			
1199795001-B	HCL to $pH < 2$	OK			
1199795001-C	HCL to $pH < 2$	OK			
1199795001-D	HCL to $pH < 2$	OK			
1199795001-E	HCL to $pH < 2$	OK			
1199795002-A	HCL to $pH < 2$	OK			
1199795002-B	HCL to $pH < 2$	OK			
1199795002-C	No Preservative Required	OK			
1199795002-D	No Preservative Required	ОК			
1199795002-E	HCL to $pH < 2$	OK			
1199795002-F	HCL to $pH < 2$	ОК			
1199795002-G	HCL to $pH < 2$	ОК			
1199795003-A	HCL to $pH < 2$	ОК			
1199795003-B	HCL to $pH < 2$	ОК			
1199795003-C	No Preservative Required	ОК			
1199795003-D	No Preservative Required	ОК			
1199795003-E	HCL to $pH < 2$	OK			
1199795003-F	HCL to $pH < 2$	ОК			
1199795003-G	HCL to $pH < 2$	OK			
1199795004-A	HCL to $pH < 2$	OK			
1199795004-B	HCL to $pH < 2$	OK			
1199795004-C	HCL to $pH < 2$	ОК			

#### Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.