

November 30, 2020

Michael Hooper Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, Alaska 99709-3643

Re: 2020 Groundwater Sampling at the Carrs-Foodland Site in Fairbanks, Alaska, ADEC File 102.38.02.

Dear Mr. Hooper,

This letter report was prepared by SLR International Corporation (SLR) on behalf of the Bachner Company, Inc. (Bachner) to present the 2020 groundwater monitoring results at the Former Carrs-Foodland Site in Fairbanks, Alaska (Site).

Background

The Site is listed in the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Database under Hazard ID 1397 (File No. 102.38.02). The Site is reportedly impacted by historical release(s) from a former 500-gallon underground heating oil tank (former bakery underground storage tank [UST]) removed in 1991 (Shannon and Wilson 2002). The tank was located next to the Foodland Building, and is the current location of monitoring well MW-3. In a letter from ADEC to Bachner (ADEC, 2017b), ADEC requested that groundwater be sampled at the source area (MW-3) and at least one downgradient well on an annual basis until a stable and decreasing trend can be established for DRO concentrations, or until the results are less than the DRO groundwater cleanup level in Table C in subpart 345 of Chapter 75 of Title 18 of Alaska Administrative Code (18 AAC 75.345) (ADEC, 2020).

2020 Groundwater Sampling Activities

The work was performed in accordance with the ADEC approved Work Plan for the project (SLR, 2018), and was consistent with the ADEC field sampling guidance (ADEC, 2017a). Per the Work Plan, two wells were sampled:

- Monitoring well MW-3 on the north side of the Foodland Building where the bakery UST was formerly located; and,
- Monitoring well MW-34A, which is approximately 200 feet northwest and hydrologically downgradient of the MW-3 (Figure 1). MW-34A (formerly called TB124A) is the shallowest well in a downgradient well cluster. This well is known to be impacted by a chlorinated solvent plume from a former laundromat located upgradient from the Carrs-Foodland Site, referred to as the Gaffney Road East Coin King Site (ADEC Hazard ID 2573), (Ahtna, 2014).

An SLR Engineer, Mr. Evan Tyler, who is a qualified environmental professional as defined by 18 AAC 75.333, collected the samples for laboratory analysis. The sampling was completed on September 29, 2020. A photograph log documenting the site conditions during the sampling event is included as Attachment 1. Groundwater sampling forms and instrument calibration documentation completed during the site work are presented as Attachment 2 of this report.

Groundwater samples were collected using low-flow sampling methodology. The low-flow sampling method requires purging the well at a low flow rate (between 0.05 and 0.5 liters per minute [L/min]), while maintaining a drawdown of less than 0.3 feet, if possible. During the purging, up to six water quality parameters are measured (temperature, pH, conductivity, oxidation-reduction potential [ORP], dissolved oxygen [DO], and turbidity) at three to five-minute intervals. Purging is considered complete once water drawdown and water quality parameters are considered stable. Water quality parameters are considered stable when three consecutive discrete readings of at least three parameters (or four if temperature is used) are within the following criteria:

- Temperature (°C), plus minus (±) 3 percent (minimum of ± 0.2 °C);
- pH, ± 0.1 standard units;
- Specific conductance, ± 3 percent;
- Oxidation-reduction potential, ± 10 millivolts;
- Dissolved oxygen, ± 10 percent; and
- Turbidity, ± 10 percent, or below 10 nephelometric turbidity units.

The MW-34 well identified for sampling in 2018 was sampled in 2020 to assure sampling the same well in this cluster. Purging and sampling was completed with a down-hole ProActive[®] Monsoon stainless-steel pump with an adjustable flow rate. The two monitoring wells maintained near constant water levels during purging at flow rates of around 0.15 L/min and attained stable parameters. The water quality parameters were measured using a YSI 556 multi-parameter instrument. Water quality parameters were measured at periodic intervals, allowing for at least one volume of the YSI flow-through cell to be fully replaced between readings. The pH probe malfunctioned during sampling, but stabilization was attained with the four parameters of temperature, specific conductance, oxidation-reduction potential, and dissolved oxygen. After stability was attained, samples for laboratory analysis were collected. Primary and duplicate samples were collected from MW-3, and a primary sample was collected from the downgradient well MW-34A. The purge water was transported to NRC Alaska in Fairbanks for transportation under a nonhazardous waste manifest to the designated disposal facility (Clean Harbors Aragonite LLC, Aragonite, Utah; USEPA ID Number UTD961552177).

Sample Handling and Laboratory Analysis

Upon collection, groundwater samples were labeled and placed into a chilled cooler with a trip blank. Samples were transported to the SGS North America (SGS) laboratory in Fairbanks under chain of custody (COC) procedures. Groundwater samples were analyzed for the following:

- Diesel range organics (DRO) by Alaska Method AK102 (MW-3 and MW-34A);
- Volatile organic compounds (VOCs) by EPA Method 8260C (MW-3 and MW-34A); and,
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM (MW-3 only).

Analytical data were reviewed for consistency with the ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance Requirements (ADEC, 2009). Attachment 3 contains a Data Quality Assessment (DQA), ADEC Laboratory Data Review Checklist, and the laboratory analytical data package. Based on the DQA, the data were of good quality and acceptable for use with the noted qualifications. No data were rejected, and no issues were noted with regards to the data package, except as discussed below:

- The trip blank was recorded on the COC, but no collection date or time was assigned to it, and no analysis were requested. The laboratory assigned the trip blank a collection date and time of 9/29/20 at 20:10, which matches that of the earliest sample collected. The trip blank was appropriately analyzed for VOCs by Method SW8260D, the same method and analytes as the other samples on the SDG. No data were impacted.
- For DRO by Method AK102, the method blank result of 0.199 J mg/L was between the DL of 0.18 mg/L and LOD of 0.3 mg/L. Samples MW-3 and MW-93 had results well over five times that of the blank, thus were not affected. Sample MW-34A result of 0.498 J mg/L was already an estimated value with indeterminate bias due to the low level of detection, (below the LOQ); therefore, further qualification was considered inappropriate. All data were usable without additional qualification.
- For naphthalene by Method SW8260D, the method blank result of 0.346 J μg/L was between the DL of 0.31 μg/L and LOD of 0.5 μg/L. Associated samples MW-3 and MW-93 had results well over five times that of the blank, thus were not affected. All data was usable without qualification.
- The LODs for 1,2,3-trichloropropane by Method SW8260D did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the reported LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted. All data were usable without qualification.
- For sample MW-3 and duplicate MW-93, naphthalene was analyzed by Methods SW8260D and SW8270D. The SW8260D naphthalene results for parent sample MW-3 and field duplicate MW-93 were 54.3 μ g/L and 54.2 μ g/L. The SW8270D naphthalene results for these samples were 31.7 μ g/L and 33.9 μ g/L, approximately 60% of the

SW8260D reported values. For this analyte, the higher of the two reported values should be used for reporting purposes. All data are usable without qualification.

Analytical Results

The 2020 sampling event analytical results are provided in Table 1. Table 2 provides a summary of current and previous analytical results for MW-3 for selected parameters of interest. The results were screened against the current ADEC groundwater cleanup levels (ADEC, 2018).

- In MW-3, groundwater cleanup levels were exceeded for DRO, 1,2,4-trimethylbenzene, naphthalene, and 1-methylnaphthalene as shown on Table 1. The compounds exhibiting the greatest exceedance of the cleanup level were DRO and naphthalene, with detected concentrations of 51.3 mg/L and 54.3 μg/L versus groundwater cleanup levels of 1.5 mg/L and 1.7 μg/L, respectively. Chlorinated VOCs, perchloroethylene (PCE) and related daughter products including trichloroethylene (TCE) and vinyl chloride, were below detection limits in the groundwater sample collected from MW-3.
- The only analyte detected above ADEC cleanup levels in the groundwater sample collected from MW-34A was TCE at a concentration of 11.7 μg/L. In 2019, TCE was detected in the sample from MW-34A at a similar concentration of 16.2 μg/L. The analytes that exceeded groundwater cleanup levels in the sample from MW-3 (noted above) were non-detectable with the exception of DRO. The detected DRO concentration was significantly lower in the sample from MW-34A (0.498J mg/L) than MW-3 (51.3 mg/L), and well below the groundwater cleanup level (1.5 mg/L).

Discussion

The 2020 sample results indicate that the petroleum hydrocarbon contamination attributed to the Former Carrs-Foodland UST site has not caused significant downgradient impacts as evidenced by the non-detectable or nearly non-detectable concentrations of fuel related analytes in the downgradient well MW-34A. This suggests the petroleum hydrocarbon plume which was likely present since at least 1991 (when the leaking UST was removed), is stable and not migrating. With the exception of DRO, concentrations of target analytes observed in the sample from MW-3 were less than those observed in 2019, indicating a stable groundwater plume in the former UST source area.

The presence of the TCE in MW-34A is attributed to a Gaffney Road site and not associated with the Former Carrs-Foodland UST release. As noted, MW-3 had non-detectable chlorinated VOCs.

A comparison of the 2020 results in MW-3 with the cumulative historical results (Table 2) indicates contaminants of concern have been gradually decreasing over time, with occasional oscillations. The 2020 results in MW-3 are the first where BTEX compounds do not exceed groundwater cleanup levels. Concentrations of BTEX compounds have indicated a decreasing

trend since 1995. Concentrations of the other previously detected VOCs in groundwater samples collected from MW-3, 1,2,4-trimethylbenzene and naphthalene, were approximately half the concentrations detected in 2019 and were the lowest since VOC monitoring began in 2018. The concentration of 1-methylnaphthalene exceeded the Table C groundwater cleanup level and was similar to the concentration noted in 2018. The concentration of 2-methylnaphthalene was below the Table C cleanup level in 2020 and similar to the concentration measured in 2018. The DRO concentration of 51.3 mg/L in the groundwater sample collected from MW-3 in 2020 was the highest concentration noted since 2013 but was within historical ranges. The weight of evidence indicates the DRO concentration in the groundwater is steady state or decreasing as opposed to increasing. This condition is reasonable given the length of time (approximately 30 years) since the leaking UST(source) was removed.

Conclusions

The 2020 groundwater monitoring at the Carrs-Foodland Site indicates that petroleum hydrocarbon concentrations in the groundwater at the former UST location exceed ADEC groundwater cleanup levels and have decreased over time. The petroleum impacted groundwater plume does not appear to have migrated appreciably since the leaking UST (source) was removed in 1991 and is considered stable. This is evidenced by the sample results in the nearest downgradient well (MW-34A). The DRO, 1,2,4-trimethylbenzene, 1-methylnaphthalene, and naphthalene exceedances of the groundwater cleanup levels may persist in the immediate vicinity of the former UST for some time but pose little risk to human health or the environmental unless the groundwater is used as drinking water source.

Recommendation

Based on groundwater monitoring data collected since 1994, SLR recommends the site be closed with institutional controls to prevent uncontrolled use of groundwater. Given the Site is located in close proximity to a TCE groundwater plume from an upgradient source and an alternative source for drinking water is readily available and mandated by City of Fairbanks code via the municipal water system, the restriction on groundwater use should not pose a significant impact on Site use and is considered prudent.

Sincerely, SLR International Corporation

Ced Beusn

Carl Benson Principal Scientist/Project Manager

Cc: John Bachner, Bachner Company, Inc.

Enc Figure 1 - Site Map Table 1 - 2020 Groundwater Monitoring Results

> Table 2 - Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3
> Attachment 1 - Photograph Log
> Attachment 2 - YSI Calibration Log and Groundwater Sampling Forms

Attachment 3 - Data Quality Assessment, ADEC Checklist, SGS Laboratory Data Report

References

Ahtna Engineering. 2014. SFY 2104 Gaffney East: Groundwater Monitoring and Limited Addition Characterization Report. October.

- Alaska Department of Environmental Conservation (ADEC). 2009. Environmental Laboratory Data and Quality Assurance Requirements. Technical Memorandum. August.
- ADEC. 2017a. Field Sampling Guidance. August.
- ADEC. 2017b. Groundwater Monitoring-Former Carrs Foodland (file 102.38.027). Letter from Michael Hooper to J. Andrew Bachner. August 24.
- ADEC. 2020. Oil and Other Hazardous Substances Pollution Control. November 7.
- Shannon and Wilson (S&W). 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks Alaska. November 18.
- SLR International Corporation (SLR). 2018. Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK. August 7.

FIGURES

Figure 1 Site Map

SLR

tinterest and the second	Fitask Site Location
Chutchi Stor	Utqiagvik Deadhorse Deadhorse ALASKA Fairbanks
FORMER CARRS-FOO GROUNDWATER SAMI FAIRBANKS, ALASKA	
Date October 29, 2019 Sca File Name F1 Site Map_Foodland_19.mxd Pro	le 1 inch = 80 feet ect No. 105.00774.19001 Fig. No. 1

TABLES

- Table 1
 2020 Groundwater Monitoring Results
- Table 1
 Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3

Table 1 - 2020 Former Carrs-Foodland Site Groundwater Monitoring Results

	Screening Criteria		Trip Blank		
Compound in micrograms per Liter (µg/L)	18 AAC 75, Table C, Groundwater Cleanup Level ¹	Primary: MW-3 29-Sep-20 1209709001 Conc. ³	Duplicate: MW-93 29-Sep-20 1209709003 Conc. ³	MW-34A 29-Sep-20 1209709002 Conc. ³	Trip Blank 29-Sep-20 1209709004 Conc. ³
Fuels (AK102)		Conc.	Conc.	Conc.	Conc.
Diesel Range Organics	1500	51300	44100	498 J	
olatile Organic Compounds (SW8260D)					
,1,1,2-Tetrachloroethane	5.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
I,1,1-Trichloroethane	8000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
I,1,2,2-Tetrachloroethane	0.76	[0.25] U	[0.25] U	[0.25] U	[0.25] U
1,1,2-Trichloroethane	0.41	[0.2] U	[0.2] U	[0.2] U	[0.2] U
L,1-Dichloroethane	28 280	[0.5] U	[0.5] U	[0.5] U	[0.5] U
I,1-Dichloroethene		[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
L,2,3-Trichlorobenzene	7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
,2,3-Trichloropropane	0.0075	[0.5] U	[0.5] U	[0.5] U	[0.5] U
L,2,4-Trichlorobenzene	4	[0.5] U	[0.5] U	[0.5] U	[0.5] U
l,2,4-Trimethylbenzene	56	76.6	79	[0.5] U	[0.5] U
,2-Dibromo-3-chloropropane		[5] U	[5] U	[5] U	[5] U
,2-Dibromoethane	0.075	[0.0375] U	[0.0375] U	[0.0375] U	[0.0375] U
,2-Dichlorobenzene	300	[0.5] U	[0.5] U	[0.5] U	[0.5] U
,2-Dichloroethane	1.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
L,2-Dichloropropane	8.2	[0.5] U	[0.5] U	[0.5] U	[0.5] U
1,3,5-Trimethylbenzene	60 300	35.1	35.7 [0.5] U	[0.5] U	[0.5] U [0.5] U
L,3-Dichlorobenzene	300	[0.5] U [0.25] U	[0.5] U [0.25] U	[0.5] U [0.25] U	[0.5] U [0.25] U
I,3-Dichloropropane I,4-Dichlorobenzene	4.8	[0.25] U	[0.25] U	[0.25] U	[0.23] U
2,2-Dichloropropane		[0.23] U	[0.23] U	[0.23] U	[0.23] U
2-Butanone (MEK)	5600	81	8.22 J	[5] U	[5] U
2-Chlorotoluene		[0.5] U	[0.5] U	[0.5] U	[0.5] U
2-Hexanone	38	[5] U	[5] U	[5] U	[5] U
1-Chlorotoluene		[0.5] U	[0.5] U	[0.5] U	[0.5] U
l-Isopropyltoluene		3.36	3.34	[0.5] U	[0.5] U
I-Methyl-2-pentanone (MIBK)	6300	[5] U	[5] U	[5] U	[5] U
Benzene	4.6	0.131 J	0.14 J	[0.2] U	[0.2] U
Bromobenzene	62	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
Bromochloromethane Bromodichloromethane	1.3	[0.25] U	[0.3] U	[0.25] U	[0.3] U
Bromoform	33	[0.5] U	[0.23] U	[0.5] U	[0.5] U
Bromomethane	7.5	[2.5] U	[2.5] U	[2.5] U	[2.5] U
Carbon disulfide	810	[5] U	[5] U	[5] U	[5] U
Carbon tetrachloride	4.6	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chlorobenzene	78	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Chloroethane	21000	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chloroform	2.2	[0.5] U	[0.5] U	[0.5] U	[0.5] U
Chloromethane	190	[0.5] U	[0.5] U	[0.5] U	[0.5] U
is-1,2-Dichloroethene is-1,3-Dichloropropene	36 4.7	[0.5] U [0.25] U	[0.5] U [0.25] U	2.59 [0.25] U	[0.5] U [0.25] U
Dibromochloromethane	8.7	[0.25] U	[0.25] U	[0.25] U	[0.25] U
Dibromomethane	8.3	[0.23] U	[0.23] U	[0.23] U	[0.23] U
Dichlorodifluoromethane	200	[0.5] U	[0.5] U	[0.5] U	[0.5] U
thylbenzene	15	9.49	9.64	[0.5] U	[0.5] U
reon-113	10000	[5] U	[5] U	[5] U	[5] U
lexachlorobutadiene	1.4	[0.5] U	[0.5] U	[0.5] U	[0.5] U
sopropylbenzene (Cumene)	450	4.01	4.09	[0.5] U	[0.5] U
Aethylene chloride	110	[5] U	[5] U	[5] U	[5] U
Aethyl-t-butyl ether	140	[5] U	[5] U	[5] U	[5] U
Naphthalene	1.7	54.3 [0.5] U	54.2 [0.5] U	[0.5] U [0.5] U	[0.5] U [0.5] U
-Butylbenzene -Propylbenzene	660	7.47	7.68	[0.5] U	[0.5] U
-Yylene		14.6	14.6	[0.5] U	[0.5] U
& M -Xylene		29.1	29.2	[1] U	[1] U
ec-Butylbenzene	2000	2.06	2.19	[0.5] U	[0.5] U
tyrene	1200	[0.5] U	[0.5] U	[0.5] U	[0.5] U
ert-Butylbenzene	690	0.421 J	0.435 J	[0.5] U	[0.5] U
etrachloroethene	41	[0.5] U	[0.5] U	0.595 J	[0.5] U
oluene	1100	[0.5] U	[0.5] U	[0.5] U	[0.5] U
rans-1,2-Dichloroethene	360	[0.5] U	[0.5] U	7.21	[0.5] U
rans-1,3-Dichloropropene	4.7	[0.5] U	[0.5] U	[0.5] U	[0.5] U
richloroethene	2.8	[0.5] U	[0.5] U	11.7	[0.5] U
richlorofluoromethane	5200	[0.5] U	[0.5] U	[0.5] U	[0.5] U

Table 1 - 2020 Former Carrs-Foodland Site Groundwater Monitoring Results

	Screening Criteria		Sample Locations ²		Trip Blank
Compound in micrograms per Liter (µg/L)	18 AAC 75, Table C, Groundwater Cleanup Level ¹	Primary: MW-3 29-Sep-20 1209709001	Duplicate: MW-93 29-Sep-20 1209709003	MW-34A 29-Sep-20 1209709002	Trip Blank 29-Sep-20 1209709004
		Conc. ³	Conc. ³	Conc. ³	Conc. ³
Vinyl chloride	0.19	[0.075] U	[0.075] U	[0.075] U	[0.075] U
Xylenes (total) ⁴	190	43.7	43.9	[1] U	[1] U
PAH SIM (SW8270D LV)					
1-Methylnaphthalene	11	36.3	38.5		
2-Methylnaphthalene	36	31.8	33.8		
Acenaphthene	530	0.757	0.748		
Acenaphthylene	260	[0.0232] U	[0.0272] U		
Anthracene	43	[0.0232] U	[0.0272] U		
Benzo(a)Anthracene	0.3	[0.0232] U	[0.0272] U		
Benzo[a]pyrene	0.25	[0.00925] U	[0.0109] U		
Benzo[b]Fluoranthene	2.5	[0.0232] U	[0.0272] U		
Benzo[g,h,i]perylene	0.26	[0.0232] U	[0.0272] U		
Benzo[k]fluoranthene	0.8	[0.0232] U	[0.0272] U		
Chrysene	2	[0.0232] U	[0.0272] U		
Dibenzo[a,h]anthracene	0.25	[0.00925] U	[0.0109] U		
Fluoranthene	260	[0.0232] U	[0.0272] U		
Fluorene	290	2.33	2.18		
Indeno[1,2,3-c,d] pyrene	0.19	[0.0232] U	[0.0272] U		
Naphthalene	1.7	31.7	33.9		
Phenanthrene	170	1.58	1.46		
Pyrene	120	[0.0232] U	[0.0272] U		

Notes:

Bold and yellow values indicate an exceedance of Method Two Groundwater Cleanup Levels (footnote 1).

[0.0005] - Orange values indicate undetectable results with LODs above applicable ADEC screening criteria.

ADEC Method Two Groundwater Cleanup Levels , 18 AAC 75.345, Table C (November 7, 2020). 1

2 The field sample identification number, date collected, and laboratory sample identification number are provided.

3 Detected results are listed in µg/L in this column. For non-detect analytes, the highest LOD is shown in [brackets].

4 Total values were the summation of detected compounds only. The highest LOD was listed for non-detect compounds.

Data Flags:

U Undetectable, LOD is listed in brackets to the right.

Estimated value because the level is below the laboratory LOQ, but above the DL. J

UJ Undetectable result with an estimated LOD.

Estimated value due to one or more quality control failures. Where applicable, a "+" or "-" Q was appended to indicate a high or low bias.

Abbreviations:

	Not applicable or screening criteria does not exist for this compound
--	---

AAC AIdSKd AUTIIIIISU duve Coue	AAC	Alaska	Administrative Code
---------------------------------	-----	--------	---------------------

ADEC	Alaska Department of Environmental Conservation	μg/L	micrograms
AK	Alaska method	PAH	polycyclic are

- detection limit DL
- LOD limit of detection

LV

LOQ

SIM

limit of quantitation low volume

s per liter

- aromatic hydrocarbons
- selective ion monitoring

Table 2: Cumulative Groundwater Sample Results for Select Analytes of Interest in Monitoring Well MW-3 Former Carrs Foodland Site

An	alyte	DRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethylbenzene	1-Methylnaphthalene	2-Methylnaphthalene	PCE	TCE	Naphthalene ³	
Level ⁴ (µg	ater Cleanup /L except for PRO)	1.5 (mg/L)	4.6	1100	15	190	56	11	36	41	2.8	1.7	Reference
Well ID	Sample Date						Resu	lt ^{1,2} (μg/L)					
MW-3	Jan-94		35	1	52	180							1
MW-3	Apr-94		38	2	51	230							1
MW-3	Jul-94		8	<1	42	140							1
MW-3	Oct-94		28	2	44	250							1
MW-3	Jan-95		32	1	62	260							1
MW-3	Oct-95		10	1	40	124							1
MW-3	11/20/2002	11.8	3.7	<2	32	121							1
MW-3	9/4/2009	13.6	1.62	ND	27	108							2
MW-3	9/1/2012	96.3	3.12	1.92	15.8	83.2							3
MW-3	10/16/2013	66.4	2.61	0.82	20.1	82.7							4
MW-3	9/20/2018	24.8	0.41	ND	15.9	71	111	37.2 Q-	32.7 Q-	ND	ND	77	5
MW-3	9/19/2019	18.5	0.36 J	0.31 J	21.2	94.7	155	49.4 Q	42.4 Q	ND	ND	109	6
MW-3	9/29/2020	51.3	0.14 J	ND	9.64	43.9	79.0	38.5	33.8	ND	ND	54.3	7

Abbreviations

Exceeds screening criteria

DRO Diesel range organics

J Flag indicating the value is estimated below the limit of quantitation (LOQ).

μg/L micrograms per liter

mg/L milligrams per liter

-- Sample not analyzed for this compound.

- ND Analyte not detected
- PCE tetrachloroethylene
- TCE trichloroethylene

Notes

1-If a duplicate sample was collected, the higher of the two values is listed.

2-All results reported in μ g/L except for DRO which is reported in mg/L.

3-Naphthalene was analyzed by methods SW8260C and SW8270D LV. The higher of the two values is listed.

4-ADEC Method Two Groundwater Cleanup Levels, 18 AAC 75.345, Table C (November 7, 2020). All units in µg/L except for DRO which is in mg/L.

References

1- Shannon & Wilson, Inc., 2002. Level 1 Environmental Site Assessment, Carrs/Safeway Foodland, Fairbanks, Alaska. November 18.

2-SGS North America, Inc. (SGS), 2009. Laboratory Report of Analysis. September 17.

3- SLR International Corp, 2012. Bachner/Foodland Site Transmittal of Validated Data. October 4.

4-SGS, 2013. Laboratory Report of Analysis. Report Number 1138619. October 29.

5- SGS, 2018. Laboratory Report of Analysis. Report Number 1189788. October 2.

6- SGS, 2019. Laboratory Report of Analysis. Report Number 1199795. October 17.

7-SGS, 2020. Laboratory Report of Analysis. Report Number 1209709. November 3.

ATTACHMENTS

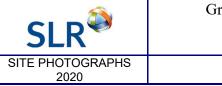

- Attachment 1 Photograph Log
- Attachment 2 YSI Calibration Log and Groundwater Sampling Forms
- Attachment 3 Data Quality Assessment, ADEC Checklist, SGS Laboratory Data Report

Photo 1: Monitoring well MW-34A during purging following removal of water from monument.

Photo 2: Location of monitoring well MW-34A.

Groundwater Sampling at the Former Carrs-Foodland Site Fairbanks, Alaska

Job No: 105.00774.20001

	29/20 Ifacturer and	Wate	r Paramete _{Time:} 1633		Calibratic	Eugn T	SLI yler	? **
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.06	CC630457	8/12/20	7/11/21	8.21	7.04	± 0,10
pН	4.00	4.09	CC599844	7/14/20	Visital	5.57	4.0)	± 0.10
	10.00	19.18	CC635213	8/2/20	8/13/21	10.31	10.19	± 0.10
Sp Cond (mS/cm)	1.413	1:413	C:C19505	8/12/20	2/12/2)	1457	1413	± 10%
ORP (mV)	240	240	3640	7/14/20	11/23	245,9	240,0	<u>Silkinenir</u>
DO*			29.64" Ho			96:2	99,6	± 2%

my S

If parameter not included in sampling event, fill in box with NA (not applicable) * Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Date:	Time:	Calibration By:
Meter Manufacturer and Identification #:	2 mm	

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00							± 0,10
рН	4.00							± 0.10
	10.00							± 0,10
Sp Cond (mS/cm)	1,413							± 10%
ORP (mV)	240							
DO*								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

. .

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00							± 0,10
рН	4,00							± 0,10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP (mV)	240							
DO*	2							± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Groundwater Sampling Form

Pump/Bailer	-	12		d TYes				
Pump/Bailer 55 Mon 50 pn Multi-Pa	rameter weter m	aneroin#)						
	nometer Meter	aka(SNI#)	1 1 5		100651			
Tubing: Polyethylene		O.D. 01	4" 🔲 3/8"	☐ 1/2"	Left in well			
Equipment:		2						
				51 4 11				
Notes:				52.5				
Ftotal								
PAH XZ	$\overline{\mathbf{V}}$							
V_{DC} $\times 3$	1				v			
Analyses Che	ck Applicable		_	Commo	ents			
	tical Sampling	1						
Sample Color: Sample Odo	or: piese		Shee	n: Nou	2			
Parameter Stable (Check applicable)		X						
		ar						
210 110 010						ra		
2132 150 4.11 8.65 888	0.90	4.72	-133.0	LOW	16.12	0.97		
2128 150 3.5L 8,66 887	0,980	126	-134.6	Low	16012	0,7.2		
2 24 150 2.96 8.46 887	1,17, 1	4.15	-1336	1000	16.10	9.20		
220 150 236 8,61 8,84	1,32	472	-133	low	11.10	0.20		
216 150 1.76 8,58 885	1,60	4,42	-1341	Law	16.07	0.17		
2112 150 1/1/ 8.51 882	2.20	4,24	-1328	LOW	16.03	0,13		
2108 150 0.54 8.51 881	6.55	4.10	-1205	IOW	1603	0.13		
(L3/cm) Circle one) (± 3 %) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)		
(24-hr) Rate Volume (°C) Conductance (mU/minute) ((μ or gal (μS/cm ^c)	17 III III	F	(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)		
Time Flow Purge Temp Specific	DO	pH	ORP	Turbidity	DTW	Drawdown		
Water Qu (Achieve stable parameters for 3 consecutive reading, 4 parameters if pra	uality Parameter	'S o taken afte	r pumping a	minimum of 1	low through cell	volume])		
	- 0.163 gal/ft		4" - 0.653	gal/ft	6" – 1.4	69 gal/ft		
Min. purge volume if required: purge volume (gal) = volume of water/ft(gal/ft) X Water colu			X # of casing		=gal		
LOW FLOW: Max Draw Down = (Tubing Depth – Top of Screen Depth)_ screen, then use default value of 0.3 ft. 1 gal = 3.785L, 1L = 0	X 0.25 =).264 gal	(ft); i	f screen inte	rval is not know	vn or water tabl	e is below top of		
Product Thickness (ft)		ge ⊺ime (r		27				
Depth to Product (ft. BTOC)		nd Time (24		2132				
Total Depth (ft BTOC): 72,16		art Time (2		$\frac{1}{2105}$				
Depth to Water (ft BTOC): 5,90	urging Informat		A PTOC	No IL C		6		
Well Condition: Good 🗍 Fair 🗋 Poor (if fair or poor explain in Note			Yes 🗌 N	o; If yes, <u>1</u>	15 abov	e ground Mich e		
Well Type: Permanent Temporary Well Diameter		Screen Int			SS to	ft BGS		
	I Information				ioqui ou ja			
Sampling Method: Z Low Flow D Other		D 🗌 Yes	No		Required: 💋	Yes 🗌 No		
Weather Conditions: 400 F Suny		Sample Time: 2 34 Sample Date: 9/29/20 Duplicate ID: MW - 93 9 2040						
Sampled By: E. Tdp(Sample		1124	Samole	Date: 9/7	9/20		
Project # : 104,007,74,20001	Sample		W-3					
Site/Client Name: Bochner	Well ID:	MW	-2					

Page 1 of

Groundwater Sampling Form

an tan D. L. a.	14 > 2//4			
Site/Client Name: Bachner	Well ID: MW-39A			
Project # : 104,00774,20001	Sample ID: MW-34A			
Sampled By: E Tyler	Sample Time: 20 0 Sample Date: 9/29/20			
Weather Conditions: 46°F, SUMY	Duplicate ID:			
Sampling Method: Low Flow D Other	MS/MSD 🗌 Yes 🖉 No 🛛 Trip Blank Required: 🗹 Yes 🗌 No			
V	Vell Information			
Well Type: Permanent Temporary Well Diamet	ter in. Screen Interval: ft BGS to ft BGS			
Well Condition: 🗌 Good 🖉 Fair 🗌 Poor (if fair or poor explain in N	lotes) Stickup 🗌 Yes 🔽 No; If yes,ft above ground			
	g/Purging Information			
Depth to Water (ft BTOC): 1,93	Tubing/Pump Depth (ft. BTOC): ~ 12, 75			
Total Depth (ft BTOC): 19,74 Depth to Product (ft. BTOC)	Purge Start Time (24-hr) 1918			
Product Thickness (ft)	Purge End Time (24-hr) 2005 Total Purge Time (min) 47-			
LOW FLOW: Max Draw Down = (Tubing Depth - Top of Screen Dept	h) X 0.25 = (ft): if screen interval is not known or water table is below top of			
screen, then use default value of 0.3 ft. 1 gal = 3.785L, 1L	. = 0.264 gal			
Min. purge volume if required: purge volume (gal) = volume of water/fi				
	2" – 0.163 gal/ft 4" – 0.653 gal/ft 6" – 1.469 gal/ft			
Water (Achieve stable parameters for 3 consecutive reading, 4 parameters if	Quality Parameters practical [each reading taken after pumping a minimum of 1 flow through cell volume])			
Time Flow Purge Temp Specif				
(24-hr) Rate Volume (°C) Conducta	ance (mg/L) (mV) (NTU) (ft BTOC) (ft)			
(mL/minute) (or gal (μS/cm Circle one) (± 3 %) (± 3%)				
Q 1920 301 mlb 0.66 6.97 505	0 85 10 20 1911 d 1 10 54 1 10			
	3.07 6.40 75.4 Low 3.73 1, 30			
1926 200 1.86 6:30 719	2.70 5.05 15.5 LOW 3.07 1.14			
1929 200 2.46 6.23 799	1.92 4.82 -18,5 LOW 12.76 2.83			
1933 150 3.06 6.32 816	1.66 4.37 48.7 LOW 12.54 0.61			
1937 150 3.62 5.98 805	1 152 3.6L-63.9/0W 12,33 0.40			
1941 150 4.26 5.82 798	149 3,35-48,9 LOW 12,40 0,67			
1945 150 4,865,73 78	5 1.24 3.30-528 5 LOW 12,88 0.95			
949 150 5.46 5.69 777	2 1.22 3,29-5340 LOW 12,99 Oct 1.06			
1953 150 6:06 5:50 765	116 3.29-5338 LOW 13,1 1,17			
1957 150 666 5.29 761	1,11 3,32-532,6 LOW 13,020,89			
2001 150 7.16 5.13 749	1.08 3.38 -527.4 LOW 13.02 0.89			
Parameter Stable (Check applicable)	1100 515 50117 EVIC 1510 CV.81			
Sample Color: led Sample C				
	alytical Sampling Check Applicable Comments			
	Comments			
DRO XZ	V/			
VOC ×3				
-PAH-EI 5 katal				
Notes: Manage Oll Propter Hit La				
Monument full of water. had to	purge w/ peri pump priar to opening			
well CAP, Well began pool contactor	purge w/ peri pump prior to opening ~ 1941. ORP spille susdaned bta 1944-2005			
Equipment:	() () () () () () () () () ()			
Tubing: Polyethylene	0.D. 1/4" 3/8" 1/2" Left in well Yes No			
	Parameter Meter make/SN#) SI oro 07510065/			
W.L. Indicator Turbidity Meter (Make/SN#)	Filtered I Yes No Lot #			
urge Water Handling: Discharged to surface Containerized Treated (how?) 0 ml from				

Page 1 of 🗘

paramaters cont frem Pg 1.

Groundwater Sampling Form

Site/Client I	Name: B	daac	-				1				
Project # : / (04.007	chaer -	001				Well ID:	Must 21	14		
Sampled By:	E		1001				Sample	MW-30	1./+		
Weather Con	ditione: //	yler					Sample IL	MW-	59A		
Sampling Math	idiaons: 9	6"F SU	nny				Sample Ti	me: 200	Sar	nple Date:	Mat
Sampling Meth	lod: Low	Flow 🛛 O	ther				Duplicate	D:	~	pie bute.	424/2
Well Type:	200000		1890 IST				MS/MSD [Yes 🗹 No	Trip Play		
Well Type:		Tempora	iry		Well Diamota	ell Inform	ation			nk Required:	🖉 Yes 🗋
Well Condition:	LI Good	Fair 🗋 Po	oor (if fair o	r poor	explain in Ma	12	_in. Scr	een Interval:		DOD :	
Depth to Water	(A BTOCH	and the second second			Gauginal	tes)	Stic	kup 🗌 Yes 🔽	No: If yes		ft BGs
I otal Depth (ft E	STOCH	11.93	5		ounging/	Purging I	mauon			ft ab	ove ground
Luepth to Product	A DTOON	MAT					using/Pump	Depth (ft. BTC	DC): ~17	175	
Floauct Thicknes	ss (ft)						arge olar	me (24 br)	1918		
LOW FLOW:	Max Draw Dov	wn = (Tubin	Donth -		Screen Depth)	Te	urge End Til otal Purge T	ne (24-hr)	2005		
Min, purge volume	creen, then us	e default val	ue of 0.3 ft.	op of S	Screen Depth)_ 3.785L, 1L = 0	x	0.25 =	me (min)	47	CORRE	
Min. purge volume Well Diameter	- cal/ft				vater/#	0.264 gai		_(ft); if screen in	terval is not kn	own or water ta	ble is below to
			0.041 gal/	π	0.			KIPSe			
(Achieve stal	ble parameters	for 3 cores			Water Ou	olity D	/π	4"-0.653	gal/ft	volumes	=(
Time	Flow	Purse	cutive readir	ng, 4 pa	rameters if prac	ctical [each	meters			0-1	469 gal/ft
(24-hr)	Rate	Volume	Tem	p	Specific	DC		4" - 0.653 after pumping a	minimum of 1	flow through cel	Volumet
-	(morninute)	or gal			Conductance (µS/cm ^e)	(mg/	L) P	ORP (mV)		DIW	Drawdow
2005	150		(-0 /0		(± 3%)	(± 109	%) (± 0_1		(NTU) (± 10%, or	(ft BTOC)	(ft)
	124	F.BL	- 5,1	8	744	1.0	1-2 0-1	(= romv)	<5 NTU)		(Maxfi
						1.0	3 3,3	8 -528.0	LOW	13.08	110
						+		-		CVACE!	1:15
								1 1		1	
			1								
								1			
			0.000								
				1-							
				-							
							1				
							1				
Parameter Stable (C	Check and		1								
mple Color: (00	A leck application	able)	V	V		1	New				
	\checkmark			Sam	ple Odor: /	V	NO	V			
				oum		Vone		Sheen:	il. O		
00	Analyses			-	Analytical S	Sampling		/	None		
PRO X2					Check Ap	plicable			Comments		
VOC X3			6		-V		1		comments		
	5 toito		-		V						
s: Sel a 1	D D	(a.11	0	1.00							
s: See pg 1	- D	awdi	own	CA	teria	not a	- de :	PA -			
15	- D 3	(Awda well	own Velum	CAR	teria i	not pr	acticab	e. Poor	rech		
)Ment:	- D 3	awdi well	own Volum	e p	teria i lurge n	not pr	a deah	e, Poor	recharg	e make	5
ment:	D 3	(awdi well	own Velum	Crite p	teria i voge n	not pr of pr	a dreab	e, Poor e,	recharg	e make	5
ment: g: □Polyethylene /Bailer_55 Mod	D 3 DPFTE-Line	GWd1 We∏ ed ⊡Other	own relim					125			
)Ment:	Sogn	ed []Other		Mu		- 0		e, Por e, 23/8" [] 1/2 75/006		e Make	

Page 2 of _____

LABORATORY DATA QUALITY ASSURANCE REVIEW BACHNER

2020 GROUNDWATER MONITORING AT THE FORMER CARRS-FOODLAND SITE IN FAIRBANKS, AK

NOVEMBER 2020

Prepared by: Jennifer McLean Reviewed by: Carl Benson

SLR Project Number: 104.00774.19001 ADEC Number: 102.38.027 ADEC Hazard ID: 1397

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

ACRONYMS AND ABBREVIATIONS

SIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.USEPAUnited States Environmental Protection AgencyVOCsvolatile organic compounds	AAC AK ADEC °C CCV COC DL DRO EDD GW LCS LCSD LOD LOQ LV mg/L MS MSD NA NFG PAH PARCS QA QAR QC RPD SDG	Alaska Administrative Code Alaska Alaska Department of Environmental Conservation degrees Celsius continuing calibration verification chain of custody detection limit diesel range organics electronic data deliverable groundwater laboratory control sample laboratory control sample duplicate limit of detection limit of quantitation low volume milligrams per liter matrix spike matrix spike duplicate not applicable National Functional Guidelines polynuclear aromatic hydrocarbons precision, accuracy, representativeness, comparability, and sensitivity quality assurance quality assurance review quality control relative percent difference sample delivery group
SDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.USEPAUnited States Environmental Protection Agency	QAR QC	quality assurance review quality control
SLRSLR International CorporationSGSSGS North America, Inc.USEPAUnited States Environmental Protection Agency	SDG	sample delivery group
USEPA United States Environmental Protection Agency	SLR	SLR International Corporation
		United States Environmental Protection Agency volatile organic compounds

Introduction

This report summarizes a review of analytical data for samples collected on September 29, 2020 in support of the groundwater monitoring activities at the former Carrs-Foodland site in Fairbanks, Alaska. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1Sample Summary

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank ¹
1209709	9/29/20	Fairbanks: 9/30/20 Anchorage: 10/1/20	Fairbanks: 1.0°C Anchorage: 4.6°C	GW	SW8260D AK102 SW8270D LV	VOCs DRO PAH SIM	Required NA NA

Notes:

1 – This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody (COC).

Acronyms: AK - Alaska °C – degrees Celsius DRO – diesel range organics GW – groundwater LV – low volume NA – not applicable PAH – polynuclear aromatic hydrocarbons SDG – sample delivery group SIM – selective ion monitoring VOCs – volatile organic compounds

The laboratory final report was presented as a Level II deliverable and included documentation of the delivery group COC and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided. The laboratory report is provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the Work Plan (SLR, 2018), ADEC Technical Memorandum, *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data* (ADEC, 2019) requirements, *National Functional Guidelines for Superfund Organic Methods Data Review* (NFG, United States Environmental Protection Agency [USEPA] 2017), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and is included as Attachment 1 to this quality assurance review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, and sensitivity (PARCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), Laboratory Control Sample Duplicates (LCSD), Matrix Spikes (MS), and Matrix Spike Duplicates (MSD) were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSDs, and MS/MSDs; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to data as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for but was not detected above the detection limit (DL). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection or both the blank detection and sample detection were below the limit of detection (LOD), and the result is likely a false positive. The greater of the sample detection or LOD was reported as non-detect in brackets.

Table 2Data Qualifiers

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

A discussion of the project data quality relative to PARCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

 For sample MW-3 and duplicate MW-93, naphthalene was analyzed by Methods SW8260D and SW8270D. The SW8260D naphthalene results for parent sample MW-3 and field duplicate MW-93 were 54.3 μg/L and 54.2 μg/L. The SW8270D naphthalene results for these samples were 31.7 μg/L and 33.9 μg/L, approximately 60% of the SW8260D reported values. For this analyte, the higher of the two reported values should be used for reporting purposes. All data is usable without qualification.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples, except as noted below.

• The trip blank was recorded on the COC, but no collection date or time was assigned to it, and no analysis were requested. The laboratory assigned the trip blank a collection date and time of 9/29/20 at 20:10, which matches that of the earliest sample collected. The trip blank was appropriately analyzed for VOCs by Method SW8260D, the same method and analytes as the other samples on the SDG. No data were impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted with regards to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the DL or LOD in any method blanks, except as noted below.

- For DRO by Method AK102, the method blank result of 0.199 J mg/L was between the DL of 0.18 mg/L and LOD of 0.3 mg/L. Samples MW-3 and MW-93 had results well over five times that of the blank, thus were not affected. Sample MW-34A result of 0.498 J mg/L was already an estimated value with indeterminate bias due to the low level of detection, (below the LOQ); therefore, qualification was considered inappropriate. All data were usable without additional qualification.
- For naphthalene by Method SW8260D, the method blank result of 0.346 J μg/L was between the DL of 0.31 μg/L and LOD of 0.5 μg/L. Associated samples MW-3 and MW-93 had results well over five times that of the blank, thus were not affected. All data was usable without qualification.

Trip Blanks

One trip blank was analyzed for VOCs by Method SW8260D. Analytes were not detected at or above the DL or LOD in the trip blank.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). Except as noted below, all analytes with results of non-detect had LODs at or below applicable regulatory criteria.

 The LODs for 1,2,3-trichloropropane by Method SW8260D did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the reported LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted. All data were usable without qualification.

Continuing Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits.

Laboratory Control Samples and Laboratory Control Sample Duplicates

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS/LCSD recoveries and RPDs were within acceptable limits.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD recoveries and RPDs were within acceptable limits.

Field Duplicates

The field duplicate sample frequency is presented in Table 3. Parent sample and field duplicates are presented in Table 4. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters. Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Number of Primary	Number of Field Duplicates	Method	Analytes
2	1	AK 102 LV	DRO
2	1	SW8260D	VOCs
1	1	SW8270D LV	PAH SIM

Table 3 Field Duplicate Count

Table 4 Parent Samples and Field Duplicates

Matrix	Parent Sample	Field Duplicate	Method	Analytes
Groundwater	MW-3	MW-93	SW8260D AK102 SW8270D LV	VOCs DRO PAH SIM

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Data Packages section.
- Accuracy: Accuracy goals were met.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Sensitivity: Sensitivity goals were met, except as noted in the Method Blanks and Reporting Limits sections.

These data were considered of good quality acceptable for use with the only limitation noted in the Reporting Limits section. The data were 100% complete with respect to analysis. No data were rejected.

References

ADEC (Alaska Department of Environmental Conservation), 2019. Technical Memorandum *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data.* October.

ADEC, 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. October 27.

SLR International Corporation (SLR), 2018. Work Plan for Sampling Groundwater at the Carrs-Foodland Site in Fairbanks, AK. August 7.

U.S. Environmental Protection Agency (USEPA), 2017. *National Functional Guidelines for Superfund Organic Methods Data Review.* January.

Attachment 1

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed By:

Jennifer McLean

Title:

Associate Scientist

Date:

November 4, 2020

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1209709

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

ADEC File Number:

102.38.027

Hazard Identification Number:

1397

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

2.

3.

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes⊠	No□	N/A	Comments:
	imples were laska.	receive	d at, and al	l analyses were conducted at SGS North America Inc., in Anchorage,
b.	1			ed to another "network" laboratory or sub-contracted to an alternate y performing the analyses ADEC CS approved?
	Yes□	No□	N/A⊠	Comments:
Chair	n of Custody	/ (CoC)		
a.	CoC inform	nation c	completed,	signed, and dated (including released/received by)?
	Yes⊠	No□	N/A	Comments:
b.	Correct and	alyses re	equested?	
	Yes⊠	No□	N/A	Comments:
Labo	ratory Samp	le Rece	<u>ipt Docum</u>	entation
a.	Sample/co	oler terr	perature d	ocumented and within range at receipt (0° to 6° C)?
	Yes⊠	No□	N/A	Comments:
b.			on acceptat ed Solvents	ble – acidified waters, Methanol preserved VOC soil (GRO, BTEX, s, etc.)?
	Yes⊠	No□	N/A	Comments:

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:No issues were noted.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \boxtimes No \square N/A \square	Comments:	

No discrepancies were noted.

e. Data quality or usability affected?

Comments:

No impact.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \square No \square N/A \boxtimes Comments:

None were noted.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

None were necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

No impact.

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

The trip blank was recorded on the COC, but no analysis was requested. trip blank was appropriately analyzed for VOCs by Method SW8260D, the same method and analytes as the other samples on the SDG. No data were impacted.

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Only water samples were analyzed for this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

Except as noted below, yes.

The LODs for 1,2,3-trichloropropane by Method SW8260D did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations.

e. Data quality or usability affected?

For this compound it is not possible to state with certainty the absence of target analyte below the reported LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted. All data were usable without qualification.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

For DRO by Method AK102, the method blank result of 0.199 J mg/L was between the DL of 0.18 mg/L and LOD of 0.3 mg/L.

For naphthalene by Method SW8260D, the method blank result of 0.346 J μ g/L was between the DL of 0.31 μ g/L and LOD of 0.5 μ g/L.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

For DRO, samples MW-3 and MW-93 had results well over five times that of the blank, thus were not affected. Sample MW-34A result of 0.498 J mg/L was already an estimated value with indeterminate bias due to the low level of detection (below the LOQ).

For naphthalene, associated samples MW-3 and MW-93 had results well over five times that of the blank, thus data were not affected.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \boxtimes N/A \square Comments:

For DRO, sample MW-34A result of 0.498 J mg/L was already an estimated value Since the data were already flagged as estimated, additional qualification was considered inappropriate.

v. Data quality or usability affected?

Comments:

All data were usable without qualification.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

No inorganics were analyzed.

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No impact.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

No inorganics were analyzed.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/	$A\square$ Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

No impact.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

iv. Data quality or usability affected?

Comments:

No impact.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

The trip blank was recorded on the COC, but no collection date or time was assigned to it, and no analysis were requested. The laboratory assigned the trip blank a collection date and time of 9/29/20 at 20:10, which matches that of the earliest sample collected. The trip blank was appropriately analyzed for VOCs by Method SW8260D, the same method and analytes as the other samples on the SDG. No data were impacted.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

Not applicable.

v. Data quality or usability affected?

Comments:

No impact.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

MW-93 was a duplicate of MW-3.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

No impact.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Dedicated or disposable equipment was used for the collection of all samples.

1209709

Laboratory Report Date:

November 3, 2020

CS Site Name:

Bachner: Carrs-Foodland Groundwater Monitoring

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

Not applicable.

iii. Data quality or usability affected?

Comments:

No impact.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

Attachment 2

Laboratory Deliverable

(Data package)

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 543 3rd Ave, Suite 235 Fairbanks, AK 99701 (907) 452-2252

Report Number: 1209709

Client Project: Bachner

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Date

Sincerely, SGS North America Inc.

Justin Nelson

Project Manager Justin.Nelson@sgs.com Revised Report - Revision 1 - This report has been reissued to repost VOC results as follows: 1209709-001 is now 1209709-003

1209709-002 is now 1209709-001 1209709-003 is now 1209709-002

Print Date: 11/03/2020 3:22:26PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1209709 Project Name/Site: Bachner Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/03/2020 3:22:28PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

		ort of Manual Integration		
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	<u>Reason</u>
W8260D				
1209709001	MW-3	VMS20392	4-Isopropyltoluene	SP
1209709003	MW-93	VMS20392	4-Isopropyltoluene	SP
Manu	al Integration Reason Code Descripti	ons		
Code	Description			
0	Original Chromatogram			
Μ	Modified Chromatogram			
SS	Skimmed surrogate			
BLG	Closed baseline gap			
RP	Reassign peak name			
PIR	Pattern integration required			
IT	Included tail			
SP	Split peak			
RSP	Removed split peak			
FPS	Forced peak start/stop			
BLC	Baseline correction			
PNF	Peak not found by software			
	O/RRO analysis are integrated per S	AD		

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. e integrated per SOP.

Print Date: 11/03/2020 3:22:30PM

Note:

Sample Summary										
Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>						
MW-3	1209709001	09/29/2020	10/01/2020	Water (Surface, Eff., Ground)						
MW-34A	1209709002	09/29/2020	10/01/2020	Water (Surface, Eff., Ground)						
MW-93	1209709003	09/29/2020	10/01/2020	Water (Surface, Eff., Ground)						
Trip Blank	1209709004	09/29/2020	10/01/2020	Water (Surface, Eff., Ground)						
Method	Method De	scription								
8270D SIM LV (PAH)	8270 PAH	SIM GC/MS LV								
AK102	DRO Low \	/olume (W)								
SW8260D	Volatile Org	ganic Compounds ((W) FULL							

Print Date: 11/03/2020 3:22:31PM

Detectable Results Summary

Client Sample ID: MW-3			
Lab Sample ID: 1209709001	<u>Parameter</u>	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	36.3	ug/L
-	2-Methylnaphthalene	31.8	ug/L
	Acenaphthene	0.757	ug/L
	Fluorene	2.33	ug/L
	Naphthalene	31.7	ug/L
	Phenanthrene	1.58	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	51.3	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	76.6	ug/L
	1,3,5-Trimethylbenzene	35.1	ug/L
	2-Butanone (MEK)	8.00J	ug/L
	4-Isopropyltoluene	3.36	ug/L
	Benzene	0.131J	ug/L
	Ethylbenzene	9.49	ug/L
	Isopropylbenzene (Cumene)	4.01	ug/L
	Naphthalene	54.3	ug/L
	n-Propylbenzene	7.47	ug/L
	o-Xylene	14.6	ug/L
	P & M -Xylene	29.1	ug/L
	sec-Butylbenzene	2.06	ug/L
	tert-Butylbenzene	0.421J	ug/L
	Xylenes (total)	43.7	ug/L
Client Sample ID: MW-34A			
Lab Sample ID: 1209709002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.498J	mg/L
Volatile GC/MS	cis-1,2-Dichloroethene	2.59	ug/L
	Tetrachloroethene	0.595J	ug/L
	trans-1.2-Dichloroethene	7.21	ug/L
	Trichloroethene	11.7	ug/L

Print Date: 11/03/2020 3:22:33PM

SGS

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW-93			
Lab Sample ID: 1209709003	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	38.5	ug/L
-	2-Methylnaphthalene	33.8	ug/L
	Acenaphthene	0.748	ug/L
	Fluorene	2.18	ug/L
	Naphthalene	33.9	ug/L
	Phenanthrene	1.46	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	44.1	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	79.0	ug/L
	1,3,5-Trimethylbenzene	35.7	ug/L
	2-Butanone (MEK)	8.22J	ug/L
	4-Isopropyltoluene	3.34	ug/L
	Benzene	0.140J	ug/L
	Ethylbenzene	9.64	ug/L
	Isopropylbenzene (Cumene)	4.09	ug/L
	Naphthalene	54.2	ug/L
	n-Propylbenzene	7.68	ug/L
	o-Xylene	14.6	ug/L
	P & M -Xylene	29.2	ug/L
	sec-Butylbenzene	2.19	ug/L
	tert-Butylbenzene	0.435J	ug/L
	Xylenes (total)	43.9	ug/L

Print Date: 11/03/2020 3:22:33PM

SGS

SGS North America Inc.

Client Sample ID: **MW-3** Client Project ID: **Bachner** Lab Sample ID: 1209709001 Lab Project ID: 1209709

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1-Methylnaphthalene	36.3	0.463	0.139	ug/L	10		10/07/20 22:16
2-Methylnaphthalene	31.8	0.463	0.139	ug/L	10		10/07/20 22:16
Acenaphthene	0.757	0.0463	0.0139	ug/L	1		10/07/20 02:33
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		10/07/20 02:33
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		10/07/20 02:33
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Fluorene	2.33	0.0463	0.0139	ug/L	1		10/07/20 02:33
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Naphthalene	31.7	0.926	0.287	ug/L	10		10/07/20 22:16
Phenanthrene	1.58	0.0463	0.0139	ug/L	1		10/07/20 02:33
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		10/07/20 02:33
Surrogates							
2-Methylnaphthalene-d10 (surr)	50.2	37-78		%	1		10/07/20 02:33
Fluoranthene-d10 (surr)	62.2	24-116		%	1		10/07/20 02:33

Batch Information

Analytical Batch: XMS12321 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/20 02:33 Container ID: 1209709001-C

Analytical Batch: XMS12323 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/20 22:16 Container ID: 1209709001-C Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/03/20 08:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/03/20 08:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Collection Date: 09/29/20 21:34 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results of MW-3							
Client Sample ID: MW-3 Client Project ID: Bachner Lab Sample ID: 1209709001 Lab Project ID: 1209709		F N S	Collection Da Received Da Matrix: Water Solids (%): ocation:	te: 10/01/2	20 08:44		
Results by Semivolatile Organic Fuel s Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	51.3	0.577	0.173	mg/L	1		10/11/20 20:43
u rrogates 5a Androstane (surr)	110	50-150		%	1		10/11/20 20:43
Container ID: 1209709001-A			Prep Extract				

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Client Sample ID: **MW-3** Client Project ID: **Bachner** Lab Sample ID: 1209709001 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 21:34 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		10/08/20 01:50
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,2,4-Trimethylbenzene	76.6	1.00	0.310	ug/L	1		10/08/20 01:50
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		10/08/20 01:50
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,3,5-Trimethylbenzene	35.1	1.00	0.310	ug/L	1		10/08/20 01:50
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
2-Butanone (MEK)	8.00 J	10.0	3.10	ug/L	1		10/08/20 01:50
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
4-Isopropyltoluene	3.36	1.00	0.310	ug/L	1		10/08/20 01:50
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Benzene	0.131 J	0.400	0.120	ug/L	1		10/08/20 01:50
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Bromomethane	2.50 U	5.00	2.00	ug/L	1		10/08/20 01:50
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
Chloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-3** Client Project ID: **Bachner** Lab Sample ID: 1209709001 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 21:34 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:50
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Ethylbenzene	9.49	1.00	0.310	ug/L	1		10/08/20 01:50
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Isopropylbenzene (Cumene)	4.01	1.00	0.310	ug/L	1		10/08/20 01:50
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Naphthalene	54.3	1.00	0.310	ug/L	1		10/08/20 01:50
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
n-Propylbenzene	7.47	1.00	0.310	ug/L	1		10/08/20 01:50
o-Xylene	14.6	1.00	0.310	ug/L	1		10/08/20 01:50
P & M -Xylene	29.1	2.00	0.620	ug/L	1		10/08/20 01:50
sec-Butylbenzene	2.06	1.00	0.310	ug/L	1		10/08/20 01:50
Styrene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
tert-Butylbenzene	0.421 J	1.00	0.310	ug/L	1		10/08/20 01:50
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Toluene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:50
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:50
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/08/20 01:50
Xylenes (total)	43.7	3.00	1.00	ug/L	1		10/08/20 01:50
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		10/08/20 01:50
4-Bromofluorobenzene (surr)	107	85-114		%	1		10/08/20 01:50
Toluene-d8 (surr)	100	89-112		%	1		10/08/20 01:50

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

11 of 51

Revised Report - Revision 1

Results of MW-3

Client Sample ID: **MW-3** Client Project ID: **Bachner** Lab Sample ID: 1209709001 Lab Project ID: 1209709

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20392 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 10/08/20 01:50 Container ID: 1209709001-F Collection Date: 09/29/20 21:34 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX36497 Prep Method: SW5030B Prep Date/Time: 10/07/20 15:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Member of SGS Group

12 of 51

Results of MW-34A							
Client Sample ID: MW-34A Client Project ID: Bachner Lab Sample ID: 1209709002 Lab Project ID: 1209709	R M S	Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels	3		_			Allowable	
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.498 J	<u>LOQ/CL</u> 0.625	<u>DL</u> 0.188	<u>Units</u> mg/L	<u>DF</u> 1	Limits	Date Analyzed
urrogates	0.496 J	0.625	0.100	mg/L	I		10/11/20 20.5
5a Androstane (surr)	95.5	50-150		%	1		10/11/20 20:5
Batch Information							
Analytical Batch: XFC15769 Analytical Method: AK102 Analyst: CDM Analytical Date/Time: 10/11/20 20:53 Container ID: 1209709002-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 10/08/2 /t./Vol.: 240	20 16:01		

J flagging is activated

Client Sample ID: **MW-34A** Client Project ID: **Bachner** Lab Sample ID: 1209709002 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/07/20 02:26
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/07/20 02:26
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/07/20 02:26
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/07/20 02:26
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/07/20 02:26
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/07/20 02:26
Benzene	0.200 U	0.400	0.120	ug/L	1	10/07/20 02:26
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/07/20 02:26
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/07/20 02:26
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/07/20 02:26
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/07/20 02:26

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-34A** Client Project ID: **Bachner** Lab Sample ID: 1209709002 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
cis-1,2-Dichloroethene	2.59	1.00	0.310	ug/L	1		10/07/20 02:26
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/07/20 02:26
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/07/20 02:26
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/07/20 02:26
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		10/07/20 02:26
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/07/20 02:26
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/07/20 02:26
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Styrene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Tetrachloroethene	0.595 J	1.00	0.310	ug/L	1		10/07/20 02:26
Toluene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
trans-1,2-Dichloroethene	7.21	1.00	0.310	ug/L	1		10/07/20 02:26
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Trichloroethene	11.7	1.00	0.310	ug/L	1		10/07/20 02:26
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/07/20 02:26
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/07/20 02:26
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/07/20 02:26
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		10/07/20 02:26
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		10/07/20 02:26
4-Bromofluorobenzene (surr)	98.6	85-114		%	1		10/07/20 02:26
Toluene-d8 (surr)	98.5	89-112		%	1		10/07/20 02:26

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Revised Report - Revision 1

Results of MW-34A

Client Sample ID: **MW-34A** Client Project ID: **Bachner** Lab Sample ID: 1209709002 Lab Project ID: 1209709

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20388 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 10/07/20 02:26 Container ID: 1209709002-D Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX36489 Prep Method: SW5030B Prep Date/Time: 10/06/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Member of SGS Group

16 of 51

Client Sample ID: **MW-93** Client Project ID: **Bachner** Lab Sample ID: 1209709003 Lab Project ID: 1209709

Results by Polynuclear Aromatics GC/MS

		1.00/0:			55	<u>Allowable</u>	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	38.5	0.543	0.163	ug/L	10		10/07/20 22:36
2-Methylnaphthalene	33.8	0.543	0.163	ug/L	10		10/07/20 22:36
Acenaphthene	0.748	0.0543	0.0163	ug/L	1		10/07/20 02:53
Acenaphthylene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Anthracene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Benzo(a)Anthracene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Benzo[a]pyrene	0.0109 U	0.0217	0.00674	ug/L	1		10/07/20 02:53
Benzo[b]Fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Benzo[g,h,i]perylene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Benzo[k]fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Chrysene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Dibenzo[a,h]anthracene	0.0109 U	0.0217	0.00674	ug/L	1		10/07/20 02:53
Fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Fluorene	2.18	0.0543	0.0163	ug/L	1		10/07/20 02:53
Indeno[1,2,3-c,d] pyrene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Naphthalene	33.9	1.09	0.337	ug/L	10		10/07/20 22:36
Phenanthrene	1.46	0.0543	0.0163	ug/L	1		10/07/20 02:53
Pyrene	0.0272 U	0.0543	0.0163	ug/L	1		10/07/20 02:53
Surrogates							
2-Methylnaphthalene-d10 (surr)	52.4	37-78		%	1		10/07/20 02:53
Fluoranthene-d10 (surr)	62	24-116		%	1		10/07/20 02:53

Batch Information

Analytical Batch: XMS12321 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/20 02:53 Container ID: 1209709003-C

Analytical Batch: XMS12323 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 10/07/20 22:36 Container ID: 1209709003-C Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/03/20 08:00 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Collection Date: 09/29/20 20:40 Received Date: 10/01/20 08:44

Solids (%): Location:

Matrix: Water (Surface, Eff., Ground)

Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/03/20 08:00 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-93									
Client Sample ID: MW-93 Client Project ID: Bachner Lab Sample ID: 1209709003 Lab Project ID: 1209709		Collection Date: 09/29/20 20:40 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Semivolatile Organic Fu	els								
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 44.1	<u>LOQ/CL</u> 0.612	<u>DL</u> 0.184	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 10/11/20 21:03		
u rrogates 5a Androstane (surr)	110	50-150		%	1		10/11/20 21:03		
Batch Information									

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Client Sample ID: **MW-93** Client Project ID: **Bachner** Lab Sample ID: 1209709003 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:40 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		10/08/20 01:35
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,2,4-Trimethylbenzene	79.0	1.00	0.310	ug/L	1		10/08/20 01:35
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:35
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		10/08/20 01:35
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,3,5-Trimethylbenzene	35.7	1.00	0.310	ug/L	1		10/08/20 01:35
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
2-Butanone (MEK)	8.22 J	10.0	3.10	ug/L	1		10/08/20 01:35
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:35
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
4-Isopropyltoluene	3.34	1.00	0.310	ug/L	1		10/08/20 01:35
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:35
Benzene	0.140 J	0.400	0.120	ug/L	1		10/08/20 01:35
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
Bromomethane	2.50 U	5.00	2.00	ug/L	1		10/08/20 01:35
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/08/20 01:35
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/08/20 01:35
Chloroethane	0.500 U	1.00	0.310	ug/L	1		10/08/20 01:35

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-93** Client Project ID: **Bachner** Lab Sample ID: 1209709003 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:40 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/08/20 01:35
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/08/20 01:35
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Ethylbenzene	9.64	1.00	0.310	ug/L	1	10/08/20 01:35
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/08/20 01:35
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Isopropylbenzene (Cumene)	4.09	1.00	0.310	ug/L	1	10/08/20 01:35
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	10/08/20 01:35
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/08/20 01:35
Naphthalene	54.2	1.00	0.310	ug/L	1	10/08/20 01:35
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
n-Propylbenzene	7.68	1.00	0.310	ug/L	1	10/08/20 01:35
o-Xylene	14.6	1.00	0.310	ug/L	1	10/08/20 01:35
P & M -Xylene	29.2	2.00	0.620	ug/L	1	10/08/20 01:35
sec-Butylbenzene	2.19	1.00	0.310	ug/L	1	10/08/20 01:35
Styrene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
tert-Butylbenzene	0.435 J	1.00	0.310	ug/L	1	10/08/20 01:35
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Toluene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/08/20 01:35
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/08/20 01:35
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/08/20 01:35
Xylenes (total)	43.9	3.00	1.00	ug/L	1	10/08/20 01:35
Surrogates						
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1	10/08/20 01:35
4-Bromofluorobenzene (surr)	106	85-114		%	1	10/08/20 01:35
Toluene-d8 (surr)	99.6	89-112		%	1	10/08/20 01:35

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-93** Client Project ID: **Bachner** Lab Sample ID: 1209709003 Lab Project ID: 1209709

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20392 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 10/08/20 01:35 Container ID: 1209709003-E Collection Date: 09/29/20 20:40 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX36490 Prep Method: SW5030B Prep Date/Time: 10/06/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Member of SGS Group

21 of 51

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Bachner** Lab Sample ID: 1209709004 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		10/06/20 21:19
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		10/06/20 21:19
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Benzene	0.200 U	0.400	0.120	ug/L	1		10/06/20 21:19
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Bromomethane	2.50 U	5.00	2.00	ug/L	1		10/06/20 21:19
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
Chloroethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Bachner** Lab Sample ID: 1209709004 Lab Project ID: 1209709

Results by Volatile GC/MS

Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/06/20 21:19
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/06/20 21:19
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Styrene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Toluene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/06/20 21:19
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/06/20 21:19
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/06/20 21:19
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		10/06/20 21:19
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		10/06/20 21:19
4-Bromofluorobenzene (surr)	100	85-114		%	1		10/06/20 21:19
Toluene-d8 (surr)	98.5	89-112		%	1		10/06/20 21:19

Print Date: 11/03/2020 3:22:35PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Revised Report - Revision 1

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Bachner** Lab Sample ID: 1209709004 Lab Project ID: 1209709

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20388 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 10/06/20 21:19 Container ID: 1209709004-A Collection Date: 09/29/20 20:10 Received Date: 10/01/20 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX36490 Prep Method: SW5030B Prep Date/Time: 10/06/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:35PM

J flagging is activated

Member of SGS Group

24 of 51

Method Blank

Blank ID: MB for HBN 1812685 [VXX/36489] Blank Lab ID: 1586166

QC for Samples: 1209709002

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 11/03/2020 3:22:37PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Matrix: Water (Surface, Eff., Ground)

Method Blank

SG:

Blank ID: MB for HBN 1812685 [VXX/36489] Blank Lab ID: 1586166

QC for Samples: 1209709002

Results by SW8260D

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.346J	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	98.5	89-112		%
	-			

Print Date: 11/03/2020 3:22:37PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Revised	Re	port	_	Revision	1
11011000	1.0	port		1101011	

SGS	_	_		Revised Report - Rev	sion 1
Method Blank					
Blank ID: MB for HE Blank Lab ID: 1586	3N 1812685 [VXX/36489] 166	Matrix	k: Water (Sur	face, Eff., Ground)	
QC for Samples: 1209709002					
Results by SW8260	D				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Batch Information					
Analytical Batch: Analytical Method: Instrument: Agiler Analyst: NRB Analytical Date/Tir	SW8260D	Prep Me Prep Da Prep Init	tch: VXX3648 ethod: SW503 te/Time: 10/6 tial Wt./Vol.: 5 tract Vol: 5 m	0B /2020 6:00:00PM mL	

Print Date: 11/03/2020 3:22:37PM

Blank Spike ID: LCS for HBN 1209709 [VXX36489] Blank Spike Lab ID: 1586167 Date Analyzed: 10/06/2020 18:20 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36489] Spike Duplicate Lab ID: 1586168 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709002

Results by SW8260D

	Blank Spike (ug/L) Spike Duplicate (ug/L)								
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.6	99	30	29.6	99	(78-124)	0.01	(< 20)
1,1,1-Trichloroethane	30	29.0	97	30	27.7	92	(74-131)	4.60	(< 20)
1,1,2,2-Tetrachloroethane	30	29.6	99	30	29.7	99	(71-121)	0.18	(< 20)
1,1,2-Trichloroethane	30	29.4	98	30	29.7	99	(80-119)	1.10	(< 20)
1,1-Dichloroethane	30	29.5	98	30	28.6	95	(77-125)	3.10	(< 20)
1,1-Dichloroethene	30	29.1	97	30	27.5	92	(71-131)	5.80	(< 20)
1,1-Dichloropropene	30	29.8	99	30	28.4	95	(79-125)	4.90	(< 20)
1,2,3-Trichlorobenzene	30	30.4	101	30	32.6	109	(69-129)	6.90	(< 20)
1,2,3-Trichloropropane	30	29.2	98	30	29.0	97	(73-122)	0.90	(< 20)
1,2,4-Trichlorobenzene	30	31.7	106	30	33.3	111	(69-130)	5.10	(< 20)
1,2,4-Trimethylbenzene	30	30.8	103	30	30.1	100	(79-124)	2.10	(< 20)
1,2-Dibromo-3-chloropropane	30	28.9	96	30	28.6	95	(62-128)	1.10	(< 20)
1,2-Dibromoethane	30	29.6	99	30	30.0	100	(77-121)	1.30	(< 20)
1,2-Dichlorobenzene	30	30.2	101	30	30.2	101	(80-119)	0.25	(< 20)
1,2-Dichloroethane	30	28.8	96	30	28.4	95	(73-128)	1.10	(< 20)
1,2-Dichloropropane	30	29.9	100	30	29.4	98	(78-122)	1.80	(< 20)
1,3,5-Trimethylbenzene	30	30.6	102	30	29.8	99	(75-124)	2.60	(< 20)
1,3-Dichlorobenzene	30	30.7	102	30	30.3	101	(80-119)	1.30	(< 20)
1,3-Dichloropropane	30	29.9	100	30	30.3	101	(80-119)	1.40	(< 20)
1,4-Dichlorobenzene	30	31.0	103	30	30.5	102	(79-118)	1.80	(< 20)
2,2-Dichloropropane	30	30.2	101	30	28.7	96	(60-139)	5.10	(< 20)
2-Butanone (MEK)	90	91.9	102	90	88.2	98	(56-143)	4.10	(< 20)
2-Chlorotoluene	30	30.7	102	30	29.9	100	(79-122)	2.70	(< 20)
2-Hexanone	90	87.1	97	90	87.2	97	(57-139)	0.06	(< 20)
4-Chlorotoluene	30	30.6	102	30	30.1	100	(78-122)	1.70	(< 20)
4-Isopropyltoluene	30	31.2	104	30	31.2	104	(77-127)	0.09	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.9	98	90	87.8	98	(67-130)	0.06	(< 20)
Benzene	30	30.0	100	30	28.2	94	(79-120)	6.10	(< 20)
Bromobenzene	30	30.5	102	30	29.6	99	(80-120)	2.90	(< 20)
Bromochloromethane	30	28.6	95	30	28.2	94	(78-123)	1.30	(< 20)
Bromodichloromethane	30	29.7	99	30	29.3	98	(79-125)	1.50	(< 20)
Bromoform	30	29.2	97	30	29.2	98	(66-130)	0.21	(< 20)
Bromomethane	30	31.9	106	30	30.0	100	(53-141)	6.10	(< 20)
Carbon disulfide	45	45.1	100	45	42.2	94	(64-133)	6.80	(< 20)

Print Date: 11/03/2020 3:22:40PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209709 [VXX36489] Blank Spike Lab ID: 1586167 Date Analyzed: 10/06/2020 18:20 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36489] Spike Duplicate Lab ID: 1586168 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709002

Results by SW8260D

ParameterSpikeRes uitRes (2)SpikeRes (2)Res (2)CLRPD (2)RPD (2)Carbon tetrachioride3029.1973027.692(72-136)5.10<20Chiorostenzene3029.91003027.999(82-118)0.30<20Chiorostenzene3029.4923027.993(80-3)7.40<20Chiorostenane3029.4953026.488(50-13)7.40<20Chiorostenane3029.3983028.698(75.12)1.50<20cis-1.2-Dichiorostene3029.7993029.898(75.12)1.50<20Dibromochlaromethane3029.8993029.990(32.12)7.50<20Dibromochlaromethane3029.99032.1297(9.12)2.10<20Dibromochlaromethane3029.99030.22.91.50<20Dibromochlaromethane3030.11043029.2107(79.12)2.10<20Dibromochlaromethane3029.99032.1297(9.12)2.10<20Dibromochlaromethane3030.11043029.2107(5.0)<20Dibromochlaromethane3030.11043029.2107(79.12)2.10<20Dibromochla			Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Carbon tetrachloride 30 29.1 97 30 27.6 92 (72-136) 5.10 (< 20	Parameter							CL	<u>RPD (%)</u>	RPD CL
Chloroethane 30 29.8 99 30 27.9 93 (60-138) 6.60 (< 20 Chloroform 30 27.6 92 30 27.0 90 (79-124) 2.50 (< 20 Chloromethane 30 28.4 95 30 26.4 88 (50-138) 7.40 (< 20 cis-1,2-Dichloroopropene 30 29.3 98 30 29.3 98 (75-124) 1.50 (< 20 Dibromochloromethane 30 29.7 99 30 29.8 99 (79-123) 0.36 (< 20 Dibromochlaromethane 30 29.7 99 30 29.8 99 (79-121) 2.10 (< 20 Freon-113 45 43.8 97 45 41.5 92 (70-131) 0.97 (< 20 Herbylenzene 30 31.1 104 30 32.2 107 (66-134) 3.30 (< 20 Methylene chloride 30	Carbon tetrachloride			97	30		92			(< 20)
Chloroform3027.6923027.090(79-124)2.50(< 20Chloromethane3028.4953026.488(50-139)7.40(< 20	Chlorobenzene	30	29.9	100	30	29.7	99	(82-118)	0.93	(< 20)
Chloromethane3028.4953026.488(50-139)7.40(<20cis-1,2-Dichloroothene3029.3983028.695(78-123)2.40(<20	Chloroethane	30	29.8	99	30	27.9	93	(60-138)	6.60	(< 20)
cis-1,2-Dichloroethene3029.3983028.695(78-123)2.40(< 20cis-1,3-Dichloropropene3029.7993029.398(75-124)1.50(< 20	Chloroform	30	27.6	92	30	27.0	90	(79-124)	2.50	(< 20)
cis-1,3-Dichloropropene3029.7993029.398(75-124)1.50(< 20Dibromochloromethane3029.8993029.9100(74-126)0.53(< 20	Chloromethane	30	28.4	95	30	26.4	88	(50-139)	7.40	(< 20)
Dibromochloromethane 30 29.8 99 30 29.9 100 (74-126) 0.53 (< 20) Dibromomethane 30 29.7 99 30 29.6 99 (79-123) 0.36 (< 20)	cis-1,2-Dichloroethene	30	29.3	98	30	28.6	95	(78-123)	2.40	(< 20)
Dibromomethane3029.7993029.699(79-12)0.36(<20Dichlorodifluoromethane3029.0973026.990(32-152)7.50(<20	cis-1,3-Dichloropropene	30	29.7	99	30	29.3	98	(75-124)	1.50	(< 20)
Dichlorodifluoromethane 30 29.0 97 30 26.9 90 (32-152) 7.50 (< 20) Ethylbenzene 30 29.8 99 30 29.2 97 (79-121) 2.10 (< 20)	Dibromochloromethane	30	29.8	99	30	29.9	100	(74-126)	0.53	(< 20)
Ethylbenzene3029.8993029.297(79-121)2.10(<20Freon-1134543.8974541.592(70-136)5.40(<20	Dibromomethane	30	29.7	99	30	29.6	99	(79-123)	0.36	(< 20)
Fren-1134543.8974541.592(70-136)5.40(< 20Hexachlorobutadlene3031.11043032.2107(66-134)3.30(< 20	Dichlorodifluoromethane	30	29.0	97	30	26.9	90	(32-152)	7.50	(< 20)
Hexachlorobutadiene3031.11043032.2107(66-134)3.30(< 20Isopropylbenzene (Cumene)3030.11003029.899(72-131)0.97(< 20	Ethylbenzene	30	29.8	99	30	29.2	97	(79-121)	2.10	(< 20)
Isopropylbenzene (Cumene)3030.11003029.899(72-131)0.97(< 20Methylene chloride3029.81003029.298(74-124)2.00(< 20	Freon-113	45	43.8	97	45	41.5	92	(70-136)	5.40	(< 20)
Methylene chloride3029.81003029.298(74-124)2.00(< 20Methyl-t-butyl ether4543.8974543.797(71-124)0.21(< 20	Hexachlorobutadiene	30	31.1	104	30	32.2	107	(66-134)	3.30	(< 20)
Methyl-t-butyl ether4543.8974543.797(71-124)0.21(< 20Naphthalene3029.91003031.0103(61-128)3.60(< 20	Isopropylbenzene (Cumene)	30	30.1	100	30	29.8	99	(72-131)	0.97	(< 20)
Naphthalene3029.91003031.0103(61-128)3.60(< 20n-Butylbenzene3031.91063032.8109(75-128)2.80(< 20	Methylene chloride	30	29.8	100	30	29.2	98	(74-124)	2.00	(< 20)
n-Butylbenzene3031.91063032.8109(75-128)2.80(< 20n-Propylbenzene3031.31043030.4101(76-126)2.60(< 20o-Xylene3029.81003029.498(78-122)1.50(< 20P & M -Xylene6059.91006058.898(80-121)1.90(< 20sec-Butylbenzene3030.81033030.9103(77-126)0.13(< 20Styrene3029.91003029.899(78-123)0.29(< 20tert-Butylbenzene3030.51023030.1100(78-124)1.30(< 20Tetrachloroethene3030.21013029.498(74-129)2.60(< 20Toluene3029.3983029.097(80-121)1.40(< 20trans-1,2-Dichloroethene3030.51023030.6102(73-127)0.50(< 20Trichloroftuoromethane3030.21013028.996(79-123)4.20(< 20Trichloroftuoromethane3030.41013030.7102(54-146)1.10(< 20Vinyl acetate3030.41013028.294(58-137)7.60(< 20	Methyl-t-butyl ether	45	43.8	97	45	43.7	97	(71-124)	0.21	(< 20)
n-Proylbenzene3031.31043030.4101(76-126)2.60(< 20o-Xylene3029.81003029.498(78-122)1.50(< 20	Naphthalene	30	29.9	100	30	31.0	103	(61-128)	3.60	(< 20)
o-Xylene3029.81003029.498(78-122)1.50(< 20P & M -Xylene6059.91006058.898(80-121)1.90(< 20sec-Butylbenzene3030.81033030.9103(77-126)0.13(< 20Styrene3029.91003029.899(78-123)0.29(< 20tert-Butylbenzene3030.51023030.1100(78-124)1.30(< 20Tetrachloroethene3030.21013029.498(74-129)2.60(< 20Toluene3029.3983029.097(80-121)1.40(< 20trans-1,2-Dichloroethene3029.3983027.993(75-124)4.80(< 20Trichloroethene3030.51023030.6102(73-127)0.50(< 20Trichloroethene3030.21013028.996(79-123)4.20(< 20Trichlorofluoromethane3030.610230.7102(56-141)6.90(< 20Vinyl acetate3030.41013028.294(58-137)7.60(< 20	n-Butylbenzene	30	31.9	106	30	32.8	109	(75-128)	2.80	(< 20)
P & M -Xylene6059.91006058.898(80-121)1.90(< 20sec-Butylbenzene3030.81033030.9103(77-126)0.13(< 20	n-Propylbenzene	30	31.3	104	30	30.4	101	(76-126)	2.60	(< 20)
sec-Butylbenzene3030.81033030.9103(77-126)0.13(< 20Styrene3029.91003029.899(78-123)0.29(< 20	o-Xylene	30	29.8	100	30	29.4	98	(78-122)	1.50	(< 20)
Styrene3029.91003029.899(78-123)0.29(< 20tert-Butylbenzene3030.51023030.1100(78-124)1.30(< 20	P & M -Xylene	60	59.9	100	60	58.8	98	(80-121)	1.90	(< 20)
tert-Butylbenzene3030.51023030.1100(78-124)1.30(< 20Tetrachloroethene3030.21013029.498(74-129)2.60(< 20	sec-Butylbenzene	30	30.8	103	30	30.9	103	(77-126)	0.13	(< 20)
Tetrachloroethene3030.21013029.498(74-129)2.60(< 20Toluene3029.4983029.097(80-121)1.40(< 20	Styrene	30	29.9	100	30	29.8	99	(78-123)	0.29	(< 20)
Toluene3029.4983029.097(80-121)1.40(< 20trans-1,2-Dichloroethene3029.3983027.993(75-124)4.80(< 20	tert-Butylbenzene	30	30.5	102	30	30.1	100	(78-124)	1.30	(< 20)
trans-1,2-Dichloroethene3029.3983027.993(75-124)4.80(< 20trans-1,3-Dichloropropene3030.51023030.6102(73-127)0.50(< 20	Tetrachloroethene	30	30.2	101	30	29.4	98	(74-129)	2.60	(< 20)
trans-1,3-Dichloropropene3030.51023030.6102(73-127)0.50(< 20Trichloroethene3030.21013028.996(79-123)4.20(< 20	Toluene	30	29.4	98	30	29.0	97	(80-121)	1.40	(< 20)
Trichloroethene3030.21013028.996(79-123)4.20(< 20Trichlorofluoromethane3030.61023028.695(65-141)6.90(< 20	trans-1,2-Dichloroethene	30	29.3	98	30	27.9	93	(75-124)	4.80	(< 20)
Trichlorofluoromethane3030.61023028.695(65-141)6.90(< 20Vinyl acetate3030.41013030.7102(54-146)1.10(< 20	trans-1,3-Dichloropropene	30	30.5	102	30	30.6	102	(73-127)	0.50	(< 20)
Vinyl acetate 30 30.4 101 30 30.7 102 (54-146) 1.10 (< 20 Vinyl chloride 30 30.4 101 30 28.2 94 (58-137) 7.60 (< 20	Trichloroethene	30	30.2	101	30	28.9	96	(79-123)	4.20	(< 20)
Vinyl chloride 30 30.4 101 30 28.2 94 (58-137) 7.60 (< 20	Trichlorofluoromethane	30	30.6	102	30	28.6	95	(65-141)	6.90	(< 20)
•	Vinyl acetate	30	30.4	101	30	30.7	102	(54-146)	1.10	(< 20)
Xylenes (total) 90 89.8 100 90 88.2 98 (79-121) 1.70 (< 20	Vinyl chloride	30	30.4	101	30	28.2	94	(58-137)	7.60	(< 20)
	Xylenes (total)	90	89.8	100	90	88.2	98	(79-121)	1.70	(< 20)

Print Date: 11/03/2020 3:22:40PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209709 [VXX36489] Blank Spike Lab ID: 1586167 Date Analyzed: 10/06/2020 18:20 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36489] Spike Duplicate Lab ID: 1586168 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709002

Results by SW8260D

	Blank Spike (%)				Spike Duplicate (%)				
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.1	99	30	98.9	99	(81-118)	0.15	
4-Bromofluorobenzene (surr)	30	101	101	30	99.1	99	(85-114)	1.40	
Toluene-d8 (surr)	30	99	99	30	99.6	100	(89-112)	0.59	

Batch Information

Analytical Batch: VMS20388 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36489 Prep Method: SW5030B Prep Date/Time: 10/06/2020 18:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:40PM

Revised Report - Revision 1

Method Blank

Blank ID: MB for HBN 1812686 [VXX/36490] Blank Lab ID: 1586169

QC for Samples: 1209709003, 1209709004

Results by SW8260D

-				
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 11/03/2020 3:22:42PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Matrix: Water (Surface, Eff., Ground)

Method Blank

SG;

Blank ID: MB for HBN 1812686 [VXX/36490] Blank Lab ID: 1586169

QC for Samples: 1209709003, 1209709004

Results by SW8260D

-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	97.7	89-112		%

Print Date: 11/03/2020 3:22:42PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Method Blank						
Blank ID: MB for HBN Blank Lab ID: 158616	I 1812686 [VXX/36490] 9	Matrix: Water (Surface, Eff., Ground)				
QC for Samples: 1209709003, 12097090	04					
Results by SW8260D						
Results by SWOZOUD						
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>		
		LOQ/CL	DL	<u>Units</u>		
<u>Parameter</u>	<u>Results</u> //S20388 SW8260D	Prep Ba Prep Me Prep Da	itch: VXX3649 ethod: SW503	90 0B /2020 6:00:00PM		

Print Date: 11/03/2020 3:22:42PM

Blank Spike ID: LCS for HBN 1209709 [VXX36490] Blank Spike Lab ID: 1586170 Date Analyzed: 10/06/2020 18:49 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36490] Spike Duplicate Lab ID: 1586171 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709003, 1209709004

Results by SW8260D

	Blank Spike	nk Spike (ug/L) Spike Duplicate (ug/L)							
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.4	98	30	29.4	98	(78-124)	0.00	(< 20)
1,1,1-Trichloroethane	30	28.9	96	30	27.8	93	(74-131)	4.10	(< 20)
1,1,2,2-Tetrachloroethane	30	29.7	99	30	29.7	99	(71-121)	0.16	(< 20)
1,1,2-Trichloroethane	30	29.6	99	30	29.5	98	(80-119)	0.49	(< 20)
1,1-Dichloroethane	30	29.5	98	30	28.6	95	(77-125)	3.10	(< 20)
1,1-Dichloroethene	30	28.9	96	30	27.7	92	(71-131)	4.50	(< 20)
1,1-Dichloropropene	30	29.8	99	30	28.6	95	(79-125)	4.20	(< 20)
1,2,3-Trichlorobenzene	30	33.3	111	30	34.0	113	(69-129)	2.10	(< 20)
1,2,3-Trichloropropane	30	29.4	98	30	29.3	98	(73-122)	0.36	(< 20)
1,2,4-Trichlorobenzene	30	33.4	111	30	33.7	112	(69-130)	1.10	(< 20)
1,2,4-Trimethylbenzene	30	30.6	102	30	30.0	100	(79-124)	1.90	(< 20)
1,2-Dibromo-3-chloropropane	30	29.7	99	30	29.1	97	(62-128)	1.80	(< 20)
1,2-Dibromoethane	30	29.8	99	30	29.8	99	(77-121)	0.17	(< 20)
1,2-Dichlorobenzene	30	30.4	101	30	30.3	101	(80-119)	0.51	(< 20)
1,2-Dichloroethane	30	28.9	96	30	28.6	95	(73-128)	0.80	(< 20)
1,2-Dichloropropane	30	30.0	100	30	29.5	98	(78-122)	1.60	(< 20)
1,3,5-Trimethylbenzene	30	30.6	102	30	30.0	100	(75-124)	1.90	(< 20)
1,3-Dichlorobenzene	30	31.1	104	30	30.4	101	(80-119)	2.10	(< 20)
1,3-Dichloropropane	30	30.2	101	30	30.3	101	(80-119)	0.31	(< 20)
1,4-Dichlorobenzene	30	31.2	104	30	30.9	103	(79-118)	0.97	(< 20)
2,2-Dichloropropane	30	30.0	100	30	28.7	96	(60-139)	4.40	(< 20)
2-Butanone (MEK)	90	88.7	99	90	87.8	98	(56-143)	0.93	(< 20)
2-Chlorotoluene	30	30.5	102	30	30.0	100	(79-122)	1.60	(< 20)
2-Hexanone	90	86.0	96	90	86.6	96	(57-139)	0.69	(< 20)
4-Chlorotoluene	30	30.6	102	30	30.0	100	(78-122)	1.80	(< 20)
4-Isopropyltoluene	30	30.9	103	30	30.8	103	(77-127)	0.18	(< 20)
4-Methyl-2-pentanone (MIBK)	90	88.2	98	90	87.2	97	(67-130)	1.20	(< 20)
Benzene	30	29.2	97	30	28.8	96	(79-120)	1.50	(< 20)
Bromobenzene	30	30.1	100	30	30.0	100	(80-120)	0.43	(< 20)
Bromochloromethane	30	28.7	96	30	28.4	95	(78-123)	1.00	(< 20)
Bromodichloromethane	30	29.9	100	30	29.5	98	(79-125)	1.30	(< 20)
Bromoform	30	28.9	97	30	29.5	98	(66-130)	1.90	(< 20)
Bromomethane	30	30.3	101	30	29.2	97	(53-141)	3.80	(< 20)
Carbon disulfide	45	44.9	100	45	42.4	94	(64-133)	5.60	(< 20)

Print Date: 11/03/2020 3:22:44PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1209709 [VXX36490] Blank Spike Lab ID: 1586170 Date Analyzed: 10/06/2020 18:49 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36490] Spike Duplicate Lab ID: 1586171 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709003, 1209709004

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	29.0	97	30	27.7	92	(72-136)	4.30	(< 20)
Chlorobenzene	30	29.9	100	30	29.3	98	(82-118)	2.10	(< 20)
Chloroethane	30	28.7	96	30	27.9	93	(60-138)	3.10	(< 20)
Chloroform	30	27.7	92	30	27.0	90	(79-124)	2.60	(< 20)
Chloromethane	30	27.6	92	30	26.7	89	(50-139)	3.30	(< 20)
cis-1,2-Dichloroethene	30	29.4	98	30	28.7	96	(78-123)	2.20	(< 20)
cis-1,3-Dichloropropene	30	29.9	100	30	29.6	99	(75-124)	0.82	(< 20)
Dibromochloromethane	30	29.7	99	30	29.8	99	(74-126)	0.19	(< 20)
Dibromomethane	30	29.9	100	30	29.6	99	(79-123)	0.79	(< 20)
Dichlorodifluoromethane	30	28.3	94	30	27.1	91	(32-152)	4.20	(< 20)
Ethylbenzene	30	29.6	99	30	28.8	96	(79-121)	3.00	(< 20)
Freon-113	45	43.4	97	45	41.6	93	(70-136)	4.20	(< 20)
Hexachlorobutadiene	30	32.1	107	30	31.2	104	(66-134)	2.70	(< 20)
Isopropylbenzene (Cumene)	30	29.8	99	30	29.2	97	(72-131)	1.90	(< 20)
Methylene chloride	30	29.9	100	30	29.6	99	(74-124)	0.80	(< 20)
Methyl-t-butyl ether	45	44.2	98	45	43.9	98	(71-124)	0.60	(< 20)
Naphthalene	30	32.6	109	30	32.5	108	(61-128)	0.25	(< 20)
n-Butylbenzene	30	32.5	108	30	32.4	108	(75-128)	0.29	(< 20)
n-Propylbenzene	30	30.9	103	30	30.2	101	(76-126)	2.30	(< 20)
o-Xylene	30	29.5	98	30	29.1	97	(78-122)	1.30	(< 20)
P & M -Xylene	60	58.8	98	60	58.0	97	(80-121)	1.40	(< 20)
sec-Butylbenzene	30	30.7	102	30	30.7	102	(77-126)	0.18	(< 20)
Styrene	30	29.6	99	30	29.4	98	(78-123)	0.80	(< 20)
tert-Butylbenzene	30	30.3	101	30	29.9	100	(78-124)	1.40	(< 20)
Tetrachloroethene	30	30.0	100	30	29.2	98	(74-129)	2.40	(< 20)
Toluene	30	29.5	98	30	28.7	96	(80-121)	2.70	(< 20)
trans-1,2-Dichloroethene	30	29.4	98	30	28.2	94	(75-124)	4.00	(< 20)
trans-1,3-Dichloropropene	30	30.5	102	30	30.6	102	(73-127)	0.24	(< 20)
Trichloroethene	30	30.1	100	30	29.0	97	(79-123)	3.40	(< 20)
Trichlorofluoromethane	30	29.8	99	30	28.2	94	(65-141)	5.20	(< 20)
Vinyl acetate	30	30.8	103	30	30.7	102	(54-146)	0.08	(< 20)
Vinyl chloride	30	29.8	99	30	28.5	95	(58-137)	4.50	(< 20)
Xylenes (total)	90	88.2	98	90	87.0	97	(79-121)	1.30	(< 20)

Print Date: 11/03/2020 3:22:44PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1209709 [VXX36490] Blank Spike Lab ID: 1586170 Date Analyzed: 10/06/2020 18:49 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36490] Spike Duplicate Lab ID: 1586171 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709003, 1209709004

Results by SW8260D Blank Spike (%) Spike Duplicate (%) Parameter <u>Spike</u> <u>Rec (%)</u> <u>Spike</u> Result Rec (%) <u>CL</u> <u>RPD (%)</u> RPD CL Result Surrogates 1,2-Dichloroethane-D4 (surr) 100 30 99.6 100 0.60 30 100 (81-118) 4-Bromofluorobenzene (surr) 30 100 100 30 100 100 (85-114) 0.02 Toluene-d8 (surr) 30 99.4 99 30 100 100 0.66 (89-112)

Batch Information

Analytical Batch: VMS20388 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36490 Prep Method: SW5030B Prep Date/Time: 10/06/2020 18:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:44PM

Method Blank

SG?

Blank ID: MB for HBN 1812764 [VXX/36497] Blank Lab ID: 1586480

QC for Samples: 1209709001

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 11/03/2020 3:22:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Matrix: Water (Surface, Eff., Ground)

Method Blank

SG;

Blank ID: MB for HBN 1812764 [VXX/36497] Blank Lab ID: 1586480

QC for Samples: 1209709001

Results by SW8260D

-				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	98.9	85-114		%
Toluene-d8 (surr)	98.4	89-112		%

Print Date: 11/03/2020 3:22:47PM

SGS North America Inc.

SGS	

Method Blank	hod Blank			
Blank ID: MB for HBN 1 Blank Lab ID: 1586480	812764 [VXX/36497]	Matri	k: Water (Su	rface, Eff., Ground)
QC for Samples: 1209709001				
Results by SW8260D				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Batch Information				

Blank Spike ID: LCS for HBN 1209709 [VXX36497] Blank Spike Lab ID: 1586481 Date Analyzed: 10/07/2020 15:31 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36497] Spike Duplicate Lab ID: 1586482 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709001

Results by SW8260D

ParameterSnikeResultRes (%)SnikeResultRes (%)CLRPD (%)RPD (%)			Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
1.1.1-Trichloroethane 30 27.5 92 30 27.0 90 (74-131) 1.80 (<20) 1.1.2-Zirtachloroethane 30 27.7 92 30 28.2 94 (71-121) 2.10 (<20) 1.1.2-Tichloroethane 30 28.7 96 30 28.7 96 (80-119) 0.04 (<20) 1.1-Dichloropthane 30 28.3 94 30 27.6 92 (71-131) 2.40 (<20) 1.1-Dichloroptopene 30 28.7 96 30 28.0 93 (79-125) 2.40 (<20) 1.2.3-Tichlorobenzene 30 30.4 101 30 32.6 109 (69-130) 5.30 (<20) 1.2.4-Tichlorobenzene 30 28.4 95 30 28.7 96 (77-121) 1.60 (<20) 1.2-Dichoroethane 30 28.4 95 30 28.7 96 (77-121) 1.60 (<20) 1.2-Dichoroethane 30 28.7 96 30 28.7 96 (78-124) <th><u>Parameter</u></th> <th>Spike</th> <th>Result</th> <th><u>Rec (%)</u></th> <th>Spike</th> <th>Result</th> <th>Rec (%)</th> <th>CL</th> <th><u>RPD (%)</u></th> <th>RPD CL</th>	<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
1.1.2.2-Tertachloroethane3027.7923028.294(71-121)2.10(<20)	1,1,1,2-Tetrachloroethane	30	28.2	94	30	28.3	94	(78-124)	0.31	(< 20)
1,1,2-Trichloroethane3028.7963028.796(80-119)0.04(<20)	1,1,1-Trichloroethane	30	27.5	92	30	27.0	90	(74-131)	1.80	(< 20)
1.1-Dichloroethane 30 28.6 95 30 28.1 94 (77-125) 1.70 (<20)	1,1,2,2-Tetrachloroethane	30	27.7	92	30	28.2	94	(71-121)	2.10	(< 20)
1.1-Dichloroethene 30 28.3 94 30 27.6 92 (71-131) 2.40 (<20)	1,1,2-Trichloroethane	30	28.7	96	30	28.7	96	(80-119)	0.04	(< 20)
1.1-Dichloropropene 30 28.7 96 30 28.0 93 (79-125) 2.40 (<20)	1,1-Dichloroethane	30	28.6	95	30	28.1	94	(77-125)	1.70	(< 20)
1.2.3-Trichlorobenzene 30 30.4 101 30 32.6 109 (69-129) 7.10 (<20) 1.2.3-Trichloropropane 30 27.3 91 30 27.8 93 (73-122) 1.70 (<20) 1.2.4-Trinchlylbenzene 30 31.0 103 30 32.6 109 (69-130) 5.30 (<20) 1.2.4-Trinchlylbenzene 30 28.4 95 30 28.2 94 (79-124) 0.58 (<20) 1.2.Dibromo-3-chloropropane 30 28.7 96 30 28.7 96 (80-119) 0.18 (<20) 1.2.Dibromo-s-achloropropane 30 27.4 91 30 27.7 93 (73-128) 1.20 (<20) 1.2.Dichlorobenzene 30 28.7 96 30 28.7 96 (<78-122) 0.81 (<20) 1.2.Dichlorobenzene 30 28.1 97 30 28.7 96 (<78-122) 0.81 (<20) 1.3.Dichlorobenzene 30 29.1 97 30 29.1 97<	1,1-Dichloroethene	30	28.3	94	30	27.6	92	(71-131)	2.40	(< 20)
1,2,3-Trichloropropane3027.3913027.893(73-122)1.70(<20)	1,1-Dichloropropene	30	28.7	96	30	28.0	93	(79-125)	2.40	(< 20)
1,2,4-Trichlorobenzene 30 31.0 103 30 32.6 109 (69-130) 5.30 (<20) 1,2,4-Trimethylbenzene 30 28.4 95 30 28.2 94 (79-124) 0.58 (<20) 1,2-Dibromo-3-chloropropane 30 25.9 87 30 28.7 89 (62-128) 3.10 (<20) 1,2-Dibromoethane 30 28.7 96 30 28.9 96 (77-121) 1.60 (<20) 1,2-Dichlorobenzene 30 28.7 96 30 28.7 96 (78-122) 0.81 (<20) 1,2-Dichloropropane 30 28.9 96 30 28.7 96 (78-122) 0.81 (<20) 1,3-5Trimethylbenzene 30 29.1 97 30 29.1 97 (80-119) 0.15 (<20) 1,4-Dichlorobropane 30 29.0 97 30 29.1 97 (80-119) 0.74 (<20) 1,4-Dichlorobropane 30 29.3 98 30 29.1 97 (79-	1,2,3-Trichlorobenzene	30	30.4	101	30	32.6	109	(69-129)	7.10	(< 20)
1.2.4-Trimethylbenzene3028.4953028.294(79-124)0.58(< 20)	1,2,3-Trichloropropane	30	27.3	91	30	27.8	93	(73-122)	1.70	(< 20)
1.2-Dibromo-3-chloropropane 30 25.9 87 30 26.7 89 (62-128) 3.10 (<20) 1.2-Dibromoethane 30 28.4 95 30 28.9 96 (77-121) 1.60 (<20) 1.2-Dichlorobenzene 30 28.7 96 30 28.7 96 (80-119) 0.18 (<20) 1.2-Dichlorobenzene 30 27.4 91 30 27.7 93 (73-128) 1.20 (<20) 1.2-Dichloroppane 30 28.5 95 30 27.9 93 (75-124) 2.00 (<20) 1.3-Dichlorobenzene 30 29.1 97 30 29.1 97 (80-119) 0.15 (<20) 1.4-Dichlorobenzene 30 29.0 97 30 29.1 97 (79-118) 0.65 (<20) 2.2-Dichloropopane 30 27.9 93 30 27.1 90 (60-139) 2.90 (<20) 2.2-Dichloropopane 30 28.6 95 30 28.2 94 (79-122)	1,2,4-Trichlorobenzene	30	31.0	103	30	32.6	109	(69-130)	5.30	(< 20)
1.2-Dibromoethane3028.4953028.996(77-121)1.60(<20)	1,2,4-Trimethylbenzene	30	28.4	95	30	28.2	94	(79-124)	0.58	(< 20)
1.2-Dichlorobenzene3028.7963028.7963028.796(80-119)0.18(<20)	1,2-Dibromo-3-chloropropane	30	25.9	87	30	26.7	89	(62-128)	3.10	(< 20)
1,2-Dichloroethane3027.4913027.793(73-128)1.20(<20)	1,2-Dibromoethane	30	28.4	95	30	28.9	96	(77-121)	1.60	(< 20)
1,2-Dichloropropane3028.9963028.796(78-122)0.81(< 20)	1,2-Dichlorobenzene	30	28.7	96	30	28.7	96	(80-119)	0.18	(< 20)
1,3,5-Trimethylbenzene3028.5953027.993(75-124)2.00(<20)	1,2-Dichloroethane	30	27.4	91	30	27.7	93	(73-128)	1.20	(< 20)
1,3-Dichlorobenzene3029.1973029.197(80-119)0.15(< 20)	1,2-Dichloropropane	30	28.9	96	30	28.7	96	(78-122)	0.81	(< 20)
1,3-Dichloropropane3029.0973029.298(80-119)0.74(<20)	1,3,5-Trimethylbenzene	30	28.5	95	30	27.9	93	(75-124)	2.00	(< 20)
1,4-Dichlorobenzene3029.3983029.197(79-118)0.65(< 20)	1,3-Dichlorobenzene	30	29.1	97	30	29.1	97	(80-119)	0.15	(< 20)
2,2-Dichloropropane3027.9933027.190(60-139)2.90(<20)	1,3-Dichloropropane	30	29.0	97	30	29.2	98	(80-119)	0.74	(< 20)
2-Butanone (MEK)9079.9899084.494(56-143)5.50(< 20)	1,4-Dichlorobenzene	30	29.3	98	30	29.1	97	(79-118)	0.65	(< 20)
2-Chlorotoluene3028.6953028.294(79-122)1.20(<20)	2,2-Dichloropropane	30	27.9	93	30	27.1	90	(60-139)	2.90	(< 20)
2-Hexanone9080.0899082.492(57-139)2.90(<20)	2-Butanone (MEK)	90	79.9	89	90	84.4	94	(56-143)	5.50	(< 20)
4-Chlorotoluene3028.7963028.194(78-122)1.90(< 20)	2-Chlorotoluene	30	28.6	95	30	28.2	94	(79-122)	1.20	(< 20)
4-Isopropyltoluene3029.5983029.398(77-127)0.48(< 20)	2-Hexanone	90	80.0	89	90	82.4	92	(57-139)	2.90	(< 20)
4-Methyl-2-pentanone (MIBK)9081.8919083.993(67-130)2.50(< 20)	4-Chlorotoluene	30	28.7	96	30	28.1	94	(78-122)	1.90	(< 20)
Benzene3027.8933027.491(79-120)1.50(< 20)	4-Isopropyltoluene	30	29.5	98	30	29.3	98	(77-127)	0.48	(< 20)
Bromobenzene3028.9963028.595(80-120)1.50(< 20)	4-Methyl-2-pentanone (MIBK)	90					93	(67-130)	2.50	(< 20)
Bromochloromethane3027.3913027.491(78-123)0.45(< 20)	Benzene	30	27.8	93	30	27.4	91	(79-120)	1.50	
Bromodichloromethane 30 28.5 95 30 28.4 95 (79-125) 0.43 (< 20)	Bromobenzene	30	28.9	96	30	28.5	95	(80-120)	1.50	(< 20)
Bromoform 30 27.1 90 30 27.4 91 (66-130) 1.20 (<20)	Bromochloromethane	30					91	(78-123)	0.45	(< 20)
Bromomethane 30 31.6 105 30 29.4 98 (53-141) 7.40 (< 20)								(/		(<i>'</i>
								\ /	1.20	
Carbon disulfide 45 44.1 98 45 42.5 94 (64-133) 3.80 (< 20)										· · · ·
	Carbon disulfide	45	44.1	98	45	42.5	94	(64-133)	3.80	(< 20)

Print Date: 11/03/2020 3:22:49PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1209709 [VXX36497] Blank Spike Lab ID: 1586481 Date Analyzed: 10/07/2020 15:31 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36497] Spike Duplicate Lab ID: 1586482 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709001

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	27.3	91	30	26.4	88	(72-136)	3.20	(< 20)
Chlorobenzene	30	28.8	96	30	28.5	95	(82-118)	0.98	(< 20)
Chloroethane	30	29.3	98	30	28.3	94	(60-138)	3.20	(< 20)
Chloroform	30	26.8	89	30	26.5	88	(79-124)	1.10	(< 20)
Chloromethane	30	28.3	94	30	27.3	91	(50-139)	3.40	(< 20)
cis-1,2-Dichloroethene	30	28.5	95	30	28.2	94	(78-123)	0.95	(< 20)
cis-1,3-Dichloropropene	30	28.1	94	30	28.2	94	(75-124)	0.30	(< 20)
Dibromochloromethane	30	28.4	95	30	28.7	96	(74-126)	1.00	(< 20)
Dibromomethane	30	28.4	95	30	28.8	96	(79-123)	1.20	(< 20)
Dichlorodifluoromethane	30	28.4	95	30	27.1	90	(32-152)	4.60	(< 20)
Ethylbenzene	30	28.7	96	30	27.9	93	(79-121)	2.60	(< 20)
Freon-113	45	42.7	95	45	41.3	92	(70-136)	3.20	(< 20)
Hexachlorobutadiene	30	29.1	97	30	29.6	99	(66-134)	1.70	(< 20)
Isopropylbenzene (Cumene)	30	28.8	96	30	28.0	93	(72-131)	2.70	(< 20)
Methylene chloride	30	29.3	98	30	29.5	98	(74-124)	0.72	(< 20)
Methyl-t-butyl ether	45	40.8	91	45	41.4	92	(71-124)	1.40	(< 20)
Naphthalene	30	28.9	96	30	31.0	103	(61-128)	6.90	(< 20)
n-Butylbenzene	30	31.0	103	30	31.2	104	(75-128)	0.58	(< 20)
n-Propylbenzene	30	29.3	98	30	28.8	96	(76-126)	1.70	(< 20)
o-Xylene	30	28.5	95	30	27.7	92	(78-122)	3.00	(< 20)
P & M -Xylene	60	57.5	96	60	55.9	93	(80-121)	2.80	(< 20)
sec-Butylbenzene	30	29.0	97	30	29.1	97	(77-126)	0.57	(< 20)
Styrene	30	28.5	95	30	28.1	94	(78-123)	1.30	(< 20)
tert-Butylbenzene	30	28.4	95	30	28.1	94	(78-124)	1.20	(< 20)
Tetrachloroethene	30	29.7	99	30	28.7	96	(74-129)	3.10	(< 20)
Toluene	30	28.4	95	30	27.8	93	(80-121)	2.00	(< 20)
trans-1,2-Dichloroethene	30	28.4	95	30	27.8	93	(75-124)	2.20	(< 20)
trans-1,3-Dichloropropene	30	28.5	95	30	28.8	96	(73-127)	1.10	(< 20)
Trichloroethene	30	29.0	97	30	28.5	95	(79-123)	1.70	(< 20)
Trichlorofluoromethane	30	29.5	98	30	28.4	95	(65-141)	3.80	(< 20)
Vinyl acetate	30	28.9	96	30	29.4	98	(54-146)	1.60	(< 20)
Vinyl chloride	30	30.2	101	30	28.8	96	(58-137)	4.80	(< 20)
Xylenes (total)	90	86.0	96	90	83.5	93	(79-121)	2.90	(< 20)

Print Date: 11/03/2020 3:22:49PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1209709 [VXX36497] Blank Spike Lab ID: 1586481 Date Analyzed: 10/07/2020 15:31 Spike Duplicate ID: LCSD for HBN 1209709 [VXX36497] Spike Duplicate Lab ID: 1586482 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709001

Results by SW8260D

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.8	100	30	99.9	100	(81-118)	0.13	
4-Bromofluorobenzene (surr)	30	99	99	30	99.4	99	(85-114)	0.37	
Toluene-d8 (surr)	30	100	100	30	100	100	(89-112)	0.38	

Batch Information

Analytical Batch: VMS20392 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX36497 Prep Method: SW5030B Prep Date/Time: 10/07/2020 15:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/03/2020 3:22:49PM

SG;

Blank ID: MB for HBN 1812538 [XXX/43990] Blank Lab ID: 1585419

QC for Samples: 1209709001, 1209709003

Results by 8270D SIM LV (PAH)

· · ·				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	45.8	37-78		%
Fluoranthene-d10 (surr)	70.3	24-116		%


Batch Information

Analytical Batch: XMS12321 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Analytical Date/Time: 10/6/2020 8:23:00PM Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/3/2020 8:00:53AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 11/03/2020 3:22:52PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1209709 [XXX43990] Blank Spike Lab ID: 1585420 Date Analyzed: 10/06/2020 20:44 Spike Duplicate ID: LCSD for HBN 1209709 [XXX43990] Spike Duplicate Lab ID: 1585421 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709001, 1209709003

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.11	55	2	1.13	57	(41-115)	2.30	(< 20)
2-Methylnaphthalene	2	1.07	53	2	1.09	54	(39-114)	1.80	(< 20)
Acenaphthene	2	1.18	59	2	1.22	61	(48-114)	2.80	(< 20)
Acenaphthylene	2	1.28	64	2	1.34	67	(35-121)	4.60	(< 20)
Anthracene	2	1.39	69	2	1.34	67	(53-119)	3.20	(< 20)
Benzo(a)Anthracene	2	1.41	71	2	1.29	64	(59-120)	9.30	(< 20)
Benzo[a]pyrene	2	1.55	77	2	1.47	73	(53-120)	5.30	(< 20)
Benzo[b]Fluoranthene	2	1.54	77	2	1.41	70	(53-126)	9.10	(< 20)
Benzo[g,h,i]perylene	2	1.47	73	2	1.46	73	(44-128)	0.53	(< 20)
Benzo[k]fluoranthene	2	1.66	83	2	1.57	79	(54-125)	5.70	(< 20)
Chrysene	2	1.58	79	2	1.46	73	(57-120)	7.80	(< 20)
Dibenzo[a,h]anthracene	2	1.37	69	2	1.41	71	(44-131)	2.70	(< 20)
Fluoranthene	2	1.47	73	2	1.38	69	(58-120)	5.70	(< 20)
Fluorene	2	1.25	62	2	1.30	65	(50-118)	4.10	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.48	74	2	1.49	75	(48-130)	0.78	(< 20)
Naphthalene	2	1.12	56	2	1.17	58	(43-114)	3.90	(< 20)
Phenanthrene	2	1.37	69	2	1.35	68	(53-115)	1.70	(< 20)
Pyrene	2	1.47	73	2	1.35	68	(53-121)	8.00	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	47.7	48	2	50.5	51	(37-78)	5.60	
Fluoranthene-d10 (surr)	2	66.9	67	2	65.3	65	(24-116)	2.50	

Batch Information

Analytical Batch: XMS12321 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Prep Batch: XXX43990 Prep Method: SW3535A Prep Date/Time: 10/03/2020 08:00 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 11/03/2020 3:22:54PM

SGS North America Inc.

Matrix Spike Summary

Original Sample ID: 1205377009 MS Sample ID: 1585422 MS MSD Sample ID: 1585423 MSD

Results by 8270D SIM I V (PAH)

QC for Samples: 1209709001, 1209709003

Revised Report - Revision 1

Analysis Date: 10/06/2020 22:06 Analysis Date: 10/06/2020 22:26 Analysis Date: 10/06/2020 22:47 Matrix: Water (Surface, Eff., Ground)

•									
	Ma	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
0.0259U	2.08	1.49	72	2.08	1.54	74	41-115	3.70	(< 20)
0.0259U	2.08	1.25	60	2.08	1.34	64	39-114	6.60	(< 20)
0.0259U	2.08	1.23	59	2.08	1.24	60	48-114	1.30	(< 20)
0.0259U	2.08	1.31	63	2.08	1.29	62	35-121	1.20	(< 20)
0.0259U	2.08	1.46	70	2.08	1.43	69	53-119	1.80	(< 20)
0.0259U	2.08	1.53	74	2.08	1.50	72	59-120	2.10	(< 20)
0.0104U	2.08	1.66	80	2.08	1.60	77	53-120	3.50	(< 20)
0.0259U	2.08	1.61	77	2.08	1.57	76	53-126	2.30	(< 20)
0.0259U	2.08	1.59	76	2.08	1.57	76	44-128	0.70	(< 20)
0.0259U	2.08	1.69	81	2.08	1.64	79	54-125	3.00	(< 20)
0.0259U	2.08	1.66	80	2.08	1.64	79	57-120	1.20	(< 20)
0.0104U	2.08	1.58	76	2.08	1.58	76	44-131	0.03	(< 20)
0.0259U	2.08	1.57	75	2.08	1.53	73	58-120	2.90	(< 20)
0.0259U	2.08	1.33	64	2.08	1.32	63	50-118	1.00	(< 20)
0.0259U	2.08	1.6	77	2.08	1.57	76	48-130	1.60	(< 20)
0.0515U	2.08	1.98	95	2.08	2.04	98	43-114	2.80	(< 20)
0.0259U	2.08	1.42	68	2.08	1.42	68	53-115	0.17	(< 20)
0.0259U	2.08	1.56	75	2.08	1.52	73	53-121	2.60	(< 20)
									- *
	2.08	1.49	71	2.08	1.46	70	24-116	2.10	
	0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U 0.0259U	Sample Spike 0.0259U 2.08 0.0515U 2.08 0.0259U 2.08 <th>Sample Spike Result 0.0259U 2.08 1.49 0.0259U 2.08 1.25 0.0259U 2.08 1.23 0.0259U 2.08 1.31 0.0259U 2.08 1.46 0.0259U 2.08 1.46 0.0259U 2.08 1.46 0.0259U 2.08 1.53 0.0104U 2.08 1.66 0.0259U 2.08 1.61 0.0259U 2.08 1.59 0.0259U 2.08 1.59 0.0259U 2.08 1.66 0.0104U 2.08 1.58 0.0259U 2.08 1.57 0.0259U 2.08 1.58 0.0259U 2.08 1.61 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.42 <</th> <th>Sample Spike Result Rec (%) 0.0259U 2.08 1.49 72 0.0259U 2.08 1.25 60 0.0259U 2.08 1.23 59 0.0259U 2.08 1.31 63 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.66 80 0.0259U 2.08 1.61 77 0.0259U 2.08 1.69 81 0.0259U 2.08 1.68 80 0.0259U 2.08 1.58 76 0.0259U 2.08 1.57 75 0.0259U 2.08 1.6 77 0.0259U 2.08 1.68 76 0.0259U 2.08 1.68 75 0.0259U 2.08 1.42 68<!--</th--><th>Sample Spike Result Rec (%) Spike 0.0259U 2.08 1.49 72 2.08 0.0259U 2.08 1.25 60 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.31 63 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.61 77 2.08 0.0259U 2.08 1.69 81 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.66 77 2.08 0.0259U 2.08 1.68</th><th>Sample Spike Result Rec (%) Spike Result 0.0259U 2.08 1.49 72 2.08 1.54 0.0259U 2.08 1.25 60 2.08 1.34 0.0259U 2.08 1.23 59 2.08 1.24 0.0259U 2.08 1.31 63 2.08 1.29 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.53 74 2.08 1.50 0.0104U 2.08 1.66 80 2.08 1.57 0.0259U 2.08 1.61 77 2.08 1.57 0.0259U 2.08 1.69 81 2.08 1.64 0.0259U 2.08 1.58 76 2.08 1.58 0.0259U 2.08 1.57 75 2.08 1.57 0.0259U 2.08</th><th>Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 74Rec (%) 740.0259U2.081.25602.081.34640.0259U2.081.23592.081.24600.0259U2.081.31632.081.29620.0259U2.081.46702.081.43690.0259U2.081.53742.081.50720.0104U2.081.66802.081.60770.0259U2.081.61772.081.57760.0259U2.081.66802.081.57760.0259U2.081.66802.081.64790.0259U2.081.66802.081.64790.0259U2.081.57752.081.53730.0259U2.081.57752.081.53730.0259U2.081.57752.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.52730.0259U2.081.56752.081.52730.0259U2.081.56752.081.52<td< th=""><th>Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 1.54Rec (%) 74CL 41-1150.0259U2.081.25602.081.346439-1140.0259U2.081.23592.081.246048-1140.0259U2.081.31632.081.296235-1210.0259U2.081.46702.081.436953-1190.0259U2.081.53742.081.507259-1200.0104U2.081.66802.081.607753-1200.0259U2.081.61772.081.577653-1260.0259U2.081.61772.081.577644-1280.0259U2.081.69812.081.647957-1200.0259U2.081.57752.081.587644-1310.0259U2.081.57752.081.537358-1200.0259U2.081.57752.081.577648-1300.0259U2.081.64772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U<</th><th>Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.0259U 2.08 1.49 72 2.08 1.54 74 41-115 3.70 0.0259U 2.08 1.25 60 2.08 1.34 64 39-114 6.60 0.0259U 2.08 1.23 59 2.08 1.24 60 48-114 1.30 0.0259U 2.08 1.31 63 2.08 1.43 69 53-119 1.80 0.0259U 2.08 1.46 70 2.08 1.60 77 53-120 2.10 0.0104U 2.08 1.66 80 2.08 1.60 77 53-120 3.50 0.0259U 2.08 1.61 77 2.08 1.57 76 53-126 2.30 0.0259U 2.08 1.61 77 2.08 1.57 76 44-128 0.70 0.0259U 2.08</th></td<></th></th>	Sample Spike Result 0.0259U 2.08 1.49 0.0259U 2.08 1.25 0.0259U 2.08 1.23 0.0259U 2.08 1.31 0.0259U 2.08 1.46 0.0259U 2.08 1.46 0.0259U 2.08 1.46 0.0259U 2.08 1.53 0.0104U 2.08 1.66 0.0259U 2.08 1.61 0.0259U 2.08 1.59 0.0259U 2.08 1.59 0.0259U 2.08 1.66 0.0104U 2.08 1.58 0.0259U 2.08 1.57 0.0259U 2.08 1.58 0.0259U 2.08 1.61 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.62 0.0259U 2.08 1.42 <	Sample Spike Result Rec (%) 0.0259U 2.08 1.49 72 0.0259U 2.08 1.25 60 0.0259U 2.08 1.23 59 0.0259U 2.08 1.31 63 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.46 70 0.0259U 2.08 1.66 80 0.0259U 2.08 1.61 77 0.0259U 2.08 1.69 81 0.0259U 2.08 1.68 80 0.0259U 2.08 1.58 76 0.0259U 2.08 1.57 75 0.0259U 2.08 1.6 77 0.0259U 2.08 1.68 76 0.0259U 2.08 1.68 75 0.0259U 2.08 1.42 68 </th <th>Sample Spike Result Rec (%) Spike 0.0259U 2.08 1.49 72 2.08 0.0259U 2.08 1.25 60 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.31 63 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.61 77 2.08 0.0259U 2.08 1.69 81 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.66 77 2.08 0.0259U 2.08 1.68</th> <th>Sample Spike Result Rec (%) Spike Result 0.0259U 2.08 1.49 72 2.08 1.54 0.0259U 2.08 1.25 60 2.08 1.34 0.0259U 2.08 1.23 59 2.08 1.24 0.0259U 2.08 1.31 63 2.08 1.29 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.53 74 2.08 1.50 0.0104U 2.08 1.66 80 2.08 1.57 0.0259U 2.08 1.61 77 2.08 1.57 0.0259U 2.08 1.69 81 2.08 1.64 0.0259U 2.08 1.58 76 2.08 1.58 0.0259U 2.08 1.57 75 2.08 1.57 0.0259U 2.08</th> <th>Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 74Rec (%) 740.0259U2.081.25602.081.34640.0259U2.081.23592.081.24600.0259U2.081.31632.081.29620.0259U2.081.46702.081.43690.0259U2.081.53742.081.50720.0104U2.081.66802.081.60770.0259U2.081.61772.081.57760.0259U2.081.66802.081.57760.0259U2.081.66802.081.64790.0259U2.081.66802.081.64790.0259U2.081.57752.081.53730.0259U2.081.57752.081.53730.0259U2.081.57752.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.52730.0259U2.081.56752.081.52730.0259U2.081.56752.081.52<td< th=""><th>Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 1.54Rec (%) 74CL 41-1150.0259U2.081.25602.081.346439-1140.0259U2.081.23592.081.246048-1140.0259U2.081.31632.081.296235-1210.0259U2.081.46702.081.436953-1190.0259U2.081.53742.081.507259-1200.0104U2.081.66802.081.607753-1200.0259U2.081.61772.081.577653-1260.0259U2.081.61772.081.577644-1280.0259U2.081.69812.081.647957-1200.0259U2.081.57752.081.587644-1310.0259U2.081.57752.081.537358-1200.0259U2.081.57752.081.577648-1300.0259U2.081.64772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U<</th><th>Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.0259U 2.08 1.49 72 2.08 1.54 74 41-115 3.70 0.0259U 2.08 1.25 60 2.08 1.34 64 39-114 6.60 0.0259U 2.08 1.23 59 2.08 1.24 60 48-114 1.30 0.0259U 2.08 1.31 63 2.08 1.43 69 53-119 1.80 0.0259U 2.08 1.46 70 2.08 1.60 77 53-120 2.10 0.0104U 2.08 1.66 80 2.08 1.60 77 53-120 3.50 0.0259U 2.08 1.61 77 2.08 1.57 76 53-126 2.30 0.0259U 2.08 1.61 77 2.08 1.57 76 44-128 0.70 0.0259U 2.08</th></td<></th>	Sample Spike Result Rec (%) Spike 0.0259U 2.08 1.49 72 2.08 0.0259U 2.08 1.25 60 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.23 59 2.08 0.0259U 2.08 1.31 63 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.46 70 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.61 77 2.08 0.0259U 2.08 1.69 81 2.08 0.0259U 2.08 1.66 80 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.57 75 2.08 0.0259U 2.08 1.66 77 2.08 0.0259U 2.08 1.68	Sample Spike Result Rec (%) Spike Result 0.0259U 2.08 1.49 72 2.08 1.54 0.0259U 2.08 1.25 60 2.08 1.34 0.0259U 2.08 1.23 59 2.08 1.24 0.0259U 2.08 1.31 63 2.08 1.29 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.46 70 2.08 1.43 0.0259U 2.08 1.53 74 2.08 1.50 0.0104U 2.08 1.66 80 2.08 1.57 0.0259U 2.08 1.61 77 2.08 1.57 0.0259U 2.08 1.69 81 2.08 1.64 0.0259U 2.08 1.58 76 2.08 1.58 0.0259U 2.08 1.57 75 2.08 1.57 0.0259U 2.08	Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 74Rec (%) 740.0259U2.081.25602.081.34640.0259U2.081.23592.081.24600.0259U2.081.31632.081.29620.0259U2.081.46702.081.43690.0259U2.081.53742.081.50720.0104U2.081.66802.081.60770.0259U2.081.61772.081.57760.0259U2.081.66802.081.57760.0259U2.081.66802.081.64790.0259U2.081.66802.081.64790.0259U2.081.57752.081.53730.0259U2.081.57752.081.53730.0259U2.081.57752.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.57760.0259U2.081.6772.081.52730.0259U2.081.56752.081.52730.0259U2.081.56752.081.52 <td< th=""><th>Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 1.54Rec (%) 74CL 41-1150.0259U2.081.25602.081.346439-1140.0259U2.081.23592.081.246048-1140.0259U2.081.31632.081.296235-1210.0259U2.081.46702.081.436953-1190.0259U2.081.53742.081.507259-1200.0104U2.081.66802.081.607753-1200.0259U2.081.61772.081.577653-1260.0259U2.081.61772.081.577644-1280.0259U2.081.69812.081.647957-1200.0259U2.081.57752.081.587644-1310.0259U2.081.57752.081.537358-1200.0259U2.081.57752.081.577648-1300.0259U2.081.64772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U<</th><th>Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.0259U 2.08 1.49 72 2.08 1.54 74 41-115 3.70 0.0259U 2.08 1.25 60 2.08 1.34 64 39-114 6.60 0.0259U 2.08 1.23 59 2.08 1.24 60 48-114 1.30 0.0259U 2.08 1.31 63 2.08 1.43 69 53-119 1.80 0.0259U 2.08 1.46 70 2.08 1.60 77 53-120 2.10 0.0104U 2.08 1.66 80 2.08 1.60 77 53-120 3.50 0.0259U 2.08 1.61 77 2.08 1.57 76 53-126 2.30 0.0259U 2.08 1.61 77 2.08 1.57 76 44-128 0.70 0.0259U 2.08</th></td<>	Sample 0.0259USpike 2.08Result 1.49Rec (%) 72Spike 2.08Result 1.54Rec (%) 74CL 41-1150.0259U2.081.25602.081.346439-1140.0259U2.081.23592.081.246048-1140.0259U2.081.31632.081.296235-1210.0259U2.081.46702.081.436953-1190.0259U2.081.53742.081.507259-1200.0104U2.081.66802.081.607753-1200.0259U2.081.61772.081.577653-1260.0259U2.081.61772.081.577644-1280.0259U2.081.69812.081.647957-1200.0259U2.081.57752.081.587644-1310.0259U2.081.57752.081.537358-1200.0259U2.081.57752.081.577648-1300.0259U2.081.64772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U2.081.66772.081.577648-1300.0259U<	Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.0259U 2.08 1.49 72 2.08 1.54 74 41-115 3.70 0.0259U 2.08 1.25 60 2.08 1.34 64 39-114 6.60 0.0259U 2.08 1.23 59 2.08 1.24 60 48-114 1.30 0.0259U 2.08 1.31 63 2.08 1.43 69 53-119 1.80 0.0259U 2.08 1.46 70 2.08 1.60 77 53-120 2.10 0.0104U 2.08 1.66 80 2.08 1.60 77 53-120 3.50 0.0259U 2.08 1.61 77 2.08 1.57 76 53-126 2.30 0.0259U 2.08 1.61 77 2.08 1.57 76 44-128 0.70 0.0259U 2.08

Batch Information

Analytical Batch: XMS12321 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: DSD Analytical Date/Time: 10/6/2020 10:26:00PM Prep Batch: XXX43990 Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV Prep Date/Time: 10/3/2020 8:00:53AM Prep Initial Wt./Vol.: 240.00mL Prep Extract Vol: 1.00mL

Print Date: 11/03/2020 3:22:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

SGS

Method Blank				
Blank ID: MB for HBN 181 Blank Lab ID: 1586505	2771 [XXX/44027]	Matrix	x: Water (Surfa	ce, Eff., Ground)
QC for Samples: 1209709001, 1209709002, 1	209709003			
Results by AK102)		
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Diesel Range Organics	0.199J	0.600	0.180	mg/L
Surrogates				
5a Androstane (surr)	99.1	60-120		%
Batch Information				
Analytical Batch: XFC15	769	Prep Ba	tch: XXX44027	
Analytical Method: AK10			ethod: SW3520	
Instrument: Agilent 7890	B F			020 4:01:13PM
Analyst: CDM			tial Wt./Vol.: 25 tract Vol: 1 mL	J mL

Print Date: 11/03/2020 3:22:57PM

Blank Spike ID: LCS for HBN 1209709 [XXX44027] Blank Spike Lab ID: 1586506 Date Analyzed: 10/11/2020 17:06 Spike Duplicate ID: LCSD for HBN 1209709 [XXX44027] Spike Duplicate Lab ID: 1586507 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1209709001, 1209709002, 1209709003

Results by AK102									
		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	21.3	107	20	20.7	104	(75-125)	2.90	(< 20)
Surrogates									
5a Androstane (surr)	0.4	109	109	0.4	109	109	(60-120)	0.48	
Batch Information									
Analytical Batch: XFC15769				Pre	p Batch: X	XX44027			
Analytical Method: AK102 Prep Method: SW3520C									
Instrument: Agilent 7890B F Prep Date/Time: 10/08/2020 16:01									
Analyst: CDM						0	Extract Vo		
				Dup	be Init Wt./\	/oi.: 20 mg/l	Extract Vol	: 1 mL	

Print Date: 11/03/2020 3:22:59PM

SGS N CHAIN OF

Revised Report - Revision 1

p# 362614 xD														<u>www</u>	us.sgs	.com				
CLIENT: SLR				ĺ			ons. ions r	tie nay de				oe fille f anal				Page of				
	CONTACT:			NE #:			Sec	tion 3											Page of	
	Carl	Benson			07-452-2252								Pre	eservat				<u> </u>		
ection	PROJECT NAME: BO		PROJ PWSI PERM	D/ IIT#:			# C O		\langle	$\mathbb{Y}_{\mathbb{Y}}$		00								
0		= $D C / S O / S O / C / C / C / C / C / C / C / C / C /$					Comp		1			Anal	ysis*	T	r			NOTE:		
	Car	Benson	Prof	ile #:			T A	Grab	AKIOZ	X	0								*The following anal require specific me	
	INVOICE TO:			TE #:	(コール) つーー	0	I N	MI (Multi-	AK)	SZLOC	Clof28								and/or compound li	
	SL		P.0.		774.200		E	incre- mental)											BTEX, Metals, PFA	'S
	RESERVED for lab use	SAMPLE IDENTIFIC		DATE mm/dd/yy	HH:MM	MATRIX CODE	R S		DRO	202	PAN								REMARKS/LOC	ID
	(IAG)	MW-3		9/29/20	21:34	W	7	G		. V	\checkmark									
	12AE	MW - 34A		9/29/20	20:10	w "	75	G	\checkmark		_									
2	(AG)	MW-93		9/29/20	20:40	ω_{-}	7	G	\checkmark											
UO		Trip Blank				W	3													
Section 2	<u> </u>																			
S																				
		-																		
┝		d D (4)		Dete	Time	Received By	<u> </u>				Sect	ion 4	DOD) Projec	ct? Yes	179	Data	Delive	rable Requirement	ts:
	Relinquishe	a By: (1)		Date		0 11							1				1.	evel	2	
ľ	1/30/20 0700 Cello					Cooler ID:														
ഹ	Helinquished By: (2) Date			1 .	Time						Requested Turnaround Time and/or Special Instructions:						15:			
Section 5	Call.	Att den 100/2000 Time			0910		2	2		20 100.000	SFO TAT									
Sec	Relinquished				Time	Received By	eived By:									Chain of Custody Seal; (Circle)			e)	
Refinquished By: (4)		<u> </u>	Time	Received Fo	ed For Laboratory By				Temp Blank ℃: or Ambient []				INTACT BROKEN ABSENT		भ्रे					
ľ				10/1/20.	10:20	quy	- (_	af U		\mathcal{UC}		Deli	very M	ethod:	Hand D	elivery		nmeric	al Delivery []	
L	I				8:44			0			hti	tp://www	w.sgs.co	om/tern	ns-and-o	conditio		FIB		
										4.6	5 D.	ns-and-o SO			,,_					

48 of 51 F083-Blank_COC_20181228

e-Sample Receipt Form

	e-samp	ne receip			Revised Repo	ort - Revision 1	
202	SGS Workorder #:	1	209709	•	1 2	0 9 7 0	9 9
R	eview Criteria	Condition (Yes,	No, N/A	Exce	eptions Not	ed below	
<u>Chain</u>	of Custody / Temperature Requir	rements	N/A E	Exemption pe	rmitted if sampl	er hand carries/deliv	vers.
	Were Custody Seals intact? Note # & I	ocation Yes	1F, 1B				
	COC accompanied sa	mples? Yes					
DOD: Were	samples received in COC corresponding co						
	N/A **Exemption permitted if o	chilled & colle	cted <8 hours ag	go, or for sam	nples where chil		
Tempera	ature blank compliant* (i.e., 0-6 °C afte	r CF)? Yes	Cooler ID:	1	@	4.6 °C Therm. ID:	D30
			Cooler ID:		@	°C Therm. ID:	
	a temperature blank, the "cooler temperature" will TEMP" will be noted to the right. "ambient" or "chi		Cooler ID:		@	°C Therm. ID:	
	noted if neither is available.		Cooler ID:		@	°C Therm. ID:	
			Cooler ID:		@	°C Therm. ID:	
*lf >	6°C, were samples collected <8 hours	ago? N/A					
	If <0°C, were sample containers ice	free? N/A	J				
Note: Identify contain	ners received at non-compliant temper						
	Use form FS-0029 if more space is ne	eded.					
Holding Time /	Documentation / Sample Condition Re	quirements	Note: Refer to form	n F-083 "Samp	le Guide" for spec	ific holding times	
	Were samples received within holding						
			ľ				
Do samples match Co	DC ** (i.e.,sample IDs,dates/times colle	cted)? Yes					
**Note: If times d	liffer <1hr, record details & login per C0	C.	Ĩ				
***Note: If sample information on	containers differs from COC, SGS will default to C	OC information					
Were analytical requests	clear? (i.e., method is specified for an	alyses Yes					
	nultiple option for analysis (Ex: BTEX, N		Ĭ				
			N/A *	**Exemption	permitted for m	etals (e.g,200.8/602	<u>'0A).</u>
Were proper containe	ers (type/mass/volume/preservative***)	used? Yes					
			l .				
	<u>Volatile / LL-Hg Requ</u>						
	s (i.e., VOAs, LL-Hg) in cooler with san						
	als free of headspace (i.e., bubbles ≤ 6						
Were a	Il soil VOAs field extracted with MeOH-	BFB? N/A					
Note to CI	ient: Any "No", answer above indicates nor	n-compliance	with standard pro	ocedures and	d may impact da	ata quality.	
	Additiona	l notes (if a	pplicable):				
		•					

e-Sample Receipt Form FBK

CCC	e-Sample	Receipt F	orm FBK		Revised Report	t - Revis	ion 1	
202	SGS Workorder #:	1	20970	9	12	209	709	
Review Crit	eria	Condition (Yes,	No, N/A	Exce	ptions Note	ed belo	W	
	y / Temperature Requi			Exemption per	-			ers.
	stody Seals intact? Note # &							
	COC accompanied sa	amples? Yes						
DOD: Were samples rec	eived in COC corresponding c							
	**Exemption permitted if	chilled & colle	cted <8 hours	ago, or for sam	ples where chil	ling is no	t required	
Temperature blank	compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@	1.0 °C	Therm. ID:	D62
			Cooler ID:		@	°C	Therm. ID:	
If samples received without a temperature b			Cooler ID:		@	°C	Therm. ID:	
documented instead & "COOLER TEMP" will be be noted if neither	0	illed" will	Cooler ID:		@	°C	Therm. ID:	
*If >6°C, were s	amples collected <8 hours	ago?						
14 000	uoro comple contrinens i	fracoll						
IT <0°C, v	vere sample containers ice							
Note: Identify containers receive	d at non-compliant temper	rature.						
Use form F	S-0029 if more space is n	eeded.						
Holding Time / Documenta				o form F-083 "Sa	ample Guide" fo	or specifi	<mark>ic holding tim</mark>	ies.
Do samples match COC ** (i.e.,sa								
**Note: If times differ <1hr, re	• •							
***Note: If sample information on containers diffe								
Were samples in good cond	ition (no leaks/cracks/breal	kage)? Yes						
Were analytical requests clear? (i.e.,	method is specified for an	nalvses						
	n for analysis (Ex: BTEX, I	Metals)						
		Yes						
Were Trip Blanks (i.e., VOAs	•.	-						
Were all water VOA vials free of h	field extracted with MeOH							
For Rush/Short Hold Time,								
	", answer above indicates not		II.	procedures and	may impact de			
Note to Chent. Any No		al notes (if a		procedures allu	may impact da	ila quall	y.	
	Additiona				-			
SGS Profile #					0			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1209709001-A	HCL to $pH < 2$	ОК			
1209709001-B	HCL to $pH < 2$	ОК			
1209709001-C	No Preservative Required	ОК			
1209709001-D	No Preservative Required	ОК			
1209709001-E	HCL to $pH < 2$	ОК			
1209709001-F	HCL to $pH < 2$	ОК			
1209709001-G	HCL to $pH < 2$	ОК			
1209709002-A	HCL to $pH < 2$	ОК			
1209709002-B	HCL to $pH < 2$	ОК			
1209709002-C	HCL to $pH < 2$	ОК			
1209709002-D	HCL to $pH < 2$	ОК			
1209709002-E	HCL to $pH < 2$	ОК			
1209709003-A	HCL to $pH < 2$	ОК			
1209709003-B	HCL to $pH < 2$	ОК			
1209709003-C	No Preservative Required	ОК			
1209709003-D	No Preservative Required	ОК			
1209709003-E	HCL to $pH < 2$	ОК			
1209709003-F	HCL to $pH < 2$	ОК			
1209709003-G	HCL to $pH < 2$	ОК			
1209709004-A	HCL to $pH < 2$	ОК			
1209709004-B	HCL to $pH < 2$	ОК			
1209709004-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.