Technical Memorandum Decommission of Air Sparge Wells and Installation of 4" Chemox Injection Wells at TNS 111

> ADEC File #100.26.026 November 10, 2023

0

EXPRESS

-

Meyer

AUTHORIZATION TO SUBMIT REPORT

Stantec has been authorized by the client, 7-Eleven (representative Paula Sime, PG, Manager – Environmental Services) to submit the enclosed technical memorandum on the decommissioning of air sparge wells and installation of chemox injection wells to the Alaska Department of Environmental Conservation. If you have any questions or need additional information concerning this technical memorandum, please contact me at (907) 227-9883 or via email at <u>bob.gilfilian@stantec.com</u>.

Regards,

STANTEC CONSULTING SERVICES, INC.

Bob Gilfilian

Robert (Bob) Gilfilian, P.E. Project Technical Lead Principal Senior Civil Engineer

Stantec

То:	Paula Sime, PG Manager, Environmental Services	From:	Bob Gilfilian, PE Principal Senior Engineer Sydney Souza Environmental Geologist
	7-Eleven. Inc. PO Box 1026 Temecula, CA 92593		Stantec Consulting Services, Inc. 725 E Fireweed Lane, Suite 200 Anchorage, Alaska 99503
File:	ADEC Facility ID #1112; ADEC File # 100.26.026	Date:	November 10, 2023

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315) located at 3679 College Road, Fairbanks, Alaska.

1 INTRODUCTION

On behalf of Tesoro Refining & Marketing Company (Tesoro), Stantec Consulting Inc. (Stantec) is pleased to submit this Technical Memorandum (TM) for the September 2023 decommissioning of 4 air sparge (AS) wells and installation of 4 chemox injection wells (IW). The AS wells were identified as AS-1, AS-3, AS-4, and AS-11. The chemox injection wells (IW) are identified as IW-2023-A, IW-2023-B, IW-2023-C, and IW-2023-D. The wells were drilled at the former Tesoro Northstore (TNS) #111 (current Speedway Store #5315) located at 3679 College Road in Fairbanks, Alaska (**Figure 1**).

This TM describes the implementation of the 2023 Corrective Action Work Plan (CAP) for the installation of four-inch diameter chemical oxidation (chemox) injection wells in manholes at former air sparge (AS) wells, as proposed in Task 4. This workplan was approved by Pete Campbell, PE, with the Alaska Department of Environmental Conservation (ADEC). Upon 7-Eleven's acceptance of this TM, Stantec will submit the TM to the ADEC, attention Pete Campbell, PE.

2 BACKGROUND

On September 19 and 20, 2023, Stantec implemented the 2023 CAP work plan for Task 4 at the subject TNS store. The Stantec field staff consisted of Bob Gilfilian, PE, (Principal Civil Engineer), Sydney Souza (Environmental Geologist), Geoff Moorehead, EIT (Staff Engineer), and Leslie Petre, EIT (Staff Engineer). On September 19, 2023, Stantec met the field crew for Discovery Drilling on the property and conducted a site safety tailgate meeting. Stantec explained the scope of work that was to be completed on the Tesoro property. All Stantec staff remained on-site during the drilling. Sydney Souza logged the soil borings and collected representative soil samples while Geoff Moorehead performed "Firewatch" services.

The intent of the IWs was to replace the existing AS wells with new, shallow (18-foot deep) 4-inch diameter poly vinyl chloride (PVC) casing with 10-feet of 200 slot well screen. This larger PVC casing will improve the injection of a chemox solution into the groundwater table and allow for recirculation of groundwater discharged from RM-2. The four AS wells were successfully pulled from the formation with the drill rig and replaced in the same borehole with the IW wells (see **Figure 2** for well locations). Based on underground utility locates and original construction record drawings, there were no buried utilities in the immediate vicinity of the drilling areas. The fuel dispensers were deactivated by store personnel during the drilling IW-2023-C and IW-2023-D.

The approved work plan for this scope of work included field screening of representative grab soil samples collected from auger flights. Representative soil samples were field screened with a calibrated photoionization detector (PID) and

Page 2 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

analyzed by an ADEC qualified laboratory for gasoline range organics (GRO), diesel range organics (DRO), polynuclear aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs). Summaries of analytical results from these soil samples are included in **Table 1**.

Based on elevated PID measurements and physical (olfactory and visual) features, the borehole cuttings from IW-2023-C were stored on-site in a 55-gallon steel drum for subsequent treatment and disposal subject to receipt of confirmation laboratory soil test results. Representative soil samples were selected from the soil cuttings from IW-2023-C and placed in laboratory supplied jars and shipped via approved chain of custody procedures for analyses by PACE Laboratory. The laboratory test results (see **Attachment 3**) found the soil cuttings were contaminated with diesel fuel. The drum of contaminated soil will be transported to US Ecology in Moose Creek, Alaska, for thermal treatment and disposal in accordance with the ADEC Approval to Transport and Treatment Contaminated Media dated October 27, 2023 (see **Attachment 4**).

3 SOIL BORING AND SAMPLING METHODOLOGY

Drilling and sampling for the September 2023 injection wells was completed by Discovery Drilling, Inc. with an auger and Geoprobe® 7822 DT drilling rig. Sampling was conducted by Stantec staff. A descriptive summary of field boring notes from soil borings IW-2023-A, IW-2023-B, IW-2023-C, and IW-2023-D is provided below. The boreholes were drilled to 20 feet below ground surface (bgs) and the 4-inch PVC well casing was placed at 18 feet bgs. Groundwater was not observed in any of the wells, likely due to disturbance from the auger. Groundwater levels are determined based on surrounding monitoring wells which were noted on the soil boring logs. See **Attachment 1** for detailed boring logs.

- <u>IW-2023-A</u> As shown on Figure 2, this IW replaced AS-1, located near the entrance of the store.
 - From 0 to 2 feet bgs, the auger returned brown poorly graded sand with little silt. No petroleum odor was detected.
 - From 2 to 20 feet bgs, the auger returned brown, gravelly, poorly graded sand with trace silt. No petroleum odor was detected. PID readings ranged from 0.0 ppm to 35.0 ppm.
 - No samples were taken from this borehole.
 - Drilling ended at 20 feet bgs. PVC was inserted to 18 feet bgs with a 0.02-inch slotted screen from 10 to 18 feet bgs. The whole was backfilled with pre-washed quartz filter pack sand, bentonite chips, pea gravel, then gravel backfill.
 - <u>IW-2023-B</u> As shown on Figure 2, this IW replaced AS-3, located near the south horizontal IW.
 - From 0 to 6 feet bgs, drilling proceeded through dark brown, poorly graded sand with little silt, with a PID reading of 7.0 ppm. No petroleum odor was detected.
 - From 6 to 20 feet bgs, drilling proceeded through brown, moist, poorly graded sand with little gravel and trace silt. No petroleum odor was detected. PID readings ranged from 1.0 ppm to 6.0 ppm.
 - No samples were taken from this borehole.
 - Drilling ended at 20 feet bgs. PVC was inserted to 18 feet bgs with a 0.02-inch slotted screen from 10 to 18 feet bgs. The whole was backfilled with pre-washed quartz filter pack sand, bentonite chips, pea gravel, then gravel backfill.
 - <u>IW-2023-C</u> As shown on Figure 2, this IW replaced AS-4, located next to soil vapor extraction (SVE) 2.

Page 3 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

- From 0 to 4 feet bgs, drilling proceeded through dry, brown, poorly graded sand with little gravel and trace silt. No petroleum odor was detected. The PID reading was 18.0 ppm.
- From 4 to 9.5 feet bgs, drilling proceeded through moist, brown, sandy silt with trace gravel. No petroleum odor was detected.
- From 9.5 to 12 feet bgs, the auger returned dry, brown, poorly graded sand with little gravel and trace silt. A field screening sample showed a PID reading of 1.7 ppm. No petroleum odor was detected.
- From 12 to 20 feet bgs, drilling showed dry, brown, poorly graded gravel with trace gravel and silt. A
 moderate petroleum odor was detected, with PID readings as high as 185.7 ppm.
- Sample IW-2023-C was taken from auger cuttings from roughly 15 feet bgs.
- Drilling ended at 20 feet bgs. PVC was inserted to 18 feet bgs with a 0.02-inch slotted screen from 10 to 18 feet bgs. The whole was backfilled with pre-washed quartz filter pack sand, bentonite chips, pea gravel, then gravel backfill.
- <u>IW-2023-D</u> As shown on Figure 2, this IW replaced AS-11, located just southwest of the concrete fuel pad.
- From 0 to 2.5 feet bgs, drilling proceeded through dry, brown, poorly graded sand with little gravel and trace silt. No petroleum odor was detected.
- From 2.5 to 3.5 feet bgs, the auger returned dry, brown, sandy gravel. No petroleum odor was detected.
- From 3.5 to 6 feet bgs, drilling proceeded through dry, brown poorly graded sand with little gravel and trace silt (same as above) with a PID reading of 1.3 ppm. No petroleum odor was detected.
- From 6 to 8 feet bgs, drilling proceeded through dry, brown, gravel, which became sandier as the auger went deeper into the ground. No petroleum odor was detected.
- From 8 to 11 feet bgs, the auger returned dry, brown, silty, poorly graded sand with trace gravel. PID readings were between 1.0 and 1.5 ppm. No petroleum odor was detected.
- From 11 to 20 feet bgs, the auger returned brown, poorly graded sand with trace silt and gravel. The sand became wet at 16.5 feet bgs. PID readings were between 1.0 and 4.8 ppm. No petroleum odor was detected.
- No samples were taken from this borehole.
- Drilling ended at 20 feet bgs. PVC was inserted to 18 feet bgs with a 0.02-inch slotted screen from 10 to 18.5 feet bgs. The whole was backfilled with pre-washed quartz filter pack sand, bentonite chips, pea gravel, then gravel backfill.

Attachment 2 provides photos taken during the removal of the AS wells and installation of the chemox injection wells. The removed wells were 2-inch diameter PVC threaded casing. The drill crew was able to gradually pull the entire well casing (approximately 20-feet long) vertically up out of the borehole. Prior to pulling the AS well casing, the bottom section of the well casing was knocked out and hydrated bentonite pellets were added to the casing up to 18-feet bgs.

Page 4 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

3.1 FIELD SCREENING METHODOLOGY AND RESULTS

Field screening head space samples were collected every 2.5 feet during the drilling of the boreholes. A soil sample was gathered into a re-sealable polyethylene bag for screening by PID. Calibration of the PID was conducted with a 100-ppm calibration standard. Samples were warmed inside the company vehicle and allowed to volatilize for several minutes prior to screening. Field screening results, along with the location of the analytical sample from IW02023-C, are summarized on the four soil boring logs that are provided in **Attachment 1**.

3.1.1 Analytical Sampling Methodology and Results

Soil analytical samples were submitted to Pace Analytical Laboratory located in Mount Juliet, Tennessee for analysis of the Alaska list of volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) Method 8260C, the standard list of polynuclear aromatic hydrocarbons (PAHs), to include naphthalene, by EPA Method 8270D with selective ion monitoring (SIM), gasoline range organics (GRO) by Alaska State test method (AK) 101, diesel range organics (DRO) by AK102, total solids by method 2540 G-2011, and total lead by EPA 6020. The laboratory analytical report is provided in **Attachment 3**.

Soil analytical results were compared to 18 Alaska Administrative Code (AAC) 75 Method Two Migration-to-Groundwater Soil Cleanup Levels (SCLs). A summary of soil analytical detections and exceedances are provided in **Table 1**. DRO was detected in exceedance of SCLs in this sample (**Table 1**).

Sample ID	PID (ppm)	Benzene ¹ (mg/kg)	Toluene ¹ (mg/kg)	Ethlybenzene ¹ (mg/kg)	Total Xylenes ¹ (mg/kg)	DRO (mg/kg)	GRO (mg/kg)	Naphthalene ² (mg/kg)	Lead (mg/kg)
IW-2023-C	185.7	0.00141	0.00612 J	0.00728	0.0417	675	3.34 B	0.0166 J	9.68
SCL	-	0.022	6.7	0.13	1.5	250	300	0.038	400
	1	Analyze	l by US Environ	mental Protection Age	ency Test Method	d 8260C			
	2	Analyze	1 by US Environ	mental Protection Age	ency Test Method	d 8270D			
	J	The iden	tification of the	analyte is acceptable; t	he reported valu	e is an estimat	e.		
	В	The same	e analyte is foun	d in the associated blan	nk.				
	SCL	Soil Clea	unup Levels from	n 18 AAC 75, measure	d in mg/kg				
	Bold	Indicates	the listed value	exceeds the associated	l Soil Cleanup L	evel for that co	ontaminant.		
	DRO	Diesel R	ange Organics, a	nalyzed by method AI	K102				
	GRO	Gasoline	Range Organics	s, analyzed by AK101					
	mg/kg	milligrar	ns per kilogram						
	ppm	parts per	million						
	PID	photoion	ization detector						

Table 1 : Soil Sample Analytical Results

Samples collected September 20, 2023

3.2 ANALYTICAL SAMPLING QUALITY ASSURANCE (QA) AND QUALITY CONTROL (QC)

No duplicate samples were sent to Pace Analytical for this event.

4 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this report was to provide on behalf of Tesoro (c/o 7/Eleven) a summary of the field and laboratory data collected during the September 2023 decommissioning of four AS wells (AS-1/3/4/11) and drilling of the four injection

November 10, 2023 Paula Sime, PG Manager, Environmental Services Page 5 of 21 Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

wells (IW-2023-A/B/C/D) at the subject site (Speedway Store 5315). As presented in **Table 1**, Stantec found DRO to be in exceedance of SCLs in sample IW-2023-C.

After the new injection wells were installed, Stantec employees Leslie Petre and Geoff Moorehead connected them to existing 1-inch air supply lines (see photos in **Attachment 2**). The new wells were then tested by injecting roughly 1 gallon per minute from the recirculation well RW-2 overnight into each well. The test was successful, and the wells accepted the water supply. The use of these new, larger diameter (4-inch) injection wells for future chemox injection events is expected to be more efficient in the application of the chemical oxidation treatment process and should result in a more effective method for the continued remediation of the residual petroleum contamination at this site.

Please feel free to contact me if you have any questions regarding the findings reported herein.

STANTEC CONSULTING SERVICES INC.

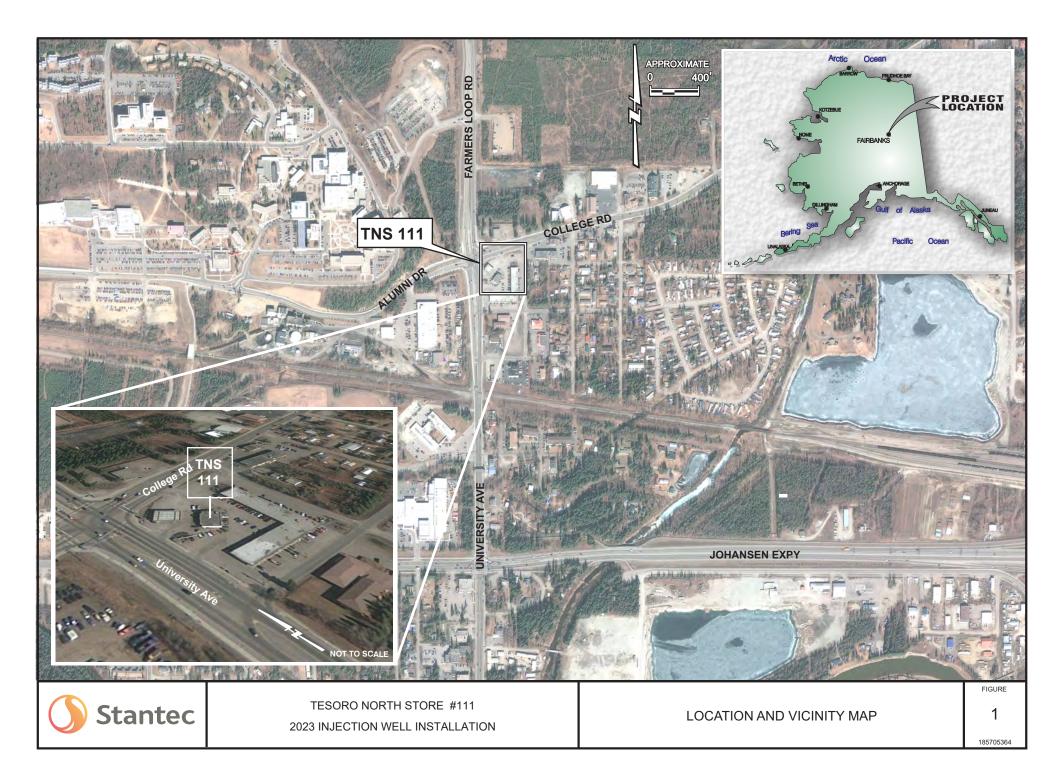
Bob Gilfilian

Bob Gilfilian, PE Principal, Civil Engineer 725 E Fireweed Lane, Suite 200 Anchorage, AK 99503 Cell Phone: (907) 277-9883 bob.gilfilian@stantec.com

Sydney Souza

Sydney Souza Environmental Geologist 725 E Fireweed Lane, Suite 200 Anchorage, AK 99503 Cell Phone: (907) 229-1514 sydney.souza@stantec.com

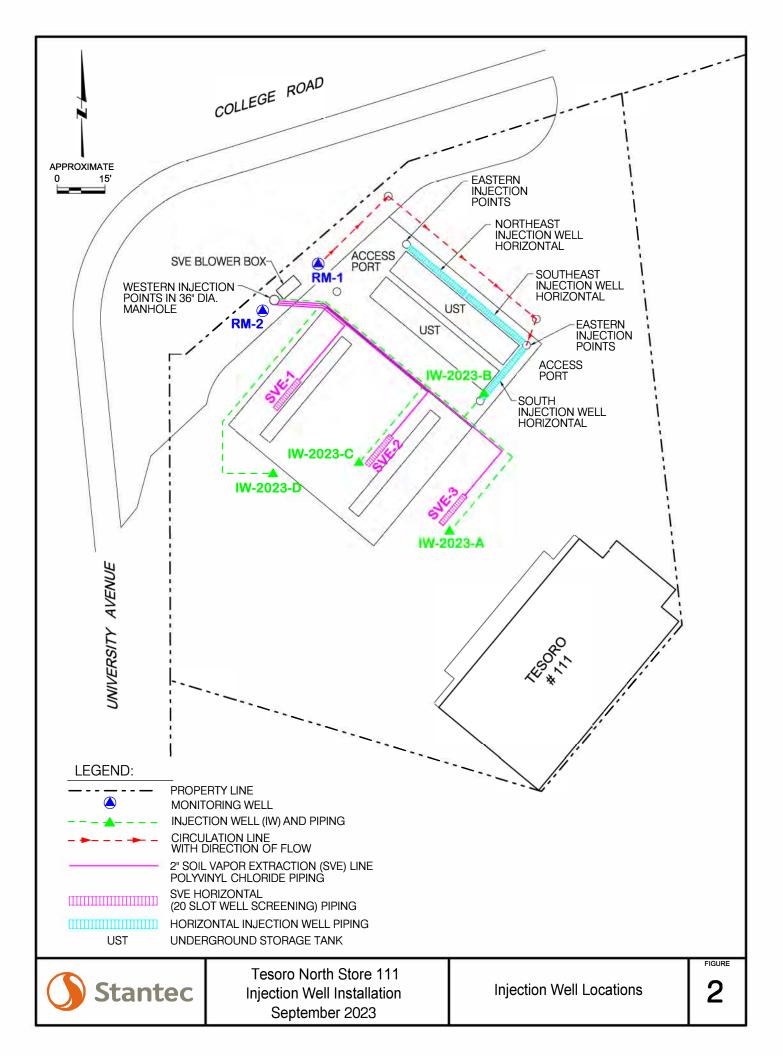
Attachments:


Figure 1 – Location and Vicinity Map Figure 2 – Injection Well Locations Attachment 1 – Injection Well Logs Attachment 2 – Photo Log of IW Installation and Plumbing Connections Attachment 3 - ADEC Laboratory Results and Data Review Checklist Attachment 4 - ADEC Approval to Transport and Treatment Contaminated Media

Page 6 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

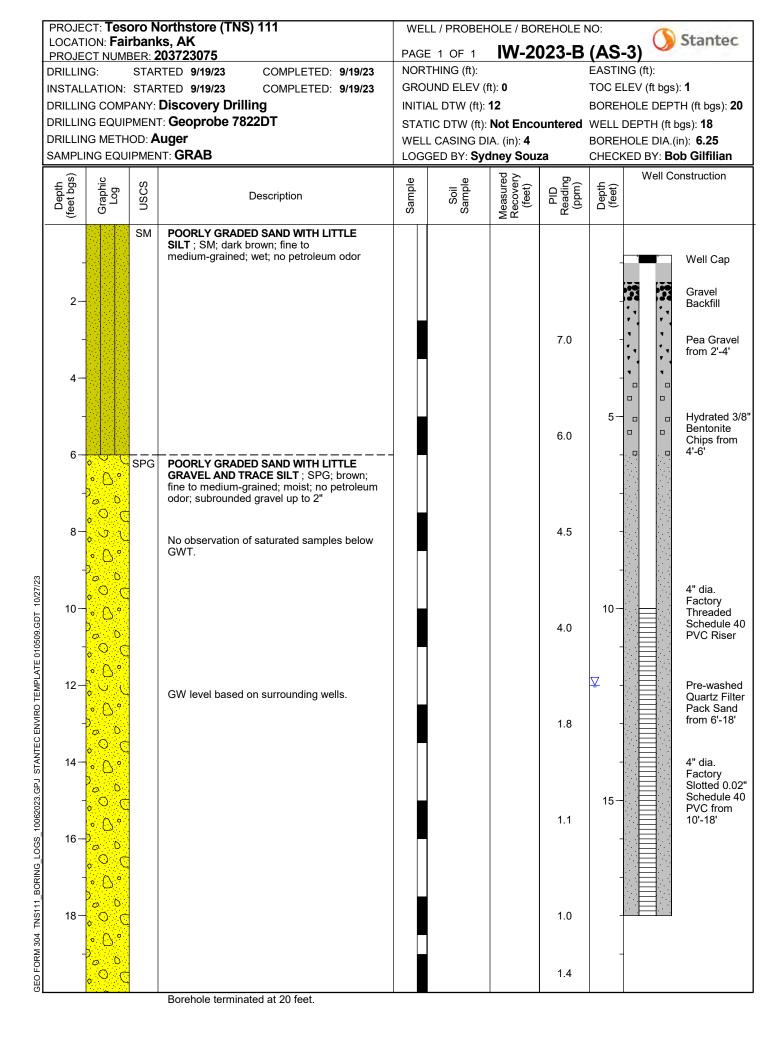
Figure 1 Location and Vicinity Map



Page 7 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Figure 2 Injection Well Locations


Page 8 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Attachment 1

Injection Well Logs

		orthstore (TNS) 111	WEL	L / PROBEH	IOLE / BOI	REHOLE I	NO:	1	
LOCATION: Fair PROJECT NUME			PAGE	1 OF 1	IW-20)23-A	(AS-1		Stantec
		RTED 9/19/23 COMPLETED: 9/19/23		HING (ft):	100 4		EASTING		
INSTALLATION:			GROU	JND ELEV (1	ft): 0		TOC ELE	V (ft bgs): 1
DRILLING COMP	ANY:	Discovery Drilling	INITIA	L DTW (ft):	12.9		BOREHO		TH (ft bgs): 20
DRILLING EQUIP	MENT	Geoprobe 7822DT	STAT	IC DTW (ft):	Not Enco	untered	WELL DE	PTH (ft	bgs): 18
DRILLING METH				CASING D			BOREHO	-	
SAMPLING EQUI	PMEN	IT: GRAB	LOGO	GED BY: Sy	dney Sou	za	CHECKE) BY: B	ob Gilfilian
ן gs) ic	6		e	<u>e</u>	red ery	br (Well C	onstruction
Depth (feet bgs) Graphic Log	USCS	Description	Sample	Soil Sample	Measured Recovery (feet)	PID Reading (ppm)	Depth (feet)		
	SM	POORLY GRADED SAND WITH LITTLE SILT ; SM; brown; fine to medium-grained; dry; no petroleum odor							Well Cap Gravel
2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	SPG	GRAVELLY POORLY GRADED SAND WITH TRACE SILT ; SPG; brown; fine to							Backfill
4-0000		coarse-grained; dry; no petroleum odor; subrounded gravel up to 2"; did not see water, but water table should be at ~12.9'				0.0			Pea Gravel from 2'-4'
- <mark>∞ ○ ⊂</mark> • ○ ℃						2.2	5-		Hydrated 3/8 Bentonite Chips from 4'-6'
8-000 -0000 -00000 -00000						2.9			
° ° ° 10 − ° ° 0 ° 2 ° 0 ° ⊂ - ° 0 ° ⊂						35.0	10-		4" dia. Factory Threaded Schedule 40 PVC Riser
ں ہی۔ ب ن ' (_ ^) ہے ر ک		Did not encounter GW. GW level based on surrounding wells.				20.0	 ₽		Pre-washed Quartz Filter Pack Sand from 6'-18'
14 – , , , , , , , , , , , , , , , , , ,						3.0	15-		4" dia. Factory Slotted 0.02 Schedule 40 PVC from 10'-18'
کی 2000 – 18 2000 – 18 2000 – 10 2000 – 10						10			

			orthstore (TNS) 111	W	ELL / PROBE	HOLE / BO	REHOLE I	NO:		and the second
	ION: Fai		ks, AK 203723075	PAC	GE 1 OF 1	IW-2	023-C	(AS-	4) 🕚	Stantec
DRILLIN			RTED 9/20/23 COMPLETED: 9/20/23		RTHING (ft):			EASTIN		
			RTED 9/20/23 COMPLETED: 9/20/23		OUND ELEV	(ft): 0			_EV (ft bgs): 1
DRILLIN	IG COMF	ANY:	Discovery Drilling		TAL DTW (ft)	12.5		BOREH	IOLE DEP	ΓΗ (ft bgs): 20
DRILLIN	IG EQUIF	MENT	⊡ Geoprobe 7822DT	STA	TIC DTW (ft)	Not Enco	ountered	WELL [DEPTH (ft I	ogs): 18.5
	IG METH		-		LL CASING D	. ,		BOREH	IOLE DIA.(in): 6.25
SAMPLI	NG EQU	IPMEN	IT: GRAB	LOC	GGED BY: Sy	dney Sou	za	CHECK	ED BY: B	ob Gilfilian
Depth (feet bgs)	Graphic Log	nscs	Description	Sample	Soil Sample	Measured Recovery (feet)	PID Reading (ppm)	Depth (feet)	Well C	onstruction
(fe					0,	Σŭ.				
-		SPG	POORLY GRADED SAND WITH LITTLE GRAVEL AND TRACE SILT; SPG; brown; dry; no petroleum odor; subrounded gravel up to 2"							Well Cap
2—								-		Gravel Backfill
- 4	° ○ ○ ° ○ °						18.0			Pea Gravel from 2'-4'
-		MLS	SANDY SILT WITH TRACE GRAVEL ; MLS; brown; moist; no petroleum odor; subrounded gravel up to 0.5"					5-		Hydrated 3/8 Bentonite
6—							9.0			Chips from 4'-6'
- 8-							1.1			
_										
10-		SPG	POORLY GRADED SAND WITH LITTLE GRAVEL AND TRACE SILT ; SPG; brown; dry; no petroleum odor; subrounded gravel up to 2"				1.7	10-		4" dia. Factory Threaded Schedule 40 PVC Riser
	。 。 () 。									
12-	<u>N</u>	SP	POORLY GRADED SAND WITH TRACE GRAVEL AND TRACE SILT ; SP; brown; dry; moderate petroleum odor; subrounded gravel up to 0.5"				185.7	- ⊻ -		Pre-washed Quartz Filter Pack Sand from 6'-18'
14 —			graver up to 0.0							4" dia.
			Did not encounter GW. GW level based on surrounding wells.		Sample IW-2023-C	;	115 4	15-		Factory Slotted 0.02" Schedule 40 PVC from
16—					Collected a 11:38		115.4			10'-18'
							63.3			
2 2 2 2 2							43.0			
			Borehole terminated at 20 feet.							

			orthstore (TNS) 111	WEL	L / PROBEH	HOLE / BO	REHOLE	NO:	1	Charles
	ON: Fai		(s, AK 103723075	PAGE	1 OF 1	IW-20)23-D	(AS	-11)) Stante
RILLIN			COMPLETED: 9/19/23	NOR	THING (ft):			EASTIN		
NSTALL	ATION:	STAR	COMPLETED: 9/19/23	GRO	JND ELEV (ft): O		TOC EI	LEV (ft bg:	s): 1
			Discovery Drilling	INITIA	AL DTW (ft):	16.5		BORE	IOLE DEF	PTH (ft bgs): 20
			: Geoprobe 7822DT	STAT	IC DTW (ft):	Not Enco	untered	WELL I	DEPTH (ft	bgs): 18
	G METH		•		CASING D	. ,				(in): 6.25
	NG EQU	IPMEN	IT: GRAB	LOGO	GED BY: Sy	-	za	CHECK		ob Gilfilian
Depth (feet bgs)	Graphic Log	NSCS	Description	Sample	Soil Sample	Measured Recovery (feet)	PID Reading (ppm)	Depth (feet)	Well C	Construction
2-		SPG	POORLY GRADED SAND WITH LITTLE GRAVEL AND TRACE SILT ; SPG; brown; dry; no petroleum odor; subrounded gravel up to 4"					-		Well Cap Gravel Backfill
2										DACKIII
-		GP	SANDY GRAVEL ; GP; brown; dry; no petroleum odor; subrounded gravel up to 4"				1.2	-		Pea Gravel from 2'-4'
4-	。 。 〇 〇	SPG	POORLY GRADED SAND WITH LITTLE GRAVEL AND TRACE SILT ; SPG; brown; dry; no petroleum odor; subrounded gravel up to 4"					5-		Hydrated 3
6	° ° °						1.3	5-		Bentonite Chips from 4'-6'
0-0		GP	GRAVEL WITH FEW FINE TO COARSE SAND; GP; brown; dry; no petroleum odor; subrounded gravel up to 6"							
0		GP	SANDY GRAVEL ; GP; brown; dry; no petroleum odor; subrounded gravel up to 4"				1.5			
8-		SM	SILTY POORLY GRADED SAND WITH TRACE GRAVEL ; SM; brown; dry; no petroleum odor; subrounded gravel up to 2"				1.5	-		4" dia.
10-							1.0	10-		Factory Threaded Schedule 4 PVC Riser
12-		SP	POORLY GRADED SAND WITH TRACE GRAVEL AND TRACE SILT ; SP; brown; dry; no petroleum odor; subrounded gravel up to 2"					_		Pre-washe
-							1.3	_		Quartz Filte Pack Sand from 6'-18.
14 —								- 15-		4" dia. Factory Slotted 0.02
16-							1.0			Schedule 4 PVC from 10'-18.5'
-		SP	POORLY GRADED SAND WITH TRACE GRAVEL AND TRACE SILT ; SP; brown; wet; no petroleum odor; subrounded gravel up to 2"					<u>▼</u> -		
18-							1.1	-		
							4.8			

Page 9 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Attachment 2

Photo Log of IW Installation and Plumbing Connections

Page 10 of 21

Reference: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 1: Drillers removing AS-1 to replace with IW-2023-A.

Page 11 of 21

Reference:

Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

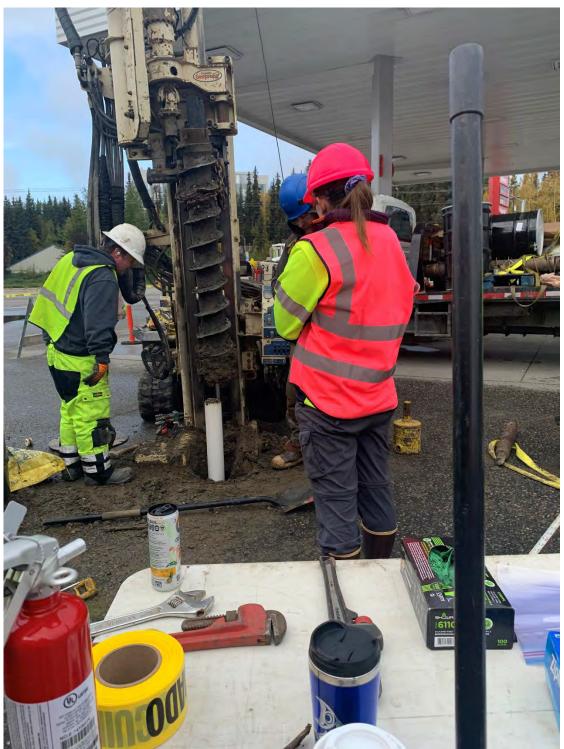


Photo 2: Installing 4" IW-2023-A PVC.

Page 12 of 21

Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 3: Drillers removing AS-3 to replace with IW-2023-B.

Page 13 of 21

ce: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 4: Drillers jackhammering through cement in order to make room for a larger manhole for IW-2023-D.

Page 14 of 21

Reference:

 Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 5: Drilling IW-2023-C.

Page 15 of 21

Reference:

e: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 6: Taking soil samples of IW-2023-C.

November 10, 2023

Paula Sime, PG Manager, Environmental Services

Page 16 of 21 Reference:

nce: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 7: IW-2023-A hooked up to the recirculation system.

Page 17 of 21

Reference:

ce: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 8: IW-2023-B hooked up to the recirculation system.

Page 18 of 21

Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 9: IW-2023-C hooked up to the recirculation system.

Page 19 of 21

e: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Photo 10: IW-2023-D hooked up to the recirculation system. The area surrounding the manhole was resealed with asphalt after drilling.

Page 20 of 21

Reference:

e: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Attachment 3

ADEC Laboratory Results and Data Review Checklist

Pace Analytical ANALYTICAL REPORT

October 23, 2023

Stantec - Anchorage, AK

Sample Delivery Group: Samples Received:

Project Number:

Description:

Site:

Report To:

L1665853 10/12/2023

Speedway 5315 - Fairbanks, AK SPEEDWAY 5315/TNS111 Ms. Leslie Petre 725 E Fireweed Lane Suite 200 Anchorage, AK 99503

Entire Report Reviewed By:

Elt

Craig Cothron Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Stantec - Anchorage, AK PROJECT:

SDG: L1665853

DATE/TIME: 10/23/23 13:37

PAGE: 1 of 22

Тс Ss Cn Sr Qc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
IW2023C L1665853-01	5
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Metals (ICPMS) by Method 6020	9
Volatile Organic Compounds (GC) by Method AK101	10
Volatile Organic Compounds (GC/MS) by Method 8260C	11
Semi-Volatile Organic Compounds (GC) by Method AK102	17
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	18
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
IW2023C L1665853-01 Solid		Leslie Petre	10/10/23 11:38	10/12/23 09:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2151895	1	10/17/23 10:48	10/17/23 11:02	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2151675	5	10/16/23 21:58	10/22/23 20:05	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method AK101	WG2152595	1	10/10/23 11:38	10/17/23 13:06	KSD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260C	WG2154251	1	10/10/23 11:38	10/19/23 11:06	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2152130	1	10/19/23 06:24	10/20/23 13:48	JAS	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG2153600	1	10/18/23 20:27	10/19/23 09:47	ALM	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

12

Craig Cothron Project Manager

IW2023C Collected date/time: 10/10/23 11:38

SAMPLE RESULTS - 01 L1665853

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	- [Ср
Analyte	%			date / time		5	2
Total Solids	90.6		1	10/17/2023 11:02	WG2151895		Тс

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	9.68		0.109	2.21	5	10/22/2023 20:05	WG2151675

Volatile Organic Compounds (GC) by Method AK101

Analyte	Result (dry) mg/kg	<u>Qualifier</u>	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	<u>Batch</u>	6
TPHGAK C6 to C10	3.34	B	1.05	2.76	1	10/17/2023 13:06	WG2152595	L
(S) a,a,a-Trifluorotoluene(FID)	90.0			50.0-150		10/17/2023 13:06	WG2152595	7
(S) a,a,a-Trifluorotoluene(PID)	105			72.0-128		10/17/2023 13:06	WG2152595	8

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0450	0.0617	1	10/19/2023 11:06	WG2154251	
Acrylonitrile	U		0.00445	0.0154	1	10/19/2023 11:06	WG2154251	
Benzene	0.00141		0.000576	0.00123	1	10/19/2023 11:06	WG2154251	
Bromobenzene	U		0.00111	0.0154	1	10/19/2023 11:06	WG2154251	
Bromodichloromethane	U		0.000894	0.00308	1	10/19/2023 11:06	WG2154251	
Bromoform	U		0.00144	0.0308	1	10/19/2023 11:06	WG2154251	
Bromomethane	U		0.00243	0.0154	1	10/19/2023 11:06	WG2154251	
n-Butylbenzene	U		0.00648	0.0154	1	10/19/2023 11:06	WG2154251	
sec-Butylbenzene	0.0229		0.00355	0.0154	1	10/19/2023 11:06	WG2154251	
tert-Butylbenzene	U		0.00241	0.00617	1	10/19/2023 11:06	WG2154251	
Carbon tetrachloride	U	<u>J4</u>	0.00111	0.00617	1	10/19/2023 11:06	WG2154251	
Chlorobenzene	U		0.000259	0.00308	1	10/19/2023 11:06	WG2154251	
Chlorodibromomethane	U		0.000755	0.00308	1	10/19/2023 11:06	WG2154251	
Chloroethane	U		0.00210	0.00617	1	10/19/2023 11:06	WG2154251	
Chloroform	U		0.00127	0.00308	1	10/19/2023 11:06	WG2154251	
Chloromethane	U		0.00537	0.0154	1	10/19/2023 11:06	WG2154251	
2-Chlorotoluene	U		0.00107	0.00308	1	10/19/2023 11:06	WG2154251	
4-Chlorotoluene	U		0.000555	0.00617	1	10/19/2023 11:06	WG2154251	
1,2-Dibromo-3-Chloropropane	U		0.00481	0.0308	1	10/19/2023 11:06	WG2154251	
1,2-Dibromoethane	U		0.000799	0.00308	1	10/19/2023 11:06	WG2154251	
Dibromomethane	U		0.000925	0.00617	1	10/19/2023 11:06	WG2154251	
1,2-Dichlorobenzene	U		0.000524	0.00617	1	10/19/2023 11:06	WG2154251	
1,3-Dichlorobenzene	U		0.000740	0.00617	1	10/19/2023 11:06	WG2154251	
1,4-Dichlorobenzene	U		0.000863	0.00617	1	10/19/2023 11:06	WG2154251	
Dichlorodifluoromethane	U		0.00199	0.00308	1	10/19/2023 11:06	WG2154251	
1,1-Dichloroethane	U		0.000606	0.00308	1	10/19/2023 11:06	WG2154251	
1,2-Dichloroethane	U		0.000800	0.00308	1	10/19/2023 11:06	WG2154251	
1,1-Dichloroethene	U		0.000747	0.00308	1	10/19/2023 11:06	WG2154251	
cis-1,2-Dichloroethene	U		0.000905	0.00308	1	10/19/2023 11:06	WG2154251	
trans-1,2-Dichloroethene	U		0.00128	0.00617	1	10/19/2023 11:06	WG2154251	
1,2-Dichloropropane	U		0.00175	0.00617	1	10/19/2023 11:06	WG2154251	
1,1-Dichloropropene	U		0.000998	0.00308	1	10/19/2023 11:06	WG2154251	
1,3-Dichloropropane	U		0.000618	0.00617	1	10/19/2023 11:06	WG2154251	
cis-1,3-Dichloropropene	U		0.000934	0.00308	1	10/19/2023 11:06	WG2154251	
trans-1,3-Dichloropropene	U		0.00141	0.00617	1	10/19/2023 11:06	WG2154251	
2,2-Dichloropropane	U		0.00170	0.00308	1	10/19/2023 11:06	WG2154251	
٨٢٢٢	DUNT:			PROJECT:		SDG:	DATE/TIME:	PAG

Stantec - Anchorage, AK

L1665853

Ss Cn)c il

Sc

IW2023C Collected date/time: 10/10/23 11:38

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Di-isopropyl ether	U		0.000506	0.00123	1	10/19/2023 11:06	WG2154251	
Ethylbenzene	0.00728		0.000909	0.00308	1	10/19/2023 11:06	WG2154251	
Hexachloro-1,3-butadiene	U		0.00740	0.0308	1	10/19/2023 11:06	WG2154251	
Isopropylbenzene	0.00493		0.000524	0.00308	1	10/19/2023 11:06	WG2154251	
p-Isopropyltoluene	U		0.00315	0.00617	1	10/19/2023 11:06	WG2154251	
2-Butanone (MEK)	U		0.0783	0.123	1	10/19/2023 11:06	WG2154251	
Methylene Chloride	U		0.00819	0.0308	1	10/19/2023 11:06	WG2154251	
4-Methyl-2-pentanone (MIBK)	U		0.00281	0.0308	1	10/19/2023 11:06	WG2154251	
Methyl tert-butyl ether	U		0.000432	0.00123	1	10/19/2023 11:06	WG2154251	
Naphthalene	0.0241		0.00602	0.0154	1	10/19/2023 11:06	WG2154251	
n-Propylbenzene	0.00969		0.00117	0.00617	1	10/19/2023 11:06	WG2154251	
Styrene	U		0.000282	0.0154	1	10/19/2023 11:06	WG2154251	
1,1,1,2-Tetrachloroethane	U		0.00117	0.00308	1	10/19/2023 11:06	WG2154251	
1,1,2,2-Tetrachloroethane	U	<u>C3</u>	0.000857	0.00308	1	10/19/2023 11:06	WG2154251	
1,1,2-Trichlorotrifluoroethane	U		0.000930	0.00308	1	10/19/2023 11:06	WG2154251	
Tetrachloroethene	U		0.00111	0.00308	1	10/19/2023 11:06	WG2154251	
Toluene	0.00612	J	0.00160	0.00617	1	10/19/2023 11:06	WG2154251	
1,2,3-Trichlorobenzene	U		0.00904	0.0154	1	10/19/2023 11:06	WG2154251	
1,2,4-Trichlorobenzene	U		0.00543	0.0154	1	10/19/2023 11:06	WG2154251	
1,1,1-Trichloroethane	U		0.00114	0.00308	1	10/19/2023 11:06	WG2154251	
1,1,2-Trichloroethane	U		0.000736	0.00308	1	10/19/2023 11:06	WG2154251	
Trichloroethene	U	<u>J4</u>	0.000720	0.00123	1	10/19/2023 11:06	WG2154251	
Trichlorofluoromethane	U		0.00102	0.00308	1	10/19/2023 11:06	WG2154251	
1,2,3-Trichloropropane	U		0.00200	0.0154	1	10/19/2023 11:06	WG2154251	
1,2,4-Trimethylbenzene	0.0532		0.00195	0.00617	1	10/19/2023 11:06	WG2154251	
1,2,3-Trimethylbenzene	0.0255		0.00195	0.00617	1	10/19/2023 11:06	WG2154251	
Vinyl chloride	U		0.00143	0.00308	1	10/19/2023 11:06	WG2154251	
1,3,5-Trimethylbenzene	0.0247		0.00247	0.00617	1	10/19/2023 11:06	WG2154251	
Xylenes, Total	0.0417		0.00109	0.00802	1	10/19/2023 11:06	WG2154251	
(S) Toluene-d8	109			75.0-131		10/19/2023 11:06	WG2154251	
(S) 4-Bromofluorobenzene	95.6			67.0-138		10/19/2023 11:06	WG2154251	
(S) 1,2-Dichloroethane-d4	97.6			70.0-130		10/19/2023 11:06	WG2154251	

Semi-Volatile Organic Compounds (GC) by Method AK102

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
AK102 DRO C10-C25	675		57.5	166	1	10/20/2023 13:48	<u>WG2152130</u>
(S) o-Terphenyl	88.5			50.0-150		10/20/2023 13:48	<u>WG2152130</u>

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00254	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Acenaphthene	U		0.00231	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Acenaphthylene	U		0.00238	0.00662	1	10/19/2023 09:47	WG2153600
Benzo(a)anthracene	U		0.00191	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Benzo(a)pyrene	U		0.00198	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Benzo(b)fluoranthene	U		0.00169	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Benzo(g,h,i)perylene	U		0.00195	0.00662	1	10/19/2023 09:47	WG2153600
Benzo(k)fluoranthene	U		0.00237	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Chrysene	U		0.00256	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Dibenz(a,h)anthracene	U		0.00190	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Fluoranthene	U		0.00250	0.00662	1	10/19/2023 09:47	<u>WG2153600</u>
Fluorene	U		0.00226	0.00662	1	10/19/2023 09:47	WG2153600
Indeno(1,2,3-cd)pyrene	U		0.00200	0.00662	1	10/19/2023 09:47	WG2153600

PROJECT:

SDG: L1665853

IW2023C Collected date/time: 10/10/23 11:38

SAMPLE RESULTS - 01

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Naphthalene	0.0166	J	0.00450	0.0221	1	10/19/2023 09:47	WG2153600	
Phenanthrene	0.0115		0.00255	0.00662	1	10/19/2023 09:47	WG2153600	
Pyrene	U		0.00221	0.00662	1	10/19/2023 09:47	WG2153600	
1-Methylnaphthalene	0.0132	J	0.00495	0.0221	1	10/19/2023 09:47	WG2153600	
2-Methylnaphthalene	0.0134	J	0.00471	0.0221	1	10/19/2023 09:47	WG2153600	
2-Chloronaphthalene	U		0.00514	0.0221	1	10/19/2023 09:47	WG2153600	
(S) Nitrobenzene-d5	86.3			14.0-149		10/19/2023 09:47	WG2153600	
(S) 2-Fluorobiphenyl	64.8			34.0-125		10/19/2023 09:47	WG2153600	
(S) p-Terphenyl-d14	76.9			23.0-120		10/19/2023 09:47	WG2153600	

Qc

Gl

Â

Sc

WG2151895

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1665853-01

Method Blank (MB)

(MB) R3987548-1 10/1	7/23 11:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1665802-02 Original Sample (OS) • Duplicate (DUP)

L1665802-02 Orig	jinal Sampl	le (OS) • Di	uplicate	(DUP)		
(OS) L1665802-02 10/17/	23 11:02 • (DUF	P) R3987548-3	10/17/23 1	1:02		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.2	96.8	1	0.391		10

Laboratory Control Sample (LCS)

(LCS) R3987548-2 10	0/17/23 11:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Тс

Ss

³Qc

GI

Â

Sc

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3989525-1 10/2	22/23 18:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3989525-2 10/22	/23 18:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	107	107	80.0-120	

L1665406-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1665406-02 10/22/2	:3 18:33 • (MS) I	R3989525-5 1	0/22/23 18:43 •	(MSD) R39895	525-6 10/22/2	3 18:46						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	111	67.9	194	186	114	107	5	75.0-125			4.29	20

DATE/TIME: 10/23/23 13:37

Volatile Organic Compounds (GC) by Method AK101

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3987707-3 10/17/2	23 11:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPHGAK C6 to C10	1.18	J	0.950	2.50	
(S) a,a,a-Trifluorotoluene(FID)	92.3			60.0-120	
(S) a,a,a-Trifluorotoluene(PID)	113			72.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3987707-1 10/17/2	3 10:13 • (LCSD)	R3987707-2	10/17/23 10:35							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPHGAK C6 to C10	125	124	121	99.2	96.8	60.0-120			2.45	20
(S) a,a,a-Trifluorotoluene(FID)				99.9	95.9	60.0-120				
(S) a,a,a-Trifluorotoluene(PID)				118	123	72.0-128				

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY L1665853-01

Method Blank (MB)

Method Blank (MB)					
(MB) R3988309-2 10/19/2	3 08:53				
	MB Result	MB Qualifier	MB MDL	B RDL	
Analyte	mg/kg		mg/kg	g/kg	
Acetone	U		0.0365	0500	
crylonitrile	U		0.00361	0125	
Benzene	U		0.000467	00100	
Bromobenzene	U		0.000900	0125	
Bromodichloromethane	U		0.000725	00250	
Bromoform	U		0.00117	0250	
romomethane	U		0.00197	0125	
-Butylbenzene	U		0.00525	0125	
ec-Butylbenzene	U		0.00288	0125	
ert-Butylbenzene	U		0.00195	00500	
arbon tetrachloride	U		0.000898	00500	
Chlorobenzene	U		0.000210	00250	
hlorodibromomethane	U		0.000612	00250	
hloroethane	U		0.00170	00500	
hloroform	U		0.00103	00250	
nloromethane	U		0.00435	0125	
Chlorotoluene	U		0.000865	00250	
Chlorotoluene	U		0.000450	00500	
2-Dibromo-3-Chloropropane	U		0.00390	0250	
2-Dibromoethane	U		0.000648	00250	
ibromomethane	U		0.000750	00500	
2-Dichlorobenzene	U		0.000425	00500	
3-Dichlorobenzene	U		0.000600	00500	
4-Dichlorobenzene	U		0.000700	00500	
chlorodifluoromethane	U		0.00161	00250	
1-Dichloroethane	U		0.000491	00250	
2-Dichloroethane	U		0.000649	00250	
1-Dichloroethene	U		0.000606	00250	
s-1,2-Dichloroethene	U		0.000734	00250	
ans-1,2-Dichloroethene	U		0.00104	00500	
2-Dichloropropane	U		0.00142	00500	
1-Dichloropropene	U		0.000809	00250	
3-Dichloropropane	U		0.000501	00500	
s-1,3-Dichloropropene	U		0.000757	00250	
ans-1,3-Dichloropropene	U		0.00114	00500	
2-Dichloropropane	U		0.00138	00250	
-isopropyl ether	U		0.000410	00100	
hylbenzene	U		0.000737	00250	
exachloro-1,3-butadiene	U		0.00600	0250	
sopropylbenzene	U		0.000425	00250	

ACCOUNT: Stantec - Anchorage, AK PROJECT:

SDG: L1665853

DATE/TIME: 10/23/23 13:37

PAGE: 11 of 22

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3988309-2 10/19/2	3 08:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
p-Isopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	U		0.0635	0.100	
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	
Methyl tert-butyl ether	U		0.000350	0.00100	
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	
1,2,3-Trichlorobenzene	U		0.00733	0.0125	
1,2,4-Trichlorobenzene	U		0.00440	0.0125	
1,1,1-Trichloroethane	U		0.000923	0.00250	
1,1,2-Trichloroethane	U		0.000597	0.00250	
Trichloroethene	U		0.000584	0.00100	
Trichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
1,2,4-Trimethylbenzene	U		0.00158	0.00500	
1,2,3-Trimethylbenzene	U		0.00158	0.00500	
Vinyl chloride	U		0.00116	0.00250	
1,3,5-Trimethylbenzene	U		0.00200	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	101			75.0-131	
(S) 4-Bromofluorobenzene	94.9			67.0-138	
(S) 1,2-Dichloroethane-d4	86.4			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3988309-1 10/19	/23 07:27				5) R3988309-1 10/19/23 07:27											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier											
Analyte	mg/kg	mg/kg	%	%												
Acetone	0.625	0.601	96.2	10.0-160												
Acrylonitrile	0.625	0.552	88.3	45.0-153												
Benzene	0.125	0.143	114	70.0-123												
Bromobenzene	0.125	0.140	112	73.0-121												
Bromodichloromethane	0.125	0.128	102	73.0-121												

SDG: L1665853 DATE/TIME: 10/23/23 13:37

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

L1665853-01

Laboratory Control Sample (LCS)

(LCS) R3988309-1 10/19/23 07:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Bromoform	0.125	0.133	106	64.0-132			
Bromomethane	0.125	0.173	138	56.0-147			
n-Butylbenzene	0.125	0.114	91.2	68.0-135			
sec-Butylbenzene	0.125	0.112	89.6	74.0-130			
tert-Butylbenzene	0.125	0.109	87.2	75.0-127			
Carbon tetrachloride	0.125	0.167	134	66.0-128	<u>J4</u>		
Chlorobenzene	0.125	0.126	101	76.0-128			
Chlorodibromomethane	0.125	0.136	109	74.0-127			
Chloroethane	0.125	0.165	132	61.0-134			
Chloroform	0.125	0.146	117	72.0-123			
Chloromethane	0.125	0.114	91.2	51.0-138			
2-Chlorotoluene	0.125	0.129	103	75.0-124			
4-Chlorotoluene	0.125	0.122	97.6	75.0-124			
1,2-Dibromo-3-Chloropropane	0.125	0.117	93.6	59.0-130			
I,2-Dibromoethane	0.125	0.132	106	74.0-128			
Dibromomethane	0.125	0.130	104	75.0-122			
,2-Dichlorobenzene	0.125	0.126	101	76.0-124			
3-Dichlorobenzene	0.125	0.130	104	76.0-125			
4-Dichlorobenzene	0.125	0.133	106	77.0-121			
vichlorodifluoromethane	0.125	0.123	98.4	43.0-156			
1-Dichloroethane	0.125	0.132	106	70.0-127			
,2-Dichloroethane	0.125	0.130	104	65.0-131			
1-Dichloroethene	0.125	0.127	102	65.0-131			
s-1,2-Dichloroethene	0.125	0.145	116	73.0-125			
ans-1,2-Dichloroethene	0.125	0.148	118	71.0-125			
2-Dichloropropane	0.125	0.109	87.2	74.0-125			
1-Dichloropropene	0.125	0.150	120	73.0-125			
3-Dichloropropane	0.125	0.131	105	80.0-125			
cis-1,3-Dichloropropene	0.125	0.118	94.4	76.0-127			
trans-1,3-Dichloropropene	0.125	0.135	108	73.0-127			
2,2-Dichloropropane	0.125	0.124	99.2	59.0-135			
Di-isopropyl ether	0.125	0.110	88.0	60.0-136			
Ethylbenzene	0.125	0.130	104	74.0-126			
Hexachloro-1,3-butadiene	0.125	0.118	94.4	57.0-150			
Isopropylbenzene	0.125	0.107	85.6	72.0-127			
p-lsopropyltoluene	0.125	0.111	88.8	72.0-133			
2-Butanone (MEK)	0.625	0.711	114	30.0-160			
Methylene Chloride	0.025	0.140	114	68.0-123			
	0.625	0.520	83.2	56.0-123			
4-Methyl-2-pentanone (MIBK)							
Methyl tert-butyl ether	0.125	0.135	108	66.0-132			

SDG: L1665853

DATE/TIME: 10/23/23 13:37

PAGE: 13 of 22 Ср

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

L1665853-01

Laboratory Control Sample (LCS)

(LCS) R3988309-1 10/19/23 07:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Naphthalene	0.125	0.112	89.6	59.0-130	
n-Propylbenzene	0.125	0.118	94.4	74.0-126	
Styrene	0.125	0.113	90.4	72.0-127	
1,1,1,2-Tetrachloroethane	0.125	0.129	103	74.0-129	
1,1,2,2-Tetrachloroethane	0.125	0.0986	78.9	68.0-128	
1,1,2-Trichlorotrifluoroethane	0.125	0.135	108	61.0-139	
Tetrachloroethene	0.125	0.148	118	70.0-136	
Toluene	0.125	0.117	93.6	75.0-121	
1,2,3-Trichlorobenzene	0.125	0.126	101	59.0-139	
1,2,4-Trichlorobenzene	0.125	0.116	92.8	62.0-137	
1,1,1-Trichloroethane	0.125	0.155	124	69.0-126	
1,1,2-Trichloroethane	0.125	0.130	104	78.0-123	
Trichloroethene	0.125	0.165	132	76.0-126	<u>J4</u>
Trichlorofluoromethane	0.125	0.169	135	61.0-142	
1,2,3-Trichloropropane	0.125	0.128	102	67.0-129	
1,2,4-Trimethylbenzene	0.125	0.109	87.2	70.0-126	
1,2,3-Trimethylbenzene	0.125	0.111	88.8	74.0-124	
Vinyl chloride	0.125	0.122	97.6	63.0-134	
1,3,5-Trimethylbenzene	0.125	0.110	88.0	73.0-127	
Xylenes, Total	0.375	0.395	105	72.0-127	
(S) Toluene-d8			89.3	75.0-131	
(S) 4-Bromofluorobenzene			81.2	67.0-138	
(S) 1,2-Dichloroethane-d4			113	70.0-130	

L1666830-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1666830-21 10/19/	'23 12:32 • (MS) R	3988309-3 10	/19/23 18:20 •	(MSD) R39883	09-4 10/19/23	18:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	0.525	U	0.195	0.162	37.1	30.9	1	10.0-160			18.5	40
Acrylonitrile	0.525	U	0.472	0.359	89.9	68.4	1	10.0-160			27.2	40
Benzene	0.105	U	0.0546	0.113	52.0	108	1	10.0-149		<u>J3</u>	69.7	37
Bromobenzene	0.105	U	0.0801	0.126	76.3	120	1	10.0-156		<u>J3</u>	44.5	38
Bromodichloromethane	0.105	U	0.0713	0.102	67.9	97.1	1	10.0-143			35.4	37
Bromoform	0.105	U	0.0968	0.116	92.2	110	1	10.0-146			18.0	36
Bromomethane	0.105	U	0.0465	0.0793	44.3	75.5	1	10.0-149		<u>J3</u>	52.1	38
n-Butylbenzene	0.105	U	0.0474	0.109	45.1	104	1	10.0-160		<u>J3</u>	78.8	40
sec-Butylbenzene	0.105	U	0.0471	0.109	44.9	104	1	10.0-159		<u>J3</u>	79.3	39
tert-Butylbenzene	0.105	U	0.0493	0.116	47.0	110	1	10.0-156		<u>J3</u>	80.7	39

PROJECT:

SDG: L1665853 DATE/TIME: 10/23/23 13:37

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY L1665853-01

L1666830-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1666830-21 10/19/23	3 12:32 • (MS) R	3988309-3 10)/19/23 18:20 •	(MSD) R39883	309-4 10/19/23	18:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Carbon tetrachloride	0.105	U	0.0447	0.119	42.6	113	1	10.0-145		<u>J3</u>	90.8	37
Chlorobenzene	0.105	U	0.0663	0.119	63.1	113	1	10.0-152		<u>J3</u>	56.9	39
Chlorodibromomethane	0.105	U	0.0905	0.127	86.2	121	1	10.0-146			33.6	37
Chloroethane	0.105	U	0.0412	0.0805	39.2	76.7	1	10.0-146		<u>J3</u>	64.6	40
Chloroform	0.105	U	0.0580	0.106	55.2	101	1	10.0-146		<u>J3</u>	58.5	37
Chloromethane	0.105	U	0.0346	0.0472	33.0	45.0	1	10.0-159			30.8	37
2-Chlorotoluene	0.105	U	0.0577	0.115	55.0	110	1	10.0-159		<u>J3</u>	66.4	38
4-Chlorotoluene	0.105	U	0.0588	0.110	56.0	105	1	10.0-155		<u>J3</u>	60.7	39
1,2-Dibromo-3-Chloropropane	0.105	U	0.0940	0.0847	89.5	80.7	1	10.0-151			10.4	39
1,2-Dibromoethane	0.105	U	0.0949	0.120	90.4	114	1	10.0-148			23.4	34
Dibromomethane	0.105	U	0.0921	0.108	87.7	103	1	10.0-147			15.9	35
1,2-Dichlorobenzene	0.105	U	0.0768	0.112	73.1	107	1	10.0-155		<u>J3</u>	37.3	37
1,3-Dichlorobenzene	0.105	U	0.0727	0.117	69.2	111	1	10.0-153		<u>J3</u>	46.7	38
1,4-Dichlorobenzene	0.105	U	0.0759	0.109	72.3	104	1	10.0-151			35.8	38
Dichlorodifluoromethane	0.105	U	0.0368	0.101	35.0	96.2	1	10.0-160		<u>J3</u>	93.2	35
1,1-Dichloroethane	0.105	U	0.0555	0.0813	52.9	77.4	1	10.0-147		<u>J3</u>	37.7	37
1,2-Dichloroethane	0.105	U	0.0662	0.0981	63.0	93.4	1	10.0-148		<u>J3</u>	38.8	35
1,1-Dichloroethene	0.105	U	0.0446	0.0996	42.5	94.9	1	10.0-155		<u>J3</u>	76.3	37
cis-1,2-Dichloroethene	0.105	U	0.0549	0.100	52.3	95.2	1	10.0-149		<u>J3</u>	58.2	37
trans-1,2-Dichloroethene	0.105	U	0.0549	0.103	52.3	98.1	1	10.0-150		<u>J3</u>	60.9	37
1,2-Dichloropropane	0.105	U	0.0595	0.0913	56.7	87.0	1	10.0-148		<u>J3</u>	42.2	37
1,1-Dichloropropene	0.105	U	0.0440	0.130	41.9	124	1	10.0-153		<u>J3</u>	98.9	35
1,3-Dichloropropane	0.105	U	0.0963	0.129	91.7	123	1	10.0-154			29.0	35
cis-1,3-Dichloropropene	0.105	U	0.0830	0.111	79.0	106	1	10.0-151			28.9	37
trans-1,3-Dichloropropene	0.105	U	0.0962	0.142	91.6	135	1	10.0-148		<u>J3</u>	38.5	37
2,2-Dichloropropane	0.105	U	0.0439	0.0984	41.8	93.7	1	10.0-138		<u>J3</u>	76.6	36
Di-isopropyl ether	0.105	U	0.0668	0.0737	63.6	70.2	1	10.0-147			9.82	36
Ethylbenzene	0.105	U	0.0527	0.119	50.2	113	1	10.0-160		<u>J3</u>	77.2	38
Hexachloro-1,3-butadiene	0.105	U	0.0537	0.119	51.1	113	1	10.0-160		<u>J3</u>	75.6	40
Isopropylbenzene	0.105	U	0.0491	0.113	46.8	108	1	10.0-155		<u>J3</u>	78.8	38
p-lsopropyltoluene	0.105	U	0.0494	0.106	47.0	101	1	10.0-160		<u>J3</u>	72.8	40
2-Butanone (MEK)	0.525	U	0.636	0.397	121	75.6	1	10.0-160		<u>J3</u>	46.3	40
Methylene Chloride	0.105	U	0.0727	0.0932	69.2	88.8	1	10.0-141			24.7	37
4-Methyl-2-pentanone (MIBK)	0.525	U	0.398	0.462	75.8	88.0	1	10.0-160			14.9	35
Methyl tert-butyl ether	0.105	U	0.0897	0.0889	85.4	84.7	1	11.0-147			0.896	35
Naphthalene	0.105	U	0.0780	0.0958	74.3	91.2	1	10.0-160			20.5	36
n-Propylbenzene	0.105	U	0.0508	0.112	48.4	107	1	10.0-158		<u>J3</u>	75.2	38
Styrene	0.105	U	0.0597	0.108	56.9	103	1	10.0-160		<u>J3</u>	57.6	40
1,1,1,2-Tetrachloroethane	0.105	U	0.0699	0.115	66.6	110	1	10.0-149		<u>J3</u>	48.8	39
1,1,2,2-Tetrachloroethane	0.105	U	0.0867	0.0999	82.6	95.1	1	10.0-160			14.1	35
AC	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:	PAG

Stantec - Anchorage, AK

L1665853

10/23/23 13:37

PAGE: 15 of 22

Τс Ss Cn Śr Qc GI Â

QUALITY CONTROL SUMMARY

L1666830-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

03) 1000830-21 10/19/23	3 12:32 • (IVIS) R	3988309-3 10	/19/23 18:20 •	(MSD) R39883	09-4 10/19/23	18:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
l,1,2-Trichlorotrifluoroethane	0.105	U	0.0476	0.114	45.3	109	1	10.0-160		<u>J3</u>	82.2	36
letrachloroethene	0.105	U	0.0538	0.144	51.2	137	1	10.0-156		<u>J3</u>	91.2	39
Foluene	0.105	U	0.0571	0.120	54.4	114	1	10.0-156		<u>J3</u>	71.0	38
l,2,3-Trichlorobenzene	0.105	U	0.0748	0.104	71.2	99.0	1	10.0-160			32.7	40
I,2,4-Trichlorobenzene	0.105	U	0.0784	0.114	74.7	109	1	10.0-160			37.0	40
I,1,1-Trichloroethane	0.105	U	0.0467	0.122	44.5	116	1	10.0-144		<u>J3</u>	89.3	35
I,1,2-Trichloroethane	0.105	U	0.0958	0.126	91.2	120	1	10.0-160			27.2	35
Trichloroethene	0.105	0.00550	0.0658	0.137	57.4	125	1	10.0-156		<u>J3</u>	70.2	38
Frichlorofluoromethane	0.105	U	0.0333	0.0867	31.7	82.6	1	10.0-160		<u>J3</u>	89.0	40
l,2,3-Trichloropropane	0.105	U	0.0979	0.110	93.2	105	1	10.0-156			11.6	35
I,2,4-Trimethylbenzene	0.105	U	0.0516	0.104	49.1	99.0	1	10.0-160		<u>13</u>	67.4	36
I,2,3-Trimethylbenzene	0.105	U	0.0593	0.102	56.5	97.1	1	10.0-160		<u>J3</u>	52.9	36
/inyl chloride	0.105	U	0.0339	0.0777	32.3	74.0	1	10.0-160		<u>13</u>	78.5	37
I,3,5-Trimethylbenzene	0.105	U	0.0482	0.107	45.9	102	1	10.0-160		<u>13</u>	75.8	38
Kylenes, Total	0.315	U	0.172	0.349	54.6	111	1	10.0-160		<u>13</u>	67.9	38
(S) Toluene-d8					102	103		75.0-131				
(S) 4-Bromofluorobenzene					94.8	93.9		67.0-138				
(S) 1,2-Dichloroethane-d4					93.2	96.8		70.0-130				

SDG: L1665853 DATE/TIME: 10/23/23 13:37 Тс

Ss

Cn

Sr

[´]Qc

GI

Â

Semi-Volatile Organic Compounds (GC) by Method AK102

QUALITY CONTROL SUMMARY L1665853-01

Method Blank (MB)

Method Blank (IV	(IB)				
(MB) R3989034-1 10/2	0/23 10:59				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
AK102 DRO C10-C25	U		52.1	150	
(S) o-Terphenyl	62.5			60.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3989034-2 10/2	(LCS) R3989034-2 10/20/23 11:13 • (LCSD) R3989034-3 10/20/23 11:27													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits				
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%				
AK102 DRO C10-C25	200	175	181	87.5	90.5	75.0-125			3.37	20				
(S) o-Terphenyl				80.9	82.8	60.0-120								

L1664714-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1664714-14 10/20	/23 12:30 • (MS) F	3989076-1 10	/20/23 12:43 • (MSD) R39890	76-2 10/20/23	3 12:56							A
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
AK102 DRO C10-C25	195	U	188	208	96.3	104	1	75.0-125			10.4	20	
(S) o-Terphenyl					87.8	96.2		50.0-150					

DATE/TIME: 10/23/23 13:37 ⁺Cn

Sr

[°]Qc

GI

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

QUALITY CONTROL SUMMARY

L1665853-01

Method Blank (MB)

Method Blank (ME	<i>i</i>)			
(MB) R3989042-2 10/19/	23 03:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Anthracene	U		0.00230	0.00600
Acenaphthene	U		0.00209	0.00600
Acenaphthylene	U		0.00216	0.00600
Benzo(a)anthracene	U		0.00173	0.00600
Benzo(a)pyrene	U		0.00179	0.00600
Benzo(b)fluoranthene	U		0.00153	0.00600
Benzo(g,h,i)perylene	U		0.00177	0.00600
Benzo(k)fluoranthene	U		0.00215	0.00600
Chrysene	U		0.00232	0.00600
Dibenz(a,h)anthracene	U		0.00172	0.00600
Fluoranthene	U		0.00227	0.00600
Fluorene	U		0.00205	0.00600
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600
Naphthalene	U		0.00408	0.0200
Phenanthrene	U		0.00231	0.00600
Pyrene	U		0.00200	0.00600
1-Methylnaphthalene	U		0.00449	0.0200
2-Methylnaphthalene	U		0.00427	0.0200
2-Chloronaphthalene	U		0.00466	0.0200
(S) Nitrobenzene-d5	83.0			14.0-149
(S) 2-Fluorobiphenyl	76.3			34.0-125
(S) p-Terphenyl-d14	88.4			23.0-120

Laboratory Control Sample (LCS)

(LCS) R3989042-1 10/19	9/23 03:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0643	80.4	50.0-126	
Acenaphthene	0.0800	0.0660	82.5	50.0-120	
Acenaphthylene	0.0800	0.0666	83.3	50.0-120	
Benzo(a)anthracene	0.0800	0.0701	87.6	45.0-120	
Benzo(a)pyrene	0.0800	0.0732	91.5	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0669	83.6	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0734	91.8	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0668	83.5	49.0-125	
Chrysene	0.0800	0.0706	88.3	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0808	101	47.0-125	
Fluoranthene	0.0800	0.0708	88.5	49.0-129	

SDG: L1665853 DATE/TIME: 10/23/23 13:37

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

QUALITY CONTROL SUMMARY

LCS Qualifier

L1665853-01

Laboratory Control Sample (LCS)

(LCS) R3989042-1 10/19/23 03:24

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Fluorene	0.0800	0.0708	88.5	49.0-120
Indeno(1,2,3-cd)pyrene	0.0800	0.0794	99.3	46.0-125
Naphthalene	0.0800	0.0607	75.9	50.0-120
Phenanthrene	0.0800	0.0635	79.4	47.0-120
Pyrene	0.0800	0.0666	83.3	43.0-123
1-Methylnaphthalene	0.0800	0.0668	83.5	51.0-121
2-Methylnaphthalene	0.0800	0.0668	83.5	50.0-120
2-Chloronaphthalene	0.0800	0.0613	76.6	50.0-120
(S) Nitrobenzene-d5			85.4	14.0-149
(S) 2-Fluorobiphenyl			86.6	34.0-125
(S) p-Terphenyl-d14			85.6	23.0-120

L1665775-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1665775-04 10/19/23 07:11 • (MS) R3989042-3 10/19/23 07:28 • (MSD) R3989042-4 10/19/23 07:45

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0852	U	0.0536	0.0610	62.9	71.6	1	10.0-145			13.0	30	
Acenaphthene	0.0852	U	0.0529	0.0598	62.1	70.1	1	14.0-127			12.1	27	
Acenaphthylene	0.0852	U	0.0581	0.0647	68.1	75.9	1	21.0-124			10.8	25	
Benzo(a)anthracene	0.0852	U	0.0563	0.0645	66.0	75.6	1	10.0-139			13.6	30	
Benzo(a)pyrene	0.0852	U	0.0563	0.0672	66.0	78.9	1	10.0-141			17.8	31	
Benzo(b)fluoranthene	0.0852	U	0.0490	0.0584	57.5	68.5	1	10.0-140			17.5	36	
Benzo(g,h,i)perylene	0.0852	U	0.0449	0.0533	52.6	62.5	1	10.0-140			17.2	33	
Benzo(k)fluoranthene	0.0852	U	0.0469	0.0566	55.0	66.4	1	10.0-137			18.7	31	
Chrysene	0.0852	U	0.0539	0.0641	63.3	75.3	1	10.0-145			17.3	30	
Dibenz(a,h)anthracene	0.0852	U	0.0507	0.0599	59.5	70.3	1	10.0-132			16.6	31	
Fluoranthene	0.0852	U	0.0590	0.0682	69.3	80.0	1	10.0-153			14.4	33	
Fluorene	0.0852	U	0.0542	0.0642	63.6	75.4	1	11.0-130			16.9	29	
Indeno(1,2,3-cd)pyrene	0.0852	U	0.0521	0.0614	61.1	72.0	1	10.0-137			16.3	32	
Naphthalene	0.0852	U	0.0525	0.0575	61.6	67.5	1	10.0-135			9.10	27	
Phenanthrene	0.0852	0.00294	0.0523	0.0602	57.9	67.2	1	10.0-144			14.0	31	
Pyrene	0.0852	U	0.0566	0.0650	66.4	76.3	1	10.0-148			13.8	35	
1-Methylnaphthalene	0.0852	U	0.0551	0.0633	64.6	74.3	1	10.0-142			13.9	28	
2-Methylnaphthalene	0.0852	U	0.0553	0.0633	64.9	74.3	1	10.0-137			13.5	28	
2-Chloronaphthalene	0.0852	U	0.0500	0.0540	58.6	63.4	1	29.0-120			7.79	24	
(S) Nitrobenzene-d5					73.4	73.4		14.0-149					
(S) 2-Fluorobiphenyl					62.0	66.7		34.0-125					
(S) p-Terphenyl-d14					65.5	71.8		23.0-120					
	ACCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
Stante	c - Anchorage, AK						L1	665853		10/23/2	3 13:37		19 of 22

^I^Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.

Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Info	rmation:		-			-		nalvsis	/ Contai	ner / Pre	servative	-	-	Chain of Custody	Page of	
Stantec - Anchorage, A 725 E Fireweed Lane Suite 200 Anchorage, AK 99503	ΛK		725 E Fin Suite 20	s Payable reweed La 0 ge, AK 99	ane		Pres Chk					-					PEOPLE	ADVANCING SCIENCE	
Report to:			Email To: c	raig.cothroi	n@pace	labs.com	5	100	s			VI/SY					MT JU	LIET, TN	
Ms. Leslie Petre Project Description:		City/State				Please Cir	cle:		oPre			101		1.5			Submitting a sample via	this chain of custody ment and acceptance of the	
Speedway 5315 - Fairbanks, AK		Collected:	Fairbank			PT MT C	T ET	-	I-N			ноа					https://info.pacelabs.co terms.pdf		
Phone: 907-266-1108 343-5108	Client Projec	:t #		Lab Project # STAAAKSSA-5315				H/Syr) 4ozClr-NoPres			V8260BTEXMED 40mlAmb/MeOH10ml/Syr				SDG # H		026	
Collected by (print): Leshe Petre	Site/Facility		TNS III	NS 111 P.O. #				MeOh	HSIME	S									
Rush? (Lab MUST B				ad Only) Date Results Needed			No. of	AK101 60mlAmb/MeOH/Syr	2,SV8270PAHSIMD	2ozClr-NoPres	TS 4ozClr-NoPres	OBTEXMED				Template: T239129 Prelogin: P102875 PM: 034 - Craig Coth PB: 10 3 23		28756 Cothron	
		Matrix *	Depth	Dat	e	Time	Cotrs	AK10	AK102,	PBG 2	TS 40	V826(-			Shipped Via: Fe Remarks	dEX 2nd Day Sample # (lab only)	
IW2023C	G	55		10/10	23	11:38a	5	X	x	x	X	x		-				-01	
		SS					5	X	X	X	X	X		20				1.22.20	
		SS					5	X	X	X	X	X							
		SS		_			5	X	X	X	X	X							
	-	SS		1			5	X	X	X	X	x							
																Camp	le Receipt Ch	acklist [
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other Relinquished by : (Signature) Relinquished by : (Signa											pH Flow		_ Temp _ Other	_	COC S Bottl	Seal Pr Signed/ les arr	resent/Intact: /Accurate: rive intact: ttles used:	NP Y N NP Y N N	
				_	Trackin	-	6	564	3	430			63		Suffi VOA 3	lcient Zero He	volume sent: <u>If Applicabl</u> adspace:	Y N	
		Date:	S IU	1:45a		ed by: (Signat	1				160	mL	Ť	BR / MeoH	RAD S	Preservation Correct/Checked: ZY RAD Screen <0.5 mR/hr:			
		Date:	Time	91	Receive	ed by: (Signat	ure)				Temp{CAS°C Bottles Received: 4.0+0=4.0 5			If preservation required by Login: Date/Time					
Relinquished by : (Signature) Date:		Time	2:	Receive	ed for lab by:	by: (Signature)				Date: Time: 10-12-23 900					Hold: Condition				

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Sydney Souza	CS Site Name:	Tesoro North Store 111	Lab Name:	Pace Analytical
Title:	Environmental Scientist	ADEC File No.:	100.26.026	Lab Report No.:	L1665853
Consulting Firm:	Stantec Consulting Services Inc.	Hazard ID No.:	24247	Lab Report Date:	October 23, 2023

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all the submitted sample analyses? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

2. Chain of Custody (CoC)

- a. Is the CoC information completed, signed, and dated (including released/received by)?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. Were the correct analyses requested? Yes ⋈ No □ N/A □
 Analyses requested: Click or tap here to enter text. Comments: Click or tap here to enter text.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Cooler temperature(s): 4.0° C Comments: Click or tap here to enter text.

- b. Is the sample preservation acceptable acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
 Yes □ No □ N/A ⊠
 Comments: Sample condition documented as OK
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
 Yes □ No □ N/A ⊠
 Comments:
- e. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Click or tap here to enter text.

4. Case Narrative

- a. Is the case narrative present and understandable?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. Are there discrepancies, errors, or QC failures identified by the lab? Yes □ No ⊠ N/A □
 Comments: Case narrative documents no errors or discrepancies "unless qualified or notated within report"
- c. Were all the corrective actions documented? Yes □ No □ N/A ⊠
 Comments: No corrective actions taken
- d. What is the effect on data quality/usability according to the case narrative? Comments: No effect on data quality/usability

5. Sample Results

- Are the correct analyses performed/reported as requested on CoC?
 Yes ⊠ No □ N/A □
 Comments: The tests were done as requested.
- b. Are all applicable holding times met? Yes ⊠ No □ N/A □

CS Site Name: Tesoro North Store 111 Lab Report No.: L1665853

Comments: Click or tap here to enter text.

- c. Are all soils reported on a dry weight basis?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

e. Is the data quality or usability affected?

Yes \Box No \boxtimes N/A \Box Comments: Click or tap here to enter text.

6. QC Samples

- a. Method Blank
 - Was one method blank reported per matrix, analysis, and 20 samples? Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
 - ii. Are all method blank results less than LOQ (or RL)?
 Yes ⊠ No □
 Comments: Click or tap here to enter text.
 - iii. If above LoQ or RL, what samples are affected? Comments: Click or tap here to enter text.
 - iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes □ No ⊠ N/A □ Comments: Data flags are clearly defined

- v. Data quality or usability affected?
 Yes □ No ⊠ N/A □
 Comments: Click or tap here to enter text.
- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - Organics Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 $\mathsf{Yes} \boxtimes \mathsf{No} \square \mathsf{N/A} \square$

Comments: Click or tap here to enter text.

 Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes ⋈ No □ N/A □

Comments: Click or tap here to enter text.

 iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \Box No \Box N/A \boxtimes Comments: Click or tap here to enter text.

vii. Is the data quality or usability affected?

Yes \Box No \boxtimes N/A \Box Comments: Click or tap here to enter text.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?
 Yes ⋈ No □ N/A □

Comments: Click or tap here to enter text.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \Box No \Box N/A \boxtimes Comments: Click or tap here to enter text.

- vii. Is the data quality or usability affected?
 Yes □ No ⊠ N/A □
 Comments: Click or tap here to enter text.
- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?
 Yes □ No □ N/A ⊠
 Comments: Click or tap here to enter text.
 - ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
 Yes □ No □ N/A ⊠ Comments: Click or tap here to enter text.
 - iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
 Yes □ No □ N/A ⊠
 Comments: Click or tap here to enter text.
 - iv. Is the data quality or usability affected? Yes □ No □ N/A ⊠

CS Site Name: Tesoro North Store 111 Lab Report No.: L1665853

Comments: Click or tap here to enter text.

- e. Trip Blanks
 - Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes □ No ⊠ N/A □
 Comments: No trip blanks documented on the CoC or in the lab report
 - ii. Are all results less than LoQ or RL?
 Yes □ No □ N/A ⊠
 Comments: Click or tap here to enter text.
 - iii. If above LoQ or RL, what samples are affected? Comments: None.
 - iv. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: No affected samples.

f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes \Box No \boxtimes N/A \Box Comments: No field duplicates sent to the lab

ii. Was the duplicate submitted blind to lab?

Yes \Box No \Box N/A \boxtimes Comments: Click or tap here to enter text.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

 $\mathsf{Yes} \ \Box \quad \mathsf{No} \ \Box \quad \mathsf{N/A} \ \boxtimes$

Comments: Click or tap here to enter text.

iv. Is the data quality or usability affected? (Explain)

Yes \Box No \Box N/A \boxtimes Comments: Click or tap here to enter text. CS Site Name: Tesoro North Store 111 Lab Report No.: L1665853

- g. Decontamination or Equipment Blanks
 - Were decontamination or equipment blanks collected? Yes □ No □ N/A ⊠ Comments: Used disposable equipment
 - ii. Are all results less than LoQ or RL?
 Yes □ No □ N/A ⊠
 Comments: Used disposable equipment
 - iii. If above LoQ or RL, specify what samples are affected. Comments: Click or tap here to enter text.
 - iv. Are data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Click or tap here to enter text.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

November 10, 2023 Paula Sime, PG Manager, Environmental Services

Page 21 of 21

Reference:

e: Decommission Air Sparge Wells and Installation of Chemox Injection Wells at former Tesoro North Store (TNS) #111 (Speedway #5315)

Attachment 4

ADEC Approval to Transport and Treatment Contaminated Media

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites and Prevention Preparedness and Response Programs

Contaminated Media Transport and Treatment or Disposal Approval Form

HAZARD ID # or SPILL ID # NAME OF CONTAMINATED SITE OR SPILL							
DEC Hazard ID 242 y Store 5315 (7/Eleven Store 46746 - former Tesoro 2Go I							
CONTAMINATED SITE OR SPILL LOCATION – ADDRESS OR OTHER APPROPRIATE DESCRIPTION							
3679 College Road, Fairbanks, AK							
CURRENT PHYSICAL LOCATION OF MEDIA	1	SOURCE OF THE CONTAMINATION					
(DAY TANK, FIRE TRAINING PIT, LUST, ETC.)							
3679 College Road, Fairbanks	, AK	soil boring drill cuttings					
CONTAMINANTS OF CONCERN	ESTI	MATED VOLUME	DATE(S) GENERATED				
DRO		50 gallons	09/18/2023				
POST TREATMENT ANALYSIS REQUIRED (such as GRO, DRO, RRO, VOCs, metals, PFAS, and/or Chlorinated Solvents)							
DRO							
COMMENTS OR OTHER IMPORTANT INFORMATION							
Soil contained on site in 1-55 gallon steel drum that is clearly labeled.							

TREATMENT FACILITY, LANDFILL,	PHYSICAL ADDRESS/PHONE NUMBER
AND/OR FINAL DESTINATION OF MEDIA	
Ecology (Republic) Moose Cr,	22 Give Away St, Moose Creek, AK 907.258.15
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER
7/eleven (Speedway Express)	Sime 7/11, PO Box 1026, Temecula, CA 99510
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER
Stantec Consulting Service, Inc), 724 E Fireweed Lane, Anchorage, AK (907) 2
*Note, disposal of polluted soil in a landfill require	es prior approval from the landfill operator and ADEC Solid Waste Program.

Robert (Bob) Gilfilian, PE	Principal Engineer, Stantec			
Name of the Person Requesting Approval (printed)	Title/Association			
Gilfilian, Bob Digitally signed by Gilfilian, Bob Date: 2023.10.27 14:28:49 -04'00'	Oct 27, 2023	907-227-9883		
Signature	Date	Phone Number		
DEC US	E ONLY			
DEC US	E ONLY			

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

Peter Campbell

DEC Project Manager Name (printed)

Peter Campbell Digitally signed by Peter Campbell Date: 2023.10.27 15:04:30 -08'00'

Signature

EPS III

Project Manager Title

9072623412

Date

Phone Number

Instructions to Complete Contaminated Media Transport and Treatment or Disposal Approval Form

The Alaska Department of Environmental Conservation (DEC) must approve the movement or disposal of contaminated soil and water from a site in accordance with 18 Alaska Administrative Code (AAC) 75.325(i), 18 AAC 75.370(b), and 18 AAC 78.274(b). The *Contaminated Media Transport and Treatment or Disposal Approval Form* should be used to document this approval. Soil treatment facilities regulated under 18 AAC 75.365 are required by their Operations Plans to only accept contaminated soil for which an approval form has been signed by a DEC project manager.

Site information can be found on the Contaminated Site Database (www.alaska.gov/Applications/SPAR/PublicMVC/CSP/Search/) or the Spills Database (http://dec.alaska.gov/Applications/SPAR/PublicMVC/PERP/SpillSearch).

Instructions to Complete:

- 1. Hazard ID or Spill ID #: For a contaminated site, the Hazard ID can be found on the Contaminated Sites Database. For a spill, the Spill ID can be found in the subject line of letters from DEC or the Spills Database. If the waste originates from multiple sites, all Hazard IDs or Spill IDs must be listed.
- 2. Name of Contaminated Site or Spill: For a contaminated site, the official site name can be found on the Contaminated Sites Database. For a spill, the official name of the spill is found in the subject line of letters from DEC or the Spills Database.
- 3. **Contaminated Site or Spill Location Address or Other Appropriate Description:** This address or description captures the origin of the contaminated media or the location of the spill. For a contaminated site, the address or other appropriate description can be found on the Contaminated Sites Database. For a spill, this can be found on the Spill Report or the Spills Database.
- 4. **Current Physical Location of the Media:** Provide the physical location where the contaminated media (soil, water, etc.) is currently stored. This location may be the same as location provided in the "Contaminated Site or Spill Location", or it could be a hazardous waste facility or other location/staging area agreed upon in the DEC-approved work plan.
- 5. **Source of Contamination (Day Tank, Fire Training Pit, LUST, etc.):** List <u>all</u> sources which contributed to the contamination in the media being transported. Sources can include previous releases that have comingled. If the source is unknown, state "Unknown".
- 6. **Contaminants of Concern (CoCs):** List all contaminants detected above the most stringent Method 2 Tables B1 and B2 soil cleanup levels in 18 AAC 75.341(c) and (d), the Table C groundwater cleanup levels in 18 AAC 75.345, and other applicable action levels (e.g., TCLP results). Attach the laboratory data package for the contaminated media that is being disposed of and, if applicable, a data summary table or narrative to this form. Data gathered during site characterization activities may be sufficient to determine the CoCs. There are situations in which generator knowledge of the contaminant source may be accepted by a treatment or disposal facility in lieu of analytical sample results, such as, dieselimpacted media from a heating oil tank. If you are using generator knowledge in lieu of analytical sample results, include a statement which documents this knowledge in the Comments section.

- 7. **Estimated Volume:** Include the total volume of contaminated media to be transported; for instance, "Nine 55-gallon drums" or "25 cubic yards of soil."
- 8. **Date(s) Generated:** Provide the date the media was generated (e.g., excavated, pumped out of the ground, etc.). If the media was generated over multiple days, list the range of dates.
- 9. Post Treatment Analysis Required (such as GRO, DRO, RRO, VOCs, PAHs, metals, PFAS, chlorinated solvents, etc.): Provide the list of all contaminants that exceed the most stringent Method 2 cleanup levels. For DEC-approved soil treatment facilities in Alaska, specific post treatment analyses will be determined by the facility based upon the contaminants and requirements of their Operations Plan. If the media are being transported to a landfill or permitted liquid waste facility without off-site treatment, include "Not Applicable".
- 10. **Comments or Other Important Information:** Provide any other information which needs to be conveyed.
 - a. If generator knowledge of the CoCs is being used in lieu of sample analytical results, an explanation needs to be provided in this field.
 - b. If the material is going to be placed in a landfill in Alaska, include a statement that the landfill has agreed to accept the material and provide the contact information for the landfill point of contact. If the material is going to be placed in a Class 2 or 3 landfill, attach the DEC Solid Waste Program's approval letter to this form.
 - c. If the media is going to an intermediate location or facility prior to its final destination, describe the complete transportation route with intermediate locations in this field.
- 11. **Treatment Facility, Landfill, and/or Final Destination of Media:** Include the name of the facility, landfill, or the final destination of the media. A list of DEC-approved Alaskan soil treatment facilities is available at <u>www.dec.alaska.gov/spar/csp/offsite-remediation/</u>. If multiple treatment facilities will be used, use separate forms to document what media will go to which facility. For material that will go to a waste transfer facility prior to disposal at another facility, the final destination should be listed.
 - a. **Physical Address/Phone Number:** Provide the physical location and telephone number of the facility, landfill, or the final destination of the media.
- 12. Responsible Party: Provide the name of the party responsible for the contaminated site or spill.
 - a. Address/Phone Number: Provide the mailing address and telephone number of the responsible party.
- 13. Waste Management Co./Organizer: Provide the name of company or person shipping and/or organizing the shipment of the media.
 - a. Address/Phone Number: Provide the mailing address and telephone number of the waste management company or organizer.

Submit this completed form along with all necessary attachments to the assigned DEC project manager for approval, or contact the Contaminated Sites Program at (907) 269-7558 or the Prevention, Preparedness and Response Program at (907) 269-7557.