

Fugitive Dust Risk Management Plan 2016 Annual Report

Red Dog Operations Teck Alaska Incorporated August 2017

Teck

Contents

Summary	3
Introduction	6
Background	6
Risk Management Plan Overview	7
Data Collection and Reporting Objectives	9
Report Organization	9
Risk Management Actions Taken in 2016	10
Communication Actions	10
Dust Emissions Reduction Actions	11
Remediation Actions	13
Worker Dust Protection Actions	16
Uncertainty Reduction Actions	17
Monitoring Actions	18
Monitoring Programs for DEC Oversight	19
Operational Monitoring	20
Summary of Monitoring Results	25
References	26

Figures Tables

Appendix A – Draft Manuscript: Subsistence Caribou Weight of Evidence Assessment Appendix B – 2016 Marine Sediment Monitoring Report

Acronyms and Abbreviations

CAKR	Cape Krusenstern National Monument
CSB	concentrate storage building
CSP	DEC Contaminated Sites Program
DEC	Alaska Department of Environmental Conservation
DFG	Alaska Department of Fish and Game
DMTS	DeLong Mountain Transportation System
EV	environmental
HE	heavy equipment
MOA	Memorandum of Agreement
MSHA	Mine Safety and Health Administration
NANA	NANA Regional Corporation
NPS	National Park Service
OSHA	Occupational Safety and Health Administration
PAC	Personnel Accommodations Complex
RMP	Fugitive Dust Risk Management Plan
SMK	Seasonal Mann-Kendall
Teck	Teck Alaska Incorporated
Tdam	Main Tailings Dam
TEOM	tapered element oscillating microbalance
TSP	total suspended particulates
VEE	visible emissions evaluation
WAH	Western Arctic Herd
XRF	x-ray fluorescence

Summary

This document presents the Fugitive Dust Risk Management Plan (RMP) Annual Report for 2016. A history of RMP activities was provided in the first (2011) Annual Report (Teck 2012) and will not be repeated here. This report is not intended to provide a complete background of the RMP or the RMP Implementation Plans; if background is needed, the reader is encouraged to review the RMP, Implementation Plans, and previous Annual Reports available at <u>www.RedDogAlaska.com</u>.

This report includes results from efforts related to each of the risk management implementation plans, including the Communication Plan, Dust Emissions Reduction Plan, Remediation Plan, Worker Dust Protection Plan, Uncertainty Reduction Plan, and Monitoring Plan. Activities related to these implementation plans are summarized below.

The Communication Plan contains a description of Red Dog's efforts to maintain clear communication with all interested parties and local communities about current fugitive dust risk management efforts underway at the mine. Communication activities during 2016 included regularly scheduled village visits, meetings with the NANA Regional Corporation (NANA), the Subsistence Committee, and other stakeholders and organizations who expressed an interest in mine operations. A variety of other outreach, engagement, and educational efforts were undertaken in 2016.

The Dust Emissions Reduction Plan describes current dust reduction efforts underway at the mine. Dust emissions reduction activities during included trial of a new dust suppression product for the tailings impoundment. The product was applied via an airplane turbine-powered Thrush crop duster in September 2016. Also, the port road was treated with calcium chloride during the summer months for dust suppression.

In October 2016, the Subsistence Committee expressed concern that water trucks were unavailable due to repairs for port road dust control when needed during summer 2016. In response, Red Dog Operations (RDO) has elevated the importance of how water trucks are serviced, making them a high priority for repairs. This is described in more detail in the below section on dust emissions reduction.

Remediation activities in 2016 included reclamation of a previous zinc concentrate spill at MS-13. Ground cover failed to establish, so additional fresh seeds will be ordered, and the site will be revegetated in summer 2017. Also, as presented in the Fugitive Dust Risk Management Plan 2015 Annual Report, data collected in 2015 showed that lead concentrations exceeded Arctic Zone Industrial Cleanup Levels three consecutive times in 2015 at the port site. Based on these results, the section of the road with elevated metals concentrations was reclaimed and resurfaced in October 2016, per procedures described in the Fugitive Dust Risk Management Monitoring Plan.

The Worker Dust Protection Plan details those programs in place to monitor and minimize workers' exposure to dust while at Red Dog and to facilitate comprehensive communication about these programs, policies, and practices. In 2016, worker health monitoring continued through regular blood lead level testing, results of which are reported directly to the State of Alaska by the testing laboratory and by environmental monitoring performed by the onsite Safety & Health department. Strictly enforced policies remain in place to ensure that worker health is protected and that all work environments are safe. Teck takes employee health extremely seriously and noncompliance with health and safety policies is not tolerated.

The Uncertainty Reduction Plan is intended to identify and implement research or studies to reduce uncertainties related to the assessment and management of risk to humans and the environment. In 2014, a study was planned to evaluate bone and bone marrow consumption. Part of the study incorporates a cooking competition so that individuals from Kivalina and Noatak can prepare dishes that include caribou bone, and lead concentrations in those dishes will be measured. Sampling of caribou and implementation of the first phase of the study is anticipated for early 2018, with development of the detailed phase two study plan (the community-based cooking study) to follow later in 2018.

The Monitoring Plan is intended to provide the necessary operational and environmental monitoring data to facilitate continued reduction of fugitive metals emissions and dust emissions and verify the continued safety of caribou and other subsistence foods and water, as well as the health of ecological environments and habitats in the vicinity of the mine, road, and port. In 2016, monitoring activities described in the Monitoring Plan proceeded on schedule, and statistical analyses were performed on multi-year data to identify and evaluate any trends and

patterns; specific results are presented in the "Monitoring Actions" section of this report. In 2016, the following monitoring programs were implemented:

- Visual emissions evaluations
- Source monitoring at the mine and port with real time air samplers
- Real-time alarm system monitoring for dust at the mine
- Road surface monitoring to assess tracking of metals
- Dustfall jar monitoring at the mine, road, and port. •

Results from the monitoring programs largely indicate that concentration trends are flat over the most recent four-year period (i.e., no increasing or decreasing trend). Overall, environmental media concentrations remain similar to or lower than those evaluated in the DeLong Mountain Transportation System (DMTS) risk assessment (Exponent 2007).

Introduction

In accordance with the RMP (Exponent 2008), the purpose of this report is to provide a summary of risk management activities conducted at the Red Dog operation in the prior calendar year.

Background

The Red Dog Mine is approximately 50 miles inland of the Chukchi Sea, in the western end of the Brooks Range of Northern Alaska. The mine is located on land owned by NANA and operated by Teck Alaska Incorporated (Teck). Base metal mineralization occurs naturally throughout much of the western Brooks Range, and strongly elevated zinc, lead, and silver concentrations have been identified in many areas (Exponent 2007). The Red Dog Mine has been in operation since 1989.

At the mine, ore containing lead sulfide and zinc sulfide is mined and milled to produce lead and zinc concentrates in a powder form. These concentrates are hauled year round from the mine via the DMTS road to concentrate storage buildings (CSBs) at the port, where they are stored until being loaded onto ships during the summer months. The storage capacity allows mine operations to continue year round. During the shipping season, the concentrates from the storage buildings are loaded into an enclosed conveyor system and transferred to the shiploader and then into barges. The barges have built-in and enclosed conveyors used to transfer the concentrates to the holds of deepwater ships. The DMTS road passes through the Cape Krusenstern National Monument (CAKR), which is managed by the National Park Service (NPS). A study conducted by NPS in 2000 found elevated levels of metals in moss near the DMTS road, declining with distance from the road (Ford and Hasselbach 2001).

Teck conducted studies to characterize the dust issue throughout the mine, road, and port areas, and subsequently conducted a human health and ecological risk assessment (Exponent 2007) to estimate possible risks to human and ecological receptors¹ posed by exposure to metals in soil, water, sediments, and plants and animals in areas surrounding the DMTS and in areas surrounding the Red Dog Mine ambient air/solid waste permit boundary and port site. The human health risk assessment evaluated potential exposure to DMTS-related metals through

¹ Plants and animals

incidental soil ingestion, water ingestion, and subsistence food consumption under three scenarios: 1) child subsistence use, 2) adult subsistence use, and 3) combined worker/subsistence use.

The human health risk assessment, which included subsistence foods evaluations, found it is safe to continue harvesting subsistence foods from all areas surrounding the DMTS and mine, including in unrestricted areas near the DMTS, without restrictions. Although harvesting remains off limits within the DMTS, human health risks were not elevated even when data from restricted areas were included in the risk estimates.

The ecological risk assessment evaluated potential risks to ecological receptors inhabiting terrestrial, freshwater streams and ponds, coastal lagoons, and marine environments from exposure to DMTS-related metals. The ecological risk assessment found that:

- In the tundra environment, changes in plant community composition (for example, decreased lichen cover) were observed near the road, port, and mine, although it was not clear to what extent those effects may have resulted from metals in fugitive dust, or from other chemical and physical effects typical of dust from gravel roads in Alaska.
- The likelihood of risk to populations of animals was considered low, with the exception of possible risks related to lead for ptarmigan living closest to the port and mine.
- No harmful effects were observed or predicted in the marine, coastal lagoon, freshwater stream, and tundra pond environments, although the potential for effects to invertebrates and plants could not be ruled out for some small, shallow ponds found close to facilities within the port site. However, no effects were observed in these port site ponds during field sampling.

After completing the risk assessment, Teck prepared an RMP designed to minimize the potential for effects to human health and the environment over the remaining mine life and beyond (Exponent 2008).

Risk Management Plan Overview

Based on the results of the risk assessment, and stakeholder input on risk management objectives, an RMP was developed to combine and build upon Teck's prior and ongoing efforts to reduce dust emissions and minimize potential effects to human health and the environment

over the life of the mine. Specifically, the overarching risk management goal is to: "Minimize risk to human health and the environment surrounding the DMTS and outside the Red Dog Mine boundary over the life of the mine."²

Although human health risks were not found to be elevated, and potential ecological risks were found to be limited, conditions may change over time, and this possibility was also considered in the design of the RMP. Future changes in conditions and in potential human and ecological exposures over the life of the operation can be addressed through implementation of risk management, dust emissions control, and monitoring activities. More specifically, the RMP established a set of seven risk management objectives (Exponent 2008), which formed the basis for preparation of six implementation plans. Each of the six implementation plans addresses one or several of the overall objectives of the RMP (Figure 1) and includes the planned scope of work to achieve the objectives.

This annual report assumes the reader has some familiarity with the Fugitive Dust Risk Management program and is therefore not intended to be a thorough discussion of that program, nor is it intended to provide complete background on either the risk management program or risk assessment that lead to the development of the RMP. To develop a more thorough understanding of the risk management programs, interested parties are encouraged to review the human health and ecological risk assessment documents (Exponent 2007), as well as the RMP (Exponent 2008) and its component implementation plans:

- Communication Plan (Exponent 2010)
- Dust Emissions Reduction Plan (Exponent 2011a) •
- Remediation Plan (Exponent 2011b) •
- Worker Dust Protection Plan (Exponent 2011c) •
- Monitoring Plan (Exponent 2014a)
- Uncertainty Reduction Plan (Exponent 2012) •

These plans are available for review at http://www.teck.com/operations/unitedstates/operations/red-dog/.

² Note that the mine closure and reclamation plan addresses risk management within the mine solid waste permit boundary (collocated with the ambient air boundary, see Figure 3).

Data Collection and Reporting Objectives

The risk management program includes collection of a large amount of data for various implementation plans (discussed below) intended for either operational or regulatory purposes. Data collected for operational purposes are intended to provide Teck with information on the effectiveness of dust emissions control and reduction efforts. Data collected for regulatory purposes are intended to provide the Alaska Department of Environmental Conservation (DEC) with the necessary information to verify that conditions are protective of human health and the environment.

The soil monitoring and marine sediment monitoring programs (described in the section below regarding the summary of monitoring results) are intended to satisfy a number of requirements, including the regulatory requirements under the DEC Contaminated Sites Program (CSP), pursuant to 18 AAC 75.360. These two programs are intended to provide DEC with a means to continue oversight and implement enforcement actions as needed. As such, the results of these programs are formally documented in separate reports to DEC after each monitoring event. These monitoring programs are discussed in the "Monitoring Programs for DEC Oversight" section below, within the "Monitoring Actions" section.

Please note that soil monitoring was not conducted in 2016 because the event is scheduled every three years. The next soil monitoring event is scheduled for summer 2017.

Report Organization

The annual report summarizes work conducted during the 2016 calendar year related to each of the implementation plans that compose the overall RMP. Sections are provided that document the communication, dust emissions reduction, remediation, worker dust protection, uncertainty reduction, and monitoring actions taken in 2016.

Risk Management Actions Taken in 2016

The following sections of this annual report summarize each implementation plan, the corresponding risk management objectives, and the actions taken during the 2016 calendar year toward achieving these objectives.

Communication Actions

The Communication Plan follows from Risk Management Objective #6: *Improve collaboration and communication among all stakeholders to increase the level of awareness and understanding of fugitive dust issues.* To achieve this objective, the Communication Plan was developed with the goal "To establish consistent methods for communication and collaboration among stakeholders regarding efforts related to dust emission issues." The plan identified multiple types of communication actions in three categories: communication, collaboration, and education and outreach. A number of methods from these three categories have been implemented as part of the various risk management programs within the RMP. The actions taken in 2016 are outlined below.

The following actions were taken in 2016 to increase communication and participation and to ensure that information is being communicated to all stakeholders and communities of interest in an effective manner:

- **Community Meetings.** Red Dog continued to hold annual community visits/meetings in the surrounding communities. The community meetings provide an opportunity for Red Dog to give the communities updated information on operations, including environmental matters. It also provides an opportunity for community members to raise any concerns.
- **Subsistence Committee Meetings.** Red Dog holds quarterly meetings with the Red Dog Subsistence Committee. This provides a key opportunity to obtain input from knowledge holders and elders from Kivalina and Noatak.
 - In 2016, Red Dog shared information about concentrate spill cleanup efforts, Red Dog longevity, shipping season, port security procedures and caribou hunting safety, and fugitive dust control.
 - Teck received a letter from the Subsistence Committee regarding dust control, mainly on the Port Road and Port Site. Teck is working to address the concerns outlined in this letter. The process to make dust control a higher priority has

involved many departments, such as Mining, Surface Crew, Heavy Equipment (HE), and Information Technology. The subsistence committee is updated quarterly on Teck's progress addressing these concerns. For more detail, please refer to the section titled "Dust Emissions Reduction Actions" below.

- Meetings with the Kivalina IRA. Red Dog meets regularly with the Kivalina IRA Council. Topics of discussion have included the creation of a Memorandum of Agreement (MOA) in which a working group is formed to address environmental concerns, human health issues, traditional land use, and other topics decided on by the working group.
- **Outreach and Education.** Red Dog continues to look for opportunities to provide stakeholders and communities of interest with greater understanding of their operations.
 - o The Red Dog Environmental Observer program was implemented to encourage community members to accompany Red Dog environmental technicians (or others) in the field during sampling or testing events. In 2016, the environmental observer program focused on providing additional opportunities for community members to develop a greater understanding of health and environmental monitoring efforts. A resident from Kivalina was invited to accompany and observe the marine sediment sampling event conducted offshore near the Red Dog Port site. The sampling event is conducted by Red Dog environmental personnel every two years as part of the RMP. For more detail, please refer to the section titled "Monitoring Actions" below.
 - Red Dog continued working in collaboration with the Alaska Plant Materials Center to develop a native seed collection program in the village of Noatak, with the intent to use the seed for Red Dog reclamation activities including concentrate spill sites. The pilot study will serve to establish a fair price/unit for native seeds so that stakeholders who wish to collect native plant seeds for remediation/reclamation can operate as independent business owners.

Dust Emissions Reduction Actions

The Dust Emissions Reduction Plan is intended to achieve Risk Management Objective #1: *Continue reducing fugitive metals emissions and dust emissions*. To achieve this objective, the Dust Emissions Reduction Plan was developed with the goal "To reduce the amount of fugitive

dust released into the environment near the DMTS and Red Dog Mine to protect human health and the environment."

Road Dust Emissions Reduction Actions. In spring and summer 2016, as in every spring and summer, during the warmer months when snow and ice are no longer present, calcium chloride is applied to the gravel roads as a dust suppressant because it retains moisture for prolonged periods. Additionally, water trucks spread water on the port and mine site roads. Using the calcium chloride with water applications holds down dust and stabilizes unpaved road surfaces. Calcium chloride applications will be continued in spring 2017, but an additional product(s) may also be tried and evaluated for effectiveness.

<u>Subsistence Committee Port Road Concerns.</u> On October 3, 2016, the Subsistence Committee, composed of Kivalina and Noatak elders, sent a letter to RDO expressing concerns about the watering trucks being out of service and unavailable during summer 2016. In response to the letter, RDO has elevated the importance of how water trucks are serviced, making them a high priority for repairs. Specifically in response to the letter, the following system improvements have been made in the heavy equipment repair shop:

- An EV (environmental) designation has been added to all watering-related equipment, including trucks, pumps, spray parts, etc. The EV designation emphasizes the importance of the equipment that supports environmental commitments, marking it as first priority for repairs.
- A new planning board was installed in the HE Shop for surface crew equipment (started October 12, 2016) to improve communication between the Surface Crew and the HE Shop.
- The HE Shop has committed one bay per shift to working on surface crew equipment (starting October 17, 2016) so EV designated equipment always has priority for repairs and maintenance.

During the quarterly Subsistence Committee meeting (October 18, 2016), a representative from the Red Dog Environmental Department was present and thanked the Elders for providing the letter of concern to Red Dog. A presentation that outlined the above changes was also discussed with the Elders.

Tailings Beach Dust Suppression. In 2015, a new dust suppression product was tested in the laboratory and showed favorable results for use at RDO. Although initially intended for use on the roads, further discussion with the manufacturer suggested it might not hold up to heavy traffic as well as the calcium chloride already in use on the road. Instead, laboratory trials by the manufacturer suggested the product would be well suited for dust suppression on Red Dog tailings beaches. Therefore, the product was ordered and applied by a crop duster airplane (garret turbine powered Thrush with a load capacity of 4,000 pounds and 510 gallons) from Glenn Air and also by hydroseeder from September 9–16, 2016, to all exposed tailings beaches. The product (Tall Oil Pitch, or TOP, by *Enssolutions*) is derived from wood and is biodegradable, non-toxic, non-water soluble, non-leaching, non-corrosive, and passes toxicity testing. The viscous, dark brown sticky substance is effective at suppressing dust releases from mine tailings by forming a water and wind-proof barrier. Depending on ease of use and effectiveness, the product may be used again in fall 2017 for tailings dust suppression.

Future Dust Emissions Reduction Actions. In 2016, RDO began discussions regarding future planned dust emissions reduction actions. A few ideas were generated during discussions, including purchasing a calcium chloride dust suppressant spreader for the port areas, securing a water truck specifically for watering roads in the port area, and possibly designing a waterless air-wash for trucks exiting the Truck Unloading Building at the Port. Updates on these potential plans will be provided in 2017.

Remediation Actions

The Remediation Plan is intended to facilitate the achievement of the Risk Management Objective #2: *Continue remediation or reclamation of selected areas to reduce human and ecological exposure.* To achieve this objective, the Remediation Plan was developed with the goal "To define a consistent method for identifying and selecting affected areas and implementing remediation and/or reclamation" (for metals- or ore-concentrate-affected areas). Specific requirements for remediation are set forth in various permits and approved documents such as the Reclamation and Closure Plan (Teck 2011) and referenced in the Remediation Plan.

<u>MS-13 Zinc Spill Reclamation</u>. Reclamation of a previous zinc concentrate spill at MS-13 occurred in 2016. On October 3, 2015, a Nana/Lynden truck trailer hauling a load of zinc concentrate along the Port Road from the Red Dog Mine towards the Red Dog Port exited the

shoulder of the road. The rear trailer went off the west side of the Port Road, and the spill occurred in an area with a steep slope leading from the west Port Road shoulder down to a drainage. The tractor and first trailer stayed upright, and the driver was uninjured. The total weight of concentrate spilled to the environment was 144,000 pounds (65,500kg).

The driver reported the incident to his supervisor, the scene was secured, and agencies and stakeholders were notified of the spill as required. A major recovery effort was undertaken immediately to collect the concentrate piled on the tundra and in the drainage. Areas with elevated zinc levels were excavated by hand, and the excavated soil was removed from the site. Soil samples were taken after the cleanup for laboratory analysis.

Based on the results of analyzing the soil samples, additional corrective actions were completed with participation of the firm Restoration Science and Engineering in February 2016 to complete the cleanup activities. On June 18 and June 19, 2016, the following control and protective measures were used for revegetation and stabilization at the MS-13 Site by Nana/Lynden and Restoration Science and Engineering personnel:

- Upslope Control Measures
 - Two shallow diversion ditches were installed along the road to help prevent run-on during stabilization of the site
 - Two rock check dams were installed between the diversion ditches to help reduce sediment flow and slow storm water velocities
 - Coir logs were installed at the drainage location between the roadway ditch and site to help slow, filter and dissipate run-on
- Control Measures Installed
 - Surface roughening and trench preparation for jute mat and fiber rolls
 - Using hand tools (hoes, shovels, and pick-axe) and jack hammer in some areas
 - Grading side slope to remove rill and gully formation
 - Using hand tools (hoes and shovels)
 - Hydro seeded the disturbed areas per the Alaska Revegetation Manual for Arctic Region and existing Red Dog revegetation practices
 - Approximately 25 to 30 lb of seed mix

- Approximately 25 lb of Arctared red fescue, Alyeska polargrass, and Tundra glaucous bluegrass
- Approximately 5 lb of Norcoast Bering hairgrass
- o 150 lb of fertilizer
- o 300 lb of mulch
- Jute mat installation in accordance with the manufacturers recommendations and Best Management Practice AK-14, keyed in at top and 6-inch staples throughout
- Coir log and straw wattles along slope, approximately 10 to 15 foot intervals based on steepness of the slope
 - Coir logs were installed at the toe of the slope for stream bank protection while vegetation becomes established and to reduce the potential sediment transport into the stream.

The entire seeded area was watered a few times per week to provide sufficient moisture for seed germination, but the ground cover failed to establish. Seed samples were sent to Peter Johnson at Alaska Department of Natural Resources (Plant Materials Center) for testing. Unfortunately, the seed tests suggested rates of germination from 0 to 7%. Therefore, additional fresh seeds will be ordered and the site will be revegetated in May or June 2017, using the same methods outlined above. Additionally, all previous spill sites remediated in 2015 and 2016 will be revisited in summer 2017 and reseeded as necessary.

Port Race Track Remediation and Resurfacing. As part of the Red Dog Fugitive Dust Risk Management Monitoring Plan, road surface monitoring is conducted to determine metals concentrations on road surfaces, which are potential sources of metals via tire spray and windblown dust to the surrounding environment. Monitoring is conducted every two months. As discussed in the Fugitive Dust Risk Management Plan 2015 Annual Report, data collected in 2015 showed that lead concentrations exceeded Arctic Zone Industrial Cleanup Levels three consecutive times in 2015 at the port site. Based on these results, the section of the road that had elevated metals concentrations was reclaimed and resurfaced in October 2016, per procedures described in the Fugitive Dust Risk Management Monitoring Plan.

On August 23, 2016, additional port road sampling was conducted by the Red Dog Environmental Department. The port road was sampled from the surge bin to 2,500 feet beyond the racetrack exit. Each sampling decision unit was 500 feet long, and 10 x-ray fluorescence

(XRF) samples were taken from each decision unit and averaged together. Results were highest just past the Truck Unloading Building and tapered off from that point. Concentrations decreased drastically as one continued clockwise around the racetrack. Concentrations along the port road were also much lower than those around the racetrack. This sampling event dictated that remediation of the road was warranted all around the racetrack.

Remediation took place from August 27 through 29, 2016. A total of 325.5 cubic yards of material (11 dump-truck loads and 7 end-dump loads) were hauled from the racetrack to the mine for recycling through the mill. Approximately 499 cubic yards of clean material was placed back around the racetrack to replace what had been hauled away.

Worker Dust Protection Actions

The Worker Dust Protection Plan was developed in response to Risk Management Objective #7: *Protect worker health.* To achieve this objective, the Worker Dust Protection Plan was developed with the goal "To minimize worker exposure to fugitive dust, provide ongoing monitoring of exposure, and ensure a comprehensive communication system."

Safety is a core value for Teck, and Teck is committed to providing leadership and resources for managing safety and health. Accordingly, the company has developed Environment, Health, Safety, and Community Management Standards applicable to their operations worldwide. In addition, Teck has developed a comprehensive Occupational Safety and Health Program tailored specifically to RDO to protect worker health. The program complements the corporate standards and is designed to manage all aspects of workplace safety and health, including worker dust protection. The Worker Dust Protection Plan ties in closely with the existing health and safety programs at the mine, which are overseen by the Safety & Health and Medical departments.

Worksite blood lead monitoring was conducted in 2016 by the Safety & Health and Medical Departments. Blood lead level testing is performed for all employees on a regular basis and the State of Alaska receives copies of all laboratory results directly from the third-party laboratory. In 2016, blood lead monitoring results indicated exposures were below both the MSHA/OSHA standards. Five people exhibited blood lead levels slightly highergreater than the more stringent Red Dog standards, ranging from 25.2 to 37.3 μ cg/dL. Therefore, those five underwent

additional blood lead monitoring, and two of them received counseling. No workers were removed from the job due to blood lead levels in 2016.

Uncertainty Reduction Actions

The Uncertainty Reduction Plan follows from Risk Management Objective #5: *Conduct research or studies to reduce uncertainties in the assessment of effects to humans and the environment.* In order to achieve this objective, the Uncertainty Reduction Plan was developed with the goal: "To identify and prioritize prospective research or studies to reduce uncertainties in the assessment of effects of fugitive dust to humans and the environment."

Caribou Subsistence Use. Because caribou are an important subsistence resource, a scientific research article was prepared in 2017 that addresses the Western Arctic Herd caribou that overwinter near Red Dog. In the article, multiple lines of evidence were used to evaluate the contribution of metals in fugitive dusts associated with Red Dog operations and transport to metals levels in caribou and potential risks associated with subsistence consumption of caribou harvested near the road and mine. The study found that fugitive dust emissions associated with Red Dog are not a significant source of metals in caribou and that caribou remain safe for subsistence level human consumption. In addition, the study indicates that caribou do not appear to avoid the area of RDO, the Road, and the Port. Rather, the data indicate actual use of the area by WAH caribou is what would be expected based on its geographic area relative to the entire WAH range. The manuscript, titled "Application of a weight of evidence approach to evaluating risks associated with subsistence caribou consumption near a lead/zinc mine" was submitted for peer review to a scientific journal. A draft copy of the manuscript is included in the appendix.

Upcoming Caribou Cooking Study. The results of the risk assessment (Exponent 2007) indicated that overall human health risks were low, including potential risks associated with consumption of metals in caribou tissue. Consumption of caribou muscle (meat), liver, and kidney was evaluated in the risk assessment, but bone and bone marrow were not directly evaluated. Community members expressed concern that they could be exposed to lead stored in caribou bone; therefore, an additional study has been planned to evaluate bone and bone marrow consumption. The primary objective of the study is to conduct an analysis to determine typical bone lead levels in caribou and transfer of lead from bone to food during cooking. In addition, a cooking competition will be incorporated into the study so that individuals from

Kivalina and Noatak can prepare dishes that include caribou bone, and lead concentrations will be measured in those dishes. The scientific questions that this study seeks to address include the following:

- 1. What are the lead concentrations in bone and bone marrow in caribou harvested near Red Dog?
- 2. Are lead concentrations in marrow and bone from caribou harvested near Red Dog different from those in reference caribou harvested elsewhere?
- 3. How much lead does marrow/bone contribute to food cooked by the local community with those ingredients?
- 4. How do lead concentrations in marrow/bone from other meats (e.g., beef) compare to caribou?

A detailed phase one study plan (the laboratory-based cooking study) was developed in 2015 and 2016. The detailed phase one study plan will be issued for review by the Ikayuqtit Review Team in 2017. Following stakeholder review, the detailed phase one study plan will be updated as needed and then posted to <u>www.RedDogAlaska.com</u>. Sampling of caribou and implementation of the first phase of the study is anticipated for 2018, with development of the detailed phase two study plan (the community-based cooking study) to follow later in 2018 or 2019.

Monitoring Actions

The Monitoring Plan (Exponent 2014a) is intended to facilitate the achievement of the following risk management objectives:

- Objective 1: Continue reducing fugitive metals emission and dust emissions [this objective is indirectly addressed through monitoring to verify effectiveness of operational dust control measures]
- Objective 3: Verify continued safety of caribou, other representative subsistence foods, and water
- Objective 4: Monitor conditions in various ecological environments and habitats, and implement corrective measures when action levels are triggered
- Objective 6: Improve collaboration and communication among all stakeholders to increase the level of awareness and understanding of fugitive dust issues.

To achieve these objectives, the Monitoring Plan (Exponent 2014a) was developed with the goal "To monitor changes in dust emissions and deposition over time and space, using that information to: 1) assess the effectiveness of operational dust control actions, 2) evaluate the effects of the dust emissions on the environment and on human and ecological exposure, and 3) trigger additional actions where necessary."

Actions included in the Monitoring Plan were developed from priority actions identified during development of the RMP, with input from local stakeholders, technical experts, and state and federal regulatory agencies. This section presents the results of the Monitoring Plan actions implemented during 2016. An overview of the components of the monitoring program with frequencies of monitoring is shown in Figure 2. A map-based illustration of monitoring program components and monitoring stations and sites is shown in Figure 3.

Monitoring Programs for DEC Oversight

The marine sediment and soil monitoring programs are ongoing for DEC oversight, and results are also used for trend analysis at RDO. Soil monitoring is planned again for 2017. Marine sediment monitoring conducted in 2016 is summarized below.

Marine Sediment Monitoring

Marine sediment sampling was conducted in the fall of 2016 to monitor operational-scale dust deposition in the marine environment surrounding the DMTS port ship loader facilities (Exponent 2016). The sediment samples were collected from seven locations around the Red Dog port facility that had exhibited elevated metals concentrations when sampled in 1990 (Figure 3). These locations have been periodically re-sampled since 2003 as part of the ongoing marine sediment monitoring program to evaluate temporal changes in the average metal concentrations. The purpose of the marine sediment sampling program is to measure and track over time the concentration and distribution of metals in marine sediments around the port shiploader (Figure 4).

Samples were analyzed for cadmium, lead, and zinc, which are the primary constituents of concern and risk drivers in the lead and zinc concentrates transported via the shiploader and barges. As specified in the monitoring plan (Exponent 2014a), the measured levels are compared with the effects range low (ER-L) guideline values developed by Long et al. (1995) for marine sediment.

In 2016, concentrations of cadmium, lead, and zinc in sediment did not exceed their respective ER-L at any of the sampling stations. Also, cadmium, lead and zinc concentrations did not exceed the ER-Ls at more than one station for more than two annual monitoring events in a row in 2012, 2014, and 2016. Therefore, according to the protocol in the monitoring plan (Exponent 2014a), monitoring continues on a biennial basis, with the next marine sediment monitoring sampling event scheduled for 2018.

The marine sediment monitoring report is included in an appendix.

Operational Monitoring

U.S. EPA Method 22 – Visible Emissions Evaluation

Visible emissions evaluations (VEE) were conducted as required for the Title V air permit at the mine. Monitoring occurs at multiple locations within the mine boundary and at the port. Along the DMTS road, VEE observations are conducted daily when road surfaces are dry but not frozen. Typical VEE monitoring locations are shown on Figure 3, though the locations depicted are not all-inclusive, as the locations may vary. All VEE readings required under the Title V permit have been performed and are submitted twice a year to DEC in the Title V Facility Operating Report.

In addition, when operational changes are made for which additional VEE readings are used to evaluate before/after results, these results are reported in the Annual Report. No such changes occurred in 2016; therefore, there is no additional VEE monitoring to report for 2016.

TEOM Source Monitoring

Tapered element oscillating microbalance (TEOM) samplers are used for air quality monitoring at four locations near sources within the mine and port (Figure 3). Mine TEOMs are located downwind of the pit and crusher at the Personnel Accommodations Complex (PAC) and at the main tailings dam (Tdam) downwind of the tailings beach, mill, and other facilities (Figure 4). Port TEOMs are located downwind of the CSBs and in the lagoon area downwind of the concentrate conveyor (Figure 5).

The TEOMs produce real-time measurements of dust in air and collect discrete samples which are then analyzed to provide airborne metals concentrations. Measurements are reported as total suspended particulates (TSP), and zinc and lead concentrations are reported as TSP-Zn

and TSP-Pb, respectively. TEOMs are operated continuously³ to measure real-time TSP. Filters collect TSP over 24-hour periods every third day at the mine and every sixth day at the port for TSP-Zn and TSP-Pb analysis.

The monthly averages of 2013, 2014, 2015, and 2016 TSP-Pb and TSP-Zn concentrations are shown on Figure 6a for all four mine and port TEOM locations. The concentrations of lead and zinc at the mine area are typically higher than those at the port area (Figure 6a).

- **Mine TEOM Results.** At the mine, (Figure 6b), lead and zinc concentrations were typically lowest in summer months (the months with higher humidity and more road watering for dust control), and highest in winter months (the coldest, driest, and lowest humidity months, when road watering is not possible because of freezing conditions).
- **Port TEOM Results.** At the port (Figure 6c), lagoon TEOM lead and zinc • concentrations are highest from July through November, corresponding with the peak shipping season. Lead and zinc concentrations detected in the port TEOMs are generally lower in 2016 than past years, with the exception of October 2016, when lead concentrations were higher.

Statistical Trend Analysis for TEOM Data. Statistical testing methods were used to evaluate whether TEOM datasets have statistically significant temporal trends in metals concentrations. The Seasonal Mann-Kendall (SMK) trend test is a nonparametric method to investigate temporal trends in time series containing substantial seasonal variability. In this case, TEOM data were summarized on a monthly basis. Seasonal trend tests were conducted using monthly means and monthly 95th percentile concentrations to evaluate both average conditions and a measure of the upper limit. Seasonal trend tests require valid data from each month for at least three years within the period considered.

Results of the statistical trend tests for TEOM data (lead and zinc concentrations) in four locations (Mine PAC, Mine Tdam, Port CSB, and Port Lagoon) are summarized in Table 1. Port CSB and Lagoon results were also analyzed as a combined data set. This combined analysis is

³ Occasional system upsets do occur as a result of weather or equipment failure. TEOM readings are monitored frequently so that system upsets are noted and corrected as soon as possible. Missing or unusable data are noted in the raw data files and are not used in statistical trend evaluations.

supported by the proximity of the two port locations and the similarities in monthly average concentrations for both lead and zinc (Figures 7a and 7b).

For the most recent four-year period (2013–2016), statistical analysis indicates the Port area and the Mine area have been relatively stable to declining in lead and zinc concentrations, both in mean and 95th percentile concentrations (Table 1, Figures 7a and 7b). In fact, the Port Lagoon TEOM has shown significant decreasing trend in mean zinc concentration over the last four years.

TEOM Real-Time Alarm System Monitoring

Real-time TEOM data is used internally to monitor for high dust events so that mine activities can be modified (where possible) to reduce dust levels. When air quality measurements exceeded a warning level or an alarm level, the alarm status was displayed on the Red Dog weather intranet web page to notify personnel within the Mine Operations and Environmental departments to take corrective action. Examples of these corrective actions include ordering water on the roads or stockpiles or shutting down loading operations during windy conditions.

Road Surface Monitoring

Loose fine materials subject to airborne transport into the surrounding environment are sampled from the road surface at eight locations every two months. From the mine site to the port, the eight road surface monitoring station locations are:

- Mine CSB (near exit from truck loading portion of CSB)
- The Y (near the back dam, between the CSB and the Airport)
- Airport
- MS-13 (former material site where road crosses the mine boundary)
- MS-9 (material site between the mine and CAKR)
- R-Boundary (northern boundary of CAKR)
- MS-2 (material site just inside the northern boundary of the port)
- Port CSB Track (road near exit from truck unloading building at the port CSBs)

Samples were analyzed onsite using a portable XRF analyzer to determine lead, zinc, and cadmium concentrations in road surface materials. The "Mine CSB" and "The Y" stations (inside the mine boundary) often exceed the cleanup levels and are managed so as to reduce tracking of metals concentrates toward the port. Final remediation of the mine areas will occur after mine

closure according to the methods outlined in the Red Dog Mine Waste Management. Reclamation and Closure Monitoring Plan (Teck 2011).

For the most recent four-year period (2013-2016), statistical analysis indicates that road surface samples have been relatively stable in mean lead, zinc, and cadmium concentrations (Table 3, Figures 8a, 8b, and 8c). Note, if measured road surface concentrations at stations outside the mine boundary exceed Arctic Zone Industrial Cleanup Levels for lead, zinc, or cadmium (800, 41,100, and 110 mg/kg respectively⁴) for more than two consecutive sampling periods, that road section is to be remediated and resurfaced as described in the Remediation Plan (Exponent 2011).

Results for stations outside the mine and port boundaries did not exceed Arctic Zone Industrial Cleanup Levels for lead, zinc, or cadmium from 2011 to 2015 (Figures 8a, 8b, and 8c). However, at the Port CSB Track, lead concentrations exceeded the cleanup levels for two consecutive sampling periods in 2015 (Figure 8a). Thus at the Port CSB Track, where lead concentrations exceeded the cleanup levels in consecutive sampling periods in 2015 (Figure 8a), remediation work was implemented. Based on road surface monitoring results from 2016, no additional road remediation and resurfacing is required in 2017.

Dustfall Jar Monitoring

Dustfall jars are passive continuous collectors for measuring dust deposition; samples are collected every two months at all locations. Approximately 86 dustfall stations are located around the mine, port, and DMTS road, as follows:

- At the mine, approximately 34 jars are placed in locations around the facilities (Figure 3).
- Along the DMTS road, 12 dustfall jars are located at three stations, each with four dustfall jars, two on either side of the road. The DMTS road stations are collocated with road surface sampling stations near the port boundary, the CAKR northern boundary, and midway between CAKR and the mine. The dustfall jars are located approximately 100 m from the shoulder of the DMTS, with 100 m between them, oriented parallel to the road (Figure 3).

⁴ Cleanup levels according to 18 AAC 75.341, as revised in 2008 (available on the internet at https://dec.alaska.gov/spar/csp/docs/75mas_art3.pdf). Note that the cadmium and zinc cleanup level would be lower, at 79 and 30,400 mg/kg, if the zone were considered to be the "Under 40 inch Zone" by DEC, which is a function of the definitions at 18 AAC 75.990.

- At the port, 38 jars are placed roughly in a rectangular grid throughout the area (Figure 3).
- An additional two jars are considered reference stations, one upwind of the road near Evaingiknuk Creek and another near the Wulik River, to the north of the operation (Figure 3).

Statistical Trend Analysis for Dustfall Jar Data. Temporal trends in deposition rates or metals concentrations in dustfall jars data were evaluated using the same statistical methods used for the TEOM analyses, using seasonal trend tests conducted with bi-monthly mean and 95th percentiles (method as discussed above in the "TEOM Source Monitoring" section).

- Lead. For lead, dustfall deposition rates and concentrations have been stable over the most recent four-year period. No statistically significant trends were identified at any location over the most recent four-year period, except for at the port when considering only upper limits (Table 2). Time series plots of lead dustfall deposition rates and concentrations are presented in Figures 9 and 12, respectively.
- Zinc. For zinc, dustfall deposition rates and concentrations have been stable over the most recent four-year period. No statistically significant trends were identified at any location over the most recent four-year period, either in average or upper limits (Table 2). Time series plots of zinc dustfall deposition rates and concentrations are shown in Figures 10 and 13, respectively.
- **Total Solids.** For total solids, the deposition rates have been stable with no statistically significant trends identified at any location over the most recent four-year period, either in average or upper limits (Table 2). Time series plots of total solids dustfall rates are presented in Figure 11.

Caribou Tissue Monitoring

Red Dog Mine is located within the normal annual range of the WAH. Surveys of caribou have been conducted periodically since 1984 by the Alaska Department of Fish and Game (DFG) and have provided baseline information against which more current studies may be compared. Caribou tissue monitoring for dust-related constituents under the RMP program was scheduled to occur in 2015 and then again in 2016, but due to lack of caribou overwintering near the road, it was postponed until 2017.

Summary of Monitoring Results

Dust monitoring data from the TEOM air samplers, road surface samples, and the dustfall jars were statistically evaluated to assess the current trends over the most recent four-year period. The data indicates that the measured concentrations and deposition rates at the mine, port, and road areas are stable and not significantly increasing. The one exception is for the port, where dustfall jars indicate a significant increase in the upper bound values of lead deposition rate (but not for average values). On the other hand, the Port Lagoon TEOM has shown a significant decreasing trend in mean zinc concentration.

A summary of statistical trend analysis results for TEOM, road surface, and dustfall jar monitoring programs is presented in Table 4. This table provides an at-a-glance overview of results of dust monitoring programs. Results from the monitoring programs largely indicate that concentration trends are flat (i.e., no increasing or decreasing trend). Overall, environmental media concentrations remain similar to or lower than those evaluated in the DMTS risk assessment (Exponent 2007).

References

Exponent, 2007. DMTS fugitive dust risk assessment. Prepared for Teck Cominco Alaska Incorporated. November 2007.

Exponent, 2008. Fugitive dust risk management plan. Red Dog Operations, Alaska. Prepared for Teck Cominco Alaska. Draft. August 2008.

Exponent, 2010. Fugitive Dust Risk Management Communication Plan. Prepared for Teck Alaska Incorporated. February 2010.

Exponent, 2011a. Fugitive Dust Risk Management Dust Emissions Reduction Plan. Prepared for Teck Alaska Incorporated. December 2011.

Exponent, 2011b. Fugitive Dust Risk Management Remediation Plan. Prepared for Teck Alaska Incorporated. June 2011.

Exponent, 2011c. Fugitive Dust Risk Management Worker Dust Protection Plan. Prepared for Teck Alaska Incorporated. October 2011.

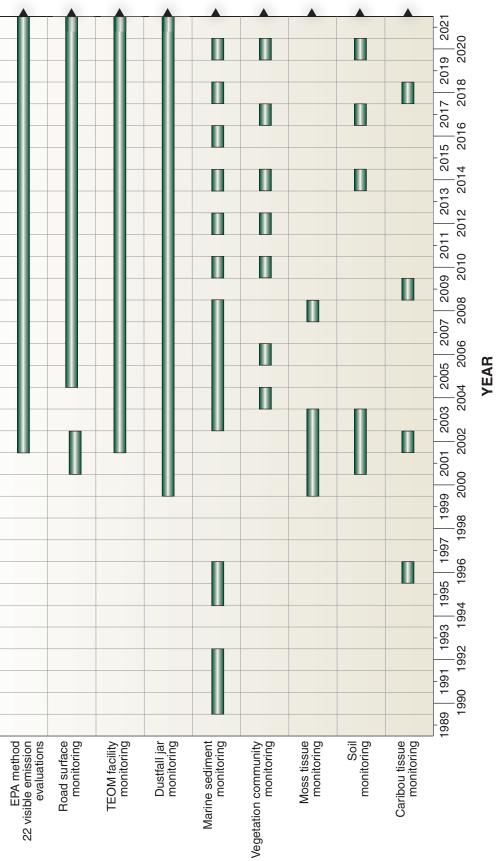
Exponent, 2012. Fugitive Dust Risk Management Uncertainty Reduction Plan. Prepared for Teck Alaska Incorporated. October 2012.

Exponent, 2014a. Fugitive Dust Risk Management Monitoring Plan. Prepared for Teck Alaska Incorporated. May 2014.

Exponent, 2014b. Fugitive Dust Risk Management Monitoring Plan. Prepared for Teck Alaska Incorporated. May 2014.

Exponent, 2016. DRAFT 2014 Marine Sediment Monitoring Report. Prepared for Teck Alaska Incorporated. December 2014.

Ford, S., and L. Hasselbach, 2001. Heavy metals in mosses and soils on six transects along the Red Dog Mine haul road, Alaska. NPS/AR/NRTR-2001/38. National Park Service, Western Arctic National Parklands.


Long, E.R., MacDonald, D.D., Smith, L., and Calder, F.D. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management 19: 81-97.

Teck, 2011. Red Dog Mine Waste Management, Reclamation and Closure Monitoring Plan. April 2011. Teck, 2012. Fugitive Dust Risk Management Plan 2011 Annual Report. March 2012.

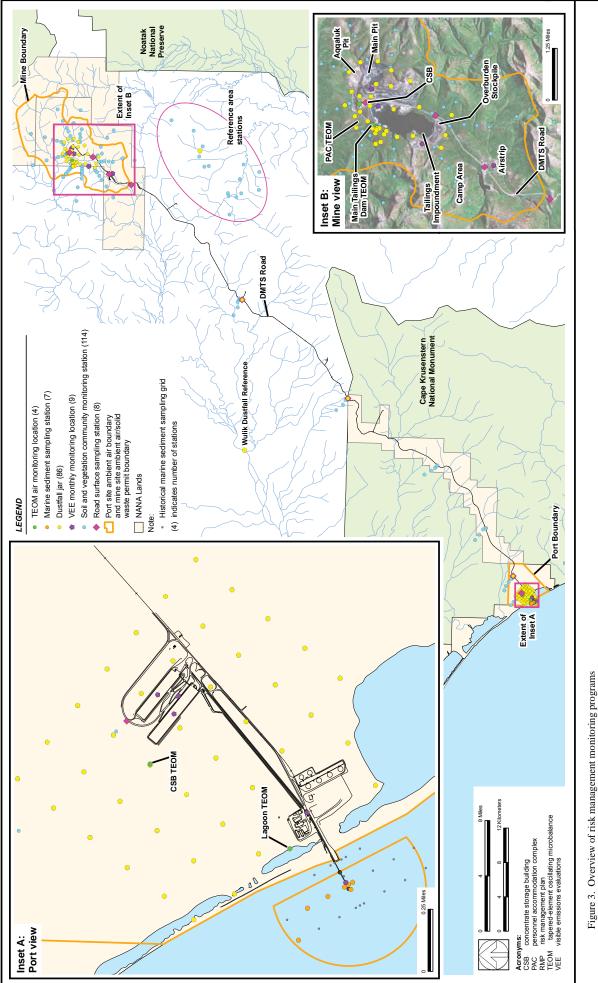

			Fugitive Dust Risk Management Plan	e Dust ement Plan		
-	•	•	•	*	•	•
RISK MANAGEMENT OBJECTIVES	Communication Plan	Dust Emission Reduction Plan	Remediation/ Reclamation Plan	Monitoring Plan	Uncertainty Reduction Plan	Worker Dust Protection Plan
 Continue reducing fugitive metals emissions and dust emissions 						
2. Conduct remediation or reclamation in selected areas						
 Verify continued safety of caribou, other representative subsistence foods, and water 				-		
 Monitor conditions in various ecological environments and habitats, and implement corrective measures when action levels are triggered 				-		
5. Conduct research or studies to reduce uncertainties in the assessment of effects to humans and the environment					•	
 Improve communication and collaboration among all stakeholders 	-					
7. Protect worker health						-
	Implementation pl	Implementation plan directly addresses objective Implementation plan indirectly addresses objective	ojective objective			

Figure 1. Risk management objectives and associated implementation plans

997.014 | November 18, 2014 | P.186'8601997_Red_Dog_Mine\GIS\projects\monitoring_ptan_2012_figure3_alt.mx

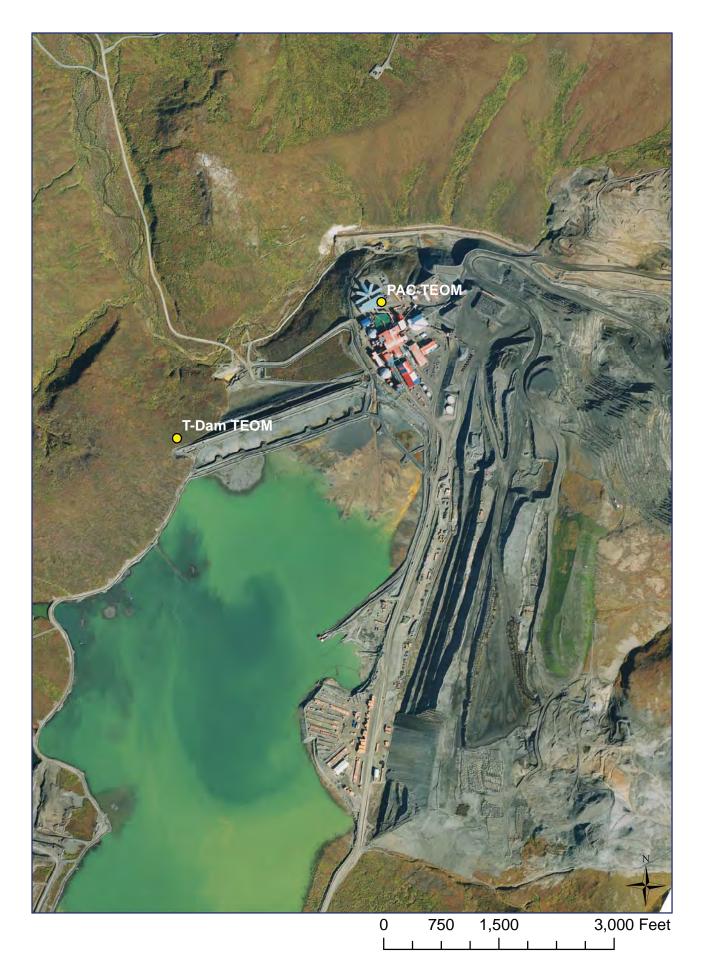
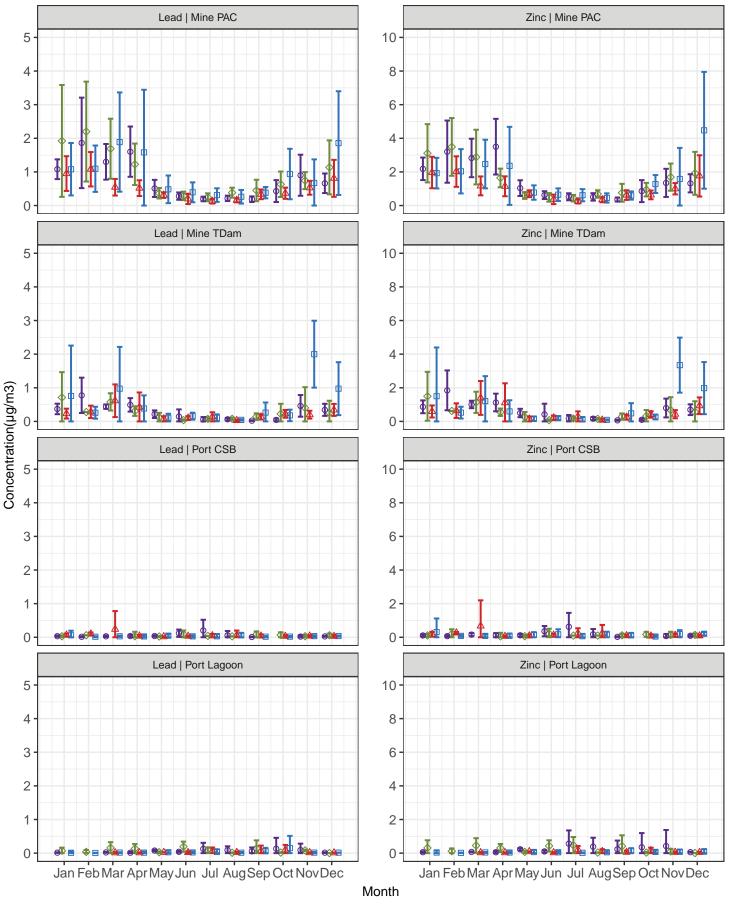
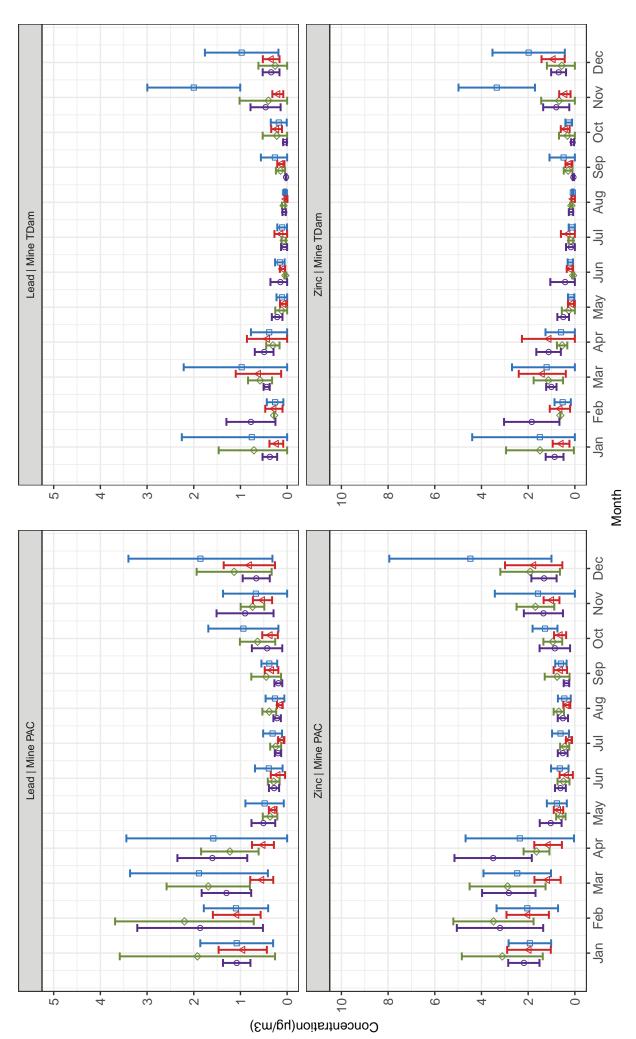



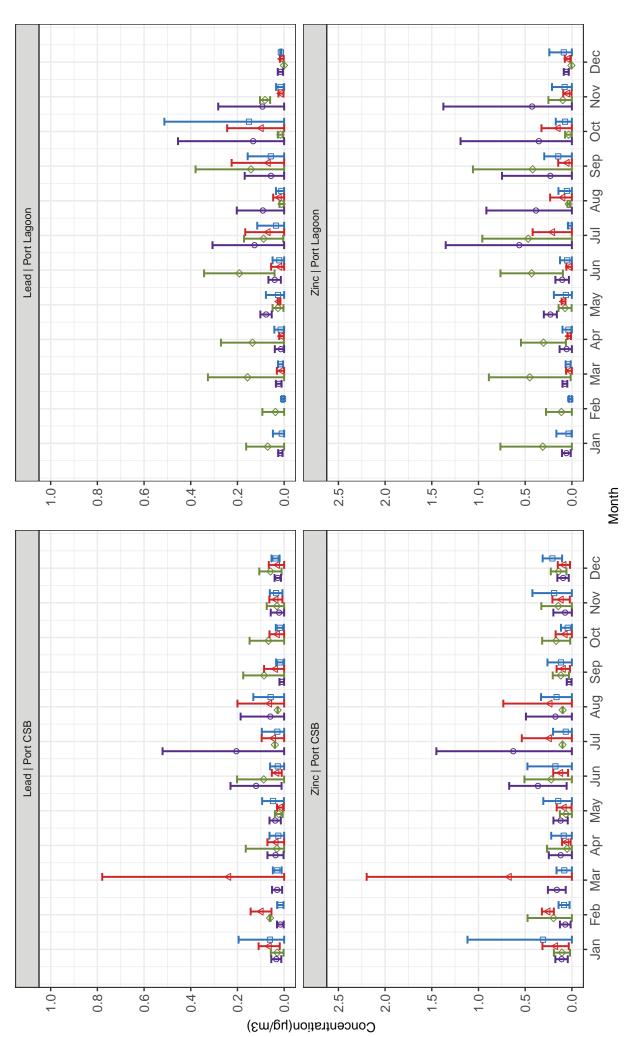
Figure 4. Mine TEOM locations

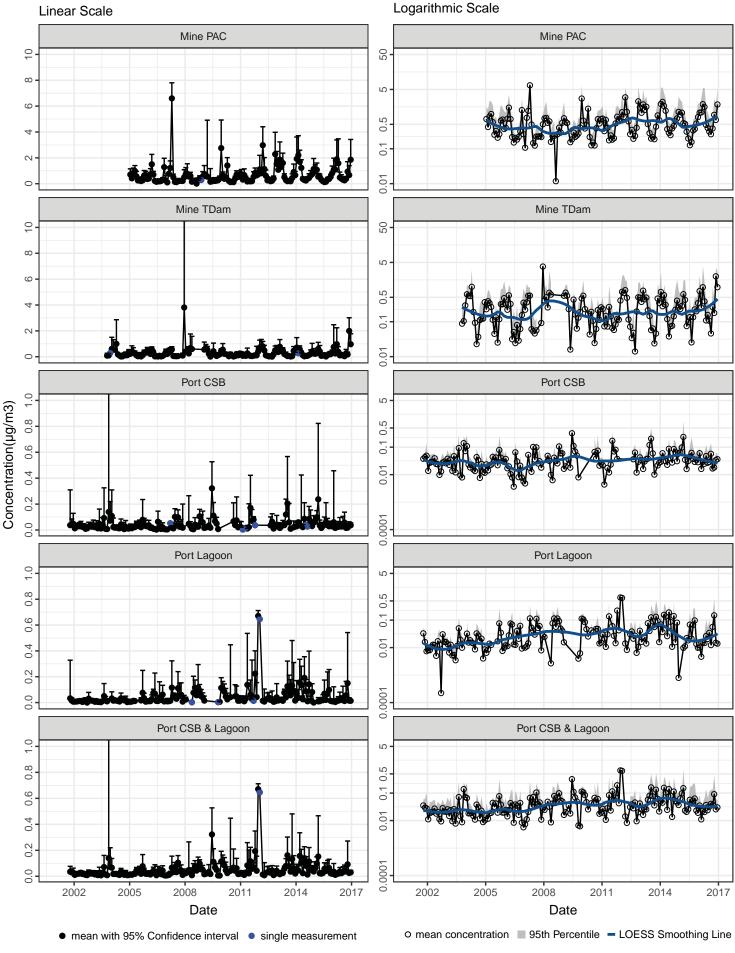
Figure 5. Port TEOM locations


→ 2013 ÷ 2014 ÷ 2015 ÷ 2016

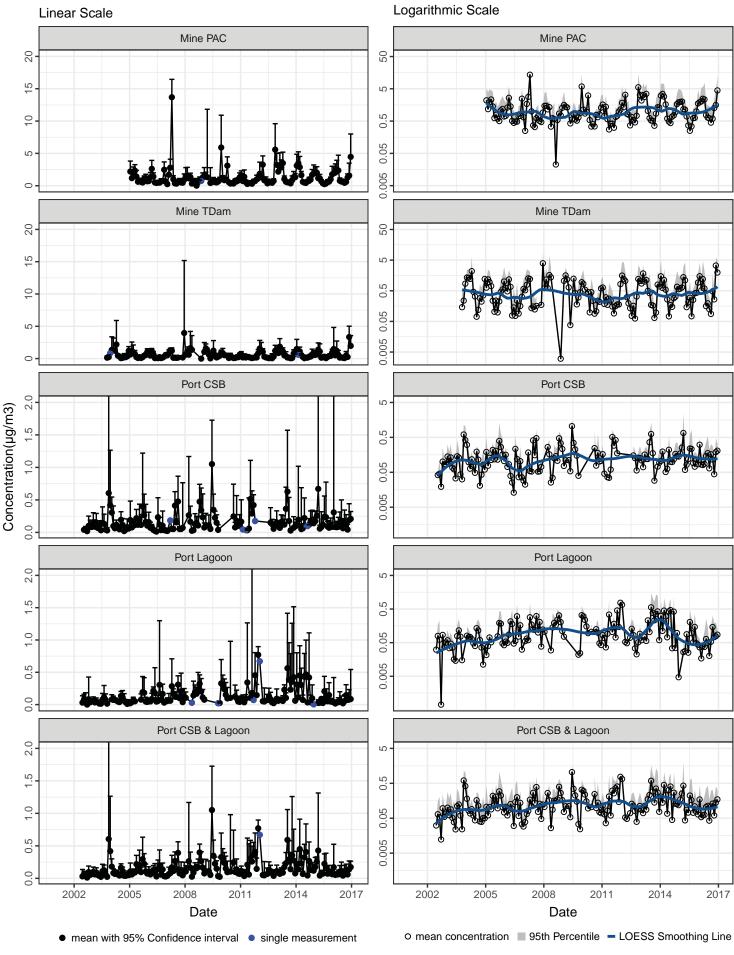
Note: Different vertical axis scales are used for lead and zinc TEOMs.

Figure 6a. TEOM monthly monitoring data comparison, 2013-2016


Note: Different vertical axis scales are used for lead and zinc TEOMs.



Note: Different vertical axis scales are used for lead and zinc TEOMs.



Note: Different vertical axis scales are used for Mine area

Figure 7a. TEOM Lead Concentration plots (all years)

Note: Different vertical axis scales are used for Mine area

Figure 7b. TEOM Zinc Concentration plots (all years)

Lead

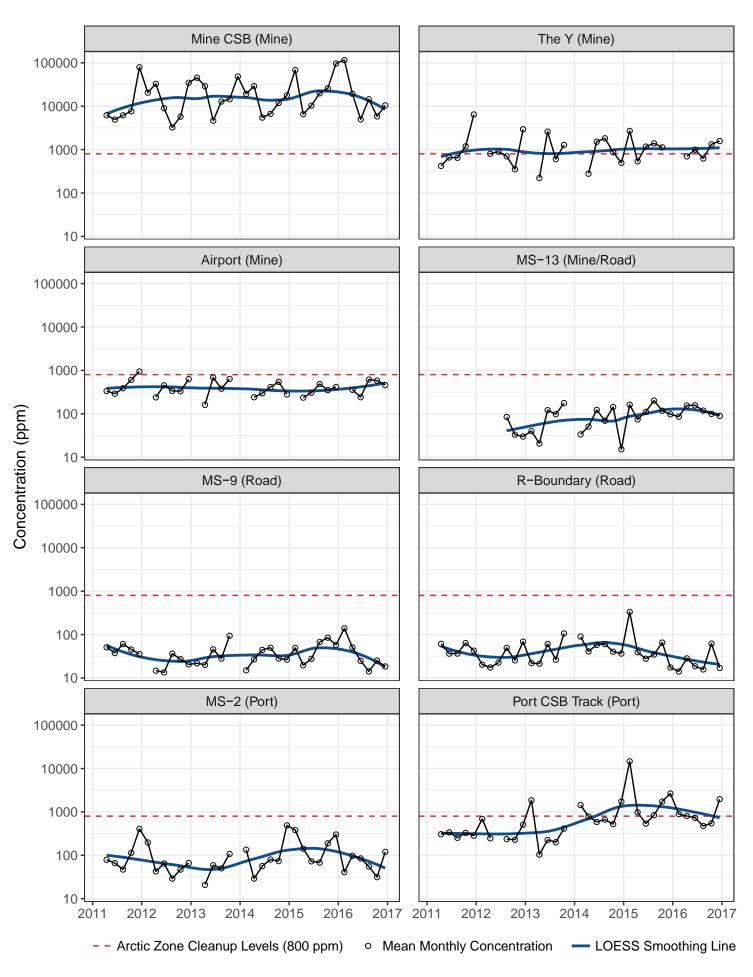


Figure 8a. Road Surface Lead Concentration plots (all years)

Zinc

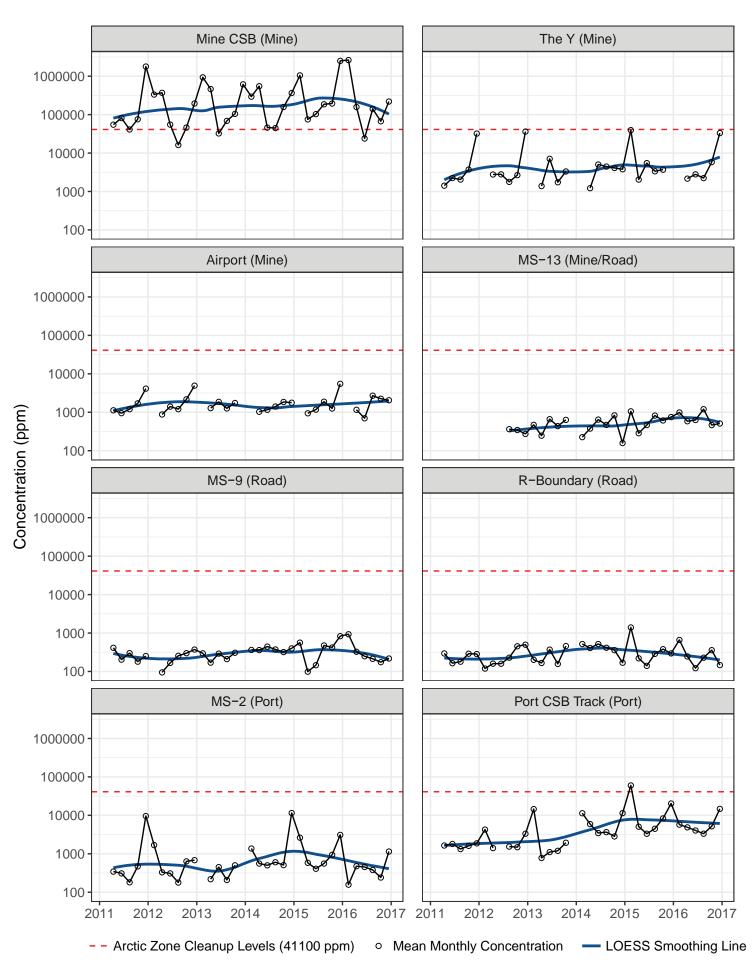


Figure 8b. Road Surface Zinc Concentration plots (all years)

Cadmium

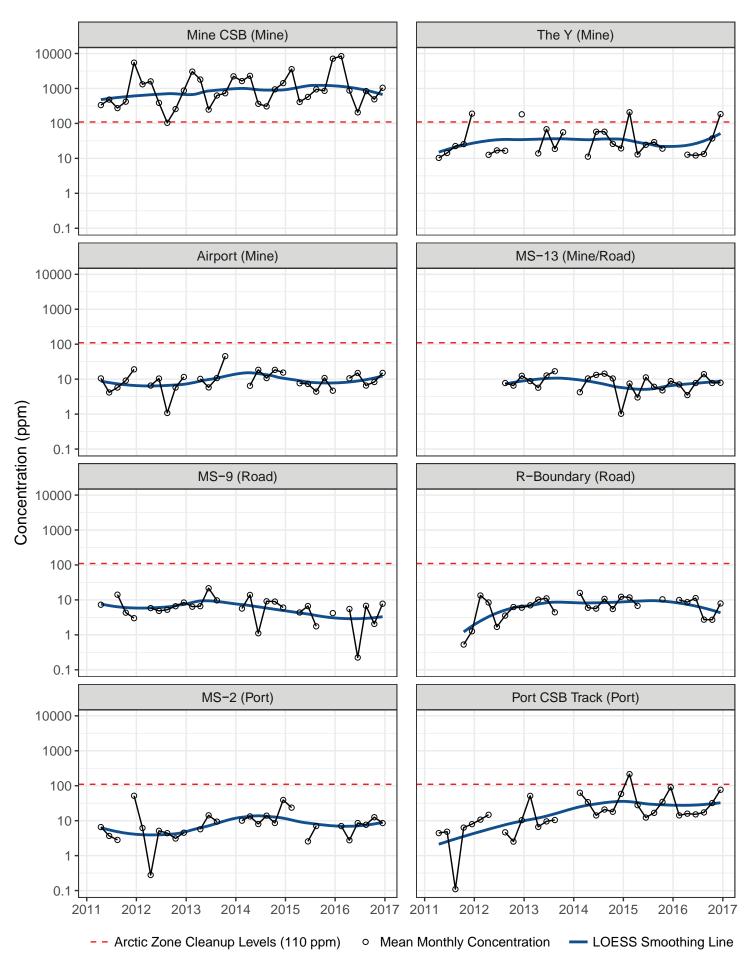
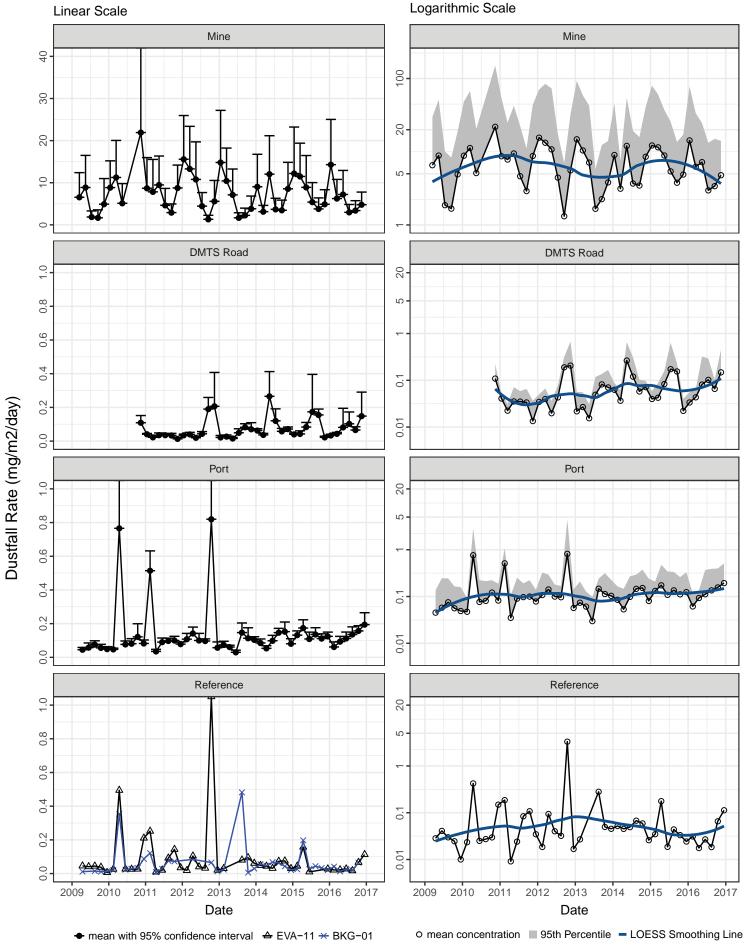
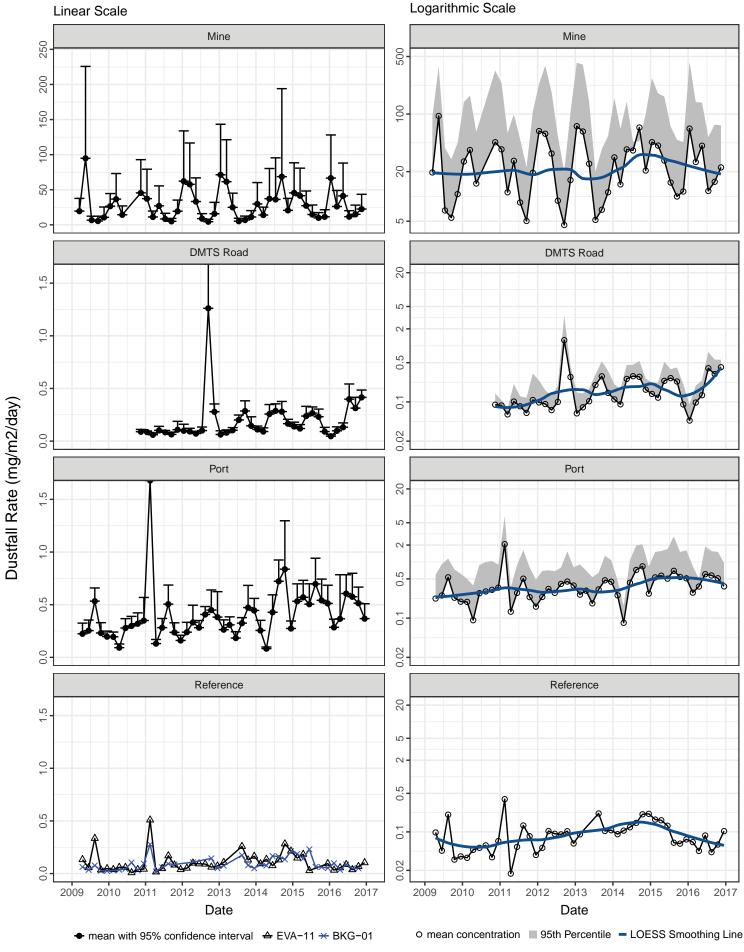




Figure 8c. Road Surface Cadmium Concentration plots (all years)

Note: Different vertical axis scales are used for Mine area

Figure 9a. Dustfall Jars Lead Deposition Rate plots (all years)

Note: Different vertical axis scales are used for Mine area

Figure 9b. Dustfall Jars Zinc Deposition Rate plots (all years)

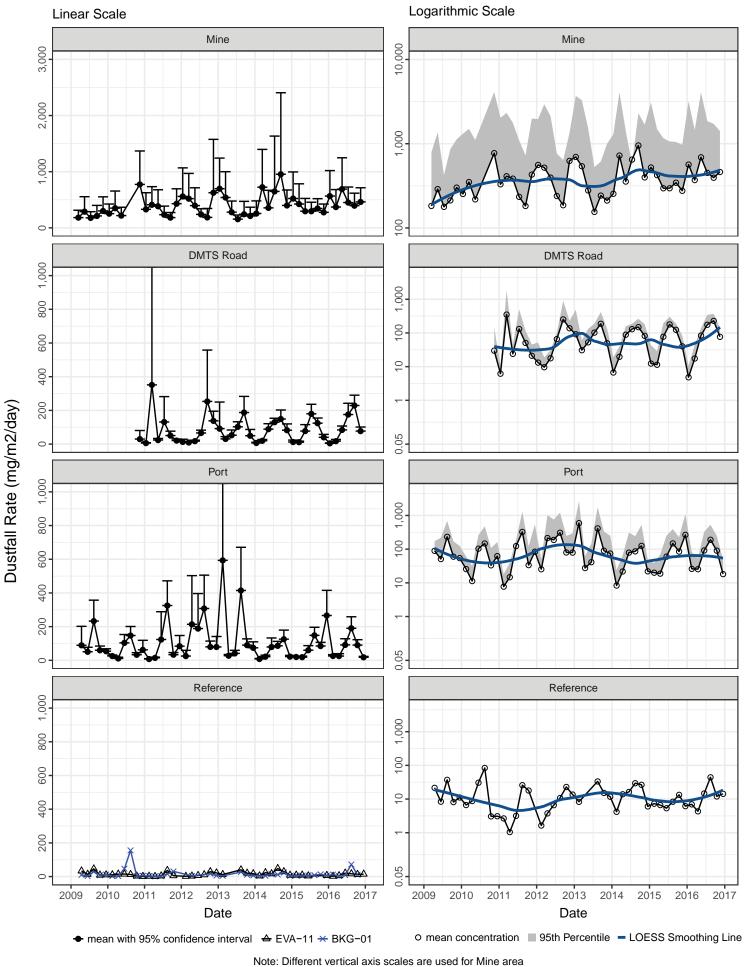


Figure 9c. Dustfall Jars Solids Deposition Rate plots (all years)

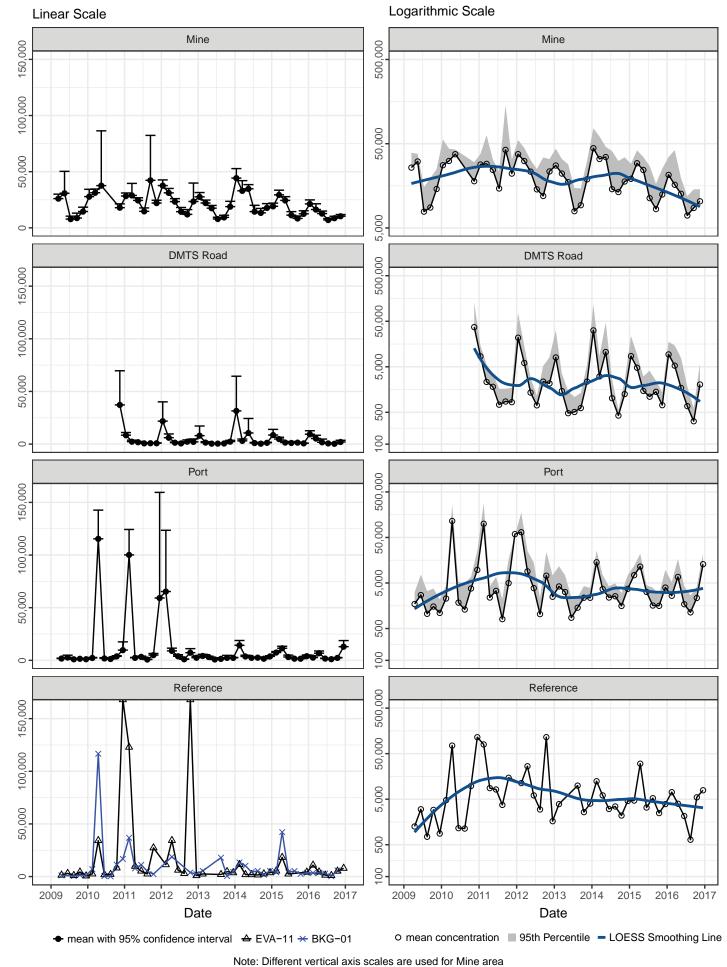


Figure 9d. Dustfall Jars Lead Concentration plots (all years)

Concentration (mg/kg)

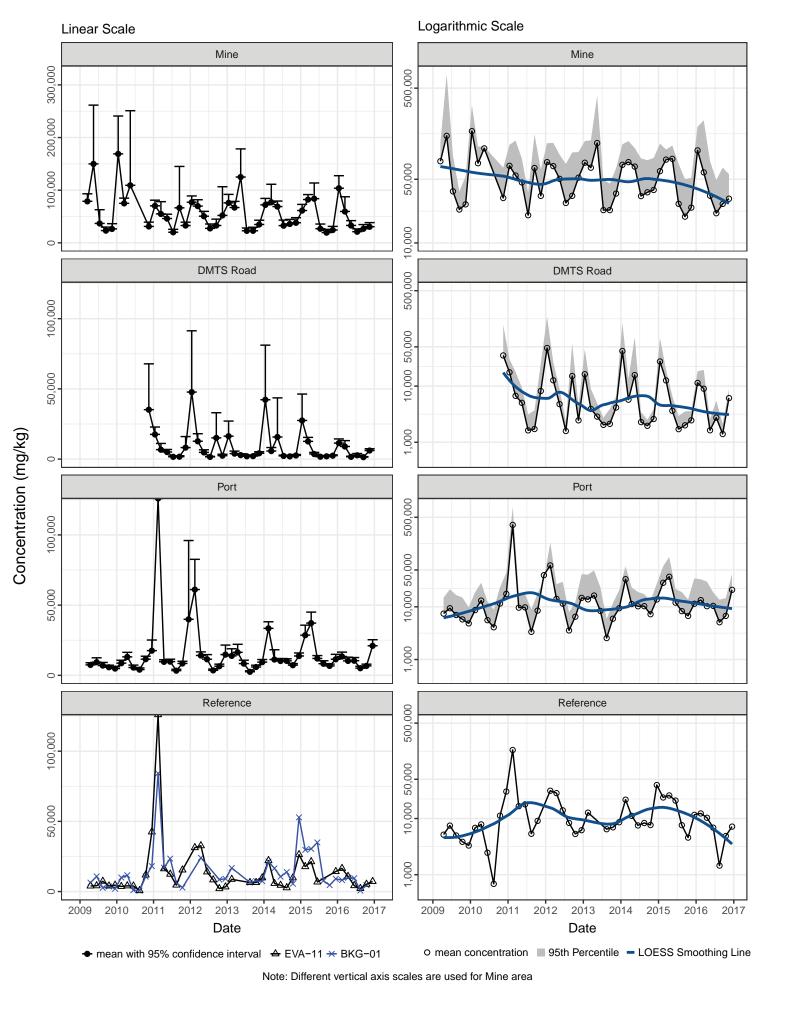


Figure 9e. Dustfall Jars Zinc Concentration plots (all years)

Table 1. TEOM concentration statistical trend analysis (seasonal Mann Kendall trend test)

LEAD		Concentration (µg/m ³)
	tau statistic	p value	significant trend? ^a
Mine PAC	0.056	0.695	No
Mine TDam	0.139	0.327	No
Port CSB	-0.121	0.409	No
Port Lagoon ^b	-0.270	0.074	No
Port CSB & Lagoon	-0.306	0.031	No

For 1/2013 - 12/2016; Mean concentration:

ZINC		Concentration (µg/m ³)
ZINC	tau statistic	p value	significant trend? ^a
Mine PAC	-0.083	0.556	No
Mine TDam	-0.028	0.845	No
Port CSB	0.061	0.680	No
Port Lagoon ^b	-0.397	0.009	Yes; Decreasing
Port CSB & Lagoon	-0.306	0.031	No

^a Significant at p<0.05/2 (i.e., p<0.025 with Bonferroni adjustment because multiple [2] related hypotheses are tested). ^b Excluded February data (see text for explanation)

For 1/2013 - 12/2016; Top 95% concentration:

LEAD		Concentration (µg/m ³)	
	tau statistic	p value	significant trend? ^a
Mine PAC	0.111	0.433	No
Mine TDam	0.167	0.239	No
Port CSB	-0.030	0.837	No
Port Lagoon ^b	-0.302	0.046	No
Port CSB & Lagoon	-0.194	0.170	No

ZINC	Concentration (µg/m ³)				
ZINC	tau statistic	p value	significant trend? ^a		
Mine PAC	-0.028	0.845	No		
Mine TDam	0.167	0.239	No		
Port CSB	0.121	0.409	No		
Port Lagoon ^b	-0.333	0.027	No		
Port CSB & Lagoon	-0.194	0.170	No		

^a Significant at p<0.05/2 (i.e., p<0.025 with Bonferroni adjustment because multiple [2] related hypotheses are tested).

^b Excluded February data (see text for explanation)

Table 2. Dustfall rate and concentration statistical trend analysis (seasonal Mann Kendall trend test)

LEAD	Dustfall [Desposition Rate (mg/m²/day)	Conce	al solid)	
LEAD	tau statistic	p value	significant trend? ^a	tau statistic	p value	significant trend? ^a
Mine	0.111	0.579	No	-0.444	0.027	No
Road	0.278	0.166	No	0.222	0.267	No
Port	0.222	0.267	No	0.222	0.267	No
Reference	-0.200	0.355	No	0.000	1.000	No

ZINC	Dustfall Desposition Rate (mg/m ² /day)			Concentration (mg/kg-total solid)		
ZINC	tau statistic	p value	significant trend? ^a	tau statistic	p value	significant trend? ^a
Mine	0.222	0.267	No	-0.222	0.267	No
Road	0.278	0.166	No	-0.056	0.782	No
Port	0.278	0.166	No	0.167	0.405	No
Reference	-0.467	0.031	No	-0.267	0.217	No

TOTAL SOLIDS	Dustfall	ng/m²/day)	
TOTAL SOLIDS	tau statistic	p value	significant trend? ^a
Mine	0.222	0.267	No
Road	-0.056	0.782	No
Port	0.000	1.000	No
Reference	-0.267	0.217	No

^aSignificant at p<0.05/3 (i.e., p<0.017 with Bonferroni adjustment because multiple [3] related hypotheses are tested).

For 1/2013 - 12/2016; Top 95% Deposition Rate and Concentration:

LEAD	Dustfall Desposition Rate (mg/m ² /day)			Concentration (mg/kg-total solid)		
LLAD	tau statistic	p value	significant trend? ^a	tau statistic	p value	significant trend? ^a
Mine	-0.056	0.782	No	-0.278	0.166	No
Road	0.111	0.579	No	0.167	0.405	No
Port	0.500	0.013	Yes; Increasing	0.278	0.166	No

ZINC	Dustfall Desposition Rate (mg/m ² /day)			Concentration (mg/kg-total solid)		
ZINC	tau statistic	p value	significant trend? ^a	tau statistic	p value	significant trend? ^a
Mine	0.278	0.166	No	-0.111	0.579	No
Road	0.333	0.096	No	0.000	1.000	No
Port	0.278	0.166	No	0.278	0.166	No

TOTAL SOLIDS	Dustfall Desposition Rate (mg/m ² /day)				
TOTAL SOLIDS	tau statistic	p value	significant trend? ^a		
Mine	0.111	0.579	No		
Road	-0.056	0.782	No		
Port	0.000	1.000	No		

^aSignificant at p<0.05/3 (i.e., p<0.017 with Bonferroni adjustment because multiple [3] related hypotheses are tested).

Table 3. Road surface concentration statistical trend analysis (seasonal Mann Kendall trend test) For 1/2013 - 12/2016; Mean concentration:

LEAD		(Concentration	(µg/m³)
		tau statistic	p value	significant trend? ^a
Mine		-0.167	0.405	No
Road		0.152	0.466	No
Port	Only for years 2013 - 2016	0.273	0.189	No
Mine CSB (Mine)		0.056	0.782	No
The Y (Mine) ^b		0.083	0.734	No
Airport (Mine)		0.259	0.258	No
MS-13 (Mine/Road)		0.212	0.307	No
MS-9 (Road)		-0.152	0.466	No
R-Boundary (Road)		-0.394	0.058	No
MS-2 (Port)		0.067	0.758	No
Port CSB Track (Port)		0.394	0.058	No

ZINC		Concentration (µg/m ³)		
Zinc		tau statistic	p value	significant trend? ^a
Mine		0.000	1.000	No
Road		0.333	0.109	No
Port	Only for years 2013 - 2016	0.212	0.307	No
Mine CSB (Mine)		0.056	0.782	No
The Y (Mine) ^b		0.167	0.497	No
Airport (Mine)		0.111	0.628	No
MS-13 (Mine/Road)		0.152	0.466	No
MS-9 (Road) ^c		0.152	0.466	No
R-Boundary (Road)		-0.091	0.662	No
MS-2 (Port)		-0.067	0.758	No
Port CSB Track (Port)		0.273	0.189	No

CADMIUM		Concentration (µg/m ³)		
CADIVITOTIVI		tau statistic	p value	significant trend? ^a
Mine		-0.111	0.579	No
Road		-0.133	0.537	No
Port	Only for years 2013 - 2016	0.133	0.537	No
Mine CSB (Mine)		0.000	1.000	No
The Y (Mine) ^b		-0.500	0.042	No
Airport (Mine)		-0.259	0.258	No
MS-13 (Mine/Road)		-0.400	0.064	No
MS-9 (Road) ^c		-0.429	0.098	No
R-Boundary (Road) ^d		-0.048	0.851	No
MS-2 (Port) ^e		-0.333	0.227	No
Port CSB Track (Port)		0.267	0.217	No

^aSignificant at p<0.05/3 (i.e., p<0.017 with Bonferroni adjustment because multiple [3] related hypotheses are tested)

^bExcluded February, December (see text for explanation)

^cExcluded February, October (see text for explanation)

^dExcluded December (see text for explanation)

^eExcluded October, December (see text for explanation)

Table 4. Summary of dust monitoring trends

build be added to the entire sample mass. b Excluded February data (see text for explanation)

dustfall, and dustfall rates, respectively. 2. Results are presented for statistical testing using data from the past four years.

Notes:	
	Indicates no statistically significant change over time perior
	tested (trend is FLAT).
٢	Indicates a statistically significant increase over time period
5	tested (trend is UP).

7

 Indicates a statistically significant increase over time period
 Rate = dustfall deposition rate

 tested (trend is UP).
 Tdam = mine tailings dam

 Indicates a statistically significant decrease over time period
 PAC = personnel accommodat

 Indicates a statistically significant decrease over time period
 CSB = concentrate storage built

TEOM = tapered element oscillating microbalance (air sampling device) Conc = air concentration (TEOM air sampling) or concentration in dustfall (dustfall jars) Rate = dustfall deposition rate based on dustfall jar measurements Tdam = mine tailings dam PAC = personnel accommodations complex CSB = concentrate storage building

1	Application of a Weight of Evidence Approach to Evaluating Risks Associated with
2	Subsistence Caribou Consumption Near a Lead/Zinc Mine
3	
4	Michael R. Garry,* [†] Scott S. Shock, [‡] Johanna Salatas, [§] Jim Dau
5	
6	
7	[†] Exponent, Center for Health Sciences, 15375 SE 30th Place, Suite 250, Bellevue, WA, USA;
8	mgarry@exponent.com
9	[‡] Exponent, Environmental Group, 15375 SE 30th Place, Suite 250, Bellevue, WA, USA;
10	ssshock@exponent.com
11	[§] Teck Alaska Incorporated, Anchorage, AK, USA; johanna.salatas@teck.com
12	Alaska Department of Fish and Game (retired), Box 689, Kotzebue, AK 99752, USA
13	
14	
15	*Address correspondence to Michael R. Garry, 425 519 8729 (t), 425 519 8799 (f)
16	
17	
18	Running Title: Subsistence Caribou Weight of Evidence Assessment
19	
20	
21	Abbreviations ¹
22	

¹ ADPH, Alaska Department of Public Health; ALM, Adult Lead Model; CAH, Central Arctic herd; DMTS, DeLong Mountain Regional Transportation System; EPA, Environmental Protection Agency; FI, Fractional Intake; TCH, Teshekpuk herd; WAH, Western Arctic herd;

23 ABSTRACT

24 Overland transport of ore concentrate from the Red Dog lead/zinc mine in northwest Alaska to 25 its seaport has historically raised concerns among local subsistence users regarding the potential 26 impacts of fugitive dust from the operation, including the potential uptake of metals into caribou 27 meat. Caribou are an integral part of life for northern Alaska Natives for both subsistence and 28 cultural reasons. The Western Arctic caribou herd, whose range includes the Red Dog mine, 29 transportation corridor, and port site, sometimes overwinter in the vicinity of mine operations. A weight of evidence approach using multiple lines of evidence was used to evaluate potential 30 31 risks associated with subsistence consumption of caribou harvested near the road and mine. Data 32 from a long-term caribou monitoring program indicate a lack of consistent trends for either increasing or decreasing metals concentrations in caribou muscle, liver, and kidney tissue. Lead, 33 34 cadmium, and zinc from all tissues were within the range of reference concentrations reported for caribou elsewhere in Northern Alaska. In addition, a site use study based on data from 35 36 satellite-collared caribou from the Western Arctic Herd showed that caribou utilize the area near the road, port, and mine approximately $1/20^{\text{th}}$ to $1/90^{\text{th}}$ of the time assumed in a human health 37 38 risk assessment conducted for the site, implying that risks were significantly overestimated in the 39 risk assessment. The results from multiple lines of evidence consistently indicate that fugitive 40 dust emissions from Red Dog Operations are not a significant source of metals in caribou, and 41 that caribou remain safe for human consumption.

42

43 *Key Words: fugitive dust; Western Arctic Herd; native northern Alaskans; metals*

45 **INTRODUCTION**

46 The Red Dog mine area in northwest Alaska is highly mineralized and overland transport 47 of lead and zinc ore concentrate from the mine to the seaport occurs throughout the year along 48 the DeLong Mountain Regional Transportation System (DMTS). Sampling results from 1999 49 indicated the presence of lead in road soil and on moss growing near the road (NPS 2000). 50 Caribou (Rangifer tarandus) are an integral part of life for northern Alaska Natives for both 51 subsistence and cultural reasons. Multiple studies of caribou were conducted to evaluate 52 potential risks associated with subsistence consumption of caribou harvested near the Red Dog 53 mine and DMTS road. These studies, along with an additional site use study based on data from 54 satellite-collared caribou from the Western Arctic Herd, are described in this paper. We 55 evaluated multiple lines of evidence from these studies to determine whether fugitive dust 56 emissions from Red Dog Operations are a significant source of metals in caribou, and to assess 57 whether caribou remain safe for human consumption.

58

Caribou herds in Northern Alaska

59 Four distinct caribou herds are found in northern Alaska. The area near the Red Dog mine 60 and the DMTS is included in the normal annual range of two of those herds, the Western Arctic 61 (WAH) and the Teshekpuk (TCH) herds (Figure 1). The Western Arctic herd (WAH) ranges over approximately 140,000 square miles (Dau 2015). This herd numbered approximately 62 63 242,000 in 1970, declined to approximately 75,000 in 1976, and peaked at approximately 64 490,000 in 2003. In 2013, the herd numbered approximately 235,000 (Dau 2015). The smaller 65 TCH numbered approximately 39,000 in 2013, the last year for which photocensus data were 66 available (Parrett 2015). The TCH range also extends to the area around the DMTS, particularly in the winter (Person et al. 2007). In addition, caribou from these two herds regularly mix (Dau 67

68 2015; Parrett 2015). Person et al. (2007) estimated an apparent emigration rate from the

69 Teshekpuk herd of approximately 7% in 1990–2005, evenly split between the WAH and the

70 Central Arctic herd (CAH). The WAH ranges widely throughout the year, and in some years

caribou from this and the TCH winter near the road and mine thus raising the possibility these

animals might be exposed to mine-generated metals in dust, soil, water, or plants.

73 **Previous caribou studies**

74 In 2001, the Alaska Department of Public Health (ADPH) conducted a health study 75 evaluating exposure of residents from Kivalina and Noatak, the two villages nearest Red Dog 76 mine, to metals present in subsistence foods (ADPH 2001). The ADPH study included a review 77 of prior studies conducted by ADFG and others, as well as an analysis of metals levels in 78 subsistence foods, including in caribou collected from near the Red Dog mine as part of a study 79 conducted by ADFG in 1996. ADPH concluded that "...average concentrations of metals found 80 in caribou harvested near the Red Dog Mine and DMTS road were low. Eating caribou from the 81 Western Arctic caribou herd does not pose a public health threat."

82 An additional site-specific, multipathway human health risk assessment (HHRA) was 83 conducted using data collected from 2000-2004 that evaluated exposure to DMTS-related metals 84 through incidental soil ingestion, water ingestion, and subsistence food consumption under three 85 scenarios: 1) child subsistence use, 2) adult subsistence use, and 3) combined 86 worker/subsistence use (Exponent 2007). Estimated risks from each of the scenarios were well 87 within acceptable public health limits. However, exposure to metals through caribou 88 consumption accounted for approximately 70% of the total estimated risk in all three scenarios, 89 highlighting the importance of additional understanding of this potential exposure pathway.

90 In risk assessment practice, the term "subsistence level consumption" describes 91 consumption of most or all of a particular food type or group of foods from a locally harvested 92 source and/or consumption of those foods at significantly higher rates than the general public. 93 Two key assumptions were included in the HHRA to address uncertainty in the contribution of 94 subsistence foods to the overall diet and the contribution of site-related metals to human health 95 risk. First, although data from the region indicate that subsistence foods compose approximately 96 20% of the total diet (Johnson et al. 2009), the HHRA assumed that subsistence contribute 100% 97 of the diet of local subsistence users. Second, fractional intake (FI, defined as the fraction of 98 metals in a food type derived from the site relative to total metals present in the food source) was 99 estimated to be 0.09 (i.e., 9%) based on the ratio of the total land area covered by the study area 100 relative to the total harvest area used by neighboring communities. The latter assumption 101 overestimates the contribution of metals from the site both because the caribou home range is far 102 greater than the harvest area for local communities and because individual caribou spend a 103 relatively small amount of time in the area near the mine and DMTS road. 104

Although the ADPH analysis and the HHRA indicated that potential impacts to caribou and subsistence users were minimal to negligible, additional monitoring and study of caribou and other subsistence foods are included as part of ongoing fugitive dust risk management activities for the site. Results from that monitoring are included in the analyses described herein.

108 METHODS

109 One aspect of ongoing risk management for fugitive dust at Red Dog Operations includes 110 periodic collection and necropsy of caribou to assess their general health and determine tissue 111 metal concentrations. Additionally, a caribou site use study was conducted to reduce uncertainty 112 related to risk assessment assumptions. In this paper, the results of these studies are evaluated in

the context of potential risks associated with subsistence consumption of caribou harvested near the road and mine. The methods used in these studies are described below.

115 **Caribou monitoring program**

116 In spring 2002 and again in spring 2009, 10 caribou were harvested from near the Red 117 Dog mine and the DMTS road by hunters from Kivalina or Noatak who had been contracted by 118 Teck Alaska for this purpose. All caribou collected had overwintered near the Red Dog Mine 119 and northeastern section of the DMTS. Caribou were killed by a gunshot to the head or cervical 120 vertebrae whenever possible, and intact carcasses were transported to a heated building 121 immediately after being taken. During 2002 necropsies were conducted by Dr. P. Meyer and J. 122 Dau following standard laboratory procedures. Necropsies conducted during 2009 were 123 performed by Dr. K. Beckmen, J. Dau and L. Parrett following the CARMA protocol (Gunn and 124 Nixon 2008). All necropsies were conducted on the same day that the animals were harvested, 125 and usually within 1-4 hours of time of death. Muscle, liver, and kidney tissues were dissected at 126 the time of harvest, frozen immediately, and shipped for metals analysis. No samples were taken 127 from tissue areas that might have been affected by bullet fragments. Incisor teeth were collected 128 to estimate animal age. All edible meat from collected caribou was salvaged and distributed to 129 residents of Noatak and Kivalina.

Metals data from the 2009 collection were compared to metals concentrations in the "reference" caribou tissue harvested in 1996 from other areas in northern Alaska (O'Hara et al. 2003). Because raw data from the 1996 data set were not available, statistical differences between Red Dog and reference caribou were assessed by treating each location mean in the reference dataset as an independent measurement and calculating a one-sided 95 percent upper

prediction limit (95% UPL) for the range of expected measurements. Red Dog caribou tissue
concentrations were considered statistically different if the mean exceeded the 95% UPL.

137 Data were also compared to metals concentrations in Canadian caribou and Scandinavian 138 reindeer from the literature (Borch-Johnsen et al. 1996; Chan et al. 2001; Crete et al. 1986; Elkin 139 and Bethke 1995; Kuhnlein and Soueida 1992; Larter and Nagy 2000; Rintala et al. 1995). None 140 of the populations included in the literature comparisons was known to have any specific metal 141 exposure other than to levels that occur naturally in the environment. Raw data were not 142 reported in these studies so statistical analysis of the comparison was not conducted. 143 To assess temporal trends, Red Dog caribou metals concentrations from 2009 were 144 compared to previous years. Concentrations in 2009 were compared to 2002 using the two-sided 145 Student's t-test. To assess the effect of animal age on organ metals concentrations, data were 146 also evaluated following age adjustment, whereby metals concentrations were divided by the age 147 of the animal, with results expressed in mg/kg/year. Differences were considered statistically

148 significant at P<0.05.

149 **Caribou site use study**

The caribou site use study was conducted using satellite collar location data from WAH caribou in collaboration with the Alaska Department of Fish and Game (ADF&G). The purpose was to determine if the assumed fractional intake used in the HHRA was realistic. The ADFG satellite collar data needed for the analysis are protected information, in order to protect the herds from overhunting. Analysis parameters and GIS shape files were developed and transmitted to ADF&G, where site use related statistical analyses were conducted.

The analyses included data collected from satellite-collared caribou between 2000 and
2012, excluding data from the date of initial collaring (September of each year) until May 6th of

158	the following year (beginning of spring migration) to allow newly deployed collars to become
159	distributed throughout the WAH range. The analysis included data from two types of satellite
160	collars: platform terminal transmitter (PTT) and global positioning system (GPS). Data from
161	both collar types were combined after statistical analysis demonstrated a lack of significant
162	differences in frequency of site usage between the PTT and GPS collars (Randomized Block
163	ANOVA. Area 1: F=2.30, P=0.13; Area 2: F=2.18, P=0.14).
164	The analysis was conducted for two zones of distance from the road complex:
165	• Area 1 — Delineated by a 5-km zone to the N/NW and a 2-km zone to the S/SE of
166	the DMTS and mine air permit boundary (Figure 2). This was the assumed site area
167	in the HHRA.
168	• Area 2 — Delineated by a 10-km zone on all sides of the DMTS and the mine air
169	permit boundary (Figure 2). This area was included as an upper-bound estimate of an
170	area that could be affected by dust from the site (although most of this area is unlikely
171	to be significantly affected).
172	
173	Site use was analyzed in three ways:
174	1. Fractional Site Use — The fraction of time spent by WAH caribou in the site area was
175	estimated by calculating the ratio of total number of satellite collar locations within the site
176	area relative to the total number of satellite collar data signals recorded outside of those areas
177	in that year. Because this metric considers the amount of time all satellite-collared caribou
178	spent within versus outside the study areas, it probably better represents intensity of use at
179	the herd level than the two alternative approaches described below.

2. Site Entry — The fraction of animals from the WAH that entered the site was estimated by
the total number of satellite-collared caribou that entered the site at least once each year
relative to the total number of satellite-collared caribou in the herd. This measurement does
not consider how long the animals spent in the site area, only whether they entered the site at
all. Site entry is, thus, only a crude estimate of FI.

185 3. Fractional Site Use by Individual Caribou — This approach considered only those satellite-186 collared caribou that entered one of the two study areas at least once during some year. For 187 these individuals, the fraction of time spent in the site area was estimated as the total number 188 of satellite-collar locations within the site area relative to the number of satellite-collar 189 locations recorded outside of that area for that year. As with the first approach described 190 above, this metric considers the amount of time each caribou spent near vs. far from the 191 development complex. However, it overestimates intensity of use because it ignores those 192 collared individuals that never entered one of the 2 study areas during a particular year, 193 which was usually the majority or vast majority of the WAH, 194 Data distributions in the site use study were determined to be lognormal; therefore, non-195 parametric methods of statistical analysis were used for the analysis. Randomized block analysis 196 of variance (ANOVA) was used to evaluate differences between PTT and GPS collar data. 197 Differences in site use between time periods were evaluated using Kruskall-Wallis one-way

198 ANOVA.

199 **RESULTS**

200 **Caribou monitoring program**

201 The 2009 Red Dog tissue sample results were compared with metals concentrations in 202 caribou collected in 1996 from North Slope locations monitored by the North Slope Bureau. 203 There were no consistent differences between tissue metals concentrations in the 2009 Red Dog 204 data and the 1996 Northern Alaska data (Figure 3). In most cases, Red Dog metals were below 205 the 95% UPL for the reference samples. Lead in Red Dog caribou slightly exceeded the 206 reference 95% UPL for liver (2.5 versus 2.2 mg/kg) and kidney (1.6 versus 1.4 mg/kg). Mean 207 caribou muscle lead (0.026 mg/kg) was less than the mean concentration in each reference group 208 and similar to the typical lead concentrations in meat, fish, and poultry in the United States and 209 Canada, where mean lead concentrations of approximately 0.02 mg/kg have been reported 210 (ATSDR 2007). Cadmium concentrations in caribou harvested in 2009 near Red Dog were 211 similar to the northern Alaska reference concentrations (O'Hara et al. 2003) for all tissues. Mean 212 muscle cadmium (0.0135 mg/kg) was less than the mean concentration in each reference group 213 (Figure 3). Zinc concentrations were also similar to the 1996 Northern Alaska reference animals. 214 There were no consistent trends in differences between the 2009 Red Dog tissue data and 215 metals concentrations compared to Canadian caribou and Scandinavian reindeer reference 216 populations reported in the literature (Borch-Johnsen et al. 1996; Chan et al. 2001; Crete et al. 217 1986; Elkin and Bethke 1995; Kuhnlein and Soueida 1992; Larter and Nagy 2000; Rintala et al. 218 1995; Figure 4). In most cases, values were reported both above and below the concentrations in 219 the 2009 Red Dog samples, with a large degree of intra-group variability. Statistical analysis 220 was not conducted for these comparisons because of the lack of raw data and differences in 221 reporting methods. Similar to the comparison to the northern Alaska reference data, mean liver

and kidney lead concentrations in the 2009 Red Dog data slightly exceeded the meanconcentrations for each of the reference samples.

224	Metals concentrations from caribou collected near the Red Dog mine and DMTS in 1996,
225	2002, and 2009 are presented in Figure 5. Metals concentrations were not consistently higher or
226	lower in 2009 compared to 2002. Muscle lead (P=0.02) and cadmium (P=0.006) concentrations
227	from 2009 caribou were statistically significantly lower than concentrations from 2002. Muscle
228	(P<0.0001) and kidney zinc (P=0.003) were statistically significantly higher in 2009 relative to
229	2002. All other tissue metals concentrations were not significantly different.

230 **Caribou site use study**

Fractional site use – The percentage of time WAH caribou spent in the site area was consistently low throughout the study period (Table 1). The median site use was 0.1% for Area 1 and 0.4% for Area 2 for the entire study period, 2000–2012. Site use differed significantly between the 2000–2010 period (0.1%) and the 2011–2012 period (0.6%) for Area 1 (p=0.03), and the difference between those time periods approached significance for Area 2 (0.3% vs. 1.2%; p=0.08), although it was still low in the highest use year, 2012 (0.8% in Area 1, 1.5% in Area 2), relative to the FI assumed in the HHRA (9%).

Site entry – The percentage of the WAH entering the site was relatively consistent during
the 2000–2010 period (median 4% and 9% for Areas 1 and 2, respectively) but increased
significantly to 36% and 43% for those areas in the following 2-year period, 2011–2012 (p=0.03
for both Area 1 and Area 2) (Table 1). This finding is consistent with the increased fractional
site use recorded for those years.

Individual fractional site use – The percentage of time spent by individual WAH caribou
in the site area was consistently low throughout the study period (Table 1). From 2000 to 2010,

the median site use was 1.1% for Area 1 and 1.5% for Area 2. During the 2011–2012 period,

246 despite increased numbers of animals entering the site (Table 1), the median percentage of time

that these animals spent in Area 1 decreased significantly to 0.6% (p=0.05). The median time

spent in Area 2 in 2011–2012 (1.1%) did not differ statistically from the 2000–2010 time period.

249 Combining all years from 2000 to 2012, the median time spent in Areas 1 and 2 by animals that

entered the site at least once was 1.0% and 1.4%, respectively.

251 **DISCUSSION**

The caribou monitoring program is an integral component of a comprehensive fugitive dust risk management plan developed by Teck Alaska that continues to track caribou health and metals concentrations. The risk management monitoring plan stipulates an ongoing monitoring frequency of once every 6 years. The analysis presented herein confirms that the caribou monitoring frequency identified in the monitoring plan together with other more frequent monitoring programs also included in that plan are adequate to verify the continued safety of subsistence use of caribou in the area (Exponent 2014).

The results of both the ADPH study and the site-specific HHRA indicated human health risks associated with subsistence food consumption and harvest activities are within acceptable limits, including risks associated with caribou consumption. As with any risk assessment, assumptions incorporated into the evaluation have inherent uncertainty. The studies described here were conducted to address areas of uncertainty related to the potential contribution of Red Dog fugitive dusts to metals concentrations in caribou, and in response to ongoing community concerns for the safety of caribou as a food source.

Results from previous and current studies described herein indicate that metals
concentrations in caribou harvested near the mine and DMTS were similar to reference caribou

from elsewhere in Northern Alaska and to caribou and reindeer from other parts of the world. In addition, the 2009 sampling did not find a consistent trend in metals concentrations compared to 2002. Thus, fugitive dust emissions from Red Dog Operations do not appear to cause a significant increase in metal concentrations in caribou. Although a formal trend analysis was not yet possible given the few available sampling events, these data will form the basis for future analyses, which will be conducted following the next monitoring period.

274 Evidence in the literature suggests that organ metals concentrations in caribou and other 275 animals are age related and consequently, metals concentrations are often age adjusted prior to 276 analysis. However, the relationship for a given metal and tissue does not appear to be consistent 277 from one population to another in these studies. For example, Larter and Nagy (2000) analyzed 278 metals concentrations in the kidneys of two caribou populations in northern Canada—the 279 Bluenose herd in the Northwest Territories and an arctic herd on Banks Island. Cadmium 280 concentrations were positively correlated with age in the Bluenose herd (r = 0.64, P = 0.002). 281 But in the Canadian arctic population studied by Larter and Nagy (2000), cadmium 282 concentrations were negatively correlated with age as a result of one outlying data point 283 (r = -0.88, P = 0.05). Excluding the outlying animal, there was no significant relationship 284 between age and cadmium. There was also no significant relationship between kidney lead 285 concentration and age. With respect to the Red Dog results, by comparison with the 2002 data, 286 there were four results that differed significantly in the 2009 Red Dog caribou data: muscle 287 cadmium and lead were lower, and muscle and kidney zinc were higher. However, after 288 adjusting for age, only two results remained significant: muscle cadmium was lower (P = 0.03) 289 and muscle zinc higher (P < 0.0001) in 2009 compared to 2002 (Table 2). In addition, muscle

290 lead was nearly significantly lower (P = 0.06). Thus, age-adjustment does not alter interpretation 291 of the results.

292 The HHRA used an estimated value of 0.09 (i.e., 9%) for FI. This estimate was based on 293 the ratio of the total land area covered by the study area relative to the total harvest area used by 294 residents of Kivalina and Noatak. This was assumed to overestimate actual site use by caribou, 295 because it did not take into account the full extent of the caribou home range. The actual site use 296 by caribou was uncertain because of the lack of quantitative temporal data on site use. The site 297 use study using ADFG radiocollar satellite data from the WAH provides data for a quantitative 298 estimate and demonstrates that actual site use by WAH caribou is much lower than the estimate 299 used in the HHRA. The best estimate of site use from the current study is 0.001 (i.e., 0.1%), the 300 median site use for Area 1. Even considering site use only by caribou that entered the site at 301 least once in a given year, median site use (0.01 for Area 1; i.e., 1%) is still nearly an order of 302 magnitude lower than the estimate originally used in the HHRA (Table 3).

303 Individual animals can spend substantially more time at the site. For example, one 304 collared caribou that overwintered near Red Dog in 2011–2012 and frequently came within the 305 two areas of interest substantially skewed the data for those years. The fractional site use values 306 for that animal in 2012, which represent the maximum for the 2000-2012 time period, were 307 0.094 and 0.189 for Areas 1 and 2, respectively. Caribou do overwinter near the DMTS in some 308 years, but the data and field observations suggest that it is usually a small proportion of the herd 309 and that it happens infrequently. Furthermore, caribou tissue samples used in the HHRA have 310 historically been collected from animals that overwintered in the area, and therefore any site-311 related effect on tissue metals concentrations would likely have been reflected in the HHRA 312 results.

313 Data from the site entry analysis indicate that, in some years, many more caribou enter 314 the site study area than is typical. In addition to approaching close to the road during July 2011, 315 many WAH caribou contacted the road as they moved southeast along the coast during the fall 316 migration. However, it is important to note that although the approach of caribou to the DMTS 317 during July 2011 increased the number of animals that entered the study area compared to 2000– 318 2010, these animals spent little time within the study area. Despite the increased number of 319 animals entering the study area, the fraction of time spent within the study area by individual 320 animals decreased in 2011–2012. The number of caribou (or proportion of the overall herd) that 321 comes in proximity to the Red Dog development complex in any particular year, and the amount 322 of time that they spend there, are likely driven more by the myriad of factors that influence 323 annual caribou movements and distribution rather than specific selection based on factors 324 associated with the development complex itself. In fact, the fractional site use estimates based on our analysis are consistent with the fraction of the total WAH range (157,000 mi²; Dau 2015) 325 covered by our study areas. Area 1 (269 mi²) makes up 0.2% and Area 2 (776 mi²) 0.5% of the 326 327 total WAH range. These values are similar to fractional site use of 0.1% and 0.4% for Areas 1 328 and 2, respectively, and less than fractional site use during relatively high use periods (0.6%) in 329 Area 1 and 1.2% in Area 2 in 2011-2012). Thus, WAH caribou do not appear to be specifically 330 avoiding the area around Red Dog. Rather, our data indicate actual site use is what would be 331 expected based on the geographic area of the site relative to the WAH range.

O'Hara et al. (2003) reported that the animals harvested near Red Dog mine in the 1996 study were from the WAH. ADFG identified the animals collected in 2002 as belonging to the WAH, and animals in the 2009 study as belonging to the TCH. It is possible that sampling of animals from different herds from one sampling period to the next could result in increased data

variability and mask herd-specific differences in tissue metals concentrations that might exist.
The current dataset does not allow us to directly assess potential differences between the herds.
In addition, as previously noted, both temporary mixing and more permanent emigration between
herds have been documented (Person et al. 2007; Parrett 2015). Individual animals sampled
during a given sampling event may be associated with another herd with a different migratory
pattern. However, this is likely to have no more influence on contact rate with the Red Dog mine
and DMTS than typical year-to-year variability in migratory patterns within one herd.

343 The FI estimate in the HHRA did not take into account the time caribou spend at the site, 344 nor did it reflect the total home range of caribou that spend time in the vicinity of Red Dog. 345 Quantitative analyses of satellite collar data for WAH caribou showed that median site use was 346 0.001 (0.1%) for Area 1 and 0.004 (0.4%) for Area 2 over the study period. Thus, the FI of 0.09 347 (i.e., 9%) used in the HHRA overestimates actual site use by a factor of approximately 20 to 90. 348 Therefore, the FI value used in the HHRA was protective of human health and may overestimate 349 actual risk by one to two orders of magnitude. This result is consistent with the findings to date 350 of the caribou monitoring program, which indicate little if any influence from Red Dog fugitive 351 dusts on metals concentrations in caribou.

Along with the ADPH evaluation and the site-specific HHRA, the caribou monitoring and site use studies described here provide multiple lines of evidence indicating that fugitive dust emissions from Red Dog operations are not a significant source of metals in caribou. Metals levels in caribou harvested near Red Dog remain similar to concentrations of caribou collected elsewhere. Thus, with respect to metals, caribou remain safe for subsistence consumption, consistent with the prior conclusions of the HHRA.

358

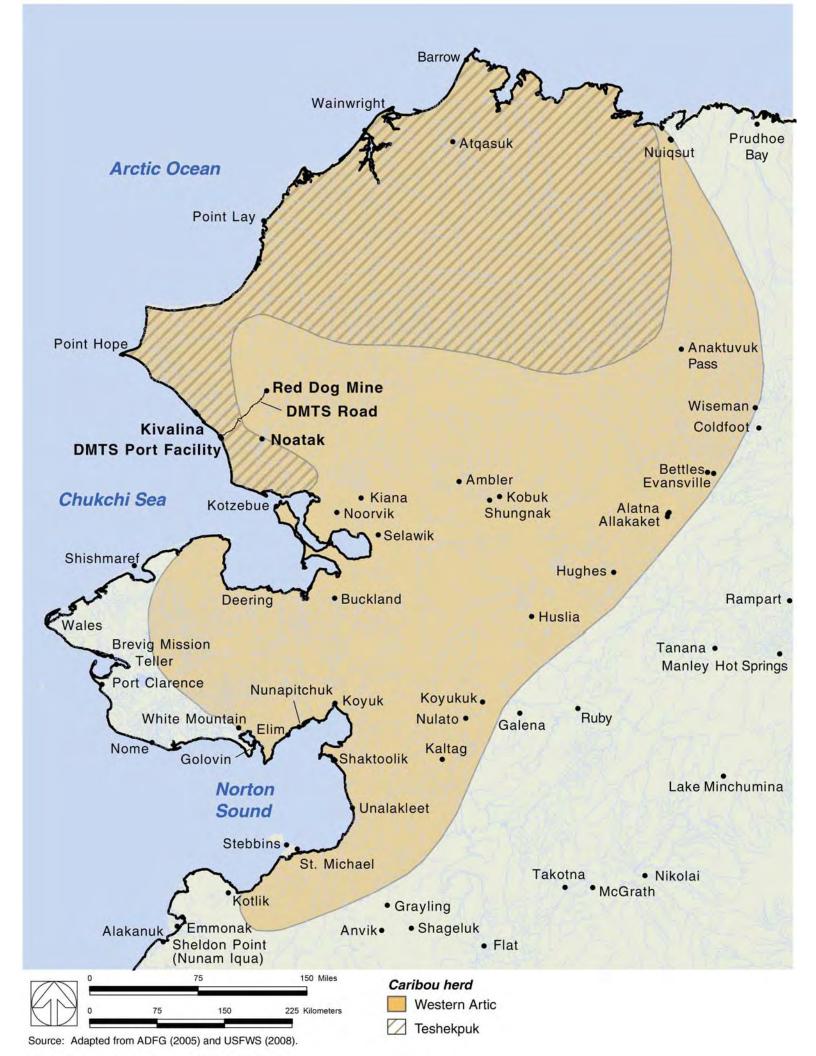
359 ACKNOWLEDGMENTS

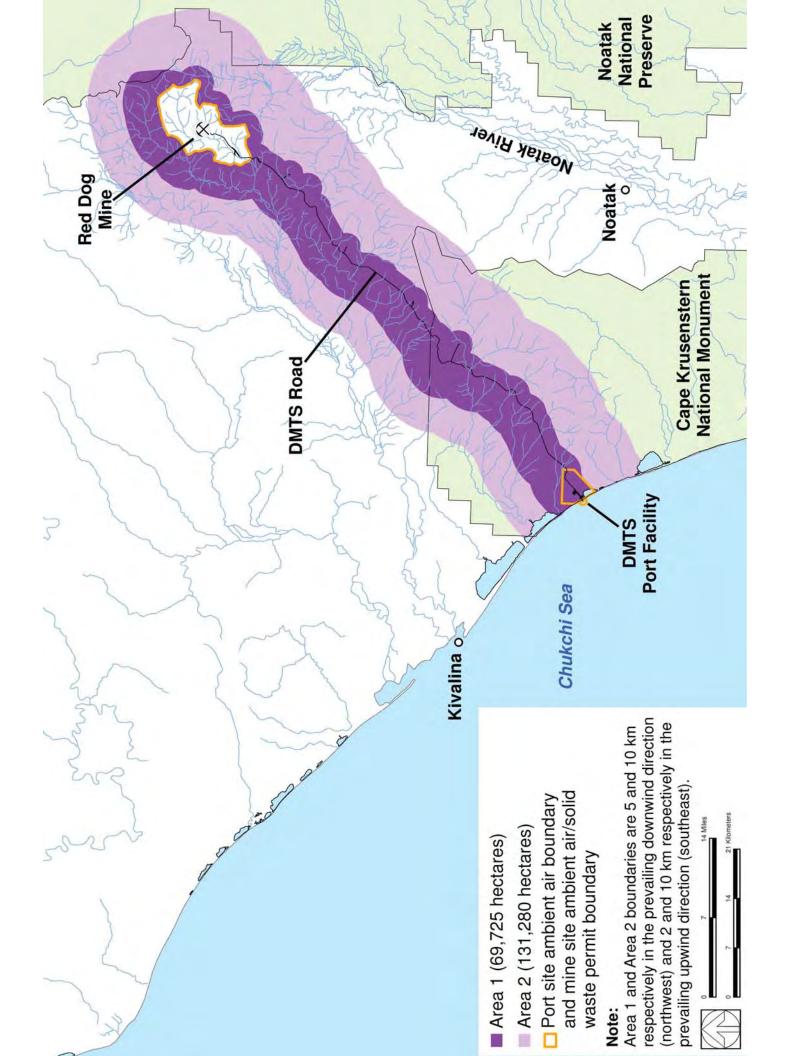
360 This study was funded by Teck Alaska Incorporated (Teck). One author (JS) is employed by

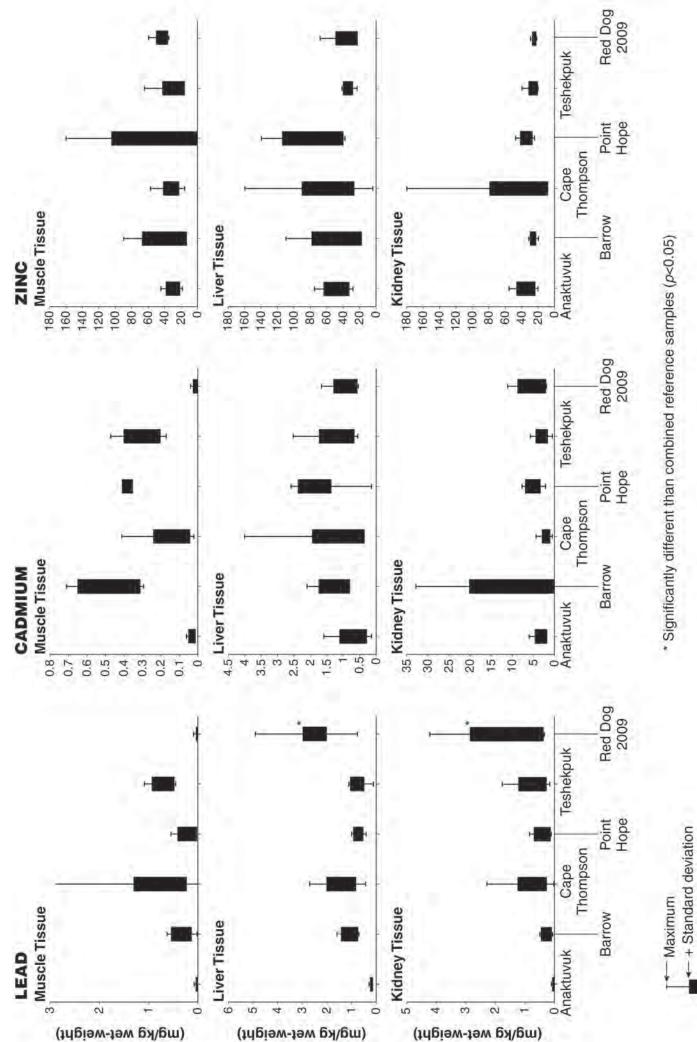
- 361 Teck and two authors (MRG, SSS) are employed by a company that has done additional work
- 362 funded by Teck. The fourth author (JD) has not been affiliated with Teck. The authors thank
- 363 Alaska Department of Fish and Game for their participation in the caribou monitoring program
- and the site use study. The authors also thank Betty Dowd, Mary Becker, Jane Ma and Randy
- 365 O'Boyle for graphics and mapping assistance.
- 366
- 367
- 368

369

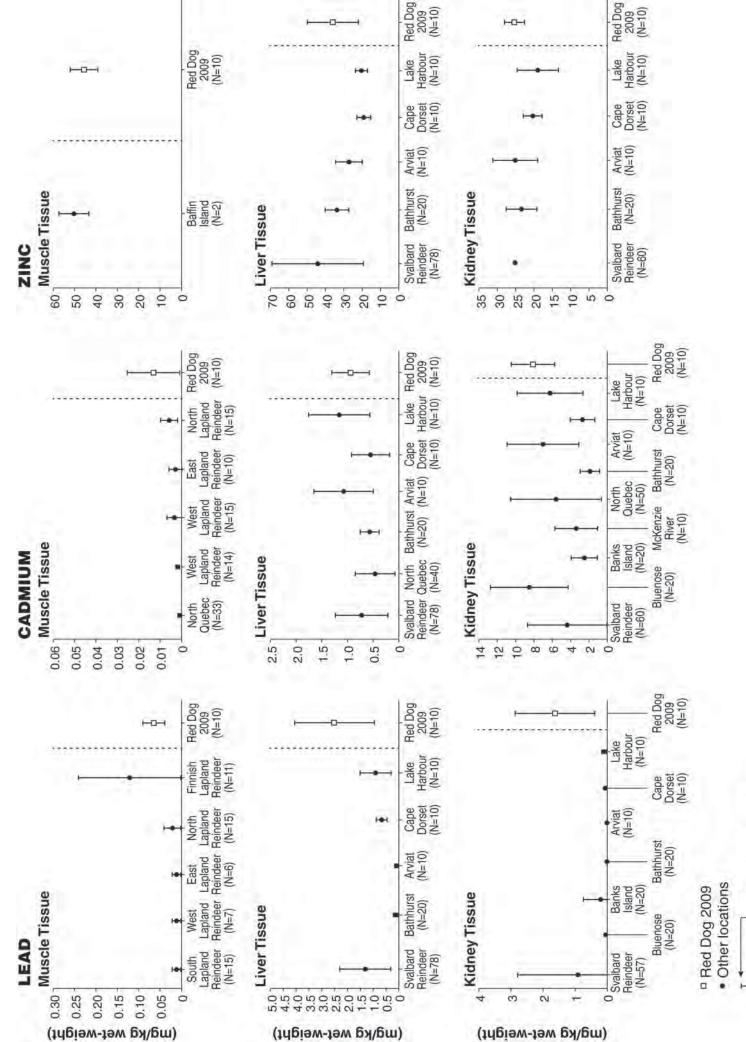
370 **REFERENCES**


- 371 Borch-Johnsen, B., K.J. Nilssen, and G. Norheim. 1996. Influence of season and diet on liver
- and kidney content of essential elements and heavy metals in Svalbard reindeer. Biol. Trace
- 373 Elem. Res. 51:235–247.
- Chan, H.M., C. Kim, and D. Leggee. 2001. Cadmium in caribou (Rangifer tarandus) kidneys:
 Speciation, effects of preparation, and toxicokinetics. Food. Addit. Contam. 18(7):607–614.
- 376 Crete, M., R. Nault, P. Walsh, J. Benedetti, M.A. Lefebvre, J. Weber, and J. Gagnon. 1989.
- Variation in cadmium content of caribou tissues from northern Quebec. Sci. Tot. Environ.
 80:103-112.
- 379 Dau, J. 2015. Units 21D, 22A, 22B, 22C, 22D, 22E, 23, 24 and 26A. Chapter 14, pages 14-1
- through 14-91 [*In*] P. Harper, and Laura A. McCarthy, editors. Caribou management report of
- 381 survey and inventory activities 1 July 2012–30 June 2014. Alaska Department of Fish and Game,
- 382 Species Management Report ADF&G/DWC/SMR-2015-4, Juneau.
- 383
- Elkin, B.T., and R.W. Bethke. 1995. Environmental contaminants in caribou in the Northwest
 Territories, Canada. Sci. Tot. Environ. 160/161:307–321.
- 386 Exponent. 2007. DMTS fugitive dust risk assessment. Prepared for Teck Cominco Alaska
- 387 Incorporated. Exponent, Bellevue, WA. November. Available at:
- 388 <u>http://dec.alaska.gov/spar/csp/docs/reddog/bibliography.htm#2007</u>
- Exponent, 2014. Fugitive Dust Risk Management Monitoring Plan. Prepared for Teck Alaska
 Incorporated. Exponent, Bellevue, WA. May.
- 391 Gunn, A. and W. Nixon. 2008. Rangifer health & body condition monitoring manual.
- 392 CircumArctic Rangifer Monitoring and Assessment Network, Akureyi, Iceland.
- 393 <u>http://carma.caff.is/images/</u> Organized/CARMA/Resources/Field
- 394 Protocols/RangiferHealthBodyConditionManualforwebe42d.pdf
- Johnson, J.S., E.D.Nobmann, E. Asay, and A.P. Lanier. Dietary intake of Alaska Native people
- 396 in two regions and implications for health: the Alaska Native Dietary and Subsistence Food
- 397 Assessment Project. Int J Circumpolar Health 68(2):109-22.
- Kuhnlein, H.V., and R. Soueida. 1992. Use and nutrient composition of traditional Baffin Inuit
 foods. J. Food Comp. Anal. 5:112–126.
- 400 Larter, N.C., and J.A. Nagy. 2000. A comparison of heavy metal levels in the kidneys of high
- 401 Arctic and mainland caribou populations in the Northwest Territories of Canada. Sci. Tot.
 402 Environ. 246:109–119.


- 403 O'Hara, T., J.C. George, J. Blake, K. Burek, G. Carroll, J. Dau, L. Bennett, C.P. McCoy, P.
- 404 Gerard, and V. Woshner. 2003. Investigation of heavy metals in a large mortality event in
- 405 caribou of Northern Alaska. Arctic 56: 125–135
- 406 Parrett, L. S. 2015. Unit 26A, Teshekpuk caribou herd. Chapter 17, pages 17-1 through 17-28
- 407 [In] P. Harper and L. A. McCarthy, editors. Caribou management report of survey and inventory
- 408 activities 1 July 2012–30 June 2014. Alaska Department of Fish and Game, Species
- 409 Management Report ADF&G/DWC/SMR-2015-4, Juneau.
- 410 Person, B.T., A.K. Prichard, G.M. Carroll, D.A. Yokel, R.S. Suydam, and J.C. George. 2007.
- 411 Distribution and movements of the Teshekpuk Caribou Herd 1990–2005: Prior to oil and gas
- 412 development. 60(3):238–250.
- 413 Rintala, R., E. Venalainen, and T. Hirvi. 1995. Heavy metals in muscle, liver, and kidney from
- 414 Finnish reindeer in 1990–91 and 1991–92. Bull. Environ. Contam. Toxicol. 54:158–165.
- 415
- 416


417	List of Figures
418	Figure 1. Site Location – Location of Red Dog Mine and DMTS in NW Alaska with Home
419	Ranges of Western Arctic and Teshekpuk Caribou Herds
420	
421	Figure 2. Site Area – The analysis was conducted for two zones of distance from the road
422	complex. Area 1 is defined as that area within 5 mi NW and 2 mi SE of the DMTS. Area 2 is
423	defined as that area within 10 mi of the DMTS.
424	
425	Figure 3. Site Comparison to Alaska Reference Locations – Comparison of metals
426	concentrations in caribou harvested from the Red Dog area with caribou from other locations in
427	northern Alaska. *Indicates site sample concentrations are statistically significantly different
428	than combined reference location samples (p<0.05).
429	
430	Figure 4. Site Comparison to Global Reference Concentrations – Comparison of metals
431	concentrations in caribou harvested from the Red Dog area with metals concentrations in caribou
432	and reindeer from Canada and Scandinavia.
433	
434	Figure 5. Temporal Analysis of Site Caribou – Comparison of metals concentrations in
435	caribou harvested from the Red Dog area in 1996, 2002, and 2009. *Indicates sample
436	concentrations from caribou harvested in 2009 are statistically significantly different than sample
437	concentrations from caribou harvested in 2002 (p<0.05).

438 List of Tables


- 439 Table 1 Site Use by WAH Caribou
- 440 Table 2 Statistical comparison of caribou metal concentrations: 2009 vs. 2002
- 441 Table 3 Comparison of Fractional Intake Estimates

Mean
 Standard deviation
 Minimum

± Standard deviation

+ Mean

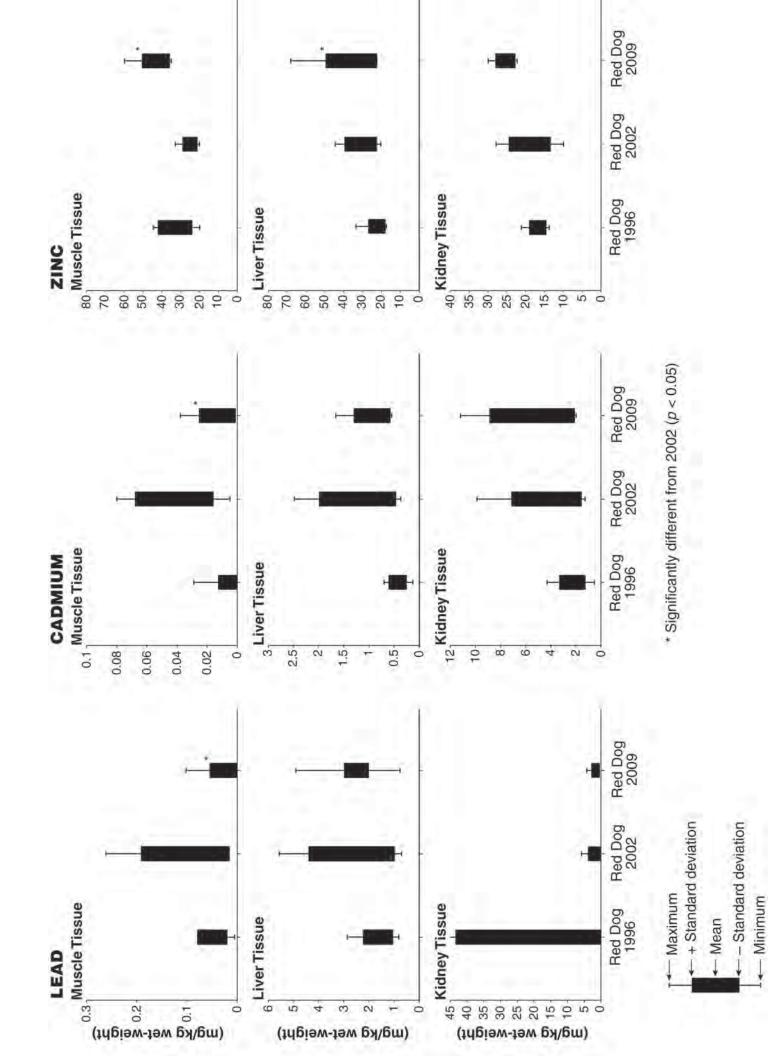


Table 1. Site Use by WAH Caribou

	Median	Individual	Time Spent in	Area 2	3.9	1.4	1.9	1.5	1.5	2.9	0.2	0.6	1.4	2.0	0.4	1.2	0.9
Fractional Site by Individual Caribou	Number	Satellite-Collared	Caribou that	Entered Area 2	1	4	7	4	9	4	1	4	7	4	8	32	62
ctional Site by In	Median	Individual	Time Spent in	Area 1	1.2	1.5	1.1	1.3	0.5	2.0	0.0	0.0	0.7	1.0	2.7	0.5	0.6
Fra	Number	Satellite-Collared	Caribou that	Entered Area 1	1	1	ß	2	4	2	0	0	2	c	1	28	51
		Site Entry	Area 2	(percent)	4	15	18	6	13	6	c	∞	13	7	7	30	56
Site Entry		Site Entry	Area 1	(percent)	4	c	13	7	6	4	0	0	c	ß	1	25	46
		Total Number	Satellite-Collared	Caribou in WAH	25	33	39	45	47	45	38	52	62	58	108	115	115
		Time Spent in	Area 2	(percent)	0.2	0.4	0.5	0.1	0.7	0.6	0.0	0.1	0.4	0.3	0.1	0.9	1.5
Fractional Site Use		Time Spent in	Area 1	(percent)	0.1	0.1	0.1	0.1	0.1	0.2	0.0	0.0	0.0	0.2	0.0	0.4	0.8
FI	Total Number	Satellite Collar	Locations in	WAH Range	6751	7003	8701	13736	11251	7921	6486	10592	19285	20554	44439	43859	41587
	I			Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012

Time Spent in Area = (# collar locations in area / # collar locations in entire range) \times 100 Site Entry = (# collared caribou entering site at least once / # collared caribou) \times 100

Time Spent in Area = (# individual caribou collar signals in area / # collar signals in entire range for that caribou) × 100

Area 1 is defined as that area within 5 mi NW and 2 mi SE of the DMTS

Area 2 is defined as that area within 10 mi of the DMTS

	Cadmium		Lead		Zinc	
Unadjusted						
Muscle	0.006	\checkmark	0.02	\checkmark	<0.0001	\uparrow
Liver	0.29	n.s.	0.78	n.s.	0.34	n.s.
Kidney	0.42	n.s.	0.56	n.s.	0.003	\uparrow
Age-Adjusted						
Muscle	0.03	\checkmark	0.06	n.s.	<0.0001	\uparrow
Liver	0.45	n.s.	0.68	n.s.	0.89	n.s.
Kidney	0.17	n.s.	0.62	n.s.	0.35	n.s.

Table 2. Statistical comparison of caribou metal concentrations: 2009 vs. 2002 (p-values)

Notes: \uparrow – statistically significantly higher in 2009 relative to 2002

 \downarrow – statistically significantly lower in 2009 relative to 2002

n.s.

not significantly different in 2009 relative to 2002

Table 3. Comparison of Fractional Intake Estimates*

FI Used in	Satellite Co	llar Site Use	Satellite Collar Ir	ndividual Site Use
DMTS Risk	Area 1	Area 2	Area 1	Area 2
Assessment	Median	Median	Median	Median
0.09	0.0007	0.0025	0.006	0.01

*Expressed as a fraction rather than a percent, consistent with use in risk assessment calculations.

Area 1 is defined as that area within 5 mi NW and 2 mi SE of the DMTS

Area 2 is defined as that area within 10 mi of the DMTS

Exponent

DRAFT

2016 Marine Sediment Monitoring Report

Red Dog Mine Fugitive Dust Risk Management Monitoring Program

Exponent

2016 Marine Sediment Monitoring Report

Red Dog Mine Fugitive Dust Risk Management Monitoring Program ADEC File No. 475.38.010

Prepared for

Teck Cominco Alaska Inc. 3105 Lakeshore Drive Building A, Suite 101 Anchorage, AK 99517

Prepared by

hoch

Scott Shock Exponent 15375 SE 30th Place, Suite 250 Bellevue, WA 98007

December 2016

© Exponent, Inc.

Contents

	Page
List of Figures	iii
List of Tables	iv
Acronyms and Abbreviations	v
Introduction	1
Background	1
Marine Sediment Monitoring	2
Methods	4
Results and Discussion	8
Conclusions	9
References	10
Appendix A Quality Assurance Review Appendix B Field Notes	

- Appendix CSediment Photos by StationAppendix DACZ Laboratory Reports

List of Figures

- Figure 1. Marine sediment monitoring station locations
- Figure 2. Marine sediment results Cadmium concentration
- Figure 3. Marine sediment results Lead concentration
- Figure 4. Marine sediment results Zinc concentration
- Figure 5. Time series (2002–2016) sediment concentrations of cadmium, lead, and zinc relative to ER-L guideline values

Figures are presented at the end of the main text.

List of Tables

- Table 1.
 Marine sediment monitoring station locations sampled in 2016
- Table 2.Marine sediment samples data for 2016

Tables are presented at the end of the main text.

Acronyms and Abbreviations

ACZ ASTM DEC DI DMTS ER-L ICP-MS MDL MRL MS/MSD RMP QA/QC	ACZ Laboratories, Inc. American Society for Testing and Materials Alaska Department of Environmental Conservation deionized water DeLong Mountain Regional Transportation System Effects Range-Low inductively coupled plasma/mass spectrometry Method Detection Limit Method Reporting Limit matrix spike/matrix spike duplicate Draft Fugitive Dust Risk Management Plan quality assurance/quality control
	6
Teck	Teck Alaska Incorporated
EPA	U.S. Environmental Protection Agency

Introduction

This report describes the findings of chemical analysis for metals in marine, nearshore sediment samples collected in September 2016 in the vicinity of the DeLong Mountain Regional Transportation System (DMTS) port. At the DMTS port, lead and zinc concentrates from the Red Dog Mine are loaded into barges for transfer to deep water cargo vessels. The sediment sampling was conducted as part of an ongoing fugitive dust risk management monitoring program (Exponent 2014). This data collection was conducted in a manner intended to meet the Alaska Department of Environmental Conservation's (DEC) requirements for decision-making purposes and to satisfy regulatory requirements under the DEC Contaminated Sites Program. The sampling was conducted to detect, observe, and record fugitive dust-related changes in the sediment environment.

The following sections provide background information regarding marine sediment data, methods for the study, field sampling details, analysis, and conclusions of the study. In addition, a data quality assurance review, field notes and photos, and laboratory reports are included as appendices.

Background

In August, 2008, the Draft Fugitive Dust Risk Management Plan (RMP) was prepared as part of a process intended to minimize risks associated with fugitive dust emissions from operations at the Red Dog Mine (Exponent 2008). The RMP combined and built upon a variety of prior and ongoing efforts by Teck Alaska Incorporated (Teck) to reduce dust emissions. The RMP identified seven fundamental risk management objectives that address the overall goal of minimizing risk to human health and the environment, identified and evaluated risk management options to achieve those objectives, and described a process for developing six implementation plans to achieve the fundamental objectives. The development of the Red Dog Monitoring Plan (Exponent 2014) is part of the process identified in the RMP to address the objectives. The other five implementation plans are as follows:

- Communication plan
- Dust emissions reduction plan
- Remediation/reclamation plan
- Uncertainty reduction plan
- Worker dust protection plan

The monitoring plan details techniques to detect, observe, and record fugitive dust-related changes in the environment, to address the following fundamental objectives:

- Assess the effectiveness of operational dust control actions.
- Evaluate the effects of the dust emissions on the environment and on human and ecological exposure.
- Trigger additional actions where necessary.
- Continue reducing fugitive metals emissions and dust emissions (this objective is addressed indirectly through monitoring to verify the effectiveness of operational dust control measures).
- Verify continued safety of caribou, other representative subsistence foods, and water.
- Monitor conditions in various ecological environments and habitats, and implement corrective measures when action levels are triggered.

This report describes the results of the marine sediment monitoring program, which was designed to monitor and evaluate metals concentrations in the marine environment around the DMTS port ship loading operation.

The marine sediment monitoring program is intended to provide data in support of oversight by the DEC Contaminated Sites Program, pursuant to 18 AAC 75.360. In addition, the marine sediment monitoring program provides data for Teck's use in operational monitoring.

Marine Sediment Monitoring

Marine sediment sampling was conducted on September 4, 2016, to monitor operational-scale dust deposition in the marine environment surrounding the DMTS port and barge-loading facilities. The sediment samples were collected at seven locations (Figure 1, Table 1) around the port facility which have at times exhibited elevated metals concentrations. These locations have been re-sampled every two years since 2003 as part of the ongoing marine sediment monitoring program to evaluate temporal changes in sediment metal concentrations. Monitoring data from

these stations allows evaluation of temporal changes in metal concentrations in surficial sediments.

Samples are analyzed for cadmium, lead, and zinc, which are the primary constituents of concern and risk drivers present in the lead and zinc concentrates transported from the mine, stored, and transferred to barges at the port. As specified in the monitoring plan (Exponent 2014), the measured levels are compared with the Effects Range-Low (ER-L) guideline values developed by Long et al. (1995) for marine sediment:

- Cadmium ER-L = 1.2 mg/kg dry
- Lead ER-L = 46.7 mg/kg dry
- Zinc ER-L = 150 mg/kg dry.

Marine sediment samples were collected for analysis of these metal constituents as part of the monitoring program. The monitoring plan states that if cadmium, lead, and zinc concentrations are less than their respective ER-L, then monitoring will continue on a 2-year frequency. However, if any of these metals exceed their ER-L at more than one station, then the plan calls for monitoring to be performed annually. Should the concentration of one of these metals exceed the ER-L at more than one station for more than two consecutive annual monitoring events, then additional dust control measures will be evaluated as defined in the dust emissions reduction plan. In that situation, monitoring would continue on an annual basis until metal concentrations remain below the ER-L for two successive years, at which point monitoring would revert to a 2-year frequency (Exponent 2014).

Methods

Marine sediment samples were collected on September 4, 2016, at the sample locations depicted in Figure 1 and listed in Table 1. The monitoring program was implemented by Teck environmental staff under the oversight and assistance of an Exponent senior scientist who meets the requirements of a Qualified Person under 18 AAC 75.990 (100) as required by DEC. The samples were submitted under chain of custody to ACZ Laboratories, Inc. (ACZ) in Steamboat Springs, CO. The data provided by ACZ were assessed and validated by Exponent according to U.S. Environmental Protection Agency (EPA) guidelines and method-specific requirements consistent with the quality assurance project plan, which are included as Appendix A to the monitoring plan (Exponent 2014). Exponent's quality assurance review is provided in Appendix A of this 2016 Marine Sediment Monitoring Report. Exponent's field notes and photographs are provided in Appendices B and C, respectively. Laboratory reports from ACZ are provided in Appendix D.

Surface sediment samples (0–2cm) were collected for metals analysis using a modified petite ponar grab sampler. One sediment sample was collected at each of the seven stations. In addition, a field duplicate was collected to assess the variability of chemical concentrations at the same location and a matrix spike/matrix spike duplicate (MS/MSD) sample was collected for evaluation of possible matrix interference with the analysis. Two water samples were also collected, an equipment rinsate blank, to help identify potential contamination from the sampling equipment and environment, and a source water blank, which consisted of a sample of the laboratory-grade deionized water (DI) used to clean equipment and to produce the equipment blank. As they were collected, samples were labelled, recorded in the field notebook, and stored in a cooler. At the Red Dog environmental facility, the samples were stored in a secured refrigerator before being shipped, on ice and under chain of custody, to ACZ.

Before sampling began at a station, the re-useable equipment was sprayed with a mixture of Liquinox soap and laboratory DI. The surfaces of the equipment were then thoroughly scrubbed with a brush, and the equipment was then thoroughly rinsed. The ponar sampler and stainless steel pan were rinsed with site water, while the bowl and trowel were rinsed with DI. The bowl

and trowel were covered with aluminum foil immediately after being rinsed to keep them clean. The ponar did not require aluminum foil covering, as no significant time elapsed between decontamination and redeployment.

The marine sediment samples were collected from a 30-foot landing craft, with the pre-cleaned ponar deployed from the bow of the vessel. The vessel's GPS receiver was pre-loaded with the station coordinates and used to navigate to each station. Once on station, the ponar was lowered to the sediment surface, retrieved, and placed in the pre-cleaned stainless steel pan. The pan was used to prevent the ponar from touching the deck in between deployments and did not come in contact with the sediment sample. Material collected from within the sampler was evaluated for acceptability according to whether the following criteria were met:

- Ponar was not overfilled
- Overlying water was present and not excessively turbid
- Sediment surface was relatively undisturbed
- Minimum penetration depth (i.e., greater than 2 cm) was attained.

Exponent's field representative evaluated all samples collected. If any of the above conditions were not met, the contents of the ponar were emptied into the pan and the ponar was redeployed. If a sample was deemed acceptable, the overlying water was removed using a plastic syringe. A pre-cleaned stainless steel trowel was used to collect the upper 2 cm of sediment and transfer this portion into a pre-cleaned stainless steel mixing bowl. To ensure the collection of the proper sediment interval, a 2-cm length from the tip of the trowel was measured and best professional judgment was used in the collection of the representative depth. Sediment that had touched the side of the ponar was excluded from the sample to the best extent possible. The sediment color, general grain size composition, odor, and any other relevant observations were recorded in the field notebook.

Once the appropriate volume of the sediment had been collected in the bowl, the sample was homogenized to consistent color and texture, photographed, and transferred to pre-labeled and pre-cleaned sample containers. The sample containers were then sealed, placed into bubble wrap bags, and then placed into a cooler containing frozen blue ice. The samples were transferred to a secure sample refrigerator upon returning to the facility, where they were maintained at 4 °C

until being packed for shipment to the analytical laboratory. The equipment blank and source blank samples were preserved with nitric acid (HNO₃).

Four quality assurance/quality control (QA/AC) samples were collected during the marine sediment monitoring event: a field duplicate, an MS/MSD, an equipment blank, and a source blank. The field duplicate and MS/MSD were collected at station NMO.

The equipment blank sample was collected by running DI over the surfaces of the ponar and trowel, following completion of decontamination of those tools after sediment sampling. The DI was collected in the bowl, and additional DI was run over the inner surface of the bowl until a sufficient volume of DI had been collected. The DI was then transferred from the bowl into a pre-labeled sample container.

The DI used for decontamination and the equipment blank sample was generated by the Teck laboratory. A sample of this DI was collected as a source blank, because the DI had not been supplied by the laboratory that would perform the sample analyses. The source blank sample was collected concurrently with the equipment blank sample by collecting DI directly from the storage container into a pre-labelled sample container.

ACZ performed the sediment and associated equipment blank analyses with reference to the following methods, as discussed in detail in Appendix A:

Analysis	Method Reference
Total Metals (sediment)	SW-846 Method 6020, inductively coupled plasma/mass spectrometry (ICP-MS)
Total Metals (aqueous)	Method 200.8, ICP-MS
Total Solids	American Society for Testing and Materials (ASTM) Method D2216-80, Standard test method for laboratory determination of water (moisture) content of soil and rock residue

A data validation review indicated that all of the ACZ data are considered usable for project decision making. Non-conformances were noted in the ACZ data and actions were taken for the following non-conformances: holding time exceedance (Total Solids) and equipment blank

contamination (zinc). Specific results of the validation are described in the Results and Discussion section below. A complete Quality Assurance Review is provided in Appendix A.

Results and Discussion

Table 2 summarizes marine sediment percentage moisture, total solids, and metals concentrations for samples collected in fall 2016. Data validation findings indicate the data are useable, with some minor qualifiers:

- "J+" qualifiers were assigned to all sediment zinc results due to equipment blank contamination.
- "J" qualifiers were assigned to the total solids results for all sediment samples due to the holding time exceedances.
- Laboratory-assigned "B" qualifiers indicating results that were less than the method reporting limit (MRL) but greater than the method detection limit (MDL) were replaced by a "J" qualifier during data validation.

Marine sediment monitoring results for cadmium, lead, and zinc are mapped in Figures 2 through 4. Figure 5 shows time series sediment concentrations of cadmium, lead, and zinc relative to ER-L guideline values. In 2016, concentrations of cadmium, lead, and zinc in sediment did not exceed their respective ER-L at any of the sampling stations.

Weather conditions around the time of sampling were clear, calm, and relatively warm for September. The sediment sampling was attempted and completed on September 4, 2016, unlike in 2014 where several sampling attempts were thwarted due to unfavorable winds.

During the 2015 shipping season, ship loading activities were typical, with 269 barges loaded over 120 days. During the 2016 shipping season, 274 barges were loaded over 124 days. In each of those shipping seasons, the tonnage of lead concentrate transported by the barges was approximately 21% of the total tonnage of concentrate transported. In the week up to and including the sampling date (September 4, 2016), four barges were loaded with lead concentrate and 27 barges were loaded with zinc concentrate.

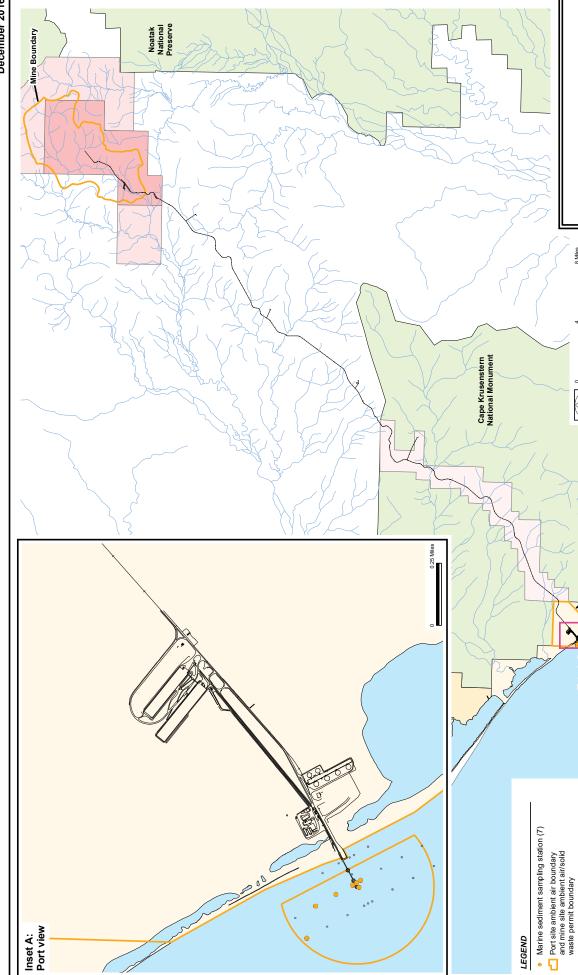
Conclusions

Marine sediment sampling was conducted in the fall of 2016 at the previously established monitoring stations (Figure 1, Table 1) to monitor and evaluate dust deposition and accumulation in the marine environment surrounding the DMTS port facilities.

The current study obtained concentration data for cadmium, lead, and zinc in marine sediment samples collected at stations near the port facilities and compared them to established screening levels.

Concentrations of cadmium, lead, and zinc fell below ER-L guideline values at all stations in 2016.

Since the results of the 2016 marine sediment monitoring show no exceedance of ER-L guideline values for cadmium, lead, or zinc, sampling will continue at a frequency of once every two years. Monitoring results indicate that operational-scale dust deposition in the marine environment surrounding the port ship loader facilities falls within acceptable limits.


References

Exponent. 2008. Draft fugitive dust risk management plan. Red Dog Operations, Alaska. Prepared for Teck Cominco Alaska Incorporated, Anchorage, AK. Exponent, Bellevue, WA. August.

Exponent. 2014. Fugitive dust risk management monitoring plan. Red Dog Operations, Alaska. Prepared for Teck Cominco Alaska Incorporated, Anchorage, AK. Exponent, Bellevue, WA. May.

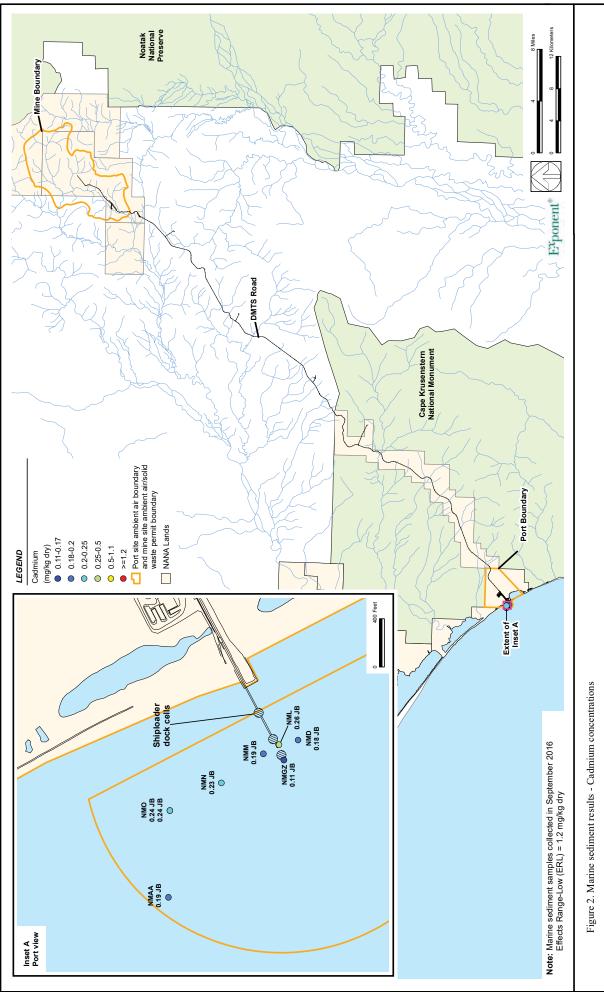
Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 19(1):81–97.

Figures

Historical marine sediment sampling grid

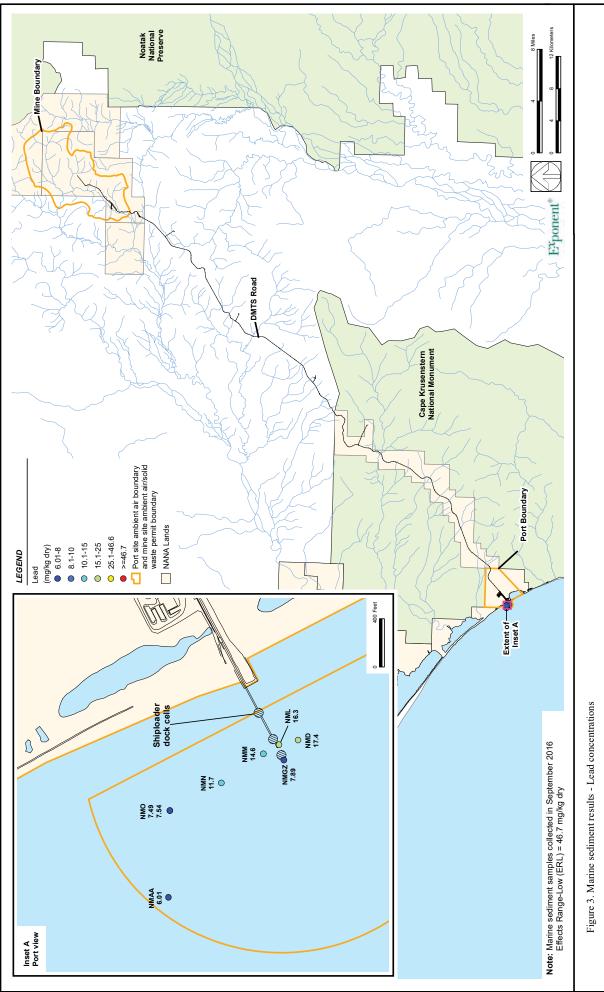
Note:

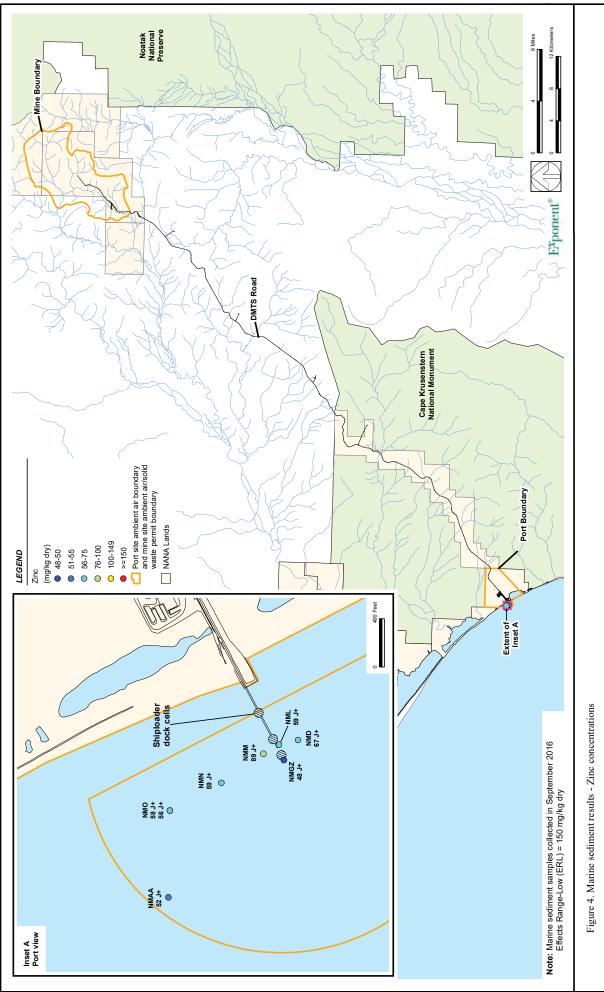
Figure 1. Marine sediment monitoring stations

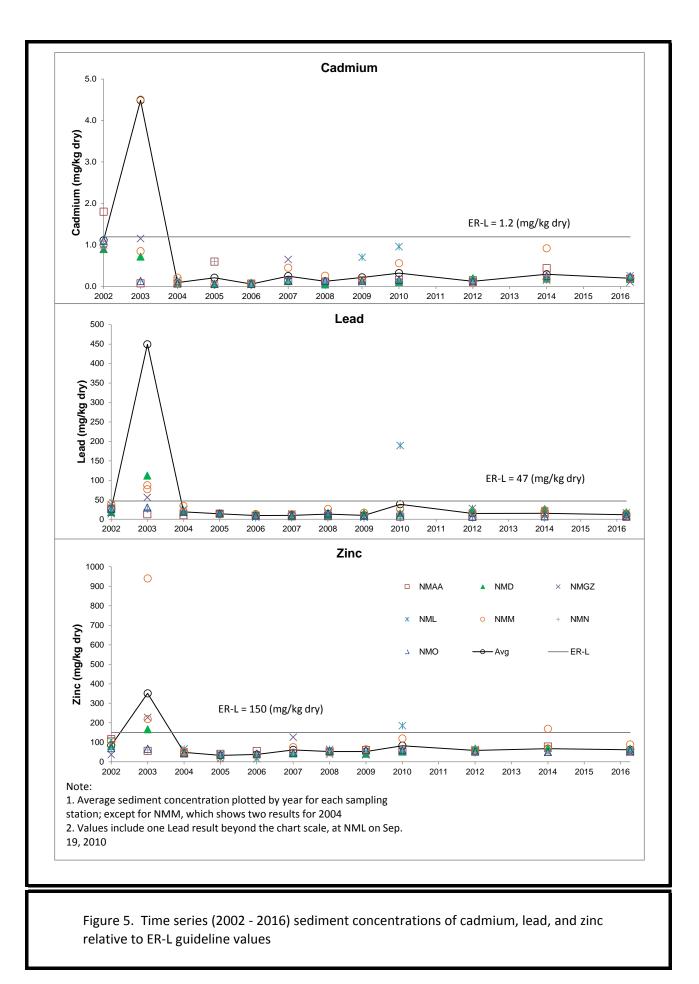

12 Kilometers

Port Boundary

Extent of Inset A


December 2016


937.014 | December 13, 2016 | P.1888601997_Red_Dog_MinelGISprojectstmonitoring_pan_2016 - sedimer



1997.014 | December 13, 2016 | P:\86\8601997_Red_Dog_Mine\G\Sprojects\monitoring_plan_2016 - sedimer

01997.014 | December 13, 2016 | P:\86\8601997_Red_Dog_Mine\G\Sprcjects'monitoring_plan_2016 - sedimen

Tables

Station	Longitude	Latitude
NMAA	-164.072123	67.578642
NMD	-164.063051	67.575621
NMGZ	-164.064139	67.575703
NML	-164.063443	67.575859
NMM	-164.06381	67.576081
NMN	-164.065306	67.577025
NMO	-164.067186	67.578189

 Table 1. Marine sediment monitoring station locations sampled in 2016

lable 2. L	INITS port ma	lable 2. UMIS port marine sediment samples data for		2016						
				Upper	Lower	Percent				
Survey			Field	depth	depth	moisture	Total solids	Cadmium	Lead	Zinc
station	Date	Sample ID	replicate	(cm)	(cm)	(% dry)	(% dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
NMM	9/4/2016	16-035_NMM-A	0	0	2	15.7	84.3 J	0.19 JB	14.60	+ <i>f</i> 68
NMGZ	9/4/2016	16-036_NMGZ-A	0	0	2	6.0	94.0 J	0.11 JB	7.89	48 J+
NMN	9/4/2016	16-037_NMN-A	0	0	2	26.9	73.1 J	0.23 JB	11.70	59 J+
NMO	9/4/2016	16-038_NMO-A	1	0	2	26.7	73.3 J	0.24 JB	7.49	58 J+
NMO	9/4/2016	16-039_NMO-B	2	0	2	26.0	74.0 J	0.24 JB	7.54	56 J+
NML	9/4/2016	16-040_NML-A	0	0	2	14.3	85.7 J	0.26 JB	16.30	59 J+
NMD	9/4/2016	16-041_NMD-A	0	0	2	9.5	90.5 J	0.18 JB	17.40	67 J+
NMAA	9/4/2016	16-042_NMAA-A	0	0	2	26.7	73.3 J	0.19 JB	6.01	52 J+
Note:										
* - Indicate	* - Indicates field replicate sample.	ite sample.				ER	ERL (mg/kg dry):	1.2	47	150
dry - indică	ates measurer	dry - indicates measurement is reported on a dry weight basis	a dry weight k	oasis						
Qualifier D	Qualifier Definitions:									

JB: Results less than MRL but greater than MDL.

J: Holding time exceedance (Total Solids only). J+: Equipment blank contamination (zinc only).

Appendices

Appendix A

Quality Assurance Review

Exponent[®]

INTERNAL MEMORANDUM

To:	Scott Shock
FROM:	Andrea Mischel, Deb Truini
DATE:	November 28, 2016
PROJECT:	8601997.016
SUBJECT:	Marine Sediment Monitoring at the DeLong Mountain Regional Transportation System (DMTS) port ship loader facilities; Laboratory Data Assessment for ACZ Laboratories, Inc. (ACZ), Steamboat Springs, CO

Executive Summary

Data were obtained for sediment samples collected in the marine environment surrounding the DMTS port ship loading facilities as a means to monitor operational-scale dust deposition. Sediment samples were collected on September 4, 2016. The samples were collected by Teck Alaska, Inc. and submitted to ACZ located in Steamboat Springs, CO for analysis. ACZ processed and reported the sediment samples with associated field QC under laboratory service request numbers L32770 and L32771. These data were assessed by Exponent according to U.S. Environmental Protection Agency (EPA) guidelines and method-specific requirements.

Surface sediment samples (0–2 cm) were collected for metals analysis (zinc, lead, and cadmium) using a modified Ponar grab sampler. One sediment sample was collected at each of seven previously established stations, with one field duplicate collected to assess the variability of chemical concentrations at a location, for a total of eight sediment samples. In addition, one equipment rinsate blank and one source water blank were collected to assess potential contamination from the sampling environment or the sampling equipment (e.g., sediment grab sampler, bowls, or spoons).

2016 Marine Sediment Monitoring Laboratory Data Assessment November 28, 2016 Page 2 of 6

ACZ performed the sediment and associated equipment blank analyses with reference to the following analytical methods:

Analysis	Method Reference
Total Metals (sediment)	SW-846 Method 6020, Inductively Coupled Plasma/Mass Spectrometry (ICP-MS)
Total Metals (aqueous)	Method 200.8, Inductively Coupled Plasma/Mass Spectrometry (ICP-MS)
Total Solids	ASTM Method D2216-80, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock Residue

The ACZ data packages included in this review were complete. All of the sediment data reviewed are considered usable for project decision making. Nonconformances were noted in the ACZ data and included the following: equipment blank contamination and holding time exceedances. Specifically, ACZ data were qualified as follows:

- "J" qualifiers were assigned to the total solids results in all sediment samples due to holding time exceedances.
- All zinc sediment results were qualified "J+", (estimated with a potential high bias), due to equipment blank contamination.
- Laboratory-assigned "B" qualifiers indicating results that were less than the method reporting limit (MRL) but greater than the method detection limit (MDL) were replaced by a "J" qualifier during data validation.

1 Introduction

The purpose of this memorandum is to document the assessment of data for sediment samples collected on September 4, 2016, in the marine environment surrounding the DMTS port ship loading facilities. This memorandum documents the assessment of data provided in the following laboratory packages:

- November 9, 2016 (revised cover letter date), ACZ Analytical Report for Service Request No.: L32770.
- November 8, 2016 (revised cover letter date), ACZ Analytical Report for Service Request No.: L32771.

2016 Marine Sediment Monitoring Laboratory Data Assessment November 28, 2016 Page 3 of 6

2 Data Assessment Approach

The goal of data assessment was to determine the quality of each data point and identify data points that do not meet the project data quality objectives. Exponent staff assessed the analytical data prior to their release, in accordance with the general guidance specified by the *Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (National Functional Guidelines)^{1,2}, the method requirements and/or professional judgment. EPA has not published data validation guidelines for the general chemistry methods. Therefore, chemical data for these analytes were assessed following the general evaluation procedures described in the National Functional Guidelines and according to method requirements. The following quality control indicators were evaluated when available: holding times and preservation, instrument calibrations and blanks, laboratory and equipment blanks, matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory duplicate samples, post-digestion spike samples, inductively coupled plasma (ICP) interference check samples, ICP serial dilutions, and field duplicates. Calculations and transcriptions were verified in one data package and spot checked in the remaining submitted data package.

Data assessment qualifiers were applied to the results, consistent with procedures described in the National Functional Guidelines and with modifications to accommodate method and/or laboratory-specific quality control requirements. Nonconforming data were qualified as not detected (U), estimated (J, UJ, J-, or J+), or rejected (R) as unusable during data assessment, if acceptance criteria were not met. Explanations of the qualifiers are summarized as follows:

Qualifier	Explanation
U	The analyte was analyzed for, but was not detected above the method reporting limit (MRL).
UJ	The analyte was analyzed for, but was not detected. The MRL is approximate and may be inaccurate or imprecise.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J-	The result is an estimated quantity, but the result may be biased low.
J+	The result is an estimated quantity, but the result may be biased high.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control (QC) criteria. The analyte may or may not be present in the sample.

¹ U.S. EPA. 2014. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA/540-R-10-011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC.

² U.S. EPA. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA/540-R-94/013. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC.

2016 Marine Sediment Monitoring Laboratory Data Assessment November 28, 2016 Page 4 of 6

Data qualified as not detected (U) were considered to be non-detect at the reported value and are still acceptable for use. Data qualified as estimated (J, UJ, J- or J+) are less precise or less accurate than unqualified data, but are still acceptable for use. When possible, the data assessment summary will include information regarding the direction or magnitude of bias or the degree of imprecision for qualified data. In instances when an analyte has cumulative nonconformances, a bias may not be noted unless all the nonconformances are biased in the same direction. Data users are responsible for assessing the effect of the inaccuracy or imprecision of the qualified data on statistical procedures and other data uses.

3 Data Assessment Findings

3.1 Assessment Findings for ACZ Data Packages L32770 and L32771

The sediment and associated field quality control samples (equipment rinsate and source water blanks) were analyzed for total metals (cadmium, lead and zinc). Sediment samples were also analyzed for total solids.

Holding times and preservation: The sediment and equipment blank samples were collected on September 4, 2016 and shipped on September 6, 2016. The samples were received at the laboratory on September 7, 2016, in coolers at the correct temperatures.

There were no holding time exceedances with the exception of the total solids results for all sediment samples. Air dried total solids (used for sample quantitation) and total solids (used for reporting) were performed on the sediment samples on September 12 and 13, 2016, one to two days beyond the 7-days from collection holding time. The total solids results in all sediment samples were flagged "J" due to the holding time exceedances.

Instrument calibrations: All initial/continuing calibration recoveries where applicable, were within acceptance limits.

Laboratory (method and instrument) and equipment rinsate blanks: The presence of blank contamination indicates that false positive results may exist for these analytes in the associated field samples. Sample results (associated with positive blank results) that are less than the MRL and/or less than five times the maximum blank concentration were qualified with a "U" and are considered to be nondetect at the reported value.

Laboratory blank actions were first taken to the equipment blank samples and the results that were considered to be non-detect due to laboratory blank contamination were not applied to the sediment samples. Positive and negative values reported in the laboratory calibration and method blanks and in the associated field equipment blanks were used to assess contamination in associated sediment samples.

2016 Marine Sediment Monitoring Laboratory Data Assessment November 28, 2016 Page 5 of 6

There was no negative instrument drift noted for any of the laboratory blanks (initial and continuing calibration blanks or method blanks).

There were no blank actions resulting from positive contamination noted in the laboratory blanks or method blanks associated with the sediment samples since all sample concentrations were greater than MRL.

One equipment blank sample (i.e. 16-043_EB) and one source water blank (i.e. 16-044_SB) were collected in association with the sediment samples. The highest blank concentrations were used to assess contamination in the sediment samples. Zinc results in all sediment samples were qualified as estimated with potential high bias (J+) since concentrations in the equipment blank were greater than MRL and the sample concentrations were all greater than the MRL but less than the action limit of 10x the maximum blank concentration.

Analyte (Source)	Maximum Concentration in Blank (mg/L)	10x Blank Concentration (mg/kg)	Data Assessment Actions Taken
Lead (16- 043_EB)	0.0011 mg/L	5.5	All sediment samples are > MRL and >10x Action Limit, therefore, no actions required.
Zinc (16- 043_EB)	0.040 mg/L	200	All sediment samples are > MRL but <10x Action Limit, qualify associated samples J+, estimated with potential high bias.

The highest concentrations detected in associated blanks are summarized below.

Matrix Spike: Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sediment sample 16-038 NMO-A (L32770-04) for metals. Percent recoveries (%R) and relative percent differences (RPDs) were within the acceptance limits of 75%–125% and 20 RPD for all analytes.

Post-Digestion Spike (applicable to metals only): there were no post-digestion analyses performed on the sediment samples. There were no qualifications made on this basis.

Laboratory Duplicate: All laboratory duplicate percent relative percent difference (RPD) values (total solids) were within the acceptance limit of 20.

Laboratory Control Sample and Laboratory Control Sample Duplicate: All LCS/LCSD recoveries and RPDs were within acceptance limits.

ICP Interference Check Sample—ICSAB (applicable to metals only): All inter-element check sample recoveries were within acceptance limits.

2016 Marine Sediment Monitoring Laboratory Data Assessment November 28, 2016 Page 6 of 6

ICP Serial Dilution (applicable to metals only): Serial dilution analyses were performed on a minimum of one per 20 soil samples for all metals. Serial dilution results were within the acceptance limits of 10 %D for all analytes.

Field Duplicates: Field duplicate sample pair 16-038 NMO-A/ 16-039 NMO-B was submitted for analysis. Field duplicate precision was assessed by calculating relative percent difference (RPD) values. All RPDs were within the acceptance limits of \pm 50%.

Additional Issues: Additional issues that may affect data quality are discussed below.

It was noted that the MDLs and MRLs reported by the laboratory did not meet the QAPP specified MDLs and MRLs. The QAPP specified MDL/MRL limits are: cadmium (0.008/0.02 mg/kg), lead (0.005/0.05 mg/kg) and zinc (0.2/0.5 mg/kg). The laboratory reported MDLs/MRLs were: cadmium (0.05/0.3 mg/kg), lead (0.05/0.3 mg/kg) and zinc (1.0/3.0 mg/kg). No qualifications or actions were taken except for this notation since all analytes were reported at detectable concentrations in all samples. Cadmium concentrations were reported below the MRL but were already flagged as estimated.

Laboratory-assigned "B" qualifiers indicating results that were less than the MRL but greater than the MDL were replaced by a "J" qualifier during data validation.

Data Package Summary:

- "J+" qualifiers were assigned to all sediment zinc results due to equipment blank contamination.
- "J" qualifiers were assigned to the total solids results for all sediment samples due to the holding time exceedances.
- Laboratory-assigned "B" qualifiers indicating results that were less than the MRL but greater than the MDL were replaced by a "J" qualifier during data validation.

4 Data Assessment Conclusions

All of the ACZ data are considered usable for project decision making. Nonconformances were noted in the ACZ data and actions were taken for the following nonconformances: holding time exceedance and equipment blank contamination.

Appendix B

Field Notes

Rile in the Rain MAN	0 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	PAGE REFERENCE DATE
1	
Name Kev CHNGE/O	
² Address KCERRETO @ EXPONENT CON	
During RED NOG 2016	
NIMENT PRAVA	
9	
Clear Vinvi Protective Slibcovers (Item No. 30) are available for this style of notebook.	
Helps protect your notebook from wear & tear. Contact your dealer or the J. L. Darling Corporation	

20 land duck land hall Alde in the Rain of the station read to redring revel and some the 1314 N/46 Z, Sugly v- buch DW PRONT & Live & Lick 1215 But were Sclet 132 NM Enlew hord HID Arny O Vot James Nerisca Niromi Frust からしい Vicula greed Fres SUMAS 120 Met of Jo Seletes after oriention. Ole to neet the and Schola. The ad hopekils set aut to scripte the first les the c week willing (?) much langer of States will join us for is severtion. Doesed arrive & duck a fil ~10-1030. ifthe weeks. It berged Acrie RD Wie Check Kim operations of deck here and a Cherrel S or 6 & Currit duck the cuergey ted suest 0430 52 Rh / Web- 1 te uckr EXPONNT Inenopx3 9/2/16 OFO HA HA 5 i The second s

Cours gruede vedien and 5 hete in the halm 745 Buck at PAC Super for 68 + Source preserval in Withie acid. All samples plead 1514 NMAA - W-Dorit Clarry + herd buck to back Ž over the previous shows. 1534 Equipment BILK 1537 Source webs semple Equipment labor Hu-1507NMAA - crive A tim but clams. Ful grevel 5 Had NMU MS/MSD Sam Line/ 1-1-1] NML Course, ved, bue grue NWN Sent Brow Sine 5 1410 NMD Fell diplicite Buse left Gon & Suple Do l 1454 AM Scole Send + sift Firm. NUN 1440 NML - MILINE MMW next e l' 13 Y2 Brive

2 hitter in the hain. ; . ⁶ 9/5/16 Tetry RD check to Kitz tolly STRATE CONTRACTOR

Appendix C

Sediment Photos by Station

Station NMM

Station NMGZ

Station NMN

Station NMO

NMO Field Duplicate

NMO MS/MSD

Station NML

Station NMD

Station NMAA

Appendix D

ACZ Laboratory Reports

November 08, 2016

Report to: Joe Diehl Teck Alaska Incorporated P.O. Box 1230

Kotzebue, AK 99752

cc: Rebecca Hager

Bill to: Accounts Payable Teck Alaska Incorporated 3105 Lakeshore Drive Bldg. A - Suite 101 Anchorage, AK 99517

Project ID: 1370966-SVC ACZ Project ID: L32771

Joe Diehl:

Enclosed are revised analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 07, 2016 and originally reported on September 16, 2016. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ's project number, L32771. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L32771. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 16, 2017. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

re gibllu

Sue Webber has reviewed and approved this report.

TECK ALASKA INCORPORATED

Level IV Data Package – L32771 Table of Contents

- 1. Analytical Report Cover Page 1
- 2. Table of Contents Page 2
- 3. Sample Summary Page 3
- 4. Case Narrative Page 4
- 5. Inorganic Analytical Results Pages 5 to 10
 - a. Total Metals
 - b. Inorganic Reference Page
 - c. Inorganic QC Summary
 - i. Calibration data
 - ii. LCSW, LFB, LRB, PBW, SIC, PQV results
 - iii. Matrix/Analytical Spike Recoveries
 - iv. Duplicate Precision
 - d. Inorganic Extended Qualifier Page
 - e. Certification Qualifiers
- 6. Inorganic Raw Data- Pages Pages 11 to 81
- 7. Run Logs- **Pages 82 to 83**
- 8. Sample Receipt Documents- Pages 84 to 86
 - a. Sample Receipt Form
 - b. Chain of Custody Copy

ACZ Project ID: L32771

SAMPLE ID	LAB NO.	SAMPLE DATE	SAMPLE TIME
16-043 EB	L32771-01	9/4/2016	15:34
16-044 SB	L32771-02	9/4/2016	15:37

Teck Alaska Incorporated

November 08, 2016

Project ID: 1370966-SVC ACZ Project ID: L32771

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 2 miscellaneous samples from Teck Alaska Incorporated on September 7, 2016. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L32771. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This report was revised on 11/8/16 to include Level IV reporting. No other changes were made.

Teck Alaska Incorporated

Project ID:	1370966-SVC
Sample ID:	16-043 EB

ACZ Sample ID: L32771-01 Date Sampled: 09/04/16 15:34 Date Received: 09/07/16 Sample Matrix: Surface Water

Inorganic Prep									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M200.2 ICP-MS							09/14/16 12:59	mfm
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total	M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	09/15/16 23:49	msh
Lead, total	M200.8 ICP-MS	1	0.0011		mg/L	0.0001	0.0005	09/15/16 23:49	msh
Zinc, total	M200.8 ICP-MS	1	0.040		mg/L	0.002	0.005	09/15/16 23:49	msh

Inorganic Analytical Results

Teck Alaska Incorporated

Project ID:	1370966-SVC
Sample ID:	16-044 SB

ACZ Sample ID: L32771-02 Date Sampled: 09/04/16 15:37 Date Received: 09/07/16 Sample Matrix: Surface Water

Inorganic Prep									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M200.2 ICP-MS							09/14/16 13:10) mfm
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total	M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	09/15/16 23:52	2 msh
Lead, total	M200.8 ICP-MS	1	0.0008		mg/L	0.0001	0.0005	09/15/16 23:52	2 msh
Zinc, total	M200.8 ICP-MS	1	0.029		mg/L	0.002	0.005	09/15/16 23:52	2 msh

Inorganic Reference

Report Header	Explanations							
Batch	A distinct set of sample	s analyzed at a specific time						
Found	Value of the QC Type of	f interest						
Limit	Upper limit for RPD, in	%.						
Lower	Lower Recovery Limit, i	in % (except for LCSS, mg/Kg)						
MDL	Method Detection Limit	. Same as Minimum Reporting Limit u	nless omitted or ea	qual to the PQL (see comment #5).				
	Allows for instrument ar	nd annual fluctuations.						
PCN/SCN	A number assigned to r	eagents/standards to trace to the man	ufacturer's certifica	ate of analysis				
PQL	PL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".							
QC	True Value of the Control Sample or the amount added to the Spike							
Rec	Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)							
RPD	RPD Relative Percent Difference, calculation used for Duplicate QC Types							
Upper	Upper Recovery Limit,	in % (except for LCSS, mg/Kg)						
Sample	mple Value of the Sample of interest							
OC Comula Tu								
QC Sample Typ AS	Analytical Spike (Post D	Direction	LCSWD	Laboratory Control Sample - Water Duplicate				
AS ASD		o ,	LESWD	, , ,				
CCB	Analytical Spike (Post D	• / /	LFB	Laboratory Fortified Blank				
CCV	Continuing Calibration		LFM	Laboratory Fortified Matrix				
DUP	Continuing Calibration	venilication standard	LRB	Laboratory Fortified Matrix Duplicate				
ICB	Sample Duplicate			Laboratory Reagent Blank				
	Initial Calibration Blank	- the standard	MS	Matrix Spike				
ICV	Initial Calibration Verific		MSD	Matrix Spike Duplicate				
ICSAB		n Standard - A plus B solutions	PBS	Prep Blank - Soil				
LCSS	Laboratory Control San	•	PBW	Prep Blank - Water				
LCSSD	Laboratory Control San		PQV	Practical Quantitation Verification standard				
LCSW	Laboratory Control San	ipie - vvater	SDL	Serial Dilution				
QC Sample Typ	pe Explanations							
Blanks		Verifies that there is no or minimal co	ontamination in the	e prep method or calibration procedure.				
Control San	nples	Verifies the accuracy of the method,	including the prep	procedure.				
Duplicates		Verifies the precision of the instrume	ent and/or method.					
Spikes/Fort	ified Matrix	Determines sample matrix interferen	ices, if any.					
Standard		Verifies the validity of the calibration.						

AC2 Qualifiers (Qual)

 B
 Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.

 H
 Analysis exceeded method hold time. pH is a field test with an immediate hold time.

 L
 Target analyte response was below the laboratory defined negative threshold.

 U
 The material was analyzed for, but was not detected above the level of the associated value.

 The associated value is either the sample quantitation limit or the sample detection limit.

(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.			
(2)	EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.			
(3)	EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples - Supplement I, May 1994.			
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.			
(5)	Standard Methods for the Examination of Water and Wastewater.			
mments				
(1)	QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.			
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.			
(3)	Animal matrices for Inorganic analyses are reported on an "as received" basis.			
	An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier			
(4)				
(4)	associated with the result.			

REP001.03.15.02

Inorganic QC Summary

Teck Alaska Incorporated

ACZ Project ID: L32771

AC210 Type Analyzed PCN/ISCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG4090090 WG409000(V ICV 00/15/16/22:15 MS160825-2 0.5	Cadmium, total			M200.8 IC	P-MS									
WG409990FCV ICV 09/15/16 22:15 MS10923-2 0.5 05087 mpl. 102 9.0 110	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG49898CB WG49898CB WG49898CP WG49898CP UG49898CP UG49898CP U C U	WG409909													
WG49898CB WG49898CB WG49898CP WG49898CP UG49898CP UG49898CP U C U	WG409909ICV	ICV	09/15/16 22:15	MS160823-2	.05		.05087	mg/L	102	90	110			
WG409788LR8 LR8 09/15/16/22.21 WG409263-3 0.5005 0.40441 mgl 93 93 91 10 WG4099060C16 CC0 09/15/16/22.24 MS160626-3 0.5005 U 0.40461 mgl 93 90 90 10 10 WG4099060C161 CC0 09/15/16/23.21 MS160626-3 0.5005 U 0.40461 mgl 93 90 10								-						
WG409908LFB LFB 0915/16 22:24 MS160826-3 .05005 .04641 mpL 93 85 115								-						
WG499990CCB1 CCB 99115/16 22.5 WS169026-3 0.5005 U 0.4461 mg/L 9.0 7.0 130 4 20 L3274-03LFM LFM 09115/16 22.2 MS169026-3 0.5005 U 0.4461 mg/L 89 70 130 4 20 WG4099905CV2 CCV 09115/16 23.5 MS169014-3 .1001 U mg/L 90 110 90 110 4 20 WG4099905CV2 CCV 09115/16 23.5 MS169014-3 .1001 U mg/L 90 0.0003 .0003 WG4099905CV3 CCB 0915/16 23.55 MS169014-3 .1001 C mg/L 0.0003 0.0003 .0003 WG4099905CW1 CCB 0915/16 22.15 MS169023-2 .05 .05036 mg/L mg/L 0.0003 0.0003	WG409768LFB	LFB	09/15/16 22:24	MS160826-3	.05005		.04641	mg/L	93	85	115			
L32754-03LFM LFM 0917516 22.21 MS160826-3 05005 U 04467 mgL 83 70 130 4 20 MS4009005CV2 CCV 0917516 22.30 MS160814-3 .1001 0010 mgL 93 70 130 4 20 WG4090005CC8 CCW 0917516 22.35 MS160914-3 .1001 0016 mgL 90 100 0.0003 0	WG409909CCV1	CCV	09/15/16 22:49	MS160914-3	.1001		.09883	mg/L	99	90	110			
L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .05005 U .04461 mgL 89 70 130 4 20 WG409900CCV CCV 09/15/16 23:35 MS160914-3 .1001 U mgL 95 90 110	WG409909CCB1	ССВ	09/15/16 22:52				U	mg/L		-0.0003	0.0003			
WG409990CC2 CCV 09/15/16 23:27 MS160914-3 .1001 .09105 mgL 91 90 110 WG409990CCB2 CCC 09/15/16 23:30 MS160914-3 .1001 .09648 mgL 95 90 .100 WG409909CCB3 CCB 09/15/16 23:35 MS160914-3 .1001 .09548 mgL 95 90 .100 Lead, total MS10011/5 23:53 MS160912-3 .1001 U mgL 90 .100 .100 .00003 .00003 .00003 WG409900CV CV 09/15/16 22:15 MS160825-2 .05 U mgL 93 85 110 .100 .100 WG409905CV ICV 09/15/16 22:15 MS160825-3 .05005 .0467 mgL 93 85 115 .100 .110 .110 .12754-03.1FM .160 .161 .100 .110 .110 .110 .12754-03.1FM .160 .110 .110 .110 .110 .110 .12754-03.1FM<	L32754-03LFM	LFM	09/15/16 23:21	MS160826-3	.05005	U	.04657	mg/L	93	70	130			
WG409909CC82 CC8 09/15/16 23:50 MS160914-3 1001 0.0648 mgl. 95 90 110 WG409909CC83 CC0 09/15/16 23:58 MS160914-3 .1001 .06648 mgl. 95 90 110 Lead, total M200 8 ICP-MS M200 8 ICP-MS Note	L32754-03LFMD	LFMD	09/15/16 23:24	MS160826-3	.05005	U	.04461	mg/L	89	70	130	4	20	
WG409909CCV3 CCV 09/15/16 23:58 MS160914-3 1:001 .09548 mg/L 95 90 110 Lead, total M200.8 ICP-MS KG210 Typ Analyzed PC//SCN QC Sample Number lead Num lead Num lead Nu	WG409909CCV2	CCV	09/15/16 23:27	MS160914-3	.1001		.09105	mg/L	91	90	110			
Wid409909CC83 CC8 09/15/16 23:58 U mg/L -0.0003 0.0003	WG409909CCB2	ССВ	09/15/16 23:30				U	mg/L		-0.0003	0.0003			
Lead, total M200.8 ICP-MS Ac2 ID Type Analyzad PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG4099090 WG4099091CV ICV 09/15/16 22:15 MS160823-2 .05 .05308 mg/L 106 90 110 Version Version Version .00003 .00003 .00002 .000022 .00003	WG409909CCV3	CCV	09/15/16 23:55	MS160914-3	.1001		.09548	mg/L	95	90	110			
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG409909ICV ICV 09/15/16 22:15 MS160823-2 .05 .05308 mgl 106 90 110	WG409909CCB3	ССВ	09/15/16 23:58				U	mg/L		-0.0003	0.0003			
WG409909 No. No. No. WG409909ICV ICV 09/15/16 22:18 NS160823-2 .05 .05308 mg/L 106 90 110 WG409909IC8 ICB 09/15/16 22:18 U mg/L -0.00032 0.00022 0.00022 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .05005 .0467 mg/L -0.00032 0.00002 WG409909CC91 CCV 09/15/16 22:49 MS160826-3 .05005 .0467 mg/L -0.0003 0.0003 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .05005 .0002 .04502 mg/L -0.0003 .00003 L32754-03LFMD LFMD 09/15/16 23:21 MS160826-3 .05005 .0002 .04403 mg/L 90 70 130 2 20 WG409909CCV2 CCV 09/15/16 23:30 U mg/L -0.0003 .00003 . WG409909CC83 CCB 09/15/16 23:55 MS160814-3 .25025 <td< td=""><td>Lead, total</td><td></td><td></td><td>M200.8 IC</td><td>P-MS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Lead, total			M200.8 IC	P-MS									
WG409909CV ICV 09/15/16 22:15 MS160823-2 .05 .05308 mg/L 106 90 110 WG409909CB ICB 09/15/16 22:18 U mg/L -0.0003 0.0003 WG409788LRB LRB 09/15/16 22:24 MS160826-3 .05005 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:52 U mg/L -0.0003 0.0003 WG409909CCB1 CCB 09/15/16 22:52 U mg/L -0.0003 0.0003 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .05005 .0002 .04502 mg/L 90 70 130 2 20 WG409909CCB2 CCCV 09/15/16 23:27 MS160814-3 .25025 .2289 mg/L 90 110 46409909CCV3 CCV 09/15/16 23:55 MS160914-3 .25025 .2378 mg/L 95 90 110 U mg/L -0.0003 .0.0003 </td <td>ACZ ID</td> <td>Туре</td> <td>Analyzed</td> <td>PCN/SCN</td> <td>QC</td> <td>Sample</td> <td>Found</td> <td>Units</td> <td>Rec</td> <td>Lower</td> <td>Upper</td> <td>RPD</td> <td>Limit</td> <td>Qual</td>	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG409909ICB ICB 09/15/16 22:18 U mg/L -0.00032 0.00032 0.00022 WG409768LRB LRB 09/15/16 22:24 MS160826-3 .05005 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160826-3 .05005 .00467 mg/L 100 90 110	WG409909													
WG409909ICB ICB 09/15/16 22:18 U mg/L -0.00032 0.00032 0.00022 WG409768LRB LRB 09/15/16 22:24 MS160826-3 .05005 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160826-3 .05005 .00467 mg/L 100 90 110		ICV	09/15/16 22:15	MS160823-2	05		05308	ma/L	106	90	110			
WG409768LRB LRB 09/15/16 22:21 MS160826-3 50505 0467 mg/L 93 85 115 WG4099090CV1 CCV 09/15/16 22:42 MS160826-3 50505 2506 mg/L 100 90 110 yee yee WG409909CV1 CCW 09/15/16 22:24 MS160826-3 5005 002 0467 mg/L 100 90 110 yee					.00			-	100					
WG409768LFB WG409909CCV1 LFB 09/15/16 22:49 MS1608263 .05005 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:49 MS160914-3 .25025 .2506 mg/L 100 90 110 UG409909CCV1 CCB 09/15/16 22:52 MS160826-3 .05005 .0002 .0460 mg/L 90 70 130 2 20 .05005 .0002 .04003 mg/L 88 70 130 2 20 .05005 .05005 .0020 .0403 mg/L 81 70 130 2 20 .05005 .05005 .0202 .0403 mg/L 81 70 130 2 20 .05005 .05005 .0202 .0403 mg/L 81 90 110 .05003 .0002 .0402 mg/L 90 110 .05003 .05005 .0501 mg/L 90 110 .05003 .0501 mg/L .0500 .0003 .05013 .05015 .0501 mg/L 90 110 .0501 mg/L 90<								-						
WG4099902CV1 CCV 09/15/16 2:49 MS160914:3 .2:5025 .2:506 mg/L 100 90 110 WG409909CCB1 CCB 09/15/16 2::2:2 U mg/L -0.0003 0.0003 L3:2754-03LFM LFM 09/15/16 2::2:1 MS160826-3 .05005 .0002 .04403 mg/L 90 70 130 2 20 UG4099090CCV2 CCV 09/15/16 2::2:1 MS160826-3 .05005 .0002 .04403 mg/L 88 70 130 2 20 WG4099090CCV2 CCV 09/15/16 2::3:0 MS160914-3 .25025 .2289 mg/L 90 110				MS160826-3	05005			-	93					
WG4099902CB1 CCB 09/15/16 22:52 U mg/L -0.0003 0.0003 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .05005 .0002 .04502 mg/L 90 70 130 2 20 U32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .05005 .0002 .04403 mg/L 90 70 130 2 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .25025 .2289 mg/L 91 90 110 - - .0003 0.0003 .0004 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								-						
L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .05005 .0002 .04403 mg/L 90 70 130 2 20 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .05005 .0002 .04403 mg/L 88 70 130 2 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .25025 .2289 mg/L 91 90 110					.20020			-	100					
L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .05005 .0002 .04403 mg/L 88 70 130 2 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .25025 .2289 mg/L 91 90 110 - <td< td=""><td></td><td></td><td></td><td>MS160826-3</td><td>.05005</td><td>.0002</td><td></td><td>-</td><td>90</td><td></td><td></td><td></td><td></td><td></td></td<>				MS160826-3	.05005	.0002		-	90					
WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .25025 .2289 mg/L 91 90 110 WG409909CCB2 CCB 09/15/16 23:30 MS160914-3 .25025 .2378 mg/L 95 90 110 WG409909CCB3 CCB 09/15/16 23:58 MS160914-3 .25025 .2378 mg/L 95 90 110 WG409909CCB3 CCB 09/15/16 23:58 MS160914-3 .25025 .2378 mg/L 95 90 110 WG409909CCB3 CCB 09/15/16 23:58 MS160914-3 .25025 .2378 mg/L 95 90 110 WG409909CCB3 CCB 09/15/16 23:58 MS160914-3 .25025 .2378 mg/L 95 90 110 WG409909C Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG409909ICV ICV 09/15/16 22:15 MS160826-3 .05113 mg/L 102 90 110 90 110 90 110 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>2</td> <td>20</td> <td></td>								-				2	20	
WG409990CCB2 CCB 09/15/16 23:30 MS160914-3 .25025 U mg/L 9.0003 0.0003	WG409909CCV2	CCV	09/15/16 23:27	MS160914-3	.25025		.2289	mg/L	91	90	110			
WG409909CCB3 CCB 09/15/16 23:58 U mg/L -0.0003 0.0003 Zinc, total M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Linit Qual WG409909 Vice Distribution MS160823-2 .05 .051 mg/L 102 90 110 Y Y Y No 00044 Y Y No 00044 Y Y Y No 00044 Y Y No 00044 Y Y No 00044 Y Y No	WG409909CCB2	ССВ					U	mg/L		-0.0003	0.0003			
Zinc, total M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG4099090 U ICV 09/15/16 22:15 MS160823-2 .05 .051 mg/L 102 90 110 U WG409909ICV ICV 09/15/16 22:18 U mg/L -0.006 0.006 U MS160823-2 .05 .051 mg/L -0.0044 0.0044 U MS160826-3 .050135 .0467 mg/L 93 85 115 U MS409909CV1 CCV 09/15/16 22:24 MS160826-3 .050135 .5039 mg/L 101 90 110 U MG409909CV1 CCV 09/15/16 22:52 U mg/L -0.006 0.006 IS2754-03LFM IFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 IS2754-03LFMD IFMD 09/15/16 23:24 MS160826-3				MS160914-3	.25025			-	95					
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG4099090 ICV 09/15/16 22:15 MS160823-2 .05 .051 mg/L 102 90 110 - - - - 0.051 mg/L - - 0.056 0.006 0.006 - - - - 0.006 0.006 - - - - 0.006 0.006 - - - - - 0.006 0.006 - - - - - 0.006 0.006 - - - - - 0.006 0.0044 - - - - - 0.006 0.0044 - - - - - 0.006 0.0044 - - - - - 0.006 0.0044 - - - - - 0.006 0.005 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-						
WG409909 WG409909ICV ICV 09/15/16 22:15 MS160823-2 .05 .051 mg/L 102 90 110 WG409909ICB ICB 09/15/16 22:18 U mg/L -0.006 0.006 WG409768LRB LRB 09/15/16 22:21 U mg/L -0.0044 0.0044 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160826-3 .050135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 23:24 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .002 .0482 mg/L 92 70 130 4 20	Zinc, total			M200.8 IC	P-MS									
WG409909ICV ICV 09/15/16 22:15 MS160823-2 .05 .051 mg/L 102 90 110 WG409909ICB ICB 09/15/16 22:18 U mg/L -0.006 0.006 WG409768LRB LRB 09/15/16 22:21 U mg/L -0.0044 0.0044 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160826-3 .050135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:22 MS160826-3 .050135 .002 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:21 MS160826-3 .050135 .002 .5033 mg/L 96 70 130 L32754-03LFM LFM 09/15/16 23:24 MS160826-3 .50135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .0	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG409909ICV ICV 09/15/16 22:15 MS160823-2 .05 .051 mg/L 102 90 110 WG409909ICB ICB 09/15/16 22:18 U mg/L -0.006 0.006 WG409768LRB LRB 09/15/16 22:21 U mg/L -0.0044 0.0044 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160826-3 .050135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:22 MS160826-3 .050135 .002 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:21 MS160826-3 .050135 .002 .5033 mg/L 96 70 130 L32754-03LFM LFM 09/15/16 23:24 MS160826-3 .50135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .0	WG409909													
WG409909ICB ICB 09/15/16 22:18 U mg/L -0.006 0.006 WG409768LRB LRB 09/15/16 22:21 U mg/L -0.0044 0.0044 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:24 MS160914-3 .50135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFM 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .002 .0482 mg/L 92 70 130 4 20		ICV	09/15/16 22:15	MS160823-2	.05		.051	mg/L	102	90	110			
WG409768LRB LRB 09/15/16 22:21 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:249 MS160914-3 .50135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:52 U mg/L -0.006 0.006 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:27 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .002 .0482 mg/L 92 70 130 4 20					-			-	-					
WG409768LFB LFB 09/15/16 22:24 MS160826-3 .050135 .0467 mg/L 93 85 115 WG409909CCV1 CCV 09/15/16 22:249 MS160914-3 .50135 .5039 mg/L 101 90 110 WG409909CCB1 CCB 09/15/16 22:252 U mg/L -0.006 0.006 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .002 .0482 mg/L 92 70 130 4 20														
WG4099990CCV1 CCV 09/15/16 22:49 MS160914-3 .50135 .5039 mg/L 101 90 110 WG4099090CCB1 CCB 09/15/16 22:52 U mg/L -0.006 0.006 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .0482 mg/L 96 90 110				MS160826-3	.050135				93					
WG4099990CCB1 CCB 09/15/16 22:52 U mg/L -0.006 0.006 L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .4813 mg/L 96 90 110								-						
L32754-03LFM LFM 09/15/16 23:21 MS160826-3 .050135 .002 .0503 mg/L 96 70 130 L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .4813 mg/L 96 90 110								mg/L						
L32754-03LFMD LFMD 09/15/16 23:24 MS160826-3 .050135 .002 .0482 mg/L 92 70 130 4 20 WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .4813 mg/L 96 90 110				MS160826-3	.050135	.002	.0503	mg/L	96					
WG409909CCV2 CCV 09/15/16 23:27 MS160914-3 .50135 .4813 mg/L 96 90 110												4	20	
								mg/L						
WG409909CCV3 CCV 09/15/16 23:55 MS160914-3 .50135 .4956 mg/L 99 90 110				MS160914-3	.50135		.4956	mg/L	99					
WG409909CCB3 CCB 09/15/16 23:58 U mg/L -0.006 0.006	WG409909CCB3	ССВ					U	mg/L		-0.006	0.006			

ACZ Project ID: L32771

Teck Alaska Incorporated

ACZ ID WOR	KNUM PARAMETER	METHOD	QUAL DESCRIPTION

No extended qualifiers associated with this analysis

Teck Alaska Incorporated

ACZ Project ID: L32771

No certification qualifiers associated with this analysis

	QC List Type: QC-ICP QCListMatClass: LIQUID Bench Sheet List: I-ICPMS QC Ref: MA-ICP Group ID: MA-G-M Method Ref: M200.8 SOP Ref: SOPII0:	QC List Type: QC-ICPMS-200 QCListMatClass: LIQUID Bench Sheet List: I-ICPMS-T-200 QC Ref: MA-ICPMS-T-200 Group ID: MA-G-MS-T-200-CC Method Ref: M200.8 C. Cell SOP Ref: SOPI1022	20			NA G4OUGUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU		り目		ユ目				$\lesssim \blacksquare$			0			Instrument ID: ICPMS5 Analyst: And ACZ Dept: 33 Create Date: 09/15/2016 16:01 Start Date/Time: A-6-(6 End Date/Time: A-6-(6	50
щa	ACZ ID	Client ID	Subsx	Pri Prep Dii		EC 10	TDS A	AG AL AS F TM TM TM TM S S S 20 20 20 0 0 0	A TM S S 0	ME SOOO	CD CD CO S S 20 20 0 0	152020	CU MN MO PB S TM TM TM TM TM S S S S 20 20 20 20 0 0 0 0	MW SOO	N TW S 20 20	0 So Z B	20 SI SE	20 S S S	U ZN S S 20 20 0 0	Dilution	
-	WG409909ICV	MS160823-2		-	-	-	>		5								100	>		1	
2	WG409909ICB	NONE		-	t		2	2	>		>		>	2					-	-	
3	WG409768LRB	NONE		-	-	-	>		>	>		_	>	>	2	22	2	>	>	F	
4	WG409768LFB	MS160826-3		*			>	>		>	>	5	-	>	>	5	-	>		-	
S	L32649-01	Zrsn				67.7 3	36	>												1	
9	L32649-02	LG2		-	12.0	80.1 5	52	>					>							1	
2	L32649-03	CA1		F		76.2 5	52	>												1	
80	L32649-04	LM02		-		121 6	66	>													
σ	L32649-05	SJT2		-	11	83.9 5	56	>	_											1	
10	L32649-05LFM	MS160826-3		5			2	>	-	>	>	>		>	>	>	>	>		-	
7	L32649-05LFMD	MS160826-3		-		-	>	2	5	>	>	>	>	>	>	>	>	>	>	1	
12	L32649-06	N1		*		62.4 3	34	2					-1-							T.	
13	WG409909CCV1	MS160914-3		-	_		2	>		-	2	>		>	>	>	>	>		-	
14	WG409909CCB1	NONE		-			2	>			>	>	>	>	>	>	>	>	5	1	
15	L32730-01	ARG-1				120 11	112*		>	>		>			>	>		>		1	
16	L32730-02	SC-1		2		-	210			>		5			>	>		>		5 /	
17		JEFFWAY GULCH SPRING		2		1350 98	986		>											2	
18	L32752-08	JEFFWAY WEMT ABOVE C		-	1	1470 11	1150													+	
19	L32754-01	PINALCK@ICCCODMA	4)	50 1	11	1740* 15	1500			>	>		5	>	>	>	>	>		+	
20	L32754-02	PINALCK@PRINGLE	4)	50 1		1644 13	1370			>			>					>		1	
21	L32754-03	PINALCK@SEERANCH	43	50 1		1543 12	1260			>	>	>	>					>		-	
3	L32754-03LFM	MS160826-3		-			>	>					>	>	>	5	>	>	>	1	
																				NSIL HIGH	(6
Rep	Report Comments:									1										AREV: 1 1 1 Initials, Date	
Intel	Internal Comments									11										Al BASH	1
																				SKEV: U 10	5-
-	132771-1611081657	57								1										Ded	Page 11 of 86

CCPMS Total 20 CCListMatC QCListMatC Bench Sheet CocustMatC Bench Sheet Cocust Cocust Cocust Bench Sheet Cocust Bench Sheet Scop Cocust Scop Scop Cocust Cocust Scop Scop Scop Scop Scop Scop Scop Scop Scop	otal 200-CC OC List Type: OC-ICPMS-200 AEZ Laboratories, Inc Instrument ID: ICPMS5	S-T-200 MS-T-200 MS-T-200 S-T-200-CC C. Cell C. Cell	Client ID SubSX Prip Fep EC TDS AG AL AS BE CD CH ZN Dilution Dil TM TM		1355-ACCS-ZE 40 1 1050 782 V V V V V V V V V V					3410				
	ICPMS Total 200-CC	QCListMatClass: LIQUID Bench Sheet List: I-ICPMS QC Ref: MA-ICP Group ID: MA-G-N Method Ref: M200.8 SOP Ref: SOPII0:	ACZ ID	L32754-03LFMD	L32759-01	WG409909CCV2	WG409909CCB2	L32/59-02	L32761-01	L32761-04	L32771-01	L32771-02	WG409909CCV3	WG409909CCB3

v

ICPNIS Total 200-CC OC List Type: GC-ICPMS-200 OC List Type: GC-ICPMS-200 OC List Type: GC-ICPMS-200 OC List Type: GC-ICPMS-200 OC List Type: GC-ICPMS-200 Bench State List: HI-CPMS-1-200 Sere Macrost State List: HI-CPMS-1-200 Sample Sample Sample Sample List: HI-CPMS-1-200 Sample Sample Sample List: HI-CPMS-1-200 Sample List: HI-CPMS-1 Sample List: HI-CPMS-1 Sample List: HI-CPMS-1 Sample List: HI-CPMS-1 Sample	4099909 ALZ Laboratories, Inc Analyst Analyst Analyst Analyst Analyst Arz Dept: 33 Create Date: 09/15/2016 16:01 Start Date/Time: End Date/Time:		AREV: Initials, Date
	C-ICPMS-200 2010 2010 2PMS-T-200 1-ICPMS-T-200 1-ICPMS-T-200 C-G-MS-T-200-CC 100.8 C. Cell 00.8 C. Cell	Login Comments O(2), P.U.W.R.G. SPG II O(2), P.U.W.R.G. SPG II D(2), P.U.W.R.PC. GPC II U.U.W.R.PC. GPC II U.U.W.R.PC. GPC II U.U.W.R.PC. GPC II U.U.W.R.PC. GPC II U.W.R.PC. GPC II U.W	nments:

ACZ Laboratories, Inc. ICPMS DATA REVIEW CHECKLIST

Workgroup:	WU409909
Sample Type:	TLOOPEL
Analysis Date:	9-15-06
Analyst:	MEL

AREV:	~54
Date:	9-16-16
SREV:	MIC
Date:	910.15

	Yes No N/A
1) Is the instrument ID on the bench sheet correct?	
2) Has a passing method tune been performed within 24 hours?	T
3) Was the low calibration point dropped? If yes, notify PM of change to PQLs.	
 Is the linear regression ≥ 0.995 for the analytes of interest? 	
5) Was the PQV standard analyzed & evaluated for DW samples ? (Fail in LIMS if no DW sxs in WG.)	
6) Do the dilution factors on the benchsheet match the sequence in the raw data?	
7) Is any sample analyzed on dilution appropriately "D" qualified (not required for o-cal, EC, TDS)?	-
8) Is the correct sub-sample type entered on the bench sheet (if different than SOP)?	
9) Are the % Recoveries of the internal standards within the method limits?	1
10) Are all of the QC critera listed in LIMS within specified limits?	
11) Are all samples requiring re-analysis / re-digestion at REDO / REDX status?	
12) Are all errors properly crossed out (i.e. single-line, dated & initialed)?	
13) Is a current standard/reagent form attached to the workgroup?	
14) FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS?	

For any of the items listed above that are checked "No" state the corrective action/explanation below.

QC/Sample ID	Analytical Problem	Corrective action
Icv	T/=111	Redo
LRB	A1=1	BT/Redo
auz	C 89	Redo Sky
*		
4		
1	and the second se	

ACZ Labs, Inc. Standards/Reagents Information ICPMS, Methods 6020 and 200.8

Calibration Standards

6020/200.8 Stock #1: MS160914-1 SCN 6020/200.8 Stock #2: MS160914-2 SCN 6020/200.8 Stock #3: MS160720-4 SCN PQV STD: MS160901-3 SCN Exp. 11/30/2016

INT STD: MS160128-3 SCN Exp. 1/28/2017

Nitric Acid: 51826 PCN

Hydrochloric Acid: 51742 PCN

VERIFIED: 19-16-16

WG409909

Workgroup Review and Approval

Date Reported: 16-Sep-16 Run ID: R1451560 Date Analyzed: 15-Sep-16 ICAL Workgroup: Instrument ID: ICPMS5

Status Parm_Stored Type Value Dil Qual Units Appv MDL PQL Text Value Ext Qual Signed SREV ALUMINUM FOUND 0.1084 1 mg/L ++ 0.001 0.005 SREV ALUMINUM REC 106 1 % ++ 0.001 0.002 SREV ANTIMONY FOUND 0.02141 1 mg/L ++ 0.0004 0.002 SREV ANTIMONY REC 107 1 % ++ 0.0002 0.001 SREV ARSENIC FOUND 0.05401 1 mg/L ++ 0.0002 0.001 SREV ARSENIC FOUND 0.04898 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.04899 1 mg/L ++ 0.0005 0.002 SREV CARMIUM FOUND 0.05087 1 mg/L ++ 0.00	WG4	09909ICV		Tag:					М	easure	d: 9/15/	/2016 10: [.]	15:00 PN
SREV ALUMINUM REC 108 1 % ++ 0.001 0.005 SREV ANTIMONY FOUND 0.02141 1 mg/L ++ 0.0004 0.002 SREV ANTIMONY REC 107 1 % ++ 0.0004 0.002 SREV ANSENIC FOUND 0.05401 1 mg/L ++ 0.0005 0.001 SREV ARSENIC REC 108 1 % ++ 0.0005 0.0003 SREV BERYLLIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.002 SREV CADMIUM REC 102 1 % ++ 0.0005 0.002 SREV CADMIUM REC 100 1 % ++ 0.0005 0.003 SREV COBALT FOUND	Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV ANTIMONY FOUND 0.02141 1 mg/L ++ 0.004 0.002 SREV ANTIMONY REC 107 1 % ++ 0.002 0.001 SREV ARSENIC FOUND 0.05401 1 mg/L ++ 0.0002 0.001 SREV ARSENIC FCC 108 1 mg/L ++ 0.0005 0.0003 SREV BERYLLIUM FOUND 0.04898 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FEC 98 1 mg/L ++ 0.0005 0.0005 SREV CADMIUM FEC 102 1 % ++ 0.0005 0.002 SREV CHROMIUM FEC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.05038 1 mg/L ++ 0.0005 0.003 SREV	SREV	ALUMINUM	FOUND	0.1084	1		mg/L	++	0.001	0.005			
SREV ANTIMONY REC 107 1 % ++ 0.004 0.002 SREV ARSENIC FOUND 0.05401 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 108 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.0005 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM FOUND 0.05421 1 mg/L ++ 0.0005 0.0003 SREV COBALT FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.05086 1 mg/L ++ 0.0005 0.003 SREV LEAD	SREV	ALUMINUM	REC	108	1		%	++	0.001	0.005			
SREV ARSENIC FOUND 0.05401 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 108 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04898 1 mg/L ++ 0.0005 0.0003 SREV BERYLLIUM REC 98 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM REC 102 1 % ++ 0.0005 0.002 SREV CARMIUM REC 102 1 % ++ 0.0005 0.002 SREV CAROMIUM FOUND 0.05421 1 mg/L ++ 0.0005 0.003 SREV COBALT FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 106 1 % ++ 0.0005 0.003 SREV LEAD REC 106 1 % ++ 0.0005 0.003 SREV MANGA	SREV	ANTIMONY	FOUND	0.02141	1		mg/L	++	0.0004	0.002			
SREV ARSENIC REC 108 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04898 1 mg/L ++ 0.0005 0.003 SREV BERYLLIUM REC 98 1 % ++ 0.0005 0.003 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0005 0.002 SREV CADMIUM FOUND 0.04989 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 108 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.0572 1 mg/L ++ 0.0005 0.003 SREV LEAD REC 106 1 % ++ 0.0005 0.003 SREV MAN	SREV	ANTIMONY	REC	107	1		%	++	0.0004	0.002			
SREV BERYLLIUM FOUND 0.04898 1 mg/L ++ 0.0005 0.0003 SREV BERYLLIUM REC 98 1 % ++ 0.0005 0.003 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0001 0.0005 SREV CADMIUM REC 102 1 % ++ 0.0005 0.002 SREV CHROMIUM FOUND 0.05421 1 mg/L ++ 0.0005 0.002 SREV COBALT FOUND 0.0572 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.0572 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.0005 0.003 SREV LEAD REC 106 1 % ++ 0.0005 0.003 SREV MANGANESE FOUND	SREV	ARSENIC	FOUND	0.05401	1		mg/L	++	0.0002	0.001			
SREV BERYLLIUM REC 98 1 9 ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.0011 0.0005 SREV CADMIUM REC 102 1 % ++ 0.0011 0.0005 SREV CHROMIUM FOUND 0.04989 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 108 1 % ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.0005 0.003 SREV <t< td=""><td>SREV</td><td>ARSENIC</td><td>REC</td><td>108</td><td>1</td><td></td><td>%</td><td>++</td><td>0.0002</td><td>0.001</td><td></td><td></td><td></td></t<>	SREV	ARSENIC	REC	108	1		%	++	0.0002	0.001			
SREV CADMIUM FOUND 0.05087 1 mg/L ++ 0.001 0.0005 SREV CADMIUM REC 102 1 % ++ 0.001 0.0005 SREV CHROMIUM FOUND 0.04989 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05221 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.05308 1 mg/L ++ 0.0005 0.003 SREV LEAD REC 106 1 % ++ 0.001 0.0055 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.003 0.003 SREV MANGANESE REC 104 % ++ 0.005 0.003 SREV MOLYBDENUM	SREV	BERYLLIUM	FOUND	0.04898	1		mg/L	++	0.00005	0.0003			
SREV CADMIUM REC 102 1 % +++ 0.0001 0.0005 SREV CHROMIUM FOUND 0.04989 1 mg/L +++ 0.0005 0.002 SREV CHROMIUM REC 100 1 % +++ 0.0005 0.002 SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.0003 SREV COBALT REC 108 1 % +++ 0.0005 0.0003 SREV COPPER FOUND 0.0572 1 mg/L +++ 0.0005 0.003 SREV COPPER REC 101 % +++ 0.001 0.0005 SREV LEAD REC 106 1 % +++ 0.001 0.0005 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 104 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND	SREV	BERYLLIUM	REC	98	1		%	++	0.00005	0.0003			
SREV CHROMIUM FOUND 0.04989 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 108 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.005 0.003 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 102 1 % ++ 0.0005 0.003 SREV SLLE	SREV	CADMIUM	FOUND	0.05087	1		mg/L	++	0.0001	0.0005			
SREV CHROMIUM REC 100 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.0003 SREV COBALT REC 108 1 % ++ 0.0005 0.0003 SREV COPPER FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.001 0.0005 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.0005 0.003 SREV MANGANESE FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.05107 1 mg/L ++ 0.001 0.003 SREV SILVER FOUND	SREV	CADMIUM	REC	102	1		%	++	0.0001	0.0005			
SREV COBALT FOUND 0.05421 1 mg/L ++ 0.0005 0.0003 SREV COBALT REC 108 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.05072 1 mg/L ++ 0.005 0.003 SREV COPPER REC 101 1 % ++ 0.001 0.0005 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.005 0.003 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 104 1 % ++ 0.005 0.003 SREV MANGANESE REC 104 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0001 0.0003 SREV SELE	SREV	CHROMIUM	FOUND	0.04989	1		mg/L	++	0.0005	0.002			
SREV COBALT REC 108 1 % ++ 0.0005 0.0003 SREV COPPER FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 104 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.0001 0.003 SREV SELENIUM REC 10	SREV	CHROMIUM	REC	100	1		%	++	0.0005	0.002			
SREV COPPER FOUND 0.05072 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 101 1 % ++ 0.001 0.003 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.001 0.0055 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 104 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.001 0.003 SREV SELENIUM REC 102 1 % ++ 0.001 0.003 SREV SILVER FOUND 0.020	SREV	COBALT	FOUND	0.05421	1		mg/L	++	0.00005	0.0003			
SREV COPPER REC 101 1 9 ++ 0.005 0.003 SREV LEAD FOUND 0.05308 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 106 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 104 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.005 0.003 SREV SELENIUM REC 102 1 % ++ 0.001 0.003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.001 0.003 SREV SILVER REC 100	SREV	COBALT	REC	108	1		%	++	0.00005	0.0003			
SREVLEADFOUND0.053081mg/L++0.00010.0005SREVLEADREC1061%++0.0010.0005SREVMANGANESEFOUND0.051881mg/L++0.00050.003SREVMANGANESEREC1041%++0.00050.003SREVMOLYBDENUMFOUND0.019571mg/L++0.00050.003SREVMOLYBDENUMREC981%++0.00050.003SREVSELENIUMFOUND0.051071mg/L++0.0010.0003SREVSELENIUMREC1021%++0.0010.0033SREVSILVERFOUND0.020111mg/L++0.00050.003SREVSILVERREC1001%++0.00050.003SREVSILVERREC1111mg/L++0.00010.0055FAILTHALLIUMFOUND0.053631mg/L++0.0010.0055SREVURANIUMFOUND0.053631mg/L++0.0010.0055SREVURANIUMREC1071%++0.0010.0055SREVZINCFOUND0.0511mg/L++0.0020.005	SREV	COPPER	FOUND	0.05072	1		mg/L	++	0.0005	0.003			
SREV LEAD REC 106 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 104 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.05107 1 mg/L ++ 0.0005 0.003 SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.0011 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0001 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.003 FAIL THALLIUM FOUND 0.0534 1 mg/L ++ 0.0011 0.0005	SREV	COPPER	REC	101	1		%	++	0.0005	0.003			
SREV MANGANESE FOUND 0.05188 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 104 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.0005 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 111 1 % ALRT 0.0001 0.0005 S	SREV	LEAD	FOUND	0.05308	1		mg/L	++	0.0001	0.0005			
SREV MANGANESE REC 104 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.001 0.0005 SREV URANIUM FOUND	SREV	LEAD	REC	106	1		%	++	0.0001	0.0005			
SREV MOLYBDENUM FOUND 0.01957 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 98 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.003 SREV SILVER REC 100 1 % ++ 0.0005 0.003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 111 1 % ALRT 0.001 0.0005 SREV URANIUM REC<	SREV	MANGANESE	FOUND	0.05188	1		mg/L	++	0.0005	0.003			
SREV MOLYBDENUM REC 98 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 102 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.002 0.005 SREV URANIUM REC </td <td>SREV</td> <td>MANGANESE</td> <td>REC</td> <td>104</td> <td>1</td> <td></td> <td>%</td> <td>++</td> <td>0.0005</td> <td>0.003</td> <td></td> <td></td> <td></td>	SREV	MANGANESE	REC	104	1		%	++	0.0005	0.003			
SREV SELENIUM FOUND 0.05107 1 mg/L ++ 0.001 0.003 SREV SELENIUM REC 102 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0021 0.005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	MOLYBDENUM	FOUND	0.01957	1		mg/L	++	0.0005	0.003			
SREV SELENIUM REC 102 1 % ++ 0.001 0.003 SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.002 0.0055 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.0055	SREV	MOLYBDENUM	REC	98	1		%	++	0.0005	0.003			
SREV SILVER FOUND 0.02011 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 100 1 % ++ 0.0005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	SELENIUM	FOUND	0.05107	1		mg/L	++	0.0001	0.0003			
SREV SILVER REC 100 1 % ++ 0.00005 0.0003 FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	SELENIUM	REC	102	1		%	++	0.0001	0.0003			
FAIL THALLIUM FOUND 0.05534 1 mg/L ++ 0.0001 0.0005 FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	SILVER	FOUND	0.02011	1		mg/L	++	0.00005	0.0003			
FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	SILVER	REC	100	1		%	++	0.00005	0.0003			
FAIL THALLIUM REC 111 1 % ALRT 0.0001 0.0005 SREV URANIUM FOUND 0.05363 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	FAIL	THALLIUM	FOUND	0.05534	1		mg/L	++	0.0001	0.0005			
SREV URANIUM REC 107 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	FAIL	THALLIUM	REC	111	1			ALRT	0.0001	0.0005			
SREV ZINC FOUND 0.051 1 mg/L ++ 0.002 0.005	SREV	URANIUM	FOUND	0.05363	1		mg/L	++	0.0001	0.0005			
	SREV	URANIUM	REC	107	1		%	++	0.0001	0.0005			
SREV ZINC REC 102 1 % ++ 0.002 0.005	SREV	ZINC	FOUND	0.051	1		mg/L	++	0.002	0.005			
	SREV	ZINC	REC	102	1		%	++	0.002	0.005			

WG4	09909ICB		Tag:					M	easure	d: 9/15/	2016 10:′	8:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND		1	U	mg/L	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.0006	1	В	mg/L	++	0.0004	0.002			
SREV	ARSENIC	FOUND		1	U	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND		1	U	mg/L	++	0.0005	0.002			
SREV	COBALT	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	COPPER	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	MANGANESE	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	SELENIUM	FOUND		1	U	mg/L	++	0.0001	0.0003			
SREV	SILVER	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	THALLIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	URANIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	ZINC	FOUND		1	U	mg/L	++	0.002	0.005			

WG4	09768LRB		Tag:					M	easure	d: 9/15/	2016 10::	21:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.0058	1		mg/L	ALRT	0.001	0.005		B7	
SREV	ANTIMONY	FOUND		1	U	mg/L	++	0.0004	0.002			
SREV	ARSENIC	FOUND		1	U	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND		1	U	mg/L	++	0.0005	0.002			
SREV	COBALT	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	COPPER	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	MANGANESE	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	SELENIUM	FOUND		1	U	mg/L	++	0.0001	0.0003			
SREV	SILVER	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	THALLIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	URANIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	ZINC	FOUND		1	U	mg/L	++	0.002	0.005			

WG4	09768LFB		Tag:					M	easure	d:	9/15/	2016 10:2	24:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.0494	1		mg/L	++	0.001	0.005				
SREV	ALUMINUM	REC	99	1		%	++	0.001	0.005				
SREV	ANTIMONY	FOUND	0.01052	1		mg/L	++	0.0004	0.002				
SREV	ANTIMONY	REC	105	1		%	++	0.0004	0.002				
SREV	ARSENIC	FOUND	0.05038	1		mg/L	++	0.0002	0.001				
SREV	ARSENIC	REC	101	1		%	++	0.0002	0.001				
SREV	BERYLLIUM	FOUND	0.04628	1		mg/L	++	0.00005	0.0003				
SREV	BERYLLIUM	REC	92	1		%	++	0.00005	0.0003				
SREV	CADMIUM	FOUND	0.04641	1		mg/L	++	0.0001	0.0005				
SREV	CADMIUM	REC	93	1		%	++	0.0001	0.0005				
SREV	CHROMIUM	FOUND	0.0476	1		mg/L	++	0.0005	0.002				
SREV	CHROMIUM	REC	95	1		%	++	0.0005	0.002				
SREV	COBALT	FOUND	0.05023	1		mg/L	++	0.00005	0.0003				
SREV	COBALT	REC	100	1		%	++	0.00005	0.0003				
SREV	COPPER	FOUND	0.04629	1		mg/L	++	0.0005	0.003				
SREV	COPPER	REC	92	1		%	++	0.0005	0.003				
SREV	LEAD	FOUND	0.0467	1		mg/L	++	0.0001	0.0005				
SREV	LEAD	REC	93	1		%	++	0.0001	0.0005				
SREV	MANGANESE	FOUND	0.04826	1		mg/L	++	0.0005	0.003				
BREV	MANGANESE	REC	96	1		%	++	0.0005	0.003				
SREV	MOLYBDENUM	FOUND	0.04589	1		mg/L	++	0.0005	0.003				
SREV	MOLYBDENUM	REC	92	1		%	++	0.0005	0.003				
SREV	SELENIUM	FOUND	0.04641	1		mg/L	++	0.0001	0.0003				
SREV	SELENIUM	REC	93	1		%	++	0.0001	0.0003				
SREV	SILVER	FOUND	0.009396	1		mg/L	++	0.00005	0.0003				
SREV	SILVER	REC	94	1		%	++	0.00005	0.0003				
SREV	THALLIUM	FOUND	0.04991	1		mg/L	++	0.0001	0.0005				
SREV	THALLIUM	REC	100	1		%	++	0.0001	0.0005				
SREV	URANIUM	FOUND	0.05004	1		mg/L	++	0.0001	0.0005				
SREV	URANIUM	REC	100	1		%	++	0.0001	0.0005				
SREV	ZINC	FOUND	0.0467	1		mg/L	++	0.002	0.005				
SREV	ZINC	REC	93	1		%	++	0.002	0.005				
L3264	49-01		Tag:					M	easure	d:	9/15/	2016 10:2	27:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	ALUMINUM	-TMS-200	0.194	1		mg/L	++	0.001	0.005			B7	
SREV	MANGANESE	-TMS-200	0.0172	1		mg/L	++	0.0005	0.003				
_3264	49-02		Tag:					M	easure	d:	9/15/	2016 10::	30:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	ALUMINUM	-TMS-200	0.094	1		mg/L	++	0.001	0.005			B7	
SREV	MANGANESE	-TMS-200	0.0116	1		mg/L	++	0.0005	0.003				
_3264	49-03		Tag:					M	easure	d:	9/15/	2016 10::	34:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
REV	ALUMINUM	-TMS-200	0.155	1		mg/L	++	0.001	0.005			B7	
SREV	MANGANESE	-TMS-200	0.0176	1		mg/L	++	0.0005	0.003				

L3264	49-04		Tag:					Μ	easure	d: 9/15/	2016 10::	87:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
REDO	ALUMINUM	-TMS-200	0.022	1		mg/L	++	0.001	0.005			
SREV	MANGANESE	-TMS-200	0.0132	1		mg/L	++	0.0005	0.003			
L3264	49-05		Tag:					Μ	easure	d: 9/15/	2016 10:4	10:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
REDO	ALUMINUM	-TMS-200	0.044	1		mg/L	++	0.001	0.005			
NEED	ANTIMONY	REG		1	U	mg/L	++	0.0004	0.002			
NEED	ARSENIC	REG		1	U	mg/L	++	0.0002	0.001			
NEED	BERYLLIUM	REG		1	U	mg/L	++	0.00005	0.0003			
NEED	CADMIUM	REG		1	U	mg/L	++	0.0001	0.0005			
NEED	CHROMIUM	REG		1	U	mg/L	++	0.0005	0.002			
NEED	COBALT	REG	0.00062	1		mg/L	++	0.00005	0.0003			
NEED	COPPER	REG		1	U	mg/L	++	0.0005	0.003			
NEED	LEAD	REG		1	U	mg/L	++	0.0001	0.0005			
SREV	MANGANESE	-TMS-200	0.0179	1		mg/L	++	0.0005	0.003			
NEED	MOLYBDENUM	REG		1	U	mg/L	++	0.0005	0.003			
NEED	SELENIUM	REG		1	U	mg/L	++	0.0001	0.0003			
NEED	SILVER	REG		1	U	mg/L	++	0.00005	0.0003			
NEED	THALLIUM	REG		1	U	mg/L	++	0.0001	0.0005			
NEED	URANIUM	REG		1	U	mg/L	++	0.0001	0.0005			
NEED	ZINC	REG	0.003	1	В	mg/L	++	0.002	0.005			

Status Parm_Stored Type Value Dil Qual Vinto Appv MDL PQL Text Value Ext Qual Signal SREV ALLMINUM FOUND 0.1054 1 mg/L ++ 0.001 0.005 SREV ALTMONY REC 123 1 % ++ 0.001 0.002 SREV ANTIMONY FOUND 0.0105075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC FOUND 0.05075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REOUND 0.06701 1 mg/L ++ 0.0005 0.003 SREV BERYLLIUM FOUND 0.04711 1 mg/L ++ 0.0005 0.002 SREV CADMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CADMIUM REC 95 1 mg/L ++	L3264	49-05LFM		Tag:				м	easured	d: 9/15/	2016 10:4	43:00 PM
SREV ALUMINUM REC 123 1 % ++ 0.001 0.005 SREV ANTIMONY FOUND 0.01045 1 mg/L ++ 0.0004 0.002 SREV ANTIMONY REC 105 1 % ++ 0.0004 0.002 SREV ANSENIC FOUND 0.05075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 101 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04701 1 mg/L ++ 0.0005 0.003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.002 SREV CADMIUM REC 92 1 % ++ 0.0005 0.002 SREV CADMIUM REC 95 1 mg/L ++ 0.0005 0.002 SREV CADMIUM REC 95 1 mg/L ++ 0.0005 0.003 SREV CO	Status	Parm_Stored	Туре	Value	Dil	Qual U	nits App	ov MDL	PQL	Text Value	Ext Qual	Signal
SREV ANTIMONY FOUND 0.0145 1 mg/L ++ 0.0044 0.002 SREV ANTIMONY REC 105 1 % ++ 0.0044 0.002 SREV ARSENIC FOUND 0.05075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 101 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04701 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.002 SREV CADMIUM FOUND 0.04715 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 92 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPER FOUN	SREV	ALUMINUM	FOUND	0.1054	1	m	g/L ++	0.001	0.005			
SREV ANTIMONY REC 105 1 % ++ 0.0004 0.002 SREV ARSENIC FOUND 0.05075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 101 1 % ++ 0.0005 0.0003 SREV BERYLLIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.0005 SREV CADMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 95 1 mg/L ++ 0.0005 0.002 SREV COBALT FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV LEAD FOUND 0.04746 mg/L ++ 0.0005 0.003 SREV	SREV	ALUMINUM	REC	123	1	%	++	0.001	0.005			
SREV ARSENIC FOUND 0.05075 1 mg/L ++ 0.0002 0.001 SREV ARSENIC REC 101 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04701 1 mg/L ++ 0.0005 0.0003 SREV BERYLLIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.0003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0005 0.002 SREV CADMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CAROMIUM REC 92 1 % ++ 0.0005 0.002 SREV CAROMIUM REC 92 1 % ++ 0.0005 0.003 SREV COBALT FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.04664 mg/L ++ 0.0001 0.0005 SREV	SREV	ANTIMONY	FOUND	0.01045	1	m	g/L ++	0.0004	0.002			
SREV ARSENIC REC 101 1 % ++ 0.0002 0.001 SREV BERYLLIUM FOUND 0.04701 1 mg/L ++ 0.0005 0.003 SREV BERYLLIUM REC 94 1 % ++ 0.0005 0.003 SREV CADMIUM FOUND 0.04715 1 mg/L ++ 0.0005 0.002 SREV CADMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV COBALT FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV COBALT FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV LEAD REC 94 1 % ++ 0.0005 0.003 SREV <	SREV	ANTIMONY	REC	105	1	%	++	0.0004	0.002			
SREV BERYLLIUM FOUND 0.04701 1 mg/L ++ 0.0005 0.003 SREV BERYLLIUM REC 94 1 % ++ 0.0005 0.003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0001 0.0005 SREV CADMIUM REC 92 1 % ++ 0.0001 0.002 SREV CHROMIUM REC 95 1 mg/L ++ 0.0005 0.002 SREV COBALT FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER FOUND 0.04646 1 mg/L ++ 0.0005 0.003 SREV LEAD REC 93 1 % ++ 0.0005 0.003 SREV MANGANESE FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREVM	SREV	ARSENIC	FOUND	0.05075	1	m	g/L ++	0.0002	0.001			
SREV BERYLLIUM REC 94 1 % ++ 0.0005 0.003 SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0001 0.0005 SREV CADMIUM REC 92 1 % ++ 0.001 0.0005 SREV CHROMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 95 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.0505 1 mg/L ++ 0.0005 0.003 SREV COPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 94 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.04666 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MANGAN	SREV	ARSENIC	REC	101	1	%	++	0.0002	0.001			
SREV CADMIUM FOUND 0.04619 1 mg/L ++ 0.0001 0.0005 SREV CADMIUM REC 92 1 % ++ 0.0005 0.002 SREV CHROMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 92 1 % ++ 0.0005 0.002 SREV CHROMIUM REC 92 1 % ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV LEAD FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 91 1 % ++ 0.0005 0.003 SREV M	SREV	BERYLLIUM	FOUND	0.04701	1	m	g/L ++	0.00005	0.0003			
SREV CADMIUM REC 92 1 % +++ 0.0001 0.0005 SREV CHROMIUM FOUND 0.04775 1 mg/L +++ 0.0005 0.002 SREV CHROMIUM REC 95 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.0505 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 94 % ++ 0.0001 0.0055 SREV LEAD FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM	SREV	BERYLLIUM	REC	94	1	%	++	0.00005	0.0003			
SREV CHROMIUM FOUND 0.04775 1 mg/L ++ 0.0005 0.002 SREV CHROMIUM REC 95 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.0505 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 94 1 % ++ 0.0001 0.0005 SREV LEAD FOUND 0.04666 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 93 1 % ++ 0.0005 0.003 SREV MANGANESE FOUND 0.04668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDEN	SREV	CADMIUM	FOUND	0.04619	1	m	g/L ++	0.0001	0.0005			
SREV CHROMIUM REC 95 1 % ++ 0.0005 0.002 SREV COBALT FOUND 0.0505 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.005 0.003 SREV COPPER REC 94 1 % ++ 0.005 0.003 SREV COPPER REC 94 1 % ++ 0.005 0.003 SREV LEAD FOUND 0.04646 1 mg/L ++ 0.005 0.003 SREV LEAD REC 93 1 % ++ 0.005 0.003 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 97 1 % ++ 0.005 0.003 SREV MOLYBDENUM RE	SREV	CADMIUM	REC	92	1	%	++	0.0001	0.0005			
SREV COBALT FOUND 0.0505 1 mg/L ++ 0.0005 0.003 SREV COBALT REC 100 1 % ++ 0.0005 0.003 SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 94 1 % ++ 0.001 0.005 SREV LEAD FOUND 0.04666 1 mg/L ++ 0.0005 0.003 SREV LEAD REC 93 1 % ++ 0.001 0.005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV <t< td=""><td>SREV</td><td>CHROMIUM</td><td>FOUND</td><td>0.04775</td><td>1</td><td>m</td><td>g/L ++</td><td>0.0005</td><td>0.002</td><td></td><td></td><td></td></t<>	SREV	CHROMIUM	FOUND	0.04775	1	m	g/L ++	0.0005	0.002			
SREV COBALT REC 100 1 % +++ 0.00005 0.0003 SREV COPPER FOUND 0.04713 1 mg/L +++ 0.0005 0.003 SREV COPPER REC 94 1 % +++ 0.0015 0.003 SREV LEAD FOUND 0.04646 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 93 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 97 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.04662 1 mg/L ++ 0.001 0.003 SREV MOLYBDENUM FOUND 0.04694 1 mg/L ++ 0.001 0.003 SREV SILVER REC	SREV	CHROMIUM	REC	95	1	%	++	0.0005	0.002			
SREV COPPER FOUND 0.04713 1 mg/L ++ 0.0005 0.003 SREV COPPER REC 94 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.04646 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 93 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.005 0.003 SREV MANGANESE REC 97 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.001 0.003 SREV SELENIUM REC 91 1 % ++ 0.001 0.003 SREV SILVER FOUND 0.009205	SREV	COBALT	FOUND	0.0505	1	m	g/L ++	0.00005	0.0003			
SREV COPPER REC 94 1 % ++ 0.0005 0.003 SREV LEAD FOUND 0.04646 1 mg/L ++ 0.001 0.0005 SREV LEAD REC 93 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.001 0.003 SREV SELENIUM REC 91 1 % ++ 0.001 0.003 SREV SELENIUM REC 94 1 mg/L ++ 0.0001 0.003 SREV SILVER FOUND 0.009205 <td>SREV</td> <td>COBALT</td> <td>REC</td> <td>100</td> <td>1</td> <td>%</td> <td>++</td> <td>0.00005</td> <td>0.0003</td> <td></td> <td></td> <td></td>	SREV	COBALT	REC	100	1	%	++	0.00005	0.0003			
SREV LEAD FOUND 0.04646 1 mg/L ++ 0.0001 0.0005 SREV LEAD REC 93 1 % ++ 0.0001 0.0005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.003 SREV	SREV	COPPER	FOUND	0.04713	1	m	g/L ++	0.0005	0.003			
SREV LEAD REC 93 1 % ++ 0.001 0.0005 SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.09205 1 mg/L ++ 0.0005 0.003 SREV SILVER REC 92 1 % ++ 0.0001 0.005 SREV THA	SREV	COPPER	REC	94	1	%	++	0.0005	0.003			
SREV MANGANESE FOUND 0.06668 1 mg/L ++ 0.0005 0.003 SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.001 0.003 SREV SILVER FOUND 0.09205 1 mg/L ++ 0.0005 0.003 SREV SILVER REC 92 1 % ++ 0.0001 0.005 SREV THALLIUM REC 99 1 % ++ 0.001 0.005 SREV	SREV	LEAD	FOUND	0.04646	1	m	g/L ++	0.0001	0.0005			
SREV MANGANESE REC 97 1 % ++ 0.0005 0.003 SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0011 0.0003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0011 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.009205 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.0003 SREV SILVER REC 92 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.001 0.0005 SREV	SREV	LEAD	REC	93	1	%	++	0.0001	0.0005			
SREV MOLYBDENUM FOUND 0.04562 1 mg/L ++ 0.0005 0.003 SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.009205 1 mg/L ++ 0.0005 0.003 SREV SILVER REC 92 1 % ++ 0.0005 0.003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0055 SREV URANIUM REC	SREV	MANGANESE	FOUND	0.06668	1	m	g/L ++	0.0005	0.003			
SREV MOLYBDENUM REC 91 1 % ++ 0.0005 0.003 SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.009205 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.0003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC	SREV	MANGANESE	REC	97	1	%	++	0.0005	0.003			
SREV SELENIUM FOUND 0.04694 1 mg/L ++ 0.0001 0.0003 SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.009205 1 mg/L ++ 0.0005 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.0003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM REC 99 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.0	SREV	MOLYBDENUM	FOUND	0.04562	1	m	g/L ++	0.0005	0.003			
SREV SELENIUM REC 94 1 % ++ 0.0001 0.0003 SREV SILVER FOUND 0.009205 1 mg/L ++ 0.00005 0.0003 SREV SILVER REC 92 1 % ++ 0.0005 0.0003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	MOLYBDENUM	REC	91	1	%	++	0.0005	0.003			
SREV SILVER FOUND 0.009205 1 mg/L ++ 0.00005 0.0003 SREV SILVER REC 92 1 % ++ 0.00005 0.0003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	SELENIUM	FOUND	0.04694	1	m	g/L ++	0.0001	0.0003			
SREV SILVER REC 92 1 % ++ 0.0005 0.003 SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	SELENIUM	REC	94	1	%	++	0.0001	0.0003			
SREV THALLIUM FOUND 0.04938 1 mg/L ++ 0.0001 0.0005 SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	SILVER	FOUND	0.009205	1	m	g/L ++	0.00005	0.0003			
SREV THALLIUM REC 99 1 % ++ 0.0001 0.0005 SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	SILVER	REC	92	1	%	++	0.00005	0.0003			
SREV URANIUM FOUND 0.05017 1 mg/L ++ 0.0001 0.0005 SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	THALLIUM	FOUND	0.04938	1	m	g/L ++	0.0001	0.0005			
SREV URANIUM REC 100 1 % ++ 0.0001 0.0005 SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	THALLIUM	REC	99	1	%	++	0.0001	0.0005			
SREV ZINC FOUND 0.05 1 mg/L ++ 0.002 0.005	SREV	URANIUM	FOUND	0.05017	1	m	g/L ++	0.0001	0.0005			
-	SREV	URANIUM	REC	100	1	%	++	0.0001	0.0005			
SREV ZINC REC 94 1 % ++ 0.002 0.005	SREV	ZINC	FOUND	0.05	1	m	g/L ++	0.002	0.005			
	SREV	ZINC	REC	94	1	%	++	0.002	0.005			

L3264	49-05LFMD		Tag:					M	easure	d: 9/1	5/2016 10:	:46:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	e Ext Qua	I Signal
SREV	ALUMINUM	FOUND	0.0944	1		mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	101	1		%	++	0.001	0.005			
SREV	ALUMINUM	RPD	11	1		%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01043	1		mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	105	1		%	++	0.0004	0.002			
SREV	ANTIMONY	RPD	0	1		%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.05015	1		mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	100	1		%	++	0.0002	0.001			
SREV	ARSENIC	RPD	1	1		%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.0469	1		mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	94	1		%	++	0.00005	0.0003			
SREV	BERYLLIUM	RPD	0	1		%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.04617	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	92	1		%	++	0.0001	0.0005			
SREV	CADMIUM	RPD	0	1		%	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND	0.04768	1		mg/L	++	0.0005	0.002			
SREV	CHROMIUM	REC	95	1		%	++	0.0005	0.002			
SREV	CHROMIUM	RPD	0	1		%	++	0.0005	0.002			
SREV	COBALT	FOUND	0.05009	1		mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	99	1		%	++	0.00005	0.0003			
SREV	COBALT	RPD	1	1		%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.04716	1		mg/L	++	0.0005	0.003			
SREV	COPPER	REC	94	1		%	++	0.0005	0.003			
SREV	COPPER	RPD	0	1		%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.04669	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	93	1		%	++	0.0001	0.0005			
SREV	LEAD	RPD	0	1		%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.06632	1		mg/L	++	0.0005	0.003			
SREV	MANGANESE	REC	97	1		%	++	0.0005	0.003			
SREV	MANGANESE	RPD	1	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.04572	1		mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	91	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	RPD	0	1		%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.04671	1		mg/L	++	0.0001	0.0003			
SREV	SELENIUM	REC	93	1		%	++	0.0001	0.0003			
SREV	SELENIUM	RPD	0	1		%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.009222	1		mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	92	1		%	++	0.00005	0.0003			
SREV	SILVER	RPD	0	1		%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.04949	1		mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	99	1		%	++	0.0001	0.0005			
SREV	THALLIUM	RPD	0	1		%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.05039	1		mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	101	1		%	++	0.0001	0.0005			
SREV	URANIUM	RPD	0	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.0493	1		mg/L	++	0.002	0.0005			
SREV	ZINC	REC	0.0493 92	1		mg/∟ %	++	0.002	0.005			
SREV	ZINC	RPD	1	1		%	++	0.002	0.005			
OIL V			I	1		70		0.002	0.000			

WG40	09909CCV1		Tag:					Μ	easure	d: 9/15/	2016 10:4	49:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.5043	1		mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	101	1		%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01218	1		mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	98	1		%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.09885	1		mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	99	1		%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.09441	1		mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	94	1		%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.09883	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	99	1		%	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND	0.09809	1		mg/L	++	0.0005	0.002			
SREV	CHROMIUM	REC	98	1		%	++	0.0005	0.002			
SREV	COBALT	FOUND	0.1005	1		mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	100	1		%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.2521	1		mg/L	++	0.0005	0.003			
SREV	COPPER	REC	101	1		%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.2506	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	100	1		%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.09947	1		mg/L	++	0.0005	0.003			
REV	MANGANESE	REC	99	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.09886	1		mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	99	1		%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.2504	1		mg/L	++	0.0001	0.0003			
BREV	SELENIUM	REC	100	1		%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.0243	1		mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	97	1		%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.1016	1		mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	101	1		%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.1025	1		mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	103	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.5039	1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	101	' 1		%	++	0.002	0.005			
SKL V	ZINC	RLC	101	1		70	TT	0.002	0.005			
WG40	09909CCB1		Tag:					Μ	easure	d: 9/15/	2016 10:	52:00 PI
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND		1	U	mg/L	++	0.001	0.005			
SREV	ANTIMONY	FOUND		1	U	mg/L	++	0.0004	0.002			
SREV	ARSENIC	FOUND		1	U	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND		1	U	mg/L	++	0.00005	0.0003			
REV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND		1	U	mg/L	++	0.0005	0.002			
REV	COBALT	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	COPPER	FOUND		1	U	mg/L	++	0.0005	0.003			
BREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
BREV	MANGANESE	FOUND		1	U	mg/L	++	0.0005	0.003			
REV	MOLYBDENUM	FOUND		1	U	mg/L	++	0.0005	0.003			
		FOUND	0.00017	1	D	mg/L		0.0003	0.000			

SELENIUM

THALLIUM

URANIUM

ZINC

SILVER

FOUND

FOUND

FOUND

FOUND

FOUND

0.00017

1 B mg/L

1 U

1 U

1 U

1 U mg/L

mg/L

mg/L

mg/L

++

++

++

++

++

0.0001 0.0003

0.00005 0.0003

0.0005

0.0005

0.005

0.0001

0.0001

0.002

SREV

SREV

SREV

SREV

SREV

L3264	49-06		Tag:	_	_	_	_	M	easure	d:	9/15/	2016 10:	55:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
SREV	ALUMINUM	-TMS-200	0.119	1		mg/L	++	0.001	0.005			B7	
SREV	MANGANESE	-TMS-200	0.0146	1		mg/L	++	0.0005	0.003				
_327	30-01		Tag:					M	easure	d:	9/15/	2016 10:5	59:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
SREV	ANTIMONY	-TMS-200		1	U	mg/L	++	0.0004	0.002				
REV	ARSENIC	-TMS-200	0.0069	1		mg/L	++	0.0002	0.001				
SREV	BERYLLIUM	-TMS-200	0.00098	1		mg/L	++	0.00005	0.0003				
REV	CADMIUM	-TMS-200	0.0003	1	В	mg/L	++	0.0001	0.0005				
REDO	CHROMIUM	-TMS-200	0.0174	1		mg/L	++	0.0005	0.002				
SREV	LEAD	-TMS-200	0.0142	1		mg/L	++	0.0001	0.0005				
REDO	THALLIUM	-TMS-200	0.0001	1	В	mg/L	++	0.0001	0.0005				
BREV	URANIUM	U-TMS-200	0.0003	1	В	mg/L	++	0.0001	0.0005				
_327	30-02		Tag:					M	easure	d:	9/15/	2016 11:0)2:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
REV	ANTIMONY	-TMS-200		5	U	mg/L	++	0.002	0.01				
REV	ARSENIC	-TMS-200	0.027	5		mg/L	++	0.001	0.005				
REV	BERYLLIUM	-TMS-200	0.0077	5		mg/L	++	0.0003	0.001				
REV	CADMIUM	-TMS-200	0.0009	5	В	mg/L	++	0.0005	0.003				
REDO	CHROMIUM	-TMS-200	0.063	5		mg/L	++	0.003	0.01				
REV	LEAD	-TMS-200	0.0647	5		mg/L	++	0.0005	0.003				
REDO	THALLIUM	-TMS-200	0.0006	5	В	mg/L	++	0.0005	0.003				
BREV	URANIUM	U-TMS-200	0.0070	5		mg/L	++	0.0005	0.003				
_327	52-07		Tag:					M	easure	d:	9/15/	2016 11:0)5:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
BREV	ARSENIC	-TMS-200	0.0010	2	В	mg/L	++	0.0004	0.002				
_327	52-08		Tag:					M	easure	d:	9/15/	2016 11:0)8:00 PN
tatus	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
BREV	ARSENIC	-TMS-200	0.0008	1	В	mg/L	++	0.0002	0.001				
_327	54-01		Tag:					M	easure	d:	9/15/	2016 11:1	11:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text \	/alue	Ext Qual	Signal
BREV	ANTIMONY	-TMS-200		1	U	mg/L	++	0.0004	0.002				
REV	ARSENIC	-TMS-200	0.0013	1		mg/L	++	0.0002	0.001				
REV	BERYLLIUM	-TMS-200		1	U	mg/L	++	0.00005	0.0003				
REV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005				
REDO	CHROMIUM	-TMS-200		1	U	mg/L	++	0.0005	0.002				
REV	COBALT	-TMS-200	0.00066	1		mg/L	++	0.00005	0.0003				
REV	COPPER	-TMS-200	0.0006	1	В	mg/L	++	0.0005	0.003				
SREV	LEAD	-TMS-200		1	U	mg/L	++	0.0001	0.0005				
BREV	MOLYBDENUM	-TMS-200	0.0020	1	В	mg/L	++	0.0005	0.003				
SREV	SELENIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0003				
	SILVER	-TMS-200		1	U	mg/L	++	0.00005	0.0003				
SREV	OILVEIN												
SREV REDO	THALLIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005				

L327	54-02		Tag:					Μ	easure	d: 9/15/	2016 11:′	14:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	BERYLLIUM	-TMS-200		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
REDO	CHROMIUM	-TMS-200		1	U	mg/L	++	0.0005	0.002			
SREV	COBALT	-TMS-200	0.00036	1		mg/L	++	0.00005	0.0003			
SREV	COPPER	-TMS-200	0.0034	1		mg/L	++	0.0005	0.003			
REDO	THALLIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			

L327	54-03		Tag:					M	easure	d: 9/15/	2016 11:′	18:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
NEED	ALUMINUM	REG	0.171	1		mg/L	++	0.001	0.005			
NEED	ANTIMONY	REG		1	U	mg/L	++	0.0004	0.002			
NEED	ARSENIC	REG	0.0004	1	В	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	-TMS-200		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
REDO	CHROMIUM	-TMS-200	0.0012	1	В	mg/L	++	0.0005	0.002			
SREV	COBALT	-TMS-200	0.00032	1		mg/L	++	0.00005	0.0003			
SREV	COPPER	-TMS-200	0.0014	1	В	mg/L	++	0.0005	0.003			
NEED	LEAD	REG	0.0002	1	В	mg/L	++	0.0001	0.0005			
NEED	MANGANESE	REG	0.0047	1		mg/L	++	0.0005	0.003			
NEED	MOLYBDENUM	REG		1	U	mg/L	++	0.0005	0.003			
NEED	SELENIUM	REG	0.0001	1	В	mg/L	++	0.0001	0.0003			
NEED	SILVER	REG		1	U	mg/L	++	0.00005	0.0003			
REDO	THALLIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
NEED	URANIUM	REG		1	U	mg/L	++	0.0001	0.0005			
NEED	ZINC	REG	0.002	1	В	mg/L	++	0.002	0.005			

L327	54-03LFM		Tag:					M	easured	d: 9/15/	2016 11:2	21:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.2166	1	I	mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	91	1	0	%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01103	1	ı	mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	111	1	0	%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.059	1	ı	mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	117	1	0	%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.05205	1	ı	mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	104	1	(%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.04657	1	ı	mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	93	1	(%	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND	0.04637	1	ı	mg/L	++	0.0005	0.002			
SREV	CHROMIUM	REC	90	1	0	%	++	0.0005	0.002			
SREV	COBALT	FOUND	0.04666	1	ı	mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	93	1	(%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.04503	1	ı	mg/L	++	0.0005	0.003			
SREV	COPPER	REC	87	1	c	%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.04502	1	I	mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	90	1	0	%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.05015	1	I	mg/L	++	0.0005	0.003			
SREV	MANGANESE	REC	91	1	0	%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.0465	1	I	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	93	1	0	%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.04937	1	I	mg/L	++	0.0001	0.0003			
SREV	SELENIUM	REC	98	1	0	%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.008836	1	I	mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	88	1	0	%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.04616	1	I	mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	92	1	0	%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.04685	1	I	mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	94	1	0	%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.0503	1	I	mg/L	++	0.002	0.005			
SREV	ZINC	REC	96	1	0	%	++	0.002	0.005			

L327	54-03LFMD		Tag:					M	easure	d: 9/15	5/2016 11:	24:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	e Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.2101	1		mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	78	1		%	++	0.001	0.005			
SREV	ALUMINUM	RPD	3	1		%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01058	1		mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	106	1		%	++	0.0004	0.002			
SREV	ANTIMONY	RPD	4	1		%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.05814	1		mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	115	1		%	++	0.0002	0.001			
SREV	ARSENIC	RPD	1	1		%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.04965	1		mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	99	1		%	++	0.00005	0.0003			
SREV	BERYLLIUM	RPD	5	1		%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.04461	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	89	1		%	++	0.0001	0.0005			
SREV	CADMIUM	RPD	4	1		%	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND	0.04678	1		mg/L	++	0.0005	0.002			
SREV	CHROMIUM	REC	91	1		%	++	0.0005	0.002			
SREV	CHROMIUM	RPD	1	1		%	++	0.0005	0.002			
SREV	COBALT	FOUND	0.04496	1		mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	89	1		%	++	0.00005	0.0003			
SREV	COBALT	RPD	4	1		%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.04524	1		mg/L	++	0.0005	0.003			
SREV	COPPER	REC	88	1		%	++	0.0005	0.003			
SREV	COPPER	RPD	0	1		%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.04403	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	88	1		%	++	0.0001	0.0005			
SREV	LEAD	RPD	2	1		%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.04884	1		mg/L	++	0.0005	0.003			
SREV	MANGANESE	REC	88	1		%	++	0.0005	0.003			
SREV	MANGANESE	RPD	3	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.04518	1		mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	90	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	RPD	3	1		%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.04917	1		mg/L	++	0.0001	0.0003			
SREV	SELENIUM	REC	98	1		%	++	0.0001	0.0003			
SREV	SELENIUM	RPD	0	1		%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.008547	1		mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	85	1		%	++	0.00005	0.0003			
SREV	SILVER	RPD	3	1		%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.04514	1		mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	90	1		%	++	0.0001	0.0005			
SREV	THALLIUM	RPD	2	1		%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.04558	1		mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	91	1		%	++	0.0001	0.0005			
SREV	URANIUM	RPD	3	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.0482	. 1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	92	1		%	++	0.002	0.005			
SREV	ZINC	RPD	4	1		%	++	0.002	0.005			
			· ·					0.002	0.000			

WG4	09909CCV2		Tag:					Measured: 9/15/2016 11:27:0			27:00 PM	
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.4545	1		mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	91	1		%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01155	1		mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	93	1		%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.09782	1		mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	98	1		%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.09566	1		mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	95	1		%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.09105	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	91	1		%	++	0.0001	0.0005			
FAIL	CHROMIUM	FOUND	0.08918	1		mg/L	++	0.0005	0.002			
FAIL	CHROMIUM	REC	89	1		%	ALRT	0.0005	0.002			
SREV	COBALT	FOUND	0.09208	1		mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	92	1		%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.2289	1		mg/L	++	0.0005	0.003			
SREV	COPPER	REC	91	1		%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.2289	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	91	1		%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.09179	1		mg/L	++	0.0005	0.003			
SREV	MANGANESE	REC	92	1		%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.09165	1		mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	92	1		%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.2378	1		mg/L	++	0.0001	0.0003			
SREV	SELENIUM	REC	95	1		%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.02256	1		mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	90	1		%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.09313	1		mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	93	1		%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.09027	1		mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	90	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.4813	1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	96	1		%	++	0.002	0.005			
WG4	09909CCB2		Tag:					М	easure	d: 9/15/	2016 11:	30:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	
SREV	ALUMINUM	FOUND		1	U	mg/L	++	0.001	0.005			· · · · · · · · · · · · · · · · · · ·
SREV	ANTIMONY	FOUND		1	U	mg/L	++	0.0004	0.002			
SREV	ARSENIC	FOUND		1	U	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND		1	U	mg/L	++	0.0005	0.002			
SREV	COBALT	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	COPPER	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	MANGANESE	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.00015	1	В	mg/L	++	0.0001	0.0003			
SREV	SILVER	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	THALLIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	URANIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
						0						

1 U mg/L

++

0.002

0.005

FOUND

ZINC

SREV

L327	59-01		Tag:					M	easure	d: 9/15/	2016 11:3	33:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ANTIMONY	-TMS-200	0.0012	1	В	mg/L	++	0.0004	0.002			
SREV	ARSENIC	-TMS-200	0.0062	1		mg/L	++	0.0002	0.001			
SREV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
SREV	LEAD	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
SREV	SELENIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0003			
SREV	SILVER	-TMS-200		1	U	mg/L	++	0.00005	0.0003			
REDO	THALLIUM	-TMS-200	0.0001	1	В	mg/L	++	0.0001	0.0005			
SREV	URANIUM	U-TMS-200		1	U	mg/L	++	0.0001	0.0005			
L327	59-02		Tag:					M	easure	d: 9/15/	2016 11:3	36:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ANTIMONY	-TMS-200	0.0049	2		mg/L	++	0.0008	0.004			
SREV	ARSENIC	-TMS-200	0.0496	2		mg/L	++	0.0004	0.002			
SREV	CADMIUM	-TMS-200		2	U	mg/L	++	0.0002	0.001			
SREV	LEAD	-TMS-200	0.0011	2		mg/L	++	0.0002	0.001			
SREV	SELENIUM	-TMS-200		2	U	mg/L	++	0.0002	0.0005			
SREV	SILVER	-TMS-200		2	U	mg/L	++	0.0001	0.0005			
REDO	THALLIUM	-TMS-200		2	U	mg/L	++	0.0002	0.001			
SREV	URANIUM	U-TMS-200		2	U	mg/L	++	0.0002	0.001			
L327	59-03		Tag:					M	easure	d: 9/15/	2016 11:3	89:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ANTIMONY	-TMS-200	0.0004	1	В	mg/L	++	0.0004	0.002			
SREV	ARSENIC	-TMS-200	0.0023	1		mg/L	++	0.0002	0.001			
SREV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
SREV	LEAD	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
				1	U	mg/L	++	0.0001	0.0003			
SREV	SELENIUM	-TMS-200							0.0003			
	SILVER	-TMS-200 -TMS-200		1	U	mg/L	++	0.00005	0.0000			
SREV				1 1	U U	mg/L mg/L	++ ++	0.00005 0.0001	0.0005			
SREV SREV REDO SREV	SILVER	-TMS-200	0.0003			-						
SREV REDO SREV	SILVER THALLIUM	-TMS-200 -TMS-200	0.0003 Tag:	1	U	mg/L	++	0.0001 0.0001	0.0005	d: 9/15/	2016 11:4	13:00 PN
SREV REDO SREV	SILVER THALLIUM URANIUM	-TMS-200 -TMS-200		1 1	U	mg/L mg/L	++	0.0001 0.0001	0.0005 0.0005	d: 9/15/ Text Value		
SREV REDO SREV L327 Status	SILVER THALLIUM URANIUM 61-01	-TMS-200 -TMS-200 u-TMS-200	Tag:	1 1	U B	mg/L mg/L	++ ++	0.0001 0.0001	0.0005 0.0005 easured			
SREV REDO SREV L327 Status SREV	SILVER THALLIUM URANIUM 61-01 Parm_Stored	-TMS-200 -TMS-200 υ-тмs-200 Туре	Tag: Value	1 1 Dil	U B	mg/L mg/L Units	++ ++ Appv	0.0001 0.0001 M MDL 0.0001	0.0005 0.0005 easured PQL	Text Value		Signal
SREV REDO SREV L327 Status SREV	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM	-TMS-200 -TMS-200 υ-тмs-200 Туре	Tag: Value 0.0008	1 1 Dil 1	U B	mg/L mg/L Units mg/L	++ ++ Appv	0.0001 0.0001 M MDL 0.0001	0.0005 0.0005 easured PQL 0.0003	Text Value	Ext Qual	Signal 46:00 PN
SREV REDO SREV L327 Status SREV L327 Status	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM 61-04	-TMS-200 -TMS-200 υ-тмS-200 Туре -TMS-200	Tag: Value 0.0008 Tag:	1 1 Dil 1	U B Qual	mg/L mg/L Units mg/L	++ ++ Appv ++	0.0001 0.0001 Ma MDL 0.0001	0.0005 0.0005 easured PQL 0.0003 easured	Text Value	Ext Qual	Signal 46:00 PN
SREV REDO SREV L327 Status SREV L327 Status SREV	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM 61-04 Parm_Stored	-TMS-200 -TMS-200 u-TMS-200 Туре -TMS-200 Туре	Tag: Value 0.0008 Tag:	1 1 Dil 1 Dil	U B Qual	mg/L mg/L Units mg/L Units	++ ++ Appv ++ Appv	0.0001 0.0001 Ma MDL 0.0001 Ma MDL 0.0005	0.0005 0.0005 easured PQL 0.0003 easured PQL	Text Value d: 9/15/ Text Value	Ext Qual	Signal 46:00 PM Signal
SREV REDO SREV L327 Status SREV L327 Status SREV L327	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM 61-04 Parm_Stored SELENIUM	-TMS-200 -TMS-200 u-TMS-200 Туре -TMS-200 Туре	Tag: Value 0.0008 Tag: Value	1 1 0il 1 Dil 5	U B Qual	mg/L mg/L Units mg/L Units mg/L	++ ++ Appv ++ Appv	0.0001 0.0001 Ma MDL 0.0001 Ma MDL 0.0005	0.0005 0.0005 easured PQL 0.0003 easured PQL 0.001	Text Value d: 9/15/ Text Value	Ext Qual 2016 11:4 Ext Qual 2016 11:4	Signal 16:00 PM Signal 19:00 PM
SREV REDO SREV L327 Status SREV L327 Status SREV L327 Status	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM 61-04 Parm_Stored SELENIUM 71-01	-TMS-200 -TMS-200 u-TMS-200 Туре -TMS-200 Туре -TMS-200	Tag: Value 0.0008 Tag: Value Tag:	1 1 0il 1 Dil 5	U B Qual Qual	mg/L mg/L Units mg/L Units mg/L	++ ++ Appv ++ Appv ++	0.0001 0.0001 MdL 0.0001 MdL 0.0005 Md	0.0005 0.0005 easured PQL 0.0003 easured PQL 0.001	Text Value d: 9/15/ Text Value d: 9/15/	Ext Qual 2016 11:4 Ext Qual 2016 11:4	Signal 16:00 PM Signal 19:00 PM
SREV REDO SREV L327 Status SREV L327 Status SREV	SILVER THALLIUM URANIUM 61-01 Parm_Stored SELENIUM 61-04 Parm_Stored SELENIUM 71-01 Parm_Stored	-TMS-200 -TMS-200 u-TMS-200 Туре -TMS-200 Туре -TMS-200	Tag: Value 0.0008 Tag: Value Tag:	1 1 1 1 5 5	U B Qual U Qual	mg/L mg/L Mg/L Units mg/L Units	++ ++ Appv ++ Appv ++	0.0001 0.0001 Ma MDL 0.0001 MDL 0.0005 Ma	0.0005 0.0005 easured PQL 0.0003 easured PQL 0.001 easured PQL	Text Value d: 9/15/ Text Value d: 9/15/	Ext Qual 2016 11:4 Ext Qual 2016 11:4	Signal 16:00 PM Signal 19:00 PM

L32771-02			Tag:				Measured: 9/15			/2016 11:52:00 PM		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	-TMS-200		1	U	mg/L	++	0.0001	0.0005			
SREV	LEAD	-TMS-200	0.0008	1		mg/L	++	0.0001	0.0005			
SREV	ZINC	-TMS-200	0.029	1		mg/L	++	0.002	0.005			

WG4	09909CCV3		Tag:				М	easured	d: 9/15/	2016 11:	55:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND	0.4801	1	mg/L	++	0.001	0.005			
SREV	ALUMINUM	REC	96	1	%	++	0.001	0.005			
SREV	ANTIMONY	FOUND	0.01198	1	mg/L	++	0.0004	0.002			
SREV	ANTIMONY	REC	96	1	%	++	0.0004	0.002			
SREV	ARSENIC	FOUND	0.1008	1	mg/L	++	0.0002	0.001			
SREV	ARSENIC	REC	101	1	%	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND	0.09691	1	mg/L	++	0.00005	0.0003			
SREV	BERYLLIUM	REC	97	1	%	++	0.00005	0.0003			
SREV	CADMIUM	FOUND	0.09548	1	mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	95	1	%	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND	0.09221	1	mg/L	++	0.0005	0.002			
SREV	CHROMIUM	REC	92	1	%	++	0.0005	0.002			
SREV	COBALT	FOUND	0.09614	1	mg/L	++	0.00005	0.0003			
SREV	COBALT	REC	96	1	%	++	0.00005	0.0003			
SREV	COPPER	FOUND	0.236	1	mg/L	++	0.0005	0.003			
SREV	COPPER	REC	94	1	%	++	0.0005	0.003			
SREV	LEAD	FOUND	0.2378	1	mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	95	1	%	++	0.0001	0.0005			
SREV	MANGANESE	FOUND	0.09579	1	mg/L	++	0.0005	0.003			
SREV	MANGANESE	REC	96	1	%	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND	0.09594	1	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	REC	96	1	%	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.2467	1	mg/L	++	0.0001	0.0003			
SREV	SELENIUM	REC	98	1	%	++	0.0001	0.0003			
SREV	SILVER	FOUND	0.0236	1	mg/L	++	0.00005	0.0003			
SREV	SILVER	REC	94	1	%	++	0.00005	0.0003			
SREV	THALLIUM	FOUND	0.09643	1	mg/L	++	0.0001	0.0005			
SREV	THALLIUM	REC	96	1	%	++	0.0001	0.0005			
SREV	URANIUM	FOUND	0.09364	1	mg/L	++	0.0001	0.0005			
SREV	URANIUM	REC	94	1	%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.4956	1	mg/L	++	0.002	0.005			
SREV	ZINC	REC	99	1	%	++	0.002	0.005			

WG4	09909CCB3		Tag:					Measured:		d: 9/15/	9/15/2016 11:58:00 P	
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	ALUMINUM	FOUND		1	U	mg/L	++	0.001	0.005			
SREV	ANTIMONY	FOUND		1	U	mg/L	++	0.0004	0.002			
SREV	ARSENIC	FOUND		1	U	mg/L	++	0.0002	0.001			
SREV	BERYLLIUM	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	CHROMIUM	FOUND		1	U	mg/L	++	0.0005	0.002			
SREV	COBALT	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	COPPER	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	MANGANESE	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	MOLYBDENUM	FOUND		1	U	mg/L	++	0.0005	0.003			
SREV	SELENIUM	FOUND	0.00018	1	В	mg/L	++	0.0001	0.0003			
SREV	SILVER	FOUND		1	U	mg/L	++	0.00005	0.0003			
SREV	THALLIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	URANIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	ZINC	FOUND		1	U	mg/L	++	0.002	0.005			

Calibration Coefficients

Sample Name: ICV Date Acquired: Sep 15 2016 10:15 pm Acq. Method: ACZ.M Current Method Pa\ICPCHEM\1\DATA\wg409909.b\ Calibration PathICPCHEM\1\DATA\wg409909.b\

Element	Name Mas	s Calibration Corr	Coef Tune S	Step IS Ref
Be	9	0.9997	3	б
В	11	1.0000	3	6
Al	27	1.0000	3	72
V	51	1.0000	2	45
Cr	52	0.9999	2	115
Mn	55	1.0000	3	72
Fe	56	1.0000	1	45
Co	59	1.0000	3	72
Ni	60	0.9999	2	45
Cu	63	0.9998	2	45
Zn	66	1.0000	3	72
As	75	1.0000	2	45
Se	78	1.0000	1	45
Мо	98	1.0000	3	115
Ag	107	1.0000	3	115
Cd	111	1.0000	3	115
Sn	118	1.0000	3	115
Sb	121	0.9999	3	115
Те	125	1.0000	3	115
Cs	133	1.0000	3	115
Ba	137	0.9999	3	115
Tl	205	1.0000	3	209
Pb	208	1.0000	3	209
Th	232	1.0000	3	209
U	238	1.0000	3	209

200.8 QC Tune Report

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\160915bt.b\0012TUN.D Sep 15 2016 12:20 pm
· · · · · · · · · · · · · · · · · · ·	
Acq. Method:	TN200_8.M
Operator:	scp
Sample Name:	200.8 Tune
Misc Info:	
Vial Number:	1201
Current Method:	C:\ICPCHEM\1\METHODS\TN200_8.M

9 Be Mass Calib. Actual:

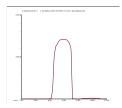
Required:

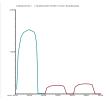
Required:

Flag: Peak Width Actual:

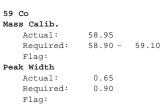
Flag:

Actual:


Actual: Required:


Flag:

Required: Flag:

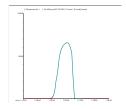

24 Mg Mass Calib.

RSD (%)			
Element	Actual	Required	Flag
9 Be	1.16	5.00	
24 Mg	1.44	5.00	
59 Co	0.97	5.00	
115 In	0.73	5.00	
208 Pb	1.89	5.00	

8.95

0.65

0.90


24.00

0.65

0.90

23.90 - 24.10

8.90 - 9.10

115 In Mass Calib.		
Actual:	115.00	
Required:	114.90 -	115.10
Flag:		
Peak Width		
Actual:	0.65	
Required:	0.90	
Flag:		

208 Pb Mass Calib.		
Actual:	208.00	
Required:	207.90 -	208.10
Flag:		
Peak Width		
Actual:	0.60	
Required:	0.90	
Flag:		

Tune Result:

Pass

Calibration Blank QC Report

Data File:	C:\ICPCHEM\1\DATA\wg409909.b\001CAL
Date Acquired:	Sep 15 2016 09:53 pm
Operator:	
Sample Name:	Calblk
Misc Info:	
Vial Number:	1101
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 09:55 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Eleme	ent	CPS Mean		SD	RSD(%)
6	Li	979859.50	A	28190.00	2.88
9	Ве	85.56	Ρ	21.17	24.74
11	В	7578.79	Ρ	171.10	2.26
27	Al	23298.93	Ρ	422.30	1.81
45	Sc	2583292.00	A	27340.00	1.06
45	Sc	593127.19		1018.00	0.17
45	Sc	6225168.00	А	111100.00	1.78
51	V	2533.65	Ρ	45.82	1.81
52	Cr	1870.18	Ρ	51.33	2.74
55	Mn	19866.15	Ρ	458.30	2.31
56	Fe	13929.40	Ρ	238.60	1.71
59	Co	301.12	Ρ	25.02	8.31
60	Ni	102.23	Ρ	13.47	13.18
63	Cu	10333.95	Ρ	55.16	0.53
66	Zn	2979.29	Ρ	62.58	2.10
72	Ge	770555.00	Ρ	1928.00	0.25
72	Ge	293190.91	Ρ	3132.00	1.07
72	Ge	1450461.00	A	17410.00	1.20
74	Ge	1095011.00	A	13880.00	1.27
74	Ge	427822.91	Ρ	3951.00	0.92
74	Ge	1987875.00	A	15960.00	0.80
75	As	191.12	Ρ	18.36	9.61
78	Se	26.67	Ρ	3.76	14.09
98	Мо	466.61	Ρ	42.69	9.15
99			Ρ		
106	Cd		Ρ		
107	Ag	141.12	Ρ	13.47	9.55
108	Cd		Ρ		
111	Cd	38.75	Ρ	20.74	53.53
115	In	3665558.00	Α	36600.00	1.00
115	In	1184000.00	А	16980.00	1.43
115	In	4557575.00	А	49840.00	1.09
118	Sn	1931.31	Ρ	80.04	4.14
121	Sb	2691.97	Ρ	157.70	5.86
125	Те	54.45	Ρ	18.36	33.72
133	Cs	1220.10		43.59	3.57
137	Ba	224.45	Ρ	25.46	11.34
159	Tb	5874054.00	А	28180.00	0.48
205	Tl	240.01	Ρ	32.83	13.68
206	(Pb)		Ρ		
207	(Pb)		Ρ		
208	Pb	1094.50	Ρ	126.20	11.53
209	Bi	6316019.00		25980.00	0.41
232	Th	12783.32		651.30	5.09
238	U	468.91	Ρ	25.02	5.34

Calibration Blank QC Report

Data File:	C:\ICPCHEM\1\DATA\wg409909.b\002CAL
Date Acquired:	Sep 15 2016 09:56 pm
Operator:	
Sample Name:	Calblk
Misc Info:	
Vial Number:	1101
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 09:55 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Eleme	nt	CPS Mean		SD	RSD(%)
6	Li	986430.50	A	19920.00	2.02
9	Ве	77.78	Ρ	8.39	10.79
11	В	7233.08	Ρ	183.90	2.54
27	Al	25065.41	Ρ	3414.00	13.62
45	Sc	2521502.00	A	10290.00	0.41
45	Sc	598256.50		9323.00	1.56
45	Sc	6255148.00	A	61300.00	0.98
51	V	2401.39	Ρ	35.33	1.47
52	Cr	1813.51	Ρ	141.60	7.81
55	Mn	19732.60	Ρ	417.20	2.11
56	Fe	11982.24	Ρ	202.30	1.69
59	Co	218.90	Ρ	27.96	12.77
60	Ni	108.89	Ρ	11.71	10.75
63	Cu	10610.79	Ρ	143.90	1.36
66	Zn	2910.41	Ρ	21.88	0.75
72	Ge	759323.31	Ρ	3571.00	0.47
72	Ge	293904.59	Ρ	2788.00	0.95
72	Ge	1461369.00	A	20780.00	1.42
74	Ge	1072904.00	A	5853.00	0.55
74	Ge	431606.59	Ρ	2276.00	0.53
74	Ge	2007982.00	A	12650.00	0.63
75	As	191.12	Ρ	32.89	17.21
78	Se	18.78	Ρ	2.67	14.24
98	Мо	419.54	Ρ	31.90	7.60
99			Ρ		
106	Cd		Ρ		
107	Ag	105.56	Ρ	8.39	7.95
108	Cd		Ρ		
111	Cd	39.80	Ρ	22.32	56.08
115	In	3634993.00	Α	4636.00	0.13
115	In	1190027.00	Α	21480.00	1.81
115	In	4565374.00	Α	14860.00	0.33
118	Sn	1719.06	Ρ	15.74	0.92
121	Sb	2135.20	Ρ	61.94	2.90
125	Те	42.22	Ρ	11.71	27.73
133	Cs	1145.65	Ρ	27.15	2.37
137	Ba	197.79	Ρ	27.15	13.73
159	Tb	5911172.00	Α	36050.00	0.61
205	Tl	200.01	Ρ	14.53	7.26
206	(Pb)		Ρ		
207	(Pb)		Ρ		
208	Pb	837.82	Ρ	60.50	7.22
209	Bi	6360572.00	A	15470.00	0.24
232	Th	8822.14		294.20	3.33
238	U	336.68	Ρ	33.83	10.05

Calibration Blank QC Report

Data File:	C:\ICPCHEM\1\DATA\wg409909.b\003CAL
Date Acquired:	Sep 15 2016 09:59 pm
Operator:	
Sample Name:	Calblk
Misc Info:	
Vial Number:	1102
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 09:58 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Eleme	nt	CPS Mean		SD	RSD(%)
6	Li	973727.19	Δ	8149.00	0.84
9	Be	161.12		5.09	3.16
11	B	7012.95		329.70	4.70
27	Al	31097.56		1809.00	5.82
45	Sc	2490209.00		12960.00	0.52
45	Sc	595751.63		8879.00	1.49
45	Sc	6201481.00		20630.00	0.33
51	V	2526.97		81.87	3.24
52	Cr	1910.18		47.03	2.46
55	Mn	21112.38		595.60	2.82
56	Fe	18284.39	Ρ	178.00	0.97
59	Co	634.48		35.65	5.62
60	Ni	191.12	Ρ	29.88	15.63
63	Cu	11698.37	Ρ	444.00	3.80
66	Zn	5442.30		50.61	0.93
72	Ge	755907.13	М	2294.00	0.30
72	Ge	293685.19	Ρ	2539.00	0.86
72	Ge	1450449.00	А	22350.00	1.54
74	Ge	1070347.00	А	3296.00	0.31
74	Ge	430775.69	Ρ	5650.00	1.31
74	Ge	1984674.00	А	23580.00	1.19
75	As	161.12	Ρ	18.36	11.40
78	Se	30.89	Ρ	2.78	8.99
98	Мо	537.16	Ρ	11.24	2.09
99			Ρ		
106	Cd		Ρ		
107	Ag	174.45	Ρ	23.41	13.42
108	Cd		Ρ		
111	Cd	100.49	Ρ	14.28	14.21
115	In	3596183.00	Α	14980.00	0.42
115	In	1187034.00	А	2123.00	0.18
115	In	4498589.00	А	23540.00	0.52
118	Sn	1941.31		126.80	6.53
121	Sb	1917.39		45.26	2.36
125	Те	47.78		12.62	26.41
133	Cs	1733.51		8.82	0.51
137	Ba	403.35		52.92	13.12
159	Tb	5855025.00		51720.00	0.88
205	Tl	511.14		22.20	4.34
206	(Pb)		Ρ		
207	(Pb)		Ρ		
208	Pb	2153.48		46.20	2.15
209	Bi	6279629.00		68160.00	1.09
232	Th	7107.73		141.20	1.99
238	U	852.28	Ъ	99.02	11.62

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg409909.b\004CALS.D\004CALS.D# Sep 15 2016 10:02 pm
Operator:	
Sample Name:	PQV Std
Misc Info:	
Vial Number:	1103
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 10:01 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

Element	CPS Mean	SD	RSD(%)	
6 Li	974273.00 A	5133.00	0.53	
9 Be	777.83 P	48.80	6.27	
11 B	8710.54 P	83.72	0.96	
27 Al	96372.97 P	882.30	0.92	
45 Sc	2495132.00 A	22290.00	0.89	
45 Sc	594538.13 P	9330.00	1.57	
45 Sc	6112374.00 A	44920.00	0.73	
51 V	7394.31 P	137.10	1.85	
52 Cr	13783.51 P	218.50	1.59	
55 Mn	75336.49 P	538.40	0.71	
56 Fe	118580.50 P	594.40	0.50	
59 Co	6193.72 P	141.20	2.28	
60 Ni	7105.29 P	92.94	1.31	
63 Cu	23891.15 P	532.70	2.23	
66 Zn	20954.49 P	314.00	1.50	
72 Ge	750760.13 P	5474.00	0.73	
72 Ge	293370.59 P	2963.00	1.01	
72 Ge	1434809.00 A	18290.00	1.01	
74 Ge	1062951.00 A	6780.00	0.64	
74 Ge	426745.59 P	6734.00	1.58	
74 Ge	1964220.00 A	24810.00	1.26	
75 As	1085.63 P	53.37	4.92	
78 Se	103.00 P	7.53	7.32	
98 Mo	25357.16 P	534.60	2.11	
99	2000771201 P	551100	2.111	
106 Cd	P			
107 Ag	5055.52 P	174.60	3.45	
108 Cd	P			
111 Cd	1669.22 P	21.29	1.28	
115 In	3600449.00 A	8140.00	0.23	
115 In	1190905.00 A	6984.00	0.59	
115 In	4483699.00 A	51190.00	1.14	
118 Sn	6573.98 P	102.50	1.56	
121 Sb	31365.52 P	143.70	0.46	
125 Te	2411.41 P	103.00	4.27	
133 Cs	38817.75 P	471.80	1.22	
137 Ba	12603.88 P	178.60	1.42	
159 Tb	5810671.00 A	9805.00	0.17	
205 Tl	12016.91 P	111.80	0.93	
206 (Pb)	P			
207 (Pb)	P			
208 Pb	17429.54 P	337.20	1.93	
209 Bi	6230979.00 A	82380.00	1.32	
232 Th	163700.50 P	1588.00	0.97	
238 U	15161.48 P	416.90	2.75	
ISTD Elem	ents			
Element		D(%) Ref Value	Rec(%) (QC Range(%)
6 Li	974273.00			59.5 - 120.4
45 Sc		0.89 2490209.30		59.5 - 120.4
45 Sc		1.57 595751.63		59.5 - 120.4
45 Sc		0.73 6201481.00	98.6	
72 Ge		0.73 755907.06		59.5 - 120.4
72 Ge		1.01 293685.22	99.9	

40	20	2490101.00	0.09	2490209.30	100.2	59.5 - IZU.4
45	Sc	594538.13	1.57	595751.63	99.8	59.5 - 120.4
45	Sc	6112373.50	0.73	6201481.00	98.6	59.5 - 120.4
72	Ge	750760.13	0.73	755907.06	99.3	59.5 - 120.4
72	Ge	293370.63	1.01	293685.22	99.9	59.5 - 120.4
72	Ge	1434808.90	1.27	1450449.40	98.9	59.5 - 120.4
74	Ge	1062951.10	0.64	1070347.30	99.3	59.5 - 120.4
74	Ge	426745.66	1.58	430775.66	99.1	59.5 - 120.4
74	Ge	1964220.10	1.26	1984674.40	99.0	59.5 - 120.4
115	In	3600448.80	0.23	3596182.80	100.1	59.5 - 120.4
115	In	1190904.90	0.59	1187034.00	100.3	59.5 - 120.4
115	In	4483699.00	1.14	4498589.00	99.7	59.5 - 120.4
159	Tb	5810670.50	0.17	5855025.00	99.2	59.5 - 120.4
209	Bi	6230979.50	1.32	6279628.50	99.2	59.5 - 120.4

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

---- :Element Failures ---- :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

ta Results: Analytes: Pass ISTD: Pass

^{9/15/2}2771-1611081657

Flag

Data File:	C:\ICPCHEM\1\DATA\wg409909.b\005CALS.D\005CALS.D#
Date Acquired:	Sep 15 2016 10:06 pm
Operator:	
Sample Name:	Level 3 Std
Misc Info:	
Vial Number:	1104
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 10:04 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

200				~-	/ - >		
	ment			SD	RSD(%)		
	Li	1010391.00 A		20130.00			
	Be	60420.31 P		354.20			
	B	11116.66 P		175.90			
	Al Sc	1718939.00 A 2583257.00 A		14780.00			
		608678.63 P		12020.00 2586.00	0.47		
	Sc Sc	6348239.00 A		76950.00			
	V	124802.30 P					
	Cr	131149.20 P		402.80 1001.00			
	Mn	654450.38 P		4174.00			
	Fe	1252261.00 A		3851.00			
	Co	521544.69 P		4580.00			
	Ni	126443.60 P		1057.00			
					0.04		
	Cu	392914.41 P		1069.00			
	Zn	408769.41 P		927.10			
	Ge	765945.38 P		2071.00			
	Ge	301512.91 P		1555.00			
	Ge	1505963.00 A		16040.00	1.07		
	Ge	1095813.00 A		6572.00			
	Ge	438838.91 P		5933.00			
	Ge	2042159.00 A		16130.00	0.79		
	As	19363.44 P		321.60			
	Se	20287.49 P		26.30			
	Мо	213840.59 P		1035.00	0.48		
99	a 1	P					
	Cd	P		271 50	0.20		
	Ag	85933.74 P P		271.50	0.32		
	Cd Cd	72176.30 P		1269.00	1.76		
	In	3695009.00 A					
	In	1209436.00 A		38630.00 5127.00			
	In	4664545.00 A		44930.00			
	Sn	213589.70 P		251.90			
	Sb	36375.26 P		223.20			
	Te	12792.89 P		218.80			
	Cs	823755.81 P		3430.00			
	Ba	280077.41 P		518.60			
	Tb	6039461.00 A		25420.00			
	Tl	534109.38 P		3193.00			
	(Pb)			5195.00	0.00		
	(PD)						
	(Pb)	1793444.00 M		7562.00	0.42		
	Bi	6491939.00 A		46620.00			
	Th	687176.31 P		6000.00			
238		687848.63 P		7766.00			
230	U	08/848.03 P		//66.00	1.13		
	D Eler						
		CPS Mean R	SD(%)	Rei Value	Rec(%)		Flag
	Li	1010390.90				59.5 - 120.4	
	Sc	2583256.80				59.5 - 120.4	
	Sc			595751.63		59.5 - 120.4	
	Sc	6348239.50				59.5 - 120.4	
	Ge			755907.06		59.5 - 120.4	
	Ge			293685.22		59.5 - 120.4	
12	Ge	1505962.80	1.0/	1450449.40	T03.8	59.5 - 120.4	

72	Ge	765945.44	0.27	755907.06	101.3	59.5 -	120.4
72	Ge	301512.94	0.52	293685.22	102.7	59.5 -	120.4
72	Ge	1505962.80	1.07	1450449.40	103.8	59.5 -	120.4
74	Ge	1095812.60	0.60	1070347.30	102.4	59.5 -	120.4
74	Ge	438838.94	1.35	430775.66	101.9	59.5 -	120.4
74	Ge	2042158.50	0.79	1984674.40	102.9	59.5 -	120.4
115	In	3695009.00	1.05	3596182.80	102.7	59.5 -	120.4
115	In	1209436.50	0.42	1187034.00	101.9	59.5 -	120.4
115	In	4664545.50	0.96	4498589.00	103.7	59.5 -	120.4
159	Tb	6039460.50	0.42	5855025.00	103.2	59.5 -	120.4
209	Bi	6491938.50	0.72	6279628.50	103.4	59.5 -	120.4

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

---- :Element Failures ---- :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

ta Results: Analytes: Pass ISTD: Pass

^{9/15/2}132774-1611081657

Data File: Date Acquired: Operator:	C:\ICPCHEM\1\DATA\wg409909.b\006CALS.D\006CALS.D# Sep 15 2016 10:09 pm
Sample Name: Misc Info:	Level 4 Std
Vial Number:	1105
Current Method: Calibration File: Last Cal Update: Sample Type: Total Dil Factor:	C:\ICPCHEM\1\METHODS\ACZ.M C:\ICPCHEM\1\CALIB\ACZ.C Sep 15 2016 10:07 pm Calstd 1.00

QC&ISTD Elements

Ele	ement	CPS Mean		SD	RSD(%)		
6	Li	1025082.00 A		26680.00	2.60		
9	Be	301798.81 P		7339.00	2.43		
11	в	26048.52 P		656.60	2.52		
27	Al	8190457.00 A		173100.00	2.11		
45	Sc	2629048.00 A		13890.00	0.53		
45	Sc	620110.00 P		7728.00	1.25		
45	Sc	6573098.00 A		73650.00	1.12		
51	V	583753.88 P		5930.00	1.02		
52	Cr	638800.13 P		7324.00	1.15		
	Mn	3226482.00 A		49640.00	1.54		
	Fe	5923075.00 A		44570.00	0.75		
	Co	2638526.00 A		28610.00	1.08		
	Ni	621718.00 P		5919.00	0.95		
63	Cu	1682332.00 A		17750.00	1.06		
66	Zn	2049423.00 A		32090.00	1.57		
72	Ge	778937.63 P		6679.00	0.86		
72	Ge	304630.69 P		3891.00	1.28		
72	Ge	1539900.00 A		22490.00	1.46		
74	Ge	1121134.00 A		2349.00	0.21		
	Ge	446593.41 P		1801.00	0.40		
74	Ge	2111796.00 A		26380.00	1.25		
75	As	93570.31 P		886.00	0.95		
	Se	96824.49 P		88.88	0.09		
	Mo	1107510.00 A		14700.00	1.33		
99		P					
	Cd	P					
	Ag	434048.41 P		2185.00	0.50		
	Cd	P					
	Cd	359163.31 P		1541.00	0.43		
	In	3781106.00 A		15520.00	0.41		
	i In In	1247670.00 A 4798193.00 A		15120.00 22400.00	1.21 0.47		
	Sn Sn	1054837.00 A		10040.00	0.47		
	. Sb	175362.91 P		815.60	0.95		
	. SD Te	61722.40 P		581.00	0.47		
	Cs	4165439.00 A		22890.00			
	Ba	1394353.00 A		13480.00	0.95		
) Tb	6289368.00 A		39130.00			
	Tl	2696710.00 A			0.02		
	(Pb)	20000010100 M		11000100	0.11		
	(Pb)	A					
	Pb	9245540.00 A		49610.00	0.54		
	Bi	6872695.00 A		49790.00	0.72		
	Th	3653731.00 A		13730.00	0.38		
238	U	3489483.00 A			1.06		
ISI	D Elen	nents					
Ele	ement	CPS Mean R	SD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
б	Li	1025081.80			105.3	59.5 - 120.4	
45	Sc	2629047.80	0.53	2490209.30		59.5 - 120.4	
45	Sc	620110.06	1.25	595751.63	104.1	59.5 - 120.4	
	Sc	6573098.00	1.12	6201481.00	106.0	59.5 - 120.4	
72	Ge	778937.56	0.86	755907.06	103.0	59.5 - 120.4	

Ere	lient	CPS Mean	RSD(3)	Rei value	Rec(s)	QC Range(s)	Fiag
6	Li	1025081.80	2.60	973727.19	105.3	59.5 - 120.4	
45	Sc	2629047.80	0.53	2490209.30	105.6	59.5 - 120.4	
45	Sc	620110.06	1.25	595751.63	104.1	59.5 - 120.4	
45	Sc	6573098.00	1.12	6201481.00	106.0	59.5 - 120.4	
72	Ge	778937.56	0.86	755907.06	103.0	59.5 - 120.4	
72	Ge	304630.69	1.28	293685.22	103.7	59.5 - 120.4	
72	Ge	1539899.90	1.46	1450449.40	106.2	59.5 - 120.4	
74	Ge	1121133.90	0.21	1070347.30	104.7	59.5 - 120.4	
74	Ge	446593.44	0.40	430775.66	103.7	59.5 - 120.4	
74	Ge	2111796.00	1.25	1984674.40	106.4	59.5 - 120.4	
115	In	3781106.30	0.41	3596182.80	105.1	59.5 - 120.4	
115	In	1247670.30	1.21	1187034.00	105.1	59.5 - 120.4	
115	In	4798193.00	0.47	4498589.00	106.7	59.5 - 120.4	
159	Tb	6289368.00	0.62	5855025.00	107.4	59.5 - 120.4	
209	Bi	6872695.00	0.72	6279628.50	109.4	59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

---- :Element Failures ---- :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

ta Results: Analytes: Pass ISTD: Pass

^{9/15/2}132774-1611081657

Data File: Date Acquired: Operator:	C:\ICPCHEM\1\DATA\wg409909.b\007CALS.D\007CALS.D# Sep 15 2016 10:12 pm
Sample Name:	Level 5 Std
Misc Info:	
Vial Number:	1106
Current Method:	C:\ICPCHEM\1\METHODS\ACZ.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ.C
Last Cal Update:	Sep 15 2016 10:10 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

		CPS Mean		a D	D0D(%)		
	ment	1051534.00 A		SD 13660.00	RSD(%) 1.30		
9	Li Be	648919.00 /		11620.00	1.30		
9 11		45513.17 1		1112.00	2.44		
	Al	16585120.00 /		208200.00	1.26		
	SC	2684152.00 /		21910.00	0.82		
	Sc	637202.19 1		7555.00	1.19		
45 45	Sc	6671670.00 /		88580.00	1.19		
45 51	V	1200235.00 #		13560.00	1.33		
	v Cr	1329039.00 /		18090.00	1.13		
52	Mn	6517652.00 4		73860.00	1.13		
	Fe	11981640.00 /		79040.00	0.66		
	Co	5320286.00 /		31830.00	0.60		
	Ni	1316531.00 /		5405.00	0.00		
	Cu	3350570.00 #		18690.00	0.56		
66	Zn	4089939.00 /		12600.00	0.31		
	Ge	790235.19 N		1534.00	0.19		
	Ge	310763.69 1		2620.00	0.84		
	Ge	1562456.00 #		12180.00	0.78		
	Ge	1142956.00 #		3570.00	0.31		
	Ge	459152.41 H		2699.00	0.59		
	Ge	2134967.00 #		9265.00	0.43		
	As	192479.30 H		1530.00	0.79		
	Se	196745.09 H		1312.00	0.67		
	Мо	2228206.00 #		14200.00	0.64		
99		I					
	Cd	I					
	Ag	899740.19 2		7878.00	0.88		
	Cd	I					
	Cd	738461.31 #		2965.00	0.40		
	In	3843908.00 #		9547.00	0.25		
	In	1262956.00 /		5155.00	0.41		
	In	4878989.00 /		25050.00	0.51		
	Sn	2127722.00 #		4082.00	0.19		
	Sb	360547.00 1		1481.00	0.41		
	Те	126111.20 1		632.60	0.50		
	Cs	8483778.00 /		36430.00	0.43		
	Ba	2782108.00 /		11770.00	0.42		
	Tb	6334548.00 /		13010.00	0.21		
	Tl	5417962.00 /		66440.00	1.23		
	(Pb)	1					
	(Pb)	10000000 00 1		100000000	0.00		
	Pb	18686960.00 /		179500.00	0.96		
	Bi	6986373.00 /		90440.00	1.29		
	Th	7351502.00 /		137300.00	1.87		
238	U	6996293.00 1	7	123500.00	1.77		
IST	D Elem	nents					
	ment	CPS Mean 1	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flaq
6		1051534.10		973727.19		59.5 - 120.4	9
	Sc	2684152.00	0.82	2490209.30	100.0		
	Sc	637202.19				59.5 - 120.4	
45			1.33	6201481.00	107.6		
72		790235.25	0.19	755907.06	104.5		

Erei	lient	CPS Mean	RSD(3)	Rei value	Rec(s)	QC Range(%)	Fiag
6	Li	1051534.10	1.30	973727.19	108.0	59.5 - 120.4	
45	Sc	2684152.00	0.82	2490209.30	107.8	59.5 - 120.4	
45	Sc	637202.19	1.19	595751.63	107.0	59.5 - 120.4	
45	Sc	6671670.50	1.33	6201481.00	107.6	59.5 - 120.4	
72	Ge	790235.25	0.19	755907.06	104.5	59.5 - 120.4	
72	Ge	310763.75	0.84	293685.22	105.8	59.5 - 120.4	
72	Ge	1562456.30	0.78	1450449.40	107.7	59.5 - 120.4	
74	Ge	1142956.50	0.31	1070347.30	106.8	59.5 - 120.4	
74	Ge	459152.44	0.59	430775.66	106.6	59.5 - 120.4	
74	Ge	2134967.50	0.43	1984674.40	107.6	59.5 - 120.4	
115	In	3843908.30	0.25	3596182.80	106.9	59.5 - 120.4	
115	In	1262956.50	0.41	1187034.00	106.4	59.5 - 120.4	
115	In	4878989.00	0.51	4498589.00	108.5	59.5 - 120.4	
159	Tb	6334548.00	0.21	5855025.00	108.2	59.5 - 120.4	
209	Bi	6986373.00	1.29	6279628.50	111.3	59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

---- :Element Failures ---- :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data Results:

ta Results: Analytes: Pass ISTD: Pass

Initial Calibration Verification (CCV) QC Report

Data File: C:\ICPCHEM\1\DATA\wg409909.b\008_QCS.D\008_QCS.D# Sep 15 2016 10:15 pm Date Acquired: Operator: Data Results: Sample Name: ICV Analytes: Fail Misc Info: ISTD: Pass Vial Number: 1107 Current Method: C:\ICPCHEM\1\METHODS\ACZ.M Calibration File: C:\ICPCHEM\1\CALIB\ACZ.C Last Cal Update: Sep 15 2016 10:13 pm Sample Type: QCS Total Dil Factor: 1.00

QC Elements

QC 1	stemei	nts									
Eler	nent	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC R	ang	e(%)	Flag
9	Be	6	3	48.980	0.98	50.00	98.0	89	-	110	
11	В	6	3	20.610	1.15	20.00	103.1	89	-	110	
27	Al	72	3	108.400	1.33	100.00	108.4	89	-	110	
51	V	45	2	49.770	1.00	50.00	99.5	89	-	110	
52	Cr	45	2	50.280	1.14	50.00	100.6	89	-	110	
55	Mn	72	3	51.880	0.35	50.00	103.8	89	-	110	
56	Fe	45	1	106.800	1.34	100.00	106.8	89	-	110	
59	Co	72	3	54.210	0.53	50.00	108.4	89	-	110	
60	Ni	45	2	50.030	0.69	50.00	100.1	89	-	110	
63	Cu	45	2	50.720	0.77	50.00	101.4	89	-	110	
66	Zn	72	3	51.000	0.70	50.00	102.0	89	-	110	
75	As	45	2	54.010	1.23	50.00	108.0	89	-	110	
78	Se	45	1	51.070	1.10	50.00	102.1	89	-	110	
98	Мо	115	3	19.570	0.82	20.00	97.9	89	-	110	
107	Ag	115	3	20.110	0.52	20.00	100.6	89	-	110	
111	Cd	115	3	50.870	0.24	50.00	101.7	89	-	110	
118	Sn	115	3	49.520	0.49	50.00	99.0	89	-	110	
121	Sb	115	3	21.410	0.30	20.00	107.1	89	-	110	
125	Те	115	3	51.970	1.73	50.00	103.9	89	-	110	
133	Cs	115	3	51.750	0.64	50.00	103.5	89	-	110	
137	Ba	115	3	50.470	0.94	50.00	100.9	89	-	110	
205	Tl	209	3	55.340	1.89	50.00	110.7	89	-	110	Fail
208	Pb	209	3	53.080	0.45	50.00	106.2	89	-	110	
232	Th	209	3	53.380	0.84	50.00	106.8	89	-	110	
238	U	209	3	53.630	0.47	50.00	107.3	89	-	110	

ISTD Elements										
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag			
6 Li	3	1037082	3.04	973727	106.5	60 - 120				
45 Sc	1	2688603	1.08	2490209	108.0	60 - 120				
45 Sc	2	633572	0.38	595752	106.3	60 - 120				
45 Sc	3	6576118	1.02	6201481	106.0	60 - 120				
72 Ge	1	803791	1.59	755907	106.3	60 - 120				
72 Ge	2	310428	0.47	293685	105.7	60 - 120				
72 Ge	3	1540936	0.85	1450449	106.2	60 - 120				
74 Ge	1	1143200	0.81	1070347	106.8	60 - 120				
74 Ge	2	450981	0.66	430776	104.7	60 - 120				
74 Ge	3	2105135	0.97	1984674	106.1	60 - 120				
115 In	1	3858271	0.61	3596183	107.3	60 - 120				
115 In	2	1269216	0.20	1187034	106.9	60 - 120				
115 In	3	4852261	0.24	4498589	107.9	60 - 120				
159 Tb	3	6297143	1.55	5855025	107.6	60 - 120				
209 Bi	3	6860603	0.33	6279629	109.3	60 - 120				

Tune File#1c:\icpchem\l\7500\h2.uTune File#2c:\icpchem\l\7500\he.uTune File#3c:\icpchem\l\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

1 :Element Failures 0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:C:\ICPCHEM\1\DATA\wg409909.b\009_CCB.D\009_CCB.D#Date Acquired:Sep 15 2016 10:18 pmOperator:Data Results:Sample Name:ICBMisc Info:IsTD:Vial Number:1102Current Method:C:\ICPCHEM\1\METHODS\ACZ.MCalibration File:C:\ICPCHEM\1\CALIB\ACZ.CLast Cal Update:Sep 15 2016 10:13 pmSample Type:CCBTotal Dil Factor:1.00

QC Elements

QC .	Elemen	ts					
Ele	ment	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9	Ве	6	3	0.014 ppb	96.68	0.150	
11	В	6	3	0.269 ppb	25.67	1.500	
27	Al	72	3	-0.033 ppb	133.32	3.000	
51	V	45	2	-0.022 ppb	89.06	0.600	
52	Cr	45	2	0.015 ppb	115.75	1.500	
55	Mn	72	3	-0.032 ppb	28.35	1.500	
56	Fe	45	1	-0.118 ppb	5.20	12.000	
59	Co	72	3	0.023 ppb	19.55	0.150	
60	Ni	45	2	0.050 ppb	25.27	1.800	
63	Cu	45	2	0.039 ppb	75.38	1.500	
66	Zn	72	3	-0.039 ppb	128.43	6.000	
75	As	45	2	0.093 ppb	29.44	0.600	
78	Se	45	1	0.078 ppb	14.84	0.300	
98	Mo	115	3	0.021 ppb	20.09	1.500	
107	Ag	115	3	0.008 ppb	21.25	0.150	
111	Cd	115	3	0.015 ppb	90.41	0.300	
118	Sn	115	3	0.186 ppb	9.11	0.300	
121	Sb	115	3	0.597 ppb	2.41	1.200	
125	Те	115	3	0.016 ppb	255.10	3.000	
133	Cs	115	3	0.018 ppb	13.52	0.600	
137	Ba	115	3	0.033 ppb	17.23	1.500	
205	Tl	209	3	0.033 ppb	6.76	0.300	
208	Pb	209	3	0.046 ppb	8.52	0.300	
232	Th	209	3	1.021 ppb	7.53	3.000	
238	U	209	3	0.041 ppb	11.72	0.300	

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	1036585	1.74	973727	106.5	60	- 120	
45 Sc	1	2676293	0.40	2490209	107.5	60	- 120	
45 Sc	2	625148	1.35	595752	104.9	60	- 120	
45 Sc	3	6536136	0.13	6201481	105.4	60	- 120	
72 Ge	1	806671	0.35	755907	106.7	60	- 120	
72 Ge	2	306545	1.52	293685	104.4	60	- 120	
72 Ge	3	1524112	0.27	1450449	105.1	60	- 120	
74 Ge	1	1136634	0.60	1070347	106.2	60	- 120	
74 Ge	2	450974	1.04	430776	104.7	60	- 120	
74 Ge	3	2090143	0.75	1984674	105.3	60	- 120	
115 In	1	3835618	0.27	3596183	106.7	60	- 120	
115 In	2	1254673	1.81	1187034	105.7	60	- 120	
115 In	3	4822216	0.55	4498589	107.2	60	- 120	
159 Tb	3	6241053	1.18	5855025	106.6	60	- 120	
209 Bi	3	6793965	0.97	6279629	108.2	60	- 120	

Tune File# 1 c:\icpchem\l\7500\h2.u Tune File# 2 c:\icpchem\l\7500\he.u Tune File# 3 c:\icpchem\l\7500\norm.u

ISTD Ref File :

ISTD Elements

C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

0 :ISTD Failures

C:\ICPCHEM\1\rpttmp\CCB.qct

Data Fil Date Acq Acq. Met Operator	uired: hod: :		C:\ICPCHEM\1 Sep 15 2016 ACZ.M	\DATA\wg409 10:21 pm	909.b\(010SMPL.D\C		Data R .ytes:	esults: Pass	-
Sample N			WG409768LRB					ISTD:	Pass	
Misc Inf			2201							
Vial Num Current Calibrat	Method: ion Fil	e:	3301 C:\ICPCHEM\1 C:\ICPCHEM\1	\CALIB\ACZ.						
Last Cal	-	e:	-	10:13 pm						
Sample T Dilution		:	Sample 1.00							
Autodil			Undiluted							
Final Di			1.00							
QC Eleme	nta									
Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t I	Flag	
9 Be	6	3	-0.017	-0.017	ppb	79.21	200.00			
11 B	6	3	-0.052	-0.052	ppb	288.81	20.00			
27 Al	72	3	5.819	5.819	ppb	1.78	1000.00			
51 V	45	2	-0.063	-0.063	ppb	60.77	200.00			
52 Cr	45	2	-0.031	-0.031	ppb	25.98	200.00			
55 Mn	72	3	-0.117	-0.117	ppb	12.48	200.00			
56 Fe	45	1	2.849	2.849	ppb	1.04	1000.00			
59 Co	72	3	-0.011	-0.011	ppb	7.76	200.00			
60 Ni	45	2	-0.037	-0.037	ppb	15.43	500.00			
63 Cu	45	2	-0.493	-0.493	ppb	11.77	500.00			
66 Zn	72	3	0.518	0.518	ppb	12.48	1000.00			
75 As 78 Se	45	2 1	0.064	0.064	ppb	30.86	200.00 500.00			
78 Se 98 Mo	45 115	3	-0.022 -0.002	-0.022 -0.002	ppb ppb	33.62 121.61	200.00			
107 Ag	115	3	0.002	0.000	ppb ppb	409.92	50.00			
107 Ag 111 Cd	115	3	-0.003	-0.003	ppb	352.63	200.00			
118 Sn	115	3	-0.033	-0.033	ppb	8.52	200.00			
121 Sb	115	3	0.153	0.153	ppb	14.04	25.00			
125 Te	115	3	-0.005	-0.005	ppb	470.15	200.00			
133 Cs	115	3	-0.013	-0.013	ppb	14.33	200.00			
137 Ba	115	3	-0.019	-0.019	ppb	11.48	500.00			
205 Tl	209	3	-0.008	-0.008	ppb	11.14	200.00			
208 Pb	209	3	-0.026	-0.026	ppb	0.42	500.00			
232 Th	209	3	0.397	0.397	ppb	6.42	200.00			
238 U	209	3	-0.010	-0.010	ppb	14.00	200.00			
ISTD Element	ments	Tune	CDC Moon	DCD(%)		Ref Value	Dog(%)	OC Do	ngo (%)	Flag
6 Li		3	CPS Mean 1056440	RSD(%) 1.75		973727	Rec(%) 108.5		nge(%) - 120	Flag
45 Sc		1	2664201	0.76		2490209			- 120	
45 Sc		2	633664	1.23		595752			- 120	
45 Sc		3	6591549	1.00		6201481			- 120	
72 Ge		1	804629	1.43		755907		59.5		
72 Ge		2	310962	1.29		293685			- 120	
72 Ge		3	1548052	0.94		1450449	106.7	59.5	- 120	
74 Ge		1	1143578	0.93		1070347	106.8	59.5	- 120	
74 Ge		2	453897	1.08		430776	105.4	59.5	- 120	
74 Ge		3	2104251	1.04		1984674	106.0	59.5	- 120	
115 In		1	3868456	1.00		3596183			- 120	
115 In		2	1274696	1.06		1187034			- 120	
115 In		3	4870087	0.69		4498589			- 120	
159 Tb		3	6343140	0.34		5855025		59.5		
209 Bi		3	6955876	1.18		6279629	110.8	59.5	- 120	
Tune	e File#	1	c:\icpchem\1	\7500\h2.u						
Tune	e File#	2	c:\icpchem\1	\7500\he.u						
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	/g409909.b∖	003CALB.D	\003CA1	LB.D#	

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

Data Fil Date Acq			C:\ICPCHEM\1 Sep 15 2016		909.b\(011SMPL.D\()11SMPL.D#			
Acq. Met	hod:		ACZ.M					Data R	esults:	<u>.</u>
Operator	:						Anal	ytes:	Pass	
Sample Na Misc Info			WG409768LFB					ISTD:	Pass	
Vial Num			3302							
Current 1			C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat			C:\ICPCHEM\1							
Last Cal			Sep 15 2016							
Sample T	-		Sample	-						
Dilution	Factor	:	1.00							
Autodil	Factor	:	Undiluted							
Final Di	l Facto	r:	1.00							
QC Elemen		-	G	Deve Gerre	TTo i to a		TTI-L Timi	L		
Element			Corr Conc	Raw Conc		RSD(%)	High Limi		Flag	
9 Be	6	3 3	46.280	46.280	ppb	1.15	200.00			
11 B	6	3	9.209	9.209	ppb	1.64	20.00			
27 Al 51 V	72 45	3 2	49.440 47.890	49.440	ppb	0.83	1000.00			
51 V 52 Cr	45	2	47.600	47.890 47.600	ppb ppb	0.35 0.09	200.00 200.00			
52 CI 55 Mn	43 72	3	47.000	47.000	ppb ppb	1.61	200.00			
55 Mii 56 Fe	45	1	47.160	47.160	ppb ppb	0.05	1000.00			
50 re 59 Co	72	3	50.230	50.230	ppb	1.43	200.00			
60 Ni	45	2	46.780	46.780	ppb	0.68	500.00			
63 Cu	45	2	46.290	46.290	ppb	0.57	500.00			
66 Zn	72	3	46.680	46.680	ppb	1.40	1000.00			
75 As	45	2	50.380	50.380	ppb	0.71	200.00			
78 Se	45	1	46.410	46.410	ppb	0.90	500.00			
98 Mo	115	3	45.890	45.890	ppb	0.17	200.00			
107 Ag	115	3	9.396	9.396	ppb	0.46	50.00			
111 Cd	115	3	46.410	46.410	ppb	0.33	200.00			
118 Sn	115	3	46.290	46.290	ppb	0.50	200.00			
121 Sb	115	3	10.520	10.520	ppb	0.71	25.00			
125 Te	115	3	47.590	47.590	ppb	0.85	200.00			
133 Cs	115	3	48.410	48.410	ppb	0.48	200.00			
137 Ba	115	3	47.160	47.160	ppb	0.29	500.00			
205 Tl	209	3	49.910	49.910	ppb	0.43	200.00			
208 Pb	209	3	46.700	46.700	ppb	1.14	500.00			
232 Th	209	3	49.630	49.630	ppb	1.01	200.00			
238 U	209	3	50.040	50.040	ppb	1.26	200.00			
ISTD Ele	mente									
Element	menco	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Ra	nge(%)	Flag
6 Li		3	1077267	1.95		973727			- 120	riag
45 Sc		1	2783227	0.43		2490209		59.5		
45 Sc		2	653399	0.70		595752		59.5		
45 Sc		3	6748894	0.87		6201481		59.5		
72 Ge		1	842060	1.16		755907		59.5		
72 Ge		2	321064	0.52		293685			- 120	
72 Ge		3	1581567	1.62		1450449	109.0	59.5	- 120	
74 Ge		1	1182914	0.90		1070347	110.5	59.5	- 120	
74 Ge		2	466904	0.46		430776	108.4	59.5	- 120	
74 Ge		3	2160868	1.03		1984674		59.5		
115 In		1	4019535	0.78		3596183	111.8	59.5	- 120	
115 In		2	1309500	0.60		1187034	110.3	59.5	- 120	
115 In		3	4993336	0.19		4498589	111.0	59.5	- 120	
159 Tb		3	6538871	0.41		5855025	111.7	59.5	- 120	
209 Bi		3	7112570	0.63		6279629	113.3	59.5	- 120	
	File#	1	c:\icpchem\1							
	File#	2	c:\icpchem\1							
Tune File# 3			c:\icpchem\1	\7500\norm.	u					
ISTD Ref File :			C	:\ICPCHEM\1	\DATA\w	vg409909.b\	003CALB.D	\003CA	LB.D#	

Element Failures:	0	:Max.	Number	of	Failures Allowed
:ISTD Failures	0	:Max.	Number	of	ISTD Failures Allowed

0 0

Data File: Date Acquired: Acq. Method:		C:\ICPCHEM\1 Sep 15 2016		909.b\()12SMPL.D\(
-			ACZ.M					-	esults:	-
Operator Sample N	lame:		L32649-01				Anal	ytes: ISTD:	Pass Pass	
Misc Inf										
Vial Num			3303							
Current			C:\ICPCHEM\1							
Calibrat			C:\ICPCHEM\1		C					
Last Cal Sample T		e.	Sep 15 2016 Sample	10.13 pm						
Dilution		:	1.00							
Autodil			Undiluted							
Final Di	l Facto	r:	1.00							
QC Eleme Element		Tuno	Corr Conc	Part Cong	Unita	DCD (%)	Uich Timi	+	Flag	
9 Be	15 Rel 6	3	-0.007	Raw Conc -0.007	ppb	RSD(%) 107.17	High Limi 200.00		Flag	
у ве 11 в	6	3	7.194	7.194	ppb ppb	9.02	200.00			
27 Al	72	3	194.300	194.300	ppb	10.09	1000.00			
51 V	45	2	1.130	1.130	ppb	3.92	200.00			
52 Cr	45	2	0.100	0.100	ppb	11.90	200.00			
55 Mn	72	3	17.190	17.190	ppb	6.49	200.00			
56 Fe	45	1	379.900	379.900	ppb	0.68	1000.00			
59 Co	72	3	0.293	0.293	ppb	6.56	200.00			
60 Ni	45	2	0.046	0.046	ppb	6.67	500.00			
63 Cu	45	2	0.874	0.874	ppb	7.03	500.00			
66 Zn 75 As	72 45	3 2	0.797 0.160	0.797 0.160	ppb	15.52 18.78	1000.00 200.00			
75 AS 78 Se	45	1	0.093	0.100	ppb ppb	15.84	500.00			
98 Mo	115	3	0.182	0.182	ppb	7.44	200.00			
107 Ag	115	3	0.001	0.001	ppb	136.08	50.00			
111 Cd	115	3	-0.008	-0.008	ppb	87.11	200.00			
118 Sn	115	3	0.021	0.021	ppb	36.23	200.00			
121 Sb	115	3	0.071	0.071	ppb	28.67	25.00			
125 Te	115	3	0.028	0.028	ppb	94.58	200.00			
133 Cs	115	3	0.011	0.011	ppb	35.92	200.00			
137 Ba	115	3	18.180	18.180	ppb	6.67	500.00			
205 Tl	209	3 3	0.017	0.017	ppb	37.66	200.00			
208 Pb 232 Th	209 209	3	0.009 0.591	0.009 0.591	ppb ppb	49.67 5.22	500.00 200.00			
232 III 238 U	209	3	0.003	0.003	ppb	118.18	200.00			
ISTD Ele Element	ments	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Pa	nge(%)	Flag
6 Li		3	1041810	5.52		973727			- 120	riag
45 Sc		1	2781051	0.57		2490209			- 120	
45 Sc		2	651565	0.99		595752			- 120	
45 Sc		3	6659063	3.25		6201481	107.4	59.5	- 120	
72 Ge		1	845519	0.67		755907	111.9	59.5	- 120	
72 Ge		2	320741	0.65		293685	109.2	59.5	- 120	
72 Ge		3	1551780	5.15		1450449		59.5		
74 Ge		1	1188602	0.58		1070347			- 120	
74 Ge		2	466838	0.66		430776			- 120	
74 Ge 115 In		3 1	2119812	4.46		1984674			- 120	
115 In 115 In		2	4012992 1313341	0.41 0.68		3596183 1187034			- 120 - 120	
115 In 115 In		3	4869185	5.29		4498589			- 120 - 120	
159 Tb		3	6345374	5.59		5855025			- 120	
209 Bi		3	6944689	5.68		6279629			- 120	
Tune	e File#	1	c:\icpchem\1	\7500\h2.u						
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	7500 norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	/g409909.b∖	003CALB.D	\003CAI	LB.D#	

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

Data File: Date Acquired:	C:\ICPCHEM\1\D Sep 15 2016 1		909.b\(13SMPL.D\C				
Acq. Method:	ACZ.M					Data Re		-
Operator:	7 2 0 6 4 0 0 0					ytes:	Pass	
Sample Name: Misc Info:	L32649-02					ISTD:	Pass	
Vial Number:	2204							
Current Method:	3304		7 M					
Calibration File:	C:\ICPCHEM\1\M C:\ICPCHEM\1\C							
Last Cal. Update:	Sep 15 2016 1		C					
Sample Type:	Sample	0.12 bu						
Dilution Factor:	1.00							
Autodil Factor:	Undiluted							
Final Dil Factor:	1.00							
QC Elements								
Element IS Ref Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t F	lag	
9 Be 6 3	-0.009	-0.009	ppb	54.99	200.00			
11 B 6 3	8.349	8.349	ppb	2.39	20.00			
27 Al 72 3	93.750	93.750	ppb	2.92	1000.00			
51 V 45 2	0.204	0.204	ppb	14.50	200.00			
52 Cr 45 2	0.117	0.117	ppb	12.12	200.00			
55 Mn 72 3	11.570	11.570	ppb	0.59	200.00			
56 Fe 45 1	175.100	175.100	ppb	1.03	1000.00			
59 Co 72 3	0.077	0.077	ppb	0.47	200.00			
60 Ni 45 2	0.111	0.111	ppb	14.02	500.00			
63 Cu 45 2	0.235	0.235	ppb	4.79	500.00			
66 Zn 72 3	10.360	10.360	ppb	0.46	1000.00			
75 As 45 2	0.172	0.172	ppb	17.52	200.00			
78 Se 45 1	0.078	0.078	ppb	7.95	500.00			
98 Mo 115 3	0.016	0.016	ppb	48.04	200.00			
107 Ag 115 3	-0.004	-0.004	ppb	34.11	50.00			
111 Cd 115 3	-0.011	-0.011	ppb	69.73	200.00			
118 Sn 115 3 121 Sb 115 3	-0.055 0.041	-0.055 0.041	ppb	7.23 23.25	200.00 25.00			
121 SD 115 3 125 Te 115 3	0.041	0.041	ppb ppb	400.56	200.00			
133 Cs 115 3	-0.004	-0.001	ppb	60.59	200.00			
137 Ba 115 3	37.840	37.840	ppb	0.47	500.00			
205 Tl 209 3	0.011	0.011	ppb	55.55	200.00			
208 Pb 209 3	0.013	0.013	ppb	50.23	500.00			
232 Th 209 3	0.247	0.247	ppb	3.59	200.00			
238 U 209 3	-0.012	-0.012	ppb	30.02	200.00			
ISTD Elements Element Tune	CDC Moon	DCD (%)		Dof Volue	Dog(%)	OC Dor	a (%)	Flog
6 Li 3	CPS Mean 1076256	RSD(%) 0.85		Ref Value 973727	Rec(%) 110.5	QC Rar 59.5 -		Flag
45 Sc 1	2753749	0.85		2490209		59.5 -		
45 Sc 2	654778	1.77		595752		59.5 -		
45 Sc 3	6828951	1.39		6201481		59.5 -		
72 Ge 1	833005	0.59		755907		59.5 -		
72 Ge 2	320001	1.63		293685		59.5 -		
72 Ge 3	1599479	0.61		1450449		59.5 -		
74 Ge 1	1184183	0.56		1070347		59.5 -		
74 Ge 2	470651	1.00		430776		59.5 -		
74 Ge 3	2191178	0.88		1984674		59.5 -		
115 In 1	3996655	1.35		3596183		59.5 -		
115 In 2	1316721	1.19		1187034		59.5 -		
115 In 3	5004326	0.90		4498589	111.2	59.5 -	120	
159 Tb 3	6590051	0.44		5855025	112.6	59.5 -	120	
209 Bi 3	7183078	1.05		6279629	114.4	59.5 -	120	
Tune File# 1	c:\icpchem\1\7	500\h2.u						
Tune File# 2	c:\icpchem\1\7							
Tune File# 3	c:\icpchem\1\7		u					
ISTD Ref File :	C:\:	ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CAL	B.D#	

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

Data Fil Date Acq			C:\ICPCHEM\1 Sep 15 2016	\DATA\wg409 10:34 pm	909.b\()14SMPL.D\()14SMPL.D#			
Acq. Met	hod:		ACZ.M					Data R	esults:	_
Operator	:						Anal	ytes:	Pass	
Sample N Misc Inf			L32649-03					ISTD:	Pass	
Vial Num			3305							
Current	Method:		C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat	ion Fil	e:	C:\ICPCHEM\1	\CALIB\ACZ.	С					
Last Cal	. Updat	e:	Sep 15 2016	10:13 pm						
Sample T			Sample							
Dilution			1.00							
Autodil Final Di			Undiluted 1.00							
QC Eleme										
Element			Corr Conc	Raw Conc		RSD(%)	High Limi	t	Flag	
9 Be	6	3	-0.024	-0.024	ppb	16.81	200.00			
11 B 27 Al	6 72	3 3	7.748 155.400	7.748 155.400	dqq dqq	2.05 1.92	20.00 1000.00			
27 AI 51 V	45	2	0.562	0.562	ppb	3.76	200.00			
51 V 52 Cr	45	2	0.085	0.085	ppb ppb	18.84	200.00			
55 Mn	72	3	17.570	17.570	ppb	0.62	200.00			
56 Fe	45	1	293.500	293.500	ppb	2.56	1000.00			
59 Co	72	3	0.073	0.073	ppb	7.50	200.00			
60 Ni	45	2	0.017	0.017	ppb	13.94	500.00			
63 Cu	45	2	-0.047	-0.047	ppb	58.43	500.00			
66 Zn	72	3	7.462	7.462	ppb	2.39	1000.00			
75 As	45	2	0.373	0.373	ppb	13.08	200.00			
78 Se	45	1	0.062	0.062	ppb	7.11	500.00			
98 Mo 107 Ag	115 115	3 3	0.060 -0.003	0.060 -0.003	ppb	19.27 27.08	200.00 50.00			
107 Ag 111 Cd	115	3	-0.013	-0.003	ppb ppb	40.85	200.00			
118 Sn	115	3	-0.060	-0.060	ppb	9.16	200.00			
121 Sb	115	3	0.032	0.032	ppb	15.23	25.00			
125 Te	115	3	-0.022	-0.022	ppb	113.19	200.00			
133 Cs	115	3	-0.007	-0.007	ppb	7.78	200.00			
137 Ba	115	3	48.250	48.250	ppb	0.95	500.00			
205 Tl	209	3	-0.007	-0.007	ppb	18.06	200.00			
208 Pb	209	3	-0.007	-0.007	ppb	44.33	500.00			
232 Th 238 U	209 209	3 3	0.115 -0.018	0.115 -0.018	ppb ppb	5.65 8.46	200.00			
230 0	209	5	-0.018	-0.018	ppp	0.40	200.00			
ISTD Ele	ments									
Element		Tune	CPS Mean	RSD(%)		Ref Value			nge(%)	Flag
6 Li		3	1072388	0.86		973727			- 120	
45 Sc 45 Sc		1 2	2739986 650845	0.12 1.15		2490209 595752		59.5 59.5		
45 SC		3	6751563	0.46		6201481		59.5		
72 Ge		1	821761	1.43		755907		59.5		
72 Ge		2	319840	1.34		293685			- 120	
72 Ge		3	1580137	1.02		1450449	108.9	59.5	- 120	
74 Ge		1	1171456	0.70		1070347	109.4	59.5	- 120	
74 Ge		2	467341	1.59		430776	108.5	59.5	- 120	
74 Ge		3	2160670	0.97		1984674			- 120	
115 In		1	3972265	1.04		3596183			- 120	
115 In 115 In		2	1303521	1.43		1187034		59.5		
115 In 159 Tb		3 3	4971906 6521901	0.67 0.39		4498589 5855025		59.5 59.5	- 120 - 120	
209 Bi		3	7130933	1.27		6279629			- 120	
Tune	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:/ICPCHEM/1	\DATA\w	/g409909.b\	003CALB.D	\003CA	LB.D#	
0.571				0				11 1		

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 10:35 PM L32771-1611081657

Data Fi Date Acc	quired:		C:\ICPCHEM\1 Sep 15 2016		909.b\(015SMPL.D\(_	
Acq. Met Operator			ACZ.M					Data R .ytes:	esults: Pass	_
Sample 1	Name:		L32649-04				Anal	ISTD:	Pass	
Misc Ini Vial Nur			3306							
Current			C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat			C:\ICPCHEM\1		С					
Last Ca	-	e:	Sep 15 2016	10:13 pm						
Sample 7 Dilution			Sample 1.00							
Autodil			Undiluted							
Final D:	il Facto	r:	1.00							
QC Eleme		_		5					-1	
Element 9 Be	IS Rei 6	Tune 3	Corr Conc -0.029	Raw Conc -0.029	Units ppb	RSD(%) 22.19	High Limi 200.00		Flag	
у ве 11 В	6	3	6.078	6.078	ppb	3.99	200.00			
27 Al	72	3	21.550	21.550	ppb	2.31	1000.00			
51 V	45	2	0.535	0.535	ppb	5.66	200.00			
52 Cr	45	2	0.162	0.162	ppb	5.48	200.00			
55 Mn	72	3	13.210	13.210	ppb	1.00	200.00			
56 Fe 59 Co	45 72	1 3	121.200 0.063	121.200 0.063	ppb ppb	0.53 5.37	1000.00 200.00			
60 Ni	45	2	-0.016	-0.016	ppb	14.49	500.00			
63 Cu	45	2	0.454	0.454	ppb	10.49	500.00			
66 Zn	72	3	3.523	3.523	ppb	1.68	1000.00			
75 As	45	2	0.091	0.091	ppb	71.32	200.00			
78 Se	45	1	0.057	0.057	ppb	21.78	500.00			
98 Mo 107 Ag	115 115	3 3	0.429 -0.003	0.429 -0.003	ppb ppb	3.83 14.82	200.00 50.00			
107 Ag 111 Cd	115	3	-0.003	-0.003	ppb	106.37	200.00			
118 Sn	115	3	-0.075	-0.075	ppb	2.57	200.00			
121 Sb	115	3	0.031	0.031	ppb	39.38	25.00			
125 Te	115	3	-0.031	-0.031	ppb	58.57	200.00			
133 Cs	115	3 3	-0.009	-0.009	ppb	31.23	200.00			
137 Ba 205 Tl	115 209	3	22.650 -0.012	22.650 -0.012	ppb ppb	0.40 8.27	500.00 200.00			
208 Pb	209	3	-0.024	-0.024	ppb	13.63	500.00			
232 Th	209	3	0.046	0.046	ppb	15.48	200.00			
238 U	209	3	-0.018	-0.018	ppb	6.49	200.00			
ISTD Ele Element	ements	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Pa	.nge(%)	Flag
6 Li		3	1064705	2.57		973727			- 120	riag
45 Sc		1	2724494	0.70		2490209			- 120	
45 Sc		2	644477	0.74		595752	108.2	59.5	- 120	
45 Sc		3	6710946	0.55		6201481		59.5		
72 Ge		1	831785	0.69		755907		59.5		
72 Ge 72 Ge		2 3	318359 1583295	1.12 0.69		293685 1450449			- 120 - 120	
74 Ge		1	1165176	0.50		1070347			- 120	
74 Ge		2	467558	1.12		430776			- 120	
74 Ge		3	2152709	0.74		1984674	108.5		- 120	
115 In		1	3952433	0.19		3596183			- 120	
115 In 115 In		2	1295979	1.42		1187034		59.5		
115 In 159 Tb		3 3	4989687 6438926	0.10 0.06		4498589 5855025		59.5 59.5	- 120 - 120	
209 Bi		3	7072057	0.51		6279629			- 120	
Tun	e File#	1	c:\icpchem\1	\7500\h2.u						
	e File#	2	c:\icpchem\1							
Tun	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Rei	f File :		C	:/ICPCHEM/1	\DATA\v	√g409909.b\	003CALB.D	\003CA:	LB.D#	
0.171-	ment De	1		0	·Morr N	Tumbon of I	Zailumaa N	110000		

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 10:39 PM L32771-1611081657

Data Fil Date Acq			C:\ICPCHEM\1 Sep 15 2016		909.b\(016SMPL.D\()16SMPL.D#			
Acq. Met			ACZ.M						esults	<u>.</u>
Operator							Anal	ytes:	Pass	
Sample N Misc Inf			L32649-05					ISTD:	Pass	
Vial Num			3307							
Current	Method:		C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat	ion Fil	e:	C:\ICPCHEM\1	\CALIB\ACZ.	С					
Last Cal	-	e:	Sep 15 2016	10:13 pm						
Sample T			Sample							
Dilution			1.00							
Autodil Final Di			Undiluted 1.00							
QC Eleme	nts									
Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t	Flag	
9 Be	6	3	-0.032	-0.032	ppb	16.50	200.00			
11 B	6	3	5.602	5.602	ppb	3.07	20.00			
27 Al	72	3	43.920	43.920	ppb	0.55	1000.00			
51 V 52 Cr	45 45	2 2	0.920	0.920	ppb	2.95	200.00			
52 CI 55 Mn	43 72	3	0.099 17.860	0.099 17.860	dqq dqq	22.29 0.32	200.00 200.00			
55 Fe	45	1	287.600	287.600	ppb	0.90	1000.00			
59 Co	72	3	0.617	0.617	ppb	1.52	200.00			
60 Ni	45	2	-0.011	-0.011	ppb	74.12	500.00			
63 Cu	45	2	0.226	0.226	ppb	8.59	500.00			
66 Zn	72	3	2.859	2.859	ppb	2.82	1000.00			
75 As	45	2	0.132	0.132	ppb	23.23	200.00			
78 Se	45	1	0.013	0.013	ppb	17.68	500.00			
98 Mo	115	3	0.261	0.261	ppb	1.02	200.00			
107 Ag 111 Cd	115 115	3 3	-0.003 -0.019	-0.003 -0.019	ppb	44.83 48.33	50.00 200.00			
111 Ca 118 Sn	115	3	-0.019	-0.019	ppb ppb	40.33 9.37	200.00			
121 Sb	115	3	0.035	0.035	ppb	5.53	25.00			
125 Te	115	3	-0.031	-0.031	ppb	8.41	200.00			
133 Cs	115	3	-0.013	-0.013	ppb	9.35	200.00			
137 Ba	115	3	21.340	21.340	ppb	0.31	500.00			
205 Tl	209	3	-0.012	-0.012	ppb	7.03	200.00			
208 Pb	209	3	0.043	0.043	ppb	6.24	500.00			
232 Th	209	3	0.001	0.001	ppb	337.79	200.00			
238 U	209	3	-0.021	-0.021	ppb	3.46	200.00			
ISTD Ele	ments									
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Ra	nge(%)	Flag
6 Li		3	1042301	3.02		973727	107.0	59.5	- 120	
45 Sc		1	2674335	0.50		2490209		59.5		
45 Sc		2	633639	0.97		595752		59.5		
45 Sc		3 1	6577094	2.17		6201481 755907		59.5		
72 Ge 72 Ge		2	804852 312461	1.28 1.33		293685		59.5 59.5	- 120 - 120	
72 Ge 72 Ge		3	1555584	1.78		1450449			- 120	
74 Ge		1	1145191	0.26		1070347			- 120	
74 Ge		2	452660	1.36		430776			- 120	
74 Ge		3	2109492	1.64		1984674	106.3	59.5	- 120	
115 In		1	3856998	0.30		3596183	107.3	59.5	- 120	
115 In		2	1261485	1.36		1187034	106.3	59.5	- 120	
115 In		3	4857230	1.22		4498589			- 120	
159 Tb		3	6358869	0.30		5855025			- 120	
209 Ві		3	7033688	0.88		6279629	112.0	59.5	- 120	
	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	√g409909.b\	003CALB.D	\003CA:	LB.D#	
				-		- 1				

0 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data Fil Date Acq Acq. Met	uired:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\()17SMPL.D\(esults:	
Operator	:							ytes:	Pass	_
Sample Na Misc Info			L32649-05LFM					ISTD:	Pass	
Vial Num			3308							
Current Calibrat			C:\ICPCHEM\1' C:\ICPCHEM\1'							
Last Cal				10:13 pm	C					
Sample T			Sample							
Dilution Autodil			1.00 Undiluted							
Final Di			1.00							
QC Eleme									_	
Element 9 Be	IS Ref 6	Tune 3	Corr Conc 47.010	Raw Conc 47.010	Units ppb	RSD(%) 1.32	High Limi 200.00		Flag	
у ве 11 в	6	3	14.780	14.780	ppb ppb	0.25	200.00			
27 Al	72	3	105.400	105.400	ppb	0.67	1000.00			
51 V	45	2	49.230	49.230	ppb	0.79	200.00			
52 Cr	45	2	47.750	47.750	ppb	0.95	200.00			
55 Mn 56 Fe	72 45	3 1	66.680 335.800	66.680 335.800	ppb ppb	0.89 0.61	200.00			
50 re 59 Co	72	3	50.500	50.500	ppb	0.24	200.00			
60 Ni	45	2	46.300	46.300	ppb	1.21	500.00			
63 Cu	45	2	47.130	47.130	ppb	0.85	500.00			
66 Zn	72	3	50.040	50.040	ppb	0.99	1000.00			
75 As 78 Se	45 45	2 1	50.750 46.940	50.750 46.940	ppb	0.82 0.61	200.00 500.00			
78 Se 98 Mo	45 115	3	45.620	45.620	ppb ppb	0.01	200.00			
107 Ag	115	3	9.205	9.205	ppb	0.73	50.00			
111 Cd	115	3	46.190	46.190	ppb	1.17	200.00			
118 Sn	115	3	46.090	46.090	ppb	0.76	200.00			
121 Sb	115	3	10.450	10.450	ppb	0.95	25.00			
125 Te 133 Cs	115 115	3 3	47.630 47.780	47.630 47.780	ppb ppb	2.36 1.15	200.00			
137 Ba	115	3	67.690	67.690	ppb	0.57	500.00			
205 Tl	209	3	49.380	49.380	ppb	0.54	200.00			
208 Pb	209	3	46.460	46.460	ppb	1.04	500.00			
232 Th	209	3	49.480	49.480	ppb	0.49	200.00			
238 U	209	3	50.170	50.170	ppb	0.85	200.00			
ISTD Ele	ments									
Element		Tune	CPS Mean	RSD(%)		Ref Value		QC Ra	nge(%)	Flag
6 Li		3	1050909	2.92		973727		59.5		
45 SC 45 SC		1 2	2665748 632929	0.88 0.88		2490209 595752		59.5 59.5		
45 SC		3	6650603	1.14		6201481		59.5		
72 Ge		1	806233	2.03		755907		59.5		
72 Ge		2	310243	1.30		293685		59.5	- 120	
72 Ge		3	1551527	1.43		1450449		59.5		
74 Ge 74 Ge		1 2	1136797	1.27		1070347 430776			- 120 - 120	
74 Ge 74 Ge		3	454839 2126041	1.19 1.32		1984674			- 120 - 120	
115 In		1	3871411	1.20		3596183			- 120	
115 In		2	1275951	1.36		1187034	107.5	59.5	- 120	
115 In		3	4938346	1.04		4498589			- 120	
159 Tb 209 Bi		3 3	6418232 7071979	0.70 0.57		5855025 6279629		59.5 59.5		
Tune	File#	1	c:\icpchem\1	\7500\h2.u						
	File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	7500 norm.	u					
ISTD Ref	File :		C	\ICPCHEM\1	\DATA\w	rg409909.b∖	003CALB.D	\003CAI	.B.D#	

0 :Element Failures0 :Max. Number of Failures Allowed0 :ISTD Failures0 :Max. Number of ISTD Failures Allowed

9/15/2016 10:45 PM L32771-1611081657

Data Fil Date Acq	uired:		C:\ICPCHEM\1 Sep 15 2016		909.b\(018SMPL.D\(
Acq. Met			ACZ.M						esults:	_		
Operator Sample Na	ame:		L32649-05LFM	D			Anal	ytes: ISTD:	Pass Pass			
Misc Inf												
Vial Num			3309 C:\icpchem\1\methods\acz.m									
Current Calibrat			C:\ICPCHEM\1 C:\ICPCHEM\1									
Last Cal			Sep 15 2016		C							
Sample T	-	6	Sample	10 10 Pm								
Dilution	Factor	:	1.00									
Autodil			Undiluted									
Final Di	l Facto	r:	1.00									
QC Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t	Flag			
9 Be	6	3	46.900	46.900	ppb	1.47	200.00		2			
11 B	6	3	14.800	14.800	ppb	0.82	20.00					
27 Al	72	3	94.400	94.400	ppb	2.48	1000.00					
51 V	45	2	48.830	48.830	ppb	0.23	200.00					
52 Cr	45	2	47.680	47.680	ppb	0.76	200.00					
55 Mn	72	3	66.320	66.320	ppb	0.60	200.00					
56 Fe 59 Co	45 72	1 3	330.700 50.090	330.700 50.090	ppb ppb	0.43 0.21	1000.00 200.00					
59 CO 60 Ni	45	2	46.700	46.700	ppb	0.18	500.00					
63 Cu	45	2	47.160	47.160	ppb	0.28	500.00					
66 Zn	72	3	49.320	49.320	ppb	0.45	1000.00					
75 As	45	2	50.150	50.150	ppb	0.58	200.00					
78 Se	45	1	46.710	46.710	ppb	0.82	500.00					
98 Mo	115	3	45.720	45.720	ppb	0.89	200.00					
107 Ag	115	3	9.222	9.222	ppb	1.57	50.00					
111 Cd	115	3	46.170	46.170	ppb	0.58	200.00					
118 Sn	115	3	46.210	46.210	ppb	1.27	200.00					
121 Sb 125 Te	115 115	3 3	10.430 47.960	10.430 47.960	ppb ppb	1.17 2.09	25.00 200.00					
125 IE 133 Cs	115	3	48.150	48.150	ppb	1.41	200.00					
137 Ba	115	3	68.110	68.110	ppb	1.15	500.00					
205 Tl	209	3	49.490	49.490	ppb	0.38	200.00					
208 Pb	209	3	46.690	46.690	ppb	1.23	500.00					
232 Th	209	3	50.150	50.150	ppb	0.12	200.00					
238 U	209	3	50.390	50.390	ppb	0.27	200.00					
ISTD Ele	ments											
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Ra	nge(%)	Flag		
6 Li		3	1070022	2.06		973727			- 120			
45 Sc		1	2731492	0.61		2490209	109.7	59.5	- 120			
45 Sc		2	645638	0.49		595752		59.5				
45 Sc		3	6725492	0.94		6201481		59.5				
72 Ge		1	820949	2.41		755907		59.5				
72 Ge 72 Ge		2 3	315929 1583995	0.60 0.42		293685 1450449			- 120 - 120			
72 Ge 74 Ge		1	1168989	0.42		1070347			- 120 - 120			
74 Ge		2	462369	0.93		430776			- 120			
74 Ge		3	2150092	0.47		1984674			- 120			
115 In		1	3948133	1.51		3596183			- 120			
115 In		2	1297774	0.65		1187034	109.3	59.5	- 120			
115 In		3	4991346	1.01		4498589			- 120			
159 Tb		3	6515028	0.29		5855025		59.5				
209 Bi		3	7174991	0.37		6279629	114.3	59.5	- 120			
Tune	e File#	1	c:\icpchem\1									
	e File#	2	c:\icpchem\1									
Tune File# 3			c:\icpchem\1	\7500\norm.	u							
ISTD Ref	File :		C	:/ICPCHEM/1	\DATA\v	vg409909.b\	003CALB.D	\003CA1	LB.D#			
0.117	ont D-	1		0	·Most	Tumbon of T	lung ?	110				

0 :Element Failures	0 :Max. Number of Failures Allowed	
0 :ISTD Failures	0 :Max. Number of ISTD Failures All	owed

9/15/2016 10:48 PM L32771-1611081657

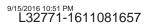
Continuing Calibration Verification (CCV) QC Report

Data File: C:\ICPCHEM\1\DATA\wg409909.b\019_CCV.D\019_CCV.D# Sep 15 2016 10:49 pm Date Acquired: Operator: Data Results: Sample Name: Analytes: Pass CCV Misc Info: ISTD: Pass Vial Number: 1105 C:\ICPCHEM\1\METHODS\ACZ.M C:\ICPCHEM\1\CALIB\ACZ.C Current Method: Calibration File: Sep 15 2016 10:13 pm Last Cal Update: Sample Type: CCV Total Dil Factor: 1.00

QC Elements

QC.	Flewer	ICS									
Ele	ment	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Ra	ang	e(%)	Flag
9	Ве	б	3	94.410	0.70	100.00	94.4	89	-	110	
11	В	6	3	9.875	2.45	10.00	98.8	89	-	110	
27	Al	72	3	504.300	0.45	500.00	100.9	89	-	110	
51	V	45	2	99.080	0.36	100.00	99.1	89	-	110	
52	Cr	45	2	98.090	0.15	100.00	98.1	89	-	110	
55	Mn	72	3	99.470	0.61	100.00	99.5	89	-	110	
56	Fe	45	1	497.500	0.58	500.00	99.5	89	-	110	
59	Co	72	3	100.500	0.90	100.00	100.5	89	-	110	
60	Ni	45	2	242.200	0.51	250.00	96.9	89	-	110	
63	Cu	45	2	252.100	0.90	250.00	100.8	89	-	110	
66	Zn	72	3	503.900	0.62	500.00	100.8	89	-	110	
75	As	45	2	98.850	0.59	100.00	98.9	89	-	110	
78	Se	45	1	250.400	0.48	250.00	100.2	89	-	110	
98	Mo	115	3	98.860	0.51	100.00	98.9	89	-	110	
107	Ag	115	3	24.300	0.39	25.00	97.2	89	-	110	
111	Cd	115	3	98.830	0.40	100.00	98.8	89	-	110	
118	Sn	115	3	100.100	0.89	100.00	100.1	89	-	110	
121	Sb	115	3	12.180	0.86	12.50	97.4	89	-	110	
125	Те	115	3	99.600	0.53	100.00	99.6	89	-	110	
133	Cs	115	3	99.150	0.69	100.00	99.2	89	-	110	
137	Ba	115	3	252.400	1.33	250.00	101.0	89	-	110	
205	Tl	209	3	101.600	0.16	100.00	101.6	89	-	110	
208	Pb	209	3	250.600	0.25	250.00	100.2	89	-	110	
232	Th	209	3	101.700	0.44	100.00	101.7	89	-	110	
238	U	209	3	102.500	0.75	100.00	102.5	89	-	110	

ISTD	Elements
	1101101


Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	1076636	2.41	973727	110.6	60 - 120	
45 Sc	1	2715193	0.56	2490209	109.0	60 - 120	
45 Sc	2	641723	0.86	595752	107.7	60 - 120	
45 Sc	3	6706265	0.94	6201481	108.1	60 - 120	
72 Ge	1	810541	1.53	755907	107.2	60 - 120	
72 Ge	2	312215	0.05	293685	106.3	60 - 120	
72 Ge	3	1568730	0.92	1450449	108.2	60 - 120	
74 Ge	1	1149558	1.06	1070347	107.4	60 - 120	
74 Ge	2	457449	0.54	430776	106.2	60 - 120	
74 Ge	3	2140871	0.50	1984674	107.9	60 - 120	
115 In	1	3891977	0.98	3596183	108.2	60 - 120	
115 In	2	1290048	0.80	1187034	108.7	60 - 120	
115 In	3	4951678	0.22	4498589	110.1	60 - 120	
159 Tb	3	6534543	0.84	5855025	111.6	60 - 120	
209 Bi	3	7114381	0.50	6279629	113.3	60 - 120	

Tune File#1c:\icpchem\l\7500\h2.uTune File#2c:\icpchem\l\7500\he.uTune File#3c:\icpchem\l\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures 0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File: C:\ICPCHEM\1\DATA\wg409909.b\020_CCB.D\020_CCB.D# Date Acquired: Sep 15 2016 10:52 pm Operator: Data Results: Analytes: Pass ISTD: Pass Sample Name: CCB Misc Info: 1102 Vial Number: Vial Number: 1102 Current Method: C:\ICPCHEM\1\METHODS\ACZ.M Calibration File: C:\ICPCHEM\1\CALIB\ACZ.C Last Cal Update: Sep 15 2016 10:13 pm Sample Type: CCB Total Dil Factor: 1.00

QC Elements

QC 1	Elewei	ITS					
Elet	ment	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9	Ве	6	3	0.026 ppb	35.80	0.150	
11	В	6	3	-0.015 ppb	359.79	1.500	
27	Al	72	3	0.014 ppb	282.40	3.000	
51	V	45	2	0.037 ppb	87.33	0.600	
52	Cr	45	2	0.005 ppb	328.86	1.500	
55	Mn	72	3	-0.069 ppb	7.86	1.500	
56	Fe	45	1	-0.084 ppb	51.81	12.000	
59	Co	72	3	0.025 ppb	8.63	0.150	
60	Ni	45	2	0.073 ppb	20.53	1.800	
63	Cu	45	2	-0.234 ppb	6.38	1.500	
66	Zn	72	3	-0.026 ppb	150.73	6.000	
75	As	45	2	0.123 ppb	10.81	0.600	
78	Se	45	1	0.173 ppb	18.00	0.300	
98	Мо	115	3	0.034 ppb	4.94	1.500	
107	Ag	115	3	0.006 ppb	25.08	0.150	
111	Cd	115	3	0.018 ppb	16.88	0.300	
118	Sn	115	3	0.149 ppb	10.65	0.300	
121	Sb	115	3	0.330 ppb	1.31	1.200	
125	Те	115	3	0.086 ppb	17.25	3.000	
133	Cs	115	3	0.026 ppb	11.76	0.600	
137	Ba	115	3	0.059 ppb	24.45	1.500	
205	Tl	209	3	0.042 ppb	3.93	0.300	
208	Pb	209	3	0.059 ppb	21.08	0.300	
232	Th	209	3	0.918 ppb	8.53	3.000	
238	U	209	3	0.042 ppb	2.19	0.300	

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	1095881	0.94	973727	112.5	60	- 120	
45 Sc	1	2739942	0.95	2490209	110.0	60	- 120	
45 Sc	2	651006	1.03	595752	109.3	60	- 120	
45 Sc	3	6747014	0.75	6201481	108.8	60	- 120	
72 Ge	1	823180	0.94	755907	108.9	60	- 120	
72 Ge	2	318952	1.05	293685	108.6	60	- 120	
72 Ge	3	1581005	0.21	1450449	109.0	60	- 120	
74 Ge	1	1162741	0.87	1070347	108.6	60	- 120	
74 Ge	2	462067	0.32	430776	107.3	60	- 120	
74 Ge	3	2158476	0.56	1984674	108.8	60	- 120	
115 In	1	3965159	0.05	3596183	110.3	60	- 120	
115 In	2	1302235	0.69	1187034	109.7	60	- 120	
115 In	3	5064906	0.99	4498589	112.6	60	- 120	
159 Tb	3	6617148	0.64	5855025	113.0	60	- 120	
209 Bi	3	7237245	1.28	6279629	115.2	60	- 120	

Tune File# 1 c:\icpchem\l\7500\h2.u Tune File# 2 c:\icpchem\l\7500\he.u Tune File# 3 c:\icpchem\l\7500\norm.u

ISTD Ref File :

ISTD Elements

C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

0 :ISTD Failures

9/15/2016 10:54 PM L32771-1611081657

Data Fil Date Acq Acq. Met	uired: hod:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M	\DATA\wg409 10:55 pm	909.b\()21SMPL.D\(Data R	esults:	<u>.</u>
Operator Sample N	ame:		L32649-06				Anal	ytes: ISTD:	Pass Pass	
Misc Inf Vial Num			3310							
Current	Method:		C:\ICPCHEM\1							
Calibrat Last Cal			C:\ICPCHEM\1 Sep 15 2016		С					
Sample T	ype:		Sample							
Dilution Autodil			1.00 Undiluted							
Final Di			1.00							
QC Eleme										
Element 9 Be	IS Ref 6	Tune 3	Corr Conc -0.012	Raw Conc -0.012		RSD(%) 57.93	High Limi 200.00	t	Flag	
у ве 11 В	6	3	5.884	5.884	ppb ppb	5.19	200.00			
27 Al	72	3	118.800	118.800	ppb	1.55	1000.00			
51 V	45	2	0.772	0.772	ppb	2.16	200.00			
52 Cr	45	2	0.095	0.095	ppb	12.43	200.00			
55 Mn	72	3	14.640	14.640	ppb	1.02	200.00			
56 Fe	45	1	260.900	260.900	ppb	0.69	1000.00			
59 Co	72	3	0.173	0.173	ppb	4.66	200.00			
60 Ni	45	2	0.038	0.038	ppb	16.47	500.00			
63 Cu 66 Zn	45	2 3	0.366	0.366	ppb	5.81	500.00			
66 Zn 75 As	72 45	3 2	2.562 0.118	2.562 0.118	dqq dqq	1.46 25.51	1000.00 200.00			
73 AS 78 Se	45	1	0.056	0.056	ppb ppb	12.91	500.00			
98 Mo	115	3	0.059	0.059	ppb	17.07	200.00			
107 Ag	115	3	-0.001	-0.001	ppb	115.83	50.00			
111 Cd	115	3	-0.009	-0.009	ppb	59.51	200.00			
118 Sn	115	3	-0.022	-0.022	ppb	8.66	200.00			
121 Sb	115	3	0.082	0.082	ppb	5.03	25.00			
125 Te	115	3	0.003	0.003	ppb	522.71	200.00			
133 Cs	115	3	-0.006	-0.006	ppb	28.39	200.00			
137 Ba 205 Tl	115 209	3 3	15.960 -0.004	15.960 -0.004	ppb ppb	1.80 33.75	500.00 200.00			
203 II 208 Pb	209	3	0.017	0.017	ppb ppb	9.04	500.00			
232 Th	209	3	0.325	0.325	ppb	7.00	200.00			
238 U	209	3	-0.009	-0.009	ppb	21.44	200.00			
ISTD Ele										
Element	mentos	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Ra	nge(%)	Flag
6 Li		3	1095951	2.35		973727			- 120	
45 Sc		1	2751771	1.05		2490209	110.5	59.5	- 120	
45 Sc		2	654521	0.73		595752	109.9	59.5	- 120	
45 Sc		3	6836894	1.05		6201481		59.5		
72 Ge		1	833190	1.06		755907		59.5		
72 Ge 72 Ge		2 3	324965	0.68		293685			- 120	
72 Ge 74 Ge		5 1	1598444 1177753	0.56 1.14		1450449 1070347			- 120 - 120	
74 Ge		2	476767	0.39		430776			- 120	
74 Ge		3	2179740	0.48		1984674		59.5		
115 In		1	4027860	1.04		3596183			- 120	
115 In		2	1323481	0.62		1187034	111.5	59.5	- 120	
115 In		3	5037160	0.78		4498589			- 120	
159 Tb		3	6632496	0.43		5855025		59.5		
209 Bi		3	7298632	0.23		6279629	116.2	59.5	- 120	
Tune	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	/g409909.b∖	003CALB.D	\003CA	LB.D#	

Data Fil Date Acq Acq. Met	uired:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M	\DATA\wg409 10:59 pm	909.b\()22SMPL.D\C			esults:	
Operator			AC2.M					ytes:	Fail	-
Sample N Misc Inf			L32730-01					ISTD:	Pass	
Vial Num			3311							
Current	Method:		C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat			C:/ICPCHEM/1		С					
Last Cal	-	e:	Sep 15 2016	10:13 pm						
Sample T Dilution		:	Sample 1.00							
Autodil			Undiluted							
Final Di	l Facto	r:	1.00							
QC Eleme		_				/ .				
Element 9 Be	IS Rei 6	Tune 3	Corr Conc	Raw Conc		RSD(%)	High Limi 200.00		Flag	
9 ве 11 В	6	3	0.984 23.480	0.984 23.480	ppb ppb	1.94 1.31	200.00		OCAL	
27 Al	72	3	22,240.000	22240.000	dqq	1.50	1000.00		OCAL	
51 V	45	2	30.310	30.310	ppb	1.84	200.00			
52 Cr	45	2	17.420	17.420	ppb	1.85	200.00			
55 Mn	72	3	189.300	189.300	ppb	0.42	200.00			
56 Fe	45	1	14,050.000	14050.000	ppb	0.17	1000.00		OCAL	
59 Co 60 Ni	72 45	3 2	6.086 15.260	6.086 15.260	ppb ppb	0.42 2.28	200.00 500.00			
63 Cu	45	2	294.400	294.400	ppb	1.69	500.00			
66 Zn	72	3	65.240	65.240	ppb	0.42	1000.00			
75 As	45	2	6.860	6.860	ppb	3.14	200.00			
78 Se	45	1	0.640	0.640	ppb	3.94	500.00			
98 Mo	115	3	3.246	3.246	ppb	1.38	200.00			
107 Ag 111 Cd	115 115	3 3	0.135 0.273	0.135 0.273	ppb ppb	3.30 5.11	50.00 200.00			
118 Sn	115	3	0.794	0.275	ppb	2.11	200.00			
121 Sb	115	3	0.326	0.326	ppb	3.05	25.00			
125 Te	115	3	0.128	0.128	ppb	17.63	200.00			
133 Cs	115	3	2.299	2.299	ppb	1.92	200.00			
137 Ba	115	3	153.200	153.200	ppb	1.25	500.00			
205 Tl 208 Pb	209 209	3 3	0.126 14.180	0.126 14.180	ppb ppb	2.24 0.59	200.00 500.00			
232 Th	209	3	3.328	3.328	ppb	1.51	200.00			
238 U	209	3	0.339	0.339	ppb	1.31	200.00			
ISTD Element	ments	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Ra	nge(%)	Flag
6 Li		3	1081360	1.55		973727	111.1		- 120	1 103
45 Sc		1	2842149	0.33		2490209	114.1	59.5	- 120	
45 Sc		2	679861	2.62		595752		59.5		
45 Sc		3	7187493	1.42		6201481		59.5		
72 Ge 72 Ge		1 2	836098 322473	0.92		755907 293685		59.5 59.5	- 120 - 120	
72 Ge 72 Ge		3	1603379	0.40		1450449			- 120	
74 Ge		1	1173260	0.60		1070347			- 120	
74 Ge		2	468579	0.65		430776	108.8	59.5	- 120	
74 Ge		3	2189797	0.24		1984674		59.5		
115 In		1	3950940	0.16		3596183			- 120	
115 In 115 In		2 3	1313961	0.20		1187034		59.5 59.5		
115 In 159 Tb		3	5030948 6648891	1.14 0.30		4498589 5855025		59.5 59.5	- 120 - 120	
209 Bi		3	7203068	0.83		6279629	114.7		- 120	
Tune	e File#	1	c:\icpchem\1	\7500\h2.u						
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CA	LB.D#	

Data F Date A	ile: Acquired:		C:\ICPCHEM\1 Sep 15 2016	\DATA\wg409 11:02 pm	909.b\()23SMPL.D\()23SMPL.D#			
-	iethod:		ACZ.M						esults:	-
Operat							Anal	ytes:	Fail	
-	Name:		L32730-02					ISTD:	Pass	
Misc I			2210							
	Number: nt Method:		3312 a.) topourew) 1		177 14					
	ation Fil		C:\ICPCHEM\1 C:\ICPCHEM\1							
	all. Updat		Sep 15 2016	10:13 pm	C					
	e Type:		Sample	10.12 bu						
-	on Factor	:	5.00							
	l Factor		Undiluted							
Final	Dil Facto	r:	5.00							
QC Ele										
	nt IS Ref		Corr Conc	Raw Conc		RSD(%)	High Limi	t I	Flag	
9 Be	6	3	7.670	1.534	ppb	1.92	200.00			
11 B	6	3	30.150	6.030	ppb	1.09	20.00			
27 Al	72	3	85,600.000	17120.000	ppb	1.22	1000.00		OCAL	
51 V	45	2	125.350	25.070	ppb	0.52	200.00			
52 Cr		2	63.250	12.650	ppb	0.84	200.00			
55 Mn		3	1,253.000	250.600	ppb	0.41	200.00		CAL	
56 Fe 59 Co		1 3	68,050.000	13610.000	ppb	0.71	1000.00		OCAL	
59 CO 60 Ni	72 45	2	30.860 74.600	6.172 14.920	ppb ppb	0.78 0.84	200.00 500.00			
63 Cu		2	1,756.500	351.300	ppb ppb	0.84	500.00			
66 Zn		3	403.400	80.680	ppb	0.41	1000.00			
75 As	45	2	26.955	5.391	ppb	0.32	200.00			
78 Se		1	1.166	0.233	ppb	10.38	500.00			
98 Mo		3	13.895	2.779	ppb	0.62	200.00			
107 Ag		3	0.753	0.151	ppb	3.66	50.00			
111 Cd	115	3	0.937	0.187	ppb	2.60	200.00			
118 Sn	115	3	1.942	0.388	ppb	4.00	200.00			
121 Sb	115	3	0.591	0.118	ppb	4.65	25.00			
125 Te	115	3	0.582	0.116	ppb	20.83	200.00			
133 Cs	115	3	20.820	4.164	ppb	0.79	200.00			
137 Ba		3	621.000	124.200	ppb	0.89	500.00			
205 Tl		3	0.591	0.118	ppb	4.37	200.00			
208 Pb		3	64.700	12.940	ppb	1.98	500.00			
232 Th		3	21.760	4.352	ppb	1.11	200.00			
238 U	209	3	7.005	1.401	ppb	1.63	200.00			
ISTD E	lements									
Elemen	ıt	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Ra	nge(%)	Flag
6 Li		3	1091398	1.94		973727	112.1	59.5	- 120	
45 Sc		1	2860819	0.54		2490209	114.9	59.5	- 120	
45 Sc		2	679498	0.90		595752			- 120	
45 Sc		3	7187958	1.19		6201481		59.5		
72 Ge		1	852628	0.81		755907		59.5		
72 Ge		2	324721	0.60		293685			- 120	
72 Ge		3	1634461	0.67		1450449		59.5		
74 Ge		1	1194238	0.50		1070347			- 120	
74 Ge		2	474684	0.62		430776			- 120	
74 Ge 115 In		3 1	2215105	0.73 0.15		1984674			- 120 - 120	
115 IN 115 In		2	4031740 1329263	1.03		3596183 1187034		59.5		
115 IN 115 In		∠ 3	5113106	0.63		4498589			- 120 - 120	
159 Tb		3	6701133	0.03		5855025		59.5		
209 Bi		3	7262513	1.80		6279629			- 120	
TI	une File#	1	c:\icpchem\1	\7500\h2.u						
	une File#	2	c:\icpchem\1							
	une File#	3	c:\icpchem\1		u					
ISTD R	ef File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CAI	LB.D#	

3 :Element Failures0 :Max. Number of Failures Allowed0 :ISTD Failures0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:03 PM L32771-1611081657

Data Fil Date Acq			C:\ICPCHEM\1 Sep 15 2016		909.b\()24SMPL.D\()24SMPL.D#			
Acq. Met	hod:		ACZ.M					Data Re	sults:	-
Operator							Anal	ytes:	Fail	
Sample N Misc Inf			L32752-07					ISTD:	Pass	
Vial Num			3401							
Current			C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat			C:\ICPCHEM\1							
Last Cal	. Updat	e:	Sep 15 2016							
Sample T	ype:		Sample							
Dilution	Factor	:	2.00							
Autodil	Factor	:	Undiluted							
Final Di	l Facto	r:	2.00							
QC Eleme Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	म ।	lag	
9 Be	6	3	-0.035	-0.017	ppb	48.17	200.00	C 1	Iug	
ј <u>в</u>	6	3	118.560	59.280	ppb	0.71	20.00	0	CAL	
27 Al	72	3	252.600	126.300	ppb	7.54	1000.00			
51 V	45	2	1.062	0.531	ppb	18.29	200.00			
52 Cr	45	2	0.340	0.170	ppb	7.45	200.00			
55 Mn	72	3	117.080	58.540	ppb	0.92	200.00			
56 Fe	45	1	528.600	264.300	ppb	0.31	1000.00			
59 Co	72	3	0.547	0.274	ppb	2.78	200.00			
60 Ni	45	2	1.042	0.521	ppb	6.76	500.00			
63 Cu	45	2	-0.481	-0.241	ppb	38.12	500.00			
66 Zn	72	3	2.450	1.225	ppb	4.36	1000.00			
75 As	45	2	0.954	0.477	ppb	5.63	200.00			
78 Se	45	1	0.382	0.191	ppb	9.24	500.00			
98 Mo	115	3	0.473	0.236	ppb	2.69	200.00			
107 Ag	115	3	0.000	0.000	ppb	3026.00	50.00			
111 Cd	115	3 3	-0.019	-0.010	ppb	57.35	200.00			
118 Sn 121 Sb	115 115	3	-0.191 0.072	-0.095 0.036	ppb ppb	4.36 5.97	200.00 25.00			
121 SD 125 Te	115	3	-0.012	-0.006	ppb ppb	315.35	200.00			
133 Cs	115	3	0.012	0.012	ppb	16.67	200.00			
137 Ba	115	3	73.400	36.700	ppb	1.12	500.00			
205 Tl	209	3	-0.020	-0.010	ppb	8.35	200.00			
208 Pb	209	3	0.176	0.088	ppb	2.31	500.00			
232 Th	209	3	0.215	0.107	ppb	7.50	200.00			
238 U	209	3	2.586	1.293	ppb	0.31	200.00			
ISTD Ele Element	ments	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Ran	ge(%)	Flag
6 Li		3	1059346	1.63		973727		59.5 -		-
45 Sc		1	2801785	0.32		2490209	112.5	59.5 -	120	
45 Sc		2	639982	4.64		595752	107.4	59.5 -	120	
45 Sc		3	6787561	0.93		6201481	109.5	59.5 -	120	
72 Ge		1	837969	1.31		755907		59.5 -	120	
72 Ge		2	313563	4.07		293685	106.8	59.5 -	120	
72 Ge		3	1589233	0.25		1450449		59.5 -		
74 Ge		1	1177856	0.11		1070347		59.5 -		
74 Ge		2	455129	4.00		430776		59.5 -		
74 Ge		3	2177417	0.17		1984674		59.5 -		
115 In 115 In		1	3888550	0.48		3596183		59.5 -		
		2	1246474	5.64		1187034		59.5 -		
115 In 159 Tb		3 3	4945912 6487184	0.35 0.44		4498589 5855025		59.5 - 59.5 -		
209 Bi		3	6815790	1.13		6279629		59.5 -		
Tune	e File#	1	c:\icpchem\1	\7500\h2.u						
Tune	e File#	2	c:\icpchem\1	\7500\he.u						
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CAL	B.D#	

Data File Date Acqu	uired:		C:\ICPCHEM\1 Sep 15 2016		909.b\(025SMPL.D\(esults:	
Acq. Meth Operator			ACZ.M					ytes:	Fail	<u> </u>
Sample Na	ame:		L32752-08				Anai	ISTD:	Pass	
Misc Info			2400							
Vial Numb Current N			3402 C:\ICPCHEM\1		7 M					
Calibrat:		e:	C:\ICPCHEM\1							
Last Cal			Sep 15 2016		C					
Sample Ty	-	0.	Sample	10.12 bu						
Dilution		:	1.00							
Autodil			Undiluted							
Final Di	l Facto	r:	1.00							
QC Elemen		m	G	Dave Game	TTo i to a		TTI-L Timi	-	71	
Element 9 Be	15 Rei 6	Tune 3	Corr Conc	Raw Conc		RSD(%)	High Limi		Flag	
9 ве 11 В	6	3	-0.003 102.600	-0.003 102.600	ppb ppb	109.28 1.07	200.00 20.00		OCAL	
27 Al	72	3	227.400	227.400	ppb ppb	1.35	1000.00		OCAL	
51 V	45	2	1.005	1.005	ppb	3.47	200.00			
52 Cr	45	2	0.306	0.306	ppb	6.07	200.00			
55 Mn	72	3	105.300	105.300	ppb	0.82	200.00			
56 Fe	45	1	495.100	495.100	ppb	0.34	1000.00			
59 Co	72	3	0.429	0.429	ppb	2.10	200.00			
60 Ni	45	2	0.991	0.991	ppb	1.83	500.00			
63 Cu	45	2	-0.043	-0.043	ppb	48.84	500.00			
66 Zn	72	3	2.123	2.123	ppb	3.84	1000.00			
75 As	45	2	0.754	0.754	ppb	9.08	200.00			
78 Se	45	1	0.640	0.640	ppb	1.33	500.00			
98 Mo	115	3	0.516	0.516	ppb	3.42	200.00			
107 Ag	115	3	0.002	0.002	ppb	25.26	50.00			
111 Cd 118 Sn	115 115	3 3	0.002 -0.083	0.002	ppb ppb	336.40 8.59	200.00			
121 Sb	115	3	0.104	0.104	ppb ppb	3.73	200.00			
121 56 125 Te	115	3	0.020	0.020	ppb	69.69	200.00			
133 Cs	115	3	0.056	0.056	ppb	11.56	200.00			
137 Ba	115	3	64.980	64.980	ppb	0.39	500.00			
205 Tl	209	3	0.002	0.002	ppb	103.79	200.00			
208 Pb	209	3	0.230	0.230	ppb	2.59	500.00			
232 Th	209	3	0.136	0.136	ppb	3.69	200.00			
238 U	209	3	3.378	3.378	ppb	1.15	200.00			
ISTD Eler	ments									
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	OC Ra	nge(%)	Flag
6 Li		3	1009040	1.60		973727			- 120	2
45 Sc		1	2652603	0.45		2490209	106.5	59.5	- 120	
45 Sc		2	627436	0.16		595752	105.3	59.5	- 120	
45 Sc		3	6387343	1.56		6201481	103.0	59.5		
72 Ge		1	779929	0.69		755907		59.5		
72 Ge		2	304666	0.43		293685			- 120	
72 Ge		3	1491881	1.31		1450449			- 120	
74 Ge		1	1127111	0.43		1070347			- 120	
74 Ge 74 Ge		2 3	444661 2030851	0.37 1.26		430776 1984674		59.5 59.5	- 120 - 120	
115 In		1	3699586	1.20		3596183			- 120	
115 In 115 In		2	1217738	0.94		1187034		59.5		
115 In 115 In		3	4526684	0.94		4498589			- 120	
159 Tb		3	5995371	0.69		5855025		59.5		
209 Bi		3	6180514	0.81		6279629			- 120	
	File#	1	c:\icpchem\1							
	File#	2	c:\icpchem\1							
Tune	File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	·\ICPCHEM\1	\DATA\w	vg409909.b∖	003CALB.D	\003CA	LB.D#	

Data Fil Date Acq			C:\ICPCHEM\1 Sep 15 2016	\DATA\wg409 11:11 pm	909.b\()26SMPL.D\()26SMPL.D#		
Acq. Met			ACZ.M	II.II puu				Data Result	s:
Operator			1102.11					ytes: Fai	
Sample N	ame:		L32754-01					ISTD: Pas	
Misc Inf Vial Num			3403						
Current			C:\ICPCHEM\1		7 M				
Calibrat		<u>.</u>	C:\ICPCHEM\1						
Last Cal				10:13 pm	C				
Sample T	-	6	Sample	10 10 Pu					
Dilution		:	1.00						
Autodil			Undiluted						
Final Di	l Facto	r:	1.00						
QC Eleme Element		Tuno	Corr Conc	Raw Conc	Unita	DCD (%)	uich Limi	t Flag	
9 Be	15 KEL 6	3	-0.009	-0.009	ppb	RSD(%) 87.28	High Limi 200.00		
ј bc 11 в	6	3	51.180	51.180	ppb	2.72	200.00		
27 Al	72	3	24.430	24.430	ppb	1.71	1000.00		
51 V	45	2	0.568	0.568	ppb	2.15	200.00		
52 Cr	45	2	0.157	0.157	ppb	4.62	200.00		
55 Mn	72	3	704.100	704.100	ppb	0.50	200.00	OCAL	
56 Fe	45	1	76.980	76.980	ppb	1.31	1000.00		
59 Co	72	3	0.659	0.659	ppb	0.96	200.00		
60 Ni	45	2	1.068	1.068	ppb	5.57	500.00		
63 Cu	45	2	0.560	0.560	ppb	3.94	500.00		
66 Zn	72	3	1.894	1.894	ppb	3.14	1000.00		
75 As	45	2	1.298	1.298	ppb	2.79	200.00		
78 Se	45	1	0.090	0.090	ppb	13.25	500.00		
98 Mo	115	3	2.049	2.049	ppb	1.30	200.00		
107 Ag	115	3	-0.001	-0.001	ppb	131.31	50.00		
111 Cd 118 Sn	115 115	3 3	-0.001 -0.102	-0.001 -0.102	dqq dqq	557.02 10.29	200.00		
121 Sb	115	3	0.047	0.047	ppb ppb	24.73	200.00		
121 55 125 Te	115	3	0.036	0.036	ppb	85.76	200.00		
133 Cs	115	3	0.061	0.061	ppb	10.45	200.00		
137 Ba	115	3	23.270	23.270	dqq	0.94	500.00		
205 Tl	209	3	0.006	0.006	ppb	85.12	200.00		
208 Pb	209	3	0.011	0.011	ppb	91.38	500.00		
232 Th	209	3	0.042	0.042	ppb	13.52	200.00		
238 U	209	3	0.324	0.324	ppb	1.59	200.00		
ISTD Ele	ments								
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Range(%) Flag
6 Li		3	916801	2.72		973727		59.5 - 12	
45 Sc		1	2652370	0.69		2490209	106.5	59.5 - 12	0
45 Sc		2	588214	1.34		595752	98.7	59.5 - 12	0
45 Sc		3	6172927	1.61		6201481		59.5 - 12	
72 Ge		1	782412	1.17		755907		59.5 - 12	
72 Ge		2	289431	0.71		293685		59.5 - 12	
72 Ge		3	1442787	1.69		1450449		59.5 - 12	
74 Ge		1	1113858	0.69		1070347		59.5 - 12	
74 Ge		2	422853	1.78		430776		59.5 - 12	
74 Ge 115 In		3 1	1967230 3699272	1.77 0.78		1984674 3596183		59.5 - 12 59.5 - 12	
115 In 115 In		2	1145225	2.91		1187034		59.5 - 12	
115 In 115 In		3	4360951	1.94		4498589		59.5 - 12	
159 Tb		3	5677956	2.78		5855025		59.5 - 12	
209 Bi		3	5745345	3.39		6279629		59.5 - 12	
	e File#	1	c:\icpchem\1						
	e File#	2	c:\icpchem\1						
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u				
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CALB.D#	

Data Fil			C:\ICPCHEM\1		909.b\()27SMPL.D\()27SMPL.D#		
Date Acq Acq. Met			Sep 15 2016 ACZ.M	11:14 pm				Data Result	-g•
Operator			1102.11					ytes: Fai	
Sample Na	ame:		L32754-02					ISTD: Pas	
Misc Info Vial Num			3404						
Current 1			C:\ICPCHEM\1	\METHODE\XC	7 M				
Calibrat			C:\ICPCHEM\1						
Last Cal				10:13 pm	0				
Sample T	-		Sample						
Dilution	Factor	:	1.00						
Autodil			Undiluted						
Final Di	l Facto	r:	1.00						
QC Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t Flag	
9 Be	6	3	-0.003	-0.003	ppb	365.49	200.00		
11 B	6	3	49.750	49.750	ppb	0.46	20.00	OCAL	
27 Al	72	3	174.600	174.600	ppb	3.89	1000.00		
51 V	45	2	0.624	0.624	ppb	3.34	200.00		
52 Cr	45	2	0.339	0.339	ppb	9.52	200.00		
55 Mn	72	3	284.900	284.900	ppb	1.72	200.00		
56 Fe	45	1	162.000	162.000	ppb	0.87	1000.00		
59 Co 60 Ni	72 45	3 2	0.360 0.604	0.360 0.604	ppb ppb	4.62 3.37	200.00 500.00		
63 Cu	45	2	3.447	3.447	ppb ppb	1.20	500.00		
66 Zn	72	3	2.121	2.121	ppb	1.80	1000.00		
75 As	45	2	0.977	0.977	ppb	1.16	200.00		
78 Se	45	1	0.066	0.066	ppb	11.53	500.00		
98 Mo	115	3	1.460	1.460	ppb	1.40	200.00		
107 Ag	115	3	0.001	0.001	ppb	66.74	50.00		
111 Cd	115	3	-0.005	-0.005	ppb	215.21	200.00		
118 Sn	115	3	-0.096	-0.096	ppb	2.96	200.00		
121 Sb	115	3	0.030	0.030	ppb	8.73	25.00		
125 Te	115	3 3	0.044	0.044	ppb	97.65	200.00		
133 Cs 137 Ba	115 115	3	0.123 15.430	0.123 15.430	ppb dqq	3.49 2.19	200.00 500.00		
205 Tl	209	3	-0.010	-0.010	ppb	10.61	200.00		
208 Pb	209	3	0.162	0.162	ppb	4.12	500.00		
232 Th	209	3	0.074	0.074	ppb	19.17	200.00		
238 U	209	3	0.018	0.018	ppb	12.44	200.00		
ISTD Ele	monta								
Element	llencs	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Range(k) Flag
6 Li		3	691160	1.56		973727		59.5 - 12	
45 Sc		1	2152187	2.96		2490209		59.5 - 12	
45 Sc		2	530370	0.56		595752		59.5 - 12	
45 Sc		3	4869918	0.45		6201481	78.5	59.5 - 12	0
72 Ge		1	642328	2.72		755907	85.0	59.5 - 12	0
72 Ge		2	265536	1.19		293685		59.5 - 12	
72 Ge		3	1151585	0.71		1450449		59.5 - 12	
74 Ge		1	912096	3.02		1070347		59.5 - 12	
74 Ge		2	386317	1.67		430776		59.5 - 12	
74 Ge 115 In		3 1	1582688	1.41 3.58		1984674		59.5 - 12 59.5 - 12	
115 IN 115 In		2	3010102 1026127	2.40		3596183 1187034		59.5 - 12 59.5 - 12	
115 In		3	3417927	1.19		4498589		59.5 - 12	
159 Tb		3	4362711	1.77		5855025		59.5 - 12	
209 Bi		3	4382821	3.02		6279629		59.5 - 12	
Tune	File#	1	c:\icpchem\1						
	File#	2	c:\icpchem\1						
Tune	e File#	3	c:\icpchem\1	\7500\norm.	u				
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CALB.D#	

Data Fil Date Acc Acq. Met	quired:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\()28SMPL.D\(Data Re	esults:	
Operator								ytes:	Fail	-
Sample N			L32754-03					ISTD:	Pass	
Misc Inf Vial Num			3405							
Current			C:\ICPCHEM\1	\METHODS\ &C	7. M					
Calibrat			C:\ICPCHEM\1							
Last Cal			Sep 15 2016							
Sample I	ype:		Sample							
Dilution			1.00							
Autodil Final Di			Undiluted 1.00							
QC Eleme Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t B	lag	
9 Be	6	3	-0.006	-0.006	ppb	158.55	200.00			
11 B	б	3	45.110	45.110	ppb	0.69	20.00	C	CAL	
27 Al	72	3	170.500	170.500	ppb	0.59	1000.00			
51 V	45	2	1.077	1.077	ppb	5.16	200.00			
52 Cr	45	2	1.159	1.159	ppb	2.50	200.00			
55 Mn	72	3	4.727	4.727	ppb	0.95	200.00			
56 Fe 59 Co	45	1 3	174.900	174.900	ppb	0.22	1000.00			
59 CO 60 Ni	72 45	2	0.319 0.515	0.319 0.515	ppb ppb	0.63 1.14	200.00 500.00			
63 Cu	45	2	1.368	1.368	ppb	5.80	500.00			
66 Zn	72	3	2.136	2.136	ppb	4.65	1000.00			
75 As	45	2	0.382	0.382	ppb	9.19	200.00			
78 Se	45	1	0.120	0.120	ppb	22.58	500.00			
98 Mo	115	3	0.311	0.311	ppb	1.01	200.00			
107 Ag	115	3	0.001	0.001	ppb	98.42	50.00			
111 Cd	115	3	-0.001	-0.001	ppb	1705.30	200.00			
118 Sn	115	3	-0.110	-0.110	ppb	6.36	200.00			
121 Sb	115	3	0.024	0.024	ppb	27.16	25.00			
125 Te	115	3 3	0.032	0.032	ppb	147.53	200.00			
133 Cs 137 Ba	115 115	3	0.246 5.042	0.246 5.042	ppb ppb	0.56 1.38	200.00 500.00			
205 Tl	209	3	0.004	0.004	ppb	29.74	200.00			
208 Pb	209	3	0.186	0.186	ppb	6.54	500.00			
232 Th	209	3	-0.007	-0.007	ppb	134.18	200.00			
238 U	209	3	-0.017	-0.017	ppb	11.57	200.00			
ISTD Ele	ements	-				D (11)	5 (0)		(0)	-1
Element 6 Li		Tune 3	CPS Mean 642399	RSD(%)		Ref Value		QC Rai		Flag
6 Li 45 Sc		1	1954230	1.45 2.45		973727 2490209		59.5 · 59.5 ·		
45 SC 45 SC		2	459004	2.45		595752		59.5		
45 Sc		3	4596121	1.13		6201481		59.5		
72 Ge		1	589766	2.86		755907	78.0	59.5 -		
72 Ge		2	228463	1.35		293685	77.8	59.5 -	- 120	
72 Ge		3	1103293	0.82		1450449	76.1	59.5 -	- 120	
74 Ge		1	847010	3.86		1070347		59.5 -		
74 Ge		2	333398	2.26		430776		59.5 -		
74 Ge		3	1496268	0.39		1984674		59.5		
115 In 115 In		1	2762376	2.34		3596183		59.5 ·		
115 In 115 In		2 3	875411 3240684	2.21 0.40		1187034 4498589		59.5 · 59.5 ·		
115 IN 159 Tb		3	4087372	0.40		5855025		59.5 -		
209 Bi		3	4043022	1.63		6279629		59.5		
		_	, ,							
	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1		11					
Tun	e File#	3	c:\icpchem\1	(/SUU\norm.	u					
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CAI	B.D#	

 1 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

Data File: Date Acquired: Acq. Method: Operator: Sample Name:				C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\()29SMPL.D\(esults:	
-									ytes:	Fail	_
-				L32754-03LFM					ISTD:	Pass	
	Info:			2406							
	Number: ent Meth			3406 C:\ICPCHEM\1		7. M					
	bration			C:\ICPCHEM\1							
Last	Cal. Up	date:		Sep 15 2016	10:13 pm						
	le Type:			Sample							
	tion Fac dil Fac			1.00 Undiluted							
	l Dil Fac			1.00							
QC E	lements										
Elem	ent IS F	Ref Tu	ıne	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t I	Flag	
	Be 6		3	52.050	52.050	ppb	2.00	200.00			
11 E			3	57.690	57.690	ppb	1.42	20.00		DCAL	
27 J 51 V			3 2	216.600 48.830	216.600 48.830	ppb ppb	2.09 0.35	1000.00 200.00			
52 (2	46.370	46.370	ppb ppb	0.54	200.00			
55 N			3	50.150	50.150	ppb	1.47	200.00			
56 E			1	209.800	209.800	ppb	2.22	1000.00			
59 (Co 72		3	46.660	46.660	ppb	1.99	200.00			
60 1			2	44.130	44.130	ppb	0.71	500.00			
63 (66 2			2 3	45.030	45.030	ppb	0.64	500.00 1000.00			
75 <i>I</i>			2	50.290 59.000	50.290 59.000	ppb ppb	0.96 1.17	200.00			
78 5			1	49.370	49.370	ppb	2.20	500.00			
98 N			3	46.500	46.500	ppb	1.56	200.00			
107 <i>4</i>	Ag 11	5	3	8.836	8.836	ppb	2.49	50.00			
111 (3	46.570	46.570	ppb	1.80	200.00			
118 5			3	45.160	45.160	ppb	1.71	200.00			
121 S 125 T			3 3	11.030 54.870	11.030 54.870	ppb ppb	2.05 0.34	25.00 200.00			
133 0			3	46.980	46.980	ppb	2.89	200.00			
137 E			3	51.370	51.370	ppb	2.71	500.00			
205 1	rl 20	9	3	46.160	46.160	ppb	0.65	200.00			
208 E			3	45.020	45.020	ppb	0.99	500.00			
232 1			3 3	47.240	47.240	ppb	0.95	200.00			
238 t	J 20	9	3	46.850	46.850	ddđ	0.25	200.00			
	Element										_
Elem	ent Li		ine 3	CPS Mean 661720	RSD(%)		Ref Value 973727			nge(%)	Flag
6 I 45 S			3 1	2076125	7.35 1.99		2490209		59.5 59.5		
45 8			2	492735	0.89		595752		59.5		
45 \$	Sc		3	4907231	7.66		6201481	79.1	59.5	- 120	
72 0			1	615078	1.42		755907		59.5		
72 0			2	246120	0.13		293685		59.5		
72 0 74 0			3 1	1160270 884074	7.45 1.46		1450449 1070347		59.5 59.5		
74 0			2	360444	0.93		430776		59.5		
74 0			3	1586634	8.01		1984674		59.5		
115 1	[n		1	2891948	2.16		3596183		59.5		
115 1			2	946175	0.22		1187034			- 120	
115 1			3	3411075	8.32		4498589		59.5		
1591			3	4293189	8.31		5855025		59.5		
209 E			3	4217023	7.58		6279629	67.2	59.5	- 170	
	Tune Fil		1	c:\icpchem\1							
	Tune Fil		2 3	c:\icpchem\1' c:\icpchem\1'		11					
	Tune Fil	16#	د	c./rcbcnem/1	//200/1101W.	u					
ISTD	Ref Fil	e :		C:	\ICPCHEM\1	\DATA\w	g409909.b\	003CALB.D	\003CAI	B.D#	

 1 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:22 PM L32771-1611081657

Data Fil Date Acc Acq. Met	quired:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\(030SMPL.D\(Data Re		
Operator			AC2.M					ytes:	Fail	-
Sample Misc Inf	Jame:		L32754-03LFM	D				ISTD:	Pass	
Vial Num			3407							
Current			C:\ICPCHEM\1	\METHODS\AC	Z.M					
Calibrat	ion Fil	e:	C:\ICPCHEM\1							
Last Cal	. Updat	e:	Sep 15 2016	10:13 pm						
Sample 7			Sample							
Dilutior			1.00							
Autodil Final Di			Undiluted 1.00							
		<u> </u>	1.00							
QC Eleme Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t F	lag	
9 Be	б	3	49.650	49.650	ppb	4.40	200.00			
11 B	6	3	54.270	54.270	ppb	4.28	20.00	C	CAL	
27 Al	72	3	210.100	210.100	ppb	4.22	1000.00			
51 V	45	2	49.140	49.140	ppb	0.51	200.00			
52 Cr 55 Mn	45	2 3	46.780	46.780 48.840	ppb	1.07	200.00			
55 MM 56 Fe	72 45	3 1	48.840 205.000	205.000	ppb ppb	2.19 1.50	200.00 1000.00			
50 PC	72	3	44.960	44.960	ppb	3.31	200.00			
60 Ni	45	2	44.330	44.330	ppb	1.16	500.00			
63 Cu	45	2	45.240	45.240	ppb	0.69	500.00			
66 Zn	72	3	48.150	48.150	ppb	3.01	1000.00			
75 As	45	2	58.140	58.140	ppb	1.20	200.00			
78 Se	45	1	49.170	49.170	ppb	0.46	500.00			
98 Mo	115	3	45.180	45.180	ppb	2.88	200.00			
107 Ag	115	3	8.547	8.547	ppb	3.19	50.00			
111 Cd	115	3	44.610	44.610	ppb	3.75	200.00			
118 Sn 121 Sb	115 115	3 3	43.740	43.740	ppb	3.51	200.00 25.00			
121 SD 125 Te	115	3	10.580 51.140	10.580 51.140	ppb ppb	2.96 3.97	200.00			
133 Cs	115	3	45.670	45.670	ppb	2.87	200.00			
137 Ba	115	3	49.710	49.710	ppb	3.00	500.00			
205 Tl	209	3	45.140	45.140	ppb	2.70	200.00			
208 Pb	209	3	44.030	44.030	ppb	2.64	500.00			
232 Th	209	3	46.240	46.240	ppb	3.99	200.00			
238 U	209	3	45.580	45.580	ppb	5.40	200.00			
ISTD Ele	ements									
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Rar	nge(%)	Flag
6 Li		3	649318	4.18		973727		59.5 -		
45 Sc		1	2064046	1.23		2490209		59.5 -		
45 Sc		2	467810	2.06		595752		59.5 -		
45 Sc		3	4767021	2.63		6201481		59.5 -		
72 Ge 72 Ge		1 2	615538 235151	1.15 2.39		755907 293685		59.5 - 59.5 -		
72 Ge 72 Ge		3	1120512	4.12		1450449		59.5 -		
74 Ge		1	883837	0.67		1070347		59.5 -		
74 Ge		2	340822	1.87		430776		59.5 -		
74 Ge		3	1535034	3.85		1984674		59.5 -		
115 In		1	2880092	0.95		3596183	80.1	59.5 -	120	
115 In		2	884744	1.81		1187034	74.5	59.5 -	120	
115 In		3	3337568	3.89		4498589		59.5 -		
159 Tb		3	4227593	3.31		5855025		59.5 -		
209 Bi		3	4182239	4.17		6279629	66.6	59.5 -	- 120	
	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1							
Tun	e File#	3	c:\icpchem\1	\7500\norm.	u					
ISTD Ref	File :		C	<pre>\ICPCHEM\1'</pre>	\DATA\w	√g409909.b\	003CALB.D	\003CAL	B.D#	

 1 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:25 PM L32771-1611081657

Continuing Calibration Verification (CCV) QC Report

Data File: C:\ICPCHEM\1\DATA\wg409909.b\031_CCV.D\031_CCV.D# Sep 15 2016 11:27 pm Date Acquired: Operator: Data Results: Sample Name: CCV Analytes: Fail Misc Info: ISTD: Pass
 1105

 Current Method:
 C:\ICPCHEM\1\METHODS\ACZ.M

 Calibration File:
 C:\ICPCHEM\1\CALIB\ACZ.C

 Last Cal Update:
 Son 15 0016 15 1016
 Vial Number: 1105 Last Cal Update: Sep 15 2016 10:13 pm Sample Type: CCV Total Dil Factor: 1.00

QC Elements

QC	Elemer	nts								
Ele	ment	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Ra	nge(%)	Flag
9	Ве	б	3	95.660	0.75	100.00	95.7	89	- 110	
11	В	6	3	11.530	1.95	10.00	115.3	89	- 110	Fail
27	Al	72	3	454.500	0.25	500.00	90.9	89	- 110	
51	V	45	2	90.640	0.42	100.00	90.6	89	- 110	
52	Cr	45	2	88.980	0.89	100.00	89.0	89	- 110	Fail
55	Mn	72	3	91.790	0.58	100.00	91.8	89	- 110	
56	Fe	45	1	455.400	1.98	500.00	91.1	89	- 110	
59	Co	72	3	92.080	1.01	100.00	92.1	89	- 110	
60	Ni	45	2	220.100	0.43	250.00	88.0	89	- 110	Fail
63	Cu	45	2	228.900	0.60	250.00	91.6	89	- 110	
66	Zn	72	3	481.300	0.24	500.00	96.3	89	- 110	
75	As	45	2	97.820	0.43	100.00	97.8	89	- 110	
78	Se	45	1	237.800	1.76	250.00	95.1	89	- 110	
98	Мо	115	3	91.650	1.45	100.00	91.7	89	- 110	
107	Ag	115	3	22.560	1.00	25.00	90.2	89	- 110	
111	Cd	115	3	91.050	1.20	100.00	91.1	89	- 110	
118	Sn	115	3	88.540	0.63	100.00	88.5	89	- 110	Fail
121	Sb	115	3	11.550	0.45	12.50	92.4	89	- 110	
125	Те	115	3	96.550	1.21	100.00	96.6	89	- 110	
133	Cs	115	3	91.900	0.66	100.00	91.9	89	- 110	
137	Ba	115	3	231.900	0.72	250.00	92.8	89	- 110	
205	Tl	209	3	93.130	0.48	100.00	93.1	89	- 110	
208	Pb	209	3	228.900	1.66	250.00	91.6	89	- 110	
232	Th	209	3	90.460	1.02	100.00	90.5	89	- 110	
238	U	209	3	90.270	1.63	100.00	90.3	89	- 110	

ISTD Elements								
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Ran	ge(%)	Flag
6 Li	3	849737	4.29	973727	87.3	60 -	120	
45 Sc	1	2301319	3.65	2490209	92.4	60 -	120	
45 Sc	2	562281	0.20	595752	94.4	60 -	120	
45 Sc	3	5954219	2.89	6201481	96.0	60 -	120	
72 Ge	1	680079	2.53	755907	90.0	60 -	120	
72 Ge	2	275505	0.81	293685	93.8	60 -	120	
72 Ge	3	1382528	3.47	1450449	95.3	60 -	120	
74 Ge	1	978747	2.92	1070347	91.4	60 -	120	
74 Ge	2	404718	1.03	430776	94.0	60 -	120	
74 Ge	3	1904535	2.50	1984674	96.0	60 -	120	
115 In	1	3288980	3.11	3596183	91.5	60 -	120	
115 In	2	1115208	1.08	1187034	93.9	60 -	120	
115 In	3	4288111	2.43	4498589	95.3	60 -	120	
159 Tb	3	5522911	1.87	5855025	94.3	60 -	120	
209 Bi	3	5808180	1.99	6279629	92.5	60 -	120	

Tune File#1c:\icpchem\l\7500\h2.uTune File#2c:\icpchem\l\7500\he.uTune File#3c:\icpchem\l\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

4 :Element Failures 0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:C:\ICPCHEM\1\DATA\wg409909.b\032_CCB.D\032_CCB.D#Date Acquired:Sep 15 2016 11:30 pmOperator:Data Results:Sample Name:CCBMisc Info:ISTD:Vial Number:1102Current Method:C:\ICPCHEM\1\METHODS\ACZ.MCalibration File:C:\ICPCHEM\1\CALIB\ACZ.CLast Cal Update:Sep 15 2016 10:13 pmSample Type:CCBTotal Dil Factor:1.00

QC Elements

QC .	Elemen	ITS					
Ele	ment	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9	Ве	6	3	0.022 ppb	64.81	0.150	
11	В	6	3	0.687 ppb	18.05	1.500	
27	Al	72	3	0.024 ppb	103.07	3.000	
51	V	45	2	0.046 ppb	11.07	0.600	
52	Cr	45	2	0.036 ppb	42.66	1.500	
55	Mn	72	3	-0.075 ppb	9.10	1.500	
56	Fe	45	1	-0.127 ppb	22.68	12.000	
59	Co	72	3	0.024 ppb	13.47	0.150	
60	Ni	45	2	0.087 ppb	8.28	1.800	
63	Cu	45	2	-0.517 ppb	5.66	1.500	
66	Zn	72	3	-0.047 ppb	70.71	6.000	
75	As	45	2	0.127 ppb	41.74	0.600	
78	Se	45	1	0.149 ppb	11.68	0.300	
98	Мо	115	3	0.025 ppb	10.32	1.500	
107	Ag	115	3	0.005 ppb	38.46	0.150	
111	Cd	115	3	0.017 ppb	65.66	0.300	
118	Sn	115	3	0.146 ppb	6.97	0.300	
121	Sb	115	3	0.306 ppb	2.39	1.200	
125	Те	115	3	0.053 ppb	1.30	3.000	
133	Cs	115	3	0.029 ppb	3.77	0.600	
137	Ba	115	3	0.044 ppb	39.38	1.500	
205	Tl	209	3	0.036 ppb	7.17	0.300	
208	Pb	209	3	0.059 ppb	11.54	0.300	
232	Th	209	3	0.898 ppb	9.19	3.000	
238	U	209	3	0.043 ppb	9.77	0.300	

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	923655	2.16	973727	94.9	60	- 120	
45 Sc	1	2604240	0.43	2490209	104.6	60	- 120	
45 Sc	2	620956	1.16	595752	104.2	60	- 120	
45 Sc	3	6246383	1.14	6201481	100.7	60	- 120	
72 Ge	1	772095	0.32	755907	102.1	60	- 120	
72 Ge	2	300979	0.64	293685	102.5	60	- 120	
72 Ge	3	1461587	1.09	1450449	100.8	60	- 120	
74 Ge	1	1097299	0.27	1070347	102.5	60	- 120	
74 Ge	2	438517	1.21	430776	101.8	60	- 120	
74 Ge	3	2004631	1.00	1984674	101.0	60	- 120	
115 In	1	3711538	0.86	3596183	103.2	60	- 120	
115 In	2	1227215	0.70	1187034	103.4	60	- 120	
115 In	3	4581190	0.51	4498589	101.8	60	- 120	
159 Tb	3	5828124	0.19	5855025	99.5	60	- 120	
209 Bi	3	6134466	0.42	6279629	97.7	60	- 120	

Tune File# 1 c:\icpchem\l\7500\h2.u Tune File# 2 c:\icpchem\l\7500\he.u Tune File# 3 c:\icpchem\l\7500\norm.u

ISTD Ref File :

ISTD Elements

C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures
0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

Data File			C:\ICPCHEM\1\DATA\wg409909.b\033SMPL.D\033SMPL.D#									
Date Acqu			-	11:33 pm								
Acq. Meth Operator			ACZ.M					Data Result ytes: Fai				
Sample Na Misc Info			L32759-01					ISTD: Pas	s			
Vial Numb			3408									
Current M			C:\ICPCHEM\1	\METHODS\AC	'7. M							
Calibrat			C:\ICPCHEM\1									
Last Cal				10:13 pm								
Sample Ty	-		Sample	-								
Dilution	Factor	:	1.00									
Autodil	Factor	:	Undiluted									
Final Di	l Facto	r:	1.00									
QC Elemen Element		Tune	Corr Conc	Raw Conc	Unito	RSD(%)	High Limi	t Flag				
9 Be	15 KEL 6	3	0.087	0.087	ppb	14.10	200.00					
ј вс 11 в	6	3	29.060	29.060	ppb	1.65	200.00					
27 Al	72	3	35.470	35.470	ppb	1.29	1000.00					
51 V	45	2	0.067	0.067	ppb	38.58	200.00					
52 Cr	45	2	0.072	0.072	ppb	43.15	200.00					
55 Mn	72	3	683.600	683.600	ppb	0.98	200.00	OCAL				
56 Fe	45	1	493.700	493.700	ppb	0.53	1000.00					
59 Co	72	3	0.182	0.182	ppb	3.62	200.00					
60 Ni	45	2	0.015	0.015	ppb	72.74	500.00					
63 Cu	45	2	-0.605	-0.605	ppb	6.64	500.00					
66 Zn	72	3	0.792	0.792	ppb	7.23	1000.00					
75 As	45	2	6.191	6.191	ppb	1.97	200.00					
78 Se	45	1	0.011	0.011	ppb	148.20	500.00					
98 Mo 107 Ag	115	3 3	0.887 -0.001	0.887 -0.001	ppb	1.45 68.85	200.00 50.00					
107 Ag 111 Cd	115 115	3	0.005	0.001	ppb ppb	110.41	200.00					
111 Cu 118 Sn	115	3	-0.035	-0.035	ppb	9.63	200.00					
121 Sb	115	3	1.206	1.206	ppb	2.68	25.00					
125 Te	115	3	0.071	0.071	ppb	30.78	200.00					
133 Cs	115	3	7.107	7.107	ppb	1.08	200.00					
137 Ba	115	3	30.620	30.620	ppb	1.21	500.00					
205 Tl	209	3	0.139	0.139	ppb	7.25	200.00					
208 Pb	209	3	0.039	0.039	ppb	4.21	500.00					
232 Th	209	3	0.378	0.378	ppb	7.75	200.00					
238 U	209	3	0.097	0.097	ppb	0.70	200.00					
ISTD Eler	nents											
Element		Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Range(%) Flag			
6 Li		3	824940	3.50		973727		59.5 - 12				
45 Sc		1	2412139	0.79		2490209	96.9	59.5 - 12	0			
45 Sc		2	572348	1.44		595752	96.1	59.5 - 12	0			
45 Sc		3	5825742	3.46		6201481	93.9	59.5 - 12				
72 Ge		1	710755	0.80		755907		59.5 - 12				
72 Ge		2	282094	1.24		293685		59.5 - 12				
72 Ge		3	1352427	3.07		1450449		59.5 - 12				
74 Ge 74 Ge		1	1020130	0.92		1070347		59.5 - 12				
		2	409917	1.65		430776		59.5 - 12 59.5 - 12				
74 Ge 115 In		3 1	1855023	3.72		1984674 3596183		59.5 - 12 59.5 - 12				
115 IN 115 In		2	3396311 1113641	0.51 0.79		1187034		59.5 - 12 59.5 - 12				
115 In 115 In		3	4114925	3.81		4498589		59.5 - 12				
159 Tb		3	5293444	3.60		5855025		59.5 - 12				
209 Bi		3	5380808	4.25		6279629		59.5 - 12				
	File#	1	c:\icpchem\1									
	File#	2	c:\icpchem\1\7500\he.u c:\icpchem\1\7500\norm.u									
Tune	File#	3	c:\lcpchem\1	\/500\norm.	u							
ISTD Ref	File :		C	:\ICPCHEM\1	\DATA\w	vg409909.b∖	003CALB.D	\003CALB.D#				

Data File: Date Acquired:		C:\ICPCHEM\1\DATA\wg409909.b\034SMPL.D\034SMPL.D# Sep 15 2016 11:36 pm									
Acq. Me			ACZ.M	-				Data R	esults:	_	
Operato	or:						Anal	ytes:	Fail		
Sample Misc Ir			L32759-02					ISTD:	Pass		
Vial Nu			3409								
	Method:		C:\ICPCHEM\1	\METHODS\AC	7. M						
	ation Fil		C:\ICPCHEM\1								
	al. Updat		Sep 15 2016								
Sample	Type:		Sample								
Dilutic	on Factor	:	2.00								
	l Factor Dil Facto		Undiluted 2.00								
QC Elen		1.	2.00								
	: IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t	Flag		
9 Be	6	3	0.029	0.015	ppb	25.40	200.00		5		
11 B	6	3	63.300	31.650	ppb	3.54	20.00		OCAL		
27 Al	72	3	58.220	29.110	ppb	1.71	1000.00				
51 V	45	2	-0.105	-0.052	ppb	26.11	200.00				
52 Cr	45	2	0.303	0.151	ppb	11.01	200.00				
55 Mn	72	3	179.660	89.830	ppb	0.77	200.00				
56 Fe	45	1 3	914.600	457.300	ppb	1.06	1000.00				
59 Co 60 Ni	72 45	2	0.572 0.089	0.286 0.045	ppb ppb	4.67 38.25	200.00 500.00				
63 Cu	45	2	-1.265	-0.632	ppb ppb	12.11	500.00				
66 Zn	72	3	1.675	0.838	ppb	11.67	1000.00				
75 As	45	2	49.620	24.810	ppb	0.53	200.00				
78 Se	45	1	-0.018	-0.009	ppb	147.46	500.00				
98 Mo	115	3	1.192	0.596	ppb	4.58	200.00				
107 Ag	115	3	0.008	0.004	ppb	176.12	50.00				
111 Cd	115	3	-0.014	-0.007	ppb	90.22	200.00				
118 Sn	115	3	-0.178	-0.089	ppb	16.13	200.00				
121 Sb	115	3	4.882	2.441	ppb	0.77	25.00				
125 Te	115	3	0.267	0.134	ppb	29.42	200.00				
133 Cs 137 Ba	115 115	3 3	18.434 12.182	9.217 6.091	ppb	1.26 1.78	200.00 500.00				
137 ва 205 Tl	209	3	0.161	0.081	ppb ppb	5.37	200.00				
205 II 208 Pb	209	3	1.113	0.556	ppb	3.94	500.00				
232 Th	209	3	0.332	0.166	ppb	9.60	200.00				
238 U	209	3	0.062	0.031	ppb	3.24	200.00				
ISTD El	ements										
Element	5	Tune	CPS Mean	RSD(%)		Ref Value			nge(%)	Flag	
6 Li		3	667131	1.25		973727			- 120		
45 Sc 45 Sc		1 2	2146451 540858	3.15 5.30		2490209 595752			- 120 - 120		
45 SC		3	5105131	0.46		6201481			- 120		
72 Ge		1	643981	3.46		755907			- 120		
72 Ge		2	269970	4.76		293685			- 120		
72 Ge		3	1220914	0.91		1450449			- 120		
74 Ge		1	928245	2.69		1070347	86.7	59.5	- 120		
74 Ge		2	393211	4.22		430776	91.3	59.5	- 120		
74 Ge		3	1669825	0.59		1984674	84.1	59.5	- 120		
115 In		1	2995005	3.86		3596183			- 120		
115 In		2	1023078	4.60		1187034			- 120		
115 In		3	3547524	0.85		4498589			- 120		
159 Tb		3	4483528	0.10		5855025			- 120		
209 Bi		3	4352664	1.00		6279629	69.3	59.5	- 120		
Tu	ne File#	1	c:\icpchem\1	\7500\h2.u							
	ne File#	2	c:\icpchem\1								
Tu	ne File#	3	c:\icpchem\1	\7500\norm.	u						
T. C. T				•) = ===== ; =	\ <u>_</u>		002077- 5	000			
TRID Ke	ef File :		C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#								

 1 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:38 PM L32771-1611081657

Data Fil Date Acq Acq. Met	uired:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\(35SMPL.D\(esults:	
Operator			1102.11					ytes:	Fail	-
Sample N Misc Inf			L32759-03					ISTD:	Pass	
Vial Num			3410							
Current			C:\ICPCHEM\1							
Calibrat			C:\ICPCHEM\1		С					
Last Cal Sample T	-	e.	Sep 15 2016 Sample	10.13 pm						
Dilution		:	1.00							
Autodil Final Di			Undiluted							
		1.	1.00							
QC Eleme Element		Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t.	Flag	
9 Be	6	3	0.241	0.241	ppb	3.82	200.00		1 103	
11 B	6	3	42.790	42.790	ppb	2.10	20.00		OCAL	
27 Al	72	3	16.290	16.290	ppb	1.15	1000.00			
51 V	45	2	-0.007	-0.007	ppb	236.75	200.00			
52 Cr 55 Mn	45 72	2 3	0.129 177.500	0.129 177.500	ppb	8.67 0.81	200.00			
55 MN 56 Fe	45	3 1	6,825.000	6825.000	ppb ppb	0.81	1000.00		OCAL	
50 FC 59 Co	72	3	0.213	0.213	ppb	1.62	200.00		0011L	
60 Ni	45	2	-0.007	-0.007	ppb	203.03	500.00			
63 Cu	45	2	-0.730	-0.730	ppb	1.54	500.00			
66 Zn	72	3	1.224	1.224	ppb	1.07	1000.00			
75 As	45	2	2.277	2.277	ppb	3.21	200.00			
78 Se	45	1	-0.001	-0.001	ppb	1065.00	500.00			
98 Mo 107 Ag	115 115	3 3	3.976 -0.002	3.976 -0.002	ppb ppb	0.35 23.75	200.00 50.00			
107 Ag 111 Cd	115	3	-0.011	-0.011	ppb	12.49	200.00			
118 Sn	115	3	-0.071	-0.071	ppb	12.92	200.00			
121 Sb	115	3	0.432	0.432	ppb	1.81	25.00			
125 Te	115	3	0.089	0.089	ppb	11.73	200.00			
133 Cs	115	3	3.156	3.156	ppb	0.33	200.00			
137 Ba	115	3	94.240	94.240	ppb	0.33	500.00			
205 Tl	209	3 3	-0.006	-0.006	ppb	19.00	200.00			
208 Pb 232 Th	209 209	3	-0.030 0.150	-0.030 0.150	ppb ppb	8.81 6.66	500.00 200.00			
232 III 238 U	209	3	0.337	0.337	ppb	0.60	200.00			
ISTD Ele	ments		CDC Maar			Def Melve	$D = \pi (\beta)$	00 5-		
Element 6 Li		Tune 3	CPS Mean 687488	RSD(%) 0.44		Ref Value 973727			nge(%) - 120	Flag
45 Sc		1	2128083	1.28		2490209		59.5		
45 Sc		2	505741	3.47		595752		59.5		
45 Sc		3	5025619	0.90		6201481	81.0	59.5	- 120	
72 Ge		1	624499	1.76		755907		59.5		
72 Ge		2	250440	3.76		293685			- 120	
72 Ge		3	1180973	1.44		1450449			- 120	
74 Ge 74 Ge		1 2	895046 366820	3.02 3.06		1070347 430776			- 120 - 120	
74 Ge 74 Ge		3	1620260	0.72		1984674			- 120 - 120	
115 In		1	2968101	1.97		3596183			- 120	
115 In		2	978666	2.32		1187034		59.5		
115 In		3	3517877	0.46		4498589	78.2	59.5	- 120	
159 Tb		3	4452929	1.02		5855025		59.5		
209 Bi		3	4445964	1.55		6279629	70.8	59.5	- 120	
	e File#	1	c:\icpchem\1							
	e File#	2	c:\icpchem\1							
Tune	e File#	3	c:\icpchem\1	\/500\norm.	u					
ISTD Ref	File :		C	:/ICPCHEM/1	\DATA\w	g409909.b\	003CALB.D	\003CA	LB.D#	

2 :Element Failures0 :Max. Number of Failures Allowed0 :ISTD Failures0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:41 PM L32771-1611081657

	File: Acquired: Method:		C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\()36SMPL.D\(Data Results	s :
Opera								ytes: Fail	
-	e Name:		L32761-01					ISTD: Pass	
Misc			2/11						
	Number: nt Method:		3411 C:\ICPCHEM\1	\MFTHODS\ &C	7 M				
	ration Fil		C:\ICPCHEM\1						
	Cal. Updat		Sep 15 2016		0				
Sampl	e Type:		Sample						
	ion Factor		1.00						
	il Factor		Undiluted						
Final	Dil Facto	or:	1.00						
QC El	ements								
Eleme	nt IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t Flag	
9 Be	е б	3	0.048	0.048	ppb	33.89	200.00		
11 B	6	3	172.500	172.500	ppb	5.10	20.00	OCAL	
27 A.		3	809.800	809.800	ppb	3.40	1000.00		
51 V	45	2	9.425	9.425	ppb	1.66	200.00		
52 Ci		2	3.404	3.404	ppb	1.66	200.00		
55 Mr 56 Fe		3 1	283.200	283.200	ppb	0.31	200.00		
50 FG		3	564.400 0.730	564.400 0.730	ppb ppb	1.72 3.84	1000.00 200.00		
60 N:		2	1.013	1.013	ppb	1.62	500.00		
63 Ci		2	1.187	1.187	ppb	13.16	500.00		
66 Z1		3	38.730	38.730	ppb	1.53	1000.00		
75 As	s 45	2	13.400	13.400	ppb	2.14	200.00		
78 Se	e 45	1	0.769	0.769	ppb	2.27	500.00		
98 Mo		3	49.240	49.240	ppb	0.50	200.00		
107 Ag	-	3	1.047	1.047	ppb	2.02	50.00		
111 Co		3	0.393	0.393	ppb	4.21	200.00		
118 Sr		3 3	2.527	2.527	ppb	1.17	200.00		
121 Sk 125 Te		3	30.350 0.124	30.350 0.124	ppb ppb	1.28 62.21	25.00 200.00		
133 Cs		3	10.770	10.770	ppb	1.14	200.00		
137 Ba		3	46.720	46.720	ppb	0.95	500.00		
205 T		3	0.354	0.354	ppb	1.49	200.00		
208 Pł	o 209	3	30.990	30.990	ppb	0.90	500.00		
232 Tł		3	0.116	0.116	ppb	5.23	200.00		
238 U	209	3	0.367	0.367	ppb	1.16	200.00		
ISTD	Elements								
Eleme	nt	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Range(%)	Flag
6 L:		3	611907	3.11		973727	62.8	59.5 - 120	
45 Sc		1	2065096	1.18		2490209		59.5 - 120	
45 Sc		2	468139	6.17		595752		59.5 - 120	
45 Sc		3	4714008	3.26		6201481		59.5 - 120	
72 Ge 72 Ge		1 2	618875 231774	1.32 5.61		755907 293685		59.5 - 120 59.5 - 120	
72 Ge		3	1122318	3.11		1450449		59.5 - 120	
74 Ge		1	883459	1.44		1070347		59.5 - 120	
74 Ge		2	337204	4.89		430776		59.5 - 120	
74 Ge	2	3	1533166	3.59		1984674	77.3	59.5 - 120	
115 Ir		1	2845980	1.10		3596183		59.5 - 120	
115 Ir		2	863275	5.29		1187034		59.5 - 120	
115 Ir		3	3231342	2.90		4498589		59.5 - 120	
159 Th		3	4072462	1.69		5855025		59.5 - 120	
209 B:	L	3	3890938	2.47		6279629	62.0	59.5 - 120	
5	Fune File#	1	c:\icpchem\1	\7500\h2.u					
	Fune File#		c:\icpchem\l\7500\he.u						
	Fune File#		c:\icpchem\1		u				
TOWP	Dof Eile		~	• \ TODOUTENA' 1	\	~100000 -\	0020777 5	0020310 0"	
TOID	Ref File :		C	:/ICPCHEM/1	'DATA/W	/a.«יייייי/	UUJCALB.D	\UUJCALB.D#	

 3 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:44 PM L32771-1611081657

Data Fil Date Acq			C:\ICPCHEM\1\DATA\wg409909.b\037SMPL.D\037SMPL.D# Sep 15 2016 11:46 pm									
Acq. Met			ACZ.M	· 1				Data Res	ults:			
Operator							Anal	ytes:	Fail			
Sample N Misc Inf			L32761-04					ISTD:	Pass			
Misc Inf Vial Num			3412									
Current			C:/ICPCHEM/1	\METHODS\AC	Z.M							
Calibrat			C:\ICPCHEM\1									
Last Cal	. Updat	e:	Sep 15 2016	10:13 pm								
Sample T			Sample									
Dilution Autodil			5.00 Undiluted									
Final Di			5.00									
QC Eleme			G	Deve Gener	TT- i b -		TTI	- D1				
Element 9 Be	IS Ref 6	Tune 3	Corr Conc -0.100	Raw Conc -0.020	Units ppb	RSD(%) 8.71	High Limi 200.00	t Fl	ag			
у ве 11 в	6	3	358.900	71.780	ppb ppb	0.91	200.00	00	AL			
27 Al	72	3	104.500	20.900	ppb	0.68	1000.00					
51 V	45	2	4.760	0.952	ppb	1.49	200.00					
52 Cr	45	2	3.837	0.767	ppb	3.40	200.00					
55 Mn	72	3	518.000	103.600	ppb	0.40	200.00					
56 Fe	45	1	884.500	176.900	ppb	0.30	1000.00					
59 Co	72	3	3.979	0.796	ppb	1.68	200.00					
60 Ni 63 Cu	45 45	2 2	7.390 32.875	1.478 6.575	ppb ppb	4.99 3.82	500.00 500.00					
66 Zn	43 72	3	32.075	6.407	ppb ppb	1.15	1000.00					
75 As	45	2	1.587	0.317	ppb	9.68	200.00					
78 Se	45	1	0.198	0.040	ppb	5.04	500.00					
98 Mo	115	3	2.627	0.525	ppb	2.49	200.00					
107 Ag	115	3	0.012	0.002	ppb	82.16	50.00					
111 Cd	115	3	0.030	0.006	ppb	36.06	200.00					
118 Sn	115	3	-0.119	-0.024	ppb	53.99	200.00					
121 Sb 125 Te	115 115	3 3	1.633 -0.047	0.327 -0.009	ppb ppb	1.25 244.31	25.00 200.00					
133 Cs	115	3	11.440	2.288	ppb ppb	0.59	200.00					
137 Ba	115	3	249.300	49.860	ppb	1.47	500.00					
205 Tl	209	3	-0.058	-0.012	ppb	6.05	200.00					
208 Pb	209	3	1.882	0.376	ppb	2.94	500.00					
232 Th	209	3	-0.204	-0.041	ppb	21.92	200.00					
238 U	209	3	-0.059	-0.012	ppb	3.23	200.00					
ISTD Ele	ments											
Element		Tune	CPS Mean	RSD(%)		Ref Value		QC Rang		Flag		
6 Li		3	808073	2.96		973727	83.0	59.5 -				
45 Sc 45 Sc		1 2	2251598 526397	0.19 3.19		2490209 595752	90.4 88.4	59.5 - 59.5 -				
45 SC		3	5556193	2.40		6201481		59.5 -	120			
72 Ge		1	675568	1.56		755907		59.5 -	120			
72 Ge		2	270241	2.14		293685		59.5 -				
72 Ge		3	1318417	1.42		1450449	90.9	59.5 -	120			
74 Ge		1	975921	1.01		1070347	91.2	59.5 -	120			
74 Ge		2	393895	1.86		430776	91.4	59.5 -				
74 Ge		3	1802304	1.62		1984674		59.5 -				
115 In 115 In		1 2	3080265 1033466	0.62		3596183		59.5 -	120 120			
115 In 115 In		∠ 3	3879572	1.13 1.76		1187034 4498589		59.5 - 59.5 -				
159 Tb		3	4958163	1.24		5855025		59.5 -				
209 Bi		3	4988450	1.08		6279629		59.5 -				
	e File#	1	c:\icpchem\1									
Tune File# 2 Tune File# 3			c:\icpchem\1\7500\he.u c:\icpchem\1\7500\norm.u									
1 une	: гтте#	د	C./TCbCHew/T	//300/HOTW.	u							
ISTD Ref File :			C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#									

 1 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

9/15/2016 11:48 PM L32771-1611081657

Data File: Date Acquired: Acq. Method:	C:\ICPCHEM\1 Sep 15 2016 ACZ.M		909.b\)38SMPL.D\(Data Res	witz.
Operator:	ACZ.M						Pass
Sample Name:	L32771-01				Allal	-	Pass
Misc Info: Vial Number:	3501						
Current Method:	C:/ICPCHEM/1	\METHODS\AC	7 M				
Calibration File:	C:\ICPCHEM\1						
Last Cal. Update:	Sep 15 2016		0				
Sample Type:	Sample	-					
Dilution Factor:	1.00						
Autodil Factor:	Undiluted						
Final Dil Factor:	1.00						
QC Elements		_	•	/ • >			
Element IS Ref Tune	Corr Conc	Raw Conc		RSD(%)	High Limi	t Fl	ag
9 Be 6 3 11 B 6 3	-0.020	-0.020	ppb	22.15	200.00		
11 B 6 3 27 Al 72 3	3.483 1.379	3.483 1.379	dqq dqq	10.36 26.55	20.00 1000.00		
27 AL 72 3 51 V 45 2	-0.024	-0.024	dqq dqq	38.70	200.00		
51 v 45 2 52 Cr 45 2	0.257	0.257	ppb ppb	7.34	200.00		
55 Mn 72 3	0.499	0.499	ppb	1.85	200.00		
56 Fe 45 1	7.572	7.572	ppb	1.02	1000.00		
59 Co 72 3	0.017	0.017	ppb	21.95	200.00		
60 Ni 45 2	2.286	2.286	ppb	1.88	500.00		
63 Cu 45 2	34.520	34.520	ppb	1.00	500.00		
66 Zn 72 3	40.210	40.210	ppb	0.48	1000.00		
75 As 45 2	0.137	0.137	ppb	27.93	200.00		
78 Se 45 1	-0.025	-0.025	ppb	21.87	500.00		
98 Mo 115 3	-0.005	-0.005	ppb	137.44	200.00		
107 Ag 115 3	0.000	0.000	ppb	602.86	50.00		
111 Cd 115 3	-0.005	-0.005	ppb	207.14	200.00		
118 Sn 115 3	1.392	1.392	ppb	1.21	200.00		
121 Sb 115 3	-0.001	-0.001	ppb	415.19	25.00		
125 Te 115 3	0.004	0.004	ppb	1187.30	200.00		
133 Cs 115 3 137 Ba 115 3	-0.007 6.271	-0.007 6.271	ppb ppb	50.63 0.17	200.00 500.00		
205 Tl 209 3	-0.016	-0.016	ppb ppb	1.92	200.00		
208 Pb 209 3	1.083	1.083	ppb	1.69	500.00		
232 Th 209 3	-0.084	-0.084	ppb	5.56	200.00		
238 U 209 3	-0.022	-0.022	ppb	1.39	200.00		
ISTD Elements Element Tune	CDC Moon	DCD(%)		Dof Voluo	Dog(%)	OC Banc	(%) Eloc
6 Li 3	CPS Mean 889602	RSD(%) 3.13		Ref Value 973727		QC Rang 59.5 -	
45 Sc 1	2367487	0.70		2490209		59.5 -	
45 Sc 2	563200	2.25		595752		59.5 -	120
45 Sc 3	5910574	1.02		6201481		59.5 -	120
72 Ge 1	719119	0.34		755907			120
72 Ge 2	279019	2.10		293685		59.5 -	
72 Ge 3	1395147	0.75		1450449	96.2	59.5 -	120
74 Ge 1	1015675	0.21		1070347	94.9	59.5 -	120
74 Ge 2	408564	1.63		430776	94.8	59.5 -	120
74 Ge 3	1921935	1.23		1984674	96.8	59.5 -	120
115 In 1	3325374	1.09		3596183		59.5 -	
115 In 2	1101028	1.59		1187034		59.5 -	120
115 In 3	4201051	0.64		4498589		59.5 -	
159 Tb 3	5353246	0.38		5855025			120
209 Bi 3	5577928	0.69		6279629	88.8	59.5 -	TZO
Tune File# 1	$c:\icpchem\1$						
Tune File# 2	c:\icpchem\1						
Tune File# 3	c:\icpchem\1	\7500\norm.	u				
ISTD Ref File :	C	:/ICPCHEM/1	\DATA\v	vg409909.b\	003CALB.D	\003CALB	.D#

 0 :Element Failures
 0 :Max. Number of Failures Allowed

 0 :ISTD Failures
 0 :Max. Number of ISTD Failures Allowed

Data F: Date Ad	ile: cquired:		C:\ICPCHEM\1\DATA\wg409909.b\039SMPL.D\039SMPL.D# Sep 15 2016 11:52 pm									
Acq. Me	ethod:		ACZ.M	-				Data R	esults:	:		
Operato	or:						Anal	ytes:	Pass	_		
Sample Misc II			L32771-02					ISTD:	Pass			
Vial N			3502									
	t Method:		C:\ICPCHEM\1	\METHODS\AC	Z.M							
	ation Fil		C:\ICPCHEM\1									
Last Ca	al. Updat	e:	Sep 15 2016									
Sample	Type:		Sample									
Diluti	on Factor	:	1.00									
Autodi	l Factor	:	Undiluted									
Final 1	Dil Facto	r:	1.00									
QC Ele Element	ments t IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limi	t. i	Flag			
9 Be	6	3	-0.025	-0.025	ppb	47.12	200.00		riag			
11 B	6	3	2.210	2.210	ppb	11.28	20.00					
27 Al	72	3	0.826	0.826	ppb	8.27	1000.00					
51 V	45	2	-0.027	-0.027	ppb	23.66	200.00					
52 Cr	45	2	0.119	0.119	ppb	26.73	200.00					
55 Mn	72	3	-0.060	-0.060	ppb	29.19	200.00					
56 Fe	45	1	0.627	0.627	ppb	3.07	1000.00					
59 Co	72	3	-0.017	-0.017	ppb	1.04	200.00					
60 Ni	45	2	0.013	0.013	ppb	46.03	500.00					
63 Cu	45	2	34.190	34.190	ppb	2.47	500.00					
66 Zn	72	3	29.480	29.480	ppb	0.98	1000.00					
75 As	45	2	0.142	0.142	ppb	19.75	200.00					
78 Se	45	1	-0.037	-0.037	ppb	11.34	500.00					
98 Mo 107 Ag	115 115	3 3	-0.028 -0.001	-0.028 -0.001	dqq dqq	12.42 164.10	200.00 50.00					
107 Ag 111 Cd	115	3	-0.001	-0.001	ppb ppb	47.31	200.00					
111 Cu 118 Sn	115	3	-0.094	-0.094	ppb	8.18	200.00					
121 Sb	115	3	-0.015	-0.015	ppb	18.70	25.00					
125 Te	115	3	-0.034	-0.034	ppb	35.29	200.00					
133 Cs	115	3	-0.014	-0.014	ppb	11.80	200.00					
137 Ba	115	3	2.214	2.214	ppb	2.09	500.00					
205 Tl	209	3	-0.016	-0.016	ppb	3.31	200.00					
208 Pb	209	3	0.774	0.774	ppb	1.78	500.00					
232 Th	209	3	-0.091	-0.091	ppb	7.75	200.00					
238 U	209	3	-0.023	-0.023	ppb	1.34	200.00					
ISTD E	lements											
Element	t	Tune	CPS Mean	RSD(%)		Ref Value	Rec(%)	QC Ra	nge(%)	Flag		
6 Li		3	943141	0.99		973727	96.9	59.5	- 120			
45 Sc		1	2494599	0.06		2490209	100.2	59.5	- 120			
45 Sc		2	607102	2.69		595752		59.5				
45 Sc		3	6234405	0.28		6201481		59.5				
72 Ge		1	757569	0.69		755907		59.5				
72 Ge		2	298049	1.30		293685			- 120			
72 Ge 74 Ge		3	1466504	0.43		1450449			- 120			
74 Ge 74 Ge		1 2	1067120 434568	0.59 1.92		1070347 430776			- 120 - 120			
74 Ge 74 Ge		3	1996953	0.33		1984674		59.5				
115 In		1	3537010	0.78		3596183			- 120			
115 In		2	1184949	1.80		1187034		59.5				
115 In		3	4471236	0.19		4498589			- 120			
159 Tb		3	5711391	1.11		5855025			- 120			
209 Bi		3	6027871	1.02		6279629	96.0	59.5	- 120			
	ne File#	1	c:\icpchem\1									
	ne File#	2	c:\icpchem\1									
'1'u	ne File#	3	c:\icpchem\1	\/500\norm.1	L							
ISTD Ref File :			C	:\ICPCHEM\1\	DATA\w	vg409909.b\	003CALB.D	\003CA1	LB.D#			
0 -1	. –			2		- 1						

Continuing Calibration Verification (CCV) QC Report

Data File: C:\ICPCHEM\1\DATA\wg409909.b\040_CCV.D\040_CCV.D# Sep 15 2016 11:55 pm Date Acquired: Operator: Data Results: Analytes: Pass Sample Name: CCV Misc Info: ISTD: Pass
 vidi Number:
 1105

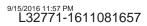
 Current Method:
 C:\ICPCHEM\1\METHODS\ACZ.M

 Calibration File:
 C:\ICPCHEM\1\CALIB\ACZ.C

 Last Cal Update:
 Son 15 2016 15 11
 Sep 15 2016 10:13 pm CCV Last Cal Update: Sample Type: Total Dil Factor: 1.00

QC Elements

QC.	Flemer	ITS							
Ele	ment	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Range(%)	Flag
9	Ве	6	3	96.910	0.69	100.00	96.9	89 - 110	
11	В	б	3	10.810	2.85	10.00	108.1	89 - 110	
27	Al	72	3	480.100	0.34	500.00	96.0	89 - 110	
51	V	45	2	93.820	0.59	100.00	93.8	89 - 110	
52	Cr	45	2	92.210	0.44	100.00	92.2	89 - 110	
55	Mn	72	3	95.790	0.50	100.00	95.8	89 - 110	
56	Fe	45	1	468.600	0.73	500.00	93.7	89 - 110	
59	Co	72	3	96.140	1.38	100.00	96.1	89 - 110	
60	Ni	45	2	227.900	0.40	250.00	91.2	89 - 110	
63	Cu	45	2	236.000	0.77	250.00	94.4	89 - 110	
66	Zn	72	3	495.600	0.80	500.00	99.1	89 - 110	
75	As	45	2	100.800	1.47	100.00	100.8	89 - 110	
78	Se	45	1	246.700	0.65	250.00	98.7	89 - 110	
98	Мо	115	3	95.940	0.91	100.00	95.9	89 - 110	
107	Ag	115	3	23.600	0.79	25.00	94.4	89 - 110	
111	Cd	115	3	95.480	0.59	100.00	95.5	89 - 110	
118	Sn	115	3	95.370	0.50	100.00	95.4	89 - 110	
121	Sb	115	3	11.980	0.52	12.50	95.8	89 - 110	
125	Те	115	3	101.200	0.96	100.00	101.2	89 - 110	
133	Cs	115	3	95.550	0.62	100.00	95.6	89 - 110	
137	Ba	115	3	243.100	1.31	250.00	97.2	89 - 110	
205	Tl	209	3	96.430	0.86	100.00	96.4	89 - 110	
208	Pb	209	3	237.800	0.52	250.00	95.1	89 - 110	
232	Th	209	3	93.400	0.47	100.00	93.4	89 - 110	
238	U	209	3	93.640	0.46	100.00	93.6	89 - 110	


ISTD Elements	3						
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	958675	2.25	973727	98.5	60 - 120	
45 Sc	1	2591417	0.51	2490209	104.1	60 - 120	
45 Sc	2	623112	1.01	595752	104.6	60 - 120	
45 Sc	3	6409314	1.89	6201481	103.4	60 - 120	
72 Ge	1	770038	0.59	755907	101.9	60 - 120	
72 Ge	2	301820	0.84	293685	102.8	60 - 120	
72 Ge	3	1481930	1.77	1450449	102.2	60 - 120	
74 Ge	1	1107912	1.00	1070347	103.5	60 - 120	
74 Ge	2	440857	1.01	430776	102.3	60 - 120	
74 Ge	3	2033238	1.04	1984674	102.4	60 - 120	
115 In	1	3704316	0.58	3596183	103.0	60 - 120	
115 In	2	1224070	0.15	1187034	103.1	60 - 120	
115 In	3	4572741	1.11	4498589	101.6	60 - 120	
159 Tb	3	5897663	0.83	5855025	100.7	60 - 120	
209 Bi	3	6271447	0.36	6279629	99.9	60 - 120	

Tune File#1c:\icpchem\l\7500\h2.uTune File#2c:\icpchem\l\7500\he.uTune File#3c:\icpchem\l\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures 0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:C:\ICPCHEM\1\DATA\wg409909.b\041_CCB.D\041_CCB.D#Date Acquired:Sep 15 2016 11:58 pmOperator:Data Results:Sample Name:CCBMisc Info:ISTD:Vial Number:1102Current Method:C:\ICPCHEM\1\METHODS\ACZ.MCalibration File:C:\ICPCHEM\1\CALIB\ACZ.CLast Cal Update:Sep 15 2016 10:13 pmSample Type:CCBTotal Dil Factor:1.00

QC Elements

QC .	Elemer	ICS					
Ele	ment	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9	Be	б	3	0.022 ppb	22.87	0.150	
11	В	6	3	0.562 ppb	14.87	1.500	
27	Al	72	3	0.341 ppb	153.03	3.000	
51	V	45	2	0.068 ppb	15.08	0.600	
52	Cr	45	2	0.044 ppb	82.88	1.500	
55	Mn	72	3	-0.067 ppb	8.84	1.500	
56	Fe	45	1	-0.044 ppb	80.19	12.000	
59	Co	72	3	0.029 ppb	14.90	0.150	
60	Ni	45	2	0.116 ppb	21.55	1.800	
63	Cu	45	2	-0.356 ppb	10.03	1.500	
66	Zn	72	3	0.012 ppb	19.71	6.000	
75	As	45	2	0.140 ppb	22.69	0.600	
78	Se	45	1	0.178 ppb	8.64	0.300	
98	Мо	115	3	0.025 ppb	20.31	1.500	
107	Ag	115	3	0.007 ppb	26.71	0.150	
111	Cd	115	3	0.021 ppb	53.40	0.300	
118	Sn	115	3	0.124 ppb	16.20	0.300	
121	Sb	115	3	0.320 ppb	2.68	1.200	
125	Те	115	3	0.069 ppb	43.04	3.000	
133	Cs	115	3	0.028 ppb	4.73	0.600	
137	Ba	115	3	0.064 ppb	24.48	1.500	
205	Tl	209	3	0.035 ppb	9.24	0.300	
208	Pb	209	3	0.064 ppb	19.50	0.300	
232	Th	209	3	0.759 ppb	9.40	3.000	
238	U	209	3	0.044 ppb	13.00	0.300	

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	976998	2.22	973727	100.3	60	- 120	
45 Sc	1	2623101	1.19	2490209	105.3	60	- 120	
45 Sc	2	628296	1.70	595752	105.5	60	- 120	
45 Sc	3	6496376	0.65	6201481	104.8	60	- 120	
72 Ge	1	782488	0.75	755907	103.5	60	- 120	
72 Ge	2	306464	0.83	293685	104.4	60	- 120	
72 Ge	3	1513960	0.09	1450449	104.4	60	- 120	
74 Ge	1	1120720	0.41	1070347	104.7	60	- 120	
74 Ge	2	447858	1.01	430776	104.0	60	- 120	
74 Ge	3	2069259	0.23	1984674	104.3	60	- 120	
115 In	1	3736581	1.21	3596183	103.9	60	- 120	
115 In	2	1242139	0.60	1187034	104.6	60	- 120	
115 In	3	4724245	0.54	4498589	105.0	60	- 120	
159 Tb	3	6039449	0.71	5855025	103.1	60	- 120	
209 Bi	3	6369276	0.52	6279629	101.4	60	- 120	

Tune File# 1 c:\icpchem\l\7500\h2.u Tune File# 2 c:\icpchem\l\7500\he.u Tune File# 3 c:\icpchem\l\7500\norm.u

ISTD Ref File :

ISTD Elements

C:\ICPCHEM\1\DATA\wg409909.b\003CALB.D\003CALB.D#

0 :Element Failures
0 :ISTD Failures

0 :Max. Number of Failures Allowed 0 :Max. Number of ISTD Failures Allowed

L32771-1611081657

Indext (action) Constrained (action) Constrained (action) Constrained (action) Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Subst (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transoctions Const (br) Transocti	Y	QC List Ty	QC List Type: I-X-THP				-	1	5	1	-	C	1	-	((0	1	1		1	Inst	nument	Instrument ID: METAL SDIG		
Reference - color constructions constructin constructin constructions constructions constructions constru		OCListMatCla	ass: LIQUID			5	2	ŋ	1	-	7	ົ		-	0	0	-					Ana	yst: mfm		
Client (1) SubSX Pri Analysis Date AGA, AS BE CO CCR CUM WO PB SIS ET, U D2 SO 30 SS 5 S 5		Group Method F SOP F	Ref. IP-THP-NO-LC Ref. IP-THP-NO-LC ID: IP-G-DIG-THP Ref. M200.2 Ref. SOPII021	MS-200	ပု																CI Start End	ACZ D reate D Date/Ti Date/Ti	ept: 30 ate: 09/14/2016 7:- me: 09/14/2016 8:- me: 09/14/2016 13	10 3	
Mile Implementation Implementation <th></th> <th>ACZ ID</th> <th>Client ID</th> <th>Subs</th> <th>11 S S S S S S S S S S S S S S S S S S</th> <th></th> <th></th> <th>M TM S 20 20</th> <th>AS AS</th> <th>OS SON TO</th> <th>D SON TW</th> <th>050 TCH</th> <th>0 20 STAC</th> <th>M TN WILL</th> <th>0201AB</th> <th>0 S O M M M</th> <th></th> <th>20 ML C</th> <th>20 ZN</th> <th>Volu</th> <th></th> <th></th> <th>Comment</th> <th></th> <th></th>		ACZ ID	Client ID	Subs	11 S S S S S S S S S S S S S S S S S S			M TM S 20 20	AS AS	OS SON TO	D SON TW	050 TCH	0 20 STAC	M TN WILL	0201AB	0 S O M M M		20 ML C	20 ZN	Volu			Comment		
FB Withous r 06/14/16 8:00 V	Ň	3409768LRB	NONE	-	-	09/14/16 8:40	1	>		>	5								5	(mL)		(mL)			100
Instruction r 06/14/16 9(1) V		WG409768LFB	MS160826-3	-		09/14/16 8:50	T	5		>	>								>	0.25	1	12			÷.
Image: constraint of the constrated of the constraint of the constraint of the constraint of the		L32649-01	NSJ2	-		09/14/16 9:01		>													-	-			-
8 01 r 091416.823 M 9 50 <th< td=""><td></td><td>L32649-02</td><td>LG2</td><td>1</td><td></td><td>09/14/16 9:12</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>-</td><td></td><td></td><td>-</td></th<>		L32649-02	LG2	1		09/14/16 9:12		5													50	-			-
Image: Description of the constraint of the constrate of the constraint of the constraint of the constraint of the		L32649-03	CA1	1		09/14/16 9:23		>													50				
S arrs r 09114/16 9544 V		L32649-04	LM02	1		09/14/16 9:34		>					2								50	-			-
M Westereds r 09/14/16 9:55 V		L32649-05	SJT2			09/14/16 9:44		>													50	-		1	
MID Willingsold r 09/14/16 10:15 V </td <td>1</td> <td>32649-05LFM</td> <td>MS160826-3</td> <td>4</td> <td></td> <td>09/14/16 9:55</td> <td>></td> <td>_</td> <td>></td> <td>></td> <td>></td> <td>></td> <td>2</td> <td>5</td> <td>5</td> <td>></td> <td>></td> <td>></td> <td>20</td> <td>0.25</td> <td>1.1</td> <td>50</td> <td></td> <td></td> <td>-</td>	1	32649-05LFM	MS160826-3	4		09/14/16 9:55	>	_	>	>	>	>	2	5	5	>	>	>	20	0.25	1.1	50			-
NI r 09/14/16 10:28 V	3	L32649-05LFMD	MS160826-3	1		09/14/16 10:06	>	-	>	>	>	5	2	>	>	>	>	>	-	0.25	1	50			-
MBCI r 00/14/16 10:28 V	1.1	L32649-06	N	-		09/14/16 10:12		-					2								50	50			
Best Instruction Instructin Instructin Instruction Instruction Instruction Instruction Inst		L32730-01	ARG-1	4		09/14/16 10:28	-		>	>		>			>	>	2	>			50	-		1	
JETEWN GUICH PENILS Degritarie 10-03 Max 25 50 Imax 3 JETEWN WARRANDER r 09/14/16 11:00 1 50	1.1	L32730-02	SC-1	-		09/14/16 10:35	-		-	>		>			5	>	>	>			10	-	Sediment		-
a JERWIX WMM ABORE r 09/14/16 11:10 0 50	111	L32752-07	JEFFWAY GULCH SPRING			09/14/16 10:45	-		5												25	-	Insx		-
Physicaceonix F 50 09/14/16 11:1 V <td>1.1</td> <td>L32752-08</td> <td>JEFFWAY WFMT ABOVE C</td> <td></td> <td></td> <td>09/14/16 11:00</td> <td></td> <td></td> <td>></td> <td></td> <td>50</td> <td>-</td> <td></td> <td></td> <td></td>	1.1	L32752-08	JEFFWAY WFMT ABOVE C			09/14/16 11:00			>												50	-			
Photocogeneticat r 50 09/14/16 11:22 0 50	1.11	L32754-01	PINALCK@ICCCODMA	-	50	1	>			_	>	>		>	>	>	>	>			50	-			
Immunologiesterention r 50 09/14/16 11:32 09 50		L32754-02	PINALCK@PRINGLE	2	50	21					>	>					>				50	-			
M MS1003633 r 000/14/16 11:43 V		L32754-03	PINALCK@SEERANCH	-	50				-	<u> </u>	>	>					5				50	50			
MD WEIGRANA r 00/14/16 11:54 V <td>-1</td> <td>32754-03LFM</td> <td>MS160826-3</td> <td>4</td> <td></td> <td>09/14/16 11:43</td> <td>></td> <td>-</td> <td></td> <td></td> <td></td> <td>></td> <td>2</td> <td>></td> <td>5</td> <td>-</td> <td>></td> <td>></td> <td></td> <td>0.25</td> <td>_</td> <td>50</td> <td></td> <td></td> <td></td>	-1	32754-03LFM	MS160826-3	4		09/14/16 11:43	>	-				>	2	>	5	-	>	>		0.25	_	50			
135-Acc5-2E F 40 09/14/16 12:05 60 50 50 50 50 1100-CF1E-10 r 40 09/14/16 12:16 4 50 50 50 50 100-CF1E-10 r 40 09/14/16 12:16 4 50 50 50 101-115 r 4 4 10 4<	63	32754-03LFMD	MS160826-3	1		09/14/16 11:54	>		TT.			>	2	>	5	_	_	>	-	0.25	1	50			
Insucrie r 40 09/14/16 12:16 1 1 50 50 Initials, Date 081657	11.1	L32759-01	1355-ACCS-ZE	-	40	10	>		>	>								>			50	50			-
1 USS-16402 r 40 09/14/16 12:26 V V I V V V A I AREV AREV AREV MFM A A A A A 081657 081657 081657 081657 0914116 12:26 U D D D		L32759-02	1190-CFTE-EC	2	40	1	>		5	2								>			50	50			
AREV: MEM 9		L32759-03	UGS-16-042	-	40	1	2		2	>					2.2		CC 1	5			50	50	-		1
Initials, Date																									
081657	-	Comments:								1										AF	SEV:				4
081657 SREV:										1													Initials, Date	1	1
	-	Comments								1										di ci	PEV.	1	2 Auju	4	
	5	71-16110816	357							1										1		5	U Initials, Pale	74 of	80

Octobalization Octobalization Instruction Bend Reit (HORRY:100) Bend Reit (HORRY:100) Manage Time (MEXIARI) Bend Reit (HORRY:100) Const (F)	AREV: Initials, Date
OC List Typ OCList MatClas Bench Sheet Lis OC Re Group II Method Re SOP	Report Comments:

ACZ Laboratories, Inc. METALS PREP REVIEW CHECKLIST

Work Group:	409768
Sample Type:	
Prep Date:	91416
Analyst:	MENI

AREV: M Date: SREV Date:

	N/A	Yes	No
1.) Are all dilutions correct in LIMS and documented on the bench sheet ?		\checkmark	
2.) Is any sample prepared on dilution appropriately "D" qualified?		\checkmark	
3.) Is the correct sub-sample type entered on the bench sheet (if different than SOP)?		\checkmark	
4.) Are all initial and final sample volumes correct in LIMS ?		\checkmark	- 1
5.) Is the correct SCN entered for each spike and control standard (LFB or LCSW) ?	-	V	
6.) Are all SCN volumes correct in LIMS ?		~	
7.) Are all errors properly corrected (i.e. single-line crossout, dated & initialed) ?		V	
8.) FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS ?	1	1	/

For any item listed above that is checked "No" state the problem and corrective action / resolution in the sections below.

QC/Sample ID	Problem	Corrective action
		11

Disposable Vessel Lot #*: 1512329-8A-6225-QN

Nitric acid PCN: 51741

Hydrochloric acid PCN: 51669

Digest Temp: <u>92</u>°C

Comments:

*Workgroup documentation must include the lot number(s) of all disposable vessels used for volumetric measurements.

Martine Internet Martine Internet Contraction Contraction Cont		- QC List Type: I-X-THP	e: I-X-THP-			C			C	C	1	N	(0		1		Inst	Timen	ID-MF	nt ID: METAI SDIG
Amountain		QCListMatClas	s: LIQUID		>>	J	1	+		5		-	ñ	C	_				Anal	lyst: N	AFR A
Bits of the conduction Sund Desirting - Multi- set is Single - Multi- and Multi- set is Single - Multi- man - Multi- man - Multi- set is Single - Multi- man - Multi- set is Single - Multi- man - Multi- - 		Bench Sheet Lis QC Re	f: I-ICPMS-T-200 f: IP-THP-NO-LC	MS) : I				ö	ACZ D eate D	ept: 30 ate: 09/	14/2016 7:43
Clent (1) Statisty, Prin Analysis Data Add Al, Si Bis C, CO, CCR CUMN NO PB SIS SIS T, SIS SIS SIS SIS SIS SIS SIS SIS SIS SI		Group II Method Re SOP Re	D: IP-G-DIG-THPA f: M200.2 f: SOPII021	AS-200-C														Start I End I	Date/Ti	ie ie	1:10 1:10
Right Monte Monte <td< th=""><th></th><th>ACZ ID</th><th>Client ID</th><th></th><th>1.</th><th>AG A S S S S S S S S S S S S S S S S S S S</th><th>20 SMAS</th><th>0 20 NTM</th><th>N TV S S S S S S S S S S S S S S S S S S S</th><th>A TM S CR</th><th>S 20 20</th><th>M TW TW TW</th><th>S S S S S S S S S S S S S S S S S S S</th><th>SB SSB S SSB S S SSB S S SSB S S S S</th><th>U U S MOO</th><th>0 So MI</th><th>ZN SO SO SO</th><th></th><th></th><th>Final /olum e</th><th>Comments</th></td<>		ACZ ID	Client ID		1.	AG A S S S S S S S S S S S S S S S S S S S	20 SMAS	0 20 NTM	N TV S S S S S S S S S S S S S S S S S S S	A TM S CR	S 20 20	M TW TW TW	S S S S S S S S S S S S S S S S S S S	SB SSB S SSB S S SSB S S SSB S S S S	U U S MOO	0 So MI	ZN SO SO SO			Final /olum e	Comments
RdB more 1 <td> ÷</td> <td></td> <td>(mL)</td> <td></td>	÷																			(mL)	
	-	WG409768LRB	NONE				>														
		WG409/68LFB	NSJ2				50	>		20				-				+			
3 00 0	-	137649-02	F62				30	10 10	10			10		םב חר	10		15	-		1	
4 001 001 8 817 817 8 817 817 9 0 000 9 0 000 9 0 000 9 0 000 9 0 000 9 0 000 9 0 0 9 0 0 9 0 0 9 0 0 10 0 0 10 0 0 11 0 0 12 10 0 13 10 0 14 0 0 100 10 0 100 10 0 100 10 0 110 0 0 110 0 0 110 0 0 110 0 0 110 0 0 110 0 0 11		L32649-03	CAT				ÌĊ							1E 16				+	1		
SRV: MID	-	L32649-04	LM02								>				IC			+	1	T	
MD Manages MD Manages Manages MD Manages Manages MD Manages Manages Manages MD Manages Manages Manages Manages MD Manages Manages Manages Manages Manages MD Manages Manages <td>-</td> <td>L32649-05</td> <td>SJT2</td> <td></td> <td>1</td> <td>+</td> <td></td> <td>T</td> <td></td>	-	L32649-05	SJT2														1	+		T	
M0 400043 N N N AIG N AIG AIG AIG <td></td> <td>L32649-05LFM</td> <td>MS160826-3</td> <td></td> <td></td> <td>></td> <td>-</td> <td></td> <td>-</td> <td>></td> <td>_</td> <td></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>1</td> <td></td> <td></td>		L32649-05LFM	MS160826-3			>	-		-	>	_		>					-	1		
M M Altori Altori Altori Bl Altori Bl Altori Bl Altori Bl Altori Bl Altori Bl Altorio Bl Bl Bl		L32649-05LFMD /	MS160826-3			>	-	-	-	>	-		>		-	20				T	
Alborn Alborn Sci Sci		L32649-06	N1			>												1	F	1	
BCI BCI EFTWAY WURTABOLE EFTWAY WURTABOLE A FEWAY WURTABOLE B A MULTAGENERIAMIN B A MULTAGENERIAM B A MULTAGENERIAMOL B A MULTAGENERIAMOL B A MULTAGENERIAMOL B A MULTAGENERIAMOL A A MULTAGENERIAMOL A A MULTAGENERIAMOL A A MULTAGENERIAMOL A MULTAGENERIAMOLI A A MULTAGENERIAMOLI <tr< td=""><td></td><td>L32730-01</td><td>ARG-1</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>></td><td></td><td></td><td>5</td><td></td><td>5</td><td>></td><td></td><td>-</td><td>1</td><td>1</td><td></td></tr<>		L32730-01	ARG-1					-		>			5		5	>		-	1	1	
Terruw run alore Derivative Derivative <thderivative< th=""> Derivative De</thderivative<>		1	sc-1							>			5		>	>			0		. Yer
AlfFrenz voum abore Dimucrogenous So 2 Pinucrogenous 50 2 Pinucrogenous 50 3 Pinucrogenous 50 4 <td></td> <td>1</td> <td>EFFWAY GULCH SPRING</td> <td></td> <td></td> <td></td> <td>></td> <td></td> <td>R</td> <td>10</td> <td></td> <td>XVU</td>		1	EFFWAY GULCH SPRING				>											R	10		XVU
Pinuccenton 50 2 Pinuccentons 50 3 Pinuccentons 50 7 Monorgenesse 40 8 190 2 105-rescent 40 2 105-rescent 40 2 105-rescent 40 2 105-rescent 40 2		1	EFFWAY WFMT ABOVE C				>											1	1	T	
2 PNULCK@PRINGLE 50 3 PNULCK@PRINGLE 50 5 PINULCK@PRINGLE 50 5 PINULCK@PRINGLE 50 5 PINULCK@PRINGLE 50 5 PINULCK@PRINGLE 50 6 V V 7 V V 8 1365ACCB-ZE 40 100-CHTE-EC 40 V 100-CHTE-EC 100-CHTE-EC V 100-CHTE-EC 40 V 100-CHTE-EC 40 V 100-CHTE-EC 100-CHTE-EC V 100-CHTE-EC 40 V V 100-CHTE-EC 40 V V V 100-CHTE-EC 100-CHTE-EC V V V V 100-CHTE-EC 100-CHTE-EC 40 V V V V 100-CHTE-EC <td< td=""><td></td><td>1</td><td>PINALCK@ICCCODMA</td><td>50</td><td>0</td><td>></td><td>-</td><td>1.1.1</td><td>-</td><td></td><td>5</td><td>></td><td>_</td><td>_</td><td>></td><td>></td><td></td><td></td><td></td><td>1</td><td></td></td<>		1	PINALCK@ICCCODMA	50	0	>	-	1.1.1	-		5	>	_	_	>	>				1	
All Mucrossenses 50 All Mucrossenses 40 MD Nissessas MS 1385.40000 MS 40		1	PINALCK@PRINGLE	50	0				-		5				>			-		1	
Im MS1602693 MD MS1602693 MS1602693 40 MS1602612 40 MS160212 40 MS160213 40 MS160214 40 MS160214 40 MS160214 40 MS160214 40 MS160214 40 MS160214 40 <tr< td=""><td>-</td><td></td><td>PINALCK@SEERANCH</td><td>50</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td><td></td><td>></td><td>12</td><td></td><td></td><td></td><td></td><td></td></tr<>	-		PINALCK@SEERANCH	50	0						>				>	12					
MD/ Wittenses 1100-CFTE-EC 40 1100-CFTE-EC 40 C C C C C C C C AREV SREV		L32754-03LFM	MS160828-3						-			100			5					1	
135-AccG-ZE 40 100-TF-EC 40 C	and the second s	L32754-03LFMD /	MS160826-3						-	-					>				F		
1100-CTE.EC 40 UGS-TE.EC 40 C C		L32759-01	1355-ACCS-ZE	40	6	>	>	>							>	>			1		
		L32759-02 /	1190-CFTE-EC	40	6	>	>	>							5	5					
	1	L32759-03 /	UGS-16-042	40		>	>	2							>	>					
AREV:																					
SREV	0	rt Comments:															A	REV			
SREV:																			1	Ē	itials, Date
SREV:								1													
	E	nal Comments															S	REV			
																				-	tials Date

	ACLISI Bench 5 M ACZ ID ACZ ID L32761-C	SW AS-200-C		The second second	
Client (D SubSX Pri Analysis Date AG AL AS EC CC CC CUM Mont Tim	ACZ ID L32761-01 /			Analy ACZ De ACZ De Create Da Start Date/Tin End Date/Tin	pt: 30 pt: 30 te: 09/14/2016 7:43 te: he:
Image: Second	1	Ē	AL AS BE CD CO CR CU MN MO PB SB SE TL U ZN TM TM TM S S S S S S S S S S S S S S S S 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 0	Sampl e Volum e (mL)	
1 mon					
Answersers Image: Constraint of the	1			4	/ vini
2	L32771-01 /			2	1017
Login Commens adjauwacwan adjauwacwacwan adjauwacwacwan adjauwacwan adjauwacwa	L32771-02 /				
odi Puumes destreil odi Puumes veri odi Puumes veri odi Puumes veri odi Puumes veri odi Puumes of veri puumes of veri uumes of veri veri of veri veri of veri of veri of veri veri of veri veri of veri of veri veri of veri of veri veri of veri veri veri veri veri veri veri veri veri veri veri veri veri					
oppervension construction construction construction construction unversion u		T.			
ocolituma civel counter sectors exumencercical exumencercical unverse contain unverse					
Pubmercarval					
euwisecaering uuwisecaering uuwisecaeri u					
uuuurene orani uuurene orani uumenoen uumenoen uumenoen uumenoen orani too puumenoen o					
umercaerun uwercaerun uwercaerun Loopuwercaervearn Loopuwercaervea					
uwrec.eecil uwrec.eecil A.O.P.Uwrec.eecidstrij A.O.P.Uwrec.eecidstri					
UW PPC.GPCII LAO PUW PPC.GPC VGB.T II LAO PUW PPC.GPC VGB.T II LAO PUW PPC.GPC VGB.T II LAO PUW PPC.GPC VGB.T II LUW FPC.VGII PPC.VIII PPC					
AREV: AREV: AREV: AREV: BUM: RPC:YGBI BUM: RPC					
AREV: JAREV: AREV: BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A)] BRC(A) BRC(
UWE.RPC.YGI UWE.RPC.YGI RPC(4) RPC(4) RPC(4) RPC(4) SPC(4) SPC(4)					
AREV: PPC(4) PPC(4) PPC(4) PREV: SREV: SREV:					
AREV: AREV: 081657					
AREV:					
AREV: 081657					
081657	ort Comments:			AREV:	
081657					Initials, Date
081657 SREV:					
	mal Comments			SREV:	
	L32771-1611081657				Initials, Pedige 78 (

WG409768

Workgroup Review and Approval

Date Reported: 14-Sep-16 Run ID: R1450780 Date Analyzed: 14-Sep-16 ICAL Workgroup: Instrument ID: METALSDIG

WG4	09768LRB		Tag:					Μ	leasure	ed:	9/14/	2016 8:40):00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	PREP	50	1		mL	++						
SREV	VOLUME, SAMPLE	PREP	50	1		mL	++						
WG4	09768LFB		Tag:					Μ	leasure	ed:	9/14/	2016 8:50):48 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	PREP	50	1		mL	++						
SREV	SCN VOLUME	PREP	0.25	1		mL	++						
SREV	VOLUME, SAMPLE	PREP	50	1		mL	++						
L3264	49-01		Tag: 1					Μ	leasure	ed:	9/14/	2016 9:0 [,]	1:36 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L3264	49-02		Tag: 1					Μ	leasure	ed:	9/14/	2016 9:12	2:24 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L326	49-03		Tag: 1					Μ	leasure	ed:	9/14/	2016 9:23	3:12 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L3264	49-04		Tag: 1					Μ	leasure	ed:	9/14/	2016 9:34	4:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L326	49-05		Tag: 1					Μ	leasure	ed:	9/14/	2016 9:44	4:48 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L3264	49-05LFM		Tag:					M	leasure	ed:	9/14/	2016 9:5	5:36 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
otatao					-	and the second s							
SREV	FINAL VOLUME	PREP	50	1		mL	++						
	FINAL VOLUME SCN VOLUME VOLUME, SAMPLE	PREP PREP PREP	50 0.25 50	1 1 1		mL mL	++						

WG409768

	49-05LFMD		Tag:					М	easure	d:	9/14/	2016 10:0)6:24 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	PREP	50	1		mL	++						
SREV	SCN VOLUME	PREP	0.25	1		mL	++						
SREV	VOLUME, SAMPLE	PREP	50	1		mL	++						
L326	49-06		Tag: 1					М	easure	d:	9/14/	2016 10:1	17:12 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	30-01		Tag: 1					М	easure	d:	9/14/	2016 10:2	28:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	30-02		Tag: 1					М	easure	d:	9/14/	2016 10:3	38:48 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	5		mL	++					DF	
SREV	VOLUME, SAMPLE	IPMS-200	10	5		mL	++					DF	
L327	52-07		Tag: 1					М	easure	d:	9/14/	2016 10:4	19:36 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	2		mL	++					DJ	
SREV	VOLUME, SAMPLE	IPMS-200	25	2		mL	++					DJ	
1 207	FD 00		Tag: 1										
L32/	52-08		Tay. T					М	easure	d:	9/14/	2016 11:0)0:24 AN
	52-U8 Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	M MDL	easure PQL	-		2016 11:(Ext Qual	
Status		Type IPMS-200	_	Dil 1	Qual	Units mL	Аррv ++			-			
Status SREV	Parm_Stored		Value		Qual					-			
Status SREV SREV	Parm_Stored	IPMS-200	Value 50	1	Qual	mL	++	MDL		Text	Value		Signal
Status SREV SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE	IPMS-200	Value 50 50	1		mL	++	MDL	PQL	Text d:	Value 9/14/	Ext Qual	Signal I1:12 AN
Status SREV SREV L327 Status	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01	IPMS-200 IPMS-200	Value 50 50 Tag: 1	1		mL mL	++ ++	MDL	PQL	Text d:	Value 9/14/	Ext Qual	Signal I1:12 AN
Status SREV SREV L327 Status SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored	IPMS-200 IPMS-200 Type	Value 50 50 Tag: 1 Value	1 1 Dil		mL mL Units	++ ++ Appv	MDL	PQL	Text d:	Value 9/14/	Ext Qual	Signal I1:12 AN
SREV SREV L327 Status SREV SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME	IPMS-200 IPMS-200 Type IPMS-200	Value 50 50 Tag: 1 Value 50	1 1 Dil		mL mL Units mL	++ ++ Appv ++	MDL M MDL	PQL	Text d: Text	Value 9/14/ Value	Ext Qual	Signal I1:12 AM Signal
SREV SREV L327 Status SREV SREV L327	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE	IPMS-200 IPMS-200 Type IPMS-200	Value 50 50 Tag: 1 Value 50 50	1 1 Dil 1 1	Qual	mL mL Units mL	++ ++ Appv ++	MDL M MDL	PQL easure PQL	Text d: Text d:	Value 9/14/ Value 9/14/	Ext Qual 2016 11:1 Ext Qual	Signal I1:12 AM Signal 22:00 AM
Status SREV SREV L327 Status SREV SREV L327 Status	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-02	IPMS-200 IPMS-200 Type IPMS-200 IPMS-200	Value 50 50 Tag: 1 Value 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	1 1 Dil 1 1	Qual	mL mL Units mL mL	++ ++ ++ Appv ++ ++ ++	MDL MDL MDL	PQL easure PQL easure	Text d: Text d:	Value 9/14/ Value 9/14/	Ext Qual 2016 11:1 Ext Qual 2016 11:2	Signal I1:12 AM Signal 22:00 AM
SREV SREV L327 Status SREV SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-02 Parm_Stored	IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200	Value 50 50 70 50 7ag: 1 Value 50 50 50 50 50 50 50 50 50 50 50 50 7ag: 1 Value	1 1 0il 1 1 Dil	Qual	mL mL Units mL mL Units	++ ++ ++ Appv ++ ++ ++	MDL MDL MDL	PQL easure PQL easure	Text d: Text d:	Value 9/14/ Value 9/14/	Ext Qual 2016 11:1 Ext Qual 2016 11:2	Signal I1:12 AM Signal 22:00 AM
SREV SREV L327 Status SREV SREV L327 Status SREV SREV SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-02 Parm_Stored FINAL VOLUME	IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200	Value 50 50 70	1 1 1 1 1 Dil 1	Qual	mL mL mL mL mL Units mL	++ ++ ++ ++ ++ Appv ++ ++	MDL MDL MDL	PQL easure PQL easure	Text d: Text d: Text	Value 9/14/ Value 9/14/ Value	Ext Qual 2016 11:1 Ext Qual 2016 11:2	Signal I1:12 AM Signal 22:00 AM Signal
SREV SREV L327 Status SREV SREV L327 Status SREV SREV SREV L327	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-02 Parm_Stored FINAL VOLUME VOLUME, SAMPLE	IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200	Value 50 50 7ag: 1 Value 50 50 50 7ag: 1 Value 50 50 50 50 50 50 50 50 50	1 1 1 1 1 Dil 1 1	Qual	mL mL mL mL mL mL mL mL	++ ++ ++ ++ ++ Appv ++ ++	MDL MDL MDL	PQL easure PQL easure PQL	d: Text d: Text d: Text	Value 9/14/2 Value 9/14/2 Value 9/14/2	Ext Qual 2016 11:1 Ext Qual 2016 11:2 Ext Qual	Signal I1:12 AM Signal 22:00 AM Signal 32:48 AM
SREV SREV L327 Status SREV SREV L327 Status SREV SREV SREV	Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-01 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-02 Parm_Stored FINAL VOLUME VOLUME, SAMPLE 54-03	IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200 IPMS-200	Value 50 50 7ag: 1 Value 50 50 50 7ag: 1 Value 50 50 50 50 50 7ag: 1 Value 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	1 1 1 1 1 Dil 1 1	Qual	mL mL mL mL mL mL mL mL	++ ++ ++ ++ ++ Appv ++ ++ ++ ++	MDL MDL MDL	PQL easure PQL easure PQL	d: Text d: Text d: Text	Value 9/14/2 Value 9/14/2 Value 9/14/2	Ext Qual 2016 11:1 Ext Qual 2016 11:2 Ext Qual 2016 11:3	Signal I1:12 AM Signal 22:00 AM Signal 32:48 AM

WG409768

L327	54-03LFM		Tag:					М	easure	d:	9/14/	2016 11:4	43:36 Al
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	PREP	50	1		mL	++						
SREV	SCN VOLUME	PREP	0.25	1		mL	++						
SREV	VOLUME, SAMPLE	PREP	50	1		mL	++						
L327	54-03LFMD		Tag:					М	easure	d:	9/14/	2016 11:	54:24 Al
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	PREP	50	1		mL	++						
SREV	SCN VOLUME	PREP	0.25	1		mL	++						
SREV	VOLUME, SAMPLE	PREP	50	1		mL	++						
L327	59-01		Tag: 1					М	easure	d:	9/14/	2016 12:0)5:12 Pl
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	59-02		Tag: 1					М	easure	d:	9/14/	2016 12:1	16:00 PI
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	59-03		Tag: 1					М	easure	d:	9/14/	2016 12:2	26:48 PI
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	61-01		Tag: 1					М	easure	d:	9/14/	2016 12:3	37:36 PI
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE	IPMS-200	50	1		mL	++						
L327	61-04		Tag: 1					М	easure	d:	9/14/	2016 12:4	18:24 PI
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	FINAL VOLUME	IPMS-200	50	5		mL	++					DD	
SREV	VOLUME, SAMPLE	IPMS-200	10	5		mL	++					DD	
L327	71-01		Tag:					М	easure	d:	9/14/	2016 12:	59:12 Pl
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
	FINAL VOLUME	IPMS-200	50	1		mL	++						
		IPMS-200	50	1		mL	++						
SREV	VOLUME, SAMPLE												
SREV SREV	VOLUME, SAMPLE 71-02		Tag:					М	easure	d:	9/14/	2016 1:10):00 PM
SREV SREV L327		Туре	Tag: Value	Dil	Qual	Units	Арру	M MDL	easure PQL			2016 1:10 Ext Qual	
SREV SREV	71-02	Type IPMS-200		Dil 1	Qual	Units mL	Аррv ++						

Teck Alaska Incorporated

Project ID: L32771

Metals Analysis

	Zn	×	×	×	×						×	×	×	×									×	×	×	×	
	∍	×	×	×	×						×	×	×	×		×	×			×			×	×	×	×	×
	F	×	×	×	×						×	×	×	×									×	×	×	×	
	Se	×	×	×	×						×	×	×	×						×			×	×	×	×	×
	Sb	×	×	×	×						×	×	×	×		×	×			×			×	×	×	×	×
	Pb	×	×	×	×						×	×	×	×		×	×			×			×	×	×	×	×
	Мо	×	×	×	×						×	×	×	×						×			×	×	×	×	
	Mn	×	×	×	×	×	×	×	×	×	×	×	×	×	×								×	×	×	×	
	Cu	×	×	×	×						×	×	×	×						×	×	×	×	×	×	×	
	c	×	×	×	×						×	×	×	×									×	×	×	×	
	Co	×	×	×	×						×	×	×	×						×	×	×	×	×	×	×	
	Cd	×	×	×	×						×	×	×	×		×	×			×	×	×	×	×	×	×	×
	Be	×	×	×	×						×	×	×	×		×	×			×	×	×	×	×	×	×	
	As	×	×	×	×						×	×	×	×		×	×	×	×	×			×	×	×	×	×
20-00	A	×	×	×	×	×	×	×			×	×	×	×	×								×	×	×	×	
ICPMS Total 200-CC	Ag	×	×	×	×						×	×	×	×						×			×	×	×	×	×
ICPMS	SCN	MS160823-2			MS160826-3						MS160826-3	MS160826-3	MS160914-3										MS160826-3	MS160826-3	MS160914-3		
	Date	09/15/16 22:15	09/15/16 22:18	09/15/16 22:21	09/15/16 22:24	09/15/16 22:27	09/15/16 22:30	09/15/16 22:34	09/15/16 22:37	09/15/16 22:40	09/15/16 22:43	09/15/16 22:46	09/15/16 22:49	09/15/16 22:52	09/15/16 22:55	09/15/16 22:59	09/15/16 23:02	09/15/16 23:05	09/15/16 23:08	09/15/16 23:11	09/15/16 23:14	09/15/16 23:18	09/15/16 23:21	09/15/16 23:24	09/15/16 23:27	09/15/16 23:30	09/15/16 23:33
WG409909	Sample	WG409909ICV	WG409909ICB	WG409768LRB	WG409768LFB	L32649-01	L32649-02	L32649-03	L32649-04	L32649-05	L32649-05LFM	L32649-05LFMD	WG409909CCV1	WG409909CCB1	L32649-06	L32730-01	L32730-02	L32752-07	L32752-08	L32754-01	L32754-02	L32754-03	L32754-03LFM	L32754-03LFMD	WG409909CCV2	WG409909CCB2	L32759-01

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Run Log by Workgroup

Teck Alaska Incorporated

L32771 Project ID:

Metals Analysis

WG409909		ICPMS 1	ICPMS Total 200-CC	ပ္ပ														
Sample	Date	SCN	Ag	A	As	Be	Cd	Co	cr	Сu	Mn	Mo	Pb	Sb	Se	F	D	Zn
L32759-02	09/15/16 23:36		×		×		×						×	×	×		×	
L32759-03	09/15/16 23:39		×		×		×						×	×	×		×	
L32761-01	09/15/16 23:43														×			
L32761-04	09/15/16 23:46														×			
L32771-01	09/15/16 23:49						×						×					×
L32771-02	09/15/16 23:52						×						×					×
WG409909CCV3	09/15/16 23:55 N	MS160914-3	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
WG409909CCB3	09/15/16 23:58		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

AGAZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

	ACZ Proje			L32771
1370966-SVC	Date Rece		9/07/201	
	Receive Date Pri		c	kmc 6/7/2016
Receipt Verification	Date Ph	nieu.	e	0///2010
		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protocol?				Х
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time ana	lyses?	Х		
6) Is the Chain of Custody form complete and accurate?		Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the s	amples?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and	Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1		Х		
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?				Х
15) Are all sample containers appropriate for analytical requirements?		Х		
16) Is there an Hg-1631 trip blank present?				Х
17) Is there a VOA trip blank present?				Х
18) Were all samples received within hold time?		Х		
Chain of Custody Related Remarks				

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	$Rad(\mu R/Hr)$	Custody Seal Intact?
4718	2.1	NA	15	Yes

Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Teck Alaska Incorporated	ACZ Project ID: L32771 Date Received: 09/07/2016 14:43
1370300-070	Received By: kmo
	Date Printed: 9/7/2016
1	

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

.32771 Chain of Custody

LTREJ

TECK ALASKA INC - CHAIN OF CUSTODY

TO: Sue Webber ACZ Laboratories 2773 Downhill Drive Steamboat Springs, CO 80487 Phone: 970-879-6590 ext. 110 Lab Phone: 800-334-5493

FROM: Teck Alaska Inc. 3105 Lakeshore Drive Bldg A - Suite 101 Anchorage Alaska 99517 Project Manager: Joe Diehl Phone: 907-754-5109

-			PROJECT:	Marine Sediment Sampling	PO# 1330199-SVC	39-SVC	
Leck		DDD IECT COD	OPDINATOR.	Joe Diehl/ Johanna Salatas	Page_1_	of _1	
Samula I D	Location	TYPE	#Bottles	ANALYSIS	Collection Date	Collection Time	LAB I.D.
16-035 NMM-A	Marine Sed	SD	÷	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13:00	
16-036 NMGZ-A		SD	F	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13:14	
16-037 NMN-A	Marine Sediment NMN	SD	·	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13.52	
16-038 NMO-A	Marine Sediment NMO	SD	2	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	14:02	
16-039 NMO-B		SD	-	Pb, Zn, Cd, by ICR MS, Total Solids	9/4/2016	14:10	
16-040 NML-A	Marine Sediment NML	SD	-	Pb, Zn, Cd, by ICP MS, Tolar Solids	9/4/2016	14.43	
16-041_NMD-A	Marine Sediment NMD	SD	1	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2015	14:54	6
16-042_NMAA-A	A Marine Sediment NMAA	SD	1	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15.14	
/ 16-043 EB	Marine Sediment Resinate Water	H20	4	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15.34	
-	Marine Sediment Resinate Water	HZO	4	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15:37	
	CAMPIC DELEASE DV.			SAMPLE RECEIVED BY:	SPEC	SPECIAL INSTRUCTIONS:	IONS:
	MANY STATES		Nama'	Daniel Retus	E-MAIL RESULTS TO: Enviro.Transfer@teck	E-MAIL RESULTS TO: Enviro.Transfer@teck.com	
Name:	××	1	Sinnatura	April	NO IMPORT ED REPORT ONLY	NO IMPORT EDD REQUIRED. ANALYSIS REPORT ONLY.	. ANALYSI
Signature:	Track Alseks Inc		Firm:	AC 4	Also please e-mail F joe.diehl@teck.com	Also please e-mail Final Report to: joe.diehl@teck.com	oort to:
FILM:	G_6-11 In Th		Date/Time:	EA:41 911615	rebecca.hager@teck.com	r@teck.com	

November 09, 2016

Report to: Joe Diehl Teck Alaska Incorporated P.O. Box 1230

Kotzebue, AK 99752

cc: Rebecca Hager

Bill to: Accounts Payable Teck Alaska Incorporated 3105 Lakeshore Drive Bldg. A - Suite 101 Anchorage, AK 99517

Project ID: 1370966-SVC ACZ Project ID: L32770

Joe Diehl:

Enclosed are revised analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 07, 2016 and originally reported on September 21, 2016. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ's project number, L32770. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L32770. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 21, 2017. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Sue Weller

Sue Webber has reviewed and approved this report.

TECK ALASKA INCORPORATED

Level IV Data Package – L32770 Table of Contents

- 1. Analytical Report Cover Page 1
- 2. Table of Contents Page 2
- 3. Sample Summary Page 3
- 4. Case Narrative Page 4
- 5. Inorganic Analytical Results Pages 5 to 17
 - a. Total Metals
 - b. Inorganic Reference Page
 - c. Inorganic QC Summary
 - i. Calibration data
 - ii. LCSW, LFB, LRB, PBW, SIC, PQV results
 - iii. Matrix/Analytical Spike Recoveries
 - iv. Duplicate Precision
 - d. Inorganic Extended Qualifier Page
 - e. Certification Qualifiers
- 6. Inorganic Raw Data- Pages Pages 18 to 83
- 7. Run Logs- **Pages 84 to 88**
- 8. Sample Receipt Documents- Pages 89 to 91
 - a. Sample Receipt Form
 - b. Chain of Custody Copy

ACZ Project ID: L32770

SAMPLE ID	LAB NO.	SAMPLE DATE	SAMPLE TIME
16-035 NMM-A	L32770-01	9/4/2016	13:00
16-036 NMGZ-A	L32770-02	9/4/2016	13:14
16-037 NMN-A	L32770-03	9/4/2016	13:52
16-038 NMO-A	L32770-04	9/4/2016	14:02
16-039 NMO-B	L32770-05	9/4/2016	14:10
16-040 NML-A	L32770-06	9/4/2016	14:43
16-041 NMD-A	L32770-07	9/4/2016	14:54
16-042 NMAA-A	L32770-08	9/4/2016	15:14

Teck Alaska Incorporated

November 09, 2016

Project ID: 1370966-SVC ACZ Project ID: L32770

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 8 sediment samples from Teck Alaska Incorporated on September 7, 2016. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L32770. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This report was revised on 11/9/16 to provide a Level IV Data Package. No other changes were made.

Teck Alaska Inco	rporated					ACZ	Sample	ID: L	32770-01	
Project ID:	1370966-SVC					Dat	e Sampl	ed: 0	9/04/16 13:00	
Sample ID:	16-035 NMM-A					Date	e Receiv	ed: 0	9/07/16	
·							nple Mat		ediment	
Metals Analysis					N/O					
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.19	В		mg/Kg	0.05	0.3	09/20/16 19:53	enb
Lead, total (3050)	M6020 ICP-MS	500	14.60			mg/Kg	0.05	0.3	09/20/16 19:53	enb
Zinc, total (3050)	M6020 ICP-MS	500	89			mg/Kg	1	3	09/20/16 19:53	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	84.3		*	%	0.1	0.5	09/12/16 13:48	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:39	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/15/16 20:05	bcc
Sieve-2000 um	ASA No.9, 15-4.2.2								09/15/16 9:02	rbt

Sieve-2000 um (2.0mm)

ACZ	Laboratories, Inc.
	Steamboat Springs, CO 80487 (800) 334-5493

norgar	nic A	naly	ytical
F	Resu	Ilts	

Teck Alaska Inco Project ID: Sample ID:	rporated 1370966-SVC 16-036 NMGZ-A					Dat Date	Sample e Sampl e Receiv nple Mat	ed: 0 ed: 0	32770-02 9/04/16 13:14 9/07/16 ediment	
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.11	В		mg/Kg	0.05	0.3	09/20/16 19:55	enb
Lead, total (3050)	M6020 ICP-MS	500	7.89			mg/Kg	0.05	0.3	09/20/16 19:55	enb
Zinc, total (3050)	M6020 ICP-MS	500	48			mg/Kg	1	3	09/20/16 19:55	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	94		*	%	0.1	0.5	09/12/16 16:12	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:42	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/15/16 21:51	bcc
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								09/15/16 9:05	rbt

Inorganic Analytical **Results**

L32770-03

09/07/16

Sediment

09/04/16 13:52

Date

09/20/16 19:57

09/20/16 19:57

09/20/16 19:57

Analyst

enb

enb

enb

Teck Alaska In	corporated					ACZ	Sample	ID:	L
Project ID:	1370966-SVC					Dat	e Sample	ed:	0
Sample ID:	16-037 NMN-A					Date	e Receive	ed:	0
						San	nple Mat	rix:	S
Metals Analysis									
Metals Analysis Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQ	۱L
,		Dilution 500	Result 0.23	Qual B	XQ	Units mg/Kg	MDL 0.05	PQ 0.3	
Parameter					XQ				3

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	73.1		*	%	0.1	0.5	09/12/16 18:30	6 rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:45	5 rbt
Digestion - Hot Plate	M3050B ICP-MS								09/15/16 23:3	7 bcc
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								09/15/16 9:07	rbt

Teck Alaska Inco Project ID: Sample ID:	rporated 1370966-SVC 16-038 NMO-A					Dat Date	Sample te Sampl e Receiv mple Mat	ed: 0: ed: 0:	32770-04 9/04/16 14:02 9/07/16 ediment	
Metals Analysis Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)		500	0.24	B	λQ	mg/Kg	0.05	0.3	09/20/16 20:00	-
				D						
Lead, total (3050)	M6020 ICP-MS	500	7.49			mg/Kg	0.05	0.3	09/20/16 20:00	
Zinc, total (3050)	M6020 ICP-MS	500	58			mg/Kg	1	3	09/20/16 20:00	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	73.3		*	%	0.1	0.5	09/12/16 21:00	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:48	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/16/16 1:23	bcc
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								09/15/16 9:10	rbt

REPIN.02.06.05.01

Teck Alaska Inco Project ID: Sample ID:	rporated 1370966-SVC 16-039 NMO-B					Dat Dat	Sample te Sample e Receive mple Mat	ed: 0 ed: 0	32770-05 9/04/16 14:10 9/07/16 ediment	
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.24	В		mg/Kg	0.05	0.3	09/20/16 20:10) enb
Lead, total (3050)	M6020 ICP-MS	500	7.54			mg/Kg	0.05	0.3	09/20/16 20:10) enb
Zinc, total (3050)	M6020 ICP-MS	500	56			mg/Kg	1	3	09/20/16 20:10) enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	74		*	%	0.1	0.5	09/13/16 1:48	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:51	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/16/16 6:41	bcc
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								09/15/16 9:12	rbt

Teck Alaska Inco	orporated					ACZ	Sample	ID: L	32770-06	
Project ID:	1370966-SVC					Dat	e Sampl	ed: 0	9/04/16 14:43	
Sample ID:	16-040 NML-A					Date	e Receiv	ed: 0	9/07/16	
·							nple Mat		ediment	
							[_		
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.26	В		mg/Kg	0.05	0.3	09/20/16 20:12	enb
Lead, total (3050)	M6020 ICP-MS	500	16.30			mg/Kg	0.05	0.3	09/20/16 20:12	enb
Zinc, total (3050)	M6020 ICP-MS	500	59			mg/Kg	1	3	09/20/16 20:12	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	85.7		*	%	0.1	0.5	09/13/16 4:12	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:54	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/16/16 8:27	bcc
Sieve-2000 um	ASA No.9, 15-4.2.2								09/15/16 9:15	rbt

Sieve-2000 um (2.0mm)

Teck Alaska Inco					ACZ	Sample	ID: L	32770-07		
Project ID:	1370966-SVC					Dat	e Sampl	ed: 0	9/04/16 14:54	
Sample ID:	16-041 NMD-A						e Receiv		9/07/16	
							nple Mat		ediment	
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.18	В		mg/Kg	0.05	0.3	09/20/16 20:17	enb
Lead, total (3050)	M6020 ICP-MS	500	17.40			mg/Kg	0.05	0.3	09/20/16 20:17	enb
Zinc, total (3050)	M6020 ICP-MS	500	67			mg/Kg	1	3	09/20/16 20:17	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	90.5		*	%	0.1	0.5	09/13/16 6:36	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 8:57	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/16/16 10:13	bcc
Sieve-2000 um	ASA No.9, 15-4.2.2								09/15/16 9:17	rbt

Sieve-2000 um (2.0mm)

ACZ	Laboratories, Inc.
	Steamboat Springs, CO 80487 (800) 334-5493

Teck Alaska Inco	orporated					ACZ	Sample	ID: <i>L</i>	32770-08	
Project ID:	1370966-SVC					Dat	e Sampl	ed: 0	9/04/16 15:14	
Sample ID:	16-042 NMAA-A					Dat	e Receiv	ed: 0	9/07/16	
						Sar	nple Mat		ediment	
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cadmium, total (3050)	M6020 ICP-MS	500	0.19	В		mg/Kg	0.05	0.3	09/20/16 20:19	enb
Lead, total (3050)	M6020 ICP-MS	500	6.01			mg/Kg	0.05	0.3	09/20/16 20:19	enb
Zinc, total (3050)	M6020 ICP-MS	500	52			mg/Kg	1	3	09/20/16 20:19	enb
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Solids, Percent	D2216-80	1	73.3		*	%	0.1	0.5	09/13/16 9:00	rbt
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								09/12/16 9:00	rbt
Digestion - Hot Plate	M3050B ICP-MS								09/16/16 11:59	bcc
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								09/15/16 9:20	rbt

Inorganic Reference

2113 DOWINIII L	Jive Steamboat Sprii	ngs, CO 80487 (800) 334-5493		
Report Header	Explanations			
Batch		ples analyzed at a specific time		
Found	Value of the QC Typ			
Limit	Upper limit for RPD,			
Lower		nit, in % (except for LCSS, mg/Kg)		
MDL		imit. Same as Minimum Reporting Limit u	nless omitted or e	qual to the POL (see comment #5)
		nt and annual fluctuations.		
PCN/SCN		to reagents/standards to trace to the man	ufacturer's certific	ate of analysis
PQL	-	In Limit. Synonymous with the EPA term "		
QC		ontrol Sample or the amount added to the		
Rec		of the true value or spike added, in % (exc	•	/Ka)
RPD		ference, calculation used for Duplicate QC		((g))
Upper		nit, in % (except for LCSS, mg/Kg)	, Types	
Sample	Value of the Sample			
		of interest		
QC Sample Typ		st Digestion)		Laboratony Control Sample - Water Durificate
AS	Analytical Spike (Po		LCSWD	Laboratory Control Sample - Water Duplicate
ASD		st Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibratio		LFM	Laboratory Fortified Matrix
CCV	-	on Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate		LRB	Laboratory Reagent Blank
ICB	Initial Calibration Bla		MS	Matrix Spike
ICV	Initial Calibration Ve		MSD	Matrix Spike Duplicate
ICSAB		ction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control S		PBW	Prep Blank - Water
LCSSD	Laboratory Control S	Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control S	Sample - Water	SDL	Serial Dilution
QC Sample Typ	pe Explanations			
Blanks		Verifies that there is no or minimal co	ontamination in the	e prep method or calibration procedure.
Control San	nples	Verifies the accuracy of the method,	including the prep	procedure.
Duplicates		Verifies the precision of the instrume	nt and/or method.	
Spikes/Fort	ified Matrix	Determines sample matrix interferen	ces, if any.	
Standard		Verifies the validity of the calibration.		
ACZ Qualifiers	(Qual)			
В	Analyte concentration	on detected at a value between MDL and F	PQL. The associat	ted value is an estimated quantity.
Н	Analysis exceeded r	method hold time. pH is a field test with ar	n immediate hold t	ime.
L	Target analyte respo	onse was below the laboratory defined neg	gative threshold.	
U	The material was an	alyzed for, but was not detected above th	e level of the asso	ciated value.
	The associated value	e is either the sample quantitation limit or	the sample detect	ion limit.
Method Refere	nces			
(1)	EPA 600/4-83-020.	Methods for Chemical Analysis of Water	and Wastes, Marc	h 1983.
(2)	EPA 600/R-93-100.	Methods for the Determination of Inorgan	nic Substances in I	Environmental Samples, August 1993.
(3)	EPA 600/R-94-111.	Methods for the Determination of Metals	in Environmental	Samples - Supplement I, May 1994.
(4)	EPA SW-846. Test	Methods for Evaluating Solid Waste.		
(5)	Standard Methods f	or the Examination of Water and Wastewa	ater.	
Comments				
(1)	QC results calculate	d from raw data. Results may vary slightly	y if the rounded va	alues are used in the calculations.
(2)		ant matrices for Inorganic analyses are rep		
(2)		Inorgania analyzan ara reported on an "ag		-

(3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.

(5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

http://www.acz.com/public/extquallist.pdf

REP001.03.15.02

Inorganic QC Summary

Teck Alaska Incorporated

ACZ Project ID: L32770

Cadmium, total (3050)		M6020 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG410083													
WG410083ICV	ICV	09/20/16 19:36	MS160920-1	.05		.04663	mg/L	93	90	110			
WG410083ICB	ICB	09/20/16 19:38				U	mg/L		-0.0003	0.0003			
WG410083ICSA	ICSA	09/20/16 19:40				U	mg/L		-0.0005	0.0005			
WG410083ICSAB	ICSAB	09/20/16 19:42	MS160826-5	.02002		.01796	mg/L	90	80	120			
WG409857PBS	PBS	09/20/16 19:47				U	mg/Kg		-0.15	0.15			
WG409857LCSS	LCSS	09/20/16 19:49	PCN51904	76.6		77.3	mg/Kg		63.1	90.1			
WG409857LCSSD	LCSSD	09/20/16 19:51	PCN51904	76.6		80.25	mg/Kg		63.1	90.1	4	20	
L32770-04MS	MS	09/20/16 20:02	MS160803-3	25.025	.24	24.645	mg/Kg	98	75	125			
WG410083CCV1	CCV	09/20/16 20:04	MS160914-3	.1001		.1001	mg/L	100	90	110			
WG410083CCB1	CCB	09/20/16 20:06				U	mg/L		-0.0003	0.0003			
L32770-04MSD	MSD	09/20/16 20:08	MS160803-3	25.025	.24	24.82	mg/Kg	98	75	125	1	20	
L32770-06SDL	SDL	09/20/16 20:14			.26	U	mg/Kg					10	
WG410083CCV2	CCV	09/20/16 20:21	MS160914-3	.1001		.09777	mg/L	98	90	110			
WG410083CCB2	CCB	09/20/16 20:23				U	mg/L		-0.0003	0.0003			
Lead, total (3050))		M6020 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG410083													
WG410083ICV	ICV	09/20/16 19:36	MS160920-1	.05		.05067	mg/L	101	90	110			
WG410083ICB	ICB	09/20/16 19:38				U	mg/L		-0.0003	0.0003			
WG410083ICSAB	ICSAB	09/20/16 19:42	MS160826-5	.02002		.01873	mg/L	94	80	120			
WG409857PBS	PBS	09/20/16 19:47				U	mg/Kg		-0.15	0.15			
WG409857LCSS	LCSS	09/20/16 19:49	PCN51904	96.7		98.55	mg/Kg		79	114			
WG409857LCSSD	LCSSD	09/20/16 19:51	PCN51904	96.7		99.2	mg/Kg		79	114	1	20	
L32770-04MS	MS	09/20/16 20:02	MS160803-3	25.025	7.49	33.565	mg/Kg	104	75	125			
WG410083CCV1	CCV	09/20/16 20:04	MS160914-3	.25025		.2479	mg/L	99	90	110			
WG410083CCB1	ССВ	09/20/16 20:06				.00011	mg/L		-0.0003	0.0003			
L32770-04MSD	MSD	09/20/16 20:08	MS160803-3	25.025	7.49	34.695	mg/Kg	109	75	125	3	20	
L32770-06SDL	SDL	09/20/16 20:14			16.3	15.515	mg/Kg				5	10	
WG410083CCV2	CCV	09/20/16 20:21	MS160914-3	.25025		.2456	mg/L	98	90	110			
WG410083CCB2	ССВ	09/20/16 20:23				.0001	mg/L		-0.0003	0.0003			
			D2216-80										
Solids, Percent			222.000										
Solids, Percent	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	Туре	Analyzed		QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
ACZ ID	Type	Analyzed 09/12/16 9:00		QC	Sample	Found	Units %	Rec	Lower	Upper 0.1	RPD	Limit	Qual

Inorganic QC Summary

Teck Alaska Incorporated

ACZ Project ID: L32770

Zinc, total (3050)			M6020 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG410083													
WG410083ICV	ICV	09/20/16 19:36	MS160920-1	.05		.0488	mg/L	98	90	110			
WG410083ICB	ICB	09/20/16 19:38				U	mg/L		-0.006	0.006			
WG410083ICSAB	ICSAB	09/20/16 19:42	MS160826-5	.020054		.0192	mg/L	96	80	120			
WG409857PBS	PBS	09/20/16 19:47				U	mg/Kg		-3	3			
WG409857LCSS	LCSS	09/20/16 19:49	PCN51904	229		238	mg/Kg		188	271			
WG409857LCSSD	LCSSD	09/20/16 19:51	PCN51904	229		239	mg/Kg		188	271	0	20	
L32770-04MS	MS	09/20/16 20:02	MS160803-3	25.0675	58	84	mg/Kg	104	75	125			
WG410083CCV1	CCV	09/20/16 20:04	MS160914-3	.50135		.4922	mg/L	98	90	110			
WG410083CCB1	ССВ	09/20/16 20:06				U	mg/L		-0.006	0.006			
L32770-04MSD	MSD	09/20/16 20:08	MS160803-3	25.0675	58	81.3	mg/Kg	93	75	125	3	20	
L32770-06SDL	SDL	09/20/16 20:14			59	58	mg/Kg				2	10	
WG410083CCV2	CCV	09/20/16 20:21	MS160914-3	.50135		.4906	mg/L	98	90	110			
WG410083CCB2	ССВ	09/20/16 20:23				U	mg/L		-0.006	0.006			

ACZ Project ID: L32770

Teck Alaska Incorporated

ACZ ID	WORKNUM PARAMETER	METHOD	QUAL DESCRIPTION	

No extended qualifiers associated with this analysis

Teck Alaska Incorporated

ACZ Project ID: L32770

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Solids, Percent

D2216-80

	QCListMatClass: SOLID Bench Sheet List: R-RA-226 QC Ref: MA-ICPMi Group ID: MA-G-MS: Method Ref: M6020 SOP Ref: SOPII022	ListMatClass: SOLID ch Sheet List: R-RA-226 QC Ref: MA-ICPMS-T-846 Group ID: MA-G-MS-3050 Method Ref: M6020 SOP Ref: SOPII022	446		>_	\leq				$\mathbf{\tilde{\mathbf{n}}}$	410083	Instrument ID: ICPMS5 Analyst: ENE ACZ Dept: 33 Create Date: 09/20/2016 11:57 Start Date/Time: End Date/Time:
ыs	ACZ ID	Client ID	SubSX F	Pri Pre	Prep Dil	ы С	TDS	30 50 50	CD PB ZN MS MS MS 30 30 30 50 50 50	NS OS	Dilution	
-	WG410083ICV	MS160823-2	N-1-VABUEN	1.1	+			>	2	>	6	
-	WG410083ICB	NONE			-			20	2	5	1	
e .	WG410083ICSA	MS160826-4 /		-				2	20	20	+	
	WG410063ICSAB			-								
-	WG409857PBS	NONE		-	100			1	>	1	500	
	WG409857LCSS	PCN51904		-	100			>	>	>	5000	
8	WG409857LCSSD	PCN51904			100			>	>	>	5000	
	L32770-01 9 16	16-035 NMM-A		_	100			>	>	>	500	
10	L32770-02	16-036 NMGZ-A			100			>	>	>	500	
11	L32770-03 7 2	16-037 NMN-A			100			>	>	>	500	
12	L32770-04 W C	16-038 NMO-A			100			>	>	>	500	
13 1	WG410083CCV1 2	MS460720-7- WEYLOO9144	1516091144	3	+			>	>	>	1	
14 1	WG410083CCB1	NONE			1			>	>	>	1	
15	L32770-04MS	MS160803-3			100			>	>		500	
16	L32770-04MSD	MS160803-3			100			>	2	>	500	
17	L32770-05	16-039 NMO-B			100			>	2	>	500	
18	L32770-06	16-040 NML-A			100			>	>	>	500	
19	L32770-06SDL	NONE		_	1			>	>	>	500	
20	L32770-07	16-041 NMD-A		5	100			>	-	>	500	
21	L32770-08	16-042 NMAA-A			100			>	>	>	500	
22	WG410083CCV2	MS460720-7 W516 W714-3	-HIRONIG		1	1		>	and the second se		1	
												- -
epot	Report Comments:							1				AREV: ENDS 9 24 14
												Initials, Days
LI a	Internal Comments											R/all
												SREV: (114 1.41-10

9/20/2016 11:59:17 AM 92016

Page 1 of 2

ALL Laboratories, inc Instrument ID: ICPMS5 Analyst: Analyst: ACZ Dept: 33 ACZ Dept: 33 Create Date: 09/20/2016 11:57 Start Date/Time: End Date/Time:			AREV. Initials, Date SREV. Initials, Date
083	Dilution	-	
41008	CD PB ZN MS MS MS 30 30 30 50 50 50	5 5 5	
	SQT	2	10
S S	E		
>	Prep Dil	**	
46	Pri Pri		
QC List Type: QC-ICPMS-846 QC List Type: QC-ICPMS-846 ListMatClass: SOLID ich Sheet List: R-RA-226 QC Ref: MA-ICPMS-T-846 Group ID: MA-G-MS-3050 Method Ref. M6020 SOP Ref: SOPII022	Client ID	CB2 NONE Login Comments SJ In the Inorganic cooler SJ In the Inorganic cooler SJ In the Inorganic cooler. Run OC. ICPMS Spike CPMS Spike SJ In the Inorganic cooler. SJ In the Inorganic cooler. SJ In the Inorganic cooler. SJ In the Inorganic cooler.	
QC List Type: QC-ICPMS QC List Type: QC-ICPMS QCListMatClass: SOLID Bench Sheet List: R-RA-226 QC Ref: MA-ICPMS- Group ID: MA-G-MS-3 Method Ref: M6020 SOP Ref: SOPII022	0	CCB2 NON Login Comments SJ In the Inorganic co SJ In the Inorganic co	sport Comments:
ac a	ACZ ID	23 WG410083CCB2 Sample Log La2770-01 Sull La2770-02 Sull La2770-03 Sull La2770-04MSD Sull La2770-05 Sull La2770-06 Sull La2770-06 Sull La2770-06 Sull La2770-08 Sull La2770-08 Sull La2770-08 Sull	Report Comments: Internal Comments

Workgroup:	410083
Sample Type:	3050
Analysis Date:	9120/16
Analyst:	ENB

ACZ Laboratories, Inc.	ECKLIST	AREV: ENB Date: 92116
Workgroup: 41008 Sample Type: 3050 Analysis Date: 9120 Analyst: EN		SREV: THE Date: 9:27:10
1) Is the instrument ID on	the bench sheet correct?	Yes No N/A
2) Has a passing method t	une been performed within 24 hours?	
3) Was the low calibration	point dropped? If yes, notify PM of change to PQLs	
	\geq 0.995 for the analytes of interest?	
and the second se	analyzed & evaluated for DW samples ? (Fail in LIN	/IS if no DW sxs in WG.)
and the second se	on the benchsheet match the sequence in the raw da	
	on dilution appropriately "D" qualified (not required for	
The second se	le type entered on the bench sheet (if different than SC	
the second se	of the internal standards within the method limits?	
	ra listed in LIMS within specified limits?	M
	ring re-analysis / re-digestion at REDO / REDX status	\$?
Concernance and the second	crossed out (i.e. single-line, dated & initialed)?	
	reagent form attached to the workgroup?	TY
	approval for initial training or 2 sets of initials for WG	& LIMS?
-	e items listed above that are checked "No" state the	
QC/Sample ID	Analytical Problem	Corrective action

and the second se	

ACZ Labs, Inc. Standards/Reagents Information ICPMS, Methods 6020 and 200.8

Calibration Standards

6020/200.8 Stock #1: MS160914-1 SCN 6020/200.8 Stock #2: MS160914-2 SCN 6020/200.8 Stock #3: MS160720-4 SCN PQV STD: MS160901-3 SCN Exp. 11/30/2016

INT STD: MS160128-3 SCN Exp. 1/28/2017

Nitric Acid: 51826 PCN

Hydrochloric Acid: 51742 PCN

VERIFIED: FNB

Workgroup Review and Approval

Date Reported: 21-Sep-16 Run ID: R1452918 Date Analyzed: 20-Sep-16 ICAL Workgroup: Instrument ID: ICPMS5

WG4′	10083ICV		Tag:					М	easure	d: 9/20/	2016 7:36	6:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	0.04663	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	93	1		%	++	0.0001	0.0005			
SREV	LEAD	FOUND	0.05067	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	101	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.0488	1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	98	1		%	++	0.002	0.005			
WG4′	10083ICB		Tag:					М	easure	d: 9/20/	2016 7:38	B:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	LEAD	FOUND		1	U	mg/L	++	0.0001	0.0005			
SREV	ZINC	FOUND		1	U	mg/L	++	0.002	0.005			
WG4′	10083ICSA		Tag:					М	easure	d: 9/20/	2016 7:40	0:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
WG4′	10083ICSAB		Tag:					М	easure	d: 9/20/	2016 7:42	2:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	0.01796	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	90	1		%	++	0.0001	0.0005			
SREV	LEAD	FOUND	0.01873	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	94	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.0192	1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	96	1		%	++	0.002	0.005			
WG40	09857PBS		Tag:					М	easure	d: 9/20/	2016 7:47	7:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND		500	U	mg/Kg	++	0.05	0.3			
SREV	LEAD	FOUND		500	U	mg/Kg	++	0.05	0.3			
SREV	ZINC	FOUND		500	U	mg/Kg	++	1	3			
WG40	09857LCSS		Tag:					М	easure	d: 9/20/	2016 7:49	9:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	77.3	5000		mg/Kg	++	0.5	3			
SREV	CADMIUM	REC	101	5000		%	++	0.5	3			
SREV	LEAD	FOUND	98.55	5000		mg/Kg	++	0.5	3			
SREV	LEAD	REC	102	5000		%	++	0.5	3			
	ZINC	FOUND	238	5000		mg/Kg	++	10	30			
SREV	ZINC											

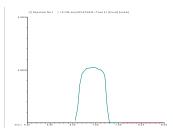
WG4	09857LCSSD		Tag:					Μ	leasure	d:	9/20/	2016 7:5 [,]	I:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	80.25	5000		mg/Kg	++	0.5	3				
SREV	CADMIUM	REC	105	5000		%	++	0.5	3				
SREV	CADMIUM	RPD	4	5000		%	++	0.5	3				
SREV	LEAD	FOUND	99.2	5000		mg/Kg	++	0.5	3				
SREV	LEAD	REC	103	5000		%	++	0.5	3				
SREV	LEAD	RPD	1	5000		%	++	0.5	3				
SREV	ZINC	FOUND	239	5000		mg/Kg	++	10	30				
SREV	ZINC	REC	104	5000		%	++	10	30				
SREV	ZINC	RPD	0	5000		%	++	10	30				
L327	70-01		Tag:					М	easure	d:	9/20/	2016 7:53	3:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.19	500	В	mg/Kg	++	0.05	0.3				
SREV	LEAD	-MS-3050	14.60	500		mg/Kg	++	0.05	0.3				
SREV	ZINC	-MS-3050	89	500		mg/Kg	++	1	3				
L327	70-02		Tag:					М	easure	d:	9/20/	2016 7:5	5:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.11	500	В	mg/Kg	++	0.05	0.3				
SREV	LEAD	-MS-3050	7.89	500		mg/Kg	++	0.05	0.3				
SREV	ZINC	-MS-3050	48	500		mg/Kg	++	1	3				
L327	70-03		Tag:					М	easure	d:	9/20/	2016 7:57	7:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.23	500	В	mg/Kg	++	0.05	0.3				
SREV	LEAD	-MS-3050	11.70	500		mg/Kg	++	0.05	0.3				
SREV	ZINC	-MS-3050	59	500		mg/Kg	++	1	3				
L327	70-04		Tag:					м	easure	d:	9/20/	2016 8:00):00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.24	500	В	mg/Kg	++	0.05	0.3				
SREV	LEAD	-MS-3050	7.49	500		mg/Kg	++	0.05	0.3				
SREV	ZINC	-MS-3050	58	500		mg/Kg	++	1	3				
L327	70-04MS		Tag:					Μ	easure	d:	9/20/	2016 8:02	2:00 PN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	24.645	500		mg/Kg	++	0.05	0.3				
SREV	CADMIUM	REC	98	500		%	++	0.05	0.3				
	LEAD	FOUND	33.565	500		mg/Kg	++	0.05	0.3				
SREV						0/		0.05	0.0				
	LEAD	REC	104	500		%	++	0.05	0.3				
SREV SREV SREV	LEAD ZINC	REC FOUND	104 84	500 500		% mg/Kg	++ ++	0.05 1	0.3 3				

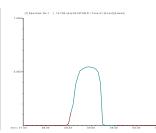
Parm_Stored							IV	easure	a: 9/20/	2016 8:04	4:00 PIV
	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	FOUND	0.1001	1		mg/L	++	0.0001	0.0005			
CADMIUM	REC	100	1		%	++	0.0001	0.0005			
LEAD	FOUND	0.2479	1		mg/L	++	0.0001	0.0005			
LEAD	REC	99	1		%	++	0.0001	0.0005			
ZINC	FOUND	0.4922	1		mg/L	++	0.002	0.005			
ZINC	REC	98	1		%	++	0.002	0.005			
10083CCB1		Tag:					м	easure	d: 9/20/	/2016 8:00	6:00 PM
Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
LEAD	FOUND	0.00011	1	В	mg/L	++	0.0001	0.0005			
ZINC	FOUND		1	U	mg/L	++	0.002	0.005			
70-04MSD		Tag:					М	easure	d: 9/20/	/2016 8:08	B:00 PM
Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	FOUND	24.82	500		mg/Kg	++	0.05	0.3			
CADMIUM	REC	98	500		%	++	0.05	0.3			
CADMIUM	RPD	1	500		%	++	0.05	0.3			
LEAD		34.695	500		ma/Ka	++	0.05	0.3			
						++					
							-				
							-				
ZINC	RFD	3	500		70	TT	I	3			
70-05		Tag:					Μ	leasure	d: 9/20/	2016 8:10	0:00 PM
Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	-MS-3050	0.24	500	В	mg/Kg	++	0.05	0.3			
LEAD	-MS-3050	7.54	500		mg/Kg	++	0.05	0.3			
ZINC	-MS-3050	56	500		mg/Kg	++	1	3			
70-06		Tag:					Μ	easure	d: 9/20/	2016 8:12	2:00 PM
Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	-MS-3050	0.26	500	В	mg/Kg	++	0.05	0.3			
LEAD	-MS-3050	16.30	500		mg/Kg	++	0.05	0.3			
ZINC	-MS-3050	59	500		mg/Kg	++	1	3			
70-06SDL		Tag:					М	easure	d: 9/20/	/2016 8:14	4:00 PM
Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
CADMIUM	D		500	U	%	++	0.05	0.3			
CADMIUM	FOUND		500	U	mg/Kg	++	0.05	0.3			
CADMIUM	REG	0	500	U	mg/Kg	++	0.05	0.3			
LEAD	D	5	500		%	++	0.05	0.3			
	FOUND	3.103	500		mg/Kg	++	0.05	0.3			
	I OUND				5 5			-			
LEAD	REG		500		mg/Ka	++	0.05	0.3			
LEAD LEAD	REG	15.515			mg/Kg %	++ ++	0.05 1	0.3 3			
LEAD			500 500 500		mg/Kg % mg/Kg			0.3 3 3			
	LEAD ZINC ZINC IO083CCB1 Parm_Stored CADMIUM LEAD ZINC CADMIUM CADMIUM CADMIUM CADMIUM LEAD LEAD LEAD LEAD LEAD LEAD ZINC ZINC ZINC ZINC ZINC ZINC ZINC ZINC	LEADRECZINCFOUNDZINCFOUNDZINCTypeCADMIUMFOUNDLEADFOUNDZINCFOUNDZINCFOUNDZINCFOUNDCADMIUMFOUNDCADMIUMFOUNDCADMIUMFOUNDCADMIUMRECCADMIUMRECCADMIUMFOUNDLEADFOUNDLEADFOUNDLEADRECLEADRPDZINCFOUNDZINCRECZINCRECZINCRECZINCRECZINCSO50Parm_StoredTypeCADMIUM-MS-3050ZINC-MS-3050	LEAD REC 99 ZINC FOUND 0.4922 ZINC REC 98 HO083CCB1 Tag: Parm_Stored Type Value CADMIUM FOUND 0.00011 LEAD FOUND 0.00011 ZINC FOUND 0.00011 ZINC FOUND 0.00011 ZINC FOUND 0.00011 ZINC FOUND 0.00011 CADMIUM FOUND 0.00011 CADMIUM FOUND 24.82 CADMIUM REC 98 CADMIUM REC 1 LEAD FOUND 34.695 LEAD REC 109 LEAD REC 109 LEAD REC 93 ZINC FOUND 81.3 ZINC REC 93 ZINC REC 93 ZINC RPD 3 CADMIUM -MS-3050 0.24	LEAD REC 99 1 ZINC FOUND 0.4922 1 REC 98 1 Parm_Stored Type Value Dil CADMIUM FOUND 0.00011 1 LEAD FOUND 0.00011 1 LEAD FOUND 0.00011 1 CADMIUM FOUND 0.00011 1 LEAD FOUND 0.00011 1 ZINC FOUND 0.00011 1 ZINC FOUND 0.00011 1 ZINC FOUND 24.82 500 CADMIUM FOUND 24.82 500 CADMIUM REC 98 500 LEAD REC 109 500 LEAD REC 109 500 LEAD REC 93 500 ZINC FOUND 81.3 500 ZINC REC 93 500 ZINC	LEAD REC 99 1 ZINC FOUND 0.4922 1 REC 98 1 Parm_Stored Type Value Dil Qual CADMIUM FOUND 1 0 0.00011 1 B ZINC FOUND 0.00011 1 B 0 CADMIUM FOUND 0.00011 1 B 0 ZINC FOUND 0.00011 1 B 0 ZINC FOUND 0.00011 1 B 0 ZINC FOUND 0.00011 1 B 0 CADMIUM FOUND 24.82 500 2 0 2 CADMIUM REC 98 500 2 0 2 0	LEAD REC 99 1 % ZINC FOUND 0.4922 1 mg/L Parm_Stored Tag:	LEAD REC 99 1 % ++ ZINC FOUND 0.4922 1 mg/L ++ Parm_Stored Tag: Value Dil Qual Units Appv CADMIUM FOUND 0.00011 1 U mg/L ++ ZINC FOUND 0.00011 1 B mg/L ++ CADMIUM FOUND 0.00011 1 B mg/L ++ ZINC FOUND 0.00011 1 B mg/L ++ ZINC FOUND 0.00011 1 B mg/L ++ ZINC FOUND 24.82 500 mg/Kg ++ CADMIUM REC 98 500 % ++ LEAD FOUND 34.695 500 mg/Kg ++ LEAD REC 109 500 % ++ ZINC FOUND 81.3 500 mg/Kg	LEAD REC 99 1 % +++ 0.001 ZINC FOUND 0.4922 1 mg/L +++ 0.002 IO083CCB1 Tag: ////////////////////////////////////	LEAD REC 99 1 % +++ 0.0001 0.0005 ZINC FOUND 0.4922 1 mg/L +++ 0.002 0.005 ZINC REC 98 1 % +++ 0.002 0.005 ZINC REC 98 1 % +++ 0.002 0.005 ZINC Tag: mg/L ++ 0.001 0.005 0.005 ZINC FOUND 0.0011 1 B mg/L ++ 0.002 0.005 ZINC FOUND 0.00011 1 U mg/L ++ 0.002 0.005 ZINC FOUND 0.00011 1 U mg/L ++ 0.002 0.005 ZINC FOUND 1.001 1 U mg/L ++ 0.05 0.3 CADMIUM FOUND 24.82 500 mg/Kg ++ 0.05 0.3 CADMIUM REC	LEAD REC 99 1 % ++ 0.0001 0.0005 ZINC FOUND 0.4922 1 mg/L ++ 0.002 0.005 2INC REC 98 1 % ++ 0.002 0.005 Parm_Stored Type Value Di Qual Units Appv MDL PQL Text Value CADMUM FOUND 0.00011 1 U mg/L ++ 0.001 0.0005 ZINC FOUND 1 U mg/L ++ 0.001 0.0005 ZINC FOUND 1 U mg/L ++ 0.001 0.0005 Parm_Stored Type Value Dil Qual Units Appv MDL PQL Text Value CADMIUM FOUND 24.82 500 mg/Kg ++ 0.05 0.3 Appv MDL PQL Text Value CADMIUM RPD 1 500 % ++ 0.05 0.3 Appv MDL PQL Text Va	LEAD REC 99 1 % ++ 0.0001 0.0005 ZINC FOUND 0.4922 1 mg/L ++ 0.002 0.005 IO083CCB1 Tag: Keasured: 9/20/2016 8:00 Parm_Stored Type Value Dil Qual Units Appv MDL PQL Text Value Ext Qual CADMIUM FOUND 0.0001 1 U mg/L ++ 0.0001 0.0005 ZINC FOUND 0.00011 1 U mg/L ++ 0.0001 0.0005 ZINC FOUND 0.00011 1 U mg/L ++ 0.002 0.005 ZINC FOUND 0.00011 1 U mg/L ++ 0.002 0.005 ZINC FOUND 0.00011 1 U mg/L ++ 0.002 0.005 ZINC FOUND ZINC FOUND ZINC FOUND ZINC SOU mg/Kg ++ 0.05 0.3 IEX ZINC<

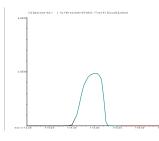
L327	70-07		Tag:					М	easure	d: 9/20/	2016 8:17	7:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.18	500	В	mg/Kg	++	0.05	0.3			
SREV	LEAD	-MS-3050	17.40	500		mg/Kg	++	0.05	0.3			
SREV	ZINC	-MS-3050	67	500		mg/Kg	++	1	3			
L327	70-08		Tag:					М	easure	d: 9/20/	2016 8:19	9:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	-MS-3050	0.19	500	В	mg/Kg	++	0.05	0.3			
SREV	LEAD	-MS-3050	6.01	500		mg/Kg	++	0.05	0.3			
SREV	ZINC	-MS-3050	52	500		mg/Kg	++	1	3			
WG4	10083CCV2		Tag:					М	easure	d: 9/20/	2016 8:2 [,]	I:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND	0.09777	1		mg/L	++	0.0001	0.0005			
SREV	CADMIUM	REC	98	1		%	++	0.0001	0.0005			
SREV	LEAD	FOUND	0.2456	1		mg/L	++	0.0001	0.0005			
SREV	LEAD	REC	98	1		%	++	0.0001	0.0005			
SREV	ZINC	FOUND	0.4906	1		mg/L	++	0.002	0.005			
SREV	ZINC	REC	98	1		%	++	0.002	0.005			
WG4	10083CCB2		Tag:					М	easure	d: 9/20/	2016 8:23	3:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	CADMIUM	FOUND		1	U	mg/L	++	0.0001	0.0005			
			0.0001	1	р			0.0001	0.0005			
SREV	LEAD	FOUND	0.0001	1	В	mg/L	++	0.0001	0.0005			

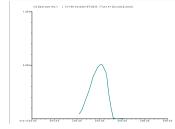
Calibration Coefficients

Sample Name: ICV Date Acquired: Sep 20 2016 07:36 pm Acq. Method: ACZ_T3.M Current Method Pa\ICPCHEM\1\DATA\wg410083.b\ Calibration Pat\ICPCHEM\1\DATA\wg410083.b\


Element Name	Mass	Calibration Corr Coef	Tune Step	IS Ref
Ве	9	1.0000	3	б
В	11	1.0000	3	б
Al	27	1.0000	3	72
Mn	55	1.0000	3	72
Co	59	0.9999	3	72
Zn	66	0.9999	3	72
Мо	98	1.0000	3	115
Ag	107	1.0000	3	115
Cd	111	1.0000	3	115
Sn	118	1.0000	3	115
Sb	121	0.9997	3	115
Те	125	1.0000	3	115
Cs	133	1.0000	3	115
Ba	137	1.0000	3	115
Tl	205	1.0000	3	209
Pb	208	1.0000	3	209
Th	232	1.0000	3	209
U	238	1.0000	3	209


6020 QC Tune Report


Data File:	C:\ICPCHEM\1\DATA\160920at.b\0016TUN.D
Date Acquired:	Sep 20 2016 11:47 am
Acq. Method:	TN6020.M
Operator:	SCP
Sample Name:	6020 Tune
Misc Info:	
Vial Number:	1201
Current Method:	C:\ICPCHEM\1\METHODS\TN6020.M


RSD (%)

Element	Actual		Required	Flag
7 Li		1.41	5.00	
59 Co		1.17	5.00	
115 In		0.96	5.00	
205 Tl		0.23	5.00	

7 Li Mass Calib. Actual: 6.90 Required: 6.90 - 7.10 Flag: Peak Width Actual: 0.65 Required: 0.90 Flag: 59 Co Mass Calib. Petual: 58.95

ACLUAL.	20.92	
Required:	58.90 -	59.10
Flag:		
Peak Width		
Actual:	0.65	
Required:	0.90	
Flag:		

115 In Mass Calib

115.00	
114.90 -	115.10
0.60	
0.90	
	0.60

Mass Calib. Actual: 205.00 Required: 204.90 - 205.10 Flag: Peak Width Actual: 0.65 Required: 0.90

Flag:

Calibration Blank QC Report

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\001CAL Sep 20 2016 07:22 pm
Operator:	1 1
Sample Name:	Calblk
Misc Info:	
Vial Number:	1101
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:22 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Eleme	nt	CPS Mean		SD	RSD(%)
б	Li	4566235.00	А	61740.00	1.35
9	Ве	168.90	Ρ	18.36	10.87
11	В	30941.05	Ρ	420.60	1.36
27	Al	70537.19	Ρ	651.80	0.92
45	Sc	19370370.00	А	199400.00	1.03
55	Mn	17874.63	Ρ	367.90	2.06
59	Co	794.49	Ρ	113.40	14.27
66	Zn	6333.80	Ρ	197.50	3.12
72	Ge	4289881.00	А	28160.00	0.66
74	Ge	5910697.00	А	30010.00	0.51
98	Мо	460.39	Ρ	34.85	7.57
99			Ρ		
106	Cd		Ρ		
107	Ag	438.91	Ρ	31.68	7.22
108	Cd		Ρ		
111	Cd	106.66	Ρ	24.04	22.54
115	In	15593900.00	А	118200.00	0.76
118	Sn	2813.73	Ρ	108.20	3.85
121	Sb	3118.18	Ρ	235.60	7.56
125	Те	50.00	Ρ	0.00	0.00
133	Cs	1499.02	Ρ	85.02	5.67
137	Ba	687.82	Ρ	33.39	4.85
159	Tb	20004970.00	А	156800.00	0.78
205	Tl	1439.02	Ρ	102.90	7.15
206	Pb		Ρ		
207	Pb		Ρ		
208	Pb	2784.67	Ρ	160.60	5.77
209	Bi	22159350.00	Α	57540.00	0.26
232	Th	5174.56	Ρ	215.40	4.16
238	U	1020.08	Ρ	56.97	5.58

Calibration Blank QC Report

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\002CAL Sep 20 2016 07:24 pm
Operator:	
Sample Name:	Calblk
Misc Info:	
Vial Number:	1101
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:22 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Eleme	ent	CPS Mean		SD	RSD(%)
6	Li	4531410.00	A	52600.00	1.16
9	Ве	137.78	Ρ	28.35	20.58
11	В	29775.44	Ρ	423.70	1.42
27	Al	68772.84	Ρ	232.30	0.34
45	Sc	19170410.00	А	67770.00	0.35
55	Mn	17587.67	Ρ	67.49	0.38
59	Co	495.58	Ρ	41.95	8.46
66	Zn	6161.52	Ρ	194.80	3.16
72	Ge	4239380.00	Α	11600.00	0.27
74	Ge	5823343.00	А	43750.00	0.75
98	Мо	359.73	Ρ	49.32	13.71
99			Ρ		
106	Cd		Ρ		
107	Ag	427.83	Ρ	52.16	12.19
108	Cd		Ρ		
111	Cd	58.69	Ρ	26.87	45.78
115	In	15353640.00	А	221700.00	1.44
118	Sn	2408.08	Ρ	56.72	2.36
121	Sb	2224.66	Ρ	106.80	4.80
125	Те	30.00	Ρ	3.33	11.11
133	Cs	994.52	Ρ	53.48	5.38
137	Ba	500.03	Ρ	48.42	9.68
159	Tb	19554370.00	Α	83560.00	0.43
205	Tl	1083.42	Ρ	66.43	6.13
206	Pb		Ρ		
207	Pb		Ρ		
208	Pb	1807.89	Ρ	86.05	4.76
209	Bi	21960440.00	A	209300.00	0.95
232	Th	3171.61	Ρ	374.60	11.81
238	U	713.38	Ρ	25.16	3.53

Calibration Blank QC Report

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\003CAL Sep 20 2016 07:26 pm
Operator:	
Sample Name:	Calblk
Misc Info:	
Vial Number:	1102
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:24 pm
Sample Type:	CalBlk
Total Dil Factor:	1.00

QC&ISTD Elements

Elemer	nt	CPS Mean		SD	RSD(%)
б	Li	4492700.00	А	25520.00	0.57
9	Ве	241.12	Ρ	13.47	5.59
11	В	28499.71	Ρ	250.60	0.88
27	Al	65259.75	Ρ	657.50	1.01
45	Sc	19038030.00	Α	45380.00	0.24
55	Mn	18033.64	Ρ	177.50	0.98
59	Co	1230.10	Ρ	70.96	5.77
66	Zn	2376.94	Ρ	60.66	2.55
72	Ge	4215162.00	А	61510.00	1.46
74	Ge	5782803.00	А	47310.00	0.82
98	Мо	550.58	Ρ	57.15	10.38
99			Ρ		
106	Cd		Ρ		
107	Ag	376.69	Ρ	40.00	10.62
108	Cd		Ρ		
111	Cd	144.85	Ρ	13.73	9.48
115	In	15293280.00	А	195300.00	1.28
118	Sn	1853.54	Ρ	138.70	7.48
121	Sb	1805.70	Ρ	161.80	8.96
125	Те	37.78	Ρ	3.85	10.19
133	Cs	1945.76	Ρ	129.00	6.63
137	Ba	620.04	Ρ	38.45	6.20
159	Tb	19484250.00	Α	121200.00	0.62
205	Tl	1706.84	Ρ	102.70	6.02
206	Pb		Ρ		
207	Pb		Ρ		
208	Pb	3691.46	Ρ	120.70	3.27
209	Bi	21710270.00	A	389700.00	1.80
232	Th	3132.71	Ρ	194.90	6.22
238	U	1535.71	Ρ	60.59	3.95

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\004CALS.D\004CALS.D#
Date Acquired:	Sep 20 2016 07:28 pm
Operator:	
Sample Name:	PQV Std
Misc Info:	
Vial Number:	1103
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:27 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

Element	CPS Mean	SD	RSD(%)
6 Li	4483156.00 A	47490.00	1.06
9 Be	2652.54 P	103.60	3.91
11 B	35934.41 P	322.30	0.90
27 Al	320704.69 P	3025.00	0.94
45 Sc	18871160.00 A	133500.00	0.71
55 Mn	206097.91 P	1379.00	0.67
59 Co	20820.90 P	475.30	2.28
66 Zn	50082.88 P	605.30	1.21
72 Ge	4188473.00 A	22620.00	0.54
74 Ge	5766977.00 A	49160.00	0.85
98 Mo	81043.79 P	67.58	0.08
99	P		
106 Cd	P		
107 Ag	16742.53 P	87.10	0.52
108 Cd	P		
111 Cd	5251.61 P	215.90	4.11
115 In	14988020.00 A	27420.00	0.18
118 Sn	18274.52 P	174.40	0.95
121 Sb	81594.74 P	437.90	0.54
125 Te	6441.69 P	286.00	4.44
133 Cs	129821.70 P	1494.00	1.15
137 Ba	39623.65 P	344.60	0.87
159 Tb	19196850.00 A	139300.00	0.73
205 Tl	41986.77 P	580.90	1.38
206 Pb	P		
207 Pb	P		
208 Pb	59627.30 P	364.80	0.61
209 Bi	21384500.00 A	289400.00	1.35
232 Th	582179.00 P	4301.00	0.74
238 U	56030.66 P	852.10	1.52

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%) QC Range(%) 1	Flag
6 Li	4483156.50	1.06	4492700.50	99.8 59.5 - 120.4	
45 Sc	18871158.00	0.71	19038030.00	99.1 59.5 - 120.4	
72 Ge	4188472.80	0.54	4215162.50	99.4 59.5 - 120.4	
74 Ge	5766977.50	0.85	5782803.00	99.7 59.5 - 120.4	
115 In	14988025.00	0.18	15293276.00	98.0 59.5 - 120.4	
159 Tb	19196850.00	0.73	19484246.00	98.5 59.5 - 120.4	
209 Bi	21384496.00	1.35	21710272.00	98.5 59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

:Element Failures	:Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Analytes:	Pass
ISTD:	Pass

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\005CALS.D\005CALS.D# Sep 20 2016 07:30 pm
Operator:	
Sample Name:	Level 3 Std
Misc Info:	
Vial Number:	1104
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:29 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

Element	CPS Mean	SD	RSD(%)
6 Li	4508169.00 A	44540.00	0.99
9 Be	198034.20 P	788.00	0.40
11 B	44193.87 P	569.90	1.29
27 Al	4771435.00 A	31870.00	0.67
45 Sc	18823620.00 A	75350.00	0.40
55 Mn	2021129.00 A	15830.00	0.78
59 Co	1706944.00 A	20050.00	1.17
66 Zn	978522.19 A	4522.00	0.46
72 Ge	4184943.00 A	8488.00	0.20
74 Ge	5766204.00 A	40030.00	0.69
98 Mo	640236.31 P	4327.00	0.68
99	P		
106 Cd	P		
107 Ag	272977.69 P	2530.00	0.93
108 Cd	P		
111 Cd	218149.50 P	459.80	0.21
115 In	15114660.00 A	85400.00	0.57
118 Sn	651465.50 P	4701.00	0.72
121 Sb	93837.26 P	1488.00	1.59
125 Te	31638.38 P	370.20	1.17
133 Cs	2726639.00 A	29130.00	1.07
137 Ba	860104.88 A	10800.00	1.26
159 Tb	19457700.00 A	144400.00	0.74
205 Tl	1814901.00 A	10980.00	0.60
206 Pb	A		
207 Pb	A		
208 Pb	6033361.00 A	9761.00	0.16
209 Bi	21756890.00 A	230300.00	1.06
232 Th	2504189.00 A	39500.00	1.58
238 U	2432730.00 A	41510.00	1.71

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%) QC Range(%)	Flag
6 Li	4508168.50	0.99	4492700.50	100.3 59.5 - 120.4	
45 Sc	18823618.00	0.40	19038030.00	98.9 59.5 - 120.4	
72 Ge	4184943.30	0.20	4215162.50	99.3 59.5 - 120.4	
74 Ge	5766204.50	0.69	5782803.00	99.7 59.5 - 120.4	
115 In	15114665.00	0.57	15293276.00	98.8 59.5 - 120.4	
159 Tb	19457698.00	0.74	19484246.00	99.9 59.5 - 120.4	
209 Bi	21756886.00	1.06	21710272.00	100.2 59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

:Element Failures	:Max. Number of Failures Allowed	
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowe	d

Analytes:	Pass
ISTD:	Pass

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\006CALS.D\006CALS.D# Sep 20 2016 07:32 pm
Operator:	Level 4 Std
Sample Name:	Level 4 Sta
Misc Info:	
Vial Number:	1105
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:31 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

Element	CPS Mean	SD	RSD(%)
6 Li	4431979.00 A	61300.00	1.38
9 Be	1032858.00 A	1810.00	0.18
11 B	106009.40 P	321.20	0.30
27 Al	23155120.00 A	138100.00	0.60
45 Sc	18771640.00 A	68740.00	0.37
55 Mn	9710199.00 A	101400.00	1.04
59 Co	8203517.00 A	45610.00	0.56
66 Zn	4679691.00 A	17460.00	0.37
72 Ge	4194257.00 A	9345.00	0.22
74 Ge	5769810.00 A	21570.00	0.37
98 Mo	3192919.00 A	9348.00	0.29
99	P		
106 Cd	P		
107 Ag	1385847.00 A	11250.00	0.81
108 Cd	P		
111 Cd	1132435.00 A	13370.00	1.18
115 In	15213570.00 A	134800.00	0.89
118 Sn	3250546.00 A	34010.00	1.05
121 Sb	449091.81 P	3420.00	0.76
125 Te	155020.50 P	1296.00	0.84
133 Cs	13277540.00 A	120800.00	0.91
137 Ba	4109337.00 A	47690.00	1.16
159 Tb	19523610.00 A	153400.00	0.79
205 Tl	8691087.00 A	83780.00	0.96
206 Pb	A		
207 Pb	A		
208 Pb	29103220.00 A	286000.00	0.98
209 Bi	21721100.00 A	73190.00	0.34
232 Th	12107420.00 A	117200.00	0.97
238 U	11699080.00 A	50760.00	0.43

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%) QC Range(%)	Flag
6 Li	4431979.00	1.38	4492700.50	98.6 59.5 - 120.4	
45 Sc	18771644.00	0.37	19038030.00	98.6 59.5 - 120.4	
72 Ge	4194256.50	0.22	4215162.50	99.5 59.5 - 120.4	
74 Ge	5769810.00	0.37	5782803.00	99.8 59.5 - 120.4	
115 In	15213566.00	0.89	15293276.00	99.5 59.5 - 120.4	
159 Tb	19523614.00	0.79	19484246.00	100.2 59.5 - 120.4	
209 Bi	21721098.00	0.34	21710272.00	100.0 59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

:Element Failures	:Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Analytes:	Pass
ISTD:	Pass

Data File: Date Acquired: Operator:	C:\ICPCHEM\1\DATA\wg410083.b\007CALS.D\007CALS.D# Sep 20 2016 07:34 pm
Sample Name:	Level 5 Std
Misc Info:	
Vial Number:	1106
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C
Last Cal Update:	Sep 20 2016 07:33 pm
Sample Type:	CalStd
Total Dil Factor:	1.00

QC&ISTD Elements

Element	CPS Mean	SD	RSD(%)
6 Li	4485157.00 A	35470.00	0.79
9 Be	2091899.00 A	32190.00	1.54
11 B	185527.09 P	4488.00	2.42
27 Al	47228648.00 A	351900.00	0.75
45 Sc	18860400.00 A	63280.00	0.34
55 Mn	19795230.00 A	151200.00	0.76
59 Co	16811250.00 A	102900.00	0.61
66 Zn	9552880.00 A	69930.00	0.73
72 Ge	4200955.00 A	31130.00	0.74
74 Ge	5808267.00 A	24830.00	0.43
98 Mo	6487122.00 A	95550.00	1.47
99	P		
106 Cd	P		
107 Ag	2817871.00 A	32190.00	1.14
108 Cd	P		
111 Cd	2283313.00 A	22840.00	1.00
115 In	15250030.00 A	126900.00	0.83
118 Sn	6493927.00 A	93660.00	1.44
121 Sb	941073.38 A	7294.00	0.78
125 Te	311789.69 P	3360.00	1.08
133 Cs	27062660.00 A	557500.00	2.06
137 Ba	8208171.00 A	154000.00	1.88
159 Tb	19519500.00 A	225000.00	1.15
205 Tl	17368820.00 A	302600.00	1.74
206 Pb	A		
207 Pb	A		
208 Pb	59380260.00 A	865500.00	1.46
209 Bi	21802520.00 A	154100.00	0.71
232 Th	24567520.00 A	219000.00	0.89
238 U	23573040.00 A	211600.00	0.90

ISTD Elements

Element	CPS Mean	RSD(%)	Ref Value	Rec(%) QC Range(%)	Flag
6 Li	4485157.00	0.79	4492700.50	99.8 59.5 - 120.4	
45 Sc	18860402.00	0.34	19038030.00	99.1 59.5 - 120.4	
72 Ge	4200955.50	0.74	4215162.50	99.7 59.5 - 120.4	
74 Ge	5808267.50	0.43	5782803.00	100.4 59.5 - 120.4	
115 In	15250030.00	0.83	15293276.00	99.7 59.5 - 120.4	
159 Tb	19519504.00	1.15	19484246.00	100.2 59.5 - 120.4	
209 Bi	21802518.00	0.71	21710272.00	100.4 59.5 - 120.4	

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

:Element Failures	:Max. Number of Failures Allowed	
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowe	d

Analytes:	Pass
ISTD:	Pass

Initial Calibration Verification (CCV) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\008_Q	CS.D\008_QCS	5.D#
Date Acquired:	Sep 20 2016 07:36 pm		
Operator:		Data R	esults:
Sample Name:	ICV	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1107		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	QCS		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Range(%)	Flag
9 Be	6	3	46.470	0.66	50.00	92.9	89 - 110	
11 B	б	3	19.530	1.41	20.00	97.7	89 - 110	
27 Al	72	3	98.370	2.28	100.00	98.4	89 - 110	
55 Mn	72	3	47.760	2.24	50.00	95.5	89 - 110	
59 Co	72	3	49.850	1.99	50.00	99.7	89 - 110	
66 Zn	72	3	48.780	1.83	50.00	97.6	89 - 110	
98 Mo	115	3	19.180	0.43	20.00	95.9	89 - 110	
107 Ag	115	3	20.350	0.71	20.00	101.8	89 - 110	
111 Cd	115	3	46.630	0.82	50.00	93.3	89 - 110	
118 Sn	115	3	48.980	1.02	50.00	98.0	89 - 110	
121 Sb	115	3	19.030	0.32	20.00	95.2	89 - 110	
125 Te	115	3	48.830	1.12	50.00	97.7	89 - 110	
133 Cs	115	3	47.840	0.44	50.00	95.7	89 - 110	
137 Ba	115	3	48.910	1.53	50.00	97.8	89 - 110	
205 Tl	209	3	50.430	1.10	50.00	100.9	89 - 110	
208 Pb	209	3	50.670	0.57	50.00	101.3	89 - 110	
232 Th	209	3	47.310	1.56	50.00	94.6	89 - 110	
238 U	209	3	49.140	0.17	50.00	98.3	89 - 110	

ISTD Elements Flag Element Tune CPS Mean RSD(%) Ref Value Rec(%) QC Range(%) -6 Li 3 4471316 0.95 4492701 99.5 60 120 3 19036924 0.78 19038030 100.0 60 120 45 Sc 72 Ge 3 4229974 2.13 4215163 100.4 60 - 120 3 5819244 0.81 5782803 100.6 60 - 120 74 Ge 3 15297460 0.75 15293276 100.0 60 120 3 19892150 1.62 19484246 102.1 60 120 3 21841234 1.06 21710272 100.6 60 120 115 In 159 Tb 209 Bi

Tune H	File#	1	C:\ICPCHEM\1\7500\
Tune H	Tile#	2	C:\ICPCHEM\1\7500\
Tune H	File#	3	C: $ICPCHEM_1_7500$ norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

0 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\009_CCB.D	\009_CCB.D#	
Date Acquired:	Sep 20 2016 07:38 pm		
Operator:		Data Re	esults:
Sample Name:	ICB	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1102		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCB		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9 Be	б	3	0.036 ppb	23.99	0.150	
11 B	б	3	0.117 ppb	53.05	1.500	
27 Al	72	3	0.075 ppb	16.50	3.000	
55 Mn	72	3	0.021 ppb	24.66	1.500	
59 Co	72	3	0.030 ppb	14.85	0.150	
66 Zn	72	3	0.073 ppb	37.46	6.000	
98 Mo	115	3	0.022 ppb	4.98	1.500	
107 Ag	115	3	0.012 ppb	23.19	0.150	
111 Cd	115	3	0.033 ppb	15.27	0.300	
118 Sn	115	3	0.064 ppb	8.56	0.300	
121 Sb	115	3	0.282 ppb	23.40	1.200	
125 Te	115	3	0.062 ppb	16.37	3.000	
133 Cs	115	3	0.034 ppb	15.65	0.600	
137 Ba	115	3	0.051 ppb	13.65	0.300	
205 Tl	209	3	0.042 ppb	13.90	0.300	
208 Pb	209	3	0.057 ppb	18.19	0.300	
232 Th	209	3	0.158 ppb	4.78	3.000	
238 U	209	3	0.028 ppb	20.85	0.300	

ISTD Elements								
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	4469031	1.40	4492701	99.5	60	- 120	
45 Sc	3	19177980	1.28	19038030	100.7	60	- 120	
72 Ge	3	4246910	1.40	4215163	100.8	60	- 120	
74 Ge	3	5823304	1.66	5782803	100.7	60	- 120	
115 In	3	15503563	1.90	15293276	101.4	60	- 120	
159 Tb	3	19889294	3.01	19484246	102.1	60	- 120	
209 Bi	3	21881694	2.24	21710272	100.8	60	- 120	

Tune File#	1	$C:\ICPCHEM\1\7500\$
Tune File#	2	$C:\ICPCHEM\1\7500\$
Tune File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

0 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\010_CCB.D	\010_CCB.D#	
Date Acquired:	Sep 20 2016 07:40 pm		
Operator:		Data Re	esults:
Sample Name:	ICSA	Analytes:	Fail
Misc Info:		ISTD:	Pass
Vial Number:	4510		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCB		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9 Be	б	3	0.004 ppb	3.58	0.150	
11 B	б	3	1.112 ppb	1.91	1.500	
27 Al	72	3	48650.000 ppb	2.66	3.000	Fail
55 Mn	72	3	0.576 ppb	2.32	1.500	
59 Co	72	3	0.252 ppb	3.22	0.150	Fail
66 Zn	72	3	1.947 ppb	1.26	6.000	
98 Mo	115	3	1044.000 ppb	3.41	1.500	Fail
107 Ag	115	3	0.072 ppb	6.61	0.150	
111 Cd	115	3	0.096 ppb	5.02	0.300	
118 Sn	115	3	0.058 ppb	11.74	0.300	
121 Sb	115	3	0.243 ppb	16.28	1.200	
125 Te	115	3	0.011 ppb	31.99	3.000	
133 Cs	115	3	0.019 ppb	10.80	0.600	
137 Ba	115	3	0.357 ppb	5.83	0.300	Fail
205 Tl	209	3	0.004 ppb	74.59	0.300	
208 Pb	209	3	0.052 ppb	2.89	0.300	
232 Th	209	3	0.181 ppb	4.97	3.000	
238 U	209	3	0.009 ppb	2.32	0.300	

ISTD Elements								
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC R	lange(%)	Flag
6 Li	3	3956557	1.58	4492701	88.1	60	- 120	
45 Sc	3	17968086	1.86	19038030	94.4	60	- 120	
72 Ge	3	4048809	1.57	4215163	96.1	60	- 120	
74 Ge	3	5420804	1.71	5782803	93.7	60	- 120	
115 In	3	13765046	2.62	15293276	90.0	60	- 120	
159 Tb	3	17845188	1.30	19484246	91.6	60	- 120	
209 Bi	3	18453454	2.01	21710272	85.0	60	- 120	

Tune File#	1	$C:\ICPCHEM\1\7500\$
Tune File#	2	$C:\ICPCHEM\1\7500\$
Tune File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

4 :Element Failures	0 :Max. Number of Failures Allowed	
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowe	d

Sample QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\011SMPL.D\011SMPL.D#		
Date Acquired:	Sep 20 2016 07:42 pm		
Acq. Method:	ACZ_T3.M	Data Re	sults:
Operator:		Analytes:	Fail
Sample Name:	ICSAB	ISTD:	Pass
Misc Info:			
Vial Number:	4511		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	1.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	1.00		

QC Elements

QC.	Elewe	nts							
Ele	ment	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	б	3	17.890	17.890	ppb	0.79	200.00	
11	В	б	3	10.260	10.260	ppb	0.76	20.00	
27	Al	72	3	47,400.000	47400.000	ppb	0.73	1000.00	OCAL
55	Mn	72	3	18.580	18.580	ppb	0.37	200.00	
59	Co	72	3	18.380	18.380	ppb	0.45	200.00	
66	Zn	72	3	19.240	19.240	ppb	0.20	1000.00	
98	Мо	115	3	1,049.000	1049.000	ppb	0.85	200.00	OCAL
107	Ag	115	3	11.050	11.050	ppb	1.05	50.00	
111	Cd	115	3	17.960	17.960	ppb	0.61	200.00	
118	Sn	115	3	18.780	18.780	ppb	0.84	200.00	
121	Sb	115	3	10.360	10.360	ppb	0.48	25.00	
125	Те	115	3	19.720	19.720	ppb	0.96	200.00	
133	Cs	115	3	19.260	19.260	ppb	0.53	200.00	
137	Ba	115	3	19.540	19.540	ppb	1.13	200.00	
205	Tl	209	3	19.760	19.760	ppb	1.24	200.00	
208	Pb	209	3	18.730	18.730	ppb	0.80	500.00	
232	Th	209	3	49.630	49.630	ppb	1.80	200.00	
238	U	209	3	20.390	20.390	ppb	1.68	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4002846	0.98	4492701	89.1	59.5 - 120.4
45 Sc	3	18074286	1.11	19038030	94.9	59.5 - 120.4
72 Ge	3	4102111	0.61	4215163	97.3	59.5 - 120.4
74 Ge	3	5483084	1.17	5782803	94.8	59.5 - 120.4
115 In	3	13770678	0.71	15293276	90.0	59.5 - 120.4
159 Tb	3	17816558	0.65	19484246	91.4	59.5 - 120.4
209 Bi	3	18526922	1.34	21710272	85.3	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

2 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\012_CCB.D\012_CCB.D#					
Date Acquired:	Sep 20 2016 07:45 pm					
Operator:		Data Re	esults:			
Sample Name:	wash	Analytes:	Fail			
Misc Info:		ISTD:	Pass			
Vial Number:	4512					
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M					
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C					
Last Cal Update:	Sep 20 2016 07:35 pm					
Sample Type:	CCB					
Total Dil Factor:	1.00					

QC Elements

Element	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9 Be	б	3	0.000 ppb	7746.30	0.150	
11 B	б	3	-0.118 ppb	24.43	1.500	
27 Al	72	3	19.860 ppb	24.69	3.000	Fail
55 Mn	72	3	-0.033 ppb	8.28	1.500	
59 Co	72	3	0.001 ppb	357.49	0.150	
66 Zn	72	3	0.008 ppb	146.45	6.000	
98 Mo	115	3	0.433 ppb	22.72	1.500	
107 Ag	115	3	0.002 ppb	60.25	0.150	
111 Cd	115	3	-0.001 ppb	157.71	0.300	
118 Sn	115	3	0.033 ppb	5.50	0.300	
121 Sb	115	3	-0.007 ppb	136.81	1.200	
125 Te	115	3	0.004 ppb	109.48	3.000	
133 Cs	115	3	0.000 ppb	432.70	0.600	
137 Ba	115	3	-0.017 ppb	20.93	0.300	
205 Tl	209	3	-0.003 ppb	49.66	0.300	
208 Pb	209	3	-0.010 ppb	13.72	0.300	
232 Th	209	3	0.021 ppb	8.65	3.000	
238 U	209	3	-0.004 ppb	42.30	0.300	

ISTD Elements									
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC R	ange(%)	Flag	
6 Li	3	4318281	1.18	4492701	96.1	60	- 120		
45 Sc	3	19317622	1.01	19038030	101.5	60	- 120		
72 Ge	3	4315764	0.68	4215163	102.4	60	- 120		
74 Ge	3	5962928	0.15	5782803	103.1	60	- 120		
115 In	3	15463113	0.35	15293276	101.1	60	- 120		
159 Tb	3	19707928	1.07	19484246	101.1	60	- 120		
209 Bi	3	21508948	0.15	21710272	99.1	60	- 120		

Tune File#	1	C:\ICPCHEM\1\7500\
Tune File#	2	C:\ICPCHEM\1\7500\
Tune File#	3	$C:\ICPCHEM\1\7500\norm.u$

ISTD Ref File :

C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

1 :Element Failures0 :Max. Number of Failures Allowed0 :ISTD Failures0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\013SMPL.D\013SMPL.D#		
Date Acquired:	Sep 20 2016 07:47 pm		
Acq. Method:	ACZ_T3.M	Data Re	sults:
Operator:		Analytes:	Pass
Sample Name:	WG409857PBS	ISTD:	Pass
Misc Info:			
Vial Number:	4301		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

QC.	Elewe	nts							
Ele	ment	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	б	3	-4.679	-0.009	ppb	41.64	200.00	
11	В	б	3	472.800	0.946	ppb	5.07	20.00	
27	Al	72	3	2,859.000	5.718	ppb	34.12	1000.00	
55	Mn	72	3	66.150	0.132	ppb	5.13	200.00	
59	Co	72	3	-3.670	-0.007	ppb	20.71	200.00	
66	Zn	72	3	351.000	0.702	ppb	2.42	1000.00	
98	Мо	115	3	55.800	0.112	ppb	27.18	200.00	
107	Ag	115	3	0.385	0.001	ppb	147.62	50.00	
111	Cd	115	3	-3.589	-0.007	ppb	4.46	200.00	
118	Sn	115	3	3,573.500	7.147	ppb	0.30	200.00	
121	Sb	115	3	69.700	0.139	ppb	0.95	25.00	
125	Те	115	3	-1.474	-0.003	ppb	328.06	200.00	
133	Cs	115	3	-2.963	-0.006	ppb	9.70	200.00	
137	Ba	115	3	7.890	0.016	ppb	10.17	200.00	
205	Tl	209	3	-5.675	-0.011	ppb	17.09	200.00	
208	Pb	209	3	20.365	0.041	ppb	2.13	500.00	
232	Th	209	3	1.216	0.002	ppb	19.11	200.00	
238	U	209	3	-4.758	-0.010	ppb	8.44	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4430158	0.43	4492701	98.6	59.5 - 120.4	
45 Sc	3	19112236	0.52	19038030	100.4	59.5 - 120.4	
72 Ge	3	4185539	0.70	4215163	99.3	59.5 - 120.4	
74 Ge	3	5777417	0.55	5782803	99.9	59.5 - 120.4	
115 In	3	15347966	0.40	15293276	100.4	59.5 - 120.4	
159 Tb	3	19782530	0.34	19484246	101.5	59.5 - 120.4	
209 Bi	3	21524924	0.69	21710272	99.1	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

0 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\014SMPL.D\014SMPL.D	#	
Date Acquired:	Sep 20 2016 07:49 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	WG409857LCSS	ISTD:	Pass
Misc Info:			
Vial Number:	4302		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	5000.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	5000.00		

QC Elements

Ele	ment	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	6	3	100,300.000	20.060	ppb	1.26	200.00	
11	В	6	3	118,900.000	23.780	ppb	1.28	20.00	OCAL
27	Al	72	3	###########	1659.000	ppb	0.68	1000.00	OCAL
55	Mn	72	3	401,400.000	80.280	ppb	0.16	200.00	
59	Co	72	3	111,600.000	22.320	ppb	0.34	200.00	
66	Zn	72	3	237,850.000	47.570	ppb	0.42	1000.00	
98	Мо	115	3	98,150.000	19.630	ppb	0.84	200.00	
107	Ag	115	3	49,665.000	9.933	ppb	0.92	50.00	
111	Cd	115	3	77,300.000	15.460	ppb	0.21	200.00	
118	Sn	115	3	110,200.000	22.040	ppb	0.69	200.00	
121	Sb	115	3	52,650.000	10.530	ppb	0.46	25.00	
125	Те	115	3	44.445	0.009	ppb	108.03	200.00	
133	Cs	115	3	1,380.000	0.276	ppb	1.94	200.00	
137	Ba	115	3	321,300.000	64.260	ppb	2.32	200.00	
205	Tl	209	3	129,050.000	25.810	ppb	0.69	200.00	
208	Pb	209	3	98,550.000	19.710	ppb	0.67	500.00	
232	Th	209	3	18,595.000	3.719	ppb	0.73	200.00	
238	U	209	3	82,500.000	16.500	ppb	0.83	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4431448	1.53	4492701	98.6	59.5 - 120.4
45 Sc	3	19587384	1.21	19038030	102.9	59.5 - 120.4
72 Ge	3	4328869	0.23	4215163	102.7	59.5 - 120.4
74 Ge	3	5960136	0.39	5782803	103.1	59.5 - 120.4
115 In	3	15466861	0.35	15293276	101.1	59.5 - 120.4
159 Tb	3	19731118	1.36	19484246	101.3	59.5 - 120.4
209 Bi	3	21613044	1.04	21710272	99.6	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

2 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File: Date Acquired:	C:\ICPCHEM\1\DATA\wg410083.b\015SMPL.D\015SMPL.I Sep 20 2016 07:51 pm	9#	
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	WG409857LCSSD	ISTD:	Pass
Misc Info:			
Vial Number:	4303		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	5000.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	5000.00		

QC Elements

Ele	ment	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	6	3	103,150.000	20.630	ppb	0.81	200.00	
11	В	б	3	123,250.000	24.650	ppb	0.75	20.00	OCAL
27	Al	72	3	###########	1633.000	ppb	0.87	1000.00	OCAL
55	Mn	72	3	409,650.000	81.930	ppb	0.50	200.00	
59	Co	72	3	115,700.000	23.140	ppb	0.33	200.00	
66	Zn	72	3	239,250.000	47.850	ppb	0.75	1000.00	
98	Мо	115	3	99,650.000	19.930	ppb	0.06	200.00	
107	Ag	115	3	49,320.000	9.864	ppb	0.44	50.00	
111	Cd	115	3	80,250.000	16.050	ppb	1.13	200.00	
118	Sn	115	3	110,550.000	22.110	ppb	0.28	200.00	
121	Sb	115	3	56,500.000	11.300	ppb	0.33	25.00	
125	Те	115	3	19.405	0.004	ppb	241.43	200.00	
133	Cs	115	3	1,344.500	0.269	ppb	1.84	200.00	
137	Ba	115	3	325,500.000	65.100	ppb	0.14	200.00	
205	Tl	209	3	133,950.000	26.790	ppb	0.56	200.00	
208	Pb	209	3	99,200.000	19.840	ppb	0.36	500.00	
232	Th	209	3	19,470.000	3.894	ppb	0.51	200.00	
238	U	209	3	83,000.000	16.600	ppb	0.92	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4419251	0.57	4492701	98.4	59.5 - 120.4	
45 Sc	3	19636238	0.77	19038030	103.1	59.5 - 120.4	
72 Ge	3	4351630	0.72	4215163	103.2	59.5 - 120.4	
74 Ge	3	5985448	0.68	5782803	103.5	59.5 - 120.4	
115 In	3	15487186	0.47	15293276	101.3	59.5 - 120.4	
159 Tb	3	19833224	0.19	19484246	101.8	59.5 - 120.4	
209 Bi	3	21574570	0.23	21710272	99.4	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	C:\ICPCHEM\1\7500\
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

2 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\016SMPL.D\016SMPL.D#			
Date Acquired:	Sep 20 2016 07:53 pm			
Acq. Method:	ACZ_T3.M	Data Re	sults:	
Operator:		Analytes:	Fail	
Sample Name:	L32770-01	ISTD:	Pass	
Misc Info:				
Vial Number:	4304			
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M			
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C			
Last Cal. Update:	Sep 20 2016 07:35 pm			
Sample Type:	Sample			
Dilution Factor:	500.00			
Autodil Factor:	Undiluted			
Final Dil Factor: 500.00				

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	180.150	0.360	ppb	2.46	200.00	
11 B	б	3	8,390.000	16.780	ppb	0.84	20.00	
27 Al	72	3	###########	7056.000	ppb	0.64	1000.00	OCAL
55 Mn	72	3	167,350.000	334.700	ppb	0.77	200.00	OCAL
59 Co	72	3	6,060.000	12.120	ppb	0.83	200.00	
66 Zn	72	3	89,350.000	178.700	ppb	0.59	1000.00	
98 Mo	115	3	875.000	1.750	ppb	1.38	200.00	
107 Ag	115	3	61.850	0.124	ppb	2.20	50.00	
111 Cd	115	3	191.150	0.382	ppb	3.41	200.00	
118 Sn	115	3	3,771.500	7.543	ppb	0.48	200.00	
121 Sb	115	3	132.300	0.265	ppb	2.58	25.00	
125 Te	115	3	26.325	0.053	ppb	28.85	200.00	
133 Cs	115	3	373.300	0.747	ppb	0.87	200.00	
137 Ba	115	3	552,500.000	1105.000	ppb	1.32	200.00	OCAL
205 Tl	209	3	41.430	0.083	ppb	9.58	200.00	
208 Pb	209	3	14,625.000	29.250	ppb	0.64	500.00	
232 Th	209	3	1,110.000	2.220	ppb	0.44	200.00	
238 U	209	3	666.500	1.333	ppb	1.23	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4553959	0.20	4492701	101.4	59.5 - 120.4
45 Sc	3	19835312	0.55	19038030	104.2	59.5 - 120.4
72 Ge	3	4295646	0.17	4215163	101.9	59.5 - 120.4
74 Ge	3	5790674	0.54	5782803	100.1	59.5 - 120.4
115 In	3	15014876	0.71	15293276	98.2	59.5 - 120.4
159 Tb	3	19510660	0.08	19484246	100.1	59.5 - 120.4
209 Bi	3	20551374	0.70	21710272	94.7	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\017SMPL.D\017SMPL.D	ŧ	
Date Acquired:	Sep 20 2016 07:55 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-02	ISTD:	Pass
Misc Info:			
Vial Number:	4305		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	6	3	163.450	0.327	ppb	3.53	200.00	
11 B	б	3	5,800.000	11.600	ppb	1.21	20.00	
27 Al	72	3	###########	4227.000	ppb	0.46	1000.00	OCAL
55 Mn	72	3	194,000.000	388.000	ppb	0.90	200.00	OCAL
59 Co	72	3	3,839.000	7.678	ppb	0.66	200.00	
66 Zn	72	3	47,900.000	95.800	ppb	0.58	1000.00	
98 Mo	115	3	755.500	1.511	ppb	0.52	200.00	
107 Ag	115	3	30.985	0.062	ppb	4.30	50.00	
111 Cd	115	3	107.700	0.215	ppb	5.10	200.00	
118 Sn	115	3	3,722.000	7.444	ppb	0.89	200.00	
121 Sb	115	3	93.600	0.187	ppb	2.11	25.00	
125 Te	115	3	24.010	0.048	ppb	21.26	200.00	
133 Cs	115	3	207.800	0.416	ppb	0.60	200.00	
137 Ba	115	3	306,000.000	612.000	ppb	0.69	200.00	OCAL
205 Tl	209	3	18.460	0.037	ppb	5.11	200.00	
208 Pb	209	3	7,890.000	15.780	ppb	0.96	500.00	
232 Th	209	3	669.500	1.339	ppb	0.77	200.00	
238 U	209	3	315.150	0.630	ppb	1.38	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4465888	0.73	4492701	99.4	59.5 - 120.4	
45 Sc	3	19373732	0.73	19038030	101.8	59.5 - 120.4	
72 Ge	3	4275036	1.57	4215163	101.4	59.5 - 120.4	
74 Ge	3	5779633	1.02	5782803	99.9	59.5 - 120.4	
115 In	3	14892215	1.57	15293276	97.4	59.5 - 120.4	
159 Tb	3	19399134	0.69	19484246	99.6	59.5 - 120.4	
209 Bi	3	20698638	1.05	21710272	95.3	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\018SMPL.D\018SMPL.D	ŧ	
Date Acquired:	Sep 20 2016 07:57 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-03	ISTD:	Pass
Misc Info:			
Vial Number:	4306		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	199.050	0.398	ppb	5.09	200.00	
11 B	б	3	9,965.000	19.930	ppb	0.93	20.00	
27 Al	72	3	###########	12610.000	ppb	0.22	1000.00	OCAL
55 Mn	72	3	261,850.000	523.700	ppb	0.68	200.00	OCAL
59 Co	72	3	8,270.000	16.540	ppb	1.48	200.00	
66 Zn	72	3	59,400.000	118.800	ppb	0.26	1000.00	
98 Mo	115	3	395.250	0.791	ppb	0.79	200.00	
107 Ag	115	3	41.295	0.083	ppb	2.19	50.00	
111 Cd	115	3	230.350	0.461	ppb	1.56	200.00	
118 Sn	115	3	3,659.500	7.319	ppb	0.76	200.00	
121 Sb	115	3	76.050	0.152	ppb	4.88	25.00	
125 Te	115	3	23.305	0.047	ppb	9.65	200.00	
133 Cs	115	3	463.300	0.927	ppb	0.88	200.00	
137 Ba	115	3	319,100.000	638.200	ppb	1.03	200.00	OCAL
205 Tl	209	3	33.365	0.067	ppb	4.22	200.00	
208 Pb	209	3	11,680.000	23.360	ppb	0.36	500.00	
232 Th	209	3	1,852.000	3.704	ppb	0.85	200.00	
238 U	209	3	334.950	0.670	ppb	0.32	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4517243	0.66	4492701	100.5	59.5 - 120.4	
45 Sc	3	19470570	0.59	19038030	102.3	59.5 - 120.4	
72 Ge	3	4277954	0.31	4215163	101.5	59.5 - 120.4	
74 Ge	3	5743104	0.26	5782803	99.3	59.5 - 120.4	
115 In	3	14751456	0.54	15293276	96.5	59.5 - 120.4	
159 Tb	3	19230016	1.04	19484246	98.7	59.5 - 120.4	
209 Bi	3	20110174	0.64	21710272	92.6	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	C:\ICPCHEM\1\7500\
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\019SMPL.D\019SMPL.D#		
Date Acquired:	Sep 20 2016 08:00 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-04	ISTD:	Pass
Misc Info:			
Vial Number:	4307		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	210.250	0.421	ppb	3.02	200.00	
11 B	б	3	10,030.000	20.060	ppb	2.03	20.00	OCAL
27 Al	72	3	###########	13000.000	ppb	1.00	1000.00	OCAL
55 Mn	72	3	330,000.000	660.000	ppb	0.62	200.00	OCAL
59 Co	72	3	9,870.000	19.740	ppb	0.41	200.00	
66 Zn	72	3	57,850.000	115.700	ppb	0.82	1000.00	
98 Mo	115	3	478.050	0.956	ppb	1.80	200.00	
107 Ag	115	3	35.930	0.072	ppb	1.63	50.00	
111 Cd	115	3	241.250	0.483	ppb	6.22	200.00	
118 Sn	115	3	3,715.000	7.430	ppb	0.89	200.00	
121 Sb	115	3	82.600	0.165	ppb	1.73	25.00	
125 Te	115	3	14.915	0.030	ppb	63.76	200.00	
133 Cs	115	3	360.600	0.721	ppb	0.12	200.00	
137 Ba	115	3	549,000.000	1098.000	ppb	0.76	200.00	OCAL
205 Tl	209	3	23.185	0.046	ppb	4.12	200.00	
208 Pb	209	3	7,490.000	14.980	ppb	0.49	500.00	
232 Th	209	3	2,225.000	4.450	ppb	1.00	200.00	
238 U	209	3	409.650	0.819	ppb	0.73	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4395994	1.47	4492701	97.8	59.5 - 120.4
45 Sc	3	19155748	0.55	19038030	100.6	59.5 - 120.4
72 Ge	3	4162020	1.33	4215163	98.7	59.5 - 120.4
74 Ge	3	5587402	0.57	5782803	96.6	59.5 - 120.4
115 In	3	14345545	1.47	15293276	93.8	59.5 - 120.4
159 Tb	3	18770684	0.88	19484246	96.3	59.5 - 120.4
209 Bi	3	19676562	1.19	21710272	90.6	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

4 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\020SMPL.D\020SMPL.D#		
Date Acquired:	Sep 20 2016 08:02 pm		
Acq. Method:	ACZ_T3.M	Data Re	sults:
Operator:	1	Analytes:	Fail
Sample Name:	L32770-04MS	ISTD:	Pass
Misc Info:			
Vial Number:	4308		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	25,125.000	50.250	ppb	0.63	200.00	
11 B	б	3	15,040.000	30.080	ppb	0.74	20.00	OCAL
27 Al	72	3	###########	13890.000	ppb	0.94	1000.00	OCAL
55 Mn	72	3	368,400.000	736.800	ppb	0.99	200.00	OCAL
59 Co	72	3	34,450.000	68.900	ppb	0.90	200.00	
66 Zn	72	3	83,950.000	167.900	ppb	0.39	1000.00	
98 Mo	115	3	26,095.000	52.190	ppb	0.96	200.00	
107 Ag	115	3	4,883.500	9.767	ppb	1.65	50.00	
111 Cd	115	3	24,645.000	49.290	ppb	1.37	200.00	
118 Sn	115	3	29,905.000	59.810	ppb	0.91	200.00	
121 Sb	115	3	2,003.500	4.007	ppb	1.21	25.00	
125 Te	115	3	11,875.000	23.750	ppb	0.92	200.00	
133 Cs	115	3	12,785.000	25.570	ppb	1.22	200.00	
137 Ba	115	3	594,000.000	1188.000	ppb	1.42	200.00	OCAL
205 Tl	209	3	26,155.000	52.310	ppb	0.31	200.00	
208 Pb	209	3	33,565.000	67.130	ppb	0.46	500.00	
232 Th	209	3	2,798.500	5.597	ppb	0.26	200.00	
238 U	209	3	13,570.000	27.140	ppb	0.38	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4406364	0.20	4492701	98.1	59.5 - 120.4
45 Sc	3	19086824	0.40	19038030	100.3	59.5 - 120.4
72 Ge	3	4155584	0.30	4215163	98.6	59.5 - 120.4
74 Ge	3	5566181	0.66	5782803	96.3	59.5 - 120.4
115 In	3	14327031	1.03	15293276	93.7	59.5 - 120.4
159 Tb	3	18826968	0.35	19484246	96.6	59.5 - 120.4
209 Bi	3	19851860	0.26	21710272	91.4	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	C:\ICPCHEM\1\7500\
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

4 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Verification (CCV) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\021_CC	CV.D\021_CCV	.D#
Date Acquired:	Sep 20 2016 08:04 pm		
Operator:		Data Re	esults:
Sample Name:	CCV	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1105		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCV		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Range(%)	Flag
9 Be	6	3	100.600	1.89	100.00	100.6	89 - 110	
11 B	6	3	10.210	2.33	10.00	102.1	89 - 110	
27 Al	72	3	504.000	0.39	500.00	100.8	89 - 110	
55 Mn	72	3	98.380	0.95	100.00	98.4	89 - 110	
59 Co	72	3	99.000	1.02	100.00	99.0	89 - 110	
66 Zn	72	3	492.200	0.70	500.00	98.4	89 - 110	
98 Mo	115	3	100.900	0.97	100.00	100.9	89 - 110	
107 Ag	115	3	25.380	0.67	25.00	101.5	89 - 110	
111 Cd	115	3	100.100	0.92	100.00	100.1	89 - 110	
118 Sn	115	3	101.000	0.61	100.00	101.0	89 - 110	
121 Sb	115	3	12.150	0.61	12.50	97.2	89 - 110	
125 Te	115	3	100.500	1.49	100.00	100.5	89 - 110	
133 Cs	115	3	98.900	0.65	100.00	98.9	89 - 110	
137 Ba	115	3	253.300	0.38	250.00	101.3	89 - 110	
205 Tl	209	3	100.800	0.91	100.00	100.8	89 - 110	
208 Pb	209	3	247.900	1.05	250.00	99.2	89 - 110	
232 Th	209	3	99.330	0.63	100.00	99.3	89 - 110	
238 U	209	3	100.100	1.19	100.00	100.1	89 - 110	

ISTD Elements							
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4409149	2.36	4492701	98.1	60 - 120	
45 Sc	3	18857640	1.55	19038030	99.1	60 - 120	
72 Ge	3	4176118	1.20	4215163	99.1	60 - 120	
74 Ge	3	5772902	1.14	5782803	99.8	60 - 120	
115 In	3	14943313	1.55	15293276	97.7	60 - 120	
159 Tb	3	19273614	2.23	19484246	98.9	60 - 120	
209 Bi	3	20954708	1.78	21710272	96.5	60 - 120	

Tune File#	1	C:\ICPCHEM\1\7500\
Tune File#	2	C:\ICPCHEM\1\7500\
Tune File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

0 :Element Failures	0	:Max.	Number	of	Fail	ures Allo	wed
0 :ISTD Failures	0	:Max.	Number	of	ISTD	Failures	Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\022_CCB.D	\022_CCB.D#	
Date Acquired:	Sep 20 2016 08:06 pm		
Operator:		Data Re	esults:
Sample Name:	CCB	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1102		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCB		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9 Be	б	3	0.046 ppb	37.34	0.150	
11 B	б	3	-0.016 ppb	276.62	1.500	
27 Al	72	3	2.301 ppb	29.64	3.000	
55 Mn	72	3	0.119 ppb	33.61	1.500	
59 Co	72	3	0.041 ppb	35.26	0.150	
66 Zn	72	3	0.177 ppb	42.93	6.000	
98 Mo	115	3	0.049 ppb	25.85	1.500	
107 Ag	115	3	0.012 ppb	43.56	0.150	
111 Cd	115	3	0.043 ppb	34.42	0.300	
118 Sn	115	3	0.078 ppb	18.14	0.300	
121 Sb	115	3	0.128 ppb	22.41	1.200	
125 Te	115	3	0.058 ppb	51.17	3.000	
133 Cs	115	3	0.048 ppb	33.63	0.600	
137 Ba	115	3	0.228 ppb	34.72	0.300	
205 Tl	209	3	0.060 ppb	29.17	0.300	
208 Pb	209	3	0.109 ppb	31.55	0.300	
232 Th	209	3	0.093 ppb	10.33	3.000	
238 U	209	3	0.038 ppb	36.41	0.300	

ISTD Elements								
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC F	Range(%)	Flag
6 Li	3	4489154	1.19	4492701	99.9	60	- 120	
45 Sc	3	18987138	0.86	19038030	99.7	60	- 120	
72 Ge	3	4198524	0.71	4215163	99.6	60	- 120	
74 Ge	3	5797025	0.71	5782803	100.2	60	- 120	
115 In	3	15066028	1.88	15293276	98.5	60	- 120	
159 Tb	3	19376840	1.16	19484246	99.4	60	- 120	
209 Bi	3	21106444	1.40	21710272	97.2	60	- 120	

Tune Fi	le# 1	$C:\ICPCHEM\1\7500\$
Tune Fi	le# 2	$C:\ICPCHEM\1\7500\$
Tune Fi	le# 3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

0 :Element Failures 0 :Max. Number of Failures Allowed 0 :ISTD Failures 0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\023SMPL.D\023SMPL.D#		
Date Acquired:	Sep 20 2016 08:08 pm		
Acq. Method:	ACZ_T3.M	Data Re	sults:
Operator:		Analytes:	Fail
Sample Name:	L32770-04MSD	ISTD:	Pass
Misc Info:			
Vial Number:	4309		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	25,360.000	50.720	ppb	1.35	200.00	
11 B	б	3	15,215.000	30.430	ppb	2.72	20.00	OCAL
27 Al	72	3	###########	13290.000	ppb	0.44	1000.00	OCAL
55 Mn	72	3	356,100.000	712.200	ppb	0.80	200.00	OCAL
59 Co	72	3	33,895.000	67.790	ppb	0.72	200.00	
66 Zn	72	3	81,250.000	162.500	ppb	0.41	1000.00	
98 Mo	115	3	26,230.000	52.460	ppb	0.96	200.00	
107 Ag	115	3	4,868.000	9.736	ppb	1.61	50.00	
111 Cd	115	3	24,820.000	49.640	ppb	1.06	200.00	
118 Sn	115	3	29,885.000	59.770	ppb	0.83	200.00	
121 Sb	115	3	2,122.000	4.244	ppb	1.09	25.00	
125 Te	115	3	11,910.000	23.820	ppb	2.49	200.00	
133 Cs	115	3	12,865.000	25.730	ppb	2.00	200.00	
137 Ba	115	3	512,500.000	1025.000	ppb	1.86	200.00	OCAL
205 Tl	209	3	26,480.000	52.960	ppb	0.29	200.00	
208 Pb	209	3	34,695.000	69.390	ppb	0.45	500.00	
232 Th	209	3	2,485.500	4.971	ppb	0.43	200.00	
238 U	209	3	13,680.000	27.360	ppb	0.28	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag	
6 Li	3	4431845	0.93	4492701	98.6	59.5 - 120.4	
45 Sc	3	19164818	0.58	19038030	100.7	59.5 - 120.4	
72 Ge	3	4188631	0.22	4215163	99.4	59.5 - 120.4	
74 Ge	3	5606582	0.19	5782803	97.0	59.5 - 120.4	
115 In	3	14470446	0.97	15293276	94.6	59.5 - 120.4	
159 Tb	3	19313256	0.42	19484246	99.1	59.5 - 120.4	
209 Bi	3	20146704	0.35	21710272	92.8	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	C:\ICPCHEM\1\7500\
Tune	File#	3	$C:\ICPCHEM\1\7500\norm.u$

ISTD Ref File :

4 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\024SMPL.D\024SMPL.D#	:	
Date Acquired:	Sep 20 2016 08:10 pm		
Acq. Method:	ACZ_T3.M	Data Re	sults:
Operator:		Analytes:	Fail
Sample Name:	L32770-05	ISTD:	Pass
Misc Info:			
Vial Number:	4310		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	6	3	219.650	0.439	ppb	5.94	200.00	
11 B	б	3	9,865.000	19.730	ppb	1.46	20.00	
27 Al	72	3	###########	12060.000	ppb	0.80	1000.00	OCAL
55 Mn	72	3	312,500.000	625.000	ppb	0.38	200.00	OCAL
59 Co	72	3	8,955.000	17.910	ppb	0.43	200.00	
66 Zn	72	3	56,000.000	112.000	ppb	0.84	1000.00	
98 Mo	115	3	582.500	1.165	ppb	1.75	200.00	
107 Ag	115	3	37.545	0.075	ppb	7.48	50.00	
111 Cd	115	3	239.900	0.480	ppb	5.94	200.00	
118 Sn	115	3	3,723.500	7.447	ppb	0.64	200.00	
121 Sb	115	3	100.800	0.202	ppb	2.10	25.00	
125 Te	115	3	38.285	0.077	ppb	22.31	200.00	
133 Cs	115	3	380.350	0.761	ppb	1.29	200.00	
137 Ba	115	3	531,000.000	1062.000	ppb	0.79	200.00	OCAL
205 Tl	209	3	45.160	0.090	ppb	15.47	200.00	
208 Pb	209	3	7,535.000	15.070	ppb	1.49	500.00	
232 Th	209	3	1,989.000	3.978	ppb	0.54	200.00	
238 U	209	3	386.400	0.773	ppb	1.91	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4412737	1.39	4492701	98.2	59.5 - 120.4	
45 Sc	3	19345214	1.04	19038030	101.6	59.5 - 120.4	
72 Ge	3	4204234	0.38	4215163	99.7	59.5 - 120.4	
74 Ge	3	5648865	1.29	5782803	97.7	59.5 - 120.4	
115 In	3	14476975	1.20	15293276	94.7	59.5 - 120.4	
159 Tb	3	19091994	0.35	19484246	98.0	59.5 - 120.4	
209 Bi	3	20040394	0.07	21710272	92.3	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\025SMPL.D\025SMPL.D#	:	
Date Acquired:	Sep 20 2016 08:12 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-06	ISTD:	Pass
Misc Info:			
Vial Number:	4311		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	183.700	0.367	ppb	2.55	200.00	
11 B	б	3	7,020.000	14.040	ppb	1.30	20.00	
27 Al	72	3	###########	6829.000	ppb	0.29	1000.00	OCAL
55 Mn	72	3	171,800.000	343.600	ppb	0.28	200.00	OCAL
59 Co	72	3	5,435.000	10.870	ppb	0.97	200.00	
66 Zn	72	3	58,950.000	117.900	ppb	0.36	1000.00	
98 Mo	115	3	652.000	1.304	ppb	1.48	200.00	
107 Ag	115	3	45.475	0.091	ppb	1.75	50.00	
111 Cd	115	3	257.100	0.514	ppb	2.23	200.00	
118 Sn	115	3	3,663.500	7.327	ppb	0.69	200.00	
121 Sb	115	3	101.450	0.203	ppb	2.80	25.00	
125 Te	115	3	31.875	0.064	ppb	16.91	200.00	
133 Cs	115	3	329.600	0.659	ppb	0.76	200.00	
137 Ba	115	3	512,500.000	1025.000	ppb	1.09	200.00	OCAL
205 Tl	209	3	32.330	0.065	ppb	3.22	200.00	
208 Pb	209	3	16,315.000	32.630	ppb	0.42	500.00	
232 Th	209	3	641.000	1.282	ppb	0.41	200.00	
238 U	209	3	1,947.500	3.895	ppb	0.16	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4434362	0.65	4492701	98.7	59.5 - 120.4	
45 Sc	3	19391260	0.69	19038030	101.9	59.5 - 120.4	
72 Ge	3	4243006	0.53	4215163	100.7	59.5 - 120.4	
74 Ge	3	5706053	0.29	5782803	98.7	59.5 - 120.4	
115 In	3	14968526	0.42	15293276	97.9	59.5 - 120.4	
159 Tb	3	19642384	1.30	19484246	100.8	59.5 - 120.4	
209 Bi	3	20918834	0.44	21710272	96.4	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	C:\ICPCHEM\1\7500\
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\026SMPL.D\026SMPL.D#		
Date Acquired:	Sep 20 2016 08:14 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-06SDL	ISTD:	Pass
Misc Info:			
Vial Number:	4312		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	б	3	31.000	0.062	ppb	1.09	200.00	
11 B	б	3	1,324.000	2.648	ppb	2.29	20.00	
27 Al	72	3	678,500.000	1357.000	ppb	0.28	1000.00	OCAL
55 Mn	72	3	34,415.000	68.830	ppb	0.49	200.00	
59 Co	72	3	1,021.500	2.043	ppb	0.95	200.00	
66 Zn	72	3	11,555.000	23.110	ppb	0.27	1000.00	
98 Mo	115	3	123.150	0.246	ppb	3.21	200.00	
107 Ag	115	3	7.340	0.015	ppb	10.36	50.00	
111 Cd	115	3	45.095	0.090	ppb	12.95	200.00	
118 Sn	115	3	706.000	1.412	ppb	1.10	200.00	
121 Sb	115	3	2.716	0.005	ppb	28.10	25.00	
125 Te	115	3	-1.650	-0.003	ppb	300.03	200.00	
133 Cs	115	3	60.750	0.122	ppb	1.88	200.00	
137 Ba	115	3	100,950.000	201.900	ppb	1.99	200.00	OCAL
205 Tl	209	3	0.463	0.001	ppb	53.10	200.00	
208 Pb	209	3	3,102.500	6.205	ppb	0.25	500.00	
232 Th	209	3	115.150	0.230	ppb	0.52	200.00	
238 U	209	3	372.900	0.746	ppb	0.63	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4401869	1.15	4492701	98.0	59.5 - 120.4	
45 Sc	3	19277824	0.62	19038030	101.3	59.5 - 120.4	
72 Ge	3	4249549	0.47	4215163	100.8	59.5 - 120.4	
74 Ge	3	5849028	0.37	5782803	101.1	59.5 - 120.4	
115 In	3	15152071	1.02	15293276	99.1	59.5 - 120.4	
159 Tb	3	19317280	0.16	19484246	99.1	59.5 - 120.4	
209 Bi	3	21093088	0.26	21710272	97.2	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

2 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\027SMPL.D\027SMPL.D#	ŧ	
Date Acquired:	Sep 20 2016 08:17 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-07	ISTD:	Pass
Misc Info:			
Vial Number:	4401		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

Element	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9 Be	6	3	182.800	0.366	ppb	5.63	200.00	
11 B	б	3	7,370.000	14.740	ppb	1.45	20.00	
27 Al	72	3	###########	8227.000	ppb	0.51	1000.00	OCAL
55 Mn	72	3	222,150.000	444.300	ppb	0.48	200.00	OCAL
59 Co	72	3	6,120.000	12.240	ppb	0.77	200.00	
66 Zn	72	3	66,800.000	133.600	ppb	0.92	1000.00	
98 Mo	115	3	622.000	1.244	ppb	0.70	200.00	
107 Ag	115	3	46.710	0.093	ppb	0.82	50.00	
111 Cd	115	3	181.350	0.363	ppb	3.59	200.00	
118 Sn	115	3	3,663.500	7.327	ppb	0.88	200.00	
121 Sb	115	3	91.150	0.182	ppb	3.06	25.00	
125 Te	115	3	32.285	0.065	ppb	30.76	200.00	
133 Cs	115	3	317.350	0.635	ppb	1.31	200.00	
137 Ba	115	3	467,050.000	934.100	ppb	0.24	200.00	OCAL
205 Tl	209	3	29.945	0.060	ppb	4.49	200.00	
208 Pb	209	3	17,420.000	34.840	ppb	0.25	500.00	
232 Th	209	3	960.500	1.921	ppb	1.30	200.00	
238 U	209	3	316.800	0.634	ppb	1.46	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4536488	1.75	4492701	101.0	59.5 - 120.4	
45 Sc	3	19481684	0.69	19038030	102.3	59.5 - 120.4	
72 Ge	3	4245037	1.14	4215163	100.7	59.5 - 120.4	
74 Ge	3	5735116	0.73	5782803	99.2	59.5 - 120.4	
115 In	3	14709271	0.20	15293276	96.2	59.5 - 120.4	
159 Tb	3	19233412	0.45	19484246	98.7	59.5 - 120.4	
209 Bi	3	20228646	0.42	21710272	93.2	59.5 - 120.4	

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

3 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\028SMPL.D\028SMPL.D#		
Date Acquired:	Sep 20 2016 08:19 pm		
Acq. Method:	ACZ_T3.M	Data Re	esults:
Operator:		Analytes:	Fail
Sample Name:	L32770-08	ISTD:	Pass
Misc Info:			
Vial Number:	4402		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal. Update:	Sep 20 2016 07:35 pm		
Sample Type:	Sample		
Dilution Factor:	500.00		
Autodil Factor:	Undiluted		
Final Dil Factor:	500.00		

QC Elements

QC Elements									
Ele	ment	IS Ref	Tune	Corr Conc	Raw Conc	Units	RSD(%)	High Limit	Flag
9	Ве	б	3	197.050	0.394	ppb	3.18	200.00	
11	В	б	3	10,375.000	20.750	ppb	0.50	20.00	OCAL
27	Al	72	3	###########	11970.000	ppb	0.75	1000.00	OCAL
55	Mn	72	3	371,700.000	743.400	ppb	0.77	200.00	OCAL
59	Co	72	3	8,840.000	17.680	ppb	1.15	200.00	
66	Zn	72	3	52,300.000	104.600	ppb	0.20	1000.00	
98	Мо	115	3	497.800	0.996	ppb	2.38	200.00	
107	Ag	115	3	34.705	0.069	ppb	2.14	50.00	
111	Cd	115	3	188.550	0.377	ppb	4.36	200.00	
118	Sn	115	3	3,674.000	7.348	ppb	0.66	200.00	
121	Sb	115	3	72.700	0.145	ppb	0.82	25.00	
125	Те	115	3	16.305	0.033	ppb	43.30	200.00	
133	Cs	115	3	412.750	0.826	ppb	0.56	200.00	
137	Ba	115	3	398,150.000	796.300	ppb	1.77	200.00	OCAL
205	Tl	209	3	32.065	0.064	ppb	5.48	200.00	
208	Pb	209	3	6,010.000	12.020	ppb	0.91	500.00	
232	Th	209	3	2,585.000	5.170	ppb	0.93	200.00	
238	U	209	3	384.050	0.768	ppb	1.43	200.00	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%) Flag
6 Li	3	4414597	0.90	4492701	98.3	59.5 - 120.4
45 Sc	3	19382014	0.96	19038030	101.8	59.5 - 120.4
72 Ge	3	4201932	0.85	4215163	99.7	59.5 - 120.4
74 Ge	3	5627232	0.36	5782803	97.3	59.5 - 120.4
115 In	3	14511635	1.89	15293276	94.9	59.5 - 120.4
159 Tb	3	19179974	0.46	19484246	98.4	59.5 - 120.4
209 Bi	3	20124262	1.20	21710272	92.7	59.5 - 120.4

Tune	File#	1	C:\ICPCHEM\1\7500\
Tune	File#	2	$C:\ICPCHEM\1\7500\$
Tune	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

4 :Element Failures	0 :Max. Number of Failures Allowed
0 :ISTD Failures	0 :Max. Number of ISTD Failures Allowed

Continuing Calibration Verification (CCV) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\029_C	CV.D\029_CCV	.D#
Date Acquired:	Sep 20 2016 08:21 pm		
Operator:		Data Re	esults:
Sample Name:	CCV	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1105		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCV		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc. ppb	RSD(%)	Expected	Rec(%)	QC Range(%)	Flag
9 Be	6	3	99.200	0.34	100.00	99.2	89 - 110	
11 B	6	3	9.922	1.18	10.00	99.2	89 - 110	
27 Al	72	3	503.900	0.72	500.00	100.8	89 - 110	
55 Mn	72	3	98.890	0.62	100.00	98.9	89 - 110	
59 Co	72	3	97.900	0.27	100.00	97.9	89 - 110	
66 Zn	72	3	490.600	0.10	500.00	98.1	89 - 110	
98 Mo	115	3	98.860	1.06	100.00	98.9	89 - 110	
107 Ag	115	3	24.920	0.75	25.00	99.7	89 - 110	
111 Cd	115	3	97.770	1.39	100.00	97.8	89 - 110	
118 Sn	115	3	99.120	0.31	100.00	99.1	89 - 110	
121 Sb	115	3	11.900	0.55	12.50	95.2	89 - 110	
125 Te	115	3	99.830	0.19	100.00	99.8	89 - 110	
133 Cs	115	3	98.110	1.00	100.00	98.1	89 - 110	
137 Ba	115	3	250.200	1.14	250.00	100.1	89 - 110	
205 Tl	209	3	99.830	1.44	100.00	99.8	89 - 110	
208 Pb	209	3	245.600	1.00	250.00	98.2	89 - 110	
232 Th	209	3	97.310	1.30	100.00	97.3	89 - 110	
238 U	209	3	99.220	0.87	100.00	99.2	89 - 110	

ISTD Elements

Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC Range(%)	Flag
6 Li	3	4501206	0.26	4492701	100.2	60 - 120	
45 Sc	3	19069838	0.88	19038030	100.2	60 - 120	
72 Ge	3	4201239	0.44	4215163	99.7	60 - 120	
74 Ge	3	5796769	0.47	5782803	100.2	60 - 120	
115 In	3	15189531	0.55	15293276	99.3	60 - 120	
159 Tb	3	19437618	1.22	19484246	99.8	60 - 120	
209 Bi	3	21339786	0.43	21710272	98.3	60 - 120	

Τı	une	File#	1	C:\ICPCHEM\1\7500\
Τı	une	File#	2	C:\ICPCHEM\1\7500\
T	une	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File : C:\ICPCHEM\1\DATA\wg410083.b\003CALB.D\003CALB.D#

0 :Element Failures	0	:Max.	Number	of	Fail	ures Allo	wed
0 :ISTD Failures	0	:Max.	Number	of	ISTD	Failures	Allowed

Continuing Calibration Blank (CCB) QC Report

Data File:	C:\ICPCHEM\1\DATA\wg410083.b\030_CCB.D	030_CCB.D#	
Date Acquired:	Sep 20 2016 08:23 pm		
Operator:		Data Re	sults:
Sample Name:	CCB	Analytes:	Pass
Misc Info:		ISTD:	Pass
Vial Number:	1102		
Current Method:	C:\ICPCHEM\1\METHODS\ACZ_T3.M		
Calibration File:	C:\ICPCHEM\1\CALIB\ACZ_T3.C		
Last Cal Update:	Sep 20 2016 07:35 pm		
Sample Type:	CCB		
Total Dil Factor:	1.00		

QC Elements

Element	IS Ref	Tune	Conc.	RSD(%)	High Limit	Flag
9 Be	б	3	0.041 ppb	35.14	0.150	
11 B	б	3	-0.063 ppb	82.34	1.500	
27 Al	72	3	1.974 ppb	24.86	3.000	
55 Mn	72	3	0.106 ppb	24.99	1.500	
59 Co	72	3	0.038 ppb	32.10	0.150	
66 Zn	72	3	0.189 ppb	40.25	6.000	
98 Mo	115	3	0.043 ppb	24.42	1.500	
107 Ag	115	3	0.011 ppb	32.41	0.150	
111 Cd	115	3	0.041 ppb	30.25	0.300	
118 Sn	115	3	0.056 ppb	30.02	0.300	
121 Sb	115	3	0.113 ppb	26.49	1.200	
125 Te	115	3	0.062 ppb	41.29	3.000	
133 Cs	115	3	0.047 ppb	28.51	0.600	
137 Ba	115	3	0.200 ppb	26.81	0.300	
205 Tl	209	3	0.051 ppb	28.95	0.300	
208 Pb	209	3	0.102 ppb	32.64	0.300	
232 Th	209	3	0.085 ppb	10.29	3.000	
238 U	209	3	0.036 ppb	33.39	0.300	

ISTD Elements								
Element	Tune	CPS Mean	RSD(%)	Ref Value	Rec(%)	QC R	Range(%)	Flag
6 Li	3	4471512	0.77	4492701	99.5	60	- 120	
45 Sc	3	18883706	0.65	19038030	99.2	60	- 120	
72 Ge	3	4171652	0.49	4215163	99.0	60	- 120	
74 Ge	3	5750944	0.93	5782803	99.4	60	- 120	
115 In	3	15049101	1.02	15293276	98.4	60	- 120	
159 Tb	3	19390334	0.26	19484246	99.5	60	- 120	
209 Bi	3	21211680	0.48	21710272	97.7	60	- 120	

Tune H	Tile#	1	$C:\ICPCHEM\1\7500\$
Tune H	File#	2	C:\ICPCHEM\1\7500\
Tune H	File#	3	C:\ICPCHEM\1\7500\norm.u

ISTD Ref File :

0 :Element Failures	:Max. Number of Failures Allowed	
0 :ISTD Failures	:Max. Number of ISTD Failures All	.owed

	QC List Type: I-X-305 QC List Type: I-X-305 QCListMatClass: SOLID Bench Sheet List: R-GRC QC Ref: SP-305 Group ID: SP-G-3 Method Ref: M3050 SOP Ref: SOPS0	QC List Type: I-X-3050 QC List Type: I-X-3050 QCListMatClass: SOLID Bench Sheet List: R-GROSS-AB QC Ref: SP-3050MSICP Group ID: SP-G-3050-MSICP Method Ref: M3050B SOP Ref: SOPSO28/SOPSO029	P IICP SO029		\geq	U	7		い言		40985					C Start End	Instrument ID: SÖILSPREP Analyst: BCC ACZ Dept: 20 Create Date: 09/15/2016 5 itart Date/Time: 09/15/2016 5 End Date/Time: 09/16/2016 1	Instrument ID: SOILSPREP Analyst: BCC ACZ Dept: 20 Create Date: 09/15/2016 9:21 Start Date/Time: 09/15/2016 9:30 End Date/Time: 09/16/2016 13:45
Шa	ACZ ID	Client ID	Sdus	, ind	Analysis Date	Sampl e Weigh t	HNO3	Sampi HNO3 H2O2 e Weigh t	P	Soil Extrac t Volum e	SCN volum e	Air Dry or Perce nt Solid	Pan Weigh 1	Pan and Sampl e t	Pan Dried and Sampl Sample and e Pan Veigh Weigh t t	Air Dry Solids	Dilutio	Comments
						(b)	(mL)	(mL)	(mL)	(mL)	(mL)	(%)	(6)	(6)	(6)	(%)		
1 WG	WG409857PBS	NONE	<200	1	09/15/16 9:30	0	7.5	5	2	50			1.271	7.746	7.746 1.271	00.	100	
2 WG4	WG409857LCSS	PCN51904	<200		09/15/16 11:15	0.5	7.5	5	2	50		100			-		100	i.
	WG409857LCSSD	PCN51904	<200	1	09/15/16 13:01	0.5	7.5	5	5	50		100					100	
4	L32739-01	SANDRIDGE FRAC SAND	<200		09/15/16 14:47	0.5	7.5	5	5	50			1.27	7.876	7.836	99.39	101	
5 L32	L32739-01MS	11160831-5	<200		09/15/16 16:33	0.5	7.5	ŝ	S	50	0.5	99.39					101	
6 L32	L32739-01MSD	1160831-5	<200		09/15/16 18:19	0.5	7.5	2	2	50	0.5	99.39					101	
7 1	L32770-01	T6-035 NMM-A	<200		09/15/16 20:05	0.5	7.5	2	5	50			1.268	7.02	7.006	99.76	100	
8	L32770-02	16-036 NMGZ-A	<200	-	09/15/16 21:51	0.5	7.5	5	2	50						99.65	100	
6 6	L32770-03	16-037 NMN-A	<200	-	09/15/16 23:37	0.5	7.5	5	5	50			1.271	7 333		02 66	100	
10 L	L32770-04	16-038 NMO-A	<200	-	09/16/16 1:23	0.5	7.5	5	2	50					7 237	89.68	100	
11 L32	L32770-04MS	MS160803-3	<200	É	09/16/16 3:09	0.5	7.5	2	5	50	0.25	99.68	1 273		7 973	99.66	100	
12 L32	L32770-04MSD	MS160803-3	<200	-	09/16/16 4:55	0.5	7.5	5	2	50	-					3	100	
13 L	L32770-05	16-039 NMO-B	<200	E	09/16/16 6:41	0.5	7.5	2	5	50	-		1.276	7.115	7.096	79.62	100	
14 L	L32770-06	16-040 NML-A	<200		09/16/16 8:27	0.5	7.5	5	2	50				7.372	7.351	99.66	100	
15 L	L32770-07	16-041 NMD-A	<200	-	09/16/16 10:13	0.5	7.5	5	2	50				7.276	7.259	99.72	100	
16 L	L32770-08	16-042 NMAA-A	<200	Ē	09/16/16 11:59	0.5	7.5	5	5	50		F	1	7.954	7.934	99.70	100	
17 L	L32928-01	102-44-10	<200	30 0	09/16/16 13:44	0.5	7.5	2	5	50		97.73					102	

Page 1 of 2

T

L32770-1611091107

S
SM
ICP ICP
ICP
050
30

QC List Type: I-X-3050 QCListMatClass: SOLID Bench Sheet List: R-GROSS-AB QC Ref: SP-3050MSICP Group ID: SP-G-3050-MSICP Method Ref: M3050B SOP Ref: SOPS028/SOPS0029

s, Inc	
ories	ł
orate	
Lab	1000
	10.00
A	ł

Analyst: BCC	BCC	
ACZ Dept: 20	20	
Create Date:	Create Date: 09/15/2016 9:21	
Start Date/Time:	Start Date/Time: 09/15/2016 9:30	
End Date/Time:	End Date/Time: 09/16/2016 13:45	

Sample	Login Comments
L32739-01	SJ(4) [] 3 INORG SJ in the Inorganic cooler.
L32739-01MS	ICP Spike
L32739-01MSD	ICP Spike
L32770-01	SJ In the Inorganic cooler,
L32770-02	SJ In the Inorganic cooler
L32770-03	SJ In the Inorganic cooler.
L32770-04	SJ(2) In the Inorganic cooler. Run QC.
L32770-04MS	ICPMS Spike
L32770-04MSD	ICPMS Spike
L32770-05	SJ In the Inorganic cooler.
L32770-06	SJ In the Inorganic cooler,
L32770-07	SJ In the Inorganic cooler.
L32770-08	SJ If In the Inorganic cooler,
L32928-01	ZIPLOCK RELOG OF L32117-04 II In the Ingraanic cooler

Date	Plage 59 of 91
1	9/16/2016 2:19:23 PM
	Initials, Date

Initials, Date

AREV:

N	
5	
Je 2	
Pag	

L32770-1611091107

Internal Comments

Report Comments:

ACZ Laboratories, Inc. Geochemistry Department Data Review and Reagents

Analyst: BCC

Workgroup: 40985 7

Analysis Date: 9 15-916116

Sample type used: 50

Extraction / Digestion / Analysis / Prep / Calc:

Data Reviewer: BCC Date: 9.16.16

Approved Date:

	Yes	No	N/A
1. Is the raw data checked to the computer printout for transcription errors?	*		
2. Is the %solid or TS attached for dilution factors?	×/		
3. Were proper volumes of reagents used per final volume?	*/		
4. Was the proper sub-sample used (as received, 2000, \$500, <250, dry, R&P)?	*	/	
5. Were the dilution factor calculation checked (final volume, weight, %solid)?	×		-
5. Did the RPD pass?	#		
7. Does all the spike information correlate with each other?	1		
8. Is the appropriate spike in the computer-designated line?	4	1	
9. Are all errors properly corrected (single-line crossout, dated & initialed)?	1	1	NUL.
10. Is the standard/reagent information complete and current?	4	1	
11. Is your instrument calibration passing (and included in the data package if needed)?	1	/	
FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS?	1/	1	

Standard/Reagent/Equipment*	PCN/SCN/LOT #*	Expiration Date
50 ML Digestion Tuks	1512329-8A-6225-QN	
14.203	51528	1-20-18
HeOz	51491, 51485	4-30-18
HC1	51243	1-27-19
Workgroup documentation must include the lot		

*Workgroup documentation must include the lot number(s) of all disposable vessels used for volumetric measurements.

Comments:

Instrument ID: SOILSPREP Anālyst: BCC ACZ Dept: 20 Create Date: 08/26/2016 8:19 Start Date/Time: 08/26/2016 14:30 End Date/Time: 08/26/2016 14:30	Comments						ADOC	2000												e: 1 e Initials, Date	sh h	Initials, Date
Instrument ID: SOILSPREP Anālyst: BCC AC2 Dept: 20 Create Date: 08/26/2016 8:19 Start Date/Time: 08/26/2016 14:30 End Date/Time: 08/26/2016 14:30	Dilutio		100	100	100	101	102	102	102	103	102	102	101	102	101	102	102		201 6.21 11	2.0	¢	Cried July
Cre Cre Start D End D	Air D Dry Solids	(%)	8		-	-	98.07	-	97.84	1	98.18	97.69		_		97.86	1			AREV: IXL		SREV:
	Dried Sampl e and S Pan Weigh	(B)	1.261				2.304 9		4.3 9	Im	2.497 90	1.986 9	3.529 90	3.599 98	2.296 98	1.804 9	1.578 1.571 97.73			AF		R.S.
	Pan Dried and Sampl Sampleand e Pan Weigh Weigh	(6)	9.151 1			2.016 2	2.324 2	1	4.367		2.52 2	2.003 1	3.554 3.			1.816 1.	578 1.					
~	Pan Weigh t V	(6)	1.261 9			1.263 2	1 262 4	1	1.268 4	1.268 1	1.259 2	1.267 2	1.273 3			1.2561	1.27 1					
	Air Dry V or Perce Solid	(%)		100	100		98.11	_	-	-	-	-	-	-		-	-					
		(mL)				1	0.5		1					1	T		T					
	Soil SCN Extrac Volum t e Volum e	(mL)	50	50	20	200	50	50	50	50	50	50	50	20	20	200	20					
	Ę	(mL)	ŝ	2	-01	n u	מי מ	2	5	2	5	5	2	2	5	0 4	2 5					
\mathbf{O}	H202	(mL)	5	2	5	0 4	2 0	5	2	S	5	2	5	S	5	n 4	2 40			1		
4	sampi HNO3 H2O2 e Weigh t	(mL)	7.5	7.5	7.5	0.1	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	2 4	7.5					
	Sampl e Weigh t	(B)	0	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.0	0.5					
	Analysis Date		08/26/16 8:20	08/26/16 8:43	03/26/16 9:06	00/20/10 9.29	08/26/16 10:15	08/26/16 10:38	08/26/16 11:01	08/26/16 11:25	08/26/16 11:48	08/26/16 12:11	08/26/16 12:34	08/26/16 12:57	08/26/16 13:20	08/26/15 14:07	08/26/16 14:30	82 NT - 04)			
	Pa					1			0	0	0	0						3211				
P 0029	SubSX		<250	<250	<250	2050	<250	<250	<250	<250	<250	<250	<250	×250	<250	<250	<250	of				
CC-List Type: 1:X:3050 QCListMatClass: SOLID Bench Sheet List: R-GROSS-AB QC Ref: SP-3050MSICP Group ID: SP-G-3050-MSICP Method Ref: M3050B SOP Ref: SOPSO28/SOPSO029	Client ID		NONE	PCN51347	AND AAL 1 BI ANN	102-44-3	11160802-3	li160802-3	102-44-4	102-44-6 BLANK	102-44-8	102-44-9	102-44-11 SOIL BLANK	71-66-701	102-44-5	102-44-7 BLANK	102-44-10	Re loy				
QC'List'Type: 1:X:3050 QC'ListMätClass: SOLID Bench Sheet List: R-GROS QC Ref: SP-3050 Group ID: SP-G-30 Method Ref: M3050B SOP Ref: SOPS02	ACZ ID		WG408873PBS	WG408873LCSS	WG4088/3LCSSD	1 32446-02	L32116-02MS	L32116-02MSD	L32116-03	L32116-04	L32116-05			L32116-08	L32117-01	132117-02	L32117-04	132928.01	Report Comments.		Internal Comments	
	щa	Ì	-	-	2	t u	9	7	8	თ	10	=	12	2	t 4	19	17	l	Repo		Interr	

İ

11

SOP Ref: SOPSO28/SOPSO029	Clinet ID	SubSX Pri	Pri Analvsis Date	Sampl HNO3 H2O2									
se Acz ID Q				Weigh t	03 H202	HCI ACI	Soil SCN Air Extract Volum Dry or e Perce Volum nt e Solid	N Air um Dry or Perce nt Solid	Pan t t		Dried Air Sampl Dry e and Solids Pan Weigh t	Dilutio	Comments
1 WG409857PBS	NONE			-	S	-	_		- 1LZ1	(6) (6) (8) (8)	-		
	PCN51904			0						2			
SN NG	PCN51904			0.5k	-	_							
4 L32/39-01 5 1 32730_01MS	34/10/10/00 FRAU SAMU	62000		0.300	-				PLZ-1	1.270 1.576 7.536	136		
	11160831-5			075-0			01500	9		1			
-	16-035 NMM-A			0.500		1	045.0	0	1 200	LL VCOL	2006		
8 L32770-02	16-036 NMGZ-A			0 Sto					1 269 2	2577 3	1 549		
9 L32770-03	16-037 NMN-A			0.50					C 1221	L 222 L	7.315		
	16-038 NMO-A			0.50					1.273	1.256 7.231	10		
_	MS160803-3			c Sto			028	8	1.273 T	2796 7973	73		AD OC
5	MS160803-3			0.300			0250	Q					
	16-039 NMO-B			0.520					· 9121	1276 7115 7.096	096		
	18-040 NML-A			0.520					121 7312 721	372 7:	21		
	16-041 NMD-A			05:0					PCS. F 212 1. 276 7.29	L 91.2	124		
	16-042 NMAA-A	-		0250					1213	1.954 7.934	134		
17 L32928-01	102-44-10	-	30	0.500 -	4	1	4						

2
PMS
<u>S</u>
5 D
0
050
2
1.3

QC List Type: I-X-3050 QCListMatClass: SOLID Bench Sheet List: R-GROSS-AB QC Ref: SP-3050MSICP Group ID: SP-G-3050-MSICP Method Ref: M3050B SOP Ref: SOPSO28/SOPSO029

Start Date/Time:	Instrument ID: SOILSPREP Analyst:	Instrument ID: SOILSPREP	istrument ID: SOILSPREP Analyst: ACZ Dept: 20 Create Date: 09/15/2016 9:21 th Date/Time:
------------------	--------------------------------------	--------------------------	--

Sample	Login Comments
L32739-01	SJ(4) [] 3 INORG SJ in the Inorganic cooler-
L32739-01MS	ICP Spike
L32739-01MSD	ICP Spike
L32770-01	SJ In the Inorganic cooler,
L32770-02	SJ In the Inorganic cooler,
L32770-03	SJ In the Inorganic cooler.
L32770-04	SJ(2) In the Inorganic cooler. Run DC.
L32770-04MS	ICPMS Spike
L32770-04MSD	ICPMS Spike
L32770-05	SJ In the Inorganic cooler.
L32770-06	SJ In the Inorganic cooler
L32770-07	SJ In the Inorganic cooler
L32770-08	SJ In the Inorganic cooler.
L32928-01	ZIPLOCK - RELOG OF L32117-04 II In the Inorganic cooler

Initials, Date	Initials, Page 63 of 91	9/15/2016 9:22:05 AM 91616
	SREV:	9/15/2

AREV:

Report Comments:

Internal Comments

L32770-1611091107

Page 2 of 2

Workgroup Review and Approval

Date Reported: 19-Sep-16 Run ID: R1451806 Date Analyzed: 15-Sep-16 ICAL Workgroup: Instrument ID: SOILSPREP

WG4	09857PBS		Tag:	g:					easure	d: 9/15/	2016 9:30	0:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	PREP	0	100		%	++					
SREV	DILUTION	REG	100	100			++					
SREV	DRIED SAMPLE AND PAN WEIGHT	PREP	1.271	100		g	++					
SREV	H2O2	PREP	5	100		mL	++					
SREV	HCL	PREP	5	100		mL	++					
SREV	HNO3	PREP	7.5	100		mL	++					
SREV	PAN AND SAMPLE WEIGHT	PREP	7.746	100		g	++					
SREV	PAN WEIGHT	PREP	1.271	100		g	++					
SREV	VOLUME, SOIL EXTRACT	PREP	50	100		mL	++					
SREV	WEIGHT, SAMPLE	PREP	0	100		g	++					

WG4	WG409857LCSS		Tag:				Μ	leasure	ed: 9/15/	2016 11:	15:56 AM
Status	Parm_Stored	Туре	Value	Dil	Qual Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY OR PERCENT SOLID	PREP	100	100	%	++					
SREV	DILUTION	REG	100	100		++					
SREV	H2O2	PREP	5	100	mL	++					
SREV	HCL	PREP	5	100	mL	++					
SREV	HNO3	PREP	7.5	100	mL	++					
SREV	VOLUME, SOIL EXTRACT	PREP	50	100	mL	++					
SREV	WEIGHT, SAMPLE	PREP	0.5	100	g	++					

WG409857LCSSD

Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY OR PERCENT SOLID	PREP	100	100		%	++					
SREV	DILUTION	REG	100	100			++					
SREV	H2O2	PREP	5	100		mL	++					
SREV	HCL	PREP	5	100		mL	++					
SREV	HNO3	PREP	7.5	100		mL	++					
SREV	VOLUME, SOIL EXTRACT	PREP	50	100		mL	++					
SREV	WEIGHT, SAMPLE	PREP	0.5	100		g	++					

Tag:

9/15/2016 1:01:52 PM

Measured:

L327	39-01		Tag:					М	easure	d: 9/15/	2016 2:47	7:48 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	X-3050	99.39	101		%	++					
SREV	DILUTION	X-3050	101	101			++					
SREV	DRIED SAMPLE AND PAN WEIGHT	X-3050	7.836	101		g	++					
SREV	H2O2	X-3050	5	101		mL	++					
SREV	HCL	X-3050	5	101		mL	++					
SREV	HNO3	X-3050	7.5	101		mL	++					
SREV	PAN AND SAMPLE WEIGHT	X-3050	7.876	101		g	++					
SREV	PAN WEIGHT	X-3050	1.27	101		g	++					
SREV	VOLUME, SOIL EXTRACT	X-3050	50	101		mL	++					
SREV	WEIGHT, SAMPLE	X-3050	0.5	101		g	++					

L32739-01MS

L3273	39-01MS		Tag:					М	easure	d: 9/15	/2016 4:3	3:44 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY OR PERCENT SOLID	PREP	99.39	101		%	++					
SREV	DILUTION	REG	101	101			++					
SREV	H2O2	PREP	5	101		mL	++					
SREV	HCL	PREP	5	101		mL	++					
SREV	HNO3	PREP	7.5	101		mL	++					
SREV	SCN VOLUME	PREP	0.5	101		mL	++					
SREV	VOLUME, SOIL EXTRACT	PREP	50	101		mL	++					
SREV	WEIGHT, SAMPLE	PREP	0.5	101		g	++					

L3273	.32739-01MSD		Tag:				Μ	leasure	d: 9/15/	2016 6:19	9:40 PM	
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY OR PERCENT SOLID	PREP	99.39	101		%	++					
SREV	DILUTION	REG	101	101			++					
SREV	H2O2	PREP	5	101		mL	++					
SREV	HCL	PREP	5	101		mL	++					
SREV	HNO3	PREP	7.5	101		mL	++					
SREV	SCN VOLUME	PREP	0.5	101		mL	++					
SREV	VOLUME, SOIL EXTRACT	PREP	50	101		mL	++					
SREV	WEIGHT, SAMPLE	PREP	0.5	101		g	++					

L327	70-01		Tag:					М	easure	d: 9/15/	5:36 PM	
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	X-MS-3050	99.76	100		%	++					
SREV	DILUTION	X-MS-3050	100	100			++					
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.006	100		g	++					
SREV	H2O2	X-MS-3050	5	100		mL	++					
SREV	HCL	X-MS-3050	5	100		mL	++					
SREV	HNO3	X-MS-3050	7.5	100		mL	++					
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.02	100		g	++					
SREV	PAN WEIGHT	X-MS-3050	1.268	100		g	++					
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++					
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++					

L3277	70-02		Tag:						Measured:		: 9/15/2016 9:51		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
SREV	AIR DRY SOLIDS	X-MS-3050	99.65	100		%	++						
SREV	DILUTION	X-MS-3050	100	100			++						
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	3.569	100		g	++						
SREV	H2O2	X-MS-3050	5	100		mL	++						
SREV	HCL	X-MS-3050	5	100		mL	++						
SREV	HNO3	X-MS-3050	7.5	100		mL	++						
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	3.577	100		g	++						
SREV	PAN WEIGHT	X-MS-3050	1.269	100		g	++						
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++						
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++						

L3277	70-03		Tag:					Measured:		ed: 9/15/	: 9/15/2016 11:3		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
SREV	AIR DRY SOLIDS	X-MS-3050	99.7	100		%	++						
SREV	DILUTION	X-MS-3050	100	100			++						
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.315	100		g	++						
SREV	H2O2	X-MS-3050	5	100		mL	++						
SREV	HCL	X-MS-3050	5	100		mL	++						
SREV	HNO3	X-MS-3050	7.5	100		mL	++						
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.333	100		g	++						
SREV	PAN WEIGHT	X-MS-3050	1.271	100		g	++						
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++						
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++						

L327	70-04		Tag:					Measured:		ed:	9/16/2016 1:2		3:24 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text	Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	X-MS-3050	99.68	100		%	++						
SREV	DILUTION	X-MS-3050	100	100			++						
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.237	100		g	++						
SREV	H2O2	X-MS-3050	5	100		mL	++						
SREV	HCL	X-MS-3050	5	100		mL	++						
SREV	HNO3	X-MS-3050	7.5	100		mL	++						
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.256	100		g	++						
SREV	PAN WEIGHT	X-MS-3050	1.273	100		g	++						
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++						
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++						

L3277	70-04MS		Tag:					М	easure	d: 9/16/	I: 9/16/2016 3:09:20 AM			
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal		
SREV	AIR DRY OR PERCENT SOLID	PREP	99.68	100		%	++							
SREV	AIR DRY SOLIDS	PREP	99.66	100		%	++							
SREV	DILUTION	REG	100	100			++							
SREV	DRIED SAMPLE AND PAN WEIGHT	PREP	7.973	100		g	++							
SREV	H2O2	PREP	5	100		mL	++							
SREV	HCL	PREP	5	100		mL	++							
SREV	HNO3	PREP	7.5	100		mL	++							
SREV	PAN AND SAMPLE WEIGHT	PREP	7.996	100		g	++							
SREV	PAN WEIGHT	PREP	1.273	100		g	++							
SREV	SCN VOLUME	PREP	0.25	100		mL	++							
SREV	VOLUME, SOIL EXTRACT	PREP	50	100		mL	++							
SREV	WEIGHT, SAMPLE	PREP	0.5	100		g	++							

L32770-04MSD Tag: Measured: 9/16/2016 4:55:16 AM MDL Parm_Stored Value Dil Qual Units PQL Text Value Ext Qual Signal Status Туре Appv PREP AIR DRY OR 99.68 SREV 100 % ++ PERCENT SOLID REG SREV DILUTION 100 100 ++ SREV H2O2 PREP 5 100 mL ++ PREP 5 SREV HCL 100 mL ++ PREP SREV HNO3 7.5 100 mL ++ PREP SREV SCN VOLUME 0.25 100 mL ++ VOLUME, SOIL EXTRACT PREP SREV 50 100 mL ++ SREV WEIGHT, SAMPLE PREP 0.5 100 ++ g

L327	70-05		Tag:				Μ	easure	d: 9/16/	9/16/2016 6:41:12 A			
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
SREV	AIR DRY SOLIDS	X-MS-3050	99.67	100		%	++						
SREV	DILUTION	X-MS-3050	100	100			++						
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.096	100		g	++						
SREV	H2O2	X-MS-3050	5	100		mL	++						
SREV	HCL	X-MS-3050	5	100		mL	++						
SREV	HNO3	X-MS-3050	7.5	100		mL	++						
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.115	100		g	++						
SREV	PAN WEIGHT	X-MS-3050	1.276	100		g	++						
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++						
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++						

L327	770-06		Tag:						easure	d: 9/16/	9/16/2016 8:27:08 A			
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal		
SREV	AIR DRY SOLIDS	X-MS-3050	99.66	100		%	++							
SREV	DILUTION	X-MS-3050	100	100			++							
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.351	100		g	++							
SREV	H2O2	X-MS-3050	5	100		mL	++							
SREV	HCL	X-MS-3050	5	100		mL	++							
SREV	HNO3	X-MS-3050	7.5	100		mL	++							
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.372	100		g	++							
SREV	PAN WEIGHT	X-MS-3050	1.271	100		g	++							
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++							
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++							

L327	70-07		Tag:					r	Measure	d: 9/16/	2016 10:	13:04 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	X-MS-3050	99.72	100		%	++					
SREV	DILUTION	X-MS-3050	100	100			++					
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.259	100		g	++					
SREV	H2O2	X-MS-3050	5	100		mL	++					
SREV	HCL	X-MS-3050	5	100		mL	++					
SREV	HNO3	X-MS-3050	7.5	100		mL	++					
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.276	100		g	++					
SREV	PAN WEIGHT	X-MS-3050	1.27	100		g	++					
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++					
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++					

L327	70-08		Tag:					М	easure	d: 9/16/	2016 11:	59:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	AIR DRY SOLIDS	X-MS-3050	99.7	100		%	++					
SREV	DILUTION	X-MS-3050	100	100			++					
SREV	DRIED SAMPLE AND PAN WEIGHT	X-MS-3050	7.934	100		g	++					
SREV	H2O2	X-MS-3050	5	100		mL	++					
SREV	HCL	X-MS-3050	5	100		mL	++					
SREV	HNO3	X-MS-3050	7.5	100		mL	++					
SREV	PAN AND SAMPLE WEIGHT	X-MS-3050	7.954	100		g	++					
SREV	PAN WEIGHT	X-MS-3050	1.273	100		g	++					
SREV	VOLUME, SOIL EXTRACT	X-MS-3050	50	100		mL	++					
SREV	WEIGHT, SAMPLE	X-MS-3050	0.5	100		g	++					

L329	28-01		Tag:				N	leasure	d: 9/16/	9/16/2016 1:44:		
Status	Parm_Stored	Туре	Value	Dil	Qual Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
SREV	AIR DRY OR PERCENT SOLID	X-3050	97.73	102	%	++						
SREV	DILUTION	X-3050	102	102		++						
SREV	H2O2	X-3050	5	102	mL	++						
SREV	HCL	X-3050	5	102	mL	++						
SREV	HNO3	X-3050	7.5	102	mL	++						
SREV	VOLUME, SOIL EXTRACT	X-3050	50	102	mL	++						
SREV	WEIGHT, SAMPLE	X-3050	0.5	102	g	++						

S	1
0	l
P	ł
0	l
S	
-	
it	l
0	ĺ
Se	l
- 2	I
e	l
ц.	

Group ID: SA-G-PCNT-SOLID QC-List Type: QC-MST-PCNT Bench Sheet List: I-MST-PCNT SOP Ref: SOPS0026 QC Ref: PBS-DUP QCListMatClass: SOLID Method Ref: USDA

ACZ Laboratories, Inc

Create Date: 09/12/2016 8:55 Start Date/Time: 09/12/2016 9:00 End Date/Time: 09/13/2016 9:00 Instrument ID: SOILS Analyst: rbt ACZ Dept: 25

ACZ ID		WG409607PBS	L32739-01	L32770-01	L32770-02	L32770-03	L32770-04	L32770-04DUP	L32770-05	L32770-06	10 L32770-07	L32770-08	Sample Lu	L32739-01 S.	_32770-01 S.	L32770-02 S.	
Client ID		S NONE	SANDRIDGE FRAC SAND	16-035 NMM-A	16-036 NMGZ-A	16-037 MMN-A	16-038 NMO-A	NONE	16-039 NMO-8	18-040 NML-A	16-041 NMD-A	15-042 NMAA-A	Login Comments	SJ(4) 3 INORG SJ in the thorganic cooler	SJ In the Inorganic cooler.	SJ In the Inorganic cooler	
SubSX F		as rec	as rec	as rec	as rec	as rec	as rec	as rec	as rec	as rec	as rec	as rec		nic cooler.			
SubSX Pri Analysis Date		09/12/16 9:00	09/12/16 11:24	09/12/16 13:48	09/12/16 16:12	09/12/16 18:36	09/12/16 21:00	09/12/16 23:24	09/13/16 1:48	09/13/16 4:12	09/13/16 6:36	09/13/16 9:00		t			
Pan Weight	(6)	1.268	1.263	1.264	1.266	1,265	1.268	1.269	1.264	1.264	1.263	1.26					
Pan And Sample Weight	(6)	8.839	11.38	12.054	10.932	13.17	10.994	9.995	13.193	10.156	10.421	9.415					
Dried Sample And Pan Weight	(B)	1.268	9.51	10.359	10.348	9.967	8.393	7,684	10.093	8.881	9.555	7.235					
Dried Sample Percent Solid And Pan Weight	(%)	00.	81.52	84.29	93,96	73.10	73.26	73.52	74.01	85.66	90.54	73.27					
Percent Moisture	(%)	100.00	18.48	15.71	6.04	26.90	26.74	26.48	25.99	14.34	9.46	26.73					
Comments																	

Run QC.

SJ(2) || In the Inorganic cooler.

SJ || In the Inorganic cooler SJ || In the Inorganic cooler SJ || In the Inorganic cooler SJ || In the Inorganic cooler

L32770-04 L32770-05 L32770-06 L32770-06 L32770-07

9/13/2016 9:23:33 AM Bage 69 of 91 21/21/19 Initials, Date Initials, Date ACC AREV: RDT SREV Internal Comments Report Comments:

Page 1 of 1

L32770-1611091107

ACZ Laboratories, Inc. Geochemistry Department Data Review and Reagents

Analyst: 28-

Workgroup: w6409607

Analysis Date: 9/13/16 Sample type used: 50/50 Extraction / Digestion / Analysis / Prep / Calc:

Data Reviewer: PDT Date: 9/13/16

FRO Approved: Date:

	Yes	No-	N/A
1. Is the raw data checked to the computer printout for transcription errors?	1/		1
2. Is the %solid or TS attached for dilution factors?	12.4		11
3. Were proper volumes of reagents used per final volume?			V
4. Was the proper sub-sample used (as received, <2000, <500, <250, dry, R&P)?	1		
5.Were the dilution factor calculation checked (final volume, weight, %solid)?		/	1
6. Did the RPD pass?	1		
7. Does all the spike information correlate with each other?			1
8. Is the appropriate spike in the computer-designated line?			1
9. Are all errors properly corrected (single-line crossout, dated & initialed)?	1		
10. Is the standard/reagent information complete and current?			V
11. Is your instrument calibration passing (and included in the data package if needed)?	12		T.
FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS?	11		

Standard/Reagent/Equipment*	PCN/SCN/LOT #*	Expiration Date
		1
Workgroup documentation must include the lot num	nber(s) of all disposable vessels used f	for volumetric measurements.

Comments:

L32770-1611091107

FRMSOPage170sof 91

AC2 ID Clear ID SubSX Pl Analysis Date Pan Modility Paned Sample Present Solid Percent So	D.I.	Percent Solids QC List Type: QC-MS QCLIstMatClass: SOLID Bench Sheet List: I-MST- QC Ref: PBS-D Group ID: SA-G-I Method Ref: USDA SOP Ref: SOPS(It Solids QC List Type: QC-MST-PCNT QCListMatClass: SOLID Bench Sheet List: I-MST-PCNT QC Ref: PBS-DUP Group ID: SA-G-PCNT-SOLID Method Ref: USDA SOP Ref: SOPSO026	LID	D M	04 4	40960	204		ACZ Laborate Instrument ID: SOILS Analyst: ビ&T ACZ Dept: 25 Create Date: 09/12/2016 8:55 Start Date/Time: 여 (2110 句): End Date/Time: 여 (2110 句):	ACZ Laboratories, Inc nt ID: SOILS alyst: E&T Dept: 25 Date: 09/12/2016 8:55 Time: 여 (21 1 い 9:00 Time: 여 (21 1 い 9:00
(соболовая)		ACZ ID	Client ID	11		Pan Weight (g)	Pan And Sampl Weight (g)		Percent Solid (%)	Percent Moisture (%)	Comments
L2273501 inversion i.2.5.u3 i.1.3.8/0 7.57/0 i.2.5.9/1 1227003 reasions i.2.5.u3 i.1.3.8/0 7.57/3 i.2.5.9/1 1227003 reasions i.2.5.0/1 i.2.9.5 i.2.17.0 1.2.9.6/1 1227003 reasions i.2.7.0 1.2.9.6/1 i.2.19.1 0.6.35/3 1227004 reasions i.2.7.0 1.2.9.6/1 i.2.19.1 0.6.35/3 1227005 reasions i.2.7.0 1.2.9.6/1 i.2.19.3 0.6.35/3 1227006 reasions i.2.7.0 0.7.411 i.2.37 0.0.93 1227006 reasions i.2.7.0 0.7.411 i.2.37 0.0.93 1227006 reasions i.2.7.0 0.7.415 i.2.37 i.2.37 1227006 reasions i.2.7.0 0.7.415 i.2.37 i.2.37 1227006 reasions i.2.7.0 0.7.415 i.2.37 i.2.37 1227006 reasions reasions i.2.10 i.2.10 1227006 reasions reasions i.2.10 i.2.37 i.2.37 1237006 reasions reasions i.2.10 i.2.10 i.2.37 1237007 reasions i.2.10<		NG409607PBS	NONE			1.208	8.839	1.203			
12370-00 #entimesis 1 1.2.6.4 1.2.0.51 1.0.357 0 345 12370-00 #entimesis 1 1.2.6.6 10.3.77 9.4.9.5 0 345 12370-00 #entimesis 1 1.2.6.6 1.3.770 9.3.97 0.0.357 23770-000 #entimesis 1.2.0.6 1.2.0.6 1.2.0.63 3.4.9.5 0 23770-000 #entimesis 1.2.0.6 1.2.0.63 1.2.0.63 0 0.0.357 123770-00 #entimesis 1.2.0.6 1.2.0.63 0.0.12.1 0.0.357 0 123770-00 #entimesis 1.2.0.6 0.0.12.1 1.2.0.63 0.0.12.1 0.0.12.1 123770-00 #entimesis 1.2.0.6 0.0.12.1 1.2.0.6 0.0.12.1 0.0.12.1 123770-00 #entimesis 1.2.0.6 0.0.12.1 1.2.0.6 0.0.12.1 0.0.12.1 13770-00 #entimesis 1.2.0.6 #entimesis 1.2.0.6 0.0.12.1 0.0.12.1 13770-00 #entimesis #entimesis 1.2.0.6 0.0.12.1 0.0.12.1 0.0.12.1 10.10.1 #entimesis #entimesis #entimesis 1.2.0.1 0.0.12.1 10.11.09107 #entimesi		L32739-01	SANDRIDGE FRAC SAND			1,243	11.380	9.510			
1.3770-20 screments 1.7.2-6-6 10.7.5-6 10.7.5-7 10	1.1	L32770-01	16-035 NMM-A				12.054	10.359			
Image: constraint of the second of		L32770-02	16-036 NMG2-A				10.752	0.240			
Turbulation Control Contro Control <thcontrol< th=""></thcontrol<>		L32770-03	A-VIMM 150-01			- N-	01-51	1914			
Alternation		L32770-04	MONE			1.268	10.944	2 293			
Control Control <t< td=""><td></td><td>L32//0-0400P</td><td>TADA</td><td></td><td></td><td></td><td>chirk.</td><td>_</td><td></td><td></td><td></td></t<>		L32//0-0400P	TADA				chirk.	_			
Lugarroom Lugarroom <thlugarroom< th=""> Lugarroom <thlugarroom< th=""> Lugarroom <thlugarroom< th=""> <thlugarroom< th=""> <thlug< td=""><td></td><td>L32//0-05</td><td>D-DWN MAC</td><td></td><td></td><td>1.201</td><td>1-100151</td><td>2 10</td><td></td><td></td><td></td></thlug<></thlugarroom<></thlugarroom<></thlugarroom<></thlugarroom<>		L32//0-05	D-DWN MAC			1.201	1-100151	2 10			
Lugaroom control 1.200 0.121 1.203 0.121 1.203 0.121 1.203 0.121 1.203 0.121 1.203 0.121 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.121 <th0.121< th=""> 0.121 0.121</th0.121<>		L32//0-06	A CHARLEN A			107.1	10.2001	iste			
Table The forgation of the forgati	-	L32770-07	A-UMN 190-01			1.203	121.01	1			
Login Commans Light Login Commans Light Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler Stall in the Integrate cooler	- 1	L32770-08	10-042 NMAA-A			1. 240	511-1-	7.255			
Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site in the integrate coolet Site integrate Site in the integrate coolet Site integrate coolet Site in the integrate coolet Site integrate coolet Site in the integrate coolet Site integrate coolet Site in the integrate coolet Site integrate	픵		Comments				00-				
Si In the meganeccents 9(12)10 Si In the Ineganeccents 9(12)10 Si In the Ineganeccents Si In the Ineganeccents Comments Comments	0-6		3 INORG SJ in the Inorgan	tic cooler			-01-				
Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sul () the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Sill in the integrate cooler Comments Comments Comments Comments	0-02		he Inorganic cooler.				9/12/11				
All In the Integrate cooler sult in the Integ	0-0		he Inorganic cooler.				9/1-1				
Sill in the Integrate cooler Comments Comments	1-0-0		ne Inorganic cooler	000							
SI II In the Inorganic cooler SJ II Inorga	1-02		h ute murganic couler. Fu								
SJII In the Introgenic cooler SJI In the Introgenic cooler SJI In the Introgenic cooler SII In the Introgenic cooler SII In the Introgenic cooler SII In the Introgenic cooler AREV:	000		he Increanic cooler								
Sull in the Intergene cooler Comments	002		he Inorganic cooler								
AREV	200		he Inorganic cooler.								
AREV: SREV:											
091107	100	Commonte-							4	AREV.	
91107	5	Comments.					ń				ials, Date
91107	1						1				
	Ē	al Comments					1		S		
	č	1770-161100111	27							tini	als Date -

Date Reported: 13-Sep-16 Run ID: R1449749 Date Analyzed: 12-Sep-16 ICAL Workgroup: Instrument ID: SOILS

WG4	09607PBS		Tag:					М	easure	d: 9/12/	2016 9:00	0:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	DRIED SAMPLE AND PAN WEIGHT	PREP	1.268	1		g	++					
SREV	PAN AND SAMPLE WEIGHT	PREP	8.839	1		g	++					
SREV	PAN WEIGHT	PREP	1.268	1		g	++					
SREV	PERCENT SOLID	FOUND		1	U	%	++	0.1	0.5			

L327	39-01		Tag:					Μ	leasure	ed: 9/12/	2016 11:24:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual Signal
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	9.51	1		g	++				ТВ
NEED	PAN AND SAMPLE WEIGHT	PREP	11.38	1		g	++				ТВ
NEED	PAN WEIGHT	PREP	1.263	1		g	++				ТВ
NEED	PERCENT MOISTURE	REG	18.5	1		%	++	0.1	0.5		ТВ
SREV	PERCENT SOLID	NT-SOLID	81.5	1		%	++	0.1	0.5		ТВ

L327	L32770-01		Tag:					Μ	easure	d: 9/12/	2016 1:48:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual Signal
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	10.359	1		g	++				ТВ
NEED	PAN AND SAMPLE WEIGHT	PREP	12.054	1		g	++				ТВ
NEED	PAN WEIGHT	PREP	1.264	1		g	++				ТВ
NEED	PERCENT MOISTURE	REG	15.7	1		%	++	0.1	0.5		ТВ
SREV	PERCENT SOLID	NT-SOLID	84.3	1		%	++	0.1	0.5		ТВ

L32770-02		Tag:						М	easure	sured: 9/12/2016 4:12:0		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual Signal	
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	10.348	1		g	++				ТВ	
NEED	PAN AND SAMPLE WEIGHT	PREP	10.932	1		g	++				ТВ	
NEED	PAN WEIGHT	PREP	1.266	1		g	++				ТВ	
NEED	PERCENT MOISTURE	REG	6	1		%	++	0.1	0.5		ТВ	
SREV	PERCENT SOLID	NT-SOLID	94	1		%	++	0.1	0.5		ТВ	

L327	L32770-03		Tag:					М	easure	d: 9/12/	9/12/2016 6:36:00 PM		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	9.967	1		g	++				ТВ		
NEED	PAN AND SAMPLE WEIGHT	PREP	13.17	1		g	++				ТВ		
NEED	PAN WEIGHT	PREP	1.265	1		g	++				ТВ		
NEED	PERCENT MOISTURE	REG	26.9	1		%	++	0.1	0.5		ТВ		
SREV	PERCENT SOLID	NT-SOLID	73.1	1		%	++	0.1	0.5		ТВ		

L327	70-04	Tag:						Μ	easure	d: 9/12/	2016 9:00:00 PM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual Signal
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	8.393	1		g	++				ТВ
NEED	PAN AND SAMPLE WEIGHT	PREP	10.994	1		g	++				ТВ
NEED	PAN WEIGHT	PREP	1.268	1		g	++				ТВ
NEED	PERCENT MOISTURE	REG	26.7	1		%	++	0.1	0.5		ТВ
SREV	PERCENT SOLID	NT-SOLID	73.3	1		%	++	0.1	0.5		ТВ

L327	L32770-04DUP		Tag:					r	Measure	d: 9/12/	9/12/2016 11:24:00 P		
Status	Parm_Stored	Туре	Value	Dil	Qual I	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
SREV	DRIED SAMPLE AND PAN WEIGHT	PREP	7.684	1	ę	g	++						
SREV	PAN AND SAMPLE WEIGHT	PREP	9.995	1	ç	g	++						
SREV	PAN WEIGHT	PREP	1.269	1	ç	g	++						
SREV	PERCENT MOISTURE	FOUND	26.48	1	Ģ	%	++	0.1	0.5				
SREV	PERCENT MOISTURE	RPD	1	1	C	%	++	0.1	0.5				
SREV	PERCENT SOLID	FOUND	73.52	1	C	%	++	0.1	0.5				
SREV	PERCENT SOLID	RPD	0	1	C	%	++	0.1	0.5				

L327	L32770-05		Tag:					М	easure	d: 9/13/	9/13/2016 1:48:00 AN		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	10.093	1		g	++				ТВ		
NEED	PAN AND SAMPLE WEIGHT	PREP	13.193	1		g	++				ТВ		
NEED	PAN WEIGHT	PREP	1.264	1		g	++				ТВ		
NEED	PERCENT MOISTURE	REG	26	1		%	++	0.1	0.5		ТВ		
SREV	PERCENT SOLID	NT-SOLID	74	1		%	++	0.1	0.5		ТВ		

L327	L32770-06		Tag:					Μ	leasure	d: 9/13/	2016 4:12:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual Signal
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	8.881	1		g	++				ТВ
NEED	PAN AND SAMPLE WEIGHT	PREP	10.156	1		g	++				ТВ
NEED	PAN WEIGHT	PREP	1.264	1		g	++				ТВ
NEED	PERCENT MOISTURE	REG	14.3	1		%	++	0.1	0.5		ТВ
SREV	PERCENT SOLID	NT-SOLID	85.7	1		%	++	0.1	0.5		ТВ

L32770-07		Tag:						М	easure	d: 9/13/	9/13/2016 6:36:00 A		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal	
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	9.555	1		g	++				ТВ		
NEED	PAN AND SAMPLE WEIGHT	PREP	10.421	1		g	++				ТВ		
NEED	PAN WEIGHT	PREP	1.263	1		g	++				ТВ		
NEED	PERCENT MOISTURE	REG	9.5	1		%	++	0.1	0.5		ТВ		
SREV	PERCENT SOLID	NT-SOLID	90.5	1		%	++	0.1	0.5		ТВ		

L327	L32770-08		Tag:					N	leasure	d: 9/13/	9/13/2016 9:00:00 AM		
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal	
NEED	DRIED SAMPLE AND PAN WEIGHT	PREP	7.235	1		g	++				ТВ		
NEED	PAN AND SAMPLE WEIGHT	PREP	9.415	1		g	++				TB		
NEED	PAN WEIGHT	PREP	1.26	1		g	++				TB		
NEED	PERCENT MOISTURE	REG	26.7	1		%	++	0.1	0.5		ТВ		
SREV	PERCENT SOLID	NT-SOLID	73.3	1		%	++	0.1	0.5		ТВ		

R SubSX Pri ASREC as rec sarec SAVE as rec sarec SAVE as rec sarec ED as rec bet as rec sarec sa	WG409490	Analysis Date SP AirDry Comments	09/12/16 8:30 9/12/2016		09/12/16 8:36 9/12/2016	09/12/16 8:42 9/12/2016 9/12/2016		09/12/16 8:48 9/12/2016				09/12/16 9:00 9/12/2016												
	5	1.5.0	rec			Lec Lec	rec	rec	rec	rec	Lec	rec			ler.									
	QC List Type: I-SP-AIRDRY QCListMatClass: SOLID Bench Sheet List: I-SP-AIRDRY QC Ref: NOQC Group ID: SP-G-DRY-AIR Method Ref: No 1 1972 SOP Ref: SOPS0001		1	-			ĥ				1		in Comments	ZIPLOCK In the Inorganic cooler.	UCK In the Inorganic gooler.	SJ In the Inorganic cooler.	In the Inorganic cooler. In the Inorganic cooler.	SJ(2) In the Inorganic cooler. Run QC.	In the Inorganic cooler. In the Inorganic cooler.	In the Inorganic cooler.	SJ In the Inorganic cooler.			

ACZ Laboratories, Inc. Geochemistry Department Data Review and Reagents

Analyst: 207

Workgroup: WG1409 490

Analysis Date: 9/12/16 Sample type used: m1/50/5D Extraction / Digestion / Analysis (Prep. / Calc: Data Reviewer: PBT Date: 9/12/16

Approved Date:

		No	N/A
1. Is the raw data checked to the computer printout for transcription errors?	V		
2. Is the %solid or TS attached for dilution factors?			11
3. Were proper volumes of reagents used per final volume?			V
4. Was the proper sub-sample used (as received, <2000, <500, <250, dry, R&P)?	V		
5. Were the dilution factor calculation checked (final volume, weight, %solid)?			11
6. Did the RPD pass?		1211	1
7. Does all the spike information correlate with each other?			1
8. Is the appropriate spike in the computer-designated line?			V
9. Are all errors properly corrected (single-line crossout, dated & initialed)?	V	1	
10. Is the standard/reagent information complete and current?			\$
11. Is your instrument calibration passing (and included in the data package if needed)	?	1	1
FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS?	/		

Standard/Reagent/Equipment*	PCN/SCN/LOT #*	Expiration Date
Standard Area gran - 1 - 1		
	Non contraction of the	
Workgroup documentation must include the lot nur	nber(s) of all disposable vessels used I	for volumetric measurements.

Comments:

L32770-1611091107

WG409490 Instrument-ID: SOILSPREP Araiyst: [207 Araiyst: [SP AirDry Comments														AREV:	Initials, Date	SREV	
NG4	SubSX Pri ASRECEIV Analysis Date ED			SAVE SX								5						
QC List-Type: I-SP-AIRDRY QC List-Type: I-SP-AIRDRY QCListMatClass: SOLID ⁻ - Bench Sheet List: I-SP-AIRDRY QC Ref: NOQC Group ID: SP-G-DRY-AIR Method Ref. No 1 1972 SOP Ref: SOPS0001	Client ID Sub	OFF THEW CARBON #1	dRF / NEW CARBON #2	V 18-DES NAM-A	A Jobas NMGZ-A	VIB-027 NMN-A	V6-038 NMO-A	B-OWN ASS-D	AG-041 NMD-A	15-042 NMAA-A	Login Comments	ZIPLOCK In the Inorganic cooler. ZIPLOCK In the Inorganic cooler. SJ(4) 3 INORG SJ in the Inorganic cooler. SJ in the Inorganic cooler. SJ in the Inorganic cooler. SJ In the Inorganic cooler. SJ In the Inorganic cooler.	SJ In the Inorganic cooler.	SJ In the Inorganic cooler SJ In the Inorganic cooler SJ In the Inorganic cooler				ľ
AC ACList Sench S	ACZ ID	L32714-01	L32714-02	L32739-01 L32770-01	L32770-02	L32770-03	L32770-04	L32770-05	L32//0-06	L32770-08		<u>(</u>			Report Comments:		Internal Comments	
Air Dry	щa	÷	2	ω 4	5	9	7	× 0	9 0	2 1	Sample	L32714-01 L32714-02 L32739-01 L32770-01 L32770-02 L32770-03 L32770-03	L32770-05	L32770-07	Report		Interna	- -

WG409490

Workgroup Review and Approval

Date Reported: 12-Sep-16 Run ID: R1449360 Date Analyzed: 12-Sep-16 ICAL Workgroup: Instrument ID: SOILSPREP

L327 [,]	14-01		Tag:					I	Measured	: 9/12/	2016 8:30	D:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327 [,]	14-02		Tag:					I	Measured	: 9/12/	2016 8:3	3:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327:	39-01		Tag:					l	Measured	: 9/12/	2016 8:30	6:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-01		Tag:						Measured	: 9/12/	2016 8:39	9:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-02		Tag:					l	Measured	: 9/12/	2016 8:42	2:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-03		Tag:						Measured	: 9/12/	2016 8:4	5:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-04		Tag:						Measured	: 9/12/	2016 8:48	B:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Appv	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-05		Tag:					I	Measured	: 9/12/	2016 8:5	1:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-06		Tag:					l	Measured	: 9/12/	2016 8:54	4:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					
L327	70-07		Tag:					l	Measured	: 9/12/	2016 8:57	7:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1			NEED					

WG409490

L3277	70-08	-	Tag:			Me	easure	d: 9/12/	2016 9:00	0:00 AM
Status	Parm_Stored	Туре	Value	Dil Qual Units	Арру	MDL	PQL	Text Value	Ext Qual	Signal
SREV	SP AIRDRY	DRY-AIR		1	NEED					

ACZ Laboratories, Inc Instrument ID: SOILSPREP Analyst: rbt ACZ Dept: 20 Create Date: 09/15/2016 8:39 Start Date/Time: 09/15/2016 9:20 End Date/Time: 09/15/2016 9:20	e3 Comments																					Initials, Date	- JA-16-16-	Initials, Date	
Instru Ar Crea Start Da End Da	SP SP SP SP Sevet Sievet Sievet Sievet 3 Sievet 3 Sievet 3 Sieve 3 8 25 00 4 3 8																			ç	AREV: ANDI		1000	SKEV	
~	SP SP Sieven Sieve 00 4																								
4	sp SP sieve1 Sieve1 50 25	-																							
86	SP SP SP SP Sp Sieve5 Sieve2 Sieve1 sieve1 00 50 77 50																								
3409848	SP SP Sieve5 Sie 000 00 5	9/15/2016	9/15/2016	9/15/2018	9/15/2016	9/15/2016	9/15/2018	9/15/2016	9/15/2018	9/15/2016															
0	SP SP SP SI Sieve2 (E2 000 20 00 00	-	51/6		\$1/8		-	-	21/8	-															
S I	Analysis Date	09/15/16 9:00	09/15/16 9:02	09/15/16 9:05	09/15/16 9:07	09/15/16 9:10				09/15/16 9:20															
22	SubSX Pri	as rec	as rec	as rec	as rec	as rec				as rec		c cooler			100						ah. X				
ep Sieve 	Client ID	SANDRIDGE FRAC SAND	16-D35 NMM-A	16-036 NMGZ-A	16-037 NMN-A	16-038 NMO-A	16-039 NMO-B	15-040 NML-A	A-CIM NMD-A	N-WWW 250-01	Login Comments	SJ(4) 3 INORG SJ in the Inorganic cooler	SJ In the Inorganic cooler.	SJ II In the Inorganic cooler.	SJ(2) In the Inorganic cooler Run QC	SJ In the Inorganic cooler,	SJ In the Inorganic cooler.	SJ II In the Inorganic cooler	0						
Soil Prep Sieve . CC List Type: I-SP-SI QCListMatClass: SOLID Bench Sheet List: I-SP-SI QC Ref: NOQC Group ID: SP-G-S Method Ref: ASA N SOP Ref: SOPSC	ACZ ID	L32739-01	L32770-01	L32770-02	L32770-03	L32770-04	L32770-05	L32770-06	L32770-07	L32//0-08	Login	SJ(4) 3	hull rs	and the SJ in the	SJ(2) It	In the SJ In the					Keport Comments:		Internal Comments		
Soil	Вa	1	2	3	4	2	9	-	00 0	5	Sample	L32739-01	L32770-01	L32770-03	L32770-04	L32770-05	1 32770-06	L32770-08			нероц		Internal		

ACZ Laboratories, Inc. Geochemistry Department Data Review and Reagents

Analyst: Ror

ñ,

Workgroup: WG409848 Analysis Date: 9(15/16 Sample type used: 50/50 Extraction / Digestion / Analysis / Prep / Calc:

Data Reviewer: PB7 Date: 9 |15|16

Approved: CRA Date: 9-16-16

	Yes	No	N/A
1. Is the raw data checked to the computer printout for transcription errors?	V	/	
2. Is the %solid or TS attached for dilution factors?	5		1
3. Were proper volumes of reagents used per final volume?			1
4. Was the proper sub-sample used (as received, <2000, <500, <250, dry, R&P)?	1	1	
5.Were the dilution factor calculation checked (final volume, weight, %solid)?			1
6. Did the RPD pass?			1
7. Does all the spike information correlate with each other?		15.5	1
8. Is the appropriate spike in the computer-designated line?	12.	-	1
9. Are all errors properly corrected (single-line crossout, dated & initialed)?	1	1	
10. Is the standard/reagent information complete and current?			1
11. Is your instrument calibration passing (and included in the data package if needed)?			V
FOR SREV: QA/QC approval for initial training or 2 sets of initials for WG & LIMS?	1.7		

Standard/Reagent/Equipment*	PCN/SCN/LOT #*	Expiration Date
9 4 4		
orkgroup documentation must include the lot nur		

Comments:_

L32770-1611091107

ep Sieve All Laborato ep Sieve C List Type: I-SP-SIEVE-ALL C List Type: I-SP-SIEVE-ALL C List Type: I-SP-SIEVE-ALL C Ret NOOC C Ret NOOC C Ret NOOC C Ret ASA No. 9 15-4.22 Method Ret ASA No. 9 15-4.22 C Reate Date: 09/15/2016 8:39 SoP Ret SOPSO001 C Ret Date/Time: 0/15/1/b T	Client ID SubSX Pri Analysis Date SP SI Sieve20 Sieve25 Sieve17 sieve15 Sieve10 Sieve74 Sieve63 Sieve38 EV 00 0 0 7 0 5 0 E2 00 00	SANDRIDGE FRAC SAND				16-039 NMO-B	IS-DED NML-A		16-02 NMAA-A	Login Comments	After the integrate cooler. Sull in the integrate cooler.
Soil Prep Sieve QC List Type: I-SP-SI QCListMatClass: SOLID Bench Sheet List: I-SP-SI QC Ref: NOQC Group ID: SP-G-S Method Ref: ASA N SOP Ref: SOPSC	ACZ ID	L32739-01 s	L32770-01	L32770-02	L32770-04	L32770-05	L32770-06	L32770-07	L32770-08	Login C	Size Size <th< th=""></th<>

WG409848

Workgroup Review and Approval

Date Reported: 16-Sep-16 Run ID: R1451119 Date Analyzed: 15-Sep-16 ICAL Workgroup: Instrument ID: SOILSPREP

L327	39-01		Tag:					N	leasure	d: 9	9/15/2	2016 9:00	0:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-01		Tag:					N	leasure	d: 9	9/15/2	2016 9:02	2:30 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-02		Tag:					N	leasure	d: 9	9/15/2	2016 9:0	5:00 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-03		Tag:					N	leasure	d: 9	9/15/2	2016 9:07	7:30 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-04		Tag:					N	leasure	d: 9	9/15/2	2016 9:10	0:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-05		Tag:					N	leasure	d: 9	9/15/2	2016 9:12	2:30 AM
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-06		Tag:					N	leasure	d: 9	9/15/2	2016 9:1	5:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-07		Tag:					N	leasure	d: 9	9/15/2	2016 9:17	7:30 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						
L327	70-08		Tag:					N	leasure	d: 9	9/15/2	2016 9:20	0:00 AN
Status	Parm_Stored	Туре	Value	Dil	Qual	Units	Арру	MDL	PQL	Text Va	alue	Ext Qual	Signal
SREV	SP SIEVE2000	EVE2000		1			NEED						

L32770 Project ID:

Soil Preparation

0
5
4
ອ
4
Ó
-
<

Air Dry	I SP AIRDRY	×	×	×	×	×	×	×	×	×	×	×
4	Date SCN	09/12/16 08:30	09/12/16 08:33	09/12/16 08:36	09/12/16 08:39	09/12/16 08:42	09/12/16 08:45	09/12/16 08:48	09/12/16 08:51	09/12/16 08:54	09/12/16 08:57	09/12/16 09:00
WG409490	Sample	L32714-01	L32714-02	L32739-01	L32770-01	L32770-02	L32770-03	L32770-04	L32770-05	L32770-06	L32770-07	L32770-08

Project ID: L32770

Soil Analysis

WG409607		Perc	Percent Solids
Sample	Date	SCN	ERCENT MOISTUR PERCENT SOLID
WG409607PBS	09/12/16 09:00		×
L32739-01	09/12/16 11:24		×
L32770-01	09/12/16 13:48		×
L32770-02	09/12/16 16:12		×
L32770-03	09/12/16 18:36		×
L32770-04	09/12/16 21:00		×
L32770-04DUP	09/12/16 23:24		×
L32770-05	09/13/16 01:48		×
L32770-06	09/13/16 04:12		×
L32770-07	09/13/16 06:36		×
L32770-08	09/13/16 09:00		×

Project ID: L32770

Soil Preparation

Soil Prep Sieve	SP SIEVE2000	×	×	×	×	×	×	×	×	×
So	Date SCN	09/15/16 09:00	09/15/16 09:02	09/15/16 09:05	09/15/16 09:07	09/15/16 09:10	09/15/16 09:12	09/15/16 09:15	09/15/16 09:17	09/15/16 09:20
WG409848	Sample	L32739-01	L32770-01	L32770-02	L32770-03	L32770-04	L32770-05	L32770-06	L32770-07	L32770-08

Project ID: L32770

Soil Preparation

WG409857		3050 IC	3050 ICP ICPMS
Sample	Date	SCN	DILUTION
WG409857PBS	09/15/16 09:30		×
WG409857LCSS	09/15/16 11:15		×
WG409857LCSSD	09/15/16 13:01		×
L32739-01	09/15/16 14:47		×
L32739-01MS	09/15/16 16:33		×
L32739-01MSD	09/15/16 18:19		×
L32770-01	09/15/16 20:05		×
L32770-02	09/15/16 21:51		×
L32770-03	09/15/16 23:37		×
L32770-04	09/16/16 01:23		×
L32770-04MS	09/16/16 03:09		×
L32770-04MSD	09/16/16 04:55		×
L32770-05	09/16/16 06:41		×
L32770-06	09/16/16 08:27		×
L32770-07	09/16/16 10:13		×
L32770-08	09/16/16 11:59		×
L32928-01	09/16/16 13:44		×

Project ID: L32770

Metals Analysis

 $\times \times$

WG410083		ICPMS Total 3050	al 3050	
Sample	Date	SCN	Cd	Pb
WG410083ICV	09/20/16 19:36	MS160920-1	×	×
WG410083ICB	09/20/16 19:38		×	×
WG410083ICSA	09/20/16 19:40		×	
WG410083ICSAB	09/20/16 19:42	MS160826-5	×	×
WG409857PBS	09/20/16 19:47		×	×
WG409857LCSS	09/20/16 19:49	PCN51904	×	×
WG409857LCSSD	09/20/16 19:51	PCN51904	×	×
L32770-01	09/20/16 19:53		×	×
L32770-02	09/20/16 19:55		×	×
L32770-03	09/20/16 19:57		×	×
L32770-04	09/20/16 20:00		×	×
L32770-04MS	09/20/16 20:02	MS160803-3	×	×
WG410083CCV1	09/20/16 20:04	MS160914-3	×	×
WG410083CCB1	09/20/16 20:06		×	×
L32770-04MSD	09/20/16 20:08	MS160803-3	×	×
L32770-05	09/20/16 20:10		×	×
L32770-06	09/20/16 20:12		×	×
L32770-06SDL	09/20/16 20:14		×	×
L32770-07	09/20/16 20:17		×	×
L32770-08	09/20/16 20:19		×	×
WG410083CCV2	09/20/16 20:21	MS160914-3	×	×
WG410083CCB2	09/20/16 20:23		×	×

AGAZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

Feck Alaska Incorporated	ACZ Projec			L3277(
1370966-SVC	Date Rece		9/07/201	
	Received	•	0	km vzv201
Receipt Verification	Date Pri	niea:	9	/7/201
		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protoco	l?			Х
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold ti	ime analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	[Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving	ng the samples?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Da	ate, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1				Х
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?				Х
15) Are all sample containers appropriate for analytical requirements?	[Х		
				Х
16) Is there an Hg-1631 trip blank present?	-			Х
16) Is there an Hg-1631 trip blank present?17) Is there a VOA trip blank present?				~

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	$Rad(\mu R/Hr)$	Custody Seal Intact?
4718	2.1	NA	15	Yes

Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Teck Alaska Incorporated	ACZ Project ID:	L32770
1370966-SVC	Date Received: 0	9/07/2016 14:43
	Received By:	kmo
	Date Printed:	9/7/2016
1		

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

SUPCE,

TECK ALASKA INC - CHAIN OF CUSTODY

TO: Sue Webber ACZ Laboratories 2773 Downhill Drive Steamboat Springs, CO 80487 Phone: 970-879-6590 ext. 110 Lab Phone: 800-334-5493

FROM: Teck Alaska Inc. 3105 Lakeshore Drive Bldg A - Suite 101 Anchorage Alaska 99517 Project Manager: Joe Diehl Phone: 907-754-5109

Tool			PROJECT:	Marine Sediment Sampling	PO# 1330199-SVC	39-SVC	
I CCK	LORD	JECT CO	PROJECT COORDINATOR:	Joe Diehl/ Johanna Salatas	Page_1_	of _1_	
Sample I.D.	Location	TYPE	#Bottles	ANALYSIS	Collection	Collection Time	LAB I.D.
16-D35 NMM-A	16-035 NMM-A Marine Sediment NMM	SD	ŀ	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13:00	
16-036 NMGZ-A	16-036 NMGZ-A Marine Sediment NMGZ	SD	+	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13 14	
16-037 NMN-A	Marine Sediment NMN	SD	-	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	13:52	
16-038 NMO-A	Marine Sediment NMO	SD	2	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	14:02	
16-039 NMO-B	Marine Sediment NMO	SD	٩	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	14.10	
16-040 NML-A	Marine Sediment NML	SD	ę.	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	14.43	
16-041 NMD-A	Marine Sediment NMD	SD		Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	14.54	
16-042 NMAA-A	16-042 NMAA-A Marine Sediment NMAA	SD		Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15.14	
16-043 EB	Marine Sediment Resinate Water	H20	4	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15:34	
16-044 SB	Marine Sediment Resinate Water	H2O	4	Pb, Zn, Cd, by ICP MS, Total Solids	9/4/2016	15:37	
	SAMPLE RELEASE BY:			SAMPLE RECEIVED BY:	SPECI	SPECIAL INSTRUCTIONS:	IONS:
Nama.	Marice Atoma		Name:	RC 1	E-MAIL RESULTS TO: Enviro, Transfer@teck.com	LTS TO: er@teck.com	
Signature.	The C		Signature:	L'IS	NO IMPORT EDD REQUIRED. ANALYSIS REPORT ONLY.	DD REQUIRED Y.	. ANALYS
Firm:	Teck Alaska Inc.		1.5	ACE	Also please e-mail Final Report to: joe.diehl@teck.com	mail Final Rep k.com	ort to:
			Date/Time.	SPUN NUS	rebecca.hager@teck.com	r@teck.com	