Formula Sheet

Abbreviations

cfs cubic feet per second (ft³/sec) mL milliliter

ft feet mg/L milligrams per liter gpd gallons per day MG million gallons

gpm gallons per minute MGD million gallons per day

hr hour min minutes

in inches ppm parts per million

in² square inches (sq. in.) psi pounds per square inch

lb pounds sec seconds

Conversion Factors

Area

 $1 \text{ ft}^2 = 144 \text{ in}^2$

Volume

1 $ft^3 = 7.48 \text{ gal}$ 1 $yd^3 = 27 \text{ ft}^3$

Weight

1 gallon of water = 8.34 lbs

Concentration

1 ppm = 1 mg/L

Flow rate

1 MGD = 1.55 cfs = 694.4 gpm 1 gpm = 60 gal/hr = 1440 gpd

Pressure

1.0 psi = 2.31 feet of water1.0 foot of water = 0.433 psi

Basic Hydraulics Formulas

$$DetentionTime = \frac{Tank\ Capcity}{Flow\ Rate}$$

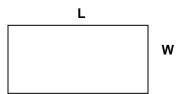
Dosage and Concentration Formulas

 $Dosage\ (lbs) = Concentration\ (mg/L)\ x\ Volume\ (MG)\ x\ 8.34$

$$C_1 \times V_1 = C_2 \times V_2$$

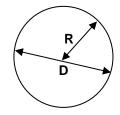
where, C_1 = beginning concentration

 V_1 = beginning volume


 C_2 = diluted concentration

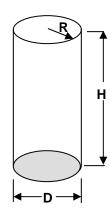
 V_2 = diluted volume

Area


Square or Rectangle

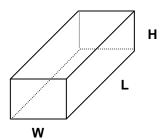
$$A = L x W$$

Circle


$$A = \pi R^2$$
 or $A = 0.785 D^2$

Where $\pi = 3.14$

Volume


Cylinder

$$V = 0.785 D^2H$$
or
$$V = \pi R^2H$$

Where $\pi = 3.14$

Cube

$$V = L x W x H$$