Sea Ice microstructure
Oil migration through brine channels

Alaska Oil Spill Technology Symposium
March 6-7, 2014

Marc Oggier
Geophysical Institute
University of Alaska Fairbanks
Fairbanks, AK 99775-7320, USA
e-mail: marc.oggier@gi.alaska.edu
Outline

• Oil/sea ice interaction

• Sea-ice microstructure
 – Growth
 – Porosity & permeability
 – Brine movement

• Oil entrainment in ice

• Conclusions

Sea Ice Group (GI|UAF)

• Hajo Eicken
• Chris Petrich
• Jonas Karlsson
• Daniel Pringle
 and other collaborators
Oil & sea ice interactions

Oil encapsulation
- Under-ice spreading
- Encapsulation in growing ice
- Mobilization and migration in spring
- Surfacing and weathering
- Release with ice break-up

Potential mitigation
- Limited access
 - Both under- and in-ice
- Remediation
 - After oil have migrated toward the surface
Sea ice microstructure properties and structure profiles

- Textural classification
 - Granular
 - Columnar
 - Mixed columnar/granular

- Genetic classification
 - Snow ice
 - Frazil ice
 - Congelation ice

- Growth condition
 - Snow deposition
 - Flooding
 - Turbulent mixing

- Stratigraphy
 - Water column supercooling
 - Intergranular pores, isometric grains
 - Intrasea ice, intergranular pores, prismatic grains

- Depth [cm] Time scale
 - Temperature [°C]
 - Salinity [%]

- Time scale:
 - 10 days
 - 25 weeks
 - 50 months
 - 150 years
Sea ice microstructure

- Brine entrapped at the bottom of sea ice
- Constriction & segregation of pore space
 - During thickening & cooling
 - Brine layer > brine tube > brine pockets
 - Depends of salinity & temperature (porosity)

\[a \leq b < c\]
\[a \sim 0.1 \text{ to } 0.3 \text{ mm}; \ b \sim 1 \text{ to } 5 \times a; \ c > 5 \times a\]
\[d \sim 0.25 \text{ to } 1.25 \text{ mm (avg 0.7)}\]

[Assur, 1960]

[Kovacs, 1996]
Sea ice microstructure

Brine channel system (BCS)

- Winter (March)
 - Number density
 0.5±0.1 dm\(^{-2}\)
 - Aerial fraction
 0.10±0.04 cm\(^{-2}\)
 - Mean spacing
 11±4 cm

Eicken
Sea ice microstructure

- Host of multitude of organisms

- Release of extracellular polymeric substance (EPS)
 - Influence ice growth & microstructure

- Biota would be influence by oil spill

BCS as an ecosystem

[Image: A: No EPS, B: EPS, C: Blue colored EPS]
Sea ice microstructure

- X-ray imaging
 - Multiple projections of a same object
 - Every projection at a slightly different angle
 - Contrast based on density

- Computed tomography
 - 2D slices
 - 3D model reconstruction
• Winter growth
 – Columnar sea ice
 – Brine channel
 • V_f: 2-3% in January
 • Segregated

• Spring
 – Warming event
 – Increasing porosity
 • Increasing channel diameter
 • Interconnection
 – Salinity change

• Volume occupied by brine
 – Dependant of temperature and salinity

Brine channel evolution
[Pringle, 2009]
Connectivity is function of temperature

The fractional connectivity is the proportion of inclusions intersecting the upper surface which are also connected to the lower surface.

Porosity

Connectivity

(a) $T = -15 ^\circ C$, $\phi = 0.033$
(b) $T = -6 ^\circ C$, $\phi = 0.075$
(c) $T = -3 ^\circ C$, $\phi = 0.143$

[b] Golden et al., 2007

[b] Golden et al., 2007
• Intrinsic permeability
 – Mathematical model (Golden et al., 2007)
 – Difference between cold & warm ice

• Percolation threshold $\phi_c = 0.05$
 – $T = -5^\circ C$
 – $S = 5$ PSU
Porosity

State variables and physical properties

Measurement
• Ice core data
• *In situ*

Calculated
• Simple relationship
• Mathematical model
Brine movement

- Ice core data from Barrow, Ak

- Higher salinity at bottom
 - Winter C-Shape curve

- Surface melting
 - Late May / early June
 - S-Shape curve

- Downward flushing of meltwater
 - Higher permeability
 - Brine drainage

[Petrich, 2013]
Brine movement

• Force balance
 – Driving force
 • Density difference $\frac{\partial \rho}{\partial z}$
 • Limited by
 – Medium permeability K_z
 – Fluid viscosity μ
 – Retarding motion
 • Thermal diffusivity α_{si}
 • Phase transition

• Porous medium
 – Rayleigh number
 $$Ra_p = g \frac{\frac{\partial \rho}{\partial z} K_z \Delta z}{\mu \alpha_{si}}$$
 – If $Ra > Ra_{p,c}$: convection
1st experimental study

Winter oil spill
- Landfast ice
- Oil spilled 15 February
- Migration to surface in April / early May

Spring oil spill
- Landfast ice
- Oil spilled 15 May
- Migration to surface within 1 hour

Ice surface prior to under-ice spill

Ice surface 2 h after under-ice spill

[Martin, 1979]
Oil movement in ice

• Ice tank
 – Mimic natural sea ice growth
 – Insulated ice tank
 • Prevent ice formation along the wall
 – Pressure release
 • Avoid tank deformation
 – Pump
 • Break saline convection cell
 • Provide similar ocean heat flux

• Oil entrainment & migration
 – Temperature & salinity data
 – Oil flow
 – Oil content & distribution

[Diagram with labels:
1: Salinometer
2: Pressure Release
3: Video Camera
4: Heating Pump
5: Tube
6: Shield
7: Thermistor Probe]

[Karlsson, 2011]
Oil movement in ice

Temperature profile

Events:
- Oil flow to surface
- Weak light
- Strong light
- Insolation on ice
- B: Bottom Heating off
- C: Core taken
- OR: Oil Release
- OT: Oil starts seeping up along tank

[Karlsson, 2011]
Oil movement in ice

Growth season experiment
- No warming event
- Oil confined at the bottom

Melt experiment
- Simulated warm spelt
- Oil migration within the ice

[Karlsson, 2011]
Oil movement in ice

- Brine movement
 - Critical threshold: $\phi_c = 0.05$

- Oil movement
 - Critical threshold $\phi_{c,oil} = 0.10-0.15$

[Diagram showing oil concentration vs. porosity (brine + oil) with data points for different temperatures and crude types. Source: Karlsson, 2009]
Conclusion

• Oil migration
 – Encapsulated into pore space
 – Entrained during spring

• Microstructure & brine inclusion morphology
 – Controlling factors of depth penetration
 – Determine entrainment and mobilization in Spring

• Fluid exchange with underlying ocean
 – Controlled growth rate
 – Interface morphology
 – Feedback biota-oil
Further work

- Linkage with biota
 - Ongoing work
 - Indoor experiment

- X-Ray observation of oil/ice
 - Similar density
 - $\rho_{\text{ice}} = 0.92 \, [\text{gcm}^{-3}]$
 - $\rho_{\text{oil}} \approx 0.87 \, [\text{gcm}^{-3}]$
 - Possible to distinguish oil layer
 - Possibility to follow
 - Oil distribution ?
 - Oil content ?

- Modeling
 - Simple 1D model
 - Fluid flow in porous media
References

AMAP, 2007. Arctic Oil and Gas 2007. Arctic Monitoring and Assessment Program (AMAP) Oslo, Norway

Thank you