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Oil & sea ice interactions
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Sea ice microstructure properties and structure profiles
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Sea ice microstructure

* Brine entrapped at the bottom
of sea ice

e Constriction & segregation of
pore space
—  During thickening & cooling

— Brine layer > brine tube > brine
pockets

— Depends of salinity &
temperature (porosity)
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Sea ice microstructure Brine channel system (BCS)

 Winter (March) vertical section

— Number density
0.5+0.1 dm™

— Aerial fraction
0.10+0.04 cm™

— Mean spacing
11+4 cm

horizontal section (D=9cm)




Sea ice microstructure BCS as an ecosystem

* Host of multitude of organisms

* Release of extracellular polymeric
substance (EPS)

— Influence ice growth & microstructure

* Biota would be influence by oil spill
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Sea ice microstructure

X-ray computed tomography

e X-ray imaging
— Multiple projections of a same
object

— Every projection at a slightly
different angle

— Contrast based on density

 Computed tomography
— 2D slices
— 3D model reconstruction

reconstructed CT i

x-ra~source CT-waorkpiece-on rotary-table

[ D. Pringle]




Porosity Evolution

 Winter growth
— Columnar seaice

— Brine channel
* Vi 2-3% in January
* Segregated

* Spring
— Warming event

— Increasing porosity
* Increasing channel diameter
* |nterconnection

— Salinity change

* Volume occupied by brine

— Dependant of temperature and salinity

Brine channel evolution
[Pringle, 2009]



Porosity Connectivity

Connectivity is function of temperature
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Porosity Porosity- permeability linkage

* Intrinsic permeability
— Mathematical model (Golden et al., 2007)
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Porosity State variables and physical properties

Depth, m

Measurement
* |ce core data
* |nsitu
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* Simple relationship
 Mathematical model



Brine movement Salinity profile

* |ce core data from Barrow, Ak

0
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— Winter C-Shape curve
mid
401 June \ _
. \
e Surface melting —
Late May / early J 5 Y
— Late May / early June =
Y Y = \
— S-Shape curve s
o 807 i
2 p
- |
* Downward flushing of meltwater 1007 f
— Higher permeability
— Brine drainage 120
early
140 .
0 4 8 12

[Petrich, 2013]  Salinity (psu)
13



Brine movement

* Force balance

— Driving force

* Density difference 6%2 d COIdl;_
- Limited by enser pbrine
— Medium permeability KZ
— Fluid viscosity U sea

— Retarding motion ice

* Thermal diffusivity o

* Phase transition

* Porous medium less dense brine
— Rayleigh number
P ocean
%Z K,Az water
Ra, =g
M

— If Ra>Ra,  : convection



Oil movement in ice 1975 NORCOR spills

15t experimental study

Winter oil spill Spring oil spill
* Landfastice e Landfastice
* Qil spilled 15 February * Qil spilled 15 May
* Migration to surface in April / early * Migration to surface within 1 hour
May
Ice surface prior to under-ice spill Ice surface 2 h after under-ice spill
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Oil movement in ice Lab experiment

e |ce tank

— Mimic natural sea ice growth
— Insulated ice tank

* Prevent ice formation along the wall

— Pressure release

. . : Wate
 Avoid tank deformation : - Oi‘i"ter
_ Ice
a 1: Salinometer
— Pump 3: 2: Pressure Release
* Break saline convection cell ; 3: Video Camera
' 4: Heating Pump
* Provide similar ocean heat flux ; 5: Tube
: 6: Shield
L 7: Thermistor Probe
* Oil entrainment & migration [Karlsson, 2011]
— Temperature & salinity data
— Oil flow

— Qil content & distribution



Oil movement in ice Temperature profile
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Oil movement inice Oil entrainment

Growth season experiment Melt experiment
* No warming event e Simulated warm spelt
* Qil confined at the bottom * Qil migration within the ice
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Oil movement in ice Oil migration threshold

* Brine movement
— Critical threshold : ¢.=0.05

* Oil movement
— Critical threshold ¢, ,=0.10-0.15
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Conclusion Oil concentration

* QOil migration
— Encapsulated into pore space
— Entrained during spring

 Microstructure & brine inclusion morphology
— Controlling factors of depth penetration
— Determine entrainment and mobilization in Spring

* Fluid exchange with underlying ocean
— Controlled growth rate

— Interface morphology
— Feedback biota-oil



Further work

* Linkage with biota
— Ongoing work

— Indoor experiment

* X-Ray observation of oil/ice
— Similar density
* Pi=0.92 [gcm3]
* pi= 0.87 [gcm3]
— Possible to distinguish oil layer

— Possibility to follow
e Qil distribution ?
* Qil content ?

* Modeling
— Simple 1D model
— Fluid flow in porous media
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