Feasibility Study Reducing Concentrations of Dissolved Metals and Ammonia in Large Passenger Vessel Wastewater Discharges

Prepared for

Prepared by

Milestones

 Initiative Passed 2006
 Permits Issued March 2008 w/ interim limits for Cu, Zn, Ni and ammonia
 Data Collection 2008
 Feasibility Assessment (2009)
 Deadline for Compliance Established (2010)

The 2010 criteria

TABLE 2.1: DESIGN CRITERIA FOR END-OF-PIPE POLLUTANT REDUCTION

Parameter	Typical Influent Range (Output from AWTS)	Target Effluent ¹ (Removal rate) Not to exceed design capacity	
Flow	Max 60 m³/hour and 1440 m³/day Highly variable²		
Total Suspended Solids (TSS)	1 – 11 mg/l	150 mg/l max	
Biochemical Oxygen Demand (BOD) 5-day	3.1 – 126 mg/l	60 mg/l max (50%)	
рН	6.2 – 9.5	6.5 min / 8.5 max	
Total Residual Chlorine	ND – 0.20 mg/l	0.0075 mg/l max (96%)	
Ammonia (NH³)	4.6 – 150.0 mg/l	2.9 mg/l max (98%)	
Nickel (Ni)	7.0 − 44.0 µg/l*	8.2 µg/l max (82%)	
Zinc (Zn)	7.0 – 501.0 μg/l*	81.0 µg/l max (84%)	
Copper (Cu)	1.0 – 140.0 µg/l*	3.1 µg/l max (98%)	

* From 2008 cruise ship testing data. Results were highly variable and at times the target limits were met.

[1]

> What Treatment Systems are Currently Used?

TABLE 2.2: AWTS TECHNOLOGIES CURRENTLY USED ON VESSELS DISCHARGING IN ALASKA FOR SHIPBOARD WASTEWATER TREATMENT PHASES

	Treatment Phase Methods				Vessels
AWTS	Primary Solids Separation	Secondary Organic Digestion	Tertiary Clarification	Disinfection	with AWTS
Biopure Marisan	Coarse Screen	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Microfiltration	UV	1
Hamworthy Bioreactor	Screen Press	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	9
Hydroxyl Cleansea	Coarse Drum Filter	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Polishing Filter	UV	2
Rochem Bio-filtration	∨ibratory Screens	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	2
Scanship	Wedgewire Screen	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Polishing Filter	UV	4
Triton / Rochem	∨ibratory Screens	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	1
Zenon	Coarse Screen	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	6

Do Vessels Currently Meet Standards?

Vessels are unable to consistently meet 2010 standards for Cu, Ni, Zn and ammonia

Cruise lines are having the most difficulty meeting the 2010 copper and ammonia standards

2008 Sampling Results

	Ammonia	Copper	Nickel	Zinc
	mg/L	ug/L	ug/L	ug/L
Interim	80.4	66	180	230
2010 Limits	2.9	3.1	8.2	81
Min	ND	ND	ND	ND
Max	150	140	43.2	501
Avg	35.47	15.67	9.98	89.27

3 vessels met zinc standard

- **3 vessels met nickel standard**
- a 1 vessel within margin of error for copper
- us 1 vessel met ammonia standard

Do Any Vessels in the World Meet the Standards?

- Data for vessels not operating in Alaska were not available for review
- In general, Alaska standards are the most stringent in the world

Unlikely many other vessels meet standards, but data to assess is not available for review

Feasibility Criteria

Compliance with permit stipulations
 Technology Capability and Availability
 Marine Certification of New Systems
 Cost
 Available Space on Vessels
 Waste Management

Why a Workshop?

Provide a forum to discuss wastewater treatment technologies and findings from in the draft feasibility study

Feasibility Study Research

 Contacted more than 45 vendors, academics, or consultants
 Internet Search
 E-mail Solicitations, thousands of contacts
 Web-site

Feasibility Study Research (Cont)

- Involvement of wastewater treatment and marine experts
- Selected technical experts to provide input from a list of 20 national and internationally recognized firms
- Evaluation of existing land based technologies

Results for Existing Land Based Technologies

Effluent standards can be met based on vendor, academic data, and system performance
 RO, IX, EDR for metals and ammonia
 Bio and air stripping for ammonia
 Chemical precipitation followed by RO or IX for metals only

Land Based Results (Cont)

 Installed land based systems are capable of achieving non-detect limits for all metals
 Applying a land based technology to a vessel can be challenging

Systemic Approach

 Metals and ammonia removal part of overall system
 Multi-stage evaluation and implementation recommended
 Source reduction & substitution
 Recycle & reuse considerations
 Waste characterization & treatability

Properties of Contaminants

 Copper, Nickel, and Zinc
 Bioaccumulating to marine life
 All form divalent cations in water
 Are present primarily in dissolved phase
 Stable in solution in typical water
 Sources are vessel source water, evaporators, leaching or impingement from pipes and fixtures, chemical use

Properties of Contaminants (Cont)

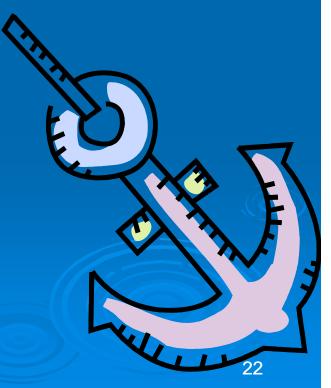
> Ammonia

Both a nutrient and toxin
Exists as a gas at STP
Forms ammonium monovalent ion in water
Ammonia/ammonium ratio is pH dependent
Main source is hydrolysis of human urea in black water

Treatment Alternatives

Ammonia Only Air/Steam Stripping Aerobic Biological Oxidation / Nitrification Breakpoint Chlorination

Treatment Alternatives (Cont)


Metals Only
 ⁶³ Surface Clay Filtration
 ⁶³ Electrowinning
 ⁶³ Chemical Precipitation

Treatment Alternatives (Cont)

Metals and Ammonia Reverse Osmosis Ion Exchange Electrodialysis

Feasibility Criteria

Description
Where Used
Capabilities/size
Waste Streams
Effluent Quality
Vessel Application

Description

Given Steam or air bubbled through water to volatilize ammonia

Where Used

Industrial applications and some municipal wastewater plants

Air/Steam Stripping (Cont)

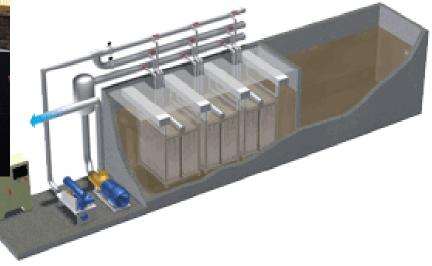
Capabilities

Removes ammonia only
 Requires pH adjustment and would be capable of treating wastewater
 Tanks to store chemicals needed
 <u>Waste Streams</u>

Ga Ammonia in air discharge

Air/Steam Stripping (Cont)

Effluent Quality


Gamma Capable of meeting permit limits for ammonia

Vessel Application

 Not considered suitable for a vessel because of the need for alkaline and acid treatment chemicals, and ammonia air emission

Aerobic Biological Oxidation/Nitrification

Nitrification

Description

Removal of ammonia by microorganisms

G Conversion to nitrate

Where Used

 This technology is widely used for ammonia removal in municipal and industrial wastewater applications

Nitrification (Cont)

Waste Streams

Generates biological sludge disposed by

- Land application
- Composting
- Dewatering followed by landfilling/incineration
- Anaerobic digestion followed by energy recovery

Effluent Quality

Removal of ammonia to values less than 1.0 mg/L possible

Nitrification (Cont)

Capabilities/Size

Space requirements depend on flow rates and ammonia concentrations.

SMALL

MEDIUM

LARGE

Nitrification (Cont)

Vessel Application

 Could be compact if membrane technology is used for solids separation (MBR)

 Most cruise ships already have installed MBR. Modify as needed to meet new limits

Breakpoint Chlorination

Description

Gas Oxidation of ammonia using high concentrations of active chlorine

Where Used

Treatment of drinking water and swimming pools and in pulp and paper industry for bleaching

Breakpoint Chlorination (Cont)

Capabilities

Treatment of ammonia only
 Requires storage of chlorine or chlorine compounds

Waste Streams

Free chlorine remains in water, potentially exceeding permit limits
 Dechlorination may be required

Breakpoint Chlorination (Cont)

Effluent Quality

- Generation of ammonia
- Gas Effluent will contain residual chlorine

Vessel Application

 Limited application because of the need for chlorine and additional treatment to remove chlorine from treated water

Surface Clay Filtration

Description

 Adsorption of metal ions onto clay filter media surface via ion exchange

G Older technology

Where Used

Mining and chemical industries

G Drinking water treatment in developing countries

Surface Clay Filtration (Cont)

Capabilities

 Metal removal rates of 95% possible, but difficult to achieve because of low effluent limits

General Media is inexpensive

Waste Streams

Generated
 Generated
 Generated

Surface Clay Filtration (Cont)

Effluent Quality

GIIII Unlikely to meet permit standards consistently

Vessel Application

- Pre-treatment of source water on-shore considered for application
- May require additional treatment for drinking water.

Electrowinning

Electrowinning

Description

 Electrodepositing metals from solution onto a cathode using DC current

Where Used

 Mining applications, electroplating shops, circuit board mfg. with high dissolved metals concentrations in water

Electrowinning (Cont)

Capabilities

Works best with high concentrations. Surface area would need to be higher for low concentration systems

 Requires large storage tanks and heaters, may have application to waters concentrated by other processes

Electrowinning (Cont)

Waste Streams

Cathode can be removed and recycled\disposed as a solid

Effluent Quality

Suitable only for metals, effluent
 concentration generally much higher than
 permit limits

Electrowinning (Cont)

Vessel Application

 Limited to pre-treatment or treatment of concentrated metals waste streams

Chemical Precipitation

Description

GIST PH, precipitate metal hydroxide, clarify, filter out metal waste

Where Used

90% of Metal Finishing processes use this for heavy metal removal including Cu, Ni, and Zn.

Capabilities

Handle mixed chemistries of metals with high concentrations.

Chemical Precipitation (Cont)

Waste Streams

Generates a heavy metal sludge which on land can be disposed as hazardous waste or recycled. Can dry further to reduce qty

Effluent Quality

On land based systems can consistently get Cu & Ni to below levels of 1 ppm. Zn can be removed to levels around 0.1 ppm. May not meet permit levels.

Chemical Precipitation (Cont)

Vessel Application

- More difficult to adapt than RO or IX because of inclination.
- May still need to be combined with other technology to meet specific effluent requirement

Reverse Osmosis

Reverse Osmosis (RO)

Description

- ^{GS} Use of Membranes under pressure to physically separate compounds and ions.
- Osmosis Water will move across membrane into wastewater until the contaminant concentrations of both liquids are equal.
- Reverse Osmosis Apply pressure to contaminant side of membrane to allow water to flow in reverse.
- Contaminants will be blocked by pore size of the membrane filter and/or the electrostatic charge on the membrane

Reverse Osmosis (Cont)

Where Used

- **Refineries**
- Metal Finishing including recycling of water to process
- Groundwater Remediation
- G Cruise ships

Reverse Osmosis (Cont)

Effluent Quality

- Depending on influent qualities, ppm or ppb levels can be achieved.
- Capable of using to recycle treated graywater and blackwater for other uses

Reverse Osmosis (Cont)

Capabilities

- Technology can be used on source or wastewater.
- Application can require a single or multiple pass setup of equipment.
- May have to be used in conjunction with other technologies like Ion Exchange

Ion-Exchange (IX)

Ion Exchange

Description

- Adsorb contaminant release exchange element.
- Well established technology, uses an engineered resin as exchange medium in a reactor vessel

Where Used

^{cs} Currently used in water and wastewater treatment and as a polishing process in industry

Ion Exchange (Cont)

Capabilities

^{CS} Competing ions affect treatment achieved and unit sizing
 ^{CS} Treat both metals and ammonia.
 ^{CS} May have to be used in conjunction with other technologies like Reverse Osmosis

Ion Exchange (Cont)

Waste Streams

Resin is regenerated as needed, concentrated waste must be disposed

Resin can be contracted for regeneration.

Ion Exchange (Cont)

Effluent Quality

 In land based systems nearly complete metals removal possible

GI Ammonia removal to meet limits.

Vessel Application

Relatively few vessel related issues identified, dependent upon amount of media required

Electrodialysis

Electrodialysis

Description

 Membrane filtration with addition of current to enhance treatment

Where Used

Metal finishing for recovery of nickel and copper and purification of drinking water

Electrodialysis (Cont)

Capabilities/size

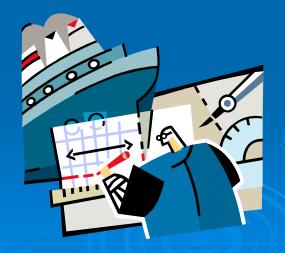
GI Treats both metals and ammonia

- **Game Chlorine tolerant**
- Waste Streams

Generated Solution

Electrodialysis (Cont)

Effluent Quality


Game Technology is capable meeting permit limits

Vessel Application

G Treatment would be post tertiary

Vendor Proposals

Several vendors provided proposals or information regarding conceptual systems.

CASTion

Combination Treatment

- Ammonia recovery process followed by Ion exchange
 - Multimedia Filters
 - Cartridge Filters
 - Softener Unit
 - Ammonia Recovery Unit
 - Cation Exchanger
 - Metal Ion Exchanger
 - Sulfate Concentration Unit

Det Norske Veritas AS with Norwegian University of Science and Technology

 Combination moving bed biofilm bioreactor with membrane filtration unit
 Applicable to ammonia removal only.

Evac Oy

MBR System with integrated metals precipitation

Inconclusive chemical addition agents other than hydrogen sulfide

Ferrate Treatment Technologies

> Oxidation of Ammonia and Zinc with Ferrate

Filter Flow Technology

Electrochemical technology to remove trace metals and the ammonium ion > Electro-oxidation > Zeolite Pre-filter > Aeration Sorbent Dosing Precipitation

GE Water and Process Technologies (Zenon)

Reverse Osmosis
 Electro Dialysis
 MBR Upgrade Systems

NORAM Engineering (Presenter)

 Stage 1 Ammonia Oxidation by ozone or hypochlorite or breakpoint chlorination
 Stage 2 Metal oxidation via iron particles.

Ohio University (Presenter)

Electrolysis to oxidize ammonia.
 Potential for electrolysis for metals treatment.

ROCHEM (Presenter)

Multi-membrane (MF, UF, NF and RO) stack for independent and MBR units to remove ammonia and metals

Emerging Technologies

 Removal of Ammonia as Magnesium Ammonium Phosphate
 Ammonia Removal by Thermally Activated Charcoal
 Anaerobic Ammonium Oxidation
 Electrolytic Treatment of Aqueous Media
 Biosorption by Immobilized Microorganism

Implementation Stages

System balance and source evaluation Source substitution > Optimize water sources Evaluate wastewater collection and use > Ship constraints Pre and post treatment options \succ Source reduction, substitution, optimization

Summary of Technology Status > Emerging technologies ^{cg} Likely not solutions for 2010 because of short timeframe available to field systems May offer effective solutions based on further evaluation to demonstrate effectiveness Land based technologies Are able to meet standards Require marine regulatory approval Need to be modified for marine environment and waste streams

Summary of Technology Status (Cont)

Ship safety and space limitations must be accommodated
 Unintended effects, e.g. new waste streams

Implementation

Implementation Considerations

General

Implementation is cruise line responsibility
 Implementation will be very specific to each vessel and each technology
 Implementation discussed here to give non-maritime readers and idea of the process

General (Cont)

- More data to follow once technology is narrowed down and classification agencies weigh in
- Once identified, needed technologies usually adapt for marine use over time.

Selection of Treatment Systems
 Systematic Vessel Wastewater Evaluation
 System Balance and Source Evaluation
 Source Substitution/optimization
 Pre and post treatment options

Selection of Treatment Systems (Cont)
 Gelection of Preferred Treatment Alternative
 Analyze multiple treatment alternatives
 Each alt. contains source, influent, effluent treatment +
 Various treatment devices

Select Optimum Alternative

Implementation Considerations (Cont) Considerations (Cont) Regulatory Approval of Device Device "approved" prior to being installed If device is defined as sewage treatment International agreement IMO Annex 26 MEPC.159(55) states discharge standards

Regulatory Approval of Device (Cont)
 If device not sewage treatment
 Classification agency is likely approval authority for foreign flagged vessel
 General marine machinery approval rules apply

• Temperature, humidity, inclinations, construction and standards

Implementation **Considerations** (Cont) Installation of Device Ga Concept Design Laboratory based treatability study Comprehensive review of all design parameters and costs **Gamma Performance Conformation** If concept design cannot adequately quantify risks, use onboard testing

Generation Final Selection

- **Gamma** Installation
 - Installation Design
 - Plan Submittal to Classification Agency
 - Construction and Testing.

Summary of Findings

TABLE 8.1: SUMMARY OF FINDINGS FOR TREATMENT METHODS

Effec		ctive for				
Treatment Method	Ammonia	Dissolved Metals	Technical Feasibility	Implementation Feasibility	Vendor Interest	Other Considerations
Chemical Precipitation			Moderate	Moderate	Evac Oy, Filter Flow	Retention time
Ion Exchange	×	Y	High	Moderate	DOW, CASTIon	Resin recharge
Reverse Osmosis	×	4	High	High	GE, ROCHEM	Low chlorine tolerance
Surface Clay Filtration		~	Low	Moderate	-	
Electrowinning		~	Low	Moderate	-	
Electrodialysis	¥	~	High	Moderate	GE	
Air / Steam Stripping	~		Moderate	Low	-	Air emission limit on ammonia
Aerobic Biological Oxidation / Nitrification	~		Moderate	High	-	Retention time
Breakpoint Chlorination	~		Moderate	Low	NORAM	Discharge limit on chlorine
Oxidation using Hydrous Ferric Oxide/Iron		1	-	-	NORAM	
Magnesium Ammonium Phosphate	~		-	-	-	Research Only
Thermally Activated Charcoal	~		-	-	-	Research Only
Anaerobic Ammonium Oxidation	~		-	-	-	Research Only
Electrolytic Treatment	1		-	-	Ohio University	Research Only
Biosorption by Immobilized Microorganisms		4	-	-	-	Research Only