(g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.

(2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in §60.48c(f) to demonstrate compliance with the SO₂ standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.

(3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in §60.42C to use fuel certification to demonstrate compliance with the SO₂ standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.

(h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under §60.42c or §60.43c shall calculate the annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.

(i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.

(j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

Subpart E—Standards of Performance for Incinerators

§ 60.50 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to each incinerator of more than 45 metric tons per day charging rate (50 tons/day), which is the affected facility.

(b) Any facility under paragraph (a) of this subpart is subject to the requirements of this subpart.

(c) Any facility covered by subpart Cb, Eb, AAAA, or BBBB of this part is not covered by this subpart.

(d) Any facility covered by an EPA approved State section 111(d)/129 plan implementing subpart Cb or BBBB of this part is not covered by this subpart.
§ 60.54 Test methods and procedures.

(a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).

(b) The owner or operator shall determine compliance with the particulate matter standard in §60.52 as follows:

1. The concentration \(c_{12}\) of particulate matter, corrected to 12 percent CO\(_2\), shall be computed for each run using the following equation:

\[
c_{12} = c_s (12/\%CO_2)
\]

where:

\[
c_{12} = \text{concentration of particulate matter, corrected to 12 percent CO}_2, \text{ g/dscm (gr/dscf)}.
\]

\[
c_s = \text{concentration of particulate matter, g/dscm (gr/dscf)}.
\]

\[
\%CO_2 = \text{CO}_2 \text{ concentration, percent dry basis.}
\]

2. Method 5 shall be used to determine the particulate matter concentration \(c_s\). The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).

3. The emission rate correction factor, integrated or grab sampling and analysis procedure of Method 3B shall be used to determine CO\(_2\) concentration (%CO\(_2\)).

(i) The CO\(_2\) sample shall be obtained simultaneously with, and at the same traverse points as, the particulate run. If the particulate run has more than 12 traverse points, the CO\(_2\) traverse points may be reduced to 12 if Method 1 is used to locate the 12 CO\(_2\) traverse points. If individual CO\(_2\) samples are taken at each traverse point, the CO\(_2\) concentration (%CO\(_2\)) used in the correction equation shall be the arithmetic mean of the sample CO\(_2\) concentrations at all traverse points.

(ii) If sampling is conducted after a wet scrubber, an “adjusted” CO\(_2\) concentration \(\left(\%CO_2\right)_{\text{adj}}\), which accounts for the effects of CO\(_2\) absorption and dilution air, may be used instead of the CO\(_2\) concentration determined in this paragraph. The adjusted CO\(_2\) concentration shall be determined by either of the procedures in paragraph (c) of this section.

(c) The owner or operator may use either of the following procedures to determine the adjusted CO\(_2\) concentration:

(i) The CO\(_2\) sample shall be obtained simultaneously with, and at the same traverse points as, the particulate run. If the particulate run has more than 12 traverse points, the CO\(_2\) traverse points may be reduced to 12 if Method 1 is used to locate the 12 CO\(_2\) traverse points. If individual CO\(_2\) samples are taken at each traverse point, the CO\(_2\) concentration (%CO\(_2\)) used in the correction equation shall be the arithmetic mean of the sample CO\(_2\) concentrations at all traverse points.

(ii) If sampling is conducted after a wet scrubber, an “adjusted” CO\(_2\) concentration \(\left(\%CO_2\right)_{\text{adj}}\), which accounts for the effects of CO\(_2\) absorption and dilution air, may be used instead of the CO\(_2\) concentration determined in this paragraph. The adjusted CO\(_2\) concentration shall be determined by either of the procedures in paragraph (c) of this section.

(c) The owner or operator may use either of the following procedures to determine the adjusted CO\(_2\) concentration:

(i) The CO\(_2\) sample shall be obtained simultaneously with, and at the same traverse points as, the particulate run. If the particulate run has more than 12 traverse points, the CO\(_2\) traverse points may be reduced to 12 if Method 1 is used to locate the 12 CO\(_2\) traverse points. If individual CO\(_2\) samples are taken at each traverse point, the CO\(_2\) concentration (%CO\(_2\)) used in the correction equation shall be the arithmetic mean of the sample CO\(_2\) concentrations at all traverse points.

(ii) If sampling is conducted after a wet scrubber, an “adjusted” CO\(_2\) concentration \(\left(\%CO_2\right)_{\text{adj}}\), which accounts for the effects of CO\(_2\) absorption and dilution air, may be used instead of the CO\(_2\) concentration determined in this paragraph. The adjusted CO\(_2\) concentration shall be determined by either of the procedures in paragraph (c) of this section.
concentration \[\text{(%CO}_2\text{)}_{\text{adj}}\] using the following equation:
\[
\text{(%CO}_2\text{)}_{\text{adj}} = \text{(%CO}_2\text{)}_{\text{di}} \left(\frac{Q_{\text{di}}}{Q_{\text{do}}}\right)
\]
where:
\[
\text{(%CO}_2\text{)}_{\text{adj}} = \text{adjusted outlet CO}_2\text{ concentration, percent dry basis.}
\]
\[
\text{(%CO}_2\text{)}_{\text{di}} = \text{CO}_2\text{ concentration measured before the scrubber, percent dry basis.}
\]
\[
Q_{\text{di}} = \text{volumetric flow rate of effluent gas before the wet scrubber, dscm/min (dscf/min).}
\]
\[
Q_{\text{do}} = \text{volumetric flow rate of effluent gas after the wet scrubber, dscm/min (dscf/min).}
\]

(i) At the outlet, Method 5 is used to determine the volumetric flow rate \(Q_{\text{do}}\) of the effluent gas.
(ii) At the inlet, Method 2 is used to determine the volumetric flow rate \(Q_{\text{di}}\) of the effluent gas as follows: Two full velocity traverses are conducted, one immediately before and one immediately after each particulate run conducted at the outlet, and the results are averaged.
(iii) At the inlet, the emission rate correction factor, integrated sampling and analysis procedure of Method 3B is used to determine the \(\text{CO}_2\) concentration \[\text{(%CO}_2\text{)}_{\text{di}}\] as follows: At least nine sampling points are selected randomly from the velocity traverse points and are divided randomly into three sets, equal in number of points; the first set of three or more points is used for the first run, the second set for the second run, and the third set for the third run. The \(\text{CO}_2\) sample is taken simultaneously with each particulate run being conducted at the outlet, by traversing the three sampling points (or more) and sampling at each point for equal increments of time.

(2) Excess air measurements may be used to determine the adjusted \(\text{CO}_2\) concentration \[\text{(%CO}_2\text{)}_{\text{adj}}\] using the following equation:
\[
\text{(%CO}_2\text{)}_{\text{adj}} = \text{(%CO}_2\text{)}_{\text{di}} \left[\frac{100 + \%\text{EA}}{100 + \%\text{EA}_0}\right]
\]
where:
\[
\text{(%CO}_2\text{)}_{\text{adj}} = \text{adjusted outlet CO}_2\text{ concentration, percent dry basis.}
\]
\[
\text{(%CO}_2\text{)}_{\text{di}} = \text{CO}_2\text{ concentration at the inlet of the wet scrubber, percent dry basis.}
\]
\[
\%\text{EA} = \text{excess air at the inlet of the scrubber, percent.}
\]
\[
\%\text{EA}_0 = \text{excess air at the outlet of the scrubber, percent.}
\]

(i) A gas sample is collected as in paragraph (c)(1)(iii) of this section and the gas samples at both the inlet and outlet locations are analyzed for \(\text{CO}_2\), \(\text{O}_2\), and \(\text{N}_2\).
(ii) Equation 3B–3 of Method 3B is used to compute the percentages of excess air at the inlet and outlet of the wet scrubber.

Subpart Ea—Standards of Performance for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994

SOURCE: 56 FR 5507, Feb. 11, 1991, unless otherwise noted.