the average temperature difference across the catalyst bed is less than 80 percent of the average temperature difference across the catalyst bed during the most recent performance test at which destruction efficiency was determined as specified under §60.313 will be recorded.

(3) For thermal and catalytic incinerators, if no such periods as described in paragraphs (c)(1) and (c)(2) of this section occur, the owner or operator shall state this in the report.

(d) Each owner or operator subject to the provisions of this subpart shall maintain at the source, for a period of at least 2 years, records of all data and calculations used to determine VOC emissions from each affected facility. Where compliance is achieved through the use of thermal incineration, each owner or operator shall maintain, at the source, daily records of the incinerator combustion chamber temperature. If catalytic incineration is used, the owner or operator shall maintain at the source daily records of the gas temperature, both upstream and downstream of the incinerator catalyst bed. Where compliance is achieved through the use of a solvent recovery system, the owner or operator shall maintain at the source daily records of the amount of solvent recovered by the system for each affected facility.

§60.316 Test methods and procedures.

(a) The reference methods in appendix A to this part except as provided under §60.8(b) shall be used to determine compliance with §60.312 as follows:

(1) Method 24, or coating manufacturer’s formulation data, for use in the determination of VOC content of each batch of coating as applied to the surface of the metal parts. In case of an inconsistency between the Method 24 results and the formulation data, the Method 24 results will govern.

(2) Method 25 for the measurement of VOC concentration.

(3) Method 1 for sample and velocity traverses.

(4) Method 2 for velocity and volumetric flow rate.

(5) Method 3 for gas analysis.

(6) Method 4 for stack gas moisture.

(b) For Method 24, the coating sample must be at least a 1 liter sample in a 1 liter container taken at a point where the sample will be representative of the coating material as applied to the surface of the metal part.

(c) For Method 25, the minimum sampling time for each of 3 runs is 60 minutes and the minimum sample volume is 0.003 dry standard cubic meters except that shorter sampling times or smaller volumes, when necessitated by process variables or other factors, may be approved by the Administrator.

(d) The Administrator will approve testing of representative stacks on a case-by-case basis if the owner or operator can demonstrate to the satisfaction of the Administrator that testing of representative stacks yields results comparable to those that would be obtained by testing all stacks.

Subpart FF [Reserved]

Subpart GG—Standards of Performance for Stationary Gas Turbines

§60.330 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired.

(b) Any facility under paragraph (a) of this section which commences construction, modification, or reconstruction after October 3, 1977, is subject to the requirements of this part except as provided in paragraphs (e) and (j) of §60.332.

§60.331 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) Stationary gas turbine means any simple cycle gas turbine, regenerative
cycle gas turbine or any gas turbine portion of a combined cycle steam/electric generating system that is not self propelled. It may, however, be mounted on a vehicle for portability.

(b) **Simple cycle gas turbine** means any stationary gas turbine which does not recover heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine, or which does not recover heat from the gas turbine exhaust gases to heat water or generate steam.

(c) **Regenerative cycle gas turbine** means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine.

(d) **Combined cycle gas turbine** means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to heat water or generate steam.

(e) **Emergency gas turbine** means any stationary gas turbine which operates as a mechanical or electrical power source only when the primary power source for a facility has been rendered inoperable by an emergency situation.

(f) **Ice fog** means an atmospheric suspension of highly reflective ice crystals.

(g) **ISO standard day conditions** means 288 degrees Kelvin, 60 percent relative humidity and 101.3 kilopascals pressure.

(h) **Efficiency** means the gas turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output based on the lower heating value of the fuel.

(i) **Peak load** means 100 percent of the manufacturer’s design capacity of the gas turbine at ISO standard day conditions.

(j) **Base load** means the load level at which a gas turbine is normally operated.

(k) **Fire-fighting turbine** means any stationary gas turbine that is used solely to pump water for extinguishing fires.

(l) **Turbines employed in oil/gas production or oil/gas transportation** means any stationary gas turbine used to provide power to extract crude oil/natural gas from the earth or to move crude oil/natural gas, or products refined from these substances through pipelines.

(m) **A Metropolitan Statistical Area** or **MSA** as defined by the Department of Commerce.

(n) **Offshore platform gas turbines** means any stationary gas turbine located on a platform in an ocean.

(o) **Garrison facility** means any permanent military installation.

(p) **Gas turbine model** means a group of gas turbines having the same nominal air flow, combuster inlet pressure, combuster inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.

(q) **Electric utility stationary gas turbine** means any stationary gas turbine constructed for the purpose of supplying more than one-third of its potential electric output capacity to any utility power distribution system for sale.

(r) **Emergency fuel** is a fuel fired by a gas turbine only during circumstances, such as natural gas supply curtailment or breakdown of delivery system, that make it impossible to fire natural gas in the gas turbine.

(s) **Unit operating hour** means a clock hour during which any fuel is combusted in the affected unit. If the unit combusted fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.

(t) **Excess emissions** means a specified averaging period over which either:

1. The NOX emissions are higher than the applicable emission limit in §60.332;
2. The total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.333; or
3. The recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.

(u) **Natural gas** means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Natural gas contains 20.0 grains or less of total sulfur per 100
standard cubic feet. Equivalents of this in other units are as follows: 0.068 weight percent total sulfur, 680 parts per million by weight (ppmw) total sulfur, and 338 parts per million by volume (ppmv) at 20 degrees Celsius total sulfur. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

(v) Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary gas turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.

(w) Lean premix stationary combustion turbine means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture for combustion in the combustor. Mixing may occur before or in the combustion chamber. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(x) Diffusion flame stationary combustion turbine means any stationary combustion turbine where fuel and air are injected at the combustor and are mixed only by diffusion prior to ignition. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(y) Unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

§ 60.332 Standard for nitrogen oxides.

(a) On and after the date on which the performance test required by § 60.8 is completed, every owner or operator subject to the provisions of this subpart as specified in paragraphs (b), (c), and (d) of this section shall comply with one of the following, except as provided in paragraphs (e), (f), (g), (h), (i), (j), (k), and (l) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

\[\text{STD} = 0.0075 \frac{14.4}{Y} + F \]

where:

- **STD** = allowable ISO corrected (if required as given in § 60.335(b)(1)) NO\(_X\) emission concentration (percent by volume at 15 percent oxygen and on a dry basis),
- **Y** = manufacturer’s rated heat rate at manufacturer’s rated load (kilojoules per watt hour) or, actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and
- **F** = NO\(_X\) emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(2) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

\[\text{STD} = 0.0150 \frac{14.4}{Y} + F \]

where:

- **STD** = allowable ISO corrected (if required as given in § 60.335(b)(1)) NO\(_X\) emission concentration (percent by volume at 15 percent oxygen and on a dry basis),
- **Y** = manufacturer’s rated heat rate at manufacturer’s rated peak load (kilojoules per watt hour), or actual measured heat rate.
Environmental Protection Agency

§ 60.332

based on lower heating value of fuel as measured at actual peak load for the facility. The value of \(Y \) shall not exceed 14.4 kilojoules per watt hour, and

\[
F = \frac{\text{NO}_x \text{ emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section}}{}
\]

(3) The use of \(F \) in paragraphs (a)(1) and (2) of this section is optional. That is, the owner or operator may choose to apply a \(\text{NO}_x \) allowance for fuel-bound nitrogen and determine the appropriate \(F \)-value in accordance with paragraph (a)(4) of this section or may accept an \(F \)-value of zero.

(4) If the owner or operator elects to apply a \(\text{NO}_x \) emission allowance for fuel-bound nitrogen, \(F \) shall be defined according to the nitrogen content of the fuel during the most recent performance test required under §60.8 as follows:

<table>
<thead>
<tr>
<th>Fuel-bound nitrogen (percent by weight)</th>
<th>(F) ((\text{NO}_x) percent by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N \leq 0.015)</td>
<td>0</td>
</tr>
<tr>
<td>0.015 < (N \leq 0.1)</td>
<td>0.04 (N)</td>
</tr>
<tr>
<td>0.1 < (N \leq 0.25)</td>
<td>0.004 + 0.0067(N - 0.1)</td>
</tr>
<tr>
<td>(N > 0.25)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Where:

\(N \) = the nitrogen content of the fuel (percent by weight).

or:

Manufacturers may develop and submit to EPA custom fuel-bound nitrogen allowances for each gas turbine model they manufacture. These fuel-bound nitrogen allowances shall be substantiated with data and must be approved for use by the Administrator before the initial performance test required by §60.8. Notices of approval of custom fuel-bound nitrogen allowances will be published in the FEDERAL REGISTER.

(b) Electric utility stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired shall comply with the provisions of paragraph (a)(1) of this section.

(c) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired, shall comply with the provisions of paragraph (a)(2) of this section.

(d) Stationary gas turbines with a manufacturer's rated base load at ISO conditions of 30 megawatts or less except as provided in §60.332(b) shall comply with paragraph (a)(2) of this section.

(e) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired and that have commenced construction prior to October 3, 1982 are exempt from paragraph (a) of this section.

(f) Stationary gas turbines using water or steam injection for control of \(\text{NO}_x \) emissions are exempt from paragraph (a) when ice fog is deemed a traffic hazard by the owner or operator of the gas turbine.

(g) Emergency gas turbines, military gas turbines for use in other than a garrison facility, military gas turbines installed for use as military training facilities, and fire fighting gas turbines are exempt from paragraph (a) of this section.

(h) Stationary gas turbines engaged by manufacturers in research and development of equipment for both gas turbine emission control techniques and gas turbine efficiency improvements are exempt from paragraph (a) on a case-by-case basis as determined by the Administrator.

(i) Exemptions from the requirements of paragraph (a) of this section will be granted on a case-by-case basis as determined by the Administrator in specific geographical areas where mandatory water restrictions are required by governmental agencies because of drought conditions. These exemptions will be allowed only while the mandatory water restrictions are in effect.

(j) Stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour that commenced construction, modification, or reconstruction between the dates of October 3, 1977, and January 27, 1982, and were required in the September 10, 1979, FEDERAL REGISTER (44 FR 52792) to comply with paragraph (a)(1) of this
§ 60.333 Standard for sulfur dioxide.

On and after the date on which the performance test required to be conducted by § 60.8 is completed, every owner or operator subject to the provisions of this subpart shall comply with one or the other of the following conditions:

(a) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15 percent oxygen and on a dry basis.

(b) No owner or operator subject to the provisions of this subpart shall burn in any stationary gas turbine any fuel which contains total sulfur in excess of 0.8 percent by weight (8000 ppmw).

§ 60.334 Monitoring of operations.

(a) Except as provided in paragraph (b) of this section, the owner or operator of any stationary gas turbine subject to the provisions of this subpart and using water or steam injection to control NO\(_X\) emissions shall install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine.

(b) The owner or operator of any stationary gas turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which uses water or steam injection to control NO\(_X\) emissions may, as an alternative to operating the continuous monitoring system described in paragraph (a) of this section, install, certify, maintain, operate, and quality-assure a continuous emission monitoring system (CEMS) consisting of NO\(_X\) and O\(_2\) monitors. As an alternative, a CO\(_2\) monitor may be used to adjust the measured NO\(_X\) concentrations to 15 percent O\(_2\) by either converting the CO\(_2\) hourly averages to equivalent O\(_2\) concentrations using Equation F–14a or F–14b in appendix F to part 75 of this chapter and making the adjustments to 15 percent O\(_2\), or by using the CO\(_2\) readings directly to make the adjustments, as described in Method 20. If the option to use a CEMS is chosen, the CEMS shall be installed, certified, maintained and operated as follows:

(1) Each CEMS must be installed and certified according to PS 2 and 3 (for diluent) of 40 CFR part 60, appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. Appendix F, Procedure 1 is not required. The relative accuracy test audit (RATA) of the NO\(_X\) and diluent monitors may be performed individually or on a combined basis, i.e., the relative accuracy tests of the CEMS may be performed either:

(i) On a ppm basis (for NO\(_X\)) and a percent O\(_2\) basis for oxygen; or

(ii) On a ppm at 15 percent O\(_2\) basis;

or

(iii) On a ppm basis (for NO\(_X\)) and a percent CO\(_2\) basis (for a CO\(_2\) monitor that uses the procedures in Method 20 to correct the NO\(_X\) data to 15 percent O\(_2\)).

(2) As specified in §60.13(e)(2), during each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data...
(3) For purposes of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in §60.13(h).

(i) For each unit operating hour in which a valid hourly average, as described in paragraph (b)(2) of this section, is obtained for both NO\textsubscript{X} and diluent, the data acquisition and handling system must calculate and record the hourly NO\textsubscript{X} emissions in the units of the applicable NO\textsubscript{X} emission standard under §60.332(a), i.e., percent NO\textsubscript{X} by volume, dry basis, corrected to 15 percent O\textsubscript{2} and International Organization for Standardization (ISO) standard conditions (if required as given in §60.335(b)(1)). For any hour in which the hourly average O\textsubscript{2} concentration exceeds 19.0 percent O\textsubscript{2}, a diluent cap value of 19.0 percent O\textsubscript{2} may be used in the emission calculations.

(ii) A worst case ISO correction factor may be calculated and applied using historical ambient data. For the purpose of this calculation, substitute the maximum humidity of ambient air (H\textsubscript{a}), minimum ambient temperature (T\textsubscript{a}), and minimum combustor inlet absolute pressure (P\textsubscript{o}) into the ISO correction equation.

(iii) If the owner or operator has installed a NO\textsubscript{X} CEMS to meet the requirements of part 75 of this chapter, and is continuing to meet the ongoing requirements of part 75 of this chapter, the CEMS may be used to meet the requirements of this section, except that the missing data substitution methodology provided for at 40 CFR part 75, subpart D, is not required for purposes of identifying excess emissions. Instead, periods of missing CEMS data are to be reported as monitor down-time in the excess emissions and monitoring performance report required in §60.7(c).

(c) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which does not use steam or water injection to control NO\textsubscript{X} emissions, the owner or operator shall define at least four parameters indicative of the unit's NO\textsubscript{X} formation characteristics and shall monitor these parameters continuously.

Also, if the owner or operator has previously submitted and received EPA, State, or local permitting authority approval of a procedure for monitoring compliance with the applicable NO\textsubscript{X} emission limit under §60.332, that approved procedure may continue to be used.

(d) The owner or operator of any new turbine constructed after July 8, 2004, and which uses water or steam injection to control NO\textsubscript{X} emissions may elect to use either the requirements in paragraph (a) of this section for continuous water or steam to fuel ratio monitoring or may use a NO\textsubscript{X} CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section.

(e) The owner or operator of any new turbine that commences construction after July 8, 2004, and which does not use water or steam injection to control NO\textsubscript{X} emissions, may, but is not required to, use a NO\textsubscript{X} CEMS that meets the requirements of paragraph (b) of this section.

(f) The owner or operator of a new turbine that commences construction after July 8, 2004, which does not use water or steam injection to control NO\textsubscript{X} emissions may, but is not required to, perform continuous parameter monitoring as follows:

(1) For a diffusion flame turbine without add-on selective catalytic reduction controls (SCR), the owner or operator shall define at least four parameters indicative of the unit's NO\textsubscript{X} formation characteristics and shall monitor these parameters continuously.

(2) For any lean premix stationary combustion turbine, the owner or operator shall continuously monitor the appropriate parameters to determine whether the unit is operating in low-NO\textsubscript{X} mode.

(3) For any turbine that uses SCR to reduce NO\textsubscript{X} emissions, the owner or operator shall continuously monitor appropriate parameters to verify the
(4) For affected units that are also regulated under part 75 of this chapter, if the owner or operator elects to monitor NO\textsubscript{X} emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19 of this chapter, the requirements of this paragraph (f) may be met by performing the parametric monitoring described in section 2.3 of appendix E or in §75.19(c)(1)(v)(H) of this chapter.

(g) The steam or water to fuel ratio or other parameters that are continuously monitored as described in paragraphs (a), (d) or (f) of this section shall be monitored during the performance test required under §60.8, to establish acceptable values and ranges. The owner or operator may supplement the performance test data with engineering analyses, design specifications, manufacturer’s recommendations and other relevant information to define the acceptable parametric ranges more precisely. The owner or operator shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO\textsubscript{X} emission controls. The plan shall include the parameter(s) monitored and the acceptable range(s) of the parameter(s) as well as the basis for designating the parameter(s) and acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer’s recommendations and other relevant information shall be included in the monitoring plan. For affected units that are also subject to part 75 of this chapter and that use the low mass emissions methodology in §75.19 of this chapter or the NO\textsubscript{X} emission measurement methodology in appendix E to part 75, the owner or operator may meet the requirements of this paragraph by developing and keeping on-site (or at a central location for unmanned facilities) a quality-assurance plan, as described in §75.19(e)(5) or in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this chapter.

(h) The owner or operator of any stationary gas turbine subject to the provisions of this subpart:

(1) Shall monitor the total sulfur content of the fuel being fired in the turbine, except as provided in paragraph (h)(3) of this section. The sulfur content of the fuel must be determined using total sulfur methods described in §60.335(b)(10). Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than 0.4 weight percent (4000 ppmw), ASTM D4084–82, 94, D5504–91, D6228–98, or Gas Processors Association Standard 2377–86 (all of which are incorporated by reference—see §60.17), which measure the major sulfur compounds may be used; and

(2) Shall monitor the nitrogen content of the fuel combusted in the turbine, if the owner or operator claims an allowance for fuel bound nitrogen (i.e., if an F-value greater than zero is being or will be used by the owner or operator to calculate STD in §60.332). The nitrogen content of the fuel shall be determined using methods described in §60.335(b)(9) or an approved alternative.

(3) Notwithstanding the provisions of paragraph (h)(1) of this section, the owner or operator may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in §60.331(u), regardless of whether an existing custom schedule approved by the administrator for subpart GG requires such monitoring. The owner or operator shall use one of the following sources of information to make the required demonstration:

(i) The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20.0 grains/100 scf or less; or

(ii) Representative fuel sampling data which show that the sulfur content of the gaseous fuel does not exceed 20 grains/100 scf. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.
(4) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and for which a custom fuel monitoring schedule has previously been approved, the owner or operator may, without submitting a special petition to the Administrator, continue monitoring on this schedule.

(i) The frequency of determining the sulfur and nitrogen content of the fuel shall be as follows:

(1) **Fuel oil.** For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional sampling, daily sampling, sampling from the unit’s storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank). If an emission allowance is being claimed for fuel-bound nitrogen, the nitrogen content of the oil shall be determined and recorded once per unit operating day.

(2) **Gaseous fuel.** Any applicable nitrogen content value of the gaseous fuel shall be determined and recorded once per unit operating day. For owners and operators that elect not to demonstrate sulfur content using options in paragraph (h)(3) of this section, and for which the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel shall be determined and recorded once per unit operating day.

(3) **Custom schedules.** Notwithstanding the requirements of paragraph (i)(2) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (i)(3)(i) and (i)(3)(ii) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.333.

(i) The two custom sulfur monitoring schedules set forth in paragraphs (i)(3)(i)(A) through (D) and in paragraph (i)(3)(ii) of this section are acceptable, without prior Administrative approval:

(A) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel’s total sulfur content shall be as specified in paragraph (i)(3)(i)(B), (C), or (D) of this section, as applicable.

(B) If none of the 30 daily measurements of the fuel’s total sulfur content exceeds 0.4 weight percent (4000 ppmw), subsequent sulfur content monitoring may be performed at 12 month intervals. If any of the samples taken at 12-month intervals has a total sulfur content between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), follow the procedures in paragraph (i)(3)(i)(C) of this section. If any measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section.

(C) If at least one of the 30 daily measurements of the fuel’s total sulfur content is between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), but none exceeds 0.8 weight percent (8000 ppmw), then:

(1) Collect and analyze a sample every 30 days for three months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(2) of this section.

(2) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(3) of this section.

(D) If a sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), immediately begin daily monitoring
according to paragraph (i)(3)(i)(A) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than 0.8 weight percent (8000 ppmw), are obtained. At that point, the applicable procedures of paragraph (i)(3)(i)(B) or (C) of this section shall be followed.

(ii) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:

(A) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf (i.e., the maximum total sulfur content of natural gas as defined in §60.331(u)), no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.

(B) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds 0.4 weight percent (4000 ppmw), then the minimum required sampling frequency shall be one sample at 12 month intervals.

(C) If any sample result exceeds 0.4 weight percent sulfur (4000 ppmw), but none exceeds 0.8 weight percent sulfur (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(C) of this section.

(D) If the sulfur content of any of the 720 hourly samples exceeds 0.8 weight percent (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(D) of this section.

(j) For each affected unit that elects to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content or fuel nitrogen content under this subpart, the owner or operator shall submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions shall be reported for all periods of unit operation, including start-up, shutdown and malfunction. For the purpose of reports required under §60.7(c), periods of excess emissions and monitor downtime that shall be reported are defined as follows:

(1) Nitrogen oxides.

(i) For turbines using water or steam to fuel ratio monitoring:

(A) An excess emission shall be any unit operating hour for which the average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.332, as established during the performance test required in §60.8. Any unit operating hour in which no water or steam is injected into the turbine shall also be considered an excess emission.

(B) A period of monitor downtime shall be any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.

(C) Each report shall include the average steam or water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity), gas turbine load, and (if applicable) the nitrogen content of the fuel during each excess emission. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).

(ii) If the owner or operator elects to take an emission allowance for fuel bound nitrogen, then excess emissions and periods of monitor downtime are as described in paragraphs (j)(1)(ii)(A) and (B) of this section.

(A) An excess emission shall be the period of time during which the fuel bound nitrogen (N) is greater than the value measured during the performance test required in §60.8 and used to determine the allowance. The excess emission begins on the date and hour of the sample which shows that N is greater than the performance test value, and ends with the date and hour of a subsequent sample which shows a fuel nitrogen content less than or equal to the performance test value.

(B) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour that a required sample is
Environmental Protection Agency § 60.334

taken, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

(iii) For turbines using NOX and diluent CEMS:

(A) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NOX concentration exceeds the applicable emission limit in §60.332(a)(1) or (2). For the purposes of this subpart, a “4-hour rolling average NOX concentration” is the arithmetic average of the average NOX concentration measured by the CEMS for a given hour (corrected to 15 percent O2 and, if required under §60.335(b)(1), to ISO standard conditions) and the three unit operating hour average NOX concentrations immediately preceding that unit operating hour.

(B) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NOX concentration or diluent (or both).

(C) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period and (if the owner or operator has claimed an emission allowance for fuel bound nitrogen) the nitrogen content of the fuel during the period of excess emissions. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).

(iv) For owners or operators that elect, under paragraph (i) of this section, to monitor combustion parameters or parameters that document proper operation of the NOX emission controls:

(A) An excess emission shall be a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.

(B) A period of monitor downtime shall be a unit operating hour in which any of the required parametric data are either not recorded or are invalid.

(2) Sulfur dioxide. If the owner or operator is required to monitor the sulfur content of the fuel under paragraph (h) of this section:

(i) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit’s storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the gas turbine exceeds 0.8 weight percent and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

(ii) If the option to sample each delivery of fuel oil has been selected, the owner or operator shall immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit’s storage tank) if the sulfur content of a delivery exceeds 0.8 weight percent. The owner or operator shall continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and shall evaluate excess emissions according to paragraph (j)(2)(i) of this section. When all of the fuel from the delivery has been burned, the owner or operator may resume using the as-delivered sampling option.

(iii) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime shall include only unit operating hours, and ends on the date and hour of the next valid sample.

(3) Ice fog. Each period during which an exemption provided in §60.332(f) is in effect shall be reported in writing to the Administrator quarterly. For each period the ambient conditions existing during the period, the date and time the air pollution control system was deactivated, and the date and time the air pollution control system was reactivated shall be reported. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.
§ 60.335 Test methods and procedures.

(a) The owner or operator shall conduct the performance tests required in §60.8, using either

(1) EPA Method 20,

(2) ASTM D6522–00 (incorporated by reference, see §60.17), or

(3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine NOₓ and diluent concentration.

(4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

(5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:

(i) You may perform a stratification test for NOₓ and diluent pursuant to

(A) [Reserved]

(B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.

(ii) Once the stratification sampling is completed, the owner or operator may use the following alternative sample point selection criteria for the performance test:

(A) If each of the individual traverse point NOₓ concentrations, normalized to 15 percent O₂, is within 10 percent of the mean normalized concentration for all traverse points, then you may use 3 points (located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The 3 points shall be located along the measurement line that exhibited the highest average normalized NOₓ concentration during the stratification test; or

(B) If each of the individual traverse point NOₓ concentrations, normalized to 15 percent O₂, is within 5 percent of the mean normalized concentration for all traverse points, then you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid.

(6) Other acceptable alternative reference methods and procedures are given in paragraph (c) of this section.

(b) The owner or operator shall determine compliance with the applicable nitrogen oxides emission limitation in §60.332 and shall meet the performance test requirements of §60.8 as follows:

(1) For each run of the performance test, the mean nitrogen oxides emission concentration (NOₓₑ) corrected to 15 percent O₂ shall be corrected to ISO standard conditions using the following equation. Notwithstanding this requirement, use of the ISO correction equation is optional for: Lean premix stationary combustion turbines; units used in association with heat recovery steam generators (HRSG) equipped with duct burners; and units equipped with add-on emission control devices:

\[
\text{NO}_x = (\text{NO}_x^e)(P_r/P_o)^{0.5} e^{19 (H_o - 0.00633)} (288/T_a)^{1.53}
\]

Where:

\(\text{NO}_x \) = emission concentration of NOₓ at 15 percent O₂ and ISO standard ambient conditions, ppm by volume, dry basis,

\(\text{NO}_x^e \) = mean observed NOₓ concentration, ppm by volume, dry basis, at 15 percent O₂,

\(P_r \) = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure. Alternatively, you may use 760 mm Hg (29.92 in Hg),

\(P_o \) = observed combustor inlet absolute pressure at test, mm Hg. Alternatively, you may use the barometric pressure for the date of the test,

\(H_o \) = observed humidity of ambient air, g H₂O/g air.
(2) The 3-run performance test required by §60.8 must be performed within 5 percent at 30, 50, 75, and 90-to-100 percent of peak load or at four evenly-spaced load points in the normal operating range of the gas turbine, including the minimum point in the operating range and 90-to-100 percent of peak load, or at the highest achievable load point if 90-to-100 percent of peak load cannot be physically achieved in practice. If the turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel. Notwithstanding these requirements, performance testing is not required for any emergency fuel (as defined in §60.331).

(3) For a combined cycle turbine system with supplemental heat (duct burner), the owner or operator may elect to measure the turbine NO\textsubscript{X} emissions after the duct burner rather than directly after the turbine. If the owner or operator elects to use this alternative sampling location, the applicable NO\textsubscript{X} emission limit in §60.332 for the combustion turbine must still be met.

(4) If water or steam injection is used to control NO\textsubscript{X} with no additional post-combustion NO\textsubscript{X} control and the owner or operator chooses to monitor the steam or water to fuel ratio in accordance with §60.334(a), then that monitoring system must be operated concurrently with each EPA Method 20, ASTM D6522–00 (incorporated by reference, see §60.17), or EPA Method 7E run and shall be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.332 NO\textsubscript{X} emission limit.

(5) If the owner operator elects to claim an emission allowance for fuel bound nitrogen as described in §60.332, then concurrently with each reference method run, a representative sample of the fuel used shall be collected and analyzed, following the applicable procedures described in §60.335(b)(9). These data shall be used to determine the maximum fuel nitrogen content for which the established water (or steam) to fuel ratio will be valid.

(6) If the owner or operator elects to install a CEMS, the performance evaluation of the CEMS may either be conducted separately (as described in paragraph (b)(7) of this section) or as part of the initial performance test of the affected unit.

(7) If the owner or operator elects to install and certify a NO\textsubscript{X} CEMS under §60.334(e), then the initial performance test required under §60.8 may be done in the following alternative manner:

(i) Perform a minimum of 9 reference method runs, with a minimum time per run of 21 minutes, at a single load level, between 90 and 100 percent of peak (or the highest physically achievable) load.

(ii) Use the test data both to demonstrate compliance with the applicable NO\textsubscript{X} emission limit under §60.332 and to provide the required reference method data for the RATA of the CEMS described under §60.334(b).

(iii) The requirement to test at three additional load levels is waived.

(8) If the owner or operator elects under §60.334(f) to monitor combustion parameters or parameters indicative of proper operation of NO\textsubscript{X} emission controls, the appropriate parameters shall be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.334(g).

(9) To determine the fuel bound nitrogen content of fuel being fired (if an emission allowance is claimed for fuel bound nitrogen), the owner or operator may use equipment and procedures meeting the requirements of:

(i) For liquid fuels, ASTM D2597–94 (Reapproved 1999), D6366–99, D4629–02, D5762–02 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, shall use analytical methods and procedures that are accurate to within 5 percent of the instrument range and are approved by the Administrator.

(10) If the owner or operator is required under §60.334(i)(1) or (3) to periodically determine the sulfur content of the fuel combusted in the turbine, a minimum of three fuel samples shall be collected during the performance test.
Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129–00, D2622–98, D4294–02, D1266–98, D5453–00 or D1552–01 (all of which are incorporated by reference, see § 60.17); or

(ii) For gaseous fuels, ASTM D1072–80, 90 (Reapproved 1994); D3246–81, 92, 96; D4468–85 (Reapproved 2000); or D6667–01 (all of which are incorporated by reference, see § 60.17). The applicable ranges of some ASTM methods mentioned above are not adequate to measure the levels of sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the prior approval of the Administrator.

(11) The fuel analyses required under paragraphs (b)(9) and (b)(10) of this section may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency.

(c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) Instead of using the equation in paragraph (b)(1) of this section, manufacturers may develop ambient condition correction factors to adjust the nitrogen oxides emission level measured by the performance test as provided in § 60.8 to ISO standard day conditions.

§ 60.341 Definitions.

As used in this subpart, all terms not defined herein shall have the same meaning given them in the Act and in the General Provisions.

(a) Lime manufacturing plant means any plant which uses a rotary lime kiln to produce lime product from limestone by calcination.

(b) Lime product means the product of the calcination process including, but not limited to, calcitic lime, dolomitic lime, and dead-burned dolomite.

(c) Positive-pressure fabric filter means a fabric filter with the fans on the upstream side of the filter bags.

(d) Rotary lime kiln means a unit with an inclined rotating drum that is used to produce a lime product from limestone by calcination.

(e) Stone feed means limestone feedstock and millscale or other iron oxide additives that become part of the product.

§ 60.342 Standard for particulate matter.

(a) On and after the date on which the performance test required to be conducted by § 60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any rotary lime kiln any gases which:

(1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton) of stone feed.

(2) Exhibit greater than 15 percent opacity when exiting from a dry emission control device.

§ 60.343 Monitoring of emissions and operations.

(a) The owner or operator of a facility that is subject to the provisions of this subpart shall install, calibrate, maintain, and operate a continuous monitoring system, except as provided in paragraphs (b) and (c) of this section, to monitor and record the opacity of a representative portion of the gases discharged into the atmosphere from any rotary lime kiln. The span of this system shall be set at 40 percent opacity.