Pt. 60, App. D

3. Procedure

3.1 Subscripts a and b denote prechange and postchange respectively.

3.2 Calculate the arithmetic mean emission rate, \(E \), for each set of data using Equation 1.

\[
E = \frac{\sum_{i=1}^{n} E_i}{n}
\]

Where:

\(E_i \) = Emission rate for the \(i \) th run.
\(n \) = number of runs.

3.3 Calculate the sample variance, \(S^2 \), for each set of data using Equation 2.

\[
S^2 = \frac{\sum_{i=1}^{n} (E_i - \bar{E})^2}{n-1}
\]

3.4 Calculate the pooled estimate, \(S_p \), using Equation 3.

\[
S_p = \left[\frac{(n_a - 1) S_a^2 + (n_b - 1) S_b^2}{n_a + n_b - 2} \right]^{1/2}
\]

3.5 Calculate the test statistic, \(t \), using Equation 4.

\[
t = \frac{E_b - E_a}{S_p \left[\frac{1}{n_a} + \frac{1}{n_b} \right]^{1/2}}
\]

4. Results

4.1 If \(E_b > E_a \) and \(t > t' \), where \(t' \) is the critical value of \(t \) obtained from Table 1, then with 95% confidence the difference between \(E_b \) and \(E_a \) is significant, and there has been an increase in emission rate to the atmosphere.

5.2 Using Equation 1—

\[
E_a = 100 + 95 + 110/3 = 102
\]

\[
E_b = 115 + 120 + 125/3 = 120
\]

5.3 Using Equation 2—

\[
S_a^2 = [(100 - 102)^2 + (95 - 102)^2 + (110 - 102)^2/3 - 1 = 58.5
\]

\[
S_b^2 = [(115 - 120)^2 + (120 - 120)^2 + (125 - 120)^2/3 - 1 = 25
\]

5.4 Using Equation 3—

\[
S_p = [(3 - 1)(58.5) + (3 + 1)(25) / 3 + 3 - 2)]^{1/2} = 6.46
\]

5.5 Using Equation 4—

\[
t = \frac{120 - 102}{6.46 \left[\frac{1}{3} + \frac{1}{3} \right]^{1/2}} = 3.412
\]

5.6 Since \((n_a + n_b - 2) = 4\), \(t' = 2.132 \) (from Table 1). Thus since \(t > t' \) the difference in the values of \(E_a \) and \(E_b \) is significant, and there has been an increase in emission rate to the atmosphere.

6. Continuous Monitoring Data

6.1 Hourly averages from continuous monitoring devices, where available, should be used as data points and the above procedure followed.

[40 FR 58420, Dec. 16, 1975]

APPENDIX D TO PART 60—REQUIRED EMISSION INVENTORY INFORMATION

(a) Completed NEDS point source form(s) for the entire plant containing the designated facility, including information on the applicable criteria pollutants. If data concerning the plant are already in NEDS, only that information must be submitted which is necessary to update the existing NEDS record for that plant. Plant and point identification codes for NEDS records shall correspond to those previously assigned in NEDS; for plants not in NEDS, these codes shall be obtained from the appropriate Regional Office.

(b) Accompanying the basic NEDS information shall be the following information on each designated facility:

1. The state and county identification codes, as well as the complete plant and point identification codes of the designated facility in NEDS. (The codes are needed to match these data with the NEDS data.)
2. A description of the designated facility including, where appropriate:
 (i) Process name.
 (ii) Description and quantity of each product (maximum per hour and average per year).

For greater than 8 degrees of freedom, see any standard statistical handbook or text.

TABLE 1

<table>
<thead>
<tr>
<th>Degrees of freedom (n_a+n_b-2)</th>
<th>(t) (95% confidence level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.920</td>
</tr>
<tr>
<td>3</td>
<td>2.353</td>
</tr>
<tr>
<td>4</td>
<td>2.132</td>
</tr>
<tr>
<td>5</td>
<td>2.015</td>
</tr>
<tr>
<td>6</td>
<td>1.943</td>
</tr>
<tr>
<td>7</td>
<td>1.895</td>
</tr>
<tr>
<td>8</td>
<td>1.860</td>
</tr>
</tbody>
</table>

[40 FR 58420, Dec. 16, 1975]
Environmental Protection Agency

(11) Description and quantity of raw materials handled for each product (maximum per hour and average per year).
(12) Types of fuels burned, quantities and characteristics (maximum and average quantities per hour, average per year).
(13) Description and quantity of solid wastes generated (per year) and method of disposal.
(14) A description of the air pollution control equipment in use or proposed to control the designated pollutant, including:
 (i) Verbal description of equipment.
 (ii) Optimum control efficiency, in percent. This shall be a combined efficiency when more than one device operates in series. The method of control efficiency determination shall be indicated (e.g., design efficiency, measured efficiency, estimated efficiency).
 (iii) Annual average control efficiency, in percent, taking into account control equipment down time. This shall be a combined efficiency when more than one device operates in series.
 (iv) An estimate of the designated pollutant emissions from the designated facility (maximum per hour and average per year). The method of emission determination shall also be specified (e.g., stack test, material balance, emission factor).
 [40 FR 53349, Nov. 17, 1975]

APPENDIX E TO PART 60 [RESERVED]

APPENDIX F TO PART 60—QUALITY ASSURANCE PROCEDURES

PROCEDURE 1. QUALITY ASSURANCE REQUIREMENTS FOR GAS CONTINUOUS EMISSION MONITORING SYSTEMS USED FOR COMPLIANCE DETERMINATION

1. Applicability and Principle

1.1 Applicability. Procedure 1 is used to evaluate the effectiveness of quality control (QC) and quality assurance (QA) procedures and the quality of data produced by any continuous emission monitoring system (CEMS) that is used for determining compliance with the emission standards on a continuous basis as specified in the applicable regulation. The CEMS may include pollutant (e.g., S02, and NOx) and diluent (e.g., O2 or CO2) monitors.

This procedure specifies the minimum QA requirements necessary for the control and assessment of the quality of CEMS data submitted to the Environmental Protection Agency (EPA). Source owners and operators responsible for one or more CEMS’s used for compliance monitoring must meet these minimum requirements and are encouraged to develop and implement a more extensive QA program or to continue such programs where they already exist.

Data collected as a result of QA and QC measures required in this procedure are to be submitted to the Agency. These data are to be used by both the Agency and the CEMS operator in assessing the effectiveness of the CEMS QC and QA procedures in the maintenance of acceptable CEMS operation and valid emission data.

Appendix F, Procedure 1 is applicable December 4, 1987. The first CEMS accuracy assessment shall be a relative accuracy test audit (RATA) (see section 5) and shall be completed by March 4, 1988 or the date of the initial performance test required by the applicable regulation, whichever is later.

1.2 Principle. The QA procedures consist of two distinct and equally important functions. One function is the assessment of the quality of the CEMS data by estimating QC policies and corrective actions. These two functions form a control loop: When the assessment function indicates that the data quality is inadequate, the control effort must be increased until the data quality is acceptable. In order to provide uniformity in the assessment and reporting of data quality, this procedure explicitly specifies the assessment methods for response drift and accuracy. The methods are based on procedures included in the applicable performance specifications (PS’s) in appendix B of 40 CFR part 60. Procedure 1 also requires the analysis of the EPA audit samples concurrent with certain reference method (RM) analyses as specified in the applicable RM’s.

Because the control and corrective action function encompasses a variety of policies, specifications, standards, and corrective measures, this procedure treats QC requirements in general terms to allow each source owner or operator to develop a QC system that is most effective and efficient for the circumstances.

2. Definitions

2.1 Continuous Emission Monitoring System. The total equipment required for the determination of a gas concentration or emission rate.

2.2 Diluent Gas. A major gaseous constituent in a gaseous pollutant mixture. For combustion sources, CO2 and O2 are the major gaseous constituents of interest.

2.3 Span Value. The upper limit of a gas concentration measurement range that is specified for affected source categories in the applicable subpart of the regulation.

2.4 Zero, Low-Level, and High-Level Values. The CEMS response values related to the source specific span value. Determination of zero, low-level, and high-level values is defined in the appropriate PS in appendix B of this part.

2.5 Calibration Drift (CD). The difference in the CEMS output reading from a reference value after a period of operation during