2020 Offsite Sulfolane Plume Monitoring Plan

City of North Pole and Surrounding Area

Prepared for Williams Alaska Petroleum, Inc.

923 Haddonfield Road Suite 300 Cherry Hill, NJ 08002

August 19, 2020

CONTENTS

AC	CRONY	MS AND ABBREVIATIONS	1-2
1	INTRO	ODUCTION	1-3
2	GROU	JNDWATER SAMPLING PLAN OBJECTIVES	2-4
3	GROU	JNDWATER MONITORING AND REPORTING SCHEDULE	3-1
	3.1	2020 SULFOLANE PLUME MONITORING	3-1
	3.2	SULFOLANE PROGRAM REVIEW	3-1
	3.3	REPORTING SCHEDULE	3-2
4	REFEF	RENCES	4-1
Table 1.		2020 Monitoring Plan Summary	
Ap	pendix	A. Sulfolane Monitoring Field Sampling Plan (Arcadis, 2017)	

ACRONYMS AND ABBREVIATIONS

ADEC	Alaska Department of Environmental Conservation
------	---

- FHRA Flint Hills Resources Alaska
- GIS geographic information system
- PWS public water supply
- SAP sampling and analysis plan
- SOQ statement of qualification

1 INTRODUCTION

On behalf of Williams Alaska Petroleum, Inc. (Williams), Integral Consulting Inc, has prepared this Offsite Sulfolane Plume Monitoring Plan (2020 Plan) to conduct sulfolane groundwater monitoring in 2020 and reporting activities in 2021 for groundwater located downgradient of the former Flint Hills Resources Alaska (FHRA) North Pole Refinery, located on H and H Lane in North Pole, Alaska (site). This 2020 Plan conforms to the description of the scope of work presented by Williams in correspondence dated July 27, 2020 and approved by the Alaska Department of Environmental Conservation (ADEC) on August 3, 2020 (Duncan, 2020 and Mulder, 2020, respectively).

This 2020 Plan is a revision to FHRA's previously prepared 2017 Long-Term Monitoring Plan (2017 Plan) that formed the basis of ongoing monitoring for sulfolane in monitoring wells and private wells located downgradient of the site. The 2020 Plan includes sampling 178 existing wells, consisting of 155 wells outlined in the 2017 Plan with 2018 modifications, and an additional 23 wells requested by ADEC (see Table 1 in Fish, 2020). Following completion of sampling activities, anticipated to be conducted between October and December 2020, Williams will present the results to ADEC in the 2020 monitoring report. This report will also include a proposal to reduce the number of wells and sampling frequency for 2021, where appropriate. Following the completion of the 2021 sampling, Williams will submit a 5-year review report in early 2022 based on data gathered between 2017 and 2021.

2 GROUNDWATER SAMPLING PLAN OBJECTIVES

The objective of the groundwater monitoring defined in the 2020 Plan is to monitor and track plume stability and plume migration, if any. Groundwater plumes have three phases in their life cycle, an initial period of plume expansion following initiation of a release, followed by the plume reaching a maximum extent, where the magnitude of the source and attenuation processes are in equilibrium, and finally a decrease in the extent of the plume as the source is exhausted and attenuation dominates. Existing groundwater monitoring data and data to be collected in 2020 will be used to evaluate the nature and extent of the sulfolane plume, as well as concentration trends in individual monitoring wells. Based on this assessment, it will be determined in cooperation with DEC in 2021 if any modifications should be made to the monitoring network prior to the 5-year review period, potentially including the elimination of some monitoring points from the sampling program. The results of the evaluation will be discussed with DEC prior to submittal.

3 GROUNDWATER MONITORING AND REPORTING SCHEDULE

The groundwater-monitoring schedule for 2020 is included in Table 1 (attached) and supersedes any prior schedules presented. The sampling program for 2021 will be submitted for review by DEC as part of the 2020 monitoring report.

3.1 2020 SULFOLANE PLUME MONITORING

Monitoring in 2020 will be conducted using existing offsite monitoring and private wells. The groundwater monitoring schedules and frequencies outlined in this 2020 Plan included in Table 1 supersede those presented in all previous plans.

Williams will make a diligent attempt to sample of all the wells identified in Table 1, but it is possible that not all monitoring wells or private wells included as part of the monitoring program will be sampled during the 2020 event due to access considerations and the reduced schedule. If a well is unable to be sampled, no replacement well will be identified or sampled during the 2020 event.

Shannon and Wilson will complete the 2020 monitoring and SGS Laboratories will conduct the sulfolane analysis. As such, the procedures for conducting the activities included in the 2020 Plan will be consistent with the Sampling and Analysis Plan (SAP) previously prepared for the site by Arcadis (Arcadis, 2017). Modifications, if necessary, to the SAP will be included in the 2020 monitoring report.

Although the 2020 event is the fourth event of the 5-year program, groundwater elevations will be monitored to confirm that the groundwater gradient and flow direction are consistent with prior events. This data will be used to support any proposed modifications to the sampling program.

3.2 SULFOLANE PROGRAM REVIEW

Following completion of the 2020 event, the results will be evaluated with the following objectives:

- Confirm that groundwater gradient and flow remain consistent with historic trends
- Determine if the concentrations of sulfolane in monitoring wells and private wells along the boundary of the plume are increasing, stable or decreasing

- Determine if sulfolane concentrations in monitoring wells or private wells within the interior of the plume are increasing, stable or decreasing
- Determine if additional monitoring locations are necessary to meet the objectives of the 2020 Plan monitor and track plume migration outside of the areas served by the public PWS.

Concentration time trends will be assessed using Mann-Kendall trend analysis.

3.3 REPORTING SCHEDULE

A monitoring report will be provided to DEC prior to March 30, 2021. The monitoring report will include a summary of 2020 sampling activities, trend analysis for the boundary and interior portions of the sulfolane plume and the proposed monitoring wells to be included in the 2021 sampling.

4 REFERENCES

2017 Arcadis. Offsite Groundwater Sulfolane Plume Monitoring Plan. Arcadis, U.S., Inc, Seattle Washington, June 2017.

2018 Arcadis. Annual 2018 Offsite Plume Monitoring Report. Arcadis, U.S., Inc., Seattle, Washington. December 2018.

2020 Fish, J., Long-Term Offsite Monitoring of the Sulfolane Plume in North Pole, Alaska. June 2020.

2020 Duncan, T., Response to State of Alaska's Requested Long-Term Offsite Monitoring of the Sulfolane Plume in North Pole, Alaska. July 2020.

2020 Mulder, S., Long-Term Offsite Monitoring of the Sulfolane Plume in North Pole North Pole Refinery Litigation (Flint Hills) Case No. 4FA-14-01544 CI – Consolidated, AGO No. AN2014100495. August 2020.

Tables

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
MW-150A-10	Water Table	Yes	Yes	
MW-150B-25	10-55	Yes	Yes	
MW-150C-60	60	Yes	Yes	
MW-151A-15	Water Table	Yes	Yes	
MW-151B-25	Water Table	Yes	Yes	
MW-151C-60	60	Yes	Yes	
MW-152A-15	Water Table	Yes	Yes	
MW-152B-25	Water Table	Yes	Yes	
MW-152C-65	65	Yes	Yes	
MW-153A-15	Water Table	Yes	Yes	
MW-153B-55	55	Yes	Yes	
MW-155A-15	Water Table	Yes	Yes	
MW-155B-65	65	Yes	Yes	
MW-166B-30	10-55	Yes	Yes	
MW-167B-35	10-55	Yes	Yes	
MW-171BR	10-55	Yes	Yes	
MW-181A-15	Water Table	Yes	Yes	
MW-181B-50	10-55	Yes	Yes	
MW-181C-150	90-160	Yes	Yes	
MW-185B-50	10-55	Yes	Yes	
MW-185C-120	90-160	Yes	Yes	
MW-189A	Water Table	Yes	Yes	
MW-189B	90-160	Yes	Yes	
MW-190BR-60	10-55	Yes	Yes	
MW-190-150	90-160	Yes	Yes	
MW-191A-15	Water Table	Yes	Yes	
MW-191B-60	10-55	Yes	Yes	
MW-311-15	Water Table	Yes	Yes	
MW-311-46	10-55	Yes	Yes	
MW-314-15	Water Table	Yes	Yes	

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
MW-314-150	90-160	Yes	Yes	
MW-328-15	Water Table	Yes	Yes	
MW-328-151	90-160	Yes	Yes	
MW-332-41	10-55	Yes	Yes	
WW-332-110	90-160	Yes	Yes	
MW-332-150	90-160	Yes	Yes	
MW-346-15	Water Table	Yes	Yes	
MW-346-65	10-55	Yes	Yes	
MW-346-150	90-160	Yes	Yes	
MW-347-65	10-55	Yes	Yes	
MW-347-150	90-160	Yes	Yes	
MW-349-45	10-55	Yes	Yes	
MW-352-40	10-55	Yes	Yes	
MW-353-15	Water Table	Yes	Yes	
MW-353-65	10-55	Yes	Yes	
MW-353-100	55-90	Yes	Yes	
MW-357-65	10-55	Yes	Yes	
MW-357-150	90-160	Yes	Yes	
PW-0242	unknown	No	Conditional ²	
PW-0245	unknown	No	Yes	
PW-0250	80	No	Yes	
PW-0262	200	No	Yes	
PW-0265	35	No	Yes	
PW-0266	40	No	Yes	
PW-0267	60	No	Yes	
PW-0268	unknown	No	Yes	
PW-0270	unknown	No	Yes	
PW-0271	48	No	Yes	
PW-0272	220	No	Yes	

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
PW-0273	170	No	Yes	
PW-0274	158	No	Yes	
PW-0275	57	No	Yes	
PW-0276	49	No	Yes	
PW-0277	45	No	Yes	
PW-0280	40	No	Yes	
PW-0281	40	No	Yes	
PW-0282	41	No	Yes	
PW-0283	230	No	Yes	
PW-0284	63	No	Yes	
PW-0285	63	No	Yes	
PW-0286	160	No	Yes	
PW-0287	186	No	Yes	
PW-0288	200	No	Yes	
PW-0289	40	No	Yes	
PW-0290	205	No	Yes	
PW-0365	unknown	No	Yes	
PW-0366	unknown	No	Yes	
PW-0367	unknown	No	Yes	
PW-0368	unknown	No	Yes	
PW-0369	unknown	No	Yes	
PW-0370	unknown	No	Yes	
PW-0371	unknown	No	Yes	
PW-0372	unknown	No	Yes	
PW-0373	unknown	No	Yes	
PW-0374	unknown	No	Yes	
PW-0379	unknown	No	Yes	
PW-0508	80	No	Yes	
PW-0512	300	No	Yes	

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
PW-0512	300	No	Yes	
PW-0513	45.6	No	Yes	
PW-0531	unknown	No	Yes	
PW-0532	unknown	No	Yes	
PW-0533	unknown	No	Yes	
PW-0534	unknown	No	Yes	
PW-0535	unknown	No	Yes	
PW-0536	unknown	No	Yes	
PW-0537	unknown	No	Yes	
PW-0538	unknown	No	Yes	
PW-0546	unknown	No	Yes	
PW-0547	40	No	Yes	
PW-0548	40	No	Yes	
PW-0549	unknown	No	Yes	
PW-0555	36	No	Yes	
PW-0561	unknown	No	Yes	
PW-0587	unknown	No	Yes	
PW-0589	unknown	No	Yes	
PW-0591	unknown	No	Yes	
P <u>W-0594</u>	unknown	No	Yes	
PW-0611	unknown	No	Yes	
PW-0614	unknown	No	Yes	
PW-0623	unknown	No	Yes	
PW-0624	27	No	Yes	
PW-0627	unknown	No	Yes	
PW-0628	30	No	Yes	
PW-0630	unknown	No	Yes	
PW-0649	unknown	No	Yes	
PW-0749	32	No	Yes	

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
PW-0750	unknown	No	Yes	
P <u>W-0751</u>	60	No	Yes	
PW-0752	unknown	No	Yes	
PW-0753	55	No	Yes	
PW-0758	unknown	No	Yes	
PW-0761	30	No	Yes	
PW-0762	40	No	Yes	
PW-0770	unknown	No	Yes	
PW-0771	unknown	No	Yes	
PW-0772	unknown	No	Yes	
PW-0774	unknown	No	Yes	
PW-0775	55	No	Yes	
PW-0776	40	No	Yes	
PW-0777	unknown	No	Yes	
PW-0863	65	No	Yes	
PW-0864	42	No	Yes	
PW-0865	40	No	Yes	
PW-0866	42	No	Yes	
PW-0867	unknown	No	Yes	
PW-0868	57	No	Yes	
P <u>W-0869</u>	42	No	Yes	
PW-0870	42	No	Yes	
PW-0871	50	No	Yes	
PW-0872	unknown	No	Yes	
PW-0905	40	No	Yes	
PW-0906	34	No	Yes	
PW-0907	45	No	Yes	
PW-0908	50	No	Yes	
PW-0909	50	No	Yes	

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
PW-0910	80	No	Yes	
PW-0911	unknown	No	Yes	
PW-0914	unknown	No	Yes	
PW-0936	Subpermafrost	No	Yes	
PW-0972	236	No	Yes	
PW-0973	70	No	Yes	
PW-0974	40	No	Yes	
PW-0974	40	No	Yes	
PW-0976	38	No	Yes	
PW-0977	unknown	No	Yes	
PW-0978	218	No	Yes	
PW-0979	unknown	No	Yes	
PW-0998	unknown	No	Yes	
PW-1087	unknown	No	Yes	
PW-1088	60	No	Yes	
PW-1093	220	No	Yes	
PW-1118	unknown	No	Yes	
PW-1184	unknown	No	Yes	
PW-1185	unknown	No	Yes	
PW-1230	231	No	Yes	
PW-1333	unknown	No	Yes	
PW-1433	unknown	No	Yes	
PW-1450	unknown	No	Yes	
PW-1454	unknown	No	Yes	
PW-1458	30	No	Yes	
PW-1473	42	No	Yes	
PW-1608	60	No	Yes	
PW-1921	unknown	No	Yes	
PW-1930	unknown	No	Yes	

Table 1. 2020 Monitoring Plan Summary

		Including in 2020 Program ¹		
Well Identification	Screen Zone or Well Depth	Gauging	Sampling	
PW-2205	unknown	No	Yes	
PW-2237	40	No	Yes	

Notes

¹ - Includes wells sampled on annual frequency only (2020)
 ² - Alternate well

Gray - Location added to 2020 Plan

PW-0612 not included well is decomssioned

Appendix A

Sampling and Analysis Plan

OFFSITE SAMPLING AND ANALYSIS PLAN

North Pole Refinery Site North Pole, Alaska DEC File Number 100.38.090

June 6, 2017

Sina Withy

Gina Withy Project Engineer

RAndresu

Rebecca Andresen Vice President

OFFSITE SAMPLING AND ANALYSIS PLAN

North Pole Refinery Site North Pole, Alaska DEC File Number 100.38.090

Prepared at the request of: Flint Hills Resources Alaska, LLC

Prepared by: Arcadis U.S., Inc. 1100 Olive Way Suite 800 Seattle Washington 98101 Tel 206 325 5254 Fax 206 325 8218

Our Ref.: B0081981

Date: June 6, 2017

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acı	onyn	ns and	Abbre	eviations	iv
1	Intro	Introduction			
	1.1	Data /	Analys	sis Objectives	2
	1.2 Deviations from this Offsite Sampling and Analysis Plan				2
	1.3	Modifi	cation	ns to this Offsite Sampling and Analysis Plan	2
	1.4	Well S	Securit	ty Policy	2
2	San	nple Co	llectio	on Methods	3
	2.1	Groun	Idwate	er Monitoring	3
		2.1.1	Well	Inspection and Fluid-Level Measurements	3
		2.1	.1.1	Monitoring Well Integrity Inspections	3
		2.1	.1.2	Groundwater-Level Measurements	3
		2.1	.1.3	Well Depth Measurements	4
		2.1	.1.4	Field Records	4
		2.1.2	Purg	jing and Sampling Equipment	4
		2.1.3	Moni	itoring Well Purging	4
		2.1.4	Mea	surement of Field Parameters	5
		2.1.5	Moni	itoring Well Sampling	5
	2.2	Mann	-Kend	lall Trend Analysis	6
	2.3	Monito	oring \	Well Repairs	7
	2.4	Monite	oring \	Well Decommissioning	7
3	Priv	ate We	ll Sam	nples	8
4	POE	E Syste	m Sar	mples	8
	4.1	Pre-S	ample	e Collection	8
	4.2	Samp	le Col	llection	9
5	Fiel	d Quali	ty Ass	surance/Quality Control	10
	5.1	Equip	ment I	Blanks	10
	5.2	Duplic	ate Sa	amples	10
	5.3	Matrix	Spike	e/Matrix Spike Duplicate Samples	11
	5.4	Samp	le Nur	mbers	11

	5.5	Sample Containers1					
	5.6	Sample Preservation and Handling	12				
	5.7	Sample Shipping	12				
6	Equ	ipment Decontamination and Investigation-Derived Waste Management	13				
	6.1	Decontamination	13				
	6.2	Investigation-Derived Waste	13				
		6.2.1 Sampling Investigation-Derived Waste	13				
		6.2.2 Development and Purge Water	13				
		6.2.3 Decontamination Fluids	14				
		6.2.4 Rinse Water	14				
		6.2.5 Spent Carbon	14				
		6.2.6 Sediment Filters	14				
		6.2.7 UV Lights	14				
7	Sam	nple and Field Documentation	15				
	7.1	Sample Labels	15				
	7.2	Chain of Custody Seals	15				
	7.3	Monitoring Well Sampling Log	15				
	7.4	Daily Field Logs					
	7.5	Point-of-Entry Service Checklist					
	7.6	Chain of Custody Records	17				
8	Ana	lytical Methods and Sampling Frequencies	19				
	8.1	Laboratory Selection	19				
	8.2	Methods and Sample Requirements	19				
	8.3	Use of Alternate Method	19				
	8.4	Sample Collection	20				
	8.5	Groundwater Sampling Frequency and Methods	20				
	8.6	Laboratory Analysis and Notification Process for POE Samples	20				
9	Eva	luation of Data Quality	22				
	9.1	Quality Control Samples	22				
	9.2	Data Quality Objectives	22				
	9.3	Reporting	23				

	9.4	Missing Data Values	.23
	9.5	Outliers	.23
	9.6	Units of Measure	.24
10	Неа	Ith and Safety	.25
11	Refe	erences	.26

TABLES

Table 1	Well Construction Details
Table 2	Summary of Detection Limits, Containers, Preservation, and Holding Times

FIGURES

Figure 1	Site Location
Figure 2	Offsite Monitoring Wells

FORMS

Field Activities Daily Log Groundwater Measurement Field Form Monitoring Well Sampling Log Private Well Sampling Log Well Development Log SWI Chain of Custody Record Alaska Department of Environmental Conservation Laboratory Data Review Checklist Point-Of-Entry Service Checklist

ATTACHMENT

Attachment 1 Log of Revisions to the Offsite SAP

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AHL	Arctic Home Living
COC	chain of custody
COV	coefficient of variation
DC	direct current
DO	dissolved oxygen
DTW	depth to water
GAC	granular activated carbon
L/min	liters per minute
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MAROS	Monitoring and Remediation Optimization System
mg/L	milligrams per liter
MS	matrix spike
MSD	matrix spike duplicate
mV	millivolts
NPR Site	North Pole Refinery Site
Offsite SAP	Offsite Sampling and Analysis Plan
Offsite PMP	Offsite Groundwater Sulfolane Plume Monitoring Plan
ORP	oxidation reduction potential
Pace	Pace Analytical Services, Inc.
POE	point of entry
PQL	practical quantitation limit
QA	quality assurance
QC	quality control
SGS	SGS Environmental Services
SOP	Standard Operating Procedure
Sulfolane Plume	a groundwater plume of sulfolane that originated from the North Pole Refinery

Offsite Sampling and Analysis Plan

SWI	Shannon and Wilson, Inc.
USEPA	United States Environmental Protection Agency
UV	ultraviolet
YSI	YSI ProPlus or YSI 556 MPS
°C	degrees Celsius

1 INTRODUCTION

A groundwater plume of sulfolane contamination (Sulfolane Plume) that originated from the North Pole Refinery (the NPR Site) has migrated from the NPR Site to the City of North Pole and Fairbanks Borough. The general area and NPR Site details are shown on Figures 1 and 2.

This Offsite Sampling and Analysis Plan (Offsite SAP) provides sampling and analysis procedures to be used in implementation of the Offsite Groundwater Sulfolane Plume Monitoring Plan (Offsite PMP).

It is acknowledged that in 18 Alaska Administrative Code (AAC) 75.990(115), the Alaska Department of Environmental Conservation (ADEC) defines the term "site" as an "area that is impacted, including areas impacted by the migration of hazardous substances from a source area, regardless of property ownership." For this Offsite Sampling and Analysis Plan (Offsite SAP), the term "offsite" is the area located outside the NPR property boundary, primarily in the downgradient north-northwest direction, based on the approximate extent of the dissolved-phase sulfolane plume detected at concentrations above the detection limit (approximately 3.1 micrograms per liter).

Offsite groundwater monitoring wells are shown on Figure 2 of this Offsite SAP. Well construction details for offsite monitoring wells are included in Table 1 of this Offsite SAP. Well identification was updated for monitoring wells installed prior to 2013 to include the well depth at the end of the well name.

This Offsite SAP discusses the following activities:

- Conducting monitoring-well integrity inspections and repairs
- · Measuring groundwater levels in groundwater monitoring wells
- Collecting groundwater samples from monitoring wells for field and laboratory measurement
- Collecting water samples from private wells and point of entry (POE) systems for laboratory analysis
- Preservation and handling of samples collected for laboratory analyses
- · Analytical procedures, parameters, and sampling frequencies
- Methods of sample documentation, including chain of custody protocol
- Field quality assurance (QA) and quality control (QC).

Table 2 of this Offsite SAP summarizes analytical methods, quantitation limits, containers, preservation, and holding times for water samples.

The sampling methods summarized in this Offsite SAP will be used by environmental contractors performing sampling activities as set out in the Offsite PMP. Field activities will be completed by a Qualified Environmental Professional as defined by 18 AAC 75.355(a). POE sampling methods summarized herein will be used by Arctic Home Living (AHL), under oversite by a Qualified Environmental Professional.

1.1 Data Analysis Objectives

The objective of the Offsite PMP and this Offsite SAP is to monitor and track plume migration as necessary to protect residence and businesses outside the area to be served a soon-to-be constructed Public Water Supply (see Offsite PMP discussion).

1.2 Deviations from this Offsite Sampling and Analysis Plan

Deviations from the procedures discussed in this Offsite SAP may be required due to circumstances that may arise during a given sampling event. In general, deviations will be handled by field staff. If a major deviation from this Offsite SAP is required, ADEC may be notified prior to the continuation of work. Deviations from the specified program and the purpose for the deviation will be clearly documented in the field log.

Reports submitted to ADEC will include a discussion of deviations from procedures outlined in this Offsite SAP.

1.3 Modifications to this Offsite Sampling and Analysis Plan

Modifications to this Offsite SAP may be required to update existing methods or include new methods for upcoming work. This Offsite SAP will be revised as needed to capture routine modifications to field operations at the NPR Site (e.g., monitoring well network revisions). If a new field method is proposed, this Offsite SAP may be revised and submitted with the work plan summarizing the proposed scope of work.

The modifications and updates will be logged and summarized in Attachment 1 – Log of Revisions to the Offsite SAP. Updated versions of the Offsite SAP will be submitted as needed to ADEC.

1.4 Well Security Policy

Environmental well casings will be kept locked to ensure the security and integrity of the wells.

2 SAMPLE COLLECTION METHODS

Samples will be discrete grab samples and not composited. Field staff will wear a new pair of disposable nitrile gloves during the collection and handling of each sample to prevent cross-contamination. Analytical samples will be collected and handled in general accordance with the Field Sampling Guidance (ADEC 2016). Sample collection and monitoring well work activities will be completed in general accordance with the Monitoring Well Guidance (ADEC 2013).

2.1 Groundwater Monitoring

The following subsections describe procedures for groundwater sample collection.

2.1.1 Well Inspection and Fluid-Level Measurements

2.1.1.1 Monitoring Well Integrity Inspections

Field staff will conduct monitoring well integrity inspections prior to collecting any fluid-level measurements or sampling activity during each sampling event. A well inspection will consist of documenting the physical condition of the monitoring well to be sampled. Integrity will be documented with respect to the condition of the well monument, measuring the distance between the top of the casing and the ground surface (to determine if the well is being frost-jacked), checking that the well lock is operational, observing signs of surrounding soil erosion, and confirming that the name is legible on the well. These observations will be documented on the Monitoring Well Sampling Log.

2.1.1.2 Groundwater-Level Measurements

The groundwater level will be measured in each well prior to sampling. The static water level will be measured in each well equipped with a dedicated pump using a water level meter prior to purging water or sampling water from the well. For wells not equipped with dedicated pumps, the depth to water (DTW) will be measured before the pump is lowered into the well. Groundwater gauging events will be conducted according to the monitoring schedule included in the Offsite PMP.

The probe must be decontaminated prior to each use and between each well to prevent the addition of external contamination or artifacts into a well. The decontamination will consist of cleaning the probe with a non-phosphate detergent wash followed by tap and distilled water rinse. Decontamination rinsate will be collected and disposed of in the same manner as purge water. Following decontamination, the probe will be slowly lowered down the well until it produces the distinct tone indicating contact with the water surface interface. The DTW will be measured from the surveyed datum located at the top of the well casing and will be read to the nearest 0.01 foot. The datum is indicated with a black mark at the top of the casing.

2.1.1.3 Well Depth Measurements

In addition to depth-to-fluid measurements, the depth to the bottom of each well casing will also be measured to determine whether there has been an appreciable change in well depth. Depth to bottom measurements will be made annually in wells to be sampled per the Offsite PMP. Well depth will be measured using a stainless-steel depth sounder or equivalent measuring device from the datum located at the top of the well casing.

The measured depth will then be compared to the original depth documented on the well completion or boring log. If the difference between the well completion log depth and current depth measurement is greater than 2 inches, the total depth will be re-measured immediately to rule out a faulty measurement. If the difference between the two field measurements is greater than ½ inch, this may indicate a substantial amount of sediment in the bottom of the well. If the sediment accumulation is deep enough to extend into the screened interval, it will be removed to ensure representative sampling results.

Silt and sediment can be removed from the bottom of most well casings by using a diaphragm pump. Removal can also occur by bailing and surging the well. This is done by lowering a bailer to the bottom of the well and gently surging to fluidize and collect the sediment. If these methods do not work, it may be necessary to obtain the services of a drill rig for a more robust evacuation of sediment.

2.1.1.4 Field Records

Well-integrity inspections and fluid and well-depth measurements will be recorded on a Monitoring Well Sampling Log. Units of measurement and the reference points used to collect measurements will be identified on the log.

2.1.2 Purging and Sampling Equipment

Monitoring wells will be purged and sampled using a dedicated, battery-operated pump or portable pump capable of continuous operation during sampling at a pumping rate of 3.5 liters per minute (L/min), or approximately 1 gallon per minute, consistent with historical sampling methods that have been previously accepted by ADEC.

2.1.3 Monitoring Well Purging

Monitoring wells will be purged prior to sampling, according to the sampling schedule presented in Table 1 of the Offsite PMP. Purging will consist of removing water until certain physiochemical parameters have stabilized. When these parameters have stabilized, or after three well volumes have been purged, well purging will be discontinued and sampling will begin.

Purging and sampling equipment coming into contact with groundwater will be documented on the Monitoring Well Sampling Log.

The purge rate will be established as soon as practical after pumping begins. The purging rate will be measured by catching the discharge from the pump in a quantified volumetric container and measuring the time required to reach a specific volume. The operator will regulate the discharge rate of the pump so that no more than 3.5 L/min are evacuated.

2.1.4 Measurement of Field Parameters

Conductivity, pH, dissolved oxygen (DO), and oxidation reduction potential (ORP) will be measured to determine the point at which sampling of monitoring wells can begin. Temperature is also measured and recorded during purging activities. Field technicians trained in the use of a YSI ProPlus, YSI 556 MPS (YSI), or equivalent, will collect the field parameter measurements. Measuring devices will be calibrated daily during sampling events, or as needed according to the manufacturer's recommendations. Calibration methods are summarized below:

- Calibrate the YSI for conductivity, pH, and ORP by placing the probe in a standard solution of known conductivity, pH, or ORP, wait for the reading to stabilize, then press "Enter."
- For DO calibration, obtain a local barometric pressure reading, place the probe in the calibration bottle with 1/8 inch of water, allow equilibrium to be reached, then press "Enter." Calibration will be conducted using the manufacturer's recommended calibration procedures.
- Record calibration records (standards, date, time, and calibration readings) in the dedicated log book for the meter.

Field parameters will be measured through a flow-through cell attached to the pump-discharge line. The YSI will be placed in the flow-through cell and readings for each parameter will be recorded approximately every 3 minutes. Measurements will be recorded on the Monitoring Well Sampling Log. Unusual odor, color, or other apparent physical characteristics of the groundwater will also be documented on the log, as appropriate.

Each monitoring well will be purged until three consecutive readings of pH, conductivity (microSiemens), DO (in milligrams per liter [mg/L]), and ORP (millivolts [mV]) have stabilized, or after three well casing volumes are purged. The following values are used to indicate stability: ±0.1 pH, ±3 percent conductivity, ±10 mV ORP, and ± 0.1 mg/L DO. Temperature is measured and recorded, but is not used as a purging indicator, because temperature can be insensitive in distinguishing between formation water and stagnant casing water (ADEC 2016) The stabilization criterion for DO deviates from the ADEC Field Sampling Guidance (ADEC 2016). Due to the low levels of DO in the aquifer, stabilization of DO to within the 10 percent tolerance suggested by ADEC (2016) guidance is difficult and sometimes impossible to achieve (i.e., the accuracy and resolution of the field meter cannot reliably measure 10 percent of 0.1 mg/L DO). Therefore, the DO stabilization criterion will be modified to accommodate sampling under these conditions. Sampling will begin when stabilization is reached. The total volume of water purged prior to sampling will be recorded on the Monitoring Well Sampling Log.

2.1.5 Monitoring Well Sampling

Each monitoring well will be sampled immediately after purging is completed. The wells will be sampled for determination of sulfolane concentration. Equipment and procedures for sampling monitoring wells are detailed below. New nitrile gloves will be worn during sample collection and new gloves will be donned at each sample location.

Monitoring wells will be purged and sampled using a portable, submersible plastic pump and new, disposable tubing. Portable pumps typically used at the NPR Site include the Proactive, Whale, and Geotech lines of 12-volt direct current (DC), submersible, centrifugal, pumps. For deep wells, a portable

S.S. Geosub pump, or equivalent, may be used. The portable pump must be capable of a sustained flow rate.

The portable pump will be slowly lowered into the well to the specified depth (generally within the top half of the well screen [e.g., 5 to 10 feet for a 15-foot well]) to avoid agitating the water. The depth of each pump setting will be accurately measured and repeated for subsequent pump settings. The pump will be connected to the pump controller and the pumping rate will be regulated for minimum agitation of groundwater in the well.

At the completion of sampling, the pump will be disconnected from the pump controller and discharge line, and the pump will be slowly removed from the well. The pump will be visually inspected for any signs of physical or chemical damage and will be decontaminated as described in Section 6.1. Indications of problems will be reported on the Monitoring Well Sampling Log.

The portable pump and any other non-dedicated equipment will require decontamination as described in Section 6.1. Equipment blanks will be collected following the sampling event, described in Section 5.1, whenever non-dedicated sampling equipment is used.

The sampling technician will keep a log of each day's events during sample collection. Pertinent information, including the time and date of sample collection, will be recorded on the Monitoring Well Sampling Log.

2.2 Mann-Kendall Trend Analysis

An evaluation of concentration trends for sulfolane in groundwater samples collected from monitoring and private wells will be completed using a Mann-Kendall statistical analysis of groundwater analytical data and visual inspection of the concentration graphs.

Monitoring and Remediation Optimization System (MAROS) software was developed by the Air Force Center for Engineering and the Environment to evaluate concentration trends; however, a limitation of the MAROS software is that it cannot analyze datasets with greater than 40 data points. To evaluate larger datasets, like those present for some wells at the NPR Site, Shannon and Wilson, Inc. (SWI) developed a computer program capable of performing the Mann-Kendall test and calculating each dataset's coefficient of variation (COV) to assess temporal trends of data stored in the NPR Site analytical database.

The MAROS evaluation of concentration trends depends on the result of a Mann-Kendall trend analysis, coupled with information about the COV. A statistically significant increasing or decreasing trend will be identified by the Mann-Kendall analysis if the probability of a false-negative assessment is less than 5 percent (i.e., p < 0.05); MAROS refers to this condition as a "confidence in trend" above 95 percent.

MAROS discriminates between "no trend" and a "stable" contaminant concentration by evaluating the COV of a given well's data set. The COV is defined as the ratio of a data set's standard deviation to its mean. COV values less than or near one indicate that data form a relatively close group around the mean value; values larger than one indicate data exhibit a greater degree of scatter around the mean. The MAROS decision matrix is presented in the table below.

Mann-Kendall Statistic	Confidence in Trend	Concentration Trend
S > 0	> 95 percent	Increasing
S > 0	90 to 95 percent	Probably increasing
S > 0	< 90 percent	No trend
S ≤ 0	< 90 percent and COV \ge 1	No trend
S ≤ 0	< 90 percent and COV < 1	Stable
S < 0	90 to 95 percent	Probably decreasing
S < 0	> 95 percent	Decreasing

Only wells with a minimum of four sampling events (the minimum for the statistical test) will be analyzed. The standard practice for this statistical analysis is to assign one value to all results below the reporting limit, as long as it is below the lowest reporting limit. For these statistical analyses, results below the reporting limit will be represented numerically by a value equal to the lowest analytical detection limit for each well's data set. This approach will be used to be consistent with standard practice and to avoid erroneous identification of trends related to variations in the Practical Quantitation Limits (PQLs).

2.3 Monitoring Well Repairs

Repairs to well casings and monuments may be necessary to protect the integrity of active monitoring wells. Routine maintenance is performed during a visit to a well, when necessary. Maintenance activities include inspecting locking mechanisms, and replacing well plugs, monument seals, and monument lid bolts, as necessary. Intensive well repairs such as monument replacement and/or concrete footers repair will be scheduled as soon as practicable. Wells will be evaluated for decommissioning and/or replacement if an obstruction or other defect impedes monitoring activities.

Well casings may need to be cut or lengthened to maintain well integrity. Frost-jacked well casings will be cut if the casing interferes with closing the protective well monument. Conversely, casing may be added if the well casing has subsided below the annular fill within the monument.

2.4 Monitoring Well Decommissioning

Monitoring wells will be decommissioned in accordance with the parameters defined in the Offsite PMP. Monitoring wells extending less than 20 feet bgs will be decommissioned using the standard procedures outlined in the ADEC Monitoring Well Guidance (ADEC 2013). This includes breaking out the bottom cap, pulling the casing from the ground while filling with bentonite grout using a tremie pipe. At least the top 2 feet of the borehole will be filled with gravel to prevent hydrated bentonite from expanding out of the borehole at the surface.

Deeper wells will be decommissioned by excavating the area around the casing to a depth of about 2 feet bgs. The upper-most section of the casing will be unscrewed or the casing cut off below the ground; a tremie tube with grout slurry will be used to fill the casing. The area around the well will be backfilled with gravel.

Upon completion, the decommissioning of the wells will be documented.

3 PRIVATE WELL SAMPLES

Water samples will be collected from private water wells (without POE systems) for sulfolane analysis. If possible, water samples will be collected upstream of any treatment system that may be installed in the plumbing, assuming that well-pump systems are operational. Field staff will allow the water to run for several minutes until temperature and water parameters (pH, conductivity) stabilize, then will collect the sample directly into the laboratory-provided sample containers.

4 POE SYSTEM SAMPLES

POE treatment refers to treatment of water at the point where it enters a residence, as opposed to treatment at a centralized facility prior to distribution to individual residences. Each system is installed in series and includes; one 2.5 cubic foot carbon vessel (simplex system), or two 2.5 cubic foot carbon vessels (duplex system). Both of these options are followed by a 2.5 cubic foot redundant vessel. Some locations may require several systems to run in parallel due to water usage; individual systems are referred to as a "unit" during sampling.

POE treatment systems include four separate sample ports A, B, C and D:

- Sample port A is situated before the treatment process and is considered the influent or raw water sample.
- Sample port B is located after water is transported through sediment and ultraviolet (UV) filtration as well as a water softener.
- Sample port C is situated after the first carbon vessel in a simplex system or after the second carbon vessel in a duplex system.
- Sample port D is located after the redundant carbon vessel and second UV filtration, and is considered the effluent water sample.

A copy of the Private Well Sampling Log is included with the forms attached to this Offsite SAP.

4.1 Pre-Sample Collection

Field personnel will confirm the treatment system has undergone regular use by checking the volume of water processed through the treatment system during the past seven days to avoid collecting a sample from stagnant conditions (less than 50 gallons within one day prior to arrival). Where stagnant conditions are present, a backwash cycle will be completed on the redundant tank until at least 50 gallons are removed. Prior to sample collection, approximately two and a half gallons of water will be purged from each test port.

4.2 Sample Collection

All sample bottles will be supplied by the laboratory. Grab samples will be collected by placing the mouth of the sample bottle into the water stream from each sample port. If tubing is used during the purge, it will be removed prior to sample collection. New nitrile gloves will be worn during sample collection and new gloves will be donned at each sample port.

Multiple sample ports (A, B, C & D) are located on the POE system and are used, depending on the activity and data need, to confirm the POE system is operating as designed. Prior to conducting maintenance service on the treatment system including granular activated carbon (GAC) tank change-out and routine water softener maintenance, a sample is collected from sample port B to test iron and hardness using a field test kit. If needed the softener is adjusted to ensure it is adequately treating the water. The first sulfolane sample at each location will be collected from sample port D, which is considered the effluent sample and is the least likely to contain sulfolane. The sample is labeled D1 on the COC, indicating it was collected prior to maintenance activities. However, samples collected from the D port during maintenance activities (prior to GAC vessel change out) are recorded as "D" samples in the project database for simplicity. Next, a sample from sample port C will be collected and labeled as C1 to indicate the sample was collected prior to a primary GAC vessel change out. A sample will then be collected from sample port A, which is considered the "raw water" sample and is likely to contain the highest sulfolane concentration.

Individual ports may be sampled, as needed, to evaluate the POE system during non-routine events. Samples collected in the absence of maintenance activities will be labeled with the port letter (e.g. "C" or "D"). Additional samples may be collected after maintenance activities (that is, following changeout of a GAC vessel). These samples are designated with the number 2 (e.g. "C2" or "D2"). The laboratory typically does not analyze these samples unless there is an issue with the sample collected prior to maintenance (e.g., "C1" or "D1").

5 FIELD QUALITY ASSURANCE/QUALITY CONTROL

The field QA/QC program includes collection of duplicate samples and equipment blanks. Descriptions of QA/QC samples are presented below.

5.1 Equipment Blanks

The purpose of the equipment blank sample is to determine the validity of sampling results for wells without dedicated pumping equipment by establishing the efficiency of the decontamination procedures. A minimum of one equipment blank will be collected for every 20 groundwater samples.

Equipment blanks will be collected at the specified frequency if non-dedicated purging and sampling equipment is used. The equipment blank will be used to identify organic artifacts originating from the sampling equipment.

To collect an equipment blank from a non-dedicated pump, the pumping equipment will be decontaminated as described in Section 6.1. Immediately following decontamination, distilled water will be placed into a clean container. The volume of the container and of the distilled water will be sufficient for the pump to operate and collect the volume of sample necessary to fill the sample jars. The pump will be placed into the distilled water and operated at a similar rate to the sampling rate for monitoring wells. The water discharged from the discharge tube or hose will be collected into appropriate sample containers. Sample handling and preservation of equipment blank samples will be the same as those for groundwater samples.

The distilled water comprising the blanks will be provided by a commercial source. The equipment blanks will be analyzed by the same methods as groundwater samples. The concentration levels of any artifact found in any equipment blank will be noted and compared to the groundwater sample results.

5.2 Duplicate Samples

Duplicate samples will be collected during each groundwater sampling event. Selection of wells for duplicate-sample collection will be based on the historical data; duplicate samples will be collected from wells with detectable historical data for the target analyte. To collect a monitoring well or private well (without POE) duplicate, two complete sets of sample bottles will be filled with groundwater from the selected well. One set will be labeled as the "sample" (i.e., normal labeling procedure will be followed) and the other set will be labeled as a "dummy sample" using the normal labeling procedure, with the addition of a "dummy" number that can be tied to the well by sampling personnel but not by laboratory personnel. The location of the duplicate sample(s) will be entered on the Monitoring Well Sampling Log.

The duplicate sample will be analyzed using the same analytical methods used for the primary sample. Results of the analysis from this duplicate will be used as a check for repeatability in the analytical procedures. Duplicates will be collected at a rate of one per 10 field samples with a minimum of one per day for monitoring well sampling. Duplicates will be collected at a rate of one per 10 samples for private well sampling. Locations known to be impacted, based on historical concentrations, are preferred for collection of duplicate samples. During sampling at POE systems, duplicate samples will be collected at a rate of approximately one per ten samples or one per day. If more than two POE treatment systems are sampled in one day, a second duplicate sample will be required once the number of samples collected exceeds ten. The raw water sample from sample port A at locations known to be impacted based on historical concentrations, are preferred for collection of duplicate samples. Selection of POE systems for duplicate-sample collection will be based on the historical data and logistics; ideally, duplicate samples will be collected from POE treatment system sample port A with detectable historical data for the target analyte.

To collect the POE sample duplicate, two complete sets of sample bottles will be filled with groundwater from the treatment system sample port. One set will be labeled as the "sample" (i.e., normal labeling procedure will be followed) and the other set will be labeled as a "dummy sample" using the normal labeling procedure but with a "X" suffix (example: "address_X") and sample time (i.e. five minutes prior to initial sample). If ports B or C are sampled as the duplicate sample, the duplicates will be denoted with Y and Z, respectively. Duplicate samples are typically not collected from the D port.

The location of the duplicate sample(s) will be entered into the POE Service Checklist. This duplicate will be analyzed using the same analytical methods used for the primary sample. Results of the analysis from this duplicate will be used as a check for repeatability in the analytical procedures and the sampling technique.

5.3 Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike (MS)/matrix spike duplicate (MSD) samples are prepared by the analytical laboratory after samples have been collected and submitted. A known concentration of the target analyte or similar compound is added to the sample prior to sample preparation and analysis. The recovery of the MS/MSD sample will indicate if matrix interference effects are occurring in the sample, potentially biasing the analytical result determined for the sample. In this way, the MS/MSD sample is used to determine the analytical accuracy of the sample for a given method and matrix. For monitoring well samples, or samples from private wells without a POE, MS/MSD samples are typically prepared by the laboratory on groundwater samples at a rate of one per 20 samples.

During POE system sampling, field personnel will collect additional sample volume from the raw water sample collected at sample port A at one POE treatment system sampled each day to supply the laboratory with the appropriate sample volume to conduct MS/MSD analyses. If more than 20 samples are collected in a single day, additional volume will be collected from a second POE treatment system. MS/MSD samples may be submitted at a frequency greater than required by the laboratory method; the laboratory will choose which sample to include in the analytical batch and disregard the excess samples. The same sample location should not be used for collection of both the sample duplicate and the MS/MSD.

5.4 Sample Numbers

Sample numbers will consist of unique identification numbers.

5.5 Sample Containers

Containers used to transport samples for laboratory analyses will be provided by the laboratory performing the analyses. The bottles will be prepared by the laboratory according to the method used for analysis. The bottles will be opened immediately before collecting the samples.

5.6 Sample Preservation and Handling

Sample preservation is intended to retard biological action, retard hydrolysis, and reduce absorption effects. Preservation methods include refrigeration and protection from light. Table 2 lists the analytical parameters, analytical methods, sample container requirements, and preservative requirements for groundwater samples.

Samples will be preserved in the field by placing the samples in an insulated cooler containing frozen "gel ice" immediately after sample collection and maintained at the required temperature range. Upon receipt of the samples, authorized laboratory personnel will store and/or prepare the samples for analysis, considering the sample holding times for the analytical parameter of interest.

5.7 Sample Shipping

Sample bottles will be wrapped in "bubble wrap," placed into the cooler, and packed with frozen gel ice. Packing material will be used as necessary to prevent bottle breakage. A temperature blank will be placed in the cooler prior to shipment. Samples will be labeled for shipment or transfer to the appropriate laboratory and dispatched at the end of each work day. Samples may be held by the field technician at the required storage temperature prior to shipment, if necessary.

If shipment directly to the laboratory is necessary, each cooler will be custody-sealed. If the cooler is to be transferred to the laboratory receiving office, the custody seal will be added by the shipper before shipment. When custody is to be relinquished to a shipper, field personnel will contact the laboratory sample custodian to inform the laboratory of the expected time of shipment arrival and any special requirements or time constraints on sample analysis. Any special conditions or requirements will be noted on the chain of custody record.

6 EQUIPMENT DECONTAMINATION AND INVESTIGATION-DERIVED WASTE MANAGEMENT

6.1 Decontamination

Reusable equipment introduced into a monitoring well, or coming in contact with water from a well, must be decontaminated prior to use and reuse. Wells that are fitted with dedicated pumping systems will not require the introduction of sampling equipment into the well. Only the water-level indicator will require decontamination for these wells.

The decontamination procedures for nondedicated sampling equipment will consist of:

- 1. Nonphosphate detergent wash
- 2. Tap water rinse
- 3. Three final distilled-water rinses

When pump decontamination is required, the pump will be run in both the detergent wash solution and initial tap water rinse for at least 1 minute, then rinsed with distilled water three times. Rinse water will be collected in the purge buckets or barrels. Equipment that cannot be decontaminated, such as rope or plastic, will be disposed of at the Fairbanks North Star Borough Solid Waste Division landfill facility, located at 455 Sanduri Street in Fairbanks.

6.2 Investigation-Derived Waste

Investigation-derived waste will include solid waste, equipment decontamination fluids, and purge water from monitoring wells and POE systems.

6.2.1 Sampling Investigation-Derived Waste

While performing sampling offsite used disposable nitrile gloves, sampling spoons, baggies, and other disposable sampling equipment will be placed in a garbage bag and disposed of at the Fairbanks North Star Borough Solid Waste Division landfill facility, located at 455 Sanduri Street in Fairbanks as ordinary solid waste.

6.2.2 Development and Purge Water

Buckets, drums, water tanks, or other suitable containers will be used to collect purge water from monitoring wells. The collected water then will be disposed of in accordance with applicable laws and requirements.

Buckets or other suitable containers will be used to collect purge water from each private well and POE treatment system prior to sample collection. The collected water then will be disposed into the nearest sink or drain at each residence, where applicable. POE purge water will be discarded onto the ground at residences with no sink or drain available. Private well purge water will be discharged to the residents' septic system, discharged to the ground surface, or will be collected and taken offsite for disposal in accordance with applicable laws and requirements.

6.2.3 Decontamination Fluids

Used soapy and rinse water from decontaminating sampling equipment used to collect offsite samples will be placed in 5-gallon buckets or other suitable containers and disposed of in the City of North Pole wastewater system through an offsite manhole. This procedure and disposal location have been coordinated and approved through the City of North Pole staff.

6.2.4 Rinse Water

Glass sleeves from UV lights and used carbon tanks will require washing/rinsing at the AHL facility, located at 3651 Royal Road in Fairbanks, Alaska. Rinse water collected during these activities and other similar maintenance activities will be processed through a carbon filtration system at the AHL facility prior to discharge to the septic system.

6.2.5 Spent Carbon

Spent carbon from GAC tanks will be transported to Organic Incineration Technology, Inc. in North Pole, Alaska, for treatment.

6.2.6 Sediment Filters

Used sediment filters have been determined to be characteristically non-hazardous and will be managed as non-hazardous waste. The used filters will be collected by AHL and will be taken to the Fairbanks North Star Borough Solid Waste Division landfill facility, located at 455 Sanduri Street in Fairbanks.

6.2.7 UV Lights

UV lights are replaced approximately once per year. Each treatment system contains two bulbs, each within glass sleeves that prevent bulbs from coming into contact with sulfolane-impacted water. Used UV lights will be placed into an Ecolights recycling lamp kit, and taken to North Coast Electrical Supply who ships them to Total Reclaim Ecolights for proper disposal. A certificate of disposal will be obtained after disposal is completed.

7 SAMPLE AND FIELD DOCUMENTATION

A sample documentation program will be implemented to document possession and handling of samples from field collection through laboratory analysis. The program will include:

- Sample labels that clearly identify samples.
- Sample-cooler custody seal to preserve the integrity of the samples from the time it is packed for shipment until it is opened in the laboratory.
- Field Activities Daily Log and/or Monitoring Well Sampling Log to record information about each sample collected during the monitoring program.
- Chain of custody record to establish sample possession from the time of collection to the time of analysis, serve as official communication to the laboratory of the particular analysis required for each sample and provide further evidence that the chain of custody is complete.
- Documentation by the laboratory of pertinent information about the sample on the sample receipt form.

7.1 Sample Labels

To prevent misidentification of samples, legible labels will be affixed to each sample container. The labels will be sufficiently durable to remain legible even when wet and will contain the following information:

- Sample point identification name/number
- Name or initials of collector
- Date and time of collection
- Analysis required.

7.2 Chain of Custody Seals

If samples will be shipped offsite by commercial carrier, a chain of custody (security) seal will be placed on the sample shipping container to ensure the samples are not disturbed during transport. Two seals will be placed on the front and two on the back of the cooler, across the closure. If samples will be hand delivered and signed over to the laboratory's Fairbanks office prior to shipment, the seals will be signed and dated by sampling personnel or laboratory staff.

7.3 Monitoring Well Sampling Log

A Monitoring Well Sampling Log will be maintained for groundwater sample collection activities. The following specific data will be documented on the log where applicable:

- Name of collector
- Identification of sampling point
- DTW in wells (referenced from top of casing)

- Well total depth
- Well purging/sampling method
- Volume of water in well purged
- Method of measuring immiscible layer
- Thickness of immiscible layer
- Analytical methods requested
- Weather conditions including air temperature
- Sequence and time of field activities conducted
- Groundwater parameters
- Observations of monitoring well conditions (e.g., broken lock, cracked casing)
- Sample observations (e.g., color, odor).

7.4 Daily Field Logs

Daily logs are used to record field observations and other pertinent information that is not otherwise documented on field forms. Daily field logs are turned in at the end of each day and stored with the other field logs from the quarterly sampling. Information included on the logs may include:

- Date
- Weather and other salient observations
- Sampling team members
- Documentation of instrument calibration
- Location of activity and site conditions
- Field observations and comments
- Changes to sampling protocol
- Site photographs
- Site sketches
- Survey and location of sampling points
- Global positioning system coordinates.

7.5 Point-of-Entry Service Checklist

A POE Service Checklist will be maintained for all maintenance activities as well as water sample collection activities. The following specific data will be documented where applicable:

Name of collector

- Owner/occupant address
- Date
- Treatment system model/type
- Meter Number
- Water meter reading
- Field water test results
- Analytical methods requested
- Sequence and time of field activities conducted
- Changes in general condition of the system, including odors, noises, or other complaints

7.6 Chain of Custody Records

Evidence of collection, shipment, laboratory receipt, and laboratory custody until completion of analyses will be documented via a chain of custody record containing the signature of the individuals collecting, shipping, and receiving each sample. The chain of custody record must be signed and dated by a member of the sampling team. An example of the chain of custody record is included as an attachment.

A sample is considered to be in custody if it is:

- In a person's actual possession
- In view after being in physical possession
- Sealed so no one can tamper with it, after having been in physical custody
- In a secured area, restricted to authorized personnel.

A chain of custody record will be used by personnel to record collection and shipment of samples. A qualified laboratory will not accept samples for analysis without a correctly prepared chain of custody record. The chain of custody procedure is as follows:

- A chain of custody record will be initiated by the sampler/s and will accompany each set of samples shipped to the laboratory.
- Each sample will be assigned a unique identification number entered on the chain of custody record. Samples can be grouped for shipment on a common form.
- Each time responsibility for custody of the samples changes, the receiving and relinquishing custodians will sign the record and denote the date and time.
- If the samples are shipped to the laboratory by commercial carrier, the chain of custody record will be sealed in a watertight bag, placed in the shipping container, and the shipping container will be sealed prior to giving it to the carrier. The carrier waybill will serve as an extension of the chain of custody record between the final field custodian and receipt in the laboratory.
- Upon receipt in the laboratory, a designated individual will open the shipping containers, compare the contents with the chain of custody record, and sign and date the record. Any discrepancies will be noted on the chain of custody record or the laboratory's sample receipt form.

- If discrepancies occur, the samples in question will be segregated from normal sample storage and the field personnel will be notified for clarification.
- The chain of custody record will be considered complete after sample disposal. Samples that are not consumed during analysis will be kept for 6 months or as otherwise established by the laboratory.
- Chain of custody records, including waybills, will be maintained as part of the project records.

8 ANALYTICAL METHODS AND SAMPLING FREQUENCIES

8.1 Laboratory Selection

The laboratory selected to analyze groundwater samples collected at the facility will maintain a written QA/QC program that conforms, as a minimum standard, with the QA/QC protocol set forth in the United States Environmental Protection Agency's (USEPA's) Test Methods for Evaluating Solid Waste, SW-846 (USEPA 1986), or any subsequent approved versions of this testing protocol. The laboratory will provide a copy of the QA/QC plan for review upon request by ADEC or Flint Hills Resources Alaska, LLC. The laboratory will be certified by ADEC for analyses performed for this monitoring program, where such certifications exist.

SGS Environmental Services (SGS) in Anchorage, Alaska, or Pace Analytical Services, Inc. (Pace), in Minneapolis, Minnesota, will typically be used for analysis of groundwater samples. In general, SGS is used for analysis of monitoring well samples and private well samples (where no POE system is present), and Pace is used for analysis of samples collected from POE systems. SGS and Pace are ADEC-approved laboratories for contaminated sites analysis. The laboratories will use USEPA Modified Method 1625 or 8270D with isotope dilution for sulfolane analysis.

Laboratory analysis will be specified on the chain of custody record. In most cases, standard turnaround time (10 to 14 working days for most analyses) will be requested. SGS has the capability to expedite turnaround times to 48 hours, depending upon availability of analytical equipment. Pace has the capability to expedite turnaround times to 30 hours, also depending upon availability of analytical equipment.

8.2 Methods and Sample Requirements

Analytical parameters, appropriate test method for each parameter, and test method detection limit to be applied to samples collected from the NPR Site are identified in Table 2. Test methods listed in Table 2 are taken from the USEPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846 (USEPA 1986) and Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020 (USEPA 1983).

Table 2 lists the limits of quantitation, as well as the container and preservative requirements and holding time for the analyses to be used.

8.3 Use of Alternate Method

Any deviation from a USEPA-approved method must be adequately justified to ensure that the quality of the results meets the performance specification of the reference method. The method used must be fully documented to show that the method is accurate, reproducible, free of interferences, and sensitive. The limit of detection for the method will also be established with both clean standards and by spiking samples to determine the effect of the sample matrix. If a method is selected instead of an existing USEPA-approved method, approval will be obtained from ADEC.

8.4 Sample Collection

Water samples to be submitted to SGS for analysis of sulfolane will be placed in two 1-liter amber glass bottles without preservative. Sample bottles for sulfolane will be filled to the shoulder of the bottle. Water samples to be submitted to Pace for analysis will be collected in three 40-mililiter amber-glass VOA vials without preservative. Samples bottles for sulfolane will be filled completely without headspace. Sulfolane samples for groundwater will be submitted for analysis by USEPA Modified Method 1625/8270D with isotope dilution.

8.5 Groundwater Sampling Frequency and Methods

Groundwater sampling networks and frequency are provided in the Offsite PMP. Collected samples will be analyzed using USEPA Modified Method 1625 or 8270D with the sulfolane isotope-dilution method for sulfolane quantitation.

8.6 Laboratory Analysis and Notification Process for POE Samples

Typically, samples collected from POE systems will be submitted to Pace for analysis. The laboratory will prepare the samples collected from POEs using a modified method based upon SW-846 Method 3510C. The sample is extracted in a 60 mL glass VOA vial with methylene chloride in accordance with the current revision of the Pace's Standard Operating Procedure (SOP) S-MN-O-569. Each extraction batch is prepared with a method blank, a laboratory fortified blank, and a sample duplicate (if < 10 samples) or a matrix spike (MS)/MS duplicate (MSD) (if \geq 10 samples). If insufficient sample is provided to perform the MS/MSD, then a sample duplicate is prepared.

The sample extracts are analyzed by GC/MS using SW-846 Method 8270D modified to include isotope dilution. The sample analysis is performed in accordance with the current revisions of the laboratory SOP S-MN-O-569 and the ADEC Sulfolane Key Elements Document (ADEC 2013).

The following criteria will be followed as part of the review process for sample results:

- If a C2 sample is collected and contains a detection (greater than method detection limit [MDL]) for sulfolane, the following will occur.
 - o The client must be notified immediately by the laboratory, within 3 hours if normal business hours.
 - The sample extract must be reanalyzed for confirmation if a duplicate sample is not included in the sample set.
 - The sample must be reextracted and analyzed for confirmation if a duplicate sample is not included in the sample set.
 - If a D2 sample was collected for this location, it must be extracted and analyzed to confirm that the final treated water does not contain sulfolane greater than the MDL.
- If a D sample (D, D1, or D2) contains a detection for sulfolane, the following will occur.
 - o The client must be notified immediately by the laboratory, within 3 hours if normal business hours.

- The sample extract must be reanalyzed for confirmation if a duplicate sample is not included in the sample set.
- The sample must be reextracted and analyzed for confirmation if a duplicate sample is not included in the sample set.
- If sulfolane is detected in a D1 sample and a D2 sample was collected for this location, the D2 sample must be extracted and analyzed to confirm that the final treated water does not contain sulfolane greater than the MDL.
- For the MS/MSD, if the native sample result is ≤ 4× the spike amount (i.e., ≤ 60 µg/L), the percent recovery and the precision shall both be evaluated. If the native sample result is > 4 × the spike amount, only the precision shall be evaluated. If the sample duplicate or MS/MSD do not meet the acceptance criteria, all samples in the batch must be evaluated to determine if a possible sample switch occurred. If the acceptance criteria are not met, the laboratory must perform the corrective action as noted in the ADEC Key Elements Document (ADEC 2013).

The client should be provided with preliminary reports for all samples in the extraction batch to review sample results against historical data.

9 EVALUATION OF DATA QUALITY

QA and QC are important components of an environmental site investigation. QA is the integrated program for measuring the reliability of the data. QC is the routine use of specific procedures set forth to meet defined standards of sampling and analysis. This section describes specific procedures to be followed so the laboratory data are effective and do not detract from the quality or reliability of the results.

9.1 Quality Control Samples

QA/QC samples, including field-duplicate samples, will be submitted for laboratory analysis. At least one field duplicate sample will be collected at a minimum rate of 10 percent of the samples submitted for laboratory analysis. Duplicates will be assigned a separate, "dummy" sample number and submitted "blind" to the laboratory. Duplicate sample results will be used to test the comparability of analytical data.

Also, equipment blank samples will be collected at a minimum rate of 5 percent of wells with nondedicated pumps. Equipment blanks will be labelled to reflect the location of the well sampled prior to taking the blank. Equipment blank results will be used to establish the efficiency of decontamination procedures for non-dedicated pump wells.

Temperature blanks, while not QA/QC samples, will enable the receiving laboratory to determine the temperature at which the samples arrive at the lab. Temperature blanks will consist simply of a jar filled with water and packed with the other samples in each cooler. The water temperature in the blank is measured at the laboratory. Sample temperature should range from 0 to 6 degrees Celsius (°C). As specified in the USEPA publication SW-846, temperatures within this range are considered acceptable; this range has been approved by ADEC. The laboratory will document cooler conditions, including measuring temperature blanks upon arrival at each laboratory location, and any occurrence of broken sample containers.

9.2 Data Quality Objectives

The QA objective for measurement data is to ensure that environmental monitoring data are known and of acceptable quality. For analytical data, the objective is to meet acceptable QA standards of analytical sensitivity, precision, accuracy, representativeness, comparability, and completeness. These terms are defined below:

- Analytical sensitivity. The laboratory objective for sensitivity is to achieve a limit of quantitation of 10 μg/L and a MDL of 5 μg/L.
- Precision. A measure of mutual agreement among replicate or duplicate measurements of the same analyte. The laboratory objective for precision is to equal or exceed the precision demonstrated for similar samples, and will be within the established control limits for the methods as published by the USEPA. Precision will be measured as the relative percent difference between the project primary and duplicate samples.
- Accuracy. A measure of bias in a measurement system. Accuracy will be expressed as the percent recovery of an analyte from a surrogate or laboratory control sample (LCS), laboratory control sample duplicate (LCSD), MS, or MSD samples, or from a standard reference material. The laboratory

objective for accuracy is to equal or exceed the accuracy demonstrated for these analytical methods on similar samples, and will be within the established control limits for the method as detailed in the ADEC Key Elements document (ADEC 2013).

- *Representativeness.* A quality characteristic attributable to the type and number of samples to be taken to be representative of the environment. Sample locations will be selected in the field to be representative of the water at that sample location.
- Comparability. A qualitative parameter expressing the confidence with which one data set can be compared to another. The sampling method employed, methods used to transfer the samples to the analytical laboratory, and analytical techniques implemented at the laboratory will be performed in a uniform manner.
- *Completeness*. A measure of the number of valid measurements obtained in relation to the total number of measurements planned. The objective of completeness is to generate an adequate database to successfully achieve the goals of the investigation.

9.3 Reporting

Each laboratory data packet will be reviewed for QA, as described above. ADEC Data Review Checklists and a report case narrative describing data quality will be completed and submitted with groundwater monitoring reports.

Elevated reporting limits (i.e., reporting limits greater than QC objectives or regulatory limits; Table 2) may occur when:

- An insensitive analytical technique is used.
- The chemical matrix of the sample interferes with the analytical technique.
- High concentrations of some constituents cause the laboratory to dilute the sample, thus affecting the detection limit for other constituents.

Where detection limits are high, the limit will be reduced in future samples, if practical, by using alternate laboratory procedures that remove or control interfering constituents.

9.4 Missing Data Values

Care will be taken to complete all analyses to provide a complete data set for statistical comparison.

9.5 Outliers

An observation that is very different from all other observations in a group of observations is called an outlier. Outliers in groundwater samples may be caused by:

- Catastrophic occurrence such as a spill
- Inconsistent sampling or analysis procedures
- Errors in transcription of the data values.

Any outliers in the reported data will be evaluated for cause and will be corrected if possible. Documentation of the cause of the outlier will be provided prior to correcting or excluding data values from evaluations. If the cause of the outlier cannot be explained by an identifiable error, the value will not be excluded from the database.

9.6 Units of Measure

Units of measure will be specified by the laboratory after each quantity reported for the specific analyte.

10 HEALTH AND SAFETY

SWI, Barr Engineering Company, ARCADIS U.S., Inc, and other contractors will conduct offsite field activities in accordance with their respective corporate health and safety programs.

11 REFERENCES

- ADEC. 2013. Monitoring Well Guidance. ADEC Division of Spill Prevention and Response Contaminated Sites Program. September.
- ADEC, 2013. Sulfolane Key Elements Document, Version 4. July 22.
- ADEC. 2016. Field Sampling Guidance. ADEC Division of Spill Prevention and Response Contaminated Sites Program. March.
- Pace, 2013. Standard Operating Procedure, Sulfolane Extraction and Analysis in Liquid Matrices by Gas Chromatography/Mass Spectrometry (GC/MS): Capillary Column Technique. December 18.
- USEPA. 1983. Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020.

USEPA. 1986. Test Methods for Evaluating Solid Waste, SW-846.

TABLES

Table 1 Well Construction Details

Offsite Sampling and Analysis Plan North Pole Refinery Site North Pole, Alaska

				Boring		Riser	Riser	Ground	Well	Well	Well	Depth to	Well			V	lell Screen					Filter	Pack	Wa	ater Tab	le	Alaska State Plane
Well	New Well Name	LocationNdx	Proximity		Survey Date	Elevation*		Surface Elevation	_	Lengt	h Bottom	Top of Permafrost	Diameter	Depth to Top	Top Elevation	Depth to Bottom	Bottom Elevation	Length	Screen Slot	Material		Depth to Top	Depth to Bottom	Approx Depth	In	Feet Above	NAD83, ZONE 3
				n Date	Date	(feet MSL)	(feet)	(feet MSL) ((feet BGS	(feet)			(inches)) (feet BGS		(feet)	(inches)	Material			(feet BGS)		Screen	Top of	Northing Easting
MW-150A	MW-150A-10	bb50bc4d-6401-41d3-9861-696370680d01	Off-site	10/2/2009	Jul-16	487.33	0.12	487.21	11.58	11.70		_	2.00	6.70	480.51	11.10	476.11	4.40	0.01	PVC	PVC	5.5	17.0	8.0	Y	-1.3	3930163.44 1426522.55
MW-150B MW-150C	MW-150B-25 MW-150C-60	83c37284-76b4-4384-bb48-333ec07b1a23 744ba0c5-b6fd-45dd-af82-8e44bb0c445c	Off-site Off-site	10/2/2009 5/12/2012	Jul-16 Jul-16	487.42	0.21	487.21 487.21	24.64 60.51	24.85		63.5	2.00	20.60 55.43	466.61 431.78	24.50 60.08	462.71 427.13	3.90 4.65	0.01	PVC PVC	PVC PVC	18.0 Natura	26.5 al pack	8.0 8.0	N N	12.6 47.4	3930162.06 1426527.97 3930159.85 1426535.91
MW-151A	MW-151A-15	6472319f-ab90-4ae5-a9f6-aec78497a44d	Off-site	10/7/2009	Nov-16	486.92	-0.96	487.88	15.50	14.54			2.00	10.00	477.88	15.00	472.88	5.00	0.01	PVC	PVC	4.0	17.0	8.0	N	2.0	3930152.81 1427042.16
MW-151B	MW-151B-25	cde41833-053d-4233-9371-074d867381f9	Off-site	10/2/2009	Mar-16	487.43	-0.35	487.78	23.60	23.25		_	2.00	18.50	469.28	23.10	464.68	4.60	0.01	PVC	PVC	17.0	26.5	8.0	N	10.5	3930154.30 1427034.87
MW-151C MW-152A	MW-151C-60 MW-152A-15	1370ecf0-782c-472f-87fe-16464098f678 dbff8efb-8352-4146-93a0-05ff923ce646	Off-site Off-site	2/18/2010	Mar-16 Jul-16	490.92	3.14 -0.12	487.78 488.62	57.70 16.00	60.84 15.88		65.0	2.00	52.55 10.60	435.23 478.02	57.15 15.00	430.63 473.62	4.60	0.01	PVC PVC	PVC PVC	50.0 8.0	63.3 17.0	8.0 8.0	N N	44.6 2.6	3930151.931427038.653930112.631427987.59
MW-152B	MW-152B-25	0eb80aa1-7d5a-40c0-8a91-a8070d8a7eb9	Off-site	10/7/2009	Jul-16	488.21	-0.12	488.62	25.40	24.99	-		2.00	19.90	468.72	24.40	464.22	4.50	0.01	PVC	PVC	19.0	27.0	8.0	N	11.9	3930112.89 1427983.05
MW-152C	MW-152C-65	131fa3db-b2f5-4a20-af1d-102e754c79a6	Off-site	9/28/2011	Jul-16	488.16	-0.46	488.62	65.17	64.71		67.5	2.00	60.13	428.49	64.57	424.05	4.44	0.01	PVC	PVC	55.0	65.5	11.3	Ν	48.8	3930113.17 1427992.07
MW-153A MW-153B	MW-153A-15 MW-153B-55	f7edf3d9-f361-4bdb-9fd5-2314b04bff4c 3d1d3c74-cfca-42a5-9592-3d1c1d22bf7f	Off-site Off-site	10/7/2009 4/20/2010	Jul-16 Jul-16	490.34 489.86	-0.11 -0.59	490.45 490.45	16.00	15.89 56.06		<u> </u>	2.00	10.60 51.60	479.85 438.85	14.50 56.10	475.95 434.35	3.90 4.50	0.01	PVC PVC	PVC PVC	8.5 45.0	17.0 59.0	8.0 9.0	N N	2.6 42.6	3928749.86 1427720.55 3928741.21 1427721.08
MW-155A	MW-155A-15	19457422-9ed5-4d15-9e3d-c648f8a46f1e	Off-site	11/11/2009	Jul-16	488.60	-0.39	490.45	56.65 15.50	15.26			2.00	5.35	438.85	15.08	473.76	9.73	0.01	PVC	PVC	3.5	15.5	7.5	Y	-2.2	3930320.08 1425509.58
MW-155B	MW-155B-65	ac168cd7-f9ef-440c-811e-71b85463dd3b	Off-site	9/11/2010	Jul-16	488.64	-0.20	488.84	65.80	65.60	423.04	67.0	2.00	60.78	428.06	65.20	423.64	4.42	0.02	PVC	PVC	45.0	70.0	9	Ν	51.8	3930314.75 1425510.07
MW-156A	MW-156A-15	d6afa1bc-65e8-441c-8962-d93590ea2511	Off-site	11/11/2009	Jul-16	485.88	-0.49	486.37	15.50	15.01			2.00	5.35	481.02	15.09	471.28	9.74	0.01	PVC	PVC	3.5	15.5	7.0	Y	-1.7	3931955.04 1425536.52
MW-156B MW-157A	MW-156B-50 MW-157A-15	f0ea807b-3999-4835-b358-766fdef01961 cba4e6c6-dba6-438b-b519-39772d4ea37a	Off-site Off-site	2/17/2010 11/13/2009	Jul-16 Nov-16	489.26	2.89	486.37 485.34	50.40 15.50	53.29 15.14		51.5	2.00	45.20 5.36	441.17 479.98	50.00 15.09	436.37 470.25	4.80 9.73	0.01	PVC PVC	PVC PVC	35.0 3.5	51.5 15.5	8.0 7.0	N Y	37.2 -1.6	3931949.92 1425537.02 3932561.84 1426870.93
MW-157B	MW-157B-30	26ec3cf5-cb09-40b7-96bf-1947c5fbfa5b	Off-site	9/30/2011	Jul-16	484.79	-0.62	485.41	30.73	30.11		40.0	2.00	25.71	459.70	30.14	455.27	4.43	0.01	PVC	PVC	20.0	31.0	10.3	Ν	15.4	3932567.15 1426874.11
MW-158A	MW-158A-15	c1b5076c-8e3e-4b4a-bf4e-80b6fe6f8fef	Off-site	11/13/2009		487.68	-0.53	488.21	15.60	15.07	_		2.00	5.50	482.71	15.20	473.01	9.70	0.02	PVC	PVC	3.0	16.5	8.5	Y	-3.0	3931120.60 1426869.14
MW-158B MW-159A	MW-158B-60 MW-159A-15	29aea756-0983-4744-9696-d1ca2057e2ec d81c04b3-15c3-4d1b-841e-93795e73becf	Off-site Off-site	9/23/2010	Jul-16 Jul-16	487.53	-0.50	488.03 489.16	60.61 15.60	60.11 14.86		65.0	2.00	55.62 5.50	432.41 483.66	60.14 15.20	427.89 473.96	4.52 9.70	0.02	PVC PVC	PVC PVC	43.0 3.0	67.0 16.5	10.0 8.0	N Y	45.6 -2.5	3931119.26 1426874.85 3931101.34 1427690.57
MW-159B	MW-159B-45	b8ef50c5-4697-4b23-9257-a96b6226c20a	Off-site	10/12/2011	Jul-16	488.28	-0.88	489.16	46.20	45.32		_	2.00	41.16	448.00	45.60	443.56	4.44	0.01	PVC	PVC	35.0	46.5	8.0	N	33.2	3931101.12 1427679.28
MW-159C	MW-159C-70	ee856537-f0a8-404b-b2db-af9983b67093	Off-site	9/29/2011	Jul-16	488.71	-0.45	489.16	72.30	71.85		72.5	2.00	67.13	422.03	71.84	417.32	4.71	0.01	PVC	PVC	60.0	72.5	8.0	N	59.1	3931100.83 1427684.86
MW-160AR-15 MW-160B	MW-160AR-15 MW-160B-90	757debee-b964-479d-812e-45ed3f32201a 80debeec-8345-4d7f-af15-85a351ce7095	Off-site Off-site	4/16/2013 2/19/2010	Mar-16 Mar-16	485.62 485.28	-0.34	485.96 485.96	15.27 90.73	14.93 90.05		91.0	2.00	4.91 85.58	481.05	14.77 90.18	471.19 395.78	9.86 4.60	0.01	PVC PVC	PVC PVC	3.0 80.0	15.27 91.5	7.0 8.0	Y N	-2.1 77.6	3932566.91 1427454.76 3932566.90 1427459.68
MW-161A	MW-161A-15	83a1130f-71d5-4a40-9d37-3917df391445	Off-site	12/9/2009	Nov-16	479.21	-0.08	480.11	15.60	14.70		91.0	2.00	5.50	400.38	15.20	464.91	9.70	0.01	PVC	PVC	3.8	16.5	8.0	Y	-2.5	3935554.06 1421680.78
MW-161B	MW-161B-50	b2616abb-dfd0-424d-9a00-edd16bfac373	Off-site	9/10/2010	Jul-16	479.78	-0.11	479.89	50.44	50.33	429.45	54.0	2.00	46.02	433.87	50.44	429.45	4.42	0.02	PVC	PVC	35.0	51.5	6.5	Ν	39.5	3935553.83 1421678.29
MW-161-30	MW-161-30	8bdd00d1-c1b4-4b5d-9441-861cd6c8ace2	Off-site	4/23/2013	Jul-16	479.65	-0.24	479.89	30.19	29.95			2.00	25.18	454.71	29.73	450.16	4.55	0.01	PVC	PVC	Natura	•	8.0	N Y	17.2	3935553.69 1421673.97
MW-162A MW-162B	MW-162A-15 MW-162B-65	858392a1-38eb-4f06-a0e5-82ff1d909661 9457f288-c784-4216-8d18-0c365d5d579e	Off-site Off-site	11/25/2009	Mar-16	484.09 483.95	-0.55 -0.75	484.64 484.70	15.60 65.38	15.05 64.63		67.5	2.00	5.50 60.18	479.14 424.52	15.20 64.73	469.44	9.70 4.55	0.02	PVC PVC	PVC PVC	3.8 50.0	16.5 66.5	7.5 7.5	Y Y	-2.0 52.7	3934831.10 1425571.90 3934825.07 1425574.08
MW-163A	MW-163A-15	b910d35b-c2f0-45ac-986d-fd8b1b17795c	Off-site	12/9/2009	Jul-16	484.89	-0.64	485.53	15.60	14.96		_	2.00	5.50	480.03	15.20	470.33	9.70	0.02	PVC	PVC	3.6	16.5	9.0	Ŷ	-3.5	3935430.75 1426901.11
MW-163B	MW-163B-40	438df18a-ab13-4309-a5b1-3331fa88f2af	Off-site	9/13/2010	Jul-16	485.25	-0.28	485.53	39.55	39.27		40.0	2.00	34.53	451.00	38.96	446.57	4.43	0.02	PVC	PVC	30.0	41.5	9.5	N	25.0	3935430.72 1426906.78
MW-164A MW-164B	MW-164A-15 MW-164B-50	7cbec488-f8f7-4eec-ad8b-6858cba234c6 bc4b92c6-94c9-49ce-8af7-37bb4eb8d8ea	Off-site Off-site	12/10/2009 9/9/2010	Sep-16 Jun-16	479.91 479.62	-0.60 -0.68	480.51 480.30	15.60 50.67	15.00 49.99			2.00	5.50 45.62	475.01 434.68	15.20 50.06	465.31 430.24	9.70 4.44	0.02	PVC PVC	PVC PVC	3.8 35.0	16.5 51.5	9.0 9.0	Y N	-3.5 36.6	3938026.16 1425651.07 3938027.01 1425654.08
MW-164C	MW-164C-60	85dc25cb-443f-4f85-a00c-d70112552fc1	Off-site	8/17/2011	Mar-16	479.59	-0.98	480.57	62.44	61.46		63.0	2.00	57.34	423.23	61.99	418.58	4.65	0.02	PVC	PVC	52.0	63.5	8.0	N	49.3	3938023.06 1425652.19
MW-165A	MW-165A-15	73dd9d61-5434-4b1a-921e-9f07f0fce24a	Off-site	1/18/2010	Jul-16	475.02	-0.45	475.47	15.40	14.95		_	2.00	5.19	470.28	14.90	460.57	9.71	0.01	PVC	PVC	4.0	15.5	7.5	Y	-2.3	3938692.18 1416849.70
MW-165B MW-166A	MW-165B-50 MW-166A-15	7aacb690-eca4-4beb-ab2a-e12427ba7fe6 206d095c-1583-4c5a-81fb-673ce91fdef6	Off-site Off-site	9/28/2010 1/8/2010	Jul-16 Jul-16	474.87	-0.60 2.72	475.47 472.12	50.88 15.60	50.28 18.32			2.00	45.87 5.44	429.60 466.68	50.35 15.15	425.12 456.97	4.48 9.71	0.02	PVC PVC	PVC PVC	35.0 4.0	51.5 16.0	8.0 7.5	N Y	37.9 -2.1	3938690.33 1416854.17 3940972.27 1419512.27
MW-166B	MW-166B-30	c1c48e00-7fde-465f-bfa8-d929db2f4301	Off-site	3/15/2010	Jul-16	475.09	2.72	472.12	32.10	35.07		33.0	2.00	27.15	400.08	31.35	440.77	4.20	0.01	PVC	PVC	21.0	33.5	7.0	N	20.2	3940972.27 1419512.27 3940967.37 1419509.53
MW-167A	MW-167A-15	e1ff3df0-be30-4411-ae47-689fcaf01bb8	Off-site	1/7/2010	Nov-16	475.79	-0.37	476.16	15.80	15.43	460.36	_	2.00	5.65	470.51	15.35	460.81	9.70	0.01	PVC	PVC	4.0	16.0	9.0	Y	-3.4	3942809.92 1423092.52
MW-167B	MW-167B-35	5bfc3b82-de6b-4d32-89c4-a35b7ad24ceb	Off-site	3/23/2010	Jul-16	475.66	-0.45	476.11	33.27	32.82	-	33.5	2.00	28.17	447.94	33.15	442.96	4.98	0.01	PVC	PVC	25.0	34.0	6.5	N Y	21.7	3942813.73 1423092.51
MW-168A MW-168B	MW-168A-15 MW-168B-50	10b43fff-61db-483a-a9fa-10f28b4597c7 fb777856-a6f9-458d-819b-3c12e5ac82bb	Off-site Off-site	1/8/2010	Jul-16 Jul-16	478.27	-0.37	478.64 478.64	15.50 51.45	15.13		55.0	2.00	5.36 46.29	473.28 432.35	15.06 51.00	463.58 427.64	9.70 4.71	0.01	PVC PVC	PVC PVC	4.0	16.0 52.0	9.0 10.9	N	-3.6 35.4	3941284.64 1425723.88 3941289.40 1425724.13
MW-169A	MW-169A-15	e711bc9e-2ba8-484b-8156-66db4530d16f	Off-site	2/25/2010	Nov-16	486.19	2.49	483.70	15.15	17.64	468.55	_	2.00	5.27	478.43	15.06	468.64	9.79	0.01	PVC	PVC	4.0	15.5	8.0	Y	-2.7	3931955.69 1423035.08
MW-169B	MW-169B-50	9aa9bf82-4e2f-460f-9cfb-7edb6f51e92c	Off-site	10/21/2010		486.32	3.33	482.99	49.20	52.53			2.00	44.09	438.90	48.72	434.27	4.63	0.02	PVC	PVC	35.0	51.5	10.0	N	34.1	3931960.39 1423037.49
MW-169C MW-170A	MW-169C-60 MW-170A-15	11c1f256-db61-406a-bed8-9e984c9d438e 5399b88d-fac3-419a-a9a6-3b42b9ff8b56	Off-site Off-site	9/1/2011 2/24/2010	Mar-16 Jun-16	483.05	0.03	483.02 491.06	59.94 14.90	59.97 14.54		69.0	2.00	54.82 4.60	428.20 486.46	59.47 14.40	423.55 476.66	4.65 9.80	0.02	PVC PVC	PVC PVC	50.0 4.6	60.0 16.0	8.0 8.0	N Y	46.8 -3.4	3931966.50 1423042.84 3930005.65 1429184.98
MW-170B	MW-170B-75	c6116c19-04a8-4ab7-9457-1447a1f6aad3	Off-site	3/6/2010	Jul-16	490.71	-0.34	491.05	74.79	74.45		_	4.00	69.70	421.35	74.06	416.99	4.36	0.01	PVC	PVC	65.0	75.6	8.0	Ň	61.7	3930000.43 1429187.53
MW-170C	MW-170C-130	ab1f0c2b-3785-4d7f-aad5-950c9e2b18ee	Off-site	3/4/2010	Jul-16	490.48	-0.57	491.05	130.90		3 360.15	135.0	2.00	125.90		130.20	360.85	4.30	0.01	PVC	PVC	120.0	135.0	8.0	N		3929995.96 1429188.84
MW-170D MW-172A	MW-170D-50 MW-172A-15	b977bbde-8c66-4fcf-8938-2181173fb50b cc74169f-0255-4386-8627-180ad05b89da	Off-site Off-site	10/13/2010 3/24/2010		490.44 475.61	-0.61 -0.64	491.05 476.25	50.62 15.47	50.01 14.83			2.00 2.00	45.52 5.33	445.53 470.92	50.14 15.04	440.91 461.21	4.62 9.71	0.02	PVC PVC	PVC PVC	35.0 3.5	51.5 16.0	8.0 8.0	N Y	37.5 -2.7	3929991.96 1429189.27 3942632.06 1427431.58
MW-172B	MW-172B-150	b4e68ce9-85df-48eb-83d6-fe7ef818032a	Off-site	3/27/2010		475.64	-0.61	476.25		149.7		150.5	2.00	145.35	330.90	149.78	326.47	4.43	0.01	PVC	PVC	135.0	151.5	8.0	Ň		3942631.33 1427425.63
MW-181A	MW-181A-15	7053e244-ccfe-4057-a506-7828df70218b		10/6/2010		475.92	-0.54	476.46	15.16	14.62		_	2.00	5.05	471.41	14.75	461.71	9.70	0.02	PVC	PVC	4.0	16.5	10.0	Y	-5.0	3944095.46 1425755.04
MW-181B MW-181C	MW-181B-50 MW-181C-150	1d082ba1-2360-4893-9032-492b917dbab9 31cedc29-9d51-462a-aff1-95986d865a33	Off-site Off-site	10/6/2010		475.85 475.98	-0.61	476.46 476.46	50.78 150.45	50.17			2.00 2.00	45.77 145.43	430.69 331.03	50.30 149.86	426.16 326.60	4.53 4.43	0.02	PVC PVC	PVC PVC	35.0 140.0	51.5 150.5	10.0 10.3	N N		3944099.951425752.103944089.211425759.17
MW-182A	MW-1810-150	a5ce3813-d458-44e3-b355-abd4d23fea7f	Off-site	10/8/2010		475.30	-0.45	475.75	15.83	15.38		_	2.00	5.70	470.05	15.42	460.33	9.72	0.01	PVC	PVC	4.0	16.5	7.0	Y		3941132.12 1423038.13
MW-182B	MW-182B-45	a342983d-d059-4008-bd45-34cda85bb499	Off-site	8/22/2011	Jul-16	475.24	-0.51	475.75	44.67	44.16	6 431.08	46.0	2.00	39.57	436.18	44.27	431.48	4.70	0.02	PVC	PVC	30.0	50.5	7.0	Ν	32.6	3941136.42 1423037.29
MW-183A MW-183B	MW-183A-15	e5d68eb2-b393-4f15-af05-75786ca4a927	Off-site	10/8/2010		478.15	-0.53	478.68	15.88	15.35			2.00	5.77	472.91	15.47	463.21	9.70	0.02	PVC	PVC	4.0	16.5	7.0	Y		3937529.71 1420159.70 3037532.14 1420157.14
MW-183B MW-184	MW-183B-60 MW-184-45	d252e661-b594-4ae6-90ab-f8e5fa82360f 0cbc893c-b05a-45d2-a842-665464c4c404	Off-site Off-site	8/29/2011 10/1/2010		478.42 486.52	-0.26	478.68 486.79	59.74 45.23	59.48 44.96		59.0 45.0	2.00 2.00	54.64 40.12	424.04 446.67	59.34 44.75	419.34 442.04	4.70 4.63	0.02	PVC PVC	PVC PVC	45.0 30.0	60.0 45.5	7.0 7.0	N N	47.6 33.1	3937532.14 1420157.14 3932560.61 1428756.36
MW-185A	MW-185A-15	9e97ae62-a8b1-43d6-8a00-4427bad73915	Off-site	10/12/2010	Jul-16	478.07	-0.44	478.51	15.57	15.13	462.94		2.00	5.48	473.03	15.10	463.41	9.62	0.02	PVC	PVC	4.0	16.5	7.0	Y	-1.5	3940802.50 1428251.19
MW-185B	MW-185B-50	43642a11-8039-43f5-880e-5f48fd5e6b95		10/12/2010		478.09	-0.42	478.51	51.41	50.99		-	2.00	46.30	432.21	50.93	427.58	4.63	0.02	PVC	PVC	35.0	51.5	7.0	N		3940797.61 1428251.05
MW-185C MW-187	MW-185C-120 MW-187-15	2e90d00a-1f1f-47f0-abfd-62758da35a4e 31742dc2-af90-4c87-8b2f-a8dd8fabfc2f	Off-site Off-site	10/2/2011 10/21/2010		478.11 485.38	-0.40 2.98	478.51 482.40	120.99 17.38	120.5 20.36		121.0	2.00 2.00	115.96 7.28	362.55 475.12	120.40 16.91	358.11 465.49	4.44 9.63	0.01	PVC PVC	PVC PVC	110.0 4.0	121.0 16.5	9.5 10.5	N Y	106.5 -3.2	3940806.68 1428250.19 3934464.24 1420335.62
MW-188A	MW-188A-15	5ddda5b9-4293-4bbe-8d06-5a526ab397d3		4/28/2012	· · ·	461.52	-0.11	461.63	15.33	15.22		_	2.00	5.20	456.43	14.98	446.65	9.78	0.02	PVC	PVC	3.0	15.3	10.0	Y		3954404.24 1420355.02 3951510.80 1410365.41
MW-188B	MW-188B-40	1508d9ed-465d-468e-a259-4359a973ccd2	Off-site	11/24/2010	Jul-15	461.44	-0.19	461.63	40.90	40.71	420.73	45.5	2.00	35.40	426.23	40.40	421.23	5.00	0.02	PVC	PVC	35.5	42.5	4.5	N	30.9	3951521.76 1410365.52
MW-189A	MW-189A-15 MW-189B-60	0075df3e-6a72-41ef-ba90-0232d80fd953		8/19/2011		470.42	-0.68	471.10	16.54	15.86			2.00	6.49	464.61	16.16	454.94	9.67	0.01	PVC	PVC	4.0	17.5	7.0	Y	-0.5 48.4	3945399.36 1424696.44 3045306.24 1424602.10
MW-189B Acronyms and	Abbreviations on Pag	46c3ba4b-71ff-473c-88aa-c18365631d92 je 3.	UII-SILE	8/19/2011	JUI- 10	470.75	-0.35	471.10	00.32	00.17	410.58		2.00	55.42	415.68	60.07	411.03	4.65	0.01	PVC	PVC	45.0	61.5	7.0	Ν	40.4	3945396.24 1424692.19
MW-190A	MW-190A-15	74ad20c5-718a-4973-b527-be30857b750e	Off-site	8/23/2011	Nov-16	481.31	-0.90	482.21	15.59	14.69	466.62	_	2.00	5.49	476.72	15.20	467.01	9.71	0.01	PVC	PVC	4.0	16.0	7.0	Y	-1.5	3938370.17 1429592.43

Table 1 Well Construction Details

Offsite Sampling and Analysis Plan North Pole Refinery Site North Pole, Alaska

				Boring		Riser	Riser	Ground	Well	Well	Well	Depth to	Well			v	lell Screen					Filter Pack	Water	Table	Alaska State Plane
Well	New Well Name	LocationNdx	Proximity	Completio	Survey Date	Elevation*	Stickup	Surface Elevation	Depth	Length	Bottom Elevation	Top of Permafrost	Diameter	Depth to Top	Top Elevation	Depth to Bottom	Bottom Elevation	Length	Screen Slot	Material	Riser Material	Depth to Top Bottom	Denth II	Above	NAD83, ZONE 3
				n Date		(feet MSL)		(feet MSL)	(feet BGS)		(feet MSL)			(feet BGS) (feet MSL) (feet BGS)	(feet MSL)		(inches)			(feet BGS) (feet BGS)	(ft BGS)	en Top of	Northing Easting
MW-190B MW-190BR-60	MW-190B-60 MW-190BR-60	51bfae39-4c9e-42db-a9e2-a55efbf01d9e 62d96ce9-8ff1-41c8-9ff3-4fc9d8810f3f	Off-site Off-site	8/23/2011 5/21/2013	May-14 Jul-16	481.72 481.97	-0.41 -0.31	482.13 482.28	60.71 59.87	60.30 59.56			2.00	55.62 54.85	426.51 427.43	60.28 59.41	421.85 422.87	4.66 4.56	0.01	PVC PVC	PVC PVC	45.0 61.5 Natural pack	7.0 N 7.0 N		3938370.16 1429596.16 3938370.43 1429589.58
MW-190-150	MW-190BR-00	3f45bf84-d557-4243-8421-643b35e9b0e5	Off-site	4/19/2013		482.01	-0.31	482.28	150.38	150.11	331.90	_	2.00	145.35	336.93	149.91	332.37	4.56	0.01	PVC	PVC	Natural pack	7.0 M		3938370.21 1429582.69
MW-191A	MW-191A-15	6dac08f9-6dad-4a62-a22a-a1f38877305b	Off-site	8/24/2011	Jul-16	475.82	-0.71	476.53	15.28	14.57	461.25	—	2.00	5.18	471.35	14.90	461.63	9.72	0.01	PVC	PVC	4.0 16.0	8.0 Y	-2.8	3937781.57 1417713.87
MW-191B MW-193A	MW-191B-60 MW-193A-15	804f62a2-513e-437e-b657-16bb498c3370 34ee4657-5706-4dde-9749-f1c11455c8ca	Off-site Off-site	8/24/2011	Jul-16	475.64	-0.89 -0.25	476.53 488.61	60.29	59.40	416.24 472.93		2.00	55.22	421.31 483.61	59.84	416.69 473.11	4.62	0.01	PVC PVC	PVC PVC	45.0 61.5	8.0 N		3937777.89 1417714.18 3930483.21 1424590.71
MW-193A MW-193B	MW-193B-60	68779b3c-2b08-4919-8b9b-409460f468c0	Off-site	8/30/2011 8/30/2011	Jul-16 Jul-16	488.36 488.04	-0.25	488.61	15.68 59.88	15.43 59.31	472.93	61.0	2.00	5.00 54.72	433.89	15.50 59.41	473.11	10.50 4.69	0.02	PVC	PVC	5.0 15.5 45.0 60.0	6.8 Y 6.5 N		3930483.21 1424593.75
MW-194A	MW-194A-15	4d0f5a2f-475d-4263-8797-b5c21c213819	Off-site	8/31/2011	Jun-16	475.33	-0.68	476.01	15.76	15.08	460.25	_	2.00	6.00	470.01	15.36	460.65	9.36	0.02	PVC	PVC	4.0 15.0	6.5 Y	-0.5	3939634.55 1418923.90
MW-194B	MW-194B-40	f4955aea-57fd-4d16-8471-19392b1d7051	Off-site	8/31/2011	Jul-16	475.98	-0.33	476.31	39.45	39.12	436.86	39.0	2.00	34.38	441.93	38.96	437.35	4.58	0.02	PVC	PVC	24.0 40.0	6.5 N		3939630.80 1418924.87
MW-308-15 MW-308-30	MW-308-15 MW-308-30	0c011cf5-791c-44a6-afcd-e9964827443f c891037a-7eb6-4720-95d2-6eeea2713613	Off-site Off-site	4/13/2012		476.12	3.09 3.09	473.03 471.35	14.95 30.42	18.04 33.51	458.08 440.93	41.0	2.00	4.91 25.21	468.12	14.36 30.02	458.67 441.33	9.45 4.81	0.01	PVC PVC	PVC PVC	3.5 15.0 Natural pack	9.0 Y 10.0 N	1.1	3943105.50 1420578.30 3943026.01 1420453.62
MW-311-15	MW-311-15	96cf1943-8b19-4ac6-8c3b-bfe333ba1728	Off-site	4/26/2012	1	466.87	-0.48	467.35	15.43	14.95	451.92	_	2.00	5.24	462.11	15.04	452.31	9.80	0.01	PVC	PVC	3.2 15.4	4.5 N		3946536.13 1415602.20
MW-311-46	MW-311-46	c1f358c0-e749-46e4-8100-c67cf94e2e2b	Off-site	4/28/2012		466.85	-0.50	467.35	45.74	45.24	421.61	48.0	2.00	40.60	426.75	45.26	422.09	4.66	0.01	PVC	PVC	Natural pack	4.5 N		3946534.99 1415612.86
MW-312-15 MW-312-50	MW-312-15 MW-312-50	a9168da7-1e76-475c-971f-62cc864f15bf a2203a2c-75d9-4d10-8f11-e3f118423b19	Off-site Off-site	4/26/2012 5/2/2012	Jul-16 Jul-16	464.17 464.19	-0.26 -0.24	464.43	15.52 50.36	15.26 50.12	448.91 414.07	50.0	2.00	5.34 44.90	459.09 419.53	15.13 49.56	449.30 414.87	9.79 4.66	0.01	PVC PVC	PVC PVC	2.7 15.5 Natural pack	5.7 Y	0.1	3951394.25 1415642.38 3951399.72 1415642.19
MW-312-30	MW-313-15	697987d2-cfb8-43e5-9e2a-a322b687717d	Off-site	4/30/2012		465.80	-0.38	466.18	15.18	14.80	451.00		2.00	4.99	461.19	14.79	451.39	9.80	0.01	PVC	PVC	3.0 15.2	9.5 Y		3951374.78 1423235.06
MW-313-150	MW-313-150	8d01c1b4-fa8c-4149-a991-0db598130175	Off-site	5/8/2012	Jul-15	465.88	-0.30	466.18	149.94	149.64		_	2.00	144.69	321.49	149.34	316.84	4.65	0.01	PVC	PVC	Natural pack	9.5 N		3951370.40 1423237.65
MW-314-15	MW-314-15	5b440c33-7fb7-4c58-b5de-7e6f8ec1d251	Off-site	4/30/2012		476.07	-0.36	476.43 476.43	15.56	15.20	460.87	—	2.00	5.38	471.05	15.16	461.27	9.78	0.01	PVC	PVC	3.0 15.6 Natural pack	7.0 Y		3943869.90 1427115.02
MW-314-150 MW-315-15	MW-314-150 MW-315-15	50cf8875-9722-4c46-b7dc-d2549cc4220f 9dc6b7b5-77ef-485e-ba88-dbe8d31cf0e8	Off-site Off-site	5/11/2012	Sep-16 Jul-15	476.05 458.17	-0.38 -0.74	478.43	150.51 15.83	150.13	325.92 443.08	_	2.00	145.31 5.70	331.12 453.21	150.13 15.49	326.30 443.42	4.82 9.79	0.01	PVC PVC	PVC PVC	3.0 15.8	7.0 N 7.0 Y		3943874.84 1427119.27 3949804.15 1403467.06
MW-315-150	MW-315-150	16df1370-4b76-4900-96d6-9582c4714ce4	Off-site	5/2/2012	Jul-15	458.66	-0.25	458.91	150.63	150.38			2.00	145.58	313.33	150.23	308.68	4.65	0.01	PVC	PVC	Natural pack	7.0 N		3949809.75 1403467.06
MW-316-15	MW-316-15	c6b9be25-8018-464e-ac4c-9382f78d8931	Off-site	5/1/2012	Jul-16	486.27	-0.41	486.68	15.67	15.26	471.01	_	2.00	5.46	481.22	15.26	471.42	9.80	0.01	PVC	PVC	3.0 15.0	7.0 Y		3932950.20 1428372.65
MW-316-56 MW-317-15	MW-316-56 MW-317-15	581bbb7e-7429-47cc-aeb0-46400c2adabd 21139c52-38cd-48ae-9907-9fb388e87616	Off-site Off-site	5/16/2012 5/3/2012	Jul-16 Jul-16	486.35 488.87	-0.33 -0.45	486.68 489.32	56.00 15.66	55.67 15.21	430.68 473.66	57.0	2.00	50.95 5.46	435.73 483.86	55.59 15.25	431.09 474.07	4.64 9.79	0.01	PVC PVC	PVC PVC	Natural pack	7.0 N 9.0 Y		3932950.03 1428377.41 3930184.86 1428701.63
MW-317-71	MW-317-71	18d4b2f7-1e78-43ba-8fb2-ce19ca08d7b3	Off-site	5/21/2012		488.75	-0.75	489.50	71.23	70.48	418.27	_	2.00	66.10	423.40	70.73	418.77	4.63	0.01	PVC	PVC	Natural pack	9.0 N		3930185.90 1428666.62
MW-318-20	MW-318-20	3d83d8c0-cd5e-43d7-a486-b9aa6be4456b	Off-site	5/3/2012	Jun-16	492.87	2.61	490.26	20.48	23.09	469.78	—	2.00	10.29	479.97	20.08	470.18	9.79	0.01	PVC	PVC	8.0 20.5	10.0 Y	0.3	3928866.23 1424726.43
MW-318-135	MW-318-135	79723bfb-2fe6-4e18-8c9b-fd6d3fc7f20e	Off-site	5/10/2012		492.92	3.31	489.61	135.29	138.60		_	2.00	130.15	359.46	134.80	354.81	4.65	0.01	PVC	PVC	Natural pack	7.0 N		3928883.99 1424703.15
MW-319-15 MW-319-45	MW-319-15 MW-319-45	ecabf49a-cf31-49cf-8176-8aff5d9e8d5b efab58b1-7d6b-4d41-9c7d-5c30ed547c06	Off-site Off-site	5/4/2012 5/7/2012	Sep-16 Sep-16	456.12 455.94	-0.40 -0.58	456.52 456.52	15.28 45.52	14.88 44.94	441.24 411.00	45.5	2.00	5.08 40.44	451.44 416.08	14.89 45.10	441.63	9.81 4.66	0.01	PVC PVC	PVC PVC	3.0 15.3 Natural pack	7.0 Y 7.0 N		3953109.18 1404197.93 3953109.18 1404192.73
MW-320-130	MW-320-130	30e340e6-c23d-4a92-a98f-f7c6386f9e45	Off-site	5/9/2012	Jul-16	450.87	-0.49	451.36	131.38	130.89		_	2.00	126.32	325.04	130.97	320.39	4.65	0.01	PVC	PVC	Natural pack	10.0 N		3963539.90 1402678.14
MW-320-20	MW-320-20	237bb483-53a9-42fd-9e36-cd053f8e7d3c	Off-site	5/4/2012	Jul-16	450.79	-0.57	451.36	20.15	19.58	431.21	_	2.00	9.96	441.40	19.76	431.60	9.80	0.01	PVC	PVC	7.9 20.2	10.2 Y	-0.2	3963542.54 1402682.33
MW-322-15 MW-322-150	MW-322-15 MW-322-150	2ace5eba-137c-47db-9ee9-8148e617355d 204f3aa1-271a-4d9c-a645-8c362d712311	Off-site Off-site	5/8/2012 10/9/2012	Jun-16 Jun-16	471.90 471.68	2.55 2.28	469.35 469.40	15.73 151.07	18.28 153.35	453.62 318.33		2.00	5.55 145.94	463.80 323.46	15.34 150.59	454.01 318.81	9.79 4.65	0.01	PVC PVC	PVC PVC	3.0 15.7 Natural pack	7.0 Y 7.0 N	-1.5	3940670.73 1410082.02 3940646.94 1410074.03
MW-323-15	MW-323-15	1461d9c6-5f85-47fa-88d8-87ee5ad6ec53	Off-site	5/7/2012	Jul-16	485.54	3.63	481.91	15.55	19.18	466.36	_	2.00	5.42	476.49	150.59	466.70	9.79	0.01	PVC	PVC	3.0 15.6	7.0 N	-1.6	3931840.58 1422094.72
MW-323-50	MW-323-50	4aeb9f82-7881-4430-a53e-5c04413639da	Off-site	10/8/2012	Jul-16	484.68	2.77	481.91	49.93	52.70	431.98	55.0	2.00	44.90	437.01	49.46	432.45	4.56	0.01	PVC	PVC	Natural pack	7.0 N	37.9	3931846.38 1422088.29
MW-324-15	MW-324-15	b221462d-f08b-4cbd-b35b-4e9938978f3d	Off-site	5/8/2012	Jul-16	463.68	0.19	463.49	15.35	15.54	448.14	_	2.00	5.17	458.32	14.96	448.53	9.79	0.01	PVC	PVC	3.0 15.4	7.0 Y		3945444.19 1404965.19
MW-324-151 MW-325-150	MW-324-151 MW-325-150	2b6d46e7-1c2a-4af7-acb2-5b338830c8cd 5ea1c21f-747c-4846-83c3-a7c5841e1a63	Off-site Off-site	5/23/2012 5/14/2012		462.84 486.83	-0.65 -0.42	463.49 487.25	150.92 150.54	150.27			2.00	145.78 145.48	317.71 341.77	150.44	313.05 337.12	4.66 4.65	0.01	PVC PVC	PVC PVC	Natural pack	7.0 N 12.0 N		3945445.95 1404958.62 3937085.15 1430633.64
MW-325-18	MW-325-18	5250a963-07f5-43ea-b2c3-e7c8a2f5c807	Off-site	5/18/2012		486.43	-0.82	487.25	18.68	17.86	468.57	_	2.00	8.53	478.72	18.33	468.92	9.80	0.01	PVC	PVC	6.5 18.7	12.0 Y	-3.5	3937079.28 1430639.29
MW-326-150	MW-326-150	3af2a25d-733d-4ccc-b74a-96d10b24edbe	Off-site	5/15/2012		500.51	2.88	497.63	150.51	153.39		—	2.00	145.45	352.18	150.10	347.53	4.65	0.01	PVC	PVC	Natural pack	7.0 N		3921145.09 1430276.63
MW-326-20 MW-327-15	MW-326-20 MW-327-15	3c04ce8d-44d1-44ca-be6a-f71fc1292191 d4cfd7e9-b8e6-4d1d-8fd4-4758794db78b	Off-site Off-site	6/8/2012 5/21/2012	Nov-16 Jul-15	500.62 467.83	3.08 -0.25	497.54 468.08	20.75 15.40	23.83 15.15	476.79 452.68		2.00	10.61 5.21	486.93 462.87	20.40	477.14 453.07	9.79 9.80	0.01	PVC PVC	PVC PVC	7.0 20.8 2.8 15.4	7.0 N 7.0 Y		3921150.73 1430277.63 3951301.83 1420336.90
MW-327-150	MW-327-150	e5d4bed9-ac81-492a-b79d-e0b4edf0f053	Off-site	5/19/2012	1	467.59	-0.49	468.08	150.92	150.43		_	2.00	145.79	322.29	150.44	317.64	4.65	0.01	PVC	PVC	Natural pack	7.0 N	1.0	3951297.90 1420342.92
MW-328-15	MW-328-15	e7c54313-53d9-4c57-8445-572f06b029f6	Off-site	5/21/2012	Nov-16	472.26	-0.93	473.19	15.77	14.84	457.42	_	2.00	5.83	467.36	15.33	457.86	9.50	0.01	PVC	PVC	2.8 15.8	8.5 Y	-2.7	3945516.60 1422877.24
MW-328-151	MW-328-151	97b7b275-7988-4a4c-8a96-3d5e35bae867	Off-site	5/24/2012	Nov-16	472.57	-0.62	473.19	150.66	150.04		—	2.00	145.58	327.61	150.25	322.94	4.67	0.01	PVC	PVC	Natural pack	8.5 N		3945525.83 1422876.28
MW-329-15 MW-329-66	MW-329-15 MW-329-66	6f49d33c-39e0-47a6-b651-31977836225d 38838001-d575-47d0-ab96-ae05e1346198	Off-site Off-site	4/10/2001 5/22/2012	Jul-16 Jul-16	482.95 479.36	3.36 -0.23	479.59 479.59	14.82 65.67	18.18 65.44	464.77 413.92	67.0	2.00 2.00	5.40 60.53	474.19 419.06	14.34 65.19	465.25 414.40	8.94 4.66	0.01	PVC PVC	PVC PVC	3.5 14.8 Natural pack	7.0 Y 7.0 N		3937284.38 1421278.22 3937283.58 1421283.36
MW-332-15	MW-332-15	fe6b30ff-bb56-403c-9eaf-f1f53ee9fcba	Off-site	6/8/2012		481.93	0.43	481.50	15.67	16.10		_	2.00	5.53	475.97	15.32	466.18	9.79	0.01	PVC	PVC	3.0 15.7	7.0 y	-1.5	3937270.16 1428736.01
MW-332-41	MW-332-41	36d9465a-c222-46e2-9231-7fe2fb0ed4cb	Off-site	4/17/2013		481.85	0.35	481.50	41.44	41.79			2.00	36.34	445.16	40.89	440.61	4.55	0.01	PVC	PVC	Natural pack	7.0 N		3937270.67 1428725.15
MW-332-75 MW-332-110	MW-332-75 MW-332-110	358ffbbf-b720-494e-96c6-9aa2eaff4b70 5ffd59d5-d653-414f-87bc-c50f6cab79e2		4/22/2013 4/20/2013		481.34 481.26	-0.16 -0.24	481.50 481.50	75.56 110.53	75.40	405.94 370.97		2.00	70.54 105.51	410.96 375.99	75.09	406.41 371.44	4.55 4.55	0.01 0.01	PVC PVC	PVC PVC	Natural pack Natural pack	7.0 N 7.0 N		3937271.24 1428711.60 3937271.08 1428718.59
MW-332-110	MW-332-110 MW-332-150	f0e33dc9-2d49-4afa-ab1c-8c0d44e5d456	Off-site	6/7/2012		481.57	0.07	481.50			330.63	_	2.00	145.74	-	150.39	331.11	4.65	0.01	PVC	PVC	3.1 15.5	7.0 N		3937270.37 1428731.02
MW-333-150	MW-333-150	5cfe6e93-b294-4b6c-bc83-66a63690f605	Off-site	6/11/2012	Mar-16	497.17	2.15	495.02	150.47	152.62	344.55	_	2.00	145.32	349.70	149.98	345.04	4.66	0.01	PVC	PVC	Natural pack	7.2 N	138.1	3922968.19 1430186.58
MW-333-16	MW-333-16	c19cbd08-2ec9-4dcc-a569-c05bf651c1e9		6/12/2012		497.66	2.64	495.02	16.22	18.86			2.00	6.09	488.93	15.83	479.19	9.74	0.01	PVC	PVC	Natural pack	5.5 N		3922961.12 1430188.05
MW-335-41 MW-338-15	MW-335-41 MW-338-15	70687257-54ee-4e7e-86dd-07be2d04b3ee 83f5e2d6-7f53-49d6-a78e-419a0077f73c	Off-site Off-site	8/23/2012 4/23/2013		469.62 483.09	-0.57 -0.44	470.19 483.53	41.11 15.43	40.54 14.99		43.0	2.00	36.01 5.89	434.18 477.64	40.56	429.63 468.05	4.55 9.59	0.01 0.01	PVC PVC	PVC PVC	4.0 17.0 3.1 15.4	11.0 Y 7.0 Y		3946145.20 1419928.02 3933055.54 1424634.92
MW-338-50	MW-338-50	8bc2e644-d7e3-43d7-98b1-8d1abb590ff6		4/27/2013		483.28	-0.25	483.53	49.95	49.70		50.5	2.00	44.84	438.69	49.40	434.13	4.56	0.01	PVC	PVC	Natural pack	7.0 N		3933056.53 1424628.77
MW-339-15	MW-339-15	af7821a6-71d2-4c4e-b2d6-0c7c314eb9e0	Off-site	5/7/2013		479.53	-0.44	479.97	15.45	15.01	464.52	_	2.00	5.34	474.63	14.94	465.03	9.60	0.01	PVC	PVC	5.0 15.0	10.0 Y		3939785.23 1425645.56
MW-339-50 MW-340-18	MW-339-50 MW-340-18	f44f2462-a2ae-46e2-8aed-d187c3f6b5a0 54363162-5121-4b2a-86f0-ccff86835bfd	Off-site Off-site	5/2/2013 5/7/2013		479.38 478.82	-0.59	479.97 479.48	50.97 17.95	50.38		52.0	2.00	45.95	434.02 471.62	50.50 17.46	429.47 462.02	4.55	0.01	PVC PVC	PVC PVC	Natural pack 5.0 18.0	10.0 N 12.0 N		3939778.24 1425644.76 3938036.46 1430903.62
MW-340-65	MW-340-18	b48f32fa-8839-4ad1-93f0-e4de6c9662fa	Off-site	5/8/2013	Jul-16 Jul-16	478.82	-0.66 -0.27	479.48	65.64	17.29 65.37		_	2.00	7.86 60.53	4/1.62	65.09	462.02	9.60 4.56	0.01 0.01	PVC	PVC	Natural pack	12.0 M		3938051.84 1430905.94
MW-340-150	MW-340-150	30a8ba9f-5ea3-484a-9df7-d784bad04b0a	Off-site	5/3/2013	Jul-16	478.93	-0.55	479.48	150.73			_	2.00	145.70	333.78	150.26	329.22	4.56	0.01	PVC	PVC	Natural pack	12.0 N		3938045.02 1430905.51
MW-341-15	MW-341-15	4da0dbb5-d51e-4f7c-bf0f-e72586f242b6				480.20	-0.31	480.51	15.66	15.35			2.00	5.61	474.90	15.18	465.33	9.57	0.01	PVC	PVC	4.0 15.5	10.0 Y		3936403.00 1421617.07
MW-341-40 MW-342-15	MW-341-40 MW-342-15	93fb699e-20b0-4a73-8f09-fcc368b8ec26 7c6eb056-0c1d-4f19-a534-1710715b4941		5/15/2013 5/31/2013		479.98 482.35	-0.53 -0.50	480.51 482.85	40.74 15.52	40.21		42.5	2.00	35.61 5.40	444.90 477.45	40.28	440.23 467.85	4.67 9.60	0.01	PVC PVC	PVC PVC	Antural pack	10.0 N 7.0 Y		3936404.33 1421613.16 3934213.82 1422873.08
MW-342-65	MW-342-65	af447328-fc07-4a6d-aa84-7c7cc8c84e4b		5/31/2013			-0.35	482.85	65.20	64.85	1	65.5	2.00	60.17	477.45	64.74	407.05	4.57	0.01	PVC	PVC	Natural pack	7.0 N		3934213.82 1422873.08
Acronyms and A	Abbreviations on Pag	je 3.																							
MW-343-15	MW-343-15	0dce5f0b-2713-4465-84b5-4bd416794b3e		6/28/2013		484.42	2.50	481.92	14.59	17.09			2.00	4.55	477.37	14.15	467.77	9.60	0.01	PVC	PVC	3.5 15.0	4.5 Y		3936542.14 1428026.58
MW-343-50	MW-343-50	ec0d82f6-c835-4520-ac07-9796b7cf7acf	UIT-SITE	6/19/2013	Jul-16	484.25	2.33	481.92	50.79	53.12	431.13	52.0	2.00	45.74	436.18	50.32	431.60	4.58	0.01	PVC	PVC	Natural pack	4.5 N	41.24	3936542.50 1428031.46

Table 1 Well Construction Details

Offsite Sampling and Analysis Plan North Pole Refinery Site North Pole, Alaska

				Devine		Diser	Disco	Ground	Wall	Well	Well	Depth to	Well			W	lell Screen					Filte	r Pack	W	ater Tal	ole	Alaska Sta	ate Plane
Well	New Well Name	LocationNdx	Proximity	Boring Completio n Date	Survey Date	Riser Elevation*	Riser Stickup	Surface Elevation	Well Depth	Well Length	Bottom Elevation	Top of Permafrost	Well Diameter	Depth to Top	Top Elevation	Depth to Bottom	Bottom Elevation	Length	Screen Slot	Material	Riser Material	Depth to Top	Depth to Bottom	Denth	In Screen	Feet Above	NAD83, 2	ZONE 3
				II Date		(feet MSL)	(feet)	(feet MSL)	(feet BGS)	(feet)	(feet MSL)	(feet BGS)	(inches)	(feet BGS)	(feet MSL)	(feet BGS)	(feet MSL)	(feet)	(inches)			(feet BGS)	(feet BGS)	(ft BGS)	Screen	Top of	Northing	Easting
MW-346-15	MW-346-15	d89d51c2-534b-4e62-8f48-35cc71c61d71	Off-site	7/31/2013	Jul-16	473.04	0.06	472.98	15.48	15.54	457.50	—	2.00	5.37	467.61	15.00	457.98	9.63	0.01	PVC	PVC	3.0	15.5	5.7	Y	N/A	3943140.80	1425712.83
MW-346-150	MW-346-150	50e5a829-87ac-4b11-8507-45c7bdc6d196	Off-site	7/30/2013	Jul-16	472.60	-0.38	472.98	149.28	148.90	323.70	_	2.00	144.17	328.81	148.73	324.25	4.56	0.01	PVC	PVC	Natur	al pack	4.5	N	139.67	3943135.64	1425713.20
MW-346-65	MW-346-65	a17e37cb-653f-4bd5-bd83-57f248c44cd0	Off-site	8/1/2013	Jul-16	472.61	-0.37	472.98	64.71	64.34	408.27	_	2.00	59.60	413.38	64.16	408.82	4.56	0.01	PVC	PVC	Natur	al pack	5.8	Ν	53.80	3943130.73	1425713.68
MW-347-150	MW-347-150	bd799307-5940-4189-815a-a35add43475d	Off-site	8/5/2013	Jul-16	482.50	-0.22	482.72	151.52	151.30	331.20	_	2.00	146.48	336.24	151.05	331.67	4.57	0.01	PVC	PVC	Natur	al pack	9.5	N	136.98	3939728.75	1428360.93
MW-347-20	MW-347-20	fa56f426-4d31-4c78-a3f5-2387ee43331b	Off-site	9/3/2013	Jul-16	482.85	0.13	482.72	20.40	20.53	462.32	_	2.00	10.20	472.52	19.80	462.92	9.60	0.01	PVC	PVC	7.6	20.4	12.0	Y	N/A	3939722.42	1428356.90
MW-347-65	MW-347-65	3961ea26-e68e-4d5d-bace-1a2f678c9bea	Off-site	9/3/2013	Jul-16	481.71	-1.01	482.72	65.20	64.19	417.52	_	2.00	60.20	422.52	64.80	417.92	4.60	0.01	PVC	PVC	Natur	al pack	12.0	N	48.20	3939728.76	1428364.88
MW-349-15	MW-349-15	3f0957b8-c363-404a-b767-9be2b56c3bc0	Off-site	8/12/2013	Dec-16	484.43	-0.65	485.08	15.04	14.39	470.04	_	2.00	4.98	480.10	14.60	470.48	9.62	0.01	PVC	PVC	3.6	15.0	6.0	Y	N/A	3933772.41	1426241.57
MW-349-45	MW-349-45	80fdcbcc-164a-4636-9f34-4e1561b8c228	Off-site	8/12/2013	Dec-16	484.65	-0.43	485.08	45.50	45.07	439.58	46.5	2.00	40.40	444.68	44.95	440.13	4.55	0.01	PVC	PVC	35.0	45.5	6.0	Ν	34.40	3933774.54	1426236.89
MW-350-15	MW-350-15	1AD40915-8EA1-40BC-9161-2D091B9DD96C	Off-site	8/18/2013	Jul-16	484.12	-0.10	484.22	16.04	15.94	468.18	_	2.00	5.86	478.36	15.48	468.74	9.62	0.01	PVC	PVC	3.0	15.0	7.0	Y	N/A	3936446.66	1426044.58
MW-350-50	MW-350-50	9b4e1604-60af-4ac5-9882-6e40d78b88e6	Off-site	8/18/2013	Jul-16	484.14	-0.08	484.22	47.06	46.98	437.16	50.0	2.00	42.12	442.10	46.67	437.55	4.55	0.01	PVC	PVC	Natur	al pack	7.0	N	35.12	3936444.80	1426049.18
MW-352-15	MW-352-15	148af05b-44a8-4644-89d5-a35d6606d7b5	Off-site	9/1/2013	Jul-16	474.66	-0.67	475.33	15.59	14.92	459.74	_	2.00	5.52	469.81	15.17	460.16	9.65	0.01	PVC	PVC	2.4	15.6	9.0	Y	N/A	3943661.73	1423829.82
MW-352-40	MW-352-40	2353e899-fe52-4013-9ec7-b6eb3afc2358	Off-site	9/1/2013	Jul-16	475.01	-0.32	475.33	38.18	37.86	437.15	42.5	2.00	33.28	442.05	37.87	437.46	4.59	0.01	PVC	PVC	Natur	al pack	9.0	N	24.28	3943661.39	1423825.02
MW-353-100	MW-353-100	9d20daa2-b4b5-4aea-81e5-a53852c10dde	Off-site	9/5/2013	Jul-16	480.61	-0.14	480.75	100.61	100.47	380.14	110.0	2.00	95.50	385.25	100.05	380.70	4.55	0.01	PVC	PVC	Natur	al pack	8.0	N	87.50	3936222.41	1423377.69
MW-353-15	MW-353-15	6d15b028-469b-41a2-8e5e-b9b57bf96620	Off-site	9/6/2013	Jul-16	480.26	-0.49	480.75	15.50	15.01	465.25	_	2.00	5.50	475.25	14.50	466.25	9.00	0.01	PVC	PVC	3.0	15.5	8.0	Y	N/A	3936216.06	1423370.00
MW-353-65	MW-353-65	EF952F85-0DF2-4B43-A581-AC53F0F5348D	Off-site	9/6/2013	Jul-16	480.62	-0.13	480.75	65.50	65.37	415.25	_	2.00	60.03	420.72	64.63	416.12	4.60	0.01	PVC	PVC	Natur	al pack	7.8	N	52.28	3936219.34	1423374.04
MW-356-20	MW-356-20	68C02486-0FC1-4914-B84F-D176D93A10F4	Off-site	10/17/2013	Jul-16	478.72	-0.48	479.20	18.39	17.91	460.81	_	2.00	8.24	470.96	18.04	461.16	9.80	0.01	PVC	PVC	5	18.39	8.5	Y	-0.26	3941381.39	1429217.10
MW-356-65	MW-356-65	A8D8C1B1-8B3D-4FCA-AD5C-D5CCF91FA708	B Off-site	10/17/2013	Jul-16	478.79	-0.41	479.20	65.77	65.36	413.43	_	2.00	60.68	418.52	65.24	413.96	4.56	0.01	PVC	PVC	54	65.77	9.0	Ν	51.68	3941376.90	1429218.74
MW-356-90	MW-356-90	F61F3F07-9561-445E-879C-CC4D3DD52371	Off-site	10/16/2013	Jul-16	478.77	-0.43	479.20	88.73	88.30	390.47	90.0	2.00	83.72	395.48	88.24	390.96	4.52	0.01	PVC	PVC	76	88.73	9.0	N	74.72	3941371.87	1429221.14
MW-357-15	MW-357-15	FE653987-E17B-47C2-8B3B-E1C6FAA90C91	Off-site	10/21/2013	Jul-16	487.76	2.77	484.99	15.59	18.36	469.40	_	2.00	5.49	479.50	15.27	469.72	9.78	0.01	PVC	PVC	3	15.59	8.5	Y	-3.01	3935720.90	1430665.73
MW-357-150	MW-357-150	1B6015F0-D41E-4EB7-9A6F-D26FFD273E7B	Off-site	10/18/2013	Jul-16	487.99	3.00	484.99	150.46	153.46	334.53	_	2.00	145.47	339.52	149.97	335.02	4.50	0.01	PVC	PVC	139	150.46	8.5	Y	136.97	3935727.84	1430657.06
MW-357-65	MW-357-65	DE55B20E-4DCD-4FED-B39E-568D29514E3E	Off-site	10/21/2013	Jul-16	487.89	2.90	484.99	66.00	68.90	418.99	_	2.00	60.93	424.06	65.44	419.55	4.51	0.01	PVC	PVC	8.5	66	8.5	Ν	52.43	3935724.61	1430661.02
PW ID 1230	PW-1230	16C859EA-43D5-43AD-8B5B-3847E2256ECD	Off-site	10/6/1982	Dec-16	486.06	1.10	484.96	231.00	232.10	253.96	33.0	6.00	no so	reen- open	casing	484.96	n/a	n/a	steel	steel	_	_	7.0	Ν	_	3933784.60	1426231.40
General Notes															•	•												

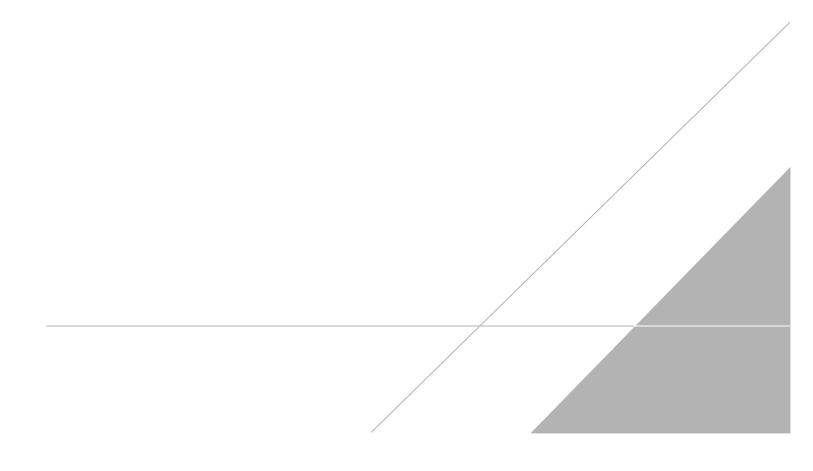
General Notes: The elevations in this table are the most recent surveyed elevations as of Q4 2016. Wells may be surveyed multiple times in the reporting period to meet data quality objectives. The elevations in this table may differ from the elevations listed in other tables submitted in Q4 2016. MSL = mean sea levels BGS = below ground surface PVC = polyvinyl chloride

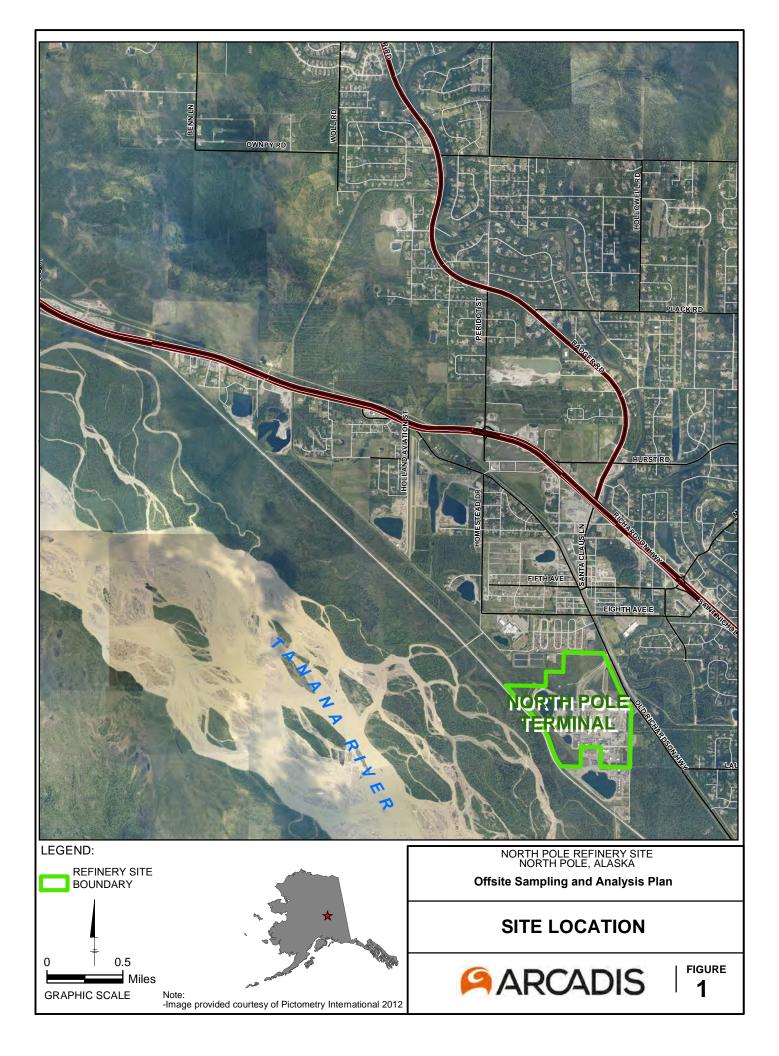
Table 2 Summary of Detection Limits, Containers, Preservation and Holding Times

Offsite Sampling and Analysis Plan North Pole Refinery Site North Pole, Alaska

Parameter	Medium	Analytical Parameters	Laboratory	Anticipated PQL/LOQ ¹	Analytical Method ²	Sample Container	Preservative	Holding Time
Semivolatile	Water	Sulfolane	SGS	10 µg/L	1625B with 8260D Isotope Dilution	2 x 1 L AG	Cool to 0 °C to 6 °C	Extraction: 7 days Analysis: 40 days
Organics	Water	Sunoidire	Pace	10 µg/L	8270D with Isotope Dilution	3 x 40 mL VOA	Cool to 0 °C to 6 °C	Extraction: 7 days Analysis: 40 days
		Temperature	Field	0.1 °C	N/A	N/A	N/A	Measured in the Field
Groundwater	Motor	рН	Field	0.1 units	N/A	N/A	N/A	Measured in the Field
Quality Parameters	Water	Conductivity	Field	1 µS	N/A	N/A	N/A	Measured in the Field
		Dissolved Oxygen	Field	0.1 mg/L	N/A	N/A	N/A	Measured in the Field

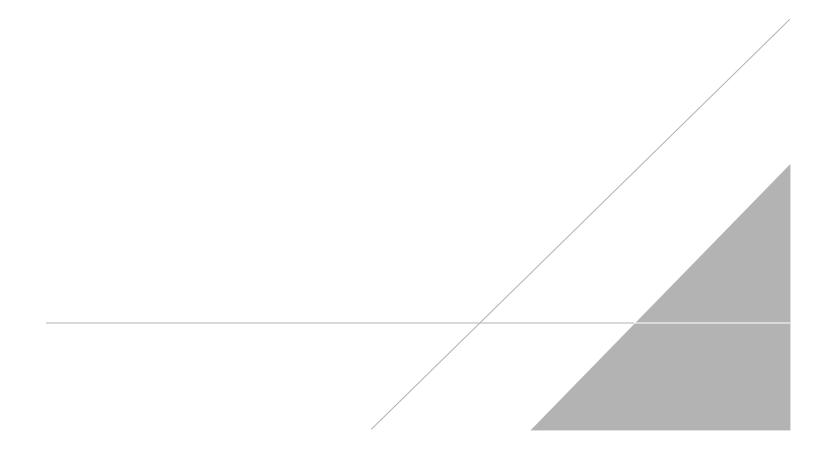
Footnotes:


1. The PQL/LOQ may differ from listed values.


2. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Pollution Control Federation, 15th Edition, 1981.

Acronyms and Abbreviations:

PQL = Practical Quantitation Limit LOQ = Limit of Quantitation $\mu g/L$ = micrograms per liter L = Liter AG = Amber glass ° C = Degrees Celsius mL = milliliter VOA = volatile organic analysis N/A = Not Applicable μ S = microsiemens mg/L = milligrams per liter


FIGURES

FORMS

FIELD ACTIVITIES DAILY LOG

	Date	
	Sheet	of
Pro	ject No.	
Project Name:		
Field activity subject:		
Description of daily activities and events:		
Visitors on site:		
Changes from plans/specifications and other special orders and important decisions:		
Weather conditions:		
Important telephone calls:		
Personnel on site:		
Signature:	Date:	

Groundwater Measurement Field Form

Job No.____ Page____ Date:____

Project Name______

Conducted by_____

Well ID	Date	Time	Depth to water (ft)	Previous Depth to Water (ft)	Notes:
Probe A description				serial numb	
Probe B description				serial numb	
Probe C description	on:			serial numb	per:

MONITORING WELL SAMPLING LOG

Owner/Client	Flint Hills Resources Alas	ska			Project No.	
Location	North Pole Refinery Of	f-Site		-	Date	
Sampling Personnel				_	Well	
Weather Conditions		Air	Temp. (°F)	-	Time started	
				Tim	ne completed	
Sample No.			Time	_		
Duplicate	An		Time	Depth	to Water (ft.)	
Equipment Blank (EB)	An	alysis:	Time	Depth te	o LNAPL (ft.)	
-				NAPL T	hickness (ft.)	
			Method of NAPL N	leasurement		
•						
Purging Method	portable / dedicated	pump		ameter and Ty		
Pumping Start			Approximate Total D			
Purge Rate (gal./min.)			Measured Total D			
Pumping End				pth to Water B		
			Depth to lo	ce (if frozen) B		
Pump Set Depth Belo	ow MP (ft.)				Water in Well	
KuriTec T	ubing (ft.)				llons per foot	
TruPoly T	ubing (ft.)				allons in Well	
Silicone T	ubing (ft.)				s in Well x3 =	
			(also enter on l	,		
			Purge Water Disposal	-		VPR Gate 1
Monument Condition						
Cooing Condition						
Wiring Condition						
(dedicated numpe)						
(dedicated pumps)						
Measuring Point (MP)	Top of Casing (TOC)	Me	Monument type: easurement method:	Stickup	[/] Flushmount re	
Top-of-casing to mon			Datalogger	Type (circle):	RT-100	GW WL-16
Monument to ground su	urface (ft.)			AT-200	LT-700	LT-500
			Datalo	gger serial #: _		
				ble length (ft) _		
<u>□</u> Frost-jacking	g? Y / N	Tem	perature Logger Pres	ent (TidBit)?	Y / N	
Lock presen	nt and operational					
Well name l	egible on outside of well	(stickup)	or inside of well (flush	mount)		
N1 /						
Notes						

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1¼	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MONITORING WELL SAMPLING LOG

Field Parameter Instrument:	Pro Plus OR Rental # Handheld s/n:
Parameter Criteria:	Circle One: Parameters stabilized OR > 3 well volumes purged
Total Gallons purged:	Gallons needed for 3WV:
Water observations:	
Notes:	

FIELD PARAMETERS [stabilization criteria]

	Temp.	Dissolved Oxygen	Conductivity	pH	ORP (mV) [±	Water Clarity
Time	(°C)	(mg/L) [± 0.10 mg/L]	(µS/cm) [± 3%]	[± 0.10]	10 mV]	(visual)
	Purging sta	art time		1		

Laboratory SGS

Analysis	Sample Containers	Preservatives	<u>Dup</u>	<u>EB</u>
Sulfolane (1625B)	2x 1-Liter amber bottle	none		
BTEX (8260B)	3x 40-mL amber VOA vials	HCI		
Geochem	Multiple (see proposal)	Multiple		
COPC	Multiple (see proposal)	Multiple		

PRIVATE WELL SAMPLING LOG

Address	Project Number	
Owner/Occupant		
Mailing Address	Date	
	Time	
Telephone	Sampling Personnel	
Sample No.	Time	-
Duplicate	Time	-
Pumping Start Time	Diameter and Type of Casing	
Pumping End Time	Total Depth of Well (ft.)	
Tubing (ft.)	Depth to Water (ft.)	1
	Feet of Water in Wel	
	Gallons per foot	
	Gallons in wei	
	Purge Water Volume (gal.)	
	Boring Log/Well Depth Details	
Laboratory	SGS	
Analysis	Sample Containers	Preservatives
Sulfolane	2 x 1-L amber bottle	none
<u> </u>		
Notes:		
NOICO.		

WELL CASING VOLUMES

Diameter of Well [ID-inches]	1¼	2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

PRIVATE WELL SAMPLING LOG

Field Parameter Instrument:	YSI Pro Plus
Circle one:	Parameters stabilized or >3 well volues purged
Sample Observations:	
Purge Location:	
Sample Location:	

FIELD PARAMETERS [stabilization criteria]

Image: section of the section of th	Time	Temp. (°C)	Dissolved Oxygen (mg/L) [± 0.1 mg/L]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: state in the state in							
Image: state in the state in							
Image: state in the state in							
Image: set of the							
Image: sector of the sector							
Image: state of the state of							
Image: sector							
Image: state of the state of							
Image: state s							
Image: Second							
Image:							

WELL DEVELOPMENT LOG

Owner-Client	Well No.		
Location	Project No		
Weather	Date		
Development Personnel			
Diameter and Type of Casing:			
Total Depth of Well $\ensuremath{\textbf{Before}}$ Development (feet below top	of casing):		
Depth to Water Before Development (feet below top of ca	asing):		
Depth to Screen Top and Bottom (from Construction Log)): T	Гор:	Bottom:
Development	t Details		
Feet of water in well	Time pumping	started	
Gallons per foot	Flow rate (gal/	min)	
Gallons in well	Flow-rate measurement method:		
Surge method			
Pump used	Time pumping	ended	
Tubing used (ft)	Gallons Pump	ed	
	Disposal:		

Depth to Water After Development (feet below top of casing):

Total Depth of Well After Development (feet below top of casing):

Observations

Time	Water Clarity (Visual)	Time	Water Clarity (Visual)

NOTES:

WELL CASING VOLUMES						
Diameter of Well [ID-inches]	1¼	2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

JAN.			
		<u>م</u>	
	C	A	4
L	Č	220	2
l	C	7	
L	1	ċ	-

-
•
5
÷
ó
<u> </u>
-
Ξī.
~

Geotechnical and Environmental Consultants CHA	CHAIN-OF-CUSTODY RECORD		Pageof
eet, Suite 100 103		Attn: Analysis Parameters/Sample Container Description (include preservative if used)	scription
2255 S.W. Canyon Road 1321 Bannock Street, Suite 200 Portland, OR 97201-2498 Denver, CO 80204 (503) 223-6147 (303) 825-3800 Sample Identity Lab No. Time Sa	Date Contract Contract		A Star Con Bemarks/Matrix
Project Information Sample Receipt	Relinquished By: 1.	Relinquished By: 2.	Relinquished By: 3.
Project Number: Total Number of Containers	Signature: Time:	Signature: Time:	Signature: Time:
Contact: COC Seals/Intact? Y/N/NA	Printed Name: Date:	Printed Name: Date:	Printed Name: Date:
1 Project? Yes 🗌 No 🔲	Company:	Company:	Company:
Sampler: (attach shipping bill, if any)			
Instructions	Received By: 1.	Received By: 2.	Received By: 3.
Requested Turnaround Time:	Signature: Time:	Signature: Time:	Signature: Time:
Special Instructions:	Printed Name: Date:	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	port Company:	Company:	Company:

Laboratory Data Review Checklist

Completed b	y:
Title:	Date:
CS Report N	ame: Report Date:
Consultant F	ïrm:
Laboratory N	Name: Laboratory Report Number:
ADEC File I	Number: ADEC RecKey Number:
b. If	Vid an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes No NA (Please explain.) Comments: Image: State of the samples were transferred to another "network" laboratory or sub-contracted to an alternate
	boratory, was the laboratory performing the analyses ADEC CS approved? □Yes No □NA (Please explain.) Comments:
	Custody (COC) OC information completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
b. C	Correct analyses requested?
	ry Sample Receipt Documentationample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$? \Box Yes \Box No \Box No \Box NA (Please explain.)Comments:
	ample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, olatile Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:

c.	Sample condition documented – broken, leaking (Met \Box Yes \Box No \Box NA (Please explain.)	thanol), zero headspace (VOC vials)? Comments:
d.	If there were any discrepancies, were they documente containers/preservation, sample temperature outside of samples, etc.?	of acceptable range, insufficient or missing
	\Box Yes \Box No \Box NA (Please explain.)	Comments:
e.	Data quality or usability affected? (Please explain.)	Comments:
<u> </u>	<u>Varrative</u>	
a.	Present and understandable? □Yes □ No □NA (Please explain.)	Comments:
b.	Discrepancies, errors or QC failures identified by the □Yes □ No □NA (Please explain.)	lab? Comments:
с.	Were all corrective actions documented? □Yes □ No □NA (Please explain.)	Comments:
d.	What is the effect on data quality/usability according	to the case narrative? Comments:
-	es Results	
a.	Correct analyses performed/reported as requested on □Yes □ No □NA (Please explain.)	COC? Comments:
b.	All applicable holding times met? □Yes □ No □NA (Please explain.)	Comments:
L		

4.

5.

c.	All soils reported on a dry weight basis? □Yes □ No □NA (Please explain.)	Comments:
d.	Are the reported PQLs less than the Cleanup Level project?	or the minimum required detection level for the Comments:
e.	Data quality or usability affected?	Comments:
	amples Method Blank i. One method blank reported per matrix, anal □Yes □ No □NA (Please explain.)	ysis and 20 samples? Comments:
	ii. All method blank results less than PQL?□Yes □ No □NA (Please explain.)	Comments:
	iii. If above PQL, what samples are affected?	Comments:
	iv. Do the affected sample(s) have data flags at \Box Yes \Box No \Box NA (Please explain.)	nd if so, are the data flags clearly defined? Comments:
	v. Data quality or usability affected? (Please e	explain.) Comments:
b.	Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 □Yes □ No □NA (Please explain.) Comments:

6.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \Box Yes \Box No \Box NA (Please explain.)

Comments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 □Yes □ No □NA (Please explain.) Comments:
- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- \Box Yes \Box No \Box NA (Please explain.) Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? \Box Yes \Box No \Box NA (Please explain.) Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples? □Yes □ No □NA (Please explain.) Comments:
 - ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
 - \Box Yes \Box No \Box NA (Please explain.) Comments:

	iii. Do the sample results with failed surrogate re- flags clearly defined?	coveries have data flags? If so, are the data
	\Box Yes \Box No \Box NA (Please explain.)	Comments:
_	iv. Data quality or usability affected? (Use the co	omment box to explain.) Comments:
d.	 d. Trip blank – Volatile analyses only (GRO, BTEX, Vo <u>Soil</u> 	olatile Chlorinated Solvents, etc.): <u>Water and</u>
	i. One trip blank reported per matrix, analysis an (If not, enter explanation below.)	nd for each cooler containing volatile samples?
	\Box Yes \Box No \Box NA (Please explain.)	Comments:
	ii. Is the cooler used to transport the trip blank an (If not, a comment explaining why must be en	
	\Box Yes \Box No \Box NA (Please explain.)	Comments:
_	iii. All results less than PQL?	

 \Box Yes \Box No \Box NA (Please explain.)

Comments:

iv. If above PQL, what samples are affected?

Comments:

v. Data quality or usability affected? (Please explain.)

Comments:

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? □Yes □ No □NA (Please explain.) Comments:

Comments:

	iii. Precision – All relative percent d (Recommended: 30% water, 50%			
	RPD (%) = Absolute value of:	$(R_1 - R_2)$		
			100	
		$((R_1+R_2)/2)$		
	Where $R_1 =$ Sample Concent $R_2 =$ Field Duplicate			
	\Box Yes \Box No \Box NA (Please explain		Comments:	
	iv. Data quality or usability affected	? (Use the con	nment box to explain why or why not.	
			Comments:	
De	econtamination or Equipment Blank (I	f not used exp	lain why)	
	\Box Yes \Box No \Box NA (Please explain	-	Comments:	
		.)	Comments.	
	i. All results less than PQL?			
	□Yes □ No □NA (Please explain	.)	Comments:	
	ii. If above PQL, what samples are	affected?		
			Comments:	
	iii. Data quality or usability affected? (Please explain.)			
			Comments:	
	a Flags/Qualifiers (ACOE, AFCEE, L	ab Specific, et	<u>c.)</u>	
De	efined and appropriate?	.)	Comments:	

7.

Service Checklist

Address						
Date						
Tech						
Port B Sai	mpling		Iron		Hardness	
Simplex		Duple	Duplex		Redundant	
Soak		Soak	Soak		Soak	
BW		BW	BW		BW	
	Tank 1		Tank 2		Tank 3	
Serial #						
Lot #						
Before service: Sampling						
Sulfolane	D1	#	Time		Purge water	
Sulfolane C1		#	Time		Purge water	
Sulfolane A		#	Time		Purge water	
Sulfolane X		#	Time		Purge water	
Fill Salt			Bags			
Meter #						
Gallons						
Sediment Filter 1						
Sediment Filter 2						
After Service: Sampling						
Sulfolane D2		#	Time		Purge water	
UV Lights	Replaced	Sleeves	Swapped	Cleaned	Replaced	
Pre		Pre				
Post		Post				

ATTACHMENT 1

Log of Revisions to the Offsite SAP

Attachment 1 Revisions to the Offsite Sampling and Analysis Plan North Pole Refinery Site North Pole, Alaska

Date of Revisions to the Offsite SAP	Sections Updated	Reason for Changes
1/1/2015	Tables 1 and 2; Figure 4	Well cluster MW-148 was removed from the offsite monitoring networks. This well cluster will be monitored with onsite wells as part of the Long-Term Monitoring Plan (Arcadis 2014).
4/14/2016	Section 4-5	Sample and Field Documentation moved to Section 5
1/4/2017	document-wide	Updated references of "North Pole Refinery" to "North Pole Terminal"
5/4/2017	document-wide	Incorporated elements for POE sampling from the Residential SAP.
5/4/2017	document-wide	Removed elements associated with activities no longer conducted at the site

Notes:

SAP = Sampling and Analysis Plan

Arcadis U.S., Inc.

1100 Olive Way Suite 800 Seattle, Washington 98101 Tel 206 325 5254 Fax 206 325 8218

www.arcadis.com