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Abstract

A combination of numerical modeling and large scale experimentation has yielded a tremendous
amount of information about the structure, trgjectory and composition of smoke plumes from large
crude ail fires. The model, ALOFT (A Large Outdoor Fire plume Trajectory), is based on the
fundamental conservation equations that govern the introduction of hot gases and particul ate mat-
ter from a large fire into the atmosphere. Two forms of the Navier-Stokes equations are solved
numerically — one to describe the plume risein the first kilometer, the other to describe the plume
transport over tens of kilometers of complex terrain. Each form of the governing equations re-
solves the flow field at different length scales. Particulate matter, or any non-reacting combustion
product, is represented by Lagrangian particles that are advected by the fire-induced flow field.
Background atmospheric motion is described in terms of the angular fluctuation of the prevailing
wind, and represented by random perturbationsto the mean particle paths. Results of the model are
compared with three sets of field experiments. Estimates are made of distances from the fire where
ground level concentrations of the combustion products fall below regulatory threshold levels.



Executive Summary

A combination of numerical modeling and large scale experimentation has yielded a tremen-
dous amount of information about the structure, trajectory and composition of smoke plumes from
large crude oil fires. Themodel, ALOFT (A Large Outdoor Fire plume Trajectory), isbased on the
fundamental conservation equations that govern the introduction of hot gases and particul ate mat-
ter into the atmosphere. Some major results of the ALOFT modeling effort and the experimental
burns can be summarized as follows:

1. Theresultsof the origina plume modeling study, Reference [1], remain valid for flat terrain
applications. “Flat” in this context refersto terrain that does not vary in height by more than
about 10% of the expected plume height. Thus, for a single burn consuming up to about
1,000 barrels per hour in wind speeds less than 12 m/s (23 knots), the maximum ground
level extent of the region where the concentration of PM-10 particulate would be in excess
of 150 pg/m?® (hour-averaged) is roughly 5 km (3.0 miles) over flat terrain.

2. The ALOFT model has been extended to accommodate scenarios involving both flat and
complex terrain, and the conclusions of Reference [1] have been expanded. The maximum
extent of the region where the hour-averaged, ground level PM-10 particul ate concentration
would be in excess of 150 ;g/m® downwind of a burn consuming 1,000 barrels per hour
can be as low as 1 km for a scenario with flat terrain and nearly adiabatic lapse rates, and
as high as 20 km for a scenario where the terrain height extends above the mixing layer.
More refined predictions for intermediate cases are included in the report. Also included
are simple formulae for modifying the maximum ground level distances to accommodate
changesin air quality thresholds and combustion product emission factors.

3. The uncertainty of ALOFT model predictions is largely a function of the uncertainty in
the meteorological conditions and fire emission rates. The factor of safety of 2 that had
been applied to the downwind distance predictions as an estimate of uncertainty for the
original flat terrain modeling results has been replaced by more appropriate ways of assessing
uncertainty, and these will be presented in the report.

4. The ventilation factor, which is the product of the wind speed and mixing layer depth used
to characterize the dispersive potential of the atmosphere, is a reasonably good indicator of
expected ground level concentration of smoke or combustion products from a large burn.
Thisistrue of both flat and complex terrain.

5. Smoke particulateisby far the most likely combustion product of crude oil burning to exceed
ambient air quality standards at ground level beyond a few hundred meters from thefire.

6. Peak concentrations of ground level smoke particulate for the 1993 Newfoundland Offshore
Burn Experiment, the 1994 Alaska Clean Seas Burning of Emulsions experiment, and the
1994 diesel fuel burnsin Mobile, Alabama, never exceeded 100 ;.g/m? beyond afew hundred
hundred meters from the fires, and in most cases were well below that level.
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