KWIGILLINGOK PIPELINE SPILL Site Characterization Report Kwigillingok, Alaska 99622 ADEC File No. 2425.38.003

Prepared For:

NATIVE VILLAGE OF KWIGILLINGOK

PO BOX 90 kwigillingok, ak 99622

Prepared By:

ENVIRONMENTAL MANAGEMENT, INC. 206 East Fireweed Lane, Suite 201 Anchorage, Alaska 99503

July 17, 2017

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	PURPOSE AND OBJECTIVES	2
4.0	METHODOLOGY	2
4.1	Work Plan Variance	2
4.2	Field Screening Methods	2
4.3	Soil Sampling Methods	3
4.4	Water Sampling Methods	3
4.5	Analytical Methods	3
5.0	FIELD ACTIVITIES	3
5.1	Soil Borings and Sampling	
5.2	Investigative Derived Waste	4
6.0	RESULTS	4
6.1	Site Conditions	4
6.2	Soil Sampling Results	5
6.3	Water Sampling Results	5
7.0	QUALITY ASSURANCE	5
8.0	DISCUSSION	6
9.0	CONCLUSIONS AND RECOMMENDATIONS	6

TABLES

Table 1	Soil Analytical Results
Table 2	Groundwater Analytical Results

FIGURES

- Figure 1 Site Map
- Figure 2 Soil Borings and Well Location Map

APPENDICES

- Appendix A Field Notes
- Appendix B Site Photographs
- Appendix C SGS Laboratory Report of Analysis and ADEC Laboratory Data Review Checklist

ACRONYMS AND ABBREVIATIONS

ADEC	Alaska Department of Environmental Conservation
DRO	Diesel range organics
EMI	Environmental Management, Inc.
GRO	Gasoline Range Organics
IDW	Investigative Derived waste
ug/kg	Micrograms per kilogram
mg/kg	Milligrams per kilogram
PAH	Polyaromatic hydrocarbons
PID	photoionization detector
PPE	Personal Protective Equipment
ppmv	Parts per million by volume
RRO	Residual range organics
VOCs	Volatile Organic Carbons
SGS	SGS North America, Inc.

Kwigillingok Pipeline Spill Site Characterization Report Kwigillingok, Alaska 99622 ADEC File No. 2425.38.003

1.0 INTRODUCTION

This report describes the site investigation activities conducted at the Kwigillingok Pipeline Spill area in Kwigillingok, Alaska. The site investigation was conducted by Environmental Management, Inc. (EMI) on in accordance with our May 7, 2017 work plan, which was approved by the Alaska Department of Environmental Conservation (ADEC) on May 23, 2017.

2.0 SITE DESCRIPTION AND BACKGROUND

The project site is located in Kwigillingok, Alaska. The project site is a fuel pipeline spill located roughly 500 feet west of the Kwigillingok School, approximately 500 feet south-east of the Kwigillingok Washeteria and also approximately a half mile from the Kwigillingok River. The project area is shown on Figure 1.

A Site Reconnaissance was conducted of the site by Bristol Environmental & Engineering Services Corporation (Bristol) between October 25 and 27, 2000. According to Bristol's January 2001 report *Kwigillingok Site Reconnaissance and Recommendation Report Kwigillingok, Alaska*, on September 10, 1999 the Central Alaska Response Team (CART) was notified of an estimated 1,000 gallon diesel fuel spill from the pipeline leading to the Washeteria's 8,000 gallon fuel tank. This was noticed by locals while diesel fuel was delivered by river barge during the night of September 9th. Fuel leaked from the pipeline while filling the fuel tank. The fuel soaked into nearby tundra and was contained in a low-lying area. On-site personnel noticed the spill mid-day on September 10th and began immediate cleanup. Based on the Washeteria fuel tank's readings before and after the barge delivery, the spill quantity was lowered from 1,000 gallons to 384 gallons. According to the report, 250 gallons were recovered and placed back into the tank.

During Bristol's 2000 Site Reconnaissance visit, they inspected the pipeline spill area and noticed heavy staining in the area where the spill had occurred. Bristol conducted six soil borings around an area roughly 18 feet by 24 feet to a depth from zero to six inches below ground surface (bgs). Photoionization Detector (PID) headspace readings from the borings ranged from 0 to 234 parts per million (ppm). The highest field screened reading location (Sample Number 5) was laboratory sampled and contained diesel range organics (DRO) at 90,700 milligrams per kilogram (mg/kg) and gasoline range organics (GRO) at 480 mg/kg. Both concentrations are above the ADEC migration to groundwater cleanup level. Based on the sample results, the visible staining left after the spill, visible sheens on surface water and the proximity to the Kwigillingok River, Bristol recommended additional site investigation activities at the site.

3.0 PURPOSE AND OBJECTIVES

The site is an active Alaska Department of Environmental Conservation (ADEC) Contaminated Site (Hazard ID 26437). The purpose of the project was to advance towards cleanup complete with institutional controls (CCIC). The project objectives were to delineate the vertical and horizontal extent of soil and/or groundwater contamination in the vicinity of the historical pipeline spill area by advancing soil borings and installing temporary monitoring wells in the pipeline spill area.

4.0 METHODOLOGY

Field activities were conducted in general accordance with the March 2016 *ADEC Field Sampling Guidance*, and our ADEC-approved work plan. Further details on the field screening methods, soil and groundwater sampling methods, and laboratory analysis are provided below.

4.1 Work Plan Variance

The following are variances from our ADEC-approved work plan and the ADEC's additional requests from May 23, 2017.

- Headspace samples were to be collected at 0.5-foot intervals. Due to the presence of shallow permafrost in each of the borings, many boring locations only had one headspace sample collected.
- Surface soil samples were to be collected a maximum depth of 2 feet bgs. Due to the presence of shallow permafrost in each of the borings, the surface soil samples were collected at a maximum depth of 0.5 feet bgs or 1 foot bgs.
- Up to three temporary monitoring wells were to be installed. Instead, only two wells were installed because of the presence of shallow permafrost.
- A survey of the monitoring wells to establish groundwater flow direction was not conducted because only two wells were able to be installed.
- The ADEC requested in their May 23, 2017 approval that a positive pressure pump be utilized. However, due to the small diameter of the temporary wells, the ADEC approved the use of a peristaltic pump in a May 30, 2017 email.
- Decontamination water and purgewater was to be processed through a granulated activated carbon (GAC) filter prior to discharge to the ground surface. Instead, the water was containerized and left on site for treatment and disposal by the client.

4.2 Field Screening Methods

EMI conducted field screening during the soil boring activities. Field headspace samples were collected from the soils borings in six inch increments or at soil lithology breaks. Headspace samples were collected by filling re-sealable quart size bags approximately 1/3 to 1/2 full with soil. The bags were then agitated before being allowed to develop for at least 10 minutes, but not longer than an hour. During this time the soils were warmed to a minimum temperature of 40°F. After the samples have been warmed and allowed to develop, the probe of the MiniRAE 3000 photoionization detector (PID) was inserted into the bag and the displayed reading was recorded

in the field notes along with other pertinent information such as the time of collection and reading, and the location of the sample.

4.3 Soil Sampling Methods

Soil analytical samples were collected using clean disposable spoons and placed directly into clean laboratory-provided containers. Samples for volatile analysis were collected before headspace readings to prevent volatilization of the sample. Volatile samples were collected first and preserved with 25-mL of methanol, per Alaska Method (AK 101).

4.4 Water Sampling Methods

The monitoring wells were purged using low-flow sampling methods per the Environmental Protection Agency's 2010 *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.* Because the drive point tool only allows for narrow diameter samplers or tubing, EMI utilized a peristaltic pump and disposal tubing to purge and collect the groundwater monitoring wells. Purging was conducted in order to sustain a minimum drawdown (less than 0.1 meter) during purging. Field parameters were measured at 3 to 5 minute intervals to evaluate the effectiveness of removing stagnant casing water. Water quality parameters from each of the wells stabilized within the criteria outlined in the ADEC's March 2016 *Field Sampling Guidance* prior to collecting analytical samples. The analytical samples were collected directly from dedicated tubing into the laboratory containers. The purge water was containerized in a labeled 5-gallon bucket on site and sealed pending receipt of analysis. At the time of this report the water is still containerized on site.

4.5 Analytical Methods

The analytical samples were submitted to SGS North America, Inc. (SGS) of Anchorage, Alaska. Each sample was analyzed for diesel range organics (DRO); residual range organics (RRO); gasoline range organics (GRO); and benzene, toluene, ethylbenzene and xylenes (BTEX). One sample was also analyzed for polyaromatic hydrocarbon (PAH).

5.0 FIELD ACTIVITIES

Field activities were conducted on May 31, 2017. The sampling activities were conducted in accordance with our ADEC-approved work plan. Field activities included advancing soil borings and collecting soil samples, and installing and sampling temporary monitoring wells.

EMI provided an ADEC Qualified Environmental Professional to conduct the field sampling activities. SGS Laboratories in Anchorage was subcontracted to provide the analytical services. Field notes documenting the field activities are provided in Appendix A.

5.1 Soil Borings and Sampling

Once on site, EMI consulted with local personnel in order to locate the pipeline spill area. Historic photos were compared to the location along with hand sketches done during the previous site investigation. While on site, it was discovered that the location of the boardwalk has since moved. A newer boardwalk was installed parallel to the old one. A small approximately 10 foot section of the older boardwalk ran parallel to the newer boardwalk, and the old historic pipeline had run on the north side of that.

While on site, no visible staining or odor was noted in the historical sample area. Surface water was visible in low lying area, and no sheen was noted in the water or when disturbing the ground in those areas. Two trash burn barrels were located in the low lying in proximity to the boardwalk where the historic spill was assumed to have been located. A used 5 gallon oil bucket with trash was also located close to the burn barrels.

Soils borings were then placed around the area where the historic spill was approximately located using old field notes and photos. Borings were advanced in higher topographic areas due to the low lying areas have surface water and groundwater less than six inches bgs.

Five of the borings were placed around the presumed historical spill area and one boring (Boring BH04) was placed in the area believed to be close to the center of the spill area based on historic photos and topography. The boring (Boring BH04) was also uphill from the burn barrels, close to the pipeline and boardwalk. The locations of these borings are shown on Figure 2.

Two temporary monitoring wells were also installed. Both wells were located in low-lying topographic areas where water was noted on the surface or there was evidence of saturation. Permafrost depths did not allow for sufficient advancement of the drive points down in higher topographic areas in order to install temporary monitoring wells. Because of this, only two wells were installed. One well was installed just north from the approximate location of the laboratory sample from Bristol's 2000 Site Reconnaissance, and another well was installed in the low lying area northeast of the spill where fuel would have drained towards the lagoon. A well was not installed further north of TMW01 due to proximity to the sewage lagoon. The locations of these temporary wells are shown on Figure 2.

5.2 Investigative Derived Waste

Investigative derived waste (IDW) generated during the field activities included soil cuttings, decon water, disposable sampling equipment, and personal protective equipment (PPE). Soils cuttings generated were placed back in the respective holes. Decon water was containerized, labeled and left on site. Both PPE and sampling equipment were generated in small quantities, and were disposed of as municipal solid waste. This included nitrile gloves, sample tubing and Ziploc bags.

6.0 **RESULTS**

A total of seven analytical soil samples including one duplicate were collected from six borings on the project site. Three water samples, including one duplicate were collected from two temporary wells.

6.1 Site Conditions

Generally, vegetation and peat was present anywhere from the surface to twelve inches bgs. In low lying areas, where surface and groundwater were encountered, peat was present until permafrost was reached at around one foot bgs. In areas with higher topography (i.e., all soil boring locations), silty sandy soils were underneath or mixed in with the peat starting anywhere from six to twelve inches bgs until permafrost was reached. Permafrost was located approximately ten to eighteen inches bgs in all areas. In low lying areas, only peat was encountered before reaching permafrost so soil samples were not collected in low lying areas.

6.2 Soil Sampling Results

Headspace samples were collected during boring activities. Field headspace readings ranged from 0.6 parts per million by volume (ppmv) to 9.7 ppmv. No odors or staining were noted in any of the soil. The field headspace results from each boring are reflected in Table 1.

Seven soil laboratory samples, which included one from each borehole, and one duplicate, were analyzed. With the exception of the duplicate, each sample had detections for DRO above ADEC Method 2 Cleanup Levels. The duplicate sample had an estimated value (J-flag) at 231 mg/kg. RRO was detected in every sample; only one sample (17841-BH02) had RRO above Cleanup levels.

Due to the high concentration of peat in the soils, DRO and RRO were also analyzed after using a silica gel cleanup to determine if the elevated concentrations were a result of naturally occurring organics. DRO was not detected above the LOD in any sample, but one sample still had a LOD above the Cleanup Level (17841-BH02). Detectable levels of RRO were reported for the silica gel method; all, including Sample 17841-BH02, were less than the ADEC Method 2

Soil samples were also analyzed for BTEX and PAHs. Four samples had detections for toluene, but were well below the ADEC Method 2 Cleanup Levels. The benzene, ethylbenzene, and naphthalene LODs were above the Cleanup Level in one or more samples. See Table 1 for a summary of the soil sample analytical results.

6.3 Water Sampling Results

Three water laboratory samples, which included one from each temporary monitoring well and one duplicate, were analyzed. DRO and RRO were detected in all three samples. DRO was detected, but was below the ADEC Cleanup Level in all three samples. RRO was detected above the ADEC Cleanup Level in one samples and its duplicate (17841-TMW02 and 17841-TMW0A). Toluene was detected in all three samples but also below Cleanup Limits in all three samples. See Table 2 for a summary of the water sample analytical results. One sample (17841-TMW02 and its duplicate 17841-TMW02) had estimated values (J-flag) for GRO and xylene reported by the labs. All values were below Cleanup Levels. A summary of the results can be seen in Table 2.

7.0 QUALITY ASSURANCE

The ADEC Laboratory Data Review Checklist was completed for the analytical results. The completed checklists are included in Appendix C. The following potential issues affecting data usability are noted below:

• The GRO surrogate recovery for Sample 17841-BH01 did not meet QC criteria. The GRO sample result may be biased low.

• The LODs for several parameters (i.e., benzene, ethylebenzene, naphthalene, DRO Silica Gel) were greater than the cleanup levels for one or more samples. These elevated LODs are a result of the high organic content in the samples.

8.0 DISCUSSION

Soil samples collected on the site indicate that soil contamination associated with historic spill is limited in size and concentration. DRO results are also much lower than historic levels taken from the same depths during Bristol's 2000 site reconnaissance. Unlike the 2000 field activities, the there was no visual or olfactory indications of contamination during the 2017 field activities. Results indicate that with the exception of the elevated DRO LOD in the sample collected from BH02, each of the DRO and/or RRO concentrations that exceeded cleanup levels no longer exceeded using the silica gel method. These differences between the silica gel results and non-silica gel results indicate that the elevated concentrations are likely a result of the naturally occurring organics and much of the contamination from the 2000 spill is no longer present.

Groundwater may have been impacted by the spill, although refuse and debris present in the area may indicate other contamination pathways may be present. Concentrations exceeding cleanup levels were only encountered in the well closest to the boardwalk and historic pipeline location; it was in both the sample and its duplicate. Elevated DRO and RRO in the groundwater may be due to the sampling methods used for temporary wells. Although the wells were purged, the wells were only temporary and a high amount of natural organics was still present in the water when it was sampled. This may have affected the groundwater results and lead to elevated DRO and RRO. No sheen was seen in any of the surface water proximal to the temporary wells.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the data collected from our 2017 field activities, concentrations reported to be greater than cleanup levels appear to be mostly attributed to naturally occurring organics and the lack of petroleum odor or sheen indicate that the contamination has largely naturally attenuated. Due to the presence of shallow permafrost, it is unknown whether contamination is present at further depths or if the permafrost is present at that depth is serving as a confining layer. Groundwater may have been impacted, but results may be biased high due to high organic content in the soils and since the well points were temporary and not properly developed. As a result, we recommend the site be closed with no further action required.

If you have any questions or wish to discuss this project further please do not hesitate to contact Shayla Marshall or the undersigned at (907) 272-9336.

6

Environmental Management, Inc.

FOR ;

Aaron Acena Environmental Scientist

Site Investigation Report Kwigillingok Pipeline Spill, Kwigillingok, AK EMI Job No. 17841, July 2017

Table 1 - Soil Analytical Results

Soil Boring S	amples - Kw	igillingok P	ipeline Spill
Son Boring S			penne opni

Son doring Samples - Kwighing	ADEC Cleanup	Boreholes							
Analyte	Level*	17841-BH01	17841-BH02	17841-BH03	17841-BH04	17841-BH0A ~	17841-BH05	17841-BH06	Trip Blank
Field Headspace - ppmv	-	0.6	0.7	9.7	1.3	1.3	1.2	1.1	
Depth - feet bgs	-	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0.5-1	
GRO - mg/kg	300	11.4 U	37.4 U	29.4 U	32.4 U	22.1 J	30.3 U	25.7 U	1.94 U
DRO - mg/kg	250	461	1020 J	393	273	231 J	929	552	-
DRO Silica Gel - mg/kg	250	26.5 J	321 U	65.5 U	93.8 J	117 U	99.5 U	56.5 U	-
RRO - mg/kg	11,000	3840	13000	4190	1480	1150	7830	5630	-
RRO Silica Gel - mg/kg	11,000	290	1420	360	292	177 J	456	452	-
VOC									
Benzene - ug/kg	22	57.0 U	187 U	147 U	162 U	161 U	152 U	129 U	9.68 U
Toluene - ug/kg	6,700	246	374 U	1560	324 U	322 U	1670	1770	19.4 U
Ethylbenzene - ug/kg	130	114 U	374 U	294 U	324 U	322 U	303 U	257 U	19.4 U
Xylenes - ug/kg	1,500	228 U	750 U	590 U	645 U	645 U	605 U	515 U	11.6 U
РАН	varies	-	-	-	ND**	-	-	-	-

Notes:

* = Table B1 or B2, Migration to Groundwater (MTG) Method Two Soil Cleanup Levels for "Under 40 inch Zone" (18 AAC 75, July 1, 2017)

** = Napthalene has a LOQ of 61.5 ug/kg but the ADEC Cleanup Level is 38 ug/kg. All other PAH LOQ are below ADEC Cleanup Levels

GRO = Gasoline Range Organics

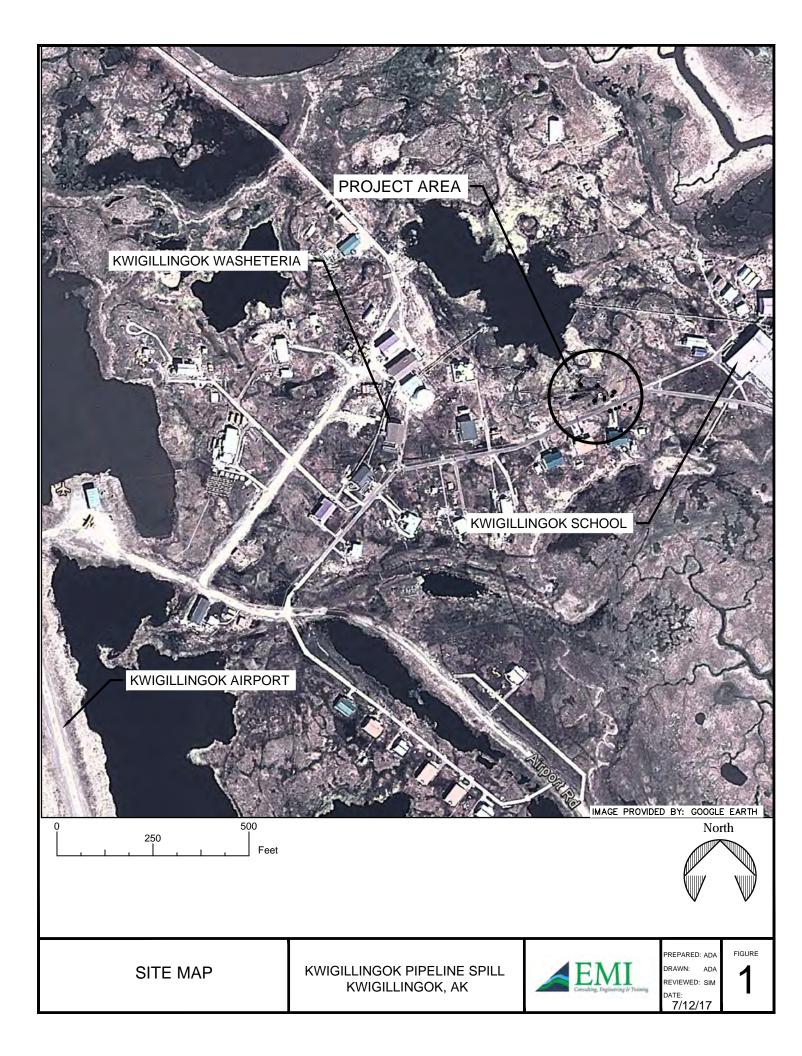
DRO = Diesel Range Organics

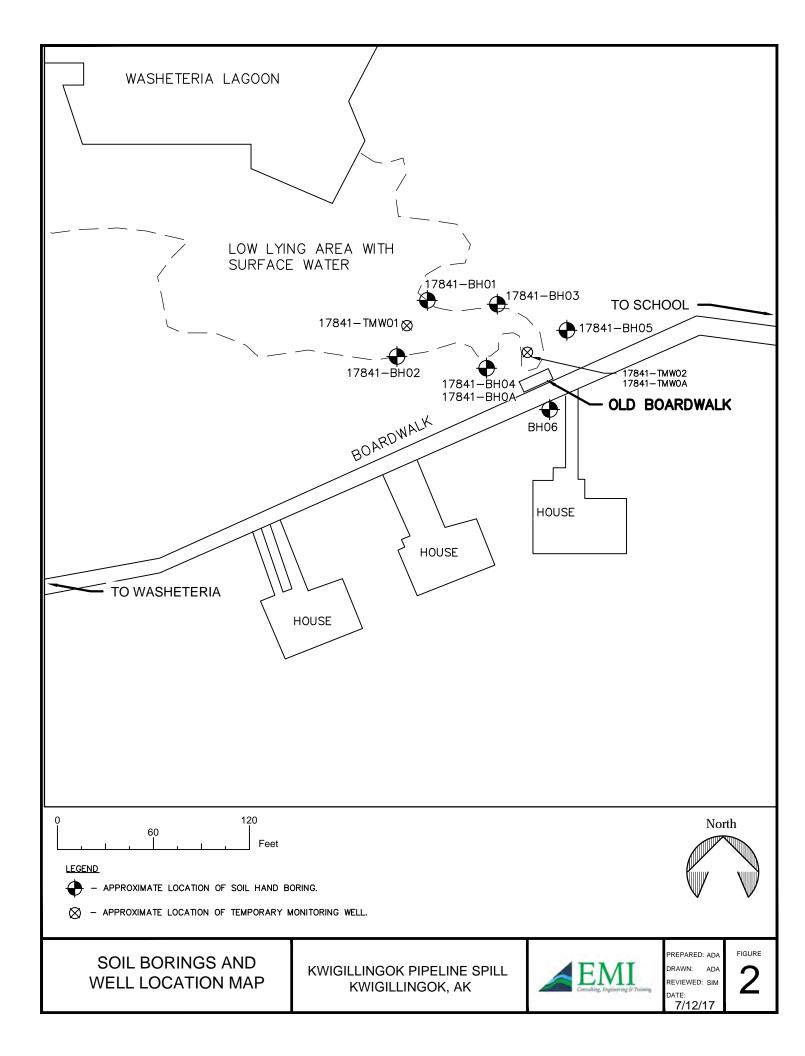
- RRO = Residual Range Organics
- PAH = Polyaromatic Hydrocarbons
- bgs = below ground surface
- mg/kg = milligrams per kilogram
- ug/kg = micrograms per kilogram
- ND = not detected
- = not analyzed
- ~ = duplicate of preceeding sample

27.0 U = analyte was not detected at a concentration above the laboratory limit of detection of 27.0 mg/kg

- **290** = detectable concentration reported in the project sample
- **13000** = detectable concentration above ADEC Cleanup Level
- 57.0 U = analyte was not detected at a concentration above the laboratory limit of detection of 57.0 mg/kg but LOQ is above ADEC Cleanup Level
- 177 J = reported estimated value by laboratory (below LOQ)

Table 2 - Groundwater Analytical Results


	ADEC Cleanup		Quality Control		
Analyte	Level***	17841-TMW01	17841-TMW02	17841-TMW0A~	Trip Blank
Water Depth - feet bgs	-	0.50	0.50	0.50	
GRO - mg/L	2.2	0.205	0.0463 J	0.0468 J	0.100 U
DRO - mg/L	1.5	1.2	0.991	1.16	-
RRO - mg/L	1.1	1.00	1.71	2.46	-
VOC					
Benzene - ug/L	4.6	0.25 U	0.25 U	0.25 U	0.500 U
Toluene	1,100	47.5	7.47	8.4	1.00 U
Ethylbenzene - ug/L	15	0.5 U	0.5 U	0.5 U	1.00 U
Xylenes - ug/L	190	1.67	0.860 J	0.930 J	2.00 U


Groundwater Samples - Kwigillingok Pipeline Spill

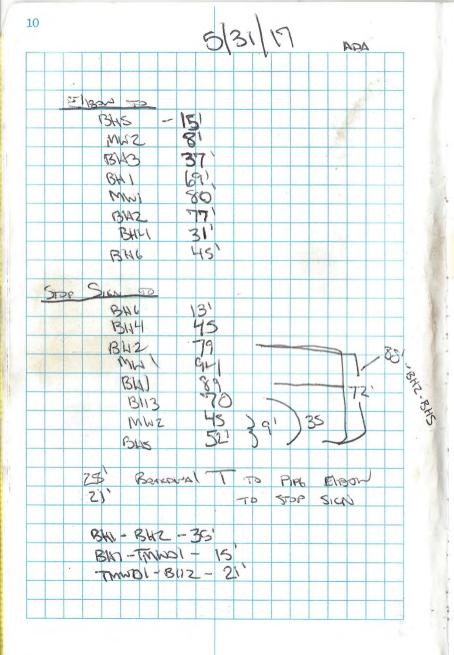
Notes:

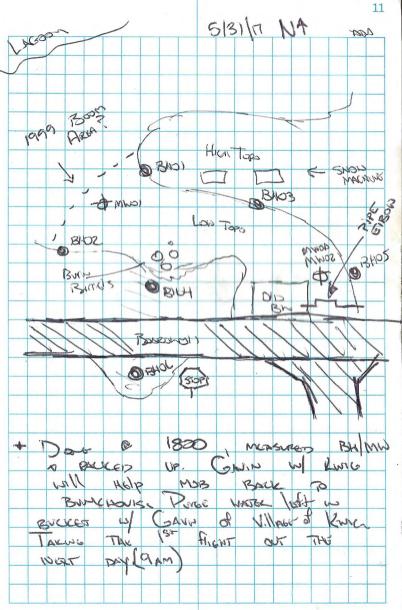
*** = Table C, Groundwater Cleanup Levels (18 AAC 75, July 1, 2017)

- GRO = Gasoline Range Organics
- DRO = Diesel Range Organics
- RRO = Residual Range Organics
- bgs = below ground surface
- mg/l = milligrams per liter
- ug/L = micrograms per liter
- ~ = duplicate of preceeding sample
- 27.0 U = analyte was not detected at a concentration above the laboratory limit of detection of 27.0 mg/kg
- **1.2** = detectable concentration reported in the project sample
- **2.46** = detectable concentration above ADEC Cleanup Level
- 0.930 J = reported estimated value by laboratory (below LOQ)

Appendix A

Field Notes


EMI MAY	1
EMI 17841 5/31/17 ADD	5/31/17 ADA
VILLE STUTIESTISS	BLOZ - OTHER SUDE OF MURSHIM ARCH
KING SITE INVESTIGATOR DEPART ADU FOR BUTHE -> KING C 945. Will ADVING ~ L BH + UP DO 3 TEMP Wills. A. ANOMO ST EMI ONLY. PID (a) IN AM C	Where Born was GW & O-2"
@ 945. Will ADVINCE I & BH to	IN MARCH BIT BILL & BUZ
up to 3 TEMP wills. A. Avons	NUCLO BOOM WAS. GN & O-2" IN MARCH BIT BHI + BHZ V. HEARY DEGNMENS & PEGT, HEO CO.
& EMI only. PID WIN AM C	e ci.
D gen,	E GIL 17541- BHOZ E 1425 135 0.7 ppm
SUMMY - 70°F IN KNIE, WWO LESMER. 320 - LAND N KWIG. MOT GARN	* PERMETERS FOUD & I'IN AREAS
20 - LAND W KWIG. MEET GAVEN	of HIGH TOROGRAPHY, I - DECREE
* MOB OVER TO PIPETURE SPILL SITE	in MIDDIE of MARSH.
TO MAS INTER (BURN BARRELS), SNOW	
Machine No. Maha	+ BHO3 - Down side of N.
THE SURFACE, OLD BOARDHALK IS	+ BHO3 - South SIDE OF N. TORD HANNER NO ODDE, PF C
THE Surface. Ob BOARDDALK IS CONVER NO BRUMS & OLD PREDUCT IS CONVER FORME DULY OLD	1' sample e 6-12". 0-6" 15 All Moss (PEAT, Soil 15 RICH 1"
15 CONC. FOUND Duly DID	is all moss PEAT. Doil is rich in
TOPOGRAPHIC MOUNDS, Will ODIGLERIC BROW DN OD SIRK of Spill,	626 AMCS No POL ODDR. 178271-8403 0-6" HS-9.7 1438
Parat an also size of spill,	178271-BHO3 0-6" HS-9.7 1438
+ LANDMAILIES	+ BLOY - CENTER of HISTORIC STOLINT
and a part the Deriver	I THINK, NO VISIBLE STAINING, NO
SLOI - E OND of TORG POINT WHELE	SIVEN. 3 OLD BUG BUG BUTCLE W NEED & 1 USUD MOTOR DIL 5
BOOM WAS MOST likely busies.	NER & COSCD MODINE DI D
DADA WAS MOUST MENT DOLLED. INDO TO GUT IN MARSHALL ARCA BUT GIN C I" & EGUND 15 POAT FOR AT 16457 2" BGS. Soil C BIN IS	GAL BUCKIT. STOPPIC SOUTH
Le line 2" are Gail @ River	Call Bucket. Steppic South From Biscels. (DUP) 8-6" HS-01.3 ppnv MS411-BHOH 1505 17841-BHOA 1510
with same BOWN NO ODDE NO	MEYIL- RIDY LAN
SIH SAND, BOWN, NO DEOR, NO AMBIENT HIS.	17841-3404 1510
TBHI-BHI STAMPKO & HID Q-1	
17841-1341 25 Jampiko e 1410 0-6" HS-0,6ppmV	
Very HEARY WI SREAMLES PEAT	


Rite in the Rain.

1								1	5	31	7/	٦					
4	SAX	5	+													AD	2
•	BAX v-1 sup	N	0	5	5A.	nu	-1.	20	DY		Pox	5	FR	050	(3-7	11
-	10		0-	.4	C	m	a	w]	4	m	by	5	bil	-t->	Pa	-	00
7:	222	5	25	~	0	Ann Log	Parte		0.00	har	20	-1.	IN	4	All	1851	12
R	sill's						Cara		U	4-4			4-		1.,		
	8	1	5	21			0-	-6	-	1	AS	-	1	1	-		
	_			-	-		6		-	-							-
BY	bi			5	DUTY		<	150	-	R		NUR	N SAC	Dh	مار		
1	10	2"	ATC	ww	sto	1	11	_	br		A	ze	T			5	1
	6	2"	Bł	0	2	1	A	-	0	-6		No	-	50	Ν.	D	T
	ax	D R	D	i He	N	1	374	, ux	50	1 a	8	V	sy	3	NET		N
	AR	- 1	0	-6	11	H	5	10	0	9							
19	0 15		6	- Ye	e	1-	12		1.	1				-			
176	541-	BH	itte	ا م	6	15	-										
NIV	101 B	P	_	2	11.4	1	4	F	211-	72		2.1			i n	0	1
	e .	1	~	C T	36	5.	(1	0-	12	5	6	III		1200	50	D	
	R e S	ATE	n		Y	1511		C	1	nya	08		we	les		NE	þ
+	Car	sur	D														
-4	G	sw 51	0	L	オ	Pi	57	om	50	R	tex-		POI	1	for	4.	2
	Ā	51	w	हा।	5.		T.	Dis	RO	-2018	sle		T	TB	we	2 -	

			5/3					- 1	DD	1	
IWNE	21	BIT	Bik	1 1	BI	120	. 1				
DEPT	nr l'					Bes			cr		
-	oC	and the second se	PH		OPP			1006			
Ø	12,64		2.41		215		2	69			
3			242		214.			268			
6			2,49	5	20	.3		265			
91	12.	80	2,4	5	20	9.0	2	La	,		
iz	12	95 V	- 21	o v	- 20	2.0	r	26	5 .	/	
								1			
+ No	oddr,	MOD	ERNE	5	ollos	605	casic	5),	N	2.9	ALEN
ime				80.5	00						
R Do	N C	e v	45	AN	des.	5	C5661		73	>	1016
100	PF	C	10	-12	12						
TIM	02	E.	55	SIDE	: d		STE		w	br	3
and the second sec	A CONTRACTORIZATION CONTRACTOR	1 1	N.		F		10				2
WE	LAST -			市	RHO						
					1					,	
	00		PH		OFF	,		+	1 87 6	SIC	art.
0	16.33		5.20	1	Con State of Parameters	29			13	38	2
	16.34		5.2	the second second	10	23	5		13		
6	16,40		531		1	20 -	7		13		
			53		1	16.0)		132		
8'	KULLA					112.0			130		
8' 10	16.42	5	5,4:	5						~	
8' 13'	16.40		5,4:						12	1	
8' 13' 15'	16,4	(55	0		07	91	-	12-	-	42
8' 13' 15' 15	16,4	1 121	55				5 1		12	-	R
8' 13' 15' 15'	16,4	1 412 1 1W2	55	0		07	5 V			-	R

Rite in the Rain

Rite in the Rain.

Appendix B

Site Photographs

KWIGILLINGOK PILELINE SPILL Site Characterization Photo Log Kwigillingok, Alaska 99622 ADEC File No. 2425.38.003

Photo 1: View of the pipeline spill area. Historic boardwalk is visible with equipment placed on top.

Photo 2: Looking North - View of historic boardwalk and pipeline spill area. BH06 (red arrow) was to the left of photo on the other side of the small boardwalk. The green arrow points to BH05.

Photo 3: View of spill area looking northwest. Locations of BH01 (blue), BH02 (yellow) and BH04 (red).

Photo 4: Looking north, just north of the center of the historic spill location. Location of BH01 (blue) and BH03 (purple).

KWIGILLINGOK PILELINE SPILL Site Characterization Photo Log Kwigillingok, Alaska 99622 ADEC File No. 2425.38.003

Photo 5: Looking north, TMW01 location.

Photo 6: Looking east toward the school. Location of sample TMW02 (red) and BH05 (green).

Photo 6: Burn barrels and debris in the low lying area near the center of the historic spill. Barrels had rusted to the point lower halves were eroded away. Blue bucket proximal to the barrels was a used 5 gallon oil bucket with trash inside.

Appendix C

SGS Laboratory Report of Analysis and ADEC Laboratory Data Review Checklist

Laboratory Report of Analysis

To: Environmental Mgmt Inc (EMI) 206 E Fireweed Lane, Suite 201 Anchorage, AK 99503 (907)272-9336

Report Number: 1172880

Amended to report "J" flags

Victoria Pennick

10:35:29 -08'00'

2017.07.13

Client Project: 17841 Kwig Pipeline Spill

Dear Aaron Acena,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

SGS North America Inc. Environmental Services – Alaska Division Project Manager

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 07/13/2017 10:28:24AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Environmental Mgmt Inc (EMI) SGS Project: 1172880 Project Name/Site: 17841 Kwig Pipeline Spill Project Contact: Aaron Acena

Refer to sample receipt form for information on sample condition.

17841-BH01 (1172880001) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (38.3%) does not meet QC criteria. Sample was analyzed twice for confirmation.

LCSD for HBN 1760377 [XXX/3748 (1388445) LCSD

AK102SG - DRO SG LCSD recovery (65%) does not meet QC criteria.

AK102SG - DRO SG LCSD surrogate recovery for 5a-androstane (62%) does not meet QC criteria.

AK103SG - RRO SG LCSD recovery (62%) does not meet QC criteria.

AK103SG - RRO SG LCSD surrogate recovery for n-triacontane (62%) does not meet QC criteria.

AK102/103SG - LCS/LCSD RPDs for DRO-SG and RRO-SG (40.6, 42.1, respectively) do not meet QC criteria. Insufficient volume to re-extract. No further action was taken.

1172925009MS (1388496) MS

8270D SIM - PAH MS recovery for acenaphthene (114%) does not meet QC criteria. Refer to the LCS for accuracy requirements.

1172925009MSD (1388497) MSD

8270D SIM - PAH MSD recovery for acenaphthene (116%) does not meet QC criteria. Refer to the LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/13/2017 10:28:26AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

	Report of Manual Integrations										
Laboratory ID	Client Sample ID	Analytical Batch	Analyte	Reason							
8270D SIM (PA	+)										
1388496	1172925009MS	XMS10087	Benzo[b]Fluoranthene	RP							
1388497	1172925009MSD	XMS10087	Benzo[b]Fluoranthene	RP							

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 07/13/2017 10:28:26AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Comula avvenania vykiaki	naluda a raquit far "Tatal Calida" hava already haan adjusted far maisture a

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 07/13/2017 10:28:28AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	s	Sample Summary		
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
17841-BH01	1172880001	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH02	1172880002	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH03	1172880003	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH04	1172880004	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH05	1172880005	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH06	1172880006	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-BH0A	1172880007	05/31/2017	06/02/2017	Soil/Solid (dry weight)
Trip Blank (S)	1172880008	05/31/2017	06/02/2017	Soil/Solid (dry weight)
17841-TMW01	1172880009	05/31/2017	06/02/2017	Water (Surface, Eff., Ground)
17841-TMW02	1172880010	05/31/2017	06/02/2017	Water (Surface, Eff., Ground)
17841-TMW0A	1172880011	05/31/2017	06/02/2017	Water (Surface, Eff., Ground)
Trip Blank (W)	1172880012	05/31/2017	06/02/2017	Water (Surface, Eff., Ground)
Method	Method Des	cription		
8270D SIM (PAH)		IM Semi-Volatiles	GC/MS	
AK101	AK101/8021			
SW8021B	AK101/8021			
AK101		Combo. (S)		
SW8021B		Combo. (S)		
AK102		lual Range Organ	ics	
AK103		lual Range Organ		
AK102	Diesel/Resid	lual Range Organ	ics w/ Silica	
AK103	Diesel/Resid	lual Range Organ	ics w/ Silica	
AK102	DRO/RRO L	ow Volume Wate	r	
AK103	DRO/RRO L	ow Volume Wate	r	
SM21 2540G	Percent Soli	ds SM2540G		

Print Date: 07/13/2017 10:28:29AM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: 17841-BH01			
Lab Sample ID: 1172880001	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	461	mg/Kg
	Residual Range Organics	3840	mg/Kg
Semivolatile Organic Fuels Department	t, Silica DRO Silica Gel	26.5J	mg/Kg
	RRO Silica Gel	290	mg/Kg
Volatile Fuels	Toluene	246	ug/Kg
Client Sample ID: 17841-BH02			
Lab Sample ID: 1172880002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1020J	mg/Kg
-	Residual Range Organics	13000	mg/Kg
Semivolatile Organic Fuels Department	, Silica RRO Silica Gel	1420	mg/Kg
Client Sample ID: 17841-BH03			
Lab Sample ID: 1172880003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	393	mg/Kg
J	Residual Range Organics	4190	mg/Kg
Semivolatile Organic Fuels Department	, SilicaRRO Silica Gel	360	mg/Kg
Volatile Fuels	Toluene	1560	ug/Kg
Client Sample ID: 17841-BH04			
Lab Sample ID: 1172880004	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	273	mg/Kg
	Residual Range Organics	1480	mg/Kg
Semivolatile Organic Fuels Department		93.8J	mg/Kg
	RRO Silica Gel	292	mg/Kg
Client Sample ID: 17841-BH05			
Lab Sample ID: 1172880005	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	929	mg/Kg
	Residual Range Organics	7830	mg/Kg
Semivolatile Organic Fuels Department		456	mg/Kg
Volatile Fuels	Toluene	1670	ug/Kg
Client Sample ID: 17841-BH06			
Lab Sample ID: 1172880006	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	552	mg/Kg
	Residual Range Organics	5630	mg/Kg
Semivolatile Organic Fuels Department		452	mg/Kg
Volatile Fuels	Toluene	1770	ug/Kg
Client Sample ID: 17841-BH0A			
Lab Sample ID: 1172880007	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	231J	mg/Kg
	Residual Range Organics	1150	mg/Kg
Semivolatile Organic Fuels Department		177J	mg/Kg
Volatile Fuels	Gasoline Range Organics	22.1J	mg/Kg
	5 5		

Print Date: 07/13/2017 10:28:31AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 17841-TMW01			
Lab Sample ID: 1172880009	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.20	mg/L
	Residual Range Organics	1.00	mg/L
Volatile Fuels	Gasoline Range Organics	0.205	mg/L
	o-Xylene	1.67	ug/L
	P & M -Xylene	0.620J	ug/L
	Toluene	47.5	ug/L
Client Sample ID: 17841-TMW02			
Lab Sample ID: 1172880010	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.991	mg/L
C C	Residual Range Organics	1.71	mg/L
Volatile Fuels	Gasoline Range Organics	0.0463J	mg/L
	o-Xylene	0.860J	ug/L
	P & M -Xylene	0.720J	ug/L
	Toluene	7.47	ug/L
Client Sample ID: 17841-TMW0A			
Lab Sample ID: 1172880011	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.16	mg/L
_	Residual Range Organics	2.46	mg/L
Volatile Fuels	Gasoline Range Organics	0.0468J	mg/L
	o-Xylene	0.930J	ug/L
	P & M -Xylene	0.720J	ug/L
	Toluene	8.40	ug/L

Print Date: 07/13/2017 10:28:31AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

- -	R M S	eceived Da atrix: Soil/S olids (%):2	ate: 06/02/1 Solid (dry we	7 08:30		
	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
461	141	43.9	mg/Kg	1		06/16/17 18:3
99.6	50-150		%	1		06/16/17 18:3
	F F	Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ime: 06/13/1 Vt./Vol.: 30.1	7 10:23		
<u>Result Qual</u> 3840	<u>LOQ/CL</u> 141	<u>DL</u> 43.9	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 06/16/17 18:3
74.1	50-150		%	1		06/16/17 18:3
	F	Prep Methoo Prep Date/T Prep Initial V	1: SW3550C ime: 06/13/1 Vt./Vol.: 30.1	7 10:23		
	99.6 <u>Result Qual</u> 3840	Spill R M Si Si Si Si Result Qual LOQ/CL 141 99.6 50-150 Result Qual LOQ/CL 141 3840 141 74.1 50-150	Spill Received Da Matrix: Soil/3 Solids (%):2 Location: Result Qual LOQ/CL DL 461 141 43.9 99.6 50-150 Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract Result Qual LOQ/CL DL 3840 141 43.9 74.1 50-150 Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	Spill Received Date: 06/02/1 Matrix: Soil/Solid (dry wa Solids (%):28.1 Location: Result Qual LOQ/CL DL Units mg/Kg 99.6 50-150 % Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Prep Extract Vol: 2 mL Matrix: 06/13/1 Prep Extract Vol: 2 mL Result Qual LOQ/CL DL Units mg/Kg 3840 141 43.9 mg/Kg 74.1 50-150 % Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Matrix 9%	Matrix: Soil/Solid (dry weight) Solids (%):28.1 Location:Result Qual 461LOQ/CL 141DL 43.9Units mg/KgDF 199.650-150%1Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./vol.: 30.164 g Prep Extract Vol: 2 mLResult Qual 3840LOQ/CL 141DL 43.9Units mg/KgDF 	Spill Received Date: 06/02/17 08:30 Matrix: Soil/Solid (dry weight) Solids (%):28.1 Location: Result Qual 461 LOQ/CL 141 DL 43.9 Units mg/Kg DE 1 Allowable Limits 99.6 50-150 % 1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 30.164 g Result Qual 3840 LOQ/CL 141 DL 43.9 Units mg/Kg DE 1 Allowable Limits 74.1 50-150 % 1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 30.164 g Allowable Limits

Print Date: 07/13/2017 10:28:33AM

000

J flagging is activated

Results of 17841-BH01							
Client Sample ID: 17841-BH01 Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880001 Lab Project ID: 1172880	e Spill		Collection D Received Da Matrix: Soil/S Solids (%):2 Location:	ate: 06/02/1 Solid (dry we	7 08:30		
Results by Semivolatile Organic Fuels	s Department, S	Silica G					
Parameter DRO Silica Gel	<u>Result Qual</u> 26.5 J	<u>LOQ/CL</u> 70.7	<u>DL</u> 21.9	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 06/16/17 18:55
Surrogates 5a Androstane (surr)	72.1	50-150		%	1		06/16/17 18:5
Batch Information Analytical Batch: XFC13434 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 18:55 Container ID: 1172880001-A			Prep Date/T	d: SW3550C ime: 06/13/1 Vt./Vol.: 30.1	7 10:20	eanup-SG	
<u>Parameter</u> RRO Silica Gel	<u>Result Qual</u> 290	<u>LOQ/CL</u> 70.7	<u>DL</u> 21.9	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 06/16/17 18:5
Surrogates n-Triacontane-d62 (surr)	93.2	50-150		%	1		06/16/17 18:5
Batch Information							
Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 18:55 Container ID: 1172880001-A			Prep Date/T	1: SW3550C ime: 06/13/1 Vt./Vol.: 30.1	7 10:20	eanup-SG	

Print Date: 07/13/2017 10:28:33AM

000

J flagging is activated

Results of 17841-BH01 Client Sample ID: 17841-BH01 Client Project ID: 17841 Kwig Pipelir Lab Sample ID: 1172880001 Lab Project ID: 1172880	e Spill	F M S	Collection D Received Da Matrix: Soil/S Solids (%):2	ate: 06/02/1 Solid (dry we	7 08:30		
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyze
Gasoline Range Organics	11.4 U	22.8	6.83	mg/Kg	1		06/12/17 23:3
Surrogates							
4-Bromofluorobenzene (surr)	38.3 *	50-150		%	1		06/12/17 23:3
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/12/17 23:32 Container ID: 1172880001-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 44.4 Vol: 56.982	7 14:10 96 g		
Deremeter	Deput Quel	1.00/01	DI	Linita	DE	Allowable	Data Apalyza
Parameter Benzene	<u>Result Qual</u> 57.0 U	<u>LOQ/CL</u> 114	<u>DL</u> 36.4	<u>Units</u> ug/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyze 06/12/17 23:3
Ethylbenzene	114 U	228	71.0	ug/Kg	1		06/12/17 23:3
o-Xylene	114 U	228	71.0	ug/Kg	1		06/12/17 23:3
P & M -Xylene	228 U	455	137	ug/Kg	1		06/12/17 23:3
Toluene	246	228	71.0	ug/Kg	1		06/12/17 23:3
Surrogates							
1,4-Difluorobenzene (surr)	89.9	72-119		%	1		06/12/17 23:3
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/12/17 23:32 Container ID: 1172880001-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 44.4 : Vol: 56.982	7 14:10 96 g		

SGS North America Inc.

con

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

e Spill	R M S	eceived Datrix: Soil/ olids (%):1		7 08:30		
;						
<u>Result Qual</u> 1020 J	<u>LOQ/CL</u> 1280	<u>DL</u> 397	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 06/16/17 18:4
106	50-150		%	1		06/16/17 18:4
	F	Prep Metho Prep Date/T Prep Initial \	d: SW3550C ïme: 06/13/1 <i>N</i> t./Vol.: 7.17			
<u>Result Qual</u> 13000	<u>LOQ/CL</u> 1280	<u>DL</u> 397	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 06/16/17 18:4
102	50-150		%	1		06/16/17 18:4
	F	Prep Metho Prep Date/T Prep Initial \	d: SW3550C ïme: 06/13/1 Nt./Vol.: 7.17			
	Result Qual 1020 J 106 <u>Result Qual</u> 13000	Result Qual 1020 J LOQ/CL 1280 106 50-150 Result Qual 13000 LOQ/CL 1280 102 50-150	Solids (%):1 Result Qual LOQ/CL DL 1020 J 1280 397 106 50-150 50-150 Prep Batch: Prep Metho Prep Date/T Prep Initial N Prep Extract 397 102 50-150 Prep Batch: Prep Metho Prep Date/T Prep Initial N Prep Extract 397 102 50-150	Solids (%):13.0 Location: Result Qual 1020 J LOQ/CL 1280 DL 397 Units mg/Kg 106 50-150 % Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Prep Initial Wt./Vol.: 7.17 Prep Extract Vol: 2 mL Result Qual 13000 LOQ/CL 1280 DL 397 Units mg/Kg 102 50-150 % Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1	Location:Result Qual 1020 JLOQ/CL 1280DL 397Units mg/KgDF 110650-150%1Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 7.177 g Prep Extract Vol: 2 mLResult Qual 13000LOQ/CL 1280DL 397Units mg/KgDF 110250-150%1Prep Batch: XXX37562 Prep Initial Wt./Vol.: 7.177 g Prep Extract Vol: 2 mLDF ng/Kg110250-150%1Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 7.177 g	Solids (%):13.0 Location:Result QualLOQ/CLDLUnitsDE1020 J1280397mg/Kg110650-150%1Prep Batch: XXX37562 Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./vol.: 7.177 gResult QualLOQ/CL 1280DLUnitsDE Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./vol.: 7.177 g10250-150%1Prep Batch: XXX37562 Prep Initial Wt./vol.: 7.177 g10250-150%1Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./vol.: 7.177 g

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group 11 of 88 Revision 1

Results of 17841-BH02							
Client Sample ID: 17841-BH02 Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880002 Lab Project ID: 1172880	e Spill	R M S	eceived D	0ate: 05/31/ ate: 06/02/1 Solid (dry wo 3.0	7 08:30		
Results by Semivolatile Organic Fuel Parameter DRO Silica Gel Surrogates	s Department, S <u>Result Qual</u> 321 U	Silica G LOQ/CL 641	<u>DL</u> 199	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 06/16/17 19:05
5a Androstane (surr)	84.3	50-150		%	1		06/16/17 19:05
Batch Information Analytical Batch: XFC13434 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:05 Container ID: 1172880002-A			Prep Metho Prep Date/T	XXX37561 d: SW3550C Time: 06/13/1 Nt./Vol.: 7.17 t Vol: 1 mL	7 10:20	eanup-SG	
<u>Parameter</u> RRO Silica Gel	<u>Result Qual</u> 1420	<u>LOQ/CL</u> 641	<u>DL</u> 199	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 06/16/17 19:05
Surrogates n-Triacontane-d62 (surr)	93.8	50-150		%	1		06/16/17 19:05
Batch Information Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:05 Container ID: 1172880002-A			Prep Metho Prep Date/T Prep Initial \	XXX37561 d: SW3550C Time: 06/13/1 Wt./Vol.: 7.17 t Vol: 1 mL	7 10:20	eanup-SG	

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 17841-BH02 Client Sample ID: 17841-BH02 Client Project ID: 17841 Kwig Pipeli Lab Sample ID: 1172880002 Lab Project ID: 1172880	ne Spill	R M S	eceived Da	ate: 05/31/ [,] ate: 06/02/1 Solid (dry we 3.0	7 08:30		
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 37.4 U	<u>LOQ/CL</u> 74.8	<u>DL</u> 22.5	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzec 06/13/17 00:28
Surrogates							
4-Bromofluorobenzene (surr)	84.7	50-150		%	1		06/13/17 00:28
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 00:28 Container ID: 1172880002-B		F	Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 46.1 : Vol: 90.173	7 14:25 98 g		
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
Benzene	187 U	<u>200,02</u> 374	120	ug/Kg	1	Linito	06/13/17 00:28
Ethylbenzene	374 U	748	233	ug/Kg	1		06/13/17 00:2
o-Xylene	374 U	748	233	ug/Kg	1		06/13/17 00:2
P & M -Xylene	750 U	1500	449	ug/Kg	1		06/13/17 00:2
Toluene	374 U	748	233	ug/Kg	1		06/13/17 00:2
Surrogates							
1,4-Difluorobenzene (surr)	92.4	72-119		%	1		06/13/17 00:2
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 00:28 Container ID: 1172880002-B		F	Prep Methoo Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 46.1 : Vol: 90.173	7 14:25 98 g		

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

e Spill	R M S	eceived Da latrix: Soil/s olids (%):1	ate: 06/02/1 Solid (dry w	7 08:30		
\$						
<u>Result Qual</u> 393	<u>LOQ/CL</u> 261	<u>DL</u> 80.9	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 06/16/17 18:55
106	50-150		%	1		06/16/17 18:55
100	50-150		70	·		00/10/17 10:00
		Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ime: 06/13/1 Vt./Vol.: 26.4	7 10:23		
<u>Result Qual</u> 4190	<u>LOQ/CL</u> 261	<u>DL</u> 80.9	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/16/17 18:55
93.6	50-150		%	1		06/16/17 18:55
		Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ime: 06/13/1 Vt./Vol.: 26.4	7 10:23		
		Prep Initial V	Vt./Vol.: 26.4			
	393 106 <u>Result Qual</u> 4190	Spill R Result Qual LOQ/CL 393 261 106 50-150 Result Qual LOQ/CL 4190 261 93.6 50-150	Spill Received Dame Matrix: Soil/3 Solids (%):1 Location: Location: Result Qual LOQ/CL DL 393 261 80.9 106 50-150 Prep Batch: Prep Date/T Prep Initial V Prep Initial V Prep Extract 8 4190 261 80.9 93.6 50-150 Prep Batch: Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V 93.6 50-150 Prep Batch: Prep Date/T Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V 93.6 50-150 Prep Batch: Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V Prep Initial V	Spill Received Date: 06/02/1 Matrix: Soil/Solid (dry w Solids (%):17.4 Location: Result Qual LOQ/CL DL Units 393 261 80.9 mg/Kg 106 50-150 % Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/1 Prep Initial Wt./Vol.: 26.4 Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Result Qual LOQ/CL DL Units 4190 261 80.9 mg/Kg 93.6 50-150 % Prep Batch: XXX37562 Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL 93.6 50-150	Matrix: Soil/Solid (dry weight) Solids (%):17.4 Location: Result Qual 393 LOQ/CL 261 DL 80.9 Units mg/Kg DF 1 106 50-150 % 1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 26.401 g Prep Extract Vol: 2 mL Result Qual 4190 LOQ/CL 261 DL 80.9 Units mg/Kg DF 1 93.6 50-150 % 1 Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 26.401 g	P Spill Received Date: 06/02/17 08:30 Matrix: Soil/Solid (dry weight) Solids (%):17.4 Location: Result Qual 393 LOQ/CL 261 DL 80.9 Units mg/Kg DE 1 Allowable Limits 106 50-150 % 1 Imits Imits Imits 106 50-150 % 1 Imits Imits Imits Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 26.401 g Imits Imits Imits Result Qual 4190 LOQ/CL 261 DL 80.9 Units DE mg/Kg Allowable Limits 93.6 50-150 % 1 Imits Prep Batch: XXX37562 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Method: SW3550C Prep Date/Time: 06/13/17 10:23 Prep Initial Wt./Vol.: 26.401 g Imits

Print Date: 07/13/2017 10:28:33AM

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results by Semivolatile Organic Fuels Department, Silica GParameterResult QualLOQ/CLDRO Silica Gel65.5 U131Surrogates5a Androstane (surr)86.350-150Batch InformationAnalytical Batch: XFC13434 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-AResult QualLOQ/CLParameterResult QualLOQ/CLRRO Silica Gel360131Surrogates	Prep Date/T	d: SW3550C Time: 06/13/1 Wt./Vol.: 26.4	7 10:20	Allowable Limits	Date Analyzec 06/16/17 19:19 06/16/17 19:19
DRO Silica Gel 65.5 U 131 Surrogates 5a Androstane (surr) 86.3 50-150 Batch Information Analytical Batch: XFC13434 Analytical Method: AK102- Analytical Method: AK102- Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A Parameter Result Qual LOQ/CL RRO Silica Gel 360 131 Surrogates Surrogates Analytical Surrogates	40.5 Prep Batch: Prep Method Prep Date/T Prep Initial V	mg/Kg % XXX37561 d: SW3550C Fime: 06/13/1 Wt./Vol.: 26.4	1 1 w/SG Cle 7 10:20	<u>Limits</u>	06/16/17 19:1
Surrogates 5a Androstane (surr) 86.3 50-150 Batch Information Analytical Batch: XFC13434 Analytical Method: AK102- Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A Parameter Result Qual LOQ/CL RRO Silica Gel 360 131	Prep Batch: Prep Methoo Prep Date/T Prep Initial V	% : XXX37561 d: SW3550C Fime: 06/13/1 Wt./Vol.: 26.4	w/SG Cle 7 10:20	eanup-SG	
5a Androstane (surr) 86.3 50-150 Batch Information Analytical Batch: XFC13434 Analytical Method: AK102- Analytical Method: AK102- Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A Parameter Result Qual LOQ/CL RRO Silica Gel 360 131	Prep Method Prep Date/T Prep Initial V	XXX37561 d: SW3550C Fime: 06/13/1 Wt./Vol.: 26.4	w/SG Cle 7 10:20	eanup-SG	06/16/17 19:1:
Analytical Batch: XFC13434 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A Parameter Result Qual RRO Silica Gel 360 131 Surrogates	Prep Method Prep Date/T Prep Initial V	d: SW3550C Time: 06/13/1 Wt./Vol.: 26.4	7 10:20	eanup-SG	
Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A Parameter Result Qual LOQ/CL RRO Silica Gel 360 Surrogates	Prep Method Prep Date/T Prep Initial V	d: SW3550C Time: 06/13/1 Wt./Vol.: 26.4	7 10:20	eanup-SG	
RRO Silica Gel 360 131 Surrogates			_		
RRO Silica Gel 360 131 Surrogates		Linito	DE	<u>Allowable</u> Limits	Date Analyzed
	<u>DL</u> 40.5	<u>Units</u> mg/Kg	<u>DF</u> 1	Linits	06/16/17 19:1
- Triana de (200 (200 m))					
n-Triacontane-d62 (surr) 102 50-150		%	1		06/16/17 19:1
Batch Information					
Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880003-A	Prep Date/T	d: SW3550C Time: 06/13/1 Wt./Vol.: 26.4	7 10:20	eanup-SG	

coc

J flagging is activated

Results of 17841-BH03 Client Sample ID: 17841-BH03 Client Project ID: 17841 Kwig Pipeli Lab Sample ID: 1172880003 Lab Project ID: 1172880	ne Spill	R M S	eceived Da	ate: 05/31/ [;] ate: 06/02/1 Solid (dry wo 7.4	7 08:30		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 29.4 U	<u>LOQ/CL</u> 58.8	<u>DL</u> 17.7	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 06/13/17 00:4
Surrogates							
4-Bromofluorobenzene (surr)	94.7	50-150		%	1		06/13/17 00:4
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 00:46 Container ID: 1172880003-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 40.9 Vol: 83.779	7 14:35 g		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DE	<u>Allowable</u> Limits	Date Analyze
Benzene	147 U	294	<u>DL</u> 94.1	ug/Kg	1	LITIIIS	06/13/17 00:4
Ethylbenzene	294 U	588	184	ug/Kg	1		06/13/17 00:4
o-Xylene	294 U	588	184	ug/Kg	1		06/13/17 00:4
P & M -Xylene	590 U	1180	353	ug/Kg	1		06/13/17 00:4
Toluene	1560	588	184	ug/Kg	1		06/13/17 00:4
Surrogates							
1,4-Difluorobenzene (surr)	93.2	72-119		%	1		06/13/17 00:4
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 00:46 Container ID: 1172880003-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 40.9 : Vol: 83.779	7 14:35 g		

SGS North America Inc.

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 17841-BH04

Client Sample ID: **17841-BH04** Client Project ID: **17841 Kwig Pipeline Spill** Lab Sample ID: 1172880004 Lab Project ID: 1172880 Collection Date: 05/31/17 15:05 Received Date: 06/02/17 08:30 Matrix: Soil/Solid (dry weight) Solids (%):16.1 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1-Methylnaphthalene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
2-Methylnaphthalene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Acenaphthene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Acenaphthylene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Anthracene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Benzo(a)Anthracene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Benzo[a]pyrene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Benzo[b]Fluoranthene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Benzo[g,h,i]perylene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Benzo[k]fluoranthene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Chrysene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Dibenzo[a,h]anthracene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Fluoranthene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Fluorene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Indeno[1,2,3-c,d] pyrene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Naphthalene	61.5 U	123	36.8	ug/Kg	1	06/12/17 16:13
Phenanthrene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Pyrene	76.5 U	153	46.0	ug/Kg	1	06/12/17 16:13
Surrogates						
2-Fluorobiphenyl (surr)	92.5	46-115		%	1	06/12/17 16:13
Terphenyl-d14 (surr)	95.2	58-133		%	1	06/12/17 16:13

Batch Information

Analytical Batch: XMS10113 Analytical Method: 8270D SIM (PAH) Analyst: S.G Analytical Date/Time: 06/12/17 16:13 Container ID: 1172880004-A Prep Batch: XXX37487 Prep Method: SW3550C Prep Date/Time: 06/05/17 13:25 Prep Initial Wt./Vol.: 22.784 g Prep Extract Vol: 5 mL

Print Date: 07/13/2017 10:28:33AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group 17 of 88 Revision 1

line Spill	R M S	eceived Da atrix: Soil/ olids (%):1	ate: 06/02/1 Solid (dry we	7 08:30		
iels Result Qual 273	<u>LOQ/CL</u> 246	<u>DL</u> 76.4	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 06/05/17 21:4
109	50-150		%	1		06/05/17 21:4
ŀ	F F	Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ïme: 06/05/1 Nt./Vol.: 30.2	7 11:33		
<u>Result Qual</u> 1480	<u>LOQ/CL</u> 246	<u>DL</u> 76.4	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 06/05/17 21:4
106	50-150		%	1		06/05/17 21:4
ŀ	F F	Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ïme: 06/05/1 Nt./Vol.: 30.2	7 11:33		
	rels Result Qual 273 109 Result Qual 109 109 109	Inne Spill R M S Inels Image: Comparison of the system	Received Day Matrix: Soil/ Solids (%):1 Location: Result Qual 273 LOQ/CL 246 DL 76.4 109 50-150 Prep Batch: Prep Methor Prep Date/T Prep Initial V Prep Extract Result Qual 1480 LOQ/CL 246 DL 76.4 106 50-150	Ime Spill Received Date: 06/02/1 Matrix: Soil/Solid (dry we Solids (%):16.1 Location: Imels Image: Constraint of the second se	Matrix: Soil/Solid (dry weight) Solids (%):16.1 Location: Result Qual LOQ/CL 273 DL 246 Units DE mg/Kg 109 50-150 % 1 Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.271 g Prep Extract Vol: 2 mL Result Qual 1480 LOQ/CL 246 DL 76.4 Units DE mg/Kg Non-complexity LOQ/CL 246 DL 76.4 Units DE mg/Kg Non-complexity Prep Batch: XXX37483 Prep Method: SW3550C Non-complexity Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C	Ine Spill Received Date: 06/02/17 08:30 Matrix: Soil/Solid (dry weight) Solids (%):16.1 Location: Inels Allowable Limits Allowable 273 246 76.4 mg/Kg 1 109 50-150 % 1 Inits Allowable 109 50-150 % 1 Inits Allowable Prep Batch: XXX37483 Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./vol.: 30.271 g Allowable Inits Inits DL Units DE Result Qual LOQ/CL DL Units DE Allowable Initis 106 50-150 % 1 Initis 106 50-150 % 1 Initis Prep Method: SW3550C Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./vol.: 30.271 g Initial Wt./vol.:

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 17841-BH04 Client Sample ID: 17841-BH04				ate: 05/31/			
Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880004 Lab Project ID: 1172880	ə Spill	ן נ		ate: 06/02/1 Solid (dry w 6.1			
Results by Semivolatile Organic Fuels	s Department, S						
Parameter DRO Silica Gel	<u>Result Qual</u> 93.8 J	<u>LOQ/CL</u> 246	<u>DL</u> 76.4	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 06/05/17 23:5
urrogates 5a Androstane (surr)	92.1	50-150		%	1		06/05/17 23:5
Batch Information Analytical Batch: XFC13392 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/05/17 23:51 Container ID: 1172880004-A			Prep Date/T	d: SW3550C ime: 06/05/1 Vt./Vol.: 30.2	7 11:33	eanup-SG	
Parameter RRO Silica Gel	<u>Result Qual</u> 292	<u>LOQ/CL</u> 246	<u>DL</u> 76.4	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyze 06/05/17 23:5
urrogates n-Triacontane-d62 (surr)	90.3	50-150		%	1		06/05/17 23:5
Batch Information							
Analytical Batch: XFC13392 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/05/17 23:51 Container ID: 1172880004-A			Prep Date/T	d: SW3550C ime: 06/05/1 Vt./Vol.: 30.2	7 11:33	eanup-SG	

000

Results of 17841-BH04							
Client Sample ID: 17841-BH04 Client Project ID: 17841 Kwig Pipelii Lab Sample ID: 1172880004 Lab Project ID: 1172880 Results by Volatile Fuels	ne Spill	R M S	leceived Da	ate: 05/31/ [/] ate: 06/02/1 Solid (dry we 6.1	7 08:30		
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Gasoline Range Organics	32.4 U	64.7	19.4	mg/Kg	1		06/13/17 01:0
urrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		06/13/17 01:0
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 01:05 Container ID: 1172880004-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 40.2 Vol: 83.807	7 15:05 87 g		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyze
Benzene	162 U	323	103	ug/Kg	1		06/13/17 01:0
Ethylbenzene	324 U 324 U	647 647	202 202	ug/Kg	1		06/13/17 01:0
o-Xylene P & M -Xylene	524 U 645 U	1290	388	ug/Kg ug/Kg	1 1		06/13/17 01:0 06/13/17 01:0
Toluene	324 U	647	202	ug/Kg	1		06/13/17 01:0
urrogates				0 0			
1,4-Difluorobenzene (surr)	91.7	72-119		%	1		06/13/17 01:0
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 01:05 Container ID: 1172880004-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 40.2 Vol: 83.807	7 15:05 87 g		

000

Results of 17841-BH05 Client Sample ID: 17841-BH05 Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880005 Lab Project ID: 1172880	e Spill	R M S	eceived D	0ate: 05/31/ [/] ate: 06/02/1 Solid (dry we 9.1	7 08:30		
Results by Semivolatile Organic Fuel <u>Parameter</u> Diesel Range Organics	s <u>Result Qual</u> 929	<u>LOQ/CL</u> 398	<u>DL</u> 123	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 06/16/17 19:0
Surrogates 5a Androstane (surr)	109	50-150		%	1		06/16/17 19:0
Batch Information Analytical Batch: XFC13436 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:05 Container ID: 1172880005-A		F	Prep Metho Prep Date/T Prep Initial \	XXX37562 d: SW3550C Time: 06/13/1 Wt./Vol.: 15.8 t Vol: 2 mL			
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 7830	<u>LOQ/CL</u> 398	<u>DL</u> 123	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 06/16/17 19:0
Surrogates n-Triacontane-d62 (surr)	95.1	50-150		%	1		06/16/17 19:0
Batch Information Analytical Batch: XFC13436 Analytical Method: AK103 Analyst: KMD Analytical Date/Time: 06/16/17 19:05 Container ID: 1172880005-A		F	Prep Metho Prep Date/T Prep Initial N	XXX37562 d: SW3550C Time: 06/13/1 Nt./Vol.: 15.8 t Vol: 2 mL			

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 1 Surrogates 5a Androstane (surr) 81.6 50-150 % 1 06/16/17 1 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Method: SW3550C w/SG Cleanup-SG Analytical Method: AK102- Analytical Date/Time: 06/16/17 10:20 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./Vol.: 15.804 g Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DE Limits Date Analy RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 1 Surrogates	Client Project ID: 17841 Kwig Pipeline Spill Lab Sample ID: 1172880005 Lab Project ID: 1172880005 Solids (%):19.1 Location: Results by Semivolatile Organic Fuels Department, Silica G Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyze DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 19: Surrogates 5a Androstane (surr) 81.6 50-150 % 1 06/16/17 19: Batch Information Analytical DateTime: 06/16/17 19:24 Prep Batch: XXX37561 Prep Batch: XXX37561 Prep Batch: XXX37561 Prep DateTime: 06/16/17 19:24 Prep Batch: XXX37561 Prep Batch: XXX37561 Prep DateTime: 06/16/17 19:24 Prep Batch: XXX37561 Prep Date/Time: 06/16/17 19:24 Prep Match: SW3550C w/SG Cleanup-SG Prep Date/Time: 06/13/17 10:20 Prep Initial WL704: 15.804 g	Results of 17841-BH05							
Parameter Result Qual LOQ/CL DL Units DF Allowable DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 19 Surrogates Sarrogates Prep Batch: XXX37561 Sarrogates Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Parameter Result Qual LOQ/CL DL Units DF Allowable Prep Date/Time: 06/16/17 19:24 Prep Initial Wt:/Vol.: 15.804 g Prep Extract Vol: 1 mL Date Analy Parameter Result Qual LOQ/CL DL Units DF Allowable Initial Wt:/Vol.: 15.804 g 199 61.6 mg/Kg 1 06/16/17 19 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Date/Time: 06/13/17 10:20 Prep Mathod: SW3500C	Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 19:3 Surrogates Sarrogates Prep Batch: XXX37561 Sarrogates Sarotificatind Method: AK103- Analytical Method: AK103- Analytical M	Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880005	e Spill	F	Received Da Matrix: Soil/S Solids (%):19	ate: 06/02/1 Solid (dry w	7 08:30		
Parameter Result Qual LOQ/CL DL Units DE Limits Date Analy DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 11 Surrogates 5a Androstane (surr) 81.6 50-150 % 1 06/16/17 11 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Method: SW3550C w/SG Cleanup-SG Analyst: FDR Prep Date/Time: 06/16/17 10:20 Prep Initial WL/Vol.: 15.804 g Analytical Date/Time: 06/16/17 19:24 Prep Extract Vol: 1 mL Det Analytical Date/Time: 06/16/17 11 Det Analytical Date/Time: 06/16/17 11 Parameter Result Qual LOQ/CL DL Units DF Limits Date Analytical Date/Analytical Date/Time: 06/16/17 11 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 11 Batch Information Analytical Method: AK103- Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Analytical Method: AK103- Analytical Method: AK103- Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Initial WL/Vol.: 15:804 g Prep	Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyze DRO Silica Gel 99.5 U 199 61.6 mg/Kg 1 06/16/17 19:3 Surrogates 5a Androstane (surr) 81.6 50-150 % 1 06/16/17 19:3 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Analytical Batch: XFC13434 Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/16/17 19:2 Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyze RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19:3 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19:3 Batch Information Analytical Batch: XFC13434 Prep Method: SW3550C W/SG Cleanup-SG Analytical Method: AK103- Prep Method: SW3550C W/SG Cleanup-SG Prep Met	Results by Semivolatile Organic Fuels	s Department, S	Silica G					
5a Androstane (surr) 81.6 50-150 % 1 06/16/17 19 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Method: SW3550C w/SG Cleanup-SG Analytical Method: AK102- Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./Vol.: 15.804 g Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date Analy RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19 Batch Information Analytical Method: AK103- Prep Batch: XXX37561 Prep Batch: XXX37561 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20	5a Androstane (surr) 81.6 50-150 % 1 06/16/17 19:: Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./vol.: 15.804 g Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19:: Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19:: Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Batch: SW3550C w/SG Cleanup-SG Analytical Batch: XFC13434 Prep Batch: SW35501 9% 1 06/16/17 19:: Analytical Method: AK103- Prep Batch: XXX37561 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./vol.: 15.804 g								Date Analyzed
Analytical Batch: XFC13434 Prep Batch: XXX37561 Analytical Method: AK102- Prep Datch: XXX37561 Analytical Date/Time: 06/16/17 19:24 Prep Datch: SW3550C w/SG Cleanup-SG Container ID: 1172880005-A Prep Datc/Time: 06/13/17 10:20 Parameter Result Qual LOQ/CL DL Units DE Limits Date Analytical Method: Ak102- RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Date/Time: 06/13/17 10:20 Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20	Analytical Batch: XFC13434 Prep Batch: XXX37561 Analytical Batch: XFC13434 Prep Batch: XXX37561 Analytical Method: AK102- Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./vol.: 15.804 g Container ID: 1172880005-A Prep Initial Wt./vol.: 15.804 g Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19:3 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19:3 Batch Information Prep Method: SW3550C w/SG Cleanup-SG Prep Method: SW3550C w/SG Cleanup-SG Prep Method: SW3550C w/SG Cleanup-SG Analytical Method: AK103- Prep Batch: XXX37561 Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./vol.: 15.804 g Prep Initial Wt./vol.	•	81.6	50-150		%	1		06/16/17 19:24
Analytical Method: AK102- Analyst: FDR Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./vol.: 15.804 g Container ID: 1172880005-A Prep Initial Wt./vol.: 15.804 g Parameter Result Qual LOQ/CL DL Units DF Limits Date Analytical Gel 456 199 61.6 mg/Kg 1 06/16/17 19 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19 Batch Information Analytical Batch: XFC13434 Prep Method: SW3550C w/SG Cleanup-SG Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20	Analytical Method: AK102- Analyst: FDR Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./Vol.: 15.804 g Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits Date Analyze RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 19:2 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19:2 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Date/Time: 06/13/17 10:20	Batch Information							
Parameter Result Qual LOQ/CL DL Units DF Limits Date Analy RRO Silica Gel 456 199 61.6 mg/Kg 1 06/16/17 1 Surrogates n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 1 Batch Information Analytical Batch: XFC13434 Prep Batch: XXX37561 Analytical Method: AK103- Prep Method: SW3550C w/SG Cleanup-SG Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./Vol.: 15.804 g	ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzeRRO Silica Gel45619961.6mg/Kg106/16/17 19:3Gurrogatesn-Triacontane-d62 (surr)92.650-150%106/16/17 19:3Batch InformationAnalytical Batch: XFC13434Prep Batch: XXX37561Analytical Method: AK103-Prep Method: SW3550C w/SG Cleanup-SGAnalytical Date/Time:06/16/17 19:24	Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:24			Prep Method Prep Date/Ti Prep Initial V	l: SW3550C ime: 06/13/1 Vt./Vol.: 15.8	7 10:20	eanup-SG	
n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19 Batch Information Analytical Batch: XFC13434 Analytical Method: AK103- Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./Vol.: 15.804 g	n-Triacontane-d62 (surr) 92.6 50-150 % 1 06/16/17 19:3 Batch Information Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:24 Prep Initial Wt./Vol.: 15.804 g								<u>Date Analyzed</u> 06/16/17 19:24
Batch Information Analytical Batch: XFC13434 Analytical Method: AK103- Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./Vol.: 15.804 g	Batch Information Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:24 Prep Date/Time: 06/13/17 10:20 Prep Initial Wt./Vol.: 15.804 g	Surrogates							
Analytical Batch: XFC13434Prep Batch: XXX37561Analytical Method: AK103-Prep Method: SW3550C w/SG Cleanup-SGAnalyst: FDRPrep Date/Time: 06/13/17 10:20Analytical Date/Time: 06/16/17 19:24Prep Initial Wt./Vol.: 15.804 g	Analytical Batch: XFC13434Prep Batch: XXX37561Analytical Method: AK103-Prep Method: SW3550C w/SG Cleanup-SGAnalyst: FDRPrep Date/Time: 06/13/17 10:20Analytical Date/Time: 06/16/17 19:24Prep Initial Wt./Vol.: 15.804 g	n-Triacontane-d62 (surr)	92.6	50-150		%	1		06/16/17 19:24
Analytical Method: AK103-Prep Method: SW3550C w/SG Cleanup-SGAnalyst: FDRPrep Date/Time: 06/13/17 10:20Analytical Date/Time: 06/16/17 19:24Prep Initial Wt./Vol.: 15.804 g	Analytical Method: AK103-Prep Method: SW3550C w/SG Cleanup-SGAnalyst: FDRPrep Date/Time: 06/13/17 10:20Analytical Date/Time: 06/16/17 19:24Prep Initial Wt./Vol.: 15.804 g	Batch Information							
		Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:24			Prep Method Prep Date/Ti Prep Initial W	l: SW3550C ime: 06/13/1 Vt./Vol.: 15.8	7 10:20	eanup-SG	

000

Results of 17841-BH05 Client Sample ID: 17841-BH05 Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880005 Lab Project ID: 1172880	e Spill	R M S	eceived Da	ate: 05/31/ [,] ate: 06/02/1 Solid (dry we 9.1	7 08:30		
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
Gasoline Range Organics	30.3 U	60.6	18.2	mg/Kg	1	Linito	06/13/17 01:23
				0 0			
Gurrogates 4-Bromofluorobenzene (surr)	87.2	50-150		%	1		06/13/17 01:23
	07.2	50-150		70	I		00/13/17 01.23
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 01:23 Container ID: 1172880005-B			Prep Date/Ti Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 33.1 Vol: 76.845	7 15:21 83 g		
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	152 U	303	97.0	ug/Kg	1		06/13/17 01:2
Ethylbenzene	303 U	606	189	ug/Kg	1		06/13/17 01:23
o-Xylene	303 U	606	189	ug/Kg	1		06/13/17 01:23
P & M -Xylene	605 U	1210	364	ug/Kg	1		06/13/17 01:23
Toluene	1670	606	189	ug/Kg	1		06/13/17 01:23
Surrogates							
1,4-Difluorobenzene (surr)	92	72-119		%	1		06/13/17 01:2
Batch Information Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 01:23 Container ID: 1172880005-B			Prep Date/Ti Prep Initial V	VXX30647 I: SW5035A ime: 05/31/1 Vt./Vol.: 33.1 Vol: 76.845	7 15:21 83 g		

000

Diesel Range Organics 55 Furrogates 5a Androstane (surr) 10 Batch Information Analytical Batch: XFC13436 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A	52 22	26 7 0-150 Prep Prep	70.2	<u>Units</u> mg/Kg %	<u>DF</u> 1 1	<u>Allowable</u> Limits	Date Analyze 06/16/17 19:1 06/16/17 19:1
Diesel Range Organics 55 Furrogates 5a Androstane (surr) 10 Batch Information Analytical Batch: XFC13436 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A	52 22	26 7 0-150 Prep Prep	70.2	mg/Kg	1		06/16/17 19:1
Batch Information 10 Batch Information 10 Analytical Batch: XFC13436 10 Analytical Method: AK102 10 Analyst: KMD 10 Analytical Date/Time: 06/16/17 19:15 1172880006-A		26 7 0-150 Prep Prep	70.2		1		
5a Androstane (surr) 10 Batch Information	05 50	Prep Prep		%	1		06/16/17 19:1
Batch Information Analytical Batch: XFC13436 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A	05 50	Prep Prep		%	1		06/16/17 19:1
Analytical Batch: XFC13436 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A		Prep	Batch: XX				
Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A		Prep	Batch: XX				
Parameter Res		Prep	Method: S Date/Time: Initial Wt./V Extract Vol:	06/13/17 ol.: 30.094			
			ור	Linita	DE	Allowable	Data Apalyza
Residual Range Organics 563				<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyze 06/16/17 19:1
urrogates							
n-Triacontane-d62 (surr) 90	.1 50	0-150		%	1		06/16/17 19:1
Batch Information							
Analytical Batch: XFC13436 Analytical Method: AK103 Analyst: KMD Analytical Date/Time: 06/16/17 19:15 Container ID: 1172880006-A		Prep Prep Prep	9 Batch: XXX 9 Method: SV 9 Date/Time: 9 Initial Wt./V 9 Extract Vol:	W3550C 06/13/17 ol.: 30.094			

000

Results of 17841-BH06							
Client Sample ID: 17841-BH06 Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880006 Lab Project ID: 1172880	∋ Spill	 	Collection D Received Da Matrix: Soil/ Solids (%):1 Location:	ate: 06/02/1 Solid (dry w	7 08:30		
Results by Semivolatile Organic Fuels	s Department, S	Silica G					
<u>Parameter</u> DRO Silica Gel	<u>Result Qual</u> 56.5 U	<u>LOQ/CL</u> 113	<u>DL</u> 35.1	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 06/16/17 19:34
urrogates 5a Androstane (surr)	92.9	50-150		%	1		06/16/17 19:34
Batch Information							
Analytical Batch: XFC13434 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/16/17 19:34 Container ID: 1172880006-A			Prep Date/T	d: SW3550C ime: 06/13/1 Vt./Vol.: 30.0	7 10:20	eanup-SG	
<u>Parameter</u> RRO Silica Gel	<u>Result Qual</u> 452	<u>LOQ/CL</u> 113	<u>DL</u> 35.1	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzeo 06/16/17 19:3-
urrogates n-Triacontane-d62 (surr)	113	50-150		%	1		06/16/17 19:3
Batch Information							
Analytical Batch: XFC13434 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/16/17 19:34 Container ID: 1172880006-A			Prep Date/T	d: SW3550C ime: 06/13/1 Vt./Vol.: 30.0	7 10:20	eanup-SG	

000

Results of 17841-BH06 Client Sample ID: 17841-BH06 Client Project ID: 17841 Kwig Pipeli Lab Sample ID: 1172880006 Lab Project ID: 1172880	ne Spill	F M S	Received Da	ate: 05/31/ [,] ate: 06/02/1 Solid (dry we 7.6	7 08:30		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 25.7 U	<u>LOQ/CL</u> 51.4	<u>DL</u> 15.4	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzec</u> 06/13/17 01:42
	23.7 0	51.4	13.4	mg/rtg	I		00/10/17 01.42
Surrogates 4-Bromofluorobenzene (surr)	110	50-150		%	1		06/13/17 01:42
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 01:42 Container ID: 1172880006-B			Prep Date/Ti Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 50.7 : Vol: 91.773	7 15:45 01 g		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Benzene	129 U	257	<u>DL</u> 82.2	ug/Kg	1	LITIIIS	06/13/17 01:42
Ethylbenzene	257 U	514	160	ug/Kg	1		06/13/17 01:4
o-Xylene	257 U	514	160	ug/Kg	1		06/13/17 01:4
P & M -Xylene	515 U	1030	308	ug/Kg	1		06/13/17 01:4
Toluene	1770	514	160	ug/Kg	1		06/13/17 01:4
Surrogates							
1,4-Difluorobenzene (surr)	92.7	72-119		%	1		06/13/17 01:4
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 01:42 Container ID: 1172880006-B			Prep Date/Ti Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 50.7 Vol: 91.773	7 15:45 01 g		

000

Client Project ID: 17841 Kwig Pipeline Spill Received Date: 06/02/17 08:30 Lab Sample ID: 1172880007 Matrix: Soil/Solid (dry weight) Lab Project ID: 1172880 Solids (%):17.0 Location: Location: Parameter Result Qual LOQ/CL DL Units DE Diesel Range Organics 231 J 234 72.4 mg/Kg 1 06 Surrogates 5a Androstane (surr) 108 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Analytical Date/Time: 06/05/17 22:13 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Parameter Result Qual LOQ/CL DL Units DE Limits D Residual Range Organics 1150 234 72.4 mg/Kg 1 06 Surrogates n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 1 06	t Project ID: 177241 Kwig Pipeline Spill Sample ID: 1172880007 Project ID: 1172880 Project ID: 1172880 Range Organics 231 J 234 Range Organics 231 J 234 reter Result Qual LOQ/CL DL Units DF Limits Date Analyzed o6/05/17 22:13 pates drostane (surr) 108 50-150 Nethod: KXX37483 Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 12:13 pates contane-d62 (surr) 103 50-150 Nethod: SW3550C Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 Nethod: SW3550C Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 22:13 Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C Prep Date/Time: 06/05/17 11	Results of 17841-BH0A			-llasti D	-1 05/04/		
Parameter Result Qual LOQ/CL DL Units DF Allowable Dotsel Diesel Range Organics 231 J 234 72.4 mg/Kg 1 06 Surrogates 5a Androstane (surr) 108 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL Parameter Result Qual LOQ/CL DL Units DF Allowable Parameter Result Qual LOQ/CL DL Units DF Allowable Residual Range Organics 1150 234 72.4 mg/Kg 1 06 Surrogates n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 234 72.4 mg/Kg 1 06	Notes Result Qual LOQ/CL DL Units DE Limits Date Analyzed I Range Organics 231 J 234 72.4 mg/Kg 1 06/05/17 22:13 pates drostane (surr) 108 50-150 % 1 06/05/17 22:13 alytical Batch: XFC13392 Prep Batch: XXX37483 XXX37483 alytical Method: Ak102 Prep Date/Time: 06/05/17 11:33 alytical Date/Time: 06/05/17 22:13 Prep Date/Time: 06/05/17 11:33 alytical Date/Time: 06/05/17 12:2:13 Prep Initial Wt./vol.: 30.141 g neter Result Qual LOQ/CL DL Units DF ual Range Organics 1150 234 72.4 mg/Kg 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 htioreal Method: AK103 Prep Batch: XXX37483 Prep Method: SW3550C alytical Batch: XFC13392 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 22:13 htifal Method	Lab Sample ID: 1172880007	e Spill	R M S	eceived Da latrix: Soil/s olids (%):1	ate: 06/02/1 Solid (dry w	7 08:30	
ParameterResult QualLOQ/CLDLUnitsDELimitsDeDiesel Range Organics231 J23472.4mg/Kg106Surrogates5a Androstane (surr)10850-150%106Batch InformationAnalytical Batch: XFC13392 Analytical Method: AK102 Analytical Date/Time: 06/05/17 22:13 Container ID: 1172880007-APrep Batch: XXX37483 Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mLParameter Residual Range OrganicsResult Qual 1150LOQ/CL 234DL T2.4Units mg/KgDE Limits DE LimitsParameter Residual Range OrganicsResult Qual 1150LOQ/CL 234DL 72.4Units mg/KgDE LimitsDi Di LimitsBatch Information Analytical Batch: XFC1339210350-150%106Parameter Residual Range OrganicsPrep Batch: XXX37483Prep Batch: XXX37483Di Analytical Batch: XFC13392	heter Result Qual LOQ/CL DL Units DF Limits Date Analyzed I Range Organics 231 J 234 72.4 mg/Kg 1 06/05/17 22:13 plates drostane (surr) 108 50-150 % 1 06/05/17 22:13 h Information alytical Batch: XFC13392 Prep Batch: XXX37483 Prep Method: SW3550C alytical Method: AK102 Prep Date/Time: 06/05/17 22:13 Prep Date/Time: 06/05/17 11:33 alytical Date/Time: 06/05/17 22:13 Prep Initial Wt./Vol.: 30.141 g heter Result Qual LOQ/CL DL Units DF Limits Date Analyzed heter Result Qual LOQ/CL DL Units DF Limits Date Analyzed ual Range Organics 1150 234 72.4 mg/Kg 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 alytical Batch: XFC13392 Prep Method: SW3550C alytical Method: AK103 Prep Method: SW3550C alytical Method: AK103 Prep Method: SW3550C alytical Method: AK103 Prep Method: SW3550C Prep Method: SW3550C alytical Method: SW3550C Prep Method: SW3550C	Results by Semivolatile Organic Fuel	S					
5a Androstane (surr) 108 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Prep Method: Surrogates Prep Batch: XXX37483 n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Batch: XXX37483	drostane (surr) 108 50-150 % 1 06/05/17 22:13 h Information alytical Batch: XFC13392 Prep Batch: XXX37483 Prep Method: SW3550C alytical Method: AK102 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 alytical Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Extract Vol: 2 mL neter Result Qual LOQ/CL DL Units DF Limits Date Analyzed ual Range Organics 1150 234 72.4 mg/Kg 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 alytical Batch: XFC13392 Prep Batch: XXX37483 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 alytical Batch: XFC13392 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 alytical Date/Time: 06/05/17 22:13 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33 Prep Date/Time: 06/05/17 11:33							-
Batch Information Analytical Batch: XFC13392 Analytical Batch: XFC13392 Analytical Method: AK102 Analytical Date/Time: 06/05/17 22:13 Container ID: 1172880007-A Parameter Result Qual LOQ/CL DL Units DE Limits Discontainer ID: 1172880007-A Prep Extract Vol: 2 mL Parameter Result Qual LOQ/CL DL Units DF Limits Discontainer ID: 1172880007-A Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Discontainer ID: 1172880007-A Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Discontainer ID: 1172880007-A Prep Extract Vol: 2 mL Prep Extract Vol: 2 mL Discontainer ID: 117280007-A Prep Extract Vol: 2 mL Discontainer ID: 117280007-A Prep Extract Vol: 2 mL Prep Initial Wt./Vol.: 30.141 g Prep Initial Wt./Vol.: 30.141 g Prep Initial Wt./Vol.: 30.141 g	Information alytical Batch: XFC13392 alytical Batch: XFC13392 alytical Batch: XFC13392 alytical Batch: XFC13392 alytical Date/Time: 06/05/17 12:13 hteter Prep Date/Time: 06/05/17 22:13 hteter Result Qual LOQ/CL DL Units DE Limits Date Analyzed ual Range Organics 1150 234 72.4 meter Result Qual 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) 103 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) 103 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) 103 Prep Batch: XXX37483 alytical Batch: XFC13392 alytical Batch: XFC13392 alytical Date/Time: 06/05/17 12:13 alytical Date/Time: 06	Surrogates						
Analytical Batch: XFC13392 Prep Batch: XXX37483 Analytical Method: AK102 Prep Method: SW3550C Analyst: FDR Prep Date/Time: 06/05/17 11:33 Analytical Date/Time: 06/05/17 22:13 Prep Initial Wt./vol.: 30.141 g Container ID: 1172880007-A Prep Extract Vol: 2 mL Parameter Result Qual LOQ/CL DL Units DF Limits Di Residual Range Organics 1150 234 72.4 mg/Kg 1 06 Surrogates n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Batch: XXX37483	Alytical Batch: XFC13392 Alytical Method: AK102 Alytical Method: AK102 Alytical Date/Time: 06/05/17 22:13 htainer ID: 1172880007-A Prep Batch: XXX37483 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL Allowable Limits Date Analyzed 06/05/17 22:13 prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL Allowable Limits Date Analyzed 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 h Information Alytical Batch: XFC13392 Alytical Batch: XFC13392 Alytical Date/Time: 06/05/17 22:13 Prep Initial Wt./Vol.: 30.141 g	5a Androstane (surr)	108	50-150		%	1	06/05/17 22:13
Analytical Method: AK102 Analyst: FDR Analytical Date/Time: 06/05/17 22:13 Container ID: 1172880007-APrep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mLParameter Residual Range OrganicsResult Qual 1150LOQ/CL 234DL 72.4Units mg/KgDF LimitsLimits DE LimitsDE LimitsDE DE <b< td=""><td>alytical Method: AK102 alyst: FDR alytical Date/Time: 06/05/17 22:13 htainer ID: 1172880007-A Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL <u>Allowable</u> Limits Det Analyzed ual Range Organics 1150 234 72.4 mg/Kg 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) Prep Batch: XXX37483 alytical Batch: XFC13392 alytical Method: AK103 alytical Method: AK103 alytical Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g</td><td>Batch Information</td><td></td><td></td><td></td><td></td><td></td><td></td></b<>	alytical Method: AK102 alyst: FDR alytical Date/Time: 06/05/17 22:13 htainer ID: 1172880007-A Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g Prep Extract Vol: 2 mL <u>Allowable</u> Limits Det Analyzed ual Range Organics 1150 234 72.4 mg/Kg 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) 103 50-150 % 1 06/05/17 22:13 pates contane-d62 (surr) Prep Batch: XXX37483 alytical Batch: XFC13392 alytical Method: AK103 alytical Method: AK103 alytical Date/Time: 06/05/17 22:13 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Method: SW3550C Prep Date/Time: 06/05/17 11:33 Prep Initial Wt./Vol.: 30.141 g	Batch Information						
Parameter Result Qual LOQ/CL DL Units DF Limits Date Residual Range Organics 1150 234 72.4 mg/Kg 1 06 Surrogates n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483 Prep Batch: XXX37483	neterResult QualLOQ/CLDLUnitsDFLimitsDate Analyzedual Range Organics115023472.4mg/Kg106/05/17 22:13jatescontane-d62 (surr)10350-150%106/05/17 22:13n Informationalytical Batch: XFC13392Prep Batch: XXX37483alytical Method: AK103Prep Method: SW3550Calyst: FDRPrep Date/Time: 06/05/17 22:13alytical Date/Time: 06/05/17 22:13Prep Initial Wt./Vol.: 30.141 g	Analytical Method: AK102 Analyst: FDR Analytical Date/Time: 06/05/17 22:13		F	Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ime: 06/05/1 Vt./Vol.: 30.1	7 11:33	
n-Triacontane-d62 (surr) 103 50-150 % 1 06 Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483	contane-d62 (surr)10350-150%106/05/17 22:13Informationalytical Batch: XFC13392alytical Method: AK103alytical Method: AK103alytical Date/Time: 06/05/17 22:13Prep Date/Time: 06/05/17 11:33Prep Initial Wt./Vol.: 30.141 g							
Batch Information Analytical Batch: XFC13392 Prep Batch: XXX37483	Information alytical Batch: XFC13392 Prep Batch: XXX37483 alytical Method: AK103 Prep Method: SW3550C alyst: FDR alytical Date/Time: 06/05/17 22:13 Prep Initial Wt./Vol.: 30.141 g	Surrogates						
Analytical Batch: XFC13392 Prep Batch: XXX37483	alytical Batch: XFC13392Prep Batch: XXX37483alytical Method: AK103Prep Method: SW3550Calyst: FDRPrep Date/Time: 06/05/17 11:33alytical Date/Time: 06/05/17 22:13Prep Initial Wt./Vol.: 30.141 g	n-Triacontane-d62 (surr)	103	50-150		%	1	06/05/17 22:13
	alytical Method: AK103 Prep Method: SW3550C alyst: FDR Prep Date/Time: 06/05/17 22:13 Prep Initial Wt./Vol.: 30.141 g	Batch Information						
Analyst: FDRPrep Date/Time: 06/05/17 11:33Analytical Date/Time: 06/05/17 22:13Prep Initial Wt./Vol.: 30.141 g		Analytical Method: AK103 Analyst: FDR Analytical Date/Time: 06/05/17 22:13		F	Prep Methoo Prep Date/T Prep Initial V	d: SW3550C ime: 06/05/1 Vt./Vol.: 30.1	7 11:33	

000

Results of 17841-BH0A				05/04/			
Client Sample ID: 17841-BH0A Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880007 Lab Project ID: 1172880	e Spill	Collection Date: 05/31/17 15:10 Received Date: 06/02/17 08:30 Matrix: Soil/Solid (dry weight) Solids (%):17.0 Location:					
Results by Semivolatile Organic Fuels	Department, S	Silica G					
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyze
DRO Silica Gel	117 U	234	72.4	mg/Kg	1		06/06/17 00:2
urrogates							
5a Androstane (surr)	90.9	50-150		%	1		06/06/17 00:2
Batch Information							
Analytical Batch: XFC13392 Analytical Method: AK102- Analyst: FDR Analytical Date/Time: 06/06/17 00:20 Container ID: 1172880007-A			Prep Date/T	d: SW3550C ïme: 06/05/1 Nt./Vol.: 30.1	7 11:33	eanup-SG	
Deventer	De suit Quel	1.00/01		L la ita		Allowable	
<u>Parameter</u> RRO Silica Gel	<u>Result Qual</u> 177 J	<u>LOQ/CL</u> 234	<u>DL</u> 72.4	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyze 06/06/17 00:2
urrogates							
n-Triacontane-d62 (surr)	92.1	50-150		%	1		06/06/17 00:2
Batch Information							
Analytical Batch: XFC13392 Analytical Method: AK103- Analyst: FDR Analytical Date/Time: 06/06/17 00:20 Container ID: 1172880007-A			Prep Date/T	d: SW3550C ime: 06/05/1 Nt./Vol.: 30.1	7 11:33	eanup-SG	

Results of 17841-BH0A Client Sample ID: 17841-BH0A Client Project ID: 17841 Kwig Pipeli Lab Sample ID: 1172880007 Lab Project ID: 1172880	ne Spill	F N S	Collection D Received Da Matrix: Soil/S Solids (%):1 ocation:				
Results by Volatile Fuels			_				
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyze
Gasoline Range Organics	22.1 J	64.3	19.3	mg/Kg	1		06/13/17 02:0
urrogates							
4-Bromofluorobenzene (surr)	103	50-150		%	1		06/13/17 02:0
. ,							
Batch Information							
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/13/17 02:01 Container ID: 1172880007-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 36.6 : Vol: 80.394	7 15:10 641 g		
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyze
Benzene	161 U	322	103	ug/Kg	1		06/13/17 02:0
Ethylbenzene	322 U	643	201	ug/Kg	1		06/13/17 02:0
o-Xylene	322 U	643	201	ug/Kg	1		06/13/17 02:0
P & M -Xylene	645 U	1290	386	ug/Kg	1		06/13/17 02:0
Toluene	322 U	643	201	ug/Kg	1		06/13/17 02:0
Surrogates							
1,4-Difluorobenzene (surr)	93.1	72-119		%	1		06/13/17 02:0
Batch Information							
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/13/17 02:01 Container ID: 1172880007-B			Prep Date/T Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 36.6 : Vol: 80.394	7 15:10 641 g		

SGS North America Inc.

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Lab Project ID: 1172880 Results by Volatile Fuels Parameter Gasoline Range Organics			olids (%):					
Parameter		Location:						
	<u>Result Qual</u> 1.94 U	<u>LOQ/CL</u> 1.94	<u>DL</u> 0.581	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 06/12/17 23:1	
urrogates								
4-Bromofluorobenzene (surr)	92.9	50-150		%	1		06/12/17 23:1	
Batch Information								
Analytical Batch: VFC13673 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/12/17 23:13 Container ID: 1172880008-A		F F F	Prep Methoo Prep Date/Ti Prep Initial V	VXX30647 I: SW5035A ime: 05/31/1 Vt./Vol.: 64.5 Vol: 25 mL	7 14:10			
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyze	
Benzene	9.68 U	9.68	3.10	ug/Kg	1		06/12/17 23:	
Ethylbenzene	19.4 U	19.4	6.04	ug/Kg	1		06/12/17 23:	
o-Xylene	19.4 U	19.4	6.04	ug/Kg	1		06/12/17 23:	
⊃ & M -Xylene Toluene	38.7 U 19.4 U	38.7 19.4	11.6 6.04	ug/Kg ug/Kg	1 1		06/12/17 23: 06/12/17 23:	
urrogates				0 0				
1,4-Difluorobenzene (surr)	94.2	72-119		%	1		06/12/17 23:	
Batch Information								
Analytical Batch: VFC13673 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/12/17 23:13 Container ID: 1172880008-A		F F	Prep Methoo Prep Date/Ti Prep Initial V	VXX30647 d: SW5035A ime: 05/31/1 Vt./Vol.: 64.5 Vol: 25 mL	7 14:10			

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 17841-TMW01 Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880009 Lab Project ID: 1172880	ə Spill	Collection Date: 05/31/17 16:00 Received Date: 06/02/17 08:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels	5		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 1.20	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/11/17 19:4
urrogates 5a Androstane (surr)	82.9	50-150		%	1		06/11/17 19:4
Analytical Batch: XFC13418 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/11/17 19:44 Container ID: 1172880009-D			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW35200 me: 06/08/* /t./Vol.: 255	17 08:57		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 1.00	<u>LOQ/CL</u> 0.490	<u>DL</u> 0.147	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyze 06/11/17 19:4
urrogates n-Triacontane-d62 (surr)	87.1	50-150		%	1		06/11/17 19:4
Batch Information							
Analytical Batch: XFC13418 Analytical Method: AK103 Analyst: KMD Analytical Date/Time: 06/11/17 19:44 Container ID: 1172880009-D			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW35200 me: 06/08/1 /t./Vol.: 255	17 08:57		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 17841-TMW01 Client Sample ID: 17841-TMW01			Collection Da				
Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880009 Lab Project ID: 1172880	e Spill	N	Received Da Aatrix: Water Solids (%): .ocation:			und)	
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.205	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 06/09/17 20:0
u rrogates 4-Bromofluorobenzene (surr)	116	50-150		%	1		06/09/17 20:0
Batch Information							
Analytical Batch: VFC13668 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/09/17 20:06 Container ID: 1172880009-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 06/09/′ ′t./Vol.: 5 m	17 08:00		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyze
Benzene	0.250 U	0.500	0.150	ug/L	1		06/09/17 20:0
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/09/17 20:0
p-Xylene	1.67	1.00	0.310	ug/L	1		06/09/17 20:0
^o & M -Xylene	0.620 J	2.00	0.620	ug/L	1		06/09/17 20:0
Foluene	47.5	1.00	0.310	ug/L	1		06/09/17 20:0
urrogates							
1,4-Difluorobenzene (surr)	91.9	77-115		%	1		06/09/17 20:0
Batch Information							
Analytical Batch: VFC13668 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/09/17 20:06 Container ID: 1172880009-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 06/09/′ ′t./Vol.: 5 m	17 08:00		

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 17841-TMW02 Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880010 Lab Project ID: 1172880	e Spill	Collection Date: 05/31/17 16:32 Received Date: 06/02/17 08:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels	S		_				
Parameter Diesel Range Organics	<u>Result Qual</u> 0.991	<u>LOQ/CL</u> 0.610	<u>DL</u> 0.183	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 06/11/17 19:54
Surrogates 5a Androstane (surr)	62.1	50-150		%	1		06/11/17 19:54
Batch Information Analytical Batch: XFC13418 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/11/17 19:54 Container ID: 1172880010-D			Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW35200 me: 06/08/1 /t./Vol.: 246	17 08:57		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 1.71	<u>LOQ/CL</u> 0.508	<u>DL</u> 0.152	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 06/11/17 19:54
Surrogates n-Triacontane-d62 (surr)	62.5	50-150		%	1		06/11/17 19:54
Batch Information Analytical Batch: XFC13418 Analytical Method: AK103 Analyst: KMD Analytical Date/Time: 06/11/17 19:54 Container ID: 1172880010-D			Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW3520C me: 06/08/1 /t./Vol.: 246	17 08:57		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 17841-TMW02 Client Sample ID: 17841-TMW02 Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880010 Lab Project ID: 1172880	e Spill	Collection Date: 05/31/17 16:32 Received Date: 06/02/17 08:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			<u> </u>					
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0463 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyze 06/12/17 18:3	
urrogates 4-Bromofluorobenzene (surr)	110	50-150		%	1		06/12/17 18:3	
				70	·		00/12/11 1010	
Analytical Batch: VFC13671 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/12/17 18:31 Container ID: 1172880010-A			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 06/12/1 't./Vol.: 5 m	17 08:00			
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyze	
Benzene	0.250 U	0.500	0.150	ug/L	1		06/12/17 18:3	
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/12/17 18:3	
o-Xylene	0.860 J	1.00	0.310	ug/L	1		06/12/17 18:3	
^o & M -Xylene	0.720 J	2.00	0.620	ug/L	1		06/12/17 18:3	
Foluene	7.47	1.00	0.310	ug/L	1		06/12/17 18:	
urrogates								
1,4-Difluorobenzene (surr)	91.6	77-115		%	1		06/12/17 18:	
Batch Information								
Analytical Batch: VFC13671 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/12/17 18:31 Container ID: 1172880010-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/12/1 't./Vol.: 5 m	17 08:00			

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 17841-TMW0A Client Sample ID: 17841-TMW0A Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880011 Lab Project ID: 1172880	e Spill	F T S	Collection Da Received Da Matrix: Wate Solids (%): _ocation:	te: 06/02/	17 08:30		
Results by Semivolatile Organic Fuel	s						
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyze
Diesel Range Organics	1.16	0.625	0.188	mg/L	1		06/11/17 20:0
urrogates				<u>.</u>			
5a Androstane (surr)	71.4	50-150		%	1		06/11/17 20:
Batch Information							
Analytical Batch: XFC13418 Analytical Method: AK102 Analyst: KMD Analytical Date/Time: 06/11/17 20:04 Container ID: 1172880011-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 06/08/1 /t./Vol.: 240	7 08:57		
<u>Parameter</u> Residual Range Organics	Result Qual 2.46	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.156	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 06/11/17 20:
urrogates							
n-Triacontane-d62 (surr)	72	50-150		%	1		06/11/17 20:
Batch Information							
Analytical Batch: XFC13418 Analytical Method: AK103 Analyst: KMD Analytical Date/Time: 06/11/17 20:04 Container ID: 1172880011-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 06/08/1 /t./Vol.: 240	7 08:57		

Results of 17841-TMW0A Client Sample ID: 17841-TMW0A Client Project ID: 17841 Kwig Pipelin Lab Sample ID: 1172880011 Lab Project ID: 1172880	e Spill	Collection Date: 05/31/17 16:33 Received Date: 06/02/17 08:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels			<u> </u>				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0468 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyze 06/12/17 18:5
urrogates 4-Bromofluorobenzene (surr)	113	50-150		%	1		06/12/17 18:5
Batch Information							
Analytical Batch: VFC13671 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/12/17 18:50 Container ID: 1172880011-A		F	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 06/12/1 /t./Vol.: 5 m	17 08:00		
Parameter Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyze
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/12/17 18:
o-Xylene	0.930 J	1.00	0.310	ug/L	1		06/12/17 18:
P & M -Xylene	0.720 J	2.00	0.620	ug/L	1		06/12/17 18:
Toluene	8.40	1.00	0.310	ug/L	1		06/12/17 18:
urrogates							
1,4-Difluorobenzene (surr)	92.7	77-115		%	1		06/12/17 18:
Batch Information							
Analytical Batch: VFC13671 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/12/17 18:50 Container ID: 1172880011-A		F	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 06/12/1 't./Vol.: 5 m	17 08:00		

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: Trip Blank (W) Client Project ID: 17841 Kwig Pipeline Lab Sample ID: 1172880012 Lab Project ID: 1172880	e Spill	R M S	eceived Da latrix: Water olids (%):	Collection Date: 05/31/17 16:00 Received Date: 06/02/17 08:30 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels									
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 06/12/17 19:0		
urrogates 4-Bromofluorobenzene (surr)	109	50-150		%	1		06/12/17 19:0		
Analytical Batch: VFC13671 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 06/12/17 19:09 Container ID: 1172880012-A		F	Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/12/1 /t./Vol.: 5 m	7 08:00				
Parameter Benzene	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 06/12/17 19:0		
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		06/12/17 19:0		
o-Xylene	1.00 U	1.00	0.310	ug/L	1		06/12/17 19:0		
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		06/12/17 19:0		
Toluene	1.00 U	1.00	0.310	ug/L	1		06/12/17 19:0		
urrogates 1,4-Difluorobenzene (surr)	93.5	77-115		%	1		06/12/17 19:0		
Batch Information									
Analytical Batch: VFC13671 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 06/12/17 19:09 Container ID: 1172880012-A		F	Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/12/1 /t./Vol.: 5 m	7 08:00				

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 138866	l 1760429 [SPT/10175] 1	Matrix	:: Soil/Solid (d	ry weight)	
QC for Samples:					
1172880001, 11728800	02, 1172880003, 1172880004, 117	2880005, 1172880006	, 1172880007		
		1			
Results by SM21 254	0G				
Parameter Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information					
Analytical Batch: SP Analytical Method: S Instrument: Analyst: S.L Analytical Date/Time	2T10175 SM21 2540G : 6/5/2017 5:37:00PM				
Print Date: 07/13/2017 10:28:	:38AM				

-

S	GS

- Duplicate Sample Summa									
Original Sample ID: 1172888011 Duplicate Sample ID: 1388662 QC for Samples: 1172880001, 1172880002, 1172880003, 117288000		380004, 1172880005,	Analysis Date: 06/05/2017 17:37 Matrix: Soil/Solid (dry weight) 004, 1172880005, 1172880006, 1172880007						
- Results by SM21 2540G									
NAME	Original	Duplicate	Units	<u>RPD (%)</u>	RPD CL				
Total Solids	89.0	90.2	%	1.30	(< 15)				
Batch Information Analytical Batch: SPT10175 Analytical Method: SM21 29 Instrument: Analyst: S.L									

SGS North America Inc.

SGS	

-

Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VXX30634] Blank Spike Lab ID: 1389884 Date Analyzed: 06/09/2017 12:37 Spike Duplicate ID: LCSD for HBN 1172880 [VXX30634] Spike Duplicate Lab ID: 1389885 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1172880009

Results by AK101									
	E	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.06	106	1.00	1.02	102	(60-120)	3.60	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	112	112	0.0500	111	111	(50-150)	0.55	
Batch Information Analytical Batch: VFC13668 Analytical Method: AK101 Instrument: Agilent 7890A Pli Analyst: ST	Batch Information Analytical Batch: VFC13668 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID					· · · · · · · · · · · · · · · · · · ·	7 08:00 g/L Extract \ g/L Extract V		

Print Date: 07/13/2017 10:28:45AM

SGS

Method Blank

Blank ID: MB for HBN 1760753 [VXX/30634] Blank Lab ID: 1389881

QC for Samples: 1172880009

Results by SW8021B

Parameter	Booulto	LOQ/CL	וח	Linito
Parameter	Results		DL	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	97	77-115		%

Batch Information

Analytical Batch: VFC13668 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 6/9/2017 11:41:00AM Prep Batch: VXX30634 Prep Method: SW5030B Prep Date/Time: 6/9/2017 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/13/2017 10:28:48AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VXX30634] Blank Spike Lab ID: 1389882 Date Analyzed: 06/09/2017 12:18 Spike Duplicate ID: LCSD for HBN 1172880 [VXX30634] Spike Duplicate Lab ID: 1389883 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1172880009

Results by SW8021B

	Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
100	96.5	97	100	99.4	99	(80-120)	2.90	(< 20)
100	99.3	99	100	97.9	98	(75-125)	1.50	(< 20)
100	96.6	97	100	95.3	95	(80-120)	1.40	(< 20)
200	195	98	200	192	96	(75-130)	1.60	(< 20)
100	92.1	92	100	92.4	92	(75-120)	0.33	(< 20)
50	97.4	97	50	98.8	99	(77-115)	1.40	
	<u>Spike</u> 100 100 100 200 100	SpikeResult10096.510099.310096.620019510092.1	SpikeResultRec (%)10096.59710099.39910096.6972001959810092.192	SpikeResultRec (%)Spike10096.59710010099.39910010096.6971002001959820010092.192100	SpikeResultRec (%)SpikeResult10096.59710099.410099.39910097.910096.69710095.32001959820019210092.19210092.4	SpikeResultRec (%)SpikeResultRec (%)10096.59710099.49910099.39910097.99810096.69710095.395200195982001929610092.19210092.492	SpikeResultRec (%)SpikeResultRec (%)CL10096.59710099.499(80-120)10099.39910097.998(75-125)10096.69710095.395(80-120)2001959820019296(75-130)10092.19210092.492(75-120)	SpikeResultRec (%)SpikeResultRec (%)CLRPD (%)10096.59710099.499(80-120)2.9010099.39910097.998(75-125)1.5010096.69710095.395(80-120)1.402001959820019296(75-130)1.6010092.19210092.492(75-120)0.33

Batch Information

Analytical Batch: VFC13668 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Prep Batch: VXX30634 Prep Method: SW5030B Prep Date/Time: 06/09/2017 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/13/2017 10:28:50AM

0	00
	UU

Method Blank									
Blank ID: MB for HBN 176053[W/ / 4 06] 6L Blank ba8 ID: 1[5036]	Matrix: Watpr (Curfacp2, ffE). r	Matrix: Watpr (Curfacp2, fft2. rounGd							
9 Q for CaS mpe: 1173ss001021173ss001121173ss0013									
) peulte 8RAK101									
OaraS ptpr) peulte . aeolinp) anPp UrPanice 010g00y	<u>bU94Qb</u> <u>Db</u> <u>y nite</u> 0⊡00 0⊡[10 SP4p	-							
Surrogates] -BroS ofluoro8pnzpnp (eurrd 106	g0-1g0 %								
Batch Information									
AnalRical Batch: XFQ1[671 AnalRical MpthoG AK101 InetruSpnt: APIlpnt 7s50A OID4FID AnalRet: CT AnalRical Datp4TiSp: 641343017 13:g]:00OM	OrpmBatch: X/ / [06] 6 OrpmMpthoG CWg0[0B OrpmDatp4TiSp: 641343017 s:00:0 OrpmInitial WtEXoIE g S b Orpm, xtract XoI: g S b	0AM							

-

Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VXX30646] Blank Spike Lab ID: 1390267 Date Analyzed: 06/12/2017 13:u0 Spike Dcpli5ate ID: LCSD for HBN 1172880 [VXX30646] Spike Dcpli5ate Lab ID: 1390268 Matrix: Water (Scrfa5e, Eff., Grocnd)

QC for Samples: 1172880010, 1172880011, 1172880012

Resclts by AK101									
	E	Blank Spike	e (mg/L)	ng/L) Spike Dcpli5ate (mg/L)					
Parameter	<u>Spike</u>	Resclt	<u>Re5 (%)</u>	<u>Spike</u>	Resclt	<u>Re5 (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organi5s	1.00	1.00	100	1.00	1.03	103	(60-120)	2.30	(< 20)
Surrogates									
4-Bromoflcorobenzene (scrr)	0.0u00	113	113	0.0u00	114	114	(u0-1u0)	1.30	
Batch Information Analyti5al Bat5h: VFC13681 Analyti5al Method: AK101 Instrcment: Agilent 8790A Pl Analyst: ST	81 Prep Bat5h: VXX30646 Prep Method: SW5030B								

Print Date: 07/13/2017 10:28:u4AM

SGS

Method Blank

Blank ID: MB for HBN 176053[W/ / 4 06] 6L Blank ba8 ID: 1[5036] Matrix: Watpr (Curfacp2, ffE). rounGd

9 Q for CaS mpe: 1173ss001021173ss001121173ss0013

) peulte 8RSW8021B

OaraS ptpr) peulte	<u>bU9 4Qb</u>	Db	<u>y nite</u>
BpnPpnp	0Bz0y	0臣00	0 ⊟ z0	ug4b
, th R 8pn₽pnp	0臣00y	1⊞0	0Ę 10	ug4b
o-/ Rpnp	0臣00y	1⊞0	0Ę 10	ug4b
O&M-/Rpnp	1 ⊞ 0y	3⊞0	01630	ug4b
Tolupnp	0臣00y	1臣0	0Ę 10	ug4b
Surrogates				
12 -Difluoro8pnPpnp (eurrd	5] E6	77-11z		%

Batch Information

AnalRical Batch: XFQ1[671 AnalRical MpthoG CWs031B InetruS pnt: Agilpnt 7s50A OID4FID AnalRet: CT AnalRical Datp4TiS p: 641343017 13:z] :00OM OrpmBatch: X/ / [06] 6 OrpmMpthoG CWz0[0B OrpmDatp4TiS p: 641348017 s:00:00AM OrpmInitial Wt⊠KoIE z S b Orpm, xtract XoI: z S b

Orint Datp: 0741[43017 10:3s:zzAM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VXX30646] Blank Spike Lab ID: 139026t DaAe y nalzde/: 06u12u2017 13:31 Spike DcpliRaAe ID: LCSD for HBN 1172880 [VXX30646] Spike DcpliRaAe Lab ID: 1390266 x aAiW (aAer ,ScrfaReE ffŒ) rocn/ P

- C for Sa%pleM 11728800

1172880010E1172880011E1172880012

seMcIAMbz SW8021B

	l	Blank Spike	,cQLP	:	Spike Dcplif	RaAe,cQLP			
mara%eAer	<u>Spike</u>	<u>s eMtlA</u>	<u>s eR,g P</u>	Spike	<u>s eMcIA</u>	<u>s eR,g P</u>	<u>CL</u>	<u>smD,gP</u>	<u>s mD CL</u>
Bendene	100	94 9	9t	100	90 G	91	, 80⊲120 P	4 3 0	,5 20 P
. Anzlbendene	100	102	102	100	97 ©	97	, 7t <12t P	t C30	,5 20 P
o⊀zlene	100	99G	99	100	94 G	9t	, 80⊲120 P	430	,5 20 P
m&x ∢zlene	200	200	100	200	190	9t	, 7t <130 P	t O20	,5 20 P
Tolcene	100	93 G	94	100	89 3	89	, 7t <120 P	4 G 0	,5 20 P
Surrogates									
1昼⊲Diflcorobendene ,McrrP	t O	101	101	t 0	99 G	100	, 77⊲1t P	1@0	

Batch Information

y nalzARal BaARh: VFC136A1 y nalzARal x eAno/: SW8021B InMac%enA: 7 gilent A8907 PID/FID y nalzMA: ST mrep BaARh: VXX30646 mrep x eAno/: SW5030B mrep DaAeuTi%e: 06/12/201A 08:00 Spike IniA(AD/oIG 100 cQL . WhaRAVol: t %L Dcpe IniA(AD/oIG 100 cQL . WhaRAVol: t %L

mrinADaAe: 07ul3u2017 10:28:t 7yx

0	00
	UU

Method Blank							
Blank ID: MB for HBN 17605 Blank Lab ID: 1350308	Mair¾V/Coxl4Colx(u(rc , pxE. iG						
9 Q for CaS mpe: 117s8800012117s88000s2117;	s8800032117s88000[211]	7s88000t 2117s880006	2117s8800072	117s880008			
d pe) lie bc AK101)					
<u>UaraS pipr</u>	<u>d pe) lie</u>	<u>Ly 9 4QL</u>	DL	Rnie			
Oaeolxnp d anEp y rEanxPe	1gst R	sġ 0	0g7t 0	SE4 E			
Surrogates							
[zBroS ofl) orobpn%pnp ue) rrG	106	t 0z1t 0		A			
Batch Information							
hnalcixPal BaiP. : XFQ13673 hnalcixPal Mpi. o(: h- 101 Ineir) Spni: hExpni 7850h L		UrpmMp UrpmDai		h 6017 8:00:00hM			
hnalcei: CK hnalcixPal Daip4KxSp: 641s4s	017 10:17:00UM		xalTig4Xolg t0 /raPiXol:stSl				

-

SGS	
202	

Blank Spike Summary									
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1390311 Date Analyzed: 06/12/2017	Spike Duplicate ID: LCSD for HBN 1172880 [VXX30647] Spike Duplicate Lab ID: 1390312 s atriM Soil/Solid xdry Wei(, tE								
mC for SaGpleR 11728800 11728800	80003%117	2880004%	a 17288000)g%l1728800	06%1728800	007%			
5 eRultRby AK101			<u> </u>						
	B	lank Spike x	G(/P(E	S	oike Duplica	ate xG(/P(E			
<u>. araGeter</u> QaRoline 5 an(e Or(anicR	<u>Spike</u> 12-g	<u>5 eRult</u> 13-3	<u>5 ec x) E</u> 106	<u>Spike</u> 12-g	<u>5 eRult</u> 13-g	<u>5 ec x) E</u> 108	<u>CL</u> x60⊲20 E	<u>5.Dx)E</u> 1-70	<u>5 . D CL</u> xh 20 E
Surrogates									
4≪BroGofluorobenzene xRurrE	1-2g	110	110	1-2g	111	111	xg0⊲g0 E	1-00	
Batch Information									
Analytical Batc, : VFC13683 Analytical s et, od: AK101 InRruGent: Agilent 8790A PIE AnalyR: ST	D/FID			. rej . rej Spik	ke Init v t-/\	SW5035A e: 06/12/201 /ol-: 12-g G(8 07:00 /P(KMract /P(KMract \		

+

Method Blank

Blank ID: MB for HBN 176053[\K/ / 4306[7] Blank Lab ID: 1350308

MairxW Coxt4Colx(u(rc , pxE. iG

9 Q for CaS mpe:

117s8800012117s88000s2117s8800032117s88000[2117s88000t 2117s8800062117s8800072117s880008

	d pe) lie bc SW8021B		_				
	UaraS pipr	<u>d pe) lie</u>		<u>Ly 9 4QL</u>	<u>DL</u>	Rnxie)
	BpnQpnp	6Bst R		1s₽	[F 00) E4z E	
	gi. clbpnQpnp	1s₽ R		st P0	- 7F80) E4z E	
	oh clpnp	1sl₹R		st P0	7 F 80) E4z E	
	U - Mh/clpnp	stPOR		t OFØ	1t P0) E4z E	
	&ol) pnp	1sR R		stP0	7F80) E4z E	
:	Surrogates						
	12[hDxfl) orobpnQpnp ue) rrG	5[F8		7sh115		Т	
_							
E	Batch Information						

%nalcixAal BaiA: XFQ13673 %nalcixAal Mpi. o(: Cv 80s1B Ineir) Spni: %Extpni 7850% UID4FID %nalcei: C& %nalcixAal Daip4&xSp: 641s4s017 10:17:00UM UrpmBaiA : X/ / 306[7 UrpmMpi. o(: Cv t 03t % UrpmDaip4&xSp: 641s4s017 8:00:00%M UrpmInxixal v iPEXoIP: t 0 E UrpmgWraAiXol: stSL

Urxni Daip: 074134s017 10:s5:03%M

-

Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VXX30647] Blank Spike Lab ID: 1390309 Date Analyzed: 06/12/2017 20:43 Spike Duplicate ID: LCSD for HBN 1172880 [VXX30647] Spike Duplicate Lab ID: 1390310 Matrix: Soil/Solid Wry (ei, Et.

%C for Sa) ples:

1172880001g1172880002g1172880003g1172880004g117288000Qg1172880006g1172880007g 1172880008

	E	Blank Spike W, /m, .			Spike Duplicate W, /m, .				
<u>Gara) eter</u>	<u>Spike</u>	Result	Rec ₩?.	<u>Spike</u>	Result	<u>Rec ₩</u> .	CL	<u>RGDW</u> ₽.	RGD CL
Benzene	12Q0	1190	9Q	12Q0	11QD	92	₩7Q-12Q.	3500	₩20.
htEylbenzene	12Q0	1260	101	12Q0	1220	97	₩7Q-12Q.	3570	₩20.
o-Xylene	12Q0	1220	98	12Q0	1180	9Q	W7Q12Q.	3530	₩20.
G & M -Xylene	2Q00	2480	99	2Q00	2390	96	W80-12Q.	3570	₩20.
Toluene	12QD	1170	93	12Q0	1130	90	₩0-12Q.	3500	₩ 20.
Surrogates									
1g4-Difluorobenzene Vs/urr.	12Q0	9758	98	12Q0	9758	98	WZ-119.	0502	

Batch Information

Analytical BatcE: VFC136A3 Analytical MetEod: SW8021B Instru) ent: 7 gilent A8907 PID/FID Analyst: ST Grep BatcE: VXX3064A Grep MetEod: SW50357 Grep Date/Ti) e: 06/12/201A 08:00 Spike Init v t5Vol5 12Q0 u, /m, hxtract Vol: 2Q) L Dupe Init v t5Vol5 12Q0 u, /m, hxtract Vol: 2Q) L

Grint Date: 07/13/2017 10:29:04AM

Matrix Spike Summary

Original Sample ID: 1172880001 MS Sample ID: 1390313 MS MSD Sample ID: 1390314 MSD Analysis Date: 06/12/2017 23:32 Analysis Date: 06/12/2017 23:50 Analysis Date: 06/13/2017 0:09 Matrix: Soil/Solid (dry weight)

QC for Samples: 1172880001, 1172880002, 1172880003, 1172880004, 1172880005, 1172880006, 1172880007, 1172880008

Results by SW8021B										
		Mat	rix Spike (ι	ug/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u> Benzene	<u>Sample</u> 57.0U	<u>Spike</u> 4982	<u>Result</u> 4911	<u>Rec (%)</u> 98	<u>Spike</u> 4982	<u>Result</u> 4982	<u>Rec (%)</u> 100	<u>CL</u> 75-125	<u>RPD (%)</u> 1.60	<u>RPD CL</u> (< 20)
Ethylbenzene	114U	4982	4662	93	4982	4733	95	75-125	1.50	(< 20)
o-Xylene	114U	4982	4555	91	4982	4626	92	75-125	1.20	(< 20)
P & M -Xylene	228U	10000	9181	92	10000	9324	93	80-125	1.40	(< 20)
Toluene	246	4982	4555	86	4982	4626	87	70-125	1.60	(< 20)
Surrogates										
1,4-Difluorobenzene (surr)		4982	4662	93	4982	4626	92	72-119	1.20	

Batch Information

Analytical Batch: VFC13673 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 6/12/2017 11:50:00PM Prep Batch: VXX30647 Prep Method: AK101 Extraction (S) Prep Date/Time: 6/12/2017 8:00:00AM Prep Initial Wt./Vol.: 44.50g Prep Extract Vol: 25.00mL

Print Date: 07/13/2017 10:29:06AM

		7								
Method Blank										
Blank ID: MB for HBN 176 Blank Lab ID: 1388443	60377 [XXX/37482]	Matrix	:: Soil/Solid (d	lry weight)						
QC for Samples: 1172880004, 1172880007										
Results by AK102)(
<u>Parameter</u> DRO Silica Gel	<u>Results</u> 20.0U	<u>LOQ/CL</u> 40.0	<u>DL</u> 12.4	<u>Units</u> mg/Kg						
Surrogates										
5a Androstane (surr)	88.3	70-125		%						
Batch Information										
Analytical Batch: XFC13 Analytical Method: AK10 Instrument: Agilent 7890 Analyst: FDR Analytical Date/Time: 6/5	2 B F	Prep Me Prep Da Prep Init		0C w/SG Cleanup 017 11:33:13AM) g						

Print Date: 07/13/2017 10:29:08AM

Blank Spike ID: LCS for HBN 1172880 [XXX37482] Blank Spike Lab ID: 1388444 Date Analyzed: 06/05/2017 22:52 Spike Duplicate ID: LCSD for HBN 1172880 [XXX37482] Spike Duplicate Lab ID: 1388445 Matrix: Soil/Solid (dry weight)

QC for Samples: 1172880004, 1172880007

Results by AK102			_								
	E	Blank Spike	(mg/Kg)	mg/Kg) Spike Duplicate (mg/Kg)							
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL		
DRO Silica Gel	333	329	99	333	218	65	* (70-125)	40.60	* (< 20)		
Surrogates											
5a Androstane (surr)	6.67	93.6	94	6.67	61.6	62	* (70-125)	41.30			
Batch Information Analytical Batch: XFC13392 Analytical Method: AK102 Instrument: Agilent 7890B F Analyst: FDR	Prep Batch: XXX37482 Prep Method: SW3550C w/SG Cleanup Prep Date/Time: 06/05/2017 11:33 Spike Init Wt./Vol.: 333 mg/Kg Extract Vol: 2 mL Dupe Init Wt./Vol.: 333 mg/Kg Extract Vol: 2 mL										

Print Date: 07/13/2017 10:29:10AM

Method Blank										
Blank ID: MB for HBN 1760 Blank Lab ID: 1388443	Blank ID: MB for HBN 1760377 [XXX/37482] Blank Lab ID: 1388443			Matrix: Soil/Solid (dry weight)						
QC for Samples: 1172880004, 1172880007										
Results by AK103										
<u>Parameter</u> RRO Silica Gel	<u>Results</u> 19.2J	<u>LOQ/CL</u> 40.0	<u>DL</u> 12.4	<u>Units</u> mg/Kg						
Surrogates n-Triacontane-d62 (surr)	90.5	70-125		%						
Batch Information										
Analytical Batch: XFC133 Analytical Method: AK103 Instrument: Agilent 7890B Analyst: FDR Analytical Date/Time: 6/5/	F	Prep Batch: XXX37482 Prep Method: SW3550C w/SG Cleanup Prep Date/Time: 6/5/2017 11:33:13AM Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 2 mL								

Print Date: 07/13/2017 10:29:13AM

-

Blank Spike ID: LCS for HBN 1172880 [XXX37482] Blank Spike Lab ID: 1388444 Date Analyzed: 06/05/2017 22:52 Spike Duplicate ID: LCSD for HBN 1172880 [XXX37482] Spike Duplicate Lab ID: 1388445 Matrix: Soil/Solid (dry weight)

QC for Samples: 1172880004, 1172880007

Results by AK102			_								
	Blank Spike (mg/Kg) Spike Duplicate (mg/Kg)										
Parameter	<u>Spike</u>	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL		
RRO Silica Gel	333	316	95	333	206	62	* (70-125)	42.10	* (< 20)		
urrogates											
n-Triacontane-d62 (surr)	6.67	93	93	6.67	61.7	62	* (70-125)	40.40			
Batch Information											
Analytical Batch: XFC12239				Pre	p Batch: X	XX27489					
Analytical Method: AK102				Pre	p Method:	SW2550C v	w/SG Cleanup				
Instrument: Agilent 7830B F				Pre	p Date/Tim	e: 06/05/90	17 11:22				
Analyst: FDR							g/Kg Extract				
				Dur	e Init Wt /V	/ol : 333 m	g/Kg Extract \	/ol: 2 ml			

Print Date: 07/13/2017 10:29:15AM

X / / 4378[32	Mairx	:Soxl4Solx(y(r	wgexh)iR	
<u>u esUis</u>] PQ4C]	<u>D]</u>	<u>Onxis</u>	
, 6.60	b3.3	16.b	mh4Kh	
10,	60 <i>A</i> I, 0		-	
[:3b:00cM			511	
		-		
	10, [:3b:00c M	c rep Bai c rep Mei c rep Dai c rep Inio	crep BaiG): /// 378[3 crep Mei)o(: ST 3bb0C crep Daie49xme: 64b4 0° crep Inxixal T i.4Mol.: , , .	crep BaiQ: /// 378[3 crep Mei)o(: ST 3bb0C crep Daie49xme: 64b4,017 11:33:b75M crep Inxxal T i.4Nbl.: , , .b h

crxni Daie: 074134,017 10:, F:165M

Blank Spike ID: LCS for HBN 1172880 [VVVX738X6 Blank Spike La4 ID: 1X883] b Dase t nalAyez: 0bd0] d2017 20:3] Spike D/ pliua9e ID: LCSD for HBN 1172880 [VVVX738X6 Spike D/ pliua9e La4 ID: 1X883] 7 Ra9ris: SoildSoliz MarAx eiW(9

PC for Sa. ple5: 1172880003ml172880007

c e5/ I95 4A AK102			_						
	E	Blank Spike	M Wo)W,	S	pike D/ pliu	a9eM Wo)W,			
<u>Eara. e9er</u>	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuNG,</u>	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuMG,</u>	<u>CL</u>	<u>cEDMG,</u>	<u>c ED CL</u>
Die5el c an₩e %r₩aniu5	333	378	108	333] 0-	11]	M7]g12],	b X 0	MQ20,
Surrogates									
] a t nzro59ane 105/rr,	-88	🖵	100	-88	10b	10b	Mb0g120,] Ø0	
Batch Information									
t nalA9ual Ba9u(: XFC13392				Ere	р Ва9и(: Х	XX37483			
t nalA9ual Re9(oz: AK102					pRe9(oz:				
In59/. en9 Agilent 7890B F						e: 06/05/201			
t nalA59 FDR							Mo)W vs9nau9 Mo)W vs9nau9'		
				DI		010 555. V	u vv v saaua	101. 2. L	

Erin9Dase: 07dlXd2017 10:2-:1-t R

_	Method Blank					
	Blank ID: MB for HBN 176037[Blank] aL ID: 13[[8bb	X / / 4378[32	Mairxd:	Soxl4Solx()(rwgexh)iR	
	QC for Samples: 117, [[0008t 117, [[0007					
_	uesUis Lw AK103					
	<u>c arameier</u> u esx(Ual u anhe P rhanx3s	<u>u esUis</u> , 6.6O	<u>] P Q4C]</u> b3.3	<u>D]</u> 16.b	<u>Onxis</u> mh4∕kh	,
	Surrogates n5Aræ@niane5(6, ysUrrR	101	6051,0		-	
-[Batch Information					
	%nalwixQal BaiQ : / FC1339, %nalwixQal Mei)o(: %K103 InsirUmeni: %hxteni 7[90B F %nalwsi: FDu %nalwixQal Daie4Axme: 64b4,017	[:3b:00cM	c rep Mei c rep Daie c rep Inixe):///378[3 00(:ST3bbC e4Axme:64b4,0 alTi.4Mbl.:,, aGiWbl:,m]	IC 017 11:33:b7%M	

Blank Spike ID: LCS for HBN 1172880 [VVVX738X6 Blank Spike La4 ID: 1X883] b Dase t nalAyez: 0bd0] c2017 20:3] Spike D/ pliua9e ID: LCSD for HBN 1172880 [VVVX738X6 Spike D/ pliua9e La4 ID: 1X883] 7 Ra9ris: SoildSoliz MarAx eiW(9

PC for Sa. ple5: 1172880003ml172880007

c e5/ I95 4A AK102			_						
	E	Blank Spike	M Wo) W	S	pike D/ pliua	a9eM Wo)W,			
<u>Eara. e9er</u>	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuNG,</u>	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuMG,</u>	CL	<u>cEDNG,</u>	<u>c ED CL</u>
ce5iz/alcanWe%rWaniu5	333	323	g]	333	3Xg	<u>g</u> g	Mb0Q120,	X-] 0	ND20,
Surrogates									
n&riauon9ane02b2 156/ rr,	8-8g	gg-7	100	8-8g	11X	11X	Mb0Q120,	12-20	
Batch Information									
t nalA9ual Ba9u(: XFC12239					pBa9u(:XX				
t nalA9ual Re9(oz: AK102					pRe9(oz:				
In59/. en9 Agilent 7830B F						e: 06/05/901			
t nalA59 FDR							Mo)W vs9rau§ Mo)W vs9rau9`		

Erin9Da9e: 07dfXd2017 10:2g:22t R

-

Method Blank

Blank ID: MB for HBN 1760533 [VVVX67/ 374 Blank] aL ID: 1533/ b/ Masr2: Qo2XQol2 xirW(m2ucs,

8 9 for QaC SImp: 117e33000/

Emp. Isp LW8270D SIM (PAH)

<u>) araCmom</u>	<u>Emp. Isp</u>]d8X9]	<u>D]</u>	<u>Gn2ap</u>
1RMmscWhaScscalmmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
eRMmscWhaScscalmnm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
PgmaScscmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
PgmaScscWmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
Pnscragmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
Bmn-oxa, Pnscragmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
Bm-o[a4SWmm	1ely∕G	eyØ	7Uy∕0	. uXOu
Bm-o[L4z1. oranscmm	1ely∕G	eyØ	7Uy∕0	. uXOu
Bmn-o[u%s228mrW/mmm	1ely/G	eyØ	7Uy∕0	. uXOu
Bm-o[k41. oranscmm	1ely/G	eyØ	7Uy∕0	. uXOu
9 crVømm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
D2_mn-o[a%4anscragmm	1ely∕G	eyØ	7Uy∕0	. uXOu
zl. oranscmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
zl. ormm	1ely∕G	eyØ	7Uy∕0	. uXOu
Inimno[1%s%sRg%4SW/mnm	1ely∕G	eyØ	7Uy∕0	. uXOu
NaScscalmm	10 0 G	eOO	6 0 0	. uXOu
) cmnanscrmm	1ely∕G	eyØ	7 ⊍ ∕0	. uXOu
)W/mmm	1ely∕G	eyШ	7Uy0	. uXOu
Surrogates				
eR≵l.oroL2ScmnWxp.rr,	b1Uy	/ 6RI1y		А
hmrScmnWLRR1/xp.rr,	10e	y3₽155		А

Batch Information

PnalW2gal Basgc: VMQ1003y PnalW2gal Mnscoi : 3e70D QIM x) PH, Inps: Crms QFP Pu2ms730Xyb7y K9XMQ PnalW2gal Dasn% 2Cm 6XyXe017 3:y5:00) M

-) rmSBasgc: VVV57/37) rmSMmscoi: QT 5yy09
-) rmS Dasm%2Cm 6X/Xe017 1:ey:0b) M
-) rmS ln22al T sUFolU eeU/ u
-) rmSvtsragsFol: y C]

) r2nsDasm 07X15Xe017 10:eb:e/ PM

QKQ Norsc PC m2ga IngU

e00 Tmps) ossmr Dr2wmPngcoraum%PObyy13 tb07ly6elo±5/5fb07ly/61ly/501_(((UptopupulojoC

Blank Spike ID: LCS for HBN 1172880 [XXX37487] Blank Spike Lab ID: 1388495 Date Analyzed: 06/05/2017 21:14

Matrix: Soil/Solid (dry weight)

QC for Samples: 1172880004

Results by 8270D SIM (PAH)

	-			
		Blank Spike		
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
1-Methylnaphthalene	111	91.2	82	(43-111)
2-Methylnaphthalene	111	84.6	76	(39-114)
Acenaphthene	111	118	106	(44-111)
Acenaphthylene	111	95.1	86	(39-116)
Anthracene	111	107	96	(50-114)
Benzo(a)Anthracene	111	97.2	87	(54-122)
Benzo[a]pyrene	111	98.9	89	(50-125)
Benzo[b]Fluoranthene	111	98.7	89	(53-128)
Benzo[g,h,i]perylene	111	100	90	(49-127)
Benzo[k]fluoranthene	111	96.7	87	(56-123)
Chrysene	111	100	90	(57-118)
Dibenzo[a,h]anthracene	111	105	94	(50-129)
Fluoranthene	111	94.0	85	(55-119)
Fluorene	111	98.7	89	(47-114)
Indeno[1,2,3-c,d] pyrene	111	102	92	(49-130)
Naphthalene	111	82.5	74	(38-111)
Phenanthrene	111	98.5	89	(49-113)
Pyrene	111	97.1	87	(55-117)
Surrogates				
2-Fluorobiphenyl (surr)	22.2	94.5	95	(46-115)
Terphenyl-d14 (surr)	22.2	104	104	(58-133)

Batch Information

Analytical Batch: XMS10085 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Prep Batch: XXX37487 Prep Method: SW3550C Prep Date/Time: 06/05/2017 13:25 Spike Init Wt./Vol.: 111 ug/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/13/2017 10:29:26AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1172925009 MS Sample ID: 1388496 MS MSD Sample ID: 1388497 MSD Analysis Date: 06/06/2017 3:45 Analysis Date: 06/06/2017 4:06 Analysis Date: 06/06/2017 4:26 Matrix: Soil/Solid (dry weight)

QC for Samples: 1172880004

Results by 8270D SIM (PAH)

Matrix Spike (ug/Kg) Spike Duplicate (ug/Kg)										
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%</u>) RPD CL
1-Methylnaphthalene	28.0U	125	116	93	125	116	92	43-111	0.09	(< 20)
2-Methylnaphthalene	28.0U	125	109	87	125	111	88	39-114	1.80	(< 20)
Acenaphthene	28.0U	125	144	114 *	125	145	116 *	44-111	1.50	(< 20)
Acenaphthylene	28.0U	125	115	92	125	115	92	39-116	0.04	(< 20)
Anthracene	28.0U	125	118	94	125	119	95	50-114	0.74	(< 20)
Benzo(a)Anthracene	28.0U	125	120	95	125	122	97	54-122	1.80	(< 20)
Benzo[a]pyrene	28.0U	125	99.1	79	125	99.3	79	50-125	0.19	(< 20)
Benzo[b]Fluoranthene	28.0U	125	109	87	125	115	92	53-128	5.10	(< 20)
Benzo[g,h,i]perylene	28.0U	125	62.8	50	125	64.2	51	49-127	2.20	(< 20)
Benzo[k]fluoranthene	28.0U	125	99.3	79	125	99.1	79	56-123	0.23	(< 20)
Chrysene	28.0U	125	130	104	125	136	108	57-118	3.70	(< 20)
Dibenzo[a,h]anthracene	28.0U	125	73.1	58	125	73.8	59	50-129	0.88	(< 20)
Fluoranthene	28.0U	125	123	99	125	128	101	55-119	2.90	(< 20)
Fluorene	28.0U	125	119	95	125	122	98	47-114	3.10	(< 20)
Indeno[1,2,3-c,d] pyrene	28.0U	125	66.6	53	125	67.5	54	49-130	1.20	(< 20)
Naphthalene	22.4U	125	103	82	125	104	83	38-111	0.68	(< 20)
Phenanthrene	28.0U	125	122	98	125	124	99	49-113	1.70	(< 20)
Pyrene	28.0U	125	130	104	125	134	107	55-117	3.20	(< 20)
Surrogates										
2-Fluorobiphenyl (surr)		125	120	96	125	121	96	46-115	0.66	
Terphenyl-d14 (surr)		125	131	105	125	133	107	58-133	2.00	

Batch Information

Analytical Batch: XMS10087 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Analytical Date/Time: 6/6/2017 4:06:00AM Prep Batch: XXX37487 Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml Prep Date/Time: 6/5/2017 1:25:09PM Prep Initial Wt./Vol.: 22.53g Prep Extract Vol: 5.00mL

Print Date: 07/13/2017 10:29:27AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

0	00

Method Blank					
Blank ID: MB for HBN 176 Blank] aL ID: 14bQ864	60376 [XXX/473812	Mairx	d:(aisrymwrfa	igst hff)t RrownuU	
CS for map els, : 1178bb000Qt 1178bb0010t 1	178bb0011				
Os, wi, LP AK102) 			
. arap sisr	<u>Os, wli,</u>	<u>] GC/S]</u>	<u>D]</u>	<u>c nxi,</u>	
Dxs, sl OanKs GrKanxg,	0)400c	0)600	0)1b0	р К/]	
Surrogates					
3a 5 nuro, ians y, wrrU	Q0)3	60A 80		-	
Batch Information					
5nalPixgal Baig% XFS14			ig% XXX47381		
5nalPixgal Msi‰u: 5T10			i‰u: m(4380		
In, irwp sni: 5Kxlsni 7bQ0 5nalP, i: TMD	вО		xal(i)/Vol):83	17 b:37:135M 0 p l	
	1/8017 9:40:00. M		iragi Vol: 1 p]	- 1- 1	

. rxni Dais: 07/14/8017 10:8Q8b5M

-

Blank Spike ID: LCS for HBN 1172880 [VVVX73216 Blank Spike La4 ID: 1X8] 2b9 Date Analyzed: 0b/11/2017 1b:X] Spike Duplicate ID: LCSD for HBN 1172880 [VVVX73216 Spike Duplicate La4 ID: 1X8] 2b3 s atriM x ater Wourface(, fftf, roundG

g C for SaP pleR 117288000] (1172880010(1172880011

5 eRultR4y AK102									
		Blank Spike	eW¶%LG	S	Spike Duplic	cate ₩ %LG			
<u>) araP eter</u>	Spike	<u>5 eRult</u>	<u>5 ec Wh</u> G	<u>Spike</u>	<u>5 eRult</u>	<u>5 ec Wh</u> G	<u>CL</u>	<u>5)DWm</u> G	5) D CL
DieRel 5 an / Qr / anicR	20	17Ð	83	20	17EX	87	₩73C123 G	11270	W 20 G
Surrogates									
3a AndroRtane WarrG	019]]	100	019	10X	10X	W60C120G	XE60	
Batch Information									
Analytical Batc<: XFC13418) re	p Batc<: X	XX37521			
Analytical s et <od: ak102<="" td=""><td></td><td></td><td></td><td>,</td><td>pset<od:< td=""><td></td><td></td><td></td><td></td></od:<></td></od:>				,	pset <od:< td=""><td></td><td></td><td></td><td></td></od:<>				
InRtruP ent: Agilent 7890B R				/		e: 06/08/201	7 08:57 . , Mract To		
AnalyRt: KMD							, Miract Tol		
				- 1					

) rint Date: 07/1X/2017 10:2] :2] As

C	CC
J	50

Method Blank					
Blank ID: MB for HBN 1760 Blank] aL ID: 14bQ864	376 [XXX/473812	Mairx	d: (aisrymwrfa	agst h ff)t RrownuU	
CS for map els, : 1178bb000Qt 1178bb0010t 11	78bb0011				
Os, wi, LP AK103)			
. arap sisr	<u>Os, wli,</u>] GC/S]	<u>D]</u>	<u>c nxi,</u>	
Os, xuwal OanKs GrKanxg,	0)830c	0)300	0)130	р К/]	
Surrogates					
n5Arægonians5u68 y, wrrU	Q7)8	605180		-	
Batch Information					
%nalPixgal BaigF: X9S14T1	b	. rse Ba	aigF: XXX47381		
%nalPixgal MsiFou: %M104	0		siFou: m(4380		
In, irwp sni: %Kxlsni 7bQDB	0		ais/Axps:6/b/80 xixal(i)/Vol):83	017 b:37:13%M	
%nalP, i: WMD		. 130 11/	liragi Vol: 1p]	0 h]	

-

Blank Spike ID: LCS for HBN 1172880 [VVVX73216 Blank Spike La4 ID: 1X8] 2b9 Date Analyzed: 0b/11/2017 1b:X] Spike Duplicate ID: LCSD for HBN 1172880 [VVVX73216 Spike Duplicate La4 ID: 1X8] 2b3 s atriM x ater Wourface(, fftf. roundG

g C for SaP pleR 117288000] (1172880010(1172880011

5 eRultR4y AK102			_						
		Blank Spike	eWP%LG	ç	Spike Duplic	cate ₩ %LG			
<u>) araP eter</u>	Spike	<u>5 eRult</u>	<u>5 ec Wh</u> G	<u>Spike</u>	<u>5 eRult</u>	<u>5 ec Wh</u> G	<u>CL</u>	<u>5)DWm/</u> G	5) D CL
5 eRdual 5 an & Qr anicR	20	18日] X	20	1] Đ] 3	W60C120G	2⊞0	W 20 G
Surrogates									
n&riacontane@b2 WarrG	019]38] 3	019] 9日] 9	W60C120G	1⊞0	
Batch Information									
Analytical Batch: XFC12314) re	p Batch: X	XX28D51			
Analytical s ethod: AK102				,	p s ethod:				
InRtruP ent: Agilent 8470B 9				/		e: 06/04/501			
AnalyR: KRM							. , Mract To . , Mract Tol		
				Dup	be mit x t∉l	UIE 20 P %L	, INFACTION	. IPL	

) rint Date: 07/1X/2017 10:2] :X2As

Method Blank					
Blank ID: MB for HBN 1 Blank] aL ID: 1[30[b[17603[6 X / / 4 78612	Mairx	d:Soxl4Solx()(rwgexh)iR	
QC for Samples: 117b, , 0001t 117b, , 000l	bt 117b, , 000[t 117b, , 0008t 117t	o, , 0006			
u esUis Lw AK102					
<u>carameier</u> DuPSxbQa.el	<u>u esUis</u> 10 Ю О	<u>] PQ4C]</u> b0 Ю	<u>D]</u> 6 16 0	<u>Onxis</u> mh45 h	
Surrogates					
8a An(rosiane ysUrrR	, b	70-1b8		%	
Batch Information					
AnalwixQal BaiG): / FC AnalwixQal Mei)o(: A5 InsirUmeni: Ahxeni 7, Analwsi: FDu	510b	c rep Me c rep Da		Cg <i>4</i> S. CleanUp 017 10:b0:09AM	

_

5 eRultR] y AK102			_						
	E	Blank Spike xG(/P(E Spike Duplicate xG(/P(E							
<u>. araGeter</u>	<u>Spike</u>	<u>5 eRult</u>	<u>5 ec x)</u> E		<u>5 eRult</u>	<u>5 ec x) E</u>		<u>5. Dx) E</u>	<u>5. D Cl</u>
D5g Silica Qel	167	192	83	167	1X3	81	x70Cl23 E	3⁄20	ж 20 E
Surrogates									
3a AndroRtane xRurrE	XXX	bb₹	100	XXX	bb-3	100	x70Cl23 E	0⊲3	
Batch Information									
Analytical Batc, : XFC13939					p Batc, : X				
Analytical s et, od: AK102 InRtruGent: Agilent 78D0B F						Sw 3WW0C / e: 05G3G20'	Cleanup		
AnalyR: FR4				Spil	ke Init T t≮v	/ol< 167 G(/P(KMract	vol: 1 GL	
				Dup	oe Init T t∢v	vol≤ 167 G(/P(KMiract v	ol: 1 GL	

Blank Spike ID: LCS for HBN 1172880 [VVVX73614 Blank Spike La] ID: 1Xb0X29 Date Analyzed: 06/16/2017 18:X3 Spike Duplicate ID: LCSD for HBN 1172880 [VVVX73614 Spike Duplicate La] ID: 1Xb0X23 s atriM Soil/Solid xdry Wei(, tE

SQS Nort, AGerica Inc<

		1			
Method Blank					
Blank ID: MB for HBN 1760 Blank] aL ID: 1[30[b[03[6 X / / 4 78612	Mairx	d: Soxl4Solx(y(rwgexh)iR	
QC for Samples: 117b, , 0001t 117b, , 000bt 1 ⁻	17b, , 000[t 117b, , 0008t 117	′b, , 0006			
u esUis Lw AK103					
<u>c arameier</u>	<u>u esUis</u>	<u>] PQ4C]</u>	<u>D]</u>	<u>Onxis</u>	
uuPSxbCa.el	10 Ю О	b0 Ю	6 K 60	mh45h	
Surrogates					
nA ræGonianeA(6b ysUrrR	38	70Alb8		%	
Batch Information					
FnalwixQal BaiQ): / 9C1[T FnalwixQal Mei)o(: F510[InsirUmeni: Fhxleni7,30E Fnalwsi: 9Du		c rep Me c rep Da		Cg <i>4</i> S. CleanUp 0017 10:b0:0TFM	
FnalwixGal Daie4 xme: 6416	640017 6:b6:00cM		iraG Vol: 1 m]		

_

Blank Spike XG(/P(E Spike Duplicate xG(/P(E _araGeter Spike 5 eRuit 5 ec x) E CL 5. D x) E 55 g Silica Qel 167 130 b0 167 196 88 x70023 E 2 ⊀0 Surrogates n@niacontane@l62 xRurrE X *X 106 106 X *X b0 *0 x70023 E 13 *b0 Batch Information	<u>5. D Cl</u> * 20 E
55g Silica Qel 167 130 b0 167 196 88 x70Cl23 E 2≪0 Surrogates nOniacontaneQl62 xRurrE X≫X 106 106 X≫X b0 b0 x70Cl23 E 13 <b0< td=""> Batch Information Analytical Batc, : XFC12323 Analytical s et, od: AK102 InRtruGent: Agilent 9780B F AnalyR: FDR . rep Batc, : XXX294Wl . rep s et, od: S5 2440C w/SG Cleanup . rep Date/hiGe: 0W12/6019 10:60 Spike Init T t≼v ol < 167 G(/P(</br></b0<>	
Surrogates n@riacontane@l62 xRurrE X *X 106 106 X *X b0 *9 b0 x 70 Cl 23 E 13 *b0 Batch Information . rep Batc, : XFC12323 . rep Batc, : XXX294Wl . rep s et, od: S5 2440C w/SG Cleanup . rep S et, od: S5 2440C w/SG Cleanup . rep Date/hiGe: 0W12/6019 10:60 InRtruGent: Agilent 9780B F . rep Date/hiGe: 0W12/6019 10:60 Spike Init T t *v ol < 167 G(/P(KMract vol: 1 GL	* 20 E
n@riacontane@l62 xRurrE X⇒X 106 106 X⇒X b0 ⊕ b0 x70Cl23 E 13 ⊕0 Batch Information . rep Batc, : XFC12323 . rep Batc, : XXX294Wl . rep s et, od: S5 2440C w/SG Cleanup . rep s et, od: S5 2440C w/SG Cleanup . rep Date/hiGe: 0W12/6019 10:60 . rep Date/hiGe: 0Y12/6019 10:60 <	
Batch Information Analytical Batc, : XFC12323 Analytical s et, od: AK102 InRtruGent: Agilent 9780B F AnalyR: FDR Spike Init T t≼v ol< 167 G(/P(KMract vol: 1 GL	
Analytical Batc, : XFC12323 . rep Batc, : XXX294WI Analytical s et, od: AK102 . rep s et, od: S5 2440C w/SG Cleanup InRruGent: Agilent 9780B F . rep Date/hiGe: 0W12/6019 10:60 AnalyR: FDR Spike Init T t≼v ol<	
Analytical s et, od: AK102 . rep s et, od: S5 2440C w/SG Cleanup InRtruGent: Agilent 9780B F . rep Date/hiGe: 0W12/6019 10:60 AnalyRt: FDR Spike Init T t≼v ol<	

Blank Spike ID: LCS for HBN 1172880 [VVVX73614

Spike Duplicate ID: LCSD for HBN 1172880

SQS Nort, AGerica Inc<

		1		
Method Blank				
Blank ID: MB for HBN 176 Blank Lab ID: 1[30[26	303[7 X / / 4 7862]	Mairxd	:Soxl4Solx()(rwgexh)iR
QC for Samples: 1172, , 0001t 1172, , 0002t 1	1172, , 000[t 1172, , 0008t 117	72, , 0006		
u esUis bw AK102		j		
<u>c arameier</u>	<u>u esUis</u>	LPQ4CL	DL	<u>Onxis</u>
Dæsel u anhe PrhanxGs	20 Ю О	. 0Ю	12K	mh45h
Surrogates				
8a An(rosiane ysUrrR	101	60-120		%
Batch Information				
AnalwixGal BaiG): / FC1[.	. [6	c rep Bai	G): ///[7862	2
AnalwixGal Mei) o(: A510			i) o(: ST [880	
InsirUmeni: Ahxleni 7, 30	Bu		e49xme:641[4 xalTiK4MolK.[(2017 10:2[:[. AM
Analysi: 5MD			al i mavoir. [u	/ []

crxni Daie: 0741[42017 10:23:. 0AM

<u>c ED CL</u>

MQ20,

Erin9Dase: 07dlXd2017 10:2b:v2t R

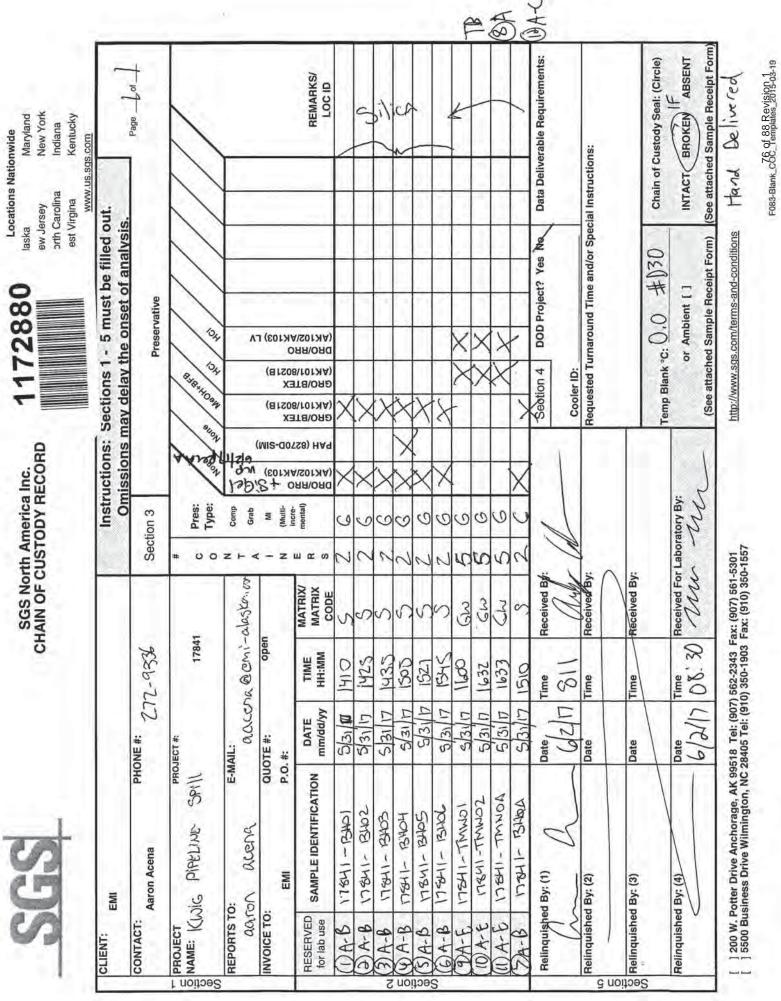
PC for Sa. ple5: 1172880001 c e5/ l95] A AK102	ml 17288					a9e La] ID: ´ Soliz MarAxe		
c e5/ I95] A AK102		30002m1172	288000Xm117	72880003r	n17288000	16		
		Blank Spike				a9eM Wo)W,		
	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuNG,</u>	<u>Spike</u>	<u>c e5/ 19</u>	<u>ceuNG,</u>	<u>CL</u>	<u>cEDNG</u> ,
	XXX	X66	110	XXX	X86	116	M73g123,	3030
urrogates								
3at nzro59ane 105/rr,	6 6 7	106	106	6 @ 7	11X	11X	M60g120,	7010
Batch Information								
t nalA9ual Ba9u(: XFC13438 t nalA9ual Re9(oz: AK102 In59/. en9 Agilent 79R0B M t nalA59 KD5				Ere Ere Spi	ke Ini9< 902h)W Ts9rau9	

Method Blank					
Blank ID: MB for HBN 17603[7 X / / 4 7862] Blank Lab ID: 1[30[26		Mairxd: Soxl4Solx(y(rwgexh)iR			
QC for Samples: 1172, , 0001t 1172, , 0002t 11	72, , 000[t 1172, , 0008t 1 ⁻	172, , 0006			
u esUis bw AK103					
<u>c arameier</u> u esx(Ual u anhe P rhanxOs	<u>u esUis</u> 20 Ю О	<u>LPQ4CL</u> .0100	<u>DL</u> 12K	<u>Onxis</u> mh45h	
Surrogates nA rxaGoniane/(62 ysUrrR	108	60A120		%	
Batch Information					
FnalwixQal BaiQ): / 9C1[.[FnalwixQal Mei)o(: F510[InsirUmeni: Fhxleni 7, 30B Fnalwsi: 5MD FnalwixQal Daie4 xme: 6416	u	c rep Me c rep Da c rep In	iG): ///[786 ei)o(: ST[880 uie4.xme: 641[4 ixal T iK40/blK[0 iiraG Wbl: 2 mL	DC 1017 10:2[:[.FM Dh	

crxni Daie: 0741[42017 10:23:.8FM

Erin9Da9e: 07dlXd2017 10:2b:v7t R

	<u>ED CL</u> 220 ,
3000 MQ: 8070 9hol: 2. L	
8 0 0	
9hol: 2. L	
9hol: 2. L	



Blank Spike Summary

Blank Spike ID: LCS for HBN 1172880 [VVVX73624

Spike D/ pliua P ID: LCSD for HBN 1172880 . . .

SKS Norg(t. eriua InuO

e-Sam<u>ple Receipt Form</u>

cor

-

202	SGS Workorder #:	1	172880	
R	eview Criteria	Condition (Yes,	No, N/A E)	cceptions Noted below
<u>Chain</u>	of Custody / Temperature Require	ements	Yes Exemption	permitted if sampler hand carries/delivers.
	Were Custody Seals intact? Note # & lo	ocation No	1F	
	COC accompanied sar	mples? Yes		
	N/A **Exemption permitted if c	chilled & colle	cted <8 hours ago, or for s	amples where chilling is not required
		Yes	Cooler ID: 1	@ 0.0 °C Therm. ID: D30
			Cooler ID:	@ °C Therm. ID:
Tempera	ature blank compliant* (i.e., 0-6 °C after	r CF)?	Cooler ID:	@ °C Therm. ID:
			Cooler ID:	@ °C Therm. ID:
			Cooler ID:	@ °C Therm. ID:
*If >	>6°C, were samples collected <8 hours	ago? N/A		
	If <0°C, were sample containers ice	free? N/A		
If samples rece	eived <u>without</u> a temperature blank, the "	cooler		
	locumented in lieu of the temperature bl			
	e noted to the right. In cases where nei poler temp can be obtained, note "ambie			
	•	nilled".		
Note: Identify contai	iners received at non-compliant tempera Use form FS-0029 if more space is ne			
Holding Time /	Documentation / Sample Condition Red		Note: Refer to form E-083	"Sample Guide" for specific holding times
<u>notaing rine /</u>	Were samples received within holding			Sample Guide for specific holding times.
Do samples match C	OC** (i.e.,sample IDs,dates/times collect	cted)? No		jar lid, 14:35 on COC. Sample 4 time 15:08
**Note: If time	es differ <1hr, record details & login per	COC.	on lid, 15:05 on COC. L	ogged in following COC times.
Were analyses requester	d unambiguous? (i.e., method is specifi analyses with >1 option for ana			
			No ***Exemption	on permitted for metals (e.g.200.8/6020A).
Were proper containe	ers (type/mass/volume/preservative***)	used? No	Additional MeOH added	
	<u>Volatile / LL-Hg Requ</u>	uirements		
Were Trip Blank	s (i.e., VOAs, LL-Hg) in cooler with sam	nples? Yes		
Were all water VOA vi	ials free of headspace (i.e., bubbles ≤ 6	mm)? N/A		
Were a	all soil VOAs field extracted with MeOH+	BFB? Yes		
Note to C	lient: Any "No", answer above indicates non	-compliance	with standard procedures a	and may impact data quality.
	Additional	notes (if a	pplicable):	

Samples 2-7 consist of light vegetative matrix which soaked up most of the methanol. An additional vial of methanol was added at receipt, and logged in accordingly. VLP 6/2/17

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> <u>Condition</u>
1172880001-A	No Preservative Required	ОК			
1172880001-B	Methanol field pres. 4 C	ОК			
1172880002-A	No Preservative Required	OK			
1172880002-B	2x Methanol field pres. 4 C	ОК			
1172880003-A	No Preservative Required	ОК			
1172880003-B	2x Methanol field pres. 4 C	ОК			
1172880004-A	No Preservative Required	ОК			
1172880004-B	2x Methanol field pres. 4 C	ОК			
1172880005-A	No Preservative Required	ОК			
1172880005-B	2x Methanol field pres. 4 C	ОК			
1172880006-A	No Preservative Required	ОК			
1172880006-B	2x Methanol field pres. 4 C	ОК			
1172880007-A	No Preservative Required	ОК			
1172880007-B	2x Methanol field pres. 4 C	ОК			
1172880008-A	Methanol field pres. 4 C	ОК			
1172880009-A	HCL to pH < 2	ОК			
1172880009-B	HCL to pH < 2	ОК			
1172880009-C	HCL to pH < 2	ОК			
1172880009-D	HCL to pH < 2	ОК			
1172880009-E	HCL to pH < 2	ОК			
1172880010-A	HCL to $pH < 2$	ОК			
1172880010-В	HCL to pH < 2	ОК			
1172880010-C	HCL to $pH < 2$	ОК			
1172880010-D	HCL to $pH < 2$	ОК			
1172880010-E	HCL to $pH < 2$	ОК			
1172880011-A	HCL to $pH < 2$	ОК			
1172880011-B	HCL to pH < 2	ОК			
1172880011-C	HCL to $pH < 2$	ОК			
1172880011-D	HCL to $pH < 2$	ОК			
1172880011-E	HCL to $pH < 2$	ОК			
1172880012-A	HCL to pH < 2	ОК			
1172880012-B	HCL to $pH < 2$	ОК			
1172880012-C	HCL to $pH < 2$	ОК			

Container Id

<u>Preservative</u>

Container Condition Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

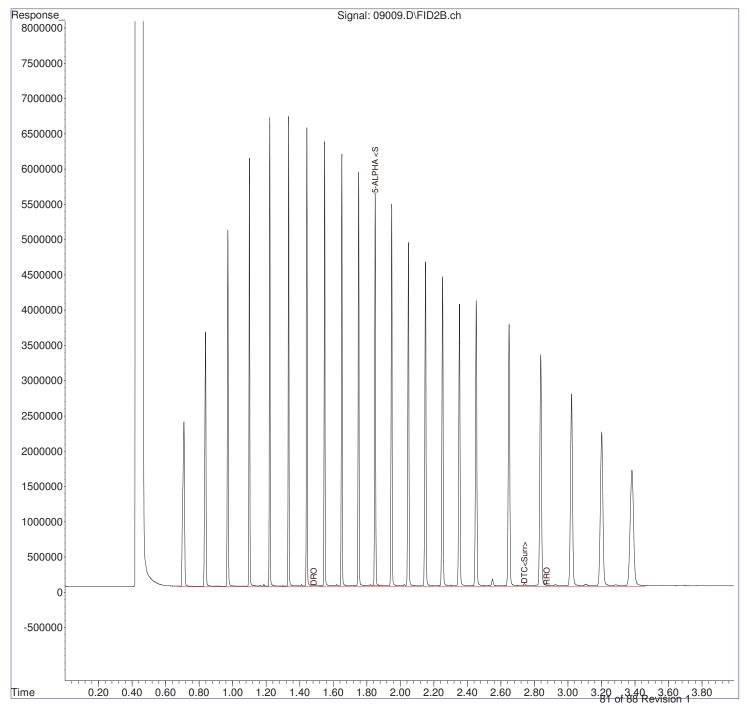
 $\mathsf{OK}\xspace$ - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

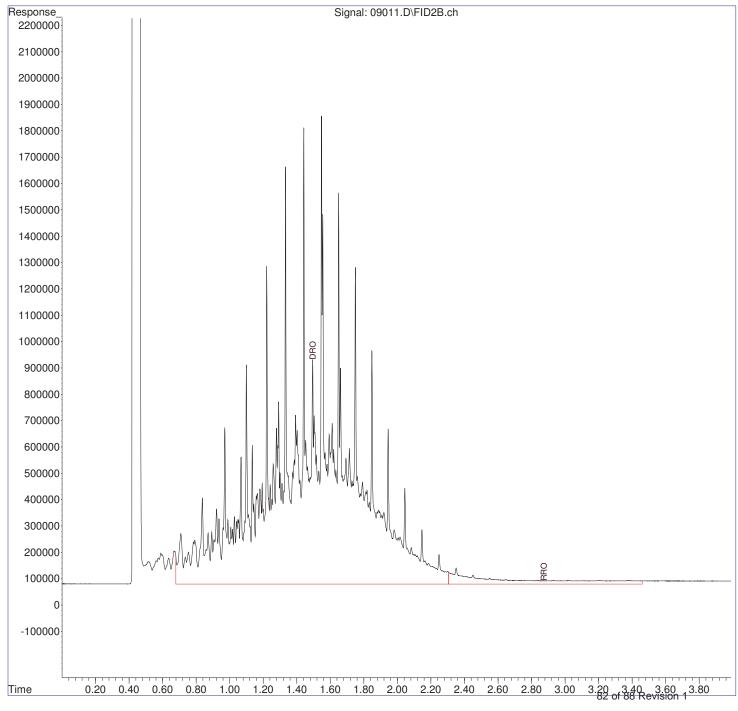
FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

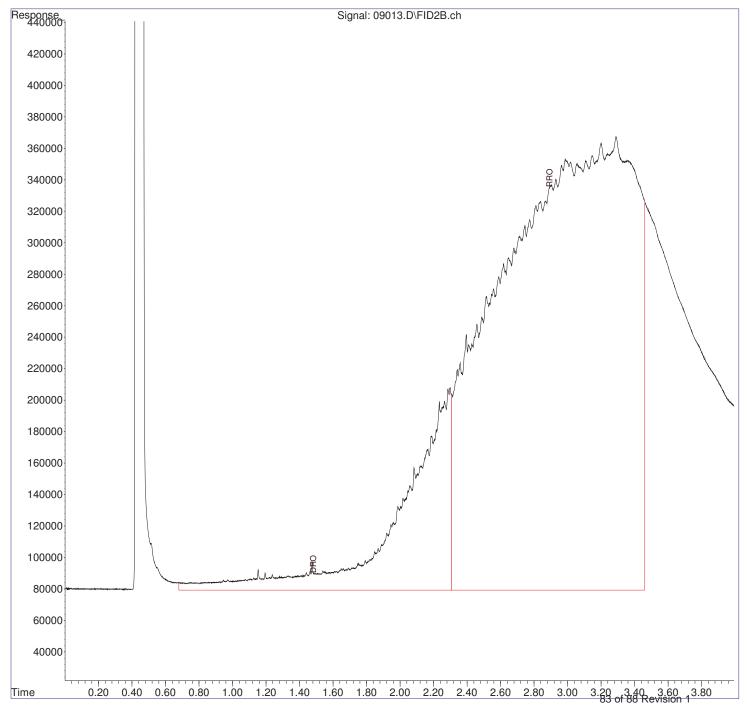

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

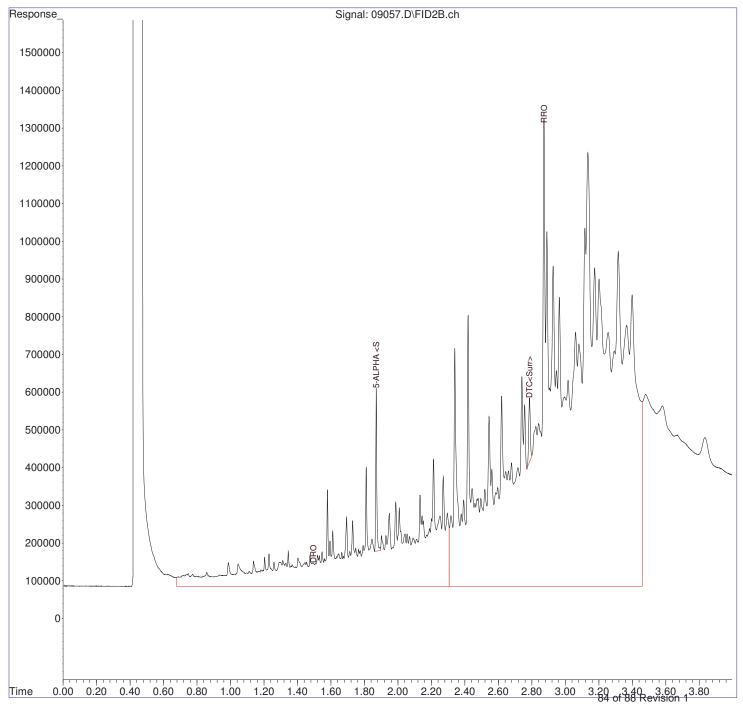
CHROMATOGRAMS


Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09009.D Signal(s) : FID2B.ch Acq On : 9 May 2017 10:30 am Operator : FDR Sample : NAS Misc : ALS Vial : 2 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 10 16:18:27 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

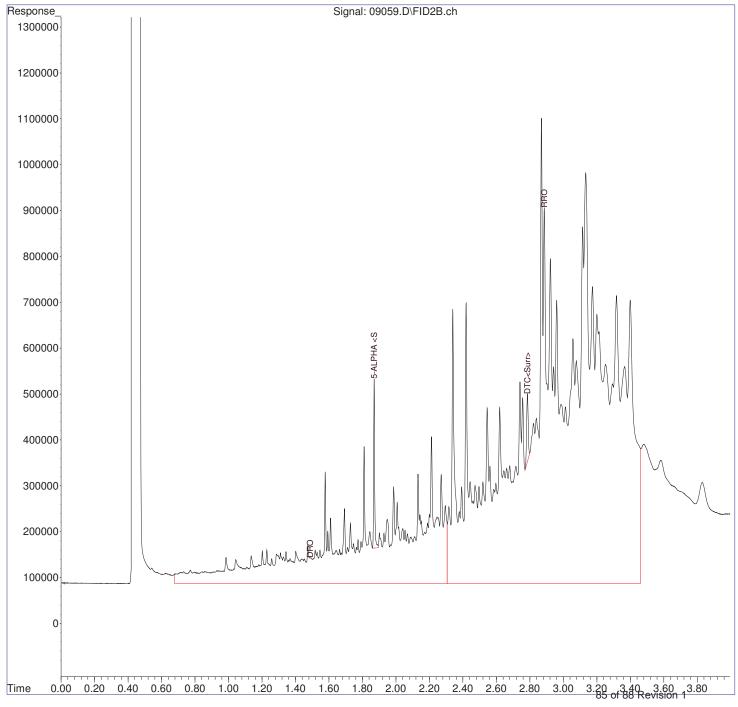
```
Volume Inj. :
Signal Phase :
Signal Info :
```



```
Data Path : Z:\05\SF\DATA\050917.SEC\
Data File : 09011.D
Signal(s) : FID2B.ch
Acq On
           : 9 May 2017 10:39 am
Operator : FDR
Sample
           : CCVB
Misc
           :
ALS Vial : 3
                 Sample Multiplier: 1
Integration File: autoint1.e
Quant Time: May 10 16:21:15 2017
Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M
Quant Title : DRO/RRO by Method AK 102/103
QLast Update : Wed May 03 16:37:44 2017
Response via : Initial Calibration
Integrator: ChemStation
```

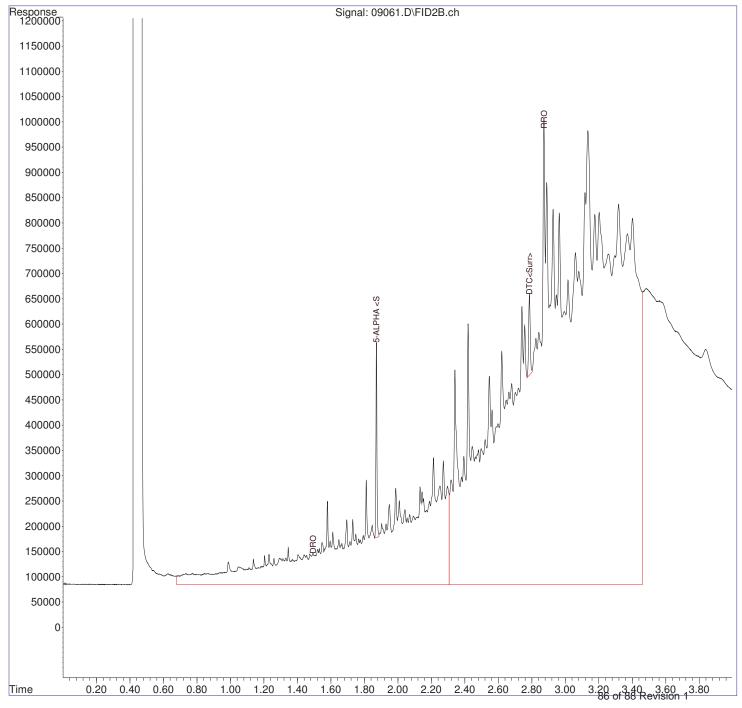
```
Volume Inj. :
Signal Phase :
Signal Info :
```



Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09013.D Signal(s) : FID2B.ch Acq On : 9 May 2017 10:49 am Operator : FDR Acq On : CCVR Sample Misc : ALS Vial : 4 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 10 16:21:55 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

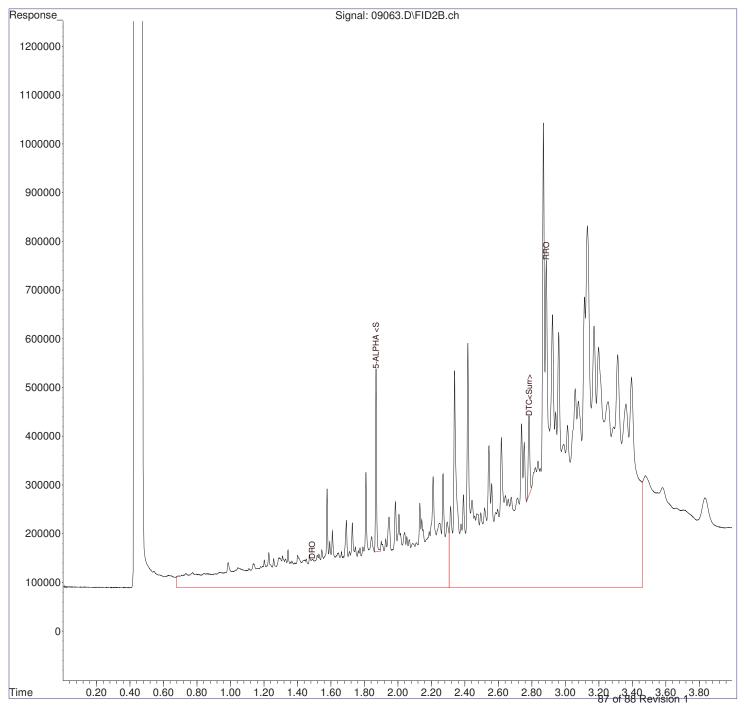
```
Volume Inj. :
Signal Phase :
Signal Info :
```



Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09057.D Signal(s) : FID2B.ch Acq On : 9 May 2017 2:22 pm Operator : FDR : 1172088001 Sample Misc : ALS Vial : 24 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 11 11:32:52 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

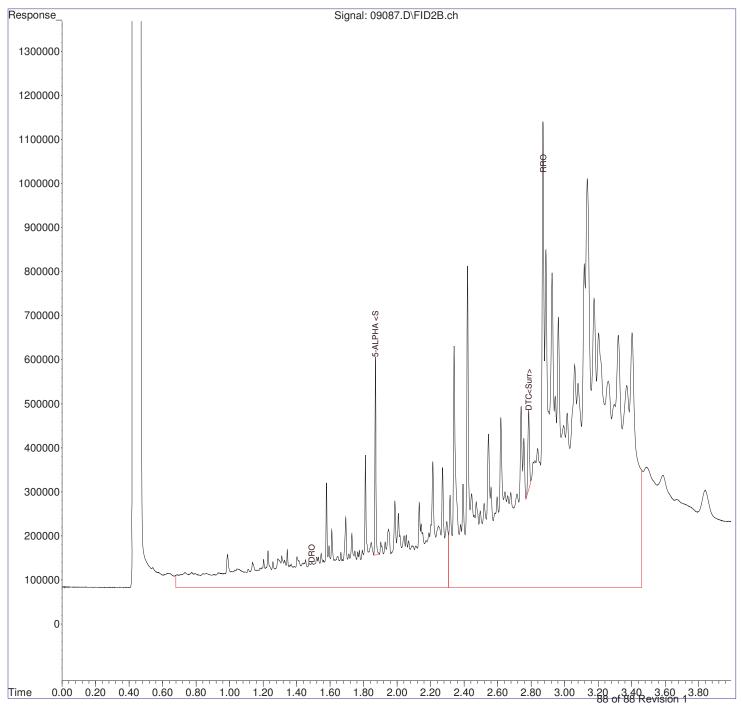
```
Volume Inj. :
Signal Phase :
Signal Info :
```



Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09059.D Signal(s) : FID2B.ch Acq On : 9 May 2017 2:32 pm Operator : FDR : 1172088002 Sample Misc : ALS Vial : 25 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 11 11:34:42 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

```
Volume Inj. :
Signal Phase :
Signal Info :
```



Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09061.D Signal(s) : FID2B.ch Acq On : 9 May 2017 2:42 pm Operator : FDR Sample : 1172088003 Misc : ALS Vial : 26 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 11 11:37:37 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

```
Volume Inj. :
Signal Phase :
Signal Info :
```



Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09063.D Signal(s) : FID2B.ch Acq On : 9 May 2017 2:51 pm Operator : FDR : 1172088004 Sample Misc : ALS Vial : 27 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: May 11 11:38:59 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

```
Volume Inj. :
Signal Phase :
Signal Info :
```


Data Path : Z:\05\SF\DATA\050917.SEC\ Data File : 09087.D Signal(s) : FID2B.ch Acq On : 9 May 2017 4:47 pm Operator : FDR : 1172088005 4X Sample Misc : ALS Vial : 37 Sample Multiplier: 4 Integration File: autoint1.e Quant Time: May 11 11:51:26 2017 Quant Method : Z:\05\SF\METHOD\SFR2017-0503A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed May 03 16:37:44 2017 Response via : Initial Calibration Integrator: ChemStation

```
Volume Inj. :
Signal Phase :
Signal Info :
```


Laboratory Data Review Checklist

Completed By:

Aaron Acena

Title:

Environmental Scientist

Date:

7/13/17

CS Report Name:

Kwigillingok Pipeline Spill

Report Date:

7/13/17

Consultant Firm:

Environmental Management, Inc.

Laboratory Name:

SGS Laboratories

Laboratory Report Number:

1172880

ADEC File Number:

2425.38.003

Hazard Identification Number:

3381

1	172880
---	--------

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes O No Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? • Yes O No Comments: NA samples not transferred. 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? • Yes O No Comments: b. Correct Analyses requested? • Yes O No Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})$? • Yes O No Comments: b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? Comments: • Yes O No c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes O No Comments:

d.	If there were any discrepancies, were they documented? For example, incorrect sample
	containers/preservation, sample temperature outside of acceptable range, insufficient or missing
	samples, etc.?

• Yes O No Comments: Additional MeOH added to soil samples due to high concentration of organics. e. Data quality or usability affected? **Comments:** None. 4. Case Narrative a. Present and understandable? • Yes O No Comments: b. Discrepancies, errors, or QC failures identified by the lab? • Yes • No Comments: c. Were all corrective actions documented? • Yes O No Comments: d. What is the effect on data quality/usability according to the case narrative? Comments: The lab did not indicate the effect on data quality or usability. 5. Samples Results a. Correct analyses performed/reported as requested on COC?

♦ Yes
♦ No
Comments:
b. All applicable holding times met?
♦ Yes
♦ No
Comments:

c. All soils reported on a dry weight basis?

• Yes O No Comments:

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

🔿 Yes 💿 No

Comments:

LOQs are above cleanup levels for benzene in all soils samples and for DRO/DRO SG in one soil sample. This may be due to the high organic content in the samples.

e. Data quality or usability affected?

○ Yes ● No Comments:

Data is usable for characterization purposes.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes	O No	Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

iii. If above LOQ, what samples are affected?

Comments:

NA

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ○ No Comments:

NA

v. Data quality or usability affected?

Comments:

No.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

٥	Yes	© No	Comments:	
ii.		ls/Inorganics	– one LCS and one sample duplicate r	reported per matrix, analysis and
С	Yes	© No	Comments:	
√A, no n	netals/i	norganics.		
iii	And	project specif	rcent recoveries (%R) reported and wi ied DQOs, if applicable. (AK Petroleu 6, AK103 60%-120%; all other analys	um methods: AK101 60%-120%,
С	Yes	• No	Comments:	
Recovery be biased		for surrogate	es for DRO SG and RRO SG (62%).	DRO SG and RRO SG results may

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- O Yes 🛛 💿 No

Comments:

RPD for DRO SG and RRO SG do not meet lab QC criteria..

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

All soils samples BH01 – BH06 and BH0A.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes O No

Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No, data should be usable for characterization purposes.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

• Yes • No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

○ Yes ● No Comments:

Recovery is low for BH01 AKA101. Results for that sample maybe biased low for GRO.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

• Yes • No

Comments:

iv. Data quality or usability affected?

Comments:

No, data is usable for characterization purposes.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?
 (If not, enter explanation below.)
 - Yes No Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

○ Yes ● No Comments:

Trip blank accompanied the cooler during the duration of the project but was left off the CoC.

iii. All results less than LOQ?

• Yes • No Comments:

1172880

Comments:

NA

v. Data quality or usability affected?

Comments:

No.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

ii. Submitted blind to lab?

💿 Yes 🗢 No

iii. Precision – All relative percent differences (RPD) less than specified DQOs?

Comments:

(Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

 $\frac{(R_1 - R_2)}{((R_1 + R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes O No

Comments:

RPD for RRO, the only detectable analyte is 16%. DRO was detected in the sample and not the duplicate, although the LOC for the duplicate was close to the level DRO was detected at in the sample. (BH04: DRO = 273mg/kg BH0A (DUP): DRO = 234U)

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

No, data appears valid.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ○ No ⊙ Not Applicable

No decon/equipment blank.

i. All results less than LOQ?

© Yes [©] No Comments:

NA

ii. If above LOQ, what samples are affected?

Comments:

NA

iii. Data quality or usability affected?

Comments:

No.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes • No Comments: