

BGES, INC.

ENVIRONMENTAL CONSULTANTS

CUSTOM TRUCK 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

GROUNDWATER MONITORING REPORT

FEBRUARY 2013

Submitted to:

Custom Truck 4748 Old Seward Highway Anchorage Alaska

Submitted by:

BGES, INC.

1042 East 6th Avenue Anchorage, Alaska 99501 Ph: (907) 644-2900 Fax: (907) 644-2901

www.BGESINC.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	PREVIOUS SITE WORK	2
4.0	AUGUST AND SEPTEMBER 2012 SAMPLING AND ANALYSIS	3
	4.1 Modifications to the Workplan	3
	4.2 Water Elevations, Groundwater Monitoring Wells & Facility Well Sampling	4
5.0	EVALUATION OF LABORATORY DATA	6
6.0	LABORATORY DATA QUALITY REVIEW	7
7.0	CONCEPTUAL SITE MODEL	8
8.0	CONCLUSIONS	8
9.0	EXCLUSIONS AND CONSIDERATIONS	. 10

FIGURES (Located at End of report)

Figure 1	Property Vicinity Map
Figure 2	Monitoring Well Locations and Sampling Results
Figure 3	Groundwater Elevation Contour Map

TABLES (Located at End of Report)

Table 1	Monitoring Well Sampling Data
Table 2	Analytical Results – Water
Table 3	Historical Groundwater Sampling Analytical Results

APPENDICES (Located at End of Report)

Appendix A	Field Notes
Appendix B	Laboratory Analytical Data
Appendix C	Laboratory Analytical Data Quality Control Checklist
Appendix D	Graphical Human Health Conceptual Site Model
Appendix E	Graphs of Historical Water Quality Data

		ACKONTING
AAC	-	Alaska Administrative Code
ADEC	-	Alaska Department of Environmental Conservation
AK	-	Alaska Method
AWWU	-	Anchorage Water and Wastewater Utility
BGES	-	Braunstein Geological and Environmental Services
BTEX	-	Benzene, Toluene, Ethylbenzene, and Total Xylenes
С	-	Celsius
CSM	-	Conceptual Site Model
DRO	-	Diesel Range Organics
EPA	-	Environmental Protection Agency
GRO	-	Gasoline Range Organics
HCL	-	Hydrochloric Acid
LOQ	-	Limit of Quantification
mg/L	-	Milligrams per Liter
MRL	-	Method Reporting Limit
PAH	-	Polynuclear Aromatic Hydrocarbons
QC	-	Quality Control
RPD	-	Relative Percent Difference
RRO	-	Residual Range Organics
SGS	-	SGS North America, Inc.
UST	-	Underground Storage Tank
VOCs	-	Volatile Organic Compounds

ACRONYMS

1.0 INTRODUCTION

BGES, Inc. (BGES) was retained by Kathy Little, former owner of Custom Truck Accessory Center, to conduct groundwater sampling at the Custom Truck Accessory Center site located at 4748 Old Seward Highway, Anchorage, Alaska, (Figure 1). The purpose of this sampling event was to assess the groundwater quality at this site. The fieldwork for this round of sampling (the sixth round of groundwater sampling performed by BGES) was performed on August 29, 30, and 31, and September 13, 2012 in general accordance with the work plan prepared by BGES dated May 20, 2005 and updated in an email correspondence to the Alaska Department of Environmental Conservation (ADEC) Project Manager, Katrina Chambon, dated July 3, 2012. This site is listed in the ADEC Contaminated Sites database as a cleanup-complete institutional controls site (ADEC Hazard ID Number 23658, Event ID Number 404, and File Number 2100.26.252).

2.0 BACKGROUND

The property is located in the central portion of Anchorage, Alaska (Figure 1). The property had previously operated for many years as an automotive dealership that had on-site underground storage tanks (USTs) for fuel needs. Fuel is no longer dispensed at the site, and the tanks were removed in 1994. A one-story building that is operated as an automotive shop and accessory retail store is located on the property. The area west of the building is used for bulk storage of truck tops and auto accessories.

Numerous previous assessments have been performed by various environmental consulting firms at the site, including a 2004 Site Closure Report performed by Chemtrack. On June 14, 2004 the ADEC issued a "No Further Remedial Action Planned" status for this site. In addition, a "Record of Decision" was also issued for the site on the same date. In these documents, it has been indicated that quarterly groundwater monitoring in accordance with an approved work plan must be instituted.

BGES was contracted in 2005 to review the previous work plan and to resume groundwater sampling activities in accordance with the No Further Remedial Action Planned and Institutional Control Record of Decision documentation. This report documents the results of the latest round of groundwater sampling completed in August and September of 2012.

BGES, INC.

3.0 PREVIOUS SITE WORK

Two 5,000-gallon UST's, reportedly containing gasoline, were removed from the ground in 1994. Hydrocarbon contamination was observed in soils near the USTs and associated piping. In addition to removing the USTs, the excavation reportedly was continued to remove additional contaminated soil. Approximately 280 cubic yards of soil were reportedly removed from the site and treated at an off-site facility. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in remaining soils.

Groundwater sampling was first performed by BGES in June of 2005. Wells that were sampled during this sampling event included MW-1, MW-2, MW-5, MW-8, MW-11, MW-12, B6/VE, and the Tap Well (facility well). The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: gasoline range organics (GRO) in Monitoring Wells MW-1, MW-2, MW-8, and B6/VE; diesel range organics (DRO) in MW-1, MW-2, and B6/VE; benzene in MW-1, MW-2, MW-5, MW-8, MW-12, and B6/VE; toluene in MW-1, MW-2, and B6/VE; ethylbenzene in MW-1, MW-2, and B6/VE; and, total xylenes in MW-2. The water sample collected from the Tap Well (facility well) did not exhibit any analyte concentrations above the laboratory's method reporting limit (MRL) and the ADEC cleanup criteria.

Groundwater sampling was performed again by BGES in August of 2005. Monitoring wells that were sampled during this sampling event included MW-1, MW-2, MW-3, MW-5, B6/VE, MW-8, MW-9, MW-10, MW-11, MW-12, and MW-15. The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: GRO in MW-1, MW-2, MW-5, MW-8, MW-15, and B6/VE; DRO in MW-1, MW-2, MW-5, MW-11, MW-15, and B6/VE; residual range organics (RRO) in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-12, and MW-15; benzene in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-15.; toluene in MW-1, MW-2, MW-15, and B6/VE; ethylbenzene in MW-1, MW-2, MW-15, and B6/VE; and, total xylenes in MW-2 and MW-15.

Groundwater sampling was performed by BGES in March of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-11, and MW-12. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the March 2006 sampling event indicated that GRO, DRO, RRO, and BTEX concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE (except for total xylenes in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in Monitoring Wells MW11 and MW12. Additionally, the RRO concentration in Water Sample MW12 exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in September of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-5, MW-8, MW-11, MW-12, and the facility well. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the September 2006 sampling event indicated that GRO, DRO, and RRO concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE. Benzene concentrations exceeded the ADEC cleanup criterion in each of the wells sampled, including the facility well. Concentrations of toluene and ethylbenzene exceeded the ADEC cleanup criteria in MW-1 and MW-2. Additionally, the toluene concentration in Water Sample B6/VE exceeded the ADEC cleanup criterion.

Prior to the current monitoring round, groundwater sampling was last performed by BGES in October of 2007. During that round of groundwater sampling, Monitoring Wells MW1, MW2, MW3, MW5, MW8, MW9, MW10, MW11, MW12, MW15, and B6/VE were sampled and analyzed for GRO, DRO, RRO, and BTEX. Additionally, Monitoring Wells MW-2 and MW-102 (duplicate of MW-2) were analyzed for polynuclear aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). The results from the October 2007 sampling event indicated that GRO, DRO, RRO, benzene, toluene and ethylbenzene concentrations exceeded the ADEC cleanup criteria in MW-1, MW-2, and B6/VE (except for the RRO concentration in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in every well sampled, except for Monitoring Wells MW-3, MW-9, and MW-10. Monitoring Well MW-8 exhibited a GRO concentration that exceeded the ADEC cleanup criterion in addition to the benzene exceedance described above. Monitoring Well MW-15 contained GRO, DRO, benzene, toluene, and ethylbenzene concentrations above the applicable ADEC cleanup criteria. None of the samples analyzed contained xylenes concentrations that exceeded the ADEC cleanup criterion. Two off-site, downgradient wells (MW-11 and MW-12) were tested and exhibited levels of contaminants that exceeded ADEC cleanup criteria.

4.0 AUGUST AND SEPTEMBER 2012 SAMPLING AND ANALYSIS

4.1 Modifications to the Workplan

The following minor modifications to the work plan dated May 20, 2005, which was updated in an email correspondence dated July 3, 2012 occurred for reasons described below:

• The presence of a sheen and petroleum odor was observed during purging activities of Monitoring Wells MW1, MW2, MW3, MW9, MW13, MW14, MW15, and B6VE; therefore, the stabilization parameters (pH, conductivity, oxidation reduction potential, and temperature)

were not collected in these wells to prevent damage to the water quality meter.

- Monitoring Well MW9 was located against the roadway curb, directly in a storm water runoff pathway and was completely covered with water during the first sampling event. To prevent introducing extraneous contamination from surface water runoff, Monitoring Well MW9 was sampled on a later date; September 13, 2012.
- Monitoring Wells MW3 and MW9 required a smaller bladder pump for purging and sampling activities because frost heaving had distorted the effective diameters of these wells.
- An inspection of Monitoring Wells MW9 and MW12 revealed that each well had damaged casings and were missing their steel flush-mounted cover. In addition, MW12 did not have an expandable locking cap to seal off the monitoring well. Each well was repaired on August 30, 2012 by GeoTek Alaska, Inc.
- Monitoring Well MW12 was located in the Old Seward Highway and was missing its flushmounted steel cover and expandable locking cap during this round of groundwater sampling. Because there was not an expandable locking for MW12, potential contaminant constituents might have entered the well from surface water runoff. Because of the likely potential that surface water runoff entered MW12, a water sample collected during these sampling events would not have been representative of groundwater conditions. Therefore, Katrina Chambon, ADEC Project Manager, approved not collecting a groundwater sample from this well during these sampling activities.

4.2 Water Elevations, Groundwater Monitoring Wells & Facility Well Sampling

BGES collected groundwater samples from a Facility Well and Monitoring Wells MW1, MW2, MW3, MW5, MW8, MW9, MW10, MW11, MW13, MW14, MW15 and B6/VE on August 29, 30 and 31 and September 13, 2012 (Figure 2).

Prior to sample collection, the depth to water and the total depth of each well were measured using an electronic water level indicator; which was decontaminated prior to its use in each well, by washing it in an Alconox (laboratory-grade detergent) solution, followed by a distilled water rinse. Prior to the collection of groundwater samples, the casing volume for each well was calculated. The wells were purged utilizing a positive displacement bladder pump; approximately three to five casing volumes

were removed from each well. During the purging activities, the stabilization parameters (pH, conductivity, oxidation-reduction potential, and temperature) were monitored in wells that did not exhibit a hydrocarbon sheen, utilizing a YSI water quality meter. Upon completion of the purging activities, the groundwater samples were collected with the bladder pump utilizing low-flow sampling techniques. Portions of the samples scheduled for volatiles analyses were collected first by filling laboratory-supplied containers that were preserved with hydrochloric acid (HCL). Care was taken during filling of the containers to ensure that no headspace was left within the containers and that none of the preservative was spilled. One duplicate water sample was collected from Monitoring Well MW1 (labeled MW17) and was submitted "blindly" to the laboratory for analyses. The depth to water, the total depth of the wells, and the water quality parameters are presented in Table 1.

The Facility Well sample was collected directly from the sink faucet in the garage restroom located in the northeast corner of the building. Prior to the collection of the facility well sample, the faucet was turned on and allowed to purge at maximum capacity for approximately 15 minutes in order to purge any water that was present in the water lines prior to sample collection. Upon completion of the purging activities, a water sample was collected from faucet directly into laboratory-supplied sample jars preserved with HCL. Care was taken during filling of the containers to ensure that no headspace was left within the containers and that none of the preservative was spilled.

The sample containers were labeled, placed in a chilled cooler, and transported to SGS North America, Inc. (SGS), an ADEC-approved laboratory for analysis, under standard chain-of-custody protocol. As a quality control measure, a trip blank sample accompanied the water samples scheduled for volatile analyses during the entire sampling and handling process.

BGES also surveyed the top of casings' and ground elevations for each of the existing monitoring wells, except for MW12. The wells were re-surveyed to the nearest vertical 0.01 foot, utilizing a fixed, permanent or semi-permanent reference point. The reference point for the survey was the Mazda sign (west pole) located to the southeast of the property.

Utilizing the surveyed monitoring well elevations and the measured depths to water, the groundwater elevations in each monitoring wells were calculated. Then, the calculated groundwater elevations for the subject property were utilized to create a groundwater elevation contour map which suggests that general groundwater flow direction at the site was to the southeast (Figure 3). The groundwater flow direction was 0.042 foot per linear foot in the northwest portion of the site and 0.0046 foot per linear

foot in the southeast portion at the site. The depth to water, the total depth of the wells, the water quality parameters, and the calculated water elevations are presented in Table 1.

Investigation-derived waste generated (purge water) was separated by monitoring well and containerized in fifteen, 4-gallon buckets. The investigation-derived wastes were stored outside in the yard of the facility under a large blue tarp. Each 4-gallon bucket was clearly labeled with the BGES contact information and a description of the contents. The field notes for these groundwater monitoring activities are included in Appendix A.

5.0 EVALUATION OF LABORATORY DATA

Laboratory analysis of the water samples were performed by SGS, an ADEC-approved laboratory. The analytical results for water samples are listed in Table 2 and copies of the laboratory data are included in Appendix B. The analytical results for water sample results were compared to the ADEC Method 2 Cleanup Criteria listed in Alaska Administrative Code (AAC) 75.341—Table C for groundwater.

The samples were analyzed at SGS by the following methods: GRO by Alaska Method (AK) 101; DRO by AK 102; RRO by AK 103; VOCs by Environmental Protection Agency (EPA) Method 524.2; and BTEX by SW8021B.

The water samples collected from the subject property were numbered, for example, MW1-0830, where the prefix MW1 indicates the monitoring well from which the water sample was collected; and 0830 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as MW1 with the date omitted. B6/VE is also a monitoring well and is labeled in the same format as described above. Additionally, the Facility Well sample was labeled "Facility Well", with no prefix but was sampled on August 30, 2012.

Thirteen water samples, including a duplicate sample, were collected from twelve existing Monitoring Wells (MW1, MW2, MW3, MW5, MW8, MW9, MW10, MW11, MW13, MW14, MW15, and B6/VE) at the site. In addition, a drinking water sample was collected from the facility well and labeled "Facility Well." The water sample collected from the Facility Well did not exhibit any analyte concentrations above the laboratory's limits of quantitation (LOQ) and did not exceed ADEC cleanup criteria.

The water samples collected from Monitoring Wells MW1 and MW17 (duplicate of MW1) exhibited

concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW2, MW13, and MW14 exhibited concentrations of GRO, BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria.

Water Samples MW8 and MW15 exhibited concentrations of benzene, which exceeded the ADEC cleanup criterion. In addition, Water Sample B6/VE exhibited concentrations of GRO, benzene, toluene, DRO, and RRO, which exceeded ADEC cleanup criteria.

Water Samples MW3, MW5, MW9, MW10, MW11, and the Facility Well exhibited analyte concentrations which were below their applicable LOQs and/or ADEC cleanup criteria. Analytical results for the groundwater samples are summarized in Table 2, the laboratory analytical data are included in Appendix B, and the sampling locations are shown on Figure 2.

6.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. An ADEC laboratory data review checklist was completed for each laboratory work order number, and these checklists are included in Appendix C. Sample analyses were provided by SGS of Anchorage, Alaska. All samples were hand-delivered to SGS by BGES personnel under standard chain-of-custody protocol.

The samples contained the proper preservatives for the requested analyses and no unusual sample conditions were noted by the laboratory. Trip blanks accompanied all volatile samples (GRO, BTEX, and VOCs) through the entirety of the sampling process and delivery to the laboratory. Case narratives were included with all of the laboratory data. Quality Control (QC) failures identified in the case narratives are separated by work order numbers and are described below. The following is a discussion of our evaluation of sample conditions and laboratory procedures for the water samples collected during the August and September 2012 field activities.

Work Order 1124083

The temperature of the sample coolers were measured at the laboratory at the time of receipt to be 6.1° Celsius (C), 6.5° C, and 4.4° C. Thus, two of the coolers had temperatures that were measured at just above the allowable temperature range of 4 degrees +/- 2 degrees C. Because the temperatures of the coolers only exceeded the allowable temperature range by a small amount, it is our opinion that there is February 2013 Groundwater Monitoring Report Page 7 of 10 12-050-01 Custom Truck, Anchorage, Alaska

a reduced potential for biological degradation of the contamination and this QC failure does not affect the acceptability of the data for their intended use.

The case narrative for Work Order Number 1124083 (samples collected on August 29, 30, and 31, 2012) noted that there were no QC failures identified by SGS. However, the LOQs for GRO and benzene exceeded the ADEC cleanup criteria for the samples collected from Monitoring Wells MW1, MW17 (duplicate of MW1), and MW-13. The LOQs for GRO, benzene, DRO, and RRO exceeded the ADEC cleanup criteria for the samples collected from Monitoring Wells MW2 and MW-14. Because the specific analytes all had positive detections that exceeded their applicable ADEC cleanup criteria, the elevated LOQs do not affect the interpretation of the data.

The water sample collected from Monitoring Well MW17 was a duplicate of the water sample collected from Monitoring Well MW1 and was collected to evaluate sampling precision. The Relative Percent Differences (RPDs) for all analytes in this sample and duplicate sample were between 2.09 percent and 12.90 percent and were in accordance with ADEC guidelines (less than 30 percent). This indicates acceptable field sampling precision for this sampling event.

Work Order 1124367

The sample cooler arrived at the laboratory within the allowable temperature range of 4 degrees +/- 2 degrees C. The case narrative for Work Order Number 1124367 (samples collected on September 13, 2012) noted that there were no QC failures identified by SGS.

7.0 CONCEPTUAL SITE MODEL

Utilizing on-site observations, historical information, and ADEC guidance documents, BGES has developed a graphical human health conceptual site model (CSM). This CSM depicts potential exposure routes for both human and ecological receptors for the subject property as a whole (Appendix D). Most of the contamination at the property originated from historical underground storage tanks associated with an automotive dealership that had previously operated on the property. The CSM presented in the 2007 Groundwater Sampling Report (December 2007) is still valid and has not been revised.

8.0 CONCLUSIONS

Groundwater elevations were measured in the monitoring wells and are listed in Table 1 and represented on Figure 3. The groundwater flow direction is generally to the southeast. All of the water February 2013 Groundwater Monitoring Report Page 8 of 10 12-050-01 Custom Truck, Anchorage, Alaska

samples collected from the groundwater monitoring wells were analyzed for GRO, DRO, RRO, and BTEX. The samples collected from the Facility Well were analyzed for VOCs. The sample collected from the Facility Well did not exhibit any analyte concentrations above laboratory LOQs or ADEC cleanup criteria.

Samples collected from Monitoring Wells MW-1, MW-2, MW-17 (duplicate of MW-2), MW-13, and MW-14 exhibited concentrations of GRO, DRO, RRO, benzene, toluene, and ethylbenzene that exceeded the ADEC cleanup criteria. Water Samples MW-2, MW-13, and MW-14 also had total xylene concentrations that exceeded the ADEC cleanup criterion. MW-8 and MW-15 exhibited benzene concentrations that exceeded the ADEC cleanup criterion. B6VE exhibited GRO, benzene, toluene, DRO, and RRO concentrations that exceeded ADEC cleanup criteria.

One off-site, downgradient well (MW-11) was tested and did not exhibit any analyte concentrations that exceed ADEC cleanup criteria. The water sample collected from Monitoring Well MW11 during the previous groundwater monitoring event, performed in September and October of 2007, exhibited a concentration of benzene at 0.00576 milligrams per liter (mg/L), which was a lower concentration than during the sampling events performed in March and September of 2006, but still exceeded the ADEC cleanup criterion. Monitoring Well MW11 appears to be decreasing in contaminant concentrations. Graphs showing the concentration trends in selected monitoring wells are included in Appendix E.

Monitoring Wells MW3, MW5, MW8, MW9, MW10 and MW11 were significantly less contaminated than Monitoring Wells MW1, MW2, MW13, MW14, MW15 and B6/VE; suggesting that contamination was centrally located around these six monitoring wells during this round of sampling activities. The approximate extent of groundwater contamination is depicted on Figure 2.

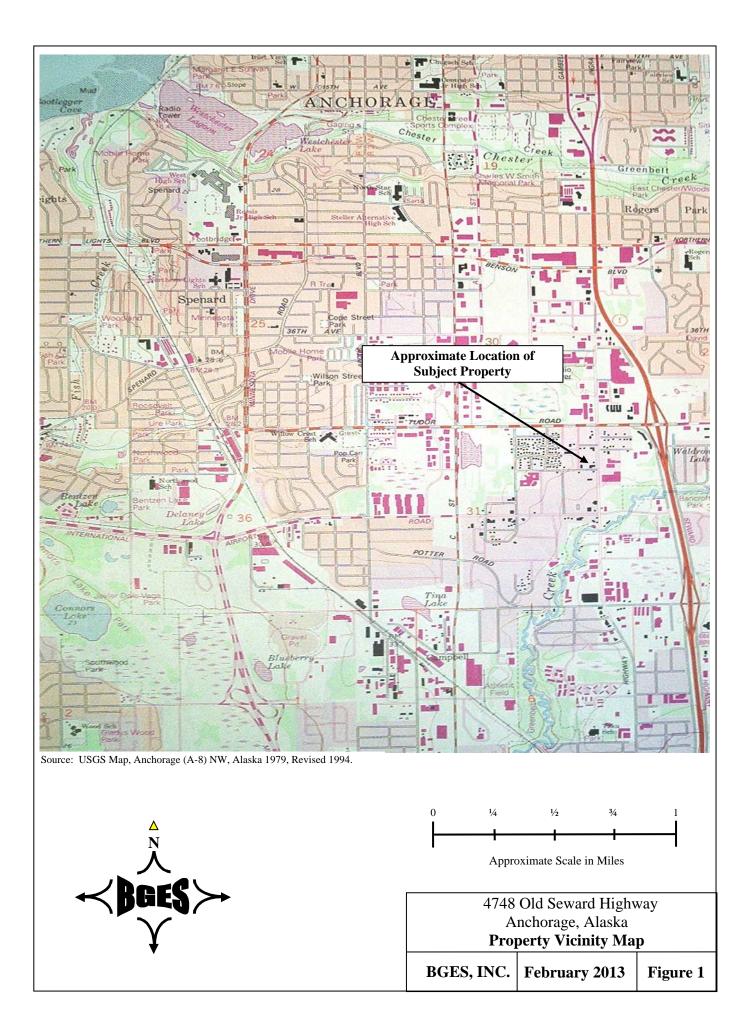
Historically, the contaminant trend is declining in almost all wells, except for DRO in MW-1 and MW2 (Table 3). Monitoring Wells MW13 and MW14 were sampled for the first time and exhibited analyte concentrations that were greater than any of the other monitoring wells. Monitoring Wells MW13 and MW14 were centrally situated between MW1, MW2, MW15 and B6/VE, all of which have several contaminant constituents that exceed the ADEC cleanup criteria.

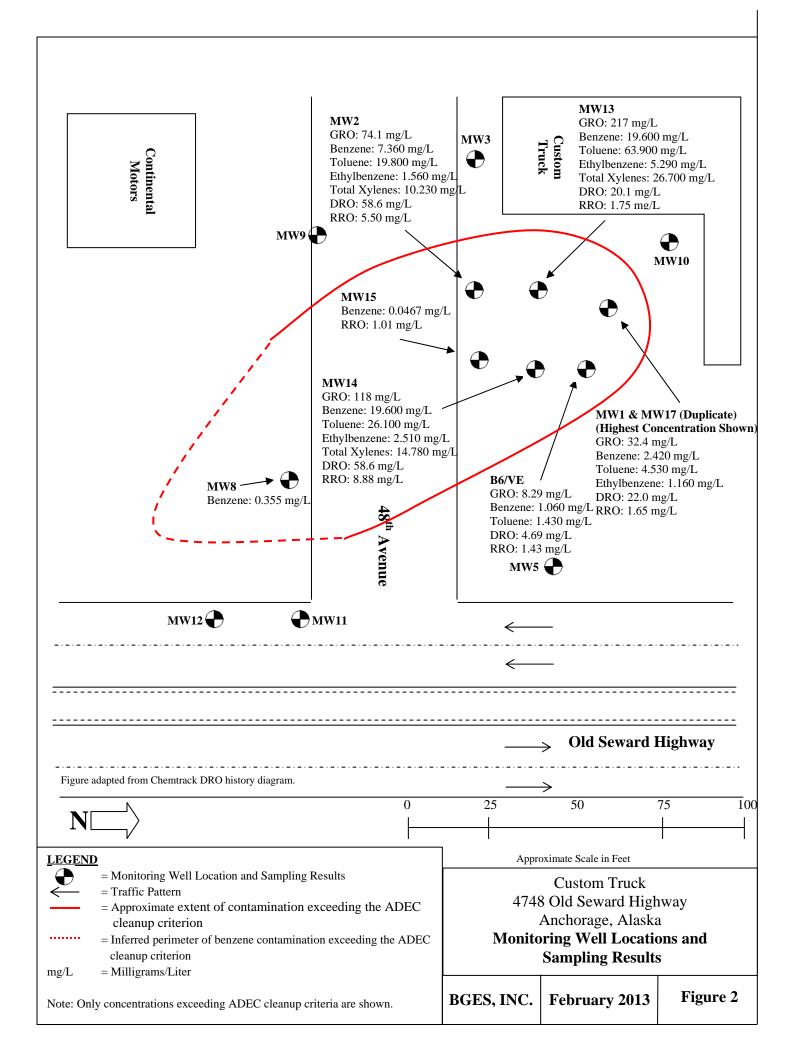
Because of the continuing presence of contaminant concentrations that exceed ADEC cleanup criteria in wells both on and off site, it is recommended that the monitoring wells continue to be monitored on a schedule acceptable to the ADEC, in order to further evaluate the progress of natural attenuation of contaminants at the site. It is recommended that the facility well continue to be sampled at least February 2013 Groundwater Monitoring Report Page 9 of 10 Custom Truck, Anchorage, Alaska annually. It is also recommended that purge water with contaminant concentrations exceeding the Anchorage Water and Wastewater Utility (AWWU) allowable discharge be appropriately disposed. Finally, it is recommended that a copy of this report be provided to the ADEC.

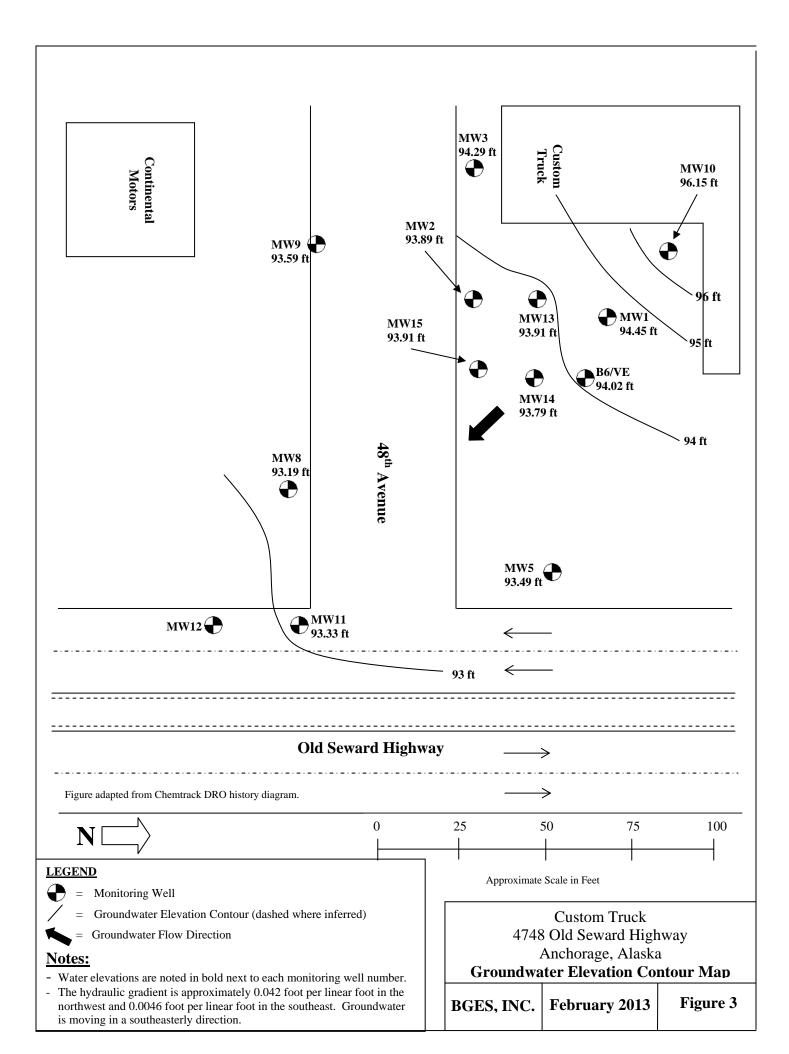
9.0 EXCLUSIONS AND CONSIDERATIONS

This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made and work conducted, and only apply to the immediate vicinities of the locations where water samples were collected. In addition, changes to site conditions may have occurred since the completion of our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, except as directed by our client, or as required by law.

This report was prepared by Joshua Barsis, Environmental Scientist with BGES. Mr. Barsis has conducted several site characterization and remedial projects in south central Alaska. This report was reviewed by Robert N. Braunstein, C.P.G., Principal Geologist of BGES. Mr. Braunstein has more than 30 years of geological/environmental consulting experience and has conducted and managed thousands of environmental projects involving site characterization and remediation efforts throughout Alaska and the lower 48 states.


Prepared By:


Joshua Barsis Environmental Scientist


Reviewed By:

Robert h. Braunstern

Robert N. Braunstein, C.P.G Principal Geologist

TABLE 1 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA

Well Number	MW1	MW2	MW3	MW5	MW8
Date Sampled	08/30/12	08/30/12	08/31/12	08/29/12	08/29/12
Date of Depth and Elevation Measurement	08/29/12	08/29/12	08/29/12	08/29/12	08/29/12
Time of Depth to Water Measurement	8:10	7:40	8:00	9:00	9:15
Time Sample Collected	19:45	13:45	9:30	11:45	19:45
Top of Casing Elevation (feet)	102.65	99.89	100.02	101.19	99.62
Depth to Water (feet below top of casing)	8.20	6.00	5.73	7.70	6.43
Water Elevation (feet)	94.45	93.89	94.29	93.49	93.19
Total Depth of Well (feet below top of casing)	21.80	13.60	9.20	13.10	15.20
Well Casing Diameter (Inches)	2	2	2	2	2
Standing Water Well Volume (gallons)	2.22	1.24	0.57	0.88	1.43
Purge Volume-Actual (gallons)	7.0	4.0	4.0	3.0	4.5
Temperature (degrees Celsius)	NA	NA	NA	13.4/12.1/11.3/11.1	12.4
pH (standard units)	NA	NA	NA	6.4/6.28/6.22/6.3	6.90
Conductivity (millisiemans per centimeter)	NA	NA	NA	477/442/570/519	463.00
Oxidation Reduction Potential (ORP)	NA	NA	NA	-39/-33/-15/-15	-87.00
Notes:	Water quality	Water quality	Water quality		A petroleum odor was
	parameters were	parameters were	parameters were		observed in this well
	not collected for	not collected for	not collected for		during purging
	this well because a	this well because a	this well because a		activities; therefore,
	petroleum sheen	petroleum sheen	petroleum sheen		the collection of water
	and odor were	and odor were	and odor were		quality parameters
	observed during	observed during	observed during		were not continued
	purging activities	purging activities	purging activities		after the first well
					volume.
Values separated by / indicate readings for					
successive well volumes removed					
Sampler: J. Barsis					
Field parameters measured with a YSI water quality meter.					
Weather conditions on August 29 and					
September 13, 2012 consisted of blue skies with					
an ambient temperature of approximately 60					
degrees Fahrenheit. Weather conditions on					
August 30 and 31, 2012 consisted of rain with					
an ambient temperature of 50 degrees					
Fahrenheit.					

TABLE 1 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA

Well Number	MW9	MW10	MW11	MW13	MW14	MW15	B6/VE
Date Sampled	09/13/12	08/29/12	08/30/12	08/30/12	08/30/12	08/29/12	08/30/12
Date of Depth and Elevation Measurement	08/29/12	08/29/12	08/29/12	08/29/12	08/29/12	08/29/12	08/29/12
Time of Depth to Water Measurement	15:00	9:10	7:30	8:05	7:45	9:25	7:55
Time Sample Collected	17:00	13:15	10:15	18:40	17:00	20:45	18:30
Top of Casing Elevation (feet)	99.69	103.35	98.73	101.51	101.39	99.81	101.92
Depth to Water (feet below top of casing)	6.10	7.20	5.40	7.60	7.60	5.90	7.90
Water Elevation (feet)	93.59	96.15	93.33	93.91	93.79	93.91	94.02
Total Depth of Well (feet below top of casing)	14.00	15.20	14.00	11.80	13.15	10.70	14.33
Well Casing Diameter (Inches)	2	2	2	2	2	2	4
Standing Water Well Volume (gallons)	1.29	1.31	1.40	0.69	0.91	0.78	1.05
Purge Volume-Actual (gallons)	3.9	4.0	4.5	2.5	3.0	3.0	4.5
Temperature (degrees Celsius)	N/A	16.8/16.3/19.2/17.3	12.6/11.7/11.5	NA	NA	NA	NA
pH (standard units)	N/A	6.52/6.42/6.83/6.87	7.35/6.8/6.57	NA	NA	NA	NA
Conductivity (millisiemans per centimeter)	N/A	585/594/621/401	335/346/64.2	NA	NA	NA	NA
Oxidation Reduction Potential (ORP)	N/A	65/55.3/-36/-40	-97.2/-76/-70	NA	NA	NA	NA
Notes:	Water quality			Water quality	Water quality	Water quality	Water quality
	parameters were			parameters were	parameters were	parameters were	parameters were
	not collected for			not collected for	not collected for	not collected for	not collected for
	this well because a			this well because a			
	petroleum sheen			petroleum sheen	petroleum sheen	petroleum sheen	petroleum sheen
	and odor were			and odor were	and odor were	and odor were	and odor were
	observed during			observed during	observed during	observed during	observed during
	purging activities			purging activities	purging activities	purging activities	purging activities
Values separated by / indicate readings for							
successive well volumes removed							
Sampler: J. Barsis							
Field parameters measured with a YSI water quality meter.							
Weather conditions on August 29 and							
September 13, 2012 consisted of blue skies with							
an ambient temperature of approximately 60							
degrees Fahrenheit. Weather conditions on							
August 30 and 31, 2012 consisted of rain with							
an ambient temperature of 50 degrees							
Fahrenheit.							

TABLE 24748 OLD SEWARD HIGHWAYANCHORAGE, ALASKAANALYTICAL RESULTS - WATER (AUGUST AND SEPTEMBER 2012)

Water Sample No.	Parameter	Results (mg/L)	LOQ (mg/L)	ADEC Soil Cleanup Criterion (mg/L)	Analytical Method
MW1-0830	Gasoline Range Organics	32.4	5.00	2.2	AK101
11111-0050	Benzene	2.420	0.0250	0.005	SW8021B
	Toluene	4.530	0.0500	1	SW8021B SW8021B
	Ethylbenzene	1.160	0.0500	0.7	SW8021B SW8021B
	Total Xylenes	7.910	0.100	10	SW8021B SW8021B
	Diesel Range Organics	22.0	1.20	1.5	AK102
	Residual Range Organics	1.45	0.500	1.5	AK102
MW17-0830	Residual Hange Organies	1.10	0.500	1.1	111105
(Duplicate of MW1-083	0)				
RPD = 6.37%	Gasoline Range Organics	30.4	5.00	2.2	AK101
RPD = 2.09%	Benzene	2.370	0.0250	0.005	SW8021B
RPD = 7.56%	Toluene	4.200	0.0500	1	SW8021B
RPD = 6.22%	Ethylbenzene	1.090	0.0500	0.7	SW8021B
RPD = 5.06%	Total Xylenes	7.520	0.100	10	SW8021B
RPD = 4.65%	Diesel Range Organics	21.0	1.20	1.5	AK102
RPD = 4.05% RPD = 12.90%	Residual Range Organics	1.65	0.500	1.5	AK102 AK103
MW2-0830	Gasoline Range Organics	74.1	5.00	2.2	AK105
111112-0050	Benzene	7.360	0.0250	0.005	SW8021B
	Toluene	19.800	0.100	1	SW8021B SW8021B
	Ethylbenzene	1.560	0.0500	0.7	SW8021B
	Total Xylenes	10.230	0.100	10	SW8021B
	Diesel Range Organics	58.6	2.40	1.5	AK102
	Residual Range Organics	5.50	2.40	1.5	AK102 AK103
MW3-0831	Gasoline Range Organics	ND	0.100	2.2	AK103
101003-0031	Benzene	ND	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B SW8021B
	Total Xylenes	ND	0.00200	10	SW8021B
	Diesel Range Organics	ND	0.600	1.5	AK102
	Residual Range Organics	0.556	0.500	1.1	AK103
MW5-0829	Gasoline Range Organics	ND	0.100	2.2	AK101
	Benzene	0.00113	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00200	10	SW8021B
	Diesel Range Organics	ND	0.600	1.5	AK102
	Residual Range Organics	0.974	0.500	1.1	AK103
MW8-0829	Gasoline Range Organics	0.790	0.500	2.2	AK101
	Benzene	0.355	0.00250	0.005	SW8021B
	Toluene	ND	0.00500	1	SW8021B
	Ethylbenzene	ND	0.00500	0.7	SW8021B
	Total Xylenes	ND	0.0100	10	SW8021B
	Diesel Range Organics	ND	0.600	1.5	AK102
	Residual Range Organics	0.506	0.500	1.0	AK103
MW9-0913	Gasoline Range Organics	ND	0.100	2.2	AK101
	Benzene	ND	0.00500	0.005	SW8021B
	Toluene	ND	0.00100	1	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00200	10	SW8021B
	Diesel Range Organics	ND	0.600	1.5	AK102
	Residual Range Organics	ND	0.500	1.5	AK102 AK103

TABLE 24748 OLD SEWARD HIGHWAYANCHORAGE, ALASKAANALYTICAL RESULTS - WATER (AUGUST AND SEPTEMBER 2012)

oil Sample No.	Parameter	Results (mg/L)	LOQ (mg/L)	ADEC Soil Cleanup Criterion (mg/L) ¹	Analytical Metho
MW10-0829	Gasoline Range Organics	ND	0.100	2.2	AK101
1111110-0022	Benzene	ND	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00200	10	SW8021B
	Diesel Range Organics	ND	0.612	1.5	AK102
	Residual Range Organics	ND	0.510	1.5	AK102 AK103
MW11-0830	Gasoline Range Organics	ND	0.100	2.2	AK105 AK101
WI W 11-0030	Benzene	ND	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1	SW8021B SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B SW8021B
	-			10	SW8021B SW8021B
	Total Xylenes	ND	0.00200		
	Diesel Range Organics	ND	0.600 0.500	1.5	AK102
MM12 0020	Residual Range Organics	0.601		1.1 2.2	AK103
MW13-0830	Gasoline Range Organics	217	10.0		AK101
	Benzene	19.600	0.0500	0.005	SW8021B
	Toluene	63.900	0.500	1	SW8021B
	Ethylbenzene	5.290	0.100	0.7	SW8021B
	Total Xylenes	26.700	0.200	10	SW8021B
	Diesel Range Organics	20.1	1.20	1.5	AK102
	Residual Range Organics	1.75	0.500	1.1	AK103
MW14-0830	Gasoline Range Organics	118	10.0	2.2	AK101
	Benzene	19.600	0.0500	0.005	SW8021B
	Toluene	26.100	0.200	1	SW8021B
	Ethylbenzene	2.510	0.100	0.7	SW8021B
	Total Xylenes	14.780	0.200	10	SW8021B
	Diesel Range Organics	58.6	2.40	1.5	AK102
	Residual Range Organics	8.88	2.00	1.1	AK103
MW15-0829	Gasoline Range Organics	1.33	0.100	2.2	AK101
	Benzene	0.0467	0.000500	0.005	SW8021B
	Toluene	0.0514	0.00100	1	SW8021B
	Ethylbenzene	0.0229	0.00100	0.7	SW8021B
	Total Xylenes	0.1119	0.00200	10	SW8021B
	Diesel Range Organics	1.03	0.600	1.5	AK102
	Residual Range Organics	1.01	0.500	1.1	AK103
B6/VE-0830	Gasoline Range Organics	8.29	1.00	2.2	AK101
	Benzene	1.060	0.00500	0.005	SW8021B
	Toluene	1.430	0.0100	1	SW8021B
	Ethylbenzene	0.122	0.0100	0.7	SW8021B
	Total Xylenes	1.139	0.0200	10	SW8021B
	Diesel Range Organics	4.69	0.600	1.5	AK102
	Residual Range Organics	1.43	0.500	1.1	AK103
FACILITY WELL	Benzene	ND	0.000500	0.005	EPA 524.2
(Collected 8/30/12)	Toluene	ND	0.000500	1	EPA 524.2 EPA 524.2
(Concercu 0/30/12)	Ethylbenzene	ND	0.000500	0.7	EPA 524.2 EPA 524.2
		ND	0.000300	10	EPA 524.2 EPA 524.2
	Total Xylenes All Other VOCs	ND ND	Varies	Varies	EPA 524.2 EPA 524.2

mg/L = milligrams per Liter; LOQ = Limit of Quantitation; RPD = relative percent difference; VOCs = volatile organic compounds

Italics = LOQ exceeded applicable cleanup criterion.

= indicates concentration exceeded applicable cleanup criterion.

BOLD

Table 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

Image: No. Parameter AW-01 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes AW-02 GRO DRO RRO Benzene Total Xylenes AW-02 GRO DRO RRO Benzene Total Xylenes Naphthalene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes AW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes AW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO DRO	3 14.8 156 NS NS 32.8 44 3.4 3.4 17.5 NS NS NS NS NS NS NS NS NS NS	NS NS	(mg/L) NS NS NS NS NS NS NS N	(mg/L) 66.9 2.45 NS 11 16.8 2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS	(mg/L) NS NS NS NS NS NS NS NS NS NS	(mg/L) 14.5 NS NS 1.49 1.68 0.41 2.15 58.5 NS NS NS NS NS NS NS NS NS NS	(mg/L) NS NS NS NS NS NS NS NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS	(mg/L) 48 17 NS 4.7 8.4 1.1 6.1 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS	(mg/L) NS NS NS NS NS NS NS NS NS NS	(mg/L) NS NS NS NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS NS NS	(mg/L) NS NS NS NS NS NS NS NS NS NS	(mg/L) 30.600 21.3 NS 3.140 6.770 0.945 5.540 111.000 56.0 NS 19.800 2.190 NS NS NS NS NS NS NS NS NS NS	(mg/L) 53.300 37.200 <5.05 5.540 1.490 9.380 107.000 74.300 <5.00 <5.00 <5.00 19.700 19.700 19.700 19.700 NS NS NS NS NS NS NS NS	(mg/L) 54.400 19.3 2.08 7.010 17.100 2.420 14.120 14.120 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS	(mg/L) 28.100 20.1 1.87 0.109 8.940 1.080 7.400 7.500 8.500 7.500 8.5000 8.50000 8.5000 8.5000 8.50000 8.50000 8.50000 8.50000000000	(mg/L) 50.400 28.2 1.46 3.210 8.930 1.100 7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.00022 0.000022 0.000026	(mg/L) 32.4 22 1.45 2.42 4.53 1.16 7.91 74.1 78.6 5.5 7.36 19.8 1.55 7.36 19.8 NS NS NS NS NS NS NS	Method AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b AK101 AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SU8021b 8270C 8270C 8270C 8270C 8270C	Level (mg/L) ¹ 1.3 1.5 1.1 0.005 1.0 0.7 10.0 1.3 1.5 1.1 0.005 1.0 0.7 10.0 0.7 10.0 0.7 10.0 0.7 10.0 0.7 10.0 0.7 10.0 0.7 10.0 0.7 15 2.2 2.2 2.2 1.46
MW-02 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-02 GRO DRO RRO Benzene Toluene Ethylbenzene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Phenanthrene Phenanthrene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene	NS NS NS 14.6 27.6 2.79 14.8 156 NS NS 32.8 44 3.4 3.75 NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS % % % % % % % % % % % % % % % % % % %	2.45 NS 11 16.8 2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	X X X X X X X X X X X X X X X X X X X	NS NS 1.49 1.68 0.41 2.15 58.5 NS NS S5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS NS	17 NS 4.7 8.4 1.1 6.1 89.5 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	21.3 NS 3.140 6.770 0.945 5.540 111.000 56.0 NS 19.800 26.500 26.500 26.500 26.500 NS NS NS NS NS NS	37.200 <5.05 5.540 12.300 9.380 107.000 74.300 <5.00 74.300 <5.00 19.700 23.100 23.100 23.100 23.100 8.05 NS NS NS NS	19.3 2.08 7.010 17.100 2.420 14.120 121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS	20.1 1.87 0.109 8.940 1.080 7.400 41.000 70.1 9.899 12.300 20.200 1.670 9.500 NS NS NS NS NS NS	28.2 1.46 3.210 8.930 1.100 7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000026	22 1.45 2.42 4.53 1.16 7.91 74.1 58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS	AK102 AK103 SW8021b SW8021b SW8021b SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b	$\begin{array}{c} 1.5\\ 1.1\\ 0.005\\ 1.0\\ 0.7\\ 10.0\\ \end{array}$
 RRO Benzene Toluene Ethylbenzene Total Xylenes MW-02 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluorene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene MW-05 GRO Benzene Toluene Ethylbenzene Toluene MW-05 GRO Benzene Toluene SRO Benzene Toluene SRO Benzene Toluene SRO Benzene SRO Benzene	NS 14.6 27.6 2.79 14.8 156 NS 32.8 44 3.4 17.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS N	NS 11 16.8 2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	X X X X X X X X X X X X X X X X X X X	NS 1.49 1.49 0.41 2.15 NS NS 58.5 NS S S S NS NS NS NS NS NS N	NS NS NS NS NS NS 28.5 28.5 28.5 28.5 28.5 28.5 13.45 NS NS NS NS NS NS NS NS NS	NS 4.7 8.4 1.1 6.1 89.5 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.5 NS NS NS NS NS NS	N N N N N N N N N N N N N N N N N N N	NS 3.140 6.770 0.945 5.540 111.000 56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS	<	2.08 7.010 17.100 2.420 14.120 121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS	1.87 0.109 8.940 1.080 7.400 7.5000 7.500 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 7.50000 7.50000 7.50000000000	1.46 3.210 8.930 7.800 37.20 27.30 1.53 2.49 6.68 0.82 0.042 0.013 0.0062 0.00032 0.000032	1.45 2.42 4.53 1.16 7.91 74.1 58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS	AK103 SW8021b SW8021b SW8021b SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8027b	$\begin{array}{c} 1.1\\ 0.005\\ 1.0\\ 0.7\\ 10.0\\ \end{array}$
W-02 GRO Benzene Total Xylenes WW-02 GRO DRO RRO Benzene Total Xylenes Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Phenanthrene Fluorene Phenanthrene Fluorene Benzo[a]anthracene All other analytes WW-03 GRO DRO RRO Benzene Total Xylenes WW-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO	14.6 27.6 2.79 14.8 Solution 156 NS 32.8 44 3.4 3.4 3.4 3.4 3.4 NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS N	11 16.8 2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	N X X X X X X X X X X X X X X X X X X X	1.49 1.68 0.41 2.15 NS NS 5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS 28.5 28.5 28.5 28.5 28.5 28.5 NS NS NS NS NS NS NS NS NS NS NS	4.7 8.4 1.1 6.1 89.5 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS	N N N N N N N N N N N N N N N N N N N	3.140 6.770 0.945 5.540 8.540 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	5.540 12.300 1.490 9.380 107.000 74.300 <5.00 23.100 2.230 10.860 NS NS NS NS NS NS	7.010 17.100 2.420 14.120 121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS	0.109 8.940 1.080 7.400 41.000 70.1 9.89 12.300 20.200 1.670 NS NS NS NS NS	3.210 8.930 1.100 7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.042 0.0062 0.000032 0.000032	2.42 4.53 7.91 74.1 58.6 5.5 7.36 10.23 NS NS NS NS NS NS NS	SW8021b SW8021b SW8021b SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b S270C 8270C 8270C 8270C	0.005 1.0 0.7 10.0 1.3 1.5 1.1 0.005 1.0 0.7 1.0.0 0.7 0.78 1.5 2.2 2.2
Toluene Ethylbenzene Total Xylenes /W-02 GRO DRO RRO Benzene Total Xylenes Total Xylenes Total Xylenes Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene All other analytes Benzo[a]anthracene All other analytes Benzene Total Xylenes Total Xylenes /W-03 GRO Benzene Total Xylenes /W-05 GRO DRO RRO Benzene Total Xylenes /W-05 GRO Benzene Total Xylenes	27.6 2.79 14.8 156 NS 32.8 44 3.4 44 3.4 5 17.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS N	16.8 2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	N N N N N N N N N N N N N N N N N N N	1.68 0.41 2.15 58.5 NS 5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS 162 NS 28.5 28.7 2.5 28.7 2.5 NS NS NS NS NS NS NS NS NS NS NS NS	8.4 1.1 6.1 89.5 16.3 NS 10.4 10.6 1.3 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS	N N N N N N N N N N N N N N N N N N N	6.770 0.945 5.540 111.000 56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS	12.300 1.490 9.380 107.000 74.300 <5.00 19.700 23.100 2.230 10.860 NS NS NS NS NS NS	17.100 2.420 14.120 121.000 70.2 5.63 19.000 31.800 2.810 NS NS NS NS NS NS NS	8.940 1.080 7.400 41.000 70.1 9.89 12.300 20.200 1.670 NS NS NS NS NS	8.930 1.100 7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000026	4.53 1.16 7.91 74.1 58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS	SW8021b SW8021b SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW8021b SW80270C 8270C 8270C	1.0 0.7 10.0 1.3 1.5 1.1 0.005 1.0 0.7 0.7 0.78 1.5 2.2 2.2
Ethylbenzene Total Xylenes /IW-02 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Pyrene Benzo[a]anthracene All other analytes /IW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes /IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes /IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene /IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene	2.79 2.79 14.8 156 NS NS 32.8 44 3.4 17.5 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N	2.23 11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	N X X X X X X X X X X X X X X X X X X X	0.41 2.15 NS NS S.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS 162 NS NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS NS NS	1.1 6.1 89.5 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS	NS N	0.945 5.540 111.000 56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS	1.490 9.380 74.300 <5.00 19.700 23.100 2.230 NS NS NS NS NS NS NS NS	2.420 14.120 121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS	1.080 7.400 41.000 70.1 9.89 12.300 20.200 1.670 9.500 NS NS NS NS NS	1.100 7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000032	1.16 7.91 74.1 58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS NS NS	SW8021b SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C	0.7 10.0 1.3 1.5 1.1 0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
Total Xylenes IW-02 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthene Fluorene Phenanthrene Benzo[a]anthracene All other analytes IW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Toluene	3 14.8 156 NS NS 32.8 44 3.4 17.5 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N	11.63 152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	N N N N N N N N N N N N N N N N N N N	2.15 58.5 NS NS 5.23 7.48 9.47 NS NS NS NS NS NS NS NS NS	NS 162 NS NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS	6.1 89.5 16.3 NS 10.4 10.6 1.3 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS 88.400 58 NS 10.2 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	5.540 111.000 56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS NS NS NS	9.380 107.000 74.300 <5.00 19.700 23.100 2.230 10.860 NS NS NS NS NS NS NS NS NS NS	14.120 121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS	7.400 41.000 70.1 9.89 12.300 20.200 1.670 9.500 NS NS NS NS NS	7.800 37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000032	7.91 74.1 58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS NS NS	SW8021b AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C	10.0 1.3 1.5 1.1 0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
AW-02 GRO DRO RRO Benzene Totuene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Fluorene Phenanthrene Fluorenthene Pyrene Benzo[a]anthracene All other analytes All other analytes All other analytes All other analytes W-03 GRO DRO RRO Benzene Total Xylenes All other analytes Benzene Total Xylenes All other analytes Benzene Total Xylenes Beoxene Total Xylenes	156 NS 32.8 34 3.4 3.4 3.4 3.4 3.4 5 NS	108 NS 20.7 NS NS	NS N	152 9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	58.5 NS NS 5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS	162 NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS NS NS NS	89.5 16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	88.400 58 NS 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS NS	NS N	111.000 56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS	107.000 74.300 <5.00 19.700 23.100 2.230 10.860 NS NS NS NS NS NS NS	121.000 70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS NS	41.000 70.1 9.89 12.300 20.200 1.670 9.500 NS NS NS NS NS NS	37.20 27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000032	74.1 58.6 5.5 19.8 1.56 10.23 NS NS NS NS NS NS NS NS	AK101 AK102 AK103 SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C 8270C	1.3 1.5 1.1 0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
ACCOMPTOCEMENT ACCOMP	NS NS 32.8 44 3.4 3.7 NS	NS 20.7 NS NS NS NS NS NS NS NS NS NS	NS N	9.81 NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS N	NS NS 5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS	NS NS 28.5 28.5 28.5 28.5 13.45 NS NS NS NS NS NS NS NS NS NS NS	16.3 NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	58 NS 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	56.0 NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS	74.300 <5.00 19.700 23.100 2.230 10.860 NS NS NS NS NS NS NS	70.2 5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS NS	70.1 9.89 12.300 20.200 1.670 9.500 NS NS NS NS NS	27.30 1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.00032 0.000032	58.6 5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS NS	AK102 AK103 SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C	1.5 1.1 0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
 RRO Benzene Toluene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Fluorene Phenanthrene All other analytes MW-03 GRO DRO RRO Benzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO 	NS 32.8 44 3.4 17.5 NS NS NS NS NS NS NS NS NS NS	NS 20.7 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS N	NS 25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS N	NS 5.23 7.48 9.47 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS 28.5 28.7 2.5 13.45 NS NS NS NS NS NS NS NS NS NS NS NS	NS 10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS	NS 10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS 19.800 26.500 2.190 10.550 NS NS NS NS NS NS NS	<5.00 19.700 23.100 2.230 10.860 NS NS NS NS NS NS NS	5.63 19.000 31.800 2.810 14.190 NS NS NS NS NS NS	9.89 12.300 20.200 1.670 9.500 NS NS NS NS	1.53 2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000026	5.5 7.36 19.8 1.56 10.23 NS NS NS NS NS NS NS	AK103 SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C	1.1 0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
Image: A series of the series	32.8 44 3.4 5 17.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	20.7 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	25.8 36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS N	5.23 7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS NS NS	28.5 28.7 2.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	10.4 10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	10.2 10.2 10.2 10.2 NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	19.800 26.500 2.190 10.550 NS NS NS NS NS NS	19.700 23.100 2.230 10.860 NS NS NS NS NS NS	19.000 31.800 2.810 14.190 NS NS NS NS NS NS	12.300 20.200 1.670 9.500 NS NS NS NS NS	2.49 6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000026	7.36 19.8 1.56 10.23 NS NS NS NS NS NS	SW8021b SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C 8270C	0.005 1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
 Toluene Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Phenanthrene Phyloranthrene Pyrene Benzo[a]anthracene All other analytes 	44 3.4 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N	36.7 4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	7.48 1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS NS	28.7 2.5 NS NS NS NS NS NS NS NS NS NS NS	10.6 1.3 7.5 NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	10.2 10.2 NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	26.500 2.190 10.550 NS NS NS NS NS NS	23.100 2.230 10.860 NS NS NS NS NS NS	31.800 2.810 14.190 NS NS NS NS NS NS	20.200 1.670 9.500 NS NS NS NS NS	6.68 0.82 4.950 0.042 0.013 0.0062 0.000032 0.000032	19.8 1.56 10.23 NS NS NS NS NS NS	SW8021b SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C 8270C	1.0 0.7 10.0 0.7 0.78 1.5 2.2 2.2
Ethylbenzene Total Xylenes Naphthalene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes WW-03 GRO DRO RRO Benzene Totuene Ethylbenzene Total Xylenes WW-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO	3.4 3.4 17.5 NS	N S S S S S S S S S S S S S S S S S S S	NS NS NS NS NS NS NS NS NS NS NS NS NS N	4.4 21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	1.4 9.47 NS NS NS NS NS NS NS NS NS NS NS	2.5 13.45 NS NS NS NS NS NS NS NS NS NS	1.3 7.5 NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	10.2 10.2 NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	2.190 10.550 NS NS NS NS NS NS	2.230 10.860 NS NS NS NS NS NS	2.810 14.190 NS NS NS NS NS NS	1.670 9.500 NS NS NS NS NS	0.82 4.950 0.042 0.013 0.0062 0.000032 0.000026	1.56 10.23 NS NS NS NS NS NS	SW8021b SW8021b 8270C 8270C 8270C 8270C 8270C 8270C	0.7 10.0 0.7 1.5 2.2 2.2
Total Xylenes Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Fluorenthrene Benzo[a]anthracene All other analytes WW-03 GRO DRO RRO Benzene Total Xylenes WW-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO	17.5 NS	NS N	NS NS NS NS NS NS NS NS NS NS NS NS	21.9 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	9.47 NS NS NS NS NS NS NS NS NS NS NS	13.45 NS NS NS NS NS NS NS NS NS	7.5 NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	10.2 NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	10.550 NS NS NS NS NS NS	10.860 NS NS NS NS NS NS	14.190 NS NS NS NS NS NS	9.500 NS NS NS NS NS	4.950 0.042 0.013 0.0062 0.000032 0.000026	10.23 NS NS NS NS NS NS	SW8021b 8270C 8270C 8270C 8270C 8270C 8270C	10.0 0.7 0.78 1.5 2.2 2.2
Naphthalene 2-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Phenanthrene Phenanthrene Pyrene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Totluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO GRO	NS ene NS NS NS NS NS NS NS NS NS NS NS NS NS N	N X X X X X X X X X X X X X X X X X X X	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	0.042 0.013 0.0062 0.000032 0.000026	NS NS NS NS NS	8270C 8270C 8270C 8270C 8270C 8270C	0.7 0.78 1.5 2.2 2.2
2-Methylnaphthalene 1-Methylnaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthene Fluorene Phenanthrene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene	ene NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS	0.013 0.0062 0.000032 0.000026	NS NS NS NS	8270C 8270C 8270C 8270C	0.78 1.5 2.2 2.2
1-Methylnaphthalene Acenaphthalene Acenaphthalene Fluorene Phenanthrene Anthracene Benzo[a]anthracene All other analytes All other analytes All-Other analytes All-Other analytes All-Other analytes All-Other analytes All-Other analytes All-Other analytes Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Tolal Xylenes B6VE GRO	ene NS NS NS NS NS NS NS NS ne NS NS S NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	0.0062 0.000032 0.000026	NS NS NS NS	8270C 8270C 8270C	1.5 2.2 2.2
Acenaphthalene Acenaphthalene Fluorene Phenanthrene Fluorenthrene Benzo[a]anthracene All other analytes /W-03 GRO DRO RRO Benzene Totla Xylenes /W-05 GRO DRO RRO Benzene Total Xylenes MW-05 GRO Benzene Total Xylenes	NS NS NS NS NS NS NS NS NS NS S NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS	0.000032 0.000026	NS NS NS	8270C 8270C	2.2 2.2
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes //W-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes //W-05 GRO DRO RRO Benzene Total Xylenes Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS	NS NS	NS NS	NS	0.000026	NS NS	8270C	2.2
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes Benzene Total Xylenes	NS NS NS NS NS NS <mrl< td=""><td>NS NS NS NS NS NS NS</td><td>NS NS NS NS NS NS NS</td><td>NS NS NS NS NS NS</td><td>NS NS NS NS NS</td><td>NS NS NS NS NS</td><td>NS NS NS NS</td><td>NS NS NS</td><td>NS NS NS</td><td>NS NS</td><td>NS NS</td><td>NS</td><td>NS</td><td>NS</td><td></td><td></td><td>NS</td><td></td><td></td></mrl<>	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	NS NS	NS NS	NS	NS	NS			NS		
Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes /W-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes /W-05 GRO DRO RRO Benzene Total Xylenes B6VE GRO	NS NS NS NS NS S	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS	NS	NS				110	0.000069		02/00	
Anthracene Fluoranthene Pyrene Benzo[a]anthracene All other analytes /IW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes Ethylbenzene Toluene Ethylbenzene Total Xylenes	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS	NS			110		NS	NS	0.000051		8270C	1.46
Fluoranthene Pyrene Benzo[a]anthracene All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	NS NS NS <mrl< td=""><td>NS NS NS NS</td><td>NS NS NS NS</td><td>NS NS NS</td><td>NS NS NS</td><td>NS NS NS</td><td>NS NS</td><td>NS</td><td></td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.0000000000000000000000000000000000000</td><td>NS</td><td>8270C</td><td>11.0</td></mrl<>	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS	NS				NS	NS	NS	NS	0.0000000000000000000000000000000000000	NS	8270C	11.0
Pyrene Benzo[a]anthracene All other analytes JW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes JW-05 GRO DRO RRO Benzene Total Aylenes B6VE GRO	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS	NS NS	NS			NS	NS	NS	NS	NS	NS	0.0000037	NS	8270C	1.46
All other analytes All other analytes MW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Total Xylenes Ethylbenzene Toluene Ethylbenzene Total Xylenes	ne NS NS <mrl< td=""><td>NS NS NS</td><td>NS NS NS</td><td>NS NS</td><td>NS</td><td>NS</td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.000020</td><td>NS</td><td>8270C</td><td>1.1</td></mrl<>	NS NS NS	NS NS NS	NS NS	NS	NS			NS	NS	NS	NS	NS	NS	NS	0.000020	NS	8270C	1.1
All other analytes AW-03 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes AW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	NS <mrl< td=""><td>NS NS</td><td>NS NS</td><td>NS</td><td></td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.000019</td><td>NS</td><td>8270C</td><td></td></mrl<>	NS NS	NS NS	NS				NS	NS	NS	NS	NS	NS	NS	NS	0.000019	NS	8270C	
DRO RRO Benzene Toluene Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO				NS			NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	8270C	varies
RRO Benzene Toluene Ethylbenzene Total Xylenes /W-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	• • • •	NS	NC		NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.0500</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.0500</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	<0.090	NS	NS	<0.0500	ND	AK101	1.3
Benzene Toluene Ethylbenzene Total Xylenes IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	NS		GNI	NS	NS	NS	NS	0.41	NS	NS	NS	NS	0.333	NS	NS	<0.407	ND	AK102	1.5
Toluene Ethylbenzene Total Xylenes /W-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.764	NS	NS	<0.407	0.556	AK103	1.1
Ethylbenzene Total Xylenes MW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	<mrl< td=""><td></td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>		NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	<0.0005	NS	NS	<0.0005	ND	SW8021b	0.005
Total Xylenes /W-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	<mrl< td=""><td></td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>		NS	NS	NS	<mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	0.0008	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	SW8021b	1.0
IW-05 GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO			NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	SW8021b	0.7
DRO RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	s <mrl< td=""><td>_ NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	_ NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<1.50	ND	SW8021b	10.0
RRO Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	0.244		0.462	0.303	0.7	<mrl< td=""><td>0.148</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.938</td><td>2.200</td><td>NS</td><td>0.456</td><td>0.121</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	0.148	NS	NS	NS	NS	0.938	2.200	NS	0.456	0.121	ND	AK101	1.3
Benzene Toluene Ethylbenzene Total Xylenes B6VE GRO	NS	NS	NS	0.39	NS	NS	NS	NS	NS	NS	NS	0.603	1.24	NS	0.700	<0.407	ND	AK102	1.5
Toluene Ethylbenzene Total Xylenes B6VE GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.79	NS	0.865	<0.407	0.974	AK103	1.1
Ethylbenzene Total Xylenes B6VE GRO	0.13	0.18	0.243	0.157	0.272	0.011	0.079	NS	NS	NS	NS	0.467	1.170	NS	0.180	0.0119	0.00113	SW8021b	0.005
Total Xylenes B6VE GRO	<mrl< td=""><td></td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>		<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	<0.020	NS	0.00450	0.000861	ND	SW8021b	1.0
B6VE GRO			<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	0.00236	<0.020	NS	ND	<0.0005	ND	SW8021b	0.7
	s <mrl< td=""><td>_ NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	_ NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	0.00586	<0.020	NS	0.02128	0.00204	ND	SW8021b	10.0
DRO)	20.7	23	13.5	18.6	24	42.1	25.9	15	NS	NS	NS	50.700	57.900	27.400 90.0	40.600 10.80	54.600 15.6	8.290	AK101	1.3 1.5
	NS	NS	NS	2.52	NS	NS	NS	1.6	NS	NS	NS	20.1	20.100				4.690	AK102	
RRO	NS 1.50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	9.630	1.93	2.01	1.02	1.430	AK103	1.1 0.005
Benzene	1.53	3.11	1.34	2.29	1.75	3.82	2.5	1.69	NS	NS	NS	4.540	7.660	2.020	0.0939	3.880	1.060	SW8021b	
Toluene	3.74	NS	2.21	4	3.12	4.48	3.16	1.9	NS	NS	NS	9.980	12.500	5.660	9.450	9.190	1.430	SW8021b	1.0
Ethylbenzene		NS	NS	NS	NS	NS	NS	0.231	NS	NS	NS	1.440	1.090	1.070	0.555	1.100	0.122	SW8021b	0.7
Total Xylenes		NS	2.2	2.3	2.9	3.36	2.9	1.5	NS	NS	NS	7.220	8.810	5.240	6.730	5.950	1.139	SW8021b	10.0
/W-08 GRO	3.45		9.89	NS	1.8	1.2	5.3	9.5	NS	0.8	NS	2.070	4.220	NS	0.577	4.280	0.79	AK101	1.3
DRO	NS	NS	NS	NS	NS	NS	NS	14.4	2.06	<mrl< td=""><td>NS</td><td>0.558</td><td><0.306</td><td>NS</td><td>ND</td><td><0.394</td><td>ND</td><td>AK102</td><td>1.5</td></mrl<>	NS	0.558	<0.306	NS	ND	<0.394	ND	AK102	1.5
RRO		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.510	NS	ND	<0.394	0.506	AK103	1.1
Benzene	NS	2.49	4.91	NS	0.69	0.5	2.31	3.6	NS	0.33	NS	1.090	2.180	NS	0.165	1.450	0.355	SW8021b	0.005
Toluene	1.51		NS	NS	NS	NS	NS	0.016	NS	0.0008	NS	0.00285	<0.020	NS	0.0452	<0.025	ND	SW8021b	1.0
Ethylbenzene	1.51 0.0027		0.1	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	0.021	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	<0.020	NS	0.00415	<0.025	ND	SW8021b	0.7
Total Xylenes	1.51 0.0027 0.004	NS	0.23	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	0.34	NS	<mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	0.0147	0.0256	NS	0.0539	<0.075	ND	SW8021b	10.0
RO = Gasoline Range Organics	1.51 0.0027 e 0.004 s 0.007		Organics		Not Samp		Not Detecte		Not Analyz	ed									
BOLD = Value less than Method R BOLD = Value exceeds ADE	1.51 0.0027 0.004 0.007 0.007 0.007	Diesel Range	a/l _ mili	ams per Lite		Cs = Volatile		based on 18	3AAC 75.34	5 Table C.									

Table 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

	Date Collected:	Jan-95	Jul-95	Mar-96	Dec-96	Nov-99	Aug-00	Nov-00	Jun-02	Nov-02	Jul-03	Jan-04	Jun-05	Aug-05	Mar-06	Sept-06	Oct-07	Sep-12	Analytical	ADEC Method Two Groundwater Cleanup
/ell No.							-							-		-		•	Method	•
	Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		Level (mg/L)
W-09	GRO	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	< 0.090	NS	NS	< 0.050	ND	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	0.44	NS	NS	NS	NS	0.798	NS	NS	<0.407	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.23	NS	NS	<0.407	ND	AK103	1.1
	Benzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	<0.0005	NS	NS	<0.0005	ND	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	<0.0005	ND	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	<0.0015	ND	SW8021b	10.0
	-																			
1W-10	GRO	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	< 0.090	NS	NS	<0.050	ND	AK101	1.3
	DRO	NS	NS	NS	0.39	NS	NS	NS	0.32	NS	NS	NS	NS	< 0.303	NS	NS	< 0.391	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.505	NS	NS	<0.391	ND	AK103	1.0
	Benzene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	<0.0005	NS	NS	<0.0005	ND	SW8021b	0.005
	Toluene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	SW8021b	0.7
	Total Xylenes	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	SW8021b	10.0
1W-11	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	< 0.090	0.233	ND	<0.050	ND	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	3.82	NS	1.72	<mrl< td=""><td>1.16</td><td>2.01</td><td>0.650</td><td>0.481</td><td>0.759</td><td>ND</td><td>AK102</td><td>1.5</td></mrl<>	1.16	2.01	0.650	0.481	0.759	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.45	0.945	0.535	1.79	0.601	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.004</td><td><mrl< td=""><td>0.000899</td><td></td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	0.004	<mrl< td=""><td>0.000899</td><td></td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<>	0.000899		0.02280	0.0142	0.00576	ND	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	0.0027	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	< 0.002	0.0601	ND	<0.0005	ND	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	< 0.002	0.00659	ND	< 0.0005	ND	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.03412	ND	<0.0015	ND	SW8021b	10.0
	0.00										0					0.45-	0.000			
/W-12	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.53</td><td><mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	0.53	<mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	0.635	1.170	0.262	0.497	0.035	NS	AK101	1.3
	DRO	NS	NS	NS	0.44	NS	NS	NS	0.44	NS	1.53	<mrl< td=""><td>0.498</td><td>0.756</td><td>0.415</td><td>0.588</td><td>0.714</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	0.498	0.756	0.415	0.588	0.714	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.730	1.77	0.536	1.060	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.237</td><td>0.00218</td><td>0.247</td><td>0.398</td><td>0.101</td><td>0.205</td><td>0.142</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	0.237	0.00218	0.247	0.398	0.101	0.205	0.142	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	< 0.002	0.0322	0.0176	< 0.0005	NS	SW8021b	1.0
		NS		NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td></td><td>0.00407</td><td></td><td><0.0005</td><td>NS</td><td></td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td></td><td>0.00407</td><td></td><td><0.0005</td><td>NS</td><td></td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td></td><td>0.00407</td><td></td><td><0.0005</td><td>NS</td><td></td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td></td><td>0.00407</td><td></td><td><0.0005</td><td>NS</td><td></td><td>0.7</td></mrl<>		0.00407		<0.0005	NS		0.7
	Ethylbenzene		NS											< 0.002		0.00260			SW8021b	
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.02015	0.01967	<0.0015	NS	SW8021b	10.0
NA/ 40	000	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	047	41/404	1.2
/W-13	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	217	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	20.1	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.75	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	63.9	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.29	SW8021b	0.7
		NS		NS						NS	NS						NS	26.7	SW8021b	10.0
	Total Xylenes	143	NS	NO	NS	NS	NS	NS	NS	INO	113	NS	NS	NS	NS	NS	IN S	20.7	5000210	10.0
	000	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	440	41/404	1.2
1W-14	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	118	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	58.6	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	8.88	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.1	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.51	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.78	SW8021b SW8021b	10.0
	. 0101 // 10100		110	110	110		110	110		140	140	110	110	110	110		110	14.70	01100210	10.0
1) N/ 1 F	GRO	NO	NO	NC	NC	NC	NS	NC	NS	NS	NO	NS	NS	86.100	NS	NS	56.500	1.33	AK101	1.3
/W-15		NS	NS	NS	NS	NS		NS			NS									
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.6	NS	NS	4.96	1.03	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.19	NS	NS	0.439	1.010	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	16.900	NS	NS	6.690	0.0467	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.800	NS	NS	8.630	0.0514	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.030	NS	NS	1.270	0.0229	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	10.010	NS	NS	6.810	0.0229	SW8021b SW8021b	10.0
	i utai Aylenes	Gri	Gri	GNI	GNI	NS	GNI	140	Gri	140	140	140	GNI	10.010	140	Gri	0.010	0.1119	31100210	10.0
n M/c"	CDC	NO	NO		NO		MD	NO	MD	NO	NO	NO		NO	NO	0.205	NO	NO	AKIOI	4.0
ap Well	GRO	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	0.305	NS	NS	AK101	1.3
acility	DRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	NS	NS	ND	NS	NS	AK102	1.5
well)	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	NS	NS	AK103	1.1
	Benzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.005</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0108	NS	ND	SW8021b ²	0.005
	Toluene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>1.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0495	NS	ND	SW8021b ²	1.0
	Ethylbenzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>0.7</td></mrl<>	NS	NS	NS	ND	NS	NS	0.00947	NS	ND	SW8021b ²	0.7
	Total Xylenes	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>SW8021b²</td><td>10.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0613	NS	ND	SW8021b ²	10.0
	VOCs	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NA	NS	ND	EPA 524.2	varies
O - Conolir	ne Range Organics		esel Range			Not Sample		Not Detecte		Not Analyz										
		orting Limit.		g/L = miligra				Organic Co												

BGES, INC.

APPENDIX A FIELD NOTES

Doynue Bersis 1 Plug hole 2"	
Inspection of NWJ-12	Water levels Est:
- Well is in part condition, he lid and	Well to where to grand Notes
no plug where noted. Two pictures were	MW5 7,74613,176 Phys was broken
taken, No bit holes accessible, Casing	MW3 5-73A 9. 24 REDUCED HUD
needs replaced	Not buted by
Inspection of MW-11	5.74
- Well was in good condition. Lid was	14,0 Ft Why (c) /
in place with 3 built holes, two	10 7Ft
Pictures wore faken.	MWZ 6.056 13.656 No Plun/Nut bolked
	PS. IS A
Inspection of MW-8	There Watte No Prue
- Well was nissing belts and lid was	
deteched. Plug was destroyed in PUC	
Pipe well hole, Ud required 2 batts,	Facility well 13,276 17,676
duo pictures destrur.	
	Finished worker levels out 10: 80
Inspection of NW-9	
-well was missing lid, the plug was	
Cashy needs repliced	
nd h	
110	
Put A	

Mius V V V Muus X Nortr Muus V V		time	
~ * >	1	11.000	Civic leanon of links
Agy >			
>`	>	51:21	- Continued Sumplifiery wells
/	2	12,30	MUS 23 MW9 & MW15
MW 8 V N	7	19:00	
stad 1× bow	7	Couldn tgets.	Neves bad a Retroleum Snall 50
1 1 STUM	7	inter	coly one primeter was feller,
NWZ V V	7	8/30/12	Davaneter Lows taken between
munit			I noticed the Smell of Gallong
innis		E GIN III	
BS/VE		Not service and	
Imm		C A NUM	Punn *
V V IImu	7	8/30/12	- Pripe Cast Sheek about 4 fre Jour
Facilityuca	1000	1 million of the second	in prove It appares that have
	- E.C.	A STATE	has a Significant aman t at
* NW3 pipe appendis appears to	to be	be either	debris and will need to be
0		paint, 2" bludder	Cleared at got smaller pump
Puny does not Fit will have	ue to heters	tura	
byter with smiller bludder	grader P.		Stants
			- custer was somethy like petraleum, wo
lewing Site at 3 pm to	2 0	4 565 28	Parinchess were take. Musif hole to
working it moner sike		will reduin later,	lab possible tryle tryle tryle corbus
A faller			1 + m dits for
End and a			Ava the

	1	
	the Prest	Mazden Syn
water levels terrs	Return wey : Mussion	7
Imw	<1:4:15 / SI:4: - 1	<
~ to writer: S.Y	Ref: Well = 100 7,53/257	-
	Well Topot topot	
	6,10	
	· inus [7,13] 7,21	
Signi Cres	· Mulo 3,80 3,92	
- Thomas w/ Alaska Signs		
	· Mwy 7.46 8.06	
Drilling Creas	ests Hot simu	
- Denitri 2 Coler	· 1112 7.26 7.37	
	· Mult 5.76 5:90	
	· Muiz 5.64 5.76	
- When is extrement dirty: withing to	BU/VE 5.23 5.34	
See it what clarity in proves before		
Lawing preservers.		
- Currer TS clair of re Smer at	childrens ton this 26.8 zimm.	
35 min into purge will start parameters		
ivelb completed today		
- mall/muzz		
No parados on pur l'Auril prus 3/		
mb 14/m		
Due to petroleum		

· · · · · · · · · · · · · · · · · · ·	(1-11cm) + 1mm
MW - Slight sheening/ petrolow snell	
BEVG - Slight Shenny / String paratum Such	- We only able to Fill 2 × 40 mL
	vials, I Fin out,
cuell, Musz is rechurghy very slaw. Rewell	
Seens to be running day.	
2	NUTS FET MUR. & MUIZ
- Face;) if y well would not allow me to	
	" 21 mm -
2	- 7 34 of DVC was cap oft during
autev .	ver lien
It Get Facility well water Fran Francet	-
	- Mud
- Worker was Franky, this reads it	- 67/8" of PVC we can off domy
difficult to get a parity be	the Fixing de the well cover
Minskus; smull ask bubbles	
were left in smiple	
/Hand	
- NW 13/ BOWE/ MWI/ Fatty alt all	8 bm
1	2130/12
a Surfactant added which caused a	and the second sec
	A
get a positive miniscus which out some	
	5
	>

Todays goal For the Field Completed Fruish wells Mug V			DEVISION RIFES	the testma
cells Mung	•		-	
	10	Sm	Dute Gel	Notes
	ZMW	3	12/3/07 5	X
· Recelentite water level for Mug -	Clark	3	5 47/2/01	Bucher
· Create Sammary table	SIMW	3	2 F.0/2/01	Are .
	Im	3	12/307 S	inside. to
bow	Mul	3	NA S	MI apper
-water level : Cun't do March because	Zmw	3	10/3/07 5	3
-total depta : wooded level is about well	him	3	10/3/57 S	ring succession
- No curk for access well	Muly	3	10/3/07 S	Jorde Fruil 1
withant Flooding cell.	B6/VB	3	10/3/07 5	are almost
MW3	Min 8	3	10/3/27 S	and ty tee
- when level has risen due to mun	BGNE	5	W3/07 5	3
1	Mary	3	7/14/67 5	
- total depth: 9,2	Sum	3	to / 3/07 5	
•	136/VE	3	10/3/07 5	
	Nur	3	3/14/02 S	
	5mh	3	10/3/07 S	
	Mund	3	12/3/07 5	
	Outside;		13 BUCKER (1	(labels are wated weet
		10	6 Green Buckets	kets
		4	7 while Bockers	B
	1 trash	Car	trash (an Full is s	اتوح

12		Summer	et we	ter Son	Ples	ex	-pop	F	Paul		13
I moved all contaminated when		Of your's	Derk	Date The Se Le burger	600	and the	Inthe April	1000	10- Nutes		1
From Custon truen Zolz to		A4101-0830	8130	19:45	3	S	×				
buck at the Shall		Mul-0830	8/20	Sh:El	3	X X	X				a
a true		Mu3-2631	8/31	9:30	3	X	*				
End Fra	1	6280-SMW	62/8	shill	С	X	×				
Nell I		1948-0824	6218	19:45	3	X	X	_			
		Mullo-0824	62/8	13:15	3	X	x				-
ne loit		Mult 0830	8/30	10:15	3	S	X X				\square
in the second se		0830-5KmW		18:40	3	× S	X				
		MWH- 0630	05/8	witi	3	2 ×	×				
		6280- 51 mid	12/8	20:45	3	S×	X			ř.	
		Mw17-0830		54:61	3	X	X		Duplicate	cate	
	1	B6/WF 0630		18:30	N	X	A				-
	r	facili forward	8130	16:30	3	N	_	X			-
	1	Trip (Hel)	/	\backslash	3	2	×	X			
	-	Trip (Hel +)			3	3			PUN ONL	FUN ONLY & CON-1 ONLY	erty -
		-				1	+	-			-
							-	_			
							-	-			
								-			
	-		-			-	-	-	_		
9	1					-	+	_			
	1						_				_
			_	_		-	_	_			
					-						

Γ		-																			
-		-							2	-											
																					5
			-									-									
				_																	
_																					
	_	-		_			-	-	-	-									_		
-	_		_	_				-	-	-	-										
+			_				-	-			-										
ŀ								-										1			
-																					
-																				1	
		-									-							-			
~								1													
															-						
405h								1					-	-							
45									5												
r	_	-	_	_										_							
Car	4.			Sus					11	1											
1112/12 - Suny with Overcast Clauds	Here to purse à simple Mug.			gallons	0				01/11/12	with .											
3	pla			5			5		1												1
00	Sin	~		Need to purate 3,9	ypr	-au	at 622	0~~		all											
-Ura	2	Dear to the 53	70ky Depth.: 1314	a surge	2 2		- pro	leter of be and 6130 on		1											
hur	Kin	th o	۰. ۵	0	purgeart	2	Prilows	7-		1	2										
SE	e d	4	ep h	4	ind	1000	Dens														
1	P	d	KI D	Need	-0	P		1	à												
1	- 1/10		- 73,		Silverted	Fuished	Cherley	1	F												
-	,	,			5-	本	3	Tel Jal)		1										
								1		1											

Well Number: _MW1_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/20	012_	Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _8:10_
Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	102.65 ft 8.20 ft 94.45 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	21.8 8.2 13.6	-
Volume of well (gals)	2.22	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

Time Purging Began 18:15 Time of Sampling: 19:45 PURGE A MINIMUM OF THREE WELL VOLUMES Volume purged 7 gallons pН pН Conductivity Conductivity ORP ORP Temperature Temperature pН pН Conductivity Conductivity ORP ORP **Dissolved Oxygen** Dissolved Oxygen Temperature Temperature Water Parameters were not collected for this well because a petroleum sheen and odor were observed during purging activities.

Well Number: _MW2_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/2012_

12:30

13:45

4 gallons

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):

Volume of well (gals)

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _7:40_

	99.89 ft	Type of Sampling Equipment:
TOC):	6.00 ft	QED MP50/Bladder Pump/Battery
	93.89 ft	Water Level Indicator/ YSI Water Quality Meter
elow TOC): 7 TOC):	13.60 ft 6.0 ft 7.6 ft	
	1.24	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well)
		=1.4688 X Water Column (For 6-inch well)

PURGE A MINIMUM OF THREE WELL VOLUMES

pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Dissolved Oxygen	Dissolved Oxygen
Temperature	Temperature
Water Parameters were not collected for this w	vell because a petroleum sheen and odor were
observed during purging activities.	

Well Number: _MW3_

Time Arrived On Site: _7:00_ Weather Conditions: Windy, 50 Degrees Fahrenheit_ Date of Depth to Water Measurement: _8/31/2012_ Time of Depth to Water Measurement: _8:00_ Top of Casing Elevation: 100.02 ft Type of Sampling Equipment: Depth to Water (feet below TOC): 5.73 ft QED MP50/Bladder Pump/Battery Water Elevation: 94.29 ft Water Level Indicator/ YSI Water Quality Meter Total Depth of Well (feet below TOC): 9.20 ft Depth to Water (feet below TOC): 5.73 ft Water Column (feet): 3.47 ft Volume of well (gals) 0.91 =0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well) Time Purging Began 8:30 Time of Sampling: 9:30 PURGE A MINIMUM OF THREE WELL VOLUMES

pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Dissolved Oxygen	Dissolved Oxygen
Temperature	Temperature
Water Parameters were not collected for this	well because a petroleum sheen and odor were
observed during purging activities.	

Volume purged

4 gallons

Well Number: _MW5_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/29/2012_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):

Volume of well (gals)

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _9:00_

	101.19 ft	Type of Sampling Equipment:
	7.7 ft	QED MP50/Bladder Pump/Battery
	93.49 ft	Water Level Indicator/ YSI Water Quality Meter
、	10.10.0	
):	13.10 ft	
	7.7 ft	
	5.4 ft	
	0.88	=0.1632 X Water Column (For 2-inch well)
		=0.6528 X Water Column (For 4-inch well)
		=1.4688 X Water Column (For 6-inch well)

PURGE A MINIMUM OF THREE WELL VOLUMES

Time Purging Began 11:00 Time of Sampling: 11:45 Volume purged 3 gallons pН 6.4 Conductivity 477 ORP -39 Temperature 13.4 pН 6.28 Conductivity 24.2 ORP -33 12.1 Temperature 6.22 pН Conductivity 570 ORP -15 11.3 Temperature pН 3.6 Conductivity 519 ORP -15 Temperature 11.1 pН Conductivity ORP Temperature pН Conductivity ORP **Dissolved Oxygen** Temperature

pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxyge Temperature	 n

99.62 ft

93.19 ft

15.20 ft

6.43 ft

8.77 ft

6.43 ft

Well Number: _MW8_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/29/2012_

19:00

19:50

4.5 gallongs

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):

Volume of well (gals)

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _9:15_

Water Level Indicator/ YSI Water Quality Meter

1.43 =0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

Type of Sampling Equipment:

QED MP50/Bladder Pump/Battery

PURGE A MINIMUM OF THREE WELL VOLUMES

pH Conductivity ORP Temperature	6.9 463 -87 12.4	pH Conductivity ORP Temperature	
remperature	12.7		
pH Conductivity ORP Temperature		pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxygen Temperature		pH Conductivity ORP Dissolved Oxygen Temperature	
A petroleum odor was observed in this well during purging activities; therefore, the collection			
of water quality parameters were not continued after the first well volume.			

Well Number: _MW9_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _9/13/2012_

15:00

17:00

3.9 gallons

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):

Volume of well (gals)

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _15:00_

 99.69 ft
 Type of Sampling Equipment:

 0C):
 6.1 ft
 QED MP50/Bladder Pump/Battery

 93.59 ft
 Water Level Indicator/ YSI Water Quality Meter

 w TOC):
 14.0 ft

 0C):
 6.1 ft

 7.9 ft
 =0.1632 X Water Column (For 2-inch well)

 =0.6528 X Water Column (For 4-inch well)

 =1.4688 X Water Column (For 6-inch well)

PURGE A MINIMUM OF THREE WELL VOLUMES

pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Temperature	Temperature
pH	pH
Conductivity	Conductivity
ORP	ORP
Dissolved Oxygen	Dissolved Oxygen
Temperature	Temperature
Water Parameters were not collected for this	s well because a petroleum sheen and odor were
observed during purging activities.	

Well Number: _MW10_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/29/2012_

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _9:10_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	103.35 ft 7.20 ft 96.15 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	15.20 ft 7.20 ft 8 ft	
Volume of well (gals)	1.31	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began 12:30		

PURGE A MINIMUM OF THREE WELL VOLUMES

1 5		
pH	6.52	pH
Conductivity	585	Conductiv
ORP	65	ORP
Temperature	16.8	Temperat
pH	6.42	pH
Conductivity	594	Conductiv
ORP	55.3	ORP
Temperature	16.3	Temperat
pH	6.83	pH
Conductivity	621	Conductiv
ORP	-36	ORP
Temperature	19.2	Temperat
pH	6.87	pH
Conductivity	401	Conductiv
ORP	-40	ORP
Temperature	17.3	Temperat
pH Conductivity ORP Temperature		pH Conductiv ORP Temperat
pH Conductivity ORP Dissolved Oxygen Temperature		pH Conductiv ORP Dissolvec Temperat

13:15

4 gallons

Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxyg Temperature	en

98.73 ft

5.40 ft

93.33 ft

14.00 ft

5.40 ft

8.6 ft

Well Number: _MW11_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/2012_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):

Volume of well (gals)

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _7:30_

Water Level Indicator/ YSI Water Quality Meter

1.4 =0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

Type of Sampling Equipment:

QED MP50/Bladder Pump/Battery

Time Purging Began	9:10
Time of Sampling:	10:15
Volume purged	4.5 gallons
pH	7.35
Conductivity	335
ORP	-97.2
Temperature	12.6
pH	6.8
Conductivity	346
ORP	-76
Temperature	11.7
pH	6.57
Conductivity	64.2
ORP	-70
Temperature	11.5
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxygen Temperature	

pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxyge Temperature	 n

Well Number: _MW13_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/2012_

17:50

18:40

2.5 gallons

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _8:05_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	101.51 ft 7.60 ft 93.91 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	11.80 ft 7.60 ft 4.2 ft	
Volume of well (gals)	0.69	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Temperature	Temperature		
pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Temperature	Temperature		
pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Temperature	Temperature		
pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Temperature	Temperature		
pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Temperature	Temperature		
pH	pH		
Conductivity	Conductivity		
ORP	ORP		
Dissolved Oxygen	Dissolved Oxygen		
Temperature	Temperature		
Water Parameters were not collected for this we	ell because a petroleum sheen and odor were		
observed during purging activities.			

Well Number: _MW14_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/2012_

16:00

17:00

3 gallons

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _7:45_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	101.39 ft 7.60 ft 93.79 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	13.15 ft 7.60 ft 5.55 ft	
Volume of well (gals)	0.91	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

Conductivity	pH Conductivity ORP Temperature		
Conductivity	pH Conductivity ORP Temperature		
Conductivity ORP Dissolved Oxygen	pH Conductivity ORP Dissolved Oxygen Temperature		
observed during purging activities.			

Well Number: _MW15_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/29/2012_

20:45

3 gallons

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _9:25_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	99.81 ft 5.90 ft 93.91 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	10.70 ft 5.90 ft 4.8 ft	
Volume of well (gals)	0.78	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began 20:15		

pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Temperature	Temperature	
pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Temperature	Temperature	
pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Temperature	Temperature	
pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Temperature	Temperature	
pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Temperature	Temperature	
pH	pH	
Conductivity	Conductivity	
ORP	ORP	
Dissolved Oxygen	Dissolved Oxygen	
Temperature	Temperature	
Water Parameters were not collected for this w	rell because a petroleum sheen and odor were	
observed during purging activities.		

Well Number: _B6/VE_

Time Arrived On Site: _7:00_ Date of Depth to Water Measurement: _8/30/2012_

18:10

19:20

4.5 gallons

Time Purging Began

Time of Sampling:

Volume purged

Weather Conditions: Windy, 50 Degrees Fahrenheit_ Time of Depth to Water Measurement: _7:55_

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	101.92 ft 7.90 ft 94.02 ft	Type of Sampling Equipment: QED MP50/Bladder Pump/Battery Water Level Indicator/ YSI Water Quality Meter
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	14.33 ft 7.90 ft 6.43 ft	
Volume of well (gals)	1.05	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

pH Conductivity ORP Temperature	 pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	 pH Conductivity ORP Temperature	
pH Conductivity ORP Dissolved Oxygen Temperature Water Parameters w	 pH Conductivity ORP Dissolved Oxyge Temperature	en oleum sheen and odor were
observed during pur	en because a pell	

BGES, INC.

APPENDIX B LABORATORY ANALYTICAL DATA

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client:

SGS Work Order:

Custom Truck BGES Inc. 1124083

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Client Name: BGES Inc. Project Name: Custom Truck Workorder No.: 1124083

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID
1124083001	PS	MW1-0830
	AK102/103 - Unknow	n hydrocarbon with several peaks is present.
1124083002	PS	MW2-0830
	AK102/103 - Unknow	n hydrocarbon with several peaks is present.
1124083003	PS	MW3-0831
	AK103 - Unknown hy	drocarbon with several peaks is present.
1124083004	PS	MW5-0829
	AK103 - Unknown hy	drocarbon with several peaks is present.
1124083005	PS	MW8-0829
	AK103 - Unknown hy	drocarbon with several peaks is present.
1124083007	PS	MW11-0830
	AK103 - Unknown hy	drocarbon with several peaks is present.
1124083008	PS	MW13-0830
	AK102/103 - Unknow	n hydrocarbon with several peaks is present.
1124083009	PS	MW14-0830
	AK102/103 - Unknow	n hydrocarbon with several peaks is present.
1124083010	PS	MW15-0829
		s consistent with a weathered gasoline. drocarbon with several peaks is present.
1124083011	PS	MW17-0830
	AK102/103 - Unknow	n hydrocarbon with several peaks is present.
1124083012	PS	BGVE-0830
		s consistent with a weathered gasoline. drocarbon with several peaks is present.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Analytical Report

Client: BGES Inc. 1042 E 6th Ave Anchorage, AK 99501

Attn: Jayne Martin T: (907)644-2900 F:(907)644-2901

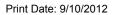
jayne@bgesinc.com

Project: **Custom Truck**

Workorder No .: 1124083

SGS

Certification:


This data package is in compliance with the terms and conditions of the contract, both technically and for completeness, unless otherwise noted on the sample data sheet(s) and/or case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory. If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Carmon Beene

carmon.beene@sgs.com **Project Manager**

Contents (Bookmarked in PDF):

Cover Page Glossary Sample Summary Forms Case Narrative Sample Results Forms Batch Summary Forms (by method) Quality Control Summary Forms (by method) Chain of Custody/Sample Receipt Forms Attachments (if applicable)

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<htps://www.sgs.com/terms_and_conditions.htm>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO 17025 (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6020, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the

provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
---	--

- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 2xDL)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RL Reporting Limit
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SGS

SAMPLE SUMMARY

Print Date: 9/10/2012 8:12 pm

Client Name: BGES Inc. Project Name: Custom Truck Workorder No.: 1124083

Analytical Methods

Method Description	Analytical Method
AK101/8021 Combo.	AK101
AK101/8021 Combo.	SW8021B
Diesel/Residual Range Organics Water	AK102
Diesel/Residual Range Organics Water	AK103
Volatile Organics by 524.2 (DW)	EPA 524.2

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1124083001	MW1-0830
1124083002	MW2-0830
1124083003	MW3-0831
1124083004	MW5-0829
1124083005	MW8-0829
1124083006	MW10-0829
1124083007	MW11-0830
1124083008	MW13-0830
1124083009	MW14-0830
1124083010	MW15-0829
1124083011	MW17-0830
1124083012	BGVE-0830
1124083013	Facility Well
1124083014	TRIPBLANK (HCL ONLY)
1124083015	TRIPBLANK (HCL+ASCORBIC)

Print Date: 9/10/2012 8:12 pm

Client Sample ID: MW1-0830			
SGS Ref. #: 1124083001	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department			
	Gasoline Range Organics	32.4	mg/L
	Benzene	2420	ug/L
	Toluene	4530	ug/L
	Ethylbenzene	1160	ug/L
	o-Xylene	2910	ug/L
	P & M -Xylene	5000	ug/L
Semivolatile Organic Fuels Department			
	Diesel Range Organics	22.0	mg/L
	Residual Range Organics	1.45	mg/L
Client Sample ID: MW2-0830			
SGS Ref. #: 1124083002	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department		Result	<u>onno</u>
	Gasoline Range Organics	74.1	mg/L
	Benzene	7360	ug/L
	Toluene	19800	ug/L
	Ethylbenzene	1560	ug/L
	o-Xylene	3090	ug/L
	P & M -Xylene	7140	ug/L
Semivolatile Organic Fuels Department			
	Diesel Range Organics	58.6	mg/L
	Residual Range Organics	5.50	mg/L
Client Sample ID: MW3-0831			
SGS Ref. #: 1124083003	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels Department		Kesut	onno
	Residual Range Organics	0.556	mg/L
Client Sample ID: MW5-0829			
SGS Ref. #: 1124083004	Parameter	Pooult	Unite
Volatile Fuels Department	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
	Benzene	1.13	ug/L
Somivolotilo Organia Evala Danativant			
Semivolatile Organic Fuels Department	: Residual Range Organics	0.974	mg/L

Print Date: 9/10/2012 8:12 pm

Client Sample ID: MW8-0829				
SGS Ref. #: 1124083005	Parameter	Result	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	0.790	mg/L	
	Benzene	355	ug/L	
Cominalatile Ornania Fuela Denartmen				
Semivolatile Organic Fuels Department		0.500		
	Residual Range Organics	0.506	mg/L	
Client Sample ID: MW11-0830				
SGS Ref. #: 1124083007	Parameter_	Result	<u>Units</u>	
Semivolatile Organic Fuels Department				
	Residual Range Organics	0.601	mg/L	
Client Sample ID: MW13-0830				
SGS Ref. #: 1124083008	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	217	mg/L	
	Benzene	19600	ug/L	
	Toluene	63900	ug/L	
	Ethylbenzene	5290	ug/L	
	o-Xylene	8300	ug/L	
	P & M -Xylene	18400	ug/L	
Semivolatile Organic Fuels Department	t			
	Diesel Range Organics	20.1	mg/L	
	Residual Range Organics	1.75	mg/L	
Client Sample ID: MW14-0830				
SGS Ref. #: 1124083009	Devementer	Deput	l Inite	
Volatile Fuels Department	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	
Volutile i della Department	Gasoline Range Organics	118	mg/L	
	Benzene	19600	ug/L	
	Toluene	26100	ug/L	
	Ethylbenzene	2510	ug/L	
	o-Xylene	4480	ug/L	
	P & M -Xylene	10300	ug/L	
		10000	~g· =	
Semivolatile Organic Fuels Department	t			
	Diesel Range Organics	58.6	mg/L	
	Residual Range Organics	8.88	mg/L	

Print Date: 9/10/2012 8:12 pm

Client Sample ID: MW15-0829			
SGS Ref. #: 1124083010	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department			
	Gasoline Range Organics	1.33	mg/L
	Benzene	46.7	ug/L
	Toluene	51.4	ug/L
	Ethylbenzene	22.9	ug/L
	o-Xylene	33.2	ug/L
	P & M -Xylene	78.7	ug/L
Semivolatile Organic Fuels Depa	rtment		
	Diesel Range Organics	1.03	mg/L
	Residual Range Organics	1.01	mg/L
Client Sample ID: MW17-0830			
SGS Ref. #: 1124083011	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department	<u>r urunden</u>	Rooun	
· · · · · · · · · · · · · · · · · · ·	Gasoline Range Organics	30.4	mg/L
	Benzene	2370	ug/L
	Toluene	4200	ug/L
	Ethylbenzene	1090	ug/L
	o-Xylene	2760	ug/L
	P & M -Xylene	4760	ug/L
Semivolatile Organic Fuels Depa	rtment		
0 1	Diesel Range Organics	21.0	mg/L
	Residual Range Organics	1.65	mg/L
Client Sample ID: BGVE-0830			
SGS Ref. #: 1124083012	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department		Kebun	onno
	Gasoline Range Organics	8.29	mg/L
	Benzene	1060	ug/L
	Toluene	1430	ug/L
	Ethylbenzene	122	ug/L
	o-Xylene	489	ug/L
	P & M -Xylene	650	ug/L
Somivolotilo Organia Evola Dana			
Semivolatile Organic Fuels Depart		4.00	
	Diesel Range Organics	4.69	mg/L
	Residual Range Organics	1.43	mg/L

Print Date: 9/10/2012 8:12 pm

Client Sample ID: TRIPBLANK (HCL ONLY)				
SGS Ref. #: 1124083014	Parameter_	<u>Result</u>	<u>Units</u>	
Volatile Gas Chromatography/Mass Spectroscopy				
	Hexachlorobutadiene	0.610	ug/L	

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)561 5301 www.us.sgs.com Member of SGS Group

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW1-0830** SGS Ref. #: 1124083001 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 19:25 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	Qualifiers	
Benzene	2420	25.0	ug/L	50	VFC11152	VXX23978	3	
Ethylbenzene	1160	50.0	ug/L	50	VFC11152	VXX23978	3	
Gasoline Range Organics	32.4	5.00	mg/L	50	VFC11152	VXX23978	3	
o-Xylene	2910	50.0	ug/L	50	VFC11152	VXX23978	3	
P & M -Xylene	5000	100	ug/L	50	VFC11152	VXX23978	3	
Toluene	4530	50.0	ug/L	50	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	90.4	77-115	%	50	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	108	50-150	%	50	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L	
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/06/12 14:05		Prep Date/Time: 09/06/12	2 08:31		Container ID:1124083001-B			
Dilution Factor: 50					Analyst: EA	B		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 14:05		Prep Date/Time: 09/06/12 08:31			Container II	D:11240830	01-B	
Dilution Factor: 50					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW1-0830** SGS Ref. #: 1124083001 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 19:25 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Diesel Range Organics	22.0	1.20	mg/L	2	XFC10575	XXX2786	9
Residual Range Organics	1.45	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	79.6	50-150	%	2	XFC10575	XXX2786	9
n-Triacontane-d62 <surr></surr>	62.8	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX278	869		Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK103		Prep Method: SW35	20C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 16:10		Prep Date/Time: 09/	01/12 12:00		Container ID:1124083001-D		
Dilution Factor: 1					Analyst: MEM		
Analytical Batch: XFC10575		Prep Batch: XXX278	869		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/05/12 16:49	ne: 09/05/12 16:49 Prep Date/Time: 09/01/12 12:00 Container ID:1124083001-E			01-D			
Dilution Factor: 2					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW2-0830** SGS Ref. #: 1124083002 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 13:45 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Benzene	7360	25.0	ug/L	50	VFC11152	VXX23978	3
Ethylbenzene	1560	50.0	ug/L	50	VFC11152	VXX23978	3
Gasoline Range Organics	74.1	5.00	mg/L	50	VFC11152	VXX23978	3
o-Xylene	3090	50.0	ug/L	50	VFC11152	VXX23978	3
P & M -Xylene	7140	100	ug/L	50	VFC11152	VXX23978	3
Toluene	19800	100	ug/L	100	VFC11152	VXX23978	3
1,4-Difluorobenzene <surr></surr>	92.5	77-115	%	50	VFC11152	VXX23978	3
4-Bromofluorobenzene <surr></surr>	112	50-150	%	50	VFC11152	VXX23978	3
Batch Information							
Analytical Batch: VFC11152	Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: AK101		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/06/12 14:23		Prep Date/Time: 09/06/12	08:31		Container ID:1124083002-B		
Dilution Factor: 50					Analyst: EA	Ъ	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/06/12 14:23		Prep Date/Time: 09/06/12	08:31		Container I	D:11240830	02-B
Dilution Factor: 50					Analyst: EA	B	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: SW8021B	Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 16:51		Prep Date/Time: 09/06/12	08:31		Container I	D:11240830	02-B
Dilution Factor: 100					Analyst: EA	Ъ	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW2-0830** SGS Ref. #: 1124083002 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 13:45 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	58.6	2.40	mg/L	4	XFC10569	XXX2786	9
Residual Range Organics	5.50	2.00	mg/L	4	XFC10569	XXX2786	9
5a Androstane <surr></surr>	77	50-150	%	4	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	69.3	50-150	%	4	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW38	520C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 20:12		Prep Date/Time: 09	/01/12 12:00		Container ID:1124083002-D		
Dilution Factor: 4					Analyst: ME	EM	
Analytical Batch: XFC10569		Prep Batch: XXX27	869		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 20:12		Prep Date/Time: 09/01/12 12:00			Container ID:1124083002-D		
Dilution Factor: 4					Analyst: MB	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW3-0831** SGS Ref. #: 1124083003 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/31/12 09:30 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	Qualifiers	
Benzene	0.500 U	0.500	ug/L	1	VFC11152	VXX23978	3	
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11152	VXX23978	3	
o-Xylene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11152	VXX23978	3	
Toluene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	89.4	77-115	%	1	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	105	50-150	%	1	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978		Initial Prep Wt./Vo			۱L	
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 18:05		Prep Date/Time: 09/06/12 0	8:31		Container II	D:11240830	03-B	
Dilution Factor: 1					Analyst: EA	B		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 18:05		Prep Date/Time: 09/06/12 0	8:31		Container ID:1124083003-B			
Dilution Factor: 1					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW3-0831** SGS Ref. #: 1124083003 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/31/12 09:30 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Diesel Range Organics	0.600 U	0.600	mg/L	1	XFC10569	XXX2786	9
Residual Range Organics	0.556	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	84.5	50-150	%	1	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	85.5	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW3520C	;		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 16:20		Prep Date/Time: 09/01/1	2 12:00		Container ID:1124083003-D		
Dilution Factor: 1					Analyst: ME	EM	
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep	Nt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW3520C	;		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 16:20		Prep Date/Time: 09/01/1	2 12:00		Container II	D:11240830	03-D
Dilution Factor: 1					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW5-0829** SGS Ref. #: 1124083004

Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 08/29/12 11:45 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	Qualifiers	
Benzene	1.13	0.500	ug/L	1	VFC11152	VXX23978	3	
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11152	VXX23978	3	
o-Xylene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11152	VXX23978	3	
Toluene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	91	77-115	%	1	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	102	50-150	%	1	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978		Initial Prep Wt./Vo			۱L	
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 18:23		Prep Date/Time: 09/06/12 0	8:31		Container II	D:11240830	04-B	
Dilution Factor: 1					Analyst: EA	B		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 18:23		Prep Date/Time: 09/06/12 0	8:31		Container ID:1124083004-B			
Dilution Factor: 1					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW5-0829** SGS Ref. #: 1124083004 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 11:45 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	0.600 U	0.600	mg/L	1	XFC10569	XXX2786	9
Residual Range Organics	0.974	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	69.3	50-150	%	1	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	68.9	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW35	20C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 16:30		Prep Date/Time: 09/	01/12 12:00		Container ID:1124083004-D		
Dilution Factor: 1					Analyst: ME	EM	
Analytical Batch: XFC10569		Prep Batch: XXX278	69		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 16:30		Prep Date/Time: 09/01/12 12:00			Container ID:1124083004-D		
Dilution Factor: 1					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW8-0829** SGS Ref. #: 1124083005 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 19:45 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers	
Benzene	355	2.50	ug/L	5	VFC11152	VXX23978	3	
Ethylbenzene	5.00 U	5.00	ug/L	5	VFC11152	VXX23978	3	
Gasoline Range Organics	0.790	0.500	mg/L	5	VFC11152	VXX23978	3	
o-Xylene	5.00 U	5.00	ug/L	5	VFC11152	VXX23978	3	
P & M -Xylene	10.0 U	10.0	ug/L	5	VFC11152	VXX23978	3	
Toluene	5.00 U	5.00	ug/L	5	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	94.5	77-115	%	5	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	102	50-150	%	5	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 15:00		Prep Date/Time: 09/06/12 (08:31		Container I	D:11240830	05-B	
Dilution Factor: 5					Analyst: EA	Ъ		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 15:00		Prep Date/Time: 09/06/12 (08:31		Container ID:1124083005-B			
Dilution Factor: 5					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Client Sample ID: **MW8-0829** SGS Ref. #: 1124083005 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 19:45 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Diesel Range Organics	0.600 U	0.600	mg/L	1	XFC10569	XXX27869	
Residual Range Organics	0.506	0.500	mg/L	1	XFC10569	XXX27869	
5a Androstane <surr></surr>	71	50-150	%	1	XFC10569	XXX27869	
n-Triacontane-d62 <surr></surr>	71.1	50-150	%	1	XFC10569	XXX27869	
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27869	9		Initial Prep	Wt./Vol.: 1000 mL	
Analytical Method: AK102		Prep Method: SW3520	C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 16:40		Prep Date/Time: 09/01	/12 12:00		Container ID:1124083005-D		
Dilution Factor: 1					Analyst: MI	EM	
Analytical Batch: XFC10569		Prep Batch: XXX27869)		Initial Prep	Wt./Vol.: 1000 mL	
Analytical Method: AK103		Prep Method: SW3520	С		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 16:40		Prep Date/Time: 09/01	/12 12:00		Container I	D:1124083005-D	
Dilution Factor: 1					Analyst: MI	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW10-0829** SGS Ref. #: 1124083006 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 13:15 Receipt Date/Time: 08/31/12 13:00

Parameter	Result	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Benzene	0.500 U	0.500	ug/L	1	VFC11152	VXX23978	3
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11152	VXX23978	3
o-Xylene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11152	VXX23978	3
Toluene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
1,4-Difluorobenzene <surr></surr>	91.4	77-115	%	1	VFC11152	VXX23978	3
4-Bromofluorobenzene <surr></surr>	98	50-150	%	1	VFC11152	VXX23978	3
Batch Information							
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL		
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 18:41		Prep Date/Time: 09/06/12	2 08:31		Container II	D:11240830	06-B
Dilution Factor: 1					Analyst: EA	B	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 18:41		Prep Date/Time: 09/06/12	2 08:31		Container ID:1124083006-B		
Dilution Factor: 1					Analyst: EA	Ъ	

Print Date: 9/10/2012 8:13 pm

Client Sample ID: **MW10-0829** SGS Ref. #: 1124083006 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 13:15 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> <u>Batch</u> <u>Qualifiers</u>		
Diesel Range Organics	0.612 U	0.612	mg/L	1	XFC10569	XXX27869		
Residual Range Organics	0.510 U	0.510	mg/L	1	XFC10569	XXX27869		
5a Androstane <surr></surr>	73.2	50-150	%	1	XFC10569	XXX27869		
n-Triacontane-d62 <surr></surr>	75.5	50-150	%	1	XFC10569	XXX27869		
Batch Information								
Analytical Batch: XFC10569		Prep Batch: XXX2786	9		Initial Prep Wt./Vol.: 980 mL			
Analytical Method: AK102		Prep Method: SW3520	C		Prep Extract Vol.: 1 mL			
Analysis Date/Time: 09/04/12 16:50		Prep Date/Time: 09/07	1/12 12:00		Container ID:1124083006-D			
Dilution Factor: 1					Analyst: ME	EM		
Analytical Batch: XFC10569		Prep Batch: XXX2786	9		Initial Prep	Wt./Vol.: 980 mL		
Analytical Method: AK103		Prep Method: SW3520	C		Prep Extrac	t Vol.: 1 mL		
Analysis Date/Time: 09/04/12 16:50		Prep Date/Time: 09/07	1/12 12:00		Container II	D:1124083006-D		
Dilution Factor: 1					Analyst: ME	EM		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW11-0830** SGS Ref. #: 1124083007 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 10:15 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers	
Benzene	0.500 U	0.500	ug/L	1	VFC11152	VXX23978	3	
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11152	VXX23978	3	
o-Xylene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11152	VXX23978	3	
Toluene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	89.5	77-115	%	1	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	104	50-150	%	1	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978		Initial Prep Wt./Vol.: 5			۱L	
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 19:00		Prep Date/Time: 09/06/12 0	8:31		Container II	D:11240830	07-B	
Dilution Factor: 1					Analyst: EA	B		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 19:00		Prep Date/Time: 09/06/12 0	8:31		Container ID:1124083007-B			
Dilution Factor: 1					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW11-0830** SGS Ref. #: 1124083007 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 10:15 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Discol Dense Occasion	0.000.11	0.000				XXX0700	^
Diesel Range Organics	0.600 U	0.600	mg/L	1	XFC10569	XXX2786	
Residual Range Organics	0.601	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	60.3	50-150	%	1	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	61.3	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW35	20C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 17:41		Prep Date/Time: 09/	01/12 12:00		Container ID:1124083007-D		
Dilution Factor: 1					Analyst: ME	EM	
Analytical Batch: XFC10569		Prep Batch: XXX278	369		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 17:41		Prep Date/Time: 09/01/12 12:00			Container ID:1124083007-D		
Dilution Factor: 1					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW13-0830** SGS Ref. #: 1124083008 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 18:40 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>	
Benzene	19600	50.0	ug/L	100	VFC11152	VXX23978	3	
Ethylbenzene	5290	100	ug/L	100	VFC11152	VXX23978	3	
Gasoline Range Organics	217	10.0	mg/L	100	VFC11152	VXX23978	3	
o-Xylene	8300	100	ug/L	100	VFC11152	VXX23978	3	
P & M -Xylene	18400	200	ug/L	100	VFC11152	VXX23978	3	
Toluene	63900	500	ug/L	500	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	93.8	77-115	%	100	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	109	50-150	%	100	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152	Prep Batch: VXX23978				Initial Prep Wt./Vol.: 5 mL			
Analytical Method: AK101		Prep Method: SW5030I	В		Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 12:35		Prep Date/Time: 09/06/	12 08:31		Container ID:1124083008-B			
Dilution Factor: 100					Analyst: EA	Ъ		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 n	٦L	
Analytical Method: SW8021B		Prep Method: SW5030I	В		Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 12:35		Prep Date/Time: 09/06/	12 08:31		Container II	D:11240830	08-B	
Dilution Factor: 100					Analyst: EA	В		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L	
Analytical Method: SW8021B		Prep Method: SW5030I	В		Prep Extrac	t Vol.: 5 mL		
Analysis Date/Time: 09/06/12 16:14		Prep Date/Time: 09/06/12 08:31				Container ID:1124083008-B		
Dilution Factor: 500					Analyst: EA	Ъ		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW13-0830** SGS Ref. #: 1124083008 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 18:40 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	20.1	1.20	mg/L	2	XFC10575	XXX2786	9
Residual Range Organics	1.75	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	80.7	50-150	%	2	XFC10575	XXX2786	9
n-Triacontane-d62 <surr></surr>	72.4	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569	Prep Batch: XXX27869				Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK103		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 17:51		Prep Date/Time: 09/01/12 12:00			Container ID:1124083008-D		
Dilution Factor: 1					Analyst: MEM		
Analytical Batch: XFC10575		Prep Batch: XXX27869			Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/05/12 17:40		Prep Date/Time: 09/01/12 12:00			Container ID:1124083008-D		
Dilution Factor: 2					Analyst: MEM		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW14-0830** SGS Ref. #: 1124083009 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 17:00 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers	
Benzene	19600	50.0	ug/L	100	VFC11152	VXX2397	8	
Ethylbenzene	2510	100	ug/L	100	VFC11152	VXX2397	8	
Gasoline Range Organics	118	10.0	mg/L	100	VFC11152	VXX2397	8	
o-Xylene	4480	100	ug/L	100	VFC11152	VXX2397	8	
P & M -Xylene	10300	200	ug/L	100	VFC11152	VXX2397	8	
Toluene	26100	200	ug/L	200	VFC11152	VXX2397	8	
1,4-Difluorobenzene <surr></surr>	92.1	77-115	%	100	VFC11152	VXX2397	8	
4-Bromofluorobenzene <surr></surr>	103	50-150	%	100	VFC11152	VXX2397	8	
Batch Information								
Analytical Batch: VFC11152	Prep Batch: VXX23978				Initial Prep Wt./Vol.: 5 mL			
Analytical Method: AK101		Prep Extract Vol.: 5 mL						
Analysis Date/Time: 09/06/12 13:09		Prep Date/Time: 09/06/12 08:31			Container I	D:11240830	09-B	
Dilution Factor: 100					Analyst: EAB			
Analytical Batch: VFC11152		Prep Batch: VXX23978				Initial Prep Wt./Vol.: 5 mL		
Analytical Method: SW8021B	Prep Method: SW5030B			Prep Extract Vol.: 5 mL				
Analysis Date/Time: 09/06/12 13:09	Prep Date/Time: 09/06/12 08:31			Container ID:1124083009-B				
Dilution Factor: 100					Analyst: EA	λB		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 16:32		Prep Date/Time: 09/06/12 08:31				Container ID:1124083009-B		
Dilution Factor: 200					Analyst: EA	٨B		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW14-0830** SGS Ref. #: 1124083009 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 17:00 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	58.6	2.40	mg/L	4	XFC10569	XXX2786	9
Residual Range Organics	8.88	2.00	mg/L	4	XFC10569	XXX2786	9
5a Androstane <surr></surr>	53.1	50-150	%	4	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	50.2	50-150	%	4	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569	Prep Batch: XXX27869				Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 20:23		Prep Date/Time: 09/01/12 12:00			Container ID:1124083009-D		
Dilution Factor: 4					Analyst: MEM		
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK103		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 20:23		Prep Date/Time: 09/01/12 12:00			Container ID:1124083009-D		
Dilution Factor: 4					Analyst: MEM		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW15-0829** SGS Ref. #: 1124083010 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 20:45 Receipt Date/Time: 08/31/12 13:00

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers	
Benzene	46.7	0.500	ug/L	1	VFC11152	VXX23978	3	
Ethylbenzene	22.9	1.00	ug/L	1	VFC11152	VXX23978	3	
Gasoline Range Organics	1.33	0.100	mg/L	1	VFC11152	VXX23978	3	
o-Xylene	33.2	1.00	ug/L	1	VFC11152	VXX23978	3	
P & M -Xylene	78.7	2.00	ug/L	1	VFC11152	VXX23978	3	
Toluene	51.4	1.00	ug/L	1	VFC11152	VXX23978	3	
1,4-Difluorobenzene <surr></surr>	92	77-115	%	1	VFC11152	VXX23978	3	
4-Bromofluorobenzene <surr></surr>	110	50-150	%	1	VFC11152	VXX23978	3	
Batch Information								
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: AK101		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 17:46		Prep Date/Time: 09/06/12 08:31			Container ID:1124083010-B			
Dilution Factor: 1					Analyst: EA	В		
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 09/06/12 17:46		Prep Date/Time: 09/06/12 08:31			Container ID:1124083010-B			
Dilution Factor: 1					Analyst: EA	В		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW15-0829** SGS Ref. #: 1124083010 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/29/12 20:45 Receipt Date/Time: 08/31/12 13:00

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	1.03	0.600	mg/L	1	XFC10569	XXX2786	9
Residual Range Organics	1.01	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	54.2	50-150	%	1	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	54.1	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569	Prep Batch: XXX27869				Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 18:11		Prep Date/Time: 09/01/12 12:00			Container ID:1124083010-D		
Dilution Factor: 1					Analyst: MEM		
Analytical Batch: XFC10569		Prep Batch: XXX27869			Initial Prep Wt./Vol.: 1000 mL		
Analytical Method: AK103		Prep Method: SW3520C			Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/04/12 18:11		Prep Date/Time: 09/01/12 12:00			Container ID:1124083010-D		
Dilution Factor: 1					Analyst: MEM		

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW17-0830** SGS Ref. #: 1124083011 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 19:45 Receipt Date/Time: 08/31/12 13:00

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	Qualifiers
Benzene	2370	25.0	ug/L	50	VFC11152	VXX23978	3
Ethylbenzene	1090	50.0	ug/L	50	VFC11152	VXX23978	3
Gasoline Range Organics	30.4	5.00	mg/L	50	VFC11152	VXX23978	3
o-Xylene	2760	50.0	ug/L	50	VFC11152	VXX23978	3
P & M -Xylene	4760	100	ug/L	50	VFC11152	VXX23978	3
Toluene	4200	50.0	ug/L	50	VFC11152	VXX23978	3
1,4-Difluorobenzene <surr></surr>	92.6	77-115	%	50	VFC11152	VXX23978	3
4-Bromofluorobenzene <surr></surr>	106	50-150	%	50	VFC11152	VXX23978	3
Batch Information							
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 13:46		Prep Date/Time: 09/06/1	2 08:31		Container II	D:11240830	11-B
Dilution Factor: 50					Analyst: EA	B	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Nt./Vol.: 5 m	۱L
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 13:46		Prep Date/Time: 09/06/1	2 08:31		Container II	D:11240830	11-B
Dilution Factor: 50					Analyst: EA	В	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **MW17-0830** SGS Ref. #: 1124083011 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 19:45 Receipt Date/Time: 08/31/12 13:00

Semivolatile Organic Fuels Department

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	21.0	1.20	mg/L	2	XFC10575	XXX2786	9
Residual Range Organics	1.65	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	65.7	50-150	%	2	XFC10575	XXX2786	9
n-Triacontane-d62 <surr></surr>	64.1	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27	369		Initial Prep	Nt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW35	520C		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 18:21		Prep Date/Time: 09/	/01/12 12:00		Container II	D:11240830	11-D
Dilution Factor: 1					Analyst: ME	EM	
Analytical Batch: XFC10575		Prep Batch: XXX27	369		Initial Prep	Nt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW35	520C		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/05/12 17:50		Prep Date/Time: 09	/01/12 12:00		Container II	D:11240830	11-D
Dilution Factor: 2					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **BGVE-0830** SGS Ref. #: 1124083012 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 18:30 Receipt Date/Time: 08/31/12 13:00

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Benzene	1060	5.00	ug/l	10	VFC11152	VXX23978	3
			ug/L				
Ethylbenzene	122	10.0	ug/L	10	VFC11152	VXX23978	
Gasoline Range Organics	8.29	1.00	mg/L	10	VFC11152	VXX23978	3
o-Xylene	489	10.0	ug/L	10	VFC11152	VXX23978	3
P & M -Xylene	650	20.0	ug/L	10	VFC11152	VXX23978	3
Toluene	1430	10.0	ug/L	10	VFC11152	VXX23978	3
1,4-Difluorobenzene <surr></surr>	94.1	77-115	%	10	VFC11152	VXX23978	3
4-Bromofluorobenzene <surr></surr>	108	50-150	%	10	VFC11152	VXX23978	3
Batch Information							
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 15:37		Prep Date/Time: 09/06/1	2 08:31		Container II	D:11240830	12-B
Dilution Factor: 10					Analyst: EA	B	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	nL
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 15:37		Prep Date/Time: 09/06/1	2 08:31		Container II	D:11240830	12-B
Dilution Factor: 10					Analyst: EA	Ъ	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **BGVE-0830** SGS Ref. #: 1124083012 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 18:30 Receipt Date/Time: 08/31/12 13:00

Semivolatile Organic Fuels Department

Parameter_	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	4.69	0.600	mg/L	1	XFC10569	XXX2786	9
Residual Range Organics	1.43	0.500	mg/L	1	XFC10569	XXX2786	9
5a Androstane <surr></surr>	70.8	50-150	%	1	XFC10569	XXX2786	9
n-Triacontane-d62 <surr></surr>	67.5	50-150	%	1	XFC10569	XXX2786	9
Batch Information							
Analytical Batch: XFC10569		Prep Batch: XXX27	369		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK102		Prep Method: SW35	520C		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 18:31		Prep Date/Time: 09/	/01/12 12:00		Container II	D:11240830	12-D
Dilution Factor: 1					Analyst: ME	EM	
Analytical Batch: XFC10569		Prep Batch: XXX27	369		Initial Prep	Wt./Vol.: 10	00 mL
Analytical Method: AK103		Prep Method: SW35	520C		Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 09/04/12 18:31		Prep Date/Time: 09	/01/12 12:00		Container II	D:11240830	12-D
Dilution Factor: 1					Analyst: ME	EM	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: Facility Well SGS Ref. #: 1124083013 Project ID: Custom Truck Matrix: Drinking Water

Collection Date/Time: 08/30/12 16:30 Receipt Date/Time: 08/31/12 13:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	Units	DF	Batch	Batch Qualifiers
<u>- aramotor</u>		<u></u>	<u>onico</u>	<u></u>		<u>quamoro</u>
1,1,1,2-Tetrachloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1,1-Trichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1,2,2-Tetrachloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1,2-Trichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1-Dichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,1-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2,3-Trichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2,3-Trichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2,4-Trichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2,4-Trimethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2-Dibromo-3-chloropropane	2.00 U	2.00	ug/L	1	VMS13080	VXX23959
1,2-Dibromoethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2-Dichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,2-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,3,5-Trimethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,3-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,3-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1,4-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
2,2-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
2-Chlorotoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
4-Chlorotoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
4-Isopropyltoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Benzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Bromobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Bromochloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Bromodichloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Bromoform	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Bromomethane	2.00 U	2.00	ug/L	1	VMS13080	VXX23959
Carbon tetrachloride	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Chlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Chloroethane	1.00 U	1.00	ug/L	1	VMS13080	VXX23959
Chloroform	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Chloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
cis-1,2-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
1						

SGSNorth America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 t(907)561.5301 www.ussgs.com Member of SGS Group

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **Facility Well** SGS Ref. #: 1124083013 Project ID: Custom Truck Matrix: Drinking Water

Collection Date/Time: 08/30/12 16:30 Receipt Date/Time: 08/31/12 13:00

Volatile Gas Chromatography/Mass Spectroscopy

					Analytical	Fiep
Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch Qualifier
cis-1,3-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Dibromochloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Dibromomethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Dichlorodifluoromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Ethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Hexachlorobutadiene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Isopropylbenzene (Cumene)	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Methylene chloride	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Methyl-t-butyl ether	1.00 U	1.00	ug/L	1	VMS13080	VXX23959
Naphthalene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
n-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
n-Propylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
o-Xylene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
P & M -Xylene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
sec-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Styrene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
tert-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Tetrachloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Toluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Total Trihalomethanes	2.00 U	2.00	ug/L	1	VMS13080	VXX23959
trans-1,2-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
trans-1,3-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Trichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Trichlorofluoromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959
Vinyl chloride	0.400 U	0.400	ug/L	1	VMS13080	VXX23959
Xylenes (total)	1.00 U	1.00	ug/L	1	VMS13080	VXX23959
1,2-Dichloroethane-D4 <surr></surr>	112	70-130	%	1	VMS13080	VXX23959
4-Bromofluorobenzene <surr></surr>	92.6	70-130	%	1	VMS13080	VXX23959
Toluene-d8 <surr></surr>	94.3	70-130	%	1	VMS13080	VXX23959
Batch Information						
Analytical Batch: VMS13080		Prep Batch: VXX23	959		Initial Prep	Nt./Vol.: 5 mL
Analytical Method: EPA 524.2		Prep Method: SW5	030B		Prep Extrac	t Vol.: 5 mL
Analysis Date/Time: 09/04/12 18:04		Prep Date/Time: 09	/04/12 08:00		Container II	D:1124083013-A
Dilution Factor: 1					Analyst: JD	Н

SGS

BGES Inc.

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **TRIPBLANK (HCL ONLY)** SGS Ref. #: 1124083014 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 16:30 Receipt Date/Time: 08/31/12 13:00

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Benzene	0.500 U	0.500	ug/L	1	VFC11152	VXX23978	3
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11152	VXX23978	3
o-Xylene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11152	VXX23978	3
Toluene	1.00 U	1.00	ug/L	1	VFC11152	VXX23978	3
1,4-Difluorobenzene <surr></surr>	91.8	77-115	%	1	VFC11152	VXX23978	3
4-Bromofluorobenzene <surr></surr>	106	50-150	%	1	VFC11152	VXX23978	3
Batch Information							
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: AK101		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 19:55		Prep Date/Time: 09/06/12 08	3:31		Container I	D:11240830	14-C
Dilution Factor: 1					Analyst: EA	B	
Analytical Batch: VFC11152		Prep Batch: VXX23978			Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/06/12 19:55		Prep Date/Time: 09/06/12 08	3:31		Container I	D:11240830	14-C
Dilution Factor: 1					Analyst: EA	Ъ	

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: TRIPBLANK (HCL ONLY) SGS Ref. #: 1124083014 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 16:30 Receipt Date/Time: 08/31/12 13:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1,1-Trichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1,2,2-Tetrachloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1,2-Trichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1-Dichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,1-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2,3-Trichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2,3-Trichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2,4-Trichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2,4-Trimethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2-Dibromo-3-chloropropane	2.00 U	2.00	ug/L	1	VMS13080	VXX23959	
1,2-Dibromoethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2-Dichloroethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,2-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,3,5-Trimethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,3-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,3-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
1,4-Dichlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
2,2-Dichloropropane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
2-Chlorotoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
4-Chlorotoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
4-Isopropyltoluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Benzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Bromobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Bromochloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Bromodichloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Bromoform	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Bromomethane	2.00 U	2.00	ug/L	1	VMS13080	VXX23959	
Carbon tetrachloride	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Chlorobenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Chloroethane	1.00 U	1.00	ug/L	1	VMS13080	VXX23959	
Chloroform	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Chloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
cis-1,2-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	

SGSNorth America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 t(907)561.5301 www.ussgs.com Member of SGS Group

Print Date: 9/10/2012 8:13 pm

Analytical Prep

Client Sample ID: **TRIPBLANK (HCL ONLY)** SGS Ref. #: 1124083014 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 08/30/12 16:30 Receipt Date/Time: 08/31/12 13:00

Volatile Gas Chromatography/Mass Spectroscopy

					Analytical	Flep	
Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
cis-1,3-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Dibromochloromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Dibromomethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Dichlorodifluoromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Ethylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Hexachlorobutadiene	0.610	0.500	ug/L	1	VMS13080	VXX23959)
Isopropylbenzene (Cumene)	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Methylene chloride	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Methyl-t-butyl ether	1.00 U	1.00	ug/L	1	VMS13080	VXX23959)
Naphthalene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
n-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
n-Propylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
o-Xylene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
P & M -Xylene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
sec-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Styrene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
tert-Butylbenzene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Tetrachloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Toluene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Total Trihalomethanes	2.00 U	2.00	ug/L	1	VMS13080	VXX23959)
trans-1,2-Dichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
trans-1,3-Dichloropropene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Trichloroethene	0.500 U	0.500	ug/L	1	VMS13080	VXX23959	
Trichlorofluoromethane	0.500 U	0.500	ug/L	1	VMS13080	VXX23959)
Vinyl chloride	0.400 U	0.400	ug/L	1	VMS13080	VXX23959	
Xylenes (total)	1.00 U	1.00	ug/L	1	VMS13080	VXX23959	
1,2-Dichloroethane-D4 <surr></surr>	109	70-130	%	1	VMS13080	VXX23959	
4-Bromofluorobenzene <surr></surr>	92	70-130	%	1	VMS13080	VXX23959)
Toluene-d8 <surr></surr>	96.4	70-130	%	1	VMS13080	VXX23959)
Batch Information							
Analytical Batch: VMS13080		Prep Batch: VXX23	3959		Initial Prep	Nt./Vol.: 5 m	L
Analytical Method: EPA 524.2		Prep Method: SW5	6030B		Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 09/04/12 14:58		Prep Date/Time: 09	9/04/12 08:00		Container II	D:112408301	14-B
Dilution Factor: 1					Analyst: JD	Н	

SGSNorth America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 tf(907)561.5301 www.ussgs.com Member of SGS Group

SGS Ref.#	1111470	Method Blank	Printed I	Date/Time	09/10/2012 20:13
Client Name	BGES Inc.		Prep	Batch	XXX27869
Project Name/#	Custom Truck			Method	SW3520C
Matrix	Water (Surface	, Eff., Ground)		Date	09/01/2012

QC results affect the following production samples:

1124083001, 1124083002, 1124083003, 1124083004, 1124083005, 1124083006, 1124083007, 1124083008, 1124083009, 1124083010, 1124083011, 1124083012

Parameter		Results	LOQ/CL	DL	Units	Analysis Date
Semivolatile	Organic Fuels De	partment				
Diesel Range Org	anics	0.360 U	0.600	0.180	mg/L	09/04/12
Surrogates						
5a Androstane <su< th=""><th>1rr></th><th>90.3</th><th>60-120</th><th></th><th>%</th><th>09/04/12</th></su<>	1rr>	90.3	60-120		%	09/04/12
Batch	XFC10569					
Method	AK102					
Instrument	HP 6890 Series II FID S	SVDF				
Residual Range O	rganics	0.300 U	0.500	0.150	mg/L	09/04/12
Surrogates						
n-Triacontane-d62	2 <surr></surr>	91.5	60-120		%	09/04/12
Batch	XFC10569					
Method	AK103					
Instrument	HP 6890 Series II FID S	SV D F				

SGS Ref.# Client Name Project Name/#	1111857 BGES Inc. Custom Truck	Method Blank			Printed Prep	l Date/Time Batch Method	09/10/2012 20:13 VXX23959 SW5030B
Matrix	Drinking Water					Date	09/04/2012
QC results affect the fo 1124083013, 112	llowing production samp 24083014	les:					
Parameter		Results	LOQ/CL	DL	Units		Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

SGS Ref.# Client Name Project Name/# Matrix	1111857 BGES Inc. Custom Truck Drinking Water	Method Blank				te/Time Batch Method Date	09/10/2012 20:13 VXX23959 SW5030B 09/04/2012
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Volatile Gas Ch	romatography/	Mass Spectros	сору				
1,1,1,2-Tetrachloroet	hane	0.300 U	0.500	0.150	ug/L		09/04/12
1,1,1-Trichloroethane	2	0.300 U	0.500	0.150	ug/L		09/04/12
1,1,2,2-Tetrachloroet	hane	0.300 U	0.500	0.150	ug/L		09/04/12
1,1,2-Trichloroethane	e	0.300 U	0.500	0.150	ug/L		09/04/12
1,1-Dichloroethane		0.300 U	0.500	0.150	ug/L		09/04/12
1,1-Dichloroethene		0.300 U	0.500	0.150	ug/L		09/04/12
1,1-Dichloropropene		0.300 U	0.500	0.150	ug/L		09/04/12
1,2,3-Trichlorobenze	ne	0.300 U	0.500	0.150	ug/L		09/04/12
1,2,3-Trichloropropa	ne	0.360 U	0.500	0.180	ug/L		09/04/12
1,2,4-Trichlorobenze	ne	0.300 U	0.500	0.150	ug/L		09/04/12
1,2,4-Trimethylbenze	ene	0.300 U	0.500	0.150	ug/L		09/04/12
1,2-Dibromo-3-chlor	opropane	1.24 U	2.00	0.620	ug/L		09/04/12
1,2-Dibromoethane		0.300 U	0.500	0.150	ug/L		09/04/12
1,2-Dichlorobenzene		0.300 U	0.500	0.150	ug/L		09/04/12
1,2-Dichloroethane		0.300 U	0.500	0.150	ug/L		09/04/12
1,2-Dichloropropane		0.300 U	0.500	0.150	ug/L		09/04/12
1,3,5-Trimethylbenze	ene	0.300 U	0.500	0.150	ug/L		09/04/12
1,3-Dichlorobenzene		0.300 U	0.500	0.150	ug/L		09/04/12
1,3-Dichloropropane		0.300 U	0.500	0.150	ug/L		09/04/12
1,4-Dichlorobenzene		0.300 U	0.500	0.150	ug/L		09/04/12
2,2-Dichloropropane		0.300 U	0.500	0.150	ug/L		09/04/12
2-Chlorotoluene		0.300 U	0.500	0.150	ug/L		09/04/12
4-Chlorotoluene		0.300 U	0.500	0.150	ug/L		09/04/12
4-Isopropyltoluene		0.300 U	0.500	0.150	ug/L		09/04/12
Benzene		0.300 U	0.500	0.150	ug/L		09/04/12
Bromobenzene		0.300 U	0.500	0.150	ug/L		09/04/12
Bromochloromethane	2	0.300 U	0.500	0.150	ug/L		09/04/12
Bromodichlorometha	ne	0.300 U	0.500	0.150	ug/L		09/04/12
Bromoform		0.300 U	0.500	0.150	ug/L		09/04/12
Bromomethane		1.24 U	2.00	0.620	ug/L		09/04/12
Carbon tetrachloride		0.300 U	0.500	0.150	ug/L		09/04/12
Chlorobenzene		0.300 U	0.500	0.150	ug/L		09/04/12
Chloroethane		0.620 U	1.00	0.310	ug/L		09/04/12
Chloroform		0.260J	0.500	0.150	ug/L		09/04/12
Chloromethane		0.300 U	0.500	0.150	ug/L		09/04/12
cis-1,2-Dichloroether	ne	0.300 U	0.500	0.150	ug/L		09/04/12
cis-1,3-Dichloroprop		0.300 U	0.500	0.150	ug/L		09/04/12
Dibromochlorometha		0.300 U	0.500	0.150	ug/L		09/04/12
Dibromomethane		0.300 U	0.500	0.150	ug/L		09/04/12
					-		41 of 55

SGS Ref.# Client Name Project Name/# Matrix	1111857 BGES Inc. Custom Truck Drinking Water	Method Blank			Printed Prep	Date/Time Batch Method Date	09/10/2012 20:13 VXX23959 SW5030B 09/04/2012
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Volatile Gas Ch	romatography/	Mass Spectros	сору				
Dichlorodifluorometh	nane	0.300 U	0.500	0.150	ug/L		09/04/12
Ethylbenzene		0.300 U	0.500	0.150	ug/L		09/04/12
Hexachlorobutadiene		0.300 U	0.500	0.150	ug/L		09/04/12
Isopropylbenzene (Cu	umene)	0.300 U	0.500	0.150	ug/L		09/04/12
Methylene chloride		0.300 U	0.500	0.150	ug/L		09/04/12
Methyl-t-butyl ether		1.00 U	1.00	0.500	ug/L		09/04/12
Naphthalene		0.300 U	0.500	0.150	ug/L		09/04/12
n-Butylbenzene		0.300 U	0.500	0.150	ug/L		09/04/12
n-Propylbenzene		0.300 U	0.500	0.150	ug/L		09/04/12
o-Xylene		0.300 U	0.500	0.150	ug/L		09/04/12
P & M -Xylene		0.360 U	0.500	0.180	ug/L		09/04/12
sec-Butylbenzene		0.300 U	0.500	0.150	ug/L		09/04/12
Styrene		0.300 U	0.500	0.150	ug/L		09/04/12
tert-Butylbenzene		0.300 U	0.500	0.150	ug/L		09/04/12
Tetrachloroethene		0.300 U	0.500	0.150	ug/L		09/04/12
Toluene		0.300 U	0.500	0.150	ug/L		09/04/12
trans-1,2-Dichloroeth	ene	0.300 U	0.500	0.150	ug/L		09/04/12
trans-1,3-Dichloropro	opene	0.300 U	0.500	0.150	ug/L		09/04/12
Trichloroethene	-	0.300 U	0.500	0.150	ug/L		09/04/12
Trichlorofluorometha	ine	0.300 U	0.500	0.150	ug/L		09/04/12
Vinyl chloride		0.240 U	0.400	0.120	ug/L		09/04/12
Surrogates							
1,2-Dichloroethane-D	04 <surr></surr>	108	70-130		%		09/04/12
4-Bromofluorobenzer		91.8	70-130		%		09/04/12
Toluene-d8 <surr></surr>		93	70-130		%		09/04/12
	VMS13080						
Method	EPA 524.2						

Instrument Agilent 7890-75MS

SGS Ref.#	1112843	Method Blank	Printed	Date/Time	09/10/2012 20:13
Client Name	BGES Inc.		Prep	Batch	VXX23978
Project Name/#	Custom Truck			Method	SW5030B
Matrix	Water (Surface	, Eff., Ground)		Date	09/06/2012

QC results affect the following production samples:

1124083001, 1124083002, 1124083003, 1124083004, 1124083005, 1124083006, 1124083007, 1124083008, 1124083009, 1124083010, 1124083011, 1124083012, 1124083014

Parameter		Results	LOQ/CL	DL	Units	Analysis Date
	ls Department					
Gasoline Range C	Organics	0.0620 U	0.100	0.0310	mg/L	09/06/12
Surrogates						
4-Bromofluorober	nzene <surr></surr>	102	50-150		%	09/06/12
Batch	VFC11152					
Method	AK101					
Instrument	Agilent 7890A PID/FID					
Benzene		0.300 U	0.500	0.150	ug/L	09/06/12
Ethylbenzene		0.620 U	1.00	0.310	ug/L	09/06/12
o-Xylene		0.620 U	1.00	0.310	ug/L	09/06/12
P & M -Xylene		1.24 U	2.00	0.620	ug/L	09/06/12
Toluene		0.310J	1.00	0.310	ug/L	09/06/12
Surrogates						
1,4-Difluorobenze	ene <surr></surr>	92	77-115		%	09/06/12
Batch	VFC11152					
Method	SW8021B					
Instrument	Agilent 7890A PID/FID					

SGS Ref.#	1111471 Lab Control Sample	Printed E	Date/Time	09/10/2012	20:13
	1111472 Lab Control Sample Duplicate	Prep	Batch	XXX27869	
Client Name	BGES Inc.		Method	SW3520C	
Project Name/#	Custom Truck		Date	09/01/2012	
Matrix	Water (Surface, Eff., Ground)				

QC results affect the following production samples:

1124083001, 1124083002, 1124083003, 1124083004, 1124083005, 1124083006, 1124083007, 1124083008, 1124083009, 1124083010, 1124083011, 1124083012

Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile	Organic Fuel	.s Departm	ent						
Diesel Range Org	anics	LCS	4.42	88	(75-125)			5 mg/L	09/04/2012
		LCSD	4.13	83		7	(<20)	5 mg/L	09/04/2012
Surrogates									
5a Androstane <s< td=""><td>urr></td><td>LCS</td><td></td><td>87</td><td>(60-120)</td><td></td><td></td><td></td><td>09/04/2012</td></s<>	urr>	LCS		87	(60-120)				09/04/2012
		LCSD		83		5			09/04/2012
Batch Method Instrument	XFC10569 AK102 HP 6890 Series	s II FID SV D	F						
Residual Range C	Organics	LCS	4.69	94	(60-120)			5 mg/L	09/04/2012
		LCSD	4.51	90		4	(<20)	5 mg/L	09/04/2012
Surrogates									
n-Triacontane-d6	2 <surr></surr>	LCS		85	(60-120)				09/04/2012
		LCSD		80		7			09/04/2012

Batch	XFC10569
Method	AK103
Instrument	HP 6890 Series II FID SV D F

SGS Ref.# Client Name Project Name/# Matrix	1111858 Lab Control 1111859 Lab Control BGES Inc. Custom Truck Drinking Water	l Sample l Sample Dup	olicate		Printe Prep	d Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
QC results affect the 1124083013, 112	following production samples: 24083014							
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

Client Name Project Name/#	1111858 Lab Control 1111859 Lab Control BGES Inc. Custom Truck Drinking Water		plicate		Printe Prep	d Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chron	natography/Mass S	pectrosc	ору					
,1,1,2-Tetrachloroethand		33.7	112	(70-130)			30 ug/L	09/04/2012
	LCSD	32.7	109		3	(< 30)	30 ug/L	09/04/2012
,1,1-Trichloroethane	LCS	34.5	115	(70-130)			30 ug/L	09/04/2012
	LCSD	33.3	111		3	(< 30)	30 ug/L	09/04/2012
1,2,2-Tetrachloroethane	e LCS	27.1	90	(70-130)			30 ug/L	09/04/2012
	LCSD	26.3	88		3	(< 30)	30 ug/L	09/04/2012
1,2-Trichloroethane	LCS	28.2	94	(70-130)			30 ug/L	09/04/2012
	LCSD	27.4	91	. ,	3	(< 30)	30 ug/L	09/04/2012
1-Dichloroethane	LCS	28.6	95	(70-130)			30 ug/L	09/04/2012
	LCSD	27.9	93		2	(< 30)	30 ug/L	09/04/2012
1-Dichloroethene	LCS	30.5	102	(70-130)			30 ug/L	09/04/2012
	LCSD	29.9	100		2	(< 30)	30 ug/L	09/04/2012
1-Dichloropropene	LCS	30.9	103	(70-130)			30 ug/L	09/04/2012
	LCSD	30.2	101	, ,	2	(< 30)	30 ug/L	09/04/2012
2,3-Trichlorobenzene	LCS	28.5	95	(70-130)			30 ug/L	09/04/2012
	LCSD	27.8	93	, ,	3	(< 30)	30 ug/L	09/04/2012
2,3-Trichloropropane	LCS	29.0	97	(70-130)			30 ug/L	09/04/2012
	LCSD	28.4	95	()	2	(< 30)	30 ug/L	09/04/2012
2,4-Trichlorobenzene	LCS	29.7	99	(70-130)			30 ug/L	09/04/2012
	LCSD	28.8	96	, ,	3	(< 30)	30 ug/L	09/04/2012
2,4-Trimethylbenzene	LCS	30.1	100	(70-130)			30 ug/L	09/04/2012
	LCSD	28.0	93	· · · /	7	(< 30)	30 ug/L	09/04/2012
2-Dibromo-3-chloropro	pane LCS	28.4	95	(70-130)			30 ug/L	09/04/2012
r	LCSD	28.4	95	· /	0	(< 30)	30 ug/L	09/04/2012
2-Dibromoethane	LCS	30.2	101	(70-130)			30 ug/L	09/04/2012
	LCSD	29.9	100	()	1	(< 30)	30 ug/L	09/04/2012
2-Dichlorobenzene	LCS	29.2	97	(70-130)			30 ug/L	09/04/2012
	LCSD	27.7	92	· · ·)	5	(< 30)	30 ug/L	09/04/2012

SGS Ref.# Client Name Project Name/#	1111858 Lab Control 1111859 Lab Control BGES Inc. Custom Truck	-	blicate		Printo Prep	ed Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
Matrix Parameter	Drinking Water	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro	omatography/Mass S							
1,2-Dichloroethane	LCS	31.1	104	(70-130)			30 ug/L	09/04/2012
,	LCSD	30.5	102	()	2	(< 30)	30 ug/L	09/04/2012
1,2-Dichloropropane	LCS	28.4	95	(70-130)			30 ug/L	09/04/2012
	LCSD	27.7	92		3	(< 30)	30 ug/L	09/04/2012
1,3,5-Trimethylbenzene	LCS	30.2	101	(70-130)			30 ug/L	09/04/2012
	LCSD	28.3	94		6	(< 30)	30 ug/L	09/04/2012
,3-Dichlorobenzene	LCS	29.5	98	(70-130)			30 ug/L	09/04/2012
	LCSD	27.7	93		6	(< 30)	30 ug/L	09/04/2012
,3-Dichloropropane	LCS	28.4	95	(70-130)			30 ug/L	09/04/2012
	LCSD	28.0	93		2	(< 30)	30 ug/L	09/04/2012
,4-Dichlorobenzene	LCS	29.3	98	(70-130)			30 ug/L	09/04/2012
	LCSD	27.7	92		6	(< 30)	30 ug/L	09/04/2012
2,2-Dichloropropane	LCS	34.6	115	(70-130)			30 ug/L	09/04/2012
	LCSD	33.5	112		3	(< 30)	30 ug/L	09/04/2012
-Chlorotoluene	LCS	28.2	94	(70-130)			30 ug/L	09/04/2012
	LCSD	26.3	88		7	(< 30)	30 ug/L	09/04/2012
-Chlorotoluene	LCS	27.7	93	(70-130)			30 ug/L	09/04/2012
	LCSD	26.0	87		7	(< 30)	30 ug/L	09/04/2012
-Isopropyltoluene	LCS	30.8	103	(70-130)			30 ug/L	09/04/2012
	LCSD	28.9	97		6	(< 30)	30 ug/L	09/04/2012
Benzene	LCS	29.5	98	(70-130)			30 ug/L	09/04/2012
	LCSD	29.2	97		1	(< 30)	30 ug/L	09/04/2012
Bromobenzene	LCS	29.9	100	(70-130)			30 ug/L	09/04/2012
	LCSD	28.3	94		5	(< 30)	30 ug/L	09/04/2012
Bromochloromethane	LCS	31.0	103	(70-130)			30 ug/L	09/04/2012
	LCSD	30.1	100		3	(< 30)	30 ug/L	09/04/2012
Bromodichloromethane	LCS	31.9	106	(70-130)			30 ug/L	09/04/2012
								7 of 55

SGS Ref.# Client Name Project Name/# Mateir	1111858 Lab Control 1111859 Lab Control BGES Inc. Custom Truck Drinking Water	-	plicate		Printe Prep	ed Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
Matrix Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	omatography/Mass S	pectrosc	VGO					
	LCSD	31.4	105		2	(< 30)	30 ug/L	09/04/2012
Bromoform	LCS	34.5	115	(70-130)			30 ug/L	09/04/2012
	LCSD	34.1	114		1	(< 30)	30 ug/L	09/04/2012
Bromomethane	LCS	31.3	104	(70-130)			30 ug/L	09/04/2012
	LCSD	28.7	96		9	(< 30)	30 ug/L	09/04/2012
Carbon tetrachloride	LCS	35.7	119	(70-130)			30 ug/L	09/04/2012
	LCSD	34.7	116		3	(< 30)	30 ug/L	09/04/2012
Chlorobenzene	LCS	29.0	97	(70-130)			30 ug/L	09/04/2012
	LCSD	28.3	95	. ,	2	(< 30)	30 ug/L	09/04/2012
Chloroethane	LCS	28.1	94	(70-130)			30 ug/L	09/04/2012
	LCSD	26.5	89	, , , , , , , , , , , , , , , , , , ,	6	(< 30)	30 ug/L	09/04/2012
Chloroform	LCS	28.0	94	(70-130)			30 ug/L	09/04/2012
	LCSD	27.5	92	, ,	2	(< 30)	30 ug/L	09/04/2012
Chloromethane	LCS	23.2	77	(70-130)			30 ug/L	09/04/2012
	LCSD	23.0	77	()	1	(< 30)	30 ug/L	09/04/2012
cis-1,2-Dichloroethene	LCS	28.2	94	(70-130)			30 ug/L	09/04/2012
	LCSD	28.0	93	(70 150)	1	(< 30)	30 ug/L 30 ug/L	09/04/2012
cis-1,3-Dichloropropen	e LCS	32.4	108	(70-130)			30 ug/L	09/04/2012
els-1,5-Diemotopropen	LCSD	31.7	106	(70-150)	2	(< 30)	30 ug/L 30 ug/L	09/04/2012
Dibromochloromethane	e LCS	33.1	110	(70-130)			30 ug/L	09/04/2012
Dibiomocmoromethane	LCSD	32.3	108	(70-130)	2	(< 30)	30 ug/L 30 ug/L	09/04/2012
Dibromomethane	LCS	28.6	05	(70-130)			20 /I	00/04/2012
Dibiomomethane	LCSD	28.0 28.4	95 95	(70-130)	1	(< 30)	30 ug/L 30 ug/L	09/04/2012 09/04/2012
Dishlana di Guana di				(70.120)				00/04/0010
Dichlorodifluorometha	ne LCS LCSD	30.8 28.0	103 93	(70-130)	9	(< 30)	30 ug/L 30 ug/L	09/04/2012 09/04/2012
				/		×/		
Ethylbenzene	LCS LCSD	30.6 29.4	102 98	(70-130)	4	(< 30)	30 ug/L 30 ug/L	09/04/2012 09/04/2012
	LCSD	<i>27.</i> т	20			(50 ag D	57,5 . <u></u> 012

GGS Ref.# Client Name Project Name/# Matrix	1111858 Lab Control 1111859 Lab Control BGES Inc. Custom Truck Drinking Water		olicate		Printe Prep	d Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro	omatography/Mass	Spectrosc	ору					
Hexachlorobutadiene	LCS	31.4	105	(70-130)			30 ug/L	09/04/2012
	LCSD	31.9	106		2	(< 30)	30 ug/L	09/04/2012
sopropylbenzene (Cum	ene) LCS	31.4	105	(70-130)			30 ug/L	09/04/2012
	LCSD	30.3	101		3	(< 30)	30 ug/L	09/04/2012
lethylene chloride	LCS	29.0	97	(70-130)			30 ug/L	09/04/2012
	LCSD	28.9	96		0	(< 30)	30 ug/L	09/04/2012
lethyl-t-butyl ether	LCS	50.1	111	(70-130)			45 ug/L	09/04/2012
	LCSD	49.7	110		1	(< 30)	45 ug/L	09/04/2012
aphthalene	LCS	27.7	92	(70-130)			30 ug/L	09/04/2012
	LCSD	27.4	91		1	(< 30)	30 ug/L	09/04/2012
Butylbenzene	LCS	28.0	93	(70-130)			30 ug/L	09/04/2012
	LCSD	26.6	89		5	(< 30)	30 ug/L	09/04/2012
Propylbenzene	LCS	28.7	96	(70-130)			30 ug/L	09/04/2012
	LCSD	26.7	89		7	(< 30)	30 ug/L	09/04/2012
-Xylene	LCS	29.9	100	(70-130)			30 ug/L	09/04/2012
	LCSD	28.8	96		4	(< 30)	30 ug/L	09/04/2012
& M -Xylene	LCS	61.0	102	(70-130)			60 ug/L	09/04/2012
	LCSD	58.4	97		5	(< 30)	60 ug/L	09/04/2012
c-Butylbenzene	LCS	29.3	98	(70-130)			30 ug/L	09/04/2012
	LCSD	27.4	91		7	(< 30)	30 ug/L	09/04/2012
tyrene	LCS	30.5	102	(70-130)			30 ug/L	09/04/2012
	LCSD	29.8	99		2	(< 30)	30 ug/L	09/04/2012
rt-Butylbenzene	LCS	30.8	103	(70-130)			30 ug/L	09/04/2012
	LCSD	28.6	95		7	(< 30)	30 ug/L	09/04/2012
etrachloroethene	LCS	32.7	109	(70-130)			30 ug/L	09/04/2012
	LCSD	31.6	105		4	(< 30)	30 ug/L	09/04/2012
oluene	LCS	28.8	96	(70-130)			30 ug/L	09/04/2012
	LCSD	28.0	93		3	(< 30)	30 ug/L	09/04/2012

SGS Ref.# Client Name Project Name/# Matrix			-	blicate		Printed Prep	Date/Time Batch Method Date	09/10/2012 VXX23959 SW5030B 09/04/2012	20:13
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro	omatograp	hy/Mass S	pectrosc	ору					
trans-1,2-Dichloroethen	e	LCS	30.5	102	(70-130)			30 ug/L	09/04/2012
		LCSD	31.2	104		2	(< 30)	30 ug/L	09/04/2012
trans-1,3-Dichloroprope	ene	LCS	31.3	104	(70-130)			30 ug/L	09/04/2012
		LCSD	30.8	103		2	(< 30)	30 ug/L	09/04/2012
Trichloroethene		LCS	29.8	99	(70-130)			30 ug/L	09/04/2012
		LCSD	29.4	98		1	(< 30)	30 ug/L	09/04/2012
Trichlorofluoromethane	;	LCS	33.0	110	(70-130)			30 ug/L	09/04/2012
		LCSD	30.7	102		7	(< 30)	30 ug/L	09/04/2012
Vinyl chloride		LCS	28.6	95	(70-130)			30 ug/L	09/04/2012
		LCSD	27.7	92		3	(< 30)	30 ug/L	09/04/2012
Surrogates									
1,2-Dichloroethane-D4	<surr></surr>	LCS		103	(70-130)				09/04/2012
		LCSD		103		0			09/04/2012
4-Bromofluorobenzene	<surr></surr>	LCS		94	(70-130)				09/04/2012
		LCSD		92		2			09/04/2012
Toluene-d8 <surr></surr>		LCS		97	(70-130)				09/04/2012
		LCSD		98		1			09/04/2012

Batch	VMS13080
Method	EPA 524.2
Instrument	Agilent 7890-75MS

SGS Ref.#	1112844 Lab Control Sample	Printed	Date/Time	09/10/2012	20:13
	1112845 Lab Control Sample Duplicate	Prep	Batch	VXX23978	
Client Name	BGES Inc.		Method	SW5030B	
Project Name/#	Custom Truck		Date	09/06/2012	
Matrix	Water (Surface, Eff., Ground)				

QC results affect the following production samples:

1124083001, 1124083002, 1124083003, 1124083004, 1124083005, 1124083006, 1124083007, 1124083008, 1124083009, 1124083010, 1124083011, 1124083012, 1124083014

Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Department								
Benzene	LCS	94.5	95	(80-120)			100 ug/L	09/06/2012
Delizene	LCSD	104	104	(00-120)	10	(< 20)	100 ug/L 100 ug/L	09/06/2012
F4b-1b-	LCC	00.0	00	(75.125)			100 /7	00/06/0010
Ethylbenzene	LCS LCSD	99.0 105	99 105	(75-125)	6	(< 20)	100 ug/L 100 ug/L	09/06/2012 09/06/2012
	LCDD	105	105		Ũ	(=•)	100 48,2	0,00,2012
o-Xylene	LCS	100	100	(80-120)			100 ug/L	09/06/2012
	LCSD	107	107		7	(< 20)	100 ug/L	09/06/2012
P & M -Xylene	LCS	203	101	(75-130)			200 ug/L	09/06/2012
	LCSD	218	109		7	(< 20)	200 ug/L	09/06/2012
Toluene	LCS	101	101	(75-120)			100 ug/L	09/06/2012
	LCSD	107	107		7	(< 20)	100 ug/L	09/06/2012
9								
Surrogates								
1,4-Difluorobenzene <surr></surr>	LCS		93	(77-115)				09/06/2012
	LCSD		95		2			09/06/2012

Batch	VFC11152
Method	SW8021B
Instrument	Agilent 7890A PID/FID

SGS Ref.#	1112846 Lab Control Sample	Printed	Date/Time	09/10/2012	20:13
	1112847 Lab Control Sample Duplicate	Prep	Batch	VXX23978	
Client Name	BGES Inc.		Method	SW5030B	
Project Name/#	Custom Truck		Date	09/06/2012	
Matrix	Water (Surface, Eff., Ground)				

QC results affect the following production samples:

1124083001, 1124083002, 1124083003, 1124083004, 1124083005, 1124083006, 1124083007, 1124083008, 1124083009, 1124083010, 1124083011, 1124083012, 1124083014

Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Department								
Gasoline Range Organics	LCS	1.07	107	(60-120)			1.00 mg/L	09/06/2012
	LCSD	1.05	105		2	(< 20)	1.00 mg/L	09/06/2012
Surrogates								
4-Bromofluorobenzene <surr></surr>	LCS		107	(50-150)				09/06/2012
	LCSD		109		2			09/06/2012

Batch	VFC11152
Method	AK101
Instrument	Agilent 7890A PID/FID

2983 2983 2983 2983 2983 2983 2983 2983		- Lagge					C C LOC ID											Data Deliverable Requirements:	2 1210-1	nstructions:		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT (See attached Sample Recent Form)	White - Retained by Lab Pink - Retained by Client
1124083			×C ×	1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	to the second	- -	1 / K / 20/	X	×	×	×	×	×	X	X	X	X	(NO) Data		Requested Turnaround Time and-or Special Instructions:	lo Day	°C: 6.9 33	or Ambient] کے (See attached Sample Receipt Form)	d conditions.htm
1c. CORD	:# 6	-		(3) NTO VO		¥Ę	6/8/2/	X X X	$\frac{\times}{\times}$	× × ×	$\times \times \times$	X X X	X X X	X X X	X X X	XXX	$X \times X$	DOD Project? YES	Cooler ID	Requested Turnarour		Temperature Blank °	(See attached Sa	http://www.sgs.com/terms and conditions.htm
North America Inc. OF CUSTODY RECORD	SGS Reference #:		0)	T C COMP G= GRAB		_	R Samples S	SG	5 6	5 6	5 Ġ	S &	SĠ	5 G	SÉ	56	5 6 1		(_	. /	2/19/8	
		900					E MATRIX/ MATRIX CODE	3	3	З	ω	i (2)	3	3	3	3	S &	Received By:		Received By:	Received By:		Received For Japonator	
SGS No CHAIN OF		PHONE NO: (407) (44- 2000		hc. con			TIME	SH:61 Z	21:3:45	7 9:30	Shill Z	2 19:45	12.15	1: 10:15	12 18:40	2 17:00	12 20:45			Receiv	Receiv		Received For	7) 561-5301 10) 350-1557
0		E NO: (907	ECT/)/ IT# :	EMAIL: jayne@baesinc. com	р ##		DATE	21/22/12	21/05/8	21/18/8	21/62/8	21/12/8	21/62/8	21/28/8	8/32/12	8/30/12	8/29/12	Time	rd 1	Time			Time	.343 Fax: (90 -1903 Fax: (9
		NOHA	PROJECT/ PWSID/ PERMIT#	EMAIL:	QUOTE #:	P.O. #:	-ICATION											Date	2/31	Date	Date		Date	əi: (907) 562-2 Tel: (910) 350
SGS	ES, TWC.	shue Buss		Martin	1	fre.	SAMPLE IDENTIFICATION	Mw) - 0830	mwr-0830	Mw3-0831	Mw5-0829	Mw8-0829	mw10-0829	mwll-0830	Publ3 - 0830	MW14-0830	MW 15-0829	quished By:(1)	\int	y: (2)	y: (3)		y: (4)	□ 200 W. Potter Drive Anchorage, AK 99518 Te I: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557
	CLIENT BGES, TWC	CONTACT: Joshun		REPORTS TO:	INVOICE TO:	22,0	RESERVED for lab use	()A€		(3H E	CHA F	SHE	(CHE	びれて	11		Away	d/Relin	H	Relinquished By: (2)	Relinquished By: (3)		Relinquished By: (4)	□ 200 W. Potter Drive □ 5500 Business Driv

	_
S	
C	
S	

	SGS North America Inc. CHAIN OF CUSTODY RECORD	rth Am CUSTO	SGS North America Inc. AIN OF CUSTODY RECO	c. ORD	110	1124083	yland v York ana rtucky	
CLIENT: BGES, Inc.		S	SGS Reference #:	#			page 2 of	2
CONTACT: John Basis PHONE NO	PHONE NO(47) 644- 2900							
nek			SAMPLE TYPE C=	Bearing Analysis	2			
	& BEESNE. con		O COMP N G= T GRAB	197	1 20 1 20 1 2 / 20 / 20 / 20 / 20 / 20 /	/ ite		
				4	4 4 00	/ / 5		
BGES, TNL. P.O. #					/ a / a /	<u> </u>		
RESERVED SAMPLE IDENTIFICATION	DATE TIME	MATRIX/ MATRIX CODE	R Samples S	1 6/2	1 24 / 24 / 12			KEMAKKS/ LOC ID
(1) J. C. Mw17-0832	Still 21/28		04 G	X X	X X			1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
1) D. C. B6/VE - 0830	8/30/12 18:30	3	S é	X X	\times × /#		<u>9</u>	200
	az:91 21/22/8	3	3 G		×			
		3	3	×	X			and the state of the
La Trip 1		3	3		-		2	to the star only trip
						-		·
5 Collected/Relinquished By:(1) Date	Time Received By:	ير ور	/	DOD Project?	YES NO	Data Deliv	Data Deliverable Requirements:	
AC 8/31	1pm		22. 	Cooler ID		le	level 2	
Relinquished By: (2) Date	Time Received By:	3y:		Requested Tu	Requested Turnaround Time and-or Special Instructions:	Special Instruct	ions:	
Relinquished By: (3) Date	Time Received By:	3y:		2	7			
		/= / -		Temperature Blank °C:	Blank °C:	nh	Chain of Custody Seal: (Circle)	: (Circle)
Relinquished By: (4) Date	Time Received For	-or labbratory	Maga Maga	(See atta	or Ambileht [المالية من من المالية المالية (See attached Sample Receipt Form)		INTACT BROKEN (ABSENT) (See attached Sample Recei <mark>bt Form</mark>)	(ABSENT)
200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301				ttn://www.sds.com/	http://www.srs.com/terms and conditions.htm			White - Retained by Lab Pink - Retained by Client

□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms and conditions.htm

SAMPLE RECEIPT FORM

Review Criteria:	Condition	
Were custody seals intact? Note # & location, if applicable.	Yes No N/A	Comments/Action Taken:
COC accompanied samples?	Yes No N/A	1
Temperature blank compliant* (i.e., 0-6°C after correction factor)?	Yes No N/A	
* Note: Exemption permitted for chilled samples collected less than 8 hours ago.	I CS (NO N/A	Of to run Analysis Per Client.
Cooler ID: @ &. w/ Therm.ID: 35		
Cooler ID: 2 a 4 5 w/ Therm.ID: 263		
Cooler ID: 3 @ 4.4 w/ Therm.ID: 35		
Cooler ID: @ w/ Therm.ID: 55		
Cooler ID: @ w/ Therm.ID:		· · · ·
Note: If non-compliant, use form FS-0029 to document affected samples/analyses.		
If samples are received without a temperature blank, the "cooler		
temperature" will be documented in lieu of the temperature blank &		
"COOLER TEMP" will be noted to the right. In cases where neither a		
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."		
If temperature(s) <0°C, were all sample containers ice free?	Yes No N/A	
Delivery method (specify all that apply): Client	Note ABN/	
USPS Alert Courier Road Runner AK Air	tracking #	
Lynden Carlile ERA PenAir		
FedEx UPS NAC Other:	See Attached	
\rightarrow For WO# with airbills, was the WO# & airbill	or N/A	
info recorded in the Front Counter eLog?	Yes No (N/A)	
\rightarrow For samples received with payment, note amount (\$) and c		ircle one) or note:
→ For samples received in FBKS, ANCH staff will verify all criteria	and encert co (c	
Were samples received within hold time?	Yes No N/A	SRF Initiated by: N/A
Note: Refer to form F-083 "Sample Guide" for hold time information.		
Do samples match COC* (i.e., sample IDs, dates/times collected)?	(Yes) No N/A	
* Note: Exemption permitted if times differ <1 hr; in which case, use times on COC.		
Were analyses requested unambiguous?	(Yes) No N/A	
Were samples in good condition (no leaks/cracks/breakage)?	Yes) No N/A	
Packing material used (specify all that apply): Bubble Wrap		
Separate plastic bags Vermiculite Other:		
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?	Yes No N/A	
Were all soil VOAs field extracted with MeOH+BFB?	Yes No NA) IC has bubble? lonna
Were proper containers (type/mass/volume/preservative*) used?	Yes) No N/A	11A-B Limited volume on
* Note: Exemption permitted for waters to be analyzed for metals.		INA 15 LINNEL VULNING ON
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No NA	VOA Vials only have 2 jurs.
For special handling (e.g., "MI" or foreign soils, lab filter, limited	Yes No N/A	
volume, Ref Lab), were bottles/paperwork flagged (e.g., sticker)?		
For preserved waters (other than VOA vials, LL-Mercury or	(Yes No N/A	
microbiological analyses), was pH verified and compliant?		
If pH was adjusted, were bottles flagged (i.e., stickers)?	Yes No N/A	
For RUSH/SHORT Hold Time or site-specific QC (e.g.,	Yes No (N/A)	
BMS/BMSD/BDUP) samples, were the COC & bottles flagged (e.g.,		
stickers) accordingly? For RUSH/SHORT HT, was email sent?		
For any question answered "No," has the PM been notified and the	Yes No N/A	SRF Completed by:
problem resolved (or paperwork put in their bin)?		PM = N/A
Was PEER REVIEW of sample numbering/labeling completed?	Yes No N/A	Peer Reviewed by: N/A
Additional notes (if applicable):		

Note to Client: Any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: Custom Truck BGES Inc. 1124367

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

CASE NARRATIVE

Client Name: BGES Inc. Project Name: Custom Truck Workorder No.: 1124367

Sample Comments

*

Refer to the sample receipt form for information on sample condition.

 Lab Sample ID
 Sample Type
 Client Sample ID

There were no analytical anomalies associated with the data reported herein.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Analytical Report

Client: BGES Inc.

1042 E 6th Ave Anchorage, AK 99501

Attn: Jayne Martin

T: (907)644-2900 F:(907)644-2901 jayne@bgesinc.com

Project: Custom Truck

Workorder No.: 1124367

Certification:

This data package is in compliance with the terms and conditions of the contract, both technically and for completeness, unless otherwise noted on the sample data sheet(s) and/or case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory. If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Carmon Beene

carmon.beene@sgs.com Project Manager

Contents (Bookmarked in PDF):

Cover Page Glossary Sample Summary Forms Case Narrative Sample Results Forms Batch Summary Forms (by method) Quality Control Summary Forms (by method) Chain of Custody/Sample Receipt Forms Attachments (if applicable)

3 of 15

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<http://www.sgs.com/terms_and_conditions.htm>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO 17025 (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6020, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the

provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV	Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
Е	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 2xDL)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
М	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RL	Reporting Limit
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note:

Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 9/28/2012 3:53 pm

Client Name: BGES Inc. Project Name: Custom Truck Workorder No.: 1124367

Analytical Methods

Method Description	Analytical Method
AK101/8021 Combo.	AK101
AK101/8021 Combo.	SW8021B
Diesel/Residual Range Organics Water	AK102
Diesel/Residual Range Organics Water	AK103

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1124367001	MW9-0913
1124367002	Trip Blank

Analytical Prep

Client Sample ID: **MW9-0913** SGS Ref. #: 1124367001 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 09/13/12 18:00 Receipt Date/Time: 09/14/12 09:42

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	Qualifiers
Benzene	0.500 U	0.500	ug/L	1	VFC11166	VXX2401	5
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11166	VXX2401	5
o-Xylene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11166	VXX2401	5
Toluene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
1,4-Difluorobenzene <surr></surr>	87	77-115	%	1	VFC11166	VXX2401	5
4-Bromofluorobenzene <surr></surr>	102	50-150	%	1	VFC11166	VXX2401	5
Batch Information							
Analytical Batch: VFC11166		Prep Batch: VXX24015			Initial Prep	Wt./Vol.: 5 n	٦L
Analytical Method: AK101		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/17/12 14:49		Prep Date/Time: 09/17/12 08:00			Container ID:1124367001-C		
Dilution Factor: 1					Analyst: EA	В	
Analytical Batch: VFC11166		Prep Batch: VXX24015			Initial Prep Wt./Vol.: 5 mL		
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/17/12 14:49		Prep Date/Time: 09/17/12 08:00			Container ID:1124367001-C		
Dilution Factor: 1					Analyst: EA	В	

Print Date: 9/28/2012 3:53 pm

Client Sample ID: **MW9-0913** SGS Ref. #: 1124367001 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 09/13/12 18:00 Receipt Date/Time: 09/14/12 09:42

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch Qualifiers		
Diesel Range Organics	0.600 U	0.600	mg/L	1	XFC10619	XXX28070		
Residual Range Organics	0.500 U	0.500	mg/L	1	XFC10619	XXX28070		
5a Androstane <surr></surr>	61.3	50-150	%	1	XFC10619	XXX28070		
n-Triacontane-d62 <surr></surr>	67	50-150	%	1	XFC10619	XXX28070		
Batch Information								
Analytical Batch: XFC10619		Prep Batch: XXX28070			Initial Prep Wt./Vol.: 1000 mL			
Analytical Method: AK102		Prep Method: SW3520C			Prep Extrac	Prep Extract Vol.: 1 mL		
Analysis Date/Time: 09/27/12 17:41		Prep Date/Time: 09/25/12 07:00			Container ID:1124367001-B			
Dilution Factor: 1					Analyst: EAB			
Analytical Batch: XFC10619		Prep Batch: XXX28070			Initial Prep Wt./Vol.: 1000 mL			
Analytical Method: AK103		Prep Method: SW3520C			Prep Extract Vol.: 1 mL			
Analysis Date/Time: 09/27/12 17:41		Prep Date/Time: 09/25/12 07:00			Container ID:1124367001-B			
Dilution Factor: 1					Analyst: EA	B		

Analytical Prep

Client Sample ID: **Trip Blank** SGS Ref. #: 1124367002 Project ID: Custom Truck Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 09/13/12 18:00 Receipt Date/Time: 09/14/12 09:42

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Benzene	0.500 U	0.500	ug/L	1	VFC11166	VXX2401	5
Ethylbenzene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
Gasoline Range Organics	0.100 U	0.100	mg/L	1	VFC11166	VXX2401	5
o-Xylene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
P & M -Xylene	2.00 U	2.00	ug/L	1	VFC11166	VXX2401	5
Toluene	1.00 U	1.00	ug/L	1	VFC11166	VXX2401	5
1,4-Difluorobenzene <surr></surr>	89.6	77-115	%	1	VFC11166	VXX2401	5
4-Bromofluorobenzene <surr></surr>	104	50-150	%	1	VFC11166	VXX2401	5
Batch Information							
Analytical Batch: VFC11166		Prep Batch: VXX24015			Initial Prep	Wt./Vol.: 5 m	٦L
Analytical Method: AK101		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/17/12 15:25		Prep Date/Time: 09/17/12 08:00			Container ID:1124367002-A		
Dilution Factor: 1					Analyst: EA	Ъ	
Analytical Batch: VFC11166		Prep Batch: VXX24015			Initial Prep Wt./Vol.: 5 mL		
Analytical Method: SW8021B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 09/17/12 15:25		Prep Date/Time: 09/17/12 08:00			Container ID:1124367002-A		
Dilution Factor: 1					Analyst: EA	Ъ	

SGS Ref.# Client Name Project Name/# Matrix	1114931 M BGES Inc. Custom Truck Water (Surface, Ef	lethod Blank f., Ground)			Printed D Prep	ate/Time Batch Method Date	09/28/2012 15:53 VXX24015 SW5030B 09/17/2012
QC results affect the 1124367001, 11	following production sample 124367002	5:					
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Volatile Fuel	s Department						
Gasoline Range O	rganics	0.0620 U	0.100	0.0310	mg/L		09/17/12
Surrogates							
4-Bromofluorober	nzene <surr></surr>	103	50-150		%		09/17/12
Batch Method	VFC11166 AK101						
Instrument	Agilent 7890A PID/FID						
Benzene		0.300 U	0.500	0.150	ug/L		09/17/12
Ethylbenzene		0.620 U	1.00	0.310	ug/L		09/17/12
o-Xylene		0.620 U	1.00	0.310	ug/L		09/17/12
P & M -Xylene		1.24 U	2.00	0.620	ug/L		09/17/12
Toluene		0.620 U	1.00	0.310	ug/L		09/17/12
Surrogates							
1,4-Difluorobenze Batch Method Instrument	ne <surr> VFC11166 SW8021B Agilent 7890A PID/FID</surr>	91.3	77-115		%		09/17/12

SGS Ref.# Client Name Project Name/# Matrix	1117020 BGES Inc. Custom Truck Water (Surface,	Method Blank Eff., Ground)			Printed Prep	Date/Time Batch Method Date	09/28/2012 15:53 XXX28070 SW3520C 09/25/2012	
QC results affect the 1124367001	following production sam	ples:						
Parameter		Results	LOQ/CL	DL	Units		Analysis Date	
Semivolatile	Organic Fuels De	epartment						
Diesel Range Orga	anics	0.360 U	0.600	0.180	mg/L		09/27/12	
Surrogates								
5a Androstane <su Batch Method Instrument</su 	urr> XFC10619 AK102 HP 6890 Series II FID	81.4 SV D R	60-120		%		09/27/12	
Residual Range O	rganics	0.300 U	0.500	0.150	mg/L		09/27/12	
Surrogates								
n-Triacontane-d62 Batch Method Instrument	<surr> XFC10619 AK103 HP 6890 Series II FID</surr>	80.6 SV D R	60-120		%		09/27/12	

SGS Ref.# Client Name Project Name/# Matrix	1114932 1114933 BGES Inc. Custom Tr Water (Sur		Sample Dup	blicate		Printe Prep	ed Date/Time Batch Method Date	09/28/2012 VXX24015 SW5030B 09/17/2012	15:53
QC results affect th		ion samples:							
1124367001, 1	124367002								
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuel Gasoline Range O	-	LCS LCSD	0.999 1.04	100 104	(60-120)	4	(< 20)	1.00 mg/L 1.00 mg/L	09/17/2012 09/17/2012
Surrogates									
4-Bromofluorobenzene <surr></surr>		LCS		108	(50-150)				09/17/2012
		LCSD		111		3			09/17/2012
Batch Method	VFC11166 AK101								

Instrument Agilent 7890A PID/FID

SGS Ref.#	1115308	Lab Control	Sample			Printe	ed Date/Time	09/28/2012	15:53
	1115309	Lab Control	Sample Dup	olicate		Prep	Batch	VXX24015	
Client Name	BGES Inc	2.					Method	SW5030B	
Project Name/#	Custom T						Date	09/17/2012	
Matrix	Water (Su	irface, Eff., Gr	ound)						
QC results affect the fo	ollowing produc	tion samples:							
1124367001, 1124	4367002								
Parameter			QC	Pct	LCS/LCSD Limits	RPD	RPD	Spiked	Analysis
raiameter			Results	Recov	Limits	Ki D	Limits	Amount	Date
Volatile Fuels	Departmen	t							
Benzene		LCS	96.9	97	(80-120)			100 ug/L	09/17/2012
		LCSD	98.2	98		1	(< 20)	100 ug/L	09/17/2012
Ethylbenzene		LCS	99.4	99	(75-125)			100 ug/L	09/17/2012
2		LCSD	102	102		3	(< 20)	100 ug/L	09/17/2012
o-Xylene		LCS	100	100	(80-120)			100 ug/L	09/17/2012
		LCSD	103	103	(00 120)	3	(< 20)	100 ug/L 100 ug/L	09/17/2012
P & M -Xylene		LCS	202	101	(75-130)			200 ug/L	09/17/2012
r æ wi -Xylene		LCSD	202	101	(75-150)	3	(< 20)	200 ug/L 200 ug/L	09/17/2012
		LCSD	209	104		5	(<20)	200 ug/L	0)/1//2012
Toluene		LCS	102	102	(75-120)			100 ug/L	09/17/2012
		LCSD	106	106		3	(< 20)	100 ug/L	09/17/2012
Surrogates									
1,4-Difluorobenzene	<surr></surr>	LCS		91	(77-115)				09/17/2012
		LCSD		91	. ,	0			09/17/2012

Batch	VFC11166
Method	SW8021B
Instrument	Agilent 7890A PID/FID

SGS Ref.# Client Name	1117022 BGES Inc.	Lab Control Lab Control	-	plicate		Printed Prep	Date/Time Batch Method	09/28/2012 XXX28070 SW3520C	15:53
Project Name/# Matrix	Custom Tr Water (Sur	uck face, Eff., Gr	ound)				Date	09/25/2012	
QC results affect the			ound)						
1124367001	e tonowing product	ion samples.							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile	Organic Fuel	.s Departm	ent						
Diesel Range Orga	nics	LCS	4.14	83	(75-125)			5 mg/L	09/27/2012
		LCSD	4.09	82		1	(< 20)	5 mg/L	09/27/2012
Surrogates									
5a Androstane <su< td=""><td>rr></td><td>LCS</td><td></td><td>84</td><td>(60-120)</td><td></td><td></td><td></td><td>09/27/2012</td></su<>	rr>	LCS		84	(60-120)				09/27/2012
		LCSD		89		7			09/27/2012
Batch Method Instrument	XFC10619 AK102 HP 6890 Series	s II FID SV D) R						
Residual Range Or	ganics	LCS	4.37	88	(60-120)			5 mg/L	09/27/2012
C	0	LCSD	4.41	88		1	(< 20)	5 mg/L	09/27/2012
Surrogates									
n-Triacontane-d62	<surr></surr>	LCS		74	(60-120)				09/27/2012
		LCSD		80		7			09/27/2012
Batch Method Instrument	XFC10619 AK103 HP 6890 Series	s II FID SV D) R						

laryland ew York idiana entucky		hade of										Data Deliverable Requirements:	level 2	uctions:		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT (See attached Sample Receipt Form)	White - Retained by Lab Pink - Retained by Client
ю. 1124367	#	-	Preservatives HCI HCI HCI HCI Analysis Analysis	\$120 IM	Aft Q	1 C/ B/ B/ B/ A/ A/	X					DOD Project? YES (NO) Data D	Cooler ID	onno	10 Der	Temperature Blank °C: 2. (# 1/	or Ambient [] (See attached Sample Receipt Form)	http://www.sgs.com/terms and conditions.htm
SGS North America Inc. CHAIN OF CUSTODY RECORD	SGS Reference #:	1.29w			- < - zı	TIME MATRIX/ R Samples CODE CODE	18100 W 5 G					Received By:	Soll S	Received By:	Received By:		Received Fort abdrapry By: Bud A	
SGCHAI		PHONE NO: (402) (44 - 2 900	PROJECT/ PWSID/ PERMIT# :	EMAIL: Jayne@ bgesive, com	QUOTE#;	DATE	9/13/12 18					Date Time Re	a/in/str	Date Time Re $\frac{\tau}{1}$, $\frac{\tau}{1}$, $\frac{0942}{10}$	Time		Date Time Be	□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557
S	BGES, INC.	Jeshue Reisis	1 '	Nar	1 4	SAMPLE IDENTIFICATION	MW9-0913					Collected/Relinquished By:(1)	2	Y			By: (4)	ve Anchorage, AK 99518 Tel: (5 rive Wilmington, NC 28405 Tel:
	CLIENT: BC	CONTACT:	PROJECT C	REPORTS TO:	INVOICE TO:	RESERVED for lab use	()h-E	2A-6 TS				5 Collected/Reli	H	Relinquished By: (2	Relinquished By: (3)	4 of 1	Relinquished By: (4)	 200 W. Potter Dr. 5500 Business D

1124367

SAMPLE RECEIPT FORM

Review Criteria:	Condition:	Comments/Action Taken:	
Were custody seals intact? Note # & location, if applicable.	Yes No N/A)	
COC accompanied samples?	Yes No N/A		
Temperature blank compliant* (i.e., 0-6°C after correction factor)? (Yes No N/A		
* Note: Exemption permitted for chilled samples collected less than 8 hours ago.			
Cooler ID: @ ? w/ Therm.ID:			
Cooler ID: @ w/ Therm.ID:			
Cooler ID: @ w/ Therm.ID:			
Cooler ID: @ w/ Therm.ID:			
Cooler ID: @ w/ Therm.ID:			
Note: If non-compliant, use form FS-0029 to document affected samples/analyses.			
If samples are received without a temperature blank, the "cooler			
temperature" will be documented in lieu of the temperature blank &			
"COOLER TEMP" will be noted to the right. In cases where neither a			
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."	Yes No NA		
If temperature(s) <0°C, were all sample containers ice free?			
Delivery method (specify all that apply): Client	Note ABN/	·	
USPS Alert Courier Road Runner AK Air	tracking #		
Lynden Carlile ERA PenAir	See Attached		
FedEx UPS NAC Other:	or N/A)		
\rightarrow For WO# with airbills, was the WO# & airbill			•
info recorded in the Front Counter eLog?	Yes No N/A		$\overline{\mathbf{G}}$
		circle one) or note:	N/A
→ For samples received in FBKS, ANCH staff will verify all criteria		SRF Initiated by:	
Were samples received within hold time?	Ves' No N/A		\bigcirc
Note: Refer to form F-083 "Sample Guide" for hold time information.	Yes No N/A		
Do samples match COC* (i.e., sample IDs, dates/times collected)? * Note: Exemption permitted if times differ <1hr; in which case, use times on COC.	Tes NO N/A		
Were analyses requested unambiguous?	Var Na N/A		
	Ves No N/A		
Were samples in good condition (no leaks/cracks/breakage)?	Yes No N/A		
Packing material used (specify all that apply): Bubble Wrap			
Separate plastic bags Vermiculite Other:	Yes No N/A		
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?	Yes No N/A		
Were all soil VOAs field extracted with MeOH+BFB?	Yes No N/A		
Were proper containers (type/mass/volume/preservative*) used? * Note: Exemption permitted for waters to be analyzed for metals.	Yes NO N/A		
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No N/A		
For special handling (e.g., "MI" or foreign soils, lab filter, limited	Yes No N/A		
volume, Ref Lab), were bottles/paperwork flagged (e.g., sticker)?	I es No NA		
	Yes No N/A		
For preserved waters (other than VOA vials, LL-Mercury or mismobiological analysis), was ply varified and compliant?	Tes NO NA		
microbiological analyses), was pH verified and compliant ?	Var No (N/A)		
If pH was adjusted, were bottles flagged (i.e., stickers)?	Yes No N/A		
For RUSH/SHORT Hold Time or site-specific QC (e.g.,	Yes No N7A		
BMS/BMSD/BDUP) samples, were the COC & bottles flagged (e.g.,			
stickers) accordingly? For RUSH/SHORT HT, was email sent?	Vor No ATA	SPE Completed by AAL	
For any question answered "No," has the PM been notified and the	Yes No (N/A)	SRF Completed by: AN	
problem resolved (or paperwork put in their bin)?	Von No NIA	PM = N/A	
Was PEER REVIEW of sample numbering/labeling completed?	Yes No N/A	Peer Reviewed by:	
Additional notes (if applicable):			

Note to Client: Any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

BGES, INC.

APPENDIX C

LABORATORY ANALYTICAL DATA QUALITY CONTROL CHECKLISTS

Laboratory Data Review Checklist

Completed by:	Joshua Barsis
Title:	Environmental Scientist Date: October 2012
CS Report Name:	Groundwater Monitoring Report Report Date: February 2013
Consultant Firm:	BGES, Inc.
Laboratory Name:	SGS North America, Inc. Laboratory Report Number: 1124083
ADEC File Numbe	er: 2100.26.252 ADEC RecKey Number: N/A
Y	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? No NA (Please explain.) Comments: umples were transferred to another "network" laboratory or sub-contracted to an alternate
laborate Y	ory, was the laboratory performing the analyses ADEC CS approved? es No (NA (Please explain.) Comments:
Laborato	ry samples were not transferred to another "network" laboratory.
	dy (COC) formation completed, signed, and dated (including released/received by)? es No NA (Please explain.) Comments:
	analyses requested? es No NA (Please explain.) Comments:
a. Sample Y	nple Receipt Documentation/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?esNoNA (Please explain.)Comments:
	erature of the sample coolers were measured at the laboratory at the time of receipt to Isius (C), 6.5° C, and 4.4° C. Thus, two of the coolers had temperatures that were

be 6.1° Celsius (C), 6.5° C, and 4.4° C. Thus, two of the coolers had temperatures that were measured at just above the allowable temperature range of 4 degrees +/- 2 degrees C. Because the temperatures of the coolers only exceeded the allowable temperature range by a small amount, it is our opinion that there is a reduced potential for biological degradation of the contamination and this QC failure does not affect the acceptability of the data for their intended use.

	Volatile Ch	No	NA (Please explain.)	Comments:
2.	Sample con Yes	dition No	documented – broken, leaking (NA (Please explain.)	Methanol), zero headspace (VOC vials)? Comments:
1.		oreserv	± · · ·	ented? For example, incorrect sample de of acceptable range, insufficient or missing
	Yes		(NA) (Please explain.)	Comments:
	lo discrepan mits.	cies v	vere documented. All data v	vere reported within laboratory acceptance
				N
9.	Data quality	or us	ability affected? (Please explain	.) Comments:
e. N		or us	ability affected? (Please explain	
N	0	or us	ability affected? (Please explain	
N e N				
N e N a.	<u>Varrative</u> Present and Yes	under No	standable? NA (Please explain.)	Comments: Comments:
N e N a.	<u>Varrative</u> Present and Yes	under No	standable?	Comments: Comments:
N 2.	Narrative Present and Yes Discrepanci Yes	under No es, err No	standable? NA (Please explain.) ors or QC failures identified by NA (Please explain.) e actions documented?	Comments: Comments: the lab?
N e N a.	Narrative Present and Yes Discrepanci Yes	under No es, err No	standable? NA (Please explain.) ors or QC failures identified by NA (Please explain.) e actions documented?	Comments: Comments: the lab?
N 2 1 a b b b b c c c c c c c c c c	Image: Non-State of the second sec	under No es, err No rrectiv No	standable? NA (Please explain.) ors or QC failures identified by NA (Please explain.) e actions documented?	Comments: Comments: the lab? Comments: Comments:

4.

5. Samples Results

a.	Yes	No	NA (Please explain.)	Comments:
b.	All applicab Yes	le hold No	ling times met? NA (Please explain.)	Comments:
c.	All soils rep Yes	orted o No	on a dry weight basis? NA (Please explain.)	Comments:
S	Soils were no	t part	of our scope of work fo	r this sampling activity.
d.	Are the repo project?	orted P	QLs less than the Cleanu	p Level or the minimum required detection level for
	project.		$\mathbf{N}\mathbf{A}$ (D 1	C A
th (d ar	he Limits of he ADEC clea huplicate of M huplicate of M	anup IW1), range	itation (LOQs) for gase criteria for the sample and MW-13. The LOQ	s collected from Monitoring Wells MW1, MW1 Is for GRO, benzene, diesel range organics (DRO ded the ADEC cleanup criteria for the sample
th (d ar co	he Limits of the ADEC clea applicate of M and residual a follected from	Quant anup (1W1), range Monit	itation (LOQs) for gase criteria for the sample and MW-13. The LOQ organics (RRO) excee	oline range organics (GRO) and benzene exceede s collected from Monitoring Wells MW1, MW1 Is for GRO, benzene, diesel range organics (DRO ded the ADEC cleanup criteria for the sample
th (d ar co e.	he Limits of a ADEC clea a plicate of M a residual a bllected from Data quality cause the spo	Quant anup o IW1), range Monit or usa	itation (LOQs) for gase criteria for the sample and MW-13. The LOQ organics (RRO) excee toring Wells MW2 and bility affected?	oline range organics (GRO) and benzene exceede s collected from Monitoring Wells MW1, MW1 (s for GRO, benzene, diesel range organics (DRO ded the ADEC cleanup criteria for the sample MW-14. Comments:
th (d ar co e. Be cle	he Limits of a ADEC clear and residual a blected from Data quality cause the spo anup criteria Method Blaa	Quant anup of IW1), range Monit or usa ecific a a, the e	itation (LOQs) for gase criteria for the sample and MW-13. The LOQ organics (RRO) excee toring Wells MW2 and bility affected? analytes all had positive elevated LOQs do not at	oline range organics (GRO) and benzene exceede s collected from Monitoring Wells MW1, MW1 (s for GRO, benzene, diesel range organics (DRO ded the ADEC cleanup criteria for the sample MW-14. Comments: e detections that exceeded their applicable ADE
th (d ar co e. Be cle	he Limits of a ADEC clear huplicate of M and residual in ollected from Data quality cause the spo anup criteria imples Method Blan i. One Yes	Quant anup of IW1), range Monit or usa or usa ecific a a, the e	itation (LOQs) for gase criteria for the sample and MW-13. The LOQ organics (RRO) excee toring Wells MW2 and bility affected? analytes all had positive elevated LOQs do not at	oline range organics (GRO) and benzene exceede s collected from Monitoring Wells MW1, MW1 (s for GRO, benzene, diesel range organics (DRO ded the ADEC cleanup criteria for the sample MW-14. Comments: e detections that exceeded their applicable ADE ffect the interpretation of the data.

Comments:

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined? Yes No (NA) (Please explain.) Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A	

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 (Yes) No NA (Please explain.) Comments:
 - ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No NA (Please explain.) Comments:

No metals or inorganics were analyzed.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes No NA (Please explain.)
- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes No NA (Please explain.) Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No (NA)Please explain.) Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

N/A

	i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples Yes No NA (Please explain.) Comments:	;? T
	 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) 	
_	YesNoNA (Please explain.)Comments:	
	 iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No NA Please explain.) Comments: 	7
	No percent recoveries for surrogates were outside the laboratory acceptance ranges.	
	iv. Data quality or usability affected? (Use the comment box to explain.) Comments:	
N	Α	
d.	Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>	<u>1</u>
	i. One trip blank reported per matrix, analysis and for each cooler containing volatile sampl (If not, enter explanation below.)	es?
	YesNoNA (Please explain.)Comments:	

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 Yes No NA (Please explain.) Comments:

All VOA Samples were placed in one cooler with the trip blank by the field sampler.

iii. All results less than PQL?

Yes No NA (Please explain.)

Comments:

iv. If above PQL, what samples are affected?

Comments:

Version 2.7

v.	Data quality of	or usability aff	ected? (Please explain.))
----	-----------------	------------------	--------------------------	---

Comments:

	Comments:
N/A	
e. Field Duplicate	
. One field duplicate submitted new metric and	alusis and 10 maris at some las?
i. One field duplicate submitted per matrix, and Yes No NA (Please explain.)	Comments:
ii. Submitted blind to lab?	
$\overline{\text{Yes}}$ No NA (Please explain.)	Comments:
iii. Precision – All relative percent differences (I (Recommended: 30% water, 50% soil)	RPD) less than specified DQOs?
RPD (%) = Absolute value of: (R_1-R_2)	
$((R_1+R_2)/2)$	x 100
Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration	
Yes No NA (Please explain.)	Comments:
The water sample collected from Monitoring Well M collected from Monitoring Well MW1 and was collected Relative Percent Differences (RPDs) for all analytes between 2.09 percent and 12.90 percent and were in than 30 percent). This indicates acceptable field same	eted to evaluate sampling precision. The in this sample and duplicate sample were accordance with ADEC guidelines (less
iv. Data quality or usability affected? (Use the c	omment box to explain why or why not.)
	Comments:
N/A	
f. Decontamination or Equipment Blank (If not used ex	xplain why).
Yes No (NA)Please explain.)	Comments:
Not applicable. A decontamination or equipment bl approved scope of work.	ank was not collected; not part of our
i. All results less than PQL?	
Yes No NA (Please explain.)	Comments:
N/A	
L	

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? (Please explain.)

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No NA (Please explain.)

Comments:

No other data qualifiers were provided.

Laboratory Data Review Checklist

Completed by:	Joshua Barsis		
Title:	Environmental Scientist	Date:	October 2012
CS Report Name	Groundwater Monitoring Rep	ort Report Date	: February 2013
Consultant Firm:	BGES, Inc.		
Laboratory Name	e: SGS North America, Inc.	Laboratory Report Nu	umber: 1124367
ADEC File Num	ber: 2100.26.252	ADEC RecKey Number:	N/A
b. If the labora	n ADEC CS approved laboratory r Yes No NA (Please explain samples were transferred to anoth atory, was the laboratory performin Yes No NA (Please explain tory samples were not transferre	a.) Comments: er "network" laboratory or sung the analyses ADEC CS ap a.) Comments:	ub-contracted to an alternate oproved?
2. Chain of Cus	· ·		· ·
a. COC	information completed, signed, an Yes No NA (Please explain	-	received by)?
	ect analyses requested? Yes No NA (Please explain	a.) Comments:	
a. Samp	ample Receipt Documentation le/cooler temperature documented Yes No NA (Please explain		$(4^{\circ} \pm 2^{\circ} \text{ C})?$
Volat	le preservation acceptable – acidif ile Chlorinated Solvents, etc.)? Yes No NA (Please explain	-	ved VOC soil (GRO, BTEX,

c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?YesNoNA (Please explain.)Comments:
d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes No (NA) (Please explain.) Comments:
	No discrepancies were documented. All data were reported within laboratory acceptance imits.
e.	Data quality or usability affected? (Please explain.) Comments:
N	V/A
	Narrative Present and understandable? Yes No NA (Please explain.) Comments:
b.	Discrepancies, errors or QC failures identified by the lab? Yes No NA (Please explain.) Comments:
c.	Were all corrective actions documented? Yes No (Please explain.) Comments:
1	No discrepancies, errors, or QC failures were identified by the lab.
d.	What is the effect on data quality/usability according to the case narrative? Comments:
l	No discrepancies, errors, or QC failures were identified by the lab.
	les Results Correct analyses performed/reported as requested on COC? Yes No NA (Please explain.) Comments:

4.

Yes No NA (Please exp	plain.) Comments:
c. All soils reported on a dry weight b	
Yes No (NA)Please exp	plain.) Comments:
No soils were analyzed during this	sampling event.
 Are the reported PQLs less than the project? 	Cleanup Level or the minimum required detection level for
Yes No NA (Please exp	plain.) Comments:
e. Data quality or usability affected?	Comments:
N/A	
Complex	
<u>Samples</u>	
a. Method Blank	
a. Method Blank i. One method blank reported	per matrix, analysis and 20 samples?
a. Method Blank	
a. Method Blank i. One method blank reported	
a. Method Blank i. One method blank reported Yes No NA (Please exp	plain.) Comments:
 a. Method Blank i. One method blank reported Yes No NA (Please exp ii. All method blank results les 	s than PQL?
 a. Method Blank i. One method blank reported Yes No NA (Please explicit) ii. All method blank results les 	s than PQL?
a. Method Blank i. One method blank reported Yes No NA (Please exp ii. All method blank results les	s than PQL?
a. Method Blank i. One method blank reported Yes No NA (Please exp ii. All method blank results les	s than PQL? plain.) Comments: comments:
a. Method Blank i. One method blank reported Yes No NA (Please exp ii. All method blank results les Yes No NA (Please exp iii. If above PQL, what samples	s than PQL? plain.) Comments:
a. Method Blank i. One method blank reported Yes No NA (Please exp ii. All method blank results les Yes No NA (Please exp	s than PQL? plain.) Comments: comments:
Yes No NA (Please exp ii. All method blank results les Yes No NA (Please exp iii. If above PQL, what samples N/A	plain.) Comments: s than PQL? Comments: s are affected? Comments: ave data flags and if so, are the data flags clearly defined?

No data quality issues were identified.

6.

v. Data quality or usability affected? (Please explain.)

Comments:	

N/A		
o. La	boratory Control Sample/Duplicate (LCS/L	(CSD)
	i. Organics – One LCS/LCSD reported prequired per AK methods, LCS required	per matrix, analysis and 20 samples? (LCS/LCSD ed per SW846)
	Yes No NA (Please explain.)	Comments:
	ii. Metals/Inorganics – one LCS and one samples?	sample duplicate reported per matrix, analysis and 20
	Yes No (NA) (Please explain.)	Comments:
No 1	metals or inorganics were analyzed	
	And project specified DQOs, if application	 R) reported and within method or laboratory limits? able. (AK Petroleum methods: AK101 60%-120%, %; all other analyses see the laboratory QC pages) Comments:
	laboratory limits? And project specifie	nces (RPD) reported and less than method or ed DQOs, if applicable. RPD reported from sample duplicate. (AK Petroleum methods 20%; all ages)
	Yes No NA (Please explain.)	Comments:
	v. If %R or RPD is outside of acceptable	limits, what samples are affected? Comments:
N/A		
	vi. Do the affected sample(s) have data fla Yes No NA Please explain.)	ags? If so, are the data flags clearly defined? Comments:
No p	percent recoveries or RPDs were outside	the laboratory acceptance ranges
	vii. Data quality or usability affected? (Us	e comment box to explain.) Comments:
N/A		
c. Su	prrogates – Organics Only	
	i. Are surrogate recoveries reported for o Yes No NA (Please explain.)	organic analyses – field, QC and laboratory samples? Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

\sim	•
$\langle \mathbf{x}_{T} \rangle$	
$(\mathbf{Y} \mathbf{P} \mathbf{C})$	

No

Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No (NA)Please explain.)

NA (Please explain.)

Comments:

No percent recovery values for surrogates were outside the laboratory acceptance ranges.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

N/A

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

(Yes) No NA (Please explain.)

Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes No (NA) (Please explain.) Comments:

iii. All results less than PQL? Yes No NA (Please explain.)

Comments:

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A

e. Field Duplicate

(Yes)

i.	One	field	duplicate submitted pe	r matrix, analysis and 10 project samples?
$\langle \mathbf{Y} \rangle$	Zes	No	NA (Please explain	.) Comments:

Submitted under separate work order.

ii. Subn	nitted	blind to	o lab?
Yes	No	NA	(Please explain.)

Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2)

 $((R_1+R_2)/2)$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration No NA (Please explain.)

Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comment	s:
Comment	

N/A

f. Decontamination or Equipment Blank (If not used explain why).

Yes No (NA)Please explain.)

Comments:

Not applicable. A decontamination or equipment blank was not collected; not part of our approved scope of work.

i. All results less than PQL?

Yes No NA (Please explain.)

Comments:

N/A

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? (Please explain.)

Comments:

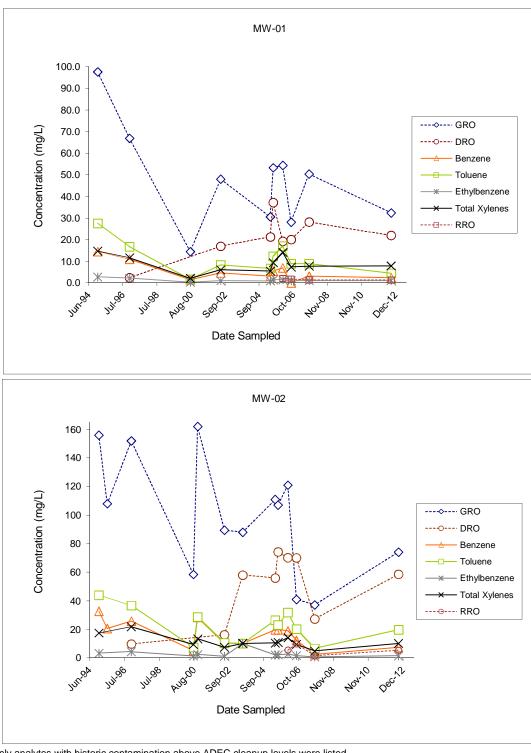
N/A

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)</u>a. Defined and appropriate?

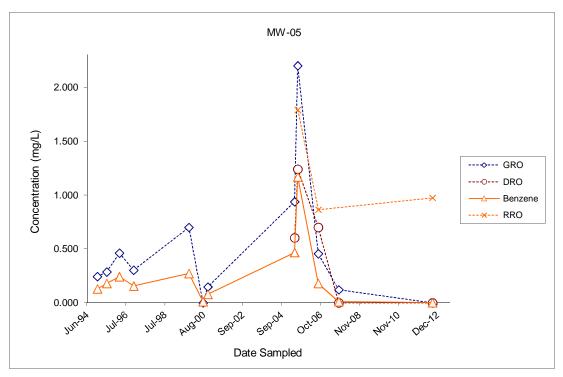
No NA (Please explain.) Yes

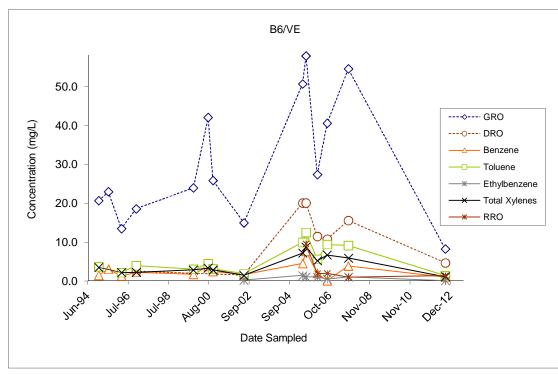
Comments:

BGES, INC.

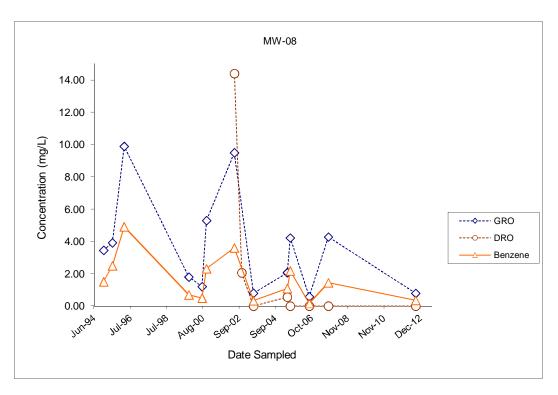

APPENDIX D GRAPHICAL HUMAN HEALTH CONCEPTUAL SITE MODEL

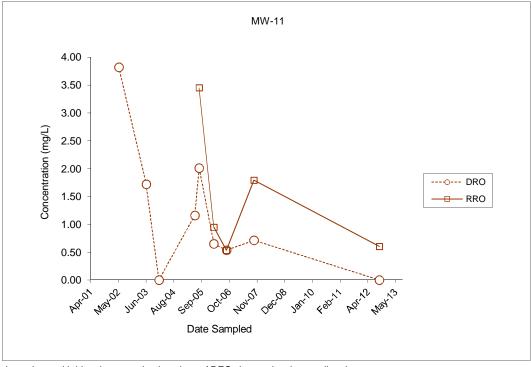
HUMAN HEALTH CONCEPTUAL SITE MODEL

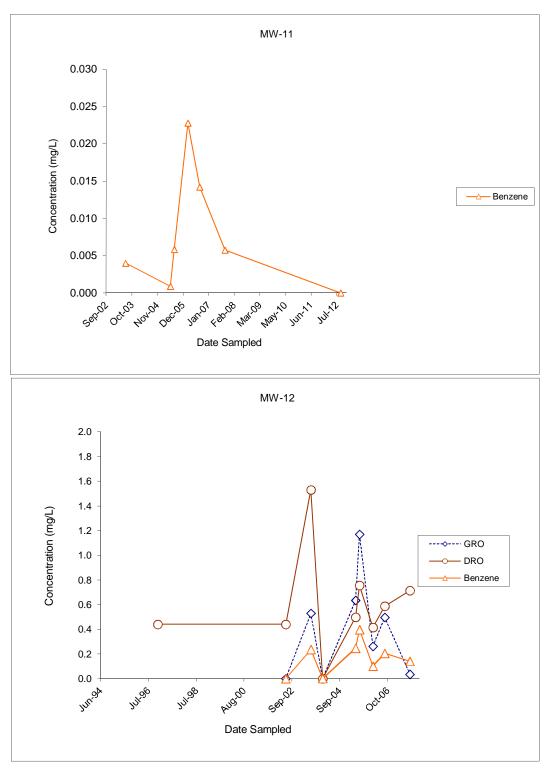

Site:			<i>Follow the directions below. <u>Do no</u> or land use controls when describ</i>				erinę	7		
					Identify the	recepto	(5) rs. pote	ntially	affecte	ed by
(1) Check the media that could be directly affected by the release.	(2) For each medium identified in (1), follow the top arrow <u>and</u> check possible transport mechanisms. Briefly list other mechanisms or reference the report for details.	(3) Check exposure mec identified in (2).	(4) lia Check exposure pathways that are complete or need further evaluation. <u>The pathways</u> <u>identified must agree with Sections 2 and 3</u> of the CSM Scoping Form.		each expos receptors, ' both currer, Curre	sure path "F" for fu ht and fu ent & F	ture re ture re ture rec utur e	Enter "C ceptors ceptors ceptors	C" for c s, or "C s. Cepto	current C/F" for
Media	Transport Mechanisms	Exposure Media	Exposure Pathways	/	hildren) ^I or ^I orkers	trespasse nal users	n workers	- valsteng	e consumers	
Surface Soil	rect release to surface soil check soil Migration or leaching to subsurface <u>check soil</u> Migration or leaching to groundwater <u>check groundwater</u> Volatilization <u>check air</u>			Residents (adm.	Commercial or Industrial workers Site visite	or recreational users Construction	Farmers or subst	Subsistence 5	Other	
	Runoff or erosion <u>check surface water</u> Uptake by plants or animals <u>check biota</u> Other (<i>list</i>):	soil	Incidental Soil Ingestion Dermal Absorption of Contaminants from Soil							
Subsurface Soil	rect release to subsurface soil check soil Migration to groundwater Check groundwater Colatilization Check air Other (list):	groundwater	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water							
Ground- water	rect release to groundwater check groundwater Volatilization check air Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust							
Surface Water	irect release to surface water check surface water Volatilization check air Sedimentation check sediment Uptake by plants or animals check biota	surface water	 Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water 							
Sediment	Other (list):	sediment	Direct Contact with Sediment							
	Uptake by plants or animals <u>check biota</u> Other (list):	biota	Ingestion of Wild Foods							


BGES, INC.

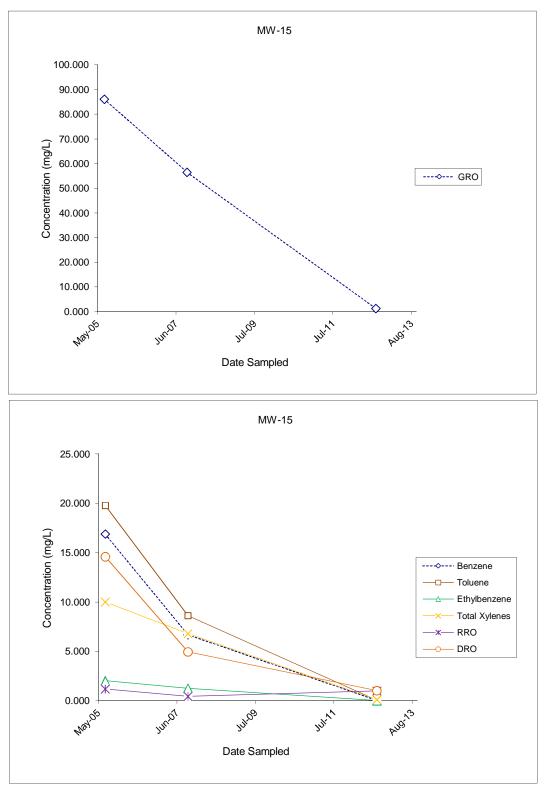
APPENDIX E GRAPHS OF HISTORICAL WATER QUALITY DATA




Only analytes with historic contamination above ADEC cleanup levels were listed.GRO = Gasoline Range OrganicsDRO = Diesel Range OrganicsRRO = Residual Range Organics



Only analytes with historic contamination above ADEC cleanup levels were listed.GRO = Gasoline Range OrganicsDRO = Diesel Range OrganicsRRO = Residual Range Organics



Only analytes with historic contamination above ADEC cleanup levels were listed.GRO = Gasoline Range OrganicsDRO = Diesel Range OrganicsRRO = Residual Range Organics

Only analytes with historic contamination above ADEC cleanup levels were listed.GRO = Gasoline Range OrganicsDRO = Diesel Range OrganicsRRO = Residual Range Organics

Only analytes with historic contamination above ADEC cleanup levels were listed.GRO = Gasoline Range OrganicsDRO = Diesel Range OrganicsRRO = Residual Range Organics