

BGES, INC.

ENVIRONMENTAL CONSULTANTS

FORMER CUSTOM TRUCK (CURRENTLY SIX ROBBLEE'S) 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

GROUNDWATER MONITORING REPORT

JULY 2013

Submitted to: Andy Robblee

Six Robblee's, Inc.

11010 Tukwila International Road

Seattle, Washington 98168

Submitted by: BGES, INC.

1042 East 6th Avenue Anchorage, Alaska 99501

Ph: (907) 644-2900 Fax: (907) 644-2901

www.BGESINC.com

TABLE OF CONTENTS

1.0	INTRODUC	CTION	1							
2.0	BACKGRO	UND	. 1							
3.0	PREVIOUS	SITE WORK	2							
4.0) JUNE 2013 SAMPLING AND ANALYSIS4									
5.0	EVALUATION OF LABORATORY DATA6									
6.0) LABORATORY DATA QUALITY REVIEW7									
7.0	0 CONCEPTUAL SITE MODEL									
8.0	CONCLUS	IONS	9							
9.0	EXCLUSIO	NS AND CONSIDERATIONS 1	10							
		FIGURES (Located at End of report)								
Figu	re 1	Property Vicinity Map								
Figure 2		Monitoring Well Locations and Sampling Results (June 2013)								
Figu		Groundwater Elevation Contour Map								
		TABLES (Located at End of Report)								
Tabl	e 1	Monitoring Well Sampling Data (June 26, 2013)								
Tabl	e 2	Analytical Results – Water (June 2013)								
Tabl	e 3	Historical Groundwater Sampling Analytical Results								
		APPENDICES (Located at End of Report)								
App	endix A	Field Notes								
App	endix B	Laboratory Analytical Data								
App	endix C	Laboratory Analytical Data Quality Control Checklist								
App	endix D	Graphical Human Health Conceptual Site Model	Graphical Human Health Conceptual Site Model							
App	endix E	Graphs of Historical Water Quality Data								

ACRONYMS

AAC - Alaska Administrative Code

ADEC - Alaska Department of Environmental Conservation

AK - Alaska Method

AWWU - Anchorage Water and Wastewater Utility

BGES - Braunstein Geological and Environmental Services
BTEX - Benzene, Toluene, Ethylbenzene, and Total Xylenes

C - Celsius

CSM - Conceptual Site Model DRO - Diesel Range Organics

EPA - Environmental Protection Agency

GRO - Gasoline Range Organics

HCL - Hydrochloric Acid
 LOQ - Limit of Quantitation
 mg/L - Milligrams per Liter
 MRL - Method Reporting Limit

PAHs - Polynuclear Aromatic Hydrocarbons

QC - Quality Control
OP - Qualified Person

RPD - Relative Percent Difference
 RRO - Residual Range Organics
 SGS - SGS North America, Inc.
 UST - Underground Storage Tank
 VOCs - Volatile Organic Compounds

BGES, INC.

1.0 INTRODUCTION

BGES, Inc. (BGES) was retained by Andy Robblee of Six Robblee's, Inc. to conduct groundwater

sampling at the Six Robblee's property located at 4748 Old Seward Highway, Anchorage, Alaska

(Figure 1). The purpose of this groundwater monitoring event was to assess the groundwater quality at

this site. The fieldwork for this round of sampling (the seventh round of groundwater sampling

performed by BGES) was performed on June 26, 2013 in general accordance with the work plan

prepared by BGES dated May 20, 2005 and updated in an email correspondence to the Alaska

Department of Environmental Conservation (ADEC) Project Manager, Katrina Chambon, dated June

18, 2013. This site is listed in the ADEC Contaminated Sites database as a cleanup-complete

institutional controls site (ADEC Hazard Identification Number 23658, Event Identification Number

404, and File Number 2100.26.252).

2.0 BACKGROUND

The property is located in the central portion of Anchorage, Alaska (Figure 1). The property had

previously operated for many years as an automotive dealership that had on-site underground storage

tanks (USTs) for fuel needs. Fuel is no longer dispensed at the site, and the tanks were removed in

1994. A one-story building that is operated as an automotive shop and accessory retail store is located

on the property. The area west of the building is used for bulk storage of truck tops and auto

accessories.

Numerous previous assessments have been performed by various environmental consulting firms at the

site, including a 2004 Site Closure Report performed by Chemtrack. On June 14, 2004 the ADEC

issued a "No Further Remedial Action Planned" status for this site. In addition, a "Record of

Decision" was also issued for the site on the same date. In these documents, it has been indicated that

quarterly groundwater monitoring in accordance with an approved work plan must be instituted.

BGES was contracted in 2005 to review the previous work plan and to resume groundwater sampling

activities in accordance with the No Further Remedial Action Planned and Institutional Control Record

of Decision documentation. A report with the results of groundwater sampling completed in August

and September of 2012 were presented in the February 2013 Groundwater Monitoring Report.

July 2013 Groundwater Monitoring Report Six Robblee's

3.0 PREVIOUS SITE WORK

Two 5,000-gallon UST's, reportedly containing gasoline, were removed from the ground in 1994. Hydrocarbon contamination was observed in soils near the USTs and associated piping. In addition to removing the USTs, the excavation reportedly was continued to remove additional contaminated soil. Approximately 280 cubic yards of soil were reportedly removed from the site and treated at an off-site facility. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in remaining soils.

Groundwater sampling was first performed by BGES in June of 2005. Wells that were sampled during this sampling event included MW-1, MW-2, MW-5, MW-8, MW-11, MW-12, B6/VE, and the Tap Well (facility well). The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: gasoline range organics (GRO) in Monitoring Wells MW-1, MW-2, MW-8, and B6/VE; diesel range organics (DRO) in MW-1, MW-2, and B6/VE; benzene in MW-1, MW-2, MW-5, MW-8, MW-12, and B6/VE; toluene in MW-1, MW-2, and B6/VE; ethylbenzene in MW-1, MW-2, and B6/VE; and, total xylenes in MW-2. The water sample collected from the Tap Well (facility well) did not exhibit any analyte concentrations above the laboratory's method reporting limit (MRL) and the ADEC cleanup criteria.

Groundwater sampling was performed again by BGES in August of 2005. Monitoring wells that were sampled during this sampling event included MW-1, MW-2, MW-3, MW-5, B6/VE, MW-8, MW-9, MW-10, MW-11, MW-12, and MW-15. The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: GRO in MW-1, MW-2, MW-5, MW-8, MW-15, and B6/VE; DRO in MW-1, MW-2, MW-5, MW-11, MW-15, and B6/VE; residual range organics (RRO) in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-12, and MW-15; benzene in MW-1, MW-2, MW-5, B6/VE, MW-8, MW-11, MW-12, and MW-15.; toluene in MW-1, MW-2, MW-15, and B6/VE; ethylbenzene in MW-1, MW-2, MW-15, and B6/VE; and, total xylenes in MW-2 and MW-15.

Groundwater sampling was performed by BGES in March of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-11, and MW-12. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the March 2006 sampling event indicated that GRO, DRO, RRO, and BTEX concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE (except for total xylenes in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in Monitoring Wells MW11 and MW12. Additionally, the RRO concentration in Water Sample MW12 exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in September of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-5, MW-8, MW-11, MW-12, and the facility well. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the September 2006 sampling event indicated that GRO, DRO, and RRO concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE. Benzene concentrations exceeded the ADEC cleanup criterion in each of the wells sampled, including the facility well. Concentrations of toluene and ethylbenzene exceeded the ADEC cleanup criteria in MW-1 and MW-2. Additionally, the toluene concentration in Water Sample B6/VE exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in October of 2007. During that round of groundwater sampling, Monitoring Wells MW1, MW2, MW3, MW5, MW8, MW9, MW10, MW11, MW12, MW15, and B6/VE were sampled and analyzed for GRO, DRO, RRO, and BTEX. Additionally, Monitoring Wells MW-2 and MW-102 (duplicate of MW-2) were analyzed for polynuclear aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). The results from the October 2007 sampling event indicated that GRO, DRO, RRO, benzene, toluene and ethylbenzene concentrations exceeded the ADEC cleanup criteria in MW-1, MW-2, and B6/VE (except for the RRO concentration in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in every well sampled, except for Monitoring Wells MW-3, MW-9, and MW-10. Monitoring Well MW-8 exhibited a GRO concentration that exceeded the ADEC cleanup criterion in addition to the benzene exceedance described above. Monitoring Well MW-15 contained GRO, DRO, benzene, toluene, and ethylbenzene concentrations above the applicable ADEC cleanup criteria. None of the samples analyzed contained xylenes concentrations that exceeded the ADEC cleanup criterion. Two off-site, downgradient wells (MW-11 and MW-12) were tested and exhibited levels of contaminants that exceeded ADEC cleanup criteria.

Prior to the current monitoring round, groundwater sampling was last performed by BGES in August and September of 2012. Wells that were sampled during that round of sampling event included MW1, MW2, MW3, MW5, MW8, MW9, MW10, MW11, MW13, MW14, MW15, and B6/VE, and were analyzed for GRO, BTEX, DRO, and RRO. In addition, a water sample was collected from the facility well and labeled "Facility Well", and was analyzed for VOCs. The results from the August and September 2012 sampling events indicated that the water samples collected from Monitoring Wells MW1 and MW17 (duplicate of MW1) exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW2, MW13, and MW14 exhibited concentrations of GRO,

BGES, INC.

13-053-01

BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. Water Samples

MW8 and MW15 exhibited concentrations of benzene, which exceeded the ADEC cleanup criterion.

In addition, Water Sample B6/VE exhibited concentrations of GRO, benzene, toluene, DRO, and

RRO, which exceeded ADEC cleanup criteria.

The ADEC completed a review of the February 2013 Groundwater Monitoring Report and submitted

correspondence to Mr. Robblee on April 22, 2013. The ADEC concluded that vapor intrusion is a

potentially complete pathway for contamination, because contaminated backfill material was utilized

as fill in the initial UST excavation. In addition, there is subsurface contamination remaining

surrounding the former UST excavation. The ADEC requested a work plan to include the following

activities:

• Evaluation of the potential for Vapor Intrusion (VI) by initially completing a building survey;

and,

Performance of quarterly groundwater sampling for Monitoring Wells MW1, MW2, MW13,

MW14, MW15, and B6/VE, in order to evaluate whether a seasonal trend in contaminant

concentrations exists. In addition, it was requested that MW5, MW8, and MW11 be sampled

biannually, and that the facility drinking water well be sampled annually. The sampling

frequency would be re-evaluated after the first year. The groundwater sample collected from

MW13 or MW14 will be analyzed for VOCs, utilizing EPA Method 8260 to evaluate for the

presence of solvents.

BGES performed a building survey for the subject property on May 10, 2013 and the results of this

survey were documented in the Building Inventory for Vapor Intrusion Assessment dated May 2013.

BGES prepared a brief work plan for the performance of the quarterly groundwater monitoring in an

email to supplement the previously approved work plan and submitted to Ms. Katrina Chambon,

ADEC Project Manager, for review and approval. Ms. Chambon approved the work plan in an email

dated April 22, 2013. Quarterly groundwater monitoring activities that were performed in June of

2013 are the subject of this report and details are presented below.

4.0 **JUNE 2013 SAMPLING AND ANALYSIS**

BGES collected groundwater samples from Monitoring Wells MW1, MW2, MW13, MW14, MW15

and B6/VE on June 26, 2013 (Figure 2) in accordance with the work plan approved by the ADEC on Page 4 of 11

June 18, 2013.

Prior to sample collection, the depth to water and the total depth of each well were measured using an electronic water level indicator; which was decontaminated prior to its use in each well, by washing it in an Alconox (laboratory-grade detergent) solution, followed by a potable water rinse. Prior to the collection of groundwater samples, the casing volume for each well was calculated. The wells were purged utilizing a positive displacement bladder pump; a minimum of three casing volumes were removed from each well. During the purging activities, the stabilization parameters (pH, conductivity, oxidation-reduction potential, and temperature) were monitored, utilizing a YSI Professional Pro Multi-Parameter water quality meter. Upon completion of the purging activities, the groundwater samples were collected utilizing low-flow sampling technique and an approximate flow rate between 100 and 450 milliliters per minute (ml/min). Portions of the samples scheduled for volatiles analyses were collected first by filling laboratory-supplied containers that were preserved with hydrochloric acid (HCL). Care was taken during filling of the containers to ensure that no headspace was left within the containers and that none of the preservative was spilled. One duplicate water sample was collected from Monitoring Well MW13 (labeled MW20) and was submitted "blindly" to the laboratory for analyses. The depth to water, the total depth of the wells, and the water quality parameters are presented in Table 1.

The sample containers were labeled, placed in chilled coolers, and transported to SGS North America, Inc. (SGS), an ADEC-approved laboratory for analysis, under chain of custody protocol. As a quality control measure, a trip blank sample accompanied the water samples scheduled for volatile analyses during the entire sampling and handling process.

Utilizing previous survey data and the measured depths to water for this sampling event, the groundwater elevation in each monitoring well was calculated. Then, the calculated groundwater elevations for the subject property were utilized to create a groundwater elevation contour map which suggests that general groundwater flow direction at the site is to the southeast (Figure 3). The hydraulic gradient was calculated to be 0.0265 foot per linear foot at the site. The depth to water, the total depth of the well, the water quality parameters, and the calculated water elevations for all wells are presented in Table 1.

Investigation-derived waste generated (purge water) was separated by monitoring well and containerized in eight, 5-gallon buckets. The investigation-derived wastes are currently stored outside

BGES, INC.

in the southwest corner of the facility yard under a large blue tarp. Each 5-gallon bucket was clearly labeled with the contact information and a description of the contents (potentially-contaminated water).

The field notes for these groundwater monitoring activities are included in Appendix A.

5.0 **EVALUATION OF LABORATORY DATA**

Laboratory analysis of the water samples were performed by SGS, an ADEC-approved laboratory. The analytical results for water samples are listed in Table 2 and copies of the laboratory data are included in Appendix B. The analytical results for water sample results were compared to the ADEC Method 2 Cleanup Criteria listed in Alaska Administrative Code (AAC) 75.345—Table C for

groundwater.

The samples were analyzed at SGS by the following methods: GRO by Alaska Method (AK) 101; DRO by AK 102; RRO by AK 103; VOCs for water samples MW13 and MW20 (duplicate of MW13) by SW8260B; and BTEX for water samples MW1, MW2, MW14, MW15, and B6/VE by SW8021B.

The water samples collected from the subject property were numbered, for example, MW1-0626, where the prefix MW1 indicates the monitoring well from which the water sample was collected; and 0626 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as MW1 with the date omitted. B6/VE is also a monitoring well and is labeled in the same format as described above.

Seven water samples, including a duplicate sample, were collected from six existing Monitoring Wells (MW1, MW2, MW13, MW14, MW15, and B6/VE) at the site.

The water samples collected from Monitoring Wells MW2, MW14, MW13, and MW20 (duplicate of MW13) exhibited concentrations of GRO, BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. In addition, Water Samples MW13 and MW20 (duplicate of MW13) exhibited concentrations of 1,2,4-trimethylbenzene and n-propylbenzene, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW1 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. Water Sample MW15 exhibited concentrations of GRO, benzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria.

Analytical results for the groundwater samples are summarized in Table 2, the laboratory analytical data are included in Appendix B, and the sampling locations are shown on Figure 2.

July 2013 Groundwater Monitoring Report

Page 6 of 11

13-053-01

6.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. An ADEC laboratory data review checklist was completed for the laboratory work order number, and this checklist is included in Appendix C. Sample analyses were provided by SGS of Anchorage, Alaska. All samples were hand-delivered to SGS by BGES personnel under chain of custody protocol.

The samples contained the proper preservatives for the requested analyses. Trip blanks accompanied all volatile samples (GRO, BTEX, and VOCs) through the entirety of the sampling process and delivery to the laboratory. The water samples from MW2 and MW14 exhibited bubbles approximately 6 mm or less in size in the 40-milliliter vials for VOCs analysis on the SGS Sample Receipt form. This indicates a potential for the reported concentrations of GRO and VOCs within these samples to be biased low. SGS indicated that two of the vials for MW2 (laboratory sample IDs 1132689004-B and 1132689004-C) contained headspace (bubbles approximately 6 mm or less); and thus the third vial (laboratory ID 1132689004-A), which was free of headspace was originally analyzed. Re-analysis was required for this sample, however, and vial 1132689004-C was used for the re-analysis. laboratory data reported for MW2 was for vial 1132689004-C. SGS also indicated that all three sample containers for MW14 (laboratory IDs 1132689005-A, 1132689005-B, and 1132689005-C) contained headspace (bubbles approximately 6 mm or less in size). The vial with the least amount of headspace (1132689005-A) was analyzed; however, this sample also required re-analysis, and vial 1132689005-C was used. The laboratory data reported for MW14 were the results for vial 1132689005-C. Two of the vials from the laboratory trip blank (1132689008-B and 1132689008-C) contained headspace; thus, vial 1132689008-A, which did not contain headspace, was analyzed. During previous groundwater monitoring events, it has been difficult to collect samples for VOCs analysis without headspace from several different monitoring wells at this site. BGES assumes that this may be the result of a surfactant that was reportedly applied to the site previously. The BTEX results of the water samples from these monitor wells during this sampling event were consistent or slightly higher than the results from the previous groundwater sampling event in August and September of 2012. For these reasons, it is our opinion that the presence of headspace in the vials for MW2 and MW14 does not affect the acceptability of the data for their intended use.

A case narrative was included with the laboratory data. Quality Control (QC) failures identified in the case narratives are described below. The following is a discussion of our evaluation of sample conditions and laboratory procedures for the water samples collected during the June 2013 field

activities.

Work Order 1132689

The temperature of both coolers were measured at 2.3 degrees Celsius (C) by the laboratory at the time of receipt, which are within the prescribed limits (4 degrees C +/- 2 degrees C).

The case narrative noted that the instrument blank (laboratory sample number 1458199) result for RRO and DRO was greater than one-half of the limit of quantitation (LOQ); however, the instrument blank result was less than the LOQ. All field samples exhibited RRO and DRO concentrations that exceeded their respective ADEC cleanup criteria. For this reason, it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The case narrative noted that the instrument blank (laboratory sample number 1458418) result for RRO was greater than one-half of the limit of quantitation (LOQ); however, the instrument blank result was less than the LOQ. All field samples exhibited RRO concentrations that exceeded their respective ADEC cleanup criteria. For this reason, it is our opinion that this QC failure does not affect the acceptability of the data for their intended use. The LOQs for 1,1,1,2-tetrachloroethane, 1,1,2,2tetrachloroethane. 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2-dibromoethane, 1.2dichloropropane, carbon tetrachloride, methylene chloride, and vinyl chloride exceeded their respective ADEC cleanup criteria in Field Samples MW13 and MW20 (duplicate of MW13). Therefore, it cannot be determined if actual concentrations of the previously-listed VOCs within these field samples exceed their respective ADEC cleanup criteria. Because Field Samples MW13 and MW20 (duplicate of MW13) contained concentrations of GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzene, and npropylbenzene, that greatly exceeded the ADEC cleanup criteria, it is our opinion that the lack of information concerning the previously-listed VOCs does not affect the interpretation of the data for their intended use.

The water sample MW20 was a duplicate of the water sample collected from Monitoring Well MW13 and was collected to evaluate sampling precision. The Relative Percent Differences (RPDs) calculated utilizing duplicate sample (MW20) collected in association with Field Sample MW13 ranged between 0.73 percent and 17.10 percent, which are all below the ADEC recommended limit of 30 percent. These calculated RPDs indicate excellent field sampling precision for thiswater sample and water sample duplicate. Because all of these analytes exhibited acceptable RPDs, it is our opinion that the data are acceptable for their intended use.

7.0 CONCEPTUAL SITE MODEL

Utilizing on-site observations, historical information, and ADEC guidance documents, BGES has developed a graphical human health conceptual site model (CSM). This CSM depicts potential exposure routes for both human and ecological receptors for the subject property as a whole (Appendix D). Most of the contamination at the property originated from historical underground storage tanks associated with an automotive dealership that had previously operated on the property. The CSM presented in the 2007 Groundwater Sampling Report (December 2007) is still valid and has not been revised.

8.0 CONCLUSIONS

Groundwater elevations were calculated for the monitoring wells and are listed in Table 1 and the groundwater surface map is depicted on Figure 3. The groundwater flow direction is generally to the southeast. The water samples collected from Monitoring Wells MW1, MW2, B6/VE, MW13, MW14, and MW15 were analyzed for GRO, DRO, RRO, and BTEX. In addition, Water Samples MW13 and MW20 (duplicate of MW13) were analyzed for VOCs.

The water samples collected from Monitoring Wells MW2, MW14, MW13, and MW20 exhibited concentrations of GRO, BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. In addition, Water Samples MW13 and MW20 (duplicate of MW13) exhibited concentrations of 1,2,4-trimethylbenzene and n-propylbenzene, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW1 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. Water Sample MW15 exhibited concentrations of GRO, benzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. The approximate extent of groundwater contamination is depicted on Figure 2.

Historically, the contaminant trend is declining in most wells, except for DRO and GRO in MW-1 and MW2, and GRO in B6/VE (Table 3). Monitoring Wells MW13 and MW14 were sampled for the second time and exhibited analyte concentrations that were greater than any of the other monitoring wells. Monitoring Wells MW13 and MW14 were centrally situated between MW1, MW2, MW15 and B6/VE, all of which have several contaminant constituents that exceed the ADEC cleanup criteria (Graphs of Historical Water Quality Data in Appendix E)

Because of the continuing presence of contaminant concentrations that exceed ADEC cleanup criteria in wells both on and off site, it is recommended that the monitoring wells continue to be monitored on a schedule acceptable to the ADEC, in order to further evaluate the progress of natural attenuation of contaminants at the site. It is recommended that the facility well continue to be sampled at least annually, as requested by the ADEC. It is also recommended that all purge water be disposed of at an appropriate disposal facility such as Emerald Alaska.. Finally, it is recommended that a copy of this report be provided to the ADEC.

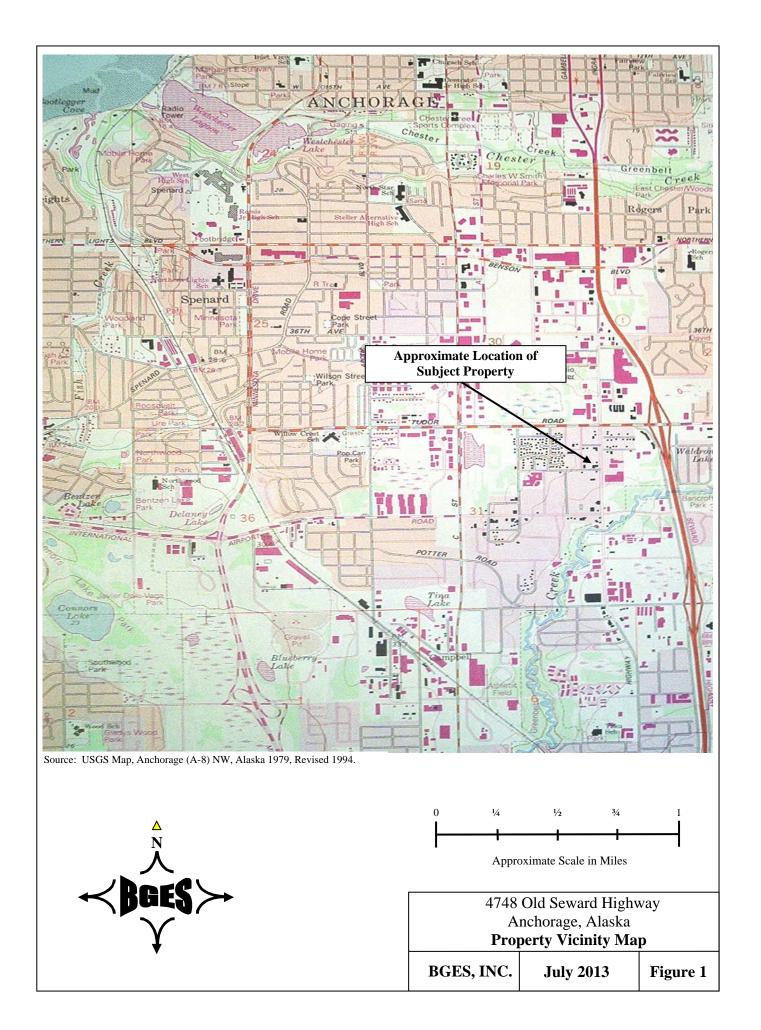
9.0 EXCLUSIONS AND CONSIDERATIONS

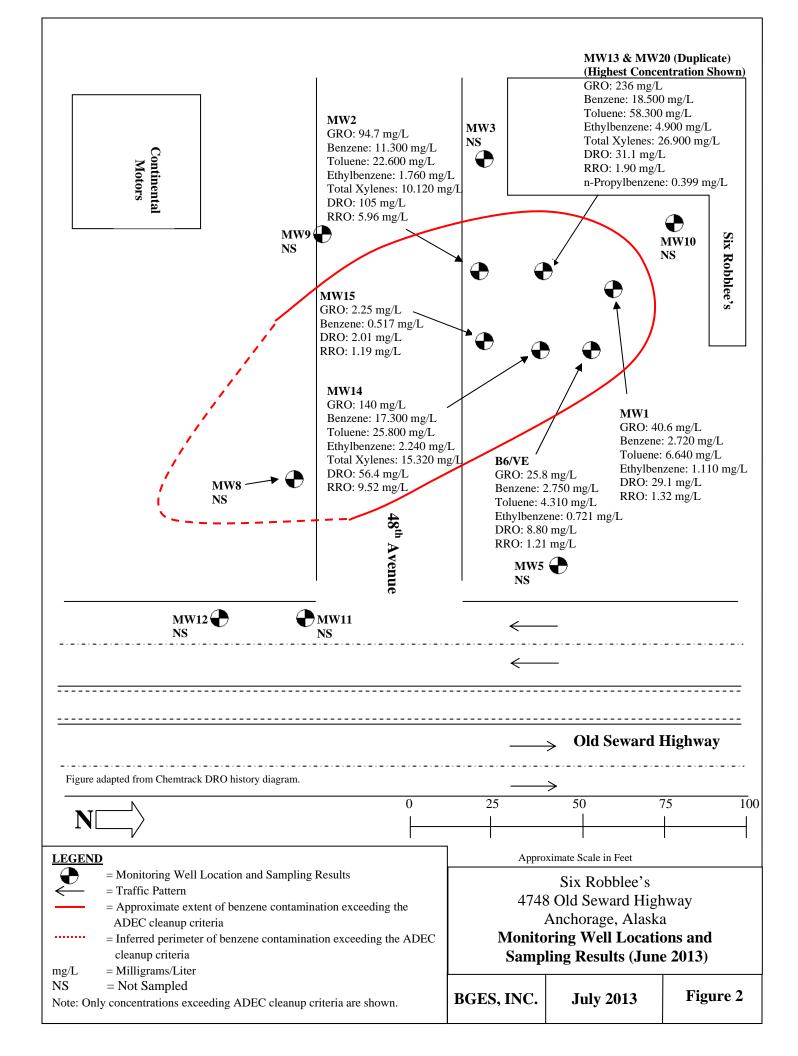
This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made and work conducted, and only apply to the immediate vicinities of the locations where water samples were collected. In addition, changes to site conditions may have occurred since the completion of our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, except as directed by our client, or as required by law.

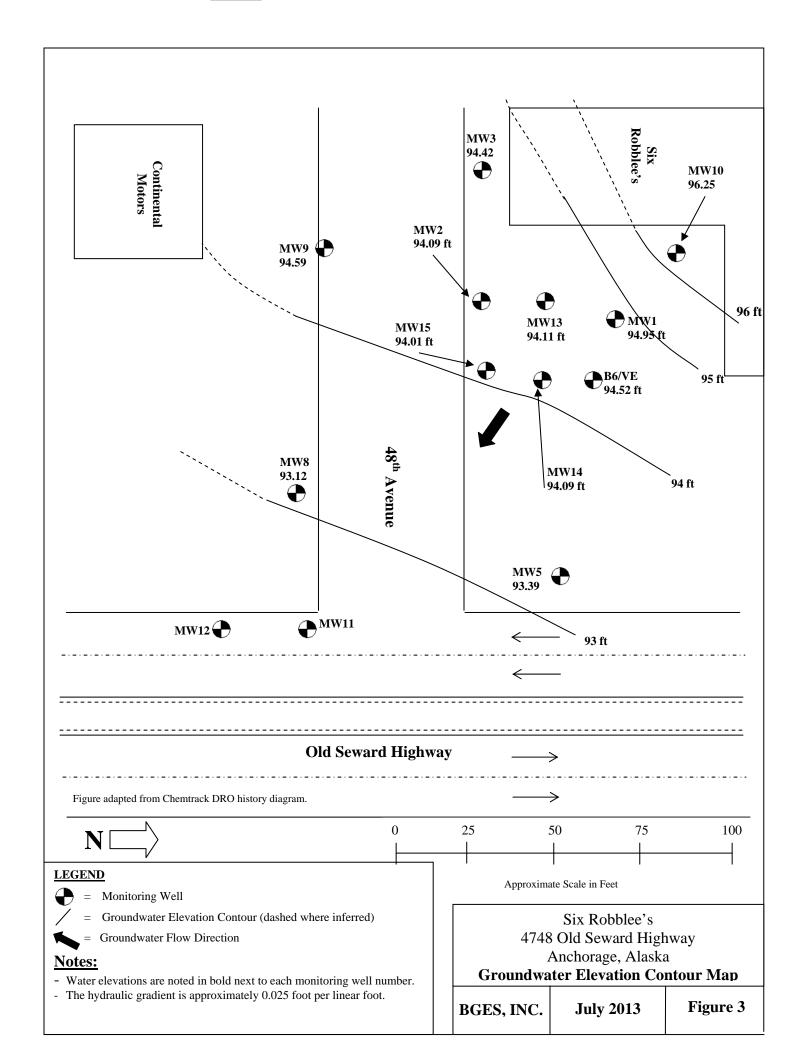
Groundwater sampling for this report was conducted by Joshua Barsis, Environmental Scientist with BGES, and a Qualified Person (QP) as defined by the ADEC. Mr. Barsis has conducted groundwater monitoring, site characterization, and remediation activities at numerous sites in the Anchorage area and throughout Alaska. This report was prepared by Katy Latimer, Environmental Scientist with BGES, and a QP as defined by the ADEC. Ms. Latimer has conducted numeroussite characterization projects in south central Alaska. This report was reviewed by Jayne Martin, Senior Environmental Scientist of BGES. Ms. Martin is a QP, as defined by the ADEC, and has more than 20 years of environmental consulting experience and has conducted and managed numerous site characterization and remediation efforts throughout Alaska and the lower 48 states. This report was approved by Robert N. Braunstein, C.P.G., a Certified Professional Geologist, who has 30 years of professional geologic and environmental experience, and has performed or managed thousands of ESAs in the lower 48-States and in Alaska. He has extensive knowledge and experience with contaminated sites and remediation.

Prepared By:

Reviewed By:


Katy Latimer


Environmental Scientist


Jayne Martin

Senior Environmental Scientist

godtal

TABLE 1 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA (JUNE 26, 2013)

Well Number	MW1	MW2	MW3	MW5	MW8	MW9	MW10	MW13	MW14	MW15	B6/VE
Date Sampled	6/26/2013	6/26/2013	6/26/2013	6/26/2013		6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/25/2013
Date of Depth and Elevation Measurement	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/26/2013	6/25/2013
Time of Depth to Water Measurement	8:25 AM	8:00 AM	7:30 AM	7:15 AM	7:40 AM	7:50 AM	7:35 AM	8:15 AM	8:05 AM	7:55 AM	8:20 AM
Time Sample Collected	14:30	16:30	7.30 7111	7.13 71141	7.407111	7.307111	7.55 7111	19:45	18:30	10:15	13:10
Top of Casing Elevation (feet)	102.65	99.89	100.02	101.19	99.62	99.69	103.35	101.51	101.39	99.81	101.92
Depth to Water (feet below top of casing)	7.70	5.8	5.6	7.8	6.5	5.1	7.1	7.4	7.3	5.8	7.4
Water Elevation (feet)	94.95	94.09	94.42	93.39	93.12	94.59	96.25	94.11	94.09	94.01	94.52
Total Depth of Well (feet below top of casing)	21.60	13.4	9.2	13.1	14.8	13.2	14.9	11.6	13.00	10.50	14.00
Well Casing Diameter (Inches)	2	2	2	2	2	2	2	2	2	2	2
Standing Water Well Volume (gallons)	2.27	1.24	0.59	0.86	1.35	1.32	1.27	0.69	0.93	0.77	1.08
Purge Volume-Actual (gallons)	7.0	4.0						2.5	3.0	2.5	13.0
Temperature (degrees Celsius)	12.9/11.1/10.1	15.9/15.0/15.1						11.8/9.4/8.9	11.8/8.2/9.5	14.5/13.7/13.1	12.0/9.0/12.1/9.5
pH (standard units)	5.84/6.18/6.61	5.86/6.26/6.31						5.73/5.98/6.48	6.29/6.24/6.56	3.58/3.81/4.01	5.97/6.4/6.09/6.81
Conductivity (microsiemans per centimeter)	917/866/818	94.3/816/813						731/718/30.4	564/439.8/518.6	131.3/9.9/39.2	583/500/630/518
Oxidation Reduction Potential (millivolts)	-92.8/-56.2/-47.7	12.3/-7.7/-14.5						28.6/61.6/66.6	65.2/59.4/62.4	16.8/-3.3/6.2	-134.8/-78.1/13.6/-2.8
Notes:											
Values separated by / indicate readings								A duplicate			
for successive well volumes								sample was			
Sampler: J. Barsis								collected from			
Field parameters measured with a YSI								MW-13 and			
Professional Plus Multi-Parameter Meter								labeled MW-20.			
Weather conditions on June 26, 2013 consisted											
of blue skies with an ambient air											
temperature of approximately 80											
degrees Fahrenheit.											

TABLE 2 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA ANALYTICAL RESULTS - WATER (JUNE 2013)

Water Sample No.	Parameter	Results (mg/L)	LOQ (mg/L)	ADEC Soil Cleanup Criterion (mg/L) ¹	Analytical Method
MW1-0626	Gasoline Range Organics	40.6	0.0100	2.2	AK101
	Benzene	2.720	0.0500	0.005	SW8021B
	Toluene	6.640	0.100	1.0	SW8021B
	Ethylbenzene	1.110	0.100	0.7	SW8021B
	Total Xylenes	8.000	0.200	10	SW8021B
	Diesel Range Organics	29.1	3.09	1.5	AK102
	Residual Range Organics	1.32	0.515	1.1	AK103
MW2-0626	Gasoline Range Organics	94.7	10.0	2.2	AK101
	Benzene	11.300	0.0500	0.005	SW8021B
	Toluene	22.600	0.100	1.0	SW8021B
	Ethylbenzene	1.760	0.100	0.7	SW8021B
	Total Xylenes	10.120	0.200	10	SW8021B
	Diesel Range Organics	105	6.19	1.5	AK102
	Residual Range Organics	5.96	0.515	1.1	AK103
MW13-0626	Gasoline Range Organics	236	100	2.2	AK101
	Benzene	17.000	0.400	0.005	SW8260B
	Toluene	53.200	1.000	1.0	SW8260B
	Ethylbenzene	4.430	1.000	0.7	SW8260B
	Total Xylenes	24.100	3.000	10	SW8260B
	Diesel Range Organics	26.2	3.00	1.5	AK102
	Residual Range Organics	1.87	0.500	1.1	AK103
	1,2,4-Trimethylbenzene	1.890	1.000	1.8	SW8260B
	1,3,5-Trimethylbenzene	0.625	0.0100	1.8	SW8260B
	4-Isopropyltoluene	0.0137	0.0100	NA	SW8260B
	Isopropylbenzene (Cumene)	0.168	0.0100	3.7	SW8260B
	n-Propylbenzene	0.382	0.0100	0.37	SW8260B
	Naphthalene	0.425	0.0200	0.73	SW8260B
	1,1,2,2-Tetrachloroethane	ND	0.00500	0.0043	SW8260B
	1,1,2-Trichloroethane	ND	0.0100	0.005	SW8260B
	1,2,3-Trichloropropane	ND	0.0100	0.00012	SW8260B
	1,2-Dibromoethane	ND	0.0100	0.00005	SW8260B
	1,2-Dichloropropane	ND	0.0100	0.005	SW8260B
	Carbon tetrachloride	ND	0.0100	0.005	SW8260B
	Methylene chloride	ND	0.0500	0.005	SW8260B
	Vinyl chloride	ND	0.0500	0.002	SW8260B
	All other VOCs	ND	varies	varies	SW8260B

TABLE 2 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA ANALYTICAL RESULTS - WATER (JUNE 2013)

MW20-0626					
(Duplicate of MW13-062	26)				SW8260B
RPD = 3.45%	Gasoline Range Organics	228	100	2.2	SW8260B
RPD = 8.45%	Benzene	18.500	0.400	0.005	SW8260B
RPD = 9.15%	Toluene	58.300	1.000	1.0	SW8260B
RPD = 10.01%	Ethylbenzene	4.900	1.000	0.7	SW8260B
RPD = 10.98%	Total Xylenes	26.900	3.000	10	SW8260B
RPD = 17.10%	Diesel Range Organics	31.1	3.09	1.5	AK102
RPD = 1.59%	Residual Range Organics	1.90	0.515	1.1	AK103
RPD = 12.41%	1,2,4-Trimethylbenzene	2.140	1.000	1.8	SW8260B
RPD = 5.6%	1,3,5-Trimethylbenzene	0.661	0.0100	1.8	SW8260B
RPD = 0.73%	4-Isopropyltoluene	0.0136	0.0100	NA	SW8260B
RPD = 0.73% RPD = 2.93%	Isopropylbenzene (Cumene)	0.0130	0.0100	3.7	SW8260B
KFD = 2.9370	n-Butylbenzene	0.0746	0.0100	0.37	SW8260B SW8260B
RPD = 4.35%	n-Propylbenzene	0.399	0.0100	0.37	SW8260B
RPD = 7.26%	Naphthalene	0.457	0.0200	0.73	SW8260B
KID = 7.2070	tert-Butylbenzene	0.0107	0.0100	0.73	SW8260B SW8260B
	1,1,2,2-Tetrachloroethane	ND	0.00500	0.0043	SW8260B
	1,1,2-Trichloroethane	ND ND	0.0100	0.005	SW8260B
	1,2,3-Trichloropropane	ND	0.0100	0.00012	SW8260B
	1,2-Dibromoethane	ND	0.0100	0.00005	SW8260B
	1,2-Dichloropropane	ND	0.0100	0.005	SW8260B
	Carbon tetrachloride	ND	0.0100	0.005	SW8260B
	Methylene chloride	ND	0.0500	0.005	SW8260B
	Vinyl chloride	ND	0.0100	0.002	SW8260B
	All other VOCs	ND	varies	varies	SW8260B
MW14-0626	Gasoline Range Organics	140.000	100	2.2	AK101
	Benzene	17.300	0.500	0.005	SW8021B
	Toluene	25.800	1.000	1.0	SW8021B
	Ethylbenzene	2.240	1.000	0.7	SW8021B
	Total Xylenes	15.320	2.000	10	SW8021B
	Diesel Range Organics	56.4	2.53	1.5	AK102
	Residual Range Organics	9.52	2.11	1.0	AK103
MW15-0626	Gasoline Range Organics	2.25	1.00	2.2	AK101
	Benzene	0.517	0.00500	0.005	SW8021B
	Toluene	0.213	0.0100	1.0	SW8021B
	Ethylbenzene	0.0567	0.0100	0.7	SW8021B
	Total Xylenes	0.2171	0.0200	10	SW8021B
	Diesel Range Organics	2.01	0.619	1.5	AK102
	Residual Range Organics	1.19	0.515	1.1	AK103
B6/VE-0626	Gasoline Range Organics	25.8	2.00	2.2	AK101
	Benzene	2.750	0.0100	0.005	SW8021B
		4 210	0.0200	1.0	SW8021B
	Toluene	4.310	0.0200	1.0	D 11 0021D
	Toluene Ethylbenzene	0.721	0.0200	0.7	SW8021B
	Ethylbenzene	0.721	0.0200	0.7	SW8021B

¹ = Groundwater cleanup criteria based on 18 AAC 75.345 Table C; April 8, 2012

ADEC = Alaska Department of Environmental Conservation; AK = Alaska Method

 $mg/L = milligrams \ per \ Liter; LOQ = Limit \ of \ Quantitation; RPD = relative \ percent \ difference; \ VOCs = volatile \ organic \ compounds$

Italics = LOQ exceeds applicable cleanup criterion.

BOLD = indicates concentration exceeds applicable cleanup criterion.

TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

																					ADEC Method Two
	Date Collected	: Jan-95	Jul-95	Mar-96	Dec-96	Nov-99	Aug-00	Nov-00	Jun-02	Nov-02	Jul-03	Jan-04	Jun-05	Aug-05	Mar-06	Sept-06	Oct-07	Sep-12	Jun-13	Analytical	Groundwater Cleanup
Well No.	Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Method	Level (mg/L)1
MW-01	GRO	97.6	NS	NS	66.9	NS	14.5	NS	48	NS	NS	NS	30.600	53.300	54.400	28.100	50,400	32.4	40.6	AK101	1.3
	DRO	NS	NS	NS	2.45	NS	NS	NS	17	NS	NS	NS	21.3	37.200	19.3	20.1	28.2	22	29.1	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<5.05	2.08	1.87	1.46	1.45	1.32	AK103	1.1
	Benzene	14.6	NS	NS	11	NS	1.49	NS.	4.7	NS	NS	NS	3.140	5.540	7.010	0.109	3.210	2.42	2.720	SW8021b	0.005
	Toluene	27.6	NS	NS	16.8	NS	1.68	NS	8.4	NS	NS	NS	6.770	12.300	17.100	8.940	8.930	4.53	6.640	SW8021b	1.0
	Ethylbenzene	2.79	NS	NS	2.23	NS	0.41	NS	1.1	NS	NS	NS	0.945	1.490	2.420	1.080	1.100	1.16	1.110	SW8021b	0.7
	Total Xylenes	14.8	NS	NS	11.63	NS	2.15	NS	6.1	NS	NS	NS	5.540	9.380	14.120	7.400	7.800	7.91	8.000	SW8021b	10.0
	Total Ayleries	14.0	NO	INO	11.03	NS	2.13	INO	0.1	INO	INO	INO	3.540	9.300	14.120	7.400	7.800	7.91	8.000	30000210	10.0
MW-02	GRO	156	108	NS	152	NS	58.5	162	89.5	NS	88.400	NS	111.000	107.000	121.000	41.000	37.20	74.1	94.7	AK101	1.3
10111 02	DRO	NS	NS	NS	9.81	NS	NS	NS	16.3	NS	58	NS	56.0	74.300	70.2	70.1	27.30	58.6	105	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<5.00	5.63	9.89	1.53	5.5	5.96	AK102 AK103	1.1
	Benzene	32.8	20.7	T NS	25.8	NS	5.23	28.5	10.4	NS	10.2	NS	19.800	19.700	19.000	12.300	2.49	7.36	11.300	SW8021b	0.005
	Toluene	44	NS	NS NS	36.7	NS	7.48	28.7	10.4	NS	10.2	NS	26.500	23.100	31.800	20.200	6.68	19.8	22.600	SW8021b	1.0
	Ethylbenzene	3.4	NS	NS	4.4	NS	1.4	2.5	1.3	NS	10.2	NS	2.190	2.230	2.810	1.670	0.82	1.56	1.760	SW8021b	0.7
	•	17.5	NS	NS	21.9	NS	9.47	13.45	7.5	NS	10.2	NS	10.550	10.860	14.190	9.500	4.950	10.23	10.120	SW8021b	10.0
	Total Xylenes		NS	NS NS			-		NS	NS		NS NS					0.042				0.7
	Naphthalene 2-Methylnaphthalene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.042	NS NS	NS NS	8270C 8270C	0.7
		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.013	NS NS	NS NS	8270C 8270C	0.78 1.5
	1-Methylnaphthalene Acenaphthalene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.0062	NS NS	NS NS	8270C 8270C	1.5
	Acenaphthene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.000032	NS	NS	8270C	2.2
	Fluorene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.000028	NS	NS	8270C	1.46
	Phenanthrene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0000051	NS	NS	8270C	11.0
	Anthracene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.000031	NS	NS	8270C	11.0
	Fluoranthene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0000097	NS	NS	8270C	1.46
	Pyrene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.000010	NS	NS	8270C 8270C	1.1
	Benzo[a]anthracene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.000020	NS	NS	8270C	1.1
	All other analytes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	8270C	varies
	All other analytes	INO	INO	INO	140	INO	INO	140	INO	140	140	140	NO	INO	INO	INO	ND	INO	140	02/00	varies
MW-03	GRO	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.0500</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.0500</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.090</td><td>NS</td><td>NS</td><td>< 0.0500</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	< 0.090	NS	NS	< 0.0500	ND	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	0.41	NS	NS	NS	NS	0.333	NS	NS	< 0.407	ND	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.764	NS	NS	< 0.407	0.556	NS	AK103	1.1
	Benzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	< 0.0005	NS	NS	< 0.0005	ND	NS	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	0.0008	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	<1.50	ND	NS	SW8021b	10.0
	•																				
MW-05	GRO	0.244	0.287	0.462	0.303	0.7	<mrl< td=""><td>0.148</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.938</td><td>2.200</td><td>NS</td><td>0.456</td><td>0.121</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	0.148	NS	NS	NS	NS	0.938	2.200	NS	0.456	0.121	ND	NS	AK101	1.3
	DRO	NS	NS	NS	0.39	NS	NS	NS	NS	NS	NS	NS	0.603	1.24	NS	0.700	< 0.407	ND	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.79	NS	0.865	< 0.407	0.974	NS	AK103	1.1
	Benzene	0.13	0.18	0.243	0.157	0.272	0.011	0.079	NS	NS	NS	NS	0.467	1.170	NS	0.180	0.0119	0.00113	NS	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	< 0.020	NS	0.00450	0.000861	ND	NS	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td>< 0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	0.00236	< 0.020	NS	ND	< 0.0005	ND	NS	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td>< 0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	0.00586	< 0.020	NS	0.02128	0.00204	ND	NS	SW8021b	10.0
	•																				
B6VE	GRO	20.7	23	13.5	18.6	24	42.1	25.9	15	NS	NS	NS	50.700	57.900	27.400	40.600	54.600	8.290	25.8	AK101	1.3
	DRO	NS	NS	NS	2.52	NS	NS	NS	1.6	NS	NS	NS	20.1	20.100	90.0	10.80	15.6	4.690	8.80	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	9.630	1.93	2.01	1.02	1.430	1.21	AK103	1.1
	Benzene	1.53	3.11	1.34	2.29	1.75	3.82	2.5	1.69	NS	NS	NS	4.540	7.660	2.020	0.0939	3.880	1.060	2.750	SW8021b	0.005
	Toluene	3.74	NS	2.21	4	3.12	4.48	3.16	1.9	NS	NS	NS	9.980	12.500	5.660	9.450	9.190	1.430	4.310	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	0.231	NS	NS	NS	1.440	1.090	1.070	0.555	1.100	0.122	0.721	SW8021b	0.7
	Total Xylenes	3.51	NS	2.2	2.3	2.9	3.36	2.9	1.5	NS	NS	NS	7.220	8.810	5.240	6.730	5.950	1.139	3.660	SW8021b	10.0
	•				_		_														
80-WM	GRO	3.45	3.92	9.89	NS	1.8	1.2	5.3	9.5	NS	8.0	NS	2.070	4.220	NS	0.577	4.280	0.79	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	14.4	2.06	<mrl< td=""><td>NS</td><td>0.558</td><td>< 0.306</td><td>NS</td><td>ND</td><td><0.394</td><td>ND</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	NS	0.558	< 0.306	NS	ND	<0.394	ND	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	< 0.510	NS	ND	< 0.394	0.506	NS	AK103	1.1
	Benzene	1.51	2.49	4.91	NS	0.69	0.5	2.31	3.6	NS	0.33	NS	1.090	2.180	NS	0.165	1.450	0.355	NS	SW8021b	0.005
	Toluene	0.0027	NS	NS	NS	NS	NS	NS	0.016	NS	0.0008	NS	0.00285	<0.020	NS	0.0452	<0.025	ND	NS	SW8021b	1.0
	Ethylbenzene	0.004	NS	0.1	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	0.021	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>< 0.020</td><td>NS</td><td>0.00415</td><td><0.025</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	< 0.020	NS	0.00415	<0.025	ND	NS	SW8021b	0.7
	Total Xylenes	0.007	NS	0.23	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	0.34	NS	<mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	0.0147	0.0256	NS	0.0539	<0.075	ND	NS	SW8021b	10.0
	•																				

GRO = Gasoline Range Organics DRO = Diesel Range Organics NS = Not Sampled ND = Not Detected NA = Not Analyzed

«MRL = Value less than Method Reporting Limit. mg/L = miligrams per Liter VOCs = Volatile Organic Compunds

BOLD = Value exceeds ADEC cleanup threshold. 16 Groundwater cleanup thresholds based on 18AAC 75.345 Table C.

TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

																					ADEC Method Two
Well No.	Date Collected: Parameter	Jan-95 (mg/L)	Jul-95 (mg/L)	Mar-96 (mg/L)	Dec-96 (mg/L)	Nov-99 (mg/L)	Aug-00 (mg/L)	Nov-00 (mg/L)	Jun-02 (mg/L)	Nov-02 (mg/L)	Jul-03 (mg/L)	Jan-04 (mg/L)	Jun-05 (mg/L)	Aug-05 (mg/L)	Mar-06 (mg/L)	Sept-06 (mg/L)	Oct-07 (mg/L)	Sep-12 (mg/L)	Jun-13 (mg/L)	Analytical Method	Groundwater Cleanup Level (mg/L)
MW-09	GRO	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS NS	NS	NS	<0.090	NS	NS	<0.050	ND	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	0.44	NS	NS	NS	NS	0.798	NS	NS	<0.407	ND	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.23	NS	NS	< 0.407	ND	NS	AK103	1.1
	Benzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	<0.0005	NS	NS	< 0.0005	ND	NS	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0015	ND	NS	SW8021b	10.0
MW-10	GRO	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td>< 0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	<0.090	NS	NS	< 0.050	ND	NS	AK101	1.3
	DRO	NS	NS	NS	0.39	NS	NS	NS	0.32	NS	NS	NS	NS	<0.303	NS	NS	<0.391	ND	NS	AK102	1.5
	RRO Benzene	NS NS	NS NS	NS NS	NS <mrl< td=""><td>NS NS</td><td>NS <mrl< td=""><td>NS <mrl< td=""><td>NS <mrl< td=""><td>NS NS</td><td>NS NS</td><td>NS NS</td><td>NS NS</td><td><0.505 <0.0005</td><td>NS NS</td><td>NS NS</td><td><0.391 <0.0005</td><td>ND ND</td><td>NS NS</td><td>AK103 SW8021b</td><td>1.1 0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS NS	NS <mrl< td=""><td>NS <mrl< td=""><td>NS <mrl< td=""><td>NS NS</td><td>NS NS</td><td>NS NS</td><td>NS NS</td><td><0.505 <0.0005</td><td>NS NS</td><td>NS NS</td><td><0.391 <0.0005</td><td>ND ND</td><td>NS NS</td><td>AK103 SW8021b</td><td>1.1 0.005</td></mrl<></td></mrl<></td></mrl<>	NS <mrl< td=""><td>NS <mrl< td=""><td>NS NS</td><td>NS NS</td><td>NS NS</td><td>NS NS</td><td><0.505 <0.0005</td><td>NS NS</td><td>NS NS</td><td><0.391 <0.0005</td><td>ND ND</td><td>NS NS</td><td>AK103 SW8021b</td><td>1.1 0.005</td></mrl<></td></mrl<>	NS <mrl< td=""><td>NS NS</td><td>NS NS</td><td>NS NS</td><td>NS NS</td><td><0.505 <0.0005</td><td>NS NS</td><td>NS NS</td><td><0.391 <0.0005</td><td>ND ND</td><td>NS NS</td><td>AK103 SW8021b</td><td>1.1 0.005</td></mrl<>	NS NS	NS NS	NS NS	NS NS	<0.505 <0.0005	NS NS	NS NS	<0.391 <0.0005	ND ND	NS NS	AK103 SW8021b	1.1 0.005
	Toluene	NS	NS NS	NS NS	<mrl< td=""><td>NS NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS NS</td><td>NS</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>ND</td><td>NS NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS NS</td><td>NS</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>ND</td><td>NS NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS NS</td><td>NS</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>ND</td><td>NS NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS NS</td><td>NS</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>NS NS</td><td>NS NS</td><td><0.0005</td><td>ND</td><td>NS NS</td><td>SW8021b</td><td>1.0</td></mrl<>	NS NS	NS	NS NS	NS NS	<0.0005	NS NS	NS NS	<0.0005	ND	NS NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	SW8021b	10.0
MW-11	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	< 0.090	0.233	ND	<0.050	ND	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	3.82	NS	1.72	<mrl< td=""><td>1.16</td><td>2.01</td><td>0.650</td><td>0.481</td><td>0.759</td><td>ND</td><td>NS</td><td>AK101 AK102</td><td>1.5</td></mrl<>	1.16	2.01	0.650	0.481	0.759	ND	NS	AK101 AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.45	0.945	0.535	1.79	0.601	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.004</td><td><mrl< td=""><td>0.000899</td><td>0.00586</td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	0.004	<mrl< td=""><td>0.000899</td><td>0.00586</td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	0.000899	0.00586	0.02280	0.0142	0.00576	ND	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	0.0027	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	<0.002	0.0601	ND	<0.0005	ND	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.002</td><td>0.00659</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	< 0.002	0.00659	ND	< 0.0005	ND	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.03412	ND	<0.0015	ND	NS	SW8021b	10.0
MW-12	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.53</td><td><mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	0.53	<mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	0.635	1.170	0.262	0.497	0.035	NS	NS	AK101	1.3
i	DRO	NS	NS	NS	0.44	NS	NS	NS	0.44	NS	1.53	<mrl< td=""><td>0.498</td><td>0.756</td><td>0.415</td><td>0.588</td><td>0.714</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	0.498	0.756	0.415	0.588	0.714	NS	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.730	1.77	0.536	1.060	NS	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.237</td><td>0.00218</td><td>0.247</td><td>0.398</td><td>0.101</td><td>0.205</td><td>0.142</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	0.237	0.00218	0.247	0.398	0.101	0.205	0.142	NS	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	< 0.002	0.0322	0.0176	< 0.0005	NS	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	<0.002	0.00407	0.00260	<0.0005	NS	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.02015	0.01967	<0.0015	NS	NS	SW8021b	10.0
MW-13	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	217	236	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	20.1	31.1	AK102	1.5 1.1
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.75	1.90	AK103	
	Benzene Toluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	19.6 63.9	18.500 58.300	SW8021b SW8021b	0.005 1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.29	4.900	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.7	26.900	SW8021b	10.0
	1,2,4-Trimethylbenzen	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.140	SW8260B	10.0
	n-Propylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.399	SW8260B	
MW-14	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	118	140	AK101	1.3
10100-14	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	58.6	56.4	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	8.88	9.52	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6	17.300	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.1	25.800	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.51	2.240	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.78	15.320	SW8021b	10.0
MW-15	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	86.100	NS	NS	56.500	1.33	2.25	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.6	NS	NS	4.96	1.03	2.01	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.19	NS	NS	0.439	1.010	1.19	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	16.900	NS	NS	6.690	0.0467	0.517	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.800	NS	NS	8.630	0.0514	0.213	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.030	NS	NS	1.270	0.0229	0.0567	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10.010	NS	NS	6.810	0.1119	0.2171	SW8021b	10.0
Tap Well	GRO	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	0.305	NS	NS	NS	AK101	1.3
(facility	DRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	NS	NS	ND	NS	NS	NS	AK102	1.5
well)	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	NS	NS	NS	AK103	1.1
	Benzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.005</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0108	NS	ND	NS	SW8021b ²	0.005
	Toluene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>1.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0495	NS	ND	NS	SW8021b ²	1.0
	Ethylbenzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>0.7</td></mrl<>	NS	NS	NS	ND	NS	NS	0.00947	NS	ND	NS	SW8021b ²	0.7
	Total Xylenes	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b²</td><td>10.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0613	NS	ND	NS	SW8021b ²	10.0
	VOCs	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NA	NS	ND	NS	EPA 524.2	varies

GRO = Gasoline Range Organics DRO = Diesel Range Organics NS = Not Sampled ND = Not Detected NA = Not Analyzed

<MRL = Value less than Method Reporting Limit.</p>
mg/L = miligrams per Liter
VOCs = Volatile Organic Compunds

BOLD = Value exceeds ADEC cleanup threshold.

Groundwater cleanup thresholds based on 18AAC 75.345 Table C. ² = During the latest round of groundwater sampling activities in 2012, the samples were analyzed by EPA 524.2 analytical method for VOCs

APPENDIX A FIELD NOTES

Well Number: MW1 Weather Conditions: Clear, 80°F Time Arrived On Site: 700 Date of Depth to Water Measurement: 6-25-13 Time of Depth to Water Measurement: 825 Top of Casing Elevation: 102,65 Type of Sampling Equipment: Depth to Water (feet below TOC): QED MPSO controller, YSI multi-meter 7,7 Water Elevation: 94,95 21.6 Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): 7,7 Water Column (feet): 2,27 Volume of well (gals) =0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well) 1330 Time Purging Began: 1430 Time of Sampling: PURGE A MINIMUM OF THREE WELL VOLUMES Volume purged + gallons 5.84 рН pΗ Conductivity 917 Conductivity ORP -9218 ORP Temperature 129 Temperature 6.18 pH pН 866 Conductivity Conductivity -56,2 ORP ORP Temperature 11 Temperature 6.61 pΗ Hq Conductivity 818 Conductivity ORP ORP -47.7 Temperature Temperature 10.1 pH pΗ Conductivity Conductivity ORP ORP Temperature Temperature pΗ Hq Conductivity Conductivity ORP ORP Temperature Temperature pΗ Hq Conductivity Conductivity ORP ORP Disolved Oxygen Disolved Oxygen Temperature Temperature set approximately

activities.

Well Number: Mw2

Time Arrived On Site: Date of Depth to Water Measurement: _6-25-	Weather Conditions: Partly Claudy 70°F Time of Depth to Water Measurement: 800
Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	Type of Sampling Equipment: 5.8 QEDMPSO Cartroller: YSE milti-meter; 94.09 Water level Indicate; 1.75" bhdder pung;
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	13.4 5.8 7.6
Volume of well (gals)	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began: 1450 Time of Sampling: 1630 Volume purged 4 gallons	PURGE A MINIMUM OF THREE WELL VOLUMES
pH 5,86 Conductivity 94.3 ORP 12.3 Temperature 15.9	pH Conductivity ORP Temperature
PH 6.26 Conductivity 816 ORP 7.7 Temperature 15,0	pH Conductivity ORP Temperature
PH 6.51 Conductivity 813 ORP -14.5 Temperature [5.]	pH Conductivity ORP Temperature
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature
pH Conductivity ORP Disolved Oxygen Temperature Bladder pump intake sex approxim	
Approximate purge rate is 100 ml/mi was present in this well, Bubb All 3 40 ml contained did have	Ing was promount during Sampling, headspace,

Well Number: Mul3

Time Arrived On Site:	3	Weather Conditions: Portly Gody, 704 Time of Depth to Water Measurement: 815
Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	7.4	Type of Sampling Equipment: QED MP50 Controller; YSI multi- neter Water level metret; 1,75" Blader gun;
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	11.6 7.4 4.2	Brtdeg
Volume of well (gals)	0.69	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began: 1900 Time of Sampling: 1945 Volume purged 2,59411:ns	PURGE A M	INIMUM OF THREE WELL VOLUMES
pH 5,73 Conductivity 731 ORP 28,6 Temperature 11,8	pH Conductivity ORP Temperature	
PH S.98 Conductivity 718 ORP 61.6 Temperature 9.4	pH Conductivity ORP Temperature	
pH 6,48 Conductivity 30.4 ORP 66.6 Temperature 8.9	pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature	
pH Conductivity ORP Disolved Oxygen Temperature	pH Conductivity ORP Disolved Ox Temperature	ygen
Casing. Purgerate was approximate present during purging activities		

GROUND WATER MONITORING LOG

Weather Conditions: Partly Clary 70% Wondy

Time Arrived On Site: 700 Date of Depth to Water Measurement: 600	Weather Conditions: Partly Cloudy, 76% Com.
Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:	Type of Sampling Equipment: 7.3 GED MSS Controller; Wester Level Mich. 94.09 YST Multimentor; 1.75" blicker Purp; but
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	7.3 5.7
Volume of well (gals)	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began: 17-50 Time of Sampling: 1830 Volume purged 3 gallows	PURGE A MINIMUM OF THREE WELL VOLUMES
pH 6,29 Conductivity 564 ORP 65.2 Temperature 11,8	pH Conductivity ORP Temperature
pH 6,24 Conductivity 437,8 ORP 57,4 Temperature 8,2	pH Conductivity ORP Temperature
pH 6, Sc Conductivity 518, C ORP 62, 9 Temperature 7, 5	pH Conductivity ORP Temperature
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature
pH Conductivity ORP Temperature	pH Conductivity ORP Temperature
pH Conductivity ORP Disolved Oxygen Temperature	pH Conductivity ORP Disolved Oxygen Temperature
Purge rate was approximately	40 milms. 2 of 3 viols had except to in wells. A petroleum oder was present
~	10

Well Number: MW15

Time Arrived On Si Date of Depth to Wa	te: _ 7 00 ater Measurement: <u></u> 6-25-		me of Depth to Water Measurement: 755
Top of Casing Eleva Depth to Water (fee Water Elevation:		99.81 5.8 94.01	Type of Sampling Equipment: aed Meso Controller: TSI Multi-Meter; water level indizator; Bladdor Pump (1.75"); Battery
Total Depth of Well Depth to Water (fee Water Column (feet	t below TOC):	5.8 4.7	
Volume of well (gals	5)	0,77	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Begar	n: 845		(2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Time of Sampling:	1015	PURGE A MINI	MUM OF THREE WELL VOLUMES
Volume purged	2.5 gallons		
pH Conductivity ORP Temperature	3.58 131.3 -16.8 14.5	pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	3.81 9.9 -3.3 13.7	pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature	4.01 39.2 6.2 13.1	pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature		pH Conductivity ORP Temperature	
pH Conductivity ORP Temperature		pH Conductivity ORP Temperature	
pH Conductivity ORP Disolved Oxygen Temperature		pH Conductivity ORP Disolved Oxyge Temperature	en
Bladder Pump	intere sex@7	Fact below	Top of Casing,
Purge rate was		-1	resent a water,
	gut petroleum edur	was present	during purging
activities. Purge	. Rade was approxim	may 100 ml/	min
		1	4

Well Number: <u>B6/VE</u>

Time Arrived On Site: 700 Date of Depth to Water Measurement: 6-25-13	Weather Conditions: Clear, 80° F Time of Depth to Water Measurement: 82
Depth to Water (feet below TOC):	Type of Sampling Equipment: 7.4 QED MP 50 Control of 1.75" Bh der prop 94.52 YSI Multi-reter; Water level and its for Bottom
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	14.0 7.4 6.6
Volume of well (gals)	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well)
Time Purging Began: 1100 Time of Sampling: 1310 Volume purged 13 gettlens	=1.4688 X Water Column (For 6-inch well) PURGE A MINIMUM OF THREE WELL VOLUMES
Conductivity 533 CORP - 134,8	ORP Comperature
Conductivity 500 CORP -78.1	ORP Temperature
Conductivity 63° CORP 13,6	ORP Comperature
Conductivity 5 1 € C ORP - 2 ⋅ 8 O	ORP Comperature
Conductivity C C ORP C	H Conductivity CRP Cemperature
ORP O Disolved Oxygen D Temperature To	H Conductivity PRP Properties Pro
Bladder pump interve set to 8.5 Purge rate was approximately 400 m/n however, a petrolem odor was note	

APPENDIX B LABORATORY ANALYTICAL DATA

Laboratory Report of Analysis

To: BGES Inc.

1042 E 6th Ave Anchorage, AK 99501 (907)644-2900

Report Number: 1132689

Client Project: Six Robblees

Dear Jayne Martin,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Heather at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen Ede 2013.07.09

Alaska Division Technical Director

Date

08:16:40 -08'00'

Heather Hall

SGS North America Inc.

Project Manager Heather.Hall@sgs.com

Case Narrative

SGS Client: **BGES Inc.** SGS Project: **1132689** Project Name/Site: **Six Robblees** Project Contact: **Jayne Martin**

Refer to sample receipt form for information on sample condition.

MW15-0626 (1132689001) PS

AK102/103 - Unknown hydrocarbon with several peaks is present.

B6/VE-0626 (1132689002) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

MW1-0626 (1132689003) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

MW2-0626 (1132689004) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

MW14-0626 (1132689005) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

MW13-0626 (1132689006) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

MW20-0626 (1132689007) PS

- AK102 The pattern is consistent with a weathered gasoline.
- AK103 Unknown hydrocarbon with several peaks is present.

IB for HBN 1458199 (XFC/10942) (1156844) IB

AK102/103 - IB result is greater than one-half the LOQ, however less than the LOQ.

IB for HBN 1458418 (XFC/10946) (1157243) IB

AK1103 - IB result is greater than one-half the LOQ, however less than the LOQ.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/05/2013 11:41:25AM

Report of Manual Integrations Laboratory ID Client Sample ID **Analytical Batch Analyte** Reason SW8260B 1132689006 SP VMS13594 4-Isopropyltoluene MW13-0626 1132689007 MW20-0626 VMS13594 4-Isopropyltoluene SP

Manual Integration Reason Code Descriptions

Code	Description
0	Original Chromatogram
M	Modified Chromatogram
SS	Skimmed surrogate
BLG	Closed baseline gap
RP	Reassign peak name
PIR	Pattern integration required
IT	Included tail
SP	Split peak
RSP	Removed split peak
FPS	Forced peak start/stop
BLC	Baseline correction
PNF	Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 07/05/2013 11:41:26AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6020, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV Continuing Calibration Verification

CL Control Limit

D The analyte concentration is the result of a dilution.

DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.
F Indicates value that is greater than or equal to the DL

GT Greater Than

IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.

JL The analyte was positively identified, but the quantitation is a low estimation.

LCS(D) Laboratory Control Spike (Duplicate)
LOD Limit of Detection (i.e., 2xDL)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than

M A matrix effect was present.

MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.Q QC parameter out of acceptance range.

R Rejected

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 07/05/2013 11:41:26AM

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW15-0626	1132689001	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
B6/VE-0626	1132689002	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
MW1-0626	1132689003	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
MW2-0626	1132689004	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
MW14-0626	1132689005	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
MW13-0626	1132689006	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
MW20-0626	1132689007	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
TB1	1132689008	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)
TB2	1132689009	06/26/2013	06/27/2013	Water (Surface, Eff., Ground)

Method Method Description AK101 AK101/8021 Combo. SW8021B AK101/8021 Combo.

AK102 Diesel/Residual Range Organics Water AK103 Diesel/Residual Range Organics Water AK101

Gasoline Range Organics (W)

SW8260B Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: MW15-0626 Lab Sample ID: 1132689001	Devenuetos	D#	119
-	Parameter	Result	Units ma/l
Semivolatile Organic Fuels	Diesel Range Organics	2.01 1.19	mg/L
Walatila Finala	Residual Range Organics Benzene	517	mg/L
Volatile Fuels		56.7	ug/L
	Ethylbenzene	2.25	ug/L
	Gasoline Range Organics	2.25 87.1	mg/L
	o-Xylene	130	ug/L
	P & M -Xylene Toluene	213	ug/L
	roluerie	213	ug/L
Client Sample ID: B6/VE-0626			
Lab Sample ID: 1132689002	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	8.80	mg/L
	Residual Range Organics	1.21	mg/L
Volatile Fuels	Benzene	2750	ug/L
	Ethylbenzene	721	ug/L
	Gasoline Range Organics	25.8	mg/L
	o-Xylene	1020	ug/L
	P & M -Xylene	2640	ug/L
	Toluene	4310	ug/L
Client Sample ID: MW1-0626			
Lab Sample ID: 1132689003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	29.1	mg/L
3	Residual Range Organics	1.32	mg/L
Volatile Fuels	Benzene	2720	ug/L
	Ethylbenzene	1110	ug/L
	Gasoline Range Organics	40.6	mg/L
	o-Xylene	2920	ug/L
	P & M -Xylene	5080	ug/L
	Toluene	6640	ug/L
Client Sample ID: MW2-0626			
Lab Sample ID: 1132689004	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	105	mg/L
Semivolatile Organic Fuels	Residual Range Organics	5.96	mg/L
Volatile Fuels	Benzene	11300	ug/L
Volatile Fuels	Ethylbenzene	1760	ug/L
	Gasoline Range Organics	94.7	mg/L
		3070	_
	o-Xylene P & M -Xylene	7050	ug/L
	·		ug/L
	Toluene	22600	ug/L

Detectable Results Summary

Client Sample ID: MW14-0626			
Lab Sample ID: 1132689005	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	56.4	mg/L
	Residual Range Organics	9.52	mg/L
Volatile Fuels	Benzene	17300	ug/L
	Ethylbenzene	2240	ug/L
	Gasoline Range Organics	140	mg/L
	o-Xylene	4520	ug/L
	P & M -Xylene	10800	ug/L
	Toluene	25800	ug/L
Client Sample ID: MW13-0626			
Lab Sample ID: 1132689006	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	26.2	mg/L
•	Residual Range Organics	1.87	mg/L
Volatile Fuels	Gasoline Range Organics	236	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1890	ug/L
	1,3,5-Trimethylbenzene	625	ug/L
	4-Isopropyltoluene	13.7	ug/L
	Benzene	17000	ug/L
	Ethylbenzene	4430	ug/L
	Isopropylbenzene (Cumene)	168	ug/L
	n-Propylbenzene	382	ug/L
	Naphthalene	425	ug/L
	o-Xylene	7500	ug/L
	P & M -Xylene	16600	ug/L
	Toluene	53200	ug/L
	Xylenes (total)	24100	ug/L

Detectable Results Summary

Client Sample ID: MW20-0626 Lab Sample ID: 1132689007 Semivolatile Organic Fuels

Volatile Fuels Volatile GC/MS

<u>Parameter</u>	Result	<u>Units</u>
Diesel Range Organics	31.1	mg/L
Residual Range Organics	1.90	mg/L
Gasoline Range Organics	228	mg/L
1,2,4-Trimethylbenzene	2140	ug/L
1,3,5-Trimethylbenzene	661	ug/L
4-Isopropyltoluene	13.6	ug/L
Benzene	18500	ug/L
Ethylbenzene	4900	ug/L
Isopropylbenzene (Cumene)	173	ug/L
n-Butylbenzene	74.6	ug/L
n-Propylbenzene	399	ug/L
Naphthalene	457	ug/L
o-Xylene	8350	ug/L
P & M -Xylene	18600	ug/L
tert-Butylbenzene	10.7	ug/L
Toluene	58300	ug/L
Xylenes (total)	26900	ug/L

Client Sample ID: **MW15-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689001
Lab Project ID: 1132689

Collection Date: 06/26/13 10:15 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics	2.01	0.619	0.186	mg/L	1	06/29/13 20:12
Surrogates						
5a Androstane	66.4	50-150		%	1	06/29/13 20:12

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 06/29/13 20:12 Container ID: 1132689001-D

Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 970 mL
Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Date Analyzed</u>
Residual Range Organics	1.19	0.515	0.155	mg/L	1	06/29/13 20:12
Surrogates n-Triacontane-d62	76.2	50-150		%	1	06/29/13 20:12

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:12 Container ID: 1132689001-D Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

Client Sample ID: **MW15-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689001
Lab Project ID: 1132689

Collection Date: 06/26/13 10:15 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Date Analyzed</u>
	2.25	1.00	0.310	mg/L	10	07/02/13 18:21
Surrogates 4-Bromofluorobenzene	89.6	50-150		%	10	07/02/13 18:21

Batch Information

Analytical Batch: VFC11487 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/02/13 18:21 Container ID: 1132689001-A

Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	517	5.00	1.50	ug/L	10	07/02/13 18:21
Ethylbenzene	56.7	10.0	3.10	ug/L	10	07/02/13 18:21
o-Xylene	87.1	10.0	3.10	ug/L	10	07/02/13 18:21
P & M -Xylene	130	20.0	6.20	ug/L	10	07/02/13 18:21
Toluene	213	10.0	3.10	ug/L	10	07/02/13 18:21
Surrogates						
1,4-Difluorobenzene	97.5	77-115		%	10	07/02/13 18:21

Batch Information

Analytical Batch: VFC11487 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/02/13 18:21 Container ID: 1132689001-A Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of B6/VE-0626

Client Sample ID: **B6/VE-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689002
Lab Project ID: 1132689

Collection Date: 06/26/13 13:10 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 8.80	LOQ/CL 0.619	<u>DL</u> 0.186	<u>Units</u> mg/L	<u>DF</u> 1	<u>Date Analyzed</u> 06/29/13 20:21
Surrogates						
5a Androstane	78.3	50-150		%	1	06/29/13 20:21

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 06/29/13 20:21 Container ID: 1132689002-D Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 970 mL
Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual	LOQ/CL 0.515	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 1	<u>Date Analyzed</u> 06/29/13 20:21
Surrogates						
n-Triacontane-d62	93.3	50-150		%	1	06/29/13 20:21

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:21 Container ID: 1132689002-D Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

Results of B6/VE-0626

Client Sample ID: **B6/VE-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689002
Lab Project ID: 1132689

Collection Date: 06/26/13 13:10 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Date Analyzed</u>
Gasoline Range Organics	25.8	2.00	0.620	mg/L	20	07/02/13 17:44
Surrogates 4-Bromofluorobenzene	100	50-150		%	20	07/02/13 17:44

Batch Information

Analytical Batch: VFC11487 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/02/13 17:44 Container ID: 1132689002-A Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	2750	10.0	3.00	ug/L	20	07/02/13 17:44
Ethylbenzene	721	20.0	6.20	ug/L	20	07/02/13 17:44
o-Xylene	1020	20.0	6.20	ug/L	20	07/02/13 17:44
P & M -Xylene	2640	40.0	12.4	ug/L	20	07/02/13 17:44
Toluene	4310	20.0	6.20	ug/L	20	07/02/13 17:44
Surrogates						
1,4-Difluorobenzene	99.6	77-115		%	20	07/02/13 17:44

Batch Information

Analytical Batch: VFC11487 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/02/13 17:44 Container ID: 1132689002-A Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **MW1-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689003
Lab Project ID: 1132689

Collection Date: 06/26/13 14:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics Surrogates	29.1	3.09	0.928	mg/L	5	07/01/13 14:08
5a Androstane	93.7	50-150		%	5	07/01/13 14:08

Batch Information

Analytical Batch: XFC10946 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 07/01/13 14:08 Container ID: 1132689003-D

Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 970 mL
Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual	LOQ/CL 0.515	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 1	<u>Date Analyzed</u> 06/29/13 20:30
Surrogates	1.02	0.010	0.100	mg/L	•	00/20/10 20:00
n-Triacontane-d62	101	50-150		%	1	06/29/13 20:30

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:30 Container ID: 1132689003-D

Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

Client Sample ID: **MW1-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689003
Lab Project ID: 1132689

Collection Date: 06/26/13 14:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 40.6	<u>LOQ/CL</u> 10.0	<u>DL</u> 3.10	<u>Units</u> mg/L	<u>DF</u> 100	<u>Date Analyzed</u> 07/03/13 16:26
Surrogates						
4-Bromofluorobenzene	102	50-150		%	100	07/03/13 16:26

Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/03/13 16:26 Container ID: 1132689003-C Prep Batch: VXX24891
Prep Method: SW5030B
Prep Date/Time: 07/03/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	2720	50.0	15.0	ug/L	100	07/03/13 16:26
Ethylbenzene	1110	100	31.0	ug/L	100	07/03/13 16:26
o-Xylene	2920	100	31.0	ug/L	100	07/03/13 16:26
P & M -Xylene	5080	200	62.0	ug/L	100	07/03/13 16:26
Toluene	6640	100	31.0	ug/L	100	07/03/13 16:26
Surrogates						
1,4-Difluorobenzene	96.8	77-115		%	100	07/03/13 16:26

Batch Information

Analytical Batch: VFC11490 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/03/13 16:26 Container ID: 1132689003-C Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW2-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689004
Lab Project ID: 1132689

Collection Date: 06/26/13 14:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual 105	LOQ/CL 6.19	<u>DL</u> 1.86	<u>Units</u> mg/L	<u>DF</u> 10	<u>Date Analyzed</u> 07/01/13 14:17
Surrogates						
5a Androstane	86.5	50-150		%	10	07/01/13 14:17

Batch Information

Analytical Batch: XFC10946 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 07/01/13 14:17 Container ID: 1132689004-D

Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Residual Range Organics	5.96	0.515	0.155	mg/L	1	06/29/13 20:40
Surrogates						
n-Triacontane-d62	106	50-150		%	1	06/29/13 20:40

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:40 Container ID: 1132689004-D

Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

Client Sample ID: MW2-0626 Client Project ID: Six Robblees Lab Sample ID: 1132689004 Lab Project ID: 1132689

Collection Date: 06/26/13 14:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 94.7	LOQ/CL 10.0	<u>DL</u> 3.10	<u>Units</u> mg/L	<u>DF</u> 100	<u>Date Analyzed</u> 07/03/13 16:45
Surrogates						
4-Bromofluorobenzene	100	50-150		%	100	07/03/13 16:45

Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101 Analyst: ST

Analytical Date/Time: 07/03/13 16:45 Container ID: 1132689004-C

Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	11300	50.0	15.0	ug/L	100	07/03/13 16:45
Ethylbenzene	1760	100	31.0	ug/L	100	07/03/13 16:45
o-Xylene	3070	100	31.0	ug/L	100	07/03/13 16:45
P & M -Xylene	7050	200	62.0	ug/L	100	07/03/13 16:45
Toluene	22600	100	31.0	ug/L	100	07/03/13 16:45
Surrogates						
1,4-Difluorobenzene	97.6	77-115		%	100	07/03/13 16:45

Batch Information

Analytical Batch: VFC11490 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/03/13 16:45 Container ID: 1132689004-C

Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW14-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689005
Lab Project ID: 1132689

Collection Date: 06/26/13 18:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 56.4	LOQ/CL 2.53	<u>DL</u> 0.758	<u>Units</u> mg/L	<u>DF</u> 4	<u>Date Analyzed</u> 06/29/13 20:49
Surrogates 5a Androstane	70.1	50-150		%	4	06/29/13 20:49

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 06/29/13 20:49 Container ID: 1132689005-D Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 950 mL
Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Residual Range Organics	9.52	2.11	0.632	mg/L	4	06/29/13 20:49
Surrogates						
n-Triacontane-d62	107	50-150		%	4	06/29/13 20:49

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:49 Container ID: 1132689005-D Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 950 mL Prep Extract Vol: 1 mL

Client Sample ID: **MW14-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689005
Lab Project ID: 1132689

Collection Date: 06/26/13 18:30 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 140	<u>LOQ/CL</u> 100	<u>DL</u> 31.0	<u>Units</u> mg/L	<u>DF</u> 1000	<u>Date Analyzed</u> 07/03/13 17:22
Surrogates						
4-Bromofluorobenzene	99.4	50-150		%	1000	07/03/13 17:22

Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/03/13 17:22 Container ID: 1132689005-C Prep Batch: VXX24891
Prep Method: SW5030B
Prep Date/Time: 07/03/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	17300	500	150	ug/L	1000	07/03/13 17:22
Ethylbenzene	2240	1000	310	ug/L	1000	07/03/13 17:22
o-Xylene	4520	1000	310	ug/L	1000	07/03/13 17:22
P & M -Xylene	10800	2000	620	ug/L	1000	07/03/13 17:22
Toluene	25800	1000	310	ug/L	1000	07/03/13 17:22
Surrogates						
1,4-Difluorobenzene	94	77-115		%	1000	07/03/13 17:22

Batch Information

Analytical Batch: VFC11490 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/03/13 17:22 Container ID: 1132689005-C Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW13-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689006
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual 26.2	LOQ/CL 3.00	<u>DL</u> 0.900	<u>Units</u> mg/L	<u>DF</u> 5	<u>Date Analyzed</u> 07/01/13 14:27
Surrogates					_	
5a Androstane	77.5	50-150		%	5	07/01/13 14:27

Batch Information

Analytical Batch: XFC10946 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 07/01/13 14:27 Container ID: 1132689006-G

Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 1000 mL
Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual	LOQ/CL 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	<u>Date Analyzed</u> 06/29/13 20:59
Surrogates						
n-Triacontane-d62	107	50-150		%	1	06/29/13 20:59

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 20:59 Container ID: 1132689006-G Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 1000 mL Prep Extract Vol: 1 mL

Client Sample ID: **MW13-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689006
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics	236	100	31.0	mg/L	1000	07/03/13 17:41
Surrogates						
4-Bromofluorobenzene	103	50-150		%	1000	07/03/13 17:41

Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/03/13 17:41 Container ID: 1132689006-C

Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW13-0626** Client Project ID: **Six Robblees** Lab Sample ID: 1132689006 Lab Project ID: 1132689 Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
1,1,1-Trichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,1,2,2-Tetrachloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
1,1,2-Trichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,1-Dichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,1-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,1-Dichloropropene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2,3-Trichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2,3-Trichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2,4-Trichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2,4-Trimethylbenzene	1890		1000	310	ug/L	1000	07/01/13 18:17
1,2-Dibromo-3-chloropropane	20.0	U	20.0	6.20	ug/L	10	07/01/13 16:33
1,2-Dibromoethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2-Dichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,2-Dichloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
1,2-Dichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,3,5-Trimethylbenzene	625		10.0	3.10	ug/L	10	07/01/13 16:33
1,3-Dichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
1,3-Dichloropropane	4.00	U	4.00	1.20	ug/L	10	07/01/13 16:33
1,4-Dichlorobenzene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
2,2-Dichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
2-Butanone (MEK)	100	U	100	31.0	ug/L	10	07/01/13 16:33
2-Chlorotoluene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
2-Hexanone	100	U	100	31.0	ug/L	10	07/01/13 16:33
4-Chlorotoluene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
4-Isopropyltoluene	13.7		10.0	3.10	ug/L	10	07/01/13 16:33
4-Methyl-2-pentanone (MIBK)	100	U	100	31.0	ug/L	10	07/01/13 16:33
Benzene	17000		400	120	ug/L	1000	07/01/13 18:17
Bromobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Bromochloromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Bromodichloromethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
Bromoform	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Bromomethane	30.0	U	30.0	9.40	ug/L	10	07/01/13 16:33
Carbon disulfide	20.0	U	20.0	6.20	ug/L	10	07/01/13 16:33
Carbon tetrachloride	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Chlorobenzene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
Chloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Chloroform	10.0	U	10.0	3.00	ug/L	10	07/01/13 16:33
Chloromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
cis-1,2-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
cis-1,3-Dichloropropene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
Dibromochloromethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:33
Dibromomethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Dichlorodifluoromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33

Client Sample ID: **MW13-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689006
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Ethylbenzene	4430		1000	310	ug/L	1000	07/01/13 18:17
Hexachlorobutadiene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Isopropylbenzene (Cumene)	168		10.0	3.10	ug/L	10	07/01/13 16:33
Methyl-t-butyl ether	50.0	U	50.0	15.0	ug/L	10	07/01/13 16:33
Methylene chloride	50.0	U	50.0	10.0	ug/L	10	07/01/13 16:33
n-Butylbenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
n-Propylbenzene	382		10.0	3.10	ug/L	10	07/01/13 16:33
Naphthalene	425		20.0	6.20	ug/L	10	07/01/13 16:33
o-Xylene	7500		1000	310	ug/L	1000	07/01/13 18:17
P & M -Xylene	16600		2000	620	ug/L	1000	07/01/13 18:17
sec-Butylbenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Styrene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
tert-Butylbenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Tetrachloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Toluene	53200		1000	310	ug/L	1000	07/01/13 18:17
trans-1,2-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
trans-1,3-Dichloropropene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Trichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Trichlorofluoromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Vinyl chloride	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:33
Xylenes (total)	24100		3000	940	ug/L	1000	07/01/13 18:17
Surrogates							
1,2-Dichloroethane-D4	86.6		70-120		%	10	07/01/13 16:33
4-Bromofluorobenzene	101		75-120		%	10	07/01/13 16:33
Toluene-d8	101		85-120		%	10	07/01/13 16:33

Batch Information

Analytical Batch: VMS13594 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 07/01/13 16:33 Container ID: 1132689006-D Prep Batch: VXX24879
Prep Method: SW5030B
Prep Date/Time: 07/01/13 11:24
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **MW20-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689007
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual 31.1	LOQ/CL 3.09	<u>DL</u> 0.928	<u>Units</u> mg/L	<u>DF</u> 5	<u>Date Analyzed</u> 07/01/13 14:36
Surrogates						
5a Androstane	89.2	50-150		%	5	07/01/13 14:36

Batch Information

Analytical Batch: XFC10946 Analytical Method: AK102 Analyst: MCM

Analytical Date/Time: 07/01/13 14:36 Container ID: 1132689007-G Prep Batch: XXX29283
Prep Method: SW3520C
Prep Date/Time: 06/28/13 11:10
Prep Initial Wt./Vol.: 970 mL
Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual 1.90	LOQ/CL 0.515	<u>DL</u> 0.155	<u>Units</u> mg/L	<u>DF</u> 1	<u>Date Analyzed</u> 06/29/13 21:08
Surrogates						
n-Triacontane-d62	103	50-150		%	1	06/29/13 21:08

Batch Information

Analytical Batch: XFC10942 Analytical Method: AK103

Analyst: MCM

Analytical Date/Time: 06/29/13 21:08 Container ID: 1132689007-G Prep Batch: XXX29283 Prep Method: SW3520C Prep Date/Time: 06/28/13 11:10 Prep Initial Wt./Vol.: 970 mL Prep Extract Vol: 1 mL

Client Sample ID: **MW20-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689007
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

%

1000

07/03/13 17:59

Solids (%):

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics	228	100	31.0	mg/L	1000	07/03/13 17:59
Surrogates						

50-150

102

4-Bromofluorobenzene Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/03/13 17:59 Container ID: 1132689007-A Prep Batch: VXX24891 Prep Method: SW5030B Prep Date/Time: 07/03/13 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **MW20-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689007
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
1,1,1-Trichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,1,2,2-Tetrachloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
1,1,2-Trichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,1-Dichloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,1-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,1-Dichloropropene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2,3-Trichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2,3-Trichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2,4-Trichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2,4-Trimethylbenzene	2140		1000	310	ug/L	1000	07/01/13 18:34
1,2-Dibromo-3-chloropropane	20.0	U	20.0	6.20	ug/L	10	07/01/13 16:50
1,2-Dibromoethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2-Dichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,2-Dichloroethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
1,2-Dichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,3,5-Trimethylbenzene	661		10.0	3.10	ug/L	10	07/01/13 16:50
1,3-Dichlorobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
1,3-Dichloropropane	4.00	U	4.00	1.20	ug/L	10	07/01/13 16:50
1,4-Dichlorobenzene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
2,2-Dichloropropane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
2-Butanone (MEK)	100	U	100	31.0	ug/L	10	07/01/13 16:50
2-Chlorotoluene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
2-Hexanone	100	U	100	31.0	ug/L	10	07/01/13 16:50
4-Chlorotoluene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
4-Isopropyltoluene	13.6		10.0	3.10	ug/L	10	07/01/13 16:50
4-Methyl-2-pentanone (MIBK)	100	U	100	31.0	ug/L	10	07/01/13 16:50
Benzene	18500		400	120	ug/L	1000	07/01/13 18:34
Bromobenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Bromochloromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Bromodichloromethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
Bromoform	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Bromomethane	30.0	U	30.0	9.40	ug/L	10	07/01/13 16:50
Carbon disulfide	20.0	U	20.0	6.20	ug/L	10	07/01/13 16:50
Carbon tetrachloride	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Chlorobenzene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
Chloroethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Chloroform	10.0	U	10.0	3.00	ug/L	10	07/01/13 16:50
Chloromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
cis-1,2-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
cis-1,3-Dichloropropene	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
Dibromochloromethane	5.00	U	5.00	1.50	ug/L	10	07/01/13 16:50
Dibromomethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Dichlorodifluoromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50

Client Sample ID: **MW20-0626**Client Project ID: **Six Robblees**Lab Sample ID: 1132689007
Lab Project ID: 1132689

Collection Date: 06/26/13 19:45 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Ethylbenzene	4900		1000	310	ug/L	1000	07/01/13 18:34
Hexachlorobutadiene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Isopropylbenzene (Cumene)	173		10.0	3.10	ug/L	10	07/01/13 16:50
Methyl-t-butyl ether	50.0	U	50.0	15.0	ug/L	10	07/01/13 16:50
Methylene chloride	50.0	U	50.0	10.0	ug/L	10	07/01/13 16:50
n-Butylbenzene	74.6		10.0	3.10	ug/L	10	07/01/13 16:50
n-Propylbenzene	399		10.0	3.10	ug/L	10	07/01/13 16:50
Naphthalene	457		20.0	6.20	ug/L	10	07/01/13 16:50
o-Xylene	8350		1000	310	ug/L	1000	07/01/13 18:34
P & M -Xylene	18600		2000	620	ug/L	1000	07/01/13 18:34
sec-Butylbenzene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Styrene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
tert-Butylbenzene	10.7		10.0	3.10	ug/L	10	07/01/13 16:50
Tetrachloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Toluene	58300		1000	310	ug/L	1000	07/01/13 18:34
trans-1,2-Dichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
trans-1,3-Dichloropropene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Trichloroethene	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Trichlorofluoromethane	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Vinyl chloride	10.0	U	10.0	3.10	ug/L	10	07/01/13 16:50
Xylenes (total)	26900		3000	940	ug/L	1000	07/01/13 18:34
Surrogates							
1,2-Dichloroethane-D4	85.7		70-120		%	10	07/01/13 16:50
4-Bromofluorobenzene	103		75-120		%	10	07/01/13 16:50
Toluene-d8	102		85-120		%	10	07/01/13 16:50

Batch Information

Analytical Batch: VMS13594 Analytical Method: SW8260B

Analyst: NRB

Analytical Date/Time: 07/01/13 16:50 Container ID: 1132689007-C

Prep Batch: VXX24879
Prep Method: SW5030B
Prep Date/Time: 07/01/13 11:24
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of TB1

Client Sample ID: TB1

Client Project ID: **Six Robblees**Lab Sample ID: 1132689008
Lab Project ID: 1132689

Collection Date: 06/26/13 10:15 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Date Analyzed 07/02/13 16:29
Surrogates 4-Bromofluorobenzene	92.3	50-150		%	1	07/02/13 16:29

Batch Information

Analytical Batch: VFC11487 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 07/02/13 16:29 Container ID: 1132689008-A Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	0.500	U	0.500	0.150	ug/L	1	07/02/13 16:29
Ethylbenzene	1.00	U	1.00	0.310	ug/L	1	07/02/13 16:29
o-Xylene	1.00	U	1.00	0.310	ug/L	1	07/02/13 16:29
P & M -Xylene	2.00	U	2.00	0.620	ug/L	1	07/02/13 16:29
Toluene	1.00	U	1.00	0.310	ug/L	1	07/02/13 16:29
Surrogates							
1,4-Difluorobenzene	97.3		77-115		%	1	07/02/13 16:29

Batch Information

Analytical Batch: VFC11487 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 07/02/13 16:29 Container ID: 1132689008-A Prep Batch: VXX24884
Prep Method: SW5030B
Prep Date/Time: 07/02/13 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of TB2

Client Sample ID: TB2

Client Project ID: **Six Robblees** Lab Sample ID: 1132689009 Lab Project ID: 1132689 Collection Date: 06/26/13 10:15 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
1,1,1-Trichloroethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,1,2,2-Tetrachloroethane	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
1,1,2-Trichloroethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,1-Dichloroethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,1-Dichloroethene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,1-Dichloropropene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2,3-Trichlorobenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2,3-Trichloropropane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2,4-Trichlorobenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2,4-Trimethylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2-Dibromo-3-chloropropane	2.00	U	2.00	0.620	ug/L	1	06/30/13 10:36
1,2-Dibromoethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2-Dichlorobenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,2-Dichloroethane	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
1,2-Dichloropropane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,3,5-Trimethylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,3-Dichlorobenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
1,3-Dichloropropane	0.400	U	0.400	0.120	ug/L	1	06/30/13 10:36
1,4-Dichlorobenzene	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
2,2-Dichloropropane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
2-Butanone (MEK)	10.0	U	10.0	3.10	ug/L	1	06/30/13 10:36
2-Chlorotoluene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
2-Hexanone	10.0	U	10.0	3.10	ug/L	1	06/30/13 10:36
4-Chlorotoluene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
4-Isopropyltoluene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
4-Methyl-2-pentanone (MIBK)	10.0	U	10.0	3.10	ug/L	1	06/30/13 10:36
Benzene	0.400	U	0.400	0.120	ug/L	1	06/30/13 10:36
Bromobenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Bromochloromethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Bromodichloromethane	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
Bromoform	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Bromomethane	3.00	U	3.00	0.940	ug/L	1	06/30/13 10:36
Carbon disulfide	2.00	U	2.00	0.620	ug/L	1	06/30/13 10:36
Carbon tetrachloride	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Chlorobenzene	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
Chloroethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Chloroform	1.00	U	1.00	0.300	ug/L	1	06/30/13 10:36
Chloromethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
cis-1,2-Dichloroethene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
cis-1,3-Dichloropropene	0.500	U	0.500	0.150	ug/L	1	06/30/13 10:36
Dibromochloromethane	0.500	Ü	0.500	0.150	ug/L	1	06/30/13 10:36
Dibromomethane	1.00	Ü	1.00	0.310	ug/L	1	06/30/13 10:36
Dichlorodifluoromethane	1.00	Ü	1.00	0.310	ug/L	1	06/30/13 10:36

Results of TB2

Client Sample ID: TB2

Client Project ID: **Six Robblees** Lab Sample ID: 1132689009 Lab Project ID: 1132689 Collection Date: 06/26/13 10:15 Received Date: 06/27/13 10:24 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Results by Volatile GC/MS

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Ethylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Hexachlorobutadiene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Isopropylbenzene (Cumene)	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Methyl-t-butyl ether	5.00	U	5.00	1.50	ug/L	1	06/30/13 10:36
Methylene chloride	5.00	U	5.00	1.00	ug/L	1	06/30/13 10:36
n-Butylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
n-Propylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Naphthalene	2.00	U	2.00	0.620	ug/L	1	06/30/13 10:36
o-Xylene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
P & M -Xylene	2.00	U	2.00	0.620	ug/L	1	06/30/13 10:36
sec-Butylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Styrene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
tert-Butylbenzene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Tetrachloroethene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Toluene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
trans-1,2-Dichloroethene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
trans-1,3-Dichloropropene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Trichloroethene	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Trichlorofluoromethane	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Vinyl chloride	1.00	U	1.00	0.310	ug/L	1	06/30/13 10:36
Xylenes (total)	3.00	U	3.00	0.940	ug/L	1	06/30/13 10:36
Surrogates							
1,2-Dichloroethane-D4	108		70-120		%	1	06/30/13 10:36
4-Bromofluorobenzene	103		75-120		%	1	06/30/13 10:36
Toluene-d8	98.3		85-120		%	1	06/30/13 10:36

Batch Information

Analytical Batch: VMS13592 Analytical Method: SW8260B

Analyst: SCL

Analytical Date/Time: 06/30/13 10:36 Container ID: 1132689009-A Prep Method: SW5030B Prep Date/Time: 06/30/13 06:01 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX24876

Blank ID: MB for HBN 1458182 [VXX/24876]

Blank Lab ID: 1156462

QC for Samples: 1132689009

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

-				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.300U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.620U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.300U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.620U	1.00	0.310	ug/L
1,1-Dichloroethane	0.620U	1.00	0.310	ug/L
1,1-Dichloroethene	0.620U	1.00	0.310	ug/L
1,1-Dichloropropene	0.620U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.620U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.620U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.620U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.620U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	1.24U	2.00	0.620	ug/L
1,2-Dibromoethane	0.620U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.620U	1.00	0.310	ug/L
1,2-Dichloroethane	0.300U	0.500	0.150	ug/L
1,2-Dichloropropane	0.620U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.620U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.620U	1.00	0.310	ug/L
1,3-Dichloropropane	0.240U	0.400	0.120	ug/L
1,4-Dichlorobenzene	0.300U	0.500	0.150	ug/L
2,2-Dichloropropane	0.620U	1.00	0.310	ug/L
2-Butanone (MEK)	6.20U	10.0	3.10	ug/L
2-Chlorotoluene	0.620U	1.00	0.310	ug/L
2-Hexanone	6.20U	10.0	3.10	ug/L
4-Chlorotoluene	0.620U	1.00	0.310	ug/L
4-Isopropyltoluene	0.620U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	6.20U	10.0	3.10	ug/L
Benzene	0.240U	0.400	0.120	ug/L
Bromobenzene	0.620U	1.00	0.310	ug/L
Bromochloromethane	0.620U	1.00	0.310	ug/L
Bromodichloromethane	0.300U	0.500	0.150	ug/L
Bromoform	0.620U	1.00	0.310	ug/L
Bromomethane	1.88U	3.00	0.940	ug/L
Carbon disulfide	1.24U	2.00	0.620	ug/L
Carbon tetrachloride	0.620U	1.00	0.310	ug/L
Chlorobenzene	0.300U	0.500	0.150	ug/L
Chloroethane	0.620U	1.00	0.310	ug/L

Blank ID: MB for HBN 1458182 [VXX/24876]

Blank Lab ID: 1156462

QC for Samples: 1132689009

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.620U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.620U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.300U	0.500	0.150	ug/L
Dibromochloromethane	0.300U	0.500	0.150	ug/L
Dibromomethane	0.620U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.620U	1.00	0.310	ug/L
Ethylbenzene	0.620U	1.00	0.310	ug/L
Hexachlorobutadiene	0.620U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.620U	1.00	0.310	ug/L
Methylene chloride	2.00U	5.00	1.00	ug/L
Methyl-t-butyl ether	3.00U	5.00	1.50	ug/L
Naphthalene	1.24U	2.00	0.620	ug/L
n-Butylbenzene	0.620U	1.00	0.310	ug/L
n-Propylbenzene	0.620U	1.00	0.310	ug/L
o-Xylene	0.620U	1.00	0.310	ug/L
P & M -Xylene	1.24U	2.00	0.620	ug/L
sec-Butylbenzene	0.620U	1.00	0.310	ug/L
Styrene	0.620U	1.00	0.310	ug/L
tert-Butylbenzene	0.620U	1.00	0.310	ug/L
Tetrachloroethene	0.620U	1.00	0.310	ug/L
Toluene	0.620U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.620U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.620U	1.00	0.310	ug/L
Trichloroethene	0.620U	1.00	0.310	ug/L
Trichlorofluoromethane	0.620U	1.00	0.310	ug/L
Vinyl chloride	0.620U	1.00	0.310	ug/L
Xylenes (total)	1.88U	3.00	0.940	ug/L
Surrogates				
1,2-Dichloroethane-D4	106	70-120		%
4-Bromofluorobenzene	104	75-120		%
Toluene-d8	99.1	85-120		%

Blank ID: MB for HBN 1458182 [VXX/24876]

Blank Lab ID: 1156462

QC for Samples: 1132689009

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS13592 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS

Analyst: SCL

Analytical Date/Time: 6/30/2013 6:52:00AM

Prep Batch: VXX24876 Prep Method: SW5030B

Prep Date/Time: 6/30/2013 6:01:41AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1132689 [VXX24876]

Blank Spike Lab ID: 1156463 Date Analyzed: 06/30/2013 07:09

QC for Samples: 1132689009

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24876]

Spike Duplicate Lab ID: 1156464 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	31.8	106	30	32.5	108	(80-130)	2.40	(< 20)
1,1,1-Trichloroethane	30	31.3	104	30	32.2	107	(65-130)	3.00	(< 20)
1,1,2,2-Tetrachloroethane	30	30.6	102	30	31.9	106	(65-130)	4.30	(< 20)
1,1,2-Trichloroethane	30	29.4	98	30	30.1	100	(75-125)	2.30	(< 20)
1,1-Dichloroethane	30	30.3	101	30	31.0	103	(70-135)	2.40	(< 20)
1,1-Dichloroethene	30	30.4	101	30	31.3	104	(70-130)	2.80	(< 20)
1,1-Dichloropropene	30	31.5	105	30	32.6	109	(75-130)	3.30	(< 20)
1,2,3-Trichlorobenzene	30	29.8	100	30	33.1	110	(55-140)	10.20	(< 20)
1,2,3-Trichloropropane	30	30.4	101	30	31.6	105	(75-125)	4.10	(< 20)
1,2,4-Trichlorobenzene	30	29.6	99	30	32.8	109	(65-135)	10.40	(< 20)
1,2,4-Trimethylbenzene	30	29.6	99	30	32.1	107	(75-130)	7.80	(< 20)
1,2-Dibromo-3-chloropropane	30	28.7	96	30	29.9	100	(50-130)	4.20	(< 20)
1,2-Dibromoethane	30	31.1	104	30	31.7	106	(80-120)	1.70	(< 20)
1,2-Dichlorobenzene	30	28.9	96	30	30.7	102	(70-120)	6.20	(< 20)
1,2-Dichloroethane	30	28.9	96	30	29.9	100	(70-130)	3.40	(< 20)
1,2-Dichloropropane	30	30.1	100	30	31.2	104	(75-125)	3.80	(< 20)
1,3,5-Trimethylbenzene	30	28.6	95	30	30.5	102	(75-130)	6.30	(< 20)
1,3-Dichlorobenzene	30	29.1	97	30	31.1	104	(75-125)	6.70	(< 20)
1,3-Dichloropropane	30	30.5	102	30	31.2	104	(75-125)	2.30	(< 20)
1,4-Dichlorobenzene	30	29.2	97	30	31.3	104	(75-125)	6.90	(< 20)
2,2-Dichloropropane	30	33.5	112	30	34.3	114	(70-135)	2.60	(< 20)
2-Butanone (MEK)	90	89.3	99	90	91.9	102	(30-150)	2.90	(< 20)
2-Chlorotoluene	30	29.2	97	30	31.4	105	(75-125)	7.10	(< 20)
2-Hexanone	90	92.1	102	90	94.3	105	(55-130)	2.40	(< 20)
4-Chlorotoluene	30	29.3	98	30	33.1	110	(75-130)	12.10	(< 20)
4-Isopropyltoluene	30	27.5	92	30	30.0	100	(75-130)	8.60	(< 20)
4-Methyl-2-pentanone (MIBK)	90	92.6	103	90	96.7	107	(60-135)	4.30	(< 20)
Benzene	30	30.3	101	30	31.4	105	(80-120)	3.60	(< 20)
Bromobenzene	30	29.4	98	30	31.1	104	(75-125)	5.80	(< 20)
Bromochloromethane	30	29.7	99	30	30.9	103	(65-130)	4.00	(< 20)
Bromodichloromethane	30	30.0	100	30	31.2	104	(75-120)	3.90	(< 20)
Bromoform	30	32.9	110	30	33.7	112	(70-130)	2.40	(< 20)
Bromomethane	30	29.2	97	30	31.0	103	(30-145)	6.10	(< 20)

Blank Spike ID: LCS for HBN 1132689 [VXX24876]

Blank Spike Lab ID: 1156463 Date Analyzed: 06/30/2013 07:09

QC for Samples: 1132689009

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24876]

Spike Duplicate Lab ID: 1156464 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon disulfide	45	45.2	100	45	46.6	104	(35-160)	3.00	(< 20)
Carbon tetrachloride	30	32.3	108	30	33.1	110	(65-140)	2.40	(< 20)
Chlorobenzene	30	30.4	101	30	31.3	104	(80-120)	3.10	(< 20)
Chloroethane	30	28.4	95	30	29.1	97	(60-135)	2.40	(< 20)
Chloroform	30	27.5	92	30	28.5	95	(65-135)	3.70	(< 20)
Chloromethane	30	24.9	83	30	26.3	88	(40-125)	5.60	(< 20)
cis-1,2-Dichloroethene	30	29.4	98	30	30.6	102	(70-125)	3.70	(< 20)
cis-1,3-Dichloropropene	30	31.4	105	30	32.6	109	(70-130)	3.80	(< 20)
Dibromochloromethane	30	31.6	105	30	32.4	108	(60-135)	2.40	(< 20)
Dibromomethane	30	28.1	94	30	29.1	97	(75-125)	3.60	(< 20)
Dichlorodifluoromethane	30	30.0	100	30	30.4	101	(30-155)	1.30	(< 20)
Ethylbenzene	30	31.3	104	30	32.2	107	(75-125)	3.10	(< 20)
Hexachlorobutadiene	30	30.3	101	30	33.0	110	(50-140)	8.70	(< 20)
Isopropylbenzene (Cumene)	30	31.2	104	30	32.6	109	(75-125)	4.50	(< 20)
Methyl-t-butyl ether	45	46.0	102	45	47.4	105	(65-125)	2.90	(< 20)
Methylene chloride	30	29.3	98	30	30.1	100	(55-140)	2.90	(< 20)
n-Butylbenzene	30	28.3	94	30	31.3	104	(70-135)	10.30	(< 20)
n-Propylbenzene	30	29.6	99	30	31.5	105	(70-130)	6.30	(< 20)
Naphthalene	30	30.4	101	30	32.6	109	(55-140)	6.80	(< 20)
o-Xylene	30	30.7	102	30	31.7	106	(80-120)	3.00	(< 20)
P & M -Xylene	60	62.4	104	60	64.2	107	(75-130)	2.90	(< 20)
sec-Butylbenzene	30	29.5	98	30	32.3	108	(70-125)	8.90	(< 20)
Styrene	30	31.8	106	30	32.9	110	(65-135)	3.40	(< 20)
tert-Butylbenzene	30	31.1	104	30	33.6	112	(70-130)	7.90	(< 20)
Tetrachloroethene	30	30.3	101	30	30.7	102	(45-150)	1.50	(< 20)
Toluene	30	30.8	103	30	31.6	105	(75-120)	2.80	(< 20)
trans-1,2-Dichloroethene	30	30.3	101	30	31.5	105	(60-140)	4.00	(< 20)
trans-1,3-Dichloropropene	30	32.2	107	30	33.1	110	(55-140)	2.80	(< 20)
Trichloroethene	30	30.9	103	30	32.1	107	(70-125)	3.60	(< 20)
Trichlorofluoromethane	30	30.2	101	30	31.0	103	(60-145)	2.80	(< 20)
Vinyl chloride	30	28.7	96	30	29.9	100	(50-145)	4.00	(< 20)
Xylenes (total)	90	93.1	103	90	95.9	107	(80-120)	2.90	(< 20)

Surrogates

Blank Spike ID: LCS for HBN 1132689 [VXX24876]

Blank Spike Lab ID: 1156463 Date Analyzed: 06/30/2013 07:09

QC for Samples: 1132689009 Spike Duplicate ID: LCSD for HBN 1132689

[VXX24876]

Spike Duplicate Lab ID: 1156464 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

	Blank Spike (%)				Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2-Dichloroethane-D4	30	96	96	30	95.5	96	(70-120)	0.52	
4-Bromofluorobenzene	30	100	100	30	102	102	(75-120)	1.80	
Toluene-d8	30	101	101	30	100	100	(85-120)	1.10	

Batch Information

Analytical Batch: VMS13592 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS

Analyst: SCL

Prep Batch: VXX24876 Prep Method: SW5030B

Prep Date/Time: 06/30/2013 06:01

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1458290 [VXX/24879]

Blank Lab ID: 1156756

QC for Samples:

1132689006, 1132689007

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

results by criticate				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.300U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.620U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.300U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.620U	1.00	0.310	ug/L
1,1-Dichloroethane	0.620U	1.00	0.310	ug/L
1,1-Dichloroethene	0.620U	1.00	0.310	ug/L
1,1-Dichloropropene	0.620U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.620U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.620U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.620U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.620U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	1.24U	2.00	0.620	ug/L
1,2-Dibromoethane	0.620U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.620U	1.00	0.310	ug/L
1,2-Dichloroethane	0.300U	0.500	0.150	ug/L
1,2-Dichloropropane	0.620U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.620U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.620U	1.00	0.310	ug/L
1,3-Dichloropropane	0.240U	0.400	0.120	ug/L
1,4-Dichlorobenzene	0.300U	0.500	0.150	ug/L
2,2-Dichloropropane	0.620U	1.00	0.310	ug/L
2-Butanone (MEK)	6.20U	10.0	3.10	ug/L
2-Chlorotoluene	0.620U	1.00	0.310	ug/L
2-Hexanone	6.20U	10.0	3.10	ug/L
4-Chlorotoluene	0.620U	1.00	0.310	ug/L
4-Isopropyltoluene	0.620U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	6.20U	10.0	3.10	ug/L
Benzene	0.240U	0.400	0.120	ug/L
Bromobenzene	0.620U	1.00	0.310	ug/L
Bromochloromethane	0.620U	1.00	0.310	ug/L
Bromodichloromethane	0.300U	0.500	0.150	ug/L
Bromoform	0.620U	1.00	0.310	ug/L
Bromomethane	1.88U	3.00	0.940	ug/L
Carbon disulfide	1.24U	2.00	0.620	ug/L
Carbon tetrachloride	0.620U	1.00	0.310	ug/L
Chlorobenzene	0.300U	0.500	0.150	ug/L
Chloroethane	0.620U	1.00	0.310	ug/L
Chloroform	0.600U	1.00	0.300	ug/L

Blank ID: MB for HBN 1458290 [VXX/24879]

Blank Lab ID: 1156756

QC for Samples:

1132689006, 1132689007

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.620U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.620U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.300U	0.500	0.150	ug/L
Dibromochloromethane	0.300U	0.500	0.150	ug/L
Dibromomethane	0.620U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.620U	1.00	0.310	ug/L
Ethylbenzene	0.620U	1.00	0.310	ug/L
Hexachlorobutadiene	0.620U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.620U	1.00	0.310	ug/L
Methylene chloride	2.00U	5.00	1.00	ug/L
Methyl-t-butyl ether	3.00U	5.00	1.50	ug/L
Naphthalene	1.24U	2.00	0.620	ug/L
n-Butylbenzene	0.620U	1.00	0.310	ug/L
n-Propylbenzene	0.620U	1.00	0.310	ug/L
o-Xylene	0.620U	1.00	0.310	ug/L
P & M -Xylene	1.24U	2.00	0.620	ug/L
sec-Butylbenzene	0.620U	1.00	0.310	ug/L
Styrene	0.620U	1.00	0.310	ug/L
tert-Butylbenzene	0.620U	1.00	0.310	ug/L
Tetrachloroethene	0.620U	1.00	0.310	ug/L
Toluene	0.620U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.620U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.620U	1.00	0.310	ug/L
Trichloroethene	0.620U	1.00	0.310	ug/L
Trichlorofluoromethane	0.620U	1.00	0.310	ug/L
Vinyl chloride	0.620U	1.00	0.310	ug/L
Xylenes (total)	1.88U	3.00	0.940	ug/L
Surrogates				
1,2-Dichloroethane-D4	108	70-120		%
4-Bromofluorobenzene	102	75-120		%
Toluene-d8	98.6	85-120		%

Blank ID: MB for HBN 1458290 [VXX/24879]

Blank Lab ID: 1156756

QC for Samples:

1132689006, 1132689007

Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS13594 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Analytical Date/Time: 7/1/2013 12:16:00PM

Prep Batch: VXX24879 Prep Method: SW5030B

Prep Date/Time: 7/1/2013 11:24:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1132689 [VXX24879]

Blank Spike Lab ID: 1156757 Date Analyzed: 07/01/2013 12:33

QC for Samples: 1132689006, 1132689007

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24879]

Spike Duplicate Lab ID: 1156758 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

		Blank Spike	Blank Spike (ug/L) Spike Duplicate (ug/L)						
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	33.0	110	30	31.8	106	(80-130)	3.60	(< 20)
1,1,1-Trichloroethane	30	34.0	113	30	32.5	108	(65-130)	4.40	(< 20)
1,1,2,2-Tetrachloroethane	30	30.5	102	30	31.3	104	(65-130)	2.80	(< 20)
1,1,2-Trichloroethane	30	30.5	102	30	29.7	99	(75-125)	2.70	(< 20)
1,1-Dichloroethane	30	32.7	109	30	31.4	105	(70-135)	4.00	(< 20)
1,1-Dichloroethene	30	33.0	110	30	31.8	106	(70-130)	3.70	(< 20)
1,1-Dichloropropene	30	34.1	114	30	32.6	109	(75-130)	4.30	(< 20)
1,2,3-Trichlorobenzene	30	30.8	103	30	32.1	107	(55-140)	4.30	(< 20)
1,2,3-Trichloropropane	30	30.2	101	30	31.1	104	(75-125)	2.90	(< 20)
1,2,4-Trichlorobenzene	30	30.4	101	30	31.5	105	(65-135)	3.60	(< 20)
1,2,4-Trimethylbenzene	30	30.7	102	30	30.7	102	(75-130)	0.20	(< 20)
1,2-Dibromo-3-chloropropane	30	27.4	91	30	29.0	97	(50-130)	5.90	(< 20)
1,2-Dibromoethane	30	31.8	106	30	31.3	104	(80-120)	1.40	(< 20)
1,2-Dichlorobenzene	30	29.9	100	30	29.8	99	(70-120)	0.37	(< 20)
1,2-Dichloroethane	30	30.6	102	30	29.6	99	(70-130)	3.10	(< 20)
1,2-Dichloropropane	30	32.0	107	30	31.0	103	(75-125)	3.10	(< 20)
1,3,5-Trimethylbenzene	30	29.5	98	30	29.6	99	(75-130)	0.51	(< 20)
1,3-Dichlorobenzene	30	29.7	99	30	29.9	100	(75-125)	0.37	(< 20)
1,3-Dichloropropane	30	31.5	105	30	30.6	102	(75-125)	2.60	(< 20)
1,4-Dichlorobenzene	30	30.3	101	30	30.1	100	(75-125)	0.56	(< 20)
2,2-Dichloropropane	30	35.9	120	30	34.1	114	(70-135)	5.10	(< 20)
2-Butanone (MEK)	90	88.0	98	90	94.0	104	(30-150)	6.50	(< 20)
2-Chlorotoluene	30	30.0	100	30	29.9	100	(75-125)	0.40	(< 20)
2-Hexanone	90	89.7	100	90	95.0	106	(55-130)	5.80	(< 20)
4-Chlorotoluene	30	30.1	100	30	30.0	100	(75-130)	0.03	(< 20)
4-Isopropyltoluene	30	28.6	95	30	29.3	98	(75-130)	2.40	(< 20)
4-Methyl-2-pentanone (MIBK)	90	93.0	103	90	97.3	108	(60-135)	4.50	(< 20)
Benzene	30	32.6	109	30	31.3	104	(80-120)	3.90	(< 20)
Bromobenzene	30	30.1	100	30	29.8	99	(75-125)	1.20	(< 20)
Bromochloromethane	30	31.8	106	30	30.6	102	(65-130)	3.70	(< 20)
Bromodichloromethane	30	31.9	106	30	30.8	103	(75-120)	3.60	(< 20)
Bromoform	30	32.7	109	30	32.7	109	(70-130)	0.09	(< 20)
Bromomethane	30	30.8	103	30	29.9	100	(30-145)	2.70	(< 20)

Blank Spike ID: LCS for HBN 1132689 [VXX24879]

Blank Spike Lab ID: 1156757 Date Analyzed: 07/01/2013 12:33

QC for Samples: 1132689006, 1132689007

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24879]

Spike Duplicate Lab ID: 1156758 Matrix: Water (Surface, Eff., Ground)

Results by SW8260B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon disulfide	45	49.2	109	45	47.6	106	(35-160)	3.40	(< 20)
Carbon tetrachloride	30	35.3	118	30	33.5	112	(65-140)	5.10	(< 20)
Chlorobenzene	30	31.7	106	30	30.6	102	(80-120)	3.40	(< 20)
Chloroethane	30	30.7	102	30	29.2	98	(60-135)	4.90	(< 20)
Chloroform	30	29.7	99	30	28.4	95	(65-135)	4.40	(< 20)
Chloromethane	30	24.4	81	30	25.2	84	(40-125)	3.00	(< 20)
cis-1,2-Dichloroethene	30	31.6	105	30	30.4	101	(70-125)	3.80	(< 20)
cis-1,3-Dichloropropene	30	32.6	109	30	31.8	106	(70-130)	2.40	(< 20)
Dibromochloromethane	30	32.6	109	30	31.7	106	(60-135)	2.60	(< 20)
Dibromomethane	30	29.8	100	30	29.0	97	(75-125)	2.80	(< 20)
Dichlorodifluoromethane	30	32.5	108	30	31.0	103	(30-155)	4.70	(< 20)
Ethylbenzene	30	33.0	110	30	31.8	106	(75-125)	3.70	(< 20)
Hexachlorobutadiene	30	31.5	105	30	32.6	109	(50-140)	3.40	(< 20)
Isopropylbenzene (Cumene)	30	32.9	110	30	32.1	107	(75-125)	2.50	(< 20)
Methyl-t-butyl ether	45	47.6	106	45	46.7	104	(65-125)	2.00	(< 20)
Methylene chloride	30	31.9	106	30	30.8	103	(55-140)	3.30	(< 20)
n-Butylbenzene	30	29.7	99	30	30.4	101	(70-135)	2.30	(< 20)
n-Propylbenzene	30	30.6	102	30	30.6	102	(70-130)	0.03	(< 20)
Naphthalene	30	30.2	101	30	31.8	106	(55-140)	5.40	(< 20)
o-Xylene	30	32.0	107	30	31.0	103	(80-120)	3.30	(< 20)
P & M -Xylene	60	65.9	110	60	63.3	105	(75-130)	4.10	(< 20)
sec-Butylbenzene	30	30.9	103	30	31.3	104	(70-125)	1.20	(< 20)
Styrene	30	33.1	110	30	31.9	106	(65-135)	3.70	(< 20)
tert-Butylbenzene	30	32.2	107	30	32.5	108	(70-130)	0.80	(< 20)
Tetrachloroethene	30	30.9	103	30	30.4	101	(45-150)	1.80	(< 20)
Toluene	30	32.4	108	30	31.2	104	(75-120)	3.80	(< 20)
trans-1,2-Dichloroethene	30	32.9	110	30	31.5	105	(60-140)	4.10	(< 20)
trans-1,3-Dichloropropene	30	33.2	111	30	32.4	108	(55-140)	2.20	(< 20)
Trichloroethene	30	33.3	111	30	32.0	107	(70-125)	4.00	(< 20)
Trichlorofluoromethane	30	32.5	108	30	30.7	102	(60-145)	5.60	(< 20)
Vinyl chloride	30	30.9	103	30	30.0	100	(50-145)	3.00	(< 20)
Xylenes (total)	90	97.9	109	90	94.2	105	(80-120)	3.80	(< 20)

Surrogates

Blank Spike ID: LCS for HBN 1132689 [VXX24879]

Blank Spike Lab ID: 1156757 Date Analyzed: 07/01/2013 12:33

757 [VXX24879] 013 12:33 Spike Duplic

Spike Duplicate Lab ID: 1156758 Matrix: Water (Surface, Eff., Ground)

Spike Duplicate ID: LCSD for HBN 1132689

QC for Samples: 1132689006, 1132689007

Results by SW8260B

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,2-Dichloroethane-D4	30	97.4	97	30	95.9	96	(70-120)	1.60	
4-Bromofluorobenzene	30	98.9	99	30	99.5	100	(75-120)	0.60	
Toluene-d8	30	101	101	30	100	100	(85-120)	0.66	

Batch Information

Analytical Batch: VMS13594 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS

Analyst: NRB

Prep Batch: VXX24879
Prep Method: SW5030B

Prep Date/Time: 07/01/2013 11:24

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:32AM

Blank ID: MB for HBN 1458366 [VXX/24884]

Blank Lab ID: 1156965

QC for Samples:

1132689001, 1132689002, 1132689008

Matrix: Water (Surface, Eff., Ground)

Results by AK101

Results LOQ/CL DL <u>Units</u> **Parameter** Gasoline Range Organics 0.0620U 0.100 0.0310 mg/L

Surrogates

4-Bromofluorobenzene 92.7 50-150 %

Batch Information

Analytical Batch: VFC11487 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 7/2/2013 9:41:00AM

Prep Batch: VXX24884 Prep Method: SW5030B

Prep Date/Time: 7/2/2013 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:33AM

Blank Spike ID: LCS for HBN 1132689 [VXX24884]

Blank Spike Lab ID: 1156968 Date Analyzed: 07/02/2013 10:37 Spike Duplicate ID: LCSD for HBN 1132689

[VXX24884]

Spike Duplicate Lab ID: 1156969 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689001, 1132689002, 1132689008

Results by AK101

			(")	_					
	l	Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.922	92	1.00	1.01	101	(60-120)	8.70	(< 20)
Surrogates									
4-Bromofluorobenzene	0.0500	96.7	97	0.0500	89.9	90	(50-150)	7.30	

Batch Information

Analytical Batch: VFC11487 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX24884
Prep Method: SW5030B

Prep Date/Time: 07/02/2013 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:34AM

Blank ID: MB for HBN 1458366 [VXX/24884]

Blank Lab ID: 1156965

QC for Samples:

1132689001, 1132689002, 1132689008

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.300U	0.500	0.150	ug/L
Ethylbenzene	0.620U	1.00	0.310	ug/L
o-Xylene	0.620U	1.00	0.310	ug/L
P & M -Xylene	1.24U	2.00	0.620	ug/L
Toluene	0.620U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene	96.7	77-115		%

Batch Information

Analytical Batch: VFC11487 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 7/2/2013 9:41:00AM

Prep Batch: VXX24884 Prep Method: SW5030B

Prep Date/Time: 7/2/2013 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:35AM

Blank Spike ID: LCS for HBN 1132689 [VXX24884]

Blank Spike Lab ID: 1156966

Date Analyzed: 07/02/2013 10:18

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24884]

Spike Duplicate Lab ID: 1156967 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689001, 1132689002, 1132689008

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	111	111	100	115	115	(80-120)	3.30	(< 20)
Ethylbenzene	100	108	108	100	111	111	(75-125)	3.30	(< 20)
o-Xylene	100	105	105	100	108	108	(80-120)	3.50	(< 20)
P & M -Xylene	200	212	106	200	221	110	(75-130)	4.00	(< 20)
Toluene	100	111	111	100	114	114	(75-120)	3.10	(< 20)
Surrogates									
1,4-Difluorobenzene	50	101	101	50	101	101	(77-115)	0.36	

Batch Information

Analytical Batch: VFC11487 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX24884 Prep Method: SW5030B

Prep Date/Time: 07/02/2013 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:35AM

Blank ID: MB for HBN 1458769 [VXX/24891]

Blank Lab ID: 1157418

QC for Samples:

1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Matrix: Water (Surface, Eff., Ground)

Results by AK101

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.000300U	0.000500	0.000150	mg/L
Ethylbenzene	0.000620U	0.00100	0.000310	mg/L
Gasoline Range Organics	0.0342J	0.100	0.0310	mg/L
o-Xylene	0.000620U	0.00100	0.000310	mg/L
P & M -Xylene	0.00124U	0.00200	0.000620	mg/L
Toluene	0.000620U	0.00100	0.000310	mg/L
Surrogates				
1,4-Difluorobenzene	93.6	77-115		%
4-Bromofluorobenzene	100	50-150		%

Batch Information

Analytical Batch: VFC11490 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 7/3/2013 8:24:00AM

Prep Batch: VXX24891 Prep Method: SW5030B

Prep Date/Time: 7/3/2013 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:37AM

Blank Spike ID: LCS for HBN 1132689 [VXX24891]

Blank Spike Lab ID: 1157419

Date Analyzed: 07/03/2013 09:01

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24891]

Spike Duplicate Lab ID: 1157420 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK101

	E	Blank Spike	(mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.100	0.104	104	0.100	0.101	101	(80-120)	3.60	(< 20)
Ethylbenzene	0.100	0.113	113	0.100	0.108	108	(75-125)	4.20	(< 20)
o-Xylene	0.100	0.111	111	0.100	0.108	108	(80-120)	3.20	(< 20)
P & M -Xylene	0.200	0.226	113	0.200	0.220	110	(75-130)	3.10	(< 20)
Toluene	0.100	0.113	113	0.100	0.108	108	(75-120)	4.10	(< 20)
Surrogates									
1,4-Difluorobenzene	0.0500	98.7	99	0.0500	99.9	100	(77-115)	1.20	

Batch Information

Analytical Batch: **VFC11490**Analytical Method: **AK101**

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX24891
Prep Method: SW5030B

Prep Date/Time: 07/03/2013 08:00

Spike Init Wt./Vol.: 0.100 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.100 mg/L $\,$ Extract Vol: 5 mL $\,$

Print Date: 07/05/2013 11:41:38AM

Blank Spike ID: LCS for HBN 1132689 [VXX24891]

Blank Spike Lab ID: 1157421 Date Analyzed: 07/03/2013 09:20

[VXX24891]

Spike Duplicate Lab ID: 1157422 Matrix: Water (Surface, Eff., Ground)

Spike Duplicate ID: LCSD for HBN 1132689

QC for Samples: 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK101

_		Blank Spike	(ma/L)	c	eniko Dunli	cate (mg/L)			
Parameter	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.959	96	(60-120)	5.00	(< 20)
Surrogates									
4-Bromofluorobenzene	0.0500	103	103	0.0500	104	104	(50-150)	0.23	

Batch Information

Analytical Batch: VFC11490
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX24891
Prep Method: SW5030B

Prep Date/Time: 07/03/2013 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:38AM

Blank ID: MB for HBN 1458769 [VXX/24891]

Blank Lab ID: 1157418

QC for Samples:

1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.300U	0.500	0.150	ug/L
Ethylbenzene	0.620U	1.00	0.310	ug/L
o-Xylene	0.620U	1.00	0.310	ug/L
P & M -Xylene	1.24U	2.00	0.620	ug/L
Toluene	0.620U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene	93.6	77-115		%

Batch Information

Analytical Batch: VFC11490 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 7/3/2013 8:24:00AM

Prep Batch: VXX24891 Prep Method: SW5030B

Prep Date/Time: 7/3/2013 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:39AM

Blank Spike ID: LCS for HBN 1132689 [VXX24891]

Blank Spike Lab ID: 1157419

Date Analyzed: 07/03/2013 09:01

Spike Duplicate ID: LCSD for HBN 1132689

[VXX24891]

Spike Duplicate Lab ID: 1157420 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by SW8021B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	104	104	100	101	101	(80-120)	3.60	(< 20)
Ethylbenzene	100	113	113	100	108	108	(75-125)	4.20	(< 20)
o-Xylene	100	111	111	100	108	108	(80-120)	3.20	(< 20)
P & M -Xylene	200	226	113	200	220	110	(75-130)	3.10	(< 20)
Toluene	100	113	113	100	108	108	(75-120)	4.10	(< 20)
Surrogates									
1,4-Difluorobenzene	50	98.7	99	50	99.9	100	(77-115)	1.20	

Batch Information

Analytical Batch: VFC11490 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX24891 Prep Method: SW5030B

Prep Date/Time: 07/03/2013 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/05/2013 11:41:39AM

Blank ID: MB for HBN 1457708 [XXX/29283]

Blank Lab ID: 1156039

QC for Samples:

1132689001, 1132689002, 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK102

LOQ/CL <u>Units</u> **Parameter** Results DL Diesel Range Organics 0.360U 0.600 0.180 mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

5a Androstane 71.4 60-120 %

Batch Information

Analytical Batch: XFC10942 Prep Batch: XXX29283 Analytical Method: AK102 Prep Method: SW3520C

Instrument: HP 6890 Series II FID SV D R Prep Date/Time: 6/28/2013 11:10:00AM

Analyst: MCM Prep Initial Wt./Vol.: 1000 mL

Analytical Date/Time: 6/29/2013 7:15:00PM Prep Extract Vol: 1 mL

Print Date: 07/05/2013 11:41:40AM

Blank Spike ID: LCS for HBN 1132689 [XXX29283]

Blank Spike Lab ID: 1156040

Date Analyzed: 06/29/2013 19:24

Spike Duplicate ID: LCSD for HBN 1132689

[XXX29283]

Spike Duplicate Lab ID: 1156041 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689001, 1132689002, 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK102

		Blank Spike	(mg/L)		Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	5	4.42	88	5	4.79	96	(75-125)	8.10	(< 20)
Surrogates									
5a Androstane	0.1	93.5	94	0.1	102	102	(60-120)	8.60	

Batch Information

Analytical Batch: **XFC10942**Analytical Method: **AK102**

Instrument: HP 6890 Series II FID SV D R

Analyst: MCM

Prep Batch: XXX29283
Prep Method: SW3520C

Prep Date/Time: 06/28/2013 11:10

Spike Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL

Print Date: 07/05/2013 11:41:41AM

Blank ID: MB for HBN 1457708 [XXX/29283]

Blank Lab ID: 1156039

QC for Samples:

1132689001, 1132689002, 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK103

LOQ/CL <u>Units</u> **Parameter** Results DL Residual Range Organics 0.181J 0.500 0.150 mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

n-Triacontane-d62 72.6 60-120 %

Batch Information

Analytical Batch: XFC10942 Prep Batch: XXX29283 Analytical Method: AK103 Prep Method: SW3520C

Instrument: HP 6890 Series II FID SV D R Prep Date/Time: 6/28/2013 11:10:00AM Prep Initial Wt./Vol.: 1000 mL

Analyst: MCM

Analytical Date/Time: 6/29/2013 7:15:00PM Prep Extract Vol: 1 mL

Print Date: 07/05/2013 11:41:41AM

Blank Spike ID: LCS for HBN 1132689 [XXX29283]

Blank Spike Lab ID: 1156040

Date Analyzed: 06/29/2013 19:24

Spike Duplicate ID: LCSD for HBN 1132689

[XXX29283]

Spike Duplicate Lab ID: 1156041 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1132689001, 1132689002, 1132689003, 1132689004, 1132689005, 1132689006, 1132689007

Results by AK103

	1	Blank Spike	(mg/L)		Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	5	5.23	105	5	5.60	112	(60-120)	6.80	(< 20)
Surrogates									
n-Triacontane-d62	0.1	97.2	97	0.1	106	106	(60-120)	8.50	

Batch Information

Analytical Batch: **XFC10942**Analytical Method: **AK103**

Instrument: HP 6890 Series II FID SV D R

Analyst: MCM

Prep Batch: XXX29283
Prep Method: SW3520C

Prep Date/Time: 06/28/2013 11:10

Spike Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL

Print Date: 07/05/2013 11:41:42AM

SGS North America Inc. CHAIN OF CUSTODY RECORD

													Section 1	
CLIENT:	BOKS					Instr Or	Instructions: Omissions	เร: Sec าร may	Sections nay delay	1 - 5 n the on	structions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	filled d inalysi	out. S.	
		PHONE NO: (a)		,	Section 3	on 3				1	:			Page — of —
CONTACT:	J. Darsi		10+16-14	648			-		-	Preservative	/ative			
ection Secured NAME:	Six Robblees	PWSID/ PERMIT#:			# U		124	124	13+)	ノンサイ	······································		***************************************	
REPORTS TO:	TO: Newtra	E-MAIL: Josh @ Iz	Jush @ bgesinc, com	7,	0 z ⊢	Type C =								
INVOICE TO: \mathcal{BSES}		QUOTE#: 107728 P.O.#:	824		< - z	GEAB MI =	100	170	20) 71 097	51745 Od				
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шαν		017 1121 1121	201 B	એ(<u>)</u>	2		41.4.4.17		REMARKS/ LOCID
OAE	MW15-0626	81-72-9	1015	Water	12	\$ \$ C.	χ	χ.	Х	X				
Q)AE			1310	_	5		λ	X	χ	X				
J3A-E	MW1-0826		1430		5		X	Х	X	X				
5-4-6-	Mw2-626		1630		5	14	X	X	<u> </u>	X				
Section A-E	MW/4 -C626		1830		5	1	X	X	٨	×				
W(6)A-H			1945		\mathcal{Z}	8	X	X	7	X				
JA-4	MW20-0626	≽	1945	A	8	\$ \$	X	Х	χ	メ		b		
J-₩(8)	. 781	ţ	()	ら	\	- <i>}</i>	Х	:						
GA-C	782	3	١	W	\	3		×						
Relinduished By: (1)	ned-By: (1)	Date	Time	Received By:				<u> </u>	Section 4	<u>0</u>	DOD Project? Yes No	(es(No	Data Deliv	Data Deliverable Requirements:
7		6-27-13		V					Cooler ID:				lere.	7.7
Relinquished By: (2)	ed By: (2)	Date	Time	Received By:				Red	nested.	Turnarour	d Time an	d/or Spe	Requested Turnaround Time and/or Special Instructions:	ns:
tion :			\wedge	`		\		(V)	Standa	ر در در	(0-D-7	\sim		
Relinquish	ed By: (3)	Date	Time	Received By:										
3								Ten	Temp Blank °C:	ŝ	3/2	5	Chain of	Chain of Custody Seal: (Circle)
Relinquished By: (4)	ed By: (4)	Date	Time //S I.O.O.(I	Received For Laboratory By:	· Laborat	ory By:				or Ambient [253/ ent []	# =	INTACT	BROKEN ABSENT
		<u>7</u>	100r	Lake	3				ee attac	hed Sam	(See attached Sample Receipt Form)	t Form)	See attache	(See attached Sample Receipt Form)

http://www.sqs.com/terms-and-conditions

[(<u>/</u>200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [' 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SAMPLE RECEIPT FORM

Review Criteria:	Condition	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.	Yes No NA	
COC accompanied samples?	Yes No N/A	
Temperature blank compliant* (i.e., 0-6°C after CF)?	(Yes) No N/A	
* Note: Exemption permitted for chilled samples collected less than 8 hours ago.		
Cooler ID: @ 2.3 w/ Therm.ID: 203		
Cooler ID: 1 @ 2.3 w/ Therm.ID: 203 Cooler ID: 2 @ 2.3 w/ Therm.ID: 1		
Cooler ID: @ w/ Therm.ID:		
Cooler ID: @ w/ Therm.ID:		
Cooler ID: W/ Therm.ID:		
Note: If non-compliant, use form FS-0029 to document affected samples/analyses.		
If samples are received without a temperature blank, the "cooler		
temperature" will be documented in lieu of the temperature blank &		
"COOLER TEMP" will be noted to the right. In cases where neither a		
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."	· >	
If temperature(s) <0°C, were all sample containers ice free?	Yes No N/A	
Delivery method (specify all that apply): (Client)	Note ABN/	
USPS Alert Courier C&D Delivery AK Air	tracking #	
Lynden Carlile ERA PenAir	C A44 3 3	
FedEx UPS NAC Other:	See Attached	
\rightarrow For WO# with airbills, was the WO# & airbill	or N/A	
info recorded in the Front Counter eLog?	Yes No N/A	~
→ For samples received with payment, note amount (\$) and o		(circle one) or note:
→ For samples received in FBKS, ANCH staff will verify all criteri		SRF Initiated by: SLC N/A
Were samples received within hold time?	(Yes) No N/A	
Note: Refer to form F-083 "Sample Guide" for hold time information.	\sim	
Do samples match COC* (i.e., sample IDs, dates/times collected)?	(Yes No N/A	
* Note: Exemption permitted if times differ < Ihr; in that case, use times on COC.	\sim	
Were analyses requested unambiguous?	Yes No N/A	
Were samples in good condition (no leaks/cracks/breakage)?	(Yes No N/A	
Packing material used (specify all that apply): (Bubble Wrap)		
Separate plastic bags Vermiculite Other:		
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?	Yes No N/A	Samples (4) A-C, (S) A-C, and
Were all soil VOAs field extracted with MeOH+BFB?	Yes No WA	TB &A-C have bubbles
Were proper containers (type/mass/volume/preservative*) used?	Yes No N/A	·
* Note: Exemption permitted for waters to be analyzed for metals.		
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No N/A	
For special handling (e.g., "MI" or foreign soils, lab filter, limited)	Yes No N/A	
(volume, Ref Lab), were bottles/paperwork flagged (e.g., sticker)?		·
For preserved waters (other than VOA vials, LL-Mercury or	Yes No N/A	
microbiological analyses), was pH verified and compliant?		
If pH was adjusted, were bottles flagged (i.e., stickers)?	Yes No N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes No (N/A)	
accordingly? Was Rush/Short HT email sent, if applicable?		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were	Yes No (N/A)	
containers / paperwork flagged accordingly?		
For any question answered "No," has the PM been notified and	Yes No (N/A)	SRF Completed by: SLC 6/27/13
the problem resolved (or paperwork put in their bin)?		PM = N/A
Was PEER REVIEW of sample numbering/labeling completed?	Yes No N/A	Peer Reviewed by: N/A
	100 100 1011	y roor root by.
Additional notes (if applicable):		
•		
		· ·
Note to Client: Any "no" circled above indicates non-comp	liance with stando	ard procedures and may impact data agality

APPENDIX C LABORATORY ANALYTICAL DATA QUALITY CONTROL CHECKLIST

Laboratory Data Review Checklist

Completed by:	Katy Latimer	
Title:	Environmental Scientist	Date: July 11, 2013
CS Report Name	Groundwater Monitoring Report	Report Date: July 2013
Consultant Firm:	BGES, Inc.	
Laboratory Name	e: SGS North America, Inc.	boratory Report Number: 1132689
ADEC File Num	ber: 2100.26.252 ADEC	RecKey Number: N/A
	Yes No NA (Please explain.)	d <u>perform</u> all of the submitted sample analyses? Comments: 'k'' laboratory or sub-contracted to an alternate
labora	ttory, was the laboratory performing the ana Yes No NA Please explain.)	· · · · · · · · · · · · · · · · · · ·
Labora	tory samples were not transferred to anot	her "network" laboratory.
	information completed, signed, and dated (in Yes) No NA (Please explain.)	ncluding released/received by)? Comments:
	ct analyses requested? Yes No NA (Please explain.)	Comments:
a. Samp	ample Receipt Documentation le/cooler temperature documented and withi Yes No NA (Please explain.)	n range at receipt (4° ± 2° C)? Comments:
	perature of both coolers were measured a of receipt, which are within the prescribe	t 2.3 degrees Celsius (C) by the laboratory at d limits (4 degrees C +/- 2 degrees C).

	s) No	NA (Please explain.)	Comments:
c. Sample c	_	ocumented – broken, leaking NA (Please explain.)	(Methanol), zero headspace (VOC vials)? Comments:
size in the indicates a to be biase 1132689004 less); and the originally a C was use 1132689004 approximate (1132689005 1132689005 1132689005 1132689008	40-millility potential fed low. So the sed low the third potential sed for the	for the reported concentrated in the reported concentrated in two of 132689004-C) contained he reanalysis was required for re-analysis. The laborated indicated that all three 2689005-B, and 113268 in or less in size). The analyzed; however, this sed. The laboratory data to of the vials from the ained headspace; thus, we yzed. During previous gamples for VOCs analysis.	bited bubbles approximately 6 mm or less on the SGS Sample Receipt form. The sitions of GRO and VOCs within these same the vials for MW2 (laboratory sample headspace (bubbles approximately 6 mm 2689004-A), which was free of headspace for this sample, however, and vial 1132689 story data reported for MW2 was for sample containers for MW14 (laboratory 89005-C) contained headspace (bub vial with the least amount of headspace also required re-analysis, and reported for MW14 were the results for laboratory trip blank (1132689008-B vial 1132689008-A, which did not contained the second water monitoring events, it has be second water monitoring events, it has less without headspace from several different this may be the result of a surfactant
difficult to monitoring was reporte these moni- results from For these r MW14 does	edly applicator wells of the present the present affects applied to the content of the content o	ed to the site previously. I during this sampling even vious groundwater sampli is our opinion that the pre t the acceptability of the da	The BTEX results of the water samples of the were consistent or slightly higher than any event in August and September of 2 sence of headspace in the vials for MW2 ta for their intended use.
difficult to monitoring was reporte these moni results from For these removed. d. If there we have to monitoring the second the sec	edly applicator wells on the present affective any directors.	ed to the site previously. Induring this sampling even vious groundwater sampling is our opinion that the present the acceptability of the dasscrepancies, were they document.	The BTEX results of the water samples for the were consistent or slightly higher than the new sent in August and September of 2 sence of headspace in the vials for MW2
difficult to monitoring was reporte these moniresults from For these r MW14 does	edly applicator wells on the present affective any directors.	ed to the site previously. Induring this sampling even vious groundwater sampling is our opinion that the present the acceptability of the datascrepancies, were they document to the sample temperature out	The BTEX results of the water samples of the were consistent or slightly higher than the new sence of headspace in the vials for MW2 ta for their intended use. The break results of the water sample side of acceptable range, insufficient or missing the side of acceptable range.
difficult to monitoring was reporte these monitoring these monitoring these monitoring results from For these results from MW14 does d. If there we contained samples, Yes. See 3c., about	edly applicator wells on the present affective any distribution of the present affective and the	ed to the site previously. Induring this sampling even vious groundwater sampling is our opinion that the present the acceptability of the datascrepancies, were they document to the sample temperature out	the BTEX results of the water samples it were consistent or slightly higher than ng event in August and September of 2 sence of headspace in the vials for MW2 ta for their intended use. mented? For example, incorrect sample side of acceptable range, insufficient or miss Comments:

Yes No NA (Please explain.)	Comments:	
Discrepancies, errors or QC failures identified by Yes No NA (Please explain.)	y the lab? Comments:	
The case narrative noted that the instrument b for RRO and DRO was greater than one-half instrument blank result was less than the LO concentrations that exceeded their respective A opinion that this QC failure does not affect the a	Q. All field samples exhibited RRO and DRO DEC cleanup criteria. For this reason, it is ou	he O
for RRO was greater than one-half of the limit blank result was less than the LOQ. All fie exceeded their respective ADEC cleanup criteri failure does not affect the acceptability of the da tetrachloroethane, 1,1,2,2-tetrachloroethane, 1, dibromoethane, 1,2-dichloropropane, carbon chloride exceeded their respective ADEC clean	eld samples exhibited RRO concentrations that ia. For this reason, it is our opinion that this Quata for their intended use. The LOQs for 1,1,1,2,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2 tetrachloride, methylene chloride, and viny criteria in Field Samples MW13 and MW2 be determined if actual concentrations of the	nt at C 2- 2- yl 20
Because Field Samples MW13 and MW20 (di GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzo the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interpretation of the sample	uplicate of MW13) contained concentrations cene, and n-propylbenzene, that greatly exceeden that the lack of information concerning the	a. of
Because Field Samples MW13 and MW20 (de GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzo the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interpretable. Were all corrective actions documented? Yes No NA (Please explain.)	uplicate of MW13) contained concentrations cene, and n-propylbenzene, that greatly exceeden that the lack of information concerning the	a. of ed
Because Field Samples MW13 and MW20 (de GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzo the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interpretation. Were all corrective actions documented?	uplicate of MW13) contained concentrations of ene, and n-propylbenzene, that greatly exceeden that the lack of information concerning the pretation of the data for their intended use. Comments:	a. of ed
Because Field Samples MW13 and MW20 (de GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzo the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interprete. Were all corrective actions documented? Yes No NA (Please explain.) See 4b., above.	uplicate of MW13) contained concentrations of ene, and n-propylbenzene, that greatly exceedent that the lack of information concerning the pretation of the data for their intended use. Comments:	a. of ed
Because Field Samples MW13 and MW20 (de GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzon the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interpolate. Were all corrective actions documented? Yes No NA (Please explain.) See 4b., above. d. What is the effect on data quality/usability according to the corrective actions.	uplicate of MW13) contained concentrations of ene, and n-propylbenzene, that greatly exceedent that the lack of information concerning the pretation of the data for their intended use. Comments:	a. of ed
Because Field Samples MW13 and MW20 (de GRO, DRO, RRO, BTEX, 1,2,4-trimethylbenzon the ADEC cleanup criteria, it is our opinion previously-listed VOCs does not affect the interpretable. Were all corrective actions documented? Yes No NA (Please explain.) See 4b., above. d. What is the effect on data quality/usability according to the corrective actions documented? Yes No NA (Please explain.)	uplicate of MW13) contained concentrations of ene, and n-propylbenzene, that greatly exceedent that the lack of information concerning the pretation of the data for their intended use. Comments: cding to the case narrative? Comments:	a. of ed

Comments:

b. All applicable holding times met?

Yes No NA (Please explain.)

	All soils rep		•	Commonto
	(Yes)	No	NA (Please explain.)	Comments:
d.	Are the repo	orted P	QLs less than the Cleanup Lev	vel or the minimum required detection level
	Yes (No	NA (Please explain.)	Comments:
	Well MWI Difference with Field below the excellent fi Because al	13 and s (RPI Sampl ADEC ield sandl of the	was collected to evaluate sar Os) calculated utilizing duplic the MW13 ranged between 0.7 recommended limit of 30 per mpling precision for thiswate	the water sample collected from Monitorian pling precision. The Relative Percent cate sample (MW20) collected in associated percent and 17.10 percent, which are also creent. These calculated RPDs indicate er sample and water sample duplicate, able RPDs, it is our opinion that the data
e.	Data quality	y or usa	bility affected?	Comments
				Comments:
Sec	e 5d., above.			
	mples Method Bla i. One Yes		d blank reported per matrix, a NA (Please explain.)	nalysis and 20 samples? Comments:
	Method Bla i. One	metho		•
	Method Bla i. One Yes	metho No		•
	Method Bla i. One Yes ii. All 1 Yes	metho No method No	NA (Please explain.) blank results less than PQL?	Comments: Comments:
a.	Method Bla i. One Yes ii. All 1 Yes	metho No method No	NA (Please explain.) blank results less than PQL? NA (Please explain.)	Comments: Comments:
a.	ii. All i	method No method No pove PC	NA (Please explain.) blank results less than PQL? NA (Please explain.) QL, what samples are affected	Comments: Comments:
a	ii. All i Yes iii. If ab	method No method No pove PC	NA (Please explain.) blank results less than PQL? NA (Please explain.) QL, what samples are affected cted sample(s) have data flags	Comments: Comments: Comments: and if so, are the data flags clearly defined?
a	ii. All i Yes iii. If ab	method No method No pove PC	NA (Please explain.) blank results less than PQL? NA (Please explain.) QL, what samples are affected cted sample(s) have data flags NA (Please explain.)	Comments: Comments: Comments: and if so, are the data flags clearly defined? Comments:
a	ii. All i Yes iii. If ab	method No method No pove PC	NA (Please explain.) blank results less than PQL? NA (Please explain.) QL, what samples are affected cted sample(s) have data flags	Comments: Comments: Comments: and if so, are the data flags clearly defined? Comments:

b. La	aboratory Control Sample/Duplicate (LCS/LCSD)	
	 i. Organics – One LCS/LCSD reported per matrix required per AK methods, LCS required per SW Yes No NA (Please explain.) 	- · · · · · · · · · · · · · · · · · · ·
	ii. Metals/Inorganics – one LCS and one sample d samples?	uplicate reported per matrix, analysis and 20
	Yes No NA (Please explain.)	Comments:
San	ples were not analyzed for metals for this project	
	iii. Accuracy – All percent recoveries (%R) reported And project specified DQOs, if applicable. (AK AK102 75%-125%, AK103 60%-120%; all other Yes No NA (Please explain.)	Petroleum methods: AK101 60%-120%,
	iv. Precision – All relative percent differences (RP laboratory limits? And project specified DQOs, LCS/LCSD, MS/MSD, and or sample/sample d other analyses see the laboratory QC pages) Yes No NA (Please explain.)	if applicable. RPD reported from
	v. If %R or RPD is outside of acceptable limits, w	hat samples are affected? Comments:
N/A		
	vi. Do the affected sample(s) have data flags? If so Yes No NA Please explain.)	, are the data flags clearly defined? Comments:
Noj	percent recovery values or RDPs were outside the	laboratory acceptance ranges
	vii. Data quality or usability affected? (Use comme	nt box to explain.) Comments:
N/A		
c. Su	nrrogates – Organics Only	
	 i. Are surrogate recoveries reported for organic ar Yes No NA (Please explain.) 	nalyses – field, QC and laboratory samples? Comments:

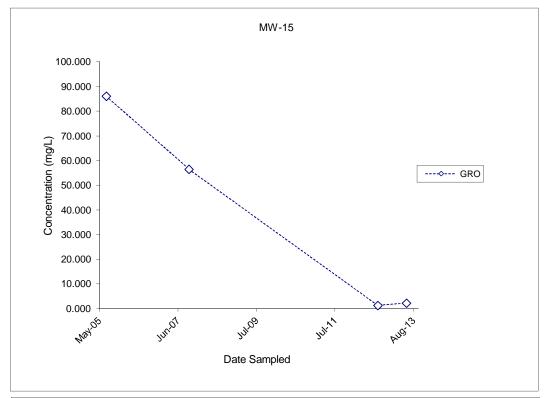
	ii.	And p	roject	•	s, if applicable. (AK	ed and within method or laboratory limits? K Petroleum methods 50-150 %R; all other
	Y	zes)	No	NA (Please exp	1 1 0 /	Comments:
	iii.		_	le results with f defined?	ailed surrogate reco	overies have data flags? If so, are the data
	Y	Zes .	No (NA Please exp	plain.)	Comments:
No) per	cent r	ecover	y values for su	rrogates were outs	side the laboratory acceptance ranges
	iv.	Data	quality	or usability affe	ected? (Use the con	nment box to explain.) Comments:
N/A						
d. Tr	_	ank –	Volatil	e analyses only	(GRO, BTEX, Vol	atile Chlorinated Solvents, etc.): Water and
	i.		-	nk reported per a explanation be	•	d for each cooler containing volatile samples
	Y	'es	No	NA (Please exp	plain.)	Comments:
	ii.				ort the trip blank and ng why must be ento	d VOA samples clearly indicated on the COC ered below)
		Yes	No	NA (Please e		Comments:
All s	-	ples to	be ana	alyzed for VOC	Cs were stored and	transported in the cooler with the trip
	_	All re	sults le No	ess than PQL? NA (Please exp	plain.)	Comments:
		If abo	ve PQI	L, what samples	s are affected?	Comments:
N/A						
	v.	Data	quality	or usability affe	ected? (Please expla	ain.) Comments:
N/A						

i. One field duplicate submitted per ma Yes No NA (Please explain.)	atrix, analysis and 10 project samples? Comments:
ii. Submitted blind to lab?	Comments
Yes No NA (Please explain.)	Comments:
iii. Precision – All relative percent diffe (Recommended: 30% water, 50% so	erences (RPD) less than specified DQOs?
RPD (%) = Absolute value of: (R_1-R_2) $((R_1+R_2)-R_2)$	${(R_2)(2)}$ x 100
Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentr	ration
Yes No NA (Please explain.)	Comments: the water sample collected from Monitoring Well
mple and water sample duplicate. Because	· · · · · · · · · · · · · · · · · · ·
mple and water sample duplicate. Because or opinion that the data are acceptable for t	all of these analytes exhibited acceptable RPDs, it
mple and water sample duplicate. Because or opinion that the data are acceptable for t	e all of these analytes exhibited acceptable RPDs, it their intended use.
iv. Data quality or usability affected? (U	e all of these analytes exhibited acceptable RPDs, it their intended use. Use the comment box to explain why or why not.)
iv. Data quality or usability affected? (U	e all of these analytes exhibited acceptable RPDs, it their intended use. Use the comment box to explain why or why not.) Comments:
iv. Data quality or usability affected? (U	e all of these analytes exhibited acceptable RPDs, it their intended use. Use the comment box to explain why or why not.) Comments:
iv. Data quality or usability affected? (UMA Decontamination or Equipment Blank (If no Yes No NA Please explain.) Iot applicable. A decontamination or equip	Least of these analytes exhibited acceptable RPDs, it cheir intended use. Use the comment box to explain why or why not.) Comments:
iv. Data quality or usability affected? (UNA Decontamination or Equipment Blank (If no Yes No NA)Please explain.) Not applicable. A decontamination or equip	Leall of these analytes exhibited acceptable RPDs, it cheir intended use. Use the comment box to explain why or why not.) Comments: Ot used explain why). Comments:
iv. Data quality or usability affected? (UMA Decontamination or Equipment Blank (If no Yes No NA Please explain.) Iot applicable. A decontamination or equipment of our approved scope of work.	Leall of these analytes exhibited acceptable RPDs, it cheir intended use. Use the comment box to explain why or why not.) Comments: Ot used explain why). Comments:
iv. Data quality or usability affected? (UMA Decontamination or Equipment Blank (If no Yes No NA Please explain.) Iot applicable. A decontamination or equipment of our approved scope of work. i. All results less than PQL? Yes No NA (Please explain.)	Least of these analytes exhibited acceptable RPDs, it cheir intended use. Use the comment box to explain why or why not.) Comments: Ot used explain why). Comments: Oment blank was not collected because it was not
iv. Data quality or usability affected? (UNA) Decontamination or Equipment Blank (If no Yes No NA)Please explain.) Not applicable. A decontamination or equipment of our approved scope of work. i. All results less than PQL? Yes No NA (Please explain.)	Jse the comment box to explain why or why not.) Comments: Comments: Comments: Comments: Comments: Comment blank was not collected because it was not Comments:
iv. Data quality or usability affected? (UN/A Decontamination or Equipment Blank (If no Yes No NA Please explain.) Not applicable. A decontamination or equipment of our approved scope of work. i. All results less than PQL? Yes No NA (Please explain.) N/A	Jse the comment box to explain why or why not.) Comments: Comments: Comments: Comments: Comments: Comment blank was not collected because it was not Comments:

e. Field Duplicate

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
Yes No NA (Please explain.) Comments:

iii. Data quality or usability affected? (Please explain.)

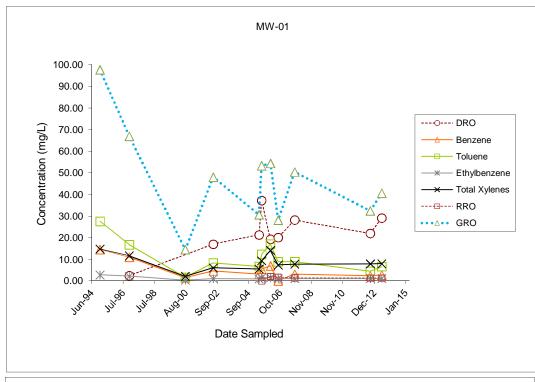

APPENDIX D GRAPHICAL HUMAN HEALTH CONCEPTUAL SITE MODEL

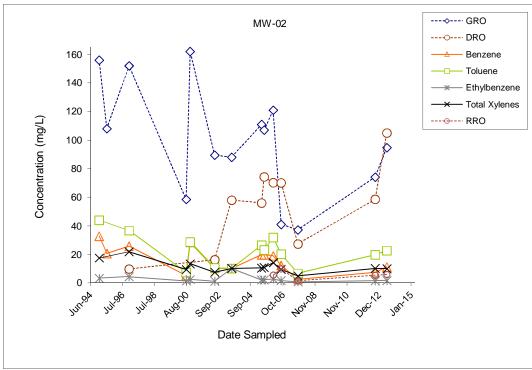
HUMAN HEALTH CONCEPTUAL SITE MODEL

Site:			Follow the directions below. <u>Do not</u> or land use controls when describ				ering	1		
(1) Check the media that could be directly affectly the release. Media	For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms or reference the report for details. Transport Mechanisms Direct release to surface soil check soil Migration or leaching to subsurface check groundwater Volatilization check air		Check exposure pathways that are complete or need further evaluation. The pathways identified must agree with Sections 2 and 3 of the CSM Scoping Form. Exposure Pathways	e re b	dentify the repair of children industrial of	eceptor ire path of for fur and fut	way: E ture rec	eptors Reptors Reptors	C" for c s, or "C s. cepto	current C/F" for
	Runoff or erosion	soil	Incidental Soil Ingestion Dermal Absorption of Contaminants from Soil							
Subsurface Soil (2-15 ft bgs)	Migration to groundwater check air Volatilization check air Other (list):	groundwater	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water							
Ground- water	Volatilization check groundwater Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust							
Surface Water	Direct release to surface water Volatilization	surface water	Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water							
Sediment	Direct release to sediment Resuspension, runoff, or erosion Uptake by plants or animals Other (list):		Direct Contact with Sediment Ingestion of Wild Foods							

APPENDIX E GRAPHS OF HISTORICAL WATER QUALITY DATA

GRAPHS 4748 OLD SEWARD HIGHWAY HISTORICAL ANALYTICAL RESULTS **JUNE 2013**


Only analytes with historic contamination above ADEC cleanup levels were listed. DRO = Diesel Range Organics


GRO = Gasoline Range Organics

RRO = Residual Range Organics

7/29/2013 13-053-01

GRAPHS 4748 OLD SEWARD HIGHWAY HISTORICAL ANALYTICAL RESULTS JUNE 2013

Only analytes with historic contamination above ADEC cleanup levels were listed.

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

RRO = Residual Range Organics

7/29/2013 13-053-01

GRAPHS 4748 OLD SEWARD HIGHWAY HISTORICAL ANALYTICAL RESULTS JUNE 2013

Only analytes with historic contamination above ADEC cleanup levels were listed.

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

RRO = Residual Range Organics

7/29/2013 13-053-01