

BGES, INC.

ENVIRONMENTAL CONSULTANTS

FORMER CUSTOM TRUCK (CURRENTLY SIX ROBBLEE'S) 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

GROUNDWATER MONITORING REPORT (JUNE/JULY 2015)

NOVEMBER 2015

Submitted to:

Andy Robblee Six Robblee's, Inc. 11010 Tukwila International Road Seattle, Washington 98168

Submitted by:

BGES, INC. 1042 East 6th Avenue Anchorage, Alaska 99501 Ph: (907) 644-2900 Fax: (907) 644-2901

www.BGESINC.com

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	BACKGROUND	. 1
3.0	PREVIOUS SITE WORK	. 1
4.0	JULY 2015 SAMPLING	. 5
5.0	DECOMISSIONING SUB-SLAB SOIL GAS IMPLANT	. 6
6.0	EVALUATION OF LABORATORY DATA	. 7
7.0	LABORATORY DATA QUALITY REVIEW	. 8
8.0	CONCEPTUAL SITE MODEL	. 9
9.0	CONCLUSIONS	. 9
10.0	EXCLUSIONS AND CONSIDERATIONS	10

FIGURES (Located at End of report)

Figure 1	Property Vicinity Map
Figure 2	Monitoring Well Locations and Sampling Results (July 2015)
Figure 3	Groundwater Elevation Contour Map

TABLES (Located at End of Report)

Table 1	Monitoring Well Sampling Data (July 2015)
Table 2	Analytical Results – Water (July 2015)
Table 3	Historical Groundwater Sampling Analytical Results

APPENDICES (Located at End of Report)

Appendix A	Field Notes
Appendix B	Laboratory Analytical Data
Appendix C	Laboratory Analytical Data Quality Control Checklist
Appendix D	Graphs of Historical Water Quality Data

AAC	-	Alaska Administrative Code
ADEC	-	Alaska Department of Environmental Conservation
AK	-	Alaska Method
BGES	-	Braunstein Geological and Environmental Services
BTEX	-	Benzene, Toluene, Ethylbenzene, and Total Xylenes
С	-	Celsius
CSM	-	Conceptual Site Model
DRO	-	Diesel Range Organics
EPA	-	Environmental Protection Agency
GeoTek	-	GeoTek Alaska, Inc.
GRO	-	Gasoline Range Organics
HCL	-	Hydrochloric Acid
LOQ	-	Limit of Quantitation
MRL	-	Method Reporting Limit
MS	-	Matrix Spike
MSD	-	Matrix Spike Duplicate
PAHs	-	Polynuclear Aromatic Hydrocarbons
QC	-	Quality Control
QEP	-	Qualified Environmental Professional
RPD	-	Relative Percent Difference
RRO	-	Residual Range Organics
SGS	-	SGS North America, Inc.
UST	-	Underground Storage Tank
VOAs	-	Volatile Organic Analyses
VOCs	-	Volatile Organic Compounds

ACRONYMS

1.0 INTRODUCTION

BGES, Inc. (BGES) was retained by Andy Robblee of Six Robblee's, Inc. (Six Robblee's) to conduct groundwater sampling at the Six Robblee's property located at 4748 Old Seward Highway, Anchorage, Alaska; hereafter referred to as the subject property (Figure 1). The purpose of this groundwater monitoring event was to assess the groundwater quality at this site. The fieldwork for this round of sampling (the ninth round of groundwater sampling performed by BGES) was performed on June 30, and July 1 and 2, 2015 in general accordance with the work plan prepared by BGES (dated November 25, 2014). The Alaska Department of Environmental Conservation (ADEC) changed the site status from "cleanup-complete with institutional controls" to "Active" in correspondence dated August 14, 2013. The ADEC Hazard Identification Number is 23658 and the ADEC File Number is 2100.26.252 for the subject property.

2.0 BACKGROUND

The property is located in the central portion of Anchorage, Alaska (Figure 1). The property had previously operated for many years as an automotive dealership that had on-site underground storage tanks (USTs) for fuel needs. Fuel is no longer dispensed at the site, and the tanks were removed in 1994. A one-story building that is operated as an automotive shop and accessory retail store is located on the property. The area west of the building is used for bulk storage of truck tops and auto accessories.

Numerous previous assessments have been performed by various environmental consulting firms at the site, including a 2004 Site Closure Report performed by Chemtrack. On June 14, 2004 the ADEC issued a "No Further Remedial Action Planned" status for this site. In addition, a "Record of Decision" was also issued for the site on the same date. In these documents, it has been indicated that quarterly groundwater monitoring in accordance with an approved work plan must be instituted.

BGES was contracted in 2005 to review the previous work plan and to resume groundwater sampling activities in accordance with the No Further Remedial Action Planned and Institutional Control Record of Decision documentation. The results of the previous groundwater sampling event, completed in April of 2014, were presented in the October 2014 Groundwater Monitoring Report.

3.0 PREVIOUS SITE WORK

Two 5,000-gallon UST's, reportedly containing gasoline, were removed from the ground in 1994.

Hydrocarbon contamination was observed in soils near the USTs and associated piping. In addition to removing the USTs, the excavation reportedly was continued to remove additional contaminated soil. Approximately 280 cubic yards of soil were reportedly removed from the site and treated at an off-site facility. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in remaining soils.

Groundwater sampling was first performed by BGES in June of 2005. Monitoring Wells that were sampled during this sampling event included; MW-1, MW-2, MW-5, MW-8, MW-11, MW-12, B6/VE, and the Tap Well (facility well). The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: gasoline range organics (GRO) in Monitoring Wells MW-1, MW-2, MW-8, and B6/VE; diesel range organics (DRO) in MW-1, MW-2, and B6/VE; benzene in MW-1, MW-2, MW-5, MW-8, MW-12, and B6/VE; toluene in MW-1, MW-2, and B6/VE; ethylbenzene in MW-1, MW-2, and B6/VE; and, total xylenes in MW-2. The water sample collected from the Tap Well (facility well) did not exhibit any analyte concentrations above the laboratory's method reporting limit (MRL) and the ADEC cleanup criteria.

Groundwater sampling was performed again by BGES in August of 2005. Monitoring wells that were sampled during this sampling event included MW-1, MW-2, MW-3, MW-5, B6/VE, MW-8, MW-9, MW-10, MW-11, MW-12, and MW-15. The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: GRO in MW-1, MW-2, MW-5, MW-8, MW-15, and B6/VE; DRO in MW-1, MW-2, MW-5, MW-11, MW-15, and B6/VE; residual range organics (RRO) in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-12, and MW-15; benzene in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-15.; toluene in MW-1, MW-2, MW-15, and B6/VE; ethylbenzene in MW-1, MW-2, MW-15, and B6/VE; and, total xylenes in MW-15.

Groundwater sampling was performed by BGES in March of 2006. Monitoring Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-11, and MW-12. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the March 2006 sampling event indicated that GRO, DRO, RRO, and BTEX concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE (except for total xylenes in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in Monitoring Wells MW-11 and MW-12. Additionally, the RRO concentration in Water Sample MW12 exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in September of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-5, MW-8, MW-11, MW-12, and the facility

well. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the September 2006 sampling event indicated that GRO, DRO, and RRO concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE. Benzene concentrations exceeded the ADEC cleanup criterion in each of the wells sampled, including the facility well. Concentrations of toluene and ethylbenzene exceeded the ADEC cleanup criteria in MW-1 and MW-2. Additionally, the toluene concentration in Water Sample B6/VE exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in October of 2007. During that round of groundwater sampling, Monitoring Wells MW-1, MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-11, MW-12, MW-15, and B6/VE were sampled and analyzed for GRO, DRO, RRO, and BTEX. Additionally, Monitoring Wells MW-2 and MW-102 (duplicate of MW-2) were analyzed for polynuclear aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). The results from the October 2007 sampling event indicated that GRO, DRO, RRO, benzene, toluene and ethylbenzene concentrations exceeded the ADEC cleanup criteria in MW-1, MW-2, and B6/VE (except for the RRO concentration in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in every well sampled, except for Monitoring Wells MW-3, MW-9, and MW-10. Monitoring Well MW-8 exhibited a GRO concentration that exceeded the ADEC cleanup criterion in addition to the benzene exceedance described above. Monitoring Well MW-15 contained GRO, DRO, benzene, toluene, and ethylbenzene concentrations above the applicable ADEC cleanup criteria. None of the samples analyzed contained xylenes concentrations that exceeded the ADEC cleanup criterion. Two off-site, downgradient wells (MW-11 and MW-12) were tested and exhibited levels of contaminants that exceeded ADEC cleanup criteria.

Groundwater sampling was performed by BGES in August and September of 2012. Wells that were sampled during that round of sampling event included MW-1, MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-11, MW-13, MW-14, MW-15, and B6/VE, and were analyzed for GRO, BTEX, DRO, and RRO. In addition, a water sample was collected from the facility well and labeled "Facility Well", and was analyzed for VOCs. The results from the August and September 2012 sampling events indicated that the water samples collected from Monitoring Wells MW-1 and MW-17 (duplicate of MW-1) exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW-13, and MW-14 exhibited concentrations of GRO, BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. Water Samples MW-8 and MW-15 exhibited concentrations of benzene, which exceeded the ADEC cleanup criteria. In addition, Water Samples MW-8 and MW-15 exhibited concentrations of benzene, which exceeded the ADEC cleanup criteria.

B6/VE exhibited concentrations of GRO, benzene, toluene, DRO, and RRO, which exceeded ADEC cleanup criteria.

Prior to the 2013 monitoring round, a building survey and some preliminary soil gas sampling, in addition to groundwater sampling, was performed by BGES in May and June of 2013. Sub-slab soil gas samples collected from beneath the concrete slab in the southeastern portion of the building did not exhibit any analyte concentrations above the ADEC target levels for shallow soil gas. The groundwater samples collected from Monitoring Wells MW-2, MW-14, MW-13, and MW-20 exhibited concentrations of GRO, BTEX, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. In addition, Groundwater Samples MW-13 and MW-20 (duplicate of MW-13) exhibited concentrations of 1,2,4-trimethylbenzene and n-propylbenzene that exceeded the respective ADEC cleanup criteria for these contaminants. The groundwater samples collected from Monitoring Wells MW-1 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. Groundwater Sample MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. Groundwater Sample MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. Groundwater Sample MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants.

Groundwater sampling was performed by BGES in April of 2014. Wells that were sampled included MW-1, MW-2, MW-5, MW-11, MW-12, MW-13, MW-14, MW-15, and B6/VE, and were analyzed for GRO, BTEX, DRO, and RRO. Many of the monitoring wells were in a damaged condition at the time of sampling, and one of the wells (MW-9) was submerged in water and was therefore not sampled during this event. In addition, a water sample was collected from the facility well and labeled "Facility Well", and was analyzed for VOCs. The results from the April 2014 sampling event indicated that each of the wells sampled, with the exception of Monitoring Well MW-11, exhibited concentrations of one or more analytes that exceeded the applicable ADEC cleanup criteria. The samples collected from Monitoring Wells MW-13, MW-14, and MW-16 (duplicate of MW-14) exhibited concentrations of GRO, BTEX, DRO, and RRO; all of which exceeded the respective ADEC cleanup criteria. The samples collected from Monitoring Wells MW-2 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO that exceeded their respective ADEC cleanup criteria. The sample collected from Monitoring Well MW-1 exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and DRO that exceeded the respective ADEC cleanup criteria for these analytes. The sample from Monitoring Well MW-5 exhibited a concentration of benzene that exceeded its ADEC cleanup criterion. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that exceeded its ADEC cleanup criterion. The sample from Monitoring Well MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded their respective ADEC cleanup criteria.

On November 6, 2014, BGES met at the subject property with GeoTek Alaska, Inc. (GeoTek) of Anchorage, Alaska to repair the damaged monitoring wells. The flush-mounted covers were replaced for Monitoring Well MW-8, MW-9, MW-11, and B6/VE. The well caps were replaced on Monitoring Wells MW-2, MW-3, MW-5, B6/VE, MW-8, MW-10, MW-12, MW-13, MW-14, and MW-15.

In a letter dated December 16, 2014; Joshua Barsis, ADEC Project Manager, agreed to reduce groundwater monitoring activities at the subject property from quarterly to annually.

Annual groundwater monitoring activities that were performed in June and July of 2015 are the subject of this report, and details and the results of these activities are presented below.

4.0 JULY 2015 SAMPLING

BGES collected groundwater samples from Monitoring Wells MW-5, MW-8, MW-9, MW-12, MW-14, and a facility well on June 30 and July 1 and 2, 2015 (Figure 2) in accordance with our work plan (published November 25, 2014), which was approved by the ADEC on December 18, 2014.

In e-mail correspondence with Joshua Barsis dated March 24, 2015; Mr. Barsis that Teflon tubing and bladders would not be required for this round of groundwater monitoring at the subject property as he previously requested in his approval letter dated December 18, 2014.

Prior to sample collection, the depths to water and the total depths of each well were measured using an electronic water level indicator that was decontaminated prior to its use in each well by washing it in an Alconox (laboratory-grade detergent) solution, followed by a potable water rinse. The depth to water, the total depth of the wells, and the water quality parameters are presented in Table 1.

Prior to the collection of groundwater samples, the casing volume for each well was calculated. The wells were purged utilizing a positive displacement bladder pump; a minimum of three casing volumes were removed from each well. During the purging activities, the stabilization parameters (pH, conductivity, oxidation-reduction potential, and temperature) were monitored, utilizing a YSI Professional Pro Multi-Parameter water quality meter. Upon completion of the purging activities, the groundwater samples were collected utilizing low-flow sampling technique and an approximate flow rate of 150 milliliters per minute (ml/min). Portions of the samples scheduled for volatiles analyses

were collected first by filling laboratory-supplied containers that were preserved with hydrochloric acid (HCL). Care was taken during filling of the containers to ensure that no headspace was left within the containers and that none of the preservative was spilled. One duplicate water sample was collected from Monitoring Well MW-14 (labeled MW6R) and was submitted "blindly" to the laboratory for analyses.

The sample containers were labeled, placed in a chilled cooler, and transported to SGS North America, Inc. (SGS), an ADEC-approved laboratory for analysis, under chain of custody protocol. As a quality control measure, a trip blank sample accompanied the water samples scheduled for volatile analyses during the entire sampling and handling process.

BGES also re-surveyed the top of casings' and ground elevations for each of the existing monitoring wells after repair of the monitoring wells. The wells were surveyed to the nearest vertical 0.01 foot, utilizing a fixed, permanent or semi-permanent reference point. The reference point for the survey was the corner of the building where the service shop building connects to the office building.

Utilizing the surveyed monitoring well elevations and the measured depths to water, the groundwater elevations in each monitoring wells were calculated. Then, the calculated groundwater elevations for the subject property were utilized to create a groundwater elevation contour map which suggests that general groundwater flow direction at the site was to the southeast (Figure 3). The calculated hydraulic gradient was 0.005 foot per linear foot. The depth to water, the total depth of the wells, the water quality parameters, and the calculated water elevations are presented in Table 1.

Investigation-derived waste generated (purge water) was containerized in four 5-gallon buckets. The investigation-derived wastes are currently stored outside in the southwest corner of the facility yard. The 5-gallon buckets were clearly labeled with the contact information and a description of the contents (potentially-contaminated water). Copies of field notes taken during groundwater monitoring activities are included in Appendix A.

5.0 DECOMISSIONING SUB-SLAB SOIL GAS IMPLANT

BGES personnel decommissioned the sub-slab soil gas sampling point on July 21, 2015. The sampling point was previously installed through the concrete slab in 2013 and was positioned in the southeastern portion of the building. Efforts were made to break the stainless steel sampling point free from the concrete. After several attempts, the implant would not break free. Therefore, the threaded stainless steel cap was removed from the implant, and the 1.5-inch diameter hole was then filled with concrete to

6.0 EVALUATION OF LABORATORY DATA

Laboratory analysis of the water samples were performed by SGS, an ADEC-approved laboratory. The analytical results for water samples are listed in Table 2 and a copy of the laboratory data package is included in Appendix B. The analytical results for water sample results were compared to the ADEC Method 2 Cleanup Criteria listed in Alaska Administrative Code (AAC) 75.345—Table C for groundwater as revised on June 17, 2015.

The water samples for MW-5, MW-8, MW-9, MW-12, MW-14, and MW-6R (duplicate of MW-14) were analyzed at SGS by the following methods: GRO by Alaska Method (AK) 101; DRO by AK 102; RRO by AK 103; and BTEX by Environmental Protection Agency (EPA) Method 8021B.

The water sample for the facility well was analyzed for VOCs by EPA method 524.2.

The water samples collected from the subject property were numbered, for example, MW5-0630, where the prefix MW5 indicates the monitoring well from which the water sample was collected; and 0630 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as MW-5 with the date omitted. MW6R-0630 is a duplicate sample collected from MW-14 and is labeled in the same format as described above. WSW1-0701 is the sample collected from the facility well and is labeled in the same format as described above.

Seven water samples, including a duplicate sample, were collected from five existing monitoring wells and the facility well at the subject property; Samples MW-5, MW-8, MW-9, MW-12, MW-14, MW6R (duplicate of MW-14), and WSW1-0630.

The samples collected from Monitoring Well MW-14 and MW6R (duplicate of MW-14) exhibited concentrations of GRO, BTEX, DRO, and RRO; all of which exceeded the respective ADEC cleanup criteria for these analytes. The samples collected from Monitoring Wells MW-5 and MW-8 exhibited concentrations of benzene that exceeded the ADEC cleanup criterion for this analyte. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that exceeded the ADEC cleanup criterion for this analyte.

The remaining analytes within the water samples were either detected at concentrations that were below the applicable ADEC cleanup criteria, or were non-detectable above the laboratory limits of quantitation (LOQs). All of the LOQs for the non-detectable analytes were below the applicable ADEC cleanup criteria.

Page 7 of 10

Analytical results for the groundwater samples are presented in Tables 2 and 3, the laboratory analytical data are included in Appendix B, and the sampling locations are shown on Figure 2.

7.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. An ADEC laboratory data review checklist was completed for the laboratory work order number, and this checklist is included in Appendix C. The checklist provides an overview of the quality of the laboratory data. The following is a discussion of our evaluation of sample conditions and laboratory procedures for the water samples collected during the June and July 2015 sampling activities.

The sample containers were labeled, placed in an ice-filled cooler, and hand-delivered by BGES personnel to SGS under chain of custody protocol. The samples contained the proper preservatives for the requested analyses.

SGS Work Order 1153342

One of the three sample containers collected for volatile organic analyses (VOAs) for Field Sample MW5-0630 contained an air bubble greater than 6 millimeters (mm) in diameter (headspace). However, since there were two other jars collected as part of this sample and were utilized for analysis of this sample, it is our opinion that this quality control (QC) failure does not affect the acceptability of the data for its intended use. No other unusual sample conditions were noted by the laboratory at the time of their receipt.

The temperature of the sample cooler that contained the water samples was measured at the laboratory at the time of receipt to be 0.2 degrees Celsius (C). The temperature in the cooler was below the prescribed, optimal temperature range of 4 degrees Celsius +/- 2 degrees. However, because the recorded temperature was slightly below the acceptance range, there is a reduced potential for contaminant loss within the samples due to natural attenuation. For this reason, it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The trip blank accompanied the volatile samples (GRO and BTEX) throughout the entirety of the sampling process and transportation to the laboratory. The samples contained the proper preservatives for the requested analyses. The case narrative for Work Order Number 1153342 (samples collected during June and July 2015 sampling activities) noted that there were a couple of QC failures identified by SGS.

The percent recovery of 4-bromofluorobenzene, associated with the analysis of GRO within the Matrix Spike (MS) and MS Duplicate (MSD) samples exceeded the laboratory acceptance limit. This indicates a potential for the reported concentrations of GRO to be biased high in Field Samples MW5-0630, MW8-0630, MW9-0702, and MW12-0630. Because the MS and MSD samples were derived from a field sample collected as part of another project, it is our opinion that there is a potential for the data QC failure to be caused by matrix effects associated with soils different than those at the subject property. The case narrative indicated that this QC failure was caused by matrix interference. For these reasons, it is our opinion that this QC failure does not affect the acceptability of the data for Field Samples MW5-0630, MW8-0630, MW9-0702, and MW12-0630 for their intended use.

Sample MW-6R was a duplicate of Sample MW-14, and was collected and analyzed in order to facilitate evaluation of field sampling precision. Relative percent differences (RPDs) between the reported concentrations of several analytes for the original and duplicate samples were calculated, and these RPDs ranged between 1 percent and 28 percent, which are all below the recommended acceptance limit of 30 percent. This lends evidence to suggest generally good field sampling precision was achieved during the collection of the groundwater samples. For this reason, it is our opinion that good field sampling precision was achieved, and the data are acceptable for their intended use.

8.0 CONCEPTUAL SITE MODEL

A graphical human health conceptual site model (CSM) was developed for this site and was included in our 2007 Groundwater Sampling Report (dated December 2007). It is our opinion that the CSM is still valid for this site, and as such has not been modified based on the results of this sampling event.

9.0 CONCLUSIONS

A groundwater monitoring event at this site was conducted on June 30 and July 1 and 2, 2015. Groundwater samples were collected from Monitoring Wells MW-5, MW-8, MW-9, MW-12, and MW-14, and were analyzed for GRO, DRO, RRO, and BTEX. An additional sample was collected from a facility well and was analyzed for VOCs. Each of the wells sampled, with the exception of Monitoring Well MW-9 and the facility well exhibited concentrations of one or more analytes that exceeded the applicable ADEC cleanup criteria. The samples collected from Monitoring MW-14 and MW-6R (duplicate of MW-14) exhibited concentrations of GRO, BTEX, DRO, and RRO; all of which exceeded the respective ADEC cleanup criteria for these analytes. The samples collected from Monitoring Wells MW-5 and MW-8 exhibited concentrations of benzene that exceeded the ADEC cleanup criterion for this analytes. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that

Page 9 of 10

13-053-03

exceeded the ADEC cleanup criterion for this analyte. We recommend that groundwater monitoring activities are performed every two to three years.

Historical trends demonstrate that the majority of the contaminant concentrations measured within samples collected from the onsite monitoring wells have been declining over the years. Historical laboratory analytic results are provided in Table 3, and graphical representations of contaminant concentrations within the wells as measured over time are provided in Appendix D. Based on the results of this groundwater monitoring event, no evidence of substantial expansion or migration of the plume of contamination at this site has been identified. It is recommended that all purge water be disposed of at an appropriate disposal facility such as NRC Alaska.

10.0 EXCLUSIONS AND CONSIDERATIONS

This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made and work conducted and only apply to the immediate vicinities of the locations where samples were collected. In addition, changes to site conditions may have occurred since the completion of our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, except as directed by our client, or as required by law.

Groundwater sampling for this monitoring event was conducted, and this report was prepared by William Schmaltz; Environmental Scientist with BGES and a Qualified Environmental Professional (QEP) as defined by the ADEC. Mr. Schmaltz has conducted groundwater monitoring, site characterization, and remediation activities at numerous sites in the Anchorage area and throughout Alaska. This report was reviewed by Jayne Martin, Senior Environmental Scientist of BGES, who is a QEP as defined by the ADEC, and has more than 25 years of environmental consulting experience, and has conducted and managed hundreds of site characterization and remediation efforts throughout Alaska and the lower 48 states.

Prepared By:

Win Gis

William Schmaltz Environmental Scientist

Reviewed By:

gottal

Jayne Martin Senior Environmental Scientist

Groundwater Monitoring Report Six Robblee's (Former Custom Truck) 4748 Old Seward Highway; Anchorage, Alaska Page 10 of 10

TABLE 1 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA

Well Number	MW1	MW2	MW3	MW5	MW8	MW9	MW10	MW11	MW12	MW13	MW14	MW15	B6/VE
Date Sampled	-	-	-	6/30/2015	6/30/2015	7/2/2015	-	-	6/30/2015	-	6/30/2015	-	-
Date of Depth and Elevation Measurement	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015	6/30/2015
Time of Depth to Water Measurement	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00	09:00
Time Sample Collected	-	-	-	16:53	12:47	08:55	-	-	11:25	-	15:37	-	-
Top of Casing Elevation (feet)	100.59	97.79	97.65	99.13	97.22	97.50	101.32	96.62	96.03	99.21	99.33	97.78	99.75
Depth to Water (feet below top of casing)	8.72	6.21	5.65	7.99	6.10	5.75	8.47	5.51	4.96	7.57	7.79	6.22	8.01
Water Elevation (feet)	91.87	91.58	92.00	91.14	91.12	91.75	92.85	91.11	91.07	91.64	91.54	91.56	91.74
Total Depth of Well (feet below top of casing)	21.93	13.49	9.21	12.98	13.74	13.24	14.92	13.95	8.20	11.63	12.83	10.40	14.04
Well Casing Diameter (Inches)	2	2	2	2	2	2	2	2	2	2	2	2	4
Standing Water Well Volume (gallons)	2.16	1.19	0.58	0.81	1.25	1.22	1.05	1.38	0.53	0.66	0.82	0.68	3.94
Purge Volume-Actual (gallons)	-	-	-	2.5	3.75	4	-	-	2.5	-	2.5	-	-
Temperature (degrees Celsius)	-	-	-	10.8/11.3	11.6/11.1/11.1	10.9/9.9/10.8	-	-	13.0/12.3	-	12/12.3	-	-
pH (standard units)	-	-	-	6.75/6.37	6.52/6.84/7.05	6.70/7.25/7.11	-	-	6.5/7.38	-	6.75/7.01	-	-
Conductivity (microsiemans per centimeter)	-	-	-	1,079/1,110	602/590/576	789/793/924	-	-	574/570	-	938/1,023	-	-
Oxidation Reduction Potential (millivolts)	-	-	-	-19.3/-51.2	30.1/-25.0/-53.2	75.6/64.8/53.5	-	-	83.7/76.7	-	6.4/-35.6	-	-
Notes: Values separated by / indicate readings for successive well volumes Sampler: W. Schmaltz Field parameters measured with a YSI Professional Plus Multi-Meter Weather conditions on June 30 and July 1 - 2, 2015 were partially cloudy to clear skies with temperatures ranging from approximately 50 to 60 degrees fahrenheit.											A duplicate sample was collected from MW-14 and was labeled MW6R- 0630.		

TABLE 2 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA ANALYTICAL RESULTS - GROUNDWATER (JULY 2015)

		Results	100	ADEC Cleanup	
Water Sample No.	Parameter	(mg/L)	(mg/L)	Criterion $(mg/L)^1$	Analytical Method
MW5-0630	GRO	ND	0.100	2.2	AK 101
	DRO	ND	0.600	1.5	AK 102
	RRO	ND	0.500	1.1	AK 103
	Benzene	0.0126	0.000500	0.005	SW8021B
	Toluene	0.00207	0.00100	1.0	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	0.00416	0.00300	10	SW8021B
MW8-0630	GRO	ND	0.100	2.2	AK 101
	DRO	ND	0.600	1.5	AK 102
	RRO	ND	0.500	1.1	AK 103
	Benzene	0.00695	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1.0	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00300	10	SW8021B
MW9-0702	GRO	ND	0.100	2.2	AK 101
	DRO	ND	0.600	1.5	AK 102
	RRO	0.651	0.500	1.1	AK 103
	Benzene	ND	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1.0	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00300	10	SW8021B
MW12-0630	GRO	ND	0.100	2.2	AK 101
	DRO	ND	0.600	1.5	AK 102
	RRO	1.18	0.500	1.1	AK 103
	Benzene	0.000580	0.000500	0.005	SW8021B
	Toluene	ND	0.00100	1.0	SW8021B
	Ethylbenzene	ND	0.00100	0.7	SW8021B
	Total Xylenes	ND	0.00300	10	SW8021B
MW14-0630	GRO	92.7	10.0	2.2	AK 101
	DRO	53.6	2.40	1.5	AK 102
	RRO	5.72	0.500	1.1	AK 103
	Benzene	13.200	0.0500	0.005	SW8021B
	Toluene	18.700	0.100	1.0	SW8021B
	Ethylbenzene	1.650	0.100	0.7	SW8021B
	Total Xylenes	13.190	0.300	10	SW8021B
MW6R-0630					
Duplicate of MW14-0630					
RPD = 1 %	GRO	94.8	10.0	2.2	AK 101
RPD = 23 %	DRO	38.6	0.600	1.5	AK 102
RPD = 28 %	RRO	3.85	0.500	1.1	AK 103
RPD = 1 %	Benzene	13.500	0.0500	0.005	SW8021B
RPD = 1 %	Toluene	19.100	0.100	1.0	SW8021B
RPD = 2 %	Ethylbenzene	1.710	0.100	0.7	SW8021B
RPD = 1 %	Total Xylenes	13.470	0.300	10	SW8021B

TABLE 2 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA ANALYTICAL RESULTS - GROUNDWATER (JULY 2015)

Water Sample No.	Parameter	Results (mg/L)	LOQ (mg/L)	ADEC Cleanup Criterion (mg/L) ¹	Analytical Method
WSW1-0701	Benzene	ND	0.000500	0.005	EPA 524.2
	Toluene	ND	0.00500	1.0	EPA 524.2
	Ethylbenzene	ND	0.00500	0.7	EPA 524.2
	Total Xylenes	ND	0.00500	10	EPA 524.2
	All Other VOCs	ND	varies	varies	EPA 524.2
¹ Water cleanup criteria obtaine	d from ADEC 18 AAC 75.34	1, Table C, Gr	oundwater Clear	up Levels (June 17	, 2015)
ADEC = Alaska Department of Envir	onmental Conservation; LOQ = Lir	nit of Quantitation	ı		
mg/L = milligrams per Liter; RPD =	relative percent difference; $ND = A$	nalyte not detecte	d		
BOLD	= concentration exceeds appl	icable ADEC cl	eanup criterion.		

TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

																							ADEC Method Two
	Date Collected:	Jan-95	Jul-95	Mar-96	Dec-96	Nov-99	Aug-00	Nov-00	Jun-02	Nov-02	Jul-03	Jan-04	Jun-05	Aug-05	Mar-06	Sept-06	Oct-07	Sep-12	Jun-13	Apr-14	Jul-15	Analytical	Groundwater Cleanup
Well No.	Parameter	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	Method	Level (mg/L) ¹
MW-01	GRO	97.6	NS	NS	66.9	NS	14.5	NS	48	NS	NS	NS	30.600	53.300	54.400	28.100	50.400	32.4	40.6	29.80	NS	AK101	1.3
	DRO	NS	NS	NS	2.45	NS	NS	NS	17	NS	NS	NS	21.3	37.200	19.3	20.1	28.2	22	29.1	8.38	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<5.05	2.08	1.87	1.46	1.45	1.32	0.78	NS	AK103	1.0
	Benzene	14.6		NS	11		1 49		47	NS NS	NS	NS	3 140	5 540	7 010	0 109	3 210	2 42	2 720	2 42	NS	SW8021b	0.005
	Toluene	27.6	NS	NS	16.8	NS	1.40	NS	84	NS	NS	NS	6 770	12 300	17 100	8 940	8 930	4 53	6 640	5.31	NS	SW8021b	1.0
	Ethylbenzene	2 79	NS	NS	2 23	NS	0.41	NS	1 1	NS	NS	NS	0.945	1 490	2 420	1 080	1 100	1 16	1 110	1.08	NS	SW80215	0.7
		1/ 8	NS	NS	11 63	NS	2 15	NS	6.1		NS	NS	5 540	0 380	1/ 120	7.400	7 800	7.01	8.000	6.15		SW80215	10.0
	Total Aylenes	14.0		NO	11.05		2.15	NO	0.1	NO	NO	NO	5.540	3.500	14.120	7.400	7.000	7.51	0.000	0.15	NO	0000210	10.0
MW-02	GRO	156	108	NS	152	NS	58 5	162	89.5	NS	88 400	NS	111 000	107 000	121 000	41 000	37 20	74 1	94 7	64 40		AK101	13
10100 02		NS	NS		9.81	NS	NS	NS	16.3	NS	58	NS	56.0	74 300	70.2	70.1	27.30	58.6	105	70 10	NS	AK102	1.5
	RRO	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS NS	NS	<5.00	5.63	9.89	1 53	55	5 96	6 14	NS	AK102	1.0
	Benzene	32.8	20.7		25.8		5 23	28.5	10.4		10.2		19 800	10 700	10,000	12 300	2.49	7 36	11 300	8.46	NG	SW/8021b	0.005
	Toluene	11	NS		25.0	NS	7.48	20.3	10.4	NS	10.2	NS	26 500	23 100	31 800	20 200	6.68	19.8	22 600	17 50	NS	SW80215	1.0
	Ethylbonzono	21		NG	30.7 A A		1.40	20.7	10.0	NG	10.2		20.300	23.100	2 810	1 670	0.00	1 56	1 760	1 34	NS	SW80215	0.7
		17.5		NG	21.0		0.47	13.45	7.5		10.2		10 550	10 860	2.010	0.500	4.950	10.23	10 120	8.07		SW80215	10.0
	Nonhtholono	NQ		NG	21.9 NG		9.47 NS	13.45 NG	7.5 NG	NC	NC		10.550 NS	NC	14.190 NC	9.500	4.950	10.23 NG	10.120 NS		NG	9270C	0.7
	2-Mothylnanhthalono	NG	NG	NG	NG	NG	NS	NG	NG	NG	NS	NG	NS	NG	NG	NG	0.042	NS	NS	NS	NS	8270C	0.78
	2-Ivieuryinapriuralene	NC	NC	NC	NC	NC	NS	NC	NC	NC	NG	NC	NG	NC	NC	NG	0.013	NG	NS	NG	NG	8270C	1.5
		NC	NC	NC	NC	NC	NS	NC	NC	NC	NG	NC	NG	NC	NC	NG	0.0002	NG	NS	NG	NG	8270C	1.5
	Acenaphthane	NC	NC	NC	NC	NC	NS	NC	NC	NC	NG	NC	NG	NC	NC	NG	0.000032	NG	NS	NG	NG	8270C	2.2
	Fluoropo	NC	NC	NC	NC	NC	NS	NC	NC	NC	NG	NC	NG	NC	NC	NG	0.000020	NG	NS	NG	NG	8270C	2.2
	Phononthrono	NG	NS	NG	NG	NG	NS	NG	NG	NG	NS	NG	NS	NG	NG	NG	0.000003	NS	NS	NS	NS	8270C	1.40
	Anthracono	NG	NS	NG	NG	NG	NS	NG	NG	NG	NS	NG	NS	NG	NG	NG	0.000031	NS	NS	NS	NS	8270C	11.0
	Fluoranthono	NC	NC	NC	NC	NC	NS	NC	NC	NC	NG	NC	NG	NC	NC	NG	0.0000097	NG	NS	NG	NG	8270C	1.0
	Purono	NG	NG	NG	NG	NG	NS	NG	NG	NG	NS	NG	NS	NG	NG	NG	0.000010	NS	NS	NS	NS	8270C	1 1
	Renzo[a]anthracono	NG	NS	NG	NG	NG	NS	NG	NG	NG	NS	NG	NS	NG	NG	NG	0.000020	NS	NS	NS	NS	8270C	
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	82700	varies
	All other analytes	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	ND	NO	NO	NO	NO	02700	valies
MW-03	GRO	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.0500</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.0500</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.0500</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	<0.090	NS	NS	<0.0500	ND	NS	NS	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	0.41	NS	NS	NS	NS	0.333	NS	NS	< 0.407	ND	NS	NS	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.764	NS	NS	< 0.407	0.556	NS	NS	NS	AK103	1.1
	Benzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	< 0.0005	NS	NS	< 0.0005	ND	NS	NS	NS	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.0008</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	0.0008	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	NS	NS	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	NS	NS	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><1.50</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<1.50	ND	NS	NS	NS	SW8021b	10.0
	5														_								
MW-05	GRO	0.244	0.287	0.462	0.303	0.7	<mrl< td=""><td>0.148</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.938</td><td>2.200</td><td>NS</td><td>0.456</td><td>0.121</td><td>ND</td><td>NS</td><td>0.207</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	0.148	NS	NS	NS	NS	0.938	2.200	NS	0.456	0.121	ND	NS	0.207	ND	AK101	1.3
	DRO	NS	NS	NS	0.39	NS	NS	NS	NS	NS	NS	NS	0.603	1.24	NS	0.700	<0.407	ND	NS	0.757	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.79	NS	0.865	<0.407	0.974	NS	0.995	ND	AK103	1.1
	Benzene	0.13	0.18	0.243	0.157	0.272	0.011	0.079	NS	NS	NS	NS	0.467	1.170	NS	0.180	0.0119	0.00113	NS	0.0839	0.0126	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td><0.020</td><td>NS</td><td>0.00450</td><td>0.000861</td><td>ND</td><td>NS</td><td>ND</td><td>0.00207</td><td>SW8021b</td><td>1.0</td></mrl<>	<0.020	NS	0.00450	0.000861	ND	NS	ND	0.00207	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00236</td><td><0.020</td><td>NS</td><td>ND</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	0.00236	<0.020	NS	ND	< 0.0005	ND	NS	ND	ND	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>0.00586</td><td><0.020</td><td>NS</td><td>0.02128</td><td>0.00204</td><td>ND</td><td>NS</td><td>0.0121</td><td>0.00416</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	0.00586	<0.020	NS	0.02128	0.00204	ND	NS	0.0121	0.00416	SW8021b	10.0
GRO = Gas	soline Range Organics	DRO = D	iesel Rand	ge Organics	NS	= Not Sar	npled ND	= Not Dete	cted N/	A = Not Analy	yzed	-			-				-				
<mrl =="" td="" va<=""><td>lue less than Method Rep</td><td>orting Limit.</td><td>. 1</td><td>mg/L = milic</td><td>arams per Li</td><td>iter \</td><td>/OCs = Volati</td><td>le Organic</td><td>Compunds</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl>	lue less than Method Rep	orting Limit.	. 1	mg/L = milic	arams per Li	iter \	/OCs = Volati	le Organic	Compunds		•												
BOLD	= Value exceeds ADEC	cleanup thre	eshold.	5 6		¹ Ground	water cleanur	o thresholds	based on 1	8AAC 75.34	15 Table C.												

TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

																							ADEC Method Two
	Date Collected:	: Jan-95	Jul-95	Mar-96	Dec-96	Nov-99	Aug-00	Nov-00	Jun-02	Nov-02	Jul-03	Jan-04	Jun-05	Aug-05	Mar-06	Sept-06	Oct-07	Sep-12	Jun-13	Apr-14	Jul-15	Analytical	Groundwater Cleanup
Well No.	Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Method	Level (mg/L) ¹
B6VE	GRO	20.7	23	13.5	18.6	24	42.1	25.9	15	NS	NS	NS	50.700	57.900	27.400	40.600	54.600	8.290	25.8	22.7	NS	AK101	1.3
	DRO	NS	NS	NS	2.52	NS	NS	NS	1.6	NS	NS	NS	20.1	20.100	90.0	10.80	15.6	4.690	8.80	5.57	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	9.630	1.93	2.01	1.02	1.430	1.21	1.28	NS	AK103	1.1
	Benzene	1.53	3.11	1.34	2.29	1.75	3.82	2.5	1.69	NS	NS	NS	4.540	7.660	2.020	0.0939	3.880	1.060	2.750	1.730	NS	SW8021b	0.005
	Toluene	3.74	NS	2.21	4	3.12	4.48	3.16	1.9	NS	NS	NS	9.980	12.500	5.660	9.450	9.190	1.430	4.310	3.870	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	0.231	NS	NS	NS	1.440	1.090	1.070	0.555	1.100	0.122	0.721	0.734	NS	SW8021b	0.7
	Total Xylenes	3.51	NS	2.2	2.3	2.9	3.36	2.9	1.5	NS	NS	NS	7.220	8.810	5.240	6.730	5.950	1.139	3.660	3.473	NS	SW8021b	10.0
MW-08	GRO	3.45	3.92	9.89	NS	1.8	1.2	5.3	9.5	NS	0.8	NS	2.070	4.220	NS	0.577	4.280	0.79	NS	NS	ND	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	14.4	2.06	<mrl< td=""><td>NS</td><td>0.558</td><td><0.306</td><td>NS</td><td>ND</td><td><0.394</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>AK102</td><td>1.5</td></mrl<>	NS	0.558	<0.306	NS	ND	<0.394	ND	NS	NS	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.510	NS	ND	< 0.394	0.506	NS	NS	ND	AK103	1.1
	Benzene	1.51	2.49	4.91	NS	0.69	0.5	2.31	3.6	NS	0.33	NS	1.090	2.180	NS	0.165	1.450	0.355	NS	NS	0.00695	SW8021b	0.005
	Toluene	0.0027	NS	NS	NS	NS	NS	NS	0.016	NS	0.0008	NS	0.00285	<0.020	NS	0.0452	<0.025	ND	NS	NS	ND	SW8021b	1.0
	Ethylbenzene	0.004	NS	0.1	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.021</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	0.021	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td><0.020</td><td>NS</td><td>0.00415</td><td>< 0.025</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	<0.020	NS	0.00415	< 0.025	ND	NS	NS	ND	SW8021b	0.7
	Total Xylenes	0.007	NS	0.23	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>0.34</td><td>NS</td><td><mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	0.34	NS	<mrl< td=""><td>NS</td><td>0.0147</td><td>0.0256</td><td>NS</td><td>0.0539</td><td><0.075</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	0.0147	0.0256	NS	0.0539	<0.075	ND	NS	NS	ND	SW8021b	10.0
MW-09	GRO	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	<0.090	NS	NS	<0.050	ND	NS	NS	ND	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	0.44	NS	NS	NS	NS	0.798	NS	NS	<0.407	ND	NS	NS	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.23	NS	NS	<0.407	ND	NS	NS	0.651	AK103	1.1
	Benzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	< 0.0005	NS	NS	<0.0005	ND	NS	NS	ND	SW8021b	0.005
	Toluene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	NS	ND	SW8021b	1.0
	Ethylbenzene	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>< 0.002</td><td>NS</td><td>NS</td><td>< 0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	< 0.002	NS	NS	< 0.0005	ND	NS	NS	ND	SW8021b	0.7
	Total Xylenes	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0015</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0015	ND	NS	NS	ND	SW8021b	10.0
MW-10	GRO	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.090</td><td>NS</td><td>NS</td><td><0.050</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	NS	NS	<0.090	NS	NS	<0.050	ND	NS	NS	NS	AK101	1.3
	DRO	NS	NS	NS	0.39	NS	NS	NS	0.32	NS	NS	NS	NS	<0.303	NS	NS	<0.391	ND	NS	NS	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.505	NS	NS	<0.391	ND	NS	NS	NS	AK103	1.1
	Benzene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.0005</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	NS	NS	NS	<0.0005	NS	NS	<0.0005	ND	NS	NS	NS	SW8021b	0.005
	Toluene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	NS	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	NS	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td><0.002</td><td>NS</td><td>NS</td><td><0.0005</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	NS	NS	NS	NS	<0.002	NS	NS	<0.0005	ND	NS	NS	NS	SW8021b	10.0
MW-11	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	<mrl< td=""><td>< 0.090</td><td>0.233</td><td>ND</td><td><0.050</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	< 0.090	0.233	ND	<0.050	ND	NS	ND	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	3.82	NS	1.72	<mrl< td=""><td>1.16</td><td>2.01</td><td>0.650</td><td>0.481</td><td>0.759</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	1.16	2.01	0.650	0.481	0.759	ND	NS	ND	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.45	0.945	0.535	1.79	0.601	NS	0.723	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.004</td><td><mrl< td=""><td>0.000899</td><td>0.00586</td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<></td></mrl<>	NS	0.004	<mrl< td=""><td>0.000899</td><td>0.00586</td><td>0.02280</td><td>0.0142</td><td>0.00576</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.005</td></mrl<>	0.000899	0.00586	0.02280	0.0142	0.00576	ND	NS	ND	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	0.0027	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.0601</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>1.0</td></mrl<>	<0.002	0.0601	ND	<0.0005	ND	NS	ND	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00659</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00659</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00659</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.00659</td><td>ND</td><td><0.0005</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>0.7</td></mrl<>	<0.002	0.00659	ND	<0.0005	ND	NS	ND	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.03412</td><td>ND</td><td><0.0015</td><td>ND</td><td>NS</td><td>ND</td><td>NS</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.03412	ND	<0.0015	ND	NS	ND	NS	SW8021b	10.0
MW-12	GRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.53</td><td><mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	0.53	<mrl< td=""><td>0.635</td><td>1.170</td><td>0.262</td><td>0.497</td><td>0.035</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>AK101</td><td>1.3</td></mrl<>	0.635	1.170	0.262	0.497	0.035	NS	NS	ND	ND	AK101	1.3
	DRO	NS	NS	NS	0.44	NS	NS	NS	0.44	NS	1.53	<mrl< td=""><td>0.498</td><td>0.756</td><td>0.415</td><td>0.588</td><td>0.714</td><td>NS</td><td>NS</td><td>0.611</td><td>ND</td><td>AK102</td><td>1.5</td></mrl<>	0.498	0.756	0.415	0.588	0.714	NS	NS	0.611	ND	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.730	1.77	0.536	1.060	NS	NS	1.22	1.18	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>0.237</td><td>0.00218</td><td>0.247</td><td>0.398</td><td>0.101</td><td>0.205</td><td>0.142</td><td>NS</td><td>NS</td><td>0.0011</td><td>0.000580</td><td>SW8021b</td><td>0.005</td></mrl<>	NS	0.237	0.00218	0.247	0.398	0.101	0.205	0.142	NS	NS	0.0011	0.000580	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.0322</td><td>0.0176</td><td>< 0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>1.0</td></mrl<>	<0.002	0.0322	0.0176	< 0.0005	NS	NS	ND	ND	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.00407</td><td>0.00260</td><td><0.0005</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>0.7</td></mrl<>	<0.002	0.00407	0.00260	<0.0005	NS	NS	ND	ND	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<></td></mrl<>	<mrl< td=""><td><0.002</td><td>0.02015</td><td>0.01967</td><td><0.0015</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>SW8021b</td><td>10.0</td></mrl<>	<0.002	0.02015	0.01967	<0.0015	NS	NS	ND	ND	SW8021b	10.0
GRO = Gaso	ine Range Organics	DRO = D	Jiesel Rang	je Organics	; NS	= Not Sam) = Not Dete	cted N/	A = Not Anal	yzed												

mg/L = miligrams per Liter

Liter VOCs = Volatile Organic Compunds ¹ Groundwater cleanup thresholds based on 18AAC 75.345 Table C. CMRL = Value less than Method Reporting Limit.BOLD= Value exceeds ADEC cleanup threshold.

TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

																							ADEC Method Two
	Date Collected:	Jan-95	Jul-95	Mar-96	Dec-96	Nov-99	Aug-00	Nov-00	Jun-02	Nov-02	Jul-03	Jan-04	Jun-05	Aug-05	Mar-06	Sept-06	Oct-07	Sep-12	Jun-13	Apr-14	Jul-15	Analytical	Groundwater Cleanup
Well No.	Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Method	Level (mg/L) ¹
MW-13	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	217	236	159	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	20.1	31.1	22.3	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.75	1.90	2.72	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6	18.500	10.600	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	63.9	58.300	42.200	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.29	4.900	5.600	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.7	26.900	28.510	NS	SW8021b	10.0
	1,2,4-Trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.140	NS	NS	SW8260B	
	n-Propylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.399	NS	NS	SW8260B	
MW-14	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	118	140	113	94.8	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	58.6	56.4	52.3	53.6	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	8.88	9.52	10.9	5.72	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6	17.300	19.100	13.500	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.1	25.800	26.200	19.100	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.51	2.240	2.070	1.710	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.78	15.320	15.240	13.470	SW8021b	10.0
MW-15	GRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	86.100	NS	NS	56.500	1.33	2.25	7.98	NS	AK101	1.3
	DRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.6	NS	NS	4.96	1.03	2.01	1.83	NS	AK102	1.5
	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.19	NS	NS	0.439	1.010	1.19	2.25	NS	AK103	1.1
	Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	16.900	NS	NS	6.690	0.0467	0.517	1.790	NS	SW8021b	0.005
	Toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.800	NS	NS	8.630	0.0514	0.213	0.492	NS	SW8021b	1.0
	Ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.030	NS	NS	1.270	0.0229	0.0567	0.1130	NS	SW8021b	0.7
	Total Xylenes	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10.010	NS	NS	6.810	0.1119	0.2171	0.3670	NS	SW8021b	10.0
Tap Well	GRO	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>0.305</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK101</td><td>1.3</td></mrl<>	NS	NS	0.305	NS	NS	NS	NS	NS	AK101	1.3
(facility	DRO	NS	NS	NS	NS	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<></td></mrl<>	NS	NS	NS	<mrl< td=""><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>AK102</td><td>1.5</td></mrl<>	NS	NS	ND	NS	NS	NS	NS	NS	AK102	1.5
well)	RRO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	NS	NS	NS	NS	NS	AK103	1.1
	Benzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.005</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.005</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.005</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0108</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.005</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0108	NS	ND	NS	NS	ND	EPA 524.2	0.005
	Toluene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>1.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>1.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>1.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0495</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>1.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0495	NS	ND	NS	NS	ND	EPA 524.2	1.0
	Ethylbenzene	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.7</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.7</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.7</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.00947</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>0.7</td></mrl<>	NS	NS	NS	ND	NS	NS	0.00947	NS	ND	NS	NS	ND	EPA 524.2	0.7
	Total Xylenes	NS	NS	<mrl< td=""><td>NS</td><td><mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>10.0</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	NS	<mrl< td=""><td><mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>10.0</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td>NS</td><td><mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>10.0</td></mrl<></td></mrl<>	NS	<mrl< td=""><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>0.0613</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>ND</td><td>EPA 524.2</td><td>10.0</td></mrl<>	NS	NS	NS	ND	NS	NS	0.0613	NS	ND	NS	NS	ND	EPA 524.2	10.0
	VOCs	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NA	NS	ND	NS	NS	ND	EPA 524.2	varies
GRO = Ga	soline Range Organics	DRO = D	Diesel Rang	ge Organics	s NS	= Not Sam	pled ND) = Not Dete	cted NA	A = Not Analy	/zed												
<mrl =="" td="" va<=""><td>alue less than Method Repo</td><td>orting Limit</td><td>t. r</td><td>mg/L = milię</td><td>grams per L</td><td>iter V</td><td>CS = Volat</td><td>tile Organic</td><td>Compunds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl>	alue less than Method Repo	orting Limit	t. r	mg/L = milię	grams per L	iter V	CS = Volat	tile Organic	Compunds														
BOLD	= Value exceeds ADEC c	leanup thr	eshold.			Groundw	ater cleanu	p thresholds	s based on 1	18AAC 75.34	5 Table C.												

BGES, INC.

APPENDIX A FIELD NOTES

	3)	2 20	112.			4 C	X	rel			Lack	ic tic	wat	25g	ed c	606		8	20	3	114	-
	Stur	10121	2 2	m			0630	ione	+ 1			4	265 Tre	wer .	ules	R.45	217	3	2		was	74	
	2	00	ACK.	test .	80	2008	-97	60.0	the second	Ь		1Mg	4	01	+ 20	:25	4 0	et.	20		1	~	114
	me	6000		00	a	(25	2	200	000	lunch	5, 40.	r r	000	we	tur +	thoy	1	4	down	2	had	tom	M
	0	25	notes	00	7	DUTC	Semp	1/00	a ded	ie	~e	40 02	, Carl	Lola	dica.	t	950	0 0	am	- 4	•	01.00	Suisin
	4 40	- 44	22	U12	20 mg	red	Yo	28.	d le	2:4	2	k	the.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e/ 10	work	S" P.	200) + 0	11.	7139.		G D
	es.	DU.	the	28	8	sta	5 to	8	3	off	ret a	opt	dep	dou	leu	\$	2.7	14.	4.	0	26	2	5440
	0:20		11:25			11:50	17:47		4	13:10	1340	13:50											4:48
			-			a .					1											414-14	
							HS P				-	-		-			-	- 4	'ril	pr	5000	5 1	<i>•10</i>
	Srade 1		4			20	6.45	7	20					9		-	•	- 4	THI	11	100	5 1	=10 };[
	To Grade	3,48	6.24	6.14	4.99	6.48	Brann 6.45	2.74	7.36	7.84	4.62	4.75	6.35	4.29				(vs) (v)	51 37	11	TRIPON.	5 10	f 48+1 0
	To Grade	3,48	6.24	6.14	4.99	6.48	3 80.00 6.45	2.74	7.36	7. 84	14.62	4.75	6.35	4.29		21	•	3 BridAs 2	2 4 81	11	TRIPON.	5 1	484 0
3.0	PUC TO Grade	3,48		8 6.14	4.99	6.48	\$6.83 Bran 6.45	2.74	7.36	7. 84	2 1 4.62	4.75	6.35	4.29	-		•	4.33 Bildis	2 4 81	PT- 19	TRIPOL 3	5 1	
	To puc To Grade	3.74 5.48	6.54 6.24	6.68 6.14	5.2 4.99	7.11 6.48	Constrate 6.83 Brigger 6.45	3.01 2.74	7.71 7.36	8.3 7.84	5.12 4.62	5.0 4.75	6.55 6.35	4.58 4.29		21	•	1 = 4,33 BildAs 2	12 12	P	TRIPOL	5 1	N f 48+1 0
	To puc To Grade	3.74 3.48	2 6.54 6.24	3 6.68 6.14	S 5,2 4.99	8 7.11 6.48	9 Constrate 6.83 Bigger 6.45	10 3.01 2.74	11 7.71 7.36	12 8.3 7.84	113 5.12 4.62	14 5.0 4.75	115 6.55 6.35	WE 4.58 4.29		2:	•	r)-R1 = 4.33 Briding 2	2 4 81	PT- 19	TAIPON.	5 1	N f 481 0
	To puc To Grade	MW/ 3.74 5.48	MWZ 6.54 6.24	MW3 6.68 6.14	MWS 5.2 4.99	MW8 7.11 6.48	MW9 (Marette 6.83 (Bigger 6.45	MW10 3.01 2.74	MW11 7.71 7.36	MW/2 8.3 7.84	MW13 5.12 14.62	MW14 5.0 4.75	MW15 6.55 6.35	B6/VE 4.58 4.29				TI-RI = 4,33 BildAs	2 KRI	PT	TALAN.		N f 48+1 0

		6/30/15		50°F OWNIG	*
DISS BUES LEAT THE STIE. C	FOTEL WORKING	0840 3645	an site a	ret w North	27
ON MUS-MUIL REPAIR	3.	Dame	to discuss	TCP. Spor	4
This statted by stre to	abstrue. Prasect	all la	in from Su	+ roblerse	
STATUS * EXPANDABLE	PLA WAS TAREN	SHIKL	remound	well covers	_
- Frem TUIS Present 100	AVENUET		70 cm 4		
Sinto Bles Anerumo Left -	THE SITE.	Imh	8.72		
Sido Reever Du Si	THE TO DB SPELICE	2MW	6.21		
ACT IVITIES OBSERVE TA	ARIC CONTRA LIFALE	MW3	5.65		
SETE .		SMM	7.99	-	
OC BCGS LAPT THE SITE	For The iten.	mw8	6.10		
CRATRIC ENSITE TO	COMPLETE ADDTL.	PWM -	5.25		
Menitorine while 26	PMR.S.	MUIO	8.47		
		IImud	5.51		87
		MW12	4.96		
		mun3	7.57		8
		HIMH -	7.79		a"
-		NWIS	6.22		
2		D6/VE	8.01		
1					
	•				
		•			and a

đ mag. 35 Forgot barkey. 11:00 opened MU9 to the and free 12:15 took water sample NSW1-0701 stel rod. Pulled out 28 ft of back later to sample MUG obstruction. nade a hook w 10:50 article on site that w/ manager sampling points Tried several different to free opened up cover of soil gas 12:24 Sumarke aft sit. Will come 60°F Cloudy water dept messurments in sampling point what any 1730 crind. back on site. Tock puise from water supply well. 11:35 stated faucet to water supply well. off site SULL PSS. 21-1-6 11:40 1755 15:40 took water sample MW6R - 0630 15:37 took water sample MU14-0630 took water sample MUS-0630 (Duplicate of MU14-0630) Selmatte off side tor day Moved equipment to MWS Started pursing MUSS began cleanp 16:53 21:91 81:41 34

37		3	-					, F		47
	Spor	a to o	W. m							
	4.	- 50 200	lad N							
	5 5	to the	, ti	3						
-	to no	sis -	2 4	i the	211					
	series .	2.55.0	t coar	2	0					
6	3665	eno.	i hol	ristin	0					
1-12	0	४ ५.९	20	i i						
7.2	0:11			c . 11						
ybu			ç	of clets	ž		-	-		
Clo	5.'H . Uq.	N	4	2º ch	e e					
2.5	W.	07	Puck	f 4	7					
S	in	-67	5 6	pund	1 0 v	Ň				Ť.
	or 11	30 30	eene	Tota	ena Ja	5		-	_	_
	altra a	appende	L Cl	S. S.		2				
5	chin	of se	a tec	ildin	pose	ž				
2	~~~	te l	St Pla	fer Sc	d is					
2	720	855			200					
9	0	5								

BGES, INC.

Vell Number:MW 5	5	Weather Condition	ons -	65° F.	Ower cast
Date of Sampling Event:	6-30-15	Time of Depth to	Water Measure	ement:	16:00
		Date of Depth to	Water Measure	ement:	6.30-1
Total Depth of Well (feet	below TOC): 12.	98			
Depth to Water (feet belo	ow TOC): <u>7. 9</u>	9	Type of Samp	oling Equipmen	nt:
Vater Column (feet):	4.99		MP50	Controller	1.75
			bladder	pump, y	SJ Pro Plus
/olume of well (gals)	. 8	14	=0.1632 X W =0.6528 X W =1.4688 X W	ater Column (F ater Column (F ater Column (F	For 2-inch well) For 4-inch well) For 6-inch well)
Time Purging Began:	16:12				
Time of Sampling:	1653				
/olume purged	2.5 ge/ PURGE	A MINIMUM OF THE	EE WELL VOI	LUMES	
Temperature (°C)	10.8 T	emperature (°C)		Depth of B	ladder intake:
Conductivity	1079 C	onductivity		8.5	ft.
bН	6.75 pl	H		č.	
ORP	-19.3 0	RP			
/olume Purged	1541 V	olume Purged			
Depth To Water	D	epth To Water			
Time of Measurement	16:29 T	ime of Measurement		,	
Femperature (°C)	/1.3 T	emperature (°C)		Purge Rate	e:
Conductivity	1110 C	onductivity		200	aL /min
ЭΗ	6.37 p	Н			
ORP	-51.2 0	RP			
/olume Purged	2661 V	olume Purged			
Depth To Water	- D	epth To Water			
Time of Measurement	16:45 T	ime of Measurement			
				Sample Ra	ate:
Temperature (°C)	Т	emperature (°C)		150	mL/min
Conductivity	C	onductivity	·		
H	p	Н		5 55 NO 2000	
ORP	0	RP		Sample ID	
Volume Purged	V	olume Purged		MW	5-0630
Depth To Water	D	epth To Water			
Time of Measurement	T	ime of Measurement			
Femperature (°C)	T	emperature (°C)	9		
Conductivity	C	onductivity			
эΗ	p	Н			
DRP ⁺	0	RP			
Volume Purged	V	olume Purged			
Depth To Water	D	epth To Water			
Time of Measurement	T	ime of Measurement			
Additional Notos					

Page <u>I</u> of <u>I</u>

		GROUNDWATER MON	ITORING LOG			BGES, INC
BGES, INC.						
Well Number: MW	8	Weather Conditi	ons	60°F	Sunny	
Date of Sampling Event	t: 6-30-15	Time of Depth to	Water Measure	ement:	0 9:20	
5 504		Date of Depth to	Water Measure	ment:	6-30-15	5
Total Depth of Well (fee	et below TOC):	13.74				
Depth to Water (feet be	low TOC):	6.10	Type of Samp	ling Equipmer	nt:	
Water Column (feet):	7.64		MPSO	Controller,	1.75	-
			5/adder	pump.	YS3 pro	-
		2 C	plus			-
Volume of well (gals)		1.25	=0.1632 X Wa	ater Column (F	or 2-inch well)	
	-		=0.6528 X Wa	ater Column (F	or 4-inch well)	
			=1.4688 X Wa	ater Column (F	For 6-inch well)	
Time Purging Began:	11:50					
Time of Sampling:	12:47					
Volume purged	3.75 gel F	PURGE A MINIMUM OF THE	REE WELL VOL	UMES		
Temperature (°C)	11.6	Temperature (°C)		Depth of B	ladder intake:	
Conductivity	602	Conductivity		6.6	ft	
pH	6.52	pH				
ORP	30.1	ORP				
Volume Purged	1541	Volume Purged				
Depth To Water	12.12	Depth To Water				
Time of Measurement	14:10	time of Measurement				
Temperature (°C)	11.1	Temperature (°C)		Purge Rate	:	
Conductivity	590	Conductivity		200	mL/min	
pH	6.84	pH				
ORP	-25	ORP				
Volume Purged	254/	Volume Purged				
Time of Measurement	12:30	Time of Measurement				
Time of medoarement	12.20			Sample Ra	te:	
Temperature (°C)	11.1	Temperature (°C)		150	m6/min	
Conductivity	576	Conductivity				
pH	7.05	pН				
ORP	-53.2	ORP		Sample ID:		
Volume Purged	3551	Volume Purged		MW 8-	0630	
Depth To water		Time of Measurement				
Time of measurement	14.29	Time of Measurement				
Temperature (°C)		Temperature (°C)				
Conductivity		Conductivity	· · · · · · · · · · · · · · · · · · ·			
pH		pH				
ORP		ORP Volumo Durand				
Volume Purged		Depth To Water				
Time of Measurement		Time of Measurement				
Time of measurement		rine or medaurement				
Additional Notes:						

Page 1 of 1

NUMERITAL CONSELVANTS				0-	
Well Number: //W9	P 0 1-	Weather Condition	ons -	55°F	Cloudy
Date of Sampling Event:	7-2-15	Time of Depth to	Water Measure	ement:	07:30
		Date of Depth to	Water Measure	ment:	7-2-15
Total Depth of Well (feet	below TOC): /3. Z	4	T (0		
Depth to Water (feet belo	ow TOC): <u>5.82</u>		Type of Samp	ling Equipmer	nt:
water column (reet).	7.92		Redder	DATORE	, 3.10
			Discoer	Fump, Y	52 100
			- 1103		
Volume of well (gals)	1.21		=0.1632 X Wa	ater Column (F	or 2-inch well)
			=0.6528 X Wa	ater Column (F	For 4-inch well)
	22		=1.4688 X Wa	ater Column (F	or 6-inch well)
Time Purging Began:	7:40				
Time of Sampling:	0855				
Volume purged	4 ga/ PURGE	A MINIMUM OF THR	EE WELL VOL	UMES	
Tomporatura (°C)	10 0 To	mporatura (°C)		Depth of D	laddar intelses
Conductivity	70.9 Cc	anductivity		Depth of B	L4
pH	6.70 pt	ł	·		77
ORP	254 01	, RP			
Volume Purged	lead Vo	lume Purged			
Depth To Water	- De	epth To Water			
Time of Measurement	07:58 Ti	me of Measurement			
Tomporaturo (°C)		mperature (°C)		Purgo Pate	
Conductivity	<u> </u>	anductivity		Purge Kate	
nH	745 Dt	ł			mc/min
ORP	64 g OF	2P			
Volume Purged	7 cc/ VC	lume Purged			
Depth To Water	De	epth To Water			
Time of Measurement	08:14 Ti	ne of Measurement			
				Sample Ra	te:
Temperature (°C)	<u> 10.8 </u> Te	emperature (°C)		150.	- C/min
Conductivity	924 Co	onductivity			
pH	<u>7.11</u> pH	1			
ORP	53.5 01	RP		Sample ID:	
Volume Purged	<u> </u>	lume Purged		MW9-	0702
Depth To water		epth To water			
Time of Measurement	00.30	ne or measurement			
Temperature (°C)	Te	mperature (°C)			
Conductivity	Co	onductivity			
pН	pH				
ORP	OF	RP			
Volume Purged	Vo	lume Purged			
Depth To Water	De	epth To Water			
Time of Measurement	Tir	me of Measurement			
Additional Natary					
Additional Notes:	Gelle e liere	pulsed ou	- 1544	slowed	4.
179991 6	Jalions WERE	projed pro	P WGS	STUNDE	70
150 ml/	Min				

Page _l_of _l_

		GROUNDWATER MON	ITORING LOG		BGES, INC.
BGES, INC.					
Well Number: MW	12	Weather Conditi	ons	55°F	Ownices t
Date of Sampling Even	t: 6-30-15	Time of Depth to	Water Measure	ment:	09:70
		Date of Depth to	Water Measurer	ment:	6-30-15
Total Depth of Well (fee	et below TOC):	8.2			0 00 10
Depth to Water (feet be	low TOC): 4	96	Type of Sampl	lina Equipment:	
Water Column (feet):	3.24	10	MP50	Cantroller 1	1.75*
			bladder	Pump. YS	E Pro Plus
				1 1 1 1 1 1 1	
Volume of well (gals)	0.	53	=0.1632 X Wa =0.6528 X Wa =1.4688 X Wa	ter Column (For 2 ter Column (For 4 ter Column (For 6	-inch well) -inch well) -inch well)
Time Purging Began:	10:35				
Time of Sampling:	11:25				
Volume purged	Z.S. Ac / PUF	RGE A MINIMUM OF THE	REE WELL VOL	UMES	
relative pergee	gui				
Temperature (°C)	13.0	Temperature (°C)		Depth of Bladd	er intake:
Conductivity	574	Conductivity		5.5	ft
pH	6.5	pH			
ORP	83.7	ORP			
Volume Purged	_/ga/	Volume Purged			
Depth To Water		Depth To Water			
Time of Measurement	10.30	I me of Measurement			
Temperature (°C)	12.3	Temperature (°C)		Purge Rate:	
Conductivity	570	Conductivity		150	melmin
pH	7.38	pH			
ORP	76.7	ORP			
Volume Purged	2.5 gal	Volume Purged			
Depth To Water	-	Depth To Water			
Time of Measurement	11:12	Time of Measurement		Course In Date	
Temperature (PO)		Temperature (°C)		Sample Rate:	, , ,
Conductivity		Conductivity		150 M	[min
oH		DH			
ORP		ORP		Sample ID:	
Volume Purged		Volume Purged		MWIZ	-0630
Depth To Water		Depth To Water	· · · · · · · · · · · · · · · · · · ·		
Time of Measurement		Time of Measurement			
Temperature (°C)		Temperature (°C)			
Conductivity		Conductivity			
ORP		ORP			
Volume Purged		Volume Purged			
Depth To Water		Depth To Water			
Time of Measurement		Time of Measurement			
Additional Notes:	J <u></u>				

Water Monitoring Log Form (Revised 3/20/15)

Page _1_ of _1_

Project Number <u>13 - 053 - 03</u>

BGES, INC.

Well Number: MI.//	4	Weather Conditi	005	60°F	Clouds
Date of Sampling Event	· 6-30-15	Time of Depth to	Water Measure	mont:	L10084
Date of Sampling Event		Data of Dopth to	Water Measure	ment.	17.30
Total Depth of Well (fee Depth to Water (feet bel Water Column (feet):	t below TOC): /2.83 ow TOC): 7.79 5.04		Type of Samp MPSO Bladder	ling Equipmen <u>controlle</u> Pump,	<u>6-30-75</u> nt: <u>r. 1.75"</u> <u>VSI Pro Plus</u>
Volume of well (gals)	82	_	=0.1632 X Wa =0.6528 X Wa =1.4688 X Wa	ter Column (F ter Column (F ter Column (F	For 2-inch well) For 4-inch well) For 6-inch well)
Time Purging Began:	14:48				
Time of Sampling:	15:37				
Volume purged	2.5 AA/ PURGE A	MINIMUM OF THE	REE WELL VOL	UMES	
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water Time of Measurement	/2 Tem 938 Con 6.75 pH 6.4 ORF /g₄/ Volu - Dep /5:/0 Time	perature (°C) ductivity me Purged th To Water e of Measurement		Depth of B	ladder intake: <i>f1</i> .
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water	/2.3 Tem /023 Con 7.0/ pH -35.6 ORF 2 gs/ Volu Dep	perature (°C) ductivity me Purged th To Water		Purge Rate	mL/min
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water Time of Measurement	Tem Con PH ORF Volu Dep Time	perature (°C) ductivity me Purged th To Water e of Measurement		Sample Ra 150 Sample ID: MW14 D ~ p lize 4	te: <u>mL/min</u> - 0630 - > MW6R - 0630
Temperature (°C) Conductivity pH ORP Volume Purged Depth To Water Time of Measurement	Tem Con pH ORF Volu Dep Time	perature (°C) ductivity me Purged th To Water e of Measurement			
Additional Notes: 15:40	duplicate M	WBR - 0630) taken	from	MW14

Page _/_ of _/_

BGES, INC.

APPENDIX B LABORATORY ANALYTICAL DATA

Laboratory Report of Analysis

To: BGES Inc. 1042 E 6th Avenue Anchorage, AK 99501 (907) 644-2900

Report Number: 1153342

Client Project: 4748 Old Seward Highway

Dear Jayne Martin,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

mile

Victoria Pennick 2015.07.21 16:10:22 -08'00'

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 07/21/2015 2:15:53PM

SGS North America Inc.

Case Narrative

SGS Client: **BGES Inc.** SGS Project: **1153342** Project Name/Site: **4748 Old Seward Highway** Project Contact: **Jayne Martin**

Refer to sample receipt form for information on sample condition.

%) ' \$- ' \$\$& MS (1153093003) BMS

AK101 - Surrogate recovery for 4-bromofluorobenzene (200%) does not meet QC criteria due to matrix interference.

%)' \$-' \$\$& MSD (1153093004) BMSD

AK101 - Surrogate recovery for 4-bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/21/2015 2:15:54PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 07/21/2015 2:15:56PM

Note:

	Sa	ample Summary		
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
GW-062715-MW2-02 MS	1153093003	06/27/2015	06/29/2015	Water (Surface, Eff., Ground)
GW-062715-MW2-02 MSD	1153093004	06/27/2015	06/29/2015	Water (Surface, Eff., Ground)
Mathad		via ti a a		
		Combo		
	AK 101/6021			
SW8021B	AK101/8021 (
AK102	DRO/RRO Lo	w Volume Water		
AK103	DRO/RRO Lo	w Volume Water		
EPA 524.2	Volatile Organ	nics by 524.2 (DW	()	
MW5-0630	1153342001	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
MW8-0630	1153342002	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
MW9-0702	1153342003	07/02/2015	07/02/2015	Water (Surface, Eff., Ground)
MW12-0630	1153342004	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
MW14-0630	1153342005	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
MW6R-0630	1153342006	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
WSW1-0701	1153342007	07/01/2015	07/02/2015	Drinking Water
Trip Blank	1153342008	06/30/2015	07/02/2015	Drinking Water
Trip Blank	1153342009	06/30/2015	07/02/2015	Water (Surface, Eff., Ground)
•• •				
Method	Method Desc	ription		
AK101	AK101/8021 (Combo.		
SW8021B	AK101/8021 (Combo.		
AK102	DRO/RRO Lo	w Volume Water		
AK103	DRO/RRO Lo	w Volume Water		
EPA 524.2	Volatile Orgar	nics by 524.2 (DW	")	

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: MW5-0630			
Lab Sample ID: 1153342001	Parameter	Result	<u>Units</u>
Volatile Fuels	Benzene	12.6	ug/L
	o-Xylene	1.20	ug/L
	P & M -Xylene	2.96	ug/L
	Toluene	2.07	ug/L
Client Sample ID: MW8-0630			
Lab Sample ID: 1153342002	Parameter	Posult	l Inite
Volatile Fuels	Benzene	6.95	<u>ua/l</u>
	Donzono	0.00	ug/L
Client Sample ID: MW9-0702			
Lab Sample ID: 1153342003	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	0.651	mg/L
Client Sample ID: MW12-0630			
Lab Sample ID: 1153342004	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	1.18	mg/L
Volatile Fuels	Benzene	0.580	ug/L
Client Sample ID: MW14-0630			
Lab Sample ID: 1153342005	Parameter	Posult	Lipite
Somivolatilo Organic Euols	<u>Diesel Range Organics</u>	53.6	ma/l
Sernivolatile Organic i dels	Residual Range Organics	5 72	mg/L
Volatilo Fuels	Benzene	13200	ua/l
Volatile i dels	Ethylbenzene	1650	ug/L
	Gasoline Range Organics	92.7	ma/l
	o-Xvlene	3970	ua/L
	P & M -Xvlene	9220	ua/L
	Toluene	18700	ua/L
Client Sample ID: MVV6R-0630	_		
	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	38.6	mg/L
	Residual Range Organics	3.85	mg/L
Volatile Fuels	Benzene	13500	ug/L
	Etnyibenzene	1710	ug/L
		94.8	mg/L
		4030	ug/L
		9440	ug/L
	Iouene	19100	ug/L

Print Date: 07/21/2015 2:15:57PM

SGS North America Inc.

Client Sample ID: MW5-0630 Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342001 Lab Project ID: 1153342 Results by Semivolatile Organic Fuels Parameter Result Diesel Range Organics 0.600 Surrogates 5a Androstane (surr) 88.6 Batch Information Analytical Batch: XFC11939 Analytical Method: AK102 Analytical Method: AK102 Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A	Qual LOQ/CL U 0.600 50-150	Collection Da Received Da Matrix: Wate Solids (%): Location: <u>DL</u> 0.180	ate: 06/30/ te: 07/02/ ⁻ er (Surface, <u>Units</u> mg/L %	15 16:53 15 09:54 Eff., Gro <u>DF</u> 1	und) <u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/14/15 01:59
Results by Semivolatile Organic Fuels Parameter Result Diesel Range Organics 0.600 Surrogates 88.6 5a Androstane (surr) 88.6 Batch Information 88.6 Analytical Batch: XFC11939 Analytical Method: AK102 Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A	Qual LOQ/CL U 0.600 50-150	<u>DL</u> 0.180	<u>Units</u> mg/L %	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/14/15 01:59
ParameterResultDiesel Range Organics0.600Surrogates5a Androstane (surr)88.6Batch InformationAnalytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A	Qual LOQ/CL U 0.600 50-150	<u>DL</u> 0.180	<u>Units</u> mg/L %	<u>DF</u> 1	Limits	Date Analyzed 07/14/15 01:59
Diesel Range Organics 0.600 Surrogates 5a Androstane (surr) 88.6 Batch Information Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A	U 0.600 50-150	0.180	mg/L %	1		07/14/15 01:59
Surrogates 5a Androstane (surr) 88.6 Batch Information Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A	50-150		%			
Batch Information Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A				1		07/14/15 01:59
Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A						
		Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	XXX33495 : SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	5 09:55 mL		
Parameter Result Residual Range Organics 0.500	Qual <u>LOQ/CL</u> U 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 07/14/15 01:59
Surrogates						
n-Triacontane-d62 (surr) 86.5	50-150		%	1		07/14/15 01:59
Batch Information						
Analytical Batch: XFC11939 Analytical Method: AK103 Analyst: NLL Analytical Date/Time: 07/14/15 01:59 Container ID: 1153342001-A		Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	XXX33495 : SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	5 09:55 mL		

COC

Client Sample ID: MW5-0630 Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342001 Lab Project ID: 1153342 Results by Volatile Fuels Parameter Result Quert Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 104 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C	ual <u>LOQ/CL</u> 0.100 50-150	Collection Da Received Da Matrix: Wate Solids (%): Location: DL 0.0310	ate: 06/30/ te: 07/02/ cr (Surface) <u>Units</u> mg/L %	15 16:53 15 09:54 Eff., Gro DE 1	ound) <u>Allowable</u> <u>Limits</u>	Date Analyzed 07/06/15 17:43 07/06/15 17:43
Parameter Result Qr Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 104 Batch Information 104 Analytical Batch: VFC12505 Analytical Method: AK101 Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter Result Qr	ual <u>LOQ/CL</u> 0.100 50-150	DL 0.0310 Prep Batch: Prep Method Prep Date/Tir	Units mg/L %	<u>DF</u> 1 1	<u>Allowable</u> Limits	Date Analyzed 07/06/15 17:43 07/06/15 17:43
Parameter Result Qr Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 104 Batch Information 104 Analytical Batch: VFC12505 Analytical Method: AK101 Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter Result Qr	ual <u>LOQ/CL</u> 0.100 50-150	DL 0.0310 Prep Batch: Prep Method Prep Date/Tir	<u>Units</u> mg/L %	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 07/06/15 17:43 07/06/15 17:43
Surrogates 4-Bromofluorobenzene (surr) 104 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter	50-150	Prep Batch: Prep Method Prep Date/Tir	% VXX27540	1		07/06/15 17:43
4-Bromofluorobenzene (surr) 104 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter Result Question	50-150	Prep Batch: Prep Method Prep Date/Tir	% VXX27540	1		07/06/15 17:43
Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter Result Question		Prep Batch: Prep Method Prep Date/Tir	VXX27540			
Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C Parameter Result Qu		Prep Batch: Prep Method Prep Date/Tir	VXX27540			
Parameter Result Q		Prep Initial W Prep Extract	: SW5030B me: 07/06/1 /t./Vol.: 5 m Vol: 5 mL	5 08:00 L		
		וח	Linite	DE	Allowable	Date Analyzed
Benzene 12.6	0.500	<u>0.1</u> 50	ug/L	1	Linita	07/06/15 17:43
Ethylbenzene 1.00 U	1.00	0.310	ug/L	1		07/06/15 17:43
o-Xylene 1.20	1.00	0.310	ug/L	1		07/06/15 17:43
P & M -Xylene 2.96	2.00	0.620	ug/L	1		07/06/15 17:43
Toluene 2.07	1.00	0.310	ug/L	1		07/06/15 17:43
Surrogates						
1,4-Difluorobenzene (surr) 86.6	77-115		%	1		07/06/15 17:43
Batch Information						
Analytical Batch: VFC12505 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/06/15 17:43 Container ID: 1153342001-C		Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	VXX27540 : SW5030B me: 07/06/1 /t./Vol.: 5 m Vol: 5 mL	5 08:00 L		

 \mathbf{c}

Results of MW8-0630							
Client Sample ID: MW8-0630 Client Project ID: 4748 Old Seward H Lab Sample ID: 1153342002 Lab Project ID: 1153342	lighway	C F M S L	Collection Da Received Da Aatrix: Wate Solids (%): .ocation:	ate: 06/30/ te: 07/02/ [,] er (Surface			
Results by Semivolatile Organic Fue	ls					Allowable	
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.600 U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	Limits	Date Analyzed 07/14/15 02:20
urrogates							
5a Androstane (surr)	100	50-150		%	1		07/14/15 02:20
Batch Information							
Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 02:20 Container ID: 1153342002-A			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	XXX33495 : SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	; 15 09:55 0 mL		
Parameter Residual Range Organics	Result Qual	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ma/l	<u>DF</u> 1	Allowable Limits	Date Analyzed
urrogates	0.000 0	0.000	0.100	ing/L	·		01714/10 02.20
n-Triacontane-d62 (surr)	93.8	50-150		%	1		07/14/15 02:20
Batch Information							
Analytical Batch: XFC11939 Analytical Method: AK103 Analyst: NLL Analytical Date/Time: 07/14/15 02:20 Container ID: 1153342002-A			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	XXX33495 : SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	; 15 09:55 1 mL		

COC

Client Sample ID: MW8-0630 Client Project ID: 4748 Old Seward H Lab Sample ID: 1153342002 Lab Project ID: 1153342	lighway	C F N S L	Collection Da Received Dat Aatrix: Wate Solids (%): .ocation:	te: 06/30/ e: 07/02/´ r (Surface	15 12:47 15 09:54 , Eff., Gro	und)	
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 07/06/15 18:40
urrogates							
4-Bromofluorobenzene (surr)	107	50-150		%	1		07/06/15 18:40
Batch Information							
Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 18:40 Container ID: 1153342002-C			Prep Batch: Prep Method: Prep Date/Tin Prep Initial W Prep Extract	VXX27540 SW5030B ne: 07/06/1 t./Vol.: 5 m Vol: 5 mL	5 08:00 L		
Parameter	Result Qual	1.00/Cl	וח	Units	DF	Allowable	Date Analyzed
Benzene	6.95	0.500	0.150	ug/L	1		07/06/15 18:40
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:40
o-Xylene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:40
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		07/06/15 18:40
Toluene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:40
urrogates							
1,4-Difluorobenzene (surr)	85.3	77-115		%	1		07/06/15 18:40
Batch Information Analytical Batch: VFC12505 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/06/15 18:40 Container ID: 1153342002-C			Prep Batch: M Prep Method: Prep Date/Tin Prep Initial W Prep Extract M	VXX27540 SW5030B ne: 07/06/1 t./Vol.: 5 m Vol: 5 mL	5 08:00 L		

CCC

Client Sample ID: MW9-0702 Client Project ID: 4748 Old Seward High Lab Sample ID: 1153342003 Lab Project ID: 1153342 Results by Semivolatile Organic Fuels <u>Parameter</u> Diesel Range Organics	iway <u>Result Qual</u>		Collection Date Received Date Natrix: Wate Polids (%): Ocation:	te: 07/02/ te: 07/02/ r (Surface,	15 08:55 15 09:54 Eff., Gro	und)	
Results by Semivolatile Organic Fuels Parameter Diesel Range Organics	<u>Result Qual</u>	1.00/01					
<u>Parameter</u> Diesel Range Organics	Result Qual					Allowable	
	0 000 11		<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Urroaatoo	0.600 ()	0.600	0.180	mg/L	1		07/14/15 02:40
5a Androstane (surr)	93.3	50-150		%	1		07/14/15 02:40
Batch Information							
Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 02:40 Container ID: 1153342003-A			Prep Batch: 2 Prep Method: Prep Date/Tir Prep Initial W Prep Extract 1	XXX33495 SW3520C ne: 07/09/1 t./Vol.: 250 Vol: 1 mL	5 09:55 mL		
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Residual Range Organics	0.651	0.500	0.150	mg/L	1		07/14/15 02:40
urrogates n-Triacontane-d62 (surr)	94.9	50-150		%	1		07/14/15 02:40
Analytical Batch: XFC11939 Analytical Method: AK103 Analyst: NLL Analytical Date/Time: 07/14/15 02:40 Container ID: 1153342003-A			Prep Batch: 2 Prep Method: Prep Date/Tir Prep Initial W Prep Extract	XXX33495 SW3520C ne: 07/09/1 t./Vol.: 250 Vol: 1 mL	5 09:55 mL		

COC

Results of MW9-0702							
Client Sample ID: MW9-0702 Client Project ID: 4748 Old Seward H Lab Sample ID: 1153342003 Lab Project ID: 1153342	lighway	(F S L	Collection Da Received Dat Matrix: Wate Solids (%): Location:	ite: 07/02/ te: 07/02/ [,] r (Surface	15 08:55 15 09:54 , Eff., Grc	ound)	
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/06/15 18:59
urrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		07/06/15 18:59
Batch Information							
Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 18:59 Container ID: 1153342003-C			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	VXX27540 : SW5030B me: 07/06/1 (t./Vol.: 5 m Vol: 5 mL	3 15 08:00 IL		
Parameter Benzene	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 07/06/15 18:59
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:59
o-Xylene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:59
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		07/06/15 18:59
Toluene	1.00 U	1.00	0.310	ug/L	1		07/06/15 18:59
urrogates							
1,4-Difluorobenzene (surr)	84.4	77-115		%	1		07/06/15 18:59
Batch Information Analytical Batch: VFC12505 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/06/15 18:59 Container ID: 1153342003-C			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	VXX27540 SW5030B ne: 07/06/1 't./Vol.: 5 m Vol: 5 mL	3 15 08:00 IL		

CCC

Results of MW12-0630 Client Sample ID: MW12-0630 Client Project ID: 4748 Old Seward Hi Lab Sample ID: 1153342004 Lab Project ID: 1153342	ghway	Collection Date: 06/30/15 11:25 Received Date: 07/02/15 09:54 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels	3						
<u>Parameter</u> Diesel Range Organics	Result Qual 0.600 U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates 5a Androstane (surr)	101	50-150		%	1		07/14/15 03:00
Analytical Batch: XFC11939 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/14/15 03:00 Container ID: 1153342004-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	XXX33495 I: SW3520C me: 07/09/ [,] Vt./Vol.: 250 Vol: 1 mL) 15 09:55) mL		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 1.18	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates				0			
n-Triacontane-d62 (surr)	104	50-150		%	1		07/14/15 03:00
Batch Information							
Analytical Batch: XFC11939 Analytical Method: AK103 Analyst: NLL Analytical Date/Time: 07/14/15 03:00 Container ID: 1153342004-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	XXX33495 I: SW3520C Ime: 07/09/ [,] Vt./Vol.: 250 Vol: 1 mL) 15 09:55) mL		

Client Sample ID: MW12-0630 Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342004 Lab Project ID: 1153342 Results by Volatile Fuels Parameter Result Qual Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 101 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	LOQ/CL 0.100 50-150 LOQ/CL 0.500 1.00 1.00	Collection Da Received Da Matrix: Wate Solids (%): Location: DL 0.0310 Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	ate: 06/30, ate: 07/02/ er (Surface <u>Units</u> mg/L % VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	15 11:25 15 09:54 , Eff., Gro <u>DF</u> 1 1 15 08:00 1 <u>DF</u> 1 15 08:00	Allowable	Date Analyzec 07/06/15 19:18 07/06/15 19:18
Results by Volatile Fuels Parameter Result Qual Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 101 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	LOQ/CL 0.100 50-150 <u>LOQ/CL</u> 0.500 1.00 1.00	DL 0.0310 Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	Units mg/L % VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	DF 1 1 15 08:00 1 DF 1	<u>Allowable</u> <u>Limits</u>	Date Analyzec 07/06/15 19:18 07/06/15 19:18
Parameter Result Qual Gasoline Range Organics 0.100 U Surrogates 4-Bromofluorobenzene (surr) 101 Batch Information 101 Analytical Batch: VFC12505 Analytical Method: AK101 Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	LOQ/CL 0.100 50-150 <u>LOQ/CL</u> 0.500 1.00 1.00	DL 0.0310 Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract DL 0.150 0.310	Units mg/L % VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	DF 1 1 15 08:00 1 DF 1	<u>Allowable</u> <u>Limits</u>	Date Analyzec 07/06/15 19:18 07/06/15 19:18
Barconofluorobenzene (surr) 101 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	50-150	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract <u>DL</u> 0.150 0.310	% VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	1 3 15 08:00 1L <u>DF</u> 1	Allowable	07/06/15 19:18
4-Bromofluorobenzene (surr) 101 Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	50-150 LOQ/CL 0.500 1.00 1.00	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract <u>DL</u> 0.150 0.310	% VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	1 3 15 08:00 1L <u>DF</u> 1	Allowable	07/06/15 19:18
Batch Information Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C Parameter Result Qual Benzene 0.580 Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	LOQ/CL 0.500 1.00 1.00	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract <u>DL</u> 0.150 0.310	VXX27540 i: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	3 15 08:00 1L <u>DF</u> 1	Allowable	
Analytical Batch: VFC12505 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-CParameter BenzeneResult Qual 0.580Ethylbenzene0.580Ethylbenzene1.00 U 0.00 Uo-Xylene1.00 U 1.00 UP & M -Xylene2.00 U 1.00 UToluene1.00 U	LOQ/CL 0.500 1.00 1.00	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract <u>DL</u> 0.150 0.310	VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL <u>Units</u> ug/L	3 15 08:00 hL <u>DF</u> 1	Allowable	
ParameterResult QualBenzene0.580Ethylbenzene1.00 Uo-Xylene1.00 UP & M -Xylene2.00 UToluene1.00 U	LOQ/CL 0.500 1.00 1.00	<u>DL</u> 0.150 0.310	<u>Units</u> ug/L	DF 1	Allowable	
ParameterResult QuaiBenzene0.580Ethylbenzene1.00 Uo-Xylene1.00 UP & M -Xylene2.00 UToluene1.00 U	0.500 1.00 1.00	<u>DL</u> 0.150 0.310	<u>Units</u> ug/L	<u>DF</u> 1	Limits	
Ethylbenzene 1.00 U o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	1.00 1.00	0.310	ug/L			Date Analyzed
o-Xylene 1.00 U P & M -Xylene 2.00 U Toluene 1.00 U	1.00	0.010	ua/l	1		07/06/15 19:18
P & M - Xylene 2.00 U Toluene 1.00 U		0.310	ug/L	1		07/06/15 19:18
Toluene 1.00 U	2.00	0.620	ua/L	1		07/06/15 19:18
Surrogates	1.00	0.310	ug/L	1		07/06/15 19:18
Janogatoo						
1,4-Difluorobenzene (surr) 85.1	77-115		%	1		07/06/15 19:18
Batch Information						
Analytical Batch: VFC12505 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/06/15 19:18 Container ID: 1153342004-C		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	VXX27540 d: SW5030E ime: 07/06/ Vt./Vol.: 5 m Vol: 5 mL	3 15 08:00 1L		

	L(ocation:				
l <u>tQual</u> <u>L</u> 6 2	<u>.OQ/CL</u> 40	<u>DL</u> 0.720	<u>Units</u> mg/L	<u>DF</u> 4	<u>Allowable</u> Limits	Date Analyzed 07/21/15 05:01
0 5	0 150		0/	4		07/21/15 05:01
0 5	0-150		70	4		07/21/15 05.01
	F F F F	Prep Batch: > Prep Method: Prep Date/Tin Prep Initial Wit Prep Extract \	(XX33495 SW3520C ne: 07/09/1 t./Vol.: 250 Vol: 1 mL	5 09:55 mL		
l <u>t Qual L</u> 2 0	<u>.OQ/CL</u> .500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 07/14/15 04:01
6 5	0-150		%	1		07/14/15 04:01
	F F F F	Prep Batch: > Prep Method: Prep Date/Tin Prep Initial Wit Prep Extract \	<pre>XX33495 SW3520C ne: 07/09/1 t./Vol.: 250 Vol: 1 mL</pre>	5 09:55 mL		
	0 5	0 50-150	0 50-150 Prep Batch:) Prep Method: Prep Date/Tin Prep Initial Wi Prep Extract V 11 Qual LOQ/CL DL 0.500 0.150 6 50-150 Prep Batch:) Prep Method: Prep Date/Tin Prep Initial Wi Prep Date/Tin Prep Initial Wi Prep Date/Tin Prep Initial Wi Prep Extract V	0 50-150 % Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/19 Prep Initial Wt./Vol.: 250 Prep Extract Vol: 1 mL Mt Qual LOQ/CL DL Units 0.500 0.150 mg/L 6 50-150 % Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/19 Prep Initial Wt./Vol.: 250 Prep Initial Wt./Vol.: 250 Prep Extract Vol: 1 mL	0 50-150 % 4 Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/15 09:55 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL MtQual LOQ/CL DL Units DF 2 0.500 0.150 mg/L 1 6 50-150 % 1 Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/15 09:55 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL	0 50-150 % 4 Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/15 09:55 Prep Initial Wt./Vol: 250 mL Prep Extract Vol: 1 mL MIQUAL LOQ/CL DL Units DE Limits Allowable Limits 6 50-150 % 1 Prep Batch: XXX33495 Prep Method: SW3520C Prep Date/Time: 07/09/15 09:55 Prep Initial Wt./Vol: 250 mL Prep Extract Vol: 1 mL

Results of MW14-0630							
Client Sample ID: MW14-0630 Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342005 Lab Project ID: 1153342		Collection Date: 06/30/15 15:37 Received Date: 07/02/15 09:54 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 92.7	<u>LOQ/CL</u> 10.0	<u>DL</u> 3.10	<u>Units</u> mg/L	<u>DF</u> 100	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/07/15 22:31
urrogates							
4-Bromofluorobenzene (surr)	108	50-150		%	100		07/07/15 22:31
Batch Information							
Analytical Batch: VFC12507 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/07/15 22:31 Container ID: 1153342005-D		i i i i i i i i i i i i i i i i i i i	Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	VXX27546 d: SW5030B ime: 07/07/1 Wt./Vol.: 5 m t Vol: 5 mL	3 15 08:00 IL		
Devenueder	Desuit	1.00/01	DI	Linita	DE	Allowable	Data Araburad
Benzene	13200	<u>LOQ/CL</u> 50.0	<u>DL</u> 15.0	ua/L	<u>DF</u> 100	Limits	07/07/15 22:31
Ethylbenzene	1650	100	31.0	ug/L	100		07/07/15 22:31
o-Xylene	3970	100	31.0	ug/L	100		07/07/15 22:31
P & M -Xylene	9220	200	62.0	ug/L	100		07/07/15 22:3 ²
Toluene	18700	100	31.0	ug/L	100		07/07/15 22:37
urrogates 1,4-Difluorobenzene (surr)	98	77-115		%	100		07/07/15 22:31
Batch Information							
Analytical Batch: VFC12507 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/07/15 22:31		l l l	Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	VXX27546 d: SW5030B ïme: 07/07/1 Wt./Vol.: 5 m t Vol: 5 mL	3 15 08:00 IL		

Results of MW6R-0630 Client Sample ID: MW6R- Client Project ID: 4748 OI Lab Sample ID: 11533420	0630 d Seward Highway 006		C R M	ollection Da eceived Da atrix: Wate	ate: 06/30/ te: 07/02/ [/] er (Surface	15 15:40 15 09:54 , Eff., Gro	und)	
Lab Project ID: 1153342	reania Euola		Si Lo	olids (%): ocation:				
Parameter Diesel Range Organics	Result 38.6	Qual	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzec 07/14/15 04:2 ⁻
S urrogates 5a Androstane (surr)	101		50-150		%	1		07/14/15 04:2 ⁻
Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/1 Container ID: 1153342006	4/15 04:21 }-A		F F F	Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	; 15 09:55 mL		
<u>Parameter</u> Residual Range Organics	<u>Result</u> 3.85	<u>Qual</u>	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/14/15 04:2
Surrogates								
n-Triacontane-d62 (surr)	109		50-150		%	1		07/14/15 04:2
Batch Information Analytical Batch: XFC119 Analytical Method: AK103 Analyst: NLL	39 14/15 04:21		F F F F	Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	XXX33495 : SW3520C me: 07/09/1 /t./Vol.: 250 Vol: 1 mL	; 15 09:55 mL		

Results of MW6R-0630							
Client Sample ID: MW6R-0630 Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342006 Lab Project ID: 1153342		C F M S L					
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 94.8	<u>LOQ/CL</u> 10.0	<u>DL</u> 3.10	<u>Units</u> mg/L	<u>DF</u> 100	Allowable Limits	Date Analyzed
urrogates							
4-Bromofluorobenzene (surr)	107	50-150		%	100		07/07/15 22:12
Batch Information							
Analytical Batch: VFC12507 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/07/15 22:12 Container ID: 1153342006-D			Prep Batch: Prep Methoo Prep Date/T Prep Initial V Prep Extract	VXX27546 d: SW5030B ime: 07/07/1 Vt./Vol.: 5 m : Vol: 5 mL	8 15 08:00 IL		
						Allowable	
Parameter Ponzono	Result Qual	LOQ/CL	<u>DL</u> 15.0	<u>Units</u>	<u>DF</u> 100	<u>Limits</u>	Date Analyzed
Ethylbenzene	1710	100	31.0	ug/L	100		07/07/15 22:12
o-Xvlene	4030	100	31.0	ug/L	100		07/07/15 22:12
P & M -Xvlene	9440	200	62.0	ug/L	100		07/07/15 22:12
Toluene	19100	100	31.0	ug/L	100		07/07/15 22:12
urrogates							
1,4-Difluorobenzene (surr)	99.3	77-115		%	100		07/07/15 22:12
Batch Information							
Analytical Batch: VFC12507 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/07/15 22:12			Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	VXX27546 d: SW5030B ime: 07/07/1 Vt./Vol.: 5 m : Vol: 5 mL	8 15 08:00 IL		

Results of WSW1-0701

Client Sample ID: WSW1-0701
Client Project ID: 4748 Old Seward Highway
Lab Sample ID: 1153342007
Lab Project ID: 1153342

Collection Date: 07/01/15 12:15 Received Date: 07/02/15 09:54 Matrix: Drinking Water Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,1,1-Trichloroethane	0.500 U	0.500	0.150	ug/L	1	(<200)	07/03/15 05:54
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,1,2-Trichloroethane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
1,1-Dichloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,1-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<7)	07/03/15 05:54
1,1-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,2,3-Trichlorobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,2,3-Trichloropropane	0.500 U	0.500	0.180	ug/L	1		07/03/15 05:54
1,2,4-Trichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<70)	07/03/15 05:54
1,2,4-Trimethylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,2-Dibromo-3-chloropropane	2.00 U	2.00	0.620	ug/L	1		07/03/15 05:54
1,2-Dibromoethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,2-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<600)	07/03/15 05:54
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
1,2-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
1,3,5-Trimethylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,3-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<75)	07/03/15 05:54
2,2-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
2-Chlorotoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
4-Chlorotoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
4-Isopropyltoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Benzene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
Bromobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Bromochloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Bromoform	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Bromomethane	2.00 U	2.00	0.620	ug/L	1		07/03/15 05:54
Carbon tetrachloride	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:54
Chloroethane	1.00 U	1.00	0.310	ug/L	1		07/03/15 05:54
Chloroform	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Chloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
cis-1,2-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<70)	07/03/15 05:54
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54

Print Date: 07/21/2015 2:15:58PM

SGS North America Inc.

Results of WSW1-0701

Client Sample ID: WSW1-0701
Client Project ID: 4748 Old Seward Highway
Lab Sample ID: 1153342007
Lab Project ID: 1153342

Collection Date: 07/01/15 12:15 Received Date: 07/02/15 09:54 Matrix: Drinking Water Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Dibromomethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Dichlorodifluoromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Ethylbenzene	0.500 U	0.500	0.150	ug/L	1	(<700)	07/03/15 05:54
Hexachlorobutadiene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Isopropylbenzene (Cumene)	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Methylene chloride	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
Methyl-t-butyl ether	1.00 U	1.00	0.500	ug/L	1		07/03/15 05:54
Naphthalene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
n-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
n-Propylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
o-Xylene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
P & M -Xylene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
sec-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Styrene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:54
tert-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Tetrachloroethene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
Toluene	0.500 U	0.500	0.150	ug/L	1	(<1000)	07/03/15 05:54
Total Trihalomethanes	2.00 U	2.00	0.600	ug/L	1	(<80)	07/03/15 05:54
trans-1,2-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:54
trans-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Trichloroethene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:54
Trichlorofluoromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:54
Vinyl chloride	0.400 U	0.400	0.120	ug/L	1	(<2)	07/03/15 05:54
Xylenes (total)	0.500 U	0.500	0.150	ug/L	1	(<10000)	07/03/15 05:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	70-130		%	1		07/03/15 05:54
4-Bromofluorobenzene (surr)	99.1	70-130		%	1		07/03/15 05:54
Toluene-d8 (surr)	97.9	70-130		%	1		07/03/15 05:54

Batch Information

Analytical Batch: VMS15070 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/03/15 05:54 Container ID: 1153342007-A Prep Batch: VXX27530 Prep Method: SW5030B Prep Date/Time: 07/03/15 00:01 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/21/2015 2:15:58PM

SGS North America Inc.

Results of Trip Blank

Client Sample ID: Trip Blank Client Project ID: 4748 Old Seward Highway Lab Sample ID: 1153342008 Lab Project ID: 1153342

Collection Date: 06/30/15 12:47 Received Date: 07/02/15 09:54 Matrix: Drinking Water Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,1,1-Trichloroethane	0.500 U	0.500	0.150	ug/L	1	(<200)	07/03/15 05:38
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,1,2-Trichloroethane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
1,1-Dichloroethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,1-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<7)	07/03/15 05:38
1,1-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,2,3-Trichlorobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,2,3-Trichloropropane	0.500 U	0.500	0.180	ug/L	1		07/03/15 05:38
1,2,4-Trichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<70)	07/03/15 05:38
1,2,4-Trimethylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,2-Dibromo-3-chloropropane	2.00 U	2.00	0.620	ug/L	1		07/03/15 05:38
1,2-Dibromoethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,2-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<600)	07/03/15 05:38
1,2-Dichloroethane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
1,2-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
1,3,5-Trimethylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,3-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<75)	07/03/15 05:38
2,2-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
2-Chlorotoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
4-Chlorotoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
4-Isopropyltoluene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Benzene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
Bromobenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Bromochloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Bromoform	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Bromomethane	2.00 U	2.00	0.620	ug/L	1		07/03/15 05:38
Carbon tetrachloride	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:38
Chloroethane	1.00 U	1.00	0.310	ug/L	1		07/03/15 05:38
Chloroform	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Chloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
cis-1,2-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<70)	07/03/15 05:38
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38

Print Date: 07/21/2015 2:15:58PM

SGS North America Inc.

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **4748 Old Seward Highway** Lab Sample ID: 1153342008 Lab Project ID: 1153342 Collection Date: 06/30/15 12:47 Received Date: 07/02/15 09:54 Matrix: Drinking Water Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Dibromomethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Dichlorodifluoromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Ethylbenzene	0.500 U	0.500	0.150	ug/L	1	(<700)	07/03/15 05:38
Hexachlorobutadiene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Isopropylbenzene (Cumene)	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Methylene chloride	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
Methyl-t-butyl ether	1.00 U	1.00	0.500	ug/L	1		07/03/15 05:38
Naphthalene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
n-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
n-Propylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
o-Xylene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
P & M -Xylene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
sec-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Styrene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:38
tert-Butylbenzene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Tetrachloroethene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
Toluene	0.500 U	0.500	0.150	ug/L	1	(<1000)	07/03/15 05:38
Total Trihalomethanes	2.00 U	2.00	0.600	ug/L	1	(<80)	07/03/15 05:38
trans-1,2-Dichloroethene	0.500 U	0.500	0.150	ug/L	1	(<100)	07/03/15 05:38
trans-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Trichloroethene	0.500 U	0.500	0.150	ug/L	1	(<5)	07/03/15 05:38
Trichlorofluoromethane	0.500 U	0.500	0.150	ug/L	1		07/03/15 05:38
Vinyl chloride	0.400 U	0.400	0.120	ug/L	1	(<2)	07/03/15 05:38
Xylenes (total)	0.500 U	0.500	0.150	ug/L	1	(<10000)	07/03/15 05:38
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	70-130		%	1		07/03/15 05:38
4-Bromofluorobenzene (surr)	99.9	70-130		%	1		07/03/15 05:38
Toluene-d8 (surr)	98.5	70-130		%	1		07/03/15 05:38

Batch Information

Analytical Batch: VMS15070 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/03/15 05:38 Container ID: 1153342008-A Prep Batch: VXX27530 Prep Method: SW5030B Prep Date/Time: 07/03/15 00:01 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/21/2015 2:15:58PM

SGS North America Inc.

Results of Trip Blank							
Client Sample ID: Trip Blank Client Project ID: 4748 Old Seward Lab Sample ID: 1153342009 Lab Project ID: 1153342	Highway	C R M S L	ollection Da eceived Dat latrix: Wate olids (%): ocation:	te: 06/30/ te: 07/02/ [.] r (Surface	15 12:47 15 09:54 , Eff., Gro	und)	
Results by Volatile Fuels						Alla	
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Limits	<u>Date Analyzed</u> 07/07/15 19:02
Surrogates							
4-Bromofluorobenzene (surr)	106	50-150		%	1		07/07/15 19:02
Batch Information							
Analytical Batch: VFC12507 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/07/15 19:02 Container ID: 1153342009-B			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	VXX27546 SW5030B ne: 07/07/1 t./Vol.: 5 m Vol: 5 mL	8 15 08:00 L		
Darameter	Pesult Qual		וח	Linite	DE	Allowable	Date Analyzed
Benzene	0.500 U	0.500	0.150	ug/L	1	Linito	07/07/15 19:02
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		07/07/15 19:02
o-Xylene	1.00 U	1.00	0.310	ug/L	1		07/07/15 19:02
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		07/07/15 19:02
Toluene	1.00 U	1.00	0.310	ug/L	1		07/07/15 19:02
Surrogates							
1,4-Difluorobenzene (surr)	83.6	77-115		%	1		07/07/15 19:02
Batch Information							
Analytical Batch: VFC12507 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/07/15 19:02 Container ID: 1153342009-B			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	VXX27546 SW5030B ne: 07/07/1 t./Vol.: 5 m Vol: 5 mL	8 15 08:00 L		

 \mathbf{c}

Method Blank

Blank ID: MB for HBN 1712340 [VXX/27530] Blank Lab ID: 1274936

QC for Samples: 1153342007, 1153342008

Results by EPA 524.2

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.250U	0.500	0.150	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethene	0.250U	0.500	0.150	ug/L
1,1-Dichloropropene	0.250U	0.500	0.150	ug/L
1,2,3-Trichlorobenzene	0.250U	0.500	0.150	ug/L
1,2,3-Trichloropropane	0.250U	0.500	0.180	ug/L
1,2,4-Trichlorobenzene	0.250U	0.500	0.150	ug/L
1,2,4-Trimethylbenzene	0.250U	0.500	0.150	ug/L
1,2-Dibromo-3-chloropropane	1.00U	2.00	0.620	ug/L
1,2-Dibromoethane	0.250U	0.500	0.150	ug/L
1,2-Dichlorobenzene	0.250U	0.500	0.150	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.250U	0.500	0.150	ug/L
1,3,5-Trimethylbenzene	0.250U	0.500	0.150	ug/L
1,3-Dichlorobenzene	0.250U	0.500	0.150	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.250U	0.500	0.150	ug/L
2-Chlorotoluene	0.250U	0.500	0.150	ug/L
4-Chlorotoluene	0.250U	0.500	0.150	ug/L
4-Isopropyltoluene	0.250U	0.500	0.150	ug/L
Benzene	0.250U	0.500	0.150	ug/L
Bromobenzene	0.250U	0.500	0.150	ug/L
Bromochloromethane	0.250U	0.500	0.150	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.250U	0.500	0.150	ug/L
Bromomethane	1.00U	2.00	0.620	ug/L
Carbon tetrachloride	0.250U	0.500	0.150	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.250U	0.500	0.150	ug/L
Chloromethane	0.250U	0.500	0.150	ug/L
cis-1,2-Dichloroethene	0.250U	0.500	0.150	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L

Print Date: 07/21/2015 2:16:00PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Drinking Water

Method Blank

Blank ID: MB for HBN 1712340 [VXX/27530] Blank Lab ID: 1274936

QC for Samples: 1153342007, 1153342008

Results by EPA 524.2

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Dibromomethane	0.250U	0.500	0.150	ug/L
Dichlorodifluoromethane	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.250U	0.500	0.150	ug/L
Hexachlorobutadiene	0.250U	0.500	0.150	ug/L
Isopropylbenzene (Cumene)	0.250U	0.500	0.150	ug/L
Methylene chloride	0.250U	0.500	0.150	ug/L
Methyl-t-butyl ether	0.500U	1.00	0.500	ug/L
Naphthalene	0.250U	0.500	0.150	ug/L
n-Butylbenzene	0.250U	0.500	0.150	ug/L
n-Propylbenzene	0.250U	0.500	0.150	ug/L
o-Xylene	0.250U	0.500	0.150	ug/L
P & M -Xylene	0.250U	0.500	0.150	ug/L
sec-Butylbenzene	0.250U	0.500	0.150	ug/L
Styrene	0.250U	0.500	0.150	ug/L
tert-Butylbenzene	0.250U	0.500	0.150	ug/L
Tetrachloroethene	0.250U	0.500	0.150	ug/L
Toluene	0.250U	0.500	0.150	ug/L
trans-1,2-Dichloroethene	0.250U	0.500	0.150	ug/L
trans-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Trichloroethene	0.250U	0.500	0.150	ug/L
Trichlorofluoromethane	0.250U	0.500	0.150	ug/L
Vinyl chloride	0.200U	0.400	0.120	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	70-130		%
4-Bromofluorobenzene (surr)	96.4	70-130		%
Toluene-d8 (surr)	98.4	70-130		%

Batch Information

Analytical Batch: VMS15070 Analytical Method: EPA 524.2 Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 7/3/2015 1:05:00AM Prep Batch: VXX27530 Prep Method: SW5030B Prep Date/Time: 7/3/2015 12:01:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Drinking Water

Print Date: 07/21/2015 2:16:00PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1153342 [VXX27530] Blank Spike Lab ID: 1274937 Date Analyzed: 07/03/2015 01:43 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27530] Spike Duplicate Lab ID: 1274938 Matrix: Drinking Water

QC for Samples: 1153342007, 1153342008

Results by EPA 524.2

		Blank Spike	e (ug/L)	5	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.8	106	30	33.3	111	(70-130)	4.80	(< 30)
1,1,1-Trichloroethane	30	34.9	116	30	35.3	118	(70-130)	0.94	(< 30)
1,1,2,2-Tetrachloroethane	30	29.6	99	30	30.3	101	(70-130)	2.00	(< 30)
1,1,2-Trichloroethane	30	29.9	100	30	30.7	102	(70-130)	2.50	(< 30)
1,1-Dichloroethane	30	31.8	106	30	32.5	108	(70-130)	2.20	(< 30)
1,1-Dichloroethene	30	32.0	107	30	33.0	110	(70-130)	3.20	(< 30)
1,1-Dichloropropene	30	34.6	115	30	35.3	118	(70-130)	1.90	(< 30)
1,2,3-Trichlorobenzene	30	33.1	110	30	33.6	112	(70-130)	1.30	(< 30)
1,2,3-Trichloropropane	30	28.5	95	30	29.4	98	(70-130)	3.10	(< 30)
1,2,4-Trichlorobenzene	30	33.9	113	30	34.4	115	(70-130)	1.20	(< 30)
1,2,4-Trimethylbenzene	30	34.0	113	30	34.2	114	(70-130)	0.82	(< 30)
1,2-Dibromo-3-chloropropane	30	29.9	100	30	30.2	101	(70-130)	1.20	(< 30)
1,2-Dibromoethane	30	31.8	106	30	32.2	107	(70-130)	1.20	(< 30)
1,2-Dichlorobenzene	30	31.6	105	30	31.6	105	(70-130)	0.00	(< 30)
1,2-Dichloroethane	30	32.6	109	30	33.0	110	(70-130)	1.30	(< 30)
1,2-Dichloropropane	30	32.1	107	30	33.1	110	(70-130)	3.10	(< 30)
1,3,5-Trimethylbenzene	30	34.0	113	30	33.6	112	(70-130)	1.10	(< 30)
1,3-Dichlorobenzene	30	32.8	109	30	32.6	109	(70-130)	0.52	(< 30)
1,3-Dichloropropane	30	31.4	105	30	31.9	106	(70-130)	1.40	(< 30)
1,4-Dichlorobenzene	30	32.4	108	30	32.6	109	(70-130)	0.65	(< 30)
2,2-Dichloropropane	30	35.7	119	30	36.5	122	(70-130)	2.40	(< 30)
2-Chlorotoluene	30	32.4	108	30	32.5	108	(70-130)	0.15	(< 30)
4-Chlorotoluene	30	32.6	109	30	32.6	109	(70-130)	0.15	(< 30)
4-Isopropyltoluene	30	34.5	115	30	34.4	115	(70-130)	0.20	(< 30)
Benzene	30	32.8	109	30	33.2	111	(70-130)	1.30	(< 30)
Bromobenzene	30	32.2	107	30	32.2	107	(70-130)	0.06	(< 30)
Bromochloromethane	30	30.9	103	30	31.2	104	(70-130)	0.90	(< 30)
Bromodichloromethane	30	33.6	112	30	33.9	113	(70-130)	0.95	(< 30)
Bromoform	30	32.1	107	30	33.0	110	(70-130)	2.80	(< 30)
Bromomethane	30	27.0	90	30	30.6	102	(70-130)	12.50	(< 30)
Carbon tetrachloride	30	35.3	118	30	35.8	119	(70-130)	1.50	(< 30)
Chlorobenzene	30	32.2	107	30	32.9	110	(70-130)	2.10	(< 30)
Chloroethane	30	28.1	94	30	29.4	98	(70-130)	4.50	(< 30)
Chloroform	30	32.3	108	30	32.8	109	(70-130)	1.70	(< 30)

Print Date: 07/21/2015 2:16:02PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1153342 [VXX27530] Blank Spike Lab ID: 1274937 Date Analyzed: 07/03/2015 01:43 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27530] Spike Duplicate Lab ID: 1274938 Matrix: Drinking Water

QC for Samples: 1153342007, 1153342008

Results by EPA 524.2

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Chloromethane	30	26.2	87	30	31.8	106	(70-130)	19.50	(< 30)
cis-1,2-Dichloroethene	30	31.5	105	30	32.5	108	(70-130)	3.30	(< 30)
cis-1,3-Dichloropropene	30	33.7	112	30	34.2	114	(70-130)	1.40	(< 30)
Dibromochloromethane	30	32.8	109	30	32.9	110	(70-130)	0.43	(< 30)
Dibromomethane	30	31.8	106	30	33.0	110	(70-130)	3.50	(< 30)
Dichlorodifluoromethane	30	32.8	109	30	33.6	112	(70-130)	2.40	(< 30)
Ethylbenzene	30	32.7	109	30	33.2	111	(70-130)	1.60	(< 30)
Hexachlorobutadiene	30	33.8	113	30	34.0	113	(70-130)	0.77	(< 30)
Isopropylbenzene (Cumene)	30	34.6	115	30	35.1	117	(70-130)	1.30	(< 30)
Methylene chloride	30	26.6	89	30	27.6	92	(70-130)	3.50	(< 30)
Methyl-t-butyl ether	45	47.8	106	45	49.1	109	(70-130)	2.70	(< 30)
Naphthalene	30	32.7	109	30	33.6	112	(70-130)	2.80	(< 30)
n-Butylbenzene	30	35.8	119	30	36.1	120	(70-130)	0.97	(< 30)
n-Propylbenzene	30	33.7	112	30	33.6	112	(70-130)	0.09	(< 30)
o-Xylene	30	32.9	110	30	32.9	110	(70-130)	0.21	(< 30)
P & M -Xylene	60	67.2	112	60	67.2	112	(70-130)	0.07	(< 30)
sec-Butylbenzene	30	34.1	114	30	34.2	114	(70-130)	0.20	(< 30)
Styrene	30	33.8	113	30	33.8	113	(70-130)	0.06	(< 30)
tert-Butylbenzene	30	33.9	113	30	34.1	114	(70-130)	0.74	(< 30)
Tetrachloroethene	30	34.0	113	30	34.7	116	(70-130)	2.00	(< 30)
Toluene	30	31.1	104	30	32.3	108	(70-130)	3.80	(< 30)
trans-1,2-Dichloroethene	30	32.1	107	30	32.5	108	(70-130)	1.40	(< 30)
trans-1,3-Dichloropropene	30	33.5	112	30	34.0	113	(70-130)	1.60	(< 30)
Trichloroethene	30	33.8	113	30	34.4	115	(70-130)	1.90	(< 30)
Trichlorofluoromethane	30	35.0	117	30	35.6	119	(70-130)	1.70	(< 30)
Vinyl chloride	30	32.1	107	30	33.4	111	(70-130)	3.90	(< 30)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	100	100	30	100	100	(70-130)	0.33	
4-Bromofluorobenzene (surr)	30	101	101	30	99.8	100	(70-130)	0.96	
Toluene-d8 (surr)	30	98.6	99	30	100	100	(70-130)	1.60	

Print Date: 07/21/2015 2:16:02PM

SGS North America Inc.

SGS	

Blank Spike Summary		
Blank Spike ID: LCS for HBN 1153342 Blank Spike Lab ID: 1274937 Date Analyzed: 07/03/2015 01:43	[VXX27530]	Spike Duplicate ID: LCSD for HBN 1153342 [VXX27530] Spike Duplicate Lab ID: 1274938 Matrix: Drinking Water
QC for Samples: 1153342007, 115334	42008	
Results by EPA 524.2		
	Blank Spike (%)	Spike Duplicate (%)
Parameter Spike	Result Rec (%)	Spike Result Rec (%) CL RPD (%) RPD CL
Batch Information		
Analytical Batch: VMS15070 Analytical Method: EPA 524.2 Instrument: VPA 780/5975 GC/MS Analyst: NRB		Prep Batch: VXX27530 Prep Method: SW5030B Prep Date/Time: 07/03/2015 00:01 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL
Print Date: 07/21/2015 2:16:02PM		

Method Blank

Blank ID: MB for HBN 1712653 [VXX/27540] Blank Lab ID: 1275305 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342003, 1153342004

Results by AK101

Parameter_	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.000250U	0.000500	0.000150	mg/L
Ethylbenzene	0.000500U	0.00100	0.000310	mg/L
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L
o-Xylene	0.000500U	0.00100	0.000310	mg/L
P & M -Xylene	0.00100U	0.00200	0.000620	mg/L
Toluene	0.000500U	0.00100	0.000310	mg/L
Surrogates				
1,4-Difluorobenzene (surr)	80.3	77-115		%
4-Bromofluorobenzene (surr)	106	50-150		%

Batch Information

Analytical Batch: VFC12505 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: CRD Analytical Date/Time: 7/6/2015 10:42:00AM Prep Batch: VXX27540 Prep Method: SW5030B Prep Date/Time: 7/6/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/21/2015 2:16:04PM

Blank Spike ID: LCS for HBN 1153342 [VXX27540] Blank Spike Lab ID: 1275306 Date Analyzed: 07/06/2015 11:20 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27540] Spike Duplicate Lab ID: 1275307 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004

	Blank Spike	e (mg/L)	S	pike Duplic	ate (mg/L)			
<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
0.100	0.0993	99	0.100	0.0992	99	(80-120)	0.10	(< 20)
0.100	0.103	103	0.100	0.106	106	(75-125)	3.30	(< 20)
0.100	0.103	103	0.100	0.108	108	(80-120)	4.00	(< 20)
0.200	0.206	103	0.200	0.215	108	(75-130)	4.40	(< 20)
0.100	0.101	101	0.100	0.105	105	(75-120)	3.60	(< 20)
0.0500	94.5	95	0.0500	99.6	100	(77-115)	5.30	
			Prep	Batch: V	XX27540			
			Prep	Method:	SW5030B			
ID/FID			Prep	Date/Time	e: 07/06/201	5 08:00		
			Spik	e Init Wt./V	/ol.: 0.100 n	ng/L Extract	Vol: 5 mL	
			Dup	e Init Wt./V	ol.: 0.100 m	ng/L Extract	Vol: 5 mL	
	<u>Spike</u> 0.100 0.100 0.200 0.100 0.0500	Spike Result 0.100 0.0993 0.100 0.103 0.100 0.103 0.200 0.206 0.100 0.101 0.0500 94.5	Spike Result Rec (%) 0.100 0.0993 99 0.100 0.103 103 0.100 0.103 103 0.100 0.103 103 0.200 0.206 103 0.100 0.101 101	Blank Spike (mg/L) S Spike Result Rec (%) Spike 0.100 0.0993 99 0.100 0.100 0.103 103 0.100 0.100 0.103 103 0.100 0.100 0.103 103 0.100 0.200 0.206 103 0.200 0.100 0.101 101 0.100 0.0500 94.5 95 0.0500	Blank Spike (mg/L) Spike Duplic Spike Result Rec (%) Spike Result 0.100 0.0993 99 0.100 0.0992 0.100 0.103 103 0.100 0.106 0.100 0.103 103 0.100 0.106 0.100 0.103 103 0.100 0.108 0.200 0.206 103 0.200 0.215 0.100 0.101 101 0.100 0.105 0.0500 94.5 95 0.0500 99.6	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) 0.100 0.0993 99 0.100 0.0992 99 0.100 0.103 103 0.100 0.106 106 0.100 0.103 103 0.100 0.108 108 0.200 0.206 103 0.200 0.215 108 0.100 0.101 101 0.100 0.105 105 0.0500 94.5 95 0.0500 99.6 100	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) CL 0.100 0.0993 99 0.100 0.0992 99 (80-120) 0.100 0.103 103 0.100 0.106 106 (75-125) 0.100 0.103 103 0.100 0.108 108 (80-120) 0.200 0.206 103 0.200 0.215 108 (75-130) 0.100 0.101 101 0.100 0.105 105 (75-120) 0.0500 94.5 95 0.0500 99.6 100 (77-115)	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.100 0.0993 99 0.100 0.0992 99 (80-120) 0.10 0.100 0.103 103 0.100 0.106 106 (75-125) 3.30 0.100 0.103 103 0.100 0.108 108 (80-120) 4.00 0.200 0.206 103 0.200 0.215 108 (75-130) 4.40 0.100 0.101 101 0.100 0.105 105 (75-120) 3.60 0.0500 94.5 95 0.0500 99.6 100 (77-115) 5.30

Print Date: 07/21/2015 2:16:05PM

Blank Spike ID: LCS for HBN 1153342 [VXX27540] Blank Spike Lab ID: 1275308 Date Analyzed: 07/06/2015 11:39 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27540] Spike Duplicate Lab ID: 1275309 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004

Results by AK101			_						
	I	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.986	99	1.00	1.01	101	(60-120)	2.70	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	107	107	0.0500	105	105	(50-150)	1.10	
Batch Information									
Analytical Batch: VFC12505				Prep	Batch: V	XX27540			
Analytical Method: AK101				Prep	Method:	SW5030B			
Instrument: Agilent 7890A PII	D/FID			Prep	Date/Tim	e: 07/06/201	5 08:00		
Analyst: CRD				Spik	e Init Wt./	Vol.: 1.00 m	g/L Extract \	/ol: 5 mL	
				Dup	e Init Wt./\	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL	

Print Date: 07/21/2015 2:16:05PM

Billable Matrix Spike Summary

Original Sample ID: 1153093002 MS Sample ID: 1153093003 BMS MSD Sample ID: 1153093004 BMSD Analysis Date: 07/06/2015 12:37 Analysis Date: 07/06/2015 12:56 Analysis Date: 07/06/2015 13:15 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004

Results by AK101										
		Mat	rix Spike (mg/L)	Spike	Duplicate	e (mg/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.19	1.00	2.04	86	1.00	2.03	85	60-120	0.41	(< 20)
Surrogates										
4-Bromofluorobenzene (surr)		0.0500	0.100	200 *	0.0500	0.101	201 *	50-150	0.71	
Batch Information Analytical Batch: VFC12505 Analytical Method: AK101				Prep Prep	Batch: V Method:	XX27540 Volatile F	uels Extract	ion (W)		
Instrument: Agilent 7890A Pl Analyst: CRD	ID/FID			Prep Prep	Date/Tim Initial Wt.	e: 7/6/20 /Vol.: 5.0	15 8:00:00 0mL	AM		
Analytical Date/Time: 7/6/20	15 12:56:00F	PM		Prep	Extract V	ol: 5.00m	L			

Print Date: 07/21/2015 2:16:06PM

Method Blank

Blank ID: MB for HBN 1712653 [VXX/27540] Blank Lab ID: 1275305 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1153342001,\,1153342002,\,1153342003,\,1153342004$

Results by SW8021B LOQ/CL Parameter **Results** DL Units Benzene 0.250U 0.500 0.150 ug/L Ethylbenzene 0.500U 1.00 0.310 ug/L o-Xylene 0.500U 1.00 0.310 ug/L P & M -Xylene 1.00U 2.00 0.620 ug/L 0.500U 0.310 Toluene 1.00 ug/L Surrogates 1,4-Difluorobenzene (surr) 80.3 77-115 % **Batch Information**

Analytical Batch: VFC12505 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Analytical Date/Time: 7/6/2015 10:42:00AM Prep Batch: VXX27540 Prep Method: SW5030B Prep Date/Time: 7/6/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/21/2015 2:16:07PM

Blank Spike ID: LCS for HBN 1153342 [VXX27540] Blank Spike Lab ID: 1275306 Date Analyzed: 07/06/2015 11:20 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27540] Spike Duplicate Lab ID: 1275307 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004

•									
		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	100	99.3	99	100	99.2	99	(80-120)	0.10	(< 20)
Ethylbenzene	100	103	103	100	106	106	(75-125)	3.30	(< 20)
o-Xylene	100	103	103	100	108	108	(80-120)	4.00	(< 20)
P & M -Xylene	200	206	103	200	215	108	(75-130)	4.40	(< 20)
Toluene	100	101	101	100	105	105	(75-120)	3.60	(< 20)
urrogates									
1,4-Difluorobenzene (surr)	50	94.5	95	50	99.6	100	(77-115)	5.30	

Analytical Batch: VFC12505 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD

Prep Batch: VXX27540 Prep Method: SW5030B Prep Date/Time: 07/06/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/21/2015 2:16:08PM

Method Blank Blank ID: MB for HBN 1712748 [Blank Lab ID: 1275537 QC for Samples: 1153342005, 1153342006, 1153342	/XX/27546] 009	Matrix	: Water (Surfa	ce, Eff., Ground)	
Results by AK101					
Parameter <u>F</u> Gasoline Range Organics C	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Surrogates 4-Bromofluorobenzene (surr) 1	04	50-150		%	
Batch Information					
Analytical Batch: VFC12507 Analytical Method: AK101 Instrument: Agilent 7890A PID/FI Analyst: CRD Analytical Date/Time: 7/7/2015	D 4:49:00PM	Prep Bat Prep Me Prep Dat Prep Init Prep Ext	ch: VXX27546 thod: SW5030E ce/Time: 7/7/20 al Wt./Vol.: 5 m ract Vol: 5 mL	3 15 8:00:00AM nL	

Blank Spike ID: LCS for HBN 1153342 [VXX27546] Blank Spike Lab ID: 1275540 Date Analyzed: 07/07/2015 17:46 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27546] Spike Duplicate Lab ID: 1275541 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342005, 1153342006, 1153342009

Results by AK101			_						
	1	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.02	102	1.00	0.980	98	(60-120)	3.70	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	107	107	0.0500	107	107	(50-150)	0.80	
Batch Information									
Analytical Batch: VFC12507				Pre	Batch: V	XX27546			
Analytical Method: AK101				Pre	Method:	SW5030B			
Instrument: Agilent 7890A PI	D/FID			Pre	Date/Tim	e: 07/07/201	5 08:00		
Analyst: CRD				Spik	e Init Wt./\	/ol.: 1.00 mg	g/L Extract \	/ol: 5 mL	
				Dup	e init vvt./v	oi.: 1.00 mg	J/L Extract V	01: 5 ML	

Print Date: 07/21/2015 2:16:11PM

Method Blank

Blank ID: MB for HBN 1712748 [VXX/27546] Blank Lab ID: 1275537 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342005, 1153342009

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	83.2	77-115		%

Batch Information

Analytical Batch: VFC12507 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Analytical Date/Time: 7/7/2015 4:49:00PM Prep Batch: VXX27546 Prep Method: SW5030B Prep Date/Time: 7/7/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/21/2015 2:16:12PM

Blank Spike ID: LCS for HBN 1153342 [VXX27546] Blank Spike Lab ID: 1275538 Date Analyzed: 07/07/2015 17:27 Spike Duplicate ID: LCSD for HBN 1153342 [VXX27546] Spike Duplicate Lab ID: 1275539 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342005, 1153342006, 1153342009

Results by SW8021B Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) CL <u>RPD (%)</u> RPD CL 96.2 Benzene 100 98.1 98 100 96 (80-120) 1.90 (< 20) Ethylbenzene 100 104 104 100 100 100 3.50 (75-125) (< 20) o-Xylene 100 105 105 100 101 101 (80-120) 3.40 (< 20) P & M -Xylene 200 210 105 200 203 101 3.50 (75-130) (< 20) Toluene 100 101 101 100 99.0 2.30 99 (75-120) (< 20) Surrogates 1,4-Difluorobenzene (surr) 50 94.6 95 50 98.8 99 4.40 (77-115) **Batch Information**

Analytical Batch: VFC12507 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Prep Batch: VXX27546 Prep Method: SW5030B Prep Date/Time: 07/07/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/21/2015 2:16:13PM

Method Blank								
Blank ID: MB for HBN 17 Blank Lab ID: 1275742	I2836 [XXX/33495]	Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1153342001, 1153342002, 1	1153342003, 1153342004, 1153	3342005, 1153342006	3					
Results by AK102								
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>				
Diesel Range Organics	0.300U	0.600	0.180	mg/L				
Surrogates								
5a Androstane (surr)	99.4	60-120		%				
Batch Information								
Analytical Batch: XFC11	Prep Ba	atch: XXX33495						
Analytical Method: AK10	Prep Me	ethod: SW35200)					
Instrument: HP 7890A	Prep Date/Time: 7/9/2015 9:55:04AM Prep Initial Wt /Vol : 250 ml							
Analyst: NILI	Analyst: NLL Analytical Date/Time: 7/12/2015 11:59:00AM			Prep Extract Vol: 1 mL				

Print Date: 07/21/2015 2:16:14PM

Blank Spike ID: LCS for HBN 1153342 [XXX33495] Blank Spike Lab ID: 1275743 Date Analyzed: 07/12/2015 12:20 Spike Duplicate ID: LCSD for HBN 1153342 [XXX33495] Spike Duplicate Lab ID: 1275744 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004, 1153342005, 1153342006

Biank Spike (mg/L) Spike Duplicate (mg/L) Parameter Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Diesel Range Organics 20 21.7 108 20 23.0 115 (75-125) 5.80 (< 20) urrogates Sa Androstane (surr) 0.4 105 105 0.4 118 118 60-120 11.80 Batch Information Analytical Batch: XFC11935 Analytical Method: AK102 Instrument: HP 7890A FID SV E F Analyst: NLL Prep Batch: XXX33495 Prep Date/Time: 07/09/2015 09:55 Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL				(
ParameterSpikeResultRec (%)SpikeResultRec (%)CLRPD (%)RPD CLDiesel Range Organics2021.71082023.0115(75-125)5.80(< 20)urrogates5a Androstane (surr)0.41051050.4118118(60-120)11.80Batch InformationAnalytical Batch:XFC11935 Analytical Method:AK102 Instrument:Prep Batch:XXX33495 Prep Method:Sw3520C Spike Init Wt./Vol.:20 99:55 Spike Init Wt./Vol.:20 99:5			Blank Spike (mg/L)			Spike Duplicate (mg/L)				
Diesel Range Organics 20 21.7 108 20 23.0 115 (75-125) 5.80 (< 20) urrogates 5a Androstane (surr) 0.4 105 105 0.4 118 118 (60-120) 11.80 Batch Information Analytical Batch: XFC11935 Analytical Method: AK102 Instrument: Prep Batch: XXX33495 Prep Method: SW3520C Instrument: HP 7890A FID SV E F Analyst: NLL Prep Date/Time: 07/09/2015 09:55 Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
urrogates 5a Androstane (surr) 0.4 105 105 0.4 118 118 (60-120) 11.80 Batch Information Analytical Batch: XFC11935 Prep Batch: XXX33495 Prep Method: SW3520C Instrument: HP 7890A FID SV E F Prep Date/Time: 07/09/2015 09:55 Analyst: NLL Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	Diesel Range Organics	20	21.7	108	20	23.0	115	(75-125)	5.80	(< 20)
5a Androstane (surr) 0.4 105 105 0.4 118 118 (60-120) 11.80 Batch Information Analytical Batch: XFC11935 Prep Batch: XXX33495 Analytical Method: AK102 Prep Method: SW3520C Instrument: HP 7890A FID SV E F Prep Date/Time: 07/09/2015 09:55 Analyst: NLL Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	urrogates									
Batch Information Analytical Batch: XFC11935 Analytical Method: AK102 Instrument: HP 7890A FID SV E F Analyst: NLL Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	5a Androstane (surr)	0.4	105	105	0.4	118	118	(60-120)	11.80	
Analytical Batch: XFC11935 Prep Batch: XXX33495 Analytical Method: AK102 Prep Method: SW3520C Instrument: HP 7890A FID SV E F Analyst: NLL Prep Date/Time: 07/09/2015 09:55 Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	Batch Information									
Analytical Method: AK102 Prep Method: SW3520C Instrument: HP 7890A FID SV E F Prep Date/Time: 07/09/2015 09:55 Analyst: NLL Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	Analytical Batch: XFC11935				Pre	p Batch: X	XX33495			
Analyst: NLL Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	Instrument: HP 7890A				Pre	p ivietriou. n Date/Tim	SW3520C	5 09:55		
Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL	Analyst: NLL	DOVEI	Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL							
	, ,				Dup	e Init Wt./\	/ol.: 20 mg/L	Extract Vol	: 1 mL	

Print Date: 07/21/2015 2:16:15PM
SGS

- Method Blank]			
Blank ID: MB for HBN 1712 Blank Lab ID: 1275742	836 [XXX/33495]	Matrix	Matrix: Water (Surface, Eff., Ground)		
QC for Samples: 1153342001, 1153342002, 11	53342003, 1153342004, 11	53342005, 1153342006			
Results by AK103)			
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Residual Range Organics	0.250U	0.500	0.150	mg/L	
Surrogates					
n-Triacontane-d62 (surr)	83.5	60-120		%	
Satch Information					
Analytical Batch: XFC1193	35	Prep Ba	tch: XXX33495		
Analytical Method: AK103		Prep Me	thod: SW35200		
Analyst: NLL	FIDSVEF	Prep Da Prep Init	ial Wt /Vol · 25	15 9:55:04AM	
Analytical Date/Time: 7/12	/2015 11:59:00AM	Prep Ext	tract Vol: 1 mL		

Blank Spike Summary

Blank Spike ID: LCS for HBN 1153342 [XXX33495] Blank Spike Lab ID: 1275743 Date Analyzed: 07/12/2015 12:20 Spike Duplicate ID: LCSD for HBN 1153342 [XXX33495] Spike Duplicate Lab ID: 1275744 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153342001, 1153342002, 1153342003, 1153342004, 1153342005, 1153342006

Results by AK103									
		Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Residual Range Organics	20	14.9	74	20	16.0	80	(60-120)	7.70	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	103	103	0.4	114	114	(60-120)	10.20	
Batch Information									
Analytical Batch: XFC11935				Pre	p Batch: X	XX33495			
Analytical Method: AK103				Pre	p Method:	SW3520C			
Instrument: HP 7890A	FID SV E F			Pre	p Date/Tim	e: 07/09/201	15 09:55		
Analyst: NLL				Spi	ke Init Wt./\	/ol.: 20 mg/	L Extract Vo	l: 1 mL	
				Dup	e Init Wt./\	/ol.: 20 mg/l	L Extract Vol	: 1 mL	

Print Date: 07/21/2015 2:16:17PM

SGS North America Inc.

Locations Nationwide

Alaska Maryland New Jersey New York North Carolina Indiana West Virgina Kentucky

www.us.sgs.com

	CLIENT:	BGES						Inst Or	ructio nissio	ons: ons n	Sectional design of the section of t	ons 1 elav t	- 5 n he or	nust nset c	be fille of anal	ed ou vsis.	ıt.		- / . 1
	CONTACT: Jay	ne l	F Martin	PHONE #:	1-290	0	Sec	tion 3					Preser	vative					Page <u>t</u> of <u>t</u>
ection	PROJECT NAME:	4748 Old Highway	P Seward P P	roject/ WSID/ ERMIT#:	_		# C	Pres: Type:	HCI	HCI	W	. /						\square	
S	REPORTS T	0:	E	-MAIL:			N N	Comp		0F	96								
		Jayr	ne	jayne@	bgesine	. com	Т	Grab	60	0/RI									
	INVOICE TO	BGES	; F	QUOTE #: 10 P.O. #:	772 A		I N	MI (Multi- incre-	W8021	03 - DR	24.2								
	RESERVED for lab use	SAMPL		N DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	mental)	AK101/S GRO/BT	AK102/1	EPAJ								REMARKS/ LOC ID
	VA-E	MWS	-0630	6/30/15	16:53	VATER	5	G	X	X									
	2) A-E	MWB	- 0630	6/30/15	12:47	WATER	5	G	X	X									
\sim	3 A-E	MWG	1-0702	7/2/15	08:55	WATER	5	G	X	x									
no	(Y)A-E	MWI	2-0630	6/30/15	11:25	WATER	5	G	X	X									
ecti	5)A-E	MWI	4-0630	6/30/15	15:37	WATER	5	6	X	X									
<i>с</i> о	DA-E	MW6H	2 - 0630	6/30/15	15:40	WATER	5	G	X	X									
	DA-C	WSh)	1-0701	7/1/15	12:15	WATER	3	G			X								
	8 A-C	Trip	Blank	<u> </u>		WATER	1	-	X										
	0 A-C_	Trip	Blank			WATER)	-	<u> </u>		X								
	· · ·										: .					_			
	Relinguishe	ed By: (1)	_	Date	Time	Received By					Secti	ion 4	DOD	Projec	t? Yes(Nð	Data	Deliver	rable Requirements:
	ht	$\sim c$	525	7-2-15	9:54						Cool	er ID:					Le	evel	2
	Relinquishe	d By: (2)		Date	Time	Received By	:				Reque	sted Tu	Irnarou	nd Tim	e and/or	Specia	al Instr	uctions	:
u											57	tead	lerd	/	10 -	de	21/		
ecti	Relinquishe	d By: (3)		Date	Time	Received By	:							- -		~ ~	/		
တ											Temp	Blank °	c: _()_	21	240		Cha	in of Cu	ustody Seal: (Circle)
	Relinquishe	d_By: (4)		Date	Time	Received For	r Labora	atory By:					or Amb	vient []		INTA	ACT E	BROKEN ABSENT
				712115	0.954	()uc	\sim				(See	attach	ed Sam	ple Re	ceipt For	m) (See at	tached	Sample Receipt Form)

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions

1153342

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.		\checkmark		Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			
Temperature blank compliant* (i.e., 0-6°C after CF)?				Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?	IЦ		Ц	
If <0 °C, were all sample containers ice free?		\checkmark		
Cooler ID: 1 (a) 0.2 w/ Therm.ID: 240				
Cooler ID: (a) w/ Therm.ID:				
Cooler ID: @ w/ Therm ID:				
Cooler ID: @ w/ Therm ID:				
If samples are received without a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): VIClient (hand carried)				
$\square USPS$ $\square Lynden \square AK All \square Alert Counter\square UDS \square EadEx \square PAVNI \square C R D Dalivary$				
Carlile Pen Air Warn Sneed Other				
\rightarrow For WO# with airhills was the WO# & airhill				
info recorded in the Front Counter eLog?		$\mathbf{\nabla}$		
	Yes	N/A	No	
Were samples received within hold time?	\checkmark			Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?	\checkmark			<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?				
Were samples in good condition (no leaks/cracks/breakage)?				
Packing material used (specify all that apply): V Bubble Wrap				
Vers proper containers (type/magg/volume/procenties*) used?				Examption parmitted for metals (a g 200 8/60204)
Were Trin Blanks (i.e. VOAs LL Hg) in cooler with samples?		Н	Н	Lxemption permitted for metals (e.g., 200.0/0020A).
Were all VOA vials free of headspace (i.e., hubbles ≤ 6 mm)?		H		Sample 1153342001-E contained a bubble >6mm.
Were all soil VOAs field extracted with MeOH+BFB?			H	
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant ?	\checkmark			
If pH was adjusted, were bottles flagged (i.e., stickers)?		\checkmark		
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),			_	
were bottles/paperwork flagged (e.g., sticker)?		\checkmark		
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were				
containers / paperwork flagged accordingly?		V		SPE Completed by VDL 7/2/15
for any question answered "No," has the Pivi been notified and the problem resolved (or paperwork put in their bin)?				DM notified:
Was PEER REVIEW of sample numbering/labeling completed?			-	Peer Reviewed by: HAH
Additional notes (if applicable):				
Additional notes (11 applicable).				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

F102_eSRF_2015_03_31

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	Preservative	Container Condition
1153342001-A	HCL to $pH < 2$	ОК			
1153342001-В	HCL to $pH < 2$	ОК			
1153342001-С	HCL to $pH < 2$	ОК			
1153342001-D	HCL to $pH < 2$	ОК			
1153342001-Е	HCL to $pH < 2$	ОК			
1153342002-A	HCL to $pH < 2$	ОК			
1153342002-В	HCL to $pH < 2$	ОК			
1153342002-С	HCL to $pH < 2$	ОК			
1153342002-D	HCL to $pH < 2$	ОК			
1153342002-Е	HCL to $pH < 2$	ОК			
1153342003-A	HCL to $pH < 2$	ОК			
1153342003-В	HCL to $pH < 2$	ОК			
1153342003-С	HCL to $pH < 2$	ОК			
1153342003-D	HCL to $pH < 2$	ОК			
1153342003-Е	HCL to $pH < 2$	ОК			
1153342004-A	HCL to $pH < 2$	ОК			
1153342004-В	HCL to $pH < 2$	ОК			
1153342004-С	HCL to $pH < 2$	ОК			
1153342004-D	HCL to $pH < 2$	ОК			
1153342004-Е	HCL to $pH < 2$	ОК			
1153342005-A	HCL to $pH < 2$	ОК			
1153342005-В	HCL to $pH < 2$	ОК			
1153342005-С	HCL to $pH < 2$	ОК			
1153342005-D	HCL to $pH < 2$	ОК			
1153342005-Е	HCL to $pH < 2$	ОК			
1153342006-A	HCL to $pH < 2$	ОК			
1153342006-В	HCL to $pH < 2$	ОК			
1153342006-С	HCL to $pH < 2$	ОК			
1153342006-D	HCL to $pH < 2$	ОК			
1153342006-Е	HCL to $pH < 2$	ОК			
1153342007-A	HCL to $pH < 2$	ОК			
1153342007-В	HCL to $pH < 2$	ОК			
1153342007-С	HCL to $pH < 2$	ОК			
1153342008-A	HCL to $pH < 2$	ОК			
1153342008-В	HCL to $pH < 2$	ОК			
1153342008-С	HCL to $pH < 2$	ОК			
1153342009-A	HCL to $pH < 2$	OK			
1153342009-В	HCL to $pH < 2$	OK			
1153342009-С	HCL to $pH < 2$	ОК			

Container Id

Preservative

Container Condition

Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

BGES, INC.

APPENDIX C LABORATORY ANALYTICAL DATA QUALITY CONTROL CHECKLIST

Laboratory Data Review Checklist

Completed by:	William Schmaltz		
Title:	Environmental Scientist	Date: 11	/3/2015
CS Report Name:	Groundwater Monitoring Report (June/July 2015)	Report Date:	November 2015
Consultant Firm:	BGES, Inc.		
Laboratory Name	SGS, North America Inc.	atory Report Numl	ber: 1153342
ADEC File Numb	er: 2100.26.252 ADEC R	ecKey Number:	N/A
1. <u>Laboratory</u> a. Did an b. If the s	ADEC CS approved laboratory receive and portes No NA (Please explain.)	erform all of the su Comments:	bmitted sample analyses?
laborat Y	$rac{Na}{Please}$ explain.)	Comments:	oved?
Samples	were not transferred to a network laborate	ory.	
2. <u>Chain of Custo</u> a. COC in	<u>ody (COC)</u> nformation completed, signed, and dated (incluive) (es) No NA (Please explain.)	uding released/rece Comments:	vived by)?
b. Correc	t analyses requested? Yes No NA (Please explain.)	Comments:	

- 3. <u>Laboratory Sample Receipt Documentation</u>
 - a. Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$? Yes No NA (Please explain.) Comments:

The temperature of the sample cooler that contained the water samples was measures at the laboratory at the time of receipt to be 0.2 degrees Celsius. The temperature in the cooler was below the prescribed, optimal temperature range of 4 degrees Celsius +/- 2 degrees. However, because the recorded temperature was slightly below the acceptance range, there is a reduced potential for contaminant loss within the samples due to natural attenuation. For this reason, it is our opinion that this quality control failure does not affect the acceptability of the data for their intended use.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

\sim	
(Vac)	NT _a
(res)	
	110

Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes) No NA (Please explain.) Comments:

NA (Please explain.)

One of the three sample jars collected for volatile organic analyses for Field Sample MW5-0630 contained an air bubble greater than 6 millimeters in diameter (headspace). However, since there were two other jars collected as part of this sample and were utilized for analysis of this sample, it is our opinion that this quality control failure does not affect the acceptability of the data for its intended use. No other unusual sample conditions were noted by the laboratory at the time of their receipt.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

(Yes) No NA (Please explain.)

-	

- e. Data quality or usability affected? (Please explain.)
- Comments:

Comments:

N/A

See 3a above.

4. Case Narrative

- a. Present_and understandable?
 - (Yes) No NA (Please explain.)

Comments:

b. Discrepancies, errors or QC failures identified by the lab? (Yes) No NA (Please explain.) Comments:

The percent recovery of 4-bromofluorobenzene, associated with the analysis of GRO within the Matrix Spike and Matrix Spike Duplicate samples exceeded the laboratory acceptance limit. This indicates a potential for the reported concentrations of GRO to be biased high in Field Samples MW5-0630, MW8-0630, MW9-0702, and MW12-0630. Because the Matrix Spike and Matrix Spike Duplicate samples were derived from a field sample collected as part of another project, it is our opinion that there is a potential for the data QC failure to be caused by matrix effects associated with soils different than those at the subject property. The case narrative indicated that this quality control failure was caused by matrix interference. For these reasons, it is our opinion that this QC failure does not affect the acceptability of the data for Field Samples MW5-0630, MW8-0630, MW9-0702, and MW12-0630 for their intended use.

	c.	Were all con	rrectiv No	e actions documented? NA (Please explain.)	Comments:
	5	See 4b, above	e.		
	d.	What is the	effect	on data quality/usability accord	ing to the case narrative? Comments:
	S	See 4b, above	е.		
5.	<u>Sampl</u> a.	es Results Correct anal	lyses p	erformed/reported as requested	on COC?
		Yes	No	NA (Please explain.)	Comments:
	b.	All applicat	ole hole No	ding times met? NA (Please explain.)	Comments:
	с.	All soils rep Yes	oorted No	on a dry weight basis? NA (Please explain.)	Comments:
	I	No soil samp	les we	re analyzed for this laborator	y work order.
	d.	Are the repo project?	orted P	QLs less than the Cleanup Leve	el or the minimum required detection level for the
		Yes	No	NA (Please explain.)	Comments:
	e.	Data quality	or usa	ability affected?	Comments:
	1	N/A			
6.	<u>QC Sa</u> a.	<u>mples</u> Method Bla i. One Yes	nk metho No	d blank reported per matrix, an NA (Please explain.)	alysis and 20 samples? Comments:
		ii. All r Yes	method No	l blank results less than PQL? NA (Please explain.)	Comments:

Comments:

N/A

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined? Yes No (NA)(Please explain.) Comments:

See 6a, ii above.

v. Data quality or usability affected? (Please explain.)

Comments:

See 6a, ii, above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 (Yes) No NA (Please explain.) Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No (NA)(Please explain.)

Comments:

None of the water samples were analyzed for metals/inorganic for this laboratory work order.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes) No NA (Please explain.) Comments:
- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No NA (Please explain.)

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No (NA)(Please explain.) Comments:

See 6b, iii and iv, above.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

N/A

c. Surrogates – Organics Only

i. Are	e surroga	te recoveries reported for	organic analyses – field, QC and laboratory sample	s?
Yes	No	NA (Please explain.)	Comments:	

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No NA (Please explain.)

See 4b, above.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes (No) NA (Please explain.)

Comments:

See 4b, above.

iv. Data quality or usability affected? (Use the comment box to explain.)

See 4b, above. Comments:

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - (Yes) No NA (Please explain.)

Comments:

 ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) (Yes) No NA (Please explain.) Comments:

All samples for volatile analysis were transported in the same cooler.

iii. All results less than PQL? (Yes) No NA (Please explain.) Comments: iv. If above PQL, what samples are affected? Comments: N/A v. Data quality or usability affected? (Please explain.) Comments: N/A e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples? No NA (Please explain.) Comments: (Yes) ii. _Submitted blind to lab? NA (Please explain.) (Yes) No Comments: iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD(%) = Absolute value of: $(R_1 - R_2)$

> $\frac{1}{((R_1+R_2)/2)} \ge 100$ Where R₁ = Sample Concentration

YesNoNA (Please explain.)Comments:

Sample MW-6R was a duplicate of Sample MW-14, and was collected and analyzed in order to facilitate evaluation of field sampling precision. Relative percent differences (RPDs) between the reported concentrations of several analytes for the original and duplicate samples were calculated, and these RPDs ranged between 1 percent and 28 percent, which are all below the recommended acceptance limit of 30 percent. This lends evidence to suggest generally good field sampling precision was achieved during the collection of the groundwater samples. For this reason, it is our opinion that good field sampling precision was achieved, and the data are acceptable for their intended use.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

f.	Decontamination or	Equipment	Blank (If not us	ed explain why).
----	--------------------	-----------	------------------	------------------

Yes No (NA)(Please explain.)		explain.)	(NA)(Please	No	Yes
------------------------------	--	-----------	-------------	----	-----

Comments:

A decontamination or equipment blank was not collected as part of this project.

- i. All results less than PQL?
 - Yes No (NA)(Please explain.)

Comments:

A decontamination or equipment blank was not collected as part of this project.

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? (Please explain.)

Comments:

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No NA (Please explain.)

Not applicable for this project.

BGES, INC.

APPENDIX D GRAPHS OF HISTORICAL WATER QUALITY DATA

