

# BGES, INC.

# ENVIRONMENTAL CONSULTANTS

## FORMER CUSTOM TRUCK (CURRENTLY SIX ROBBLEE'S) 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA

# **GROUNDWATER MONITORING REPORT (JULY 2017)**

#### JANUARY 2018

Submitted to:

Richard Metcalf Six Robblee's, Inc. 11010 Tukwila International Road Seattle, Washington 98168

Submitted by:

BGES, INC. 1042 East 6th Avenue Anchorage, Alaska 99501 Ph: (907) 644-2900 Fax: (907) 644-2901

www.BGESINC.com

# **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION                                | . 1 |
|-----|---------------------------------------------|-----|
| 2.0 | BACKGROUND                                  | . 1 |
| 3.0 | PREVIOUS SITE WORK                          | . 1 |
| 4.0 | GROUNDWATER SAMPLING ACTIVITIES (JULY 2017) | . 6 |
| 5.0 | EVALUATION OF LABORATORY DATA               | . 7 |
| 6.0 | LABORATORY DATA QUALITY REVIEW              | . 8 |
| 7.0 | CONCEPTUAL SITE MODEL                       | . 9 |
| 8.0 | CONCLUSIONS                                 | . 9 |
| 9.0 | EXCLUSIONS AND CONSIDERATIONS               | 10  |

# FIGURES (Located at End of report)

| Figure 1 | Property Vicinity Map                                      |
|----------|------------------------------------------------------------|
| Figure 2 | Monitoring Well Locations and Sampling Results (July 2017) |
| Figure 3 | Groundwater Elevation Contour Map (July 2017)              |

# **TABLES (Located at End of Report)**

| Table 1 | Monitoring Well Sampling Data (July 2017)          |
|---------|----------------------------------------------------|
| Table 2 | Groundwater Analytical Results (July 2017)         |
| Table 3 | Historical Groundwater Sampling Analytical Results |

# APPENDICES (Located at End of Report) Field Notes

| Appendix A | Field Notes                                          |
|------------|------------------------------------------------------|
| Appendix B | Laboratory Analytical Data                           |
| Appendix C | Laboratory Analytical Data Quality Control Checklist |
| Appendix D | Graphs of Historical Water Quality Data              |

| AAC           | _          | Alaska Administrative Code                        |
|---------------|------------|---------------------------------------------------|
| ADEC          | _          | Alaska Department of Environmental Conservation   |
| ADLC          | _          | Alaska Method                                     |
|               | -          | Proventain Capital and Environmental Services     |
| BUES          | -          | Braunstein Geological and Environmental Services  |
| BTEX          | -          | Benzene, Toluene, Ethylbenzene, and Total Xylenes |
| °C            | -          | Degrees Celsius                                   |
| CSM           | -          | Conceptual Site Model                             |
| DRO           | -          | Diesel Range Organics                             |
| EPA           | -          | Environmental Protection Agency                   |
| GeoTek        | -          | GeoTek Alaska, Inc.                               |
| GRO           | -          | Gasoline Range Organics                           |
| HCL           | -          | Hydrochloric Acid                                 |
| LCS           | -          | Laboratory Control Spike                          |
| LCSD          | -          | Laboratory Control Spike Duplicate                |
| LOQ           | -          | Limit of Quantitation                             |
| ml/min        | -          | Milliliters Per Minute                            |
| MRL           | -          | Method Reporting Limit                            |
| PAHs          | -          | Polynuclear Aromatic Hydrocarbons                 |
| QC            | -          | Quality Control                                   |
| QEP           | -          | Qualified Environmental Professional              |
| RPD           | -          | Relative Percent Difference                       |
| RRO           | -          | Residual Range Organics                           |
| SGS           | -          | SGS North America, Inc.                           |
| Six Robblee's | <b>.</b> – | Six Robblee's, Inc.                               |
| UST           | -          | Underground Storage Tank                          |
| VOCs          | -          | Volatile Organic Compounds                        |

#### ACRONYMS

#### **1.0 INTRODUCTION**

BGES, Inc. (BGES) was retained by Richard Metcalf of Six Robblee's, Inc. (Six Robblee's) to conduct groundwater sampling at the Six Robblee's property located at 4748 Old Seward Highway, Anchorage, Alaska; hereafter referred to as the subject property (Figure 1). The purpose of this groundwater monitoring event was to assess the groundwater quality at the subject property. The fieldwork for this round of sampling was performed on July 12 and 13, 2017 in accordance with the work plan prepared by BGES (dated June 15, 2017), which was approved by the ADEC via correspondence dated June 26, 2017. The Alaska Department of Environmental Conservation (ADEC) changed the site status from "cleanup-complete with institutional controls" to "Active" in correspondence dated August 14, 2013. The ADEC Hazard Identification Number is 23658 and the ADEC File Number is 2100.26.252 for the subject property.

#### 2.0 BACKGROUND

The property is located in the central portion of Anchorage, Alaska (Figure 1). The property had previously operated for many years as an automotive dealership that had on-site underground storage tanks (USTs) for fuel needs. Fuel is no longer dispensed at the site, and the tanks were removed in 1994. A one-story building that is operated as an automotive shop and accessory retail store is located on the property. The area west of the building is used for bulk storage of truck tops and auto accessories.

Numerous previous assessments have been performed by various environmental consulting firms at the site, including a 2004 Site Closure Report performed by Chemtrack. On June 14, 2004 the ADEC issued a "No Further Remedial Action Planned" status for this site. In addition, a "Record of Decision" was also issued for the site on the same date. In these documents, it was stated that quarterly groundwater monitoring in accordance with an approved work plan must be instituted.

BGES was contracted in 2005 to review the previous work plan and to resume groundwater sampling activities in accordance with the No Further Remedial Action Planned and Institutional Control Record of Decision documentation. The results of the previous groundwater sampling event, completed in June of 2016, were presented in the February 2017 Groundwater Monitoring Report.

#### **3.0 PREVIOUS SITE WORK**

Two 5,000-gallon UST's, reportedly containing gasoline and diesel, were removed from the ground in July of 1994. Hydrocarbon contamination was observed in soils near the USTs and associated piping. In addition to removing the USTs, the excavation reportedly was continued to remove additional

contaminated soil. Approximately 280 cubic yards of soil were reportedly removed from the site and treated at an off-site facility. Elevated concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) were detected in remaining soils.

Groundwater sampling was first performed by BGES in June of 2005. Monitoring Wells that were sampled during this sampling event included; MW-1, MW-2, MW-5, MW-8, MW-11, MW-12, B6/VE, and the Tap Well (facility well). The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: gasoline range organics (GRO) in Monitoring Wells MW-1, MW-2, MW-8, and B6/VE; diesel range organics (DRO) in MW-1, MW-2, and B6/VE; benzene in MW-1, MW-2, MW-5, MW-8, MW-12, and B6/VE; toluene in MW-1, MW-2, and B6/VE; ethylbenzene in MW-1, MW-2, and B6/VE; and, total xylenes in MW-2. The water sample collected from the Tap Well (facility well) did not exhibit any analyte concentrations above the laboratory's method reporting limit (MRL) and the ADEC cleanup criteria.

Groundwater sampling was performed again by BGES in August of 2005. Monitoring wells that were sampled during this sampling event included MW-1, MW-2, MW-3, MW-5, B6/VE, MW-8, MW-9, MW-10, MW-11, MW-12, and MW-15. The results indicated contaminant concentrations exceeding the following ADEC cleanup criteria: GRO in MW-1, MW-2, MW-5, MW-8, MW-15, and B6/VE; DRO in MW-1, MW-2, MW-5, MW-11, MW-15, and B6/VE; residual range organics (RRO) in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-12, and MW-15; benzene in MW-1, MW-2, MW-5, B6/VE, MW-9, MW-11, MW-12, and MW-15; benzene in MW-1, MW-2, MW-5, B6/VE; ethylbenzene in MW-1, MW-2, MW-15, and B6/VE; and, total xylenes in MW-2 and MW-15.

Groundwater sampling was performed by BGES in March of 2006. Monitoring wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-11, and MW-12. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the March 2006 sampling event indicated that GRO, DRO, RRO, and BTEX concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE (except for total xylenes in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterions exceeded the ADEC cleanup criterion in Monitoring Wells MW-11 and MW-12. Additionally, the RRO concentration in Water Sample MW12 exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in September of 2006. Wells that were sampled during this sampling event included MW-1, MW-2, B6/VE, MW-5, MW-8, MW-11, MW-12, and the facility well. Water samples were analyzed for GRO, DRO, RRO, and BTEX. The results from the September 2006 sampling event indicated that GRO, DRO, and RRO concentrations exceeded the ADEC cleanup criteria in Monitoring Wells MW-1, MW-2, and B6/VE. Benzene concentrations exceeded the ADEC

cleanup criterion in each of the wells sampled, including the facility well. Concentrations of toluene and ethylbenzene exceeded the ADEC cleanup criteria in MW-1 and MW-2. Additionally, the toluene concentration in Water Sample B6/VE exceeded the ADEC cleanup criterion.

Groundwater sampling was performed by BGES in October of 2007. During that round of groundwater sampling, Monitoring Wells MW-1, MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-11, MW-12, MW-15, and B6/VE were sampled and analyzed for GRO, DRO, RRO, and BTEX. Additionally, Monitoring Wells MW-2 and MW-102 (duplicate of MW-2) were analyzed for polynuclear aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). The results from the October 2007 sampling event indicated that GRO, DRO, RRO, benzene, toluene and ethylbenzene concentrations exceeded the ADEC cleanup criteria in MW-1, MW-2, and B6/VE (except for the RRO concentration in B6/VE). Benzene concentrations exceeded the ADEC cleanup criterion in every well sampled, except for Monitoring Wells MW-3, MW-9, and MW-10. Monitoring Well MW-8 exhibited a GRO concentration that exceeded the ADEC cleanup criterion in addition to the benzene exceedance described above. Monitoring Well MW-15 contained GRO, DRO, benzene, toluene, and ethylbenzene concentrations above the applicable ADEC cleanup criteria. None of the samples analyzed contained xylenes concentrations that exceeded the ADEC cleanup criterion. Two off-site, downgradient wells (MW-11 and MW-12) were tested and exhibited levels of contaminants that exceeded ADEC cleanup criteria.

Groundwater sampling was performed by BGES in August and September of 2012. Wells that were sampled during that sampling event included MW-1, MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-11, MW-13, MW-14, MW-15, and B6/VE, and were analyzed for GRO, BTEX, DRO, and RRO. In addition, a water sample was collected from the facility well, and was analyzed for VOCs. The results from the August and September 2012 sampling events indicated that the water samples collected from Monitoring Wells MW-1 and MW-17 (duplicate of MW-1) exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. The water samples collected from Monitoring Wells MW-2, MW-13, and MW-14 exhibited concentrations of GRO, BTEX, DRO, and RRO, which exceeded their respective ADEC cleanup criteria. Water Samples MW-8 and MW-15 exhibited concentrations of benzene, which exceeded the ADEC cleanup criterion. In addition, Water Sample B6/VE exhibited concentrations of GRO, benzene, toluene, DRO, and RRO, which exceeded ADEC cleanup criteria.

Prior to the 2013 monitoring round, a building survey and some preliminary soil gas sampling, in addition to groundwater sampling, was performed by BGES in May and June of 2013. Sub-slab soil gas

samples collected from beneath the concrete slab in the southeastern portion of the building did not exhibit any analyte concentrations above the ADEC target levels for shallow soil gas. The groundwater samples collected from Monitoring Wells MW-2, MW-14, MW-13, and MW-20 exhibited concentrations of GRO, BTEX, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. In addition, Groundwater Samples MW-13 and MW-20 (duplicate of MW-13) exhibited concentrations of 1,2,4-trimethylbenzene and n-propylbenzene that exceeded the respective ADEC cleanup criteria for these contaminants. The groundwater samples collected from Monitoring Wells MW-1 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants. Groundwater Sample MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded the respective ADEC cleanup criteria for these contaminants.

Groundwater sampling was performed by BGES in April of 2014. Wells that were sampled included MW-1, MW-2, MW-5, MW-11, MW-12, MW-13, MW-14, MW-15, and B6/VE, and were analyzed for GRO, BTEX, DRO, and RRO. Many of the monitoring wells were in a damaged condition at the time of sampling, and one of the wells (MW-9) was submerged in water and was therefore not sampled during this event. In addition, a water sample was collected from the facility well and labeled "Facility Well", and was analyzed for VOCs. The results from the April 2014 sampling event indicated that each of the wells sampled, with the exception of Monitoring Well MW-11, exhibited concentrations of one or more analytes that exceeded the applicable ADEC cleanup criteria. The samples collected from Monitoring Wells MW-13, MW-14, and MW-16 (duplicate of MW-14) exhibited concentrations of GRO, BTEX, DRO, and RRO; all of which exceeded the respective ADEC cleanup criteria. The samples collected from Monitoring Wells MW-2 and B6/VE exhibited concentrations of GRO, benzene, toluene, ethylbenzene, DRO, and RRO that exceeded their respective ADEC cleanup criteria. The sample collected from Monitoring Well MW-1 exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and DRO that exceeded the respective ADEC cleanup criteria for these analytes. The sample from Monitoring Well MW-5 exhibited a concentration of benzene that exceeded its ADEC cleanup criterion. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that exceeded its ADEC cleanup criterion. The sample from Monitoring Well MW-15 exhibited concentrations of GRO, benzene, DRO, and RRO that exceeded their respective ADEC cleanup criteria.

On November 6, 2014, BGES met at the subject property with GeoTek Alaska, Inc. (GeoTek) of Anchorage, Alaska to repair the damaged monitoring wells. The flush-mounted covers were replaced

for Monitoring Well MW-8, MW-9, MW-11, and B6/VE. The well caps were replaced on Monitoring Wells MW-2, MW-3, MW-5, B6/VE, MW-8, MW-10, MW-12, MW-13, MW-14, and MW-15.

In a letter dated December 16, 2014; Joshua Barsis, ADEC Project Manager, agreed to reduce groundwater monitoring activities at the subject property from quarterly to annually.

Groundwater sampling was performed by BGES in June and July, of 2015. Groundwater samples were collected from Monitoring Wells MW-5, MW-8, MW-9, MW-12, and MW-14, and were analyzed for GRO, DRO, RRO, and BTEX. An additional sample was collected from a facility well and was analyzed for VOCs. Each of the wells sampled, with the exception of Monitoring Well MW-9 and the facility well, exhibited concentrations of one or more analytes that exceeded the applicable ADEC cleanup criteria. The samples collected from Monitoring MW-14 and MW-6R (duplicate of MW-14) exhibited concentrations of GRO, BTEX, DRO, and RRO; all of which exceeded the respective ADEC cleanup criteria for these analytes. The samples collected from Monitoring Wells MW-5 and MW-8 exhibited concentrations of benzene that exceeded the ADEC cleanup criterion for this analyte. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that exceeded the ADEC cleanup criterion for this analyte. In addition, BGES decommissioned the sub-slab soil gas sampling point on July 21, 2015.

Groundwater sampling was performed by BGES in June of 2016. Groundwater samples were collected from Monitoring Wells MW3, MW-5, MW-8, MW-9, MW-12, and MW-14, and were analyzed for GRO, DRO, RRO, and BTEX. An additional sample was collected from a facility well and was analyzed for VOCs. Each of the wells sampled, with the exception of Monitoring Well MW-9 and the facility well, exhibited concentrations of one or more analytes that exceeded the applicable ADEC cleanup criteria. The samples collected from Monitoring MW-14 and MW-15 (duplicate of MW-14) exhibited concentrations of GRO, DRO, RRO, and BTEX; all of which exceeded the respective ADEC cleanup criteria for these analytes. The samples collected from Monitoring Wells MW-3, MW-5, and MW-8 exhibited concentrations of benzene that exceeded the ADEC cleanup criterion for this analyte. The sample from Monitoring Well MW-12 exhibited a concentration of RRO that exceeded the ADEC cleanup criterion for this analyte.

The annual groundwater monitoring activities performed in July of 2017 are the subject of this report, and details and the results of these activities are presented below.

#### 4.0 GROUNDWATER SAMPLING ACTIVITIES (JULY 2017)

BGES collected groundwater samples from Monitoring Wells MW-3, MW-5, MW-8, MW-9, MW-12, and MW-14 on July 12 and 13, 2017 (Figure 2) in accordance with the *2017 Groundwater Monitoring Activities* work plan (published June 15, 2017), which was approved by the ADEC via correspondence dated June 26, 2017. There were no deviations from the work plan for these groundwater monitoring activities.

Prior to sample collection, the depth to water and the total depths of each well were measured using an electronic water level indicator, that was decontaminated prior to its use in each well by washing it in an Alconox (laboratory-grade detergent) solution, followed by a potable water rinse. The depth to water, the total depth of each well, the water quality parameters obtained during the well purging activities, the depth of the bladder pump intake, and the pumping rate during sample collection are presented in Table 1.

Prior to the collection of groundwater samples, the casing volume for each well was calculated. The wells were purged utilizing a positive displacement bladder pump until water quality parameters stabilized in accordance with the ADEC Field Sampling Guidance (August 2017). During the purging activities, the stabilization parameters (pH, conductivity, oxidation-reduction potential, and temperature) were monitored, utilizing a YSI Professional Pro Multi-Parameter water quality meter. Upon completion of the purging activities, the groundwater samples were collected utilizing a low-flow sampling technique and an approximate flow rate that ranged between 50 and 60 milliliters per minute (ml/min), with one exception; the sampling rate during collection of Water Sample MW8 was 110 mL/min. Portions of the samples scheduled for volatiles analyses were collected first by filling laboratory-supplied containers that were preserved with hydrochloric acid (HCL). Care was taken during filling of the containers to ensure that no headspace was left within the containers and that none of the preservative was spilled. Two duplicate water samples were collected during this monitoring event. A duplicate sample was collected from Monitoring Well MW-8 (labeled MW17) on July 13, 2017 and a duplicate sample was collected from MW-14 (labeled MW16) on July 12, 2017. These duplicate samples were submitted "blindly" to the laboratory for analyses.

The sample containers were labeled, placed in a chilled cooler, and transported to SGS North America, Inc. (SGS), an ADEC-approved laboratory for analysis, under chain of custody protocol. As a quality control measure, a trip blank sample accompanied the water samples scheduled for volatile analyses during the entire sampling and handling process.

BGES surveyed the top of casings' and ground elevations for each of the existing monitoring wells during the 2015 sampling activities. Utilizing the 2015 surveyed monitoring well elevations and the measured depths to water obtained on July 12, 2017, the groundwater elevation in each monitoring well was calculated. Then, the calculated groundwater elevations were utilized to create a groundwater elevation contour map, which suggests that the general groundwater flow direction was to the south-southeast across the subject property (Figure 3). The calculated hydraulic gradient was 0.013 foot per linear foot. The depth to water, the total depth of the wells, the water quality parameters, and the calculated water elevations are presented in Table 1.

Investigation-derived waste generated (purge water) was containerized in one 55-gallon drum. The investigation-derived waste is currently stored inside in the southeast corner of the automotive shop. The 55-gallon drum was clearly labeled with the contact information and a description of the contents (potentially-contaminated water). A copy of field notes taken during groundwater monitoring activities are included in Appendix A.

## 5.0 EVALUATION OF LABORATORY DATA

Laboratory analysis of the water samples were performed by SGS, an ADEC-approved laboratory. The analytical results for the water samples are listed in Table 2 and a copy of the laboratory data package is included in Appendix B. The analytical results for water samples were compared to the ADEC Cleanup Criteria listed in 18 Alaska Administrative Code (AAC) 75.345—Table C for groundwater as revised on November 7, 2017.

The water samples from the monitoring wells were analyzed by the following methods: GRO by Alaska Method (AK) 101; DRO by AK 102; RRO by AK 103; and BTEX by Environmental Protection Agency (EPA) Method 8021B. The water sample from the facility well was analyzed for VOCs by EPA method 524.2.

The water samples collected from the subject property were numbered, for example, MW3-0713, where the prefix MW3 indicates the monitoring well from which the water sample was collected; and 0713 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as MW-3 with the date omitted. MW16-0712 is a duplicate sample collected from MW14 and MW17-0713 is a duplicate sample collected from MW8. FW1-0713 is the sample collected from the facility well and is labeled in the same format as described above.

Samples MW-14 and MW-16 (duplicate of MW-14) exhibited elevated concentrations of GRO, DRO, and BTEX; all of which exceeded their respective ADEC cleanup criteria for these analytes.

Samples MW-8 and MW-17 (duplicate of MW-8) exhibited concentrations of benzene which were below the ADEC cleanup criterion for this analyte. Sample MW-5 also exhibited a concentration of benzene that was below the ADEC cleanup criterion. Sample MW-12 exhibited a concentration of RRO that exceeded the ADEC cleanup criterion for this analyte.

The remaining Samples MW-3, MW-9, and FW-1 exhibited non-detectable concentrations that were below the laboratory's limits of quantitation (LOQs), which were below the applicable ADEC cleanup criteria. The LOQs for 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2-dibromoethane, and vinyl chloride in Sample FW-1 were above the ADEC cleanup criteria for these analytes. These LOQ exceedances are discussed further in Section 6.0 below.

Analytical results for the groundwater samples are presented in Tables 2 and 3, a copy of the laboratory analytical data package is included in Appendix B, and the sampling locations are shown on Figure 2.

#### 6.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. An ADEC laboratory data review checklist was completed for the laboratory work order number, and this checklist is included in Appendix C. The checklist provides an overview of the quality of the laboratory data. The following is a discussion of our evaluation of sample conditions and laboratory procedures for the water samples collected during the July 2017 sampling activities.

#### SGS Work Order 1174480

The sample containers were labeled, placed in an ice-filled cooler, and hand-delivered by BGES personnel to SGS under chain of custody protocol. The trip blanks accompanied the volatile samples (GRO, BTEX, and VOCs) throughout the entirety of the sampling process and transportation to the laboratory. The samples contained the proper preservatives for the requested analyses, and no unusual sample conditions were noted by the laboratory at the time of their receipt. The case narrative for Work Order Number 1174480 noted that there were a few quality control (QC) failures identified by SGS.

The temperature of the sample cooler that contained the water samples was measured at the laboratory at the time of receipt to be 5.7 degrees Celsius (°C), which is within the ADEC prescribed optimal range of  $0^{\circ}$  to  $6^{\circ}$  C.

The recoveries of dichlorodifluoromethane and bromomethane within the laboratory control spike (LCS) sample associated with Sample FW1-0713, and its associated trip blank, exceeded the laboratory's acceptance range. This indicates a potential for the reported concentration of these analytes to be biased high in the project samples. However, because none of these analytes were detected above Former Custom Truck (Currently Six Robblee's) Page 8 of 10 17-030-01 4748 Old Seward Highway; Anchorage, Alaska Groundwater Monitoring Report (July 2017)

their LOQs, and because the LOQs are below their respective ADEC cleanup criteria; it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The recoveries of dichlorodifluoromethane, chloromethane, and bromomethane within the laboratory control spike duplicate (LCSD) sample associated with Sample FW1-0713, and its associated trip blank, exceeded the laboratory's acceptance range. This indicates a potential for the reported concentration of these analytes to be biased high in the project samples. However, because none of these analytes were detected above their LOQs, and because the LOQs are below their respective ADEC cleanup criteria; it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The LOQs for 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2-dibromoethane, and vinyl chloride exceeded the ADEC cleanup criteria in Sample FW-0713 that was analyzed as part of this SGS work order. The affected analytes are shown in italics in Table 2. In these instances, where the analytes were not detected above the LOQs, it cannot be determined if the actual concentrations of those analytes exceed the applicable ADEC cleanup criteria.

No other issues associated with the data quality were identified with respect to the analyses of the project samples in this work order.

Sample MW16-0712 was a duplicate of MW14-0712 and MW17-0713 was a duplicate of MW8-0713 and was collected to evaluate field sampling precision. The relative percent differences (RPDs) between the reported concentrations of several analytes for both sample pairs ranged between 0 and 14 percent, which are below the acceptable limit of 30 percent. This indicates good field sampling precision with respect to sampling procedures. The RPDs between reported concentrations of the remaining analytes could not be calculated, as the analytes were not detected at the laboratory's LOQs in one or both of these sample pairs.

#### 7.0 CONCEPTUAL SITE MODEL

A graphical human health conceptual site model (CSM) was developed for this site and was included in BGES' Groundwater Sampling Report (dated December 2007). It is our opinion that the CSM is still valid for this site, and as such has not been modified based on the results of this sampling event.

#### 8.0 CONCLUSIONS

A groundwater monitoring event at this site was conducted on July 12 and 13, 2017. Groundwater samples collected from Monitoring Wells MW3, MW5, MW8, MW9, MW12, and MW14 were analyzed for GRO, DRO, RRO, and BTEX. Sample FW-1 was collected from the facility well and was analyzed for VOCs. Sample MW-12 exhibited a concentration of RRO which exceeded the applicable Former Custom Truck (Currently Six Robblee's) Page 9 of 10 17-030-01 4748 Old Seward Highway; Anchorage, Alaska Groundwater Monitoring Report (July 2017)

ADEC cleanup criterion. Samples MW-14 and MW-16 (duplicate of MW14), exhibited concentrations of GRO, DRO, and BTEX which exceeded the applicable ADEC cleanup criteria. All other groundwater samples collected during this groundwater monitoring event exhibited analyte concentrations which were below the applicable ADEC cleanup criteria.

Historical trends demonstrate that all the wells sampled show overall decreasing concentrations. Based on these results, it is recommended that the groundwater monitoring activities be reduced to once every two years. Historical laboratory analytic results are provided in Table 3, and graphical representations of contaminant concentrations within the wells sampled during this sampling event as measured over time are provided in Appendix D with the exception of MW3 and MW9. It is recommended that all purge water be disposed of at an appropriate disposal facility such as NRC Alaska.

#### 9.0 EXCLUSIONS AND CONSIDERATIONS

This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made and work conducted and only apply to the immediate vicinities of the locations where samples were collected. In addition, changes to site conditions may have occurred since the completion of our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, except as directed by our client, or as required by law.

Groundwater sampling for this monitoring event was conducted by Evan Tyler; Environmental Engineer with BGES, under the direct supervision of William Schmaltz, Environmental Scientist with BGES, and Jayne Martin, Senior Environmental Scientist with BGES, both are Qualified Environmental Professionals (QEPs) as defined by the ADEC. This report was prepared by Mr. Tyler. Mr. Tyler has conducted groundwater monitoring, site characterization, and remediation activities at several sites in the Anchorage area and throughout Alaska. This report was reviewed by Jayne Martin, who has more than 25 years of geological and environmental consulting experience, and has conducted and managed hundreds of site characterization and remediation efforts throughout Alaska and the lower 48 states.

Prepared By:

you Ifu

Evan Tyler Environmental Engineer

Reviewed By: millal

Jayne Martin Senior Environmental Scientist

Former Custom Truck (Currently Six Robblee's) 4748 Old Seward Highway; Anchorage, Alaska Groundwater Monitoring Report (July 2017) Page 10 of 10







#### TABLE 1 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA (JULY 2017)

| Well Number                                                                                                                                                                                                                                                                                                                   | MW1       | MW2       | MW3                                   | MW5                                                                                                                          | MW8                                                                                                                                                        | MW9                                                                                                                                                                 | <b>MW10</b> | MW11                                                                                                                                      | MW12                                                                                                                                         | <b>MW13</b> | MW14                                                                                                                                                                           | MW15      | B6/VE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| Date Sampled                                                                                                                                                                                                                                                                                                                  | -         | -         | 7/13/2017                             | 7/12/2017                                                                                                                    | 7/13/2017                                                                                                                                                  | 7/13/2017                                                                                                                                                           | -           | -                                                                                                                                         | 7/12/2017                                                                                                                                    | -           | 7/12/2017                                                                                                                                                                      | -         | -         |
| Date of Depth to Water Measurement                                                                                                                                                                                                                                                                                            | 7/12/2017 | 7/12/2017 | 7/12/2017                             | 7/12/2017                                                                                                                    | 7/12/2017                                                                                                                                                  | 7/12/2017                                                                                                                                                           | 7/12/2017   | 7/12/2017                                                                                                                                 | 7/12/2017                                                                                                                                    | 7/12/2017   | 7/12/2017                                                                                                                                                                      | 7/12/2017 | 7/12/2017 |
| Time of Depth to Water Measurement                                                                                                                                                                                                                                                                                            | 7:59      | 7:50      | 10:48                                 | 08:20                                                                                                                        | 08:15                                                                                                                                                      | 08:08                                                                                                                                                               | 08:03       | 09:26                                                                                                                                     | 09:20                                                                                                                                        | 07:55       | 07:38                                                                                                                                                                          | 07:44     | 07:32     |
| Time Sample Collected                                                                                                                                                                                                                                                                                                         | -         | -         | 11:18                                 | 12:32                                                                                                                        | 14:02                                                                                                                                                      | 9:35                                                                                                                                                                | -           | -                                                                                                                                         | 10:27                                                                                                                                        | -           | 15:30                                                                                                                                                                          | -         | -         |
| Top of Casing Elevation (feet)                                                                                                                                                                                                                                                                                                | 100.59    | 97.79     | 97.65                                 | 99.13                                                                                                                        | 97.22                                                                                                                                                      | 97.50                                                                                                                                                               | 101.32      | 96.62                                                                                                                                     | 96.03                                                                                                                                        | 99.21       | 99.33                                                                                                                                                                          | 97.78     | 99.75     |
| Depth to Water (feet below top of casing)                                                                                                                                                                                                                                                                                     | 8.12      | 5.87      | 5.30                                  | 7.76                                                                                                                         | 6.05                                                                                                                                                       | 5.35                                                                                                                                                                | 7.31        | 5.26                                                                                                                                      | 4.89                                                                                                                                         | 7.31        | 7.44                                                                                                                                                                           | 5.86      | 7.64      |
| Water Elevation (feet)                                                                                                                                                                                                                                                                                                        | 92.47     | 91.92     | 92.35                                 | 91.37                                                                                                                        | 91.17                                                                                                                                                      | 92.15                                                                                                                                                               | 94.01       | 91.36                                                                                                                                     | 91.14                                                                                                                                        | 91.90       | 91.89                                                                                                                                                                          | 91.92     | 92.11     |
| Total Depth of Well (feet below top of casing)                                                                                                                                                                                                                                                                                | 21.67     | 12.84     | 8.69                                  | 12.78                                                                                                                        | 13.74                                                                                                                                                      | 13.19                                                                                                                                                               | 14.55       | 6.29                                                                                                                                      | 8.12                                                                                                                                         | 11.18       | 12.81                                                                                                                                                                          | 10.24     | 12.86     |
| Well Casing Diameter (Inches)                                                                                                                                                                                                                                                                                                 | 2         | 2         | 2                                     | 2                                                                                                                            | 2                                                                                                                                                          | 2                                                                                                                                                                   | 2           | 2                                                                                                                                         | 2                                                                                                                                            | 2           | 2                                                                                                                                                                              | 2         | 4         |
| Standing Water Well Volume (gallons)                                                                                                                                                                                                                                                                                          | 2.21      | 1.14      | 0.55                                  | 0.82                                                                                                                         | 1.26                                                                                                                                                       | 1.28                                                                                                                                                                | 1.18        | 0.17                                                                                                                                      | 0.53                                                                                                                                         | 0.63        | 0.88                                                                                                                                                                           | 0.71      | 3.41      |
| Purge Volume-Actual (gallons)                                                                                                                                                                                                                                                                                                 | -         | -         | 0.8                                   | 0.8                                                                                                                          | 1.0                                                                                                                                                        | 0.5                                                                                                                                                                 | -           | -                                                                                                                                         | 0.7                                                                                                                                          | -           | 2.4                                                                                                                                                                            | _         | -         |
| Temperature (degrees Celsius)                                                                                                                                                                                                                                                                                                 | -         | -         | 14.6/14.1/14.3/14.4/<br>14.7          | 12.5/12.0/11.8/13.0/12.9/<br>12.7/13.3/13.0                                                                                  | 13.6/13.2/13.0/12.5/<br>12.3/12.6/12.5/12.4                                                                                                                | 15.9/12.3/12.6/12.1/<br>12.7                                                                                                                                        | -           | -                                                                                                                                         | 13.2/16.1/17.6/13.8/<br>13.4/13.6/13.4                                                                                                       | -           | 13.6/13.4/12.7/12.6/<br>12.1/12.0/12.1/11.9/<br>12.0/11.8/11.6/11.8/<br>12.0/12.2/12.2                                                                                         | -         | -         |
| pH (standard units)                                                                                                                                                                                                                                                                                                           | -         | -         | 6.55/6.52/6.48/6.47/<br>6.48          | 6.39/6.38/6.38/6.40/6.43/<br>6.45/6.43/6.48                                                                                  | 6.42/6.43/6.45/6.46/<br>6.47/6.49/6.51/6.52                                                                                                                | 6.26/6.20/6.20/6.23/<br>6.24                                                                                                                                        | -           | -                                                                                                                                         | 5.91/6.08/6.35/6.38/<br>6.32/6.30/6.28                                                                                                       | -           | 5.60/5.50/5.51/5.47/<br>5.55/5.56/5.62/5.66/<br>5.67/5.62/5.77/5.77/<br>5.77/5.75/5.73                                                                                         | _         | _         |
| Conductivity (microsiemans per centimeter)                                                                                                                                                                                                                                                                                    | -         | -         | 1080/1023/1005/<br>1004/1014          | 2180/2128/2060/2085/<br>2177/2247/2302/2297                                                                                  | 998/1018/1126/1260/<br>1344/1380/1388/1385                                                                                                                 | 1248/1993/2005/2031/<br>2037                                                                                                                                        | -           | -                                                                                                                                         | 105.4/108.6/114.6/<br>114.5/113.3/113.8/<br>114.0                                                                                            | -           | 158.3/147.6/127.0/<br>159.0/179.8/186.4/<br>192.1/200.2/202.5/<br>203.0/204.0/184.0/<br>181.9/187.4/186.4                                                                      | _         | -         |
| Oxidation Reduction Potential (millivolts)                                                                                                                                                                                                                                                                                    | -         | -         | 37.6/40.8/43.1/45.2/<br>45.0          | -27.7/-26.4/-26.9/-30.8/<br>-37.5/-41.5/-44.2/-44.5                                                                          | 17.3/-8.8/-31.1/-45.5/<br>-54.4/-60.3/-67.4/<br>-66.3                                                                                                      | 44.6/51.6/52.1/52.2/<br>52.6                                                                                                                                        | -           | -                                                                                                                                         | 0.2/-88.7/-119.3/<br>-131.8/-138.8/<br>-140.0/-140.3                                                                                         | -           | 47.2/49.2/60.1/64.6/<br>65.1/64.9/64.2/63.0/<br>61.5/50.5/58.8/58.3/<br>57.5/57.3/57.5                                                                                         |           | -         |
| Depth of Bladder Pump Intake (feet below top of casing)                                                                                                                                                                                                                                                                       | -         | -         | 4.80                                  | 7.26                                                                                                                         | 5.38                                                                                                                                                       | 4.35                                                                                                                                                                | -           | -                                                                                                                                         | 4.22                                                                                                                                         | -           | 6.77                                                                                                                                                                           | _         | -         |
| Purge Rate During Sample Collection (ml/min)                                                                                                                                                                                                                                                                                  | -         | -         | Approximately 60                      | Approximately 50                                                                                                             | Approximately 110                                                                                                                                          | Approximately 50                                                                                                                                                    | -           | -                                                                                                                                         | Approximately 50                                                                                                                             | -           | Approximately 50                                                                                                                                                               | _         | -         |
| Notes:<br>Values separated by / indicate readings<br>for successive well volumes<br>Sampler: E. Tyler<br>Field parameters measured with a YSI<br>Professional Plus Multi-Meter<br>Weather conditions on July 12 and 13, 2017 were<br>clear skies with temperatures ranging<br>from approximately 58 to 70 degrees Fahrenheit. |           |           | Purge Rate was<br>decreased at 11:08. | Initially tan colored purge<br>water. Purge water was<br>clear at the time of<br>sampling. Purge rate<br>decreased at 11:25. | Slight tan color upon<br>initial purging. Clear<br>colored purge water at<br>end of purging. A<br>duplicate sample<br>MW17-0713 was<br>collected from MW8. | Standing water inside<br>metal monument. Purge<br>water was clear initially.<br>Pump submerged to<br>max drawdown level<br>(0.3 foot) due to slow<br>recharge rate. |             | Total Depth of<br>well changed<br>from 13.95 feet<br>(June 2016) to<br>6.29 feet (July<br>2017) between<br>successive<br>sampling events. | Dark brown colored<br>purge water initially.<br>Slightly lighter color<br>purge water by end<br>of sampling. Purge<br>rate increased at 9:45 |             | A duplicate sample was<br>collected from MW-14<br>and was labeled MW16-<br>0712. Clear purge water<br>initially. Purge water<br>looks soapy. Purge rate<br>decreased at 14:15. |           |           |

#### TABLE 2 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA GROUNDWATER ANALYTICAL RESULTS (JULY 2017)

| Sample No.            | Parameter     | Results (mg/L) | LOQ<br>(mg/L) | ADEC Cleanup<br>Criteria (mg/L) <sup>1</sup> | Analytical Method |
|-----------------------|---------------|----------------|---------------|----------------------------------------------|-------------------|
| MW3-0713              | GRO           | ND             | 0.100         | 2.200                                        | AK 101            |
|                       | DRO           | ND             | 0.566         | 1.500                                        | AK 102            |
|                       | RRO           | ND             | 0.472         | 1.100                                        | AK 103            |
|                       | Benzene       | ND             | 0.000500      | 0.0046                                       | SW 8021B          |
|                       | Ethylbenzene  | ND             | 0.00100       | 0.015                                        | SW 8021B          |
|                       | Toluene       | ND             | 0.00100       | 1.100                                        | SW 8021B          |
|                       | Total Xylenes | ND             | 0.00300       | 0.190                                        | SW 8021B          |
| MW5-0712              | GRO           | ND             | 0.100         | 2.200                                        | AK 101            |
|                       | DRO           | ND             | 0.551         | 1.500                                        | AK 102            |
|                       | RRO           | ND             | 0.460         | 1.100                                        | AK 103            |
|                       | Benzene       | 0.00146        | 0.000500      | 0.0046                                       | SW 8021B          |
|                       | Ethylbenzene  | ND             | 0.00100       | 0.015                                        | SW 8021B          |
|                       | Toluene       | ND             | 0.00100       | 1.100                                        | SW 8021B          |
|                       | Total Xylenes | ND             | 0.00300       | 0.190                                        | SW 8021B          |
| MW8-0713              | GRO           | ND             | 0.100         | 2.200                                        | AK 101            |
|                       | DRO           | ND             | 0.566         | 1.500                                        | AK 102            |
|                       | RRO           | ND             | 0.472         | 1.100                                        | AK 103            |
|                       | Benzene       | 0.00458        | 0.000500      | 0.0046                                       | SW 8021B          |
|                       | Ethylbenzene  | ND             | 0.00100       | 0.015                                        | SW 8021B          |
|                       | Toluene       | ND             | 0.00100       | 1.100                                        | SW 8021B          |
|                       | Total Xylenes | ND             | 0.00300       | 0.190                                        | SW 8021B          |
| MW17-0713             | GRO           | ND             | 0.100         | 2.200                                        | AK 101            |
| Duplicate of MW8-0713 | DRO           | ND             | 0.568         | 1.500                                        | AK 102            |
|                       | RRO           | ND             | 0.473         | 1.100                                        | AK 103            |
| RPD = 14 %            | Benzene       | 0.00398        | 0.000500      | 0.0046                                       | SW 8021B          |
|                       | Ethylbenzene  | ND             | 0.00100       | 0.015                                        | SW 8021B          |
|                       | Toluene       | ND             | 0.00100       | 1.100                                        | SW 8021B          |
|                       | Total Xylenes | ND             | 0.00300       | 0.190                                        | SW 8021B          |
| MW9-0713              | GRO           | ND             | 0.100         | 2.200                                        | AK 101            |
|                       | DRO           | ND             | 0.577         | 1.500                                        | AK 102            |
|                       | RRO           | ND             | 0.481         | 1.100                                        | AK 103            |
|                       | Benzene       | ND             | 0.000500      | 0.0046                                       | SW 8021B          |
|                       | Ethylbenzene  | ND             | 0.00100       | 0.015                                        | SW 8021B          |
|                       | Toluene       | ND             | 0.00100       | 1.100                                        | SW 8021B          |
|                       | Total Xylenes | ND             | 0.00300       | 0.190                                        | SW 8021B          |

| Sample No.                                                                                                                       | Parameter                                                 | Results (mg/L)                        | LOQ<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADEC Cleanup<br>Criteria (mg/L) <sup>1</sup> | Analytical Method           |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|
| MW12-0712                                                                                                                        | GRO                                                       | ND                                    | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.200                                        | AK 101                      |
|                                                                                                                                  | DRO                                                       | ND                                    | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.500                                        | AK 102                      |
|                                                                                                                                  | RRO                                                       | 1.64                                  | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.100                                        | AK 103                      |
|                                                                                                                                  | Benzene                                                   | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0046                                       | SW 8021B                    |
|                                                                                                                                  | Ethylbenzene                                              | ND                                    | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.015                                        | SW 8021B                    |
|                                                                                                                                  | Toluene                                                   | ND                                    | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.100                                        | SW 8021B                    |
|                                                                                                                                  | Total Xylenes                                             | ND                                    | 0.00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.190                                        | SW 8021B                    |
| MW14-0712                                                                                                                        | GRO                                                       | 52.7                                  | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.200                                        | AK 101                      |
|                                                                                                                                  | DRO                                                       | 6.92                                  | 0.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.500                                        | AK 102                      |
|                                                                                                                                  | RRO                                                       | ND                                    | 0.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.100                                        | AK 103                      |
|                                                                                                                                  | Benzene                                                   | 5.460                                 | 0.0250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046                                       | SW 8021B                    |
|                                                                                                                                  | Ethylbenzene                                              | 0.653                                 | 0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.015                                        | SW 8021B                    |
|                                                                                                                                  | Toluene                                                   | 11.600                                | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.100                                        | SW 8021B                    |
|                                                                                                                                  | Total Xylenes                                             | 13.060                                | 0.1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.190                                        | SW 8021B                    |
| <b>MW16-0712</b><br>Duplicate of MW14-0712                                                                                       |                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |
| RPD = 1 %                                                                                                                        | GRO                                                       | 52.3                                  | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.200                                        | AK 101                      |
| RPD = 1 %                                                                                                                        | DRO                                                       | 6.96                                  | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.500                                        | AK 102                      |
|                                                                                                                                  | RRO                                                       | ND                                    | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.100                                        | AK 103                      |
| RPD = 1 %                                                                                                                        | Benzene                                                   | 5.490                                 | 0.0250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046                                       | SW 8021B                    |
| RPD = 3 %                                                                                                                        | Ethylbenzene                                              | 0.675                                 | 0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.015                                        | SW 8021B                    |
| RPD = 0 %                                                                                                                        | Toluene                                                   | 11.600                                | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.100                                        | SW 8021B                    |
| RPD = 2 %                                                                                                                        | Total Xylenes                                             | 13.390                                | 0.1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.190                                        | SW 8021B                    |
| FW1-0713                                                                                                                         | 1,1,2-Trichloroethane                                     | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00041                                      | EPA 524.2                   |
|                                                                                                                                  | 1,2,3-Trichloropropane                                    | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000075                                    | EPA 524.2                   |
|                                                                                                                                  | 1,2-Dibromoethane                                         | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000075                                     | EPA 524.2                   |
|                                                                                                                                  | Benzene                                                   | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0046                                       | EPA 524.2                   |
|                                                                                                                                  | Ethylbenzene                                              | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.015                                        | EPA 524.2                   |
|                                                                                                                                  | Toluene                                                   | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.100                                        | EPA 524.2                   |
|                                                                                                                                  | Vinyl chloride                                            | ND                                    | 0.000400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00019                                      | EPA 524.2                   |
|                                                                                                                                  | Total Xylenes                                             | ND                                    | 0.000500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.190                                        | EPA 524.2                   |
|                                                                                                                                  | All Other VOCs                                            | ND                                    | varies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | varies                                       | EPA 524.2                   |
| <sup>1</sup> Water cleanup criteria are ob<br>(November 7, 2017).<br>AAC = Alaska Administrative<br>EPA = Environmental Protecti | tained from ADEC 18 AAC 75<br>Code; AK = Alaska Method; A | 5.345, Table C, Gr<br>ADEC = Alaska E | coundwater C<br>Department of $Q = diagal responses to the second s$ | leanup Levels for H<br>Environmental Con     | luman Health<br>nservation; |

EPA = Environmental Protection Agency; GRO = gasoline range organics; DRO = diesel range organics;

RRO = Residual Range Organics; ND = not detectable; LOQ = limit of quantitation;  $\mu g/L$  = micrograms per liter; RPD = relative percent difference

*Italics* = The LOQ exceeds The applicable ADEC cleanup criterion.

**Bold** = The concentration exceeds the applicable ADEC cleanup criterion.

#### TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

|           |                         |             |             |            |            |          |              |                |            |           |               |          |                |                         |              |         |           |             |              |        |         |          |         |                    | ADEC Method Two             |
|-----------|-------------------------|-------------|-------------|------------|------------|----------|--------------|----------------|------------|-----------|---------------|----------|----------------|-------------------------|--------------|---------|-----------|-------------|--------------|--------|---------|----------|---------|--------------------|-----------------------------|
|           | Date Collected:         | Jan-95      | Jul-95      | Mar-96     | Dec-96     | Nov-99   | Aug-00       | Nov-00         | Jun-02     | Nov-02    | Jul-03        | Jan-04   | Jun-05         | Aug-05                  | Mar-06       | Sept-06 | Oct-07    | Sep-12      | Jun-13       | Apr-14 | Jul-15  | Jun-16   | Jul-17  | Analytical         | Groundwater Cleanup         |
| Well No   | Parameter               | (ma/L)      | (ma/L)      | (ma/L)     | (ma/L)     | (ma/l.)  | (ma/l)       | (ma/L)         | (ma/L)     | (ma/L)    | (mg/L)        | (ma/L)   | (ma/L)         | (mg/l)                  | (ma/L)       | (ma/l.) | (ma/L)    | (ma/L)      | (ma/L)       | (ma/L) | (ma/L)  | (ma/L)   | (ma/L)  | Method             | l evel (mɑ/l ) <sup>1</sup> |
| MW-01     | GRO                     | 97.6        | NS          | NS         | 66.9       | NS       | 14.5         | NS             | 48         | NS        | NS            | NS       | 30,600         | 53 300                  | 54 400       | 28 100  | 50 400    | 32.4        | 40.6         | 29.80  | NS      | NS       | NS      | AK101              | 22                          |
|           |                         | NS          |             | NS         | 2 45       | NS       | NS           |                | 17         | NS        | NS            | NS       | 21.3           | 37 200                  | 19.3         | 20.100  | 28.2      | 22.4        | 29.1         | 8 38   | NS      | NS       | NS      | AK102              | 1.5                         |
|           | BRO                     | NS          | NS          | NS         | NS         |          | NS           | NS             | NS         |           | NS            | NS       | NS             | <5.05                   | 2.08         | 1.87    | 1 46      | 1 45        | 1 32         | 0.30   | NS      | NS       | NS      | AK102              | 1.0                         |
|           | Benzene                 | 14.6        |             | NS         | 11         |          | 1 /0         |                | 47         |           | NS            | NS       | 3 140          | 5.00                    | 7 010        | 0 100   | 3 210     | 2.42        | 2 720        | 2 42   | NS      | NS       | NS      | SW/8021b           | 0.0046                      |
|           | Toluene                 | 27.6        | NS          | NS         | 16.8       | NS       | 1.43         | NS             | 9.4        | NS        | NS            | NS       | 6 770          | 12 300                  | 17 100       | 8 940   | 8 930     | 4.53        | 6.640        | 5 31   | NS      | NS       | NS      | SW0021D<br>SW8021b | 1.1                         |
|           | Ethylhonzono            | 27.0        |             | NG         | 2 22       |          | 0.41         | NG             | 0.4        |           | NG            | NG       | 0.770          | 1 490                   | 2 420        | 1 020   | 1 100     | 4.55        | 1 110        | 1.09   | NS      | NS       | NG      | SW0021D<br>SW0021b | 0.015                       |
|           | Total Xylonos           | 2.79        | NG          | NG         | 2.23       | NG       | 2.45         | NG             | 6.1        | NG        | NS            | NG       | 0.945<br>5 540 | 0.290                   | 2.420        | 7.400   | 7 800     | 7.01        | 9.000        | 6.15   | NS      | NS       | NG      | SW0021D<br>SW0021b | 0.015                       |
|           | Total Aylenes           | 14.0        | 113         | NO         | 11.05      | 113      | 2.15         | 113            | 0.1        | 113       | NO            | NO       | 5.540          | 9.300                   | 14.120       | 7.400   | 7.000     | 7.91        | 0.000        | 0.15   | 113     | NO       | NO      | 3000210            | 0.19                        |
| MW/ 02    | GRO                     | 156         | 108         | NS         | 152        |          | 58 5         | 162            | 89.5       | NS        | 88 400        | NS       | 111 000        | 107 000                 | 121 000      | 41 000  | 37.20     | 74.1        | 94 7         | 64.40  |         | NS       | NS      | AK101              | 2.2                         |
| 10100-02  |                         | NS          | NS          |            | 9.81       | NS       | NIS          | NS             | 16.3       | NS        | 58            | NS       | 56.0           | 74 300                  | 70.2         | 70.1    | 27.30     | 58.6        | 105          | 70 10  | NS      | NS       | NS      | AK107              | 1.5                         |
|           | BRO                     | NG          | NG          | NG         | 9.01<br>NG |          | NG           | NG             | NIS        |           | NS            | NG       | NS             | /4.300                  | F 62         | 0.00    | 1 52      | 50.0        | 5.06         | 6 14   | NS      | NS       | NG      | AK102              | 1.5                         |
|           | Bonzono                 | 22.0        | 20.7        |            | 25.9       |          | F 22         | 29.5           | 10.4       |           | 10.2          | NG       | 10 900         | < <u>5.00</u><br>19.700 | 10 000       | 9.09    | 2.40      | 7.26        | 11 200       | 9.14   | NS      | NS       | NG      | SW/90216           | 1.1                         |
|           | Teluene                 | 32.0        | 20.7        |            | 25.0       | NO       | 7.40         | 20.5           | 10.4       | NO        | 10.2          | NO       | 19.800         | 19.700                  | 19.000       | 20.200  | 2.49      | 1.30        | 22,600       | 17.50  |         | NG       | NO      | SW0021D            | 0.0040                      |
|           | Ethylbonzono            | 24          | NG          | NG         | 30.7       | NG       | 1.40         | 20.7           | 10.0       | NG        | 10.2          | NG       | 20.500         | 23.100                  | 2 910        | 1 670   | 0.00      | 15.0        | 1 760        | 1 24   | NS      | NS       | NG      | SW0021D<br>SW0021b | 1.1                         |
|           | Total Xylonos           | 3.4<br>17.5 | NG          | NG         | 21.0       |          | 0.47         | 12.0           | 7.5        | NG        | 10.2          | NG       | 2.190          | 2.230                   | 2.010        | 9.500   | 4 950     | 10.22       | 10 120       | 9.07   | NG      | NS       | NG      | SW0021D            | 0.015                       |
|           | Nonhtholono             | 17.3        |             | NO         | 21.9       |          | 9.47         | 13.45<br>NG    | 7.3<br>NC  |           | IU.2          | NO       | 10.550         |                         | 14.190<br>NC | 9.500   | 4.950     | 10.23<br>NG | 10.120<br>NG | 0.97   |         | NO       | NO      | 300021D            | 0.19                        |
|           | 2 Mothylnanbthalono     | NO          | NO          | NO         | NO         | NO       | NO           | NO             | NO         | NO        | NG            | NO       | NS             | NG                      | NS           | NO      | 0.042     |             | NO           | NG     | NS      | NG       | NO      | 82700              | 0.0017                      |
|           | 2-Methylnaphthalene     | NS          | NS          |            | NS         | NS       | NS           |                | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.013     | NS          |              | NS     | NS      | NS       | NS      | 8270C              | 0.030                       |
|           |                         | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NG       | NS             | NS                      | NS           | NS      | 0.0002    | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.011                       |
|           |                         | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000032  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.200                       |
|           | Fluorene                | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000020  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.00                        |
|           | Phenanthrene            | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000051  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.17                        |
|           | Anthracene              | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0 0000097 | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.043                       |
|           | Fluoranthene            | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000016  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.26                        |
|           | Pvrene                  | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000020  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.120                       |
|           | Benz[a]anthracene       | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | 0.000019  | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | 0.00012                     |
|           | All other PAHs          | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | NS                      | NS           | NS      | ND        | NS          | NS           | NS     | NS      | NS       | NS      | 8270C              | varies                      |
|           |                         |             |             |            |            |          |              |                |            |           |               |          |                |                         |              |         |           |             |              |        |         |          |         |                    |                             |
| MW-03     | GRO                     | Nd          | NS          | NS         | NS         | NS       | ND           | NS             | ND         | NS        | NS            | NS       | NS             | <0.090                  | NS           | NS      | <0.0500   | ND          | NS           | NS     | NS      | 0.551    | ND      | AK101              | 2.2                         |
|           | DRO                     | NS          | NS          | NS         | NS         | NS       | NS           | NS             | 0.41       | NS        | NS            | NS       | NS             | 0.333                   | NS           | NS      | <0.407    | ND          | NS           | NS     | NS      | 0.612    | ND      | AK102              | 1.5                         |
|           | RRO                     | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | 0.764                   | NS           | NS      | <0.407    | 0.556       | NS           | NS     | NS      | <0.481   | ND      | AK103              | 1.1                         |
|           | Benzene                 | ND          | NS          | NS         | NS         | NS       | ND           | NS             | ND         | NS        | NS            | NS       | NS             | <0.0005                 | NS           | NS      | <0.0005   | ND          | NS           | NS     | NS      | 0.124    | ND      | SW8021b            | 0.0046                      |
|           | Toluene                 | ND          | NS          | NS         | NS         | NS       | ND           | NS             | 0.0008     | NS        | NS            | NS       | NS             | <0.002                  | NS           | NS      | <0.0005   | ND          | NS           | NS     | NS      | 0.154    | ND      | SW8021b            | 1.1                         |
|           | Ethylbenzene            | ND          | NS          | NS         | NS         | NS       | NS           | NS             | ND         | NS        | NS            | NS       | NS             | <0.002                  | NS           | NS      | <0.0005   | ND          | NS           | NS     | NS      | 0.00239  | ND      | SW8021b            | 0.015                       |
|           | Total Xylenes           | ND          | NS          | NS         | NS         | NS       | ND           | NS             | ND         | NS        | NS            | NS       | NS             | <0.002                  | NS           | NS      | <1.50     | ND          | NS           | NS     | NS      | 0.0500   | ND      | SW8021b            | 0.19                        |
|           |                         |             |             |            |            |          |              |                |            |           |               |          |                |                         | <b>1</b>     |         |           |             |              |        |         |          |         |                    |                             |
| MW-05     | GRO                     | 0.244       | 0.287       | 0.462      | 0.303      | 0.7      | ND           | 0.148          | NS         | NS        | NS            | NS       | 0.938          | 2.200                   | NS           | 0.456   | 0.121     | ND          | NS           | 0.207  | ND      | 0.311    | ND      | AK101              | 2.2                         |
|           | DRO                     | NS          | NS          | NS         | 0.39       | NS       | NS           | NS             | NS         | NS        | NS            | NS       | 0.603          | 1.24                    | NS           | 0.700   | <0.407    | ND          | NS           | 0.757  | ND      | ,0.577   | ND      | AK102              | 1.5                         |
|           | RRO                     | NS          | NS          | NS         | NS         | NS       | NS           | NS             | NS         | NS        | NS            | NS       | NS             | 1.79                    | NS           | 0.865   | <0.407    | 0.974       | NS           | 0.995  | ND      | 0.524    | ND      | AK103              | 1.1                         |
|           | Benzene                 | 0.13        | 0.18        | 0.243      | 0.157      | 0.272    | 0.011        | 0.079          | NS         | NS        | NS            | NS       | 0.467          | 1.170                   | NS           | 0.180   | 0.0119    | 0.00113     | NS           | 0.0839 | 0.0126  | 0.122    | 0.00146 | SW8021b            | 0.0046                      |
|           | Toluene                 | ND          | NS          | ND         | ND         | ND       | ND           | ND             | NS         | NS        | NS            | NS       | ND             | <0.020                  | NS           | 0.00450 | 0.000861  | ND          | NS           | ND     | 0.00207 | 0.00123  | ND      | SW8021b            | 1.1                         |
|           | Ethylbenzene            | ND          | NS          | ND         | ND         | ND       | ND           | ND             | NS         | NS        | NS            | NS       | 0.00236        | <0.020                  | NS           | ND      | <0.0005   | ND          | NS           | ND     | ND      | <0.00100 | ND      | SW8021b            | 0.015                       |
|           | Total Xylenes           | ND          | NS          | ND         | ND         | ND       | ND           | ND             | NS         | NS        | NS            | NS       | 0.00586        | <0.020                  | NS           | 0.02128 | 0.00204   | ND          | NS           | 0.0121 | 0.00416 | 0.00972  | ND      | SW8021b            | 0.19                        |
| GRO = Gas | oline Range Organics    | DRO =       | Diesel Ran  | ge Organic | s NS       | = Not Sa | mpled N      | ID = Not De    | tected     |           |               |          |                |                         |              |         |           |             |              |        |         |          |         |                    |                             |
| mg/L = mi | ligrams per Liter VO    | Cs = Volati | ile Organic | Compound   | ls         | 1 -      |              |                |            |           |               |          |                |                         |              |         |           |             |              |        |         |          |         |                    |                             |
| BOLD      | = Value exceeds applica | ble ADEC    | cleanup cri | terion.    |            | Ground   | vater cleanu | ip criteria ar | e based on | 18AAC 75. | 345 Table C ( | November | 7, 2017).      |                         |              |         |           |             |              |        |         |          |         |                    |                             |

#### TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

| Date Collected: Jan-95 Jul-95 Mar-96 Dec-96 Nov-99 Aug-00 Nov-00 Jun-02 Nov-02 Jul-03 Jan-04 Jun-05 Aug-05 Mar-06 Sent-06 Oct-07 Sen-12 Jun-13 Apr-14 Jul-15 Jul-16 Jul-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| שמו שמו שלי שוויט המו שלי שוויט שנייט אמציע אישיע אישיע מויע שמויע שמויע שמויע אמויע שמויט אפריע שנייט שנייט אמציע מויע שמויע אמויע שמויע אמציע אישיע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | liytical Groundwater Cleanup    |
| Well No. Parameter (mg/L) (mg/ | ethod Level (mg/L) <sup>1</sup> |
| B6VE GRO 20.7 23 13.5 18.6 24 42.1 25.9 15 NS NS NS 50.700 57.900 27.400 40.600 54.600 8.290 25.8 22.7 NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <101 2.2                        |
| DRO NS NS NS 2.52 NS NS NS 1.6 NS NS NS 20.1 20.10 90.0 10.80 15.6 4.690 8.80 5.57 NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K102 1.5                        |
| RRO NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K103 1.1                        |
| Benzene 1.53 3.11 1.34 2.29 1.75 3.82 2.5 1.69 NS NS NS 4.540 7.660 2.020 0.0939 3.880 1.060 2.750 1.730 NS NS NS NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8021b 0.0046                    |
| Toluene 3.74 NS 2.21 4 3.12 4.48 3.16 1.9 NS NS NS 9.980 12.500 5.660 9.450 9.190 1.430 4.310 3.870 NS NS NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8021b 1.1                       |
| Ethylbenzene NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8021b 0.015                     |
| Total Xylenes 3.51 NS 2.2 2.3 2.9 3.36 2.9 1.5 NS NS NS NS 7.220 8.810 5.240 6.730 5.950 1.139 3.660 3.473 NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8021b 0.19                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| MW-08 GRO 3.45 3.92 9.89 NS 1.8 1.2 5.3 9.5 NS 0.8 NS 2.070 4.220 NS 0.577 4.280 0.79 NS NS ND 0.699 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X101 2.2                        |
| DRO NS 14.4 2.06 ND NS 0.558 <0.306 NS ND <0.394 ND NS NS NS ND <0.566 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K102 1.5                        |
| RRO NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K103 1.1                        |
| Benzene 1.51 2.49 4.91 NS 0.69 0.5 2.31 3.6 NS 0.33 NS 1.090 2.180 NS 0.165 1.450 0.355 NS NS 0.00695 0.277 J 0.00458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8021b 0.0046                    |
| Toluene 0.0027 NS NS NS NS NS NS 0.016 NS 0.0008 NS 0.00285 <0.020 NS 0.0452 <0.025 ND NS NS ND 0.00132 J ND S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8021b 1.1                       |
| Ethylbenzene 0.004 NS 0.1 ND NS ND <b>&lt;0.021</b> NS ND <b>&lt;0.021</b> NS ND <b>&lt;0.021</b> NS ND <b>&lt;0.0010</b> ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8021b 0.015                     |
| Total Xylenes 0.007 NS 0.23 ND ND ND ND ND 0.34 NS ND NS 0.0147 0.0256 NS 0.0539 <0.075 ND NS NS ND <0.00300 ND S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8021b 0.19                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (101 2.2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×101 2.2<br>×102 1.5            |
| REC NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <102 1.5<br><103 1.1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8021b 0.0046                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8021b 1.1                       |
| Fitylbergene ND NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8021b 0.015                     |
| Total Xilenes ND NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8021b 0.19                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00210                           |
| MW-10 GRO NS NS NS ND NS ND ND ND NS NS NS NS <0.090 NS NS <0.050 ND NS NS NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <101 2.2                        |
| DRO NS NS 0.39 NS NS 0.32 NS NS NS NS <a href="https://www.science.com">NS NS N</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K102 1.5                        |
| RRO NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K103 1.1                        |
| Benzene NS NS NS ND NS ND ND ND ND NS NS NS NS <0.0005 NS NS <0.0005 ND NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8021b 0.0046                    |
| Toluene NS NS NS ND NS ND ND ND NS NS NS NS NS <0.002 NS NS <0.0005 ND NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8021b 1.1                       |
| Ethylbenzene NS NS NS ND NS ND ND ND ND NS NS NS NS <0.002 NS NS <0.0005 ND NS NS NS NS NS NS NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8021b 0.015                     |
| Total Xylenes NS NS NS ND NS ND ND ND NS NS NS NS <0.002 NS NS <0.0005 ND NS NS NS NS NS NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8021b 0.19                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| MW-11 GRO NS ND ND ND ND ND <0.090 0.233 ND <0.050 ND NS ND NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K101 2.2                        |
| DRO NS NS NS NS NS NS NS NS NS <u>3.82</u> NS <u>1.72</u> ND 1.16 <u>2.01</u> 0.650 0.481 0.759 ND NS ND NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K102 1.5                        |
| RRO NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K103 1.1                        |
| Benzene NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8021b 0.0046                    |
| Toluene NS NS NS NS NS NS NS NS 0.0027 NS ND ND ND <0.002 0.0601 ND <0.0005 ND NS ND NS NS NS NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8021b 1.1                       |
| Ethylbenzene NS NS NS NS NS NS NS NS ND NS ND ND ND ND <0.002 0.00659 ND <0.0005 ND NS ND NS NS NS NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8021b 0.015                     |
| Total Xylenes NS NS NS NS NS NS NS NS NS ND NS ND ND ND ND <0.002 0.03412 ND <0.0015 ND NS ND NS NS NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8021b 0.19                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (101 2.2                        |
| NU VIU INO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×101 2.2<br><102 1.5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×102 1.5                        |
| Renzene NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8021h 0.0046                    |
| Delizente ino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8021b 0.0040                    |
| I UIUEILE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8021b 1.1                       |
| Total Xvlenes NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8021b 0.013                     |
| GRO = Gasoline Range Organics DRO = Diesel Range Organics NS = Not Sampled ND = Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17                            |
| ma/L = miligrams per Liter VOCs = Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| <b>BOLD</b> = Value exceeds applicable ADEC cleanup criterion. <sup>1</sup> Groundwater cleanup criteria are based on 18AAC 75.345 Table C (November 7, 2017).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |

#### TABLE 3 4748 OLD SEWARD HIGHWAY ANCHORAGE, ALASKA HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

|           |                                                                                                                            |          |             |          |        |                      |              |               |            |            |             |           |           |        |        |         |        |        |        |        |        |           |        |            | ADEC Method Two           |
|-----------|----------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|--------|----------------------|--------------|---------------|------------|------------|-------------|-----------|-----------|--------|--------|---------|--------|--------|--------|--------|--------|-----------|--------|------------|---------------------------|
|           | Date Collected:                                                                                                            | Jan-95   | Jul-95      | Mar-96   | Dec-96 | Nov-99               | Aug-00       | Nov-00        | Jun-02     | Nov-02     | Jul-03      | Jan-04    | Jun-05    | Aug-05 | Mar-06 | Sept-06 | Oct-07 | Sep-12 | Jun-13 | Apr-14 | Jul-15 | Jul-16    | Jul-17 | Analytical | Groundwater Cleanup       |
| Well No.  | Parameter                                                                                                                  | (mg/L)   | (mg/L)      | (mg/L)   | (mg/L) | (mg/L)               | (mg/L)       | (mg/L)        | (mg/L)     | (mg/L)     | (mg/L)      | (mg/L)    | (mg/L)    | (mg/L) | (mg/L) | (mg/L)  | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L)    | (mg/L) | Method     | Level (mg/L) <sup>1</sup> |
| MW-13     | GRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 217    | 236    | 159    | NS     | NS        | NS     | AK101      | 2.2                       |
|           | DRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 20.1   | 31.1   | 22.3   | NS     | NS        | NS     | AK102      | 1.5                       |
|           | RRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 1.75   | 1.90   | 2.72   | NS     | NS        | NS     | AK103      | 1.1                       |
|           | Benzene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 19.6   | 18.500 | 10.600 | NS     | NS        | NS     | SW8021b    | 0.0046                    |
|           | Toluene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 63.9   | 58.300 | 42.200 | NS     | NS        | NS     | SW8021b    | 1.1                       |
|           | Ethylbenzene                                                                                                               | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 5.29   | 4.900  | 5.600  | NS     | NS        | NS     | SW8021b    | 0.015                     |
|           | Total Xylenes                                                                                                              | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 26.7   | 26.900 | 28.510 | NS     | NS        | NS     | SW8021b    | 0.19                      |
|           | 1,2,4-Trimethylbenzene                                                                                                     | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | NS     | 2.140  | NS     | NS     | NS        | NS     | SW8260B    | 0.015                     |
|           | n-Propylbenzene                                                                                                            | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | NS     | 0.399  | NS     | NS     | NS        | NS     | SW8260B    | 0.660                     |
| MW-14     | GRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 118    | 140    | 113    | 94.8   | 125       | 52.700 | AK101      | 2.2                       |
|           | DRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 58.6   | 56.4   | 52.3   | 53.6   | 37.1      | 6.960  | AK102      | 1.5                       |
|           | RRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 8.88   | 9.52   | 10.9   | 5.72   | 2.75      | ND     | AK103      | 1.1                       |
|           | Benzene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 19.6   | 17.300 | 19.100 | 13.500 | 17.100    | 5.490  | SW8021b    | 0.0046                    |
|           | Toluene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 26.1   | 25.800 | 26.200 | 19.100 | 31.500    | 11.600 | SW8021b    | 1.1                       |
|           | Ethylbenzene                                                                                                               | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 2.51   | 2.240  | 2.070  | 1.710  | 1.670     | 0.675  | SW8021b    | 0.015                     |
|           | Total Xylenes                                                                                                              | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | NS     | NS     | NS      | NS     | 14.78  | 15.320 | 15.240 | 13.470 | 19.950    | 13.390 | SW8021b    | 0.19                      |
| MW-15     | GRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 86.100 | NS     | NS      | 56.500 | 1.33   | 2.25   | 7.98   | NS     | NS        | NS     | AK101      | 2.2                       |
|           | DRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 14.6   | NS     | NS      | 4.96   | 1.03   | 2.01   | 1.83   | NS     | NS        | NS     | AK102      | 1.5                       |
|           | RRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 1.19   | NS     | NS      | 0.439  | 1.010  | 1.19   | 2.25   | NS     | NS        | NS     | AK103      | 1.1                       |
|           | Benzene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 16.900 | NS     | NS      | 6.690  | 0.0467 | 0.517  | 1.790  | NS     | NS        | NS     | SW8021b    | 0.0046                    |
|           | Toluene                                                                                                                    | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 19.800 | NS     | NS      | 8.630  | 0.0514 | 0.213  | 0.492  | NS     | NS        | NS     | SW8021b    | 1.1                       |
|           | Ethylbenzene                                                                                                               | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 2.030  | NS     | NS      | 1.270  | 0.0229 | 0.0567 | 0.1130 | NS     | NS        | NS     | SW8021b    | 0.015                     |
|           | Total Xylenes                                                                                                              | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | NS        | 10.010 | NS     | NS      | 6.810  | 0.1119 | 0.2171 | 0.3670 | NS     | NS        | NS     | SW8021b    | 0.19                      |
| Tap Well  | GRO                                                                                                                        | NS       | NS          | ND       | NS     | ND                   | ND           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | 0.305   | NS     | NS     | NS     | NS     | NS     | NS        | NS     | AK101      | 2.2                       |
| (facility | DRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | ND      | NS     | NS     | NS     | NS     | NS     | NS        | NS     | AK102      | 1.5                       |
| well)     | RRO                                                                                                                        | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | ND        | NS     | NS     | ND      | NS     | NS     | NS     | NS     | NS     | NS        | NS     | AK103      | 1.1                       |
|           | Benzene                                                                                                                    | NS       | NS          | ND       | NS     | ND                   | ND           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | 0.0108  | NS     | ND     | NS     | NS     | ND     | <0.000500 | ND     | EPA 524.2  | 0.0046                    |
|           | Toluene                                                                                                                    | NS       | NS          | ND       | NS     | ND                   | ND           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | 0.0495  | NS     | ND     | NS     | NS     | ND     | <0.000500 | ND     | EPA 524.2  | 1.1                       |
|           | Ethylbenzene                                                                                                               | NS       | NS          | ND       | NS     | ND                   | ND           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | 0.00947 | NS     | ND     | NS     | NS     | ND     | <0.000500 | ND     | EPA 524.2  | 0.015                     |
|           | Total Xylenes                                                                                                              | NS       | NS          | ND       | NS     | ND                   | ND           | NS            | ND         | NS         | NS          | NS        | ND        | NS     | NS     | 0.0613  | NS     | ND     | NS     | NS     | ND     | <0.000500 | ND     | EPA 524.2  | 0.19                      |
|           | All Other VOCs                                                                                                             | NS       | NS          | NS       | NS     | NS                   | NS           | NS            | NS         | NS         | NS          | NS        | ND        | NS     | NS     | NS      | NS     | ND     | NS     | NS     | ND     | ND        | ND     | EPA 524.2  | varies                    |
| GRO = Ga  | GRO = Gasoline Range Organics DRO = Diesel Range Organics RRO = Residual Range Organics NS = Not Sampled ND = Not Detected |          |             |          |        |                      |              |               |            |            |             |           |           |        |        |         |        |        |        |        |        |           |        |            |                           |
| BOLD      | = Value exceeds applical                                                                                                   | ble ADEC | cleanup cri | iterion. |        | <sup>1</sup> Groundw | /ater cleanu | p criteria ar | e based on | 18AAC 75.3 | 345 Table C | (November | 7, 2017). |        |        |         |        |        |        |        |        |           |        |            |                           |

BGES, INC.

# APPENDIX A FIELD NOTES

| 580F, Gear                  | Time | 7:59<br>7:59<br>8:15<br>8:15<br>8:15<br>8:15<br>8:15<br>8:15<br>7:55<br>7:55<br>7:55<br>7:55<br>7:55<br>7:55<br>7:55<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| E WS) ansi                  | TDW  | 21.67<br>8.69<br>8.69<br>12.84<br>12.84<br>13.19<br>14.55<br>6.29<br>8.12<br>13.19<br>14.55<br>6.29<br>8.12<br>13.19<br>14.55<br>6.29<br>8.12<br>11.18<br>8.12<br>11.18<br>11.18<br>8.12<br>12.88<br>10.24<br>12.88<br>10.24<br>12.88<br>10.24<br>12.88<br>10.24<br>12.88<br>10.24<br>10.24<br>10.24<br>10.24<br>10.24<br>10.24<br>10.24<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.27<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.26<br>10.2 |  |
| BGES (ET<br>wells           | DTW  | 8.12<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35<br>7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7/12/13<br>7:15<br>April 15 | MNH  | MW 1<br>MW 1<br>MW 1<br>MW 1<br>MW 1<br>MW 1<br>MW 1<br>MW 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

43 819-BGES (ET) Onsite, Begin progras 1310-Begin purging wells and collecting smalles MW8 has waste oil ador. Recommend 58°FI Clear 948- ADE & (Josh, brant, Chealsed, Sammy) ansitie. MW9 purging slow. 16:35-BGES (ET) affite. Repiratur 50 teture sampling events. 1500 - Facility well located in NW portion of building. 1535 - Ruge Ming For sample MW9B 1205 - BUES (ET) off Site 1250- BUES(ET) ansite 942-BUES(WS) onsite. -BUES(WS) allsite 1125-ADEC alls He 7/13/17 MWZ - 2/3 bolt holes who theods, f bolt hole eve broken MWG - Porthally full of water, slight sheen MWS - missing I bolt MW S - Mic slightly heaved, pervre en 0900-Nicherth Dame Traffic Set up 0900-Nicherth Dame Traffic Set up 0930-Begin Anging MW12/5, pnd Sam/Ing AFE - (BEEFET) WS aff site 1130-N. Dame Removing Cares 1200-N. Dame Affiche 1200-BUES(ET) affiche 1342-BUES(ET) affiche i Sampling MW14 1342-BUES(ET) affiche i Sampling MW14 0745 - Northern Dome onsite, safety top cap 42

| BGES, INC.                                                                                              | GROU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JNDWATER MON                                                        | IITORING LOG                                        |                                                                                                 | BGES, INC. |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|
| Well Number:                                                                                            | בון בוד                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weather Conditi                                                     | ions _                                              | 68°F, Clegr                                                                                     |            |
| Date of Sampling Event:_                                                                                | 4113/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time of Depth to                                                    | Water Measure                                       | ement: 10:48                                                                                    |            |
| Total Depth of Well (feet<br>Depth to Water (feet belo<br>Water Column (feet):                          | below TOC): 8.69<br>w TOC): 5.34<br>3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | Type of Samp<br><u>MP50</u> co<br><u>pump</u> , VS1 | Ing Equipment:<br><u>http:///////////////////////////////////</u>                               | ъ<br>+     |
| Volume of well (gals)                                                                                   | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | =0.1632 X Wa<br>=0.6528 X Wa<br>=1.4688 X Wa        | ater Column (For 2-inch well)<br>ater Column (For 4-inch well)<br>ater Column (For 6-inch well) | -          |
| Time Purging Began:                                                                                     | 10:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                                                     |                                                                                                 |            |
| Time of Sampling:                                                                                       | 11:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                                                     |                                                                                                 |            |
| Volume purged                                                                                           | 0.8gal PURGE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MINIMUM OF THE                                                      | REE WELL VOL                                        | UMES                                                                                            |            |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 14.6         Tempo           1080         Condu           6.55         pH           37.6         ORP           0.2 94         Volum           10:56         Time of the second secon                                                                                                                                                                               | erature (°C)<br>uctivity<br>ne Purged<br>To Water<br>of Measurement | 14.7<br>1014<br>6.48<br>45.0<br>0.8 gal, 3          | Depth of Bladder intake:<br><u>6" below top of 1</u><br>Column<br>3.0L                          | water.     |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 14.1     Tempe       1923     Condu       6.52     pH       90.8     ORP       2.4     04       1.8L     Volum       Depth     Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (°C)<br>uctivity<br>e Purged<br>To Water                    |                                                     | Purge Rate:<br>~129-260mL/min                                                                   |            |
| Temperature (°C)<br>Conductivity                                                                        | 14.3 Tempe<br>1005 Condu<br>6.45 PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (°C)<br>ictivity                                            |                                                     | Sample Rate:<br><u>~60mC/min</u>                                                                |            |
| ORP<br>Volume Purged<br>Depth To Water                                                                  | 0.639-1, 2.4L Volum<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Purged<br>To Water                                                |                                                     | Sample ID:<br>MW 3-07/3                                                                         |            |
| Time of Measurement                                                                                     | II:07         Time of the second | of Measurement<br>erature (°C)                                      |                                                     |                                                                                                 |            |
| Conductivity _<br>pH _<br>ORP _                                                                         | Condu<br><b>6.47</b> pH<br><b>45.7</b> ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ctivity                                                             |                                                     |                                                                                                 |            |
| Volume Purged                                                                                           | 2.66470.8gal Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Purged                                                            |                                                     |                                                                                                 |            |
| Time of Measurement                                                                                     | Depth Time c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To Water<br>of Measurement                                          |                                                     |                                                                                                 |            |
| Additional Notes:                                                                                       | rate allcrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sed 11:08                                                           |                                                     |                                                                                                 | -          |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                   |                                                     |                                                                                                 |            |

Page / of )

Project Number

| DOED                         |                 | GROUNDWATER MON          |                                                                                                                | 13.785 ML 2490 ML                                                                               | BGES, INC.        |
|------------------------------|-----------------|--------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|
| BGES, INC.                   |                 |                          |                                                                                                                | 1.                                                                                              | dias              |
| ENVIRONMENTAL CONSULTANTS    | 5               |                          |                                                                                                                | 1995 de 6 1991                                                                                  | levier 3          |
| Well Number: ///             | -101-           | Weather Condit           | ions                                                                                                           | 63 F, Clear                                                                                     |                   |
| Date of Sampling Even        | t: 1/12/17      | _ Time of Depth to       | o Water Measure                                                                                                | ement: 8:20                                                                                     |                   |
| Total Depth of Well (fee     | et below TOC):  | Date of Depth to         | Water Measure                                                                                                  | ment: <u>7/12/17</u>                                                                            |                   |
| Depth to vvater (feet be     |                 | .76                      | Type of Samp                                                                                                   | ling Equipment:                                                                                 | 0                 |
| water Column (feet):         | 5.02            |                          | MPSe cent                                                                                                      | haller L' Blander                                                                               | imp               |
|                              |                 |                          | YSI Flow                                                                                                       | Inrovan cell                                                                                    |                   |
|                              |                 |                          | rely bond                                                                                                      | led traing                                                                                      |                   |
| Volume of well (gals)        | _               | ).82                     | =0.1632 X Wa<br>=0.6528 X Wa<br>=1.4688 X Wa                                                                   | ater Column (For 2-inch well)<br>ater Column (For 4-inch well)<br>ater Column (For 6-inch well) |                   |
| Time Purging Began:          | 11:17           |                          |                                                                                                                |                                                                                                 |                   |
| Time of Sampling:            | 12:32           |                          |                                                                                                                |                                                                                                 |                   |
| Volume purged                | OS A PI         |                          | REE WELL VOL                                                                                                   | IMES                                                                                            |                   |
| volume purged                | Viogal          |                          | REE WELL VOL                                                                                                   | UMES                                                                                            |                   |
| Temperature (°C)             | 12.500          | Temperature (°C)         | 12.9°C                                                                                                         | Depth of Bladder intake:                                                                        |                   |
| Conductivity                 | 7180            | Conductivity             | 7127                                                                                                           | 6" beland too of we                                                                             | tor               |
| pH                           | 6.39            | pH                       | 6.43                                                                                                           | (alumo                                                                                          | 11-01             |
| ORP                          | -27.7           | ORP                      | -27.5                                                                                                          | cv/v                                                                                            |                   |
| Volume Purged                | 9.1 991         | Volume Purged            | O.h ool i                                                                                                      | 2.74                                                                                            |                   |
| Depth To Water               |                 | Depth To Water           |                                                                                                                |                                                                                                 |                   |
| Time of Measurement          | 11:18           | Time of Measurement      | 11:38                                                                                                          |                                                                                                 |                   |
| Temperature (°C)             | 12001           | Temperature (°C)         | 17.200                                                                                                         | Purne Reter                                                                                     |                   |
| Conductivity                 | 7125            | Conductivity             | 1112                                                                                                           | NIN- IO milia in                                                                                |                   |
| pH                           | 1.30            | nH                       | 6.097                                                                                                          | 10/100 190 M L/MIN                                                                              |                   |
| ORP                          | -76.4           | ORP                      | -415 (7.                                                                                                       | 11                                                                                              |                   |
| Volume Purged                | 0.3 0-1         | Volume Purged            | ObalP                                                                                                          | 76                                                                                              |                   |
| Depth To Water               |                 | Depth To Water           | Vilghi                                                                                                         |                                                                                                 |                   |
| Time of Measurement          | 11:23           | Time of Measurement      | 11:47                                                                                                          |                                                                                                 |                   |
|                              | 0.01            |                          |                                                                                                                | Sample Rate:                                                                                    |                   |
| Temperature (°C)             | 1.800           | Temperature (°C)         | 13.300                                                                                                         | -MW5-9712 ET, ~                                                                                 | -50m L/main       |
| Conductivity                 | 2.960           | Conductivity             | 2302                                                                                                           |                                                                                                 | 1                 |
| pH                           | 6.38            | рН                       | 6.43                                                                                                           |                                                                                                 |                   |
| ORP                          | - 26.4          | ORP                      | -44.2                                                                                                          | Sample ID:                                                                                      |                   |
| Volume Purged                | 0.4 941         | Volume Purged            | Q.791 7                                                                                                        | MW5-0+12                                                                                        |                   |
| Time of Moosurement          | 10.10           | Depth To Water           | 11116                                                                                                          | 92.8L                                                                                           |                   |
| Time of Measurement          | 11.68           | Time of Measurement      | 11:40                                                                                                          |                                                                                                 |                   |
| Temperature (°C)             | 13.0%           | Temperature (°C)         | 13.0%                                                                                                          |                                                                                                 |                   |
| Conductivity                 | 7085            | Conductivity             | 1777                                                                                                           |                                                                                                 |                   |
| pH                           | 6.40            | pH                       | 6.48                                                                                                           |                                                                                                 |                   |
| ORP                          | -30.8           | ORP                      | -44.5                                                                                                          | -73.01                                                                                          |                   |
| Volume Purged                | 0.5901. 2.0     | L Volume Purged          | 0.8001                                                                                                         |                                                                                                 |                   |
| Depth To Water               |                 | Depth To Water           |                                                                                                                |                                                                                                 |                   |
| Time of Measurement          | 11:34           | Time of Measurement      | - +115 11:51                                                                                                   |                                                                                                 |                   |
|                              |                 |                          |                                                                                                                |                                                                                                 |                   |
| Additional Notes:            | round Puro      | a late at 11.            | 76 -                                                                                                           | al h 11                                                                                         |                   |
| Class alas                   | leased rug      | 1 19ve 45 11.            | C7; 191                                                                                                        | color initially 1                                                                               |                   |
| CICRI (Allor M               | cura have       | 9                        |                                                                                                                | /                                                                                               |                   |
|                              |                 | See 19 19 19 19 19 19 19 | the second s |                                                                                                 |                   |
|                              |                 |                          |                                                                                                                |                                                                                                 |                   |
|                              |                 | 1                        |                                                                                                                |                                                                                                 |                   |
| Water Monitoring Log Form (R | evised 3/20/15) | Page / of _              | )                                                                                                              | Project Number                                                                                  | The second second |

GROUNDWATER MONITORING LOG BGES, INC. BGES, INC. 1°F, Clear 8:15 Well Number: MW8 Weather Conditions Date of Sampling Event: 7/13/ 17 Time of Depth to Water Measurement: Date of Depth to Water Measurement: Total Depth of Well (feet below TOC): 13.74 Depth to Water (feet below TOC): Type of Sampling Equipment: Water Column (feet): Controller bonded 1.26 Volume of well (gals) =0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well) Time Purging Began: Time of Sampling: Volume purged | 9- PURGE A MINIMUM OF THREE WELL VOLUMES 601 Depth of Bladder intake: ~8" be low top of Temperature (°C) Temperature (°C) Conductivity Conductivity pH pH ORP ORP ,2.56 Volume Purged Volume Purged Depth To Water Depth To Water Time of Measurement 13:35 3:20 Time of Measurement 3.2 Temperature (°C) . 6 Temperature (°C) Purge Rate; Conductivity  $\sim 69 m C/mm$ Conductivity 018 pH .43 pH 8.8 ORP ORP 2.81 Volume Purged 1.3LVolume Purged Qd Depth To Water Depth To Water Time of Measurement Time of Measurement Sample Rate: 2.5 13.0 -110 ml/min Temperature (°C) Temperature (°C) Conductivity Conductivity 2 88 pH pH 1.8LORP ORP 7.4 Sample ID: 3LMW8-0713 Volume Purged Volume Purged 80 Depth To Water Depth To Water MW17-0713 (Dup) Time of Measurement Time of Measurement 3.11 .4 Temperature (°C) Temperature (°C) Conductivity Conductivity pH pH ORP ORP Volume Purged 21 Volume Purged G Depth To Water Depth To Water Time of Measurement Time of Measurement : 45 Additional Notes: Slight tan color initially purging. Clear color before sampling Page | of **Project Number** Water Monitoring Log Form (Revised 3/20/15)

|                                          |                              | Non              | O. Omle /     | 3.785 ml =       | 1 Jan 2.  |
|------------------------------------------|------------------------------|------------------|---------------|------------------|-----------|
| DOED                                     | GROUNDWATER MOI              | NITORING LOG     |               | lori             | BGES, INC |
| BGES, INC.                               |                              |                  |               |                  | ) and 2   |
| Well Number: MW9                         | Weather Condit               | tions            | 589E          | Ment             |           |
| Date of Sampling Event: 7/13             | JI7 Time of Depth t          | o Water Measure  | ement:        | 8:08             |           |
|                                          | Date of Depth to             | o Water Measure  | ement:        | 7/12/17          |           |
| Total Depth of Well (feet below TOC      | roc): <u>13.14</u>           | Tracelo          |               |                  |           |
| Water Column (feet): 7.                  | 84 2:22                      | MP50 (m          | troller, 2"   | hladder or       | 100       |
| and the second second                    | Charles and the state of the | VSF Flow         | through C     | ell              | <u></u>   |
|                                          |                              | poly bonde       | d tubing      |                  |           |
| Volume of well (gals)                    | 1.28                         | =0.1632 X W      | ater Column ( | For 2-inch well) |           |
|                                          |                              | =0.6528 X W      | ater Column ( | For 4-inch well) |           |
| Time Purging Began:                      | 56                           | =1.4688 X Wa     | ater Column ( | For 6-inch well) |           |
| Time of Sampling: 9:3                    | 5                            |                  |               |                  |           |
| Volume purged 0.5                        | 94 PURGE A MINIMUM OF TH     | REE WELL VOL     | UMES          |                  |           |
| Temperature (°C)                         | Tomporature (%0)             | 17 7             | Death         |                  |           |
| Conductivity 1248                        | Conductivity                 | 16.7             | 2/0-12        | Bladder intake:  | 40        |
| рН 6.26                                  | pH                           | 6.24             | of water      | Column.          | 1.00      |
| Volume Purged                            | ORP                          | 52.6             | of to her     | Current          |           |
| Depth To Water                           | Depth To Water               | 0.5 901          | _             |                  |           |
| Time of Measurement 8:40                 | Time of Measurement          | 8:57             |               |                  |           |
| Temperature (°C) 12.3                    | Temperature (°C)             |                  | Purge Rate    | e: .             |           |
| Conductivity 1943                        | Conductivity                 | a contract state | ~ 90-12       | com L/min        |           |
| ORP 6.20                                 | pH                           |                  |               |                  |           |
| Volume Purged                            | Volume Purged                | -                |               |                  |           |
| Depth To Water                           | Depth To Water               |                  |               |                  |           |
| Time of Measurement 8:45                 | Time of Measurement          |                  | Comple De     |                  |           |
| Temperature (°C) 12.6                    | Temperature (°C)             |                  | ~SomL         | min              |           |
| Conductivity 2005                        | Conductivity                 |                  |               |                  |           |
| ORP 6.20                                 | PH<br>ORP                    |                  | Sample ID     |                  |           |
| Volume Purged                            | Volume Purged                |                  | MW9-0         | 713              |           |
| Depth To Water                           | Depth To Water               |                  |               |                  | 1000      |
| Time of Measurement 8:50                 | I ime of Measurement         |                  |               |                  |           |
| Temperature (°C) 12.1                    | Temperature (°C)             |                  |               |                  |           |
| Conductivity 2031                        | Conductivity                 |                  |               |                  |           |
| ORP 57.7                                 | ORP                          |                  |               |                  |           |
| Volume Purged 0.4 a                      | Volume Purged                | -                |               |                  |           |
| Depth To Water                           | Depth To Water               |                  |               |                  |           |
| A.54                                     | Time of Measurement          |                  |               |                  |           |
| Additional Notes:                        | 1                            |                  | 1 .           |                  |           |
| Standing Water is                        | alear initially. Por         | p submerge       | d to m        | ax diawdown      | •         |
| -indiag water in b                       | ven case,                    |                  |               |                  | -         |
|                                          |                              |                  |               |                  |           |
|                                          |                              |                  |               |                  |           |
| Water Monitoring Log Form (Revised 3/20/ | (15) Page ( of _             | L                | Project       | Number           |           |
|                                          |                              |                  |               |                  |           |

|                                                                                                                 | GROU                                                                                                                                                    | NDWATER MON                                              | ITORINGLOG                                                | 20 5                                   | 3785 ml                                                     | BGES; INC.       |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------|
| BGES, INC.                                                                                                      |                                                                                                                                                         |                                                          |                                                           |                                        | 1.00                                                        | 22 min           |
| Well Number: MW12                                                                                               |                                                                                                                                                         | Weather Condition                                        | ons                                                       | SGOE                                   | rier                                                        |                  |
| Date of Sampling Event: 7                                                                                       | 112/17                                                                                                                                                  | Time of Depth to                                         | Water Measure                                             | ment:                                  | 09.70                                                       |                  |
| Total Depth of Well (feet be<br>Depth to Water (feet below<br>Water Column (feet):                              | low TOC): <b>8.12</b><br>TOC): <b>4.89</b><br><b>3.23</b>                                                                                               | Date of Depth to                                         | Water Measurer<br>Type of Samp<br>MP50 (ohf<br>YS1 Flow H | ment:<br>ling Equipm<br>roller         | P/12/17<br>ent:<br>2" bladder                               | <del>р</del> стр |
| Volume of well (gals)<br>Time Purging Began:                                                                    | 0.53                                                                                                                                                    |                                                          | = <u>0.1632</u> X Wa<br>=0.6528 X Wa<br>=1.4688 X Wa      | ter Column<br>ter Column<br>ter Column | (For 2-inch well)<br>(For 4-inch well)<br>(For 6-inch well) |                  |
| Time of Sampling:                                                                                               | 0:27                                                                                                                                                    |                                                          |                                                           |                                        |                                                             |                  |
| Volume purged                                                                                                   | 7 gal PURGE A M                                                                                                                                         | INIMUM OF THR                                            | EE WELL VOLU                                              | JMES                                   |                                                             |                  |
| Temperature (°C)/Conductivity10pH5.ORP0Volume Purged0Depth To Water4Time of Measurement0                        | 3.2°       Tempe         5.4       Conduct         71       pH         .2       ORP         .1       ORP         .2       Depth         .3       Time o | rature (°C)<br>ctivity<br>e Purged<br>Fo Water           | 13.4<br>113.3<br>6.32<br>-139.8<br>Q.6 gal                | Depth of<br>~ 8"<br>Colu               | Bladder intake:<br><u>below dop of</u><br>MN                | ? water          |
| Temperature (°C)                                                                                                | ./°CTempeConductConductORPORPVolume                                                                                                                     | rature (°C)<br>ctivity                                   | 13.6<br>113.8<br>6.30<br>-140.0<br>0.6 pe/                | Purge Ra<br>~60mL/                     | te:<br>min - 89 mL,                                         | min              |
| Depth To Water       Time of Measurement <b>7</b> Temperature (°C)       Conductivity                           | Home         Depth T           140         Time of           7.6         Temper           4.6         Conduct                                           | o Water<br>Measurement<br>rature (°C)<br>tivity          | 10:07<br>13.4<br>114.0                                    | Sample R                               | ate:<br>/min                                                |                  |
| pH     6       ORP     -1       Volume Purged     0       Depth To Water     -1       Time of Measurement     0 | .35         pH           19.3         ORP           .4         onl           .57         Depth 1                                                        | Purged<br>o Water<br>Measurement                         | 6.28<br>-140.3<br>0.7                                     | Sample IE<br><u>MW12</u> -             | 07/2                                                        |                  |
| Temperature (°C)13Conductivity11pH6ORP-11Volume Purged-11Depth To Water0Time of Measurement0                    | S     Temper       I.S     Conduct       S     ORP       Volume       S     Depth T       Time of                                                       | ature (°C)<br>tivity<br>Purged<br>o Water<br>Measurement |                                                           |                                        |                                                             |                  |
| Additional Notes:<br>Increase<br>Medrum Brown by                                                                | d puge rate a:<br>end of sampling                                                                                                                       | + 09:45. D                                               | Dark Brown                                                | Color                                  | Initially,                                                  |                  |
| 1                                                                                                               |                                                                                                                                                         | 1                                                        |                                                           |                                        |                                                             |                  |

Water Monitoring Log Form (Revised 3/20/15)

Page \_\_\_\_ of \_\_\_\_

Project Number \_\_\_\_\_

| BGES, INC.                                                                                              |                                                 | GROUNDWATER MON                                                                                         | NITORING LOG                                                                           |                                                                                                 | BGES, INC. |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|
| Well Number: MWI                                                                                        | 4                                               |                                                                                                         |                                                                                        | 2005 1101                                                                                       |            |
| Date of Sampling Even                                                                                   | + 07/12/17                                      | Weather Condit                                                                                          | ions _                                                                                 | TUF, LICAI                                                                                      |            |
| Date of Gamping Even                                                                                    |                                                 | _ Time of Depth to                                                                                      | o Water Measure                                                                        | ement: <u>7:38</u>                                                                              |            |
| Total Depth of Well (fee<br>Depth to Water (feet be<br>Water Column (feet):                             | et below TOC):<br>elow TOC):<br>5.37            | 2.81<br>.44                                                                                             | Type of Samp                                                                           | ling Equipment:                                                                                 | Allea A    |
| Volume of well (gals)                                                                                   | ö                                               | .88                                                                                                     | <b>VST Plow</b><br><b>Poly , bonde</b><br>=0.1632 X Wa<br>=0.6528 X Wa<br>=1.4688 X Wa | ater Column (For 2-inch well)<br>ater Column (For 4-inch well)<br>ater Column (For 6-inch well) |            |
| Time Purging Began:                                                                                     | 1400                                            |                                                                                                         |                                                                                        |                                                                                                 |            |
| Time of Sampling:                                                                                       | 15:30                                           |                                                                                                         |                                                                                        |                                                                                                 |            |
| Volume purged                                                                                           | 2.4 gal PU                                      | RGE A MINIMUM OF THE                                                                                    | REE WELL VOLU                                                                          | UMES                                                                                            |            |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 13.6<br>158.3<br>5.60<br>47:7<br>0.1 gal        | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 12.1<br>179.8<br>5.55<br>65.1<br>1.0 gal                                               | Depth of Bladder intake:<br><u>Bibelow for a Wo</u><br>Column                                   | ter.       |
| lime of Measurement                                                                                     | 1405                                            | Time of Measurement                                                                                     | 1426                                                                                   |                                                                                                 |            |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 13.4<br>147.6<br>5.50<br>49.2<br>0.2 gol        | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 12.9<br>186.4<br>5.56<br>64.9                                                          | Purge Rate:<br>~ 160 mL/min - 110m                                                              | L/min      |
| Time of Measurement                                                                                     | 1410                                            | Time of Measurement                                                                                     | 14:30                                                                                  | Comula Data                                                                                     |            |
| Temperature (°C)<br>Conductivity<br>pH                                                                  | 12.7                                            | Temperature (°C)<br>Conductivity<br>pH                                                                  | 12.1                                                                                   | Sample Rate:<br>~50mL/min                                                                       |            |
| ORP                                                                                                     | 60.                                             | ORP -                                                                                                   | 64.2                                                                                   | Sample ID:                                                                                      |            |
| Volume Purged                                                                                           | 0.6.gal                                         | Volume Purged                                                                                           |                                                                                        | MW14-9712                                                                                       |            |
| Time of Measurement                                                                                     | 1414                                            | Time of Measurement                                                                                     | 1433                                                                                   | MW16-0712 (Duplic                                                                               | ate)       |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 12.6<br>157.0<br>5.47<br>64.6<br>0.8901<br>1422 | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 11.9<br>200.2<br>5.66<br>63.0<br>1.5<br>1.5                                            |                                                                                                 |            |
| Additional Notes:                                                                                       | el Clear                                        | Initally. Purs                                                                                          | e water                                                                                | looks soopy/bubbly                                                                              | /          |
| Vareased Prige                                                                                          | rate at 14:                                     | 5. /                                                                                                    |                                                                                        | 11. 1                                                                                           |            |
|                                                                                                         |                                                 | 120.0000                                                                                                |                                                                                        |                                                                                                 |            |
|                                                                                                         |                                                 |                                                                                                         |                                                                                        |                                                                                                 |            |

Water Monitoring Log Form (Revised 3/20/15)

Page \_\_\_\_\_ of \_\_\_\_\_

Project Number \_

| BGES, INC.                                                                                              |                                          | GROUNDWATER MO                                                                                          | NITORING LOG                          |                                                                |                 | BGES, INC. |
|---------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|-----------------|------------|
| Well Number:                                                                                            | 114                                      | Weather Condi                                                                                           | tions                                 | 70°F. (                                                        | lear            |            |
| Date of Sampling Ever                                                                                   | nt: +//0/14                              | Time of Depth t                                                                                         | to Water Measure                      | ement:                                                         | 7:38            | -          |
| Total Depth of Well (fe<br>Depth to Water (feet be<br>Water Column (feet):                              | et below TOC):                           | 12.81 Date of Depth to<br>7.44                                                                          | o Water Measure<br>Type of Samp       | ement:<br>pling Equipmen                                       | 7/12/17         |            |
| Volume of well (gals)                                                                                   |                                          | 0.88                                                                                                    | -0.1632 X Wa<br>=0.6528 X Wa          | the life 2"<br>Through all<br>ater Column (F<br>ater Column (F | or 2-inch well) | mβ         |
| Time Purging Rogan                                                                                      | 1400                                     |                                                                                                         | =1.4688 X Wa                          | ater Column (F                                                 | or 6-inch well) |            |
| Time of Sampling:                                                                                       | 1620                                     |                                                                                                         |                                       |                                                                |                 |            |
| Volume purgod                                                                                           | 1230                                     |                                                                                                         |                                       |                                                                |                 |            |
| volume purged                                                                                           | <u><u> </u></u>                          | JRGE A MINIMUM OF THI                                                                                   | REE WELL VOL                          | UMES                                                           |                 |            |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 12.2<br>202.5<br>5.67<br>61.5<br>1.4 gal | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 12.0<br>181.9<br>5.77<br>5.7.5<br>2.2 | Depth of BI<br>~ 8" bel<br>Column.                             | adder intake:   | water      |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 11.8<br>103.0<br>5.61<br>50.5<br>1.6 gal | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water                        | 12.2<br>187.4<br>5.75<br>57.3<br>2.3  | Purge Rate:<br><u>~[(0 - [6</u>                                | 0 mC/min        |            |
| Time of Measurement<br>Temperature (°C)<br>Conductivity<br>pH                                           | 1455<br>11.6<br>201.0<br>5.77            | Time of Measurement<br>Temperature (°C)<br>Conductivity<br>pH                                           | 15:10<br>12.2<br>1864<br>5.73         | Sample Rate                                                    | e:<br>hM        |            |
| ORP<br>Volumo Burgod                                                                                    | 58.8                                     | ORP                                                                                                     | 57.5                                  | Sample ID:                                                     |                 |            |
| Depth To Water                                                                                          | 1.8                                      | Volume Purged                                                                                           | 2.3                                   | MW14-                                                          | 0712            |            |
| Time of Measurement                                                                                     | 1500                                     | Time of Measurement                                                                                     | 15:13                                 | MW16-0                                                         | 712 (Duplica    | te)        |
| Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement | 124.0<br>5.77<br>58.3<br>2.0<br>15:03    | Temperature (°C)<br>Conductivity<br>pH<br>ORP<br>Volume Purged<br>Depth To Water<br>Time of Measurement |                                       |                                                                |                 |            |
|                                                                                                         |                                          |                                                                                                         |                                       |                                                                |                 | /          |

Page 2 of 2

Project Number

BGES, INC.

# APPENDIX B LABORATORY ANALYTICAL DATA



#### Laboratory Report of Analysis

To: BGES Inc. 1042 E. 6th Ave., Anchorage, AK 99501 (907)644-2900

Report Number: **1174480** 

Client Project: Six Robblees

Dear Jayne Martin,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Victoria Pennick

17:07:46 -08'00'

2017.07.25

Sincerely, SGS North America Inc.

SGS North America Inc. Environmental Services – Alaska Division Project Manager

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 07/25/2017 4:34:54PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



#### **Case Narrative**

SGS Client: **BGES Inc.** SGS Project: **1174480** Project Name/Site: **Six Robblees** Project Contact: **Jayne Martin** 

Refer to sample receipt form for information on sample condition.

#### LCS for HBN 1764451 [VXX/30937 (1400364) LCS

524.2 - LCS recovery for dichlorodifluoromethane (154%) and bromomethane (157%) does not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

#### LCSD for HBN 1764451 [VXX/3093 (1400365) LCSD

524.2 - LCSD recovery for dichlorodifluoromethane (148%), chloromethane (139%), and bromomethane (140%) does not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

\*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/25/2017 4:34:55PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group



#### Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

| *                  | The analyte has exceeded allowable regulatory or control limits.        |
|--------------------|-------------------------------------------------------------------------|
| !                  | Surrogate out of control limits.                                        |
| В                  | Indicates the analyte is found in a blank associated with the sample.   |
| CCV/CVA/CVB        | Continuing Calibration Verification                                     |
| CCCV/CVC/CVCA/CVCB | Closing Continuing Calibration Verification                             |
| CL                 | Control Limit                                                           |
| DF                 | Analytical Dilution Factor                                              |
| DL                 | Detection Limit (i.e., maximum method detection limit)                  |
| E                  | The analyte result is above the calibrated range.                       |
| GT                 | Greater Than                                                            |
| IB                 | Instrument Blank                                                        |
| ICV                | Initial Calibration Verification                                        |
| J                  | The quantitation is an estimation.                                      |
| LCS(D)             | Laboratory Control Spike (Duplicate)                                    |
| LLQC/LLIQC         | Low Level Quantitation Check                                            |
| LOD                | Limit of Detection (i.e., 1/2 of the LOQ)                               |
| LOQ                | Limit of Quantitation (i.e., reporting or practical quantitation limit) |
| LT                 | Less Than                                                               |
| MB                 | Method Blank                                                            |
| MS(D)              | Matrix Spike (Duplicate)                                                |
| ND                 | Indicates the analyte is not detected.                                  |
| RPD                | Relative Percent Difference                                             |
| U                  | Indicates the analyte was analyzed for but not detected.                |
|                    |                                                                         |

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 07/25/2017 4:34:57PM


| Sample Summary   |               |            |            |                               |  |  |  |  |  |  |
|------------------|---------------|------------|------------|-------------------------------|--|--|--|--|--|--|
| Client Sample ID | Lab Sample ID | Collected  | Received   | Matrix                        |  |  |  |  |  |  |
| MW12-0712        | 1174480001    | 07/12/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW5-0712         | 1174480002    | 07/12/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW14-0712        | 1174480003    | 07/12/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW16-0712        | 1174480004    | 07/12/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW9-0713         | 1174480005    | 07/13/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW3-0713         | 1174480006    | 07/13/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW8-0713         | 1174480007    | 07/13/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW17-0713        | 1174480008    | 07/13/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| Trip Blank       | 1174480009    | 07/12/2017 | 07/14/2017 | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| FW1-0713         | 1174480010    | 07/13/2017 | 07/14/2017 | Drinking Water                |  |  |  |  |  |  |

## <u>Method</u>

AK101 SW8021B AK102 AK103 EPA 524.2 Method Description AK101/8021 Combo. AK101/8021 Combo. DRO/RRO Low Volume Water DRO/RRO Low Volume Water Volatile Organics by 524.2 (DW)



### Client Sample ID: MW12-0712 Lab Sample ID: 1174480001 Parameter Result **Residual Range Organics** 1.64 Semivolatile Organic Fuels Client Sample ID: MW5-0712 Lab Sample ID: 1174480002 Parameter Result **Volatile Fuels** Benzene 1.46 Client Sample ID: MW14-0712 Lab Sample ID: 1174480003 Parameter Result **Diesel Range Organics** 6.92 Semivolatile Organic Fuels Volatile Fuels Benzene 5460 Ethylbenzene 653

**Gasoline Range Organics** 

o-Xylene

Toluene

P & M -Xylene

**Detectable Results Summary** 

Client Sample ID: MW16-0712 Lab Sample ID: 1174480004 Semivolatile Organic Fuels Volatile Fuels

| Client Sample ID: MW8-0713<br>Lab Sample ID: 1174480007         |
|-----------------------------------------------------------------|
| Volatile Fuels                                                  |
| Client Sample ID: <b>MW17-0713</b><br>Lab Sample ID: 1174480008 |

Volatile Fuels

| <u>Parameter</u>        | <u>Result</u> |
|-------------------------|---------------|
| Diesel Range Organics   | 6.96          |
| Benzene                 | 5490          |
| Ethylbenzene            | 675           |
| Gasoline Range Organics | 52.3          |
| o-Xylene                | 3850          |
| P & M -Xylene           | 9540          |
| Toluene                 | 11600         |
|                         |               |
| Parameter               | Pecult        |
| Benzene                 | <u>4 58</u>   |
| Denzene                 | 4.00          |

ParameterResultUnitsBenzene3.98ug/L

Print Date: 07/25/2017 4:34:59PM

SGS North America Inc.

Units

mg/L

<u>Units</u>

ug/L

Units

mg/L

ug/L

ug/L

mg/L

ug/L

ug/L

ug/L

<u>Units</u> mg/L

ug/L ug/L ug/L ug/L ug/L

<u>Units</u> ug/L

52.7

3750

9310

11600

| SGS |  |
|-----|--|
|     |  |

|                                                                                                                        | Results of MW12-0712                                                                                                                         |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|-----------------------------------|---------------------------------|
| Client Sample ID: MW12-0712<br>Client Project ID: Six Robblees<br>Lab Sample ID: 1174480001<br>Lab Project ID: 1174480 |                                                                                                                                              |                               | Ci<br>Ri<br>M<br>Si<br>La                                                                                                                 |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | Results by Sennvolatile Organic I dels                                                                                                       |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | <u>Parameter</u><br>Diesel Range Organics                                                                                                    | <u>Result Qual</u><br>0.556 U | <u>LOQ/CL</u><br>0.556                                                                                                                    | <u>DL</u><br>0.167                                                           | <u>Units</u><br>mg/L                                                | <u>DF</u><br>1      | <u>Allowable</u><br>Limits        | Date Analyzed<br>07/20/17 21:23 |
| S                                                                                                                      | Surrogates                                                                                                                                   |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
| Ū                                                                                                                      | 5a Androstane (surr)                                                                                                                         | 71.1                          | 50-150                                                                                                                                    |                                                                              | %                                                                   | 1                   |                                   | 07/20/17 21:23                  |
|                                                                                                                        | Batch Information                                                                                                                            |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:23<br>Container ID: 1174480001-D |                               | Prep Batch: XXX37897<br>Prep Method: SW3520C<br>Prep Date/Time: 07/17/17 09:37<br>Prep Initial Wt./Vol.: 270 mL<br>Prep Extract Vol: 1 mL |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | Parameter                                                                                                                                    | Result Qual                   | LOQ/CL                                                                                                                                    | <u>DL</u>                                                                    | <u>Units</u>                                                        | DF.                 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed                   |
|                                                                                                                        | Residual Range Organics                                                                                                                      | 1.64                          | 0.463                                                                                                                                     | 0.139                                                                        | mg/L                                                                | 1                   |                                   | 07/20/17 21:23                  |
| S                                                                                                                      | Surrogates                                                                                                                                   |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | n-Triacontane-d62 (surr)                                                                                                                     | 70.5                          | 50-150                                                                                                                                    |                                                                              | %                                                                   | 1                   |                                   | 07/20/17 21:23                  |
|                                                                                                                        | Batch Information                                                                                                                            |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |
|                                                                                                                        | Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:23<br>Container ID: 1174480001-D |                               | F<br>F<br>F<br>F                                                                                                                          | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | XXX37897<br>I: SW3520C<br>me: 07/17/1<br>Vt./Vol.: 270<br>Vol: 1 mL | ;<br>17 09:37<br>mL |                                   |                                 |
|                                                                                                                        |                                                                                                                                              |                               |                                                                                                                                           |                                                                              |                                                                     |                     |                                   |                                 |

| SGS |  |
|-----|--|
|     |  |

|                               | C<br>R<br>M<br>S<br>L                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| <u>Result Qual</u><br>0.100 U | <u>LOQ/CL</u><br>0.100                                                                                                                  | <u>DL</u><br>0.0310                                                                                                                                                                                                                                                                                                | <u>Units</u><br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>DF</u><br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>Allowable</u><br><u>Limits</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Analyzed<br>07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 88.6                          | 50-150                                                                                                                                  |                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                               | Prep Batch: VXX30889<br>Prep Method: SW5030B<br>Prep Date/Time: 07/18/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Result Qual                   | LOQ/CL                                                                                                                                  | DL                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Allowable<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0.500 U                       | 0.500                                                                                                                                   | <u>0.1</u> 50                                                                                                                                                                                                                                                                                                      | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1.00 U                        | 1.00                                                                                                                                    | 0.310                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1.00 U                        | 1.00                                                                                                                                    | 0.310                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2.00 U                        | 2.00                                                                                                                                    | 0.620                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1.00 U                        | 1.00                                                                                                                                    | 0.310                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 94.1                          | 77-115                                                                                                                                  |                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/18/17 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                               | Prep Batch: VXX30889<br>Prep Method: SW5030B<br>Prep Date/Time: 07/18/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                               | Result Qual         0.100 U         88.6         Result Qual         0.500 U         1.00 U         2.00 U         1.00 U         94.1  | Result Qual<br>0.100 U       LOQ/CL<br>0.100         88.6       50-150         Result Qual<br>0.500 U       LOQ/CL<br>0.500         Result Qual<br>0.500 U       LOQ/CL<br>0.500         1.00 U       1.00         1.00 U       1.00         1.00 U       1.00         1.00 U       1.00         94.1       77-115 | Result Qual         LOQ/CL         DL           0.100 U         0.100         0.0310           88.6         50-150           Prep Batch:         Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract           Result Qual         LOQ/CL         DL           0.500 U         0.500         0.150           1.00 U         1.00         0.310           94.1         77-115         Prep Batch:<br>Prep Method:<br>Prep Method:<br>Prep Method:<br>Prep Method:<br>Prep Method:<br>Prep Extract | Result Qual       LOQ/CL       DL       Units         0.100 U       0.100       0.0310       mg/L         88.6       50-150       %         Prep Batch: VXX30889<br>Prep Method: SW5030B<br>Prep Date/Time: 07/14/r<br>Matrix: Water (Surface,<br>Solids (%):<br>Location:         88.6       50-150       %         Nethod: SW5030B<br>Prep Method: SW5030B<br>Prep Date/Time: 07/18/r<br>Prep Initial Wt./vol.: 5 m<br>Prep Extract Vol: 5 mL         Result Qual       LOQ/CL<br>0.500       DL<br>0.150       Units<br>0.500         0.500 U       0.500       0.150       ug/L         1.00 U       1.00       0.310       ug/L         1.00 U       1.00       0.310       ug/L         94.1       77-115       %         Prep Batch: VXX30889<br>Prep Method: SW5030B | Collection Date:       07/12/17       10:27         Received Date:       07/14/17       11:28         Matrix:       Water (Surface, Eff., Grossolids (%):         Location:       Location:         Result Qual       LOQ/CL       DL       Units       DF         0.100 U       0.100       0.0310       mg/L       1         88.6       50-150       %       1         Prep Batch:       VXX30889         Prep Date/Time:       07/18/17       08:00         Prep Date/Time:       07/18/17       08:00         Prep Date/Time:       07/18/17       08:00         Prep Initial Wt./Vol.:       5 mL       Prep Initial Wt./Vol.:         No U       0.500       0.150       ug/L       1         1.00 U       1.00       0.310       ug/L       1         1.00 U       1.00       0.310       ug/L       1         94.1       77-115       %       1         Prep Batch:       VXX30889         Prep Method:       SW5030B         Not U       1.00       1.00       1         0.00 U       1.00       0.310       ug/L       1         0.100 U | Collection Date:       07/12/17       10:27         Received Date:       07/14/17       11:28         Matrix:       Water (Surface, Eff., Ground).       Solids (%):         Location:       Location:       Allowable         Result Qual       LOQ/CL       DL       Units       DE         88.6       50-150       %       1         88.6       50-150       %       1         Prep Batch:       VXX30889         Prep Date/Time:       07/18/17       08:00         Prep Date/Time:       07/18/17       08:00         Prep Date/Time:       07/18/17       08:00         Prep Initial WL/Vol:       5 mL       5 mL         Prep Initial WL/Vol:       5 mL       Prep Initial WL/Vol:       5 mL         1       0.00       0.310       ug/L       1         0.500 U       0.500       0.150       ug/L       1         1.00 U       1.00       0.310       ug/L       1         94.1       77-115       %       1       1 |  |

| SGS |  |
|-----|--|
|     |  |

Results of MW5-0712 Client Sample ID: MW5-0712 Collection Date: 07/12/17 12:32 Received Date: 07/14/17 11:28 Client Project ID: Six Robblees Lab Sample ID: 1174480002 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1174480 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed Limits **Diesel Range Organics** 0.551 U 0.551 0.165 mg/L 1 07/20/17 21:33 Surrogates 77 5a Androstane (surr) 50-150 % 1 07/20/17 21:33 **Batch Information** Analytical Batch: XFC13575 Prep Batch: XXX37897 Prep Method: SW3520C Analytical Method: AK102 Analyst: KMD Prep Date/Time: 07/17/17 09:37 Analytical Date/Time: 07/20/17 21:33 Prep Initial Wt./Vol.: 272 mL Container ID: 1174480002-D Prep Extract Vol: 1 mL Allowable Result Qual LOQ/CL DF Parameter DL Units Limits Date Analyzed Residual Range Organics 0.460 U 0.138 0.460 mg/L 1 07/20/17 21:33 Surrogates 82.7 50-150 n-Triacontane-d62 (surr) % 1 07/20/17 21:33 **Batch Information** Analytical Batch: XFC13575 Prep Batch: XXX37897 Analytical Method: AK103 Prep Method: SW3520C Analyst: KMD Prep Date/Time: 07/17/17 09:37 Analytical Date/Time: 07/20/17 21:33 Prep Initial Wt./Vol.: 272 mL Container ID: 1174480002-D Prep Extract Vol: 1 mL

| Client Sample ID: <b>MW5-0712</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480002<br>Lab Project ID: 1174480         | Collection Date: 07/12/17 12:32<br>Received Date: 07/14/17 11:28<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                                                                                         |                     |                      |                |                                   |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|----------------|-----------------------------------|----------------------------------------|
| Results by Volatile Fuels                                                                                                                   |                                                                                                                                       |                                                                                                                                         | ]                   |                      |                |                                   |                                        |
| Parameter<br>Gasoline Range Organics                                                                                                        | <u>Result Qual</u><br>0.100 U                                                                                                         | <u>LOQ/CL</u><br>0.100                                                                                                                  | <u>DL</u><br>0.0310 | <u>Units</u><br>mg/L | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>07/18/17 16:20 |
| Surrogates<br>4-Bromofluorobenzene (surr)                                                                                                   | 88.5                                                                                                                                  | 50-150                                                                                                                                  |                     | %                    | 1              |                                   | 07/18/17 16:20                         |
|                                                                                                                                             | 00.0                                                                                                                                  |                                                                                                                                         |                     |                      |                |                                   | 0111011110120                          |
| Analytical Batch: VFC13752<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/18/17 16:20<br>Container ID: 1174480002-A |                                                                                                                                       | Prep Batch: VXX30889<br>Prep Method: SW5030B<br>Prep Date/Time: 07/18/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                     |                      |                |                                   |                                        |
| Parameter                                                                                                                                   | Result Qual                                                                                                                           | LOQ/CL                                                                                                                                  | DL                  | Units                | DF             | <u>Allowable</u><br>Limits        | Date Analyzed                          |
| Benzene                                                                                                                                     | 1.46                                                                                                                                  | 0.500                                                                                                                                   | 0.150               | ug/L                 | 1              |                                   | 07/18/17 16:20                         |
| Ethylbenzene                                                                                                                                | 1.00 U                                                                                                                                | 1.00                                                                                                                                    | 0.310               | ug/L                 | 1              |                                   | 07/18/17 16:20                         |
| o-Xylene                                                                                                                                    | 1.00 U                                                                                                                                | 1.00                                                                                                                                    | 0.310               | ug/L                 | 1              |                                   | 07/18/17 16:20                         |
| P & M -Xylene                                                                                                                               | 2.00 U                                                                                                                                | 2.00                                                                                                                                    | 0.620               | ug/L                 | 1              |                                   | 07/18/17 16:20                         |
| Toluene                                                                                                                                     | 1.00 U                                                                                                                                | 1.00                                                                                                                                    | 0.310               | ug/L                 | 1              |                                   | 07/18/17 16:20                         |
| Surrogates<br>1,4-Difluorobenzene (surr)                                                                                                    | 95.3                                                                                                                                  | 77-115                                                                                                                                  |                     | %                    | 1              |                                   | 07/18/17 16:20                         |
| Batch Information                                                                                                                           |                                                                                                                                       |                                                                                                                                         |                     |                      |                |                                   |                                        |
| Analytical Batch: VFC13752<br>Analytical Method: SW8021B<br>Analyst: ST                                                                     |                                                                                                                                       | Prep Batch: VXX30889<br>Prep Method: SW5030B<br>Prep Date/Time: 07/18/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                     |                      |                |                                   |                                        |



| Results of MW14-0712                                                                                                                         |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------|
| Client Sample ID: <b>MW14-0712</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480003<br>Lab Project ID: 1174480         | Ci<br>Ri<br>M<br>Si<br>Lo     |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| Results by Semivolatile Organic Fuels                                                                                                        | 5                             |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                    | <u>Result Qual</u><br>6.92    | <u>LOQ/CL</u><br>0.568 | <u>DL</u><br>0.170                                                                                                                        | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1 | <u>Allowable</u><br>Limits        | Date Analyzed<br>07/20/17 21:43 |
| Surrogates                                                                                                                                   |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| 5a Androstane (surr)                                                                                                                         | 67.6                          | 50-150                 |                                                                                                                                           | %                                                                  | 1              |                                   | 07/20/17 21:43                  |
| Batch Information                                                                                                                            |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:43<br>Container ID: 1174480003-D |                               | F<br>F<br>F<br>F       | Prep Batch: XXX37897<br>Prep Method: SW3520C<br>Prep Date/Time: 07/17/17 09:37<br>Prep Initial Wt./Vol.: 264 mL<br>Prep Extract Vol: 1 mL |                                                                    |                |                                   |                                 |
| <u>Parameter</u><br>Residual Range Organics                                                                                                  | <u>Result Qual</u><br>0.473 U | <u>LOQ/CL</u><br>0.473 | <u>DL</u><br>0.142                                                                                                                        | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>07/20/17 21:43 |
| Surrogates                                                                                                                                   |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| n-Triacontane-d62 (surr)                                                                                                                     | 71.7                          | 50-150                 |                                                                                                                                           | %                                                                  | 1              |                                   | 07/20/17 21:43                  |
| Batch Information                                                                                                                            |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:43<br>Container ID: 1174480003-D |                               | F<br>F<br>F<br>F       | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract                                                              | XXX37897<br>: SW3520C<br>me: 07/17/1<br>/t./Vol.: 264<br>Vol: 1 mL | 7 09:37<br>mL  |                                   |                                 |
|                                                                                                                                              |                               |                        |                                                                                                                                           |                                                                    |                |                                   |                                 |

| Results of MW14-0712                                                                                                                          |                            |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------------|-----------------------------------|--------------------------------------|--|
| Client Sample ID: <b>MW14-0712</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480003<br>Lab Project ID: 1174480          | C<br>R<br>M<br>S           |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
| Results by Volatile Fuels                                                                                                                     |                            |                                                                                                                                         | ]                                                           |                                                         |                     |                                   |                                      |  |
| <u>Parameter</u><br>Gasoline Range Organics                                                                                                   | <u>Result Qual</u><br>52.7 | <u>LOQ/CL</u><br>5.00                                                                                                                   | <u>DL</u><br>1.55                                           | <u>Units</u><br>mg/L                                    | <u>DF</u><br>50     | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyze</u><br>07/19/17 14:3 |  |
| Surrogates                                                                                                                                    |                            |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
| 4-Bromofluorobenzene (surr)                                                                                                                   | 94.9                       | 50-150                                                                                                                                  |                                                             | %                                                       | 50                  |                                   | 07/19/17 14:3                        |  |
| Batch Information                                                                                                                             |                            |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 14:32<br>Container ID: 1174480003-B   |                            | Prep Batch: VXX30899<br>Prep Method: SW5030B<br>Prep Date/Time: 07/19/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                             |                                                         |                     |                                   |                                      |  |
| Parameter                                                                                                                                     | Result Qual                | 100/01                                                                                                                                  | DI                                                          | Units                                                   | DF                  | Allowable                         | Date Analyze                         |  |
| Benzene                                                                                                                                       | 5460                       | 25.0                                                                                                                                    | 7.50                                                        | ug/L                                                    | 50                  |                                   | 07/19/17 14:                         |  |
| Ethylbenzene                                                                                                                                  | 653                        | 50.0                                                                                                                                    | 15.5                                                        | ug/L                                                    | 50                  |                                   | 07/19/17 14:                         |  |
| o-Xylene                                                                                                                                      | 3750                       | 50.0                                                                                                                                    | 15.5                                                        | ug/L                                                    | 50                  |                                   | 07/19/17 14:                         |  |
| P & M -Xylene                                                                                                                                 | 9310                       | 100                                                                                                                                     | 31.0                                                        | ug/L                                                    | 50                  |                                   | 07/19/17 14:                         |  |
| Toluene                                                                                                                                       | 11600                      | 200                                                                                                                                     | 62.0                                                        | ug/L                                                    | 200                 |                                   | 07/21/17 03:                         |  |
| urrogates                                                                                                                                     |                            |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
| 1,4-Difluorobenzene (surr)                                                                                                                    | 98.1                       | 77-115                                                                                                                                  |                                                             | %                                                       | 50                  |                                   | 07/19/17 14:                         |  |
| Batch Information                                                                                                                             |                            |                                                                                                                                         |                                                             |                                                         |                     |                                   |                                      |  |
| Analytical Batch: VFC13756<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/21/17 03:21<br>Container ID: 1174480003-C |                            | Prep Batch: VXX30910<br>Prep Method: SW5030B<br>Prep Date/Time: 07/20/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                             |                                                         |                     |                                   |                                      |  |
| Analytical Batch: VFC13754<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 14:32                               |                            |                                                                                                                                         | Prep Batch:<br>Prep Methoo<br>Prep Date/T<br>Prep Initial V | VXX30899<br>d: SW5030E<br>Time: 07/19/<br>Wt./Vol.: 5 m | 3<br>17 08:00<br>IL |                                   |                                      |  |

SGS North America Inc.



| Results of MW16-0712                                                                                                                                              |                               |                                                                                                                                       |                                                                               |                                                                    |                    |                                   |                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------|--|
| Client Sample ID: MW16-0712<br>Client Project ID: Six Robblees<br>Lab Sample ID: 1174480004<br>Lab Project ID: 1174480                                            |                               | Collection Date: 07/12/17 15:30<br>Received Date: 07/14/17 11:28<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                               |                                                                    |                    |                                   |                                        |  |
| Results by Semivolatile Organic Fuels                                                                                                                             | •                             |                                                                                                                                       |                                                                               |                                                                    |                    |                                   |                                        |  |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                                         | <u>Result Qual</u><br>6.96    | <u>LOQ/CL</u><br>0.556                                                                                                                | <u>DL</u><br>0.167                                                            | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1     | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>07/20/17 21:52        |  |
| Surrogates                                                                                                                                                        |                               |                                                                                                                                       |                                                                               |                                                                    |                    |                                   |                                        |  |
| 5a Androstane (surr)                                                                                                                                              | 72.4                          | 50-150                                                                                                                                |                                                                               | %                                                                  | 1                  |                                   | 07/20/17 21:52                         |  |
| Batch Information<br>Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:52<br>Container ID: 1174480004-D |                               | F                                                                                                                                     | Prep Batch:<br>Prep Method<br>Prep Date/Tii<br>Prep Initial W<br>Prep Extract | XXX37897<br>: SW3520C<br>me: 07/17/1<br>/t./Vol.: 270<br>Vol: 1 mL | ;<br>7 09:37<br>mL |                                   |                                        |  |
| <u>Parameter</u><br>Residual Range Organics                                                                                                                       | <u>Result Qual</u><br>0.463 U | <u>LOQ/CL</u><br>0.463                                                                                                                | <u>DL</u><br>0.139                                                            | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1     | Allowable<br>Limits               | <u>Date Analyzed</u><br>07/20/17 21:52 |  |
| Surrogates                                                                                                                                                        |                               |                                                                                                                                       |                                                                               |                                                                    |                    |                                   |                                        |  |
| n-Triacontane-d62 (surr)                                                                                                                                          | 76.8                          | 50-150                                                                                                                                |                                                                               | %                                                                  | 1                  |                                   | 07/20/17 21:52                         |  |
| Batch Information<br>Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 21:52<br>Container ID: 1174480004-D |                               | F                                                                                                                                     | Prep Batch:<br>Prep Method<br>Prep Date/Tii<br>Prep Initial W<br>Prep Extract | XXX37897<br>: SW3520C<br>me: 07/17/1<br>/t./Vol.: 270<br>Vol: 1 mL | ;<br>7 09:37<br>mL |                                   |                                        |  |
|                                                                                                                                                                   |                               |                                                                                                                                       |                                                                               |                                                                    |                    |                                   |                                        |  |

| SGS                  |
|----------------------|
| Results of MW16-0712 |

| Client Sample ID: <b>MW16-0712</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480004<br>Lab Project ID: 1174480          | C<br>F<br>N<br>S<br>L      | Collection D<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:                                                                 | ate: 07/12/<br>ate: 07/14/ <sup>,</sup><br>er (Surface,                     | 17 15:30<br>17 11:28<br>Eff., Gro                                      | und)            |                                   |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------|-----------------------------------|----------------------------------------|
| Results by Volatile Fuels                                                                                                                     |                            |                                                                                                                                         |                                                                             |                                                                        |                 |                                   |                                        |
| Parameter<br>Gasoline Range Organics                                                                                                          | <u>Result Qual</u><br>52.3 | <u>LOQ/CL</u><br>5.00                                                                                                                   | <u>DL</u><br>1.55                                                           | <u>Units</u><br>mg/L                                                   | <u>DF</u><br>50 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>07/19/17 14:52 |
| Surrogates                                                                                                                                    |                            |                                                                                                                                         |                                                                             |                                                                        |                 |                                   |                                        |
| 4-Bromofluorobenzene (surr)                                                                                                                   | 94.2                       | 50-150                                                                                                                                  |                                                                             | %                                                                      | 50              |                                   | 07/19/17 14:52                         |
| Batch Information                                                                                                                             |                            |                                                                                                                                         |                                                                             |                                                                        |                 |                                   |                                        |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 14:52<br>Container ID: 1174480004-B   |                            |                                                                                                                                         | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | VXX30899<br>d: SW5030E<br>ime: 07/19/1<br>Nt./Vol.: 5 m<br>t Vol: 5 mL | 7 08:00<br>L    |                                   |                                        |
| Parameter<br>Popzono                                                                                                                          | Result Qual                | LOQ/CL                                                                                                                                  | <u>DL</u>                                                                   | <u>Units</u>                                                           | DF              | Allowable<br>Limits               | Date Analyzed                          |
| Benzene                                                                                                                                       | 5490<br>675                | 25.0<br>50.0                                                                                                                            | 7.50<br>15.5                                                                | ug/L                                                                   | 50<br>50        |                                   | 07/19/17 14:52                         |
| o-Xylene                                                                                                                                      | 3850                       | 50.0                                                                                                                                    | 15.5                                                                        | ug/L                                                                   | 50              |                                   | 07/19/17 14:52                         |
| P & M -Xylene                                                                                                                                 | 9540                       | 100                                                                                                                                     | 31.0                                                                        | ug/L                                                                   | 50              |                                   | 07/19/17 14:52                         |
| Toluene                                                                                                                                       | 11600                      | 200                                                                                                                                     | 62.0                                                                        | ug/L                                                                   | 200             |                                   | 07/21/17 03:40                         |
| Surrogates                                                                                                                                    |                            |                                                                                                                                         |                                                                             |                                                                        |                 |                                   |                                        |
| 1,4-Difluorobenzene (surr)                                                                                                                    | 99                         | 77-115                                                                                                                                  |                                                                             | %                                                                      | 50              |                                   | 07/19/17 14:52                         |
| Batch Information                                                                                                                             |                            |                                                                                                                                         |                                                                             |                                                                        |                 |                                   |                                        |
| Analytical Batch: VFC13756<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/21/17 03:40<br>Container ID: 1174480004-C |                            | Prep Batch: VXX30910<br>Prep Method: SW5030B<br>Prep Date/Time: 07/20/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                                             |                                                                        |                 |                                   |                                        |
| Analytical Batch: VFC13754<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 14:52<br>Container ID: 1174480004-B |                            |                                                                                                                                         | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | VXX30899<br>d: SW5030B<br>ime: 07/19/1<br>Wt./Vol.: 5 m<br>t Vol: 5 mL | 7 08:00<br>L    |                                   |                                        |

SGS North America Inc.

| SGS |  |
|-----|--|
|     |  |

| Results of MW9-0713                                                                                                                          |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------|---------------------------------|
| Client Sample ID: <b>MW9-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480005<br>Lab Project ID: 1174480          |                               | C<br>R<br>V<br>S       | collection Da<br>teceived Da<br>latrix: Wate<br>olids (%):<br>ocation:       | ate: 07/13/<br>ate: 07/14/ <sup>,</sup><br>r (Surface,              | 17 09:35<br>17 11:28<br>Eff., Grou | und)                              |                                 |
| Semivolatile Organic Puels                                                                                                                   | >                             |                        |                                                                              |                                                                     |                                    |                                   |                                 |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                    | <u>Result Qual</u><br>0.577 U | <u>LOQ/CL</u><br>0.577 | <u>DL</u><br>0.173                                                           | <u>Units</u><br>mg/L                                                | <u>DF</u><br>1                     | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>07/20/17 22:02 |
| Surrogates                                                                                                                                   |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |
| 5a Androstane (surr)                                                                                                                         | 76.1                          | 50-150                 |                                                                              | %                                                                   | 1                                  |                                   | 07/20/17 22:02                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:02<br>Container ID: 1174480005-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | XXX37897<br>I: SW3520C<br>me: 07/17/1<br>Vt./Vol.: 260<br>Vol: 1 mL | ;<br>17 09:37<br>0 mL              |                                   |                                 |
| Parameter<br>Residual Range Organics                                                                                                         | <u>Result Qual</u><br>0.481 U | <u>LOQ/CL</u><br>0.481 | <u>DL</u><br>0.144                                                           | <u>Units</u><br>mg/L                                                | <u>DF</u><br>1                     | <u>Allowable</u><br>Limits        | Date Analyzed<br>07/20/17 22:02 |
| Surrogates                                                                                                                                   |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |
| n-Triacontane-d62 (surr)                                                                                                                     | 81.7                          | 50-150                 |                                                                              | %                                                                   | 1                                  |                                   | 07/20/17 22:02                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:02<br>Container ID: 1174480005-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | XXX37897<br>I: SW3520C<br>me: 07/17/1<br>Vt./Vol.: 260<br>Vol: 1 mL | ;<br>17 09:37<br>mL                |                                   |                                 |
|                                                                                                                                              |                               |                        |                                                                              |                                                                     |                                    |                                   |                                 |

| Client Sample ID: <b>MW9-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480005<br>Lab Project ID: 1174480         | Collection Date: 07/13/17 09:35<br>Received Date: 07/14/17 11:28<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                        |                                                                               |                                                                    |                    |                                   |                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------|--|
| Results by Volatile Fuels                                                                                                                   |                                                                                                                                       |                        | ) ——                                                                          |                                                                    |                    |                                   |                                        |  |
| Parameter<br>Gasoline Range Organics                                                                                                        | <u>Result Qual</u><br>0.100 U                                                                                                         | <u>LOQ/CL</u><br>0.100 | <u>DL</u><br>0.0310                                                           | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1     | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>07/19/17 15:11 |  |
| Surrogates<br>4-Bromofluorobenzene (surr)                                                                                                   | 83.2                                                                                                                                  | 50-150                 |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:1 <sup>-</sup>             |  |
|                                                                                                                                             |                                                                                                                                       |                        |                                                                               |                                                                    |                    |                                   |                                        |  |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 15:11<br>Container ID: 1174480005-B |                                                                                                                                       | F<br>F<br>F<br>F       | Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030B<br>me: 07/19/1<br>/t./Vol.: 5 m<br>Vol: 5 mL | 17 08:00<br>L      |                                   |                                        |  |
| Parameter                                                                                                                                   | Result Qual                                                                                                                           | LOQ/CL                 | <u>DL</u>                                                                     | <u>Units</u>                                                       | DF                 | Allowable<br>Limits               | Date Analyzed                          |  |
| Benzene                                                                                                                                     | 0.500 U                                                                                                                               | 0.500                  | 0.150                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:1                          |  |
| Ethylbenzene                                                                                                                                | 1.00 U                                                                                                                                | 1.00                   | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:1                          |  |
| o-Xylene                                                                                                                                    | 1.00 U                                                                                                                                | 1.00                   | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:1                          |  |
| Toluene                                                                                                                                     | 2.00 U<br>1.00 U                                                                                                                      | 2.00<br>1.00           | 0.620                                                                         | ug/L<br>ug/L                                                       | 1                  |                                   | 07/19/17 15:1                          |  |
| Surrogates                                                                                                                                  |                                                                                                                                       |                        |                                                                               |                                                                    |                    |                                   |                                        |  |
| 1,4-Difluorobenzene (surr)                                                                                                                  | 95.1                                                                                                                                  | 77-115                 |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:1                          |  |
| Batch Information                                                                                                                           |                                                                                                                                       |                        |                                                                               |                                                                    |                    |                                   |                                        |  |
| Analytical Batch: VFC13754<br>Analytical Method: SW8021B                                                                                    |                                                                                                                                       | F<br>F<br>F<br>F       | Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030B<br>me: 07/19/1<br>/t./Vol.: 5 m<br>Vol: 5 ml | 8<br>17 08:00<br>L |                                   |                                        |  |

| SGS |  |
|-----|--|
|     |  |

| ual <u>LOQ/C</u><br>0.566<br>50-150 | Collection I<br>Received E<br>Matrix: Wa<br>Solids (%):<br>Location:<br>DL<br>0.170 | Date: 07/13<br>Date: 07/14,<br>ter (Surface<br><u>Units</u><br>mg/L<br>%<br>: XXX37897<br>od: SW3520<br>Time: 07/17           | 2/17 11:18<br>/17 11:28<br>, Eff., Gro<br>DE<br>1<br>1<br>1<br>1<br>C<br>(17 09:37                                                                                                                                                               | und)<br><u>Allowable</u><br><u>Limits</u>                                                                                                                                                                                            | Date Analyzed<br>07/20/17 22:12<br>07/20/17 22:12                                                                                                                                                                                                                                                 |
|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ual <u>LOQ/C</u><br>0.566<br>50-150 | DL<br>0.170<br>Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Date/                 | <u>Units</u><br>mg/L<br>%<br>: XXX37897<br>od: SW3520<br>Time: 07/17/                                                         | <u>DF</u><br>1<br>1<br>C<br>17 09:37                                                                                                                                                                                                             | <u>Allowable</u><br>Limits                                                                                                                                                                                                           | Date Analyzed<br>07/20/17 22:12<br>07/20/17 22:12                                                                                                                                                                                                                                                 |
| ual <u>LOQ/C</u><br>0.566<br>50-150 | <u>DL</u><br>0.170<br>Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Date/          | <u>Units</u><br>mg/L<br>%<br>: XXX37897<br>od: SW3520<br>Time: 07/17/                                                         | DF<br>1<br>1<br>1<br>C<br>(17 09:37                                                                                                                                                                                                              | <u>Allowable</u><br>Limits                                                                                                                                                                                                           | Date Analyzed<br>07/20/17 22:12<br>07/20/17 22:12                                                                                                                                                                                                                                                 |
| 50-150                              | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Date/                                | %<br>: XXX37897<br>od: SW3520<br>Time: 07/17/                                                                                 | 1<br>C<br>(17 09:37                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      | 07/20/17 22:12                                                                                                                                                                                                                                                                                    |
| 50-150                              | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial                              | %<br>: XXX37897<br>od: SW3520<br>Time: 07/17/                                                                                 | 1<br>C<br>(17 09:37                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      | 07/20/17 22:12                                                                                                                                                                                                                                                                                    |
|                                     | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial                              | : XXX37897<br>od: SW3520<br>Time: 07/17/                                                                                      | C<br>'17 09:37                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
|                                     | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial                              | : XXX37897<br>od: SW3520<br>Time: 07/17/                                                                                      | C<br>/17 09:37                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
|                                     | Prep Extra                                                                          | Wt./Vol.: 26<br>ct Vol: 1 mL                                                                                                  | 5 mL                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
| <u>ual LOQ/C</u><br>0.472           | <u>DL</u><br>0.142                                                                  | <u>Units</u><br>mg/L                                                                                                          | <u>DF</u><br>1                                                                                                                                                                                                                                   | Allowable<br>Limits                                                                                                                                                                                                                  | Date Analyzed<br>07/20/17 22:12                                                                                                                                                                                                                                                                   |
|                                     |                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
| 50-150                              |                                                                                     | %                                                                                                                             | 1                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      | 07/20/17 22:12                                                                                                                                                                                                                                                                                    |
|                                     |                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
|                                     | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial<br>Prep Extra                | : XXX37897<br>od: SW3520<br>Time: 07/17/<br>Wt./Vol.: 26<br>ct Vol: 1 mL                                                      | C<br>(17 09:37<br>5 mL                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
|                                     | <u>ual LOQ/CI</u><br>0.472<br>50-150                                                | ual <u>LOQ/CL</u> <u>DL</u><br>0.472 0.142<br>50-150<br>Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial<br>Prep Extrac | ual       LOQ/CL       DL       Units         0.472       0.142       mg/L         50-150       %         Prep Batch: XXX37897         Prep Date/Time:       07/17/         Prep Initial Wt./Vol.:       26         Prep Extract Vol:       1 mL | ual     LOQ/CL     DL     Units     DF       0.472     0.142     mg/L     1       50-150     %     1   Prep Batch: XXX37897 Prep Method: SW3520C Prep Date/Time: 07/17/17 09:37 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL | ual       LOQ/CL       DL       Units       DF       Limits         0.472       0.142       mg/L       1       1         50-150       %       1         Prep Batch: XXX37897<br>Prep Method: SW3520C<br>Prep Date/Time: 07/17/17 09:37<br>Prep Initial Wt./Vol.: 265 mL<br>Prep Extract Vol: 1 mL |

| Client Sample ID: <b>MW3-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480006<br>Lab Project ID: 1174480         | Collection Date: 07/13/17 11:18<br>Received Date: 07/14/17 11:28<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%): |                                                                                                                                         |                                                                               |                                                                    |                    |                                   |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------|
| Results by Volatile Fuels                                                                                                                   |                                                                                                                          |                                                                                                                                         |                                                                               |                                                                    |                    |                                   |                                        |
| Parameter<br>Gasoline Range Organics                                                                                                        | <u>Result Qual</u><br>0.100 U                                                                                            | <u>LOQ/CL</u><br>0.100                                                                                                                  | <u>DL</u><br>0.0310                                                           | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1     | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>07/19/17 15:30 |
| Surrogates                                                                                                                                  |                                                                                                                          |                                                                                                                                         |                                                                               |                                                                    |                    |                                   |                                        |
| 4-Bromofluorobenzene (surr)                                                                                                                 | 86.5                                                                                                                     | 50-150                                                                                                                                  |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:30                         |
| Batch Information                                                                                                                           |                                                                                                                          |                                                                                                                                         |                                                                               |                                                                    |                    |                                   |                                        |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 15:30<br>Container ID: 1174480006-B |                                                                                                                          | F<br>F<br>F                                                                                                                             | Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030E<br>me: 07/19/′<br>/t./Vol.: 5 m<br>Vol: 5 mL | 8<br>17 08:00<br>L |                                   |                                        |
| Parameter                                                                                                                                   | Result Qual                                                                                                              | 1.00/01                                                                                                                                 | וח                                                                            | Units                                                              | DE                 | Allowable                         | Date Analyzed                          |
| Benzene                                                                                                                                     | 0.500 U                                                                                                                  | 0.500                                                                                                                                   | <u>0.150</u>                                                                  | ug/L                                                               | 1                  |                                   | 07/19/17 15:30                         |
| Ethylbenzene                                                                                                                                | 1.00 U                                                                                                                   | 1.00                                                                                                                                    | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:30                         |
| o-Xylene                                                                                                                                    | 1.00 U                                                                                                                   | 1.00                                                                                                                                    | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:30                         |
| P & M -Xylene                                                                                                                               | 2.00 U                                                                                                                   | 2.00                                                                                                                                    | 0.620                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:30                         |
| roluene                                                                                                                                     | 1.00 0                                                                                                                   | 1.00                                                                                                                                    | 0.310                                                                         | ug/L                                                               | I                  |                                   | 07/19/17 15:30                         |
| Surrogates<br>1 4-Difluorobenzene (surr)                                                                                                    | 95.2                                                                                                                     | 77-115                                                                                                                                  |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:30                         |
| ,                                                                                                                                           |                                                                                                                          |                                                                                                                                         |                                                                               |                                                                    |                    |                                   |                                        |
| Batch Information<br>Analytical Batch: VFC13754<br>Analytical Method: SW8021B<br>Analyst: ST                                                |                                                                                                                          | Prep Batch: VXX30899<br>Prep Method: SW5030B<br>Prep Date/Time: 07/19/17 08:00<br>Prep Initial Wt./Vol.: 5 mL<br>Prep Extract Vol: 5 mL |                                                                               |                                                                    |                    |                                   |                                        |

| SGS |  |
|-----|--|
|     |  |

| Results of MW8-0713                                                                                                                          |                               |                        |                                                                              |                                                                                 |                                   |                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|
| Client Sample ID: <b>MW8-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480007<br>Lab Project ID: 1174480          |                               | C<br>F<br>N<br>S<br>L  | Collection Da<br>Received Da<br>Matrix: Wate<br>Colids (%):<br>ocation:      | ate: 07/13/<br>ate: 07/14/<br>r (Surface,                                       | 17 14:02<br>17 11:28<br>Eff., Gro | und)                              |                                 |
| Results by Semivolatile Organic Fuels                                                                                                        |                               |                        | _                                                                            |                                                                                 |                                   |                                   |                                 |
| Parameter<br>Diesel Range Organics                                                                                                           | <u>Result Qual</u><br>0.566 U | <u>LOQ/CL</u><br>0.566 | <u>DL</u><br>0.170                                                           | <u>Units</u><br>mg/L                                                            | <u>DF</u><br>1                    | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>07/20/17 22:22 |
| Surrogates<br>5a Androstane (surr)                                                                                                           | 75.8                          | 50-150                 |                                                                              | %                                                                               | 1                                 |                                   | 07/20/17 22:22                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                                 |                                   |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:22<br>Container ID: 1174480007-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | XXX37897<br>I: SW35200<br>me: 07/17/<br>Vt./Vol.: 265<br>Vol: 1 mL              | )<br>17 09:37<br>5 mL             |                                   |                                 |
| Parameter<br>Residual Range Organics                                                                                                         | <u>Result Qual</u><br>0.472 U | <u>LOQ/CL</u><br>0.472 | <u>DL</u><br>0.142                                                           | <u>Units</u><br>mg/L                                                            | <u>DF</u><br>1                    | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>07/20/17 22:22 |
| Surrogates                                                                                                                                   |                               |                        |                                                                              |                                                                                 |                                   |                                   |                                 |
| n-Triacontane-d62 (surr)                                                                                                                     | 81.9                          | 50-150                 |                                                                              | %                                                                               | 1                                 |                                   | 07/20/17 22:22                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                                 |                                   |                                   |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:22<br>Container ID: 1174480007-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | XXX37897<br>I: SW35200<br>me: 07/17/ <sup>,</sup><br>vt./Vol.: 265<br>Vol: 1 mL | C<br>17 09:37<br>5 mL             |                                   |                                 |
|                                                                                                                                              |                               |                        |                                                                              |                                                                                 |                                   |                                   |                                 |

| Client Sample ID: <b>MW8-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480007<br>Lab Project ID: 1174480         | Collection Date: 07/13/17 14:02<br>Received Date: 07/14/17 11:28<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%): |                                                                                             |                                                                               |                                                                    |                    |                                   |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------|
| Results by Volatile Fuels                                                                                                                   |                                                                                                                          |                                                                                             | <u> </u>                                                                      |                                                                    |                    |                                   |                                        |
| Parameter<br>Gasoline Range Organics                                                                                                        | <u>Result Qual</u><br>0.100 U                                                                                            | <u>LOQ/CL</u><br>0.100                                                                      | <u>DL</u><br>0.0310                                                           | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1     | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzec</u><br>07/19/17 15:49 |
| Surrogates                                                                                                                                  |                                                                                                                          |                                                                                             |                                                                               |                                                                    |                    |                                   |                                        |
| 4-Bromofluorobenzene (surr)                                                                                                                 | 89.2                                                                                                                     | 50-150                                                                                      |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:4                          |
| Batch Information                                                                                                                           |                                                                                                                          |                                                                                             |                                                                               |                                                                    |                    |                                   |                                        |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 15:49<br>Container ID: 1174480007-B |                                                                                                                          |                                                                                             | Prep Batch:<br>Prep Method<br>Prep Date/Tin<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030B<br>me: 07/19/1<br>/t./Vol.: 5 m<br>Vol: 5 mL | 8<br>17 08:00<br>L |                                   |                                        |
| Parameter                                                                                                                                   | Result Qual                                                                                                              | LOQ/CL                                                                                      | <u>DL</u>                                                                     | <u>Units</u>                                                       | <u>DF</u>          | <u>Allowable</u><br><u>Limits</u> | Date Analyzed                          |
| Benzene                                                                                                                                     | 4.58                                                                                                                     | 0.500                                                                                       | 0.150                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:4                          |
| Ethylbenzene                                                                                                                                | 1.00 U                                                                                                                   | 1.00                                                                                        | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:4                          |
| o-Xylene                                                                                                                                    | 1.00 U                                                                                                                   | 1.00                                                                                        | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:4                          |
| Toluene                                                                                                                                     | 1.00 U                                                                                                                   | 1.00                                                                                        | 0.310                                                                         | ug/L                                                               | 1                  |                                   | 07/19/17 15:4                          |
| Surrogates                                                                                                                                  |                                                                                                                          |                                                                                             |                                                                               |                                                                    |                    |                                   |                                        |
| 1,4-Difluorobenzene (surr)                                                                                                                  | 94.2                                                                                                                     | 77-115                                                                                      |                                                                               | %                                                                  | 1                  |                                   | 07/19/17 15:4                          |
| Batch Information                                                                                                                           |                                                                                                                          |                                                                                             |                                                                               |                                                                    |                    |                                   |                                        |
| Analytical Batch: VFC13754<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 15:49                             |                                                                                                                          | i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i | Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030B<br>me: 07/19/1<br>/t./Vol.: 5 m<br>Vol: 5 mL | 8<br>17 08:00<br>L |                                   |                                        |



| Results of MW17-0713                                                                                                                         |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|----------------------------|---------------------------------|
| Client Sample ID: <b>MW17-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480008<br>Lab Project ID: 1174480         |                               | C<br>F<br>M<br>S<br>L  | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>ocation:      | ate: 07/13/<br>ite: 07/14/ <sup>,</sup><br>r (Surface,             | 17 14:20<br>17 11:28<br>Eff., Gro | und)                       |                                 |
| Results by Semivolatile Organic Fuels                                                                                                        | 5                             |                        |                                                                              |                                                                    |                                   |                            |                                 |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                    | <u>Result Qual</u><br>0.568 U | <u>LOQ/CL</u><br>0.568 | <u>DL</u><br>0.170                                                           | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1                    | <u>Allowable</u><br>Limits | Date Analyzed<br>07/20/17 22:31 |
| Surrogates                                                                                                                                   |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |
| 5a Androstane (surr)                                                                                                                         | 78.3                          | 50-150                 |                                                                              | %                                                                  | 1                                 |                            | 07/20/17 22:31                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK102<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:31<br>Container ID: 1174480008-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | XXX37897<br>: SW3520C<br>me: 07/17/1<br>/t./Vol.: 264<br>Vol: 1 mL | ;<br> 7 09:37<br> mL              |                            |                                 |
| <u>Parameter</u><br>Residual Range Organics                                                                                                  | <u>Result Qual</u><br>0.473 U | <u>LOQ/CL</u><br>0.473 | <u>DL</u><br>0.142                                                           | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1                    | <u>Allowable</u><br>Limits | Date Analyzed<br>07/20/17 22:31 |
| Surrogates                                                                                                                                   |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |
| n-Triacontane-d62 (surr)                                                                                                                     | 86.2                          | 50-150                 |                                                                              | %                                                                  | 1                                 |                            | 07/20/17 22:31                  |
| Batch Information                                                                                                                            |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |
| Analytical Batch: XFC13575<br>Analytical Method: AK103<br>Analyst: KMD<br>Analytical Date/Time: 07/20/17 22:31<br>Container ID: 1174480008-D |                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | XXX37897<br>: SW3520C<br>me: 07/17/1<br>/t./Vol.: 264<br>Vol: 1 mL | ;<br>7 09:37<br>mL                |                            |                                 |
|                                                                                                                                              |                               |                        |                                                                              |                                                                    |                                   |                            |                                 |

| SGS                         |
|-----------------------------|
| Results of MW17-0713        |
| Client Sample ID: MW17-0713 |

| Client Sample ID: <b>MW17-0713</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480008<br>Lab Project ID: 1174480          |                               | C<br>F<br>M<br>S<br>L  | Collection Da<br>Received Dat<br>Matrix: Water<br>Solids (%):<br>Location:     | ate: 07/13/<br>te: 07/14/<br>r (Surface,                                       | 17 14:20<br>17 11:28<br>Eff., Gro | und)                       |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|----------------------------|---------------------------------|
| Results by Volatile Fuels                                                                                                                     |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |
| Parameter<br>Gasoline Range Organics                                                                                                          | <u>Result</u> Qual<br>0.100 U | <u>LOQ/CL</u><br>0.100 | <u>DL</u><br>0.0310                                                            | <u>Units</u><br>mg/L                                                           | <u>DF</u><br>1                    | <u>Allowable</u><br>Limits | Date Analyzed<br>07/19/17 16:08 |
| Surrogates                                                                                                                                    |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |
| 4-Bromofluorobenzene (surr)                                                                                                                   | 90.3                          | 50-150                 |                                                                                | %                                                                              | 1                                 |                            | 07/19/17 16:08                  |
| Batch Information                                                                                                                             |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |
| Analytical Batch: VFC13754<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 16:08<br>Container ID: 1174480008-B   |                               |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030E<br>me: 07/19/ <sup>,</sup><br>/t./Vol.: 5 m<br>Vol: 5 mL | 3<br>17 08:00<br>IL               |                            |                                 |
| Parameter                                                                                                                                     | Popult Qual                   |                        | DI                                                                             | Lipito                                                                         | DE                                | Allowable                  | Data Analyzad                   |
| Benzene                                                                                                                                       | 3.98                          | 0.500                  | <u>DL</u><br>0.150                                                             | uq/L                                                                           | 1                                 | LIIIIIS                    | 07/19/17 16:08                  |
| Ethylbenzene                                                                                                                                  | 1.00 U                        | 1.00                   | 0.310                                                                          | ug/L                                                                           | 1                                 |                            | 07/19/17 16:08                  |
| o-Xylene                                                                                                                                      | 1.00 U                        | 1.00                   | 0.310                                                                          | ug/L                                                                           | 1                                 |                            | 07/19/17 16:08                  |
| P & M -Xylene                                                                                                                                 | 2.00 U                        | 2.00                   | 0.620                                                                          | ug/L                                                                           | 1                                 |                            | 07/19/17 16:08                  |
| Toluene                                                                                                                                       | 1.00 U                        | 1.00                   | 0.310                                                                          | ug/L                                                                           | 1                                 |                            | 07/19/17 16:08                  |
| Surrogates                                                                                                                                    |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |
| 1,4-Difluorobenzene (surr)                                                                                                                    | 94.8                          | 77-115                 |                                                                                | %                                                                              | 1                                 |                            | 07/19/17 16:08                  |
| Batch Information                                                                                                                             |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |
| Analytical Batch: VFC13754<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/19/17 16:08<br>Container ID: 1174480008-B |                               |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30899<br>: SW5030E<br>me: 07/19/<br>/t./Vol.: 5 m<br>Vol: 5 mL              | 3<br>17 08:00<br>IL               |                            |                                 |
|                                                                                                                                               |                               |                        |                                                                                |                                                                                |                                   |                            |                                 |

| SGS |  |
|-----|--|
|     |  |

| Results of Trip Blank                                                                                                                         |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|
| Client Sample ID: <b>Trip Blank</b><br>Client Project ID: <b>Six Robblees</b><br>Lab Sample ID: 1174480009<br>Lab Project ID: 1174480         |                               | C<br>R<br>M<br>Si<br>La | ollection Da<br>eceived Da<br>latrix: Water<br>olids (%):<br>ocation:          | te: 07/12/<br>te: 07/14/<br>r (Surface,                            | 17 10:27<br>17 11:28<br>Eff., Gro | und)                              |                                        |
| Results by volatile Fuels                                                                                                                     |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |
| Parameter<br>Gasoline Range Organics                                                                                                          | <u>Result Qual</u><br>0.100 U | <u>LOQ/CL</u><br>0.100  | <u>DL</u><br>0.0310                                                            | <u>Units</u><br>mg/L                                               | <u>DF</u><br>1                    | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>07/18/17 13:28 |
| 4-Bromofluorobenzene (surr)                                                                                                                   | 87.9                          | 50-150                  |                                                                                | %                                                                  | 1                                 |                                   | 07/18/17 13 <sup>.</sup> 28            |
|                                                                                                                                               | 0110                          |                         |                                                                                | ,,,                                                                | ·                                 |                                   | 0                                      |
| Batch Information                                                                                                                             |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |
| Analytical Batch: VFC13752<br>Analytical Method: AK101<br>Analyst: ST<br>Analytical Date/Time: 07/18/17 13:28<br>Container ID: 1174480009-A   |                               | F<br>F<br>F<br>F        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30889<br>: SW5030E<br>me: 07/18/1<br>/t./Vol.: 5 m<br>Vol: 5 mL | 7 08:00<br>L                      |                                   |                                        |
| Demension                                                                                                                                     | Da sult Qual                  | 100/01                  | DI                                                                             | 11                                                                 |                                   | Allowable                         | Data Analyzad                          |
| Parameter<br>Benzene                                                                                                                          |                               | <u>LOQ/CL</u><br>0.500  | <u>DL</u><br>0.150                                                             | Units<br>ug/l                                                      | <u>DF</u><br>1                    | Limits                            | <u>Date Analyzed</u><br>07/18/17 13:28 |
| Ethylbenzene                                                                                                                                  | 1.00 U                        | 1.00                    | 0.310                                                                          | ug/L                                                               | 1                                 |                                   | 07/18/17 13:28                         |
| o-Xvlene                                                                                                                                      | 1.00 U                        | 1.00                    | 0.310                                                                          | ua/L                                                               | 1                                 |                                   | 07/18/17 13:28                         |
| P & M -Xylene                                                                                                                                 | 2.00 U                        | 2.00                    | 0.620                                                                          | ug/L                                                               | 1                                 |                                   | 07/18/17 13:28                         |
| Toluene                                                                                                                                       | 1.00 U                        | 1.00                    | 0.310                                                                          | ug/L                                                               | 1                                 |                                   | 07/18/17 13:28                         |
| Surrogates                                                                                                                                    |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |
| 1,4-Difluorobenzene (surr)                                                                                                                    | 95                            | 77-115                  |                                                                                | %                                                                  | 1                                 |                                   | 07/18/17 13:28                         |
| Batch Information                                                                                                                             |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |
| Analytical Batch: VFC13752<br>Analytical Method: SW8021B<br>Analyst: ST<br>Analytical Date/Time: 07/18/17 13:28<br>Container ID: 1174480009-A |                               | F<br>F<br>F<br>F        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VXX30889<br>: SW5030B<br>me: 07/18/1<br>/t./Vol.: 5 m<br>Vol: 5 mL | 7 08:00<br>L                      |                                   |                                        |
|                                                                                                                                               |                               |                         |                                                                                |                                                                    |                                   |                                   |                                        |



Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Six Robblees** Lab Sample ID: 1174480009 Lab Project ID: 1174480

## Collection Date: 07/12/17 10:27 Received Date: 07/14/17 11:28 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

## Results by Volatile GC/MS

|                             |                    |        |           |              |    | Allowable     |                |
|-----------------------------|--------------------|--------|-----------|--------------|----|---------------|----------------|
| Parameter                   | <u>Result Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| 1,1,1,2-Tetrachloroethane   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,1,1-Trichloroethane       | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<200)        | 07/20/17 20:56 |
| 1,1,2,2-Tetrachloroethane   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,1,2-Trichloroethane       | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 20:56 |
| 1,1-Dichloroethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,1-Dichloroethene          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<7)          | 07/20/17 20:56 |
| 1,1-Dichloropropene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2,3-Trichlorobenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2,3-Trichloropropane      | 0.500 U            | 0.500  | 0.180     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2,4-Trichlorobenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<70)         | 07/20/17 20:56 |
| 1,2,4-Trimethylbenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2-Dibromo-3-chloropropane | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2-Dibromoethane           | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,2-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<600)        | 07/20/17 20:56 |
| 1,2-Dichloroethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 20:56 |
| 1,2-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 20:56 |
| 1,3,5-Trimethylbenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,3-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,3-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 1,4-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<75)         | 07/20/17 20:56 |
| 2,2-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 2-Chlorotoluene             | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 4-Chlorotoluene             | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| 4-Isopropyltoluene          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Benzene                     | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 20:56 |
| Bromobenzene                | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Bromochloromethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Bromodichloromethane        | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Bromoform                   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Bromomethane                | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 07/20/17 20:56 |
| Carbon tetrachloride        | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 20:56 |
| Chlorobenzene               | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<100)        | 07/20/17 20:56 |
| Chloroethane                | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 07/20/17 20:56 |
| Chloroform                  | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| Chloromethane               | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
| cis-1,2-Dichloroethene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<70)         | 07/20/17 20:56 |
| cis-1,3-Dichloropropene     | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 20:56 |
|                             |                    |        |           |              |    |               |                |

Print Date: 07/25/2017 4:35:00PM

SGS North America Inc.



Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **Six Robblees** Lab Sample ID: 1174480009 Lab Project ID: 1174480

## Collection Date: 07/12/17 10:27 Received Date: 07/14/17 11:28 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

## Results by Volatile GC/MS

|                              |             |        |       |              |           | Allowable     |                |
|------------------------------|-------------|--------|-------|--------------|-----------|---------------|----------------|
| Parameter                    | Result Qual | LOQ/CL | DL    | <u>Units</u> | <u>DF</u> | <u>Limits</u> | Date Analyzed  |
| Dibromochloromethane         | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Dibromomethane               | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Dichlorodifluoromethane      | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Ethylbenzene                 | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<700)        | 07/20/17 20:56 |
| Hexachlorobutadiene          | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Isopropylbenzene (Cumene)    | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Methylene chloride           | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<5)          | 07/20/17 20:56 |
| Methyl-t-butyl ether         | 1.00 U      | 1.00   | 0.310 | ug/L         | 1         |               | 07/20/17 20:56 |
| Naphthalene                  | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| n-Butylbenzene               | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| n-Propylbenzene              | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| o-Xylene                     | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| P & M -Xylene                | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| sec-Butylbenzene             | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Styrene                      | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<100)        | 07/20/17 20:56 |
| tert-Butylbenzene            | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Tetrachloroethene            | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<5)          | 07/20/17 20:56 |
| Toluene                      | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<1000)       | 07/20/17 20:56 |
| Total Trihalomethanes        | 2.00 U      | 2.00   | 0.600 | ug/L         | 1         | (<80)         | 07/20/17 20:56 |
| trans-1,2-Dichloroethene     | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<100)        | 07/20/17 20:56 |
| trans-1,3-Dichloropropene    | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Trichloroethene              | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<5)          | 07/20/17 20:56 |
| Trichlorofluoromethane       | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         |               | 07/20/17 20:56 |
| Vinyl chloride               | 0.400 U     | 0.400  | 0.120 | ug/L         | 1         | (<2)          | 07/20/17 20:56 |
| Xylenes (total)              | 0.500 U     | 0.500  | 0.150 | ug/L         | 1         | (<10000)      | 07/20/17 20:56 |
| Surrogates                   |             |        |       |              |           |               |                |
| 1,2-Dichloroethane-D4 (surr) | 107         | 70-130 |       | %            | 1         |               | 07/20/17 20:56 |
| 4-Bromofluorobenzene (surr)  | 101         | 70-130 |       | %            | 1         |               | 07/20/17 20:56 |
| Toluene-d8 (surr)            | 98.9        | 70-130 |       | %            | 1         |               | 07/20/17 20:56 |

## Batch Information

Analytical Batch: VMS16975 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/20/17 20:56 Container ID: 1174480009-D

Prep Batch: VXX30937 Prep Method: SW5030B Prep Date/Time: 07/20/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/25/2017 4:35:00PM

SGS North America Inc.



Results of FW1-0713

Client Sample ID: **FW1-0713** Client Project ID: **Six Robblees** Lab Sample ID: 1174480010 Lab Project ID: 1174480

## Collection Date: 07/13/17 15:20 Received Date: 07/14/17 11:28 Matrix: Drinking Water Solids (%): Location:

## Results by Volatile GC/MS

|                             |                    |        |           |              |    | Allowable     |                |
|-----------------------------|--------------------|--------|-----------|--------------|----|---------------|----------------|
| Parameter                   | <u>Result Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| 1,1,1,2-Tetrachloroethane   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,1,1-Trichloroethane       | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<200)        | 07/20/17 21:48 |
| 1,1,2,2-Tetrachloroethane   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,1,2-Trichloroethane       | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| 1,1-Dichloroethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,1-Dichloroethene          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<7)          | 07/20/17 21:48 |
| 1,1-Dichloropropene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2,3-Trichlorobenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2,3-Trichloropropane      | 0.500 U            | 0.500  | 0.180     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2,4-Trichlorobenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<70)         | 07/20/17 21:48 |
| 1,2,4-Trimethylbenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2-Dibromo-3-chloropropane | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2-Dibromoethane           | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,2-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<600)        | 07/20/17 21:48 |
| 1,2-Dichloroethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| 1,2-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| 1,3,5-Trimethylbenzene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,3-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,3-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 1,4-Dichlorobenzene         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<75)         | 07/20/17 21:48 |
| 2,2-Dichloropropane         | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 2-Chlorotoluene             | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 4-Chlorotoluene             | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| 4-Isopropyltoluene          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Benzene                     | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| Bromobenzene                | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Bromochloromethane          | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Bromodichloromethane        | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Bromoform                   | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Bromomethane                | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 07/20/17 21:48 |
| Carbon tetrachloride        | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| Chlorobenzene               | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<100)        | 07/20/17 21:48 |
| Chloroethane                | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 07/20/17 21:48 |
| Chloroform                  | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Chloromethane               | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| cis-1,2-Dichloroethene      | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  | (<70)         | 07/20/17 21:48 |
| cis-1,3-Dichloropropene     | 0.500 U            | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
|                             |                    |        |           | -            |    |               |                |

Print Date: 07/25/2017 4:35:00PM

SGS North America Inc.



Results of FW1-0713

Client Sample ID: **FW1-0713** Client Project ID: **Six Robblees** Lab Sample ID: 1174480010 Lab Project ID: 1174480

## Collection Date: 07/13/17 15:20 Received Date: 07/14/17 11:28 Matrix: Drinking Water Solids (%): Location:

## Results by Volatile GC/MS

|                              |             |        |           |              |    | Allowable     |                |
|------------------------------|-------------|--------|-----------|--------------|----|---------------|----------------|
| Parameter                    | Result Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| Dibromochloromethane         | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Dibromomethane               | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Dichlorodifluoromethane      | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Ethylbenzene                 | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<700)        | 07/20/17 21:48 |
| Hexachlorobutadiene          | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Isopropylbenzene (Cumene)    | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Methylene chloride           | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| Methyl-t-butyl ether         | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |               | 07/20/17 21:48 |
| Naphthalene                  | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| n-Butylbenzene               | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| n-Propylbenzene              | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| o-Xylene                     | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| P & M -Xylene                | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| sec-Butylbenzene             | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Styrene                      | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<100)        | 07/20/17 21:48 |
| tert-Butylbenzene            | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Tetrachloroethene            | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| Toluene                      | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<1000)       | 07/20/17 21:48 |
| Total Trihalomethanes        | 2.00 U      | 2.00   | 0.600     | ug/L         | 1  | (<80)         | 07/20/17 21:48 |
| trans-1,2-Dichloroethene     | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<100)        | 07/20/17 21:48 |
| trans-1,3-Dichloropropene    | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Trichloroethene              | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<5)          | 07/20/17 21:48 |
| Trichlorofluoromethane       | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  |               | 07/20/17 21:48 |
| Vinyl chloride               | 0.400 U     | 0.400  | 0.120     | ug/L         | 1  | (<2)          | 07/20/17 21:48 |
| Xylenes (total)              | 0.500 U     | 0.500  | 0.150     | ug/L         | 1  | (<10000)      | 07/20/17 21:48 |
| Surrogates                   |             |        |           |              |    |               |                |
| 1,2-Dichloroethane-D4 (surr) | 112         | 70-130 |           | %            | 1  |               | 07/20/17 21:48 |
| 4-Bromofluorobenzene (surr)  | 101         | 70-130 |           | %            | 1  |               | 07/20/17 21:48 |
| Toluene-d8 (surr)            | 101         | 70-130 |           | %            | 1  |               | 07/20/17 21:48 |

## **Batch Information**

Analytical Batch: VMS16975 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/20/17 21:48 Container ID: 1174480010-A Prep Batch: VXX30937 Prep Method: SW5030B Prep Date/Time: 07/20/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/25/2017 4:35:00PM

SGS North America Inc.

# SGS

| Blank ID: MB for HBN 1763<br>Blank Lab ID: 1398919 | 8924 [VXX/30889] | Matrix               | : Water (Surfac  | e, Eff., Ground) |
|----------------------------------------------------|------------------|----------------------|------------------|------------------|
| QC for Samples:<br>1174480001, 1174480002, 11      | 74480009         |                      |                  |                  |
| Results by <b>AK101</b>                            |                  | )                    |                  |                  |
| Parameter                                          | Results          | LOQ/CL               | <u>DL</u>        | <u>Units</u>     |
| Gasoline Range Organics                            | 0.0500U          | 0.100                | 0.0310           | mg/L             |
| 4-Bromofluorobenzene (surr)                        | 90.9             | 50-150               |                  | %                |
| Batch Information                                  |                  |                      |                  |                  |
| Analytical Batch: VFC137                           | 52               | Prep Bai             | tch: VXX30889    |                  |
| Analytical Method: AK101                           |                  | Prep Me              | ethod: SW5030B   |                  |
| Instrument: Agilent 7890 F                         | PID/FID          | Prep Da<br>Brop Init | te/Time: 7/18/20 | 17 8:00:00AM     |
| Analyst ST                                         |                  | PIAN INII            |                  | _                |



## Blank Spike Summary

Blank Spike ID: LCS for HBN 1174480 [VXX30889] Blank Spike Lab ID: 1398922 Date Analyzed: 07/18/2017 11:52 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30889] Spike Duplicate Lab ID: 1398923 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1174480001, 1174480002, 1174480009

| Results by AK101              |        |             | _              |              |              |                |               |                |        |
|-------------------------------|--------|-------------|----------------|--------------|--------------|----------------|---------------|----------------|--------|
|                               | E      | Blank Spike | e (mg/L)       | S            | pike Dupli   | cate (mg/L)    |               |                |        |
| Parameter                     | Spike  | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result       | <u>Rec (%)</u> | CL            | <u>RPD (%)</u> | RPD CL |
| Gasoline Range Organics       | 1.00   | 0.998       | 100            | 1.00         | 0.992        | 99             | (60-120)      | 0.63           | (< 20) |
| Surrogates                    |        |             |                |              |              |                |               |                |        |
| 4-Bromofluorobenzene (surr)   | 0.0500 | 97.6        | 98             | 0.0500       | 92.6         | 93             | (50-150)      | 5.20           |        |
| Batch Information             |        |             |                |              |              |                |               |                |        |
| Analytical Batch: VFC13752    |        |             |                | Prep         | Batch: V     | XX30889        |               |                |        |
| Analytical Method: AK101      |        |             |                | Prep         | Method:      | SW5030B        |               |                |        |
| Instrument: Agilent 7890 PID/ | /FID   |             |                | Prep         | Date/Tim     | e: 07/18/201   | 7 08:00       |                |        |
| Analyst: ST                   |        |             |                | Spik         | e Init Wt./\ | /ol.: 1.00 mg  | g/L Extract \ | Vol: 5 mL      |        |
|                               |        |             |                | Dup          | e Init Wt./\ | /ol.: 1.00 mg  | g/L Extract V | ol: 5 mL       |        |

## SGS

## Method Blank

Blank ID: MB for HBN 1763924 [VXX/30889] Blank Lab ID: 1398919 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1174480002, 1174480009

## Results by SW8021B

| Parameter                  | <u>Results</u> | LOQ/CL | DL    | <u>Units</u> |
|----------------------------|----------------|--------|-------|--------------|
| Benzene                    | 0.250U         | 0.500  | 0.150 | ug/L         |
| Ethylbenzene               | 0.500U         | 1.00   | 0.310 | ug/L         |
| o-Xylene                   | 0.500U         | 1.00   | 0.310 | ug/L         |
| P & M -Xylene              | 1.00U          | 2.00   | 0.620 | ug/L         |
| Toluene                    | 0.500U         | 1.00   | 0.310 | ug/L         |
| Surrogates                 |                |        |       |              |
| 1,4-Difluorobenzene (surr) | 95.1           | 77-115 |       | %            |
|                            |                |        |       |              |

## **Batch Information**

Analytical Batch: VFC13752 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 7/18/2017 10:55:00AM Prep Batch: VXX30889 Prep Method: SW5030B Prep Date/Time: 7/18/2017 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL



### **Blank Spike Summary**

Blank Spike ID: LCS for HBN 1174480 [VXX30889] Blank Spike Lab ID: 1398920 Date Analyzed: 07/18/2017 11:33 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30889] Spike Duplicate Lab ID: 1398921 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1174480001, 1174480002, 1174480009

### Results by SW8021B Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) CL <u>RPD (%)</u> RPD CL Benzene 100 108 108 100 110 110 (80-120) 1.90 (< 20) Ethylbenzene 100 107 107 100 108 108 1.50 (75-125) (< 20) o-Xylene 100 105 105 100 108 108 (80-120) 2.30 (< 20) P & M -Xylene 200 105 200 215 108 211 (75-130) 2.10 (< 20) Toluene 100 102 102 100 104 104 1.80 (75-120) (< 20) Surrogates 1,4-Difluorobenzene (surr) 50 100 100 50 101 101 0.77 (77-115)

## Batch Information

Analytical Batch: VFC13752 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Prep Batch: VXX30889 Prep Method: SW5030B Prep Date/Time: 07/18/2017 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

# SGS

| 174480003, 1174480004, 117                                                                                                         | 74480005, 1174480006, 117      | ′4480007, 1174480008<br>∟                             |                                                                                            |                      |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|
| Results by <b>AK101</b><br>Parameter<br>Gasoline Range Organics                                                                    | <u>Results</u><br>0.0500U      | <u>LOQ/CL</u><br>0.100                                | <u>DL</u><br>0.0310                                                                        | <u>Units</u><br>mg/L |
| <b>urrogates</b><br>4-Bromofluorobenzene (surr)                                                                                    | 88.1                           | 50-150                                                |                                                                                            | %                    |
| atch Information                                                                                                                   |                                |                                                       |                                                                                            |                      |
| Analytical Batch: VFC1375<br>Analytical Method: AK101<br>Instrument: Agilent 7890 Pl<br>Analyst: ST<br>Analytical Date/Time: 7/19/ | 4<br>ID/FID<br>2017 12:00:00PM | Prep Ba<br>Prep Me<br>Prep Da<br>Prep Init<br>Prep Ex | tch: VXX30899<br>thod: SW5030B<br>te/Time: 7/19/20<br>ial Wt./Vol.: 5 m<br>tract Vol: 5 mL | 17 8:00:00AM<br>L    |



## Blank Spike Summary

Blank Spike ID: LCS for HBN 1174480 [VXX30899] Blank Spike Lab ID: 1399240 Date Analyzed: 07/19/2017 12:57 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30899] Spike Duplicate Lab ID: 1399241 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1174480003, 1174480004, 1174480005, 1174480006, 1174480007, 1174480008

| Results by AK101            |          |        |                |              |              |                |               |                |         |
|-----------------------------|----------|--------|----------------|--------------|--------------|----------------|---------------|----------------|---------|
|                             | e (mg/L) | S      | pike Duplie    |              |              |                |               |                |         |
| Parameter                   | Spike    | Result | <u>Rec (%)</u> | <u>Spike</u> | Result       | <u>Rec (%)</u> | <u>CL</u>     | <u>RPD (%)</u> | RPD CL  |
| Gasoline Range Organics     | 1.00     | 1.05   | 105            | 1.00         | 1.03         | 103            | (60-120)      | 2.30           | (< 20 ) |
| Surrogates                  |          |        |                |              |              |                |               |                |         |
| 4-Bromofluorobenzene (surr) | 0.0500   | 92.2   | 92             | 0.0500       | 95.9         | 96             | (50-150)      | 4.00           |         |
| Batch Information           |          |        |                |              |              |                |               |                |         |
| Analytical Batch: VFC13754  |          |        |                | Prep         | Batch: V     | XX30899        |               |                |         |
| Analytical Method: AK101    |          |        |                | Prep         | Method:      | SW5030B        | 17 00.00      |                |         |
| Analyst: ST                 | /FID     |        |                | Spik         | Date/TIM     | e. 07/19/201   | a/l Extract \ | /ol: 5 ml      |         |
| Analyst. 31                 |          |        |                | Dup          | e Init Wt./\ | /ol.: 1.00 mg  | g/L Extract V | ol: 5 mL       |         |
|                             |          |        |                | =1-          |              |                | ,             |                |         |

## Method Blank

SG:

Blank ID: MB for HBN 1763995 [VXX/30899] Blank Lab ID: 1399237 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

. 1174480003, 1174480004, 1174480005, 1174480006, 1174480007, 1174480008

| Results by SW8021B         | Results by SW8021B |         |                |              |  |
|----------------------------|--------------------|---------|----------------|--------------|--|
| Parameter                  | <u>Results</u>     | LOQ/CL  | <u>DL</u>      | <u>Units</u> |  |
| Benzene                    | 0.250U             | 0.500   | 0.150          | ug/L         |  |
| Ethylbenzene               | 0.500U             | 1.00    | 0.310          | ug/L         |  |
| o-Xylene                   | 0.500U             | 1.00    | 0.310          | ug/L         |  |
| P & M -Xylene              | 1.00U              | 2.00    | 0.620          | ug/L         |  |
| Toluene                    | 0.500U             | 1.00    | 0.310          | ug/L         |  |
| Surrogates                 |                    |         |                |              |  |
| 1,4-Difluorobenzene (surr) | 95.6               | 77-115  |                | %            |  |
| Batch Information          |                    |         |                |              |  |
| Apolytical Batch: V/EC1375 | 1                  | Drop Br | tch: V/XX20800 |              |  |

Analytical Batch: VFC13754 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 7/19/2017 12:00:00PM Prep Batch: VXX30899 Prep Method: SW5030B Prep Date/Time: 7/19/2017 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL



### **Blank Spike Summary**

Blank Spike ID: LCS for HBN 1174480 [VXX30899] Blank Spike Lab ID: 1399238 Date Analyzed: 07/19/2017 12:38 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30899] Spike Duplicate Lab ID: 1399239 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1174480003, 1174480004, 1174480005, 1174480006, 1174480007, 1174480008

| Results by SW8021B         |              |             | _              |                               |        |                |           |                |         |
|----------------------------|--------------|-------------|----------------|-------------------------------|--------|----------------|-----------|----------------|---------|
|                            |              | Blank Spike | e (ug/L)       | (ug/L) Spike Duplicate (ug/L) |        |                |           |                |         |
| Parameter                  | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u>                  | Result | <u>Rec (%)</u> | <u>CL</u> | <u>RPD (%)</u> | RPD CL  |
| Benzene                    | 100          | 107         | 107            | 100                           | 117    | 117            | (80-120)  | 9.00           | (< 20)  |
| Ethylbenzene               | 100          | 106         | 106            | 100                           | 114    | 114            | (75-125)  | 7.90           | (< 20)  |
| o-Xylene                   | 100          | 104         | 104            | 100                           | 113    | 113            | (80-120)  | 8.40           | (< 20)  |
| P & M -Xylene              | 200          | 209         | 104            | 200                           | 226    | 113            | (75-130)  | 8.10           | (< 20)  |
| Toluene                    | 100          | 101         | 101            | 100                           | 109    | 109            | (75-120)  | 7.10           | (< 20 ) |
| Surrogates                 |              |             |                |                               |        |                |           |                |         |
| 1,4-Difluorobenzene (surr) | 50           | 100         | 100            | 50                            | 101    | 101            | (77-115)  | 1.50           |         |
| Batch Information          |              |             |                |                               |        |                |           |                |         |

### Analytical Batch: VFC13754 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST

Prep Batch: VXX30899 Prep Method: SW5030B Prep Date/Time: 07/19/2017 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

# SGS

| Blank ID: MB for HBN 1764<br>Blank Lab ID: 1399538                                                                             | \$102 [VXX/30910]                           | Matrix                                                | Matrix: Water (Surface, Eff., Ground)                                                       |                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| QC for Samples:<br>1174480003, 1174480004                                                                                      |                                             |                                                       |                                                                                             |                          |  |  |  |  |
| Results by SW8021B                                                                                                             |                                             |                                                       |                                                                                             |                          |  |  |  |  |
| Parameter<br>Toluene                                                                                                           | <u>Results</u><br>0.500U                    | <u>LOQ/CL</u><br>1.00                                 | <u>DL</u><br>0.310                                                                          | <u>Units</u><br>ug/L     |  |  |  |  |
| urrogates                                                                                                                      |                                             |                                                       |                                                                                             |                          |  |  |  |  |
| 1,4-Difluorobenzene (surr)                                                                                                     | 89.1                                        | 77-115                                                |                                                                                             | %                        |  |  |  |  |
| atch Information                                                                                                               |                                             |                                                       |                                                                                             |                          |  |  |  |  |
| Analytical Batch: VFC137<br>Analytical Method: SW802<br>Instrument: Agilent 7890A<br>Analyst: ST<br>Analytical Date/Time: 7/21 | 56<br>21B<br>. PID/FID<br>1/2017 12:33:00AM | Prep Ba<br>Prep Me<br>Prep Da<br>Prep Inil<br>Prep Ex | tch: VXX30910<br>ethod: SW5030E<br>te/Time: 7/20/20<br>ial Wt./Vol.: 5 m<br>tract Vol: 5 mL | 3<br>017 8:00:00AM<br>NL |  |  |  |  |



## Blank Spike Summary

Blank Spike ID: LCS for HBN 1174480 [VXX30910] Blank Spike Lab ID: 1399539 Date Analyzed: 07/21/2017 01:29 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30910] Spike Duplicate Lab ID: 1399540 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1174480003, 1174480004

| Results by SW8021B          |              |        |                |                      |                                  |                |              |                |        |  |
|-----------------------------|--------------|--------|----------------|----------------------|----------------------------------|----------------|--------------|----------------|--------|--|
|                             | Blank Spike  |        |                |                      | (ug/L) Spike Duplicate (ug/L)    |                |              |                |        |  |
| Parameter                   | <u>Spike</u> | Result | <u>Rec (%)</u> | <u>Spike</u>         | Result                           | <u>Rec (%)</u> | <u>CL</u>    | <u>RPD (%)</u> | RPD CL |  |
| Toluene                     | 100          | 94.5   | 95             | 100                  | 96.5                             | 97             | (75-120)     | 2.10           | (< 20) |  |
| Surrogates                  |              |        |                |                      |                                  |                |              |                |        |  |
| 1,4-Difluorobenzene (surr)  | 50           | 91.2   | 91             | 50                   | 92.2                             | 92             | (77-115)     | 1.20           |        |  |
| Batch Information           |              |        |                |                      |                                  |                |              |                |        |  |
| Analytical Batch: VFC13756  |              |        |                | Pre                  | p Batch: V                       | XX30910        |              |                |        |  |
| Analytical Method: SW80211  | В            |        |                | Prep Method: SW5030B |                                  |                |              |                |        |  |
| Instrument: Agilent 7890A F | PID/FID      |        |                | Pre                  | Prep Date/Time: 07/20/2017 08:00 |                |              |                |        |  |
| Analyst: ST                 |              |        |                | Spi                  | ke Init Wt./\                    | /ol.: 100 ug/  | L Extract Vo | ol: 5 mL       |        |  |
| -                           |              |        |                | Dup                  | e Init Wt./\                     | /ol.: 100 ug/  | L Extract Vo | l: 5 mL        |        |  |

# SGS

## Method Blank

Blank ID: MB for HBN 1764451 [VXX/30937] Blank Lab ID: 1400363

QC for Samples: 1174480009, 1174480010

## Results by EPA 524.2

| Parameter                   | Results | LOQ/CL | DL    | <u>Units</u> |
|-----------------------------|---------|--------|-------|--------------|
| 1,1,1,2-Tetrachloroethane   | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1,1-Trichloroethane       | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1,2,2-Tetrachloroethane   | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1,2-Trichloroethane       | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1-Dichloroethane          | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1-Dichloroethene          | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,1-Dichloropropene         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2,3-Trichlorobenzene      | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2,3-Trichloropropane      | 0.250U  | 0.500  | 0.180 | ug/L         |
| 1,2,4-Trichlorobenzene      | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2,4-Trimethylbenzene      | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2-Dibromo-3-chloropropane | 1.00U   | 2.00   | 0.620 | ug/L         |
| 1,2-Dibromoethane           | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2-Dichlorobenzene         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2-Dichloroethane          | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,2-Dichloropropane         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,3,5-Trimethylbenzene      | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,3-Dichlorobenzene         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,3-Dichloropropane         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 1,4-Dichlorobenzene         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 2,2-Dichloropropane         | 0.250U  | 0.500  | 0.150 | ug/L         |
| 2-Chlorotoluene             | 0.250U  | 0.500  | 0.150 | ug/L         |
| 4-Chlorotoluene             | 0.250U  | 0.500  | 0.150 | ug/L         |
| 4-Isopropyltoluene          | 0.250U  | 0.500  | 0.150 | ug/L         |
| Benzene                     | 0.250U  | 0.500  | 0.150 | ug/L         |
| Bromobenzene                | 0.250U  | 0.500  | 0.150 | ug/L         |
| Bromochloromethane          | 0.250U  | 0.500  | 0.150 | ug/L         |
| Bromodichloromethane        | 0.250U  | 0.500  | 0.150 | ug/L         |
| Bromoform                   | 0.250U  | 0.500  | 0.150 | ug/L         |
| Bromomethane                | 1.00U   | 2.00   | 0.620 | ug/L         |
| Carbon tetrachloride        | 0.250U  | 0.500  | 0.150 | ug/L         |
| Chlorobenzene               | 0.250U  | 0.500  | 0.150 | ug/L         |
| Chloroethane                | 0.500U  | 1.00   | 0.310 | ug/L         |
| Chloroform                  | 0.250U  | 0.500  | 0.150 | ug/L         |
| Chloromethane               | 0.250U  | 0.500  | 0.150 | ug/L         |
| cis-1,2-Dichloroethene      | 0.250U  | 0.500  | 0.150 | ug/L         |
| cis-1,3-Dichloropropene     | 0.250U  | 0.500  | 0.150 | ug/L         |
| Dibromochloromethane        | 0.250U  | 0.500  | 0.150 | ug/L         |

Print Date: 07/25/2017 4:35:20PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Drinking Water

## SGS

## Method Blank

Blank ID: MB for HBN 1764451 [VXX/30937] Blank Lab ID: 1400363

QC for Samples: 1174480009, 1174480010

## Results by EPA 524.2

| Parameter                    | Results |        | וח    | Linite |  |
|------------------------------|---------|--------|-------|--------|--|
| Dibromomethane               | 0.25011 | 0.500  | 0.150 |        |  |
| Dichlorodifluoromothano      | 0.2500  | 0.500  | 0.150 | ug/L   |  |
| Ethylbonzono                 | 0.2500  | 0.500  | 0.150 | ug/L   |  |
|                              | 0.2500  | 0.500  | 0.150 | ug/L   |  |
| Hexachlorobutadiene          | 0.2500  | 0.500  | 0.150 | ug/L   |  |
| Isopropylbenzene (Cumene)    | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Methylene chloride           | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Methyl-t-butyl ether         | 0.500U  | 1.00   | 0.310 | ug/L   |  |
| Naphthalene                  | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| n-Butylbenzene               | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| n-Propylbenzene              | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| o-Xylene                     | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| P & M -Xylene                | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| sec-Butylbenzene             | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Styrene                      | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| tert-Butylbenzene            | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Tetrachloroethene            | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Toluene                      | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| trans-1,2-Dichloroethene     | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| trans-1,3-Dichloropropene    | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Trichloroethene              | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Trichlorofluoromethane       | 0.250U  | 0.500  | 0.150 | ug/L   |  |
| Vinyl chloride               | 0.200U  | 0.400  | 0.120 | ug/L   |  |
| Surrogates                   |         |        |       |        |  |
| 1,2-Dichloroethane-D4 (surr) | 108     | 70-130 |       | %      |  |
| 4-Bromofluorobenzene (surr)  | 98.5    | 70-130 |       | %      |  |
| Toluene-d8 (surr)            | 98.6    | 70-130 |       | %      |  |
|                              |         |        |       |        |  |

## **Batch Information**

Analytical Batch: VMS16975 Analytical Method: EPA 524.2 Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 7/20/2017 4:03:00PM Prep Batch: VXX30937 Prep Method: SW5030B Prep Date/Time: 7/20/2017 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Drinking Water

Print Date: 07/25/2017 4:35:20PM

SGS North America Inc.



## Blank Spike Summary

Blank Spike ID: LCS for HBN 1174480 [VXX30937] Blank Spike Lab ID: 1400364 Date Analyzed: 07/20/2017 18:34 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30937] Spike Duplicate Lab ID: 1400365 Matrix: Drinking Water

QC for Samples: 1174480009, 1174480010

## Results by EPA 524.2

|                             |       | Blank Spike | e (ug/L)       | Spike Duplicate (ug/L) |        |                |            |                |        |
|-----------------------------|-------|-------------|----------------|------------------------|--------|----------------|------------|----------------|--------|
| Parameter                   | Spike | Result      | <u>Rec (%)</u> | <u>Spike</u>           | Result | <u>Rec (%)</u> | CL         | <u>RPD (%)</u> | RPD CL |
| 1,1,1,2-Tetrachloroethane   | 30    | 31.7        | 106            | 30                     | 31.5   | 105            | (70-130)   | 0.52           | (< 30) |
| 1,1,1-Trichloroethane       | 30    | 31.3        | 104            | 30                     | 30.6   | 102            | (70-130)   | 2.30           | (< 30) |
| 1,1,2,2-Tetrachloroethane   | 30    | 29.2        | 97             | 30                     | 29.5   | 99             | (70-130)   | 1.10           | (< 30) |
| 1,1,2-Trichloroethane       | 30    | 31.1        | 104            | 30                     | 31.4   | 105            | (70-130)   | 1.00           | (< 30) |
| 1,1-Dichloroethane          | 30    | 30.1        | 100            | 30                     | 29.5   | 98             | (70-130)   | 2.00           | (< 30) |
| 1,1-Dichloroethene          | 30    | 30.4        | 101            | 30                     | 29.0   | 97             | (70-130)   | 4.60           | (< 30) |
| 1,1-Dichloropropene         | 30    | 31.6        | 105            | 30                     | 31.0   | 103            | (70-130)   | 2.10           | (< 30) |
| 1,2,3-Trichlorobenzene      | 30    | 29.0        | 97             | 30                     | 30.9   | 103            | (70-130)   | 6.30           | (< 30) |
| 1,2,3-Trichloropropane      | 30    | 29.4        | 98             | 30                     | 29.4   | 98             | (70-130)   | 0.02           | (< 30) |
| 1,2,4-Trichlorobenzene      | 30    | 30.1        | 100            | 30                     | 30.7   | 102            | (70-130)   | 2.00           | (< 30) |
| 1,2,4-Trimethylbenzene      | 30    | 31.6        | 105            | 30                     | 31.7   | 106            | (70-130)   | 0.11           | (< 30) |
| 1,2-Dibromo-3-chloropropane | 30    | 30.1        | 100            | 30                     | 31.3   | 104            | (70-130)   | 3.80           | (< 30) |
| 1,2-Dibromoethane           | 30    | 31.4        | 105            | 30                     | 32.0   | 107            | (70-130)   | 2.00           | (< 30) |
| 1,2-Dichlorobenzene         | 30    | 29.5        | 99             | 30                     | 29.8   | 100            | (70-130)   | 1.00           | (< 30) |
| 1,2-Dichloroethane          | 30    | 29.2        | 97             | 30                     | 28.8   | 96             | (70-130)   | 1.50           | (< 30) |
| 1,2-Dichloropropane         | 30    | 30.5        | 102            | 30                     | 30.8   | 103            | (70-130)   | 0.91           | (< 30) |
| 1,3,5-Trimethylbenzene      | 30    | 31.1        | 104            | 30                     | 31.1   | 104            | (70-130)   | 0.06           | (< 30) |
| 1,3-Dichlorobenzene         | 30    | 30.0        | 100            | 30                     | 30.3   | 101            | (70-130)   | 1.20           | (< 30) |
| 1,3-Dichloropropane         | 30    | 30.8        | 103            | 30                     | 31.3   | 104            | (70-130)   | 1.60           | (< 30) |
| 1,4-Dichlorobenzene         | 30    | 29.7        | 99             | 30                     | 30.3   | 101            | (70-130)   | 1.90           | (< 30) |
| 2,2-Dichloropropane         | 30    | 30.4        | 101            | 30                     | 29.4   | 98             | (70-130)   | 3.40           | (< 30) |
| 2-Chlorotoluene             | 30    | 30.3        | 101            | 30                     | 30.6   | 102            | (70-130)   | 1.10           | (< 30) |
| 4-Chlorotoluene             | 30    | 30.8        | 103            | 30                     | 31.0   | 103            | (70-130)   | 0.38           | (< 30) |
| 4-Isopropyltoluene          | 30    | 31.7        | 106            | 30                     | 31.2   | 104            | (70-130)   | 1.50           | (< 30) |
| Benzene                     | 30    | 30.7        | 102            | 30                     | 30.4   | 101            | (70-130)   | 0.86           | (< 30) |
| Bromobenzene                | 30    | 29.2        | 97             | 30                     | 29.6   | 99             | (70-130)   | 1.30           | (< 30) |
| Bromochloromethane          | 30    | 31.5        | 105            | 30                     | 31.0   | 103            | (70-130)   | 1.70           | (< 30) |
| Bromodichloromethane        | 30    | 31.9        | 106            | 30                     | 31.3   | 104            | (70-130)   | 1.90           | (< 30) |
| Bromoform                   | 30    | 33.1        | 110            | 30                     | 33.2   | 111            | (70-130)   | 0.40           | (< 30) |
| Bromomethane                | 30    | 47.0        | 157            | * 30                   | 41.9   | 140            | * (70-130) | 11.40          | (< 30) |
| Carbon tetrachloride        | 30    | 33.0        | 110            | 30                     | 31.6   | 105            | (70-130)   | 4.30           | (< 30) |
| Chlorobenzene               | 30    | 28.9        | 96             | 30                     | 29.0   | 97             | (70-130)   | 0.35           | (< 30) |
| Chloroethane                | 30    | 35.9        | 120            | 30                     | 31.4   | 105            | (70-130)   | 13.10          | (< 30) |
| Chloroform                  | 30    | 29.3        | 98             | 30                     | 28.6   | 95             | (70-130)   | 2.30           | (< 30) |
|                             |       |             |                |                        |        |                |            |                |        |

Print Date: 07/25/2017 4:35:23PM

SGS North America Inc.


#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1174480 [VXX30937] Blank Spike Lab ID: 1400364 Date Analyzed: 07/20/2017 18:34 Spike Duplicate ID: LCSD for HBN 1174480 [VXX30937] Spike Duplicate Lab ID: 1400365 Matrix: Drinking Water

QC for Samples: 1174480009, 1174480010

#### Results by EPA 524.2

|                              |       | Blank Spike | e (ug/L)       |              | Spike Dupli   | cate (ug/L)    |            |                |        |
|------------------------------|-------|-------------|----------------|--------------|---------------|----------------|------------|----------------|--------|
| Parameter                    | Spike | Result      | <u>Rec (%)</u> | <u>Spike</u> | <u>Result</u> | <u>Rec (%)</u> | CL         | <u>RPD (%)</u> | RPD CL |
| Chloromethane                | 30    | 38.1        | 127            | 30           | 41.8          | 139            | * (70-130) | 9.30           | (< 30) |
| cis-1,2-Dichloroethene       | 30    | 30.2        | 101            | 30           | 29.8          | 99             | (70-130)   | 1.60           | (< 30) |
| cis-1,3-Dichloropropene      | 30    | 32.4        | 108            | 30           | 32.1          | 107            | (70-130)   | 0.97           | (< 30) |
| Dibromochloromethane         | 30    | 32.4        | 108            | 30           | 32.7          | 109            | (70-130)   | 0.92           | (< 30) |
| Dibromomethane               | 30    | 30.1        | 100            | 30           | 29.7          | 99             | (70-130)   | 1.30           | (< 30) |
| Dichlorodifluoromethane      | 30    | 46.1        | 154            | * 30         | 44.4          | 148            | * (70-130) | 3.80           | (< 30) |
| Ethylbenzene                 | 30    | 30.3        | 101            | 30           | 30.5          | 102            | (70-130)   | 0.65           | (< 30) |
| Hexachlorobutadiene          | 30    | 31.5        | 105            | 30           | 29.4          | 98             | (70-130)   | 6.90           | (< 30) |
| Isopropylbenzene (Cumene)    | 30    | 31.8        | 106            | 30           | 31.8          | 106            | (70-130)   | 0.07           | (< 30) |
| Methylene chloride           | 30    | 30.3        | 101            | 30           | 29.6          | 99             | (70-130)   | 2.50           | (< 30) |
| Methyl-t-butyl ether         | 45    | 49.7        | 110            | 45           | 49.8          | 111            | (70-130)   | 0.27           | (< 30) |
| Naphthalene                  | 30    | 29.2        | 97             | 30           | 32.9          | 110            | (70-130)   | 12.10          | (< 30) |
| n-Butylbenzene               | 30    | 33.2        | 111            | 30           | 32.0          | 107            | (70-130)   | 3.60           | (< 30) |
| n-Propylbenzene              | 30    | 30.8        | 103            | 30           | 30.8          | 103            | (70-130)   | 0.26           | (< 30) |
| o-Xylene                     | 30    | 31.1        | 104            | 30           | 31.3          | 104            | (70-130)   | 0.69           | (< 30) |
| P & M -Xylene                | 60    | 62.5        | 104            | 60           | 63.0          | 105            | (70-130)   | 0.73           | (< 30) |
| sec-Butylbenzene             | 30    | 31.9        | 106            | 30           | 31.3          | 104            | (70-130)   | 1.90           | (< 30) |
| Styrene                      | 30    | 32.6        | 109            | 30           | 32.7          | 109            | (70-130)   | 0.56           | (< 30) |
| tert-Butylbenzene            | 30    | 31.7        | 106            | 30           | 31.3          | 104            | (70-130)   | 1.20           | (< 30) |
| Tetrachloroethene            | 30    | 30.1        | 100            | 30           | 29.9          | 100            | (70-130)   | 0.69           | (< 30) |
| Toluene                      | 30    | 28.0        | 93             | 30           | 27.8          | 93             | (70-130)   | 0.60           | (< 30) |
| trans-1,2-Dichloroethene     | 30    | 30.0        | 100            | 30           | 29.3          | 98             | (70-130)   | 2.20           | (< 30) |
| trans-1,3-Dichloropropene    | 30    | 31.6        | 105            | 30           | 32.2          | 107            | (70-130)   | 1.70           | (< 30) |
| Trichloroethene              | 30    | 31.0        | 103            | 30           | 30.3          | 101            | (70-130)   | 2.20           | (< 30) |
| Trichlorofluoromethane       | 30    | 33.2        | 111            | 30           | 31.6          | 105            | (70-130)   | 4.90           | (< 30) |
| Vinyl chloride               | 30    | 34.9        | 116            | 30           | 34.9          | 116            | (70-130)   | 0.25           | (< 30) |
| Surrogates                   |       |             |                |              |               |                |            |                |        |
| 1,2-Dichloroethane-D4 (surr) | 30    | 98.6        | 99             | 30           | 96.8          | 97             | (70-130)   | 1.90           |        |
| 4-Bromofluorobenzene (surr)  | 30    | 98          | 98             | 30           | 99            | 99             | (70-130)   | 1.00           |        |
| Toluene-d8 (surr)            | 30    | 98.6        | 99             | 30           | 98.1          | 98             | (70-130)   | 0.54           |        |

Print Date: 07/25/2017 4:35:23PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| SGS |  |
|-----|--|
|     |  |

| I                                                                                                  |                                          | _                                |                                                                                                                            |                                         |                |        |
|----------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------|
| Blank Spike Summary                                                                                |                                          |                                  |                                                                                                                            |                                         |                |        |
| Blank Spike ID: LCS for H<br>Blank Spike Lab ID: 14003<br>Date Analyzed: 07/20/20                  | BN 1174480 [VXX30937]<br>364<br>17 18:34 | Spi<br>[VX<br>Spi<br>Ma          | ke Duplicate ID: LCS<br>[X30937]<br>ke Duplicate Lab ID:<br>trix: Drinking Water                                           | D for HBN 1<br>1400365                  | 174480         |        |
| QC for Samples: 11744                                                                              | 80009, 1174480010                        |                                  |                                                                                                                            |                                         |                |        |
| Results by EPA 524.2                                                                               |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    | Blank Spike                              | e (%)                            | Spike Duplicate (%)                                                                                                        |                                         |                |        |
| Parameter                                                                                          | Spike <u>Result</u>                      | Rec (%) Spike                    | Result Rec (%)                                                                                                             | <u>CL</u>                               | <u>RPD (%)</u> | RPD CL |
| Batch Information                                                                                  |                                          |                                  |                                                                                                                            |                                         |                |        |
| Analytical Batch: VMS1697<br>Analytical Method: EPA 52<br>Instrument: VPA 780/5975<br>Analyst: NRB | 75<br>14.2<br>GC/MS                      | Pre<br>Pre<br>Pre<br>Spil<br>Dup | p Batch: VXX30937<br>p Method: SW5030B<br>p Date/Time: 07/20/201<br>ke Init Wt./Vol.: 30 ug/L<br>pe Init Wt./Vol.: 30 ug/L | 7 06:00<br>Extract Vol:<br>Extract Vol: | 5 mL<br>5 mL   |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    |                                          |                                  |                                                                                                                            |                                         |                |        |
| Print Date: 07/25/2017 4:35:23PM                                                                   |                                          |                                  |                                                                                                                            |                                         |                |        |
|                                                                                                    | 200 West Potter                          | Drive Anchorage, Ak              | ( 95518                                                                                                                    |                                         |                |        |

# SGS

#### Method Blank

Blank ID: MB for HBN 1763768 [XXX/37897] Blank Lab ID: 1398443 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1174480001, 1174480002, 1174480003, 1174480004, 1174480005, 1174480006, 1174480007, 1174480008

#### Results by AK102 Results LOQ/CL <u>Units</u> Parameter DL **Diesel Range Organics** 0.0750U 0.150 0.0450 mg/L Surrogates 5a Androstane (surr) 82.2 60-120 % **Batch Information** Analytical Batch: XFC13575 Prep Batch: XXX37897 Analytical Method: AK102 Prep Method: SW3520C Instrument: Agilent 7890B F Prep Date/Time: 7/17/2017 9:37:43AM Analyst: KMD Prep Initial Wt./Vol.: 1000 mL Analytical Date/Time: 7/20/2017 8:44:00PM Prep Extract Vol: 1 mL

Print Date: 07/25/2017 4:35:24PM



|                                                                                         |                  |             | _                                                       |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------|-------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------------------------|----------------|--------|--|--|--|--|
| Blank Spike Summary                                                                     |                  |             | _                                                       |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
| Blank Spike ID: LCS for HBN<br>Blank Spike Lab ID: 1398444<br>Date Analyzed: 07/20/2017 | 1174480<br>20:54 | [XXX3789]   | 7]                                                      | Spike Duplicate ID: LCSD for HBN 1174480[XXX37897]Spike Duplicate Lab ID: 1398445Matrix: Water (Surface, Eff., Ground) |                                |                              |                                                        |                |        |  |  |  |  |
| QC for Samples: 11744800<br>11744800                                                    | 01, 117448<br>08 | 30002, 1174 | 480003, 1174480004, 1174480005, 1174480006, 1174480007, |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
| Results by AK102                                                                        |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  | Blank Spike | (mg/L)                                                  | \$                                                                                                                     | Spike Dupli                    | cate (mg/L)                  |                                                        |                |        |  |  |  |  |
| Parameter                                                                               | Spike            | Result      | <u>Rec (%)</u>                                          | Spike                                                                                                                  | Result                         | <u>Rec (%)</u>               | <u>CL</u>                                              | <u>RPD (%)</u> | RPD CL |  |  |  |  |
| Diesel Range Organics                                                                   | 5                | 4.70        | 94                                                      | 5                                                                                                                      | 4.89                           | 98                           | (75-125)                                               | 4.10           | (< 20) |  |  |  |  |
| Surrogates                                                                              |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
| 5a Androstane (surr)                                                                    | 0.1              | 99.3        | 99                                                      | 0.1                                                                                                                    | 104                            | 104                          | (60-120)                                               | 4.20           |        |  |  |  |  |
| Batch Information                                                                       |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
| Analytical Batch: XFC13575                                                              |                  |             |                                                         | Pre                                                                                                                    | p Batch: X                     | XX37897                      |                                                        |                |        |  |  |  |  |
| Analytical Method: AK102                                                                |                  |             |                                                         | Pre                                                                                                                    | p Method:                      | SW3520C                      |                                                        |                |        |  |  |  |  |
| Instrument: Agilent 7890B F                                                             |                  |             | Prep Date/Time: 07/17/2017 09:37                        |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
| Analyst: KMD                                                                            |                  |             |                                                         | Spi                                                                                                                    | ke Init Wt./\<br>be Init Wt /\ | /ol.: 5 mg/L<br>/ol.: 5 mg/L | <ul> <li>Extract Vol:</li> <li>Extract Vol:</li> </ul> | 1 mL<br>1 ml   |        |  |  |  |  |
|                                                                                         |                  |             |                                                         | - 1                                                                                                                    |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |
|                                                                                         |                  |             |                                                         |                                                                                                                        |                                |                              |                                                        |                |        |  |  |  |  |

# SGS

#### Method Blank

Blank ID: MB for HBN 1763768 [XXX/37897] Blank Lab ID: 1398443 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1174480001, 1174480002, 1174480003, 1174480004, 1174480005, 1174480006, 1174480007, 1174480008

| <u>Results</u> | LOQ/CL                            | <u>DL</u>                                             | <u>Units</u>                                                                                                                                                                                 |                                                                                                             |
|----------------|-----------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0.0625U        | 0.125                             | 0.0375                                                | mg/L                                                                                                                                                                                         |                                                                                                             |
|                |                                   |                                                       |                                                                                                                                                                                              |                                                                                                             |
| 85.2           | 60-120                            |                                                       | %                                                                                                                                                                                            |                                                                                                             |
| 5              | Prep Ba                           | tch: XXX37897                                         |                                                                                                                                                                                              |                                                                                                             |
|                | Prep Me                           | thod: SW3520C                                         |                                                                                                                                                                                              |                                                                                                             |
| -              | Prep Da                           | te/Time: 7/17/20                                      | 017 9:37:43AM                                                                                                                                                                                |                                                                                                             |
|                |                                   |                                                       |                                                                                                                                                                                              |                                                                                                             |
|                | <u>Results</u><br>0.0625U<br>85.2 | ResultsLOQ/CL0.0625U0.12585.260-120Prep Ba<br>Prep Me | Results         LOQ/CL         DL           0.0625U         0.125         0.0375           85.2         60-120           Prep Batch:         XXX37897           Prep Method:         SW3520C | Results     LOQ/CL     DL     Units       0.0625U     0.125     0.0375     mg/L       85.2     60-120     % |

Print Date: 07/25/2017 4:35:27PM



|                                                                                         |                  |                       | -                                                       |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|--------------------------|----------------|--------|--|--|--|--|
| Blank Spike Summary                                                                     |                  |                       | _                                                       |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
| Blank Spike ID: LCS for HBN<br>Blank Spike Lab ID: 1398444<br>Date Analyzed: 07/20/2017 | 1174480<br>20:54 | [XXX3789 <sup>-</sup> | 7]                                                      | Spike Duplicate ID: LCSD for HBN 1174480[XXX37897]Spike Duplicate Lab ID: 1398445Matrix: Water (Surface, Eff., Ground) |                             |                                      |                          |                |        |  |  |  |  |
| QC for Samples: 11744800<br>11744800                                                    | 01, 117448<br>08 | 30002, 1174           | 480003, 1174480004, 1174480005, 1174480006, 1174480007, |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
| Results by AK103                                                                        |                  |                       |                                                         |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
|                                                                                         |                  | Blank Spike           | e (mg/L)                                                | \$                                                                                                                     | Spike Dupli                 | cate (mg/L)                          |                          |                |        |  |  |  |  |
| <u>Parameter</u>                                                                        | <u>Spike</u>     | Result                | <u>Rec (%)</u>                                          | Spike                                                                                                                  | Result                      | <u>Rec (%)</u>                       | <u>CL</u>                | <u>RPD (%)</u> | RPD CL |  |  |  |  |
| Residual Range Organics                                                                 | 5                | 4.85                  | 97                                                      | 5                                                                                                                      | 5.15                        | 103                                  | (60-120)                 | 5.90           | (< 20) |  |  |  |  |
| Surrogates                                                                              |                  |                       |                                                         |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
| n-Triacontane-d62 (surr)                                                                | 0.1              | 90.6                  | 91                                                      | 0.1                                                                                                                    | 95.1                        | 95                                   | (60-120)                 | 4.80           |        |  |  |  |  |
| Batch Information                                                                       |                  |                       |                                                         |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
| Analytical Batch: XFC13575                                                              |                  |                       |                                                         | Pre                                                                                                                    | p Batch: X                  | XX37897                              |                          |                |        |  |  |  |  |
| Analytical Method: AK103                                                                |                  |                       |                                                         | Pre                                                                                                                    | p Method:                   | SW3520C                              |                          |                |        |  |  |  |  |
| Instrument: Agilent 7890B F                                                             |                  |                       |                                                         | Pre                                                                                                                    | p Date/Tim<br>ke Init Wt /\ | e: <b>07/17/20</b> ′<br>/ol : 5 ma/l | 17 09:37<br>Extract Vol: | 1 ml           |        |  |  |  |  |
| Analyst. Nie                                                                            |                  |                       |                                                         | Du                                                                                                                     | be Init Wt./\               | /ol.: 5 mg/L                         | Extract Vol:             | 1 mL           |        |  |  |  |  |
|                                                                                         |                  |                       |                                                         |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |
|                                                                                         |                  |                       |                                                         |                                                                                                                        |                             |                                      |                          |                |        |  |  |  |  |



# SGS North America Inc. CHAIN OF CUSTODY RECORD



**Locations Nationwide** ıska Maryland w Jersey New York rth Carolina Indiana ∋st Virgina Kentucky

www.us.sgs.com

|                                                                                                               | CLIENT:                 | BGES                   |                  |               |                           |          | Instr             | ructio                                                    | ns:                               | Sectio                                                          | ons 1                                         | - 5 r        | nust          | be fi   | lled o   | out.              |              |                      |   |
|---------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------|---------------|---------------------------|----------|-------------------|-----------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------|---------------|---------|----------|-------------------|--------------|----------------------|---|
|                                                                                                               | CONTACT:                | PHO                    | ONE #:           |               |                           |          | On                | <u>nissic</u><br>T                                        | ons n                             | nay de                                                          | elay t                                        | <u>ne or</u> | <u>nset (</u> | or an   | aivsis   | 5.                |              | Page of              |   |
|                                                                                                               |                         | William Schmaltz       | 907·             | -644-2900     |                           | Sec      | tion 3            |                                                           |                                   |                                                                 |                                               | Preser       | vative        |         |          |                   |              |                      |   |
| n 1                                                                                                           | PROJECT                 | Proje                  | ect/             |               |                           | #        |                   |                                                           |                                   | 7                                                               | /                                             | /            | /             |         | /        | /                 | /            | ///                  |   |
| ∋ctic                                                                                                         |                         | Custom Truck & PER     | MIT#:            |               |                           | c        | Pres:             |                                                           |                                   |                                                                 |                                               |              |               |         | /        |                   | /            |                      |   |
| လိ                                                                                                            |                         | SOBOLEES<br>Di E-M     |                  |               |                           | O<br>N   | Com               | $\bigwedge^{\ast}$                                        | $\overline{\langle \psi \rangle}$ | $\leftarrow$                                                    | $\overset{\text{\tiny (h)}}{\longrightarrow}$ | <u> </u>     |               |         |          |                   | $\leftarrow$ |                      |   |
|                                                                                                               |                         | Javne Martin           | AIL.             |               |                           | Т        | Grab              |                                                           |                                   |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
|                                                                                                               | INVOICE TO              | : QU                   | OTE #:           | Oper          | n                         |          | м                 | )3) L'                                                    | <b>a</b>                          |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
|                                                                                                               |                         | BGES P.O               | . #:             |               |                           | N        | (Multi-<br>incre- | AKIG                                                      | EX<br>8021                        |                                                                 | 4.2)                                          |              |               |         |          |                   |              |                      |   |
|                                                                                                               | RESERVED<br>for lab use | SAMPLE IDENTIFICATION  | DATE<br>mm/dd/yy | TIME<br>HH:MM | MATRIX/<br>MATRIX<br>CODE | R<br>S   | mental)           | DRO/RR<br>(AK102/                                         | GRO/BT<br>(AK101//                |                                                                 | VOC (52                                       |              | i i           |         |          |                   |              | REMARKS/<br>LOC ID   |   |
|                                                                                                               | ()A-E                   | MW12-0712              | 07/12/17         | 10:27         | W                         | 5        | 6                 | Х                                                         | X                                 |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
|                                                                                                               | 2 A-E                   | MW5-0712               | 07/12/17         | 12:32         | W                         | 5        | 6                 | X                                                         | X                                 |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
| 2                                                                                                             | 3A-E                    | MW14 - 07/2            | 07/12/17         | 15:20         | Ŵ                         | 5        | 6                 | X                                                         | ×                                 | ļ                                                               |                                               |              |               |         |          |                   |              |                      |   |
| tion                                                                                                          | A-E                     | MW16-0712              | 07/12/17         | 15:30         | W                         | 5        | 6                 | X                                                         | X                                 |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
| Sec                                                                                                           | (5) A -E                | MWY - 0+13             | 07/13/14         | 09:35         | W                         | 5        | G_                | IХ-                                                       | X                                 |                                                                 |                                               |              |               |         |          |                   |              |                      | _ |
|                                                                                                               | <u>(6) A-E</u>          | MIN 3- UTIS            | 07113/14         | 11:18         |                           | 2        | 0                 | $\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right $ | X                                 |                                                                 |                                               |              |               |         |          |                   |              |                      | _ |
|                                                                                                               | (1) H - U               | $\frac{1}{100} = 0715$ | 07/13/17         | 14:00         | in/                       | 5        |                   | ₩\$                                                       | $\overline{\mathbf{x}}$           |                                                                 |                                               |              |               |         |          |                   |              |                      |   |
|                                                                                                               | DA-T                    | Trip block             | v 1/13/17        | 1-1.00        | 61                        | 39       |                   |                                                           | X                                 |                                                                 | V                                             |              |               |         |          |                   |              |                      | - |
|                                                                                                               |                         | Trin blook             |                  |               |                           | 3        |                   |                                                           |                                   |                                                                 |                                               |              |               |         |          |                   |              |                      | 7 |
|                                                                                                               | Relinguishe             | ed By: (1)             | Date             | Time          | Received By               | /:       | 1                 |                                                           | L                                 | Sect                                                            | ion 4                                         | DOD          | Projec        | ct? Ye  | s No     | Data              | a Delive     | rable Requirements   | ; |
|                                                                                                               | lan                     | M                      | 7/14/17          | 11:30         | )                         |          | )                 |                                                           |                                   | Cool                                                            | er ID:                                        |              |               |         | <u> </u> | le                | se l         | 2                    |   |
|                                                                                                               | Relinquishe             | d By: (2)              | Date             | Time          | Received By               | ï        |                   |                                                           |                                   | Reque                                                           | sted Tu                                       | irnarou      | ind Tim       | ne and/ | or Spec  | cial Ins          | tructior     | าร:                  |   |
| ы                                                                                                             |                         |                        |                  |               |                           |          |                   |                                                           |                                   |                                                                 | 0                                             | 1_           |               |         |          |                   |              |                      |   |
| ecti                                                                                                          | Relinquishe             | d By: (3)              | Date             | Time          | Received By               | /:       |                   |                                                           |                                   |                                                                 | <u> </u>                                      | <u> </u>     | <u>Y</u>      |         |          |                   |              |                      |   |
| 0)                                                                                                            | :                       |                        |                  |               |                           |          |                   |                                                           |                                   | Temp                                                            | Blank °                                       | 'C:          | 5.7           | -D      | 36       | Cha               | ain of C     | ustody Seal: (Circle | ) |
|                                                                                                               | Relinquishe             | d By: (4)              | Date             | Time          | Received Fo               | or Labor | atory By          |                                                           |                                   |                                                                 |                                               | or Aml       | bient [       | 1       |          | INT               | АСТ          |                      | 刁 |
|                                                                                                               |                         | Ć                      | 7/14/17          | 11:28         | CINI                      | _0.      | n.5               | æ je                                                      | 2                                 | (See attached Sample Receipt Form) (See attached Sample Receipt |                                               |              |               |         |          | Sample Receipt Fo | rm)          |                      |   |
| [ ] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 <u>http://www.sgs.con</u> |                         |                        |                  |               |                           |          |                   |                                                           | s.com/i                           | terms-a                                                         | nd-con                                        | ditions      |               | (       | 417      |                   |              |                      |   |

[ ] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [ ] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

46 of 50 F083-Blank\_COC\_Templates\_2015-03-19

1 1



#### SGS North America Inc. **CHAIN OF CUSTODY RECOR**



**Locations Nationwide** Alaska Maryland New Jersey New York North Carolina Indiana West Virgina Kentucky

www.us.sgs.com

| CLIENT:                 | BGES                                      |                       |                        |                           |             | Insti             | uctio               | ns:                                       | Secti | ons 1    | - 5 I          | must                       | be fi                | lled o  | ut.       |          | 0 1                                            |
|-------------------------|-------------------------------------------|-----------------------|------------------------|---------------------------|-------------|-------------------|---------------------|-------------------------------------------|-------|----------|----------------|----------------------------|----------------------|---------|-----------|----------|------------------------------------------------|
| CONTACT:                | PH<br>William Schmaltz                    | ONE #:<br>907         | -644-2900              |                           | Sec         | tion 3            |                     | <u>///5/11</u>                            |       |          | Prese          | vative                     |                      |         | <b>).</b> |          | Page 2 of 2                                    |
| PROJECT<br>NAME:        | Proj<br>Pws<br>Pws<br>Robblees            | ect/<br>SID/<br>MIT#: |                        |                           | #<br>C<br>O | Pres:<br>Type:    | HE                  | HC                                        | ./    | HC       |                |                            |                      |         |           |          |                                                |
| REPORTS TO              | D: E-N                                    | 1AIL:                 |                        |                           | N<br>T      | Comp              |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
|                         | Jayne Martin                              | OTF #·                | Ope                    | n                         | Â           | Grab              |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
|                         | BGES P.O. #:                              |                       |                        |                           | N           | (Multi-<br>incre- | K10                 | 0<br>(K103<br>(K103<br>021B)              |       | 5)       | -              |                            |                      |         |           |          |                                                |
| RESERVED<br>for lab use | SAMPLE IDENTIFICATION                     | DATE<br>mm/dd/yy      | TIME<br>HH:MM          | MATRIX/<br>MATRIX<br>CODE | E<br>R<br>S | mental)           | DRO/RR(<br>(AK102/A | GRO/BTE<br>(AK101/8                       | •     | VOC (524 |                |                            |                      |         |           |          | REMARKS/<br>LOC ID                             |
| (1) A -C                | FW1-0713                                  | 07/13/17              | 15:20                  | W                         | 3           | G                 |                     |                                           |       | X        |                |                            |                      |         |           |          |                                                |
|                         |                                           |                       |                        |                           |             |                   |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
| <u>v</u>                |                                           |                       |                        |                           |             | -                 |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
| 5                       |                                           |                       |                        |                           |             |                   |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
| 8                       |                                           |                       |                        |                           |             |                   |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
|                         |                                           |                       |                        |                           |             |                   |                     |                                           |       | ·        |                |                            |                      |         |           |          |                                                |
|                         |                                           |                       |                        |                           |             |                   |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
|                         |                                           |                       |                        |                           |             |                   |                     |                                           |       |          |                |                            |                      |         |           |          |                                                |
| Dalinguiche             | d Put (1)                                 | Dete                  | Time                   | Bosoived B                |             |                   |                     |                                           | Sec   | tion 4   | DOD            | )<br>Projec                | ct? Ye               | s (No)  | Dat       | a Delive | erable Requirements:                           |
|                         | MAN NOT                                   | 7/14/17               | 1(:28                  | neceiveu D                | y.          |                   |                     |                                           | Coo   | ler ID:  | ]              | -                          |                      |         | L         | .eve     | 12                                             |
| Relinquished            | d <i>j</i> Śy: (2)                        | Date                  | Time                   | Received B                | y:          |                   |                     |                                           | Reque | ested T  | urnarou<br>I A | und Tin                    | ne and               | or Spec | cial Ins  | structio | ns:                                            |
| Relinquished            | d By: (3)                                 | Date                  | Time                   | Received B                | y:          |                   |                     |                                           |       |          | 10             | 00<br>E 7                  | «۲ <u>γ</u><br>۲۰۰۰  | 2/      | Ch        | ain of C | ustody Seal: (Circle)                          |
| Relinquished            | Relinquished By: (4) Date Time Received I |                       | Received Fo            | or Labo                   | ratory By   |                   |                     | Temp Blank °C:7. ≠ [)36<br>or Ambient [ ] |       |          |                |                            | INTACT BROKEN ABSENT |         |           |          |                                                |
| [ ] 200 W P             | Potter Drive Anchorage AK 90              | 1//19/17              | (1.20<br>7) 562-2343 F | ax: (907) 561             | -5301       | mje               | <u> </u>            |                                           | (See  | e attach | ed San         | n <b>ple Re</b><br>terms-a | eceipt F             | Form)   | (See a    | attached | I Sample Receipt Form $\mathcal{H}\mathcal{D}$ |

[ ] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 [ ] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557



e-Sample Receipt Form

SGS Workorder #:

1174480



| Review Criteria                                                 | Condition (Ye | s, No, N/A   | Excepti                | ions Noted       | below                  |
|-----------------------------------------------------------------|---------------|--------------|------------------------|------------------|------------------------|
| Chain of Custody / Temperature Require                          | ments         | Y            | es Exemption permitt   | ted if sampler l | nand carries/delivers. |
| Were Custody Seals intact? Note # & lo                          | cation N/     | Absent       |                        |                  |                        |
| COC accompanied sam                                             | ples?         | 5            |                        |                  |                        |
| N/A **Exemption permitted if ch                                 | nilled & col  | ected <8 hou | rs ago, or for samples | s where chilling | is not required        |
|                                                                 | Ye            | Cooler ID:   | 1                      | @ 5              | .7 °C Therm. ID: D36   |
|                                                                 | N//           | Cooler ID:   |                        | @                | °C Therm. ID:          |
| Temperature blank compliant* (i.e., 0-6 °C after                | CF)? N/       | Cooler ID:   |                        | @                | °C Therm. ID:          |
|                                                                 | N/#           | Cooler ID:   |                        | @                | °C Therm. ID:          |
|                                                                 | N//           | Cooler ID:   |                        | @                | °C Therm. ID:          |
| *If >6°C, were samples collected <8 hours a                     | ago? N/       | Υ.           |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
| If <0°C, were sample containers ice f                           | ree? N/       | <b>N</b>     |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
| If samples received <u>without</u> a temperature blank, the "c  | ooler         |              |                        |                  |                        |
| temperature" will be documented in lieu of the temperature bla  | ank &         |              |                        |                  |                        |
| temp blank nor cooler temp can be obtained, note "ambie         | nt" or        |              |                        |                  |                        |
| "chi                                                            | illed".       |              |                        |                  |                        |
| Note: Identify containers received at non-compliant tempera     | turo          |              |                        |                  |                        |
| Use form FS-0029 if more space is nee                           | eded.         |              |                        |                  |                        |
| Holding Time / Documentation / Sample Condition Reg             | uirement      | Note: Refe   | to form F-083 "Same    | ole Guide" for s | pecific holding times. |
| Were samples received within holding t                          | time? Ye      | 3            | F                      |                  |                        |
|                                                                 |               |              |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
| Do samples match COC** (i.e.,sample IDs,dates/times collect     | ted)? Ye      | 5            |                        |                  |                        |
| **Note: If times differ <1hr, record details & login per 0      | COC.          |              |                        |                  |                        |
| Were analyses requested unambiguous? (i.e., method is specified | ed for Ye     | 5            |                        |                  |                        |
| analyses with >1 option for ana                                 | lysis)        |              |                        |                  |                        |
|                                                                 |               | N            | /A ***Exemption perr   | nitted for meta  | ls (e.g.200.8/6020A).  |
| Were proper containers (type/mass/volume/preservative***)u      | sed? Ye       | \$           |                        |                  |                        |
| Volatile / LL-Hg Regu                                           | irement       | 6            |                        |                  |                        |
| Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with same        | ples? Ye      | 6            |                        |                  |                        |
| Were all water VOA vials free of headspace (i.e., bubbles ≤ 6r  | nm)? Ye       | 5            |                        |                  |                        |
| Were all soil VOAs field extracted with MeOH+E                  | BFB? N/       | <b>\</b>     |                        |                  |                        |
| Note to Client: Any "No", answer above indicates non-           | compliance    | with standa  | d procedures and ma    | y impact data    | quality.               |
| Additional                                                      | notes (if     | applicable   |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |
|                                                                 |               |              |                        |                  |                        |



# Sample Containers and Preservatives

| <u>Container Id</u> | <u>Preservative</u> | <u>Container</u><br><u>Condition</u> | <u>Container Id</u> | <u>Preservative</u> | <u>Container</u><br><u>Condition</u> |
|---------------------|---------------------|--------------------------------------|---------------------|---------------------|--------------------------------------|
| 1174480001-A        | HCL to pH < 2       | ОК                                   | 1174480009-C        | HCL to pH < 2       | ОК                                   |
| 1174480001-B        | HCL to pH < 2       | ОК                                   | 1174480009-D        | HCL to $pH < 2$     | ОК                                   |
| 1174480001-C        | HCL to $pH < 2$     | ОК                                   | 1174480009-E        | HCL to pH < 2       | ОК                                   |
| 1174480001-D        | HCL to pH < 2       | OK                                   | 1174480009-F        | HCL to pH < 2       | ОК                                   |
| 1174480001-E        | HCL to pH < 2       | OK                                   | 1174480009-G        | HCL to pH < 2       | ОК                                   |
| 1174480002-A        | HCL to pH < 2       | ОК                                   | 1174480009-H        | HCL to $pH < 2$     | ОК                                   |
| 1174480002-В        | HCL to pH < 2       | OK                                   | 1174480009-I        | HCL to $pH < 2$     | ОК                                   |
| 1174480002-C        | HCL to pH < 2       | ОК                                   | 1174480010-A        | HCL to $pH < 2$     | ОК                                   |
| 1174480002-D        | HCL to pH < 2       | OK                                   | 1174480010-B        | HCL to $pH < 2$     | ОК                                   |
| 1174480002-E        | HCL to pH < 2       | ОК                                   | 1174480010-C        | HCL to $pH < 2$     | ОК                                   |
| 1174480003-A        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480003-B        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480003-C        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480003-D        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480003-E        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480004-A        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480004-B        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480004-C        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480004-D        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480004-E        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480005-A        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480005-B        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480005-C        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480005-D        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480005-E        | HCL to $pH < 2$     | ОК                                   |                     |                     |                                      |
| 1174480006-A        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480006-В        | HCL to pH < 2       | OK                                   |                     |                     |                                      |
| 1174480006-C        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480006-D        | HCL to pH < 2       | OK                                   |                     |                     |                                      |
| 1174480006-E        | HCL to $pH < 2$     | ОК                                   |                     |                     |                                      |
| 1174480007-A        | HCL to $pH < 2$     | OK                                   |                     |                     |                                      |
| 1174480007-В        | HCL to $pH < 2$     | OK                                   |                     |                     |                                      |
| 1174480007-C        | HCL to pH < 2       | OK                                   |                     |                     |                                      |
| 1174480007-D        | HCL to $pH < 2$     | OK                                   |                     |                     |                                      |
| 1174480007-E        | HCL to pH < 2       | OK                                   |                     |                     |                                      |
| 1174480008-A        | HCL to $pH < 2$     | OK                                   |                     |                     |                                      |
| 1174480008-В        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480008-C        | HCL to $pH < 2$     | ОК                                   |                     |                     |                                      |
| 1174480008-D        | HCL to $pH < 2$     | ОК                                   |                     |                     |                                      |
| 1174480008-E        | HCL to $pH < 2$     | ОК                                   |                     |                     |                                      |
| 1174480009-A        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |
| 1174480009-B        | HCL to pH < 2       | ОК                                   |                     |                     |                                      |

Container Id

<u>Preservative</u>

Container Condition Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

 $\mathsf{OK}\xspace$  - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BGES, INC.

# **APPENDIX C**

# LABORATORY ANALYTICAL DATA QUALITY CONTROL CHECKLIST

## **Laboratory Data Review Checklist**

# Completed By:

Evan Tyler

Title:

Environmental Engineer

Date:

December 7, 2017

CS Report Name:

Groundwater Monitoring Report (July 2017)

Report Date:

January 2018

Consultant Firm:

BGES Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1174480

ADEC File Number:

2100.26.252

Hazard Identification Number:

23658

# 1174480

### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

|                                          | 🖸 Yes                        | 🖸 No                                                    | Comments:                                                                                                               |
|------------------------------------------|------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| b.                                       | If the sa alternate          | amples were trans<br>e laboratory, was                  | sferred to another "network" laboratory or sub-contracted to a the laboratory performing the analyses ADEC CS approved? |
|                                          | 🖸 Yes                        | 🖸 No                                                    | Comments:                                                                                                               |
| Sampl                                    | les were r                   | not transferred to                                      | a network laboratory.                                                                                                   |
| 1                                        |                              |                                                         |                                                                                                                         |
| <u>Chain of</u>                          | Custody                      | <u>(CoC)</u>                                            |                                                                                                                         |
| <u>Chain of</u><br>a. Co                 | Custody                      | (CoC)<br>nation completed,                              | , signed, and dated (including released/received by)?                                                                   |
| <u>Chain of</u><br>a. Co                 | Custody<br>C inform          | (CoC)<br>nation completed,                              | , signed, and dated (including released/received by)?<br>Comments:                                                      |
| <u>Chain of</u><br>a. Co                 | Custody<br>C inform          | (CoC)<br>nation completed,                              | , signed, and dated (including released/received by)?<br>Comments:                                                      |
| <u>Chain of</u><br>a. Co<br><u>b.</u> Co | Custody<br>C inform<br>C Yes | (CoC)<br>nation completed,<br>C No<br>alyses requested? | , signed, and dated (including released/received by)?<br>Comments:                                                      |

- 3. <u>Laboratory Sample Receipt Documentation</u>
  - a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

| 🖸 Yes             | C No                 | Comments:              |                           |                 |
|-------------------|----------------------|------------------------|---------------------------|-----------------|
| The temperatur    | e of the sample      | cooler that contained  | the water samples was     | measured at the |
| laboratory at the | e time of receipt to | be 5.7 degrees Celsius | (°C), which is within the | ADEC prescribed |
| optimal range o   | f 0° to 6° C.        |                        |                           |                 |

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

| 🖸 Yes 🚺 No | Comments: |  |
|------------|-----------|--|
|------------|-----------|--|

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

| 🖸 Yes 🚺 No | Comments: |
|------------|-----------|
|------------|-----------|

No irregularities were noted by the laboratory.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

|    | 🖸 Yes           | 🖸 No                   | Comments: |
|----|-----------------|------------------------|-----------|
|    | Not Applicable  |                        |           |
|    | e. Data quality | or usability affected? |           |
|    |                 |                        | Comments: |
|    | Not Applicable  |                        |           |
| 4. | Case Narrative  |                        |           |
|    | a. Present and  | understandable?        |           |
|    | 🖸 Yes           | C No                   | Comments: |
|    |                 |                        |           |

b. Discrepancies, errors, or QC failures identified by the lab?

Yes No Comments:

The recoveries of dichlorodifluoromethane and bromomethane within the laboratory control spike (LCS) sample associated with Sample FW1-0713, and its associated trip blank, exceeded the laboratory's acceptance range. This indicates a potential for the reported concentration of these analytes to be biased high in the project samples. However, because none of these analytes were detected above their LOQs, and because the LOQs are below their respective ADEC cleanup criteria; it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The recoveries of dichlorodifluoromethane, chloromethane, and bromomethane within the laboratory control spike duplicate (LCSD) sample associated with Sample FW1-0713, and its associated trip blank, exceeded the laboratory's acceptance range. This indicates a potential for the reported concentration of these analytes to be biased high in the project samples. However, because none of these analytes were detected above their LOQs, and because the LOQs are below their respective ADEC cleanup criteria; it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The LOQs for 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2-dibromoethane, and vinyl chloride exceeded the ADEC cleanup criteria in Sample FW-0713 that was analyzed as part of this SGS work order. The affected analytes are shown in italics in Table 2. In these instances, where the analytes were not detected above the LOQs, it cannot be determined if the actual concentrations of those analytes exceed the applicable ADEC cleanup criteria.

c. Were all corrective actions documented?

Yes No Comments:

See 4b, above.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

See 4b, above.

# 1174480

# 5. Samples Results

a. Correct analyses performed/reported as requested on COC?

|                                                             | 🖸 Yes                                                                                                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments:                                                                                                     |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
| b. All                                                      | applicab                                                                                                                             | le holding times met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |
|                                                             | 🖸 Yes                                                                                                                                | 🗖 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
|                                                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
| c. All                                                      | soils rep                                                                                                                            | orted on a dry weight basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is?                                                                                                           |
|                                                             | 🖸 Yes                                                                                                                                | 🖸 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
| Only w                                                      | ater sam                                                                                                                             | ples were submitted on th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is work order.                                                                                                |
| d. Are                                                      | the repo                                                                                                                             | orted LOQs less than the C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cleanup Level or the minimum required detection level for                                                     |
| lite                                                        | project?                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
|                                                             | Yes                                                                                                                                  | 🖸 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
| See 4b,                                                     | Project?<br>Yes<br>above.                                                                                                            | € No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
| See 4b,<br>e. Data                                          | a quality                                                                                                                            | ☑ No or usability affected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments:                                                                                                     |
| See 4b,<br>e. Data                                          | Tyes<br>above.<br>a quality                                                                                                          | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:<br>Comments:                                                                                        |
| See 4b,<br>See 4b,                                          | above.<br>a quality<br>Yes<br>a quality<br>Yes<br>above.                                                                             | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
| See 4b,<br>e. Data<br>See 4b,<br>See 4b,                    | Yes     above.     a quality     Yes     above.     above.     above.                                                                | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:<br>Comments:                                                                                        |
| See 4b,<br>e. Data<br>See 4b,<br><u>OC Sample</u><br>a. Met | Yes     above.     a quality     Yes     above.     above.     es     above.                                                         | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                                                                                     |
| See 4b,<br>e. Data<br>See 4b,<br><u>OC Sample</u><br>a. Met | Yes     above.     a quality     Yes     above.     above.     es     hod Blan i. One :                                              | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> <li>nk</li> <li>method blank reported per</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments:<br>Comments:<br>r matrix, analysis and 20 samples?                                                  |
| See 4b,<br>e. Data<br>See 4b,<br><u>C Sample</u><br>a. Met  | Yes     above.     a quality     Yes     above.     Yes     above.     s     hod Blan     i. One     Yes                             | <ul> <li>No</li> <li>or usability affected?</li> <li>No</li> <li>nk</li> <li>method blank reported per</li> <li>No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments:<br>Comments:<br>r matrix, analysis and 20 samples?<br>Comments:                                     |
| See 4b,<br>e. Data<br>See 4b,<br><u>OC Sample</u><br>a. Met | Yes     above.     a quality     Yes     above.     Yes     above.     s     bod Blan i. One     Yes                                 | <ul> <li>No</li> <li>or usability affected?</li> <li>☑ No</li> <li>nk</li> <li>method blank reported per</li> <li>☑ No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments:<br>Comments:<br>r matrix, analysis and 20 samples?<br>Comments:                                     |
| See 4b,<br>e. Data<br>See 4b,<br><u>OC Sample</u><br>a. Met | Yes     above.     a quality     Yes     above.     a quality     Yes     above.     S     bod Blan     i. One     Yes     ii. All n | <ul> <li>No</li> <li>r or usability affected?</li> <li>☑ No</li> <li>nk<br/>method blank reported per</li> <li>☑ No</li> <li>nethod blank results less the set of the se</li></ul> | Comments:<br>Comments:<br>r matrix, analysis and 20 samples?<br>Comments:<br>han limit of quantitation (LOQ)? |

iii. If above LOQ, what samples are affected?

Comments:

Not Applicable

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

| 0         | Yes           | C No                                              | Comments:                                                                       |
|-----------|---------------|---------------------------------------------------|---------------------------------------------------------------------------------|
| Not Appli | icable        |                                                   |                                                                                 |
| v.        | Data          | quality or usability affec                        | ted?                                                                            |
|           |               |                                                   | Comments:                                                                       |
| Not Appli | icable        |                                                   |                                                                                 |
| b. Labora | atory         | Control Sample/Duplicate                          | e (LCS/LCSD)                                                                    |
| i.        | Orga<br>requ  | nics – One LCS/LCSD re<br>ired per AK methods, LC | eported per matrix, analysis and 20 samples? (LCS/LCSD<br>S required per SW846) |
| O         | Yes           | C No                                              | Comments:                                                                       |
|           |               |                                                   |                                                                                 |
| ii.       | Meta<br>20 sa | lls/Inorganics – one LCS<br>amples?               | and one sample duplicate reported per matrix, analysis and                      |

| 🖸 Yes | 🖸 No | Comments: |
|-------|------|-----------|
|-------|------|-----------|

Metals analysis were not a part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes No Comments:

See 4b, above.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

See 4b, above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

| 🖸 Yes          | 🖸 No | Comments: |
|----------------|------|-----------|
| See 4b, above. |      |           |

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

See 4b, above.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?

| 🖸 Yes | 🖸 No | Comments: |
|-------|------|-----------|
|-------|------|-----------|

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

| 🖸 Yes | C No | Comments: |
|-------|------|-----------|
|       |      |           |

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No Comments:

Not Applicable

iv. Data quality or usability affected?

Comments:

Not Applicable

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water</u> <u>and Soil</u>
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

| 🖸 Yes | 🖸 No | Comments: |
|-------|------|-----------|
|-------|------|-----------|

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes No Comments:

Only one cooler was submitted on this work order.

iii. All results less than LOQ?

Yes No Comments:

iv. If above LOQ, what samples are affected?

Comments:

Not Applicable

v. Data quality or usability affected?

Comments:

No effect on data quality or usability.

- e. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes No Comments:

ii. Submitted blind to lab?

Yes No Comments:

### 1174480

 iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1 =$  Sample Concentration  $R_2 =$  Field Duplicate Concentration

🖸 Yes 🛛 No

Comments:

Sample MW16-0712 was a duplicate of MW14-0712 and MW17-0713 was a duplicate of MW8-0713 and was collected to evaluate field sampling precision. The RPDs between the reported concentrations of several analytes for both sample pairs ranged between 0 and 14 percent, which are below the acceptable limit of 30 percent. This indicates good field precision with respect to sampling procedures. The RPDs between reported concentrations of the remaining analytes could not be calculated, as the analytes were not detected at the laboratory's LOQs in one or both of these sample pairs.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

No effect on data quality or usability.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

Yes No Not Applicable

i. All results less than LOQ?

Yes No Comments:

Not Applicable

ii. If above LOQ, what samples are affected?

Comments:

Not Applicable

iii. Data quality or usability affected?

Comments:

Not Applicable

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No Comments:

BGES, INC.

# APPENDIX D GRAPHS OF HISTORICAL WATER QUALITY DATA









