

SUSTAINABLE ENVIRONMENT, ENERGY, **HEALTH & SAFETY PROFESSIONAL SERVICES**

January 8, 2016

Sent via email to: Accounting Office:

Fairbanks, AK 99709 Gold Hill Store 3040 Parks Highway, Fairbanks, AK 99709

ATTN: Susan Osborne

RE: July 2015 Monitoring Well Sampling at the Gold Hill Store Site

Dear Ms. Osborne

NORTECH is pleased to submit this report summarizing the results of the July 20, 2015 groundwater monitoring event at the Gold Hill Store in Fairbanks, Alaska. The sampling program was carried out to characterize current groundwater concentrations of petroleum hydrocarbons. The scope of this work was outlined in **NORTECH**'s July 2, 2015 proposal and ADEC approved work plan.

Figure 1 shows the location of the site in Fairbanks, Alaska. Figure 2 shows the site with associated buildings, and contaminant concentrations in each tested monitoring well along with a brief history of the latest sampling results.

Table 1 summarizes the 2015 groundwater laboratory results and field duplicate quality control results, while Table 2 show results obtained from the former drinking water well. A copy of the laboratory analysis report for the sampling event and an ADEC QC Checklist for the current sample results are also attached.

Background

AMEC Earth and Environmental Inc. (formerly AGRA Earth & Environmental) identified a petroleum hydrocarbon release from the former gasoline underground storage tanks located on the east side of the store structure in 1994. In 1996, AMEC installed a soil vapor extraction system (SVE) in combination with an air sparge system to remediate impacts to the soil and groundwater. AMEC initiated groundwater monitoring in 1994 and conducted at least 27 groundwater monitoring events throughout the years.

A document search indicates AMEC's remedial activities and monitoring activities were concluded in 2004, with the final analytical results and conclusions published in their 2004 annual report. This report indicated that eight monitoring points had at least one or more contaminants of concern exceeding ADEC's recommended cleanup levels. However, based on a positive natural attenuation analysis, reducing contaminant trends and an encouraging exposure route evaluation, AMEC recommended ADEC consider issuing a No Further Remedial Action Planned (NFRAP) with the stipulations of continued long term monitoring and continued use of carbon filtration on the Gold Hill Store water supply.

The latest document found in the ADEC file presenting results for fieldwork and groundwater monitoring was produced by Shannon and Wilson in November 2006.

3105 Lakeshore Drive Suite A106 Anchorage, AK 99517 907.222.2445

907.222.0915 Fax

2400 College Rd

907.452.5688

907.452.5694 Fax

5438 Shaune Drive Suite B Juneau. AK 99801 907.586.6813 907.586.6819 Fax

www.nortechengr.com

Three monitoring wells and the drinking water supply (MW-2, MW-17, MW-20, and GHW-2) were tested. The results indicated several constituents exceeded ADEC cleanup levels in each groundwater monitoring well. Contaminant concentration trends were inconclusive with some results higher and some results lower than prior year concentrations.

Objectives/Scope of Work

The workplan guiding the current activities intended to identify current groundwater conditions at the Gold Hill Store Site and evaluate alternatives for a long-term strategy for management of long-term concerns. As reported by AMEC in their final 2004 annual report and by Shannon & Wilson in their November 2006 groundwater monitoring report, contamination exceeding ADEC's cleanup levels remained on site. Approximately nine years have passed since conditions have been evaluated, and ADEC has been updated on the current status of the site.

The scope of work and the ADEC work plan for this monitoring event were intended to:

- Document the location and condition of the monitoring wells (MWs)
- Sample and laboratory analysis of groundwater from MW2, MW-9, MW-12, MW16, MW17, MW 20, WW-2 and GHW-if functional
- Prepare a report documenting the sampling event.
- Outline long-term management strategies for contamination remaining at the site.

Methodology

Field sampling was completed in general accordance with the 2002 ADEC UST Procedures Manual Standard Sampling Procedures (SSP), 2010 Draft Field Sampling Guidance (FSG) and the attached standalone groundwater sampling methodologies as detailed in these sections. Prior to purging, static water levels were measured in the monitoring wells and recorded. Purging and sampling was performed with a peristaltic pump and dedicated tubing. During the purging process, field personnel monitored water quality parameters and purge volume. Purging was considered complete when at least three well volumes were removed and/or water quality parameters stabilized. Groundwater quality parameters (including temperature, ORP, pH, conductivity, and dissolved oxygen) were measured within a flow-through cell at three to five minute intervals during well purging. Water quality parameters were considered stabilized when three consecutive measurements indicated that: pH was within 0.1 units, conductivity was within 3 percent, the temperature was within 1 degree Celsius, and turbidity was within 10 percent. However, recharge rates in several wells were not sufficient to meet these criteria and were sampled when sufficient water volume had recharged for collecting samples.

Once groundwater quality stabilization criteria were satisfied, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for laboratory analysis. Samples were placed in clean, laboratory supplied glassware and placed immediately in a cooler with ice for transportation to the laboratory. One trip blank accompanied the samples submitted to the laboratory for analysis of volatile compounds. Samples were delivered under chain-of-custody (COC) to SGS Environmental Services in Anchorage, Alaska for analysis.

Field Activities

NORTECH mobilized to the site on July 20, 2015 to perform groundwater sampling as outlined in the ADEC approved workplan. Each monitoring well was inspected and condition noted.

MW-2 had no well cap and the well casing was frost jacked until the PVC riser touched the bottom of the well monument cover. The cover is in poor condition and needs replacement. Groundwater was detected at 16.44 feet. The recharge rate during purging was not sufficient to purge three well volumes or obtain stable water parameters. The well sampling was undertaken two hours later when sufficient groundwater recharged.

MW-17 had frost jacked, pulling the bottom of the well casing above the water table at the time of the sampling. Near MW-17, MW-19 and MW-18 appeared to be covered by fill used in the in the construction of the caboose drive throughstructuree and could not be sampled. To access groundwater in this area, a sample was collected from AS-8 despite the screened interval being deeper than monitoring wells in this area.

MW-12's well casing frosted jacked three feet above the protective surface casing, leaving the bottom of the well above the groundwater. No appropriate alternative well was located to establish groundwater conditions near the corner of Cornell Correction Center.

The other wells had not frost jacked. MW-20 was in good condition, though the recharge rate was slow. Approximately 4.5 gallons were purged when the well ran dry. The well was sampled fifteen minutes later when the well was sufficiently recharged to collect samples. MW-9 was in good condition and was sampled when groundwater parameters stabilized. WW-2 was fair condition and was sampled when water quality parameters were stable.

GHW-2, the former domestic water supply is no longer used in Gold Hill store's day to day operations. They use hauled water stored in a tank with a new expansion tank and pump. Despite GHW-2 falling into disuse, the system remains and a sample from GHW-2 was collected to compare with previous results. The sample was collected just after the expansion tank using the tanks existing hose barb.

Analysis	MW-2	MW-9	MW-16	AS-8 Sub for MW-17	MW-20	WW-2	GHW-2
GRO by AK101	х	х	Х	Х	Х	Х	
VOCs EPA 8260	Х	Х	Х	Х	Х	Х	
EDB 504.1 BTEX EPA 524.2	Х	Х	Х		Х		Х
Lead, EPA 200.8	х				Х		

NORTECH sampled water at seven monitoring points on site and off site on Cornell Corrections Center Property. The table below shows the analytical method used at each sampling point.

Results with Discussion

Groundwater Contaminant Concentrations

The groundwater contaminant concentrations for the 2015 sampling events are summarized in Table 1 and the results from GHW-2 in Table 2. Historical data in these wells since 2002 are outlined in Figure 2.

<u>MW-2</u> located near the highway had no BTEX compounds detected above the detection limit (DL). GRO compounds were detected below cleanup criteria. Lead and Ethylene Dichloride (EDC) and Ethylene dibromide (EDB) were detected above cleanup levels while Methyl *tert*-butyl ether (MTBE) and Chloroethane was detected at concentrations below ADEC's limits. Concentration trends have shown a general decrease since September 1995. The detected GRO concentration reported in 2015 is below the LOQ from previous non-detect results.

<u>*MW-16*</u>: Results from MW-16 has detectable concentrations of BTEX with benzene concentrations exceeding ADEC cleanup levels. Benzene concentrations have increased since the 2004 sampling event and remain above cleanup levels. MTBE has been detected below ADEC cleanup levels and has a similar concentration as 2004 results. EDC and EDB exceed cleanup levels as they did in 2004. Eleven other VOCs were detected well below ADECs cleanup levels. The contaminant concentrations have fluctuated through time, but GRO and BTEX compounds have decreased since 2003 and significantly decreased since 1995.

<u>*MW-9:*</u> This monitoring well is located in front of the heating oil dispenser. No compounds were detected at this well above the DL. This is consistent with long-term results, suggesting that the 6/4/2003 results were an anomaly or error.

<u>MW-17/AS-8</u> This monitoring well has been damaged by frost jacking and is not usable. AS-8, the nearest well to MW-17, is a former sparge well and was used as a substitute for MW-17. GRO, Benzene and MTBE were detected below ADEC cleanup levels. EDC was detected above cleanup criteria.

<u>*WW-2*</u>: This water well is on the on Cornell Corrections Center Property. GRO was detected well below cleanup levels, while EDC was above the cleanup level. Benzene had been above the cleanup level from 1999 until 2002 and is now below the detection level. Benzene and GRO have fluctuated through time and the long-term trend has been a decline.

<u>*MW-20:*</u> Nine VOC compounds, including GRO were detected well below cleanup levels. Benzene, lead and EDC are above the ADEC cleanup levels, while in 2004, benzene, toluene, GRO, MTBE, EDB and EDC were above cleanup levels. The concentrations all compounds have declined since 2004.

<u>GHW-2</u>; GHW-2 is the former drinking water well that supplied the facility. Because the water had an odor and of poor quality, the water well was replaced by a hauled water system with a holding tank. The well was sampled and found to contain Trichlorofluoromethane (Freon 11) at a concentration three orders of magnitude below the cleanup level. No other VOC was detected above the DL. However, EDB's DL is above the ADEC cleanup level. EDB has not been historically detected at GHW-2. In 2003 and 2004, benzene was detected below the cleanup level.

Data Quality

Laboratory analytical reports and associated Laboratory Data Quality Control forms are presented in the Attachments. The data quality review for this sampling event indicated there were no significant data quality issues associated with this laboratory report.

Other data quality issues, including the calculated relative percent differences (RPDs) for each analyte in the field duplicate pair, are discussed in the attached Laboratory Data Review

Checklist (LDCR). The RPDs are acceptable and no other significant data quality issues that could impact the usability of the data were identified.

While benzene was not detected in the estimated range between the LOQ and the DL, a number of other analytes were detected in this range. These are reported in the laboratory report and in Table 1 with a "J" flag, which means that the concentration reported is estimated because it is below the calibration range of the instrument. While these concentrations are estimated below the LOQ, the results and the LOQ can compared to ADEC cleanup levels. Each of the J-flagged concentrations, and the LOQ for each of these analytes, are well-below applicable ADEC cleanup levels.

Biological Degradation

Except for EDC in MW-16, the historic results while tending to fluctuate, show a general longterm decrease in concentrations for all COCs. AMEC collected a broad array of geochemical parameters in May 2004 to evaluate the biological degradation of contaminants. Manganese, total iron, ferrous iron were elevated at the plume center and gasoline degrading bacteria were detected, suggesting biologic activity is occurring. The general decrease in contaminant concentrations seen in this sample event is most likely a result of continued biological degradation of the contaminants and other natural attenutive processes. AMEC studies also concluded that nitrogen is limited and additions of ammonia and micronutrients may stimulate and increase natural attenuation.

Field parameters collected during this event show the dissolved oxygen is lowest in MW-16 and MW-20, the most contaminated wells and in the plume center. Oxygen reduction potential is positive in all wells with the lowest values at MW-16 (102 mv). While not conclusive, the limited data suggests ongoing biological activity at MW-16 and MW-20.

Future Remediation and Sampling

The soil remediation activities (air sparge, soil vapor extraction and dual phase extraction) conducted from 1995 to 2004 removed a significant contaminant mass. The remaining contamination is expected to decrease in the future based on decreasing trends that has been established with data obtained from the last 28 sampling events. Future sampling events may be able to be less frequent and should be conducted every five years to ten years to verify continued decreasing contaminate concentrations. All unused wells, including sparge and SVE points should be decommissioned in accordance with ADEC guidance.

Indoor Air quality

Based on clean results at MW-9 and GHW-2, indoor air quality at the store is not a concern. Testing for petroleum VOC constituents would prove to be inconclusive due to the products sold in the store and elevated ambient air conditions on site.

Conclusions and Recommendations

Based on the current and historical data, **NORTECH** has arrived at the following conclusions:

- Contaminant trends since 1995 are decreasing
 - GRO concentrations in MW-16 are above cleanup levels, but are less that cleanup levels in all other monitoring wells sampled
 - Benzene is the only BTEX compound above cleanup levels at MW-16 and MW-20, toluene, ethylbenzene, and total xylenes concentrations remain below cleanup levels

- Excepting EDC, MW-20 and MW-16 are the only wells test that has VOC compounds above the cleanup levels
- EDC is the most recalcitrant compound and will remain on site longer than other VOCs
- Add nitrogen and micro elements to stimulate remedial processes, especially to encourage EDC degradation across the site
- Perform groundwater monitoring every five years to verify decreasing trends
- Based on data obtained from more than 28 sampling events, the soil and groundwater impacted by petroleum hydrocarbons has been adequately delineated
- Natural attenuation geochemistry was evaluated in 2004 by AMEC
 - This indicated biological degradation would provide long-term remediation at the site.
 - AMEC suggested nutrient addition may stimulate biological activity and reduce remediation time
 - Trends indicate biological activity is reducing contaminant trends since the active remediation systemm was shut down
- The clean groundwater results at MW-9 and GHW-2 suggest IAQ issues regarding petroleum VOCs are not a concern
- The former drinking water well (GHW-2) meets the ADEC drinking water standards
 - This well has been replaced with a hauled water system
 - No additional sampling of this well is recommended
- All wells, points and other in ground hardware, including GHW-2 should be decommissioned if not part of a long term monitoring program

This report should be submitted to the ADEC for review and comment. **NORTECH** can coordinate this following your review of the report. The recommendations should be developed into a long-term monitoring program that establishes a limited number of wells to be sampled periodically. Please contact me at your earliest convenience if you have any questions or concerns.

Sincerely, NORTECH

m Wr

Doug Dusek Environmental Specialist

Attachments:

Figures Tables Laboratory Report and ADEC Laboratory Data Review Check List Standard Groundwater Sampling Methodology

1		

	WW-2	
Analyte	9/5/2002	7/20/2015
В	0.287	0.0002U
Т	0.020	0.0005U
Е	0.020U	0.0005U
Х	0.040U	0.0005U
GRO	0.09U	0.0323J
MTBE	NT	0.005U
EDB	NT	0.0179
EDC	NT	0.023

015	
7	
88J	
02	
55	
6	
Ċ.	
79	

AS-8 (Sub MW-17)					
Analyte	7/20/2015				
В	0.00039J				
Т	0.0005U				
E	0.0005U				
X	0.0005U				
GRO	0.0400J				
MTBE	0.038				
EDB	NT				
EDC	0.049				

MW-17				
Analyte	11/10/2006			
В	0.179			
Т	<0.002			
E	<0.002			
Х	<0.002			
GRO	NT			
MTBE	0.044			
EDB	0.006			
EDC	0.177			
X GRO MTBE EDB EDC	<0.002 NT 0.044 0.006 0.177			

MW-2							
alyte	9/5/2002	6/4/2003	10/3/2003/	5/14/2004	7/20/2015		
в	0.0005U	0.444	0.0005U	0.16	0.0002U		
Т	0.002U	0.002U	0.002U	0.002U	0.0005U		
ш	0.002U	0.002U	0.002U	0.002U	0.0005U		
Х	0.004U	0.004U	0.004U	0.004U	0.0015U		
RO	0.09U	0.64	0.09U	0.34U	0.036U		
ГВЕ	NT	NT	0.197	0.197	0.0233		
DB	NT	NT	0.011	0.0009	0.00026		
DC	NT	NT	0.267	0.0692	0.0251		
ead	NT	NT	0.06	0.05U	0.0254		

MW-12

DATE: 1/7/2016	SCALE: 1" = 30'	FIGURE
PROJ MGR: DD	PROJECT: 15-1091	2
DRAWN: CMR	DWG. NO.: 151091a(02)	~

CORNELL CORRECTIONS CENTER

	Table 1
Gold Hill	Groundwater Sample Results Summary
	July 20. 2015

Sample ID	ADEC	MW-2	MW-9	MW-16	AS-8	WW-2	MW-20	MW-25	RPD
	Cleanup Level							Duplicate of MW-20	
Analyte	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	%
		F	Petroleum Fra	ctions by A	AK 101				
GRO	2.2	0.036	0.0500U	8.09	0.0400J	0.0323J	1.70	2.12	22.0%
			VOCs by	y SW 8260E	3				
1,2,4-Trimethylbenzene	1.8	0.0005U	0.0005U	0.035	0.0005U	0.0005U	0.0005U	0.0005U	NA
1,2-Dibromoethane (EDB)	0.00005	0.00026	0.000037U	0.0179	NT	NT	0.00003	0.00003	NA
1,2-Dichloroethane (EDC)	0.005	0.042	0.0005U	0.267	0.049	0.023	0.027	0.025	6.9%
1,3,5-Trimethylbenzene	1.8	0.0005U	0.0005U	0.002	0.0005U	0.0005U	0.0005U	0.0005U	NA
4-Isopropyltoluene	NE	0.0005U	0.0002U	0.003	0.0002U	0.0002U	0.0002U	0.0002U	NA
Benzene	0.005	0.0002U	0.0005U	3.87	0.00039J	0.0002U	1.09	0.976	11.0%
Chloroethane	0.29	0.000940J	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	NA
Ethylbenzene	0.7	0.0005U	0.0005U	0.010	0.0005U	0.0005U	0.00032J	0.0005U	NA
Isopropylbenzene (Cumene)	3.7	0.0005U	0.0005U	0.006	0.0005U	0.0005U	0.017	0.015	12.7%
Methyl-t-butyl ether	0.47	0.023	0.005U	0.143	0.0378	0.005U	0.00897J	0.00852J	5.1%
Naphthalene	0.73	0.005U	0.005U	0.049	0.005U	0.005U	0.005U	0.005U	NA
Trichlorofluoromethane	11.0	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	0.00061J	0.00052J	15.9%
n-Propylbenzene	0.37	0.0005U	0.0005U	0.013	0.0005U	0.0005U	0.00095J	0.00081J	15.9%
sec-Butylbenzene	0.37	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	0.003	0.003	13.7%
Toluene	1.0	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	0.0005U	NA
o-Xylene	NE	0.0005U	0.0005U	0.077	0.0005U	0.0005U	0.00052J	0.00046J	12.2%
p & m-Xylene	NE	0.001U	0.001U	0.019	0.001U	0.001U	0.001U	0.001U	NA
Xylenes (total)	10	0.0015U	0.0015U	0.096	0.0015U	0.0015U	0.0015U	0.0015U	NA
			Lead b	y EP 200.8					
Lead	0.015	0.025	NT	NT	NT	NT	0.055	0.054	0.9%
Notes:									
# U	Analyte not	detected at	the listed limit	t of quantita	tion (LOQ)				
#J	Concentrati	ion estimate	d between the	Detection I	Limit (DL) ar	nd the LOQ			
NA	Analyte not	analyzed							

Analyte not analyzed

Analyte detected in concentration below the ADEC Cleanup level

Bold Analyte detected in concentration exceeding the ADEC Cleanup level

NE Cleanup &/or Fbks Background Level for Analyte not established

RPD Relative Percent Difference

mg/L Milligrams per liter

NT Not Taken

Shade

Table 2 Gold Hill Drinking Water Sample Results Summary

Sample ID ADEC		GH-2	GH-12	RPD
	Cleanup Level		Dup of GH-2	
Analyte	mg/L	mg/L	mg/L	%
	VOCs EPA M	ethod 524.2		
Benzene	0.005	0.00025U	0.00025U	NA
Ethylbenzene	0.7	0.00025U	0.00025U	NA
Trichlorofluoromethane	11.0	0.0014	0.0014	4.3%
Toluene	1	0.00100U	0.00100U	NA
o-Xylene	NE	0.00025U	0.00025U	NA
p & m-Xylene	NE	0.00025U	0.00025U	NA
Xylenes (total)	10	0.00025U	0.00025U	NA

Notes:

# U	Analyte not detected at the listed limit of quantitation (LOQ)
NA	Analyte not analyzed
Shade	Analyte detected in concentration below the ADEC Cleanup level
Bold	Analyte detected in concentration exceeding the ADEC Cleanup level
NE	Cleanup Level for Analyte not established
RPD	Relative Percent Difference

Laboratory Report of Analysis

To: Nortech 2400 College Rd. Fairbanks, AK 99709 (907)385-7587

Report Number: **1158310**

Client Project: Gold Hill

Dear Doug Dusek,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.	Alaska Division Technical Director	Stephen Ede 2015.08.05 14:15:40 -08'00'
Jennifer Dawkins Project Manager	Date	

Print Date: 08/05/2015 2:08:39PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Nortech SGS Project: 1158310 Project Name/Site: Gold Hill Project Contact: Doug Dusek

Refer to sample receipt form for information on sample condition.

MW-2 (1158310001) PS

504 - EDB was analyzed by Test America of Denver, CO.

MW-9 (1158310002) PS

504 - EDB was analyzed by Test America of Denver, CO.

MW-16 (1158310003) PS

504 - EDB was analyzed by Test America of Denver, CO.

MW-20 (1158310005) PS

504 - EDB was analyzed by Test America of Denver, CO.

AK101 - Surrogate recovery for 4-bromofluorobenzene (158%) does not meet QC criteria due to matrix interference.

MW-25 (1158310009) PS

504 - EDB was analyzed by Test America of Denver, CO.

AK101 - Surrogate recovery for 4-bromofluorobenzene (188%) does not meet QC criteria due to matrix interference.

TB-02 (1158310011) PS

504 - EDB was analyzed by Test America of Denver, CO.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 08/05/2015 2:08:40PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

	Report o	f Manual Integratior	IS	
Laboratory ID	Client Sample ID	Analytical Batch	Analyte	Reason
SW8260B				
1158310001	MW-2	VMS15116	Chloroethane	BLC
Manu	al Integration Reason Code Descriptions			
Code	Description			
0	Original Chromatogram			
M	Modified Chromatogram			
SS	Skimmed surrogate			
BLG	Closed baseline gap			
PIR	Pattern integration required			
IT	Included tail			
SP	Split peak			
RSP	Removed split peak			
FPS	Forced peak start/stop			
BLC	Baseline correction			
PNF	Peak not tound by software			
All DF	O/RRO analysis are integrated per SOP.			

Print Date: 08/05/2015 2:08:41PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 08/05/2015 2:08:42PM

Note:

	S	ample Summary		
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	Matrix
MW-2	1158310001	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
MW-9	1158310002	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
MW-16	1158310003	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
AS-8	1158310004	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
MW-20	1158310005	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
WW-2	1158310006	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
GHW-2	1158310007	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
GHW-12	1158310008	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
MW-25	1158310009	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
TB-01	1158310010	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
TB-02	1158310011	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
TB-03	1158310012	07/20/2015	07/21/2015	Water (Surface, Eff., Ground)
<u>Method</u>	Method Desc	cription		

AK101	Gasoline Range Organics (W)
EP200.8	Metals in Water by 200.8 ICP-MS
SW8260B	Volatile Organic Compounds (W) FULL
EPA 524.2	Volatile Organics by 524.2 (DW)

Print Date: 08/05/2015 2:08:43PM

Detectable Results Summary

Client Sample ID: MW-2				
Lab Sample ID: 1158310001	Parameter	Result	Units	
Metals by ICP/MS	Lead	25.4	ug/L	
Volatile Fuels	Gasoline Range Organics	0.0361J	mg/L	
Volatile Gas Chromatography/Mass Spec	trom1,2-Dichloroethane	42.4	ug/L	
	Chloroethane	0.940J	ug/L	
	Methyl-t-butyl ether	23.3	ug/L	
Client Sample ID: MW 16				
Lab Sample ID: 1158310003	Devementer	Desult	Linite	
	Parameter Casalina Danga Organica	Result	<u>Units</u>	
Volatile Fuels	tram 1.2.4 Trimothylbonzono	8.09 34.6	ing/∟	
volatile Gas Chromatography/Mass Spec	1.2 Dibromoethane	17.0	ug/L	
	1.2 Dichloroothano	267	ug/L	
	1,2-Dicilioroethane	207	ug/L	
		2.12	ug/L	
	Benzene	2.05	ug/L	
	Ethylbonzono	10.2	ug/L	
		5 77	ug/L	
	Methyl-t-butyl ether	1/3	ug/L	
	Nanhthalene	143	ug/L	
	n-Pronylbenzene	12.6	ug/L	
	o-Xylene	76.6	ug/L	
	P & M -Xvlene	18.9	ug/L	
	sec-Butylbenzene	2 54	ug/L	
	Toluene	0.8801	ug/L	
	Xylenes (total)	95.5	ug/L	
		00.0	ug/L	
Client Sample ID: AS-8				
Lab Sample ID: 1158310004	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels	Gasoline Range Organics	0.0400J	mg/L	
Volatile Gas Chromatography/Mass Spec	trom1,2-Dichloroethane	49.3	ug/L	
	Benzene	0.390J	ug/L	
	Methyl-t-butyl ether	37.8	ug/L	
Client Sample ID: MW-20				
Lab Sample ID: 1158310005	Parameter	Result	<u>Units</u>	
Metals by ICP/MS	Lead	54.7	ug/L	
Volatile Fuels	Gasoline Range Organics	1.70	mg/L	
Volatile Gas Chromatography/Mass Spec	trom1,2-Dichloroethane	26.9	ug/L	
	Benzene	1090	ug/L	
	Ethylbenzene	0.320J	ug/L	
	Isopropylbenzene (Cumene)	16.7	ug/L	
	Methyl-t-butyl ether	8.97J	ug/L	
	n-Butylbenzene	0.610J	ug/L	
	n-Propylbenzene	0.950J	ug/L	
	o-Xylene	0.520J	ug/L	
	sec-Butylbenzene	3.13	ug/L	

Print Date: 08/05/2015 2:08:44PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: WW-2			
Lab Sample ID: 1158310006	Parameter	Result	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	0.0323J	mg/L
Volatile Gas Chromatography/Mass Spectro	m1,2-Dichloroethane	23.4	ug/L
Client Sample ID: GHW-2			
Lab Sample ID: 1158310007	Parameter	Result	<u>Units</u>
Volatile Gas Chromatography/Mass Spectro	mTrichlorofluoromethane	1.35	ug/L
Client Sample ID: GHW-12			
Lab Sample ID: 1158310008	Parameter	Result	<u>Units</u>
Volatile Gas Chromatography/Mass Spectro	mTrichlorofluoromethane	1.41	ug/L
Client Sample ID: MW-25			
Lab Sample ID: 1158310009	Devenuelar	Desult	l la ita
	Parameter	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Leau	04.2	ug/L
Volatile Fuels	Gasoline Range Organics	2.12	mg/L
Volatile Gas Chromatography/Mass Spectro	m1,2-Dichloroethane	25.1	ug/L
	Benzene	976	ug/L
	Isopropylbenzene (Cumene)	14.7	ug/L
	Methyl-t-butyl ether	8.52J	ug/L
	n-Butylbenzene	0.520J	ug/L
	n-Propylbenzene	0.810J	ug/L
	o-Xylene	0.460J	ug/L
	sec-Butylbenzene	2.73	ug/L
Client Sample ID: TB-03			
Lab Sample ID: 1158310012	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Volatile Gas Chromatography/Mass Spectro	mMethylene chloride	0.230J	ug/L

Print Date: 08/05/2015 2:08:44PM

SGS North America Inc.

Results of MW-2							
Client Sample ID: MW-2 Client Project ID: Gold Hill Lab Sample ID: 1158310001 Lab Project ID: 1158310	Collection Date: 07/20/15 11:45 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Metals by ICP/MS			_				
<u>Parameter</u> Lead	<u>Result Qual</u> 25.4	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0620	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 07/28/15 17:26
Batch Information Analytical Batch: MMS9018 Analytical Method: EP200.8 Analyst: EAB Analytical Date/Time: 07/28/15 17:26 Container ID: 1158310001-J			Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	MXX28917 E200.2 ne: 07/27/1 t./Vol.: 20 r Vol: 50 mL	5 15:00 nL		

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-2							
Client Sample ID: MW-2 Client Project ID: Gold Hill Lab Sample ID: 1158310001 Lab Project ID: 1158310		Collection Date: 07/20/15 11:45 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 0.0361 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 07/23/15 16:33
urrogates							
4-Bromofluorobenzene (surr)	103	50-150		%	1		07/23/15 16:33
Batch Information							
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 16:33 Container ID: 1158310001-A			Prep Batch: M Prep Method: Prep Date/Tir Prep Initial W Prep Extract M	VXX27612 SW5030B ne: 07/23/1 t./Vol.: 5 m Vol: 5 mL	5 08:00 L		

Print Date: 08/05/2015 2:08:47PM

Client Sample ID: **MW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310001 Lab Project ID: 1158310 Collection Date: 07/20/15 11:45 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,2-Dichloroethane	42.4	0.500	0.150	ug/L	1		07/22/15 16:35
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
Benzene	0.200 U	0.400	0.120	ug/L	1		07/22/15 16:35
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
Chloroethane	0.940 J	1.00	0.310	ug/L	1		07/22/15 16:35

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310001 Lab Project ID: 1158310 Collection Date: 07/20/15 11:45 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 16:35
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:35
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 16:35
Methyl-t-butyl ether	23.3	10.0	3.10	ug/L	1		07/22/15 16:35
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 16:35
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:35
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:35
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 16:35
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1		07/22/15 16:35
4-Bromofluorobenzene (surr)	101	85-114		%	1		07/22/15 16:35
Toluene-d8 (surr)	99.3	89-112		%	1		07/22/15 16:35

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310001 Lab Project ID: 1158310 Collection Date: 07/20/15 11:45 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 16:35 Container ID: 1158310001-D Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 12 of 98

	C	alle ation D				
	Collection Date: 07/20/15 12:30 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
)——				
<u>Result</u> Qual 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyze 07/23/15 16:5
101	50-150		%	1		07/23/15 16:5
	F F F F	 Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N 	VXX27612 SW5030E ne: 07/23/ [,] t./Vol.: 5 m Vol: 5 mL	3 15 08:00 hL		
	Result Qual 0.0500 U 101	Result Qual LOQ/CL 0.0500 U 0.100 101 50-150	Solids (%): Location: 0.0500 U 0.100 DL 0.0310 101 50-150 Prep Batch: \ Prep Method: Prep Initial W Prep Extract \	Solids (%): Location: <u>Result Qual</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u> 0.0500 U 0.100 0.0310 mg/L 101 50-150 % Prep Batch: VXX27612 Prep Method: SW5030E Prep Date/Time: 07/23/ Prep Initial Wt./Vol.: 5 m Prep Extract Vol: 5 mL	Result Qual LOQ/CL DL Units DF 0.0500 U 0.100 0.0310 mg/L 1 101 50-150 % 1 Prep Batch: VXX27612 Prep Method: SW5030B Prep Date/Time: 07/23/15 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL	Solids (%): Location: Result Qual LOQ/CL DL Units DE Allowable 0.0500 u 0.100 0.0310 mg/L 1 Limits 101 50-150 % 1 Prep Batch: VXX27612 Prep Date/Time: 07/23/15 08:00 Prep Date/Time: 07/23/15 08:00 Prep Date/Time: 07/23/15 08:00 Prep Date/Time: 07/23/15 08:00 Prep Extract Vol: 5 mL Prep Ext

Client Sample ID: **MW-9** Client Project ID: **Gold Hill** Lab Sample ID: 1158310002 Lab Project ID: 1158310 Collection Date: 07/20/15 12:30 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Benzene	0.200 U	0.400	0.120	ug/L	1		07/22/15 16:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-9** Client Project ID: **Gold Hill** Lab Sample ID: 1158310002 Lab Project ID: 1158310 Collection Date: 07/20/15 12:30 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 16:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 16:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
lsopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 16:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 16:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 16:52
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 16:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 16:52
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1		07/22/15 16:52
4-Bromofluorobenzene (surr)	99.1	85-114		%	1		07/22/15 16:52
Toluene-d8 (surr)	98.1	89-112		%	1		07/22/15 16:52

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-9** Client Project ID: **Gold Hill** Lab Sample ID: 1158310002 Lab Project ID: 1158310 Collection Date: 07/20/15 12:30 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 16:52 Container ID: 1158310002-D Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 16 of 98

Client Sample ID: MW-16 Client Project ID: Gold Hill Lab Sample ID: 1158310003 Lab Project ID: 1158310		C R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	ate: 07/20/ te: 07/21/1 er (Surface,	15 13:35 15 09:00 Eff., Gro	bund)	
Results by Volatile Fuels			_			Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	8.09	2.00	0.620	mg/L	20		07/27/15 15:43
Surrogates 4-Bromofluorobenzene (surr)	86.3	50-150		%	20		07/27/15 15 [.] 43
Batch Information Analytical Batch: VFC12542 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 07/27/15 15:43 Container ID: 1158310003-F			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	VXX27627 : SW5030B me: 07/27/1 /t./Vol.: 5 m Vol: 5 mL	5 08:00 L		

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-16** Client Project ID: **Gold Hill** Lab Sample ID: 1158310003 Lab Project ID: 1158310 Collection Date: 07/20/15 13:35 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,2,4-Trimethylbenzene	34.6	1.00	0.310	ug/L	1		07/22/15 17:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
1,2-Dibromoethane	17.9	1.00	0.310	ug/L	1		07/22/15 17:08
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,2-Dichloroethane	267	5.00	1.50	ug/L	10		07/23/15 23:58
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,3,5-Trimethylbenzene	2.12	1.00	0.310	ug/L	1		07/22/15 17:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
4-Isopropyltoluene	2.85	1.00	0.310	ug/L	1		07/22/15 17:08
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
Benzene	3870	40.0	12.0	ug/L	100		07/23/15 20:56
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-16** Client Project ID: **Gold Hill** Lab Sample ID: 1158310003 Lab Project ID: 1158310 Collection Date: 07/20/15 13:35 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 17:08
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Ethylbenzene	10.2	1.00	0.310	ug/L	1		07/22/15 17:08
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Isopropylbenzene (Cumene)	5.77	1.00	0.310	ug/L	1		07/22/15 17:08
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 17:08
Methyl-t-butyl ether	143	100	31.0	ug/L	10		07/23/15 23:58
Naphthalene	49.3	10.0	3.10	ug/L	1		07/22/15 17:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
n-Propylbenzene	12.6	1.00	0.310	ug/L	1		07/22/15 17:08
o-Xylene	76.6	10.0	3.10	ug/L	10		07/23/15 23:58
P & M -Xylene	18.9	2.00	0.620	ug/L	1		07/22/15 17:08
sec-Butylbenzene	2.54	1.00	0.310	ug/L	1		07/22/15 17:08
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Toluene	0.880 J	1.00	0.310	ug/L	1		07/22/15 17:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:08
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:08
Xylenes (total)	95.5	30.0	10.0	ug/L	10		07/23/15 23:58
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		07/22/15 17:08
4-Bromofluorobenzene (surr)	101	85-114		%	1		07/22/15 17:08
Toluene-d8 (surr)	98.2	89-112		%	1		07/22/15 17:08

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-16** Client Project ID: **Gold Hill** Lab Sample ID: 1158310003 Lab Project ID: 1158310 Collection Date: 07/20/15 13:35 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 17:08 Container ID: 1158310003-D

Analytical Batch: VMS15119 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/23/15 23:58 Container ID: 1158310003-C Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 07/23/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

lesults of AS-8			Collection Do	to: 07/20/	15 11.00		
ab Project ID: 115831004 ab Project ID: 1158310004 ab Project ID: 1158310		Collection Date: 07/20/15 11:20 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%):					
esults by Volatile Fuels	Its by Volatile Fuels						
arameter asoline Range Organics	<u>Result</u> Qual 0.0400 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed
rrogates -Bromofluorobenzene (surr)	103	50-150		%	1		07/23/15 17:3
atch Information							
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 17:30 Container ID: 1158310004-A			Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	/XX27612 SW5030B ne: 07/23/1 t./Vol.: 5 m /ol: 5 mL	8 15 08:00 IL		

Results of AS-8

Client Sample ID: **AS-8** Client Project ID: **Gold Hill** Lab Sample ID: 1158310004 Lab Project ID: 1158310 Collection Date: 07/20/15 11:20 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,2-Dichloroethane	49.3	0.500	0.150	ug/L	1		07/22/15 17:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
Benzene	0.390 J	0.400	0.120	ug/L	1		07/23/15 21:45
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of AS-8

Client Sample ID: **AS-8** Client Project ID: **Gold Hill** Lab Sample ID: 1158310004 Lab Project ID: 1158310 Collection Date: 07/20/15 11:20 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 17:25
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 17:25
Methyl-t-butyl ether	37.8	10.0	3.10	ug/L	1		07/22/15 17:25
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 17:25
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:25
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:25
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 17:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1		07/22/15 17:25
4-Bromofluorobenzene (surr)	99.7	85-114		%	1		07/22/15 17:25
Toluene-d8 (surr)	99.3	89-112		%	1		07/22/15 17:25

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of AS-8

Client Sample ID: **AS-8** Client Project ID: **Gold Hill** Lab Sample ID: 1158310004 Lab Project ID: 1158310 Collection Date: 07/20/15 11:20 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 17:25 Container ID: 1158310004-D

Analytical Batch: VMS15119 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/23/15 21:45 Container ID: 1158310004-C Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 07/23/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-20 Client Sample ID: MW-20 Client Project ID: Gold Hill Lab Sample ID: 1158310005 Lab Project ID: 1158310	ł	Collection Date: 07/20/15 09:47 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Metals by ICP/MS <u>Parameter</u> Lead	<u>Result Qual</u> 54.7	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0620	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 07/28/15 17:28
Batch Information Analytical Batch: MMS9018 Analytical Method: EP200.8 Analyst: EAB Analytical Date/Time: 07/28/15 17:28 Container ID: 1158310005-J			Prep Batch: I Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	MXX28917 E200.2 ne: 07/27/1 t./Vol.: 20 r Vol: 50 mL	5 15:00 nL		

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-20									
Client Sample ID: MW-20 Client Project ID: Gold Hill Lab Sample ID: 1158310005 Lab Project ID: 1158310		C R M S	Collection Date: 07/20/15 09:47 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			<u> </u>						
Parameter Gasoline Range Organics	<u>Result Qual</u> 1.70	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 07/23/15 18:11		
Surrogates 4-Bromofluorobenzene (surr)	158 *	50-150		%	1		07/23/15 18:11		
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 18:11 Container ID: 1158310005-A			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	VXX27612 : SW5030E ne: 07/23/' 't./Vol.: 5 m Vol: 5 mL	3 5 08:00 L				

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-20** Client Project ID: **Gold Hill** Lab Sample ID: 1158310005 Lab Project ID: 1158310 Collection Date: 07/20/15 09:47 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,2-Dichloroethane	26.9	0.500	0.150	ug/L	1		07/22/15 17:42
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
Benzene	1090	40.0	12.0	ug/L	100		07/23/15 21:12
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-20** Client Project ID: **Gold Hill** Lab Sample ID: 1158310005 Lab Project ID: 1158310 Collection Date: 07/20/15 09:47 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 17:42
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:42
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Ethylbenzene	0.320 J	1.00	0.310	ug/L	1		07/22/15 17:42
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Isopropylbenzene (Cumene)	16.7	1.00	0.310	ug/L	1		07/22/15 17:42
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 17:42
Methyl-t-butyl ether	8.97 J	10.0	3.10	ug/L	1		07/22/15 17:42
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
n-Butylbenzene	0.610 J	1.00	0.310	ug/L	1		07/22/15 17:42
n-Propylbenzene	0.950 J	1.00	0.310	ug/L	1		07/22/15 17:42
o-Xylene	0.520 J	1.00	0.310	ug/L	1		07/22/15 17:42
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 17:42
sec-Butylbenzene	3.13	1.00	0.310	ug/L	1		07/22/15 17:42
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:42
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:42
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 17:42
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		07/22/15 17:42
4-Bromofluorobenzene (surr)	99.7	85-114		%	1		07/22/15 17:42
Toluene-d8 (surr)	98.3	89-112		%	1		07/22/15 17:42

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-20** Client Project ID: **Gold Hill** Lab Sample ID: 1158310005 Lab Project ID: 1158310 Collection Date: 07/20/15 09:47 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 17:42 Container ID: 1158310005-D

Analytical Batch: VMS15119 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/23/15 21:12 Container ID: 1158310005-B Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 07/23/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of WW-2							
Client Sample ID: WW-2 Client Project ID: Gold Hill .ab Sample ID: 1158310006 .ab Project ID: 1158310		Collection Date: 07/20/15 10:40 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels]				
P <u>arameter</u> Gasoline Range Organics	<u>Result</u> Qual 0.0323 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzec</u> 07/23/15 18:30
Promofluorobonzono (surr)	102	50 150		0/_	1		07/22/15 18:30
	102	50-150		70	I		07723/13 10.30
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 18:30 Container ID: 1158310006-A			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	VXX27612 SW5030E ne: 07/23/1 t./Vol.: 5 m Vol: 5 mL	8 15 08:00 IL		

Client Sample ID: **WW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310006 Lab Project ID: 1158310 Collection Date: 07/20/15 10:40 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,2-Dichloroethane	23.4	0.500	0.150	ug/L	1		07/22/15 17:58
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Benzene	0.200 U	0.400	0.120	ug/L	1		07/22/15 17:58
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **WW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310006 Lab Project ID: 1158310 Collection Date: 07/20/15 10:40 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 17:58
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 17:58
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 17:58
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 17:58
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 17:58
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 17:58
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 17:58
Surrogates							
1,2-Dichloroethane-D4 (surr)	113	81-118		%	1		07/22/15 17:58
4-Bromofluorobenzene (surr)	99.1	85-114		%	1		07/22/15 17:58
Toluene-d8 (surr)	100	89-112		%	1		07/22/15 17:58

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **WW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310006 Lab Project ID: 1158310 Collection Date: 07/20/15 10:40 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 17:58 Container ID: 1158310006-B Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 33 of 98

Client Sample ID: **GHW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310007 Lab Project ID: 1158310 Collection Date: 07/20/15 13:50 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,1,1-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<200)	07/22/15 15:12
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,1,2-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
1,1-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,1-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<7)	07/22/15 15:12
1,1-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,2,3-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,2,3-Trichloropropane	0.250 U	0.500	0.180	ug/L	1		07/22/15 15:12
1,2,4-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 15:12
1,2,4-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,2-Dibromo-3-chloropropane	1.00 U	2.00	0.620	ug/L	1		07/22/15 15:12
1,2-Dibromoethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,2-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<600)	07/22/15 15:12
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
1,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
1,3,5-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,3-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<75)	07/22/15 15:12
2,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
2-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
4-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
4-Isopropyltoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Benzene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
Bromobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Bromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Bromoform	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Bromomethane	1.00 U	2.00	0.620	ug/L	1		07/22/15 15:12
Carbon tetrachloride	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 15:12
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 15:12
Chloroform	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Chloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
cis-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 15:12
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 34 of 98

Client Sample ID: **GHW-2** Client Project ID: **Gold Hill** Lab Sample ID: 1158310007 Lab Project ID: 1158310 Collection Date: 07/20/15 13:50 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Dibromomethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Dichlorodifluoromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Ethylbenzene	0.250 U	0.500	0.150	ug/L	1	(<700)	07/22/15 15:12
Hexachlorobutadiene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Isopropylbenzene (Cumene)	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Methylene chloride	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
Methyl-t-butyl ether	0.500 U	1.00	0.500	ug/L	1		07/22/15 15:12
Naphthalene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
n-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
n-Propylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
o-Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
P & M -Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
sec-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Styrene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 15:12
tert-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Tetrachloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
Toluene	0.250 U	0.500	0.150	ug/L	1	(<1000)	07/22/15 15:12
Total Trihalomethanes	1.00 U	2.00	0.600	ug/L	1	(<80)	07/22/15 15:12
trans-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 15:12
trans-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 15:12
Trichloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 15:12
Trichlorofluoromethane	1.35	0.500	0.150	ug/L	1		07/22/15 15:12
Vinyl chloride	0.200 U	0.400	0.120	ug/L	1	(<2)	07/22/15 15:12
Xylenes (total)	0.250 U	0.500	0.150	ug/L	1	(<10000)	07/22/15 15:12
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	70-130		%	1		07/22/15 15:12
4-Bromofluorobenzene (surr)	101	70-130		%	1		07/22/15 15:12
Toluene-d8 (surr)	98.8	70-130		%	1		07/22/15 15:12

Batch Information

Analytical Batch: VMS15114 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/22/15 15:12 Container ID: 1158310007-A

Prep Batch: VXX27607 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **GHW-12** Client Project ID: **Gold Hill** Lab Sample ID: 1158310008 Lab Project ID: 1158310 Collection Date: 07/20/15 13:55 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,1,1-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<200)	07/22/15 14:56
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,1,2-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
1,1-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,1-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<7)	07/22/15 14:56
1,1-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,2,3-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,2,3-Trichloropropane	0.250 U	0.500	0.180	ug/L	1		07/22/15 14:56
1,2,4-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 14:56
1,2,4-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,2-Dibromo-3-chloropropane	1.00 U	2.00	0.620	ug/L	1		07/22/15 14:56
1,2-Dibromoethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,2-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<600)	07/22/15 14:56
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
1,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
1,3,5-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,3-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<75)	07/22/15 14:56
2,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
2-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
4-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
4-Isopropyltoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Benzene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
Bromobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Bromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Bromoform	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Bromomethane	1.00 U	2.00	0.620	ug/L	1		07/22/15 14:56
Carbon tetrachloride	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 14:56
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 14:56
Chloroform	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Chloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
cis-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 14:56
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 36 of 98

Client Sample ID: **GHW-12** Client Project ID: **Gold Hill** Lab Sample ID: 1158310008 Lab Project ID: 1158310 Collection Date: 07/20/15 13:55 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Dibromomethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Dichlorodifluoromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Ethylbenzene	0.250 U	0.500	0.150	ug/L	1	(<700)	07/22/15 14:56
Hexachlorobutadiene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Isopropylbenzene (Cumene)	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Methylene chloride	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
Methyl-t-butyl ether	0.500 U	1.00	0.500	ug/L	1		07/22/15 14:56
Naphthalene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
n-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
n-Propylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
o-Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
P & M -Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
sec-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Styrene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 14:56
tert-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Tetrachloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
Toluene	0.250 U	0.500	0.150	ug/L	1	(<1000)	07/22/15 14:56
Total Trihalomethanes	1.00 U	2.00	0.600	ug/L	1	(<80)	07/22/15 14:56
trans-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 14:56
trans-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 14:56
Trichloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 14:56
Trichlorofluoromethane	1.41	0.500	0.150	ug/L	1		07/22/15 14:56
Vinyl chloride	0.200 U	0.400	0.120	ug/L	1	(<2)	07/22/15 14:56
Xylenes (total)	0.250 U	0.500	0.150	ug/L	1	(<10000)	07/22/15 14:56
Surrogates							
1,2-Dichloroethane-D4 (surr)	117	70-130		%	1		07/22/15 14:56
4-Bromofluorobenzene (surr)	103	70-130		%	1		07/22/15 14:56
Toluene-d8 (surr)	101	70-130		%	1		07/22/15 14:56

Batch Information

Analytical Batch: VMS15114 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/22/15 14:56 Container ID: 1158310008-A Prep Batch: VXX27607 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-25 Client Sample ID: MW-25 Client Project ID: Gold Hill Lab Sample ID: 1158310009		Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground)						
Lab Project ID: 1158310		S	olids (%): ocation:					
Results by Metals by ICP/MS						Allowable		
<u>Parameter</u> Lead	<u>Result</u> Qual 54.2	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0620	<u>Units</u> ug/L	<u>DF</u> 1	Limits	Date Analyzed 07/28/15 17:30	
Batch Information Analytical Batch: MMS9018 Analytical Method: EP200.8			Prep Batch: I Prep Method:	MXX28917 E200.2				
Analyst: EAB Analytical Date/Time: 07/28/15 17:30 Container ID: 1158310009-J			Prep Date/Tir Prep Initial W Prep Extract \	ne: 07/27/1 t./Vol.: 20 r Vol: 50 mL	5 15:00 nL			

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-25		C	collection Da	te: 07/20/	15 14·00				
Client Sample ID: Gold Hill Lab Sample ID: 1158310009 Lab Project ID: 1158310		Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Volatile Fuels									
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 2.12	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyze 07/23/15 18:4		
urrogates 4-Bromofluorobenzene (surr)	188 *	50-150		%	1		07/23/15 18:4		
Batch Information									
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 18:49 Container ID: 1158310009-B			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	VXX27612 SW5030B ne: 07/23/1 t./Vol.: 5 m Vol: 5 mL	5 08:00 L				

Client Sample ID: **MW-25** Client Project ID: **Gold Hill** Lab Sample ID: 1158310009 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,2-Dichloroethane	25.1	0.500	0.150	ug/L	1		07/22/15 18:15
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
Benzene	976	40.0	12.0	ug/L	100		07/23/15 21:29
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 40 of 98

Client Sample ID: **MW-25** Client Project ID: **Gold Hill** Lab Sample ID: 1158310009 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 18:15
Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:15
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Isopropylbenzene (Cumene)	14.7	1.00	0.310	ug/L	1		07/22/15 18:15
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 18:15
Methyl-t-butyl ether	8.52 J	10.0	3.10	ug/L	1		07/22/15 18:15
Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
n-Butylbenzene	0.520 J	1.00	0.310	ug/L	1		07/22/15 18:15
n-Propylbenzene	0.810 J	1.00	0.310	ug/L	1		07/22/15 18:15
o-Xylene	0.460 J	1.00	0.310	ug/L	1		07/22/15 18:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 18:15
sec-Butylbenzene	2.73	1.00	0.310	ug/L	1		07/22/15 18:15
Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:15
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:15
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 18:15
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		07/22/15 18:15
4-Bromofluorobenzene (surr)	100	85-114		%	1		07/22/15 18:15
Toluene-d8 (surr)	99.5	89-112		%	1		07/22/15 18:15

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-25** Client Project ID: **Gold Hill** Lab Sample ID: 1158310009 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 18:15 Container ID: 1158310009-E

Analytical Batch: VMS15119 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/23/15 21:29 Container ID: 1158310009-F Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 07/23/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

lient Sample ID: TB-01 lient Project ID: Gold Hill ab Sample ID: 1158310010 ab Project ID: 1158310		Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
esults by Volatile Fuels							
arameter asoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 07/23/15 19:0
rogates Bromofluorobenzene (surr)	103	50-150		%	1		07/23/15 19:0
atch Information							
Analytical Batch: VFC12534 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/23/15 19:08 Container ID: 1158310010-A		F F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	/XX27612 SW5030E ne: 07/23/ t./Vol.: 5 m Vol: 5 mL	5 5 08:00 L		

Print Date: 08/05/2015 2:08:47PM

Client Sample ID: **TB-01** Client Project ID: **Gold Hill** Lab Sample ID: 1158310010 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
Benzene	0.200 U	0.400	0.120	ug/L	1		07/22/15 18:32
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
Bromoform	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Bromomethane	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 44 of 98

Client Sample ID: **TB-01** Client Project ID: **Gold Hill** Lab Sample ID: 1158310010 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzedChloroform0.500 U1.000.300ug/L107/22/15 18:32Chloromethane0.500 U1.000.310ug/L107/22/15 18:32cis-1,2-Dichloroethene0.500 U1.000.310ug/L107/22/15 18:32cis-1,3-Dichloropropene0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U1.000.310ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene0.500 U1.00 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Allowable</th> <th></th>							Allowable	
Chloroform0.500 U1.000.300ug/L107/22/15 18:32Chloromethane0.500 U1.000.310ug/L107/22/15 18:32cis-1,2-Dichloroethene0.500 U1.000.310ug/L107/22/15 18:32cis-1,3-Dichloropropene0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U1.000.310ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.003.10ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310 <td>Parameter</td> <td>Result Qual</td> <td>LOQ/CL</td> <td>DL</td> <td><u>Units</u></td> <td>DF</td> <td><u>Limits</u></td> <td>Date Analyzed</td>	Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloromethane0.500 U1.000.310ug/L107/22/15 18:32cis-1,2-Dichloroethene0.500 U1.000.310ug/L107/22/15 18:32cis-1,3-Dichloropropene0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromoethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U1.000.310ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32O-Xylene0.500 U1.000.310ug/L1<	Chloroform	0.500 U	1.00	0.300	ug/L	1		07/22/15 18:32
cis-1,2-Dichloroethene0.500 U1.000.310ug/L107/22/15 18:32cis-1,3-Dichloropropene0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromomethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32Naphthalene0.500 U1.003.10ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32Naphthalene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene0.500 U1.000.310ug/L1 <td>Chloromethane</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>07/22/15 18:32</td>	Chloromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
cis-1,3-Dichloropropene0.250 U0.5000.150ug/L107/22/15 18:32Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromomethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.003.10ug/L107/22/15 18:32Naphthalene5.00 U1.003.10ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Dibromochloromethane0.250 U0.5000.150ug/L107/22/15 18:32Dibromomethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U10.03.10ug/L107/22/15 18:32Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U1.000.310ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
Dibromomethane0.500 U1.000.310ug/L107/22/15 18:32Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U10.03.10ug/L107/22/15 18:32Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 18:32
Dichlorodifluoromethane0.500 U1.000.310ug/L107/22/15 18:32Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U10.03.10ug/L107/22/15 18:32Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Dibromomethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Ethylbenzene0.500 U1.000.310ug/L107/22/15 18:32Freon-1135.00 U10.03.10ug/L107/22/15 18:32Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Methyl-t-butyl ether5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Freen-1135.00 U10.03.10ug/L107/22/15 18:32Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Methyl-t-butyl ether5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Hexachlorobutadiene0.500 U1.000.310ug/L107/22/15 18:32Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Methyl-t-butyl ether5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Freon-113	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
Isopropylbenzene (Cumene)0.500 U1.000.310ug/L107/22/15 18:32Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Methyl-t-butyl ether5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Methylene chloride2.50 U5.001.00ug/L107/22/15 18:32Methyl-t-butyl ether5.00 U10.03.10ug/L107/22/15 18:32Naphthalene5.00 U10.03.10ug/L107/22/15 18:32n-Butylbenzene0.500 U1.000.310ug/L107/22/15 18:32n-Propylbenzene0.500 U1.000.310ug/L107/22/15 18:32o-Xylene0.500 U1.000.310ug/L107/22/15 18:32P & M -Xylene1.00 U2.000.620ug/L107/22/15 18:32	Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Methyl-t-butyl ether 5.00 U 10.0 3.10 ug/L 1 07/22/15 18:32 Naphthalene 5.00 U 10.0 3.10 ug/L 1 07/22/15 18:32 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 o-Xylene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	Methylene chloride	2.50 U	5.00	1.00	ug/L	1		07/22/15 18:32
Naphthalene 5.00 U 10.0 3.10 ug/L 1 07/22/15 18:32 n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 o-Xylene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
n-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 o-Xylene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	Naphthalene	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
n-Propylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 o-Xylene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
o-Xylene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32 P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 07/22/15 18:32	o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
	P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/22/15 18:32
sec-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Styrene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Styrene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
tert-Butylbenzene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Tetrachloroethene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Toluene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Toluene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
trans-1,2-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
trans-1,3-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Trichloroethene 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Trichloroethene	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Trichlorofluoromethane 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Vinyl acetate 5.00 U 10.0 3.10 ug/L 1 07/22/15 18:32	Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		07/22/15 18:32
Vinyl chloride 0.500 U 1.00 0.310 ug/L 1 07/22/15 18:32	Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		07/22/15 18:32
Xylenes (total) 1.50 U 3.00 1.00 ug/L 1 07/22/15 18:32	Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		07/22/15 18:32
Surrogates	Surrogates							
1.2-Dichloroethane-D4 (surr) 112 81-118 % 1 07/22/15 18:32	1,2-Dichloroethane-D4 (surr)	112	81-118		%	1		07/22/15 18:32
4-Bromofluorobenzene (surr) 99.9 85-114 % 1 07/22/15 18:32	4-Bromofluorobenzene (surr)	99.9	85-114		%	1		07/22/15 18:32
Toluene-d8 (surr) 99.4 89-112 % 1 07/22/15 18:32	Toluene-d8 (surr)	99.4	89-112		%	1		07/22/15 18:32

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **TB-01** Client Project ID: **Gold Hill** Lab Sample ID: 1158310010 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Analyst: NRB Analytical Date/Time: 07/22/15 18:32 Container ID: 1158310010-B Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Client Sample ID: **TB-03** Client Project ID: **Gold Hill** Lab Sample ID: 1158310012 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,1,1-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<200)	07/22/15 13:49
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,1,2-Trichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
1,1-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,1-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<7)	07/22/15 13:49
1,1-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,2,3-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,2,3-Trichloropropane	0.250 U	0.500	0.180	ug/L	1		07/22/15 13:49
1,2,4-Trichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 13:49
1,2,4-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,2-Dibromo-3-chloropropane	1.00 U	2.00	0.620	ug/L	1		07/22/15 13:49
1,2-Dibromoethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,2-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<600)	07/22/15 13:49
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
1,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
1,3,5-Trimethylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,3-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<75)	07/22/15 13:49
2,2-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
2-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
4-Chlorotoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
4-Isopropyltoluene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Benzene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
Bromobenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Bromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Bromoform	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Bromomethane	1.00 U	2.00	0.620	ug/L	1		07/22/15 13:49
Carbon tetrachloride	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 13:49
Chloroethane	0.500 U	1.00	0.310	ug/L	1		07/22/15 13:49
Chloroform	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Chloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
cis-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<70)	07/22/15 13:49
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 47 of 98

Client Sample ID: **TB-03** Client Project ID: **Gold Hill** Lab Sample ID: 1158310012 Lab Project ID: 1158310 Collection Date: 07/20/15 14:00 Received Date: 07/21/15 09:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile Gas Chromatography/Mass Spectrome

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Dibromomethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Dichlorodifluoromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Ethylbenzene	0.250 U	0.500	0.150	ug/L	1	(<700)	07/22/15 13:49
Hexachlorobutadiene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Isopropylbenzene (Cumene)	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Methylene chloride	0.230 J	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
Methyl-t-butyl ether	0.500 U	1.00	0.500	ug/L	1		07/22/15 13:49
Naphthalene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
n-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
n-Propylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
o-Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
P & M -Xylene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
sec-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Styrene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 13:49
tert-Butylbenzene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Tetrachloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
Toluene	0.250 U	0.500	0.150	ug/L	1	(<1000)	07/22/15 13:49
Total Trihalomethanes	1.00 U	2.00	0.600	ug/L	1	(<80)	07/22/15 13:49
trans-1,2-Dichloroethene	0.250 U	0.500	0.150	ug/L	1	(<100)	07/22/15 13:49
trans-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Trichloroethene	0.250 U	0.500	0.150	ug/L	1	(<5)	07/22/15 13:49
Trichlorofluoromethane	0.250 U	0.500	0.150	ug/L	1		07/22/15 13:49
Vinyl chloride	0.200 U	0.400	0.120	ug/L	1	(<2)	07/22/15 13:49
Xylenes (total)	0.250 U	0.500	0.150	ug/L	1	(<10000)	07/22/15 13:49
Surrogates							
1,2-Dichloroethane-D4 (surr)	110	70-130		%	1		07/22/15 13:49
4-Bromofluorobenzene (surr)	99.7	70-130		%	1		07/22/15 13:49
Toluene-d8 (surr)	98.7	70-130		%	1		07/22/15 13:49

Batch Information

Analytical Batch: VMS15114 Analytical Method: EPA 524.2 Analyst: NRB Analytical Date/Time: 07/22/15 13:49 Container ID: 1158310012-A Prep Batch: VXX27607 Prep Method: SW5030B Prep Date/Time: 07/22/15 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:47PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 48 of 98

Method Blank					
Blank ID: MB for HB Blank Lab ID: 12794	N 1714907 [MXX/28917] 86	Matrix	k: Water (Surfac	ce, Eff., Ground)	
QC for Samples: 1158310001, 1158310	005, 1158310009				
Results by EP200.8					
Parameter	Results	LOQ/CL	<u>DL</u>	Units	
Lead	0.100U	0.200	0.0620	ug/L	
Batch Information]				
Analytical Batch: M Analytical Method: Instrument: Perkin Analyst: EAB Analytical Date/Tim	1MS9018 EP200.8 Elmer Sciex ICP-MS P3 e: 7/28/2015 4:57:39PM	Prep Ba Prep Me Prep Da Prep Init Prep Ex	tch: MXX28917 ethod: E200.2 te/Time: 7/27/20 tial Wt./Vol.: 20 r tract Vol: 50 mL	015 3:00:07PM mL	

_

063				
Blank Spike Summary				
Blank Spike ID: LCS for Blank Spike Lab ID: 127 Date Analyzed: 07/28/2 QC for Samples: 115	'9487 2015 17:00 8310001, 115831	[MXX2891 10005, 1158	7] 3310009	Matrix: Water (Surface, Eff., Ground)
Results by FP200.8			_	
Results by EP200.8		Blank Spike	e (ug/L)	
Results by EP200.8	Spike	Blank Spike <u>Result</u>	e (ug/L) <u>Rec (%)</u>	<u>CL</u>
Results by EP200.8 <u>Parameter</u> Lead	<u>Spike</u> 1000	Blank Spike <u>Result</u> 1030	e (ug/L) <u>Rec (%)</u> 103	<u>CL</u> (85-115)

Print Date: 08/05/2015 2:08:52PM

latrix Spike Summary										
Original Sample ID: 1279 //S Sample ID: 1279488 //SD Sample ID: QC for Samples: 115831	9539 3 MS 10001, 11583100	05, 115831	0009	Analysis Date: 07/28/2015 17:02 Analysis Date: 07/28/2015 17:04 Analysis Date: Matrix: Drinking Water 009						
Results by EP200.8			<u> </u>							
<u>rameter</u> ad	<u>Sample</u> 0.272	Ma <u>Spike</u> 1000	trix Spike (<u>Result</u> 1010	(ug/L) <u>Rec (%)</u> 101	Spike Spike	e Duplicate <u>Result</u>	e (ug/L) <u>Rec (%)</u>	<u>CL</u> 70-130	<u>RPD (%)</u>	<u>RPD C</u>
Analytical Batch: MMS90 Analytical Method: EP20 Instrument: Perkin Elme Analyst: EAB Analytical Date/Time: 7/2	018)0.8 r Sciex ICP-MS P 28/2015 5:04:46	23 IPM		Prep Prep Prep Prep Prep	Batch: M Method: Date/Tim Initial Wt	/IXX28917 DW Dige ne: 7/27/2 ./Vol.: 20. /ol: 50.00	st for Metals 015	on ICP-M 7PM	IS	

Print Date: 08/05/2015 2:08:52PM

Aatrix Spike Summary										
Driginal Sample ID: 1279 AS Sample ID: 1279489 ASD Sample ID: QC for Samples: 115831	9540 9 MS 10001, 115831000	05, 115831	0009	Analysis Date: 07/28/2015 17:33 Analysis Date: 07/28/2015 17:35 Analysis Date: Matrix: Drinking Water						
Results by FP200.8										
		Ма	itrix Spike	(ug/L)	Spike	e Duplicate	e (ug/L)			
<u>rameter</u> ad	<u>Sample</u> 3.17	<u>Spike</u> 1000	<u>Result</u> 1030	<u>Rec (%)</u> 103	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 70-130	<u>RPD (%)</u>	<u>RPD C</u>
Batch Information										
Analytical Batch: MMS9 Analytical Method: EP20 Instrument: Perkin Elme Analyst: EAB Analytical Date/Time: 7/2	018)0.8 r Sciex ICP-MS P 28/2015 5:35:45	'3 PM		Prep Prep Prep Prep Prep	9 Batch: M 9 Method: 9 Date/Tim 9 Initial Wt 9 Extract V	IXX28917 DW Dige ne: 7/27/2 ./Vol.: 20. (ol: 50.00	st for Metals 015 3:00:0 00mL mL	on ICP-N 7PM	IS	

Print Date: 08/05/2015 2:08:52PM

Method Blank

Blank ID: MB for HBN 1714418 [VXX/27607] Blank Lab ID: 1278698 Matrix: Drinking Water

QC for Samples: 1158310007, 1158310008, 1158310012

Results by EPA 524.2

<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.250U	0.500	0.150	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethane	0.250U	0.500	0.150	ug/L
1,1-Dichloroethene	0.250U	0.500	0.150	ug/L
1,1-Dichloropropene	0.250U	0.500	0.150	ug/L
1,2,3-Trichlorobenzene	0.250U	0.500	0.150	ug/L
1,2,3-Trichloropropane	0.250U	0.500	0.180	ug/L
1,2,4-Trichlorobenzene	0.250U	0.500	0.150	ug/L
1,2,4-Trimethylbenzene	0.250U	0.500	0.150	ug/L
1,2-Dibromo-3-chloropropane	1.00U	2.00	0.620	ug/L
1,2-Dibromoethane	0.250U	0.500	0.150	ug/L
1,2-Dichlorobenzene	0.250U	0.500	0.150	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.250U	0.500	0.150	ug/L
1,3,5-Trimethylbenzene	0.250U	0.500	0.150	ug/L
1,3-Dichlorobenzene	0.250U	0.500	0.150	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.250U	0.500	0.150	ug/L
2-Chlorotoluene	0.250U	0.500	0.150	ug/L
4-Chlorotoluene	0.250U	0.500	0.150	ug/L
4-Isopropyltoluene	0.250U	0.500	0.150	ug/L
Benzene	0.250U	0.500	0.150	ug/L
Bromobenzene	0.250U	0.500	0.150	ug/L
Bromochloromethane	0.250U	0.500	0.150	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.250U	0.500	0.150	ug/L
Bromomethane	1.00U	2.00	0.620	ug/L
Carbon tetrachloride	0.250U	0.500	0.150	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.250U	0.500	0.150	ug/L
Chloromethane	0.250U	0.500	0.150	ug/L
cis-1,2-Dichloroethene	0.250U	0.500	0.150	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L

Print Date: 08/05/2015 2:08:54PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1714418 [VXX/27607] Blank Lab ID: 1278698 Matrix: Drinking Water

QC for Samples: 1158310007, 1158310008, 1158310012

Results by EPA 524.2

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Dibromomethane	0.250U	0.500	0.150	ug/L
Dichlorodifluoromethane	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.250U	0.500	0.150	ug/L
Hexachlorobutadiene	0.250U	0.500	0.150	ug/L
Isopropylbenzene (Cumene)	0.250U	0.500	0.150	ug/L
Methylene chloride	0.250U	0.500	0.150	ug/L
Methyl-t-butyl ether	0.500U	1.00	0.500	ug/L
Naphthalene	0.250U	0.500	0.150	ug/L
n-Butylbenzene	0.250U	0.500	0.150	ug/L
n-Propylbenzene	0.250U	0.500	0.150	ug/L
o-Xylene	0.250U	0.500	0.150	ug/L
P & M -Xylene	0.250U	0.500	0.150	ug/L
sec-Butylbenzene	0.250U	0.500	0.150	ug/L
Styrene	0.250U	0.500	0.150	ug/L
tert-Butylbenzene	0.250U	0.500	0.150	ug/L
Tetrachloroethene	0.250U	0.500	0.150	ug/L
Toluene	0.250U	0.500	0.150	ug/L
trans-1,2-Dichloroethene	0.250U	0.500	0.150	ug/L
trans-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Trichloroethene	0.250U	0.500	0.150	ug/L
Trichlorofluoromethane	0.250U	0.500	0.150	ug/L
Vinyl chloride	0.200U	0.400	0.120	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	110	70-130		%
4-Bromofluorobenzene (surr)	99.9	70-130		%
Toluene-d8 (surr)	99.3	70-130		%

Batch Information

Analytical Batch: VMS15114 Analytical Method: EPA 524.2 Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 7/22/2015 8:28:00AM Prep Batch: VXX27607 Prep Method: SW5030B Prep Date/Time: 7/22/2015 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:08:54PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27607] Blank Spike Lab ID: 1278699 Date Analyzed: 07/22/2015 09:11 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27607] Spike Duplicate Lab ID: 1278700 Matrix: Drinking Water

QC for Samples: 1158310007, 1158310008, 1158310012

Results by EPA 524.2

	Blank Spike		e (ug/L)		Spike Duplicate (ug/L)				
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.5	105	30	29.8	99	(70-130)	5.60	(< 30)
1,1,1-Trichloroethane	30	30.9	103	30	30.3	101	(70-130)	1.90	(< 30)
1,1,2,2-Tetrachloroethane	30	32.8	109	30	30.5	102	(70-130)	7.30	(< 30)
1,1,2-Trichloroethane	30	33.4	111	30	31.6	105	(70-130)	5.60	(< 30)
1,1-Dichloroethane	30	30.8	103	30	30.1	100	(70-130)	2.30	(< 30)
1,1-Dichloroethene	30	31.1	104	30	30.8	103	(70-130)	1.00	(< 30)
1,1-Dichloropropene	30	31.5	105	30	31.0	103	(70-130)	1.60	(< 30)
1,2,3-Trichlorobenzene	30	30.9	103	30	29.0	97	(70-130)	6.20	(< 30)
1,2,3-Trichloropropane	30	32.2	107	30	29.8	100	(70-130)	7.70	(< 30)
1,2,4-Trichlorobenzene	30	31.0	103	30	29.8	99	(70-130)	3.80	(< 30)
1,2,4-Trimethylbenzene	30	31.3	104	30	29.8	99	(70-130)	4.90	(< 30)
1,2-Dibromo-3-chloropropane	30	32.6	109	30	30.2	101	(70-130)	7.40	(< 30)
1,2-Dibromoethane	30	32.9	110	30	31.6	105	(70-130)	4.00	(< 30)
1,2-Dichlorobenzene	30	30.3	101	30	29.3	98	(70-130)	3.20	(< 30)
1,2-Dichloroethane	30	32.9	110	30	31.4	105	(70-130)	4.40	(< 30)
1,2-Dichloropropane	30	31.2	104	30	29.9	100	(70-130)	4.20	(< 30)
1,3,5-Trimethylbenzene	30	31.4	105	30	29.8	99	(70-130)	5.00	(< 30)
1,3-Dichlorobenzene	30	30.2	101	30	28.4	95	(70-130)	5.90	(< 30)
1,3-Dichloropropane	30	33.6	112	30	31.9	106	(70-130)	5.10	(< 30)
1,4-Dichlorobenzene	30	30.5	102	30	29.1	97	(70-130)	4.70	(< 30)
2,2-Dichloropropane	30	29.7	99	30	29.0	97	(70-130)	2.30	(< 30)
2-Chlorotoluene	30	30.7	102	30	30.2	101	(70-130)	1.50	(< 30)
4-Chlorotoluene	30	31.0	103	30	29.6	99	(70-130)	4.80	(< 30)
4-Isopropyltoluene	30	31.1	104	30	29.8	99	(70-130)	4.10	(< 30)
Benzene	30	30.3	101	30	29.4	98	(70-130)	3.10	(< 30)
Bromobenzene	30	29.6	99	30	28.4	95	(70-130)	4.30	(< 30)
Bromochloromethane	30	28.6	95	30	28.0	94	(70-130)	1.90	(< 30)
Bromodichloromethane	30	31.4	105	30	30.4	101	(70-130)	3.10	(< 30)
Bromoform	30	32.3	108	30	30.5	102	(70-130)	5.70	(< 30)
Bromomethane	30	30.2	101	30	30.8	103	(70-130)	2.00	(< 30)
Carbon tetrachloride	30	30.6	102	30	30.2	101	(70-130)	1.30	(< 30)
Chlorobenzene	30	30.7	102	30	29.3	98	(70-130)	4.80	(< 30)
Chloroethane	30	36.6	122	30	35.8	119	(70-130)	2.10	(< 30)
Chloroform	30	31.3	104	30	30.4	101	(70-130)	3.00	(< 30)

Print Date: 08/05/2015 2:08:56PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27607] Blank Spike Lab ID: 1278699 Date Analyzed: 07/22/2015 09:11 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27607] Spike Duplicate Lab ID: 1278700 Matrix: Drinking Water

QC for Samples: 1158310007,

1158310007, 1158310008, 1158310012

Results by EPA 524.2

	Blank Spike (ug/L)		Spike Duplicate (ug/L)						
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Chloromethane	30	31.6	105	30	29.2	97	(70-130)	7.70	(< 30)
cis-1,2-Dichloroethene	30	29.4	98	30	28.0	94	(70-130)	4.90	(< 30)
cis-1,3-Dichloropropene	30	30.4	101	30	28.9	96	(70-130)	5.20	(< 30)
Dibromochloromethane	30	32.0	107	30	30.7	102	(70-130)	4.10	(< 30)
Dibromomethane	30	31.5	105	30	29.8	99	(70-130)	5.50	(< 30)
Dichlorodifluoromethane	30	31.0	103	30	30.3	101	(70-130)	2.10	(< 30)
Ethylbenzene	30	30.5	102	30	29.3	98	(70-130)	4.00	(< 30)
Hexachlorobutadiene	30	30.4	101	30	29.6	99	(70-130)	2.50	(< 30)
Isopropylbenzene (Cumene)	30	31.9	106	30	31.1	104	(70-130)	2.30	(< 30)
Methylene chloride	30	27.2	91	30	26.5	88	(70-130)	2.60	(< 30)
Methyl-t-butyl ether	45	46.1	102	45	44.0	98	(70-130)	4.80	(< 30)
Naphthalene	30	31.6	105	30	29.2	97	(70-130)	7.70	(< 30)
n-Butylbenzene	30	33.1	110	30	32.2	107	(70-130)	2.80	(< 30)
n-Propylbenzene	30	32.3	108	30	30.8	103	(70-130)	4.80	(< 30)
o-Xylene	30	31.3	104	30	30.1	100	(70-130)	3.80	(< 30)
P & M -Xylene	60	62.7	105	60	60.6	101	(70-130)	3.50	(< 30)
sec-Butylbenzene	30	31.4	105	30	30.4	101	(70-130)	3.10	(< 30)
Styrene	30	31.8	106	30	30.7	102	(70-130)	3.50	(< 30)
tert-Butylbenzene	30	31.2	104	30	30.2	101	(70-130)	3.50	(< 30)
Tetrachloroethene	30	30.8	103	30	29.8	99	(70-130)	3.40	(< 30)
Toluene	30	30.5	102	30	29.5	98	(70-130)	3.50	(< 30)
trans-1,2-Dichloroethene	30	29.2	97	30	28.6	95	(70-130)	2.20	(< 30)
trans-1,3-Dichloropropene	30	32.8	109	30	31.6	105	(70-130)	3.80	(< 30)
Trichloroethene	30	30.3	101	30	29.4	98	(70-130)	2.80	(< 30)
Trichlorofluoromethane	30	34.1	114	30	33.8	113	(70-130)	0.62	(< 30)
Vinyl chloride	30	29.7	99	30	29.4	98	(70-130)	1.20	(< 30)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	106	106	(70-130)	0.41	
4-Bromofluorobenzene (surr)	30	98.7	99	30	100	100	(70-130)	1.70	
Toluene-d8 (surr)	30	101	101	30	101	101	(70-130)	0.13	

Print Date: 08/05/2015 2:08:56PM

SGS North America Inc.

Blank Spike Summary									
Blank Spike ID: LCS for HBN 1158310 [VXX27607] Blank Spike Lab ID: 1278699 Date Analyzed: 07/22/2015 09:11				Spike Duplicate ID: LCSD for HBN 1158310 [VXX27607] Spike Duplicate Lab ID: 1278700 Matrix: Drinking Water					
0.0 fear 0 annula an 145									
QC for Samples: 115	8310007, 115831	10008, 1158	3310012						
QU TOF Samples: 115	8310007, 115831	10008, 1158	3310012						
Results by EPA 524.2	8310007, 115831	10008, 1158	3310012						
Results by EPA 524.2	8310007, 115831	10008, 1158 Blank Spil	3310012 (%)		Spike Dup	icate (%)			
Results by EPA 524.2	8310007, 115831	10008, 1158 Blank Spił <u>Result</u>	3310012 (e (%) <u>Rec (%)</u>	Spike	Spike Dupl	icate (%) <u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Results by EPA 524.2 Parameter Batch Information	8310007, 115831 <u>Spike</u>	10008, 1158 Blank Spil <u>Result</u>	3310012 (e (%) <u>Rec (%)</u>	Spike	Spike Dupi <u>Result</u>	icate (%) <u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Results by EPA 524.2 Parameter Batch Information Analytical Batch: VMS15	8310007, 115831	10008, 1158 Blank Spił <u>Result</u>	3310012 ke (%) <u>Rec (%)</u>	<u>Spike</u> Pre	Spike Dup <u>Result</u> p Batch: V2	icate (%) <u>Rec (%)</u> XX27607	<u>CL</u>	<u>RPD (%)</u>	<u>RPD CL</u>
Results by EPA 524.2 Parameter Batch Information Analytical Batch: VMS15 Analytical Method: EPA	8310007, 115831 <u>Spike</u> 5114 524.2	10008, 1158 Blank Spil	3310012 (e (%) <u>Rec (%)</u>	<u>Spike</u> Pre Pre	Spike Dupi Result p Batch: VX p Method: 3	icate (%) <u>Rec (%)</u> XX27607 SW5030B	CL	<u>RPD (%)</u>	<u>RPD CL</u>
Results by EPA 524.2 Parameter Batch Information Analytical Batch: VMS15 Analytical Method: EPA Instrument: VPA 780/59	8310007, 115831 <u>Spike</u> 5114 524.2 75 GC/MS	10008, 1158 Blank Spil	3310012 ke (%) <u>Rec (%)</u>	<u>Spike</u> Pre Pre Pre	Spike Dup Result p Batch: V2 p Method: p Date/Time	icate (%) <u>Rec (%)</u> XX27607 SW5030B e: 07/22/20	<u>CL</u> 15 06:00	<u>RPD (%)</u>	RPD CL
Results by EPA 524.2 Parameter Batch Information Analytical Batch: VMS15 Analytical Method: EPA Instrument: VPA 780/59 Analyst: NRB	8310007, 115831 <u>Spike</u> 5114 524.2 75 GC/MS	10008, 1158 Blank Spil	3310012 (e (%) <u>Rec (%)</u>	<u>Spike</u> Pre Pre Spil	Spike Dup Result p Batch: V2 p Method: p Date/Time ke Init Wt./V	icate (%) <u>Rec (%)</u> XX27607 SW5030B e: 07/22/20 ′ol.: 30 ug/l	<u>CL</u> 15 06:00 _ Extract	<u>RPD (%)</u> Vol: 5 mL	RPD CL

Print Date: 08/05/2015 2:08:56PM

Method Blank

Blank ID: MB for HBN 1714428 [VXX/27609] Blank Lab ID: 1278740 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310001, 1158310002, 1158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

_	Results by SW8260B				
	Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
	1,1,1,2-l etrachioroethane	0.2500	0.500	0.150	ug/L
	1,1,1-I richloroethane	0.5000	1.00	0.310	ug/L
	1,1,2,2-I etrachloroethane	0.2500	0.500	0.150	ug/L
	1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L
	1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
	1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
	1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
	1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
	1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
	1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
	1,2-Dibromoethane	0.500U	1.00	0.310	ug/L
	1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
	1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
	1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
	1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
	1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
	1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
	1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
	2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
	2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
	2-Chlorotoluene	0.500U	1.00	0.310	ug/L
	2-Hexanone	5.00U	10.0	3.10	ug/L
	4-Chlorotoluene	0.500U	1.00	0.310	ug/L
	4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
	4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
	Benzene	0.200U	0.400	0.120	ug/L
	Bromobenzene	0.500U	1.00	0.310	ug/L
	Bromochloromethane	0.500U	1.00	0.310	ug/L
	Bromodichloromethane	0.250U	0.500	0.150	ug/L
	Bromoform	0.500U	1.00	0.310	ug/L
	Bromomethane	5.00U	10.0	3.10	ug/L
	Carbon disulfide	5.00U	10.0	3.10	ug/L
	Carbon tetrachloride	0.500U	1.00	0.310	ug/L
	Chlorobenzene	0.250U	0.500	0.150	ug/L
	Chloroethane	0.500U	1.00	0.310	ug/L
	Chloroform	0.500U	1.00	0.300	ug/L

Print Date: 08/05/2015 2:08:58PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1714428 [VXX/27609] Blank Lab ID: 1278740 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310001, 1158310002, 1158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

Results by SW8260B					
Parameter	Results		DI	Units	
Chloromethane	0.500U	1.00	0.310	ug/L	
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L	
Dibromochloromethane	0.250U	0.500	0.150	ug/L	
Dibromomethane	0.500U	1.00	0.310	ug/L	
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
Freon-113	5.00U	10.0	3.10	ug/L	
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L	
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
Methylene chloride	2.50U	5.00	1.00	ug/L	
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
Naphthalene	5.00U	10.0	3.10	ug/L	
n-Butylbenzene	0.500U	1.00	0.310	ug/L	
n-Propylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
Styrene	0.500U	1.00	0.310	ug/L	
tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
Tetrachloroethene	0.500U	1.00	0.310	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L	
Trichloroethene	0.500U	1.00	0.310	ug/L	
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L	
Vinyl acetate	5.00U	10.0	3.10	ug/L	
Vinyl chloride	0.500U	1.00	0.310	ug/L	
Xylenes (total)	1.50U	3.00	1.00	ug/L	
Surrogates					
1,2-Dichloroethane-D4 (surr)	110	81-118		%	
4-Bromofluorobenzene (surr)	99.9	85-114		%	
Toluene-d8 (surr)	99.3	89-112		%	

Print Date: 08/05/2015 2:08:58PM

SGS North America Inc.

4428 [VXX/27609]	Matri	x: Water (Sur	face, Eff., Ground)					
158310003, 1158310004, 115	8310005, 1158310006	6, 1158310009	, 1158310010					
Results	LOQ/CL	DL	<u>Units</u>					
116	Prep Ba	atch: VXX2760	9					
260B	Prep Me	ethod: SW503	0B					
'5 GC/MS	Prep Da	ate/Time: 7/22	/2015 6:00:00AM					
Instrument: VPA 780/5975 GC/MS			Prep Initial Wt./Vol.: 5 mL					
	4428 [VXX/27609] 158310003, 1158310004, 1158 <u>Results</u> 1116 260B 75 GC/MS	4428 [VXX/27609] Matri 158310003, 1158310004, 1158310005, 1158310006 Results LOQ/CL 1116 Prep Ba 260B Prep Matri 75 GC/MS Prep Date	4428 [VXX/27609] Matrix: Water (Sur 158310003, 1158310004, 1158310005, 1158310006, 1158310009 Results LOQ/CL DL 1116 Prep Batch: VXX2760 260B Prep Method: SW503 75 GC/MS Prep Date/Time: 7/22	4428 [VXX/27609] Matrix: Water (Surface, Eff., Ground) 158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010 Results LOQ/CL DL Units I116 Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 7/22/2015_6:00:00AM				

Print Date: 08/05/2015 2:08:58PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27609] Blank Spike Lab ID: 1278741 Date Analyzed: 07/22/2015 09:11 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27609] Spike Duplicate Lab ID: 1278742 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310001, 1158310002, 1158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

Results by SW8260B

		Blank Spike	e (ug/L)	1	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.5	105	30	29.8	99	(78-124)	5.60	(< 20)
1,1,1-Trichloroethane	30	30.9	103	30	30.3	101	(74-131)	1.90	(< 20)
1,1,2,2-Tetrachloroethane	30	32.8	109	30	30.5	102	(71-121)	7.30	(< 20)
1,1,2-Trichloroethane	30	33.4	111	30	31.6	105	(80-119)	5.60	(< 20)
1,1-Dichloroethane	30	30.8	103	30	30.1	100	(77-125)	2.30	(< 20)
1,1-Dichloroethene	30	31.1	104	30	30.8	103	(71-131)	1.00	(< 20)
1,1-Dichloropropene	30	31.5	105	30	31.0	103	(79-125)	1.60	(< 20)
1,2,3-Trichlorobenzene	30	30.9	103	30	29.0	97	(69-129)	6.20	(< 20)
1,2,3-Trichloropropane	30	32.2	107	30	29.8	100	(73-122)	7.70	(< 20)
1,2,4-Trichlorobenzene	30	31.0	103	30	29.8	99	(69-130)	3.80	(< 20)
1,2,4-Trimethylbenzene	30	31.3	104	30	29.8	99	(79-124)	4.90	(< 20)
1,2-Dibromo-3-chloropropane	30	32.6	109	30	30.2	101	(62-128)	7.40	(< 20)
1,2-Dibromoethane	30	32.9	110	30	31.6	105	(77-121)	4.00	(< 20)
1,2-Dichlorobenzene	30	30.3	101	30	29.3	98	(80-119)	3.20	(< 20)
1,2-Dichloroethane	30	32.9	110	30	31.4	105	(73-128)	4.40	(< 20)
1,2-Dichloropropane	30	31.2	104	30	29.9	100	(78-122)	4.20	(< 20)
1,3,5-Trimethylbenzene	30	31.4	105	30	29.8	99	(75-124)	5.00	(< 20)
1,3-Dichlorobenzene	30	30.2	101	30	28.4	95	(80-119)	5.90	(< 20)
1,3-Dichloropropane	30	33.6	112	30	31.9	106	(80-119)	5.10	(< 20)
1,4-Dichlorobenzene	30	30.5	102	30	29.1	97	(79-118)	4.70	(< 20)
2,2-Dichloropropane	30	29.7	99	30	29.0	97	(60-139)	2.30	(< 20)
2-Butanone (MEK)	90	98.2	109	90	88.4	98	(56-143)	10.50	(< 20)
2-Chlorotoluene	30	30.7	102	30	30.2	101	(79-122)	1.50	(< 20)
2-Hexanone	90	103	115	90	93.9	104	(57-139)	9.70	(< 20)
4-Chlorotoluene	30	31.0	103	30	29.6	99	(78-122)	4.80	(< 20)
4-Isopropyltoluene	30	31.1	104	30	29.8	99	(77-127)	4.10	(< 20)
4-Methyl-2-pentanone (MIBK)	90	94.3	105	90	86.3	96	(67-130)	8.80	(< 20)
Benzene	30	30.3	101	30	29.4	98	(79-120)	3.10	(< 20)
Bromobenzene	30	29.6	99	30	28.4	95	(80-120)	4.30	(< 20)
Bromochloromethane	30	28.6	95	30	28.0	94	(78-123)	1.90	(< 20)
Bromodichloromethane	30	31.4	105	30	30.4	101	(79-125)	3.10	(< 20)
Bromoform	30	32.3	108	30	30.5	102	(66-130)	5.70	(< 20)
Bromomethane	30	30.2	101	30	30.8	103	(53-141)	2.00	(< 20)
Carbon disulfide	45	46.9	104	45	46.7	104	(64-133)	0.32	(< 20)

Print Date: 08/05/2015 2:09:00PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27609] Blank Spike Lab ID: 1278741 Date Analyzed: 07/22/2015 09:11 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27609] Spike Duplicate Lab ID: 1278742 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310001, 1158310002, 1158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

Results by SW8260B

	Blank Sp		ke (ug/L)		Spike Duplicate (ug/L)				
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.6	102	30	30.2	101	(72-136)	1.30	(< 20)
Chlorobenzene	30	30.7	102	30	29.3	98	(82-118)	4.80	(< 20)
Chloroethane	30	36.6	122	30	35.8	119	(60-138)	2.10	(< 20)
Chloroform	30	31.3	104	30	30.4	101	(79-124)	3.00	(< 20)
Chloromethane	30	29.6	99	30	27.4	91	(50-139)	7.70	(< 20)
cis-1,2-Dichloroethene	30	29.4	98	30	28.0	94	(78-123)	4.90	(< 20)
cis-1,3-Dichloropropene	30	30.4	101	30	28.9	96	(75-124)	5.20	(< 20)
Dibromochloromethane	30	32.0	107	30	30.7	102	(74-126)	4.10	(< 20)
Dibromomethane	30	31.5	105	30	29.8	99	(79-123)	5.50	(< 20)
Dichlorodifluoromethane	30	31.0	103	30	30.3	101	(32-152)	2.10	(< 20)
Ethylbenzene	30	30.5	102	30	29.3	98	(79-121)	4.00	(< 20)
Freon-113	45	47.9	106	45	47.5	105	(70-136)	0.96	
Hexachlorobutadiene	30	30.4	101	30	29.6	99	(66-134)	2.50	(< 20)
Isopropylbenzene (Cumene)	30	31.9	106	30	31.1	104	(72-131)	2.30	(< 20)
Methylene chloride	30	27.2	91	30	26.5	88	(74-124)	2.60	(< 20)
Methyl-t-butyl ether	45	46.1	102	45	44.0	98	(71-124)	4.80	(< 20)
Naphthalene	30	31.6	105	30	29.2	97	(61-128)	7.70	(< 20)
n-Butylbenzene	30	33.1	110	30	32.2	107	(75-128)	2.80	(< 20)
n-Propylbenzene	30	32.3	108	30	30.8	103	(76-126)	4.80	(< 20)
o-Xylene	30	31.3	104	30	30.1	100	(78-122)	3.80	(< 20)
P & M -Xylene	60	62.7	105	60	60.6	101	(80-121)	3.50	(< 20)
sec-Butylbenzene	30	31.4	105	30	30.4	101	(77-126)	3.10	(< 20)
Styrene	30	31.8	106	30	30.7	102	(78-123)	3.50	(< 20)
tert-Butylbenzene	30	31.2	104	30	30.2	101	(78-124)	3.50	(< 20)
Tetrachloroethene	30	30.8	103	30	29.8	99	(74-129)	3.40	(< 20)
Toluene	30	30.5	102	30	29.5	98	(80-121)	3.50	(< 20)
trans-1,2-Dichloroethene	30	29.2	97	30	28.6	95	(75-124)	2.20	(< 20)
trans-1,3-Dichloropropene	30	32.8	109	30	31.6	105	(73-127)	3.80	(< 20)
Trichloroethene	30	30.3	101	30	29.4	98	(79-123)	2.80	(< 20)
Trichlorofluoromethane	30	34.1	114	30	33.8	113	(65-141)	0.62	(< 20)
Vinyl acetate	30	32.1	107	30	30.4	101	(54-146)	5.50	(< 20)
Vinyl chloride	30	29.7	99	30	29.4	98	(58-137)	1.20	(< 20)
Xylenes (total)	90	94.0	104	90	90.7	101	(79-121)	3.60	(< 20)

Print Date: 08/05/2015 2:09:00PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27609] Blank Spike Lab ID: 1278741 Date Analyzed: 07/22/2015 09:11 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27609] Spike Duplicate Lab ID: 1278742 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310001, 1158310002, 1158310003, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

Results by SW8260B

		Blank Spil	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	106	106	(81-118)	0.41	
4-Bromofluorobenzene (surr)	30	98.7	99	30	100	100	(85-114)	1.70	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.13	

Batch Information

Analytical Batch: VMS15116 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: NRB Prep Batch: VXX27609 Prep Method: SW5030B Prep Date/Time: 07/22/2015 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/05/2015 2:09:00PM

SGS

Method Blank				
Blank ID: MB for HBN 1714 Blank Lab ID: 1278879	500 [VXX/27612]	Matriz	x: Water (Surfa	ce, Eff., Ground)
QC for Samples:			4450240040	
1158310001, 1158310002, 115	8310004, 1158310005, 118	58310006, 1158310008	9, 1158310010	
Results by AK101		J		
<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L
Surrogates 4-Bromofluorobenzene (surr)	100	50-150		%
Batch Information				
Analytical Batch: VFC1253	4	Prep Ba	tch: VXX27612	
Analytical Method: AK101 Instrument: Agilent 7890A F	PID/FID	Prep Me Prep Da	ethod: SW5030B ate/Time: 7/23/20) 15 8:00:00AM
Analyst: CRD Analytical Date/Time: 7/23/		Prep Ini Prep Ex	tial Wt./Vol.: 5 m	L
Analytical Date/Time. 1723/	2013 1.04.001 10	пер сл		

Print Date: 08/05/2015 2:09:02PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27612] Blank Spike Lab ID: 1278882 Date Analyzed: 07/23/2015 14:01 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27612] Spike Duplicate Lab ID: 1278883 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1158310001, 1158310002, 1158310004, 1158310005, 1158310006, 1158310009, 1158310010

Results by AK101			_						
	E	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
Parameter	Spike	Spike Result		<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.05	105	1.00	0.998	100	(60-120)	4.60	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	110	110	0.0500	112	112	(50-150)	1.20	
Batch Information									
Analytical Batch: VFC12534				Prep	Batch: V	XX27612			
Analytical Method: AK101				Prep	Method:	SW5030B			
Instrument: Agilent 7890A PI	D/FID			Prep	Date/Tim	e: 07/23/201	5 08:00	/ol. E mal	
Analyst: CRD				Брік Dun	e Init Wt./\ e Init Wt /\	/ol.: 1.00 mg	y/L Extract V	ol: 5 ml	
				Dup	C IIII VVL./ V	0 1.00 110		OI. OTHE	

Print Date: 08/05/2015 2:09:04PM

SGS

Method Blank

Blank ID: MB for HBN 1714522 [VXX/27615] Blank Lab ID: 1278973 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1158310003, 1158310004, 1158310005, 1158310009

Results by SW8260B

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	110	81-118		%
4-Bromofluorobenzene (surr)	98.7	85-114		%
Toluene-d8 (surr)	99.3	89-112		%

Batch Information

Analytical Batch: VMS15119 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 7/23/2015 3:25:00PM Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 7/23/2015 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:09:05PM

Leaching Blank

SG:

Blank ID: LB for HBN 1714244 [TCLP/7882] Blank Lab ID: 1278289 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310003, 1158310004, 1158310005, 1158310009

Results by SW8260B

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	109	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	98.9	89-112		%

Batch Information

Analytical Batch: VMS15119 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 7/23/2015 5:53:00PM Prep Batch: VXX27615 Prep Method: SW5030B Prep Date/Time: 7/23/2015 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/05/2015 2:09:05PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27615] Blank Spike Lab ID: 1278974 Date Analyzed: 07/23/2015 15:52 Spike Duplicate ID: LCSD for HBN 1158310 [VXX27615] Spike Duplicate Lab ID: 1278975 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1158310003, 1158310004, 1158310005, 1158310009

Results by SW8260B									
		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,2-Dichloroethane	30	32.9	110	30	32.9	110	(73-128)	0.12	(< 20)
Benzene	30	31.1	104	30	30.8	103	(79-120)	1.00	(< 20)
Methyl-t-butyl ether	45	45.6	101	45	46.4	103	(71-124)	1.80	(< 20)
o-Xylene	30	31.5	105	30	31.1	104	(78-122)	1.10	(< 20)
Xylenes (total)	90	95.2	106	90	94.1	105	(79-121)	1.20	(< 20)
Surrt f aœg									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	104	104	(81-118)	1.30	
4-Bromofluorobenzene (surr)	30	99	99	30	97.8	98	(85-114)	1.20	
Toluene-d8 (surr)	30	102	102	30	101	101	(89-112)	0.59	

Bacsc Inlt rmacit n

Analytical Batch: VMS1511P Analytical Method: SW8260B Instrument: VA7 / 8095P/ 5 GC9MS Analyst: NRB Prep Batch: VXX2/ 615 Prep Method: SW5030B Prep Date/Time: 0/ 9392015 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/05/2015 2:09:07PM

SG Method Blank Blank ID: MB for HBN 171450[\X/ / 267067] Ma,rti: x a,mr WQ(rfaumcEff.cGro(nd) Blank Lab ID: 16750[4 8 9 for QaC SImp: 11es31[[[3 Rmp(I,p by AK101 LO8 29 L Rmp(l,p Unt,p ParaCmm DL GapoltnmRangmOrgantup [.[e[[U [.1[[[.[31[Cg2 Surrogates 4-BroCofl(orobmzmmWp/(rr) s5.7 % e[-1e[**Batch Information**

PrmS Ba,uh: X/ / 67067

PrmS Mmhod: Qx e[3[B

PrmS Int,tal x ,.2Xol.: e C L

PrmS Ei ,rau, Xol: e C L

PrmSDa,m2TtCm 726726[1e s:[[:[AM

Prtn, Da,m [s2]e26[1e 6:[5:[sPM

Analy,tual Ba,uh: XF9 16e46

Inp,r(Cm,: AgtIm, 7s5[PID2FID

Analy,tual Da,m2TtCm 726726[1e 1[:4[:[[AM

Analy,tual Mmhod: AK1[1

Analyp,: QT

Blank Spike Summary

Blank Spike ID: LCS for HBN 1158310 [VXX27627] Blank Spike Lab ID: 127t 605 Da& ynalzde/: 0742742015 11:17 Spike DuplicaAe ID: LCSD for HBN 1158310 [VXX27627] Spike DuplicaAe Lab ID: 127t 606 MaAix: WaAer (Surface, Eff., Groun/)

QC for Samples: 1158310003

ResulAs bz AK101 Blank Spike (mg4_) Spike DuplicaAe (mg4_) Parame Aer Spike Rec (%) Spike Rec (%) CL RPD (%) RPD CL ResulA ResulA Gasoline Range 9 rganics 0.t 87 1.00 1.02 102 1.00 t t (60C120) 3.20 (- 20) Surrogates < Bromofluorobendene (surr) 0.0500 t 2.< t 2 0.0500 8<.1 8< (50Cl50) t.30 **Batch Information** y nalzAcal BaAch: VFC12542 Prep BaAch: VXX27627 y nalzAcal MeAno/: AK101 Prep MeAno/: SW5030B InsAtumenA Agilent 7890 PID/FID Prep DaAe4Time: 07/27/2015 08:00 y nalzsA ST Spike IniAWA4/ol.: 1.00 mg4 ExAacAVol: 5 mL Dupe IniAWA4/ol.: 1.00 mg4 ExAacAVol: 5 mL

PrinADaA: 0840542015 2:0t :10PM

ations Nationwide Maryland	ey New York	rolina Indiana aina Kentuckv	www.us.sgs.com	t.	Bage of						REMARKS/ LOG ID											Data Deliverable Requirements:	ADEC	Il Instructions:	50.000-553		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT	See attached Sample Receipt Form)		it_Request_and_COC_Templates-Blank Revised 2013-03-24
8310 Alaska	New Jers	North Ca		iections 1 - 5 must be filled our ay delay the onset of analysis.	-	Preservative	- Голн Етан д-И		· · · · ·	8 '0 2 ' 1 2 ' 1	2007 127 225 803		<u>\</u>	2		>	~	~	>	> > >		Section 4 DOD Project? Yes No	Cooler ID:	Requested Turnaround Time and/or Specia		-	Temp Blank °C: 5.0	or Ambient []	(See attached Sample Receipt Form) ((http://www.sgs.com/terms-and-conditions	F083-Ki
rth Americ: 115	CUSTODY			Instructions: S Omissions m	Section 3	-	рч ВИ # 0	0 Type	C = C = C = C = C = C = C = C = C = C =	N - GRAB	E Incre- R mental Solis Solis Solis	N 6 1/ V	7 1 7 1	9 1 2	6 1 1	10 1/	6 1 1	e	3	10 4 1/ 1	i X X	N.1 / 3.30.15	ECHI CAN /	1.	\int			r Laboratory By:	5	301 -1557 ANL IFIR	4.8102
SGS No	CHAIN OF 0					52-5688			AC 1+ Graft Lory		TIME MATRIX/ HH:MM CODE	1145 W	1230 1	1335	120	0947	1040	1350 V	1355 W	140 2 1	1400 W	Lime Reçeived By	WHI LCH	Time Received By	1600	Time Received-By		Time Received Fo	Ogen / lie	562-2343 Fax: (907) 561-5 350-1903 Fax: (910) 350	
					ONE NO:	4-600	JECT/ SID/ MIT#:	IAIL:	NE CONT	01E#.	DATE mm/dd/yy	7/20/15						>	>	2	7/20/5	Date	1/2012	Date -	7.JOUS	Date -		Date	TIJANIT	518 Tel: (907) 5 28405 Tel: (910)	
				HARTELI	Hd	DN J& DJSek	PAC PER PER): E-N	neser dduse	Difs che	SAMPLE IDENTIFICATION	MW. 2	Rw-9	116 ~ 16	A5 - 8	NW-20	2.101	6NW.2	GHW - 12	NW -25	10-01	d, By: (1)	$\left(\right)$	1 By: (2)	li la	1 By: (3)		d By: (4)	\int	Potter Drive Anchorage, AK 99. siness Drive Wilmington. NC 2	
C	<i>?</i>			CLIENT:		CONTACT:	ection NAME:	⁽⁾ REPORTS T(2140 6	DE 16	RESERVED for lab use	5-40	1-02	I-HO	7-4 (1)00	ect 5 A-1	S (2) A-F	(i) A-C	S A-C	A-7	0-400	Relinquishe	Dwill	Relinquished	g uo	CRelinquished	age 7	o Relinquisher	8	[] 200 W. F [] 5500 Bu	

				-	-	-				-					,		 						_	~		
tionwide	Maryland New York	Indiana	Kentucky sgs.com			5 5 9 9				REMARKS/ LOC ID								liverable Requirements:	Ju	ions:		of Custody Seal: (Circle)	BROKEN ABSENT	hed Sample Receipt Form		ind_COC_Templates-Blank Revised 2013-03-24
ations Na	No	rolina	gina www.us.										_					Data De	ADO	Instructi		Chain o	INTACT	see attach		_Request_a
Loca	Alaska New lere	North Ca	West Virg	led ou	alysis.												5	No No		or Special	ł			orm) (S	ions	F083-Kit
				t be fil	of ana	ø												ect? Yes		me and/o			[]	teceipt Fo	ind-condit	
				5 mus	onset	eservativ								_			_	DOD Proj		Iround Ti		S.O	Ambient	Sample R	<u>n/terms-a</u>	
10				ns 1 -	lay the	Pri											+	n 4 I	ä	ted Turna		lank °C:	or	ttached (w.sgs.col	
803				Sectio	lay de													Sectio	Cooler	Request		Temp B		(See a	http://ww	
				ons:	ions n			7	* hC	ગાંધ ગાંધ		×						ls:	Ц							5 8
=				structi	Omiss			\'H9.3	2 Q	69	\times			_		_		7.30	14C				By:			IS POINT
Amori				<u>م</u>		ection 3		Typ CON G=	GRA MI	Incr men Soli			_			_	 _	2	her	\wedge			oratory l		V	E .
North		5		-	_	S S	# 0	o z F «	- z	ш ж »	-	,	_	+-		_	_	₿Ŋ:	a Cal	By:	By:		l For Lat	1	51-5301 350-1557	
000						5682		no)(am		MATRI MATRI CODE	2	3						Received	Mar	Received	Received		Received	Cr2	c: (907) 5(ax: (910) 3	
	0	5)-452 -		ntech end		TIME HH:MM	1460	14 00						Time	1427	Time 600	Time		Time	09cc	562-2343 Fa) 350-1903 Fa	
						one no: qu	JECT/ KID/ MIT#:	IAIL: <u>JSe}{@ivu</u> OTE#:	.#:	DATE mm/dd/yy	212015	D) les/L						Date	7/20/13	Date 7.20°US	Date		Date	71/21/15	518 Tel: (907) 8405 Tel: (910	
	7				Nortech	CT: DUN DUSEK PH	CT COID HILL PHR	TS TO: E-W アメ DUS ビバイ みるい E TO: OUC	riech P.O	VED SAMPLE IDENTIFICATION	-c tBe 02	-C TB-03						Jushed By: (1)	(AM	ished By: (2)	ished By: (3)		uished By: (4)) W. Potter Drive Anchorage, AK 995 0 Business Drive Wilmington, NC 2	
					CLIENT	CONTA	PROJEC NAME:		No	RESER for lab	日(11)	t T	71	101102				Relindu	Č	Relingu	Relindu	ge 72	86 JO		[] 200 [] 550	-
				_		-	aoitoo	2					61	-01106	3		 	_		9 00	1000	5				

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	Co	onditio	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	N/A>	dExemption permitted if sampler hand
COC accompanied samples?	Yes>	No	N/A	carries/delivers.
COC accompanied samples? Temperature blank compliant* (i.e., 0-6°C) If <0°C, were samples collected <8 hours ago?	Yes Yes Yes	No No No	N/A N/A	□Exemption permitted if chilled & collected <8hrs ago Note: Identify containers received at non-compliant temperature. Use form
"ambient" or "chilled"				FS-0029 if more space is needed.
Delivery Method-Client (hand carried) Other:	Trac Or s	cking// ee atta Or N//	AB#∶ ached ∳∕	
\rightarrow For samples received with payment, note amount (\$) and whe	ether cash	/ chec	k/CC (cir	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other:	(Yes)	No	N/A	Note: some samples are sent to Anchorage without inspection by SGS Fairbanks personnel.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes	No	N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes	No	(N/A)	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	(N/A)	
Additional notes (if applicable):				

Note to Client: any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

1158310

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.		$\mathbf{\Lambda}$		Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			
Temperature blank compliant* (i.e., 0-6°C after CF)?				Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?	ЦЦ	\mathbf{V}	Ц	
If < 0 °C, were all sample containers ice free?	$ \Box $	\checkmark		
Cooler ID: $\underline{1}$ @ $\underline{4.8}$ w/ Therm.ID: $\underline{D2}$				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
If samples are received <u>without</u> a temperature blank, the "cooler				
"COOLER TEMP" will be noted to the right. In cases where notifier a				Note: Identify containers received at non-compliant
temp blank nor cooler temp can be obtained note "ambient" or "chilled"				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried)				
\Box USPS ∇ Lynden \Box AK Air \Box Alert Courier				
$\square UPS$ $\square FedEx$ $\square RAVN$ $\square C&D Delivery$				
\square Carlile \square Pen Air \square Warp Speed \square Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		$\mathbf{\nabla}$		
	Yes	N/A	No	
Were samples received within hold time?	\checkmark			Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?	\checkmark			<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?	\checkmark			
Were samples in good condition (no leaks/cracks/breakage)?	\checkmark			
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?			Ц	<i>Exemption permitted for metals (e.g., 200.8/6020A).</i>
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	IЦ	M	Ц	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?	IЦ	M	Н	
Were all soil VOAs field extracted with MeOH+BFB?	$ \square$			
For preserved waters (other than VOA vials, LL-Mercury or				
If plu was adjusted ware bottles flagged (i.e. stickers)?		H	H	
For special handling (e.g. "MI" soils foreign soils lab filter for	╎└┙	V		
dissolved lab extract for volatiles. Ref Lab limited volume)				
were bottles/paperwork flagged (e.g. sticker)?		$\mathbf{\nabla}$		
For PUSH/SHOPT Hold Time were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent if applicable?				
For SITE-SPECIFIC OC e g BMS/BMSD/BDUP were				
containers / paperwork flagged accordingly?		$\mathbf{\nabla}$		
For any question answered "No," has the PM been notified and				SRF Completed by: VDL 7/21/15
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of <i>sample numbering/labeling completed?</i>				Peer Reviewed by: D.C
Additional notes (if applicable):				•

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

<u>Container Id</u> 1158310001-A	<u>Preservative</u> HCL to $pH \le 2$	Container Condition OK	<u>Container Id</u> 1158310005-I	<u>Preservative</u> No Preservative Required	Container Condition OK
1158310001-B	HCL to $pH < 2$	OK	1158310005-J	HNO3 to $pH < 2$	OK
1158310001-C	HCL to $pH < 2$	OK	1158310006-A	HCL to $pH < 2$	OK
1158310001-D	HCL to $pH < 2$	OK	1158310006-B	HCL to $pH < 2$	OK
1158310001-E	HCL to $pH < 2$	OK	1158310006-C	HCL to $pH < 2$	OK
1158310001-F	HCL to $pH < 2$	OK	1158310006-D	HCL to $pH < 2$	OK
1158310001-G	No Preservative Required	OK	1158310006-Е	HCL to $pH < 2$	OK
1158310001-Н	No Preservative Required	OK	1158310006-F	HCL to $pH < 2$	OK
1158310001-I	No Preservative Required	OK	1158310007-A	HCL to $pH < 2$	OK
1158310001-J	HNO3 to $pH < 2$	OK	1158310007-В	HCL to $pH < 2$	OK
1158310002-A	HCL to $pH < 2$	OK	1158310007-C	HCL to $pH < 2$	OK
1158310002-B	HCL to $pH < 2$	OK	1158310008-A	HCL to $pH < 2$	OK
1158310002-C	HCL to $pH < 2$	OK	1158310008-B	HCL to $pH < 2$	OK
1158310002-D	HCL to $pH < 2$	OK	1158310008-C	HCL to $pH < 2$	OK
1158310002-E	HCL to $pH < 2$	OK	1158310009-A	HCL to $pH < 2$	OK
1158310002-E	HCL to $pH < 2$	OK	1158310009-B	HCL to $pH < 2$	OK
1158310002-G	No Preservative Required	OK	1158310009-C	HCL to $pH < 2$	OK
1158310002-Н	No Preservative Required	OK	1158310009-D	HCL to $pH < 2$	OK
1158310002-I	No Preservative Required	OK	1158310009-Е	HCL to $pH < 2$	OK
1158310003-A	HCL to $pH < 2$	OK	1158310009-F	HCL to $pH < 2$	OK
1158310003-B	HCL to $pH < 2$	OK	1158310009-G	No Preservative Required	OK
1158310003-C	HCL to $pH < 2$	OK	1158310009-Н	No Preservative Required	OK
1158310003-D	HCL to $pH < 2$	OK	1158310009-I	No Preservative Required	OK
1158310003-E	HCL to $pH < 2$	OK	1158310009-J	HNO3 to $pH < 2$	OK
1158310003-F	HCL to $pH < 2$	OK	1158310010-A	HCL to $pH < 2$	OK
1158310003-G	No Preservative Required	OK	1158310010-B	HCL to $pH < 2$	OK
1158310003-Н	No Preservative Required	OK	1158310010-C	HCL to $pH < 2$	OK
1158310003-I	No Preservative Required	OK	1158310010-D	HCL to $pH < 2$	OK
1158310004-A	HCL to $pH < 2$	OK	1158310011-A	No Preservative Required	OK
1158310004-B	HCL to $pH < 2$	OK	1158310011-B	No Preservative Required	OK
1158310004-C	HCL to $pH < 2$	OK	1158310011-C	No Preservative Required	OK
1158310004-D	HCL to $pH < 2$	OK	1158310012-A	HCL to $pH < 2$	OK
1158310004-E	HCL to $pH < 2$	OK	1158310012-В	HCL to $pH < 2$	OK
1158310004-F	HCL to $pH < 2$	ОК	1158310012-C	HCL to $pH < 2$	OK
1158310005-A	HCL to $pH < 2$	OK			
1158310005-В	HCL to $pH < 2$	OK			
1158310005-C	HCL to $pH < 2$	OK			
1158310005-D	HCL to $pH < 2$	OK			
1158310005-E	HCL to $pH < 2$	OK			
1158310005-F	HCL to $pH < 2$	OK			
1158310005-G	No Preservative Required	OK			

No Preservative Required

OK

1158310005-Н

Container Id

Preservative

Container Condition

Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

ANALYTICAL REPORT

Job Number: 280-72191-1 Job Description: SGS AK -1158310

> For: SGS North America, Inc 200 W. Potter Drive Anchorage, AK 99518 Attention: Mr. Forest Taylor

avice 5. Collin

Approved for release. Janice S Collins Project Management Assistant I 8/4/2015 3:04 PM

Designee for Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 08/04/2015

cc: Ms. Julie Shumway

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	4
Method Summary	5
Method / Analyst Summary	6
Sample Summary	7
Sample Results	8
Sample Datasheets	9
Data Qualifiers	15
QC Results	16
Qc Association Summary	17
Surrogate Recovery Report	18
Qc Reports	19
Client Chain of Custody	21
Sample Receipt Checklist	22

CASE NARRATIVE

Client: SGS North America, Inc

Project: SGS AK -1158310

Report Number: 280-72191-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Sample Receiving

The samples were received on 07/23/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 0.4 C.

Holding Times

All holding times were met.

Method Blanks

All Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The method required MS/MSD could not be performed for Method 504.1 due to insufficient sample volume, however, a LCS/LCSD pair was analyzed to demonstrate method precision and accuracy.

Organics

The sample MW-16 was analyzed at a dilution for Method 504.1 due to the abundance of target analyte. As a result, the reporting limit was elevated. In addition, the Method 504.1 surrogate result of 1,2-Dibromopropane for MW-16 was outside the laboratories quantitation levels due to the dilution performed on the sample. As a result, the laboratory does not control on the reported recovery.

EXECUTIVE SUMMARY - Detections

Client: SGS North America, Inc

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-72191-1 1,2-Dibromoethane	MW-2	0.26		0.020	ug/L	504.1
280-72191-3 1,2-Dibromoethane	MW-16	18		1.0	ug/L	504.1
280-72191-4 1,2-Dibromoethane	MW-20	0.030		0.020	ug/L	504.1
280-72191-5 1,2-Dibromoethane	MW-25	0.032		0.020	ug/L	504.1

METHOD SUMMARY

Client: SGS North America, Inc

Job Number: 280-72191-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
EDB, DBCP and 1,2,3-TCP (GC)	TAL DEN	EPA-DW 504.1	
Microextraction	TAL DEN		EPA-DW 504.1

Lab References:

TAL DEN = TestAmerica Denver

Method References:

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements.

METHOD / ANALYST SUMMARY

Client: SGS North America, Inc

Job Number: 280-72191-1

 Method
 Analyst
 Analyst ID

 EPA-DW 504.1
 Redman, Erin E
 EER

Client: SGS North America, Inc

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-72191-1	MW-2	Water	07/20/2015 1145	07/23/2015 0920
280-72191-2	MW-9	Water	07/20/2015 1230	07/23/2015 0920
280-72191-3	MW-16	Water	07/20/2015 1335	07/23/2015 0920
280-72191-4	MW-20	Water	07/20/2015 0947	07/23/2015 0920
280-72191-5	MW-25	Water	07/20/2015 1400	07/23/2015 0920
280-72191-6	TB-02	Water	07/20/2015 1400	07/23/2015 0920
280-72191-5 280-72191-6	MW-25 TB-02	Water Water	07/20/2015 1400 07/20/2015 1400	07/23/2015 0920 07/23/2015 0920

SAMPLE RESULTS

Client: SGS North America, Inc

Client Sample ID:	MW-2						
Lab Sample ID: Client Matrix:	280-72191-1 Water					Date San Date Rec	npled: 07/20/2015 1145 ceived: 07/23/2015 0920
		504.1 EDB, DBCP	P and 1,2,3-T	CP (GC)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 1.0 07/30/2015 2340 07/30/2015 1201	Analysis Batch: Prep Batch:	280-288444 280-288433	4 3	Instrument Initial Weig Final Weigl Injection Vo Result Typ	ID: ht/Volume: nt/Volume: blume: e:	SGC_E 35.1 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	ig/L)	Qualifie	er M	DL	RL
1,2-Dibromoethane	9	0.26			0.	0037	0.020
Surrogate		%Rec		Qualifie	er	Acceptan	nce Limits
1,2-Dibromopropa	ne	112				70 - 130	

Client: SGS North America, Inc

Client Sample ID:	MW-9						
Lab Sample ID: Client Matrix:	280-72191-2 Water					Date San Date Rec	npled: 07/20/2015 1230 eived: 07/23/2015 0920
		504.1 EDB, DBCP	and 1,2,3-T	CP (GC	;)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 1.0 07/30/2015 2359 07/30/2015 1201	Analysis Batch: Prep Batch:	280-28844 280-28843	4 3	Instrument Initial Weig Final Weigl Injection Vo Result Type	ID: ht/Volume: nt/Volume: blume: e:	SGC_E 35.3 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	g/L)	Qualifi	er M	DL	RL
1,2-Dibromoethane	e	ND			0.	0037	0.020
Surrogate		%Rec		Qualifi	er	Acceptan	ce Limits
1,2-Dibromopropa	ne	111				70 - 130	

Client: SGS North America, Inc

Client Sample ID:	MW-16						
Lab Sample ID: Client Matrix:	280-72191-3 Water					Date San Date Rec	npled: 07/20/2015 1335 eived: 07/23/2015 0920
		504.1 EDB, DBCP	and 1,2,3-T	CP (GC	;)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 50 07/31/2015 0923 07/30/2015 1201	Analysis Batch: Prep Batch:	280-28859 280-28843	7 3	Instrument I Initial Weigh Final Weigh Injection Vo Result Type	D: ht/Volume: t/Volume: lume: :	SGC_E 34.9 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	g/L)	Qualifi	er ME	DL	RL
1,2-Dibromoethane	5	18			0.1	9	1.0
Surrogate		%Rec		Qualifi	er	Acceptan	ce Limits
1,2-Dibromopropa	ne	226		ХD		70 - 130	

Client: SGS North America, Inc

Client Sample ID:	MW-20						
Lab Sample ID: Client Matrix:	280-72191-4 Water					Date San Date Rec	npled: 07/20/2015 0947 ceived: 07/23/2015 0920
		504.1 EDB, DBCP	P and 1,2,3-T	CP (GC	;)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 1.0 07/31/2015 0037 07/30/2015 1201	Analysis Batch: Prep Batch:	280-288444 280-28843:	4 3	Instrumer Initial Wei Final Wei Injection V Result Ty	nt ID: ght/Volume: ght/Volume: /olume: pe:	SGC_E 35.4 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	g/L)	Qualifi	er I	MDL	RL
1,2-Dibromoethane	9	0.030			(0.0037	0.020
Surrogate		%Rec		Qualifi	er	Acceptar	nce Limits
1,2-Dibromopropa	ne	126				70 - 130	

Client: SGS North America, Inc

Client Sample ID:	MW-25						
Lab Sample ID: Client Matrix:	280-72191-5 Water					Date Sam Date Rec	npled: 07/20/2015 1400 eived: 07/23/2015 0920
		504.1 EDB, DBCP	and 1,2,3-T	CP (GC	;)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 1.0 07/31/2015 0056 07/30/2015 1201	Analysis Batch: Prep Batch:	280-28844 280-28843	4 3	Instrument I Initial Weigh Final Weigh Injection Vo Result Type	D: ht/Volume: t/Volume: lume: :	SGC_E 35.3 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	g/L)	Qualifi	er ME	DL	RL
1,2-Dibromoethane	9	0.032			0.0	037	0.020
Surrogate		%Rec		Qualifi	er	Acceptan	ce Limits
1,2-Dibromopropa	ne	126				70 - 130	

Client: SGS North America, Inc

Client Sample ID:	TB-02						
Lab Sample ID: Client Matrix:	280-72191-6 Water					Date San Date Rec	npled: 07/20/2015 1400 ceived: 07/23/2015 0920
		504.1 EDB, DBCP	P and 1,2,3-T	CP (GC)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	504.1 504.1 1.0 07/31/2015 0115 07/30/2015 1201	Analysis Batch: Prep Batch:	280-288444 280-288433	4 3	Instrument Initial Weig Final Weigh Injection Vo Result Type	ID: ht/Volume: nt/Volume: blume: e:	SGC_E 35 mL 35 mL 3 uL PRIMARY
Analyte		Result (u	ig/L)	Qualifie	er M	DL	RL
1,2-Dibromoethan	e	ND			0.	0037	0.020
Surrogate		%Rec		Qualifie	er	Acceptar	ice Limits
1,2-Dibromopropa	ne	115				70 - 130	

DATA REPORTING QUALIFIERS

Client: SGS North America, Inc

Lab Section	Qualifier	Description
GC Semi VOA		
	D	Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
	Х	Surrogate is outside control limits

QUALITY CONTROL RESULTS

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 280-288433	3				
LCS 280-288433/3-A	Lab Control Sample	Т	Water	504.1	
LCSD 280-288433/4-A	Lab Control Sample Duplicate	Т	Water	504.1	
LLCS 280-288433/5-A	Low Level Control Sample	Т	Water	504.1	
MB 280-288433/2-A	Method Blank	Т	Water	504.1	
280-72191-1	MW-2	Т	Water	504.1	
280-72191-2	MW-9	Т	Water	504.1	
280-72191-3	MW-16	Т	Water	504.1	
280-72191-4	MW-20	Т	Water	504.1	
280-72191-5	MW-25	Т	Water	504.1	
280-72191-6	TB-02	Т	Water	504.1	
Analysis Batch:280-288	3444				
LCS 280-288433/3-A	Lab Control Sample	Т	Water	504.1	280-288433
LCSD 280-288433/4-A	Lab Control Sample Duplicate	Т	Water	504.1	280-288433
LLCS 280-288433/5-A	Low Level Control Sample	Т	Water	504.1	280-288433
MB 280-288433/2-A	Method Blank	Т	Water	504.1	280-288433
280-72191-1	MW-2	Т	Water	504.1	280-288433
280-72191-2	MW-9	Т	Water	504.1	280-288433
280-72191-4	MW-20	Т	Water	504.1	280-288433
280-72191-5	MW-25	Т	Water	504.1	280-288433
280-72191-6	TB-02	Т	Water	504.1	280-288433
Analysis Batch:280-288	3597				
280-72191-3	MW-16	Т	Water	504.1	280-288433

Report Basis

T = Total

Job Number: 280-72191-1

Surrogate Recovery Report

504.1 EDB, DBCP and 1,2,3-TCP (GC)

Client Matrix: Water

		12DBP1
Lab Sample ID	Client Sample ID	%Rec
280-72191-1	MW-2	112
280-72191-2	MW-9	111
280-72191-3	MW-16	226X D
280-72191-4	MW-20	126
280-72191-5	MW-25	126
280-72191-6	TB-02	115
MB 280-288433/2-A		110
LCS 280-288433/3-A		108
LCSD 280-288433/4-A		112
LLCS 280-288433/5-A		108

Surrogate 12DBP = 1,2-Dibromopropane Acceptance Limits 70-130

Quality Control Results

Job Number: 280-72191-1

Client: SGS North America, Inc

Method Blank - Batch: 280-288433

Method: 504.1 Preparation: 504.1

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 280-288433/2-A Water 1.0 07/30/2015 2225 07/30/2015 1201 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	280-288444 280-288433 N/A ug/L	Instrume Lab File Initial We Final We Injection Column	nt ID: ID: sight/Volume: ight/Volume: Volume: ID:	SGC_E 029F2901.D 35 mL 35 mL 3 uL PRIMARY
Analyte		Resu	ult	Qual	MDL	RL
1,2-Dibromoethane	9	ND			0.0037	0.020
Surrogate		% F	Rec	A	cceptance Lin	nits
1,2-Dibromopropar	ne	1	10		70 - 130	

Low Level Control Sample - Batch: 280-288433

Method: 504.1 Preparation: 504.1

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LLCS 280-288433/5-A Water 1.0 07/30/2015 2321 07/30/2015 1201 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	280-288444 280-288433 N/A ug/L	Instrument I Lab File ID: Initial Weigh Final Weigh Injection Vo Column ID:	D: t/Volume: t/Volume: lume:	SGC_E 032F3201.D 35 mL 35 mL 3 uL PRIMARY	
Analyte		Spike Amount	Result	% Rec.	Limit	Q	ual
1,2-Dibromoethan	e	0.0200	0.0256	128	70 -	130	
Surrogate		% Rec		Ace	Acceptance Limits		
1,2-Dibromopropa	ne	1()8		70 - 130		

Job Number: 280-72191-1

Client: SGS North America, Inc

Lab Control Sample/ Method: 504.1 Lab Control Sample Duplicate Recovery Report - Batch: 280-288433 Preparation: 504.1

LCS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date:	D: LCS 280-288433/3-A Water 1.0 07/30/2015 2244 07/30/2015 1201	Analy Prep Leacl Units	vsis Batch: Batch: n Batch: :	280-288444 280-288433 N/A ug/L	Instrum Lab File Initial W Final W Injection	ent ID: e ID: /eight/Volume: /eight/Volume: n Volume:	SGC_E 030F3001. 35 mL 35 mL 3 uL	D
Leach Date:	N/A				Column	ID:	PRIMARY	
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCSD 280-288433/4-A Water 1.0 07/30/2015 2302 07/30/2015 1201 N/A	Analy Prep Leacl Units	vsis Batch: Batch: n Batch: :	280-288444 280-288433 N/A ug/L	Instrum Lab File Initial W Final W Injection Column	ent ID: e ID: /eight/Volume: /eight/Volume: n Volume: I ID:	SGC_E 031F3101. 35 mL 35 mL 3 uL PRIMARY	D
		C	% Rec.					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,2-Dibromoethane	9	105	105	70 - 130	0	30		
Surrogate		L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dibromopropa	ne	1	08	112		7	0 - 130	

	S	GS North	America I	лс.						Lo Alaska	cations Natio	nwide Maryland	
	CHA	IN OF CUS	TODY RE	CORD						New Jer	sey	New York	
						*	۲ ۳	8 3 J	*	North C	arolina	Indiana	
										West Vii	gina	Kentucky	
											www.us.sd	s.com	- F
CLIENT: SGS North Am	nerica Inc Alas	ska Division	36980	SGS Refe	rence:			Test	Ame	ica, CO			
NTACT: Julie Shumway Pt.	HONE NO:	(907) 562-	2343	Additional equested.	Comme	nts: All	soils re	port out	in dry	weight unless	s otherwise	Page of	
NOJECT 1158310 PEI	RMIT#:			# Prese c ativ	ž "							-	
E-	-MAIL: Juli	ie.Shumway@s	ds.com					1					
VOICE TO: QI	UOTE #:									280-72191 (Chain of Custoo	7	
SGS - Alaska	.O. #:	1158310			t 109								
ESERVED SAMPLE IDENTIFICATION	DATE	TIME	MATRIX/	R Soil	EDB 6			WS	MSD	SGS lab #	Loc ID	REMARKS	
	07/20/15	1145	Water	3						1158310001			
6-WM	07/20/15	1230	Water	3						1158310002			
MW-16	07/20/15	1335	Water	3						1158310003			
MW-20	07/20/15	947	Water	33			_	_		1158310005			
劉明訳授祭翰 MW-25	07/20/15	1400	Water	e			_	_		1158310009			T
20-21 TB-02	07/02/15	1400	Water	e			_			1158310011			
					+		+						
							_						1
							-						
									VEC	OW	Data Dalivar	able Domizomente:	
telinquished By: (1)	HOHIS	10:40	Received by:			13/15	Lour Fro Leport to E Coler ID:	JL (J Flag	s) [2] [3]			Level 2	
elinquished By: (2)	Date	Time	Received By:	•			lequested	Turnaro	miT bru	e and-or Special	Instructions:		
elinquished By: (3)	Date	Time	Received By:										
						480000	emp Blan	k °c:			Chain of	Custody Seal: (Circle)	SCHOOL N
elinquished By: (4)	Date	Time	Received For	Laboratory I	5			- 8	unbient	[]	INTACT	BROKEN ABSENT	202-222-2020
1 200 W. Potter Drive Anchorage, AK 96	9518 Tel: (907)	562-2343 Fax	:: (907) 561-53	01			ittp://www	.sqs.com	/terms	and conditions.h	<u>Itm</u>		1
5500 Business Drive Wilmington, NC	; 28405 Tel: (910	0) 350-1903 Fa	ıx: (910) 350-1	557		۲ د	Ċ		1	11	10 11-		
						5 C	たい	モント	Q	07 Fo	5/12	435	

Page 97 of 98 08/04/2015

1158310-EDB-07.22.15.xls

Client: SGS North America, Inc

Login Number: 72191 List Number: 1 Creator: White, Denise E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	N/A	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 280-72191-1

List Source: TestAmerica Denver
Laboratory Data Review Checklist

Completed by:	Hilary Platta				
completed by.					
Title:	Staff Scientist			Date:	October 19, 2015
CS Report Name:	Gold Hill			Report Date:	August 5, 2015
Consultant Firm:	Nortech Inc.				
Laboratory Name:	SGS		Laboratory Report Nu	umber: 1158310)
ADEC File Number:	24409		ADEC RecKey Num	ber:	
1. Laboratory					
a. Did an A	ADEC CS appro	ved laboratory r	eceive and <u>perform</u> all o	f the submitted	sample analyses?
• Yes	⊖ No	🔿 NA (Plea	ase explain.)	Comments:	
b. If the sar laborator	nples were trans y, was the labor	sferred to anothe atory performin	r "network" laboratory og the analyses ADEC CS	or sub-contracted S approved?	d to an alternate
• Yes	⊖ No	○NA (Pleas	e explain)	Comments:	
Samples transfer	rred to Test Am	erica.			
2. Chain of Custody	(<u>COC)</u>				
a. COC inform	mation complete	ed, signed, and d	ated (including released	/received by)?	
• Yes	⊖ No	⊖NA (Pleas	e explain)	Comments:	
b. Correct an • Yes	alyses requested	l? ○NA (Plea	ase explain)	Comments:	
2 Laboratory Sampl	Pagaint Dogur	montation			
a. Sample/coo	oler temperature	documented an	d within range at receipt	$(4^{\circ} + 2^{\circ} C)^{?}$	
• Yes	O No	ONA (Ple	ase explain)	Comments:	

(•) Yes	⊖ No	○NA (Please explain)	Comments:
c. Sample cor	ndition documer	nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
All samples rece	ived in good co	ndition.	
d. If there were preservation,	re any discrepar sample tempera	ncies, were they documented? - Fo ature outside of acceptance range, i	r example, incorrect sample contain insufficient or missing samples, etc
⊖ Yes	⊖ No	•NA (Please explain)	Comments:
o discrepancies	reported.		
	1.1.	$C(\cdot 10)$ (D1 1 1)	
D (1')	$v \circ r = 1100 h (11 f v \circ f$	tected? (Please explain)	
e. Data qualit	y of usability at	rected. (Freuse explain)	-
e. Data qualit	y of usability at		Comments:
e. Data qualit			Comments:
e. Data qualit			Comments:
e. Data qualit			Comments:
e. Data quality se Narrative a. Present and	understandable	e?	Comments:
e. Data quality se Narrative a. Present and • Yes	understandable	o? ○NA (Please explain)	Comments:
e. Data quality se Narrative a. Present and Yes	understandable	e? ONA (Please explain)	Comments: Comments:
e. Data quality se Narrative a. Present and • Yes b. Discrepanc	understandable O No ies, errors or Q	e? ONA (Please explain) C failures identified by the lab?	Comments:
e. Data quality se Narrative a. Present and • Yes b. Discrepanc • Yes	understandable O No ies, errors or Q O No	 NA (Please explain) C failures identified by the lab? NA (Please explain) 	Comments: Comments:
e. Data quality	understandable O No ies, errors or Qe O No	 ? ONA (Please explain) C failures identified by the lab? ONA (Please explain) 	Comments: Comments:
e. Data quality <u>se Narrative</u> a. Present and • Yes b. Discrepanc • Yes c. Were all co	understandable O No ies, errors or Qu O No wrective actions	e? ONA (Please explain) C failures identified by the lab? ONA (Please explain)	Comments:
e. Data quality se Narrative a. Present and • Yes b. Discrepanc • Yes c. Were all co • Yes	understandable O No ies, errors or Q O No orrective actions O No	 Precedent (Preuse explain) NA (Please explain) C failures identified by the lab? NA (Please explain) a documented? NA (Please explain) 	Comments: Comments: Comments:
e. Data quality se Narrative a. Present and • Yes b. Discrepanc • Yes c. Were all co • Yes	understandable No ies, errors or Qe No prrective actions No No	 ? ? C failures identified by the lab? O NA (Please explain) 	Comments: Comments: Comments:

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes	⊖ No	○NA (Please explain)	Comments:
b. All applical	ble holding tim	ies met?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
⊖ Yes	○ No	• NA (Please explain)	Comments:
Only water samp	les were collec	eted	
d. Are the rep project?	orted PQLs les	s than the Cleanup Level or the min	nimum required detection level for the
○ Yes	• No	○NA (Please explain)	Comments:
MW-16, MW-20), MW-25 Benz	zene	
e. Data quality	y or usability a	ffected? (Please explain)	Comments:
Data quality not	affected.		
QC Samples			
a. Method Blar	nk		
i. One me	ethod blank rep	ported per matrix, analysis and 20 sa	amples?
• Ye	es 🔿 No	○NA (Please explain)	Comments:
ii. All met	hod blank resu	lts less than PQL?	
• Ye	es 🔿 No	○NA (Please explain)	Comments:
iii. If abov	e PQL, what s	amples are affected?	Comments:

6.

iv. Do the affected same	ole(s) have	data flags? If so.	are the data flags	clearly defined?
I Do the affected ball	510(b) mare	aada mago. m boy	are the adda mago	crearly actined.

\bigcirc Yes	\bigcirc No	• NA (Please explain)	Comments:	
All results below	the PQL.			
v. Data qu	ality or usabi	lity affected? (Please explain)	Comments:	

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes	\bigcirc No	○NA (Please explain)	Comments:

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?

• Yes	\bigcirc No	○NA (Please explain)	Comments:
-------	---------------	----------------------	-----------

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes	⊖ No	○NA (Please explain)	Comments:	

iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes	\bigcirc No	○NA (Please explain)	Comments:	

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

vi. Do the affected samples	(s) have data flags?	If so, are the data flags	s clearly defined?
-----------------------------	----------------------	---------------------------	--------------------

	\bigcirc No	• NA (Please explain)	Comments:
amples within	acceptable lin	nits.	
vii. Data o	uality or usab	ility affected? (Please explain)	Comments:
c. Surrogates	- Organics On	ly	
i. Are surr	ogate recoveri	es reported for organic analyses - fiel	d, QC and laboratory samples?
• Yes	○ No	ONA (Please explain)	Comments:
ii. Accura project sp the labora	cy - All percer ecified DQOs, tory report pa	nt recoveries (%R) reported and with if applicable. (AK Petroleum metho ges)	in method or laboratory limits? And ds 50-150 %R; all other analyses see
⊖ Yes	• No	○NA (Please explain)	Comments:
iii. Do the clearly deYes	sample result fined? O No	s with failed surrogate recoveries hav	ve data flags? If so, are the data flags Comments:
	uality or usabi	lity affected? (Use the comment box	to explain.).
iv. Data q		2	Comments:
iv. Data q lot affected			Comments:
iv. Data q Not affected d. Trip Blank <u>Soil</u> i. One trip (If not, en	- Volatile ana blank reporte ter explanation	lyses only (GRO, BTEX, Volatile Ch d per matrix, analysis and for each co 1 below.)	Comments: nlorinated Solvents, etc.): <u>Water and</u> poler containing volatile samples?
iv. Data q lot affected d. Trip Blank <u>Soil</u> i. One trip (If not, en ⊙ Yes	- Volatile ana blank reporte ter explanation O No	lyses only (GRO, BTEX, Volatile Ch d per matrix, analysis and for each co n below.) O NA (Please explain.)	Comments: nlorinated Solvents, etc.): <u>Water and</u> poler containing volatile samples? Comments:
iv. Data q Not affected d. Trip Blank <u>Soil</u> i. One trip (If not, en • Yes ii. Is the c (If not,	- Volatile ana blank reporte ter explanation O No ooler used to t a comment ex	lyses only (GRO, BTEX, Volatile Ch d per matrix, analysis and for each co 1 below.) O NA (Please explain.) ransport the trip blank and VOA sam plaining why must be entered below)	Comments: alorinated Solvents, etc.): <u>Water and</u> poler containing volatile samples? Comments: pples clearly indicated on the COC?

III. All lest	ilts less than F	QL?	
• Yes	⊖ No	○ NA (Please explain.)	Comments:
iv. If abov	ve PQL, what	samples are affected?	
			Comments:
v. Data qu	ality or usabil	ity affected? (Please explain.)	
1	,		Comments:
e. Field Duplic	ate		
i. One field	l duplicate sul	omitted per matrix, analysis and 10 p	project samples?
• Yes	\bigcirc No	\bigcirc NA (Please explain)	Comments:
0 105			
ii Submit	ted blind to la	h?	
n. Suonn			
• Yes	○ No	○ NA (Please explain.)	Comments:
iii. Precisi (Recon	on - All relati nmended: 30%	ve percent differences (RPD) less th 6 water, 50% soil)	an specified DQOs?
	I	RPD (%) = Absolute Value of: $(\underline{R_{1-2}})$	<u>R₂) x 100</u>
		/(D D	$\left \right\rangle \left \right\rangle$
		$((K_{1+} K_{2}))$	<u>(</u>)/2)
Where R	$t_1 = $ Sample Co $t_2 = $ Field Dupl	((R ₁₊ R ₂)) oncentration icate Concentration	2)/ 2)
Where R R	$c_1 = $ Sample Co $c_2 = $ Field Dupl \bigcirc No	((R ₁₊ R ₂ oncentration icate Concentration ONA (Please explain)	Comments:
Where R R • Yes iv. Data qu	a = Sample Co 2 = Field Dupl O No Jality or usabi	((R ₁₊ R ₂ oncentration icate Concentration ONA (Please explain)	Comments:

	f. Decontamination or Equipment Blank (if applicable)				
	⊖ Yes	• No	○NA (Please explain)	Comments:	
	Not required for this project.				
	i. All results less than PQL?				
	⊖ Yes	⊖ No	• NA (Please explain)	Comments:	
1	ii. If above PQL, what samples are affected?			Comments:	
iii. Data quality or usability affected? (Please explain.) Comments:				Comments:	
7. <u>O</u>	7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)				
a. Defined and appropriate?					
	⊖ Yes	○ No	• NA (Please explain)	Comments:	
	No other data flag	s defined.			

Reset Form