

December 2, 2005

Gold Hill Store PO Box 60395 Fairbanks, Alaska

Attn: Mr. Phil Carboy

RECEIVED

DEC 0 6 2005

CONTAMINATED SITES FAIRBANKS

RE: GROUNDWATER MONITORING SAMPLE RESULTS, GOLD HILL STORE, ADEC FACILITY 0440, ESTER, ALASKA

We have completed the sampling of the groundwater monitoring wells and a drinking water well at the above referenced property. Our work was conducted in general accordance with the Alaska Department of Environmental Conservation (ADEC) Underground Storage Tank (UST) Regulations 18 AAC 78, and our proposal dated August 12, 2005. The objective of our work was to continue monitoring activities established by others to evaluate groundwater contaminant concentration trends.

BACKGROUND

AMEC Earth and Environmental, Inc. (AMEC) have conducted corrective action and monitoring activities at the Gold Hill Store under the ADEC Storage Tank Assistance Program. According to their 2004 Annual Report Gold Hill Store Site, the property is developed on dredge spoils and mine tailings over fractured bedrock (schist). A bluff bounds the property to the north and the George Parks Highway to the south. Groundwater is inferred to flow in a southeasterly direction towards Cripple Creek, which is south and parallel to the George Parks Highway.

AMEC also reported that, petroleum hydrocarbons were detected in the groundwater during a 1994 subsurface assessment and identified the former gasoline USTs as the suspected source. In addition, groundwater monitoring was conducted at the site since 1994 and an air sparging (AS) soil vapor extraction (SVE) system was installed in 1996 and upgraded in 2003. In May 2004, ADEC groundwater cleanup levels were exceeded in samples collected from monitoring wells MW-2, MW-16, MW-17, and MW-20. AMEC concluded that the site had been adequately characterized, no additional exploration was necessary, and long-term groundwater monitoring

would be required. The exit strategies for this site have included termination of remediation system operation and select well decommissioning.

Our proposal dated August 12, 2005 recommended sampling the drinking water well GHW-2, prior to carbon treatment, and monitoring wells MW-2, MW-16, and MW-20 for continuation of the Gold Hill Store long-term monitoring program.

FIELD ACTIVITIES

On October 11, 2005, Angela Miller, an environmental specialist with Shannon & Wilson, collected groundwater samples and field duplicates from monitoring wells MW-16 and MW-20 and drinking water well GHW-2. Snow and ice covered the ground surface making it difficult to confirm monitoring well locations. Measurements taken from a site drawing (attached), prepared by AMEC, and a metal detector were used in an attempt to uncover the wells and unfortunately monitoring well MW-2 could not be located. Samples were recollected from monitoring well MW-16 on October 31, 2005 for ethylenedibromide (EDB) by EPA method 504.1 because the original sample container did not contain the proper preservative.

The depth to groundwater was measured prior to sampling monitoring wells MW-16 and MW-20 using a decontaminated, electronic water-level sounder. The wells were purged until water quality parameters pH, temperature, and conductivity stabilized. Well purging and sample collection were performed using a decontaminated battery-powered, variable-speed, submersible whale pump fitted with new vinyl tubing. Twelve gallons of purge water were collected into a 55-gallon drum.

The drinking water well GHW-2 sample was collected from a tap accessed prior to the carbon treatment system. Ten gallons of water was purged prior to sample collection and placed into a 55-gallon drum.

Analytical water samples were collected in laboratory-supplied sampling containers, placed into a cooler with chain-of-custody documents, and kept cold during transport by Alaska Airlines to North Creek Analytical, Inc. (NCA) in Anchorage, Alaska. Samples were analyzed as shown in the following table.

GROUNDWATER SAMPLE ANALYSIS

	Gasoline Range Organics	Benzene, Toluene, Ethylbenzene, and Xylenes	Benzene, Toluene, Ethylbenzene, and Xylenes	Volatile Organic Compounds	Ethylene dibromide
Method	AK 101	EPA 8021	EPA 524.2	EPA 8260	EPA 504.1
MW-2	Х	X		X	X
MW-16	Х	X		X*	X*
MW-20	X	Х			
GHW-2	Х		X		
Quality Control	ı	1	1	1	
Total	4	3	2	2	2

Notes: Samples were planned for MW-2, but the well could not be located and samples were not collected.

Approximately twenty-two gallons of purged groundwater was collected into a 55-gallon drum and delivered to Emerald Alaska, Inc. in Fairbanks, Alaska.

RESULTS

Groundwater sample results are summarized in Table 1. ADEC groundwater cleanup levels are reported in 18 AAC 75.345 and are also presented in Table 1 for reference. Copies of the NCA laboratory reports are provided as attachments to this report.

Results for the sample collected from monitoring well MW-20 indicate gasoline range organics (GRO) (86,500 μ g/L), benzene (17,800 μ g/L), toluene (7,670 μ g/L), and ethylbenzene (1,240 μ g/L), at concentrations exceeding their respective cleanup levels, and total xylenes were detected at 5,220 μ g/L, which is below the cleanup level. Results for the sample and duplicate collected from monitoring well MW-16 indicate 1, 2-dichloroethane (37.7 μ g/L and 38.6 μ g/L) at concentrations above the cleanup level and methyltertbutylether (MTBE) (18.4 μ g/L and 18.6 μ g/L); no cleanup level has been established for MTBE, but it exceeds the risk based concentration guidance level. Other volatile organic compounds, including EDB, were not detected above the laboratory's method reporting limit (MRL).

^{*} Analysis originally scheduled for MW-2

QUALITY ASSURANCE AND QUALITY CONTROL

Field quality control (QC) procedures for this project included the collection and analysis of duplicate pairs of groundwater samples. In addition, temperature and trip blanks accompanied the samples during collection activities and were used to check that the samples were kept at the appropriate temperatures and no cross-contamination occurred during sampling or transportation to the laboratory. The temperature blanks demonstrated the samples arrived at the laboratory within the acceptable temperature limits. The trip blanks contained no analyte above its MRL, indicating cross-contamination among samples likely did not occur.

The duplicate water samples (1290-101105-002 and 1290-101105-020) and (1290-103105-002 and 1290-103105-020) were analyzed to evaluate error associated with sampling and laboratory variability. Field duplicate precision can be expressed as a relative percent difference (RPD) between duplicates if both samples contain analytes above their MRL. The RPD for 1,2-dichloroethane and methyltertbutylether detected in the groundwater were within Shannon & Wilson's acceptable range of ±30 for water samples. Other analytes were not detected above the MRL.

Laboratory QC included the procedures outlined in the laboratory's ADEC-approved standard operating procedures documentation. As presented in the laboratory report's QC data package summary sheets, there were few analytical anomalies. It is our opinion that the overall utility of the laboratory data has not been compromised by these QC anomalies, and the results are valid for assessing the groundwater conditions at the sampling locations.

CONCLUSIONS AND RECOMMENDATIONS

The groundwater collected from monitoring well MW-16 and drinking water well GHW-2 did not contain GRO, benzene, toluene, ethylbenzene and xylenes (BTEX) or other analytes in excess of the ADEC cleanup levels. Previous samples collected from monitoring well MW-16 reported GRO, benzene and toluene above cleanup levels and ethylebnzene and xylenes at concentrations below cleanup levels. Similarly, previous samples collected from drinking water well GHW-2 reported benzene at concentrations below the cleanup level.

Groundwater collected from monitoring well MW-20 not only exceeded cleanup levels for GRO, benzene, toluene, and ethylbenzene, the contaminant concentrations more than doubled from the last sampling event in May 2004.

Groundwater was not collected from monitoring well MW-2, because it could not be located. According to the AMEC site drawing this well is located in the main access point to the property and was likely covered with compacted gravel and ice. Monitoring well MW-2 was scheduled for sample and analysis of GRO, BTEX, volatile organic compounds (VOCs), and EDB. VOCs and EDB were sampled from monitoring well MW-16 instead.

No conclusions can be made on contaminant concentration trends due to the wide variations in To evaluate contaminant analytical results as compared to previous sampling events. concentration trends we recommend continuing monitoring activities as shown in the following table.

GROUNDWATER SAMPLING PLAN

	Gasoline Range Organics	Benzene, Toluene, Ethylbenzene, and Xylenes	Volatile Organic Compounds	Ethylene dibromide
Method	AK 101	EPA 524.2	EPA 8260	EPA 504.1
MW-2	X		X	
MW-16	Х		X	<u></u>
MW-20	Х		X	X
GHW-2		X		
Quality Control	1	I	Ī	
Total	4	2	22	2

Samples will be collected from MW-2if it can be located.

LIMITATIONS

This report presents conclusions based on limited sampling and analysis that we performed at Gold Hill Store in Ester, Alaska. The data presented in this letter report should be considered representative of the time our site observations and sample collection. Changes in the observed site conditions can occur with the passage of time. In addition, changes in government codes,

SHANNON SWILSON, INC.

Gold Hill Store

Attn: Mr. Phil Carboy December 2, 2005

Page 6

regulations, or laws may occur. Due to such changes, our observations and conclusions regarding this site may need to be revised. In addition, there can be no assurance that a

regulatory agency or its staff will reach the same conclusions as Shannon & Wilson.

This report was prepared for the exclusive use of Phil Carboy. If it is made available to others, it should be for information on factual data only and not as a warranty of conditions described in this report. The interpretations and recommendations are based solely upon information available to Shannon & Wilson at the time of this report.

We trust this information is sufficient for your needs at the present time. If you have any questions, please do not hesitate to call.

Sincerely,

SHANNON & WILSON, INC.

Angela E. Miller

Environmental Specialist

Reviewed by:

David M. McDowell

Vice President

Enclosures:

Table 1: Analytical Groundwater Sample Results

AMEC site drawing

NCA Laboratory Data Reports

CC:

Deborah Williams, ADEC

TABLE 1 SUMMARY OF ANALYTICAL GROUNDWATER SAMPLE RESULTS GOLD HILL STORE, FAIRBANKS, ALASKA

						10 102 00		EPA 8260	260
		AK 404	AK 101 FPA 504 1		EPA 8021/EPA 524.2	PA 524.4	Ť	4 3 Dichlord Methyltert-	Mathyltert-
		200	0000	-		Ethy	loral	21011121121-21	
			בווואובווב		;	_	Yvlonos	ethane	butylether
		CAC	dibromide	Benzene	loinene	Denzene	2010		(/ /
		5			(ma/L)	(ng/L)	(hg/L)	(hg/L)	(hg/L)
Todamile Alexander	Sample Location	(µg/L)	(µg/c/	(43,1)	1		02.4	27.7	18.4
Sample Nulliber		0 02,		<0.500	<0.500	<0.500	00.15		
000 307707 0007	Manitoring well MW-16	0.000	1				2	20 6	186
1290-101101-0621		0 01		<0.500	<0.500	<0.500	00.15	20.00	
000 304404 0004	Dunticate of monitoring well MW-16	V20.0	•	20.00			000		,
1290-101101-0821		001		17 800	7.670	1,240	077'6		
000 30404 0007	Monitoring well MW-20	00c'98					00400		•
1290-101103-2021		000		<0000000	<0.0005001	<0.000000 <0.000500 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.00000000 <0.00000000 <0.000000000 <0.000000000 <0.000000000 <0.000000000 <0.000000000 <0.0000000000	<0.00100	,	
MAN 10 70 10 10 10 10 10 10 10 10 10 10 10 10 10	Drinking water well*	×80.0		2000			00,00		,
1290-101105-GHW1		0		10000000	<0.000000	UUTUU- < 0.000500 < 0.0001 < 0.000500 < 0.0001	<0.007001	•	
0,45	Oo.iooto of drinking water well*	0.08	•	20.00000					_
1290-101105-61107	Duplicate of dimming many		0070			•	•		
	AL-MANICOCIOCIONI RAM-16	'	00100×	•	ı				
1290-103105-002	OL AND HOM BUILDING					'	1		
30	ALMMI INVITABLE TO THE TOTAL TRANSPORT OF THE TRANSPORT OF THE TOTAL TRANSPORT OF THE TRANSPORT OF THE TRANSPORT O	'	<0.0100	-					
1290-103105-020	Duplicate of monitoring well liver in				000	200	10 000	ഗ	
	140 AAC 75 245)	1 300	0.05	က	חחח'ו	200	2		
ADFC proundwa	(er cleanup level (10 AAC 10.010)								
in the same of the									

< Analyte not above specified laboratory Method Reporting Limit (MRL)</p>
* Volatile Organic Compounds in the drinking water well were analyzed by EPA 524.2

- Not applicable

bold Exceeds groundwater cleanup level

31-1-11290-001

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

541.383.9310 fax 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210 Anchorage

October 26, 2005

David M. McDowell Shannon & Wilson, INC. (Fairbanks) 2355 Hill Road Fairbanks, AK/USA 99709-5326

RE: Gold Hill Store

Enclosed are the results of analyses for samples received by the laboratory on 10/11/05 19:40. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

<u>Work</u> A5J0049	Project Gold Hill Store	ProjectNumber [none]

Thank You,

refrictant the

Mike Priebe For Stephen Wilson, Laboratory Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Project Name: Gold Hill Store

Project Number:

[none]

David M. McDowell

Report Created:

10/26/05 09:34

Gasoline Range Organics (C6-C10) and BTEX per AK101

Project Manager:

North Creek Analytical - Alaska

			North Cr	eek Analy	near - An	121/11					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A5J0049-01	Water	1290-101105-002		Sample	1: 10/11/0	5 11:00					
Gasoline Range	Organics	AK101	ND		50.0	ug/l	lх	5100046	10/12/05	10/13/05 10:45	
Benzene	-	ч	ND		0.500	**		**	м	H	
Toluene		19	ND	*****	0.500	44	**	**	P\$	**	
Ethylbenzene		И	ND		0.500	н	44	н	**	**	
Xylenes (total)		и —	ND	*****	1.50	H	н	15	44	**	
Surrogate(s):	a.a.a-TFT (FID)	Re	covery: 87.	0%	Limits: 5	0 - 150 %	*			н	
	a,a,a-TFT (PID)		84.	6%	72	5 - 131 %	*			"	
A5J0049-02	Water	1290-101105-020		Sample	d: 10/11/0	5 11:20					
Gasoline Range	Organics	AK101	ND	*****	50.0	ug/l	Lx	5100046	10/12/05	10/13/05 11:18	
Benzene	J	**	ND	-	0.500	**	**	**	H	н	
Toluene		10	ND	****	0.500	11	**	**		**	
Ethylbenzene		н	ND	****	0.500	н	11	м	94	41	
Xylenes (total)		H	ND	-	1.50	н	н		11	41	
Surrogate(s):	a,a,a-TFT (FID)	Ro	covery: 85	1%	Limits: .	50 - 150 %	**			**	
DH. 1 2 BH. 1 (2)	a,a,a-TFT (PID)			1%	72	5 - 131 %	**			"	
A5J0049-03	Water	1290-101105-200		Sample	d: 10/11/0	5 11:50					
Gasoline Rang	e Organics	AK101	86500	••••	20000	ug/l	400x	5100046	10/12/05	10/13/05 17:18	R-01
Benzene	-	10	17800		200	**	**	99	9 70	**	R-01
Toluene		10	7670		200		18			11	R-01
Ethylbenzene		н	1240	*****	200	**	н	**	**	44	R-01
Xylenes (total)		41	5220		600	**	**	*	H.C	н	R-01
Surrogate(s):	a,a,a-TFT (FID)	Re	ecovery: 89.	.4%	Limits:	50 - 150 %	lx			п	
	a,a,a-TFT (PID)			.8%	7.2	2.5 - 131 %	**			H	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

-upichar Paily

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone: (509) 924.9290 | fax: (509) 924.9290 | east 10.9206 | east 10.

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number:

[none]

David M. McDowell Project Manager:

Report Created: 10/26/05 09:34

Gasoline Range Organics (C6-C10) and BTEX per AK101/8021B

			North Creek	Analyti	cal - Por	rtland					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
A5J0049-04	Water	1290-101105-	GHW1	Sam	pled: 10	/11/05 12:3	0				
Casalina Banga	Organics	AK101/8021B	ND	****	80.0	ug/l	lx	5100739	10/17/05	10/18/05 00:07	
Gasoline Range	Organics	11	ND		0.500	н	**	**	**	**	
Benzene		et .	ND		0.500	99	н	"	Ħ	**	
Toluene		11	ND		0.500	n	"	16	ч	H	
Ethylbenzene		**	ND		1.00	19	19		**	**	
Xylenes (total)						(0 130.9/					
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery: 90.49 88.89		Limits:	60 - 120 % 60 - 120 %	,,			**	
A5J0049-05	Water	1290-101105-	GHW2	Sam	pled: 10)/11/05 12:4	0				
Caralina Banga	Ozannicz	AK101/8021B	ND		80.0	ug/l	Lx	5100739	10/17/05	10/18/05 02:14	
Gasoline Range	Organics	1)	ND		0.500	H		**	D	**	
Benzene		**	ND		0.500	**	11	11	н	**	
Toluene		17	ND		0.500	15		31	"	Ħ	
Ethylbenzene Xylenes (total)		**	ND		1.00		N	"	11		
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery: 89.6: 87.2		Limits	60 - 120 % 60 - 120 %				20	

North Creek Analytical - Alaska

whichouf the ly

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Mike Priebe For Stephen Wilson, Laboratory Manager

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number: [none]

Project Manager: David M. McDowell

Report Created: 10/26/05 09:34

Volatile Organic Compounds in Drinking Water per EPA 524.2

North Creek Analytical - Portland

			North Creek								
\naiyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
.5J0049-04	Water	1290-101105-0	GHW1	Sar	npled: 10	/11/05 12:3	0				
Benzene		EPA 524.2	ND		0.000500	mg/l	1 x	5100842	10/19/05	10/19/05 15:22	
Ethylbenzene		н	ND		0.000500	Ħ	44	10		11	
Foluene		**	ND	*****	0.000500	41	p	**	н	••	
rotuene Xylenes (total)		н	ND		0.00100	н	51	11	"	16	
Surrogate(s):	Dibromofluoromethane		Recovery: 1089	6	Limits:	70 - 130 %	**			88	
Surrogaie(s):	1,2-DCA-d4		1079			70 - 130 %	н			Hr .	
	Toluene-d8		98.29	6		70 - 130 %	*				
	4-BFB		92.69	6		70 - 130 %	**			*	
A5J0049-05	Water	1290-101105-	GHW2	Sa	mpled: 10	/11/05 12:4	0				
Benzene		EPA 524.2	ND		0.000500	mg/l	1x	5100842	10/19/05	10/19/05 15:50	
			ND	*****	0.000500	**	**	**	44	н	
Ethylbenzene		W.	ND	-	0.000500	n	44	14	•	**	
Toluene Xylenes (total)		п	ND		0.00100		*	"	H	**	
Surrogate(s):	Dibromofluoromethane		Recovery: 111	26	Limits	70 - 130 %				н	
Surrogaic(s).	1.2-DCA-d4		109			70 - 130 %	"			"	
	Toluene-d8		98.0	%		70 - 130 %	N			"	
	4-BFB		89.6	%		70 - 130 %	**			"	
A5J0049-06	Water	Trip Blank	Sam	pled: 1	0/11/05 00	0:00					
Danmana		EPA 524.2	ND		0.000500	mg/l	1x	5100842	10/19/05		
Benzene		н	ND		- 0.000500	"	10	**	11	44	
Ethylbenzene		10	ND		0.000500	" "	H	14	**		
Toluene		**	ND		0.00100	} "	•	19	94	*	
Xylenes (total)							W				
Surrogate(s):	Dibromofluoromethane		Recovery: 107		Limits	: 70 - 130 %				20	
_ ,,	1,2-DCA-d4		108			70 - 130 %				"	
	Toluene-d8		97.6			70 - 130 %				zŧ	
	4-BFB		88.8	3%		70 - 130 %	"				

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- whichouf Di

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number: [none]

Project Manager: David M. McDowell

Report Created: 10/26/05 09:34

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

CHSVIIII			North Cr	eek Ana	lytical - Al	aska	<u> </u>						 .
OC Batch: 5100046	Water	Preparatio	n Method:	EPA 50	30B								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC (Limits)	RPD	(Limit	s) Analyzed	Notes
Matrix Spike (5100046-MS	1)			QC Source	: A5J0038-0	2		Ext	racted: 10/12/05	12:59			
Benzene	AK101	19.3	7	0.500	ug/l	1x	0,209	20.0	95.5% (62.1-143) -	-	10/13/05 03:10	
Toluene	GRO/BTEX	20.1	***	0.500	*1	11	0.161	н	99.7% (68.5-133		-	19	
Foluene Ethylbenzene	**	20.0		0.500		64	0.358	9	98.2% (64.5-132		-	H H	
Xylenes (total)		61.1	***	1.50		*	0.850	60,0	100% (70.2-133	, -	-	10/13/05 03:1	0
Surrogate(s): a.a.a-TFT (PID)		Recovery:	89.0%	Limits	: 72.5-131%	**						10/13/03 03/1	
Matrix Spike Dup (510004	6_MSD1)			QC Source	e: A5J0038-	02			tracted: 10/12/0				
Benzene	AK10I	19.3	+	0.500	ug/I	lх	0.209	20.0	95.5% (62.1-143	0.00	%(13.3)	10/13/05 03:42	
	GRO/BTEX	20.3	***	0.500	*	**	0.161		101% (68.5-133				
Toluene		20.1	***	0.500	1.9	**	0.358	-	98.7% (64.5-13:				
Ethylbenzene Xylenes (total)	**	61.8	***	1.50	M	**	0.850	60.0	102% (70,2-13)	3) 1.14	%(14.9)		
Surrogate(s): a,a,a+TFT (PID)		Recovery:	89.6%	Limit	s: 72.5-131%	"						10/13/05 03	12

North Creek Analytical - Alaska

- which of the ly

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. **Environmental Laboratory Network**

Mike Priebe For Stephen Wilson, Laboratory Manager

Page 8 of 20

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420,9200 | fax: (425) 420,9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone: (509) 924,9200 | fax: (509) 924,9290 | phone: (503) 905,9200 | fax: (503) 905,9210 | phone: (503) 905,9200 | fax: (503) 905,9210 | fax: (907) 563,9210 | fax:

Shannon & Wilson, INC. (Fairbanks)

Project Name:

Gold Hill Store

2355 Hill Road

Fairbanks, AK/USA 99709-5326

[none] Project Number:

David M. McDowell Project Manager:

Report Created: 10/26/05 09:34

-	Gasoline Range Organics (C6-C10) and BTEX per AK101/8021B - Laboratory Quality Control Results
	North Creek Analytical - Portland

<u> </u>			North Cit	ek Analyti										
QC Batch: 5100739	Water I	Preparatio	n Method:	EPA 5030	В							_		_
nalyte	Method	Result	MDL*	MRL U	Inits	Dil	Source Result	Spike Amt	REC (Limits)	RPD (I	Limits) Analyzed	No
Blank (5100739-BLK1)								Exti	racted:	10/17/05	11:55		10/17/05 14:24	
Gasoline Range Organics	AK101/8021B	ND	444	80.0	ug/l	ix	**						10/17/05 14:24	
Benzene	*	ND	***	0.500		н	**		**		••	••		
Toluene		ND		0.500	10	19				-	••	-	19	
Ethylbenzene	2	ND	-	0_500	**	н	***	••	**	-			44	
Xylenes (total)	10	ND	***	1,00	**	м			-		**	-		
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	94,4% 92,6%	Limits	60-120% 60-120%								10/17/05 14 24	,
LCS (5100739-BS1)								Ext		10/17/05	11:55			
	AK101/8021B	19.0		0.500	ug/l	1x	-	20.0	95.0%	(70-130)			10/17/05 13:21	
Benzene	Attionogra	19.6	***	0.500	*	**	22	н	98.0%	(76-129)	-		58	
Toluene		20.3	***	0.500	n	*	-	**	102%	(82-130)			#	
Ethylbenzene		60.4	***	1.00				60.0	101%	(76-130)	**	**	N	
Xylenes (total) Surrogate(s): 4-BFB (PID)		Recovery	90.6%	Limits	60-120%								10/17/05 13:2	1
LCS (5100739-BS2)								Ex	tracted:	10/17/05	11:55			
Gasoline Range Organics	AK101/8021B	461		80.0	ug/i	1x		500	92.2%	(60-120)		**	10/17/05 12:18	_
Surrogale(s): 4-BFB (FID)		Recovery	95.0%	Limits	60-120%	*							10/17/05 12:1	8
								r.	tracted	10/17/0	5 11:55			
LCS Dup (5100739-BSD1)						1		20.0		(70-130)		(20)	10/17/05 13:53	
Benzene	AK101/8021B	19.3		0.500	ug/l	lx "		20,0		(75-129)			**	
Toluene	*	20.0	***	0.500	ч	48				(82-130)				
Ethylbenzene	**	20.8	***	0.500	10	н		60.0		(76-130	1600		41	
Xylenes (total)	**	61.9		1.00				00,0	10370	(10-130	, 4		10/17/05 13:	53
Surrogate(s): 4-BFB (PID)		Recovery	91.2%	Limits	60-120%	. "							1001100100	
1.CC D. (5100120 DCD2)								E	tracted	: 10/17/0	5 11:55			
LCS Dup (5100739-BSD2)	AK101/8021B	477		80.0	ug/l	lx		500	95.4%	60-120	3.415	6 (20)	10/17/05 12:50	
Gasoline Range Organics	AKIONOVEID	Recovery:		Limits	60-120%	ā #	-176	_					10/17/05 12	50
Surrogute(s). 4-BFB (FID)		Recovery	.7,711											
Duplicate (5100739-DUP1)	_	<u> </u>	QC Source:	A5J0049	-04		E	xtracted	: 10/17/0		1001	100000001112	_
Gasoline Range Organics	AK101/8021B	ND		80.0	ug/l	lx	ND	**			NR	(50)		
Surrogate(s): 4-BFB (FID)		Recovery:	90.0%	Limits	s: 60-1209	6 "							10/18/05 01:	43
Surrogaic(3). 4-DED (FID)														

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- whichauf the ly

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone: (509) 924.9200 | fax: (509) 924.9290 | phone: (503) 906.9200 | fax: (503) 906.9210 | phone: (503) 906.9200 | fax: (503) 906.9210 | phone: (503) 906.9210 | fax: (503) 906.9210 | fax

Anchorage

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number:

[none]

Project Manager: David M. McDowell

Report Created:

10/26/05 09:34

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 5100702	Water	Preparation	Method:	EPA 50	130B						_			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC (Limits)	RPD	(Limit	ts) Analyzed	Notes
Blank (5100702-BLK1)								Extr	acted:	10/17/05				
Acetone	EPA 8260B	ND		25.0	ug/l	Ix	100	-		-		-	10/17/05 11:15	
Benzene	19	ND	***	1.00	**	**	177	-	-				4	
Bromobenzene	**	ND		1.00	107	*	77	**	**	••		**	1 10	
Bromochloromethane	10	ND		1.00	**	и		-		-	**	-	10	
Bromodichloromethane	**	ND	•••	1.00	19	100	**	-		-	-	***		
Bromoform	10	ND		1.00	**	**		**	**	-		**	-	
Bromomethane		ND		5.00	19	*	**	-	**		-		•	
2-Butanone	•	ND		10.0	я	*		-		-	-	**		
n-Butylbenzene	M	ND	***	5.00	14			-	**		**	ine.	•	
sec-Butylbenzene	**	ND		1.00	4	#	_			22		-	W	
tert-Butylbenzene	н	ND	***	1,00	10	*	-	***	**		-	**	*	
Carbon disulfide	et	ND	***	10.0	**	н						**	*	
	N	ND		1.00	10	M					-		*	
Carbon tetrachloride		ND	***	1.00	-	*1	-	**	••	**	•	••	7	
Chlorobenzene	14	ND		1.00	*		_	-	**				W	
Chloroethane	M	ND	***	1.00	-	4	-	••		7.0		••	41	
Chloroform	н	ND		5.00	**	10		-		-		-	10	
Chloromethane	MI MI	DN		1.00		*		-		-		-		
2-Chlorotoluene	-		***	1.00	4	10		-	-			-	*	
4-Chlorotoluene		ND		5.00	14				-	2	-		•	
1,2-Dibromo-3-chloropropane		ND			4				-		100	_	**	
Dibromochloromethane	41	ND		1.00		м			-	-	5-4	-	16	
1,2-Dibromoethane	10	ND	***	1,00	,	41	••	-	-	-	100		4	
Dibromomethane	**	ND		1.00		"		**		_	-			
1,2-Dichlorobenzene	**	ND	***	1.00	*	*		-	-	_				
1,3-Dichlorobenzene	*1	ND	***	1.00	16	eq 10		-			252		*	
1,4-Dichlorobenzene	16	ND	***	1.00		10		-	**		-		и	
Dichlorodifluoromethane	м	ND		5.00			••	-		-	-		*	
1,1-Dichloroethane	10	ND		1.00	H	н		**	**	**	-	-	14	
1,2-Dichloroethane	41	ND	***	1.00	*	**		-	**	-	-	100		
1,1-Dichloroethene	46	ND	***	1.00	**	**		-	-	7.	- 5		14	
cis-1,2-Dichloroethene	м	ND		1.00	4	49	-	-	**		-		-	
trans-1,2-Dichloroethene	*	ND		1.00	4	49		**	**	-	+			
1,2-Dichloropropane		ND	***	1.00	**	*	**	**	22	-	-			
1,3-Dichloropropane	**	ND	***	1.00	**	*		44	-	***	35	* **	*	
2,2-Dichloropropane	*	ND		1.00	IP	н	**	-	***	-	-		41	
1,1-Dichloropropene	**	ND		1.00		*	••	-		**	-		м	
	PP	ND		1.00	н	17	**	**	-	-	-		11	
cis-1,3-Dichloropropene	м	ND		1.00	**		••	**	***	-	7		н	
trans-1,3-Dichloropropene	49	ND	***	1.00	*	Ħ		**	**	-		- 7	•	
Ethylbenzene	*	ND		4.00	10		_						es	
Hexachlorobutadiene	pa .	ND	***	10.0	м	*			-		-		H	
2-Hexanone	*	MD	***	10.0										

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- which of the by

Mike Priebe For Stephen Wilson, Laboratory Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 12 of 20

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number:

[none]

David M. McDowell

Report Created: 10/26/05 09:34

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

North Creek Analytical - Portland

Project Manager:

	***		- M-4b - 1	EDA SO	20D								
QC Batch: 510070	02 Water	Preparatio	n (vietnod:	EPA 50	2013								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC (Limits) RPD	(Limits	s) Analyzed	Notes
LCS (5100702-BS1)									racted: 10/17/0		_	-	
Benzene	EPA 8260B	19.7		1.00	ug/l	1x	**	20.0	98.5% (80-120		**	10/17/05 09:02	
Chlorobenzene	н	21.1		1.00	*	**		*	106% (80-12-		-	**	
1.1-Dichloroethene	н	15.1		1.00	•	н	**	*	75.5% (78-120		-	н	Q-2
Toluene	10	20.9		1.00	M	*	**	н	104% (80-12-	1) -		M	
Trichloroethene	**	20.4		1.00	10	10		*	102% (80-13	2) -	-		
Surrogate(s) 4-BFB		Recovery.	105%	Limit	s: 75-120%	-						10/17/05 09:02	
1,2-DCA-44			99.5%		77-129%	**							
Dibromofluo	romethane		101%		80-121%	**						. 1949	
Toluene-d8			100%		80-120%	**							
Matrix Spike (5100702	-MSI)			QC Source	: P5J0556-0	01		Ext	tracted: 10/17/	05 08:09			
Benzene	EPA 8260B	19.5	***	1,00	ug/l	1x	ND	20.0	97.5% (80-12	4) -		10/17/05 09:29	
Chlorobenzene	M	20.2		1.00	*	**	ND	•	101% (72.9-1	34) -	••	4	
1,1-Dichloroethene	64	19.0	***	1.00	10	н	0.230	**	93.8% (79.3-1)	27) =	++	**	
Toluene	19	19.6	***	1.00	M	н	ND	*	98.0% (79.7-1.	31)	**	м	
Trichloroethene	M	21.1	•••	1.00	**	40	2,21		94,4% (68,4-1	30) -	-	H	
Surrogate(s): 4-BFB		Recovery:	102%	Limi	ts: 75-120%	н						10/17/05 09:29	
Surrogate(s): +-Dr a 1,2-DCA-d4		incessery.	98.0%	•	77-129%								
Dibromofluo			100%		80-121%	*						*	
Toluene-d8			99.0%		80-120%	-						-	
Matrix Spike Dup (510	10702-MSD1)			QC Source	e: P5J0556-	01		Ex	tracted: 10/17	05 08:09	100		
Benzene	EPA 8260B	20.2		1.00	ug/l	1x	ND	20.0	101% (80-12	4) 3.53	% (25)	10/17/05 09:55	
Chlorobenzene	0	21.0	***	1.00	**	41	ND	*	105% (72.9-1	34) 3,88	% "	10	
1,1-Dichloroethene	14	20.0		1.00	**	**	0.230		98.8% (79.3-1	27) 5,13	% "	+	
,	**	20.6	***	1.00	10	н	ND		103% (79.7-1	31) 4.98	% "	-	
Toluene Trichloroethene	ь	21.8		1.00	-	41	2.21	- 4	98.0% (68.4-1	30) 3.26	% "	*	
		Recovery:	102%	Lim	its: 75-120%	*		77 - 57				10/17/05 09:55	5
Surrogate(s): 4-BFB 1.2-DCA-d4		necovery.	100%	441771	77-129%							*	
Dibromoflus			100%		80-12196							M	
Toluenc-48	ar marketingerie		100%		80-120%							al	

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- whichouf Dily

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax; (425) 420.9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone: (509) 924.9200 | fax; (509) 924.9290 | Portland | 905 SW Nimbus Avenue, Beaverton, OR 97008-7132 | phone: (503) 906.9200 | fax; (503) 906.9210 | 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 | phone: (541) 383.9310 | fax; 541.382.7588 | 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 | phone: (907) 563.9200 | fax; (907) 563.9210 | Spokane | Anchorage

Shannon & Wilson, INC. (Fairbanks)

Project Name:

Gold Hill Store

2355 Hill Road Fairbanks, AK/USA 99709-5326 Project Number:

[none]

Project Manager: David M. McDowell

Report Created: 10/26/05 09:34

Volatile Organic Compounds in Drinking Water per EPA 524,2 - Laboratory Quality Control Results North Creek Analytical - Portland

QC Batch: 5100842		Preparation				D211	Source	Spike	%	Imples	%	(Limit	t) Anglyzed	Note
nalyte	Method	Result	MDL*	MRL	Units	Dil	Result	Amt F	RÉC (L		RPD	(cimic	s) Analyzed	,101
Blank (5100842-BLK1)									cted: 1	0/19/05 (7.7	_	10/19/05 13:04	
aphthalene	EPA 524.2	ND	-	0.000500	mg/1	lx	**		**	-			10/19/03 13:04	
-Propylbenzene	44	ND	***	0.000500	11	**	-	-		-	**		IP.	
tyrene	44	ND		0.000500	•	•	**	-	-	**		***	_	
1,1,2-Tetrachloroethane	64	ND		0,000500	**	*	••	-	-		7	-		
1,2,2-Tetrachloroethane	41	ИD	***	0.000500	м	14	**	-	7	-	77	77	_	
etrachloroethene		ND	***	0.000500	49	*	-	77	-		-		-	
'oluene	*	ND	***	0.000500	н	*	-		**	-	**		,	
,2,3-Trichlorobenzene	M	ND		0.000500	**	4	**		-	and the	-	-	•	
.2.4-Trichlorobenzene	fri .	ND		0.000500	м		***		**	-	-	**	•	
1.1-Trichloroethane	10	ND	***	0.000500	49	*				••	-	**	**	
.1,2-Trichloroethane		ND		0.000500	н	19	-	-		370	-	**	•	
richloroethene	*	ND		0.000500	н	н	-		**	-		**	*	
richlorofluoromethane		ND		0.000500	**	**	**		**	-		**	*	
,2,3-Trichloropropane	41	ND		0,000500	н		-			-	-	**	98	
,2,4-Trimethylbenzene	10	ND		0.000500	49	*		344	**	-	**	27	**	
,3,5-Trimethylbenzene	**	ND		0,000500	16	10	**	***	**	**		**	•	
· ·	el .	ND		0,000500	**	м				-	-	**	*	
/inyl chloride		ND	***	0,00100	**	**	**			-	-	**		
(ylenes (total)			105%	Limit	s: 70-130°n			-		- 12			10/19/05 13:	04
Surrogate(s): Dibromofluorome	thane	Recovery	108%	Linn	70-130%	н								
1,2-DCA-d4 Taluene-d8			98.4%		70-130%								~	
4-BFB			90.0%		70-130%									
CC (F100043 BC1)								Extr	acted:	10/19/05	09:17			
LCS (5100842-BS1)	EPA 524.2	0.00503	***	0.000500	mg/l	lx		0,00500	101%	(70-130)			10/19/05 11:13	
Benzene	# #	0,00533	***	0.000500	10	**		*	107%		-	***		
Bromobenzene	н	0.00509	***	0.000500	**		_	**	102%	м				
Bromochloromethane		0.00514		0.000500	10	*	_	10	103%	**	-	-		
Bromodichloromethane	**	0.00314		0.000500	-		••	**	96.6%	19		++	**	
Bromoform		0.00518		0.000500	**	**	_	14	104%	**	-		18	
Bromomethane	-			0.000500		н		88	101%			-		
n-Butylbenzene	"	0.00505	***		41		_	10	105%			-		
sec-Butylbenzene		0.00527		0.000500	10			н	107%	4		-	16	
tert-Butylbenzene	**	0.00535	***	0.000500	89			**	99.2%	**	70.75	10	=	
Carbon tetrachloride	91	0,00496		0.000500	40			14	99.5%	*	35			
Chlorobenzene	10	0,00498	***	0.000500	**		_		96.2%	0			24	
Chloroethane	**	0.00481	***	0.000500	4	-	-		2.77	10	-			
Chloroform	н	0.00516		0.000500		-	••		103%			-		
Chloromethane	•	0.00479	***	0.000500	19	41	••		95.8%	-	-	-		
2-Chlorotoluene	44	0.00520		0.000500	н	10		**	104%		- 1	**		
4-Chlorotoluene	D	0.00526	***	0.000500	44	ы	**	**	105%	-	- 7		-	
1.2-Dibromo-3-chloropropane	*	0.00503		0.000500	10	19	77	м	101%	*1	-		-70	
Dibromochloromethane	*	0.00494	***	0.000500	**	н	-	81	98.8%	**	-	-		

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accurdance with the chain of custody document. This analytical report must be reproduced in its entirety.

- whichouf thisly

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Gold Hill Store Project Name:

Project Number: [none]

David M. McDowell Project Manager:

Report Created; 10/26/05 09:34

Fairbanks, AK/USA 99709-	5326			Project Mar	ager: Da	IVIU IV	1. MCDO	WEII					
Volatile Org		ounds in D	heinking '	Water ne	r EPA 52	24.2	- Labo	ratory	/ Qua	lity Co	ntrol Re	suits	
Volatile Org	eanic Comp	QUIIQS III_D	North C	reek Analy	tical - Po	rtlan	d						
		D				_							
QC Batch: 5100842	Water	Preparation	n Methou:				Source	Spike	% (t imite)	% (1.im	its) Analyzed	Notes
Analyte	Method	Result	MDL*	MRL	Units	Dil	Result	Amt	REC (Cilities)	RPD (Ziiii	,,	
LCS (5100842-BS1)								Ext	racted:	10/19/05	09:17	10/19/05 11:14	<u> </u>
Surrogate(s): Toluene-d8		Recovery:	97.8%	Limit	s: 70-130%							10/19/03/11/14	,
4-BFB			105%		70-130%								
LCS Dup (5100842-BSD1)										10/19/05	09:17 1.19% (30)	10/19/05 12:09	
Benzene	EPA 524.2	0.00509	***	0.000500	mg/l	lx	**	0.00500		(70-130)	2.96% "	н	
Bromobenzene	•	0.00549		0.000500	**	**	-		110%	**	3.29% "	19	
Bromochloromethane	*	0.00526	week	0.000500	4	10	••	**			4.93% "	*	
Bromodichloromethane	**	0.00540		0.000500	*	**	••	w	108%	н	4.65% "	**	
Bromoform	м	0.00506		0.000500	**	н			101%	4	0.00% "	9	
Bromomethane	•	0.00518	***	0.000500	44	10	••		104%	19		44	
n-Butylbenzene	10	0.00468		0.000500	*	**			93.6%	40	7.61% " 4.07% "	м	
sec-Butylbenzene	м	0.00506		0.000500	D	*	**		101%	*	0.187% "	10	
tert-Butylbenzene	11	0.00534	***	0.000500	**	*			107%	н		*	
Carbon tetrachloride		0.00495		0.000500	**	19			99.0%	9	0.202% "	*	
Chlorobenzene	**	0.00516		0.000500	*	49		**	103%		3.55% "	10	
Chloroethane	н	0.00480	***	0.000500	*	н	**	н	96.0%		0.20876	10	
	98	0.00533		0,000500	н	10			107%		3,2470		
Chloroform	M	0.00469		0.000500	n	**	••	**	93.8%		2.11% "		
Chloromethane	H.	0.00524		0.000500	**	н	-	н	105%		0,766% "		
2-Chlorotoluene	44	0.00522	***	0.000500	**	19	**	10	104%		0.763% "	-	
4-Chlorotoluene		0.00491	***	0.000500	#	41	-	**	98.2%	• "	2.41% "		
1,2-Dibromo-3-chloropropane	D	0.00503	***	0.000500	19	н	•	м	101%		1.81% "		
Dibromochloromethane	*	0.00547	***	0,000500	**	**		10	109%		7.39% *		
1,2-Dibromoethane	**	0.00527		0.000500	н	41	-	**	105%		4,66%		
Dibromomethane	10	0.00505	***	0.000500	10	н		*	101%	*	4.64%	• **	
1,2-Dichlorobenzene	и	0.00534		0.000500	**	**	-	н	107%	, H	2.04%	. "	
1,3-Dichlorobenzene		0.00531		0,000500	м	44		**	106%	· ·	1.52%		
1,4-Dichlorobenzene		0.00331		0.000500	10	10	-	м	86.29	4 1	0.694%	• н	
Dichlorodifluoromethane		0.00431	***	0.000500	**	**		19	103%	é "	2.36%	н — —	
1,1-Dichloroethane		0.00514		0.000500	в	н		**	103%	6 "	3.95%	м н	
1,2-Dichloroethane	-	0.00316	•••	0.000500	*	**		м	97.09	4 "	0.617%	ep 11	
1,1-Dichloroethene				0.000500		**		10	99.85	/4 #	0.599%	м н	
cis-1,2-Dichloroethene		0.00499	***	0,000500	10	н	••	*	99.89	/m **	0.400%	19 И	
trans-1,2-Dichloroethene		0.00499		0,000500	44	**		14	1049	4 *	4.11%	44	
1,2-Dichloropropane		0.00521	•••	0,000500	м	н		*	1069	н	6.23%	19	
1,3-Dichloropropane	#	0.00530		0,000500	10		_	pl	97.4		1.63%	m ====================================	
2,2-Dichloropropone	*	0.00487		0.000500	**	**			96.0		2.47%	н м	
1,1-Dichloropropene	*	0.00480									2.08%	14 41	
cis-1,3-Dichloropropene	4	0.00486				,	-	**	97,4		0.206%	н и	
trans-1,3-Dichloropropene	*	0.00487					-	43	103		0.583%		
Ethylbenzene		0,00513				,	,		93.0		9,43%		
Hexachlorobutadiene	м	0.00465					_				2.26%		
Isopropylbenzene	#	0.00526	· · ·	- 0,000500	"		-		,				

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- which after by

| 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone; (425) 420,9200 | fax: (425) 420,9210 | fax: (425) 420,9210 | fax: 11115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone; (509) 924,9200 | fax: (509) 924,9290 | fax: 509) 906,9210 | fax: 503) 906,9200 | fax: 503) 906,9210 | fax: 541,382,7588 | fax Anchorage

Shannon & Wilson, INC. (Fairbanks)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Store Project Name:

Project Number: [none]

David M. McDowell Project Manager:

Report Created: 10/26/05 09:34

Notes and Definitions

Report Specific Notes:

The matrix spike recovery, and/or RPD, for this QC sample is outside of established control limits. Failure of a matrix spike QC sample Q-01 does not represent an out-of-control condition for the batch.

Analyte recovery outside of specified criteria. Individual analyte criteria exceedences allowed for multi-component analyses without Q-27 disqualification of data per USACE EM200-1-3.

Reporting limit raised due to dilution necessary for analysis. R-01

Laboratory Reporting Conventions:

- Analyte <u>DETECTED</u> at or above the Reporting Limit. Qualitative Analyses only. DET

- Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND

NR / NA - Not Reported / Not Available

- Sample results reported on a dry weight basis. Reporting Limits are corrected for %Solids when %Solids are <50%. dry

- Sample results and reporting limits reported on a wet weight basis (as received). wet

- Relative Percent Difference. (RPDs calculated using Results, not Percent Recoveries). <u>RPD</u>

* METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. **MRL**

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported MDL* as Estimated results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution <u>Dil</u> found on the analytical raw data.

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Reporting percent solids, where applicable. limits

North Creek Analytical - Alaska

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

- whichauf thily

Navardla id pravarila Manial vilageral Consplaire Mararaigat Caparana WORK ORDER # 45 JOO49 CLIENT: Strange Wilson PROJECT: Gold Hill Date Time Cooler Arrived 10 / 11 / 05 19:90 Cooler signed for by: Jen 121 Garage Preliminary Examination Phase: Date cooler opened: [Isame as date received or I Conter opened by (print) Les M. Gras Ma (sign 1. Delivered by ALASKA AIRLINES FEILER TUPS TINAC Shipment Tracking # if applicable 2910 5762 ____ (include copy of shipping papers in file) 2. Number of Custody Seals 2 Signed by See Bas/ Were custody seals unbroken and intact on arrival? Yes 3. Were custody papers scaled in a plastic bag? 4. Were custody papers filled out properly (ink, signed, etc.)? 5. Did you sign the costody papers in the appropriate place? 6. Was ice used? Tyes No Type of ice: blue ice | realice | divice Condition of tee / 5000 Temperature by Digi-Thermo Probe 59 °C Thermometer # 7 Packing in Couler: Thubble wrap styrofoam cardboard Other: Yes 8. Dal samples arrive in plastic bags? 9. Dad all boules arrive unbroken, and with labels in good condition? No 10. Arc all bottle labels complete (H), date, time, etc.) No 11. Do bottle labels and Chain of Custody agree? 12. Are the containers and preservatives correct for the tests indicated? Yes No No 13. Is there adequate volume for the tests requested? L MA □ No 14. Were VOA vials free of bubbles? If "NO" which containers contained "head space" or bubbles? Log-in Phase: Date of sample log-in 1 : 12 05
Samples logged in by (print) Holly A MArtines ~ (sign) 1. Was project identifiable from custody papers? Do Jurn Around Times and Due Dates agree?

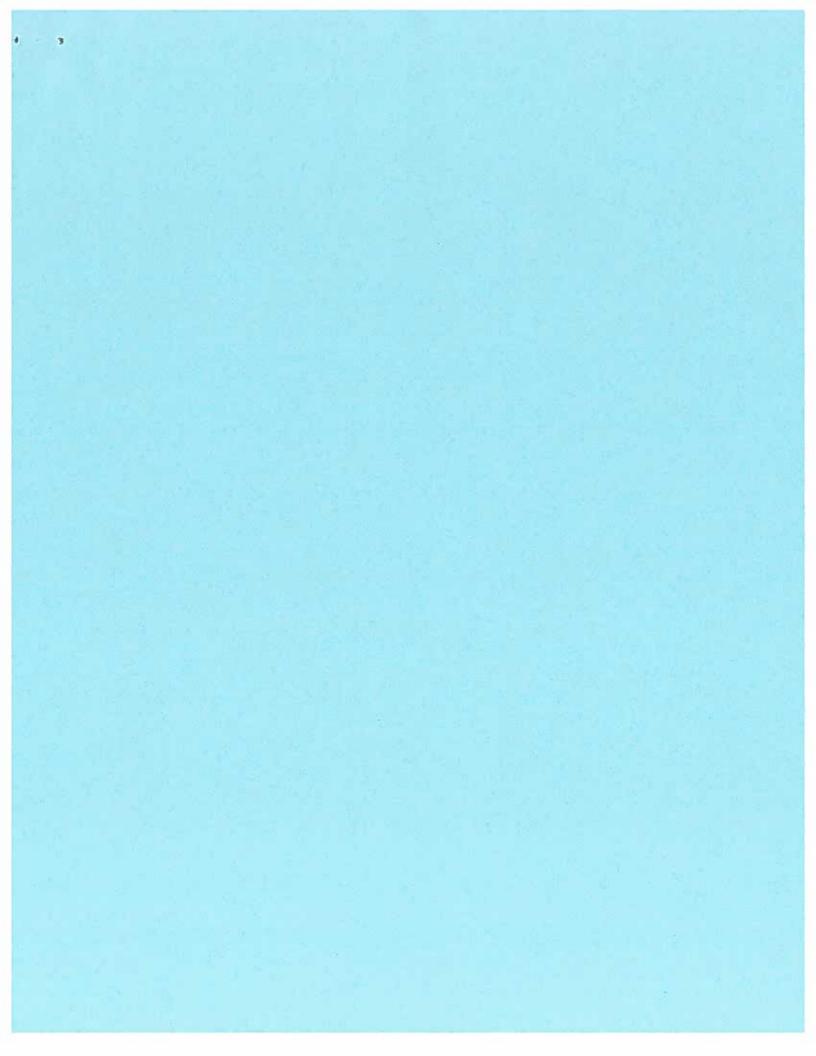
17 Yes

27 KJ

X Yes

No

No


No

Comments: (see reverse side for corrective action.)

Was the Project Manager notified of status?

5. Was the COC scanned and copied?

4. Was the Lab notified of status? (Dry Erase Board.)

11720 North Creek Pkwy N, Sulte 400, Bothell, WA 98011-8244 Seattle 425.420.9200 fax 425.420.9210

Spokane

East 11115 Montgomery, Sulte B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 **Portland**

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Bend

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1115 **Anchorage** 907.563.9200 fax 907.563.9210

November 15, 2005

David M. McDowell Shannon & Wilson, Inc. (Fairbanks, AK) 2355 Hill Road Fairbanks, AK/USA 99709-5326

RE: Gold Hill

Enclosed are the results of analyses for samples received by the laboratory on 11/01/05 11:00. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

<u>Work</u>	<u>Project</u>	<u>ProjectNumber</u>
P5K0022	Gold Hill	31-1-11290

Thank You,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Joy D. Chang, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Anchorage

Shannon & Wilson, Inc. (Fairbanks, AK)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Project Name:

31-1-11290 Project Number:

David M. McDowell Project Manager:

Report Created: 11/15/05 14:34

EDB, DBCP and TCP in Drinking Water per EPA 504.1

North Creek Analytical - Portland

			1101111 01								
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0022-01RE1 Water		1290-103105-00	Sampled: 10/31/05 12:00								
1,2-Dibromoethane	(EDB)	EPA 504.1	ND	-	0.0100	ug/l	lx	5110660	11/14/05	11/14/05 21:19	
P5K0022-02RE1	Water	1290-103105-02	0	Sample	d: 10/31/	05 12:15			<u>. </u>		
1,2-Dibromoethane	(EDB)	EPA 504-1	ND		0.00992	ug/l	lx	5110660	11/14/05	11/14/05 21:45	

Seattle

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 9 Portland

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 **Anchorage** phone: (907) 563.9200 fax: (907) 563.9210

Shannon & Wilson, Inc. (Fairbanks, AK)

2355 Hill Road

Fairbanks, AK/USA 99709-5326

Gold Hill Project Name:

31-1-11290 Project Number:

David M. McDowell Project Manager:

Report Created; 11/15/05 14:34

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

- Analyte <u>DETECTED</u> at or above the Reporting Limit. Qualitative Analyses only. DET

- Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND

NR / NA - Not Reported / Not Available

- Sample results reported on a dry weight basis. Reporting Limits have been corrected for %Solids. <u>drv</u>

- Sample results and reporting limits reported on a wet weight basis (as received). wet

- Relative Percent Difference. (RPDs calculated using Results, not Percent Recoveries). <u>RPD</u>

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. <u>MRL</u>

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported MDL* as Estimated results.

- Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution <u>Dil</u> found on the analytical raw data.

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Reporting percent solids, where applicable.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

NORTH CREEK AN ALYTICAL COOLER RECEIPT FORM

	A	Army Corp. compliant)
Clie	- Unkinnow + WILSON	Λ
1.	Disease sign for receipt and openi	ng of cooler or other/
	- Illimit Graus	k (sign)
2.	Data and a received // //	Date opened: Same or,
3.	- " AICA GOVERN	edFy UPS CourierClientOther_C
	Airbill # if applicable	(Put copy of shipping papers in me)
4.	There were custody seals pi	esent, signed by date//
5.	Were the custody seals unbroken a	nd intact at the date and time of arrival?
6. T	Was ice used?yesno emperature (degrees C) 102 D.Ray	Type of ice: blue ice gel ice real ice sk thermometer Digi-Therm (probe temperature blank) tic bag and taped inside to lid? Yes No
7.	Are custody papers sealed in a pla	tic bag and taped inside to lid?YesNo
8.	Were custody papers filled out proping "no" please specify:	erly (ink, signed, etc.)?
	Was project identifiable from custo	ty papers? Yes No (if applicable) //-/-05
10	. Initial and date for unpacking:	(initials) date OTT other
11	. Packing material:bubble wrat	styrofoamcardboardotherYesNo
	. Were samples in bags?	V Van No
		ainers were absent
14	 Were all containers unbroken and If "no" please indicate which con 	abels in good condition? YesNo ainers
	 Were all bottle labels complete (ID Do the IDs, times, etc. agree with If "no" please indicate which cor 	i le COC?
1	Are containers properly preserved	or indicated analysis?
	Is there adequate volume for the t	
	8. If voa vials were submitted are th	
1	9. Log-in phase: Date samples we	
	0. Logged in by (print)	MIVER (sign) (SUB)
2	21. Was the project manager notified	f status? (Use back of form as a record)Yes No