

November 29, 2018

Timothy Woster 1066 Eliz Road North Pole, Alaska 99705

Attn: Mr. Timothy Woster

RE: HOME HEATING-OIL TANK (HHOT) ENVIRONMENTAL SERVICES, 1066 ELIZ ROAD, NORTH POLE, ALASKA ADEC FILE NUMBER 100.38.215

This report summarizes our field efforts conducted on your property at 1066 Eliz Road in North Pole, Alaska (Figure 1). Our objective was to assess current soil and groundwater conditions in the area of the former HHOT. The data will be used to support a request for site closure with or without intuitional controls (ICs) from the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program. The ADEC requested this information in a letter dated XXX. We discussed site closure with the ADEC project manager Mr. Shawn Tisdell on several occasions.

PROJECT BACKGROUND

In July 2007, you hired Stanford Construction (SC) to remove and replace your home heating-oil UST. During removal activities, SC personnel noticed a fuel odor. This prompted you to contact us, and to notify the ADEC of the apparent release from your UST. Shannon & Wilson assisted you with characterization efforts to determine if spills or releases from the UST had affected soil and groundwater. Our 2008 efforts included:

- Assessing subsurface conditions and field-screening soils during removal of contaminated soils;
- Collecting soil samples from the limits of excavation and from a test pit for analysis of hydrocarbons by an ADEC-approved laboratory;
- Observing the installation of a fuel-collection gallery (slotted vertical 1.5-foot-diameter culvert) in the excavation for floating-product removal and collecting product to the extent practible;

Timothy Woster November 29, 2018 Page 2 of 7

- Installing and sampling groundwater from two monitoring wells;
- Collecting water samples from the on-site and neighboring drinking water wells; and
- Reporting our findings in our August 2008 report, *Home Heating-Oil Underground Storage Tank Corrective Action and Assessment.*

In our 2008 report, we concluded that soil containing diesel-range organics (DRO) in excess of the ADEC cleanup level (CUL) appeared to be restricted to a narrow zone about 6 feet below ground surface (bgs) on the southern edge of the excavation. DRO was detected at a concentration of 439 mg/kg. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected above ADEC CULs. No analytes were detected in the water samples.

In a letter dated April 12, 2016 and e-mails, the ADEC provided you with guidance for site closure. Their letter provided you with options for closing the 1066 Eliz Road UST site with, or without, institutional controls. They determined that additional investigative work would be required to seek closure. In addition, they requested the two on-site monitoring wells and recovery-well culvert be decommissioned as they could provide a pathway for surface contamination to reach the groundwater.

Shannon & Wilson carried out groundwater sampling activities in 2016, from the two on-site monitoring wells, and two residential drinking water wells at 1066 Eliz Road and 1074 Eliz Road. Our findings reported in our February 6, 2017 report, *Environmental Services, 1066 Eliz Road, North Pole, Alaska* concluded that results were not detected for the requested analytes with the exception of DRO detections present in the two onsite monitoring wells below ADEC CULs.

SCOPE OF SERVICES

Our scope of services for this project included:

- Sub-contracting GeoTek Alaska, Inc. (GeoTek) to advance three soil borings to ten feet bgs at the location where DRO contamination above its ADEC CUL was detected in 2007;
- Logging soil profiles, field-screening, and collecting analytical soil samples during the soil boring installation process;
- Advance three temporary well points from each soil boring location and collecting analytical water samples;

Timothy Woster November 29, 2018 Page 3 of 7

- Sub-contracting Design Alaska, Inc. (Design Alaska) to decommission two onsite monitoring wells;
- Submitting this data summary report.

On September 16, 2018, Shannon & Wilson, Inc. personnel performed field activities in accordance with our ADEC approved Work Plan (WP) dated August 16, 2018.

SOIL SAMPLING

Prior to conducting ground penetrating activities, we performed utility locates at the site. We subcontracted GeoTek to advance three soil borings (Figure 2) in the area where DRO contamination above its ADEC CUL was detected in 2007. A photographic log is presented in Attachment A. The soil borings were advanced to the groundwater interface at depths of ten feet bgs. We logged soil borings, presented in Attachment B as graphic boring logs. We collected two primary samples from each boring at depths up to nine feet bgs. The sample depths were determined based on field-screening results from a photoionization detector (PID), presented in Attachment B, along with our sample collection logs.

Soil samples were submitted to SGS North America, Inc. (SGS) for analysis of DRO by Alaska Method AK102; gasoline-range organics (GRO) by AK101; and BTEX by Environmental Protection Agency (EPA) Method SW8260C. One soil sample was submitted additionally for the analysis of volatile organic compounds (VOCs) by EPA SW8260C; and polynuclear aromatic hydrocarbons (PAHs) by the 8270SIM method.

WATER SAMPLING

Concurrent with soil sampling activities, we collected groundwater samples from three temporary well points collocated with the soil borings. GeoTek Alaska drove the three temporary wells to a depth of 11 ft bgs. spanning the water table. We collected water sampled using a peristaltic pump with a reduced flow rate to avoid volatilizing the water through air entrainment. Our Well Sampling Logs are presented in Attachment B.

Water samples were submitted to SGS for analysis of DRO by AK102; GRO by AK101; and BTEX by EPA SW8260C One water sample was submitted additionally for the analysis of VOCs by EPA SW8260C; and PAHs by the 8270SIM method.

Timothy Woster November 29, 2018 Page 4 of 7

MONITORING WELL DECOMMISSIONING

Shannon and Wilson and Geotek Alaska decommissioned the onsite monitoring wells (WP-1 and WP-2) in general accordance with ADEC's *Monitoring Well Guidance*, dated September 2016. The wells were constructed of 1.5-inch welded steel casings, ten feet bgs. Both wells were fully removed by hand and backfilled with bentonite clay to the original ground surface. We understand you will be decommissioning the onsite recovery well culvert.

The goal in decommissioning the onsite monitoring wells recovery culvert is to remove them in a manner that ensures the abandoned borehole is sealed to a lesser permeability than the native soils surrounding the borehole.

RESULTS

We received two laboratory reports from SGS (Work Orders 1189757 and 1189758; Attachment C). Summary tables of soil and water analytical results are included at the end of this report in Tables 1 and 2, respectively. Analytical sample results above ADEC CULs are presented in Figure 2. We also completed ADEC laboratory data-review checklists (LDRC) presented in Attachment D.

We compared soil sample results to 18 AAC 75 *Table B1 Method Two – Soil Cleanup Levels* (Migration to Groundwater) and *Table B2 Method Two – Petroleum Hydrocarbon Cleanup Levels* (Under 40-inch Zone). We compared groundwater sample results to 18 AAC 75 *Table C – Groundwater Cleanup Levels*.

Soil Results

GRO and DRO exceeded the ADEC CULs in the upgradient soil boring location SB18-03 at a depth of 8.0-8.5 feet bgs. DRO exceeded the ADEC CUL in soil boring locations SB18-01 at 5.0-9.0 feet bgs, and SB18-02 at 8.0-8.6 feet bgs.

No additional analytes were detected in the current sampling event exceeding ADEC CULs.

Water Results

DRO exceeded the ADEC CUL in the temporary well point upgradient of the former UST (TWP10-03). DRO and naphthalene exceeded ADEC CULs in temporary well point TWP18-01.

No additional analytes were detected in the current sampling event exceeding ADEC CULs.

Timothy Woster November 29, 2018 Page 5 of 7

QUALITY ASSURANCE / QUALITY CONTROL

We reviewed analytical results provided by SGS for laboratory quality control (QC) samples and also conducted our own quality assurance (QA) assessment for this project. We reviewed chainof-custody records and laboratory sample-receipt forms to document that we followed proper custody procedures, met sample-holding times, and kept samples properly chilled (between 0 degrees Celsius [°C] and 6°C) during shipping. Our QA review procedures allow us to document accuracy and precision of analytical data and document that the analyses were sufficiently sensitive to detect analytes at levels below regulatory levels.

For this report, we reviewed soil and water data reported in SGS work orders 1189757 and 1189758, respectively. Laboratory reports contain case narratives, sample-receipt forms, analytical results and a copy of the chain-of-custody form. We consider the results to be acceptable and representative for assessing site conditions at the time and location they were collected. Details regarding results of our QA analyses are presented in the LDRCs (Attachment D).

Our review of the data reveals that some analytical samples experienced method and data-quality failures (surrogate recovery, method blank detection, equipment blank detection, laboratory control sample percent recovery failures, etc.). None of the data-quality failures caused data to be considered unusable.

Four analytes were reported as non-detects but had laboratory reporting limits greater than ADEC CULs; we cannot determine whether these analytes are present in the samples at concentrations less than the reporting limits but greater than the regulatory levels. Analytical results considered affected by method and laboratory data-quality failures are flagged in Tables 1 and 2.

CONCLUSIONS AND RECOMMENDATIONS

DRO was detected at each soil boring location and two temporary well point locations exceeding ADEC CULS. Additionally, naphthalene was detected above the ADEC CUL from the temporary well point nearest the culvert.

The upgradient soil results near the property boundary contain DRO concentrations at levels greater than soil results closest to the former UST. Soil and water containing DRO appear restricted to a narrow zone about 5-9 feet bgs on the southern edge of the excavation and upgradient of the source.

Timothy Woster November 29, 2018 Page 6 of 7

Groundwater gradient is to the northwest regionally. The downgradient onsite monitoring wells have not resulted in detections greater than ADEC CULs. VOCs have not been detected in the cross-gradient private drinking water well at 1066 Eliz Road.

The removal of the remaining known extent of contamination would be impractical and would require the removal of a large amount of clean overburden. We request site closure with institutional controls at the former home-heating oil UST, with follow up sampling to occur in ten years or when the property is listed for sale, whichever comes first.

CLOSURE

This report was prepared for the exclusive use of Timothy Woster and his representatives, in accordance with our scope of services. This report should not be used for other purposes without Shannon & Wilson's review. The document "*Important Information about Your Environmental Site Assessment/Evaluation Report*" is presented in Attachment E to help you and others understand the use and limitations of this report. We relied on third party data in our review of site history and offer no assurance of its accuracy.

Our observations represent site conditions as they existed during our sampling activities. Our observations are specific to the locations and times noted herein and may not be applicable to all areas of the site. No number of samples, along with analytical testing, can precisely predict the characteristics, quality, or distribution of site conditions. Potential variations include, but are not limited to:

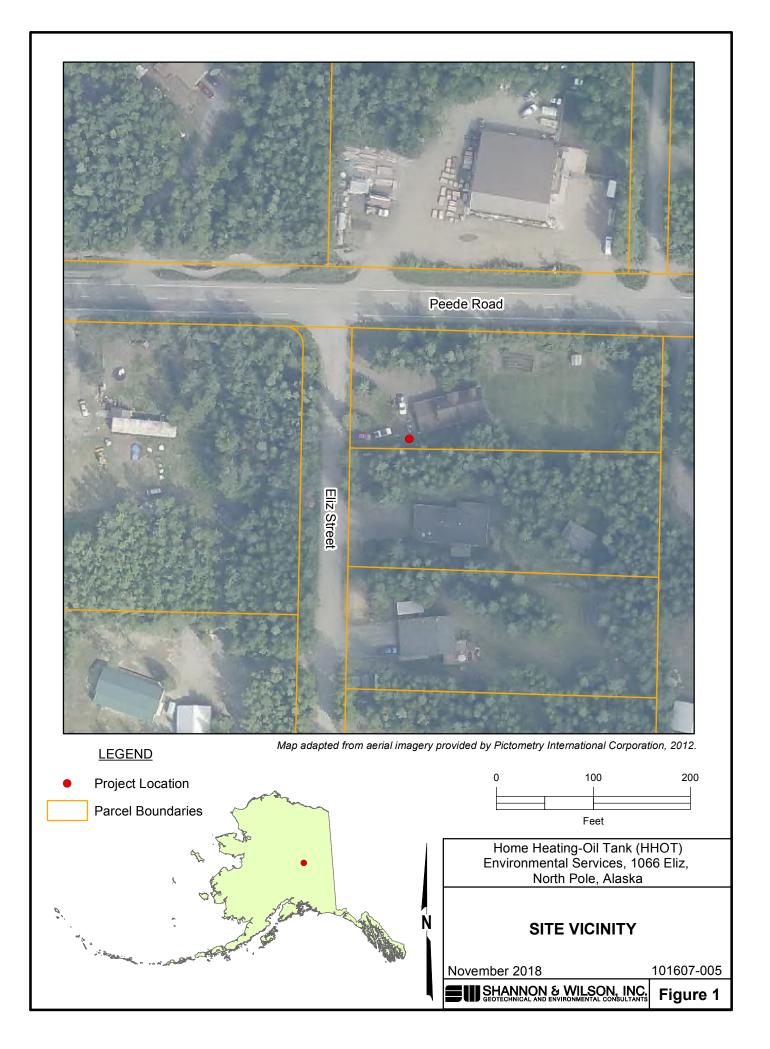
- The conditions between sampling points may be different.
- The passage of time or intervening causes (natural and manmade) may result in changes to site conditions.
- Contaminant concentrations may change in response to natural conditions, chemical reactions, and/or other events.
- The presence, distribution, and concentration of contaminants may vary from our sampling locations. Our tests may not represent the highest contaminant concentrations at the site.
- The report should not be used without our approval if any of the following occurs:
- Conditions change due to natural forces or human activity under, at, or adjacent to the site.
- Project details change, or new information becomes available such that our analyses, conclusion, and recommendations may be affected.

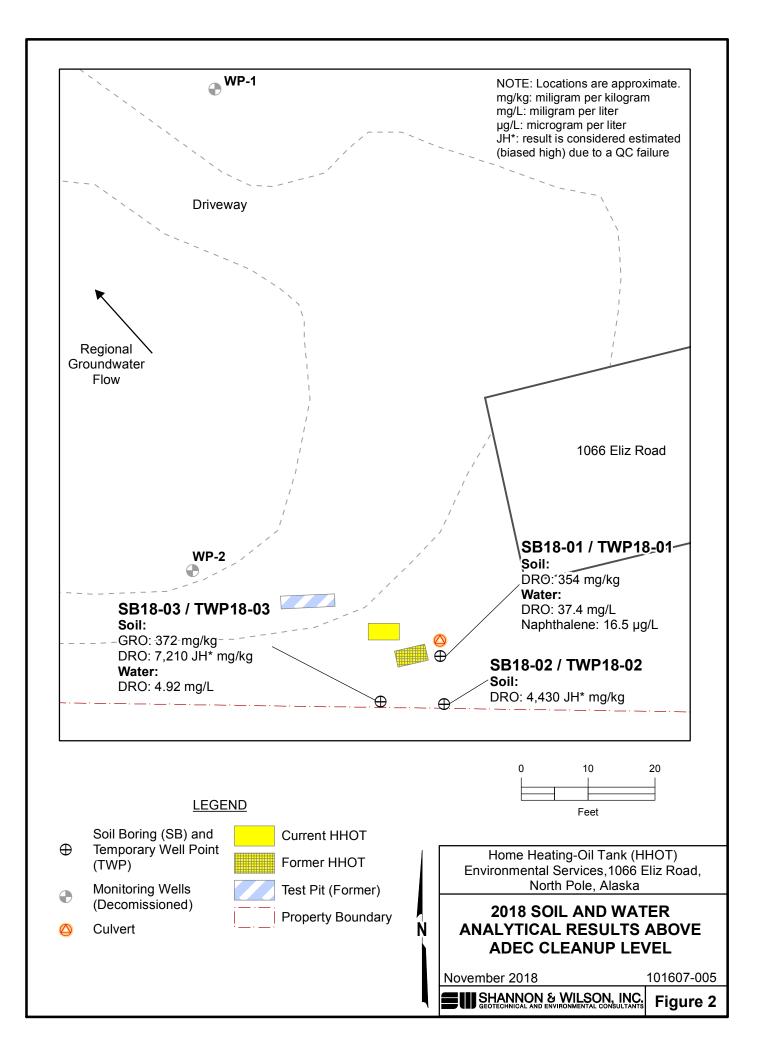
Timothy Woster November 29, 2018 Page 7 of 7

- If the site ownership or land use has changed.
- More than ten years has passed since the date of this summary letter report.
- Regulations, laws, or cleanup CULs has changed.

If any of these occur, we should be retained to review the applicability or our analyses, conclusions, and recommendations.

State and/or federal agencies may require reporting of the information included in this report. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study unless specifically requested and authorized by Timothy Woster, or as required by law. Regulatory agencies may reach different conclusions than Shannon & Wilson.


Sincerely,


SHANNON & WILSON, INC.

Sheila Hinckley Environmental Scientist

Enc: Figure 1 – Site Vicinity
Figure 2 – Soil and Water Analytical Results Above ADEC Cleanup Level
Table 1 –Soil Analytical Summary
Table 2 –Water Analytical Summary
Attachment A – Project Photographs
Attachment B – Field Forms
Attachment C – SGS Laboratory Data Reports Work Orders (1189757 and 1189758)
Attachment D – ADEC Laboratory Data Review Checklists
Attachment E– Important Information about your Geotechnical/Environmental Report

c: Mr. Shawn Tisdell (ADEC)

TABLE 11066 ELIZ ROAD SOIL SAMPLE RESULTS

				SB18-01-01	SB18-	-01-02	SB18-02-01	SB18-02-02	SB18-03-01	SB18-03-02
Analytical		ADEC Soil- Cleanup		02100101	3510	SB18-101-02			0210 00 01	
Method	Analyte	Level	Units	SB18-01-01	SB18-01-02	DUP	SB18-02-01	SB18-02-02	SB18-03-01	SB18-03-02
AK101	Gasoline Range Organics	300	mg/kg	<3.55		<1.59	<5.25	102	<3.23	372
AK102	Diesel Range Organics	250	mg/kg	<12.4	326	354	9.33 J	4430 JH*	162	7210 JH*
	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.022 32	mg/kg mg/kg		<0.0169 <0.0211					
	1,1,2,2-Tetrachloroethane	0.003	mg/kg		<0.0211					
	1,1,2-Trichloroethane	0.0014	mg/kg		<0.00845	—				
	1,1-Dichloroethane	0.092	mg/kg		<0.0211					
	1,1-Dichloroethene	1.2	mg/kg		<0.0211					
	1,1-Dichloropropene 1,2,3-Trichlorobenzene	NA 0.15	mg/kg mg/kg		<0.0211 <0.0423					
	1,2,3-Trichloropropane	0.000031	mg/kg		<0.0423 <0.0211					
	1,2,4-Trichlorobenzene	0.082	mg/kg		<0.0211					
	1,2,4-Trimethylbenzene	0.61	mg/kg	_	<0.0423		_		_	_
	1,2-Dibromo-3-chloropropane	NA	mg/kg		<0.0845					
	1,2-Dibromoethane	0.00024	mg/kg	—	<0.00845	—	—	—	—	
	1,2-Dichlorobenzene 1,2-Dichloroethane	2.4 0.0055	mg/kg mg/kg		<0.0211 <0.00845					
	1,2-Dichloropropane	0.03	mg/kg		<0.00845					
	1,3,5-Trimethylbenzene	0.66	mg/kg		<0.0211					—
	1,3-Dichlorobenzene	2.3	mg/kg	_	<0.0211					_
	1,3-Dichloropropane	NA	mg/kg	—	<0.00845					
	1,4-Dichlorobenzene 2,2-Dichloropropane	0.037 NA	mg/kg mg/kg		<0.0211 <0.0211					
SW8260C	2-Butanone (MEK)	15	mg/kg		<0.0211					
(VOCs)	2-Chlorotoluene	NA	mg/kg		<0.0211					
	2-Hexanone	0.11	mg/kg	_	<0.0845					
	4-Chlorotoluene	NA	mg/kg	_	<0.0211				_	—
	4-Methyl-2-pentanone (MIBK)	18 38	mg/kg	—	<0.211					
	Acetone Benzene	0.022	mg/kg mg/kg	<0.0177	<0.211 <0.0106	<0.00795	<0.0262	<0.00785	<0.0161	<0.0730
	Bromobenzene	0.36	mg/kg		<0.0211					
	Bromochloromethane	NA	mg/kg		<0.0211					
	Bromodichloromethane	0.0043	mg/kg		<0.0211					—
	Bromoform	0.1	mg/kg		<0.0211					
	Bromomethane Carbon disulfide	0.024 2.9	mg/kg mg/kg	_	<0.169 <0.0845					
	Carbon tetrachloride	0.021	mg/kg		<0.0845					
	Chlorobenzene	0.46	mg/kg		<0.0211					
	Chloroethane	72	mg/kg		<0.169					
	Chloroform	0.0071	mg/kg	-	<0.0211				_	—
	Chloromethane	0.61	mg/kg	—	<0.0211					—
	cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.12 0.018	mg/kg mg/kg		<0.0211 <0.0106					
	Dibromochloromethane	0.0027	mg/kg		<0.0211					
	Dibromomethane	0.025	mg/kg		<0.0211					
	Dichlorodifluoromethane	3.9	mg/kg		<0.0423					
	Ethylbenzene	0.13	mg/kg	<0.0355	<0.0211	<0.0159	<0.0525	<0.0157	<0.0323	<0.146
	Hexachlorobutadiene Isopropylbenzene	0.02 5.6	mg/kg mg/kg		<0.0169 <0.0211					
	Methylene chloride	0.33	mg/kg mg/kg		<0.0211					
	Methyl-t-butyl ether	0.4	mg/kg		<0.0845	—				
	Naphthalene	0.038	mg/kg	_	<0.0211	—	_	_	_	—
	n-Butylbenzene	23	mg/kg	_	<0.0211				_	
	n-Propylbenzene o-Xylene	9.1	mg/kg		<0.0211 <0.0211			0.664		— 0.287 J
	P & M -Xylene	1.5 (total)	mg/kg mg/kg	<0.0355	<0.0211	<0.0159	<0.0525	0.664 0.0516 J	<0.0323	0.287 J <0.291
0.4.5.5.5	p-lsopropyltoluene	NA	mg/kg	-	<0.0425	-			—	
SW8260C (VOCs)	sec-Butylbenzene	42	mg/kg		<0.0211				_	_
(0003)	Styrene	10	mg/kg	_	<0.0211				_	_
	tert-Butylbenzene	11	mg/kg	—	<0.0211					—
	Tetrachloroethene Toluene	0.19 6.7	mg/kg mg/kg		<0.0106 <0.0211					
	Total Xylenes	6.7 1.5	mg/kg mg/kg	<0.0355	<0.0211	<0.0159	<0.0525	0.715	<0.0323	<0.146 0.287 J
	trans-1,2-Dichloroethene	1.3	mg/kg	-	<0.0000			-		-
	trans-1,3-Dichloropropene	0.018	mg/kg		<0.0106				_	
	Trichloroethene	0.011	mg/kg	-	<0.00845	—	—	—		—
	Trichlorofluoromethane	41	mg/kg	—	<0.0423	_	—	_	—	
	Trichlorotrifluoroethane	310	mg/kg	_	<0.0845					_
	Vinyl acetate Vinyl chloride	1.1 0.0008	mg/kg mg/kg		<0.0845 <0.00845					
		5.0000	ອ′ ອ		-0100070	I	I	I		

TABLE 11066 ELIZ ROAD SOIL SAMPLE RESULTS

				SB18-01-01	SB18	01-02	SB18-02-01	SB18-02-02	SB18-03-01	SB18-03-02
Analytical Method	Analyte	ADEC Soil- Cleanup Level	Units	SB18-01-01	SB18-01-02	SB18-101-02 DUP	SB18-02-01	SB18-02-02	SB18-03-01	SB18-03-02
	1-Methylnaphthalene	0.41	mg/kg		<0.0129				—	—
	2-Methylnaphthalene	1.3	mg/kg	_	<0.0129	_	_	_	—	—
	Acenaphthene	37	mg/kg	_	<0.0129	_	_	_	—	—
	Acenaphthylene	18	mg/kg	_	<0.0129	_	_	_	—	—
	Anthracene	390	mg/kg	_	<0.0129	_	_			_
	Benzo(a)anthracene	0.7	mg/kg	_	<0.0129	_	_			_
	Benzo(a)pyrene	1.9	mg/kg	_	<0.0129	_	_			_
	Benzo(b)fluoranthene	20	mg/kg	_	<0.0129	_	_			_
8270D SIM	Benzo(g,h,i)perylene	15,000	mg/kg	_	<0.0129	_	_	_	—	—
(PAHs)	Benzo(k)fluoranthene	190	mg/kg	_	<0.0129	_	_	_	—	—
	Chrysene	600	mg/kg	_	<0.0129	_	_	_	—	—
	Dibenzo(a,h)anthracene	6.3	mg/kg	_	<0.0129	_				
	Fluoranthene	590	mg/kg	_	<0.0129	_	_			_
	Fluorene	36	mg/kg	_	<0.0129	_	_			_
	Indeno(1,2,3-cd)pyrene	65	mg/kg	_	<0.0129	_		—	_	—
	Naphthalene	0.038	mg/kg	_	<0.0103	_		—	_	—
	Phenanthrene	39	mg/kg	_	<0.0129	_	_			_
	Pyrene	87	mg/kg	_	<0.0129	_		—	—	—

Notes:

s: ADEC Soil-Cleanup Levels from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater) and Table B2 Method Two - Petroleum Hydrocarbon Soil Cleanup Levels.

DUP Sample SB18-101-02 is the field duplicate of sample SB-01-02.

mg/kg milligram per kilogram

ADEC Alaska Department of Environmental Conservation

VOCs volatile organic compounds

NA Not applicable; the ADEC Cleanup Level is not established for this analyte

< Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality-control failures.

- Analytical sample not collected; analyte not required.

J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

JH* Estimated concentration, biased high due to quality control failures. Flag applied by Shannon & Wilson, Inc.

bold Reporting limit (LOD) exceeds regulatory limit.

BOLD Detected concentration exceeds regulatory limit.

TABLE 21066 ELIZ ROAD WATER SAMPLE RESULTS

Analytical		ADEC Soil-		TWF	918-01	TWP18-02	TWP18-03
Method	Analyte	Cleanup Level	Units	TWP18-01	TWP18-101 DUP	TWP18-02	TWP18-03
AK101	Gasoline Range Organics	2.2	mg/L		0.683 JH*	0.0866 J	0.111
AK102	Diesel Range Organics 1,1,1,2-Tetrachloroethane	1.5 5.7	mg/L μg/L	35.0 <0.250	37.4	1.39	4.92
	1,1,1-Trichloroethane	8,000	μg/L	<0.230			
	1,1,2,2-Tetrachloroethane	0.76	µg/L	<0.250	_	_	_
	1,1,2-Trichloroethane	0.41	µg/L	<0.200	—	—	—
	1,1-Dichloroethane	28	µg/L	<0.500	—	—	—
	1,1-Dichloroethene	280	µg/L	<0.500			—
	1,1-Dichloropropene 1,2,3-Trichlorobenzene	NA 7	µg/L	<0.500 <0.500	—	—	
	1,2,3-Trichloropropane	0.0075	μg/L μg/L	<0.500 <0.500	_		
	1,2,4-Trichlorobenzene	4	μg/L	<0.500	_	_	_
	1,2,4-Trimethylbenzene	56	μg/L	16.4	—		—
	1,2-Dibromo-3-chloropropane	NA	µg/L	<5.00	_	_	—
	1,2-Dibromoethane	0.075	µg/L	<0.0375	—	—	—
	1,2-Dichlorobenzene	300	µg/L	<0.500	—	—	—
	1,2-Dichloroethane 1,2-Dichloropropane	1.7 8.2	μg/L μg/L	<0.250 <0.500			
	1,3,5-Trimethylbenzene	60	μg/L	7.95			
	1,3-Dichlorobenzene	300	µg/L	<0.500	_	_	_
	1,3-Dichloropropane	NA	µg/L	<0.250	—	—	—
	1,4-Dichlorobenzene	4.8	µg/L	<0.250		—	—
	2,2-Dichloropropane	NA	µg/L	<0.500		—	
	2-Butanone (MEK) 2-Chlorotoluene	5,600 NA	µg/L	4.63J <0.500	—	—	—
	2-Uniorotototene 2-Hexanone	38	μg/L μg/L	<5.00			
	4-Chlorotoluene	NA	μg/L	<0.500	_		
	4-Methyl-2-pentanone (MIBK)	6,300	μg/L	<5.00	—	_	_
	Benzene	4.6	µg/L	2.17	2.69	0.600	<0.200
	Bromobenzene	62	µg/L	<0.500	—	—	—
	Bromochloromethane	NA 1.3	µg/L	<0.500	—	—	—
	Bromodichloromethane Bromoform	33	μg/L μg/L	<0.250 <0.500			
	Bromomethane	7.5	μg/L	<2.50	_		
0.4/00000	Carbon disulfide	810	µg/L	<5.00			
SW8260C (VOCs)	Carbon tetrachloride	4.6	µg/L	<0.500	—	—	—
(1000)	Chlorobenzene	78	µg/L	<0.250	—	—	—
	Chloroethane	21,000	µg/L	<0.500	—	—	—
	Chloroform Chloromethane	2.2 190	μg/L μg/L	<0.500 0.530 J			
	cis-1,2-Dichloroethene	36	μg/L	<0.500			
	cis-1,3-Dichloropropene	4.7	μg/L	<0.250	_	_	_
	Dibromochloromethane	8.7	μg/L	<0.250	—	—	—
	Dibromomethane	8.3	µg/L	<0.500		—	
	Dichlorodifluoromethane	200	µg/L	<0.500	_	—	—
	Ethylbenzene Hexachlorobutadiene	15 1.4	µg/L	7.52 <0.500	9.12	0.750 J	<0.500
	Isopropylbenzene (cumene)	450	μg/L μg/L	3.04			
	Methylene chloride	110	μg/L	<2.50	_	_	_
	Methyl-t-butyl ether (MTBE)	140	µg/L	<5.00	_		
	Naphthalene	2	µg/L	16.5	—	—	—
	n-Butylbenzene	1,000	µg/L	<0.500	—	—	—
	n-Propylbenzene	660	µg/L	4.95	—	—	— 0.450 l
	o-Xylene P & M -Xylene	190 190	μg/L μg/L	0.320 J 7.03	0.360 J 8.52	7.32 1.00 J	0.450 J <1.00
	p-lsopropyltoluene	NA	μg/L	1.38		-	
	sec-Butylbenzene	2,000	μg/L	1.57	-	_	—
	Styrene	1,200	μg/L	<0.500	—	—	—
	tert-Butylbenzene	690	µg/L	<0.500		—	—
		41	µg/L	<0.500	—	—	—
	Toluene	1,100	µg/L	<0.500	<0.500	<0.500	<0.500
	Total Xylenes trans-1,2-Dichloroethene	190 360	μg/L μg/L	7.35 <0.500	8.88	8.32	<1.50
	trans-1,2-Dichloropropene	5	μg/L μg/L	<0.500			
	Trichloroethene	3	μg/L	<0.500	<u> </u>	_	
	Trichlorofluoromethane	5,200	µg/L	<0.500	_	_	
	Trichlorotrifluoroethane	10,000	µg/L	<5.00	—	—	—
	Vinyl acetate	410	µg/L	<5.00	—	—	—
	Vinyl chloride	0.19	µg/L	<0.0750	—	—	—

TABLE 21066 ELIZ ROAD WATER SAMPLE RESULTS

Analytical		ADEC Soil-		TWP	18-01	TWP18-02	TWP18-03
Method	Analyte	Cleanup Level	Units	TWP18-01	TWP18-101 DUP	TWP18-02	TWP18-03
	1-Methylnaphthalene	11	µg/L	2.27 JL*	—		—
	2-Methylnaphthalene	36	µg/L	1.51 JL*	—	—	—
	Acenaphthene	530	µg/L	2.10 JL*	—	—	—
	Acenaphthylene	260	µg/L	<0.0232 J*	—	—	—
	Anthracene	43	µg/L	<0.0232 J*	—	_	_
	Benzo(a)anthracene	0.3	µg/L	<0.0232 J*	—	_	_
	Benzo(a)pyrene	0.25	µg/L	<0.00925 J*	—	_	_
	Benzo(b)fluoranthene	2.5	µg/L	<0.0232 J*	—	_	_
8270D SIM LV	Benzo(g,h,i)perylene	0.26	µg/L	<0.0232 J*	—	—	—
(PAH)	Benzo(k)fluoranthene	0.8	µg/L	<0.0232 J*	—	—	—
	Chrysene	2	µg/L	<0.0232 J*	—	—	—
	Dibenzo(a,h)anthracene	0.25	µg/L	<0.00925 J*	_		
	Fluoranthene	260	µg/L	<0.0232 J*	—	_	_
	Fluorene	290	µg/L	<0.0232 J*	—	—	_
	Indeno(1,2,3-cd)pyrene	0.19	µg/L	<0.0232 J*	_		—
	Naphthalene	1.7	µg/L	3.54 JL*	_		—
	Phenanthrene	170	µg/L	0.755 JL*	—		_
	Pyrene	120	µg/L	<0.0232 J*	—		—

Notes: ADEC Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

DUP Sample TWP18-101 is a field-duplicate of sample TWP18-01

mg/L milligrams per liter

µg/L micrograms per liter

ADEC Alaska Department of Environmental Conservation

VOCs volatile organic compounds

PAHs polynuclear aromatic hydrocarbons

NA Not applicable; the ADEC Cleanup Level is not established for this analyte

< Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality-control failures.

— Analytical sample not collected; analyte not required.

J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

JL* Estimated concentration, biased low due to quality control failures. Flag applied by Shannon & Wilson, Inc.

JH* Estimated concentration, biased high due to quality control failures. Flag applied by Shannon & Wilson, Inc.

bold Reporting limit (LOD) exceeds regulatory limit.

BOLD Detected concentration exceeds regulatory limit.

ATTACHMENT A

PHOTOGRAPHIC LOG

SHANNON & WILSON, INC.

Photo 1: Utility locates completed (Facing west)

Photo 2: Underground storage tank and culvert (Facing west)

Photo 3: Site Excavation photo (Facing east, predating 2018)

Photo 4: Underground storage tank and culvert (Facing north)

Photo 5: Onsite monitoring well WP-1 (Facing north)

Photo 6: Onsite monitoring well WP-2 in foreground (Facing north west)

SHANNON & WILSON, INC.

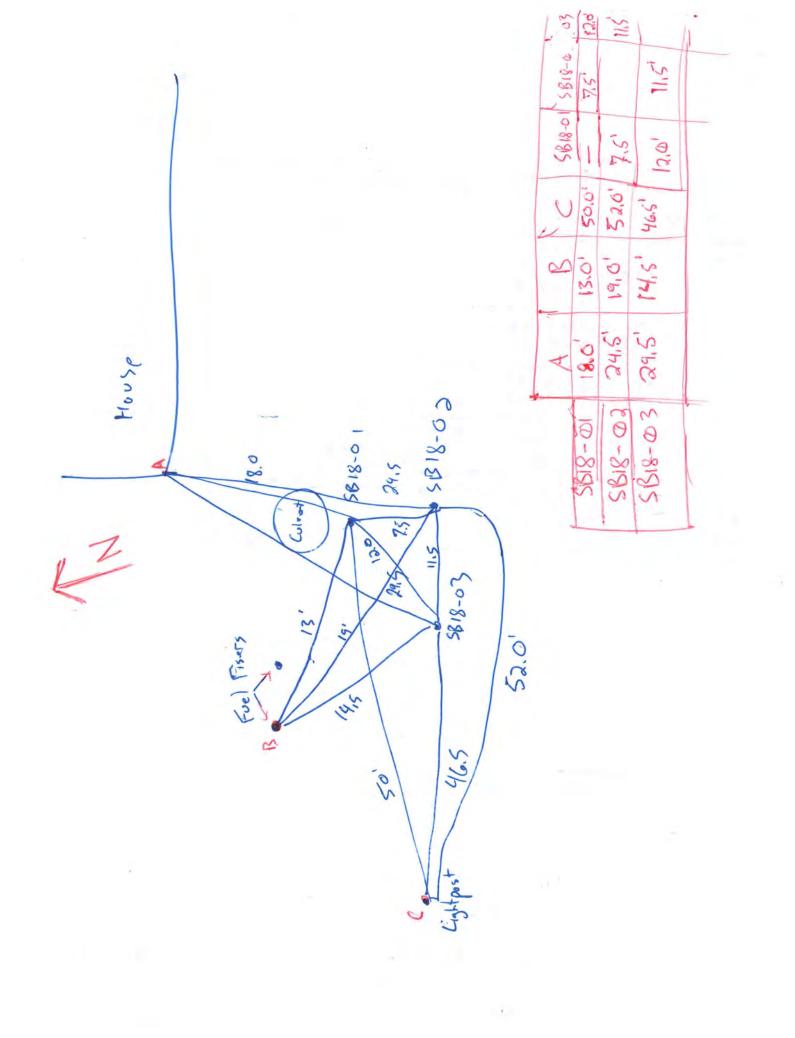
Photo 7: Soil Boring SB18 01-01 (Depth 0.2 – 0.8 feet bgs)

Photo 8: Soil Boring SB18 01-02 (Depth 5.0 – 9.0 feet bgs)

Photo 9: Soil Boring SB18 02-01 (Depth 2.3 – 2.6 feet bgs)

Photo 10: Soil Boring SB18 02-02 (Depth 8.0 – 8.6 feet bgs)

Photo 11: Soil Boring SB18 03-01 (Depth 0.3 – 3.0 feet bgs)


Photo 12: Soil Boring SB18 03-02 (Depth 8.0 – 8.5 feet bgs)

ATTACHMENT B

FIELD FORMS

FIELD ACTIVITIES DAILY LOG

Sheet Project Name: 1066 ELT2 Field activity subject: Soil Brainess & Tensory Well Point Simplin. Description of daily activities and events: 0615 - Calibride VST & PTD 0640 - Depart office, 0700 - Meet w/ drillers 0700 - Meet w/ dri		Date 9/16/2018
Project Name: [066 FLT2 Field activity subject: <u>Soil Bosings & Tempory Well Point Supply</u> 0640 - Depart office 0700 - Meet W drillers 0700 - Meet Simples 0700 - Meet W driller Streament 0700 - Meet W driller W driller 0700 - Meet Singles 0700		
Field activity subject: Soil Barings & Tempery Well Part Sunpling Description of daily activities and events: 0015 - Clibente VST & PED 00600 - Depart office 2700 - Meet w/ drillers 5700 - Meet w/ drillers 5710 - Arrive on site - Onill SBUS-01 - Callect samples - Callect samples		Project No. 101607
Description of daily activities and events: OGGO - Deport office, OGGO - Deport office, PTOO - Mert of drifters PTOO - Arrive on site - Callect samples - Calle		
0640 - Deport office 0700 - Meet w/ drillers 0710 - Arrive on site - Onill SB18-01 Set TWP-01 - Callect samples - Onill SB18-03 Set TWP-03 - Collect samples - Collect samples		
2700 - Miet w/ drillers 2700 - Arrive on site - Drill SBUS-01 - Collect samples - Drill SBUS-03 Set TWP-03 - Collect samples - Remove MV-1 & MW-2 - Beth 10' welly, tully removed - All holes Filled w/ Benchalle - Porty wate / Dean where run through CAC441 - Soil containerised is backels 2005 - De part site 2125 - Arrive at affire, contained trut, Finalize peperwork - Arrive at affire, contained trut, Finalize peperwork - Arrive at affire, contained trut, Finalize peperwork - Arrive at affire, contained trut, Finalize perwork - Arrive at affire, contained trut, finalize pervected trut, fina		PID
17:10 - Arrive on site - Drill SB18-01 Set TwP-01 - Collect samples - Drill SB18-02 set TwP-03 - Collect samples - Drill SB18-03 Set TwP-03 - Collect samples - Drill SB18-03 Set TwP-03 - Collect samples - Both 10° wells, fully removed - All holes Tiled w/ Boulance - Remove MW-1 + MW-2 - Both 10° wells, fully removed - All holes Tiled w/ Boulance - Soil contenseries of the pathole - Depart site Diss - Arrive at office/ waled true, finelize paperment. Inanges from plans/specifications and other special orders and important decisions: Weather conditions: Veather conditions: Construct Weather conditions: Construct - Orgen wite - Orgen wite <td></td> <td></td>		
 Drill SBIS-01 Set TWP-01 -Drill SBIS-02 Set TWP-03 -Collect samples -Drill SBIS-03 Set TWP-03 -Collect samples -Bensove MW-1 & MW-2 -Both 10° wells, tully, removed. -All holes filled of bonkale Porgrunder focen water for through GAC+1 Soil containerized is backets 205 - Arrive at office; unland true, finalize paperment. 		
Set TWP-01 - Collect samples - Drill SB(8-03 Set TWP-03 - Collect samples - Collect samples - Collect samples - Both 10' wells, Fully removed - All holes Miled of Bontate - Both 10' wells, Fully removed - All holes Miled of Bontate - Both coldener user for through CAC41 - Soil contense where for through CAC41 - Soil contense of the contense - Collect set of the contense		
- Collect samples - Drill \$B18.00 Set TWP-00 - Collect samples - Collect samples - Collect samples - Remove MU-1 & MW-2 - Both 10' wells, Fully removed - All holes Riled of Bartade - Rong word Decan water for through CAC#1 - Soil Containerized is backets 205 - Depart site 2125 - Arrive at affice; walcad truck, Finalize paperwork - Containerized is backets - Soil Containerized is		
-Drill SBIB.02 Set TWP-03 -Collect samples -Drill SBIB-03 Set TWP-03 -Collect samples -Bernove MW-1 & MW-2 -Bernove Mu-1 & MW		
Set TWP-00 - Collect samples - Drill SBI8-03 Set TWP-03 - Collect samples - Beth 10' welly, Fully, Peroved. - All holes filled w/ besterile - Part with /Decen water for through GAC #1 - Sail containerized is beckets 205 - De part site 205 - Arrive at office/ Unload true, Finalize paperwork. 205 - Arrive at office/ Unload true, Finalize paperwork. 205 - Arrive at office/ Unload true, Finalize paperwork. 205 - Arrive at office/ Unload true, Finalize paperwork. 206 - De part site 207 - Arrive at office/ Unload true, Finalize paperwork. 208 - Arrive at office/ Unload true, Finalize paperwork. 209 - De part site 209 - Arrive at office/ Unload true, Finalize paperwork. 200 - De part site 200 - De part site 200 - De part site 200 - De part site 200 - De part site - Arrive at office/ Unload true, Finalize paperwork. 200 - De part site - Arrive at office/ Unload true, Finalize paperwork. 200 - De part site - Arrive at office/ Unload true, Finalize paperwork. 201 - De part site 		
- Collect samples - Collect samples - Collect samples - Remove MW-1 + MW-2 - Both to' wells, Fully, removed All heles Filed of bookeds - Porpulater/Deem water for through GAC41 - Soil content is bookeds 205 - Depart site 205 - Arrive at office, walcad truck, Finalize paperwork. //sitors on site: - Collect samples and other special orders and important decisions: Weather conditions: Case of the state of the special orders and important decisions: Weather conditions: CAR, SXS		
- Drill SBIS-03 Set TWP-03 - Collect samples - Remove MW-1 & MW-2 - Both 10' wells, Fully removed - All holes filled w/ bentrate - Pore water from through GAC#1 - Soil containerized in beckels ROS - De post site Plos - Arrive at office; who ad truck finalize performent. //sitors on site: //sitors on		
Set TWP-03 - Collect samples - Beth 10' wells, Fully, removed. - All holes filled w/ bounde - Pure who / Decen wher run through GAC #1 - Soil containerized is backeds NOS - Depart site Dids - Arrive at affice unload truck finalize paperwerk. - Arrive at affice unload truck finalize paperwerk. - Changes from plans/specifications and other special orders and important decisions: - Weather conditions: <u>Cievely</u> 40°F - mportant telephone calls: 		
- Collect samples - Bernove MW-1 & MW-2 - Both 10' wells, Fully removed - All holes Alled w/ businelle - Porge water Decen water run through GAC #1 - Soil containerized is beckets NOS - Depart site 2:25 - Arrive at affice while the truck finalize peperwerk. //isitors on site: //isitors on site: Weather conditions: Weather conditions: CAB, SX.5		
- Bernove MW-1 + MW-2 - Both 10' wells, Fully, removed. - All holes, Filled w/ branche - Porge web / Decan where ren through GAC#1 - Sail containerized is backeds NOS - Depart site 2025 - Arrive at affree unload truck, Finalize paperwork. //isitors on site: Changes from plans/specifications and other special orders and important decisions: Weather conditions: <u>Chardey</u> 40°F 		
- All heles filled of bentende - All heles filled of bentende - Rome onder / Decen water run through GAC #1 - Soil containerized in backeds 2005 - Depart site 2005 - Arrive at office, Unload truck, Finalize paperwork //sitors on site: //sitors on site: Changes from plans/specifications and other special orders and important decisions: 		-
- All holes filled w/ bischorte - Purper under /Decan water run through CAC41 - Soil continenced in buckets NOS - De part site 2125 - Arrive at office, Unload truck, Finalize paperwork. //sitors on site: Changes from plans/specifications and other special orders and important decisions: Veather conditions: Chaudy, 40°F mportant telephone calls: ressonnel on site:		
- Soil containerized to backets NOS - Depart site 2125 - Arrive at officer unload truck, Ethalize paperwork. //sitors on site: //sitors on site: Changes from plans/specifications and other special orders and important decisions: Weather conditions: Weather conditions: Weather conditions: resonnel on site: CAB, SX.5		
- Soil containerized to backets NOS - Depart site 2125 - Arrive at officer unload truck, Ethalize paperwork. //sitors on site: //sitors on site: Changes from plans/specifications and other special orders and important decisions: Weather conditions: Weather conditions: Weather conditions: resonnel on site: CAB, SX.5	- Purge water/Decan water Pun through GAC #	
Veather conditions: Veather c		
/isitors on site: /isitors on site: Changes from plans/specifications and other special orders and important decisions: Veather conditions: Veather conditions: resonnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS	2125 - Arrive at office, Unload truck, Finalize p	aperwork.
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		•
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Changes from plans/specifications and other special orders and important decisions: Veather conditions: Meather conditions: Personnel on site: CAB, SXS		
Veather conditions: Cloudy, 40°F mportant telephone calls:	Visitors on site:	
Veather conditions: Cloudy, 40°F mportant telephone calls:		
Personnel on site:	Changes from plans/specifications and other special orders and important decision	s:
Personnel on site:		
Personnel on site:		
Personnel on site:	Marthan and distance PL 1100E	
ersonnel on site: CAB, SXS	Weather conditions: <u>Cloudy, 40</u> r	
ersonnel on site: CAB, SXS	mortant telephone calls:	
	Personnel on site:	
Guild and and and and and and and and and an		Date: 411/2018
	man my my	June Michard
(and	O	\frown
		(mat)

			LOG OF GEOF	PRO	DBE	=					
Date	Started	9/16/18	Location 3 Feet South of Culvert		G	Ground	d Ele	evation	: Approx.	NA feet	
Date	Comple	eted 9/16/18		_	T	ypica	l Ru	n Leng	th 5 feet		
Tota	Depth	(ft) 10.0	Drilling Company: GeoTek Alaska		۱.	lole D	iam	eter:	2.25 inc	hes	
Depth (ft)	Probe Run	and probing I approximat	Soil Description port text for a proper understanding of the subsurface mather nethods. The stratification lines indicated below represent e boundaries between soil types. Actual boundaries may be not if soil shifted inside sample tubes during extraction.	the	Depth, ft.	Symbol	PID, ppm	Ground Water	Sample Dese	Number and cription.	Depth (ft)
- - - - - - - - - - - - - - - - - - -		Loose, brown, gravel; trace s Loose, brown at 9.0 feet; sul	Organic Mat (Topsoil); moist. Silt (ML); moist; trace subangular to subrounded ubangular to subrounded sand. to gray, Poorly Graded Gravel with Sand (GP); wet bangular to subrounded gravel; subangular to and; trace fines; hydrocarbon oder present		0.1 3.3				SB18-01-01	SB18-101-02	
r 2. ((nay have Groundwa xonsidere	slid down in the tub ater level, if indicate d approximate.	NOTES y was low in the upper part of the run, the soil sample le prior to removal from the ground. d above, was estimated during probing and should be nd explanation of symbols.			GC)F	1066 North	ase Investig 5 Eliz Street Pole, Alaska DPROBE	sB18-0	
		Ž				mber				1016	
			·		SHAN Beotechi	nical and	N & d Envi	wills ironmenta	ON, INC.	FIG. X	

			LC	OG OF GEOPRO	OBE	-					
	Started	9/16/18	Location 10.5 Feet South o	f Culvert				evation	Approx.	NA feet	
	Compl	9/16/18						n Leng	th 5 feet		
Tota	I Depth	(ft) 10.0	Drilling Company: GeoTek	Alaska	H	lole D	Diamo	eter:	2.25 inch	es	
Depth (ft)	Probe Run	and probing approxima diffe	Soil Description eport text for a proper understandi methods. The stratification lines i te boundaries between soil types. rent if soil shifted inside sample tu	ng of the subsurface materials ndicated below represent the Actual boundaries may be bes during extraction.	Depth, ft.	Symbol	PID, ppm	Ground Water	Sample N Desc	umber and iption.	Depth (ft)
		<u></u>	, Organic Mat (Topsoil); moisi		0.1	ΪŤΪ	1				
-		Loose, browr	, <i>Silt (ML)</i> ; moist. , <i>Silt with Sand (ML)</i> interbed		2.4				SB18-02-01		
		medium, sub 1-inch thick s	B-inch thick layers of silt cons angular to subrounded sand; and layers consist of 80% fin o subrounded sand; 20% nonj	80% nonplastic fines; e to medium,							
		at 8.7 feet; si	to gray, <i>Poorly Graded Grav</i> bangular to subrounded grav and; trace fines; hydrocarbor	el; subangular to	5.0						5
- - - 10					10.0				SB18-02-02		- 10 -
			NOTES								
2.	 In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 						US.	1066	ase Investiga 6 Eliz Street Pole, Alaska		
3.	Reier to		and explanation of symbols.		LC	G	OF	GEO	OPROBE	SB18-02	2
70-70			<u>LEGEND</u> ⊈ Estimated Water Level		Septe	embe	er 20)18		10160	07
					SHA Geotect	NNC nnical a	DN 8		SON, INC. al Consultants	FIG. X	

			LOG OF GEOF	PRO	DBE						
	Starte	9/16/18	Location 14 Feet South Southwest of Culvert					evation	Approx.	NA feet	
Date	Comp	leted 9/16/18			Т	ypica	al Ru	in Leng	th 5 feet		
Total	Depth	10.0 (ft)	Drilling Company: GeoTek Alaska		н	lole D	Diam	eter:	2.25 inc	hes	
Depth (ft)	Probe Run	and probing approximation	Soil Description port text for a proper understanding of the subsurface mate methods. The stratification lines indicated below represent te boundaries between soil types. Actual boundaries may le ent if soil shifted inside sample tubes during extraction.	t the	Depth, ft.	Symbol	PID, ppm	Ground Water		Number and cription.	Depth (ft)
		Loose, brown	, Organic Mat (Topsoil); moist.		0.1	itti	1				
		Loose, brown sand.	, <i>Silt (ML)</i> ; moist; trace subangular to subrounded								-
		<i>(SM</i>); moist; 3 medium, suba 1-inch thick sa	, <i>Silt with Sand (ML)</i> interbedded with <i>Silty Sand</i> i-inch thick layers of silt consist of 20% fine to angular to subrounded sand; 80% nonplastic fines; and layers consist of 80% fine to medium, subrounded sand; 20% nonplastic fines.		3.1				SB18-03-01		-
—5 — —											5
		at 8.55 feet; si subrounded sa	to gray, <i>Poorly Graded Gravel with Sand (GP)</i> ; wet ubangular to subrounded gravel; subangular to and; trace fines; hydrocarbon oder present ydrocarbon sheen observed at 9.2 to 9.5 feet.		8.0				SB18-03-02		
-											
			NOTES								
m 2. G	nay hav Groundw	e slid down in the tul	ry was low in the upper part of the run, the soil sample be prior to removal from the ground. d above, was estimated during probing and should be					1066	ase Investig Eliz Street Pole, Alaska		
3. R	Refer to	KEY for definitions a	nd explanation of symbols.		LO	GC	DF	GEC	PROBE	SB18-03	3
		Ţ	LEGEND Z Estimated Water Level	5	Septe	mbe	r 20	18		1016	07
				G		INO lical an	N &	WILS ironmenta	ON, INC. Consultants	FIG. X	

SHANNON & WILSON, INC.

SAMPLE COLLECTION LOG

ampler: (AB, Jx			e Comul	Dent	Internal (B)	Matri	Const	DID	
Sample Number	Description	Day		top	Interval (ft) bottom	Matrix Type		PID Reading	Analyses
	SB18-01 - Field Screen		8 750	0,1	3,25	So;	15	Ø.6	Allalyses
02	SBIB-OI - Field Screen	10100	750	3,25		3011	FS	0.2	
03			816	5,0	9.0		FS	7.2	
04			810	9,0	10.0		FS	666.3	- Bebu Gow interface
SB18-01-01	Soil sample, SB18-01		840	0,2	0.8		ES	0.6	
5318-01-02	1 2011 200 PC, 3010 CT		845	5.0	9.0		ES	7.2	DRO/PAH / VOCS
5818-101-02	5818-02 Duplicate		855	5,0	9.0	Ľ	ESR		DRO/PAH/VOCS
TWP 18-01	sampliater at SB18-02 locati	-	830	-	[]	Water		-	DRO/PAH/VOCS
WP18-101	Water (duplicate of TWP18-0		840	-	11	1	ESFD	-	DRO/PAH/VOCS
-			~	-		5	ES	-	~ smth
05	SB18-02 Field Screen		916	0,1	3.2	50:)	FS	44	
06			914	3,2	5.0	1	FS	1.3	-
07			940	5.0	8.7		FS	1782	
08			940	8.7	10.0	-	FS	1182	-
5818-02-01	Soil ampleSB18-02		955	23	2.6		ES	#782	1.4 DRO/BTEX
5B18-02-02	Soil rampleSB18-02		1005	8.0	8.6	1	ES		1782 DRO/BTEX
TWP18-02	rample water at SB18-02 locotion	2	930	-	11	Water		-	DRO/BTE1
09	Field Strain, SB18-03		1022	6.0	7.5	Soi)	FS	4.0	-
010			1022	7.5	5,0	1		2.2	
011			1030	5,0	8.6			1.6	
012			1030	8.0	8.55			538.9	
013			1030		10.0		e	323.8	
5018-63-01	soil sample SB18-03		1055		3.0	+	ES	4.0	DRO/BTEY
5318-03-02	soil sample SB18-03		100		8.55	0		538.9	
WP18-03	sample water at SB18-03 locati	on y	1045	-	11	water	ES	-	DRO/BTEY
		- 1.1	1000		S				
		_	1						
		11	-	-		-			
			-	-					
		-	-	-		-			
		11					-		
		-	-	-		-			
27.0 1 2000 200 2000	screening measurement only ES = Environmental sa								

Location Location Date 7/14/14 Sampling Personnel Sax > CAB Wether Conditions Dute 7/14/14 Wether Conditions Dute 7/14/14 Wether Conditions Dute 7/14/14 Sample No. Twe 1/6 - 0 Time completed Time completed Sample No. Twe 1/6 - 0 Time completed Time completed Pumpic Controller Anayas: Time completed range Depth to LNAPL (ft.) Pumpic Controller Controller Anayas: NAPL Thickness (ft.) Pumping Stat 0/4.3 Method of NAPL Measurement Measured Total Depth of Well Below MP (ft.) II. Pumping End 3/5/5 Depth to loc (ff frazen) Below MP (ft.) II. Depth to loc (ff frazen) Pump Set Depth Below MP (ft.) II. Depth to loc (ff frazen) Below MP (ft.) II. Pump Set Depth Below MP (ft.) II. Gallons in Well X3 = D.3 Gallons in Well X3 = D.3 Gallons in Well X3 = D.3 Silicone Tubing (ft.) IX.5 Gallons in Well X3 = D.3 Monument Condition NA Measured Disposal GA+L Monument Condition NA Measured cable engiti	Owner/Client Tim 4	Jooster (Wost.	er			Project No.	101607
Sample No. Two P 15 - 01 Time 07 30 Sample No. Two P 15 - 01 Time 07 30 Equipment Blank (EB) Time 07 30 Depth to Water (ft.) Pump/Controller Analysis: All Time 07 30 Pump/Controller Analysis: All Method of NAPL Measurement Depth to Water (ft.) Purge Rate (gal./min) x 0, 1 Purge Rate (gal./min) x 0, 1 Messured Total Depth of Weil Below MP (ft.) 11 Pump Set Depth Below MP (ft.) Depth to Vater Below MP (ft.) 12 30 KuriTeo Tubing (ft.) Method Gallons in Weil 30 30 KuritTeo Tubing (ft.) Method Gallons in Weil 30 30 Gallons in Weil 30 O.2 Gallons in Weil 30 30 KuritTeo Tubing (ft.) Method Method Method 50 10 Monument Condition NA Measurement method: Tape measure 30 30		1: 22					· · · · · · · · · · · · · · · · · · ·	
Sample No. TwP 16-01 Time 07-30 Duplicate Time 07-30 Depth to Water (ft.) Time 07-30 Equipment Blank (EB) Analysis: All Time 07-30 Depth to Water (ft.) Time 07-30 Pump/Controller Analysis: All Time 07-30 Depth to Water (ft.) Time 07-30 Purging Method Oportable) / dedicated pump Depth to Water Below MP (ft.) Time 07-30 Depth to Water Below MP (ft.) Time 07-30 Purge Rate (gal.min.) 40 Approximate Total Depth of Well Below MP (ft.) Depth to Vater Below MP (ft.) Time 07-30 Pump Set Depth Below MP (ft.) Depth to Loc (if forzen) Below MP (ft.) Second Well (ft.	Sampling Personnel 3 x 5	+ CAB			100	-		
Sample No. Twe 1/5-0/ Analysis: Time 0/5-30 Depth to Water (ft.) Time 0/5-30 Equipment Blank (EB) Analysis: Time 0/5-30 Depth to UNAPI. (ft.) Analysis: Purging Method Gordable// dedicated pump Diameter and Type of Casing (ft.) Purging Method Gordable// dedicated pump Diameter and Type of Casing (ft.) Purge Rate (gal./min.) a.g./ Analysis: Method of NAPL Measurement NAPL Thickness (ft.) Purge Rate (gal./min.) a.g./ Aproximate Total Depth of Well Below MP (ft.) 11 Purge Rate (gal./min.) a.g./ Depth to Vater Below MP (ft.) 0.5 Purge Rate (gal./min.) a.g./ Depth to Vater Below MP (ft.) 0.5 Purge Set Depth Below MP (ft.) 0.5 Depth to lee (iff.rozon) Below MP (ft.) 0.42 Galions in Well 2. Galions in Well 2. 0.42 Galions in Well 2. 0.42 Silicone Tubing (ft.) Mex. Galions in Well 2. 0.42 Galions in Well 2. 0.42 Monument Condition NA Measurement method: Tape measure Top-of-casing to monument (ft.) MA Measured cable g		.st	Air	Temp. (°F)	~ 45			
Duplicate 1 1 Analysis: 1 Depth to Water (ft.) 0 1 1 0 Depth to Water (ft.) 0 0 Depth to Water (ft.) 0 <td>Sample No. Twp 19</td> <td>0-01</td> <td></td> <td>Time</td> <td>0230</td> <td>Tir</td> <td>ne completed</td> <td>0855</td>	Sample No. Twp 19	0-01		Time	0230	Tir	ne completed	0855
Equipment Blank (EB)			alvsis A00			– Depth	to Water (ft)	AND 9.5
Pump/Controller NAPL Thickness (ft.) Purging Method @@076b/bo / dedicated pump Purging Start Od 30 Addicated pump Purge Rate (gal/min.) Agroximate Total Depth of Well Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Purge Rate (gal/min.) Agroximate Total Depth of Well Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Pump Set Depth Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Pump Set Depth Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Image: Control Well Below MP (ft.) Purge Value Tuboly Tubing (ft.) Image: Control Well Monument Condition MA Measurement method: Tape measure<				the second se				
Pump/Controller Pursing Method gottable / dedicated pump Purging Method gottable / dedicated pump Purge Rate (gal./min) A.S. Pump Set Depth Below MP (ft.) D.S. KurtTec Tubing (ft.) D.S. KurtTec Tubing (ft.) D.S. Silicone Tubing (ft.) D.S. Gallons per foot C.G.G. Gallons per foot C.G.G. Monument Condition NA Wring Condition NA Wiring Condition NA Weasurement method: Tape measure Top-of-casing to monument (ft.) NA Measurement method: Tape measure Top-of-casing to monument (ft.) NA Monument to ground surface (ft.) NA Measured cable length (ff.) IT-700 Lick present and operational NA Temperature Logger Present (FidBit)? Well name legible on outside of well (stickup) or inside of well (flushmount) NA Well name legible on outside of well (stickup) or inside of well (flushmount) NA Well (ID-inches) CMT 11/1 2 3 4 6 8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
Purging Method Gortable // dedicated pump Diameter and Type of Casing Crack Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) III IIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0	0.		Method	of NAPL I			
Purging Method Gortable // dedicated pump Diameter and Type of Casing Crack Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) III IIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIIII Purge Rate (gal./min.) Approximate Total Depth of Well Below MP (ft.) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Pump/Controller	Kt:2						10
Pumping Start 04.35 Approximate Total Depth of Well Below MP (ft.) Approximate Total Depth of Well Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Water Below MP (ft.) Depth to Water Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Silicone Tubing (ft.) Depth to Status Gallons in Well 20.72 Silicone Tubing (ft.) Measured Total Depth of Vell Below MP (ft.) Depth to Use (if frozen) Below MP (ft.) Monument Condition NA Gallons in Well 20.72 Monument Condition NA Purge Water Disposal CAL Monument Condition NA Measurement method: Tape measure Top-of-casing to monument (ft.) Measured cable length (ft) Measured cable length (ft) Measured cable length (ft) Top-of-casing to monument (ft.) Measured cable length (ft) Measured cable length (ft) Image: Prost-jacking? Y / (N) Measured cable length (ft) Top-of-casing to monument (ft) Measured cable length (ft) Top-of-casing to	Purging Method (portable)	/ dedicated	pump		D	iameter and T	pe of Casing	(" inch
Purge Rate (gal/min) A O A Pumping End 3555 Measured Total Depth of Well Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Vater Below MP (ft.) Pump Set Depth Below MP (ft.) Depth to Ice (if frozen) Below MP (ft.) KuriTee Tubing (ft.) Gallons per foot Silicone Tubing (ft.) Gallons in Well Silicone Tubing (ft.) Gallons in Well Gallons in Well X2 Gallons in Well X2 Monument Condition NA Weiring Condition NA Weasurement method: Tape measure Top-of-casing to monument (ft.) NA Detalogger serial #: Measured cable length, (ft) Gallong Per foot Gasing (Y / N) Temperature Logger Present (FidBit)? Y / N Casing Condit				Approxim		the second		11
Pumping End 0%5 Depth to Vater Below MP (ft.) 9.5 Pump Set Depth Below MP (ft.) 0.5 Depth to loc (if forzen) Below MP (ft.)				Measu	red Total D	Depth of Well E	Below MP (ft.)	11
Pump Set Depth Below MP (ft.) Depth to loc (if frozen) Below MP (ft.) - Pump Set Depth Below MP (ft.) Feet of Water in Well - KuriTec Tubing (ft.) Gallons per foot 0.9 Silicone Tubing (ft.) Gallons per foot 0.9 Silicone Tubing (ft.) Gallons per foot 0.9 Silicone Tubing (ft.) Gallons per foot 0.72 Silicone Tubing (ft.) Gallons per foot 0.72 Gallons in Well x3 = 0.72 Gallons per foot 0.9 Monument Condition NA Casing Condition NA Wiring Condition NA Weasurement method: Tape measure Top-of-casing to monument (ft.) NA Measurement method: Tape measure Top-of-casing to monument (ft.) NA Measured cable length (ff) Measured cable length (ff) I Frost-jacking? Y / N Temperature Logger Present (FidBit)? Y / N I Lock present and operational NA Measured cable length (ff) I Vell name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temperature Logger Present (De	epth to Water E	Below MP (ft.)	8.5
KuriTec Tubing (ft.) Gallons per foot U.O. TruPoly Tubing (ft.) Gallons in Well O.Y. Silicone Tubing (ft.) Gallons in Well O.Y. Gallons in Well X3 = O.Y. Measure Disposal O.Y. Measure Disposal O.Y. Measurement method: Tap measure Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 Gallong is serial #: Measured cable length (ft) Measured		And an other			Depth to I	Ice (if frozen) E	Below MP (ft.)	
TruPoly Tubing (ft.) Gallons in Well	Pump Set Depth Below MP (ft.)	10.5				Feet of '	Water in Well	A 1.5
Silicone Tubing (ft.) Gallons in Well X3 = 0.26 (also enter on back) Total Gallons Purged (.) Purge Water Disposal Orter Purge Water Disposal Orter Casing Condition NA Casing Condition NA Wiring Condition NA Wiring Condition NA Weasuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Tape measure Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger serial #: HOBO Datalogger serial #: HOBO Other: Datalogger serial #: HOBO Datalogger serial #: HOBO Uck present and operational NA Measured cable length (ff) Temperature Logger Present (FidBit)? Y N Well name legible on outside of well (stickup) or inside of well (flushmount) NA Well collection WELL CASING VOLUMES Dameter of Well [ID-Inches] CMT 114 2 3 4 6 8	KuriTec Tubing (ft.)	Ø				Ga	allons per foot	0.00
(also enter on back) Total Gallons Purged Purge Water Disposal Casing Condition NA Wiring Condition NA Weasuring Point (MP) Top of Casing (TOC) Monument type: Stickup /Flushmount Measurement method: Tape measure Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger serial #: HOBO Datalogger serial #: HOBO Datalogger serial #: HOBO Datalogger serial #: HOBO Use present and operational NA Measured cable length (ft) Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temperature Loager Tample collection WELL CASING VOLUMES Measure of Well [ID-inches] Dataloger of Well [ID-i	TruPoly Tubing (ft.)	WAR 15				G	allons in Well	0.12
Purge Water Disposal	Silicone Tubing (ft.)					Gallon	s in Well x3 =	0.36
Monument Condition NA Casing Condition NA Wiring Condition NA (dedicated pumps) Monument type: Stickup / Flushmount (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount (dedicated pumps) Measurement method: Tape measure Top-of-casing to monument (ft.) NA Monument to ground surface (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) Monument to ground surface (ft.) NA Datalogger serial #: Measured cable length (ft) Image: Frost-jacking? Y / (N) Temperature Logger Present (TiGBit)? Y / N Image: Lock present and operational NA Measured cable length (ft) Image: Well name legible on outside of well (stickup) or inside of well (flushmount) NA Motes Tome Well (ID-inches) VIELL CASING VOLUMES Diameter of Well (ID-inches) CMT				(also	o enter on	back) Total Ga	allons Purged	1.0
Casing Condition NA Wiring Condition NA Weasuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger Type (circle): RT-100 LT-500 Other: HOBO Datalogger serial #: HOBO Datalogger serial #: Measured cable length (ff) HOBO I Lock present and operational NA Temperature Logger Present (FidBit)? Y / N I Lock present and operational NA Temperature Logger Present (FidBit)? Y / N I Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Tempe vell VELL CASING VOLUMES VELL CASING VOLUMES VELL CASING VOLUMES	. 1.			Purge Wat	er Disposa	1 GAL		
Wiring Condition (dedicated pumps) Maximum (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Tape measure Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger serial #: HOBO Uters Datalogger serial #: Measured cable length (ft) HOBO Datalogger Serial #: Measured cable length (ft) HOBO Uters Lock present and operational NA Measured cable length (ft) Y N Image: Strike Well name legible on outside of well (stickup) or inside of well (flushmount) NA Measure Measure Measure Well name legible on outside of well (stickup) or inside of well (flushmount) NA Measure Measure Measure Well construction Measure Measure Measure Measure Measure Measure Measure Measure Measure Measure Measure	Monument Condition NA							
Measuring Point (MP) <u>Top of Casing (TOC)</u> Monument type: Stickup / Flushmount Measurement method: Tape measure Top-of-casing to monument (ft.) <u>NA</u> Datalogger Type (circle): RT-100 Monument to ground surface (ft.) <u>NA</u> Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) <u>NA</u> Datalogger Type (circle): RT-100 GW WL-16 <u>AT-200</u> LT-700 LT-500 Other: <u>HOBO</u> Datalogger serial #:	Wiring Condition							
Measurement method: Tape measure Top-of-casing to monument (ft.) NA Datalogger Type (circle): RT-100 GW WL-16 Monument to ground surface (ft.) NA Datalogger Type (circle): RT-100 LT-500 Monument to ground surface (ft.) NA Datalogger serial #: Measured cable length (ft) HOBO Image: Stress of the series of the se	(acaleated painpo)							
Monument to ground surface (ft.) NA Monument to ground surface (ft.) NA AT-200 LT-700 Other: HOBO Datalogger serial #: Measured cable length (ft) E Frost-jacking? Y / N Temperature Logger Present (TidBit)? Y / N Lock present and operational NA Temperature Logger Present (TidBit)? Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temperature After sample collection WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Measuring Point (MP) <u>Top of Ca</u>	sing (TOC)	Me					Temp
Monument to ground surface (ft.) NA Monument to ground surface (ft.) NA AT-200 LT-700 Other: HOBO Datalogger serial #: Measured cable length (ft) E Frost-jacking? Y / N Temperature Logger Present (TidBit)? Y / N Lock present and operational NA Temperature Logger Present (TidBit)? Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temperature After sample collection WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Top-of-casing to monument (ft.)	In		Г)atalogger	Type (circle):	RT-100	GW/W/-16
Datalogger serial #:					Jatalogger			
Image: State of Well [ID-inches] CMT 11/4 2 3 4 6 8						Other:	/	HOBO
Frost-jacking? Y / N Temperature Logger Present (FidBit)? Y / N Lock present and operational NA Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temp well - removed after sample collection WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8					Datalo	gger serial #:	/	
Lock present and operational NA Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes <u>Teime well - removed after sample collection</u> Well CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8		1		Me	easured ca	ble length (ft)		-
Well name legible on outside of well (stickup) or inside of well (flushmount) NA Notes Temp well - removed after sample collection WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Frost-jacking? Y /	N	Tem	perature Lo	ogger Pres	ent (TidBit)?	Y / N	
Notes Temp well - removed after sample collection WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Lock present and oper	ational NA						
WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Well name legible on c	outside of well	(stickup)	or inside of	well (flush	mount) NA		
WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	-			1 0		1	1 14	
Diameter of Well [ID-inches] CMT 11/2 2 3 4 6 8	Notes lemp well	l - re	move	d alt	er so	imple c	ollectio	n
Diameter of Well [ID-inches] CMT 11/2 2 3 4 6 8								
Diameter of Well [ID-inches] CMT 11/2 2 3 4 6 8			WELLO	ASING VO	LUMES			
	Diameter of Well IID-inches1	CMT		1		4	6	8

2/22/2016

Well No. TWP18-01

Field	Parameter	Instrument:	Pro Plus X OF	R Rental #	Handheld	s/n:	
		eter Criteria: Circle One					
	Total Gall	ons purged: ~ 1.0			eeded for 3WV		_
	Water of	bservations: The H	y v. tarbid,	much les	s after-im	in program -	Hidrornio
			1-01 S.T. = 1				
		Twp	6-101 S.T. :	5 0840 =			- Nigu Udur Woo shee
							ing Ab
		FIELD PAR	RAMETERS [stabili	zation criter	ria] 101607		- Wake
	Temp.	Dissolved Oxygen	Conductivity	pH	ORP (mV) [±	Water Clarity	- Contro
Time	(°C)	(mg/L) [± 0.10 mg/L]	(µS/cm) [± 3%]	[± 0,10]	10 mV]	(visual)	
835	Purging st						
340	4.7	0.87	566	6.05	89.3	(leal	1
343	4.7	0.32	556	6.04	91.3	Chec!	
BAB	4.7	0.77	550	6.05	75.9	6loal	
1949	4.7	0.71	548	6.06	97.1	Cher	-
352	4.7	0.67	551	6.07	97.4	bohand	11
155	4.7	0.65	553	6.08	97.5	Chen	
5-3-C							
		~ /	Contract of the second				7
			/	10.4.20			
				1. 1			
				(
							_
-							-
	-			1			-
				-			-
_				-			-
_							_
				1			_
_			A	1			_
				1.2			
				i			
							2
							2.1
				1			
							_
				1			-
	L	11					

Laboratory SGS

,0.25

Analysis	Sample Containers	Preservatives	Dup	EB
Sulfolane (1625B) DRU + PRO	2x ()-Liter amber bottle	none	A	므
BTEX (8260B) + GRU/BTEX	3x 40-mL amber VOA vials	HCI	¥	므
Geochelon Ands RAHS	Multiple (see proposal)	Multiple Non	X	
COPC KAS	Multiple (see proposal)	Multiple	므	⊒
			므	
			旦	
	Sulfolane (1625B) DRU + PRO BTEX (8260B) + GRU/BTEX Geocheron And PARS	Sulfolane (1625B) DRU + PRO 2x (1)-Liter amber bottle BTEX (8260B) + GRU / bTEX 3x 40-mL amber VOA vials Geocher Avis Multiple (see proposal)	Sulfolane (1625B) QRU + PRO 2x(1)-Liter amber bottle none BTEX (8260B) + GRU / BTEX 3x 40-mL amber VOA vials HCl Geochelor Avids PAVEs Multiple (see proposal) Multiple None	Sulfolane (1625B) QRU + FRO 2x(1)-Liter amber bottle none BTEX (8260B) + GRU / bTEX 3x 40-mL amber VOA vials HCI Geocher Multiple (see proposal) Multiple NonC

2x 0.25 Liter annous

Owner/Client Tim Indenter	Wester	Project No. 101607
Location Jobb 21:2 20		Date 9/16/18
Sampling Personnel (AB / 5x5		Well TW8 18-02
	Air Temp. (°F) 🗸 45	Time started Aus
Weather Conditions	All remp. (1) N QS	ment
Sample No. TwP th - 02-	Time 003 d	Time completed 1>03
	Time_0930	- 22
		Depth to Water (ft.)
Equipment Blank (EB) Ana	lysis: Time D	epth to LNAPL (ft.)
	N	APL Thickness (ft.)
PLA	Method of NAPL Measurer	nent _
Pump/Controller		N.,
Purging Method portable / dedicated	pump Diameter a	and Type of Casing
Pumping Start	Approximate Total Depth of V	
Purge Rate (gal./min.)	Measured Total Depth of V	
Pumping End v 2 3		ater Below MP (ft.)
rumping End 1005		
Durran Cat Danth Dalaus MD (ft.) 12		zen) Below MP (ft.)
Pump Set Depth Below MP (ft.)	Fe	et of Water in Well 2
KuriTec Tubing (ft.)		Gallons per foot 0.09
TruPoly Tubing (ft.) _ 🚧 🛛 🏹		Gallons in Well 0.16
Silicone Tubing (ft.)	0	Gallons in Well x3 = <u>0. </u>
	(also enter on back) To	tal Gallons Purged
	Purge Water Disposal 🛛 🖉 🙏	C
Monument Condition NA		
Casing Condition		
Wiring Condition NA		
(dedicated pumps)		
Measuring Point (MP) <u>Top of Casing (TOC)</u>	Monument type: <i>Stickup</i> Measurement method: <i>Tape m</i>	
Top-of-casing to monument (ft.)	Datalogger Type (cir	cle): RT-100 GW WL-16
Monument to ground surface (ft.)	Detailogget 1,po (en	
		her: HOBO
	Datalogger seri	
	Measured cable length	1 (ft)
Frost-jacking? Y / N	Temperature Logger Present (TidE	Bit)? Y / (N)
Lock present and operational NA		
	stickup) or inside of well (flushmount) 🔥	ιA
	suckupy of monde of weat (nachimount) h	151
Notes Temp well - re	moved after sample	2 collectron
	Caller and the second second	
	Name of a state state state and a	

WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8 2.6 Gallons per lineal foot 0.01057 0.08 0.17 0.38 0.66 1.5

2/22/2016

Well No. TWP18-02

Field Parameter Instrument:	Pro Plus Kental # Hand	lheld s/n:
Parameter Criteria:	Circle One Parameters stabilized OR > 3 well vo	lumes purged
Total Gallons purged:	N L.S Gallons needed for	3WV:
Water observations:	Petrolows way do constan a bur / all	Sheen
Notes:	TWP13-02 S.T. 0930 C	trace

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [± 0.10 mg/L]	Conductivity (µS/cm) [± 3%]	pH [± 0.10]	ORP (mV) [± 10 mV]	Water Clarity (visual)
409:45	Purging sta					
6948	4.3	1.00	535	6.70	162.4	Sl Turb
1210	3.8	0.50	579	6.54	140.7	St Turb
0954	3.6	0.43	596	6.51	129.6	(Jen) Cheni
0957	3.6	0.35	601	6.51	120.1	
1000	3.5	0.36	602	6.50	117.4	Cherl
1003	3.5	0.32	602	6.49	114.9	Clerv
					1	
1.5						
				-		
						1
	-					
				_		
-	1					
	100 - C					1
_	A	1			1	
	· · · · · · · · · · · · · · · · · · ·				1	N
				1. 62.1		
						· · · · · · · · · · · · · · · · · · ·
			1			
	Cons. N				0	
	·					
·	1				1	

Laboratory SGS

0.25

i	Analysis	Sample Containers	Preservatives	Dup	EB
1 8	Sulfolano (1625B) DRO + PRO	2x 🕌 iter amber bottle	none	<u>_</u>	<u> </u>
)p	BTEX (8260B) (Po + BTEX (BO	2)3x 40-mL amber VOA vials	HCI	□	D
	Geochem	Multiple (see proposal)	Multiple	⊒	旦
	COPC	Multiple (see proposal)	Multiple	□	
				묘	
	· · · · · · · · · · · · · · · · · · ·			旦	

Owner/Client	Tim bodos	to wo	ster	Project No. 101607-
Location	1 1 1	1	<i>1 ×</i>	Date 9/16/00
Sampling Personnel	and an owned where the second s	10		Well Two 10-03
Weather Conditions	2 1	Air	Temp. (°F), 45	Time started 10 14
weather conditions.	Usercast	All		Time completed
O	T . Q.Q. 07		Time 1010	Time completed 1192
	JU818-03		Time 1015	-
Duplicate	-	Analysis:	Time	Depth to Water (ft.) ~ 9.0
Equipment Blank (EB)	-	Analysis:	Time	Depth to LNAPL (ft.)
				NAPL Thickness (ft.) -
	0.0		Method of NAPL	Measurement ~
Pump/Controller	Vaistaltic			4
Purging Method	portable / dec	licated pump	D	iameter and Type of Casing \ M -inch
Pumping Start				Depth of Well Below MP (ft.)
Purge Rate (gal./min.)				Depth of Well Below MP (ft.)
Pumping End				epth to Water Below MP (ft.)
i amping Ena				Ice (if frozen) Below MP (ft.)
Pump Set Depth Bel	OW MP (ft) 10		Dopurto	Feet of Water in Well 2
	Tubing (ft.)			Gallons per foot 0.83
	Tubing (ft.) 15			Gallons in Well Q.\b
				Gallons in Well $x_3 = 0$
Silicone	Tubing (ft.)		false antes as	
			the second se	back) Total Gallons Purged
	Δ.,		Purge Water Disposa	al (JAC)
Monument Condition	AV			
Casing Condition	AUA			
Wiring Condition	NA			
(dedicated pumps)				
Measuring Point (MP)	Top of Casing (TC		Monument type: easurement method:	Stickup / Flushmount
and the states of the	A)A		Carl States	and the second second second second
Top-of-casing to mon			Datalogger	Type (circle): RT-100 GW WL-16
Monument to ground s	urface (ft.)			AT-200 LT-700 LT-500
				Other: HOBO
			Datalo	ogger serial #:
			Measured ca	ble length (ft)
Frost-jackin	19? Y / N	Ter	nperature Logger Pres	
	nt and operational		nporataro 2099or 1100	
			or incide of well (fluch	mount)
U Well name	legible off outside	or wen (stickup)	or inside of well (flush	initiounity NA
Notes T	Well -	00.000	Plan	de la tra
Notes \ emp	Wene -	removed	arter sam	ple collection
		WELL	CASING VOLUMES	

Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.01057	0.08	0.17	0.38	0.66	1.5	2.6

Well No. TWP18-03

Field Parameter Instrument:		Pro Plus 🔨 OR Rental # Handheld s/n:	
Parameter Criteria:	Circle One:	Parameters stabilized OR > 3 well volumes purged	
Total Gallons purged:		Gallons needed for 3WV:	
Water observations:	1.50	Petrolem in brocarbon about all fince Streen in Grape -	13
Notes:	5.1.	= 10 15	

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [± 0.10 mg/L]	Conductivity (µS/cm) [± 3%]	pH [± 0.10]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1044	Purging sta			1 (= 51.15)		(110.000)
1047	4.3	1.26	179	6.40	115.2	Chear
1050	4.0	0.59	757	6.43	95.0	ales
1053	3.9	0.42	424	6.46	84.3	XI.
1056	3.8	0.33	697	6.48	48.8	14
1059	3.7	0.29	632	6.49	4.5	11.
1102	3.7	0.27	671	6.41	75.1	11
11.2						
		1	<u>k</u>	1	1	
		1				
			5			
		21 m		·		
					1	1
(100000	
				1		
				1		
				-		
	-					
_						
_				-		
1.000						
				1 I	1000	
		(

Laboratory SGS

10.25

Analysis	Sample Containers	Preservatives	Dup	EB
Sulfolane (1625B) DRO + RRU	2x 1-Liter amber bottle	none		□
BTEX (8260BM GRO/ BTEX (602	3x 40-mL amber VOA vials	HCI	므	□
Geochem	Multiple (see proposal)	Multiple	□	
COPC	Multiple (see proposal)	Multiple	묘	⊒
			므	
			므	

TWP 12-03 Well No. TWP 18-03

ATTACHMENT C

SGS LABORATORYDATA REPORTS WORK ORDERS (1189757 AND 1189758)

Laboratory Report of Analysis

Shannon & Wilson-Fairbanks To: 2355 Hill Rd Fairbanks, AK 99707

Report Number: 1189757

Client Project: 101607 1066 ELIZ

Dear Sheila Hinckley,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Stephen Ede 2018.09.27 16:27:23 -08'00'

Alaska Division Technical Director

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 09/27/2018 4:09:04PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

SGS

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1189757

Project Name/Site: 101607 1066 ELIZ

Refer to sample receipt form for information on sample condition.

SB18-02-02 1189757005 PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria. Sample was analyzed twice and results confirmed.

SB18-03-02

1189757007 PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference. 8260C - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

Trip Blank 1189757008 TB

SW8260C - There was insufficient sample volume to perform analysis.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Report of Manual Integrations				
Laboratory ID	<u>Client Sample ID</u>	Analytical Batch	<u>Analyte</u>	Reason
8270D SIM (PAH				
1476238	, 1185180003MS	XMS11088	Benzo(a)Anthracene	RP
Manu	al Integration Reason Code Descriptions			
Code	Description			
0	Original Chromatogram			
M	Modified Chromatogram			
SS BLG	Skimmed surrogate Closed baseline gap			
RP	Reassign peak name			
PIR	Pattern integration required			
IT	Included tail			
SP RSP	Split peak Removed split peak			
FPS	Forced peak start/stop			
BLC	Baseline correction			
PNF	Peak not found by software			
All DF	O/RRO analysis are integrated per SOP.			
Print Date: 09/27/20	118 4·09·06PM			

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 09/27/2018 4:09:06PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix	
SB18-01-01	1189757001	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-01-02	1189757002	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-101-02	1189757003	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-02-01	1189757004	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-02-02	1189757005	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-03-01	1189757006	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
SB18-03-02	1189757007	09/16/2018	09/18/2018	Soil/Solid (dry weight)	
Trip Blank	1189757008	09/16/2018	09/18/2018	Soil/Solid (dry weight)	

<u>Method</u>

8270D SIM (PAH) AK102 AK101 SM21 2540G SW8260C SW8260C Method Description 8270 PAH SIM Semi-Volatiles GC/MS Diesel Range Organics (S) Gasoline Range Organics (S) Percent Solids SM2540G VOC 8260 (S) Field Extracted

Volatile Organic Compounds (S) FIELD EXT

Print Date: 09/27/2018 4:09:07PM

Detectable Results Summary

Client Sample ID: SB18-01-02 Lab Sample ID: 1189757002 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 326	<u>Units</u> mg/Kg
Client Sample ID: SB18-101-02 Lab Sample ID: 1189757003 Semivolatile Organic Fuels	Parameter Diesel Range Organics	<u>Result</u> 354	<u>Units</u> mg/Kg
Client Sample ID: SB18-02-01 Lab Sample ID: 1189757004 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 9.33J	<u>Units</u> mg/Kg
Client Sample ID: SB18-02-02 Lab Sample ID: 1189757005 Semivolatile Organic Fuels Volatile Fuels Volatile GC/MS	<u>Parameter</u> Diesel Range Organics Gasoline Range Organics o-Xylene P & M -Xylene Xylenes (total)	<u>Result</u> 4430 102 0.664 0.0516J 0.715	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
Client Sample ID: SB18-03-01 Lab Sample ID: 1189757006 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 162	<u>Units</u> mg/Kg
Client Sample ID: SB18-03-02 Lab Sample ID: 1189757007 Semivolatile Organic Fuels Volatile Fuels Volatile GC/MS	<u>Parameter</u> Diesel Range Organics Gasoline Range Organics o-Xylene Xylenes (total)	<u>Result</u> 7210 372 0.287J 0.287J	<u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg

Print Date: 09/27/2018 4:09:08PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of SB18-01-01 Client Sample ID: SB18-01-01 Collection Date: 09/16/18 08:40 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757001 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):80.5 Location: Results by Semivolatile Organic Fuels Allowable Limits Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed **Diesel Range Organics** 12.4 U 24.7 7.67 mg/Kg 1 09/19/18 15:50 Surrogates 5a Androstane (surr) 84.7 50-150 % 1 09/19/18 15:50 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 15:50 Prep Initial Wt./Vol.: 30.129 g Container ID: 1189757001-A Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-01-01 Client Sample ID: SB18-01-01 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757001 Lab Project ID: 1189757

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 3.55 U	<u>LOQ/CL</u> 7.10	<u>DL</u> 2.13	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzed 09/20/18 19:52
Surrogates 4-Bromofluorobenzene (surr)	85.5	50-150		%	1		09/20/18 19:52
Batch Information Analytical Batch: VFC14445 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 09/20/18 19:52 Container ID: 1189757001-B		F F F	Prep Methoo Prep Date/Ti Prep Initial V	VXX33160 d: SW5035A ime: 09/16/13 Vt./Vol.: 26.3 Vol: 30.1274	3 g		

Print Date: 09/27/2018 4:09:09PM

Results of SB18-01-01

Client Sample ID: **SB18-01-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757001 Lab Project ID: 1189757 Collection Date: 09/16/18 08:40 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):80.5 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.0177 U	0.0355	0.0111	mg/Kg	1		09/22/18 01:40
Ethylbenzene	0.0355 U	0.0710	0.0222	mg/Kg	1		09/22/18 01:40
o-Xylene	0.0355 U	0.0710	0.0222	mg/Kg	1		09/22/18 01:40
P & M -Xylene	0.0710 U	0.142	0.0426	mg/Kg	1		09/22/18 01:40
Toluene	0.0355 U	0.0710	0.0222	mg/Kg	1		09/22/18 01:40
Xylenes (total)	0.107 U	0.213	0.0648	mg/Kg	1		09/22/18 01:40
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	71-136		%	1		09/22/18 01:40
4-Bromofluorobenzene (surr)	82.5	55-151		%	1		09/22/18 01:40
Toluene-d8 (surr)	101	85-116		%	1		09/22/18 01:40

Batch Information

Analytical Batch: VMS18342 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/22/18 01:40 Container ID: 1189757001-B Prep Batch: VXX33169 Prep Method: SW5035A Prep Date/Time: 09/16/18 08:40 Prep Initial Wt./Vol.: 26.33 g Prep Extract Vol: 30.1274 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-01-02

Client Sample ID: **SB18-01-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757002 Lab Project ID: 1189757 Collection Date: 09/16/18 08:45 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):95.7 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
2-Methylnaphthalene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Acenaphthene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Acenaphthylene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Anthracene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Benzo(a)Anthracene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Benzo[a]pyrene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Benzo[b]Fluoranthene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Benzo[g,h,i]perylene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Benzo[k]fluoranthene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Chrysene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Dibenzo[a,h]anthracene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Fluoranthene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Fluorene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Indeno[1,2,3-c,d] pyrene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Naphthalene	0.0103 U	0.0206	0.00516	mg/Kg	1		09/20/18 21:47
Phenanthrene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Pyrene	0.0129 U	0.0258	0.00645	mg/Kg	1		09/20/18 21:47
Surrogates							
2-Methylnaphthalene-d10 (surr)	80.8	58-103		%	1		09/20/18 21:47
Fluoranthene-d10 (surr)	76.2	54-113		%	1		09/20/18 21:47

Batch Information

Analytical Batch: XMS11088 Analytical Method: 8270D SIM (PAH) Analyst: BMZ Analytical Date/Time: 09/20/18 21:47 Container ID: 1189757002-A Prep Batch: XXX40469 Prep Method: SW3550C Prep Date/Time: 09/19/18 08:34 Prep Initial Wt./Vol.: 22.777 g Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of SB18-01-02 Client Sample ID: SB18-01-02 Collection Date: 09/16/18 08:45 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757002 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):95.7 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed **Diesel Range Organics** 326 20.8 6.45 mg/Kg 1 09/19/18 15:59 Surrogates 5a Androstane (surr) 90.2 50-150 % 1 09/19/18 15:59 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 15:59 Prep Initial Wt./Vol.: 30.147 g Container ID: 1189757002-A Prep Extract Vol: 5 mL

Results of SB18-01-02

Client Sample ID: **SB18-01-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757002 Lab Project ID: 1189757 Collection Date: 09/16/18 08:45 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):95.7 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.0169 U	0.0338	0.0105	mg/Kg	1		09/22/18 01:57
1,1,1-Trichloroethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,1,2,2-Tetrachloroethane	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
1,1,2-Trichloroethane	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
1,1-Dichloroethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,1-Dichloroethene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,1-Dichloropropene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,2,3-Trichlorobenzene	0.0423 U	0.0846	0.0254	mg/Kg	1		09/22/18 01:57
1,2,3-Trichloropropane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,2,4-Trichlorobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,2,4-Trimethylbenzene	0.0423 U	0.0846	0.0254	mg/Kg	1		09/22/18 01:57
1,2-Dibromo-3-chloropropane	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
1,2-Dibromoethane	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
1,2-Dichlorobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,2-Dichloroethane	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
1,2-Dichloropropane	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
1,3,5-Trimethylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,3-Dichlorobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
1,3-Dichloropropane	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
1,4-Dichlorobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
2,2-Dichloropropane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
2-Butanone (MEK)	0.211 U	0.423	0.132	mg/Kg	1		09/22/18 01:57
2-Chlorotoluene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
2-Hexanone	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
4-Chlorotoluene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
4-Isopropyltoluene	0.0845 U	0.169	0.0423	mg/Kg	1		09/22/18 01:57
4-Methyl-2-pentanone (MIBK)	0.211 U	0.423	0.132	mg/Kg	1		09/22/18 01:57
Acetone	0.211 U	0.423	0.132	mg/Kg	1		09/22/18 01:57
Benzene	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
Bromobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Bromochloromethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Bromodichloromethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Bromoform	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Bromomethane	0.169 U	0.338	0.105	mg/Kg	1		09/22/18 01:57
Carbon disulfide	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
Carbon tetrachloride	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
Chlorobenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57

Print Date: 09/27/2018 4:09:09PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of SB18-01-02

Client Sample ID: **SB18-01-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757002 Lab Project ID: 1189757

Collection Date: 09/16/18 08:45 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):95.7 Location:

Results by Volatile GC/MS

-						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroethane	0.169 U	0.338	0.105	mg/Kg	1		09/22/18 01:57
Chloroform	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Chloromethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
cis-1,2-Dichloroethene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
cis-1,3-Dichloropropene	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
Dibromochloromethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Dibromomethane	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Dichlorodifluoromethane	0.0423 U	0.0846	0.0254	mg/Kg	1		09/22/18 01:57
Ethylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Freon-113	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
Hexachlorobutadiene	0.0169 U	0.0338	0.0105	mg/Kg	1		09/22/18 01:57
Isopropylbenzene (Cumene)	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Methylene chloride	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
Methyl-t-butyl ether	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
Naphthalene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
n-Butylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
n-Propylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
o-Xylene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
P & M -Xylene	0.0423 U	0.0846	0.0254	mg/Kg	1		09/22/18 01:57
sec-Butylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Styrene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
tert-Butylbenzene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
Tetrachloroethene	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
Toluene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
trans-1,2-Dichloroethene	0.0211 U	0.0423	0.0132	mg/Kg	1		09/22/18 01:57
trans-1,3-Dichloropropene	0.0106 U	0.0212	0.00660	mg/Kg	1		09/22/18 01:57
Trichloroethene	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
Trichlorofluoromethane	0.0423 U	0.0846	0.0254	mg/Kg	1		09/22/18 01:57
Vinyl acetate	0.0845 U	0.169	0.0525	mg/Kg	1		09/22/18 01:57
Vinyl chloride	0.00845 U	0.0169	0.00525	mg/Kg	1		09/22/18 01:57
Xylenes (total)	0.0635 U	0.127	0.0386	mg/Kg	1		09/22/18 01:57
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	71-136		%	1		09/22/18 01:57
4-Bromofluorobenzene (surr)	85.3	55-151		%	1		09/22/18 01:57
Toluene-d8 (surr)	103	85-116		%	1		09/22/18 01:57

Print Date: 09/27/2018 4:09:09PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Results of SB18-01-02

Client Sample ID: **SB18-01-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757002 Lab Project ID: 1189757

Collection Date: 09/16/18 08:45 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):95.7 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18342 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/22/18 01:57 Container ID: 1189757002-B Prep Batch: VXX33169 Prep Method: SW5035A Prep Date/Time: 09/16/18 08:45 Prep Initial Wt./Vol.: 32.61 g Prep Extract Vol: 26.405 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-101-02 Client Sample ID: SB18-101-02 Collection Date: 09/16/18 08:55 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757003 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):95.9 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed **Diesel Range Organics** 354 20.6 6.39 mg/Kg 1 09/19/18 16:09 Surrogates 5a Androstane (surr) 91.8 50-150 % 1 09/19/18 16:09 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 16:09 Prep Initial Wt./Vol.: 30.376 g Container ID: 1189757003-A Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-101-02

Client Sample ID: SB18-101-02 Collection Date: 09/16/18 08:55 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757003 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):95.9 Location: Results by Volatile Fuels Allowable Limits Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed Gasoline Range Organics 1.59 U 3.18 0.953 mg/Kg 1 09/20/18 20:09 Surrogates 4-Bromofluorobenzene (surr) 83 50-150 % 1 09/20/18 20:09 **Batch Information** Analytical Batch: VFC14445 Prep Batch: VXX33160 Analytical Method: AK101 Prep Method: SW5035A Analyst: ST Prep Date/Time: 09/16/18 08:55 Analytical Date/Time: 09/20/18 20:09 Prep Initial Wt./Vol.: 44.023 g Container ID: 1189757003-B Prep Extract Vol: 26.817 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-101-02

Client Sample ID: **SB18-101-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757003 Lab Project ID: 1189757 Collection Date: 09/16/18 08:55 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):95.9 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.00795 U	0.0159	0.00496	mg/Kg	1		09/22/18 02:14
Ethylbenzene	0.0159 U	0.0318	0.00991	mg/Kg	1		09/22/18 02:14
o-Xylene	0.0159 U	0.0318	0.00991	mg/Kg	1		09/22/18 02:14
P & M -Xylene	0.0318 U	0.0635	0.0191	mg/Kg	1		09/22/18 02:14
Toluene	0.0159 U	0.0318	0.00991	mg/Kg	1		09/22/18 02:14
Xylenes (total)	0.0476 U	0.0953	0.0290	mg/Kg	1		09/22/18 02:14
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	71-136		%	1		09/22/18 02:14
4-Bromofluorobenzene (surr)	81.3	55-151		%	1		09/22/18 02:14
Toluene-d8 (surr)	103	85-116		%	1		09/22/18 02:14

Batch Information

Analytical Batch: VMS18342 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/22/18 02:14 Container ID: 1189757003-B Prep Batch: VXX33169 Prep Method: SW5035A Prep Date/Time: 09/16/18 08:55 Prep Initial Wt./Vol.: 44.023 g Prep Extract Vol: 26.817 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-02-01 Client Sample ID: SB18-02-01 Collection Date: 09/16/18 09:55 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757004 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):81.3 Location: Results by Semivolatile Organic Fuels Allowable Limits Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed **Diesel Range Organics** 9.33 J 24.5 7.60 mg/Kg 1 09/19/18 16:19 Surrogates 5a Androstane (surr) 84.1 50-150 % 1 09/19/18 16:19 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 16:19 Prep Initial Wt./Vol.: 30.105 g Container ID: 1189757004-A Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-02-01Client Sample ID: SB18-02-01Client Project ID: 101607 1066 ELIZLab Sample ID: 1189757004Lab Project ID: 1189757Client Solids (%):81.3Location:

Tresults by Volutile Tuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 5.25 U	<u>LOQ/CL</u> 10.5	<u>DL</u> 3.14	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/20/18 20:27
Surrogates							
4-Bromofluorobenzene (surr)	82.2	50-150		%	1		09/20/18 20:27
Batch Information							
Analytical Batch: VFC14445			1	VXX33160			
Analytical Method: AK101 Analyst: ST			1	d: SW5035A ime: 09/16/1	8 09:55		
Analytical Date/Time: 09/20/18 20:27				Vt./Vol.: 16.4	0		
Container ID: 1189757004-B		F	rep Extract	Vol: 28.076	2 mL		

Print Date: 09/27/2018 4:09:09PM

Results of SB18-02-01

Client Sample ID: **SB18-02-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757004 Lab Project ID: 1189757 Collection Date: 09/16/18 09:55 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):81.3 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.0262 U	0.0524	0.0163	mg/Kg	1		09/22/18 02:31
Ethylbenzene	0.0525 U	0.105	0.0327	mg/Kg	1		09/22/18 02:31
o-Xylene	0.0525 U	0.105	0.0327	mg/Kg	1		09/22/18 02:31
P & M -Xylene	0.105 U	0.210	0.0629	mg/Kg	1		09/22/18 02:31
Toluene	0.0525 U	0.105	0.0327	mg/Kg	1		09/22/18 02:31
Xylenes (total)	0.157 U	0.314	0.0956	mg/Kg	1		09/22/18 02:31
Surrogates							
1,2-Dichloroethane-D4 (surr)	109	71-136		%	1		09/22/18 02:31
4-Bromofluorobenzene (surr)	79.5	55-151		%	1		09/22/18 02:31
Toluene-d8 (surr)	102	85-116		%	1		09/22/18 02:31

Batch Information

Analytical Batch: VMS18342 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/22/18 02:31 Container ID: 1189757004-B Prep Batch: VXX33169 Prep Method: SW5035A Prep Date/Time: 09/16/18 09:55 Prep Initial Wt./Vol.: 16.475 g Prep Extract Vol: 28.0762 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-02-02 Client Sample ID: SB18-02-02 Collection Date: 09/16/18 10:05 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757005 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):91.9 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed <u>Limits</u> **Diesel Range Organics** 4430 86.5 26.8 mg/Kg 4 09/19/18 17:58 Surrogates 5a Androstane (surr) 87.6 50-150 % 4 09/19/18 17:58 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 17:58 Prep Initial Wt./Vol.: 30.17 g Container ID: 1189757005-A Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-02-02 Client Sample ID: SB18-02-02 Collection Date: 09/16/18 10:05 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757005 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):91.9 Location: Results by Volatile Fuels Allowable Limits Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed Gasoline Range Organics 102 15.7 4.72 mg/Kg 5 09/21/18 16:45

1250

*

50-150

5

09/21/18 16:45

%

Prep Batch: VXX33175

Prep Method: SW5035A

Prep Date/Time: 09/16/18 10:05

Prep Initial Wt./Vol.: 50.306 g

Prep Extract Vol: 29.0683 mL

Print Date: 09/27/2018 4:09:09PM

Surrogates

4-Bromofluorobenzene (surr)

Analytical Batch: VFC14450

Container ID: 1189757005-B

Analytical Date/Time: 09/21/18 16:45

Analytical Method: AK101

Batch Information

Analyst: ST

Results of SB18-02-02

Client Sample ID: **SB18-02-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757005 Lab Project ID: 1189757 Collection Date: 09/16/18 10:05 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):91.9 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.00785 U	0.0157	0.00490	mg/Kg	1		09/25/18 02:43
Ethylbenzene	0.0157 U	0.0314	0.00981	mg/Kg	1		09/25/18 02:43
o-Xylene	0.664	0.0314	0.00981	mg/Kg	1		09/25/18 02:43
P & M -Xylene	0.0516 J	0.0629	0.0189	mg/Kg	1		09/25/18 02:43
Toluene	0.0157 U	0.0314	0.00981	mg/Kg	1		09/25/18 02:43
Xylenes (total)	0.715	0.0943	0.0287	mg/Kg	1		09/25/18 02:43
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	71-136		%	1		09/25/18 02:43
4-Bromofluorobenzene (surr)	126	55-151		%	1		09/25/18 02:43
Toluene-d8 (surr)	96.7	85-116		%	1		09/25/18 02:43

Batch Information

Analytical Batch: VMS18358 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/25/18 02:43 Container ID: 1189757005-B Prep Batch: VXX33188 Prep Method: SW5035A Prep Date/Time: 09/16/18 10:05 Prep Initial Wt./Vol.: 50.306 g Prep Extract Vol: 29.0683 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-03-01 Client Sample ID: SB18-03-01 Collection Date: 09/16/18 10:55 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757006 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):79.3 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed **Diesel Range Organics** 162 25.2 7.81 mg/Kg 1 09/19/18 16:29 Surrogates 5a Androstane (surr) 81 50-150 % 1 09/19/18 16:29 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 16:29 Prep Initial Wt./Vol.: 30.05 g Container ID: 1189757006-A Prep Extract Vol: 5 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-03-01 Client Sample ID: SB18-03-01 Collection Date: 09/16/18 10:55 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757006 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):79.3 Location: Results by Volatile Fuels Allowable Limits Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed

6.45

50-150

1.93

mg/Kg

%

Prep Batch: VXX33160

Prep Method: SW5035A

Prep Date/Time: 09/16/18 10:55

Prep Initial Wt./Vol.: 30.683 g

Prep Extract Vol: 31.3624 mL

1

1

09/20/18 20:45

09/20/18 20:45

3.23 U

83.4

Print Date: 09/27/2018 4:09:09PM

Gasoline Range Organics

4-Bromofluorobenzene (surr)

Analytical Batch: VFC14445

Container ID: 1189757006-B

Analytical Date/Time: 09/20/18 20:45

Analytical Method: AK101

Batch Information

Analyst: ST

Surrogates

Results of SB18-03-01

Client Sample ID: **SB18-03-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757006 Lab Project ID: 1189757 Collection Date: 09/16/18 10:55 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):79.3 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.0161 U	0.0322	0.0101	mg/Kg	1		09/22/18 02:48
Ethylbenzene	0.0323 U	0.0645	0.0201	mg/Kg	1		09/22/18 02:48
o-Xylene	0.0323 U	0.0645	0.0201	mg/Kg	1		09/22/18 02:48
P & M -Xylene	0.0645 U	0.129	0.0387	mg/Kg	1		09/22/18 02:48
Toluene	0.0323 U	0.0645	0.0201	mg/Kg	1		09/22/18 02:48
Xylenes (total)	0.0965 U	0.193	0.0588	mg/Kg	1		09/22/18 02:48
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	71-136		%	1		09/22/18 02:48
4-Bromofluorobenzene (surr)	85.7	55-151		%	1		09/22/18 02:48
Toluene-d8 (surr)	104	85-116		%	1		09/22/18 02:48

Batch Information

Analytical Batch: VMS18342 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/22/18 02:48 Container ID: 1189757006-B Prep Batch: VXX33169 Prep Method: SW5035A Prep Date/Time: 09/16/18 10:55 Prep Initial Wt./Vol.: 30.683 g Prep Extract Vol: 31.3624 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-03-02 Client Sample ID: SB18-03-02 Collection Date: 09/16/18 11:00 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757007 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):91.5 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed **Diesel Range Organics** 7210 86.9 26.9 mg/Kg 4 09/19/18 18:08 Surrogates 95.2 5a Androstane (surr) 50-150 % 4 09/19/18 18:08 **Batch Information** Analytical Batch: XFC14618 Prep Batch: XXX40510 Analytical Method: AK102 Prep Method: SW3550C Analyst: CMS Prep Date/Time: 09/18/18 20:32 Analytical Date/Time: 09/19/18 18:08 Prep Initial Wt./Vol.: 30.204 g Container ID: 1189757007-A Prep Extract Vol: 5 mL

Results of SB18-03-02 Client Sample ID: SB18-03-02 Collection Date: 09/16/18 11:00 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757007 Matrix: Soil/Solid (dry weight) Lab Project ID: 1189757 Solids (%):91.5 Location: Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed Gasoline Range Organics 372 29.2 8.75 mg/Kg 5 09/20/18 21:03 Surrogates 5 4-Bromofluorobenzene (surr) 740 * 50-150 % 09/20/18 21:03 **Batch Information**

Analytical Batch: VFC14445 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 09/20/18 21:03 Container ID: 1189757007-B Prep Batch: VXX33160 Prep Method: SW5035A Prep Date/Time: 09/16/18 11:00 Prep Initial Wt./Vol.: 25.489 g Prep Extract Vol: 27.1792 mL

Print Date: 09/27/2018 4:09:09PM

Results of SB18-03-02

Client Sample ID: **SB18-03-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189757007 Lab Project ID: 1189757 Collection Date: 09/16/18 11:00 Received Date: 09/18/18 09:45 Matrix: Soil/Solid (dry weight) Solids (%):91.5 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.0730 U	0.146	0.0455	mg/Kg	5		09/25/18 18:13
Ethylbenzene	0.146 U	0.292	0.0909	mg/Kg	5		09/25/18 18:13
o-Xylene	0.287 J	0.292	0.0909	mg/Kg	5		09/25/18 18:13
P & M -Xylene	0.291 U	0.583	0.175	mg/Kg	5		09/25/18 18:13
Toluene	0.146 U	0.292	0.0909	mg/Kg	5		09/25/18 18:13
Xylenes (total)	0.287 J	0.875	0.266	mg/Kg	5		09/25/18 18:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.2	71-136		%	5		09/25/18 18:13
4-Bromofluorobenzene (surr)	197 *	55-151		%	5		09/25/18 18:13
Toluene-d8 (surr)	101	85-116		%	5		09/25/18 18:13

Batch Information

Analytical Batch: VMS18368 Analytical Method: SW8260C Analyst: NRO Analytical Date/Time: 09/25/18 18:13 Container ID: 1189757007-B Prep Batch: VXX33203 Prep Method: SW5035A Prep Date/Time: 09/16/18 11:00 Prep Initial Wt./Vol.: 25.489 g Prep Extract Vol: 27.1792 mL

Print Date: 09/27/2018 4:09:09PM

Results of Trip Blank							
Client Sample ID: Trip Blank Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189757008 Lab Project ID: 1189757		F T S	Collection Da Received Da Matrix: Soil/S Solids (%): Location:	te: 09/18/1	8 09:45		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 1.24 U	<u>LOQ/CL</u> 2.47	<u>DL</u> 0.740	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzed 09/19/18 13:36
Surrogates							
4-Bromofluorobenzene (surr)	85.9	50-150		%	1		09/19/18 13:36
Batch Information Analytical Batch: VFC14444 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 09/19/18 13:36 Container ID: 1189757008-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW5035A me: 09/16/1 /t./Vol.: 50.6	8 08:40		

Print Date: 09/27/2018 4:09:09PM

		1			
Method Blank Blank ID: MB for HBN 1 Blank Lab ID: 1476227	Matrix	: Soil/Solid (d	lry weight)		
QC for Samples:	2, 1189757003, 1189757004, 118	39757005, 1189757006	, 1189757007		
		1			
Results by SM21 25400	3	J			
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information					
Analytical Batch: SPT Analytical Method: SM Instrument: Analyst: E.M Analytical Date/Time:	10620 121 2540G 9/18/2018 8:02:00PM				

Print Date: 09/27/2018 4:09:11PM

-

SGS	
	-

Duplicate Sample Summar	ry							
Original Sample ID: 1185324001 Duplicate Sample ID: 1476233			Analysis Date: 09/18/2018 20:02 Matrix: Soil/Solid (dry weight)					
QC for Samples:								
Results by SM21 2540G								
	Original	Duplicate	Units	<u>RPD (%)</u>	RPD CL			
<u>NAME</u> Total Solids	<u>95.7</u>	96.2	%	0.49				
	95.7	90.2	70	0.49	(< 15)			
Batch Information								
Analytical Batch: SPT10620								
Analytical Method: SM21 25 Instrument:	540G							
Analyst: E.M								
Print Date: 09/27/2018 4:09:11PM								
1 1111 Date. 03/21/2010 4.03.11FW								

uplicate Sample Summa	irv						
Original Sample ID: 1185324002 Duplicate Sample ID: 1476234 QC for Samples:			Analysis Date: 09/18/2018 20:02 Matrix: Soil/Solid (dry weight)				
189757001, 1189757002	, 1189757003, 11897	757004, 1189757005,	1189757006, 118	9757007			
esults by SM21 2540G							
IAME_	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL		
otal Solids	96.4	96.2	%	0.23	(< 15)		
Analytical Batch: SPT10620 Analytical Method: SM212 Instrument: Analyst: E.M							

Method Blank Blank ID: MB for HBN 1786350 [VXX/33149] Blank Lab ID: 1476742					
		Matrix	:: Soil/Solid (d	(dry weight)	
QC for Samples: 1189757008					
Results by AK101					
<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 0.836J	LOQ/CL 2.50	<u>DL</u> 0.750	<u>Units</u> mg/Kg	
Surrogates 4-Bromofluorobenzene (surr)	96.8	50-150		%	
Batch Information					
Analytical Batch: VFC14444 Analytical Method: AK101 Instrument: Agilent 7890 PII Analyst: ST Analytical Date/Time: 9/19/2	D/FID	Prep Me Prep Dat Prep Initi	thod: VXX33149 thod: SW5035, te/Time: 9/19/2 ial Wt./Vol.: 50 ract Vol: 25 ml	A 018 8:00:00AM g	

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX33149] Blank Spike Lab ID: 1476743 Date Analyzed: 09/19/2018 12:07 Spike Duplicate ID: LCSD for HBN 1189757 [VXX33149] Spike Duplicate Lab ID: 1476744 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757008

Results by AK101			_						
	E	lank Spike	(mg/Kg) Spike Duplicate (mg/Kg)						
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	13.6	109	12.5	12.6	101	(60-120)	7.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	101	101	1.25	100	100	(50-150)	1.00	
Batch Information Analytical Batch: VFC14444 Analytical Method: AK101 Instrument: Agilent 7890 PID/F Analyst: ST	FID			Pre Pre Spil	ke Init Wt./\	SW5035A e: 09/19/201 /ol.: 12.5 mg	8 08:00 g/Kg Extrac		

Print Date: 09/27/2018 4:09:15PM

Method Blank					
Blank ID: MB for HBN 17863 Blank 9a] ID: 1377L7/	Mairx				
b 2 for QaC SImp: 118e7s7/ / 1t 118e7s7/ / Xt 118e	e7s7/ / 3t 118e7s7/ / 6t 118e	e7s7//7			
u mpUip] w AK101					
<u>GaraC mim</u> c apolxnmu anhmP rhanx p	<u>u mpUlip</u> /K78L-	<u>9Pb\229</u> LKs/	<u>D9</u> / K7s/	<u>Onxip</u> ChVlh	
Surrogates 3zBroCoflUbro] mm%mmypUrrR	eL K	s/ z1s/		A	
Batch Information					
Fnalwix al Bai.): 0T2 1333s Fnalwix al Mni)o(: FJ 1/ 1 InpirUCmni: Fhxmi 78e/ GIE Fnalwpi: QW Fnalwix al DaimWWCm eVL/VL	DIIID	Grm& Mr Grm& Da Grm& Inx	i.):0[[XX16/ mi)o(:QEs/Xs imWWCmeWL/W ixalEiKWoolKs/ ira.i0ol:LsC	F L/18 8://://FM h	

L// EmpiGoiimrDrx,mFn.) orahmtFJess18 te/7Ks6LKLX3Xfe/7Ks61KsX/1gggKLpKphpKoC

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX3314] b Blank Spike La6 ID: 1t 77A71 Daye z nald0e/:] 92A] 2A] 18 18:] 5 Spike Duplicaye ID: LCSD for HBN 1189757 [VXX3314] b Spike Duplicaye La6 ID: 1t 77A7A Mayrix: Soil2Soli/ (/ rd weighy)

QC for Samples: 1189757]] 1G1189757]] 3G1189757]] t G1189757]] 4G1189757]] 7

	E	Blank Spike	(mg 2 Kg)	S	oike Duplic:	aye (mg2Kg)			
Parameyer	<u>Spike</u>	Resuly	<u>Rec (%)</u>	<u>Spike</u>	Resuly	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Dasoline Range rganics	1A-5	13-1	1] 5	1A-5	13-]	1] t	(4] <1A])	1-t]	(T A])
irrogates									
<bromofluoro6en0ene (surr)<="" td=""><td>1-A5</td><td>98-A</td><td>98</td><td>1-A5</td><td>1] 1</td><td>1] 1</td><td>(5]⊲5])</td><td>A-4]</td><td></td></bromofluoro6en0ene>	1-A5	98-A	98	1-A5	1] 1	1] 1	(5]⊲5])	A-4]	
Batch Information									
z naldyical Baych: VFC14445 z naldyical Meyho/ : AK101 Insyrumeny: Agilent 7890 PID/ z naldsy: ST	FID			Pre Pre Spil	ke IniyE y-2	SW5035A e: 09/20/201 /ol-: 1A-5 mg	1 8 08:00 g2Kg vxyrac g2Kg vxyracy		
				Dup	e iniye yav	0I-: 1A-5 mg	jækg vxyracy	VOI: A5 ML	

Method Blank

Blank ID: MB for HBN 1786594 [VXX/33169] Blank Lab ID: 1477559 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1189757001,\,1189757002,\,1189757003,\,1189757004,\,1189757006$

Results by SW8260C

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.0100U	0.0200	0.00620	mg/Kg
1,1,1-Trichloroethane	0.0125U	0.0250	0.00780	mg/Kg
1,1,2,2-Tetrachloroethane	0.00625U	0.0125	0.00390	mg/Kg
1,1,2-Trichloroethane	0.00500U	0.0100	0.00310	mg/Kg
1,1-Dichloroethane	0.0125U	0.0250	0.00780	mg/Kg
1,1-Dichloroethene	0.0125U	0.0250	0.00780	mg/Kg
1,1-Dichloropropene	0.0125U	0.0250	0.00780	mg/Kg
1,2,3-Trichlorobenzene	0.0250U	0.0500	0.0150	mg/Kg
1,2,3-Trichloropropane	0.0125U	0.0250	0.00780	mg/Kg
1,2,4-Trichlorobenzene	0.0125U	0.0250	0.00780	mg/Kg
1,2,4-Trimethylbenzene	0.0250U	0.0500	0.0150	mg/Kg
1,2-Dibromo-3-chloropropane	0.0500U	0.100	0.0310	mg/Kg
1,2-Dibromoethane	0.00500U	0.0100	0.00310	mg/Kg
1,2-Dichlorobenzene	0.0125U	0.0250	0.00780	mg/Kg
1,2-Dichloroethane	0.00500U	0.0100	0.00310	mg/Kg
1,2-Dichloropropane	0.00500U	0.0100	0.00310	mg/Kg
1,3,5-Trimethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
1,3-Dichlorobenzene	0.0125U	0.0250	0.00780	mg/Kg
1,3-Dichloropropane	0.00500U	0.0100	0.00310	mg/Kg
1,4-Dichlorobenzene	0.0125U	0.0250	0.00780	mg/Kg
2,2-Dichloropropane	0.0125U	0.0250	0.00780	mg/Kg
2-Butanone (MEK)	0.125U	0.250	0.0780	mg/Kg
2-Chlorotoluene	0.0125U	0.0250	0.00780	mg/Kg
2-Hexanone	0.0500U	0.100	0.0310	mg/Kg
4-Chlorotoluene	0.0125U	0.0250	0.00780	mg/Kg
4-Isopropyltoluene	0.0500U	0.100	0.0250	mg/Kg
4-Methyl-2-pentanone (MIBK)	0.125U	0.250	0.0780	mg/Kg
Acetone	0.125U	0.250	0.0780	mg/Kg
Benzene	0.00625U	0.0125	0.00390	mg/Kg
Bromobenzene	0.0125U	0.0250	0.00780	mg/Kg
Bromochloromethane	0.0125U	0.0250	0.00780	mg/Kg
Bromodichloromethane	0.0125U	0.0250	0.00780	mg/Kg
Bromoform	0.0125U	0.0250	0.00780	mg/Kg
Bromomethane	0.100U	0.200	0.0620	mg/Kg
Carbon disulfide	0.0500U	0.100	0.0310	mg/Kg
Carbon tetrachloride	0.00625U	0.0125	0.00390	mg/Kg
Chlorobenzene	0.0125U	0.0250	0.00780	mg/Kg
Chloroethane	0.100U	0.200	0.0620	mg/Kg

Print Date: 09/27/2018 4:09:20PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS Method Blank

Blank ID: MB for HBN 1786594 [VXX/33169] Blank Lab ID: 1477559 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1189757001,\,1189757002,\,1189757003,\,1189757004,\,1189757006$

_	Results by SW8260C				
	Parameter	Results	LOQ/CL	DL	<u>Units</u>
	Chloroform	0.0125U	0.0250	0.00780	mg/Kg
	Chloromethane	0.0125U	0.0250	0.00780	mg/Kg
	cis-1,2-Dichloroethene	0.0125U	0.0250	0.00780	mg/Kg
	cis-1,3-Dichloropropene	0.00625U	0.0125	0.00390	mg/Kg
	Dibromochloromethane	0.0125U	0.0250	0.00780	mg/Kg
	Dibromomethane	0.0125U	0.0250	0.00780	mg/Kg
	Dichlorodifluoromethane	0.0250U	0.0500	0.0150	mg/Kg
	Ethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
	Freon-113	0.0500U	0.100	0.0310	mg/Kg
	Hexachlorobutadiene	0.0100U	0.0200	0.00620	mg/Kg
	Isopropylbenzene (Cumene)	0.0125U	0.0250	0.00780	mg/Kg
	Methylene chloride	0.0500U	0.100	0.0310	mg/Kg
	Methyl-t-butyl ether	0.0500U	0.100	0.0310	mg/Kg
	Naphthalene	0.0125U	0.0250	0.00780	mg/Kg
	n-Butylbenzene	0.0125U	0.0250	0.00780	mg/Kg
	n-Propylbenzene	0.0125U	0.0250	0.00780	mg/Kg
	o-Xylene	0.0125U	0.0250	0.00780	mg/Kg
	P & M -Xylene	0.0250U	0.0500	0.0150	mg/Kg
	sec-Butylbenzene	0.0125U	0.0250	0.00780	mg/Kg
	Styrene	0.0125U	0.0250	0.00780	mg/Kg
	tert-Butylbenzene	0.0125U	0.0250	0.00780	mg/Kg
	Tetrachloroethene	0.00625U	0.0125	0.00390	mg/Kg
	Toluene	0.0125U	0.0250	0.00780	mg/Kg
	trans-1,2-Dichloroethene	0.0125U	0.0250	0.00780	mg/Kg
	trans-1,3-Dichloropropene	0.00625U	0.0125	0.00390	mg/Kg
	Trichloroethene	0.00500U	0.0100	0.00310	mg/Kg
	Trichlorofluoromethane	0.0250U	0.0500	0.0150	mg/Kg
	Vinyl acetate	0.0500U	0.100	0.0310	mg/Kg
	Vinyl chloride	0.00500U	0.0100	0.00310	mg/Kg
	Xylenes (total)	0.0375U	0.0750	0.0228	mg/Kg
	Surrogates				
	1,2-Dichloroethane-D4 (surr)	106	71-136		%
	4-Bromofluorobenzene (surr)	110	55-151		%
	Toluene-d8 (surr)	105	85-116		%

Print Date: 09/27/2018 4:09:20PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 147755	Matrix	c: Soil/Solid (dry weight)		
QC for Samples: 1189757001, 118975700	02, 1189757003, 1189757004, 118	9757006			
Results by SW8260C					
Parameter	Results	LOQ/CL	DL	<u>Units</u>	
Batch Information					
Analyst: NRO		Prep Me Prep Da Prep Init	tch: VXX3316 ethod: SW503 te/Time: 9/21 ial Wt./Vol.: 5 tract Vol: 25 r	5A /2018 6:00:00AM i0 g	

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX33169] Blank Spike Lab ID: 1477560 Date Analyzed: 09/21/2018 19:39

Matrix: Soil/Solid (dry weight)

QC for Samples:

1189757001, 1189757002, 1189757003, 1189757004, 1189757006

Results by SW8260C

	B	lank Spike	(mg/Kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
1,1,1,2-Tetrachloroethane	0.750	0.773	103	(78-125)
1,1,1-Trichloroethane	0.750	0.754	101	(73-130)
1,1,2,2-Tetrachloroethane	0.750	0.774	103	(70-124)
1,1,2-Trichloroethane	0.750	0.796	106	(78-121)
1,1-Dichloroethane	0.750	0.710	95	(76-125)
1,1-Dichloroethene	0.750	0.742	99	(70-131)
1,1-Dichloropropene	0.750	0.784	104	(76-125)
1,2,3-Trichlorobenzene	0.750	0.695	93	(66-130)
1,2,3-Trichloropropane	0.750	0.817	109	(73-125)
1,2,4-Trichlorobenzene	0.750	0.720	96	(67-129)
1,2,4-Trimethylbenzene	0.750	0.789	105	(75-123)
1,2-Dibromo-3-chloropropane	0.750	0.756	101	(61-132)
1,2-Dibromoethane	0.750	0.780	104	(78-122)
1,2-Dichlorobenzene	0.750	0.781	104	(78-121)
1,2-Dichloroethane	0.750	0.780	104	(73-128)
1,2-Dichloropropane	0.750	0.775	103	(76-123)
1,3,5-Trimethylbenzene	0.750	0.802	107	(73-124)
1,3-Dichlorobenzene	0.750	0.790	105	(77-121)
1,3-Dichloropropane	0.750	0.866	115	(77-121)
1,4-Dichlorobenzene	0.750	0.780	104	(75-120)
2,2-Dichloropropane	0.750	0.709	95	(67-133)
2-Butanone (MEK)	2.25	2.24	100	(51-148)
2-Chlorotoluene	0.750	0.807	108	(75-122)
2-Hexanone	2.25	2.36	105	(53-145)
4-Chlorotoluene	0.750	0.802	107	(72-124)
4-Isopropyltoluene	0.750	0.792	106	(73-127)
4-Methyl-2-pentanone (MIBK)	2.25	2.19	97	(65-135)
Acetone	2.25	2.50	111	(36-164)
Benzene	0.750	0.774	103	(77-121)
Bromobenzene	0.750	0.793	106	(78-121)
Bromochloromethane	0.750	0.708	94	(78-125)
Bromodichloromethane	0.750	0.769	102	(75-127)
Bromoform	0.750	0.755	101	(67-132)
Bromomethane	0.750	0.776	103	(53-143)

Print Date: 09/27/2018 4:09:21PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX33169] Blank Spike Lab ID: 1477560 Date Analyzed: 09/21/2018 19:39

Matrix: Soil/Solid (dry weight)

QC for Samples:

1189757001, 1189757002, 1189757003, 1189757004, 1189757006

Results by SW8260C

	Blank Spike (mg/Kg)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Carbon disulfide	1.13	1.12	99	(63-132)
Carbon tetrachloride	0.750	0.780	104	(70-135)
Chlorobenzene	0.750	0.782	104	(79-120)
Chloroethane	0.750	0.810	108	(59-139)
Chloroform	0.750	0.778	104	(78-123)
Chloromethane	0.750	0.736	98	(50-136)
cis-1,2-Dichloroethene	0.750	0.713	95	(77-123)
cis-1,3-Dichloropropene	0.750	0.815	109	(74-126)
Dibromochloromethane	0.750	0.791	105	(74-126)
Dibromomethane	0.750	0.745	99	(78-125)
Dichlorodifluoromethane	0.750	0.708	94	(29-149)
Ethylbenzene	0.750	0.796	106	(76-122)
Freon-113	1.13	1.14	101	(66-136)
Hexachlorobutadiene	0.750	0.706	94	(61-135)
Isopropylbenzene (Cumene)	0.750	0.819	109	(68-134)
Methylene chloride	0.750	0.782	104	(70-128)
Methyl-t-butyl ether	1.13	1.17	104	(73-125)
Naphthalene	0.750	0.723	96	(62-129)
n-Butylbenzene	0.750	0.786	105	(70-128)
n-Propylbenzene	0.750	0.838	112	(73-125)
o-Xylene	0.750	0.803	107	(77-123)
P & M -Xylene	1.50	1.62	108	(77-124)
sec-Butylbenzene	0.750	0.814	109	(73-126)
Styrene	0.750	0.819	109	(76-124)
tert-Butylbenzene	0.750	0.808	108	(73-125)
Tetrachloroethene	0.750	0.820	109	(73-128)
Toluene	0.750	0.777	104	(77-121)
trans-1,2-Dichloroethene	0.750	0.730	97	(74-125)
trans-1,3-Dichloropropene	0.750	0.764	102	(71-130)
Trichloroethene	0.750	0.788	105	(77-123)
Trichlorofluoromethane	0.750	0.871	116	(62-140)
Vinyl acetate	0.750	0.758	101	(50-151)
Vinyl chloride	0.750	0.739	99	(56-135)
Xylenes (total)	2.25	2.43	108	(78-124)

Print Date: 09/27/2018 4:09:21PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

lank Spike Summary				
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 147756 Date Analyzed: 09/21/2018	0	[VXX33169	9]	
				Matrix: Soil/Solid (dry weight)
QC for Samples: 1189757	001, 118975	57002, 1189	9757003, 11897	757004, 1189757006
Results by SW8260C				
	P	lank Spike	(ma/Ka)	
Parameter	Spike	Result	Rec (%)	CL
		<u></u>		—
Gurrogates	0 750	03.3	03	(71_136)
Surrogates 1,2-Dichloroethane-D4 (surr)	0.750	93.3 109	93 109	(71-136)
Surrogates 1,2-Dichloroethane-D4 (surr) 4-Bromofluorobenzene (surr)	0.750 0.750 0.750	93.3 109 101	93 109 101	(55-151)
Surrogates 1,2-Dichloroethane-D4 (surr)	0.750	109	109	
Surrogates 1,2-Dichloroethane-D4 (surr) 4-Bromofluorobenzene (surr)	0.750	109	109	(55-151)
Surrogates 1,2-Dichloroethane-D4 (surr) 4-Bromofluorobenzene (surr) Toluene-d8 (surr) Batch Information	0.750	109	109	(55-151) (85-116)
Surrogates 1,2-Dichloroethane-D4 (surr) 4-Bromofluorobenzene (surr) Toluene-d8 (surr)	0.750	109	109	(55-151)
Surrogates 1,2-Dichloroethane-D4 (surr) 4-Bromofluorobenzene (surr) Toluene-d8 (surr) Batch Information Analytical Batch: VMS18342	0.750	109 101	109	(55-151) (85-116) Prep Batch: VXX33169

Print Date: 09/27/2018 4:09:21PM

-

Matrix Spike Summary

Original Sample ID: 1185289007 MS Sample ID: 1477561 MS MSD Sample ID: 1477562 MSD

Analysis Date: 09/21/2018 21:40 Analysis Date: 09/21/2018 20:14 Analysis Date: 09/21/2018 20:31 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757001, 1189757002, 1189757003, 1189757004, 1189757006

		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter I,1,1,2-Tetrachloroethane	<u>Sample</u> 0.0118U	<u>Spike</u> 0.313	<u>Result</u> 0.315	<u>Rec (%)</u> 101	<u>Spike</u> 0.313	<u>Result</u> 0.337	<u>Rec (%)</u> 107	<u>CL</u> 78-125	<u>RPD (%)</u> 6.50	<u>RPD (</u> (< 20)
,1,1-Trichloroethane	0.0147U	0.313	0.356	114	0.313	0.339	107	73-130	4.90	(< 20)
,1,2,2-Tetrachloroethane	0.00736U	0.313	0.315	101	0.313	0.325	100	70-124	2.90	(< 20
,1,2-Trichloroethane	0.00780U	0.313	0.325	104	0.313	0.340	109	78-124	4.80	(< 20
,1-Dichloroethane	0.0147U	0.313	0.332	104	0.313	0.315	100	76-125	5.20	(< 20
.1-Dichloroethene	0.0147U	0.313	0.360	115	0.313	0.340	108	70-131	5.90	(< 20
,1-Dichloropropene	0.0147U	0.313	0.370	118	0.313	0.355	113	76-125	4.30	(< 20
,2,3-Trichlorobenzene	0.0295U	0.313	0.301	96	0.313	0.308	99	66-130	2.40	(< 20
,2,3-Trichloropropane	0.0147U	0.313	0.336	107	0.313	0.342	109	73-125	1.90	(< 20
,2,4-Trichlorobenzene	0.0147U	0.313	0.309	99	0.313	0.313	100	67-129	1.10	(< 20
,2,4-Trimethylbenzene	0.0295U	0.313	0.343	109	0.313	0.337	108	75-123	1.70	(< 20
,2-Dibromo-3-chloropropane	0.0589U	0.313	0.324	103	0.313	0.324	103	61-132	0.14	(< 20
,2-Dibromoethane	0.00589U	0.313	0.316	101	0.313	0.333	106	78-122	5.30	(< 20
,2-Dichlorobenzene	0.0147U	0.313	0.325	104	0.313	0.328	105	78-121	0.80	(< 20
,2-Dichloroethane	0.00589U	0.313	0.345	110	0.313	0.332	106	73-128	3.90	(< 20
,2-Dichloropropane	0.00589U	0.313	0.341	109	0.313	0.332	106	76-123	2.50	(< 20
3,5-Trimethylbenzene	0.0147U	0.313	0.343	110	0.313	0.339	108	73-124	1.40	(< 20
,3-Dichlorobenzene	0.0147U	0.313	0.329	105	0.313	0.330	106	77-121	0.47	(< 20
,3-Dichloropropane	0.00589U	0.313	0.356	114	0.313	0.369	118	77-121	3.50	(< 20
,4-Dichlorobenzene	0.0147U	0.313	0.328	105	0.313	0.330	105	75-120	0.71	(< 20
,2-Dichloropropane	0.0147U	0.313	0.347	111	0.313	0.327	105	67-133	6.10	(< 20
-Butanone (MEK)	0.147U	0.939	0.936	100	0.939	0.940	100	51-148	0.45	(< 20
-Chlorotoluene	0.0147U	0.313	0.341	109	0.313	0.343	109	75-122	0.66	(< 20
-Hexanone	0.0589U	0.939	0.916	98	0.939	0.975	104	53-145	6.20	(< 20
-Chlorotoluene	0.0147U	0.313	0.340	109	0.313	0.338	108	72-124	0.75	(< 20
-Isopropyltoluene	0.0589U	0.313	0.339	108	0.313	0.336	107	73-127	1.20	(< 20
-Methyl-2-pentanone (MIBK)	0.147U	0.939	0.869	92	0.939	0.902	96	65-135	3.80	(< 20
cetone	0.147U	0.939	1.08	115	0.939	1.07	114	36-164	0.69	(< 20
enzene	0.00736U	0.313	0.344	110	0.313	0.339	108	77-121	1.50	(< 20
romobenzene	0.0147U	0.313	0.345	110	0.313	0.340	108	78-121	1.80	(< 20
romochloromethane	0.0147U	0.313	0.321	103	0.313	0.309	99	78-125	3.90	(< 20
romodichloromethane	0.0147U	0.313	0.340	109	0.313	0.328	105	75-127	3.60	(< 20
romoform	0.0147U	0.313	0.305	97	0.313	0.327	104	67-132	7.00	(< 20
romomethane	0.118U	0.313	0.382	122	0.313	0.357	114	53-143	6.90	(< 20
arbon disulfide	0.0589U	0.470	0.559	119	0.470	0.518	110	63-132	7.70	(< 20
Carbon tetrachloride	0.00736U	0.313	0.376	120	0.313	0.356	114	70-135	5.30	(< 20
Chlorobenzene	0.0147U	0.313	0.333	106	0.313	0.340	109	79-120	2.10	(< 20

Print Date: 09/27/2018 4:09:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1185289007 MS Sample ID: 1477561 MS MSD Sample ID: 1477562 MSD Analysis Date: 09/21/2018 21:40 Analysis Date: 09/21/2018 20:14 Analysis Date: 09/21/2018 20:31 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757001, 1189757002, 1189757003, 1189757004, 1189757006

		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	RPD (%)	RPD C
Chloroethane	0.118U	0.313	0.410	131	0.313	0.372	119	<u>59</u> -139	9.70	(< 20)
Chloroform	0.0147U	0.313	0.356	114	0.313	0.339	108	78-123	4.90	(< 20)
Chloromethane	0.0147U	0.313	0.369	118	0.313	0.340	108	50-136	8.50	(< 20)
cis-1,2-Dichloroethene	0.0147U	0.313	0.336	107	0.313	0.311	99	77-123	7.50	(< 20)
sis-1,3-Dichloropropene	0.00736U	0.313	0.355	113	0.313	0.349	111	74-126	1.60	(< 20)
Dibromochloromethane	0.0147U	0.313	0.327	104	0.313	0.341	109	74-126	4.40	(< 20
Dibromomethane	0.0147U	0.313	0.327	104	0.313	0.316	101	78-125	3.50	(< 20
Dichlorodifluoromethane	0.0295U	0.313	0.356	114	0.313	0.322	103	29-149	9.70	(< 20
Ethylbenzene	0.0147U	0.313	0.341	109	0.313	0.342	109	76-122	0.43	(< 20
Freon-113	0.0589U	0.470	0.544	116	0.470	0.518	110	66-136	5.00	(< 20)
lexachlorobutadiene	0.0118U	0.313	0.454	145 *	0.313	0.408	130	61-135	10.70	(< 20
sopropylbenzene (Cumene)	0.0147U	0.313	0.342	109	0.313	0.349	111	68-134	1.90	(< 20
/lethylene chloride	0.0589U	0.313	0.367	117	0.313	0.350	112	70-128	4.70	(< 20
/lethyl-t-butyl ether	0.0589U	0.470	0.473	101	0.470	0.494	105	73-125	4.30	(< 20
laphthalene	0.0147U	0.313	0.295	94	0.313	0.313	100	62-129	5.70	(< 20
-Butylbenzene	0.0147U	0.313	0.357	114	0.313	0.342	109	70-128	4.30	(< 20
-Propylbenzene	0.0147U	0.313	0.353	113	0.313	0.357	114	73-125	1.20	(< 20
-Xylene	0.0147U	0.313	0.337	108	0.313	0.345	110	77-123	2.50	(< 20
P & M -Xylene	0.0295U	0.626	0.681	109	0.626	0.693	111	77-124	1.60	(< 20
ec-Butylbenzene	0.0147U	0.313	0.346	111	0.313	0.345	110	73-126	0.30	(< 20
Styrene	0.0147U	0.313	0.349	111	0.313	0.350	111	76-124	0.17	(< 20
ert-Butylbenzene	0.0147U	0.313	0.344	110	0.313	0.347	111	73-125	0.84	(< 20
etrachloroethene	0.00736U	0.313	0.342	109	0.313	0.367	117	73-128	7.20	(< 20
oluene	0.0147U	0.313	0.332	106	0.313	0.340	108	77-121	2.10	(< 20
rans-1,2-Dichloroethene	0.0147U	0.313	0.337	107	0.313	0.330	105	74-125	2.00	(< 20
rans-1,3-Dichloropropene	0.00736U	0.313	0.318	102	0.313	0.334	107	71-130	4.90	(< 20
richloroethene	0.00589U	0.313	0.359	115	0.313	0.350	112	77-123	2.50	(< 20
richlorofluoromethane	0.0295U	0.313	0.610	195 *	0.313	0.502	160 *	62-140	19.50	(< 20
/inyl acetate	0.0589U	0.313	0.329	105	0.313	0.327	104	50-151	0.91	(< 20
/inyl chloride	0.00589U	0.313	0.379	121	0.313	0.340	109	56-135	10.80	(< 20
(vlenes (total)	0.0442U	0.939	1.02	108	0.939	1.04	110	78-124	1.90	(< 20
Surrogates										
I,2-Dichloroethane-D4 (surr)		0.313	0.300	96	0.313	0.287	92	71-136	4.60	
4-Bromofluorobenzene (surr)		0.522	0.295	57	0.522	0.288	55	55-151	2.80	
Toluene-d8 (surr)		0.313	0.314	100	0.313	0.320	102	85-116	2.00	

Print Date: 09/27/2018 4:09:22PM

SGS North America Inc.

Matrix Spike Summary										
Original Sample ID: 1185 MS Sample ID: 1477561 MSD Sample ID: 147756	1 MS	02, 118975	57003, 118	9757004, 11	Analysis Matrix:	Date: 09 Date: 09 Soil/Solid	9/21/2018 9/21/2018 (dry weigl	20:31		
Results by SW8260C										
	Sample	N <u>Spike</u>	latrix Spike <u>Result</u>	e (%) Rec (%)		ke Duplica				
<u>Parameter</u>				<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL

- Method Blank					
Blank ID: MB for HBN 1786607 Blank Lab ID: 1477630	[VXX/33175]	Matrix	:: Soil/Solid (di	ry weight)	
QC for Samples: 1189757005					
Results by AK101					
Parameter Gasoline Range Organics	<u>Results</u> 1.25U	<u>LOQ/CL</u> 2.50	<u>DL</u> 0.750	<u>Units</u> mg/Kg	
Surrogates 4-Bromofluorobenzene (surr)	83.4	50-150		%	
Batch Information					
Analytical Batch: VFC14450 Analytical Method: AK101 Instrument: Agilent 7890A PID Analyst: ST Analytical Date/Time: 9/21/201		Prep Me Prep Da Prep Init	tch: VXX33175 thod: SW5035, te/Time: 9/21/2 ial Wt./Vol.: 50 tract Vol: 25 mL	A 2018 8:00:00AM g	

Print Date: 09/27/2018 4:09:23PM

Blank	Spike	Summary
-------	-------	---------

Blank Spike ID: LCS for HBN 1189757 [VXX331754 Blank Spike La] ID: 1b77631 Date Analyzed: 09/21/2018 11:58 Spike Duplicate ID: LCSD for HBN 1189757 [VXX331754 Spike Duplicate La] ID: 1b77632 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757005

Results] y AK101			_						
	E	Blank Spike	(mg/Kg)	S	oike Duplica	ate (mg/Kg)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	11.5	92	12.5	11.9	95	(60-120)	3.50	(< 20)
Surrogates									
b-Bromofluoro] enzene (surr)	1.25	92.3	92	1.25	9b.b	9b	(50-150)	2.20	
Batch Information Analytical Batch: VFC14470 Analytical Method: AK101 Instrument: Agilent 89P0A DI/ Analyst: SX	TFI/			Pre Pre Spil	e Init Wt./\	S5 70W7A e: 0P1211201 /ol.: 12.5 mg	9 09:00 g/Kg Extrac		

Print Date: 09/27/2018 b:09:2bPM

Method Blank

Blank ID: MB for HBN 1786700 [VXX/33188] Blank Lab ID: 1478066

QC for Samples: 1189757005

Results by SW8260C

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.00625U	0.0125	0.00390	mg/Kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
o-Xylene	0.0125U	0.0250	0.00780	mg/Kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/Kg
Toluene	0.0125U	0.0250	0.00780	mg/Kg
Xylenes (total)	0.0375U	0.0750	0.0228	mg/Kg
Sf uor ateg				
1,2-Dichloroethane-D4 (surr)	109	71-136		%
4-Bromofluorobenzene (surr)	108	55-151		%
Toluene-d8 (surr)	98.4	85-116		%

Batsh onloumation

Analytical Batch: VMS18358 Analytical Method: SW8260C Instrument: VQA 7890/5975 GC/MS Analyst: NRO Analytical Date/Time: 9/24/2018 7:52:00PM Prep Batch: VXX33188 Prep Method: SW5035A Prep Date/Time: 9/24/2018 6:00:00AM Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Matrix: Soil/Solid (dry weight)

Print Date: 09/27/2018 4:09:25PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX33188] Blank Spike Lab ID: 1478067 Date Analyzed: 09/24/2018 20:08

Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757005

Results by SW8260C

	E	Blank Spike	(mg/Kg)
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>
Benzene	0.750	0.755	101
Ethylbenzene	0.750	0.758	101
o-Xylene	0.750	0.746	100
P & M -Xylene	1.50	1.49	99
Toluene	0.750	0.719	96
Xylenes (total)	2.25	2.23	99
Surrogates			
1,2-Dichloroethane-D4 (surr)	0.750	94.9	95
4-Bromofluorobenzene (surr)	0.750	111	111
Toluene-d8 (surr)	0.750	102	102

Batch Information

Analytical Batch: VMS18358 Analytical Method: SW8260C Instrument: VQA 7890/5975 GC/MS Analyst: NRO Prep Batch: VXX33188 Prep Method: SW5035A Prep Date/Time: 09/24/2018 06:00 Spike Init Wt./Vol.: 0.750 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/27/2018 4:09:27PM

Matrix Spike Summary

Original Sample ID: 1185408005 MS Sample ID: 1478068 MS MSD Sample ID: 1478069 MSD Analysis Date: 09/24/2018 21:47 Analysis Date: 09/24/2018 20:25 Analysis Date: 09/24/2018 20:41 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757005

Results by SW8260C

		Mati	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	0.0108U	1.30	1.19	92	1.30	1.17	91	77-121	1.70	(< 20)
Ethylbenzene	0.0216U	1.30	1.19	92	1.30	1.15	89	76-122	2.80	(< 20)
o-Xylene	0.0216U	1.30	1.18	91	1.30	1.13	87	77-123	4.70	(< 20)
P & M -Xylene	0.0432U	2.60	2.35	91	2.60	2.25	87	77-124	4.50	(< 20)
Toluene	0.0216U	1.30	1.11	85	1.30	1.09	84	77-121	1.20	(< 20)
Xylenes (total)	0.0650U	3.89	3.54	91	3.89	3.37	87	78-124	4.60	(< 20)
Surrf oateg										
1,2-Dichloroethane-D4 (surr)		1.30	1.24	96	1.30	1.24	96	71-136	0.00	
4-Bromofluorobenzene (surr)		1.57	1.46	93	1.57	1.45	92	55-151	0.49	
Toluene-d8 (surr)		1.30	1.32	102	1.30	1.31	101	85-116	0.24	

satBchinfrmatifl

Analytical Batch: VMS18358 Analytical Method: SW8260C Instrument: VQA 7890/5975 GC/MS Analyst: NRO Analytical Date/Time: 9/24/2018 8:25:00PM Prep Batch: VXX33188 Prep Method: Vol. Extraction SW8260 Field Extracted L Prep Date/Time: 9/24/2018 6:00:00AM Prep Initial Wt./Vol.: 49.12g Prep Extract Vol: 34.39mL

Print Date: 09/27/2018 4:09:28PM

Method Blank

Blank ID: MB for HBN 1786707 [VXX/33] L3b Blank 4aQID: 1C78CS6

mp for eas 9l5t: 11807S7LL7

u 5t Ulit QwSW8260C

z aras 5i5r	u 5t Uit	4Pm/p4	<u>D4</u>	Onxit
B5n. 5n5	L2.L6] SO	L2.1] S	L2LL30L	s h/Kh
		-		
Ei)wlQ5n.5n5	L2_1] SO	L2_] SL	L2_L78L	s h/Kh
o-Xwl5n5	L2_1] SO	L2_] SL	L2_L78L	s h/Kh
z & M -Xwł5n5	L2L] SLO	L2_SLL	L2_1SL	s h/Kh
TolU5n5	L2_1] SO	L2_] SL	L2_L78L	s h/Kh
Xwl5n5t yioialR	L2_37SO	L2_7SL	L 2]]8	s h/Kh
Sf uor ateg				
1,] -Dx) loro5i) an5-DC yt UrrR	0723	71-136		%
C-Bros oflUoroQ5n. 5n5 yt UrrR	1LC	SS-1S1		%
TolU5n5-(8 yt UrrR	0028	8S-116		%

Batsh onloumation

Analwixal Baic): VMe18368 Analwixal M5i) o(: eW8] 6Lp Int irUs 5ni: Vu A Ahx5ni Gp/Me 780LB/S077A Analwt i: Nu P Analwixal Dai5/Txs 5: 0/] S/] L18 11:L7:LLAM z r59 Baic): VXX33] L3 z r59 M5i) o(: eWSL3SA z r59 Dai5/Txs 5: 0/] S/] L18 6:LL:LLAM z r59 Inixal Wi2Vol2 SL h z r59 Ediraci Vol:] S s 4

Mairxd: eoxl/eolx(y(rwg5xh)iR

z rxni Dai5: L0/] 7/] L18 C.L0:] 0z M

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [VXX33] b34 Blank Spike La0 ID: 1678657 Date Analyzed: b9/] 5/] b18 1] :] b

u atriM Soil/Solid xdry (eiwgth

KC for SaP pleR 1189757bb7

2 eRsltR0y SW8260C

	E	Blank Spike	xPw/%wh
) araP eter	Spike	<u>2 eRslt</u>	<u>2 emxch</u>
Benzene	bQ5b	bQ8-	9]
Etgyl0enzene	bQ5b	bQ-6	89
o.Xylene	bQ5b	bQ69	87
) & u .Xylene	1 G b	1 Q 9	8-
Tolsene	bQ5b	bQ33	86
XyleneRxtotalh] Q 5	1 @ 6	8-
Surrogates			
1,].Dingloroetgane.D6 xRsrrh	bQ75b	91Q	9]
6.BroP oflsoro0enzene xRsrrh	bQ75b	1b]	1b]
Tolsene.d8 xRsrrh	bQ5b	99 Q	99

Batch Information

Analytinal Batng: VMS18368 Analytinal u etgod: SW8260C InRrsPent: VRA Agilent GC/MS 7890B/5977A AnalyR: NRO) rep Batng: VXX33203) rep u etgod: SW5035A) rep Date/TiP e: 09/25/2018 06:00 Spike Init WtQ/olQ bQ5b P w/%w EMrant Vol:] 5 P L Dspe Init WtQ/olQ EMrant Vol:

) rint Date: b9/] 7/] b18 6:b9:3b) u

Matrix Spike Summary

Original Sample ID: 1854850 MS Sample ID: 1854874 MS MSD Sample ID: 1854876 MSD 9nalAyiy Dase: 06t/ 7t/ 014 15:1/ 9nalAyiy Dase: 06t/ 7t/ 014 18:78 9nalAyiy Dase: 06t/ 7t/ 014 17:06 Masri2: SxiltSxlio cbrA(eigwsh

c Q &r Sampley: 1146575005

) eyRlsy uA SW8260C

		Mas	ri2 Spibe ch	ngtk gh		Spibe	DRpliKase	dngtk gh			
<u>f arameær</u>	Sample	Spibe	<u>) eyRis</u>	<u>) eKc</u>	<u> Ph</u>	Spibe	<u>) eyRls</u>	<u>) eK dP h</u>	<u>Q%</u>	<u>) fD dP h</u>	<u>) f D Q%</u>
LenBene	0z08.63	7z 8	7z05	60		7z 8	7⊿ 4	68	55U/1	8 z / 0	d-/0h
<swauenbene< th=""><th>1z60</th><th>7z 8</th><th>. z78</th><th>4/</th><th></th><th>7z 8</th><th>. z6/</th><th>46</th><th>5.UI//</th><th>7z 0</th><th>d-/0h</th></swauenbene<>	1 z 60	7z 8	. z78	4/		7z 8	. z6/	46	5.UI//	7z 0	d-/0h
xUEAlene	7z17	7z 8	6zX/	58	*	7z 8	6z67	47	55U/X	. <i>z</i> 70	d-/0h
f & M UEAlene	1. z0	11 <i>z</i> X	/ / z5	76	*	11 z X	/ 87	5X *	55U/8	. z 0	d-/0h
TxIRene	0z06X73	7z 8	8z5/	48		7z 8	8z68	44	55U/1	8 z 50	d-/0h
EAleney daxsalh	/ 1 z 1	1. z6	X/ z0	. 8	*	1. z 6	X8z	55 *	54U/8	. <i>z</i> 70	d-/0h
Surrf oateg											
1,/UDiKwlxrxeswaneUD8 dyRrrh		7z 8	7z/ 1	6/		7z 8	7 <i>z</i> X1	68	51UX.	1 <i>z</i> 40	
8ULrxmx0RxrxuenBene dyRrrh		1z1X	1z04	6.		1z1X	1 z 06	6.	77U/71	0z55	
TxIRenelø4 dyRrrh		7z 8	7z74	66		7z 8	7z /	100	47UI1.	0z 6	

satBchinfrmatifl

9 nalAsiKal Laskw. VMS14X. 4 9 nalAsiKal Meswxo: SW4/.0Q InysrRmens V) 9 9 gilens GQtMS 5460Lt76559 9 nalAys N) O 9 nalAsiKal DasetTime: 6t/7t/014 /:78:00f M f rep Laskw. VEEXX/ 0X f rep Meswo: VxIz<2sraKsxn SW4/.0 Fielo <2sraKseo % f rep DasetTime: 6t/ 7t/ 014 .:00:009M f rep Inisal WstVxIz 77zX6g f rep <2sraKsVxI: 81z7/ m%

f rinsDase: 06t/ 5t/ 014 8:06:X/ f M

Method Blank

Blank ID: MB for HBN 1785978 [XXX/40469] Blank Lab ID: 1475021

QC for Samples: 1189757002

Results by 8270D SIM (PAH)

Parameter	Results	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/Kg
2-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/Kg
Acenaphthene	0.0125U	0.0250	0.00625	mg/Kg
Acenaphthylene	0.0125U	0.0250	0.00625	mg/Kg
Anthracene	0.0125U	0.0250	0.00625	mg/Kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00625	mg/Kg
Benzo[a]pyrene	0.0125U	0.0250	0.00625	mg/Kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00625	mg/Kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00625	mg/Kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00625	mg/Kg
Chrysene	0.0125U	0.0250	0.00625	mg/Kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00625	mg/Kg
Fluoranthene	0.0125U	0.0250	0.00625	mg/Kg
Fluorene	0.0125U	0.0250	0.00625	mg/Kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00625	mg/Kg
Naphthalene	0.0100U	0.0200	0.00500	mg/Kg
Phenanthrene	0.0125U	0.0250	0.00625	mg/Kg
Pyrene	0.0125U	0.0250	0.00625	mg/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	77.6	58-103		%
Fluoranthene-d10 (surr)	77.4	54-113		%

Batch Information

Analytical Batch: XMS11088 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: BMZ Analytical Date/Time: 9/20/2018 3:16:00PM Prep Batch: XXX40469 Prep Method: SW3550C Prep Date/Time: 9/19/2018 8:34:32AM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Matrix: Soil/Solid (dry weight)

Print Date: 09/27/2018 4:09:33PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189757 [XXX40469] Blank Spike Lab ID: 1475022 Date Analyzed: 09/20/2018 15:36

Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757002

Results by 8270D SIM (PAH)

	E	Blank Spike	(mg/Kg)	
Parameter	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	0.111	0.0830	75	(43-111)
2-Methylnaphthalene	0.111	0.0796	72	(39-114)
Acenaphthene	0.111	0.0943	85	(44-111)
Acenaphthylene	0.111	0.0866	78	(39-116)
Anthracene	0.111	0.0962	87	(50-114)
Benzo(a)Anthracene	0.111	0.0866	78	(54-122)
Benzo[a]pyrene	0.111	0.0880	79	(50-125)
Benzo[b]Fluoranthene	0.111	0.0926	83	(53-128)
Benzo[g,h,i]perylene	0.111	0.0947	85	(49-127)
Benzo[k]fluoranthene	0.111	0.0985	89	(56-123)
Chrysene	0.111	0.0931	84	(57-118)
Dibenzo[a,h]anthracene	0.111	0.0975	88	(50-129)
Fluoranthene	0.111	0.0858	77	(55-119)
Fluorene	0.111	0.0894	81	(47-114)
Indeno[1,2,3-c,d] pyrene	0.111	0.0954	86	(49-130)
Naphthalene	0.111	0.0782	70	(38-111)
Phenanthrene	0.111	0.0918	83	(49-113)
Pyrene	0.111	0.0893	80	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	0.111	79.5	80	(58-103)
Fluoranthene-d10 (surr)	0.111	78.9	79	(54-113)

Batch Information

Analytical Batch: XMS11088 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: BMZ Prep Batch: XXX40469 Prep Method: SW3550C Prep Date/Time: 09/19/2018 08:34 Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/27/2018 4:09:35PM

Matrix Spike Summary

Original Sample ID: 1185180003 MS Sample ID: 1476238 MS MSD Sample ID: 1476239 MSD Analysis Date: 09/20/2018 15:57 Analysis Date: 09/20/2018 16:17 Analysis Date: 09/20/2018 16:38 Matrix: Soil/Solid (dry weight)

QC for Samples: 1189757002

Results by 8270D SIM (PAH)

		Mati	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	0.590U	1.04	0.747J	72	0.987	0.719J	73	43-111	3.60	(< 20)
2-Methylnaphthalene	0.590U	1.04	0.694J	67	0.987	0.688J	70	39-114	0.84	(< 20)
Acenaphthene	0.590U	1.04	0.863J	83	0.987	0.842J	85	44-111	2.70	(< 20)
Acenaphthylene	0.590U	1.04	0.842J	81	0.987	0.888J	90	39-116	5.50	(< 20)
Anthracene	0.590U	1.04	0.816J	79	0.987	0.814J	83	50-114	0.28	(< 20)
Benzo(a)Anthracene	0.590U	1.04	0.759J	73	0.987	0.753J	76	54-122	0.88	(< 20)
Benzo[a]pyrene	0.590U	1.04	0.800J	77	0.987	0.781J	79	50-125	2.30	(< 20)
Benzo[b]Fluoranthene	0.590U	1.04	0.833J	80	0.987	0.821J	83	53-128	1.40	(< 20)
Benzo[g,h,i]perylene	0.590U	1.04	0.823J	79	0.987	0.806J	82	49-127	2.10	(< 20)
Benzo[k]fluoranthene	0.590U	1.04	0.861J	83	0.987	0.863J	88	56-123	0.24	(< 20)
Chrysene	0.590U	1.04	0.814J	78	0.987	0.808J	82	57-118	0.56	(< 20)
Dibenzo[a,h]anthracene	0.590U	1.04	0.871J	84	0.987	0.871J	88	50-129	0.02	(< 20)
Fluoranthene	0.590U	1.04	0.709J	68	0.987	0.696J	71	55-119	2.00	(< 20)
Fluorene	0.590U	1.04	0.835J	81	0.987	0.842J	85	47-114	0.67	(< 20)
Indeno[1,2,3-c,d] pyrene	0.590U	1.04	0.871J	84	0.987	0.854J	87	49-130	1.80	(< 20)
Naphthalene	0.473U	1.04	0.669J	65	0.987	0.652J	66	38-111	2.60	(< 20)
Phenanthrene	0.590U	1.04	0.797J	77	0.987	0.802J	81	49-113	0.48	(< 20)
Pyrene	0.590U	1.04	0.743J	72	0.987	0.728J	74	55-117	1.90	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.04	0.827	80	0.987	0.802	81	58-103	3.20	
Fluoranthene-d10 (surr)		1.04	0.747	72	0.987	0.736	75	54-113	1.50	

Batch Information

Analytical Batch: XMS11088 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: BMZ Analytical Date/Time: 9/20/2018 4:17:00PM

Prep Batch: XXX40469 Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml Prep Date/Time: 9/19/2018 8:34:32AM Prep Initial Wt./Vol.: 5.08g Prep Extract Vol: 5.00mL

Print Date: 09/27/2018 4:09:35PM

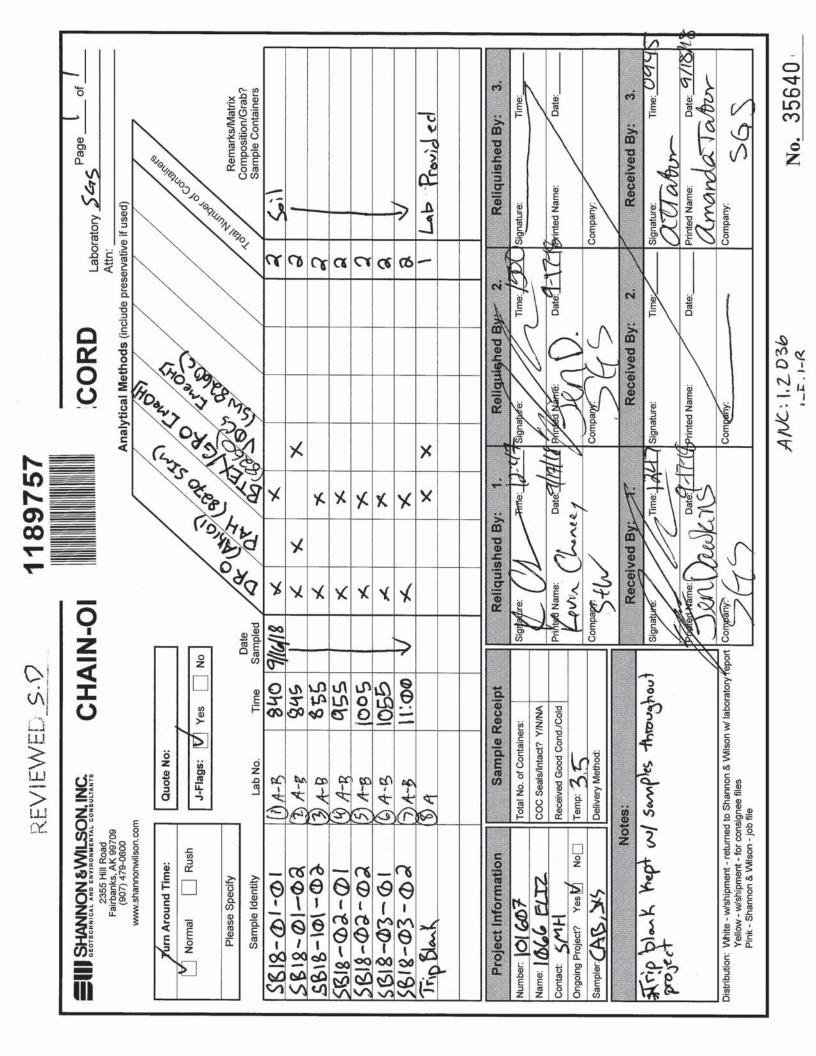
SGS North America Inc.

		7			
esults by AK102 arameter iesel Range Organics	<u>Results</u> 10.0U	LOQ/CL 20.0	<u>DL</u> 6.20	<u>Units</u> mg/Kg	
irrogates a Androstane (surr)	82.6	60-120		%	
tch Information					
Analytical Batch: XFC1461 Analytical Method: AK102 Instrument: Agilent 7890B Analyst: CMS Analytical Date/Time: 9/19/	R	Prep Me Prep Da Prep Init	tch: XXX40510 thod: SW35500 te/Time: 9/18/2 ial Wt./Vol.: 30 tract Vol: 5 mL	C 018 8:32:12PM	

Print Date: 09/27/2018 4:09:37PM

	E	Blank Spike	xPw0%wh	S	pike D2pliu	ate xP w0%wh	1		
<u>) araP eter</u>	<u>Spike</u>	<u>c eR2lt</u>	<u>c eu xmh</u>	<u>Spike</u>	<u>c eR2lt</u>	<u>c eu xmh</u>	CL	<u>c)Dxmh</u>	<u>c) D C</u>
DieRel c anwe GrwaniuR	8/ /	8b9	13X	8/ /	877	135	x75Cl65 h	3-95	x 63 h
Surrogates									
5a AndroRtane xR2rrh	1b-7	135	135	1b-7	13b	13b	xb3Cl63 h	1-33	
Batch Information									
Analytiual Batug: XFC14618 Analytiual s etgod: AK102					p Batug: X p s etgod:				
InRtr2P ent: Agilent 7890B R						e: 09/18/20	18 20:32		
AnalyRt: CMS							NO% EMtraut		
				DZ	Se mit i t-o	NOI 0// PV	v0‰v EMiraut∖	NOI. SPL	
) rint Date: 3906706318 X:39:/ 9) s									
· · · · · · · · · · · · · · · · · · ·	1623		er Dri, e Anuç		%0551 <u>8</u>				
Sv S Nortg AP eriua I			er Dri, e Anuç / f 937-5b1-5			b			

Blank Spike Summary


Blank Spike ID: LCS for HBN 1189757 [VVVX35134 Blank Spike La] ID: 1X7b61b Date Analyzed: 3901906318 1/:53

Spike D2pliuate ID: LCSD for HBN 1189757 [VVVX35134 Spike D2pliuate La] ID: 1X7b617 s atriM Soil@Solid xdry (eiwgth

KC for SaP pleR 1189757331Q1189757336Q118975733/Q118975733XQ1189757335Q118975733bQ1189757337

c eR2ltR] y AK102

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Were custody seals intact? Note # & location, if applicable. Yes No M/A Exemption permitted if sampler hand carries/delivers. COC accompanied samples? Yes No N/A Exemption permitted if carries/delivers. Temperature blank compliant* (i.e., 0-6°C) Yes No N/A Exemption permitted if chilled & carries/delivers. If < 0°C, were all sample containers ice free? Yes No N/A Exemption permitted if chilled & collected <8 hrs ago Cooler ID: @ S w/Therm. ID: Yes No N/A Exemption permitted if chilled & collected <8 hrs ago Cooler ID: @ w/Therm. ID: Yes No N/A Exemption permitted if chilled & collected <8 hrs ago Cooler ID: @ w/Therm. ID: Horder Horder Horder Horder Cooler ID: @ w/Therm. ID: Horder Horder Horder Horder Cooler ID: @ w/Therm. ID: Horder Horder Horder Horder
COC accompanied samples? Crest No N/A Temperature blank compliant* (i.e., 0-6°C) Yes No N/A If >6°C, were samples collected <8 hours ago?
If >6°C, were samples collected <8 hours ago?
$\begin{array}{c} \text{If } > 6 \text{ C, were samples contected } < 8 \text{ hours ago}; \\ \text{If } < 0^{\circ}\text{C, were all sample containers ice free}? \\ \text{Cooler ID:} \\ \hline \hline @ \\ \hline \end{array} \\ \text{w/Therm. ID:} \\ \hline \hline \hline \\ \hline \end{array} \\ \begin{array}{c} \text{Fes} & \text{No} \\ \hline & \text{ATA} \\ \text{Yes} & \text{No} \\ \hline \hline & \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{No} \\ \hline & \text{ATA} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{No} \\ \hline \end{array} \\ \begin{array}{c} \text{ATA} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{No} \\ \hline \end{array} \\ \begin{array}{c} \text{ATA} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{No} \\ \hline \end{array} \\ \begin{array}{c} \text{ATA} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \hline \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Yes} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\
Cooler ID:
Cooler ID:w/Therm. ID:
Cooler (1): (a) xu/ [herm [1]:
Cooler ID:
Cooler ID: @w/Therm. ID:
If samples are received without a temperature blank, the "cooler temperature" will be documented in lieu of the temperature blank and "COOLER TEMP" will be noted to Note: Identify containers received at
the right. In cases where neither a temp blank nor cooler temp can be obtained, note
ambient () or chilled (). Please check one. FS-0029 if more space is needed.
Delivery Method; (High carried) Other: Tracking/AB# :
Or see attached
OrtVA
→For samples received with payment, note amount (\$) and whether cash / check / CC (circle one) was received.
Were samples in good condition (no leaks/cracks/breakage)? No N/A Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap Anchorage without inspection by SGS Fairbanks personnel.
Separate plastic bags Vermiculite Other:
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?
For RUSH/SHORT Hold Time, were COC/Bottles flagged Yes No 41/A
accordingly? Was Rush/Short HT email sent, if applicable? Yes No
Additional notes (if applicable):

Profile #: Need New

Note to Client: any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

-

e-Sam<u>ple Receipt Form</u>

SGS	SGS Workorder #:	1	1897	57		
Re	view Criteria	Condition (Yes,	No, N/A	Exce	eptions Not	ed below
Chain o	of Custody / Temperature Require	rements	N	A Exemption per	rmitted if samp	ler hand carries/delivers.
	Were Custody Seals intact? Note # &	location YES	1F 1B			
	COC accompanied sa	amples? YES				
	N/A **Exemption permitted if	chilled & colle	cted <8 hou			
		YES	Cooler ID:	1	@	1.2 °C Therm. ID: D36
_		N/A	Cooler ID:		@	°C Therm. ID:
Temperat	ture blank compliant* (i.e., 0-6 °C afte		Cooler ID:		@	°C Therm. ID:
		N/A	Cooler ID:		@	°C Therm. ID:
*16 . (N/A	Cooler ID:		@	°C Therm. ID:
<i>"11 >C</i>	6°C, were samples collected <8 hours	s ago? N/A				
	If <0°C, were sample containers ice	e free? N/A				
temperature" will be do "COOLER TEMP" will be	ved <u>without</u> a temperature blank, the ' cumented in lieu of the temperature b noted to the right. In cases where ne oler temp can be obtained, note "ambi "c	olank & either a				
	ers received at non-compliant temper Use form FS-0029 if more space is no					
	Documentation / Sample Condition Re Were samples received within holding		Note: Refer	to form F-083 "S	ample Guide"	for specific holding times.
Do samples match CO	C** (i.e.,sample IDs,dates/times colle	ected)? YES				
**Note: If times	s differ <1hr, record details & login per	r COC.				
Were analyses requested	unambiguous? (i.e., method is specif analyses with >1 option for an					
			N	A ***Exemption	permitted for m	netals (e.g,200.8/6020A).
Were proper containe	rs (type/mass/volume/preservative***))used? YES				
	<u>Volatile / LL-Hg Req</u>	uirements				
Were Trip Blanks	(i.e., VOAs, LL-Hg) in cooler with sar	mples? YES				
Were all water VOA via	Is free of headspace (i.e., bubbles \leq 0	6mm)? N/A				
Were all	soil VOAs field extracted with MeOH	+BFB? YES				
Note to Clie	ent: Any "No", answer above indicates nor	n-compliance	with standar	d procedures and	I may impact d	ata quality.
	Additiona	al notes (if a	pplicable)	:		

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1189757001-A 1189757001-B 1189757002-A 1189757002-B 1189757003-A 1189757003-B 1189757003-B 1189757004-A 1189757005-A 1189757005-B 1189757006-B 1189757006-B 1189757007-A 1189757007-B 1189757007-B	No Preservative Required Methanol field pres. 4 C No Preservative Required Methanol field pres. 4 C	ОК ОК ОК ОК ОК ОК ОК ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707

Report Number: **1189758**

Client Project: 101607 1066 ELIZ

Dear Sheila Hinckley,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 09/24/2018 3:35:46PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1189758 Project Name/Site: 101607 1066 ELIZ Project Contact: Sheila Hinckley

Refer to sample receipt form for information on sample condition.

TWP18-01 (1189758001) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene-d10 and Fluoranthene-d10 do not meet QC criteria due to matrix interference.

TWP18-101 (1189758002) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/24/2018 3:35:47PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	Report of Manual Integrations									
Laboratory ID	Client Sample ID	Analytical Batch	Analyte	Reason						
SW8260C										
1189758001	TWP18-01	VMS18329	4-Isopropyltoluene	SP						
1189758001	TWP18-01	VMS18329	Chloromethane	RSP						
1476654	1185195008(1476653MS)	VMS18329	Chloromethane	RSP						
1476655	1185195008(1476653MSD)	VMS18329	Chloromethane	RSP						

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 09/24/2018 3:35:47PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 09/24/2018 3:35:48PM

Sample Summary Client Sample ID Lab Sample ID Matrix **Collected Received** Water (Surface, Eff., Ground) TWP18-01 1189758001 09/16/2018 09/18/2018 TWP18-101 1189758002 09/16/2018 09/18/2018 Water (Surface, Eff., Ground) TWP18-02 1189758003 09/16/2018 09/18/2018 Water (Surface, Eff., Ground) TWP18-03 1189758004 09/16/2018 09/18/2018 Water (Surface, Eff., Ground) Trip Blank 1189758005 09/16/2018 09/18/2018 Water (Surface, Eff., Ground) Method Method Description 8270 PAH SIM GC/MS Liq/Liq ext. LV 8270D SIM LV (PAH) AK102 DRO Low Volume (W)

AK102 AK101 SW8260C SW8260C Method Description 8270 PAH SIM GC/MS Liq/Liq ext. LV DRO Low Volume (W) Gasoline Range Organics (W) Volatile Organic Compounds (W) Volatile Organic Compounds (W) FULL

Print Date: 09/24/2018 3:35:49PM

Detectable Results Summary

Client Sample ID: TWP18-01 Lab Sample ID: 1189758001	Parameter	Docult	Lipito
-		<u>Result</u> 2.27	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene 2-Methylnaphthalene	1.51	ug/L
		2.10	ug/L
	Acenaphthene	3.54	ug/L
	Naphthalene		ug/L
	Phenanthrene	0.755	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	35.0	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	16.4	ug/L
	1,3,5-Trimethylbenzene	7.95	ug/L
	2-Butanone (MEK)	4.63J	ug/L
	4-Isopropyltoluene	1.38	ug/L
	Benzene	2.17	ug/L
	Chloromethane	0.530J	ug/L
	Ethylbenzene	7.52	ug/L
	Isopropylbenzene (Cumene)	3.04	ug/L
	Naphthalene	16.5	ug/L
	n-Propylbenzene	4.95	ug/L
	o-Xylene	0.320J	ug/L
	P & M -Xylene	7.03	ug/L
	sec-Butylbenzene	1.57	ug/L
	Xylenes (total)	7.35	ug/L
Client Sample ID: TWP18-101			
Lab Sample ID: 1189758002	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	37.4	mg/L
Volatile Fuels	Gasoline Range Organics	0.683	mg/L
Volatile GC/MS	Benzene	2.69	ug/L
	Ethylbenzene	9.12	ug/L
	o-Xylene	0.360J	ug/L
	P & M -Xylene	8.52	ug/L
	Xylenes (total)	8.88	ug/L
Client Sample ID: TWP18-02			•
Lab Sample ID: 1189758003	Deveryorken	Desult	1.1 14
•	Parameter Dissel Parago Organico	<u>Result</u> 1.39	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics Gasoline Range Organics	0.0866J	mg/L
Volatile Fuels			mg/L
Volatile GC/MS	Benzene	0.600	ug/L
	Ethylbenzene	0.750J	ug/L
	o-Xylene	7.32	ug/L
	P & M -Xylene	1.00J	ug/L
	Xylenes (total)	8.32	ug/L
Client Sample ID: TWP18-03			
Lab Sample ID: 1189758004	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	4.92	mg/L
Volatile Fuels	Gasoline Range Organics	0.111	mg/L
Volatile GC/MS	o-Xylene	0.450J	ug/L

Print Date: 09/24/2018 3:35:50PM

SGS North America Inc.

Results of TWP18-01

Client Sample ID: **TWP18-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758001 Lab Project ID: 1189758 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1-Methylnaphthalene	2.27	0.0463	0.0139	ug/L	1		09/23/18 13:34
2-Methylnaphthalene	1.51	0.0463	0.0139	ug/L	1		09/23/18 13:34
Acenaphthene	2.10	0.0463	0.0139	ug/L	1		09/23/18 13:34
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/23/18 13:34
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/23/18 13:34
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Naphthalene	3.54	0.0926	0.0287	ug/L	1		09/23/18 13:34
Phenanthrene	0.755	0.0463	0.0139	ug/L	1		09/23/18 13:34
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/23/18 13:34
Surrogates							
2-Methylnaphthalene-d10 (surr)	24.1 *	47-106		%	1		09/23/18 13:34
Fluoranthene-d10 (surr)	18.8 *	24-116		%	1		09/23/18 13:34

Batch Information

Analytical Batch: XMS11092 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 09/23/18 13:34 Container ID: 1189758001-F Prep Batch: XXX40521 Prep Method: SW3520C Prep Date/Time: 09/20/18 08:06 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/24/2018 3:35:51PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of TWP18-01 Client Sample ID: TWP18-01 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758001 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits **Diesel Range Organics** 35.0 0.566 0.170 mg/L 1 09/19/18 19:29 Surrogates 5a Androstane (surr) 88.3 50-150 % 1 09/19/18 19:29 **Batch Information** Analytical Batch: XFC14619 Prep Batch: XXX40512 Prep Method: SW3520C Analytical Method: AK102 Analyst: VDL Prep Date/Time: 09/19/18 08:02 Analytical Date/Time: 09/19/18 19:29 Prep Initial Wt./Vol.: 265 mL Container ID: 1189758001-D Prep Extract Vol: 1 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-01

Client Sample ID: **TWP18-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758001 Lab Project ID: 1189758 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

1,1,1,2-Tetrachloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,1,1-Trichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1,2,2-Tetrachloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 09/1 1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 09/1 1,1,2-Trichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloropthane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropthane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropthane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichloropthane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U <	e Analyzed
1,1,1-Trichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1,2,2-Tetrachloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 09/1 1,1-Dichloroethane 0.200 U 0.400 0.120 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropropene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trimethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 <th></th>	
1,1,2,2-Tetrachloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroptopene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trimethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750	19/18 18:11
1,1,2-Trichloroethane0.200 U0.4000.120ug/L109/11,1-Dichloroethane0.500 U1.000.310ug/L109/11,1-Dichloroethene0.500 U1.000.310ug/L109/11,1-Dichloroptopene0.500 U1.000.310ug/L109/11,2,3-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,3-Trichloroptopane0.500 U1.000.310ug/L109/11,2,4-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,4-Trimethylbenzene16.41.000.310ug/L109/11,2-Dibromo-3-chloropropane5.00 U10.03.10ug/L109/11,2-Dibromoethane0.0375 U0.07500.0180ug/L109/11,2-Dichloropenzene0.500 U1.000.310ug/L109/11,2-Dichloropenzene0.500 U1.000.310ug/L109/11,2-Dichloropenzene0.500 U1.000.310ug/L109/11,2-Dichloropenzene0.500 U1.000.310ug/L109/11,2-Dichloropenzene0.500 U1.000.310ug/L109/11,3-5-Trimethylbenzene7.951.000.310ug/L109/1	19/18 18:11
1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 09/1 1,1-Dichloroptopene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichloroethane 0.250 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 <td< td=""><td>19/18 18:11</td></td<>	19/18 18:11
1,1-Dichloroethene0.500 U1.000.310ug/L109/11,1-Dichloropropene0.500 U1.000.310ug/L109/11,2,3-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,3-Trichloropropane0.500 U1.000.310ug/L109/11,2,4-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,4-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,4-Trimethylbenzene16.41.000.310ug/L109/11,2-Dibromo-3-chloropropane5.00 U10.03.10ug/L109/11,2-Dibromoethane0.0375 U0.07500.0180ug/L109/11,2-Dichlorobenzene0.500 U1.000.310ug/L109/11,2-Dichloropropane0.500 U1.000.310ug/L109/11,2-Dichloropropane0.500 U1.000.310ug/L109/11,2-Dichloropropane0.500 U1.000.310ug/L109/11,2-Dichloropropane0.500 U1.000.310ug/L109/11,3,5-Trimethylbenzene7.951.000.310ug/L109/1	19/18 18:11
1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trinethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromo-4-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310	19/18 18:11
1,2,3-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,3-Trichloropropane0.500 U1.000.310ug/L109/11,2,4-Trichlorobenzene0.500 U1.000.310ug/L109/11,2,4-Trimethylbenzene16.41.000.310ug/L109/11,2-Dibromo-3-chloropropane5.00 U10.03.10ug/L109/11,2-Dibromoethane0.0375 U0.07500.0180ug/L109/11,2-Dichlorobenzene0.500 U1.000.310ug/L109/11,2-Dichloropropane0.500 U1.000.310ug/L109/11,2-Dichloropenae0.500 U1.000.310ug/L109/11,2-Dichloropenae0.500 U1.000.310ug/L109/11,3,5-Trimethylbenzene7.951.000.310ug/L109/1	19/18 18:11
1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trinethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00	19/18 18:11
1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2,4-Trimethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroptane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroptane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroptane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2,4-Trimethylbenzene 16.4 1.00 0.310 ug/L 1 09/1 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/1 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/1 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1 1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
1,3,5-Trimethylbenzene 7.95 1.00 0.310 ug/L 1 09/1	19/18 18:11
	19/18 18:11
1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
	19/18 18:11
1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/1	19/18 18:11
1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/1	19/18 18:11
2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
2-Butanone (MEK) 4.63 J 10.0 3.10 ug/L 1 09/1	19/18 18:11
2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/1	19/18 18:11
4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
4-Isopropyltoluene 1.38 1.00 0.310 ug/L 1 09/1	19/18 18:11
4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/1	19/18 18:11
Benzene 2.17 0.400 0.120 ug/L 1 09/1	19/18 18:11
Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/1	19/18 18:11
Bromoform 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
Bromomethane 2.50 U 5.00 1.50 ug/L 1 09/1	19/18 18:11
Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/1	19/18 18:11
Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11
Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/1	19/18 18:11
Chloroethane 0.500 U 1.00 0.310 ug/L 1 09/1	19/18 18:11

Print Date: 09/24/2018 3:35:51PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 9 of 44

Results of TWP18-01

Client Sample ID: **TWP18-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758001 Lab Project ID: 1189758 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Chloromethane	0.530 J	1.00	0.310	ug/L	1		09/19/18 18:11
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/19/18 18:11
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 18:11
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Ethylbenzene	7.52	1.00	0.310	ug/L	1		09/19/18 18:11
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/19/18 18:11
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Isopropylbenzene (Cumene)	3.04	1.00	0.310	ug/L	1		09/19/18 18:11
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/19/18 18:11
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/19/18 18:11
Naphthalene	16.5	1.00	0.310	ug/L	1		09/19/18 18:11
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
n-Propylbenzene	4.95	1.00	0.310	ug/L	1		09/19/18 18:11
o-Xylene	0.320 J	1.00	0.310	ug/L	1		09/19/18 18:11
P & M -Xylene	7.03	2.00	0.620	ug/L	1		09/19/18 18:11
sec-Butylbenzene	1.57	1.00	0.310	ug/L	1		09/19/18 18:11
Styrene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Toluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:11
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/19/18 18:11
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/19/18 18:11
Xylenes (total)	7.35	3.00	1.00	ug/L	1		09/19/18 18:11
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/19/18 18:11
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/19/18 18:11
Toluene-d8 (surr)	102	89-112		%	1		09/19/18 18:11

Print Date: 09/24/2018 3:35:51PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 10 of 44

Results of TWP18-01

Client Sample ID: **TWP18-01** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758001 Lab Project ID: 1189758

Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/19/18 18:11 Container ID: 1189758001-A Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Member of SGS Group

Page 11 of 44

Results of TWP18-101 Client Sample ID: TWP18-101 Collection Date: 09/16/18 08:40 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758002 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits **Diesel Range Organics** 37.4 0.577 0.173 mg/L 1 09/19/18 19:39 Surrogates 5a Androstane (surr) 89.4 50-150 % 1 09/19/18 19:39 **Batch Information** Analytical Batch: XFC14619 Prep Batch: XXX40512 Prep Method: SW3520C Analytical Method: AK102 Analyst: VDL Prep Date/Time: 09/19/18 08:02 Analytical Date/Time: 09/19/18 19:39 Prep Initial Wt./Vol.: 260 mL Container ID: 1189758002-D Prep Extract Vol: 1 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-101

Client Sample ID: TWP18-101 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758002 Lab Project ID: 1189758				Collection Date: 09/16/18 08:40 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
<u>Result Qual</u> 0.683	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 09/20/18 03:09				
166 *	50-150		%	1		09/20/18 03:09				
	F F	Prep Method: Prep Date/Tir Prep Initial W	: SW5030E me: 09/19/′ /t./Vol.: 5 m	00:80 8						
	0.683	Result Qual LOQ/CL 0.683 0.100 166 * 50-150	Received Da Matrix: Water Solids (%): Location: <u>Result Qual</u> 0.683 <u>DL</u> 0.0310 166 * 50-150 Prep Batch: Prep Method Prep Date/Tin Prep Initial W	Received Date: 09/18/* Matrix: Water (Surface, Solids (%): Location: Location: 0.683 0.100 0.0310 mg/L 166 * 50-150 % Prep Batch: VXX33146 Prep Method: SW50308 Prep Date/Time: 09/19/1	Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Grossolids (%): Location: Location: Result Qual LOQ/CL DL Units DF 0.683 0.100 0.0310 mg/L 1 166 * 50-150 % 1 Prep Batch: VXX33146 Prep Date/Time: 09/19/18 08:00 Prep Initial Wt./Vol.: 5 mL 5 mL 5 mL	Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Result Qual 0.683 LOQ/CL 0.100 DL 0.0310 Units mg/L DF 1 Allowable Limits 166 * 50-150 % 1 Prep Batch: VXX33146 Prep Method: SW5030B Prep Date/Time: 09/19/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Method: 5 mL				

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-101

Client Sample ID: **TWP18-101** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758002 Lab Project ID: 1189758 Collection Date: 09/16/18 08:40 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	2.69	0.400	0.120	ug/L	1		09/19/18 18:28
Ethylbenzene	9.12	1.00	0.310	ug/L	1		09/19/18 18:28
o-Xylene	0.360 J	1.00	0.310	ug/L	1		09/19/18 18:28
P & M -Xylene	8.52	2.00	0.620	ug/L	1		09/19/18 18:28
Toluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:28
Xylenes (total)	8.88	3.00	1.00	ug/L	1		09/19/18 18:28
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		09/19/18 18:28
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/19/18 18:28
Toluene-d8 (surr)	99.8	89-112		%	1		09/19/18 18:28

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/19/18 18:28 Container ID: 1189758002-A Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-02 Client Sample ID: TWP18-02 Collection Date: 09/16/18 09:30 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758003 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits **Diesel Range Organics** 1.39 0.577 0.173 mg/L 1 09/19/18 19:49 Surrogates 5a Androstane (surr) 68.3 50-150 % 1 09/19/18 19:49 **Batch Information** Analytical Batch: XFC14619 Prep Batch: XXX40512 Prep Method: SW3520C Analytical Method: AK102 Analyst: VDL Prep Date/Time: 09/19/18 08:02 Analytical Date/Time: 09/19/18 19:49 Prep Initial Wt./Vol.: 260 mL Container ID: 1189758003-D Prep Extract Vol: 1 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-02 Client Sample ID: TWP18-02 Collection Date: 09/16/18 09:30 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758003 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits Gasoline Range Organics 0.0866 J 0.100 0.0310 mg/L 1 09/20/18 03:27 Surrogates 4-Bromofluorobenzene (surr) 114 50-150 % 1 09/20/18 03:27

Batch InformationAnalytical Batch: VFC14437Prep Batch: VXX33146Analytical Method: AK101Prep Method: SW5030BAnalyst: ACLPrep Date/Time: 09/19/18 08:00Analytical Date/Time: 09/20/18 03:27Prep Initial Wt./Vol.: 5 mLContainer ID: 1189758003-BPrep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of TWP18-02

Client Sample ID: **TWP18-02** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758003 Lab Project ID: 1189758 Collection Date: 09/16/18 09:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.600	0.400	0.120	ug/L	1		09/19/18 18:45
Ethylbenzene	0.750 J	1.00	0.310	ug/L	1		09/19/18 18:45
o-Xylene	7.32	1.00	0.310	ug/L	1		09/19/18 18:45
P & M -Xylene	1.00 J	2.00	0.620	ug/L	1		09/19/18 18:45
Toluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 18:45
Xylenes (total)	8.32	3.00	1.00	ug/L	1		09/19/18 18:45
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/19/18 18:45
4-Bromofluorobenzene (surr)	95.6	85-114		%	1		09/19/18 18:45
Toluene-d8 (surr)	101	89-112		%	1		09/19/18 18:45

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/19/18 18:45 Container ID: 1189758003-A Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of TWP18-03 Client Sample ID: TWP18-03 Collection Date: 09/16/18 10:45 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758004 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits **Diesel Range Organics** 4.92 0.577 0.173 mg/L 1 09/19/18 19:59 Surrogates 5a Androstane (surr) 78.9 50-150 % 1 09/19/18 19:59 **Batch Information** Analytical Batch: XFC14619 Prep Batch: XXX40512 Prep Method: SW3520C Analytical Method: AK102 Analyst: VDL Prep Date/Time: 09/19/18 08:02 Analytical Date/Time: 09/19/18 19:59 Prep Initial Wt./Vol.: 260 mL Container ID: 1189758004-D Prep Extract Vol: 1 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Member of SGS Group

Page 18 of 44

Results of TWP18-03 Client Sample ID: TWP18-03 Collection Date: 09/16/18 10:45 Received Date: 09/18/18 09:45 Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758004 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1189758 Solids (%): Location: Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> DF Date Analyzed Limits Gasoline Range Organics 0.111 0.100 0.0310 mg/L 1 09/20/18 03:45 Surrogates 4-Bromofluorobenzene (surr) 106 50-150 % 1 09/20/18 03:45 **Batch Information** Analytical Batch: VFC14437 Prep Batch: VXX33146 Prep Method: SW5030B Analytical Method: AK101

Prep Date/Time: 09/19/18 08:00

Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

Analyst: ACL

Analytical Date/Time: 09/20/18 03:45

Container ID: 1189758004-B

J flagging is activated

Results of TWP18-03

Client Sample ID: **TWP18-03** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758004 Lab Project ID: 1189758 Collection Date: 09/16/18 10:45 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		09/19/18 19:01
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 19:01
o-Xylene	0.450 J	1.00	0.310	ug/L	1		09/19/18 19:01
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/19/18 19:01
Toluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 19:01
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/19/18 19:01
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/19/18 19:01
4-Bromofluorobenzene (surr)	97.6	85-114		%	1		09/19/18 19:01
Toluene-d8 (surr)	101	89-112		%	1		09/19/18 19:01

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/19/18 19:01 Container ID: 1189758004-A Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of Trip Blank							
Client Sample ID: Trip Blank Client Project ID: 101607 1066 ELIZ Lab Sample ID: 1189758005 Lab Project ID: 1189758		R M S	ollection Da eceived Da latrix: Water olids (%): ocation:	te: 09/18/	18 09:45		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		09/20/18 02:52
Surrogates							
4-Bromofluorobenzene (surr)	91.2	50-150		%	1		09/20/18 02:52
Batch Information Analytical Batch: VFC14437 Analytical Method: AK101 Analyst: ACL Analytical Date/Time: 09/20/18 02:52 Container ID: 1189758005-B		1	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 09/19/′ ′t./Vol.: 5 m	18 08:00		

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758005 Lab Project ID: 1189758 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/19/18 15:08
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/19/18 15:08
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
Benzene	0.200 U	0.400	0.120	ug/L	1		09/19/18 15:08
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/19/18 15:08
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08

Print Date: 09/24/2018 3:35:51PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 22 of 44

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758005 Lab Project ID: 1189758 Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/19/18 15:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/19/18 15:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/19/18 15:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Styrene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Toluene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/19/18 15:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/19/18 15:08
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/19/18 15:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/19/18 15:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1		09/19/18 15:08
4-Bromofluorobenzene (surr)	95.8	85-114		%	1		09/19/18 15:08
Toluene-d8 (surr)	102	89-112		%	1		09/19/18 15:08

Print Date: 09/24/2018 3:35:51PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 23 of 44

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **101607 1066 ELIZ** Lab Sample ID: 1189758005 Lab Project ID: 1189758

Collection Date: 09/16/18 08:30 Received Date: 09/18/18 09:45 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 09/19/18 15:08 Container ID: 1189758005-A Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:51PM

J flagging is activated

Member of SGS Group

Page 24 of 44

Method Blank

Blank ID: MB for HBN 1786326 [VXX/33145] Blank Lab ID: 1476650 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189758001, 1189758002, 1189758003, 1189758004, 1189758005

Results by SW8260C					
Parameter	Results	LOQ/CL	<u>DL</u>	Units	
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L	
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L	
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L	
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L	
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L	
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L	
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L	
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L	
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L	
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L	
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L	
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L	
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L	
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L	
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L	
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L	
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L	
2-Chlorotoluene	0.500U	1.00	0.310	ug/L	
2-Hexanone	5.00U	10.0	3.10	ug/L	
4-Chlorotoluene	0.500U	1.00	0.310	ug/L	
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L	
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L	
Benzene	0.200U	0.400	0.120	ug/L	
Bromobenzene	0.500U	1.00	0.310	ug/L	
Bromochloromethane	0.500U	1.00	0.310	ug/L	
Bromodichloromethane	0.250U	0.500	0.150	ug/L	
Bromoform	0.500U	1.00	0.310	ug/L	
Bromomethane	2.50U	5.00	1.50	ug/L	
Carbon disulfide	5.00U	10.0	3.10	ug/L	
Carbon tetrachloride	0.500U	1.00	0.310	ug/L	
Chlorobenzene	0.250U	0.500	0.150	ug/L	
Chloroethane	0.500U	1.00	0.310	ug/L	
Chloroform	0.500U	1.00	0.310	ug/L	

Print Date: 09/24/2018 3:35:53PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1786326 [VXX/33145] Blank Lab ID: 1476650 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189758001, 1189758002, 1189758003, 1189758004, 1189758005

	Beaulta by SW8260C					
-	Results by SW8260C					
	Parameter	Results	LOQ/CL	DL	<u>Units</u>	
	Chloromethane	0.500U	1.00	0.310	ug/L	
	cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L	
	Dibromochloromethane	0.250U	0.500	0.150	ug/L	
	Dibromomethane	0.500U	1.00	0.310	ug/L	
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L	
	Ethylbenzene	0.500U	1.00	0.310	ug/L	
	Freon-113	5.00U	10.0	3.10	ug/L	
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L	
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
	Methylene chloride	2.50U	5.00	1.00	ug/L	
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
	Naphthalene	0.500U	1.00	0.310	ug/L	
	n-Butylbenzene	0.500U	1.00	0.310	ug/L	
	n-Propylbenzene	0.500U	1.00	0.310	ug/L	
	o-Xylene	0.500U	1.00	0.310	ug/L	
	P & M -Xylene	1.00U	2.00	0.620	ug/L	
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Styrene	0.500U	1.00	0.310	ug/L	
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Tetrachloroethene	0.500U	1.00	0.310	ug/L	
	Toluene	0.500U	1.00	0.310	ug/L	
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L	
	Trichloroethene	0.500U	1.00	0.310	ug/L	
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L	
	Vinyl acetate	5.00U	10.0	3.10	ug/L	
	Vinyl chloride	0.0750U	0.150	0.0500	ug/L	
	Xylenes (total)	1.50U	3.00	1.00	ug/L	
	Surrogates					
	1,2-Dichloroethane-D4 (surr)	103	81-118		%	
	4-Bromofluorobenzene (surr)	97.5	85-114		%	
	Toluene-d8 (surr)	101	89-112		%	

Print Date: 09/24/2018 3:35:53PM

SGS North America Inc.

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 1476650	• •	Matri	x: Water (Su	urface, Eff., Ground)	
QC for Samples: 1189758001, 118975800	2, 1189758003, 1189758004, 118	9758005			
Results by SW8260C					
Parameter	Results	LOQ/CL	DL	<u>Units</u>	
atch Information					
Analytical Batch: VMS Analytical Method: SV	V8260C	Prep Me	atch: VXX331 ethod: SW50	30B	
Instrument: Agilent 78 Analyst: FDR Analytical Date/Time:	990-75MS 9/19/2018 11:55:00AM	Prep Ini	ate/Time: 9/1 itial Wt./Vol.: ktract Vol: 5 r		

Leaching Blank

Blank ID: LB for HBN 1786228 [TCLP/9685] Blank Lab ID: 1476141 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189758001, 1189758002, 1189758003, 1189758004, 1189758005

Results		DI	Units	
12.5U	25.0	7.50	-	
12.5U	25.0	7.50	-	
250U	500	155	-	
10.0U	20.0	6.00	ug/L	
25.0U	50.0	15.5	ug/L	
12.5U	25.0	7.50	ug/L	
25.0U	50.0	15.5	ug/L	
25.0U	50.0	15.5	ug/L	
25.0U	50.0	15.5	ug/L	
25.0U	50.0	15.5	ug/L	
3.75U	7.50	2.50	ug/L	
111	81-118		%	
95.5	85-114		%	
102	89-112		%	
	12.5U 250U 10.0U 25.0U 12.5U 25.0U 25.0U 25.0U 25.0U 25.0U 3.75U	25.0U 50.0 12.5U 25.0 12.5U 25.0 250U 500 10.0U 20.0 25.0U 50.0 12.5U 25.0 25.0U 50.0 12.5U 25.0 25.0U 50.0 111 81-118 95.5 85-114	25.0U 50.0 15.5 12.5U 25.0 7.50 12.5U 25.0 7.50 250U 500 155 10.0U 20.0 6.00 25.0U 50.0 15.5 12.5U 25.0 7.50 25.0U 50.0 15.5 12.5U 25.0 7.50 25.0U 50.0 15.5 3.75U 7.50 2.50 111 81-118 95.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Analytical Date/Time: 9/19/2018 2:35:00PM Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 9/19/2018 12:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:53PM

Blank Spike ID: LCS for HBN 1189758 [VXX33145] Blank Spike Lab ID: 1476651 Date Analyzed: 09/19/2018 12:12 Spike Duplicate ID: LCSD for HBN 1189758 [VXX33145] Spike Duplicate Lab ID: 1476652 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005

Results by SW8260C									
-		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.8	99	30	28.8	96	(78-124)	3.50	(< 20)
1,1,1-Trichloroethane	30	29.6	99	30	29.0	97	(74-131)	1.80	(< 20)
1,1,2,2-Tetrachloroethane	30	28.6	95	30	27.9	93	(71-121)	2.50	(< 20)
1,1,2-Trichloroethane	30	28.8	96	30	28.5	95	(80-119)	1.10	(< 20)
1,1-Dichloroethane	30	29.0	97	30	28.4	95	(77-125)	2.00	(< 20)
1,1-Dichloroethene	30	30.9	103	30	30.7	102	(71-131)	0.91	(< 20)
1,1-Dichloropropene	30	29.5	98	30	29.1	97	(79-125)	1.20	(< 20)
1,2,3-Trichlorobenzene	30	29.0	97	30	28.9	96	(69-129)	0.38	(< 20)
1,2,3-Trichloropropane	30	28.5	95	30	27.7	92	(73-122)	2.70	(< 20)
1,2,4-Trichlorobenzene	30	29.7	99	30	29.8	100	(69-130)	0.47	(< 20)
1,2,4-Trimethylbenzene	30	29.2	98	30	28.9	96	(79-124)	1.30	(< 20)
1,2-Dibromo-3-chloropropane	30	26.8	89	30	25.9	86	(62-128)	3.50	(< 20)
1,2-Dibromoethane	30	29.7	99	30	29.1	97	(77-121)	2.10	(< 20)
1,2-Dichlorobenzene	30	29.3	98	30	29.1	97	(80-119)	0.86	(< 20)
1,2-Dichloroethane	30	28.9	96	30	28.5	95	(73-128)	1.40	(< 20)
1,2-Dichloropropane	30	29.6	99	30	28.9	96	(78-122)	2.60	(< 20)
1,3,5-Trimethylbenzene	30	28.9	96	30	28.7	96	(75-124)	0.73	(< 20)
1,3-Dichlorobenzene	30	29.3	98	30	29.2	97	(80-119)	0.31	(< 20)
1,3-Dichloropropane	30	29.2	97	30	28.8	96	(80-119)	1.50	(< 20)
1,4-Dichlorobenzene	30	29.8	99	30	29.3	98	(79-118)	1.60	(< 20)
2,2-Dichloropropane	30	30.4	101	30	29.9	100	(60-139)	1.70	(< 20)
2-Butanone (MEK)	90	79.0	88	90	75.3	84	(56-143)	4.80	(< 20)
2-Chlorotoluene	30	28.7	96	30	28.3	94	(79-122)	1.30	(< 20)
2-Hexanone	90	80.9	90	90	77.5	86	(57-139)	4.30	(< 20)
4-Chlorotoluene	30	29.0	97	30	28.5	95	(78-122)	1.70	(< 20)
4-Isopropyltoluene	30	28.9	96	30	29.4	98	(77-127)	1.60	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.5	97	90	82.2	91	(67-130)	6.20	(< 20)
Benzene	30	29.9	100	30	29.6	99	(79-120)	0.81	(< 20)
Bromobenzene	30	29.5	98	30	29.1	97	(80-120)	1.50	(< 20)
Bromochloromethane	30	31.7	106	30	31.5	105	(78-123)	0.41	(< 20)
Bromodichloromethane	30	29.7	99	30	29.2	97	(79-125)	1.80	(< 20)
Bromoform	30	29.0	97	30	28.7	96	(66-130)	1.10	(< 20)
Bromomethane	30	34.0	113	30	36.1	120	(53-141)	5.80	(< 20)
Carbon disulfide	45	45.7	102	45	46.2	103	(64-133)	0.98	(< 20)

Print Date: 09/24/2018 3:35:54PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1189758 [VXX33145] Blank Spike Lab ID: 1476651 Date Analyzed: 09/19/2018 12:12 Spike Duplicate ID: LCSD for HBN 1189758 [VXX33145] Spike Duplicate Lab ID: 1476652 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005

Results by SW8260C Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter <u>Spike</u> Rec (%) <u>Spike</u> Rec (%) CL RPD (%) RPD CL Result Result Carbon tetrachloride 30 30.3 101 30 30.0 100 (72-136) 1.00 (< 20) 30 28.6 95 27.9 Chlorobenzene 30 93 (82-118) 2.50 (< 20) Chloroethane 30 31.6 105 30 29.6 99 (60-138) 6.40 (< 20) Chloroform 30 28.8 96 30 28.4 95 (79-124) 1.60 (< 20) 277 2.00 Chloromethane 30 27 2 91 30 93 (50-139) (< 20) cis-1,2-Dichloroethene 30 29.9 100 30 29.5 98 (78-123) 1.50 (< 20) cis-1,3-Dichloropropene 30 29.7 99 30 29.2 97 (75-124)1.70 (< 20) Dibromochloromethane 30 29.8 99 30 29.4 98 (74-126) 1.40 (< 20) Dibromomethane 30 30.4 101 30 30.0 100 (79-123) 1.40 (< 20) Dichlorodifluoromethane 30 30 27 4 91 27 2 91 (32-152) 0.73 (< 20) Ethylbenzene 30 29.9 100 30 29.1 97 2.90 (79-121) (< 20) Freon-113 45 48.4 108 45 47.9 106 (70-136) 1.00 (< 20) Hexachlorobutadiene 30 30.7 102 30 31.7 106 3.20 (66-134) (< 20) Isopropylbenzene (Cumene) 30 29.9 100 30 29.7 99 0.64 (72-131) (< 20) Methylene chloride 30 30.2 101 30 29.6 99 (74-124) 2.00 (< 20) Methyl-t-butyl ether 45 43.9 98 45 43.3 1.20 96 (71-124) (< 20) Naphthalene 30 28.4 95 30 28.9 96 (61-128) 1.70 (< 20) n-Butylbenzene 30 30.0 100 30 29.5 98 (75-128) 1.60 (< 20) n-Propylbenzene 30 29.3 98 30 28.8 96 (76-126) 1.80 (< 20) 30 100 30 29.3 2.00 o-Xylene 29.9 98 (78-122) (< 20) P & M -Xylene 60 59.7 100 60 58.3 97 (80-121) 2.50 (< 20) sec-Butylbenzene 30 29.7 99 30 29.2 97 (77-126) 1.70 (< 20) Styrene 30 29.6 99 30 28.9 96 (78-123) 2.20 (< 20) 30 tert-Butylbenzene 30 28.9 96 28.7 96 (78-124) 0.49 (< 20) 105 Tetrachloroethene 30 30.7 2.50 30 31.5 102 (74-129) (< 20) 30 Toluene 30 28.2 94 27.5 92 (80-121) 2.30 (< 20) trans-1,2-Dichloroethene 30 29.7 99 30 29.5 98 (75-124) 0.91 (< 20)trans-1,3-Dichloropropene 30 29.1 97 30 28.6 95 (73-127) 1.70 (< 20) Trichloroethene 30 30.2 101 30 29.5 98 (79-123) 2.10 (< 20) Trichlorofluoromethane 30 31.0 103 30 30.9 103 (65-141) 0.26 (< 20) Vinyl acetate 30 28.3 95 30 28.1 94 (54-146) 0.96 (< 20) Vinyl chloride 30 27.3 91 30 90 (58-137) 0.74 27 1 (< 20) (79-121) Xylenes (total) 90 89.6 100 90 87.5 97 2.30 (< 20)

Print Date: 09/24/2018 3:35:54PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1189758 [VXX33145] Blank Spike Lab ID: 1476651 Date Analyzed: 09/19/2018 12:12 Spike Duplicate ID: LCSD for HBN 1189758 [VXX33145] Spike Duplicate Lab ID: 1476652 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005

Results by SW8260C Blank Spike (%) Spike Duplicate (%) Parameter <u>Spike</u> Rec (%) <u>Spike</u> Result Rec (%) <u>CL</u> <u>RPD (%)</u> RPD CL Result Surrogates 1,2-Dichloroethane-D4 (surr) 97.9 30 98.3 30 98 98 (81-118) 0.37 4-Bromofluorobenzene (surr) 30 97 97 30 97.4 97 (85-114) 0.38 Toluene-d8 (surr) 30 102 30 102 102 0.20 102 (89-112)

Batch Information

Analytical Batch: VMS18329 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Prep Batch: VXX33145 Prep Method: SW5030B Prep Date/Time: 09/19/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/24/2018 3:35:54PM

Matrix Spike Summary

Original Sample ID: 1476653 MS Sample ID: 1476654 MS MSD Sample ID: 1476655 MSD

Analysis Date: 09/19/2018 16:32 Analysis Date: 09/19/2018 13:29 Analysis Date: 09/19/2018 13:45 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005

		Ma	trix Spike (ug/L)	Spike Duplicate (ug/L)					
2 <u>arameter</u> ,1,1,2-Tetrachloroethane	<u>Sample</u> 25.0U	<u>Spike</u> 3000	<u>Result</u> 2800	<u>Rec (%)</u> 93	<u>Spike</u> 3000	<u>Result</u> 2940	<u>Rec (%)</u> 98	<u>CL</u> 78-124	<u>RPD (%)</u> 4.80	<u>RPD (</u> (< 20
,1,1-Trichloroethane	50.0U	3000	3010	100	3000	2920	97	74-131	3.00	(< 20
,1,2,2-Tetrachloroethane	25.0U	3000	2960	99	3000	3010	100	71-121	1.60	(< 20
,1,2-Trichloroethane	20.0U	3000	2820	94	3000	2870	96	80-119	1.80	(< 20
,1-Dichloroethane	50.0U	3000	2940	98	3000	2860	95	77-125	2.90	(< 20
1-Dichloroethene	50.0U	3000	3180	106	3000	3100	103	71-131	2.70	(< 20
,1-Dichloropropene	50.0U	3000	3030	101	3000	2950	98	79-125	2.90	(< 20
,2,3-Trichlorobenzene	50.0U	3000	3040	101	3000	3130	104	69-129	3.00	(< 20
,2,3-Trichloropropane	50.0U	3000	2830	94	3000	2910	97	73-122	2.70	(< 20
,2,4-Trichlorobenzene	50.0U	3000	3060	102	3000	3080	103	69-130	0.55	(< 20
2,4-Trimethylbenzene	155	3000	3050	96	3000	3020	96	79-124	0.82	(< 20
,2-Dibromo-3-chloropropane	500U	3000	2790	93	3000	2870	96	62-128	2.90	(< 20
2-Dibromoethane	306	3000	3200	96	3000	3250	98	77-121	1.80	(< 20
2-Dichlorobenzene	50.0U	3000	2920	97	3000	2940	98	80-119	0.78	(< 20
2-Dichloroethane	279	3000	3200	97	3000	3130	95	73-128	2.10	(< 20
2-Dichloropropane	50.0U	3000	3000	100	3000	2920	98	78-122	2.50	(< 20
3,5-Trimethylbenzene	37.0J	3000	2930	97	3000	2880	95	75-124	1.70	(< 20
3-Dichlorobenzene	50.0U	3000	2950	98	3000	2920	97	80-119	0.75	(< 20
3-Dichloropropane	25.0U	3000	2840	95	3000	2890	96	80-119	1.90	(< 20
4-Dichlorobenzene	25.0U	3000	2910	97	3000	2970	99	79-118	1.90	(< 20
,2-Dichloropropane	50.0U	3000	3050	102	3000	2950	98	60-139	3.40	(< 20
-Butanone (MEK)	5050	9000	13400	93	9000	13500	94	56-143	0.74	(< 20
-Chlorotoluene	50.0U	3000	2860	95	3000	2850	95	79-122	0.32	(< 20
-Hexanone	2420	9000	10700	92	9000	11100	97	57-139	3.60	(< 20
-Chlorotoluene	50.0U	3000	2860	95	3000	2830	94	78-122	1.10	(< 20
-Isopropyltoluene	107	3000	3020	97	3000	3020	97	77-127	0.00	(< 20
-Methyl-2-pentanone (MIBK)	1340	9000	10200	98	9000	10400	101	67-130	2.70	(< 20
enzene	2340	3000	5160	94	3000	5090	92	79-120	1.30	(< 20
romobenzene	50.0U	3000	2920	97	3000	2910	97	80-120	0.10	(< 20
romochloromethane	50.0U	3000	3210	107	3000	3130	104	78-123	2.70	(< 20
romodichloromethane	25.0U	3000	3020	101	3000	2950	98	79-125	2.50	(< 20
romoform	50.0U	3000	2830	94	3000	2910	97	66-130	2.80	(< 20
romomethane	250U	3000	3850	128	3000	3780	126	53-141	2.00	(< 20
arbon disulfide	500U	4500	4610	102	4500	4410	98	64-133	4.40	(< 20
arbon tetrachloride	50.0U	3000	3060	102	3000	2990	100	72-136	2.60	(< 20
hlorobenzene	25.0U	3000	2800	94	3000	2800	93	82-118	0.07	(< 20
Chloroethane	50.0U	3000	3210	107	3000	3090	103	60-138	3.80	(< 20

Print Date: 09/24/2018 3:35:54PM

SGS North America Inc.

Matrix Spike Summary

Original Sample ID: 1476653 MS Sample ID: 1476654 MS MSD Sample ID: 1476655 MSD

Analysis Date: 09/19/2018 16:32 Analysis Date: 09/19/2018 13:29 Analysis Date: 09/19/2018 13:45 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005

		ug/L)	Spik	e Duplicate	e (ug/L)					
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD C
Chloroform	50.0U	3000	2920	97	3000	2850	95	79-124	2.40	(< 20)
Chloromethane	50.0U	3000	2720	91	3000	2630	88	50-139	3.10	(< 20)
cis-1,2-Dichloroethene	50.0U	3000	3060	102	3000	2970	99	78-123	3.00	(< 20
sis-1,3-Dichloropropene	25.0U	3000	3020	101	3000	2960	99	75-124	2.20	(< 20
Dibromochloromethane	25.0U	3000	2880	96	3000	2900	97	74-126	0.66	(< 20
Dibromomethane	50.0U	3000	3100	103	3000	3060	102	79-123	1.50	(< 20
Dichlorodifluoromethane	50.0U	3000	2680	89	3000	2570	86	32-152	4.10	(< 20
Ethylbenzene	685	3000	3670	100	3000	3620	98	79-121	1.60	(< 20
reon-113	500U	4500	4970	111	4500	4840	107	70-136	2.80	(< 20
lexachlorobutadiene	50.0U	3000	3120	104	3000	3060	102	66-134	2.10	(< 20
sopropylbenzene (Cumene)	49.0J	3000	3020	99	3000	2980	98	72-131	1.30	(< 20
lethylene chloride	250U	3000	3080	103	3000	2990	100	74-124	3.00	(< 20
Nethyl-t-butyl ether	500U	4500	4420	98	4500	4420	98	71-124	0.02	(< 20
laphthalene	50.0U	3000	3110	104	3000	3240	108	61-128	4.00	(< 20
-Butylbenzene	50.0U	3000	2850	95	3000	2940	98	75-128	3.00	(< 20
-Propylbenzene	50.0U	3000	2880	96	3000	2870	96	76-126	0.45	(< 20
-Xylene	979	3000	3940	99	3000	3940	99	78-122	0.10	(< 20
° & M −Xylene	2190	6000	8160	100	6000	8070	98	80-121	1.00	(< 20
ec-Butylbenzene	50.0U	3000	2900	97	3000	2890	96	77-126	0.28	(< 20
Styrene	50.0U	3000	2950	98	3000	2940	98	78-123	0.03	(< 20
ert-Butylbenzene	50.0U	3000	2830	94	3000	2850	95	78-124	0.63	(< 20
etrachloroethene	50.0U	3000	2930	98	3000	3030	101	74-129	3.20	(< 20
oluene	6890	3000	9440	85	3000	9570	89	80-121	1.30	(< 20
rans-1,2-Dichloroethene	50.0U	3000	3010	100	3000	2940	98	75-124	2.50	(< 20
rans-1,3-Dichloropropene	50.0U	3000	2840	95	3000	2840	95	73-127	0.00	(< 20
richloroethene	50.0U	3000	3070	102	3000	2970	99	79-123	3.50	(< 20
richlorofluoromethane	50.0U	3000	3140	105	3000	3070	102	65-141	2.10	(< 20
/inyl acetate	500U	3000	2820	94	3000	2820	94	54-146	0.11	(< 20
/inyl chloride	7.50U	3000	2730	91	3000	2640	88	58-137	3.10	(< 20
(ylenes (total)	3160	9000	12100	99	9000	12000	98	79-121	0.73	(< 20
Surrogates										
,2-Dichloroethane-D4 (surr)		3000	2990	100	3000	2900	97	81-118	3.20	
I-Bromofluorobenzene (surr)		3000	2890	96	3000	2850	95	85-114	1.30	
Toluene-d8 (surr)		3000	2940	98	3000	3030	101	89-112	3.10	

Print Date: 09/24/2018 3:35:54PM

SGS North America Inc.

MSD Sample ID: 1476655 MSD Analysis Date: 09/19/2018 13:45 Matrix: Water (Surface, Eff., Grour QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004, 1189758005 Results by SW8260C Matrix Spike (%) Spike Duplicate (%) arameter Sample Spike Result Rec (%) Spike Result Rec (%) CL Batch Information Analytical Batch: VMS18329 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Analytical Date/Time: 9/19/2018 1:29:00PM Prep Latract Vol: 5.00mL Prep Extract Vol: 5.00mL	nd) <u>RPD (%)</u> <u>RPD</u>
Matrix Spike (%) Spike Duplicate (%) arameter Sample Spike Result Rec (%) Spike Result Rec (%) CL Batch Information Analytical Batch: VMS18329 Prep Batch: VXX33145 Prep Method: Volatiles Extraction 8240/826 Instrument: Agilent 7890-75MS Prep Date/Time: 9/19/2018 12:00:00AM Analyst: FDR Prep Initial Wt./Vol.: 5.00mL	<u>RPD (%)</u> <u>RPD</u>
rameter Sample Spike Result Rec (%) Spike Result Rec (%) CL Batch Information Analytical Batch: VMS18329 Prep Batch: VXX33145 Prep Method: Volatiles Extraction 8240/826 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Prep Date/Time: 9/19/2018 12:00:00AM Analyst: FDR Prep Initial Wt./Vol.: 5.00mL	<u>RPD (%)</u> <u>RPD</u>
Batch Information Analytical Batch: VMS18329 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Prep Date/Time: 9/19/2018 12:00:00AM Prep Initial Wt./Vol.: 5.00mL	<u>RPD (%)</u> <u>RPD</u>
Analytical Batch:VMS18329Prep Batch:VXX33145Analytical Method:SW8260CPrep Method:Volatiles Extraction 8240/826Instrument:Agilent 7890-75MSPrep Date/Time:9/19/201812:00:00AMAnalyst:FDRPrep Initial Wt./Vol.:5.00mL	
	0 FULL

Print Date: 09/24/2018 3:35:54PM

SGS North America Inc.

Blank ID: MB for HBN 17863 Blank Lab ID: 1476673	Matrix	: Water (Surfac	e, Eff., Ground)			
QC for Samples: 1189758002, 1189758003, 1189	9758004, 1189758005					
Results by AK101	-					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>		
Gasoline Range Organics 0.0500U		0.100	mg/L			
Surrogates						
4-Bromofluorobenzene (surr)	50-150	%				
Batch Information						
Analytical Batch: VFC14437		Prep Bat	tch: VXX33146			
Analytical Method: AK101		Prep Method: SW5030B				
Instrument: Agilent 7890 PIE)/FID	Prep Date/Time: 9/19/2018 8:00:00AM Prep Initial Wt./Vol.: 5 mL				
Analyst: ACL Analytical Date/Time: 9/19/2	018 11.13.000M					
	Prep Extract Vol: 5 mL					

Print Date: 09/24/2018 3:35:56PM

Blank Spike ID: LCS for HBN 1189758 [VXX33146] Blank Spike Lab ID: 1476674 Date Analyzed: 09/19/2018 11:49 Spike Duplicate ID: LCSD for HBN 1189758 [VXX33146] Spike Duplicate Lab ID: 1476675 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758002, 1189758003, 1189758004, 1189758005

Results by AK101										
	E	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)				
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	1.03	103	1.00	1.12	112	(60-120)	8.50	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	0.0500	101	101	0.0500	111	111	(50-150)	9.10		
Batch Information										
Analytical Batch: VFC14437				Prep Batch: VXX33146						
Analytical Method: AK101				Prep	Prep Method: SW5030B					
Instrument: Agilent 7890 PID/	FID			1		e: 09/19/201				
Analyst: ACL						· · · · · · · · · · · · · · · · · · ·	g/L Extract \ g/L Extract V			

Print Date: 09/24/2018 3:35:56PM

Blank ID: MB for HBN 1786243 [XXX/40512] Blank Lab ID: 1476224			ce, Eff., Ground)				
189758003, 1189758004							
-							
Results	LOQ/CL	DL	<u>Units</u>				
0.300U	0.600	0.180	mg/L				
rrogates							
80	60-120		%				
519	Prep Bat	tch: XXX40512					
2	Prep Method: SW3520C						
3 F	Prep Date/Time: 9/19/2018 8:02:08AM						
Analyst: VDL Analytical Date/Time: 9/19/2018 6:10:00PM			Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL				
	189758003, 1189758004 <u>Results</u> 0.300U 80	189758003, 1189758004 <u>Results</u> 0.300U 80 60-120 Prep Ba Prep Me Prep Me Prep Da	Results LOQ/CL DL 0.300U 0.600 0.180 80 60-120 S19 Prep Batch: XXX40512 Prep Method: SW35200 Prep Date/Time: 9/19/20				

Print Date: 09/24/2018 3:35:57PM

Blank Spike ID: LCS for HBN 1189758 [XXX40512] Blank Spike Lab ID: 1476225 Date Analyzed: 09/19/2018 18:20 Spike Duplicate ID: LCSD for HBN 1189758 [XXX40512] Spike Duplicate Lab ID: 1476226 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001, 1189758002, 1189758003, 1189758004

		Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	19.0	95	20	18.0	90	(75-125)	5.40	(< 20)
Surrogates									
5a Androstane (surr)	0.4	96.6	97	0.4	95.1	95	(60-120)	1.60	
Batch Information									
Analytical Batch: XFC14619				Pre	o Batch: X	XX40512			
Analytical Method: AK102				Pre	o Method:	SW3520C			
Instrument: Agilent 7890B F				Pre	p Date/Tim	e: 09/19/201	8 08:02		
Analyst: VDL						0	 Extract Vo 		
				Dur	o Init \//t /\/	$(al \cdot 20 ma/l$	Extract Vol	· 1 ml	

Print Date: 09/24/2018 3:35:59PM

Method Blank

Blank ID: MB for HBN 1786320 [XXX/40521] Blank Lab ID: 1476635

QC for Samples: 1189758001

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	65	47-106		%
Fluoranthene-d10 (surr)	65.5	24-116		%

Batch Information

Analytical Batch: XMS11090 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: BMZ Analytical Date/Time: 9/21/2018 6:29:00PM Prep Batch: XXX40521 Prep Method: SW3520C Prep Date/Time: 9/20/2018 8:06:25AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Matrix: Water (Surface, Eff., Ground)

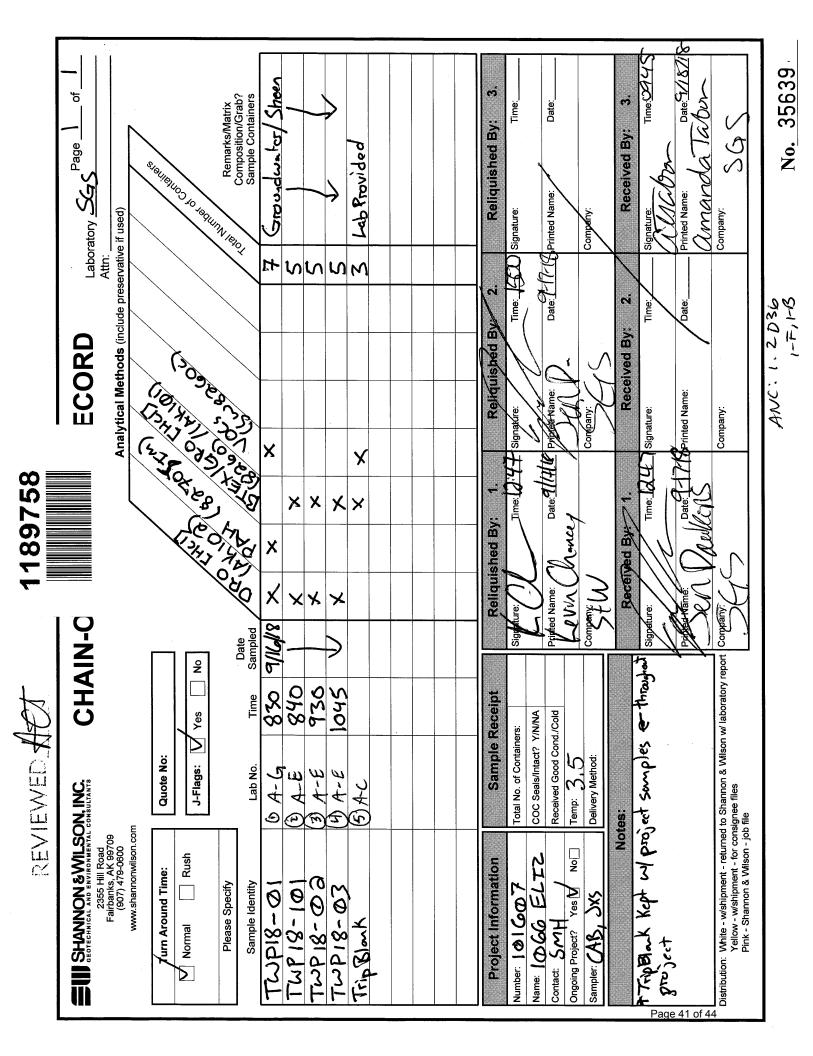
Print Date: 09/24/2018 3:36:01PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1189758 [XXX40521] Blank Spike Lab ID: 1476636 Date Analyzed: 09/21/2018 18:50 Spike Duplicate ID: LCSD for HBN 1189758 [XXX40521] Spike Duplicate Lab ID: 1476637 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1189758001

Results by 8270D SIM LV (PAH)


	Blank Spike (ug/L)			Spike Duplicate (ug/L)					
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.40	70	2	1.37	69	(41-115)	1.80	(< 20)
2-Methylnaphthalene	2	1.28	64	2	1.27	63	(39-114)	1.10	(< 20)
Acenaphthene	2	1.61	80	2	1.58	79	(48-114)	1.70	(< 20)
Acenaphthylene	2	1.48	74	2	1.43	71	(35-121)	3.60	(< 20)
Anthracene	2	1.69	84	2	1.60	80	(53-119)	5.20	(< 20)
Benzo(a)Anthracene	2	1.51	75	2	1.43	72	(59-120)	5.00	(< 20)
Benzo[a]pyrene	2	1.53	77	2	1.48	74	(53-120)	3.90	(< 20)
Benzo[b]Fluoranthene	2	1.62	81	2	1.57	78	(53-126)	2.90	(< 20)
Benzo[g,h,i]perylene	2	1.60	80	2	1.55	78	(44-128)	2.90	(< 20)
Benzo[k]fluoranthene	2	1.73	87	2	1.65	83	(54-125)	4.70	(< 20)
Chrysene	2	1.61	81	2	1.53	77	(57-120)	5.00	(< 20)
Dibenzo[a,h]anthracene	2	1.61	80	2	1.56	78	(44-131)	3.30	(< 20)
Fluoranthene	2	1.41	71	2	1.34	67	(58-120)	5.00	(< 20)
Fluorene	2	1.57	78	2	1.51	76	(50-118)	3.70	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.63	82	2	1.57	78	(48-130)	3.90	(< 20)
Naphthalene	2	1.29	65	2	1.29	64	(43-114)	0.34	(< 20)
Phenanthrene	2	1.59	80	2	1.53	76	(53-115)	4.10	(< 20)
Pyrene	2	1.47	74	2	1.41	70	(53-121)	4.70	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	65.9	66	2	69	69	(47-106)	4.50	
Fluoranthene-d10 (surr)	2	71.6	72	2	71	71	(24-116)	0.88	

Batch Information

Analytical Batch: XMS11090 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: BMZ Prep Batch: XXX40521 Prep Method: SW3520C Prep Date/Time: 09/20/2018 08:06 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 09/24/2018 3:36:01PM

SGS North America Inc.

S

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	C	onditi		Comments /Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	NA	Exemption permitted if sampler hand
COC accompanied samples?	(Ves	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes	No		□Exemption permitted if chilled &
If $>6^{\circ}C$, were samples collected < 8 hours ago?	Yes	No	Catta	collected <8hrs ago
If $<0^{\circ}C$, were all sample containers ice free?	Yes	No	MA	
Cooler ID: $(a_3, 5_5, w/\text{Therm. ID})$			\smile	
Cooler ID: @w/Therm. ID:				
Cooler ID: w/Therm. ID:				
Cooler ID: @ w/Therm. ID:				
Cooler ID: (a) w/Therm. ID:				
If samples are received without a temperature blank, the "cooler temperature" will be				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to				Note: Identify containers received at
the right. In cases where neither a temp blank nor cooler temp can be obtained, note ambient () or chilled (). Please check one.				non-compliant temperature. Use form
				FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:		cking/A		
		see atta		
		OFNI		
	ether cash	/ chec		cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	128	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap				Anchorage without inspection by SGS Fairbanks personnel.
Separate plastic bags Vermiculite Other:				Furbunks personnei.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Tes	No	N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes	No		
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	(A)	
Additional notes (if applicable):]
Additional notes (11 applicable).				

Profile #: Need etc.

Note to Client: any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

e-Sample Receipt Form

SGS	SGS Workorder #:	1	18975	8	1 1 8 9 7 5 8
Revi	iew Criteria	Condition (Yes,	No, N/A	Exce	eptions Noted below
<u>Chain of</u>	Custody / Temperature Requi			Exemption per	rmitted if sampler hand carries/delivers.
	Were Custody Seals intact? Note # &	location YES	1F 1B		
	COC accompanied sa	amples? YES			
	N/A **Exemption permitted if	chilled & colle		-	ples where chilling is not required
		YES	Cooler ID:	1	@ 1.2 °C Therm. ID: D36
		N/A	Cooler ID:		@ °C Therm. ID:
Temperatu	re blank compliant* (i.e., 0-6 °C afte	er CF)? N/A	Cooler ID:		@ °C Therm. ID:
		N/A	Cooler ID:		@ °C Therm. ID:
		N/A	Cooler ID:		@ °C Therm. ID:
*lf >6°0	C, were samples collected <8 hours	ago? N/A			
	If <0°C, were sample containers ice	e free? N/A			
temperature" will be docu "COOLER TEMP" will be no	d <u>without</u> a temperature blank, the umented in lieu of the temperature b oted to the right. In cases where ne or temp can be obtained, note "ambi "c	olank & either a			
	s received at non-compliant temper se form FS-0029 if more space is n				
Holding Time / Do	cumentation / Sample Condition Re	equirements	Note: Refer to	form F-083 "Sa	ample Guide" for specific holding times.
W	ere samples received within holding	g time? YES			
Do samples match COC	** (i.e.,sample IDs,dates/times colle	ected)? YES			
**Note: If times d	liffer <1hr, record details & login pe	r COC.			
Were analyses requested u	nambiguous? (i.e., method is speci analyses with >1 option for ar	fied for YES nalysis)			
			N/A	***Exemption	permitted for metals (e.g,200.8/6020A).
Were proper containers	(type/mass/volume/preservative***)used? YES			
	Volatile / LL-Hg Req	uirements			
Were Trip Blanks (i	.e., VOAs, LL-Hg) in cooler with sar	mples? YES			
Were all water VOA vials	free of headspace (i.e., bubbles \leq	6mm)? YES			
Were all se	oil VOAs field extracted with MeOH	+BFB? N/A			
Note to Clien	t: Any "No", answer above indicates no	n-compliance	with standard p	procedures and	l may impact data quality.
	Additiona	al notes (if a	pplicable):		

Sample Containers and Preservatives

<u>Container Id</u>	Preservative	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> Condition
1189758001-A	HCL to pH < 2	ОК			
1189758001-B	HCL to pH < 2	ОК			
1189758001-C	HCL to pH < 2	ОК			
1189758001-D	HCL to $pH < 2$	ОК			
1189758001-E	HCL to $pH < 2$	ОК			
1189758001-F	No Preservative Required	ОК			
1189758001-G	No Preservative Required	ОК			
1189758002-A	HCL to $pH < 2$	ОК			
1189758002-B	HCL to $pH < 2$	ОК			
1189758002-C	HCL to $pH < 2$	ОК			
1189758002-D	HCL to $pH < 2$	ОК			
1189758002-E	HCL to $pH < 2$	ОК			
1189758003-A	HCL to $pH < 2$	ОК			
1189758003-B	HCL to $pH < 2$	ОК			
1189758003-C	HCL to $pH < 2$	ОК			
1189758003-D	HCL to $pH < 2$	ОК			
1189758003-E	HCL to $pH < 2$	ОК			
1189758004-A	HCL to $pH < 2$	ОК			
1189758004-B	HCL to $pH < 2$	ОК			
1189758004-C	HCL to $pH < 2$	ОК			
1189758004-D	HCL to $pH < 2$	ОК			
1189758004-E	HCL to $pH < 2$	ОК			
1189758005-A	HCL to $pH < 2$	ОК			
1189758005-B	HCL to $pH < 2$	ОК			
1189758005-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized
- container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

ATTACHMENT D

ADEC LABORATORY DATA REVIEW CHECKLISTS

Laboratory Data Review Checklist

Completed By:

Cacy Wilfer

Title:

Environmental Engineering Staff

Date:

October 9, 2018

CS Report Name:

Residence - 1066 Eliz Street HHOT

Report Date:

September 27, 2018

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1189757

ADEC File Number:

100.38.215

Hazard Identification Number:

4438

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	🖸 Yes	🖸 No	Comments:
			ansferred to another "network" laboratory or sub-contracted to an as the laboratory performing the analyses ADEC CS approved?
	🖸 Yes	🖸 No	Comments:
	-	es were not tra n Anchorage, A	nsferred to another laboratory. Analysis was performed by SGS North Alaska.
hair	of Custody	<u>(CoC)</u>	
a.	CoC inform	nation complete	ed, signed, and dated (including released/received by)?
	🖸 Yes	C No	Comments:
b.	Correct Ana	alyses requeste	d?
	🖸 Yes	🕻 No	Comments:
abo	ratory Samp	le Receipt Doc	umentation
a.	Sample/coo	ler temperatur	e documented and within range at receipt (0° to 6° C)?
	🖸 Yes	C No	Comments:
Th	e sample rec	eipt forms not	e the cooler temperature to be within temperature range.
b.		servation acceptorinated Solve	ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ents, etc.)?
	🖸 Yes	🖸 No	Comments:
-			

- broken, leaking (Methanol), zero headspace (VOC vials)? condition documented

🖸 Yes	C No	Comments:				
The sample receipt form notes that the samples were received in good condition.						

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes No Comments: There were no discrepancies identified by the laboratory. e. Data quality or usability affected? Comments: There was no effect on data quality or usability. 4. Case Narrative a. Present and understandable? 🖸 Yes 🖾 No Comments: b. Discrepancies, errors, or QC failures identified by the lab? 🖸 Yes 🖸 No Comments:

The case narrative notes that the AK101 surrogate recovery for 4-bromofluorobenzene in sample SB18-02-02 did not meet QC criteria. The sample was analyzed twice and results were confirmed

The case narrative notes that AK101 and 8260C surrogate recovery for 4-bromofluorobenzene in sample SB18-03-02 did not meet QC criteria due to matrix interference.

The case narrative notes that the SW8260C trip blank contained insufficient sample volume to perform analysis.

c. Were all corrective actions documented?

🖸 No C Yes Comments:

The laboratory does not note any corrective actions.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The laboratory does not note any effect on data quality or usability.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

🖸 Yes C No

Comments:

b. All application	ble holding time	s met?
🖸 Yes	C No	Comments:
c. All soils re	ported on a dry v	veight basis?
🖸 Yes	CNo	Comments:
d. Are the rep		than the Cleanup Level or the minimum required detection level for
C Yes	C No	Comments:
with the follow chloride, 1.2-d chloropropane cleanup levels.	ving exceptions. ibromoethane, 1, were not detecte We cannot asse	DEC cleanup levels for the requested analytes, for non-detect results, VOC analytes bromodichloromethane, dibromochloromethane, vinyl ,2-dichloroethane 1,2,3-trichloropropane and 1,2-dibromo-3- ed in the project sample and have reporting limits greater than ADEC ss if the analytes are present in the sample at a concentration greater than the reporting limit.
e. Data quality	y or usability aff	ected?
🖸 Yes	C No	Comments:
		s noted above are present in the sample at a concentration greater tha he reporting limit.
C Samples		
a. Method Bla	ank	
i. One	method blank re	eported per matrix, analysis and 20 samples?
🖸 Yes	🖸 No	Comments:
ii. All	method blank rea	sults less than limit of quantitation (LOQ)?
🖸 Yes	C No	Comments:
GRO were dete	ected at estimate	d concentrations below the LOQ in blanks 1476742 and 1477270.
iii. If at	bove LOQ, what	samples are affected?
		Comments:

The associated project samples either had detections for GRO that were greater than ten times the method blank detection or did not have detections for this analyte.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

The associated project samples either had detections for GRO that were greater than ten times the method blank detection or did not have detections for this analyte.

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No Comments:

LCS/LCSD samples were reported for GRO and DRO analyses.

LCS/LCSD and MS/MSD samples were reported for VOC, BTEX, and PAH analytes.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

🖸 Yes 🛛 🖸 No

Comments:

Only organic analyses were requested for this work order.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

🖸 Yes 🛛 🖸 No

Comments:

The MS 1477561 and/or MSD 1477561 had high recovery failures for failures for hexachlorobutadiene and trichlorofluoromethane.

The MS 1478458 and/or MSD 1478459 had low recovery failures for o-xylene, p&m-xylenes, and total xylenes.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

The parent samples associated with the MS and MSD recovery failures are affected. However, the parent samples are not a part of the project sample set; the project samples are not affected by these QC failures.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No; see above.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

🖸 Yes 🛛 No

Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No Comments:

The GRO surrogate 4-bromofluorobenzene had high recoveries for samples *SB18-02-02* and *SB18-03-02*.

The VOC surrogate 4-bromofluorobenzene had a high recovery for sample SB18-02-02.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

🖸 Yes 🖸 No

Comments:

The detected GRO results for samples *SB18-02-02* and *SB18-03-02* are considered estimated, biased high, and are flagged 'JH*' in the analytical tables.

The requested BTEX analytes for sample *SB18-02-02* are not associated with the VOC surrogate 4-bromofluorobenzene. The reported results are not affected by the QC failure.

iv. Data quality or usability affected?

Comments:

Yes; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

🖸 Yes 🛛 No	Comments:
	ransport the trip blank and VOA samples clearly indicated on the nent explaining why must be entered below)
🖸 Yes 🛛 No	Comments:
iii. All results less than I	OQ?
🖸 Yes 🛛 No	Comments:

iv. If above LOQ, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality or usability was not affected; see above.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

🖸 Yes	🖸 No	Comments:
-------	------	-----------

ii. Submitted blind to lab?

Yes No C

Comments:

Field-duplicate sample pair SB18-01-02 / SB18-101-02 was submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

 $\frac{(R_1 - R_2)}{((R_1 + R_2)/2)} \times 100$

 $\begin{array}{ll} \mbox{Where} & R_1 = \mbox{Sample Concentration} \\ & R_2 = \mbox{Field Duplicate Concentration} \end{array}$

🖸 Yes 🛛 No

Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability was not affected; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

Yes No Not Applicable

Samples for this project are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.

i. All results less than LOQ?

CYes No Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ, what samples are affected?

Comments:

N/A; an equipment blank was not submitted with this work order.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No Comments:

There were no other data flags/qualifiers.

Laboratory Data Review Checklist

Completed By:

Sheila Hinckley

Title:

Environmental Scientist

Date:

September 26, 2018

CS Report Name:

Residence - 1066 Eliz Street HHOT

Report Date:

September 24, 2018

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1189758

ADEC File Number:

100.38.215

Hazard Identification Number:

4438

1189758

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	🖸 Yes	🖸 No	Comments:
			ansferred to another "network" laboratory or sub-contracted to an vas the laboratory performing the analyses ADEC CS approved?
	C Yes	🖸 No	Comments:
	1	es were not tr n Anchorage,	ansferred to another laboratory. Analysis was performed by SGS North Alaska.
Chai	in of Custody	<u>(CoC)</u>	
a.	CoC inform	nation complet	ted, signed, and dated (including released/received by)?
	🖸 Yes	🖸 No	Comments:
b.	Correct Ana	alyses request	ed?
	🖸 Yes	🖸 No	Comments:
Labo	oratory Sampl	e Receipt Do	cumentation
		e Receipt Doo	
Labo a.		ler temperatu	cumentation re documented and within range at receipt (0° to 6° C)?
		-	
	Sample/coo	ler temperatu	re documented and within range at receipt (0° to 6° C)?
a.	Sample/coo	ler temperatur	re documented and within range at receipt (0° to 6° C)? Comments: ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	Sample/coo Yes Sample pres Volatile Ch	ler temperatur	re documented and within range at receipt (0° to 6° C)? Comments: ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	Sample/coo Yes Sample pres Volatile Ch	ler temperatur No servation acce lorinated Solv	re documented and within range at receipt (0° to 6° C)? Comments: ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, rents, etc.)?
a.	Sample/coo Yes Sample pres Volatile Ch	ler temperatur No servation acce lorinated Solv	re documented and within range at receipt (0° to 6° C)? Comments: ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, rents, etc.)?

4.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

	🖸 Yes	🖸 No	Comments:
There v	were no d	iscrepancies identified by	the laboratory.
e. Dat	a quality	or usability affected?	
			Comments:
There v	was no ef	fect on data quality or usa	bility.
Case N	Narrative		
a. Pre	esent and	understandable?	
	🖸 Yes	C No	Comments:
b. Dis	screpanci	es, errors, or QC failures	identified by the lab?
	🖸 Yes	C No	Comments:
-		nple <i>TWP18-01</i> had PAH 10 due to matrix interferen	surrogate recovery failures for 2-methylnaphthalene-d10 and nce.
-	roject san rix interf	-	RO surrogate recovery failure for 4- bromofluorobenzene due
c. We	ere all co	rrective actions document	ed?
	🖸 Yes	🖸 No	Comments:

The laboratory does not note any corrective actions.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The laboratory does not note any effect on data quality or usability.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

🖸 Yes 🛛 🖸 No

Comments:

b. All applicable holding times met?

🖸 Yes	C No	Comments:

- c. All soils reported on a dry weight basis?
 - Yes No Comments:

N/A; soil samples were not submitted for this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

🖸 Yes 🚺 No

Comments:

Reporting limits were below ADEC cleanup levels for the requested analytes, for non-detect results, with the following exceptions. VOC analyte 1,2,3-trichloropropane was not detected in the project sample *TWP18-01* but has a reporting limit greater than ADEC cleanup levels. We cannot assess if the analytes are present in the sample at a concentration greater than the cleanup level but less than the reporting limit.

e. Data quality or usability affected?

🖸 Yes 🛛 No

Comments:

We cannot assess if the VOC analyte 1,2,3-trichloropropane is present in the sample *TWP18-01* at a concentration greater than the cleanup level but less than the reporting limit.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

🖸 Yes	C No	Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

Yes No Comments:

iii. If above LOQ, what samples are affected?

Comments:

None; project analytes were not detected in the method blank samples.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

N/A; no samples are affected.

v. Data quality or usability affected?

Comments:

No	600	above.	
INO:	see	above.	

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No Comments:

LCS/LCSD samples were reported for GRO, DRO, and PAH analyses.

LCS/LCSD and MS/MSD samples were reported for VOC analysis.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

🖸 Yes 🛛 🖸 No

Comments:

Only organic analyses were the only requested analyses for this work order.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

🖸 Yes	🖸 No	Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

🖸 Yes 🔲 No	Comments:
------------	-----------

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; analytical accuracy and precision were within laboratory acceptance criteria.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

CYes No Comments:

Qualification of the data was not required; see above.

1189758

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and/or usability was not affected; see above.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

Yes No Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

🖸 Yes 🛛 🖸 No

Comments:

The project sample *TWP18-01* had PAH surrogate recovery failures for 2-methylnaphthalene-d10 and fluoranthene-d10 due to matrix interference.

The project sample *TWP18-101* had a GRO surrogate recovery failure for 4- bromofluorobenzene due to matrix interference.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

🖸 Yes 🛛 No

Comments:

The GRO result for project sample *TWP18-101* is considered estimated, biased high, and is flagged 'JH*' in the analytical table.

The PAH results for project sample *TWP18-01* are considered estimated, biased low. Detected results are flagged 'JL*' and non-detect results are flagged 'J*' in the analytical tables.

iv. Data quality or usability affected?

Comments:

Yes; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

Yes No Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

CYes No Comments:

iii. All results less than LOQ?

Yes No Comments:

Project analytes were not detected in the trip blank sample.

iv. If above LOQ, what samples are affected?

Comments:

N/A; project analytes were not detected in the trip blank sample.

v. Data quality or usability affected?

Comments:

No; see above.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

C Yes No Comments:

ii. Submitted blind to lab?

C Yes No Comments:

Field-duplicate sample pair TWP18-01 / TWP18-101 was submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $(R_1-R_2) = x \ 100$

$$\frac{(R_1 - R_2)}{((R_1 + R_2)/2)}$$
 x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

🖸 Yes 🛛 🖸 No

Comments:

Field-duplicate RPDs were within the recommended DQO of 30% for water samples, where calculable.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and usability was not affected; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

Yes No Not Applicable

Samples for this project are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.

i. All results less than LOQ?

Yes No Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ, what samples are affected?

Comments:

N/A; an equipment blank was not submitted with this work order.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

Yes No Comments:

There were no other data flags/qualifiers.

ATTACHMENT E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 101607-005

Date: November 29, 2018

To: Mr. Timothy Woster

1066 Eliz Road, North Pole, AK. 99705

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland