

December 22, 2014

Reference No. 14141827-001-L-Rev0

Mr. Bob Mattson Alaska Dept. of Environmental Conservation Prevention & Emergency Response Program PO Box 111800 Juneau, AK 99811-1800

TEST PITTING AND REMEDIAL EXCAVATION WORKS COMPLETED AT 363- 2ND AVENUE, SKAGWAY, ALASKA

Dear Mr. Mattson:

Golder Associates Ltd (Golder) on behalf of our client Hamilton Construction has prepared this letter to provide the Alaska Department of Environmental Conservation (ADEC) a description of the test pitting, remedial excavation and confirmatory soil sampling ("the work") completed at the property located at 363 – 2nd Avenue, Skagway Alaska ("the Site"). The Site location is shown on Figure 1.

1.0 INTRODUCTION

The Site is currently owned by Alaska Fur Gallery ("property owner") and the work has been undertaken for due diligence purposes following the discovery of suspected contaminated soil on the Site by a neighboring property owner. This letter presents the results of the work conducted on October 3, 20 and 30, 2014. During the work, approximately 200 cubic yards of suspected heating oil-contaminated material was excavated and transported off Site by Hamilton Construction to a permitted land treatment facility (LTF) for disposal.

1.1 Background

The Site consists of a small rectangular lot with one on-Site building. The upper level of the building is used for rental suites and a lower level as commercial retail space. It is understood by Golder that at the time of the investigation the building was vacant. An area of potential environmental concern (APEC) was identified by the presence of petroleum hydrocarbon-like surficial staining on the neighboring property to the east. Golder infers that the source of the contaminated soil was a leaking fuel line that connected two heating oil above ground storage tanks (ASTs) to the rear of the on-Site building. The ASTs were removed prior to the commencement of the works by Golder on October 3, 2014.

1.2 Scope of Work

Golder's scope of work was developed to address suspected soil contamination from heating oil in the area surrounding the ASTs as well as the neighboring property, and included the following:

- Preparing a health and safety plan;
- Conducting a test pitting program to delineate the extent and volume of contaminated soil;
- Monitoring the excavation and removal of contaminated soil from the Site;
- Conducting confirmatory soil sampling at the extents of the excavation to verify contaminated material was removed; and
- Complete an evaluation of the sample results including any recommendations for further work and preparing this report.

2.0 METHODOLOGY

2.1 Health and Safety Plan

Prior to working at the Site, Golder prepared a Site specific health and safety plan (HASP). Field works were conducted in accordance with the HASP. This plan included the scope of work, identifying the hazards therein, the means of the elimination or control, selection of personal safety equipment, site personnel responsibilities, decontamination procedures and emergency response plan in the event of a site emergency.

2.2 Test Pitting

The test pitting program was conducted on October 3, 2014 and consisted of the excavation of six test pits at the locations shown in Figure 2. The objective of the test pit program was to estimate the total volume of contaminated soil that needed to be excavated from the Site. Prior to the work, a potentiality contaminated "hot spot" was identified directly below the location of the former ASTs (Attachment 1, Photograph 3), evident by surficial staining and a strong hydrocarbon-like odour. Throughout the test pitting, Golder field personnel collected discrete soil samples from the excavator bucket starting from the contamination "hot spot" in order to characterize the contaminants of concern, and moving out to the surrounding area to delineate the extent of the contaminated soil both laterally and vertically. Test pits were excavated to a maximum depth of 10 feet below ground surface using a Kubota, KX161-3 backhoe. One near-surface soil sample was collected from the approximate center of the "hot spot" in order to characterize the soil contamination at the Site. This soil sample was collected using hand-tools from a depth of 0.15 feet below grade.

Golder personnel monitored the test pitting activities, logged and recorded the soil conditions at each test pit, and noted any visual or olfactory evidence of potential contamination. Clean nitrile gloves were used to collect each soil sample and the samples were placed in clean laboratory supplied sample containers. Each soil sample was split into two parts:

- The first sub-sample was field tested for the organic vapor concentration to provide a qualitative indication of volatile or semi-volatile organic contamination; and
- The second sub-sample was collected and submitted to the analytical laboratory for chemical analysis.

Organic vapor concentrations for soil samples were assessed using the dry headspace technique, whereby a plastic bag is half-filled with soil, sealed, and let stand for five minutes. The air from the sample bag headspace is then drawn through the air monitor. All concentrations of organic vapors were measured using a MiniRAE Model 2000 Photoionization Detector (PID), utilizing a 10.6 eV ionizing lamp. The instrument was calibrated to 100 parts per million (ppm) isobutylene gas.

For samples submitted to the laboratory for Volatile Organic Carbon (VOC) analysis, approximately 25 grams of soil from each location was measured into pre-cleaned and labeled laboratory-supplied glass jars for subsequent chemical analysis of VOCs. The samples were preserved with a minimum 25 mL laboratory-supplied methanol to 25 gram soil ratio. Samples submitted for chemical analysis of other parameters were placed unpreserved into pre-cleaned laboratory supplied-glass jars. Sample jars were placed in coolers prior to shipment to the analytical laboratory. Cold packs were also placed in the coolers to maintain low temperatures during shipment.

In total, seven (7) samples, including one duplicate sample, were shipped to Test America in Anchorage, Alaska for chemical analysis of potential contaminants of concerns (PCOC). The selected chemical analysis included: volatile organic compounds (VOCs), benzene, toluene, ethylbenzene, and xylenes (BTEX), gasoline range organics (GRO), diesel range organics (DRO) and residual range organics (RRO). Laboratory analysis was conducted in accordance with methods AK101, AK102 and AK103.

2.3 Soil Excavation and Confirmatory Sampling

Hamilton Construction was retained by the property owner to arrange for the excavation and transport of the contaminated soil to a permitted land treatment facility in Seattle, WA. Hamilton Construction was also responsible for the temporary removal of both ASTs, the fencing separating the two properties, and the external staircase located on the southeast side of the building.

On October 29 and 30, 2014, Golder monitored the excavation and removal of suspected petroleum hydrocarbon-contaminated soil from the area surrounding the former ASTs. The excavation limits are shown on Figure 3. The excavation was laterally bounded and limited by the on-Site building foundation located directly northeast and northwest and extended across the neighboring property to the southeast and into a gravel parking area to the southwest. The depth of the excavation was limited by the depth of the groundwater table. The excavation was divided into two areas: Area 1 was located on the southwest side of the on-Site building in the direct vicinity of the ASTs (Attachment 1, Photograph 6). Area 2 was located on the neighboring property to the southeast (Attachment 1, Photograph 5).

Based on the results of the test pitting program, the inferred contaminated material was loaded into 20 cubic yard containers and transported to a land treatment facility in Seattle, WA. In total, 10 containers of soil totalling approximately 200 cubic yards of inferred contaminated soil was transported to the landfill. During the excavation, Golder field personnel collected discrete soil samples at regular intervals from the excavator bucket and field screened for volatile organic vapours using a portable, photo-ionization detector (PID) as well as assessed for visual and/or olfactory indications of contamination. Once the field screening adequately detected insignificant amounts of contaminant concentrations, the excavation was stopped and confirmatory soil samples were collected from the extent of the excavation (i.e., walls and base) using the standard sampling procedures and protocols outlined in section 2.2 above. The samples were submitted for laboratory analysis of PCOC including GRO, DRO, RRO, and BTEX. Laboratory analysis was conducted in accordance with methods AK101, AK102 and AK103.

Characterization and confirmatory sample locations are outlined in the Table 2 and are shown on Figure 3. In total, four (4) confirmatory samples were submitted for laboratory analysis from Area 1 and eight (8) confirmatory (including one duplicate pair) and one (1) characterization samples were submitted for laboratory analysis from Area 2. Soil samples were selected for analysis based on results of field screening and field observations, as well as to characterize the soil quality at the excavation limits.

The excavation was subsequently backfilled with clean fill supplied by Hamilton Construction.

2.4 Quality Assurance/Quality Control (QA/QC) Program

To document that the sampling and analytical data were interpretable, meaningful and reproducible, conformance to a Golder quality assurance and quality control (QA/QC) program was followed. This involved using QA/QC measures in both the collection (field program) and analysis (laboratory) of samples. The following discussion includes a brief summary of the QA/QC measures implemented by Golder during the field program and during the data review, as well as the QA/QC measures implemented by the analytical laboratory.

The quality assurance (QA) measures used in the collection, preservation and shipment of samples included the following management controls:

- Sampling methods were consistent with established Golder protocols and provincial/federal requirements;
- Field notes were recorded during each stage of the investigation;
- Sample locations were recorded, marked and surveyed in the field; and
- Samples were subsequently transported to the laboratory using Golder chain-of-custody procedures.

The quality control (QC) measures established for the field program included the following technical aspects:

- Submission of blind field duplicate samples (i.e., paired sample analyses). A blind field duplicate sample is a second sample of a certain media (e.g., soil or water) from the same location that is submitted to the analytical laboratory under a separate label such that the laboratory has no prior knowledge that it is a duplicate.
- The relative percent difference (RPD) between paired sample results was used to assess duplicate sample data. The RPD is a measure of the variability between two outcomes from the same procedure or process and is calculated by:

RPD(%) = absolute
$$\left(\frac{(x_1 - x_2)}{average(x_1, x_2)}\right) \times 100$$

where x_1 is the original sample result and x_2 is the paired analysis result.

Where the concentration of a given parameter is less than five times the method detection limit (MDL), the laboratory results are considered to be less precise and the RPD is not calculated. For parameters with concentrations less than five times the MDL, the difference factor (DF) between paired analyses results is calculated by:

$$DF = absolute \left(\frac{\left(x_1 - x_2 \right)}{MDL} \right)$$

where x_1 is the original sample result and x_2 is the paired analysis result.

Golder's internal data quality objectives (DQOs) for environmental samples are as follows:

- A RPD less than or equal to 35% for soil samples submitted for analysis;
- A RPD less than or equal to 20% for groundwater samples submitted for analysis; and
- A DF less than or equal to 2.0.

Where the DQO was exceeded, further investigation of the data quality was required. Data not meeting the DQOs were examined on a case-by-case basis.

The following DQOs and criteria were established for the laboratory analytical program:

- Laboratory paired analyses results should be within laboratory-applied certified values for inorganic elements and organic compounds;
- Analytical recovery results for reference materials or spiked standards should be within laboratory-applied certified values for inorganic elements and organic compounds;
- Analytical blanks should be less than the detection limits used for the specific analysis; and
- Each laboratory analytical batch should include at least one analytical blank, one matrix spike and one laboratory duplicate sample.

3.0 RESULTS

3.1 Soil Stratigraphy

Observations made during the test pitting and excavation work were as follows:

- Surficial staining was observed directly below the ASTs and extended across the lot and onto the neighboring property to the east;
- Brown sand and gravel fill with strong hydrocarbon-like odour was encountered from surface to approximately 3 feet below grade;
- Fine grained, laminated, grey silty sand with weak orange mottling and strong hydrocarbon-like odour was encountered from approximately 3-6 feet below grade (Attachment 1, Photograph 4);
- Light brown, medium to coarse sand and gravel with sub-rounded cobbles and strong hydrocarbon-like odour was encountered below 6 feet;
- The water table was encountered at approximately 13.5 feet below grade (Attachment 1, Photograph 4); and
- PID measurements collected during field screening suggest that soil contamination directly below the ASTs likely extends to the water table below the Site.

3.2 Soil Sampling Analytical Results

3.2.1 Test Pitting Program

In total, seven (7) samples were submitted for analysis of VOCs, BTEX, GRO, DRO and RRO. The results of the analysis are presented in Table 1A in comparison to Alaska DEC Cleanup Levels for the "Under 40 inch Zone". The Cleanup Levels shown are the most stringent of the "Migration to Groundwater", "Direct Contact", and "Outdoor Inhalation" pathways as well as the maximum allowable concentrations for GRO, DRO and RRO.

Test pit soil sample locations and field measured PID vapour concentrations are outlined in Table 1, below.

Table 1: Summary of Test Pit Soil Sample locations and PID Concentrations

Test Pit Number	Depth (ft)	PID (ppm)	Sample Control Number (SCN)
	0.15	275.2	20718-01*
	0.15	275.2	20718-02*
	0.15	264.5	20718-03
TP1	0.15	381.0	20718-04
IFI	0.15	515.1	20718-05
	3	716.8	20718-06
	6.5	710.1	20718-07
	10	707.5	20718-08*
TP2	1	5.1	20718-09*
TP3	1	4.8	n/a
TP4	2	1.9	20718-10*
TP5	5	976.1	20718-11
TP6	5	7.9	20718-12*
TP7	5	2.4	20760-01*

^{*}sample submitted for laboratory analysis

Results of the soil analytical results indicated the following:

- All three of the samples collected from TP1 (20718-01, 20718-02 and 20718-08) directly below the AST location had concentrations of DRO that were above the ADEC maximum allowable clean-up level of 12,500 mg/kg with values that ranged from 140,000 mg/kg to 590,000 mg/kg. These samples had respective PID values that ranged from 275.2 to 707.5 ppm. The concentration of GRO from sample 20718-08 exceeded the ADEC maximum allowable concentration of 1,400 mg/kg with a value of 9,900 mg/kg as well as samples 20718-01 and 20718-02 exceeded the ADEC clean-up level of GRO (300 mg/kg) with values of 328 mg/kg and 440 mg/kg, respectfully;
- All three samples from TP1 slightly exceeded the ADEC clean-up level for methylene chloride (0.21 mg/kg; migration to groundwater) with values of 0.22 mg/kg, 0.24 mg/kg and 0.22 mg/kg, respectfully. It is assumed that these concentrations are present due to the use of methanol as an extraction solvent;
- Samples collected from TP2, TP4, TP6 and TP7 were either below the ADEC clean-up levels or less than laboratory reporting limits for all parameters analyzed. These samples had respective PID values that ranged from 1.9 to 7.9 ppm;
- Analytical results suggest that contamination directly below the location of the former ASTs exists at a depth greater than 10 feet below grade;

- In general, results with PID values of less than approximately 10 ppm were below ADEC clean-up levels and/or laboratory reporting limits (RL) for the parameters analyzed; and
- Approximately 200 cubic meters of soil was estimated to be impacted from diesel oil contamination at the Site.

The laboratory analytical report for the test pitting program is included in Attachment 2.

3.2.2 Remedial Excavation and Confirmatory Sampling

In total, four (4) confirmatory samples were submitted for laboratory analysis from Area 1 as well as eight (8) confirmatory and one (1) characterization samples being submitted for analysis from Area 2. The sample types, sample IDs and corresponding PID values are summarized in Table 2. The locations of these samples are shown on Figure 3 – Excavation Plan. The results of the analysis are presented in Table 2A along with the ADEC Cleanup Levels for the "Under 40 inch Zone". The Cleanup Levels shown are the most stringent of the "Migration to Groundwater", "Direct Contact", and "Outdoor Inhalation" pathways as well as the maximum allowable concentrations for GRO, DRO and RRO.

The laboratory analytical report for the remedial excavation program is included in Attachment 2.

Table 2: Remedial Excavation Sample Type and Location

Area	Туре	Location	PID (ppm)	Sample Control Number (SCN)	Sample Number
	characterization	NE wall-1 (1.5 ft)	<50	na	1
	confirmatory	NE wall-1 (3.3 ft)	0.3	20700-01	2
	characterization	N wall-1 (1.5 ft)	<50	na	3
1	confirmatory	N wall-1 (3.3 ft)	0.5	20700-02	4
	characterization	SE wall-1 (1.5 ft)	<50	na	5
	confirmatory	SE wall-1 (3.3 ft)	3.0	20700-03	6
	characterization	W wall-1 (1.5 ft)	<50	na	7
	confirmatory	N base-1 (4 ft)	0.9	20700-05	8
	confirmatory	SW wall-2 (12 ft)	8.8	20700-06	9
	confirmatory	SE wall-2 (11 ft)	1.8	20700-07	10
	characterization	W base-2 (10 ft)	564.3	na	11
	characterization	W base-2 (11 ft)	518.4	na	12
	confirmatory	W base-2 (13.5 ft)	379.0	20700-08	13
	characterization	N wall-2 (5 ft)	395.2	na	14
	confirmatory	NW wall-2 (12 ft)	320.5	20700-09	15
2	confirmatory	NW wall-2 (12 ft, duplicate)	320.5	20700-10	16
2	confirmatory	E wall-2 (11 ft)	1.1	20700-11	17
	confirmatory	S wall-2 (12 ft)	1.7	20700-12	18
	characterization	NE wall-2 (8.5 ft)	366.7	20700-04	19
	characterization	E wall-2 (12 ft)	398.1	na	20
	characterization	S wall-2 (13.5 ft)	427.0	na	21
	characterization	W wall-2 (12 ft)	577.9	na	22
	characterization	SW wall-2 (10 ft)	586.2	na	23
	characterization	SE wall-2 (10 ft)	410.3	na	24
	characterization	S wall-2 (11 ft)	495.9	na	25

na = sample not submitted for laboratory analysis.

Results of the soil analytical results indicated the following:

- Confirmatory soil samples collected from the excavation limits (walls and base) in Area 1 (on the neighboring property) contained concentrations of DRO, GRO, RRO and BTEX less than the applicable ADEC clean-up levels;
- Confirmatory soil samples collected from the excavation limits in Area 2 on the east, south, and west walls
 contained concentrations of DRO, GRO, RRO and BTEX less than the applicable ADEC clean-up levels;
- The sample collected from the base of the excavation in Area 2 (in the direct vicinity of the ASTs location) at 13.5 ft below grade contained concentrations which exceeded the ADEC maximum allowable clean-up levels for GRO and RRO with values of 2,800 mg/kg and 54,000 mg/kg respectfully. This sample also exceeded that ADEC clean-up level for ethylbenzene and total xylenes. The excavation depth could not be extended below the groundwater table without dewatering; and
- Samples collected at 8.5 ft and 12 ft below grade from the northeast wall of the excavation in Area 2 resulted in concentrations that exceeded the ADEC maximum allowable clean-up levels for GRO and RRO with values that ranged from 800 mg/kg to 2,960 mg/kg and 33,000 mg/kg to 77,000 mg/kg, respectfully. The sample collected from 12 feet below grade also exceeded the ADEC clean-up levels for total xylene. The extent of the excavation to the northeast was terminated at the building foundation.

3.2.3 QA/QC Results and Interpretation

Two duplicate pairs from 19 total soil samples were submitted for laboratory analyses during the sampling events of October, 2014. QA/QC analyses are provided in Table 1B (test pitting) and Table 2B (excavation). The results of the duplicate analyses met the DQOs for RPD and DF that were outlined in Section 3.0 for all parameters with the exception of naphthalene between duplicate pairs 20718-01 and 20718-02. Naphthalene had a RPD value of 39% which is slightly above Golder's DQO of 35% for soil. The associated analytical results for both samples were below the applicable ADEC clean-up level.

Test America conducted the chemical analyses of the test pitting and excavation soil samples collected during the remedial excavation program. Test America is an approved laboratory by the Alaska Department of Environmental Conservation Contaminated Sites (ADEC CS). In general, each laboratory analysis batch included at least one method blank, one laboratory duplicate and one reference or control sample. A review of the laboratory's internal QA/QC program is provided Attachment 3 and identified the following QA/QC items:

- Elevated reporting limits are provided for samples 20718-01, 20718-02 and 20818-08 as a result of dilution which the laboratory attibuted to the nature of the sample matrix;
- The surrogate recovery for GRO, DRO and RRO analyses was outside control limits for samples 20718-01, 20718-02, 20700-04, 20700-09 which the laboratory attributed to matrix interferences;
- The reported values for samples 20718-01, 20718-02 and 20718-02 within the GRO retention time window is mainly due to the presence of diesel fuel;
- The trip blank 20701-01 contained concentrations of toluene less than the reporting limit (RL) but greater than the method detection limit (MDL) as well as GRO concentrations greater than both the RL and MDL. The concentrations measured in the blank samples were well below the ADEC Clean-up Levels. These result, though not ideal, are not considered to have impacted the conclusion of the sampling program but should be taken into consideration when reviewing the data;

- In addition, diesel was found above the MDL in the laboratory method blank for batch 250-31056 and 250-31135. This target analyte concentration was less than half of the RL and therefore considered reliable; and
- The detection hydrocarbons in oil range for samples 20718-09, 20718-10, 20718-12 and 20760-01 have been attributed by the laboratory to biogenic interferences. The associated concentrations were well below the applicable ADEC Clean-up Levels and as such are considered reliable;

A copy of the ADEC Laboratory Data Review Checklist is provided in Attachment 3.

In summary, some quality issues were identified during the data review. While these issues may have impacted data accuracy, the overall data is still considered acceptable for the purpose of the overall investigation and for decision-making purposes.

4.0 CONCLUSIONS

Based on the test pitting and remedial excavation results it is inferred that petroleum hydrocarbon contaminated soil exceeding the ADEC clean-up levels for DRO, RRO, total xylene and ethylbenzene remains at the Site in the immediate vicinity of the former ASTs (Area 2). The remaining contaminated material could not be removed below the groundwater table at 13.5 ft below grade (without dewatering) and because the building foundation prevented the excavation from extending further to the northeast.

Soil samples at the limits of the excavation in Area 1 were less than the ADEC clean –up levels on the neighboring property and no further excavation in this area is required.

5.0 RECOMMENDATIONS

Based on the results from the works conducted at the Site in October, 2014, Golder recommends the following:

- Installation of a groundwater monitoring well in the vicinity of the former ASTs to assess impacts to the groundwater quality at the Site. Based on the soil quality at the water table it is assumed that two additional groundwater monitoring wells would also be required in locations hydraulically down-gradient of the Site (inferred to be to the southwest) to determine the extent of the dissolved hydrocarbon plume. Monitoring wells should be constructed in general accordance with the ADEC November 2011 Monitoring Well Guidance document and ASTM 5092-04e1 Standard Practice for Design and Installation of Ground Water Monitoring Wells (2005); and
- Following a review of groundwater analytical results, potential remediation options should be evaluated to address the remaining soil and groundwater contamination at the site.

6.0 LIMITATIONS AND USE OF THE REPORT

This report has been prepared for the sole benefit of Hamilton Construction and Alaska Fur Gallery and is intended to provide an indication of remedial progress at the Site. This report may not be relied upon by any other person(s) or entity without the express written consent of Golder Associates Ltd., Hamilton Construction, or Alaska Fur Gallery. The inferences concerning the conditions of the Site contained in this report are based on information obtained during the environmental sampling program conducted by Golder personnel, and are based solely on conditions at the time of the sampling. Therefore, the potential remains for the presence of unknown, unidentified or unforeseen contamination in areas not inspected as part of this study.

Any uses that a third party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such third parties. Golder Associates Ltd accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions documented in this report have been prepared for the specific application to this project, the services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

The content of this report is based on information collected during our environmental sampling, our present understanding of the Site, and our professional judgment in light of such information available at the time of this report. This report provides a professional opinion, and therefore no warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

7.0 CLOSURE

We trust that this report provides you with the information you require at this time. Should you have any further questions or concerns, please do not hesitate to call the undersigned.

Yours very truly,

GOLDER ASSOCIATES LTD.

Erin Adshead, B.Sc., GIT Environmental Geologist

Guy Houlle

Tamra Reynolds, M.Sc., P.Geo. Senior Hydrogeologist

1/2/8

Gary Hamilton, P.Geo. Principal, Geologist

EA/TR/lih

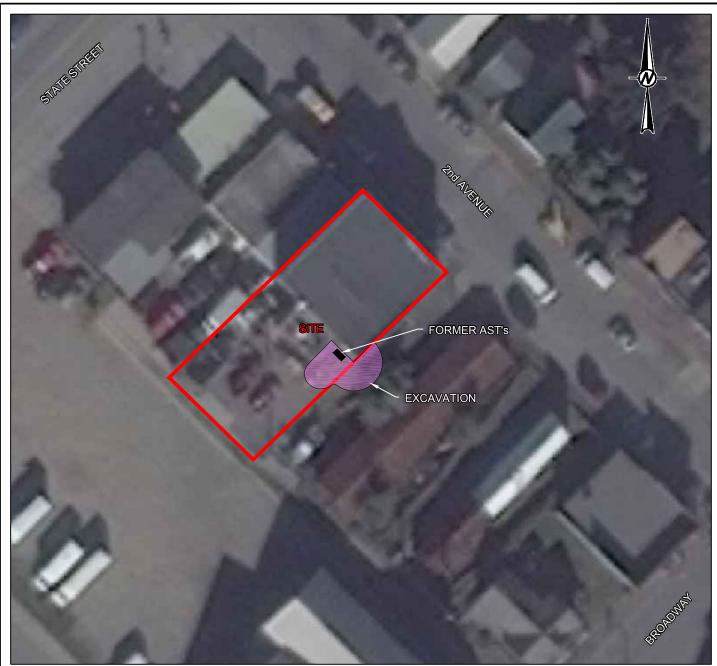
CC: Jeff Hamilton, Hamilton Construction Ltd.

Attachments: Figure 1 – Site Plan

Figure 2 - Test Pit Locations

Figure 3 – Remedial Excavation Plan
Table 1A – Test Pitting Analytical Results
Table 1B – Test Pitting Analytical Results OA

Table 1B – Test Pitting Analytical Results QA/QC


Table 2A – Remedial Excavation and Confirmatory Sampling Results
Table 2B – Remedial Excavation and Confirmatory Sampling Results QA/QC

Attachment 1 - Site Photographs

Attachment 2 – Laboratory Analytical Reports

Attachment 3 - ADEC Laboratory Data Review Checklist

LEGEND

SITE BOUNDARY

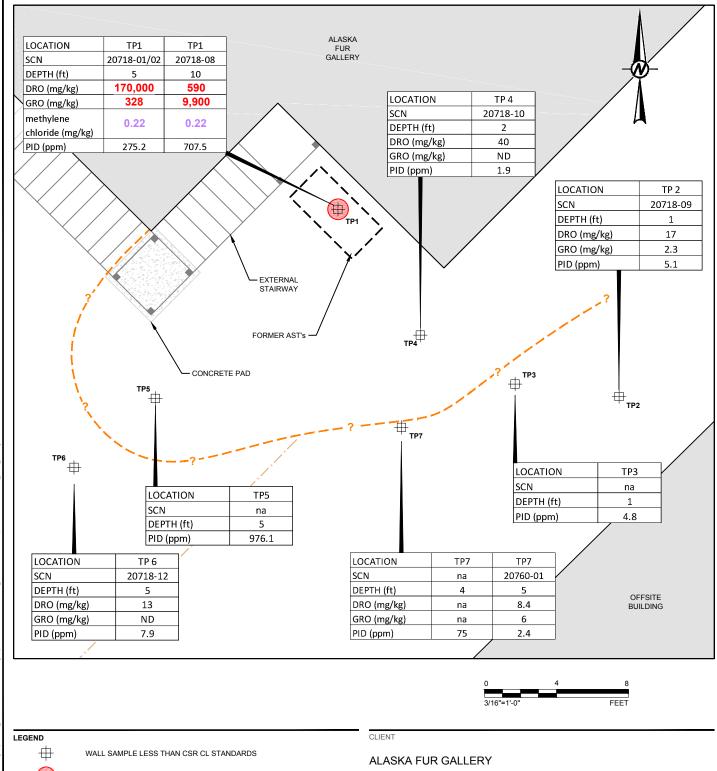
EXCAVATION

ALASKA FUR GALLERY

PROJECT

TEST PITTING AND REMEDIAL EXCAVATION WORKS 363-2nd AVE, SKAGWAY, ALASKA

TITLE


CONSULTANT

PROJECT LOCATION

YYYY-MM-DD	2014-12-12	
PREPARED	RTJ	_
DESIGN	EA	
REVIEW	TR	_
APPROVED	TR	_

Base imagery obtained from Bing Maps for ArcGIS published by the Microsoft Corporation (Sept. 2010). Bing Maps Image is to be used for surrounding detail reference only, Bing Maps Image is Not to Scale. Datum: NAD83 Projection: UTM Zone 8 PROJECT No. 1414827 PHASE Rev. FIGURE 1000

REFERENCE

TEST PIT CONCENTRATIONS EXCEED ADEC CLEAN-UP LEVEL

APPROXIMATE DRO/GRO PLUME ABOVE ADEC CLEAN-UP LEVELS

FENCE

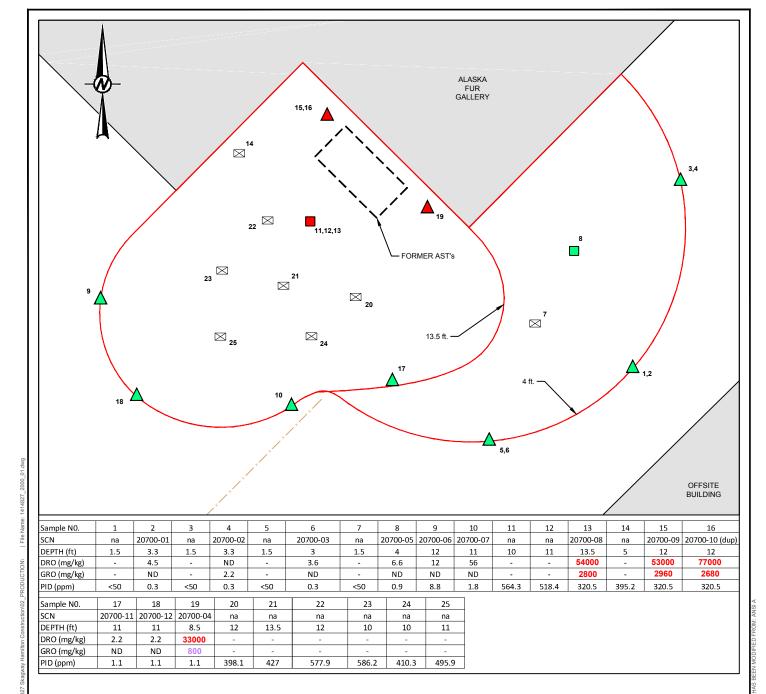
PROJECT

TEST PITTING AND REMEDIAL EXCAVATION WORKS 363-2nd AVE, SKAGWAY, ALASKA

TITLE

CONSULTANT

TEST PIT LOCATIONS


YYYY-MM-DD	2014-12-19
PREPARED	RTJ
DESIGN	EA
REVIEW	TR
APPROVED	TR

PROJECT No. PHASE Rev. **FIGURE** 1414827 1000

RED = CONCENTRATION EXCEEDS ADEC MAXIMUM ALLOWABLE CLEAN-UP LEVEL PURPLE = CONCENTRATION EXCEEDS ADEC CLEAN-UP LEVEL

REFERENCE

DRAWING IS BASED ON A SITE SKETCH COMPLETED BY LINDSAY CARSON ON DECEMBER 11th, 2014

WALL SAMPLE LESS THAN ADEC SOIL CLEAN-UP LEVELS

WALL SAMPLE EXCEEDS ADEC SOIL CLEAN-UP LEVELS

FLOOR SAMPLE LESS THAN ADEC SOIL CLEAN-UP LEVELS

FLOOR SAMPLE EXCEEDS ADEC SOIL CLEAN-UP LEVELS

SAMPLE NOT SUBMITTED FOR LABORATORY ANALYSIS

EXCAVATION FLOOR BOUNDARY

___ x ___ x __ x __ F

NOTES

RED = CONCENTRATION EXCEEDS ADEC MAXIMUM ALLOWABLE CLEAN-UP LEVEL PURPLE = CONCENTRATION EXCEEDS ADEC CLEAN-UP LEVEL

REFERENCE

DRAWING IS BASED ON A SITE SKETCH COMPLETED BY LINDSAY CARSON ON DECEMBER 11th, 2014

CLIENT

ALASKA FUR GALLERY

PROJECT

TEST PITTING AND REMEDIAL EXCAVATION WORKS 363-2nd AVE, SKAGWAY, ALASKA

TITLE

CONSULTANT

EXCAVATION PLAN

YYYY-MM-DD	2014-12-19	
PREPARED	RTJ	_
DESIGN	EA	_
REVIEW	TR	_
APPROVED	TR	

PROJECT No. PHASE Rev. FIGURE 1414827 1000 - 3

TABLE 1A
Test Pitting
Soil Analytical Results
363 2nd Avenue, Skagway, AK
Alaska Fur Co.

Location SCN Depth (ft) OVM (ppm) Date QA/QC	ADEC Soil Clean- Up Level ¹	ADEC Maximum Allowable Clean- Up Level ²	TP1 20718-01 0.5 275.2 03-Oct-14 FDA	TP1 20718-02 0.5 275.2 03-Oct-14 FD	TP1 20718-08 10.0 707.5 03-Oct-14	TP2 20718-09 1.0 5.1 03-Oct-14	TP4 20718-10 2.0 1.9 03-Oct-14	TP6 20718-12 5.0 7.9 03-Oct-14	TP7 20760-01 5.0 2.4 03-Oct-14
BTEX benzene toluene ethylbenzene	0.025 6.5 6.9		ND 0.94 1.82	ND 1.20 2.60	ND 0.82 1.54	ND ND ND	ND ND ND	ND ND ND	ND ND ND
xylene (total m,p,o) Petroleum Hydrocarbons	63		20	28	42	ND	ND	ND	ND
gasoline range organics (GRO) diesel range organics (DRO) residual range organics (RRO)	300 250 11000	1400 12500 22000	328 <u>170000</u> 2800	440 140000 2400	<u>9900</u> <u>590000</u> 650	2.3 17 30	ND 40 110	ND 13 23	5.6 8.4 8.0
Volatile Organic Compounds 1,1,1-trichloroethane 1,1-dichloroethane	0.82 25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-dichloroethene (1,1-dichloroethylene) cis-1,2-dichloroethene (cis-1,2-dichloroethylene) trans-1,2-dichloroethene (trans-1,2-dichloroethylene) methylene chloride (chloromethane)	0.030 0.24 0.37 0.21		ND ND ND 0.220	ND ND ND 0.240	ND ND ND 0.220	ND ND ND 0.044	ND ND ND 0.054	ND ND ND 0.051	ND ND ND 0.066
naphthalene styrene tetrachloroethene (tetrachloroethylene, PCE) trichloroethene (trichloroethylene,TCE)	20 0.96 0.024 0.020		4.4 ND ND ND	7.6 ND ND ND	5.6 ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
vinyl chloride (chloroethene)	0.0085		ND	ND	ND	ND	ND	ND	ND

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

1. Tables B1 & B2, method two of "18 AAC 75, Articles 3 and 9, "Oil and Other Hazardous Substances Pollution Control"

Regulations as amended through April 8, 2012 - "Migration to Groundwater", under 40 zone "Outdoor Inhalation" or under 40 zone "Direct Contact", whichever is most stringent.

2. Table B2, method two of "18 AAC 75, Arcticles 3 and 9, "Oil and Other Hazardous Substances Pollution Control", standards for maximum allowable concentrations of petroleum hydrocarbon soil clean-up levels.

FDA - Field Duplicate Available

FD - Field Duplicate

ND - Not detected at concentrations above laboratory reporting limit

OVM - Organic Vapor Monitoring

ppm - parts per million

Data reported from TestAmerica, Portland, OR

Result exceeds clean-up level.

Result exceeds maximum allowable soil clean-up level.

X	
X	

Test Pitting Soil QA/QC Analytical Results 363 2nd Avenue, Skagway, AK Alaska Fur Co.

Location SCN Depth (ft) OVM (ppm) Date QA/QC	ADEC Soil Clean- Up Levels ¹	ADEC Maximum Allowable Clean- Up Level ²	TP1 20718-01 0.5 275.2 03-Oct-14 FDA	TP1 20718-02 0.5 275.2 03-Oct-14 FD	Method Detection Limit	Mean	Relative Percent Difference	Difference Factor
BTEX benzene toluene ethylbenzene xylene (total m,p,o)	0.025 6.5 6.9 63		ND 0.94 1.82 20	ND 1.20 2.60 28	0.08 0.060 0.072 0.24	NC 2 3 34	NC 17% 25% 24%	NA NA NA NA
Petroleum Hydrocarbons gasoline range organics (GRO) diesel range organics (DRO) residual range organics (RRO)	300 250 11000	$\frac{1400}{12500}$ $\frac{22000}{2}$	328 170000 2800	440 140000 2400	10 23 38	548 240000 4000	20% 13% 10%	NA NA NA
Volatile Organic Compounds 1,1,1-trichloroethane 1,1-dichloroethane 1,1-dichloroethene (1,1-dichloroethylene) cis-1,2-dichloroethene (cis-1,2-dichloroethylene) trans-1,2-dichloroethene (trans-1,2-dichloroethylene) methylene chloride (chloromethane) naphthalene styrene tetrachloroethene (tetrachloroethylene, PCE) trichloroethene (trichloroethylene, TCE) vinyl chloride (chloroethene)	0.82 25 0.030 0.24 0.37 0.21 20 0.96 0.024 0.020 0.0085		ND ND ND ND ND 0.220 4.4 ND	ND ND ND ND 0.240 7.6 ND	0.084 0.076 0.064 0.110 0.080 0.056 0.097 0.072 0.110 0.084 0.400	NC NC NC NC NC 0.340 8.2 NC NC NC	NC NC NC NC NC NC OW NC NC NC NC NC NC NC NC NC	NA N

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

1. Tables B1 & B2, method two of "18 AAC 75, Articles 3 and 9, "Oil and Other Hazardous Substances Pollution Control"

Regulations as amended through April 8, 2012 - "Migration to Groundwater", under 40 zone "Outdoor Inhalation" or under 40 zone "Direct Contact", whichever is most stringent.

2. Table B2, method two of "18 AAC 75, Arcticles 3 and 9, "Oil and Other Hazardous Substances Pollution Control", standards for maximum allowable concentrations of petroleum hydrocarbon soil clean-up levels.

FDA - Field Duplicate Available

FD - Field Duplicate

ND - Not detected at concentrations above laboratory reporting limit

OVM - Organic Vapor Monitoring

ppm - parts per million

NA - Not applicable

NC - Not calculated

Data reported from TestAmerica, Portland, OR

Result exceeds clean-up level.

X X

Result exceeds maximum allowable soil clean-up level.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

 $Difference\ Factor\ is\ calculated\ when\ the\ mean\ value\ is\ less\ than\ five\ times\ the\ method\ detection\ limit;\ Golder's\ internal\ QA/QC\ target\ is\ less\ than\ 2.$

BOLD indicates the parameter analysed exceeds Golder's internal QA/QC targets.

TABLE 2A Remedial Excavation and Conformatory Sampling Soil Analytical Results 363 2nd Avenue, Skagway, AK Alaska Fur Co.

Locati St Depth (OVM (pp Dr QA/0	ADEC Soil Clean- Up Level ¹	ADEC Maximum Allowable Clean- Up Level ²	NE-Wall-1 20700-01 3.3 0.3 29-Oct-14	N-Wall-1 20700-02 3.3 0.5 29-Oct-14	SE-Wall-1 20700-03 3.3 3.0 29-Oct-14	N-Base-1 20700-05 4.0 0.9 30-Oct-14	NE-Wall-2 20700-04 8.5 366.7 30-Oct-14	SW-Wall-2 20700-06 12.0 8.8 30-Oct-14	SE-Wall-2 20700-07 11.0 1.8 30-Oct-14	W-Base-2 20700-08 13.5 379.0 30-Oct-14	NW-Wall-2 20700-09 12.0 320.5 30-Oct-14 FDA	NW-Wall-2 20700-10 12.0 320.5 30-Oct-14 FD	E-Wall-2 20700-11 11.0 1.1 30-Oct-14	S-Wall-2 20700-12 12.0 0.7 30-Oct-14
BTEX benzene toluene ethylbenzene xylene (total m,p,o)	0.025 6.5 6.9 63		ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND 0.65 5	ND ND ND ND	ND ND ND ND	ND 4.3 13 140	ND 1.1 3.7 85	ND 0.9 3.4 70	ND ND ND ND	ND ND ND ND
Petroleum Hydrocarbons gasoline range organics (GRO) diesel range organics (DRO) residual range organics (RRO)	300 250 11000	1400 12500 22000	ND 4.5 11	2.2 ND 3.6	ND 3.6 4.7	ND 6.6 6.6	800 33000 700	ND 12 4.8	ND 56 12	2800 54000 820	2960 53000 580	2680 77000 710	ND 2.2 3.2	ND ND ND

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

Regulations as amended through April 8, 2012 - "Migration to Groundwater", under 40 zone "Outdoor Inhalation" or under 40 zone "Direct Contact", whichever is most stringent.

ppm - parts per million
Data reported from TestAmerica, Portland, OR

Result exceeds clean-up level

^{1.} Tables B1 & B2, method two of "18 AAC 75, Articles 3 and 9, "Oil and Other Hazardous Substances Pollution Control"

^{2.} Table B2, method two of "18 AAC 75, Arcticles 3 and 9, "Oil and Other Hazardous Substances Pollution Control", standards for maximum allowable concentrations of petroleum hydrocarbon soil clean-up levels

FDA - Field Duplicate Available

FD - Field Duplicate

ND - Not detected at concentrations above laboratory reporting limit

OVM - Organic Vapor Monitoring

Remedial Excavation and Confirmatory Sample Soil QA/QC Analytical Results 363 2nd Avenue, Skagway, AK Alaska Fur Co.

Location SCN Depth (ft) OVM (ppm) Date QA/QC	ADEC Soil Cean- Up Levels ¹	ADEC Maximum Allowable Clean- Up Level ²	NW-Wall-2 20700-09 12.0 320.5 30-Oct-14 FDA	NW-Wall-2 20700-10 12.0 320.5 30-Oct-14 FD	Method Detection Limit	Mean	Relative Percent Difference	Difference Factor	Trip Blank 20701-01 - - 30-Oct-14	Field Blank 20701-02 - - 30-Oct-14
BTEX benzene toluene ethylbenzene xylene (total m,p,o)	0.025 6.5 6.9 63		ND 1.1 3.7 85	ND 0.9 3.4 70	0.15 0.11 0.13 0.44	NC 1.6 5.4 120	NC 13% 6% 13%	NA NA NA NA	ND 0.016 ND ND	ND ND ND ND
Petroleum Hydrocarbons gasoline range organics (GRO) diesel range organics (DRO) residual range organics (RRO)	300 250 11000	1400 12500 22000	2960 53000 580	2680 77000 710	7.7 19 31	4300 91500 935	7% 26% 14%	NA NA NA	11 - -	ND - -

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

1. Tables B1 & B2, method two of "18 AAC 75, Articles 3 and 9, "Oil and Other Hazardous Substances Pollution Control"

Regulations as amended through April 8, 2012 - "Migration to Groundwater", under 40 zone "Outdoor Inhalation" or under 40 zone "Direct Contact", whichever is most stringent.

2. Table B2, method two of "18 AAC 75, Arcticles 3 and 9, "Oil and Other Hazardous Substances Pollution Control", standards for maximum allowable concentrations of petroleum hydrocarbon soil clean-up levels.

FDA - Field Duplicate Available

FD - Field Duplicate

ND - Not detected at concentrations above laboratory reporting limit

OVM - Organic Vapor Monitoring

ppm - parts per million

NA - Not applicable

NC - Not calculated

(-) - Not analyzed

Data reported from TestAmerica, Portland, OR Result exceeds maximum allowable soil clean-t

Result exceeds clean-up level.

X X

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target is less than 2.

BOLD indicates the parameter analysed exceeds Golder's internal QA/QC targets.

ATTACHMENT 1

Site Photographs

ATTACHMENT 1 Photographs

Photograph 1 – Rear view of the Site building looking northeast. Location of former ASTs directly in front of the Kubota backhoe.

Photograph 2 - Former ASTs after being removed from the Site.

ATTACHMENT 1 Photographs

Photograph 3 – "hot spot" area directly below the former ASTs (looking north) showing dark grey surficial staining.

Photograph 4 - TP1: grey silty sand visible from approximately 3 feet to 6 feet followed by brown sand and gravel with cobble (>6 feet).

ATTACHMENT 1 Photographs

Photograph 5 - "Area 1" excavation on the neighboring property looking north.

Photograph 6 - "Area 2" excavation looking north. Dark grey hydrocarbon-like staining visible at the location directly below the former ASTs.

ATTACHMENT 1 Photographs

Photograph 7 - "Area 2" excavation looking northwest. Groundwater seepage at approximately 13.5 feet below grade.

o:\final\2014\1451\1414827\1414827-001-I-rev0\att 1\att 1.docx

ATTACHMENT 2

Laboratory Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-21835-1 Client Project/Site: 1414827

For:

Golder Associates Inc. 2121 Abbott Rd #100 Anchorage, Alaska 99507-3443

Attn: Tamra Reynolds

Vanssa Berr

Authorized for release by: 10/16/2014 9:18:53 PM

Vanessa Berry, Project Manager II (503)906-9233 vanessa.berry@testamericainc.com

----- LINKS -----

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Golder Associates Inc. Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	15
Certification Summary	20
Method Summary	21
Chain of Custody	22
Receipt Checklists	24

q

4

-5

0

8

9

Sample Summary

Client: Golder Associates Inc. Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
250-21835-1	20718-01	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-2	20718-02	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-8	20718-	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-9	20718-	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-10	20718-10	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-12	20718-12	Solid	10/03/14 00:00	10/06/14 09:10
250-21835-13	20760-01	Solid	10/03/14 00:00	10/06/14 09:10

3

Δ

6

Ω

9

Case Narrative

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Job ID: 250-21835-1

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-21835-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2014 9:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 20718-01 (250-21835-1), 20718-02 (250-21835-2), 20718-08 (250-21835-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) AK101: The following reported values for sample(s) within the Gasoline Range Organics (GRO) retention time window is mainly due to the presence of diesel fuel: (250-21835-8 DU), 20718-01 (250-21835-1), 20718-02 (250-21835-2), 20718-08 (250-21835-8).

Method(s) AK101: Surrogate recovery for the following sample(s) was outside control limits: 20718-01 (250-21835-1), 20718-02 (250-21835-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: Surrogate recovery for the following sample(s) was outside control limits: 20718-01 (250-21835-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) AK102 & 103: The method blank for batch 250-31056 contained Diesel above the method detection limit. This target analyte concentration was less than half of the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. (MB 250-31056/1-A),

Method(s) AK102 & 103: The method blank for batch 250-31135 contained Diesel above the method detection limit. This target analyte concentration was less than half of the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. (MB 250-31135/1-A)

Method(s) AK102 & 103: Detected hydrocarbons in oil range is mainly due to biogenic interference. 20718-09 (250-21835-9), 20718-10 (250-21835-10), 20718-12 (250-21835-12), 20760-01 (250-21835-13)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

5

6

0

9

Definitions/Glossary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Golder Associates Inc.

Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: 20718-01 Lab Sample ID: 250-21835-1 Date Collected: 10/03/14 00:00 **Matrix: Solid**

Date Received: 10/06/14 09:10							Percent Soli	ds: 70.6
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	400	84	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Benzene	ND	400	80	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
1,1-Dichloroethane	ND	400	76	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Ethylbenzene	910	400	72	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
1,1-Dichloroethene	ND	400	64	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Xylenes, Total	10000	1200	240	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Naphthalene	2200	800	97	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Toluene	470	400	60	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
cis-1,2-Dichloroethene	ND	400	110	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Methylene Chloride	110 J	2000	56	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Styrene	ND	400	72	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Tetrachloroethene	ND	400	110	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
trans-1,2-Dichloroethene	ND	400	80	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Trichloroethene	ND	400	84	ug/Kg	₽	10/08/14 14:57	10/08/14 18:19	2
Vinyl chloride	ND	2000	400	ug/Kg	₩	10/08/14 14:57	10/08/14 18:19	2
0	0/0	1 : : 4				D	A I I	D# 5

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	75 - 125	10/08/14 14:57	10/08/14 18:19	2
4-Bromofluorobenzene (Surr)	103	75 - 125	10/08/14 14:57	10/08/14 18:19	2
Dibromofluoromethane (Surr)	99	75 - 125	10/08/14 14:57	10/08/14 18:19	2
Toluene-d8 (Surr)	101	75 - 125	10/08/14 14:57	10/08/14 18:19	2

Client Sample ID: 20718-02 Lab Sample ID: 250-21835-2 Date Collected: 10/03/14 00:00 **Matrix: Solid**

Davaget Calida, 70 0

Date Received: 10/06/14 09:10								Percent Soli	ds: 76.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		370	77	ug/Kg	\tilde{\	10/08/14 14:57	10/08/14 18:41	2
Benzene	ND		370	74	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
1,1-Dichloroethane	ND		370	70	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Ethylbenzene	1300		370	66	ug/Kg	\$	10/08/14 14:57	10/08/14 18:41	2
1,1-Dichloroethene	ND		370	59	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Xylenes, Total	14000		1100	220	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Naphthalene	3800		740	88	ug/Kg	*	10/08/14 14:57	10/08/14 18:41	2
Toluene	600		370	55	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
cis-1,2-Dichloroethene	ND		370	100	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Methylene Chloride	120	J	1800	52	ug/Kg	\$	10/08/14 14:57	10/08/14 18:41	2
Styrene	ND		370	66	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Tetrachloroethene	ND		370	99	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
trans-1,2-Dichloroethene	ND		370	74	ug/Kg	\$	10/08/14 14:57	10/08/14 18:41	2
Trichloroethene	ND		370	77	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2
Vinyl chloride	ND		1800	370	ug/Kg	₩	10/08/14 14:57	10/08/14 18:41	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 125	10/08/14 14:57	10/08/14 18:41	2
4-Bromofluorobenzene (Surr)	105		75 - 125	10/08/14 14:57	10/08/14 18:41	2
Dibromofluoromethane (Surr)	99		75 - 125	10/08/14 14:57	10/08/14 18:41	2
Toluene-d8 (Surr)	100		75 ₋ 125	10/08/14 14:57	10/08/14 18:41	2

Client: Golder Associates Inc. Project/Site: 1414827

Client Sample ID: 20718-08 Date Collected: 10/03/14 00:00

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab	Sample	ID:	250-21	835-8

Matrix: Solid Percent Solids: 92.0

Date Received: 10/06/14 09:10								Percent Soli	ds: 92.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		260	55	ug/Kg	\$	10/08/14 14:57	10/08/14 19:03	2
Benzene	ND		260	52	ug/Kg	₩	10/08/14 14:57	10/08/14 19:03	2
1,1-Dichloroethane	ND		260	50	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Ethylbenzene	770		260	47	ug/Kg	\$	10/08/14 14:57	10/08/14 19:03	2
1,1-Dichloroethene	ND		260	42	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Xylenes, Total	21000		780	150	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Naphthalene	2700		520	63	ug/Kg	\$	10/08/14 14:57	10/08/14 19:03	2
Toluene	410		260	39	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
cis-1,2-Dichloroethene	ND		260	73	ug/Kg	₩	10/08/14 14:57	10/08/14 19:03	2
Methylene Chloride	110	J	1300	37	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Styrene	ND		260	47	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Tetrachloroethene	ND		260	70	ug/Kg	₩	10/08/14 14:57	10/08/14 19:03	2
trans-1,2-Dichloroethene	ND		260	52	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Trichloroethene	ND		260	55	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2
Vinyl chloride	ND		1300	260	ug/Kg	₽	10/08/14 14:57	10/08/14 19:03	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 125	10/08/14 14:57	10/08/14 19:03	2
4-Bromofluorobenzene (Surr)	98		75 - 125	10/08/14 14:57	10/08/14 19:03	2
Dibromofluoromethane (Surr)	97		75 - 125	10/08/14 14:57	10/08/14 19:03	2
Toluene-d8 (Surr)	100		75 - 125	10/08/14 14:57	10/08/14 19:03	2

Client Sample ID: 20718-09 Lab Sample ID: 250-21835-9 Date Collected: 10/03/14 00:00

Date Received: 10/06/14 09:10

				wati	ix: Solia	
				Percent Sol	ids: 91.1	
	MDL Unit	D	Prepared	Analyzed	Dil Fac	

Date Received: 10/06/14 09:10								Percent Soli	as: 91.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		120	24	ug/Kg	*	10/08/14 14:57	10/09/14 09:29	1
Benzene	ND		120	23	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
1,1-Dichloroethane	ND		120	22	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
Ethylbenzene	ND		120	21	ug/Kg	₽	10/08/14 14:57	10/09/14 09:29	1
1,1-Dichloroethene	ND		120	18	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
Xylenes, Total	ND		350	68	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
Naphthalene	ND		230	28	ug/Kg	*	10/08/14 14:57	10/09/14 09:29	1
Toluene	ND		120	17	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
cis-1,2-Dichloroethene	ND		120	32	ug/Kg	₽	10/08/14 14:57	10/09/14 09:29	1
Methylene Chloride	44	J	580	16	ug/Kg	*	10/08/14 14:57	10/09/14 09:29	1
Styrene	ND		120	21	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
Tetrachloroethene	ND		120	31	ug/Kg	₩	10/08/14 14:57	10/09/14 09:29	1
trans-1,2-Dichloroethene	ND		120	23	ug/Kg	*	10/08/14 14:57	10/09/14 09:29	1
Trichloroethene	ND		120	24	ug/Kg	₽	10/08/14 14:57	10/09/14 09:29	1
Vinyl chloride	ND		580	120	ug/Kg	₽	10/08/14 14:57	10/09/14 09:29	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 125	10/08/14 14:57	10/09/14 09:29	1
4-Bromofluorobenzene (Surr)	102		75 - 125	10/08/14 14:57	10/09/14 09:29	1
Dibromofluoromethane (Surr)	98		75 - 125	10/08/14 14:57	10/09/14 09:29	1
Toluene-d8 (Surr)	101		75 ₋ 125	10/08/14 14:57	10/09/14 09:29	1

Client: Golder Associates Inc. Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: 20718-10 Date Collected: 10/03/14 00:00							Lab Sa	ample ID: 250-2	1835-10 x: Solid
Date Received: 10/06/14 09:10 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Percent Soli	
1,1,1-Trichloroethane	ND		190	39	ug/Kg		10/08/14 14:57	10/08/14 17:12	1
Benzene	ND		190	38	ug/Kg	₽	10/08/14 14:57	10/08/14 17:12	1
1,1-Dichloroethane	ND		190	36	ug/Kg	₽	10/08/14 14:57	10/08/14 17:12	1
Ethylbenzene	ND		190	34	ug/Kg		10/08/14 14:57	10/08/14 17:12	1
1,1-Dichloroethene	ND		190	30	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
Xylenes, Total	ND		560	110	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
Naphthalene	ND		380	45	ug/Kg		10/08/14 14:57	10/08/14 17:12	1
Toluene	ND		190	28	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
cis-1,2-Dichloroethene	ND		190	53	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
Methylene Chloride	54	J	940	26	ug/Kg		10/08/14 14:57	10/08/14 17:12	1
Styrene	ND		190	34	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
Tetrachloroethene	ND		190	51	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
trans-1,2-Dichloroethene	ND		190	38	ug/Kg	₩.	10/08/14 14:57	10/08/14 17:12	1
Trichloroethene	ND		190	39	ug/Kg	₩	10/08/14 14:57	10/08/14 17:12	1
Vinyl chloride	ND		940	190	ug/Kg	\$	10/08/14 14:57	10/08/14 17:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1,2-Dichloroethane-d4 (Surr)	104	75 - 125	10/08/14 14:57	10/08/14 17:12	1
4-Bromofluorobenzene (Surr)	99	75 - 125	10/08/14 14:57	10/08/14 17:12	1
Dibromofluoromethane (Surr)	98	75 - 125	10/08/14 14:57	10/08/14 17:12	1
Toluene-d8 (Surr)	100	75 - 125	10/08/14 14:57	10/08/14 17:12	1
-					

Client Sample ID: 20718-12
Date Collected: 10/03/14 00:00
Date Received: 10/06/14 09:10

Date Collected: 10/03/14 00:00								IVIALITI	x: Solia
Date Received: 10/06/14 09:10								Percent Soli	ds: 82.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		160	34	ug/Kg	*	10/08/14 14:57	10/08/14 17:34	1
Benzene	ND		160	32	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
1,1-Dichloroethane	ND		160	31	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Ethylbenzene	ND		160	29	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
1,1-Dichloroethene	ND		160	26	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Xylenes, Total	ND		480	95	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Naphthalene	ND		320	39	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Toluene	ND		160	24	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
cis-1,2-Dichloroethene	ND		160	45	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Methylene Chloride	51	J	810	23	ug/Kg	\$	10/08/14 14:57	10/08/14 17:34	1
Styrene	ND		160	29	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Tetrachloroethene	ND		160	43	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
trans-1,2-Dichloroethene	ND		160	32	ug/Kg	\$	10/08/14 14:57	10/08/14 17:34	1
Trichloroethene	ND		160	34	ug/Kg	₩	10/08/14 14:57	10/08/14 17:34	1
Vinyl chloride	ND		810	160	ug/Kg	₽	10/08/14 14:57	10/08/14 17:34	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125	10/08/14 14:57	7 10/08/14 17:34	1
4-Bromofluorobenzene (Surr)	98		75 - 125	10/08/14 14:57	7 10/08/14 17:34	1
Dibromofluoromethane (Surr)	96		75 - 125	10/08/14 14:57	7 10/08/14 17:34	1
Toluene-d8 (Surr)	100		75 - 125	10/08/14 14:57	7 10/08/14 17:34	1
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	1,2-Dichloroethane-d4 (Surr) 102 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 96	1,2-Dichloroethane-d4 (Surr) 102 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 96	1,2-Dichloroethane-d4 (Surr) 102 75 - 125 4-Bromofluorobenzene (Surr) 98 75 - 125 Dibromofluoromethane (Surr) 96 75 - 125	1,2-Dichloroethane-d4 (Surr) 102 75 - 125 10/08/14 14:57 4-Bromofluorobenzene (Surr) 98 75 - 125 10/08/14 14:57 Dibromofluoromethane (Surr) 96 75 - 125 10/08/14 14:57	1,2-Dichloroethane-d4 (Surr) 102 75 - 125 10/08/14 14:57 10/08/14 17:34 4-Bromofluorobenzene (Surr) 98 75 - 125 10/08/14 14:57 10/08/14 17:34 Dibromofluoromethane (Surr) 96 75 - 125 10/08/14 14:57 10/08/14 17:34

Client Sample Results

Client: Golder Associates Inc. TestAmerica Job ID: 250-21835-1

Project/Site: 1414827

Client Sample ID: 20760-01 Date Collected: 10/03/14 00:00

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab	Camala	ın.	250.24	1005 40
Lab	Sample	ID.	250-2	1035-13

Matrix	Solid
Parcent Solide	o. 70 0

Date Received: 10/06/14 09:10								Percent Solids: 79	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		170	36	ug/Kg	<u> </u>	10/08/14 14:57	10/08/14 17:57	1
Benzene	ND		170	34	ug/Kg	₩	10/08/14 14:57	10/08/14 17:57	1
1,1-Dichloroethane	ND		170	33	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Ethylbenzene	ND		170	31	ug/Kg	\$	10/08/14 14:57	10/08/14 17:57	1
1,1-Dichloroethene	ND		170	28	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Xylenes, Total	ND		520	100	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Naphthalene	ND		340	41	ug/Kg	\$	10/08/14 14:57	10/08/14 17:57	1
Toluene	ND		170	26	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
cis-1,2-Dichloroethene	ND		170	48	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Methylene Chloride	66	J	860	24	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Styrene	ND		170	31	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Tetrachloroethene	ND		170	46	ug/Kg	₩	10/08/14 14:57	10/08/14 17:57	1
trans-1,2-Dichloroethene	ND		170	34	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Trichloroethene	ND		170	36	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1
Vinyl chloride	ND		860	170	ug/Kg	₽	10/08/14 14:57	10/08/14 17:57	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 125	10/08/14 14:57	10/08/14 17:57	1
4-Bromofluorobenzene (Surr)	96	75 - 125	10/08/14 14:57	10/08/14 17:57	1
Dibromofluoromethane (Surr)	97	75 - 125	10/08/14 14:57	10/08/14 17:57	1
Toluene-d8 (Surr)	100	75 - 125	10/08/14 14:57	10/08/14 17:57	1

10/16/2014

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Client Sample ID: 20718-01							Lab S	Sample ID: 250-	
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	82		32	10	mg/Kg	*	10/07/14 09:49	10/08/14 19:02	4
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	33	X	50 - 150				10/07/14 09:49	10/08/14 19:02	4
Client Sample ID: 20718-02							Lab S	Sample ID: 250	-21835-2
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ids: 76.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	110		29	9.6	mg/Kg	<u> </u>	10/07/14 09:49	10/08/14 19:31	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	31	X	50 - 150				10/07/14 09:49	10/08/14 19:31	4
Client Sample ID: 20718-08							Lab S	Sample ID: 250	-21835-8
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ids: 92.0
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	990		52	17	mg/Kg		10/07/14 09:49	10/08/14 13:30	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	91		50 - 150				10/07/14 09:49	10/08/14 13:30	10
Client Sample ID: 20718-09							Lab S	Sample ID: 250	-21835-9
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ids: 91.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	2.3	J	4.6	1.5	mg/Kg	#	10/07/14 09:49	10/10/14 13:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	96		50 - 150				10/07/14 09:49	10/10/14 13:00	1
Client Sample ID: 20718-10							Lab Sa	ample ID: 250-2	21835-10
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ids: 77.9
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		7.5	2.4	mg/Kg	₩	10/07/14 09:49	10/10/14 13:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	92		50 - 150				10/07/14 09:49	10/10/14 13:28	1
Client Sample ID: 20718-12							Lab Sa	ample ID: 250-2	
Date Collected: 10/03/14 00:00								Matr	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ids: 82.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<u> </u>					mg/Kg	<u></u>			

Client Sample Results

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	55		50 - 150				10/07/14 09:49	10/08/14 18:33	1
Client Sample ID: 20760-01							Lab Sa	ample ID: 250-2	1835-13
Date Collected: 10/03/14 00:00								Matri	x: Solid
Date Received: 10/06/14 09:10								Percent Soli	ds: 79.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	5.6	J	6.9	2.2	mg/Kg	₩	10/07/14 09:49	10/08/14 14:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	94	-	50 - 150				10/07/14 09:49	10/08/14 14:28	1

9

4

5

6

8

9

10

a a

Client: Golder Associates Inc. Project/Site: 1414827

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Client Sample ID: 20718-01						_	l ab G	Sample ID: 250-	24025 4
							Lab	-	
Date Collected: 10/03/14 00:00									x: Solid
Date Received: 10/06/14 09:10	D 14	O1161	DI.	MDI	11!4		D	Percent Soli	
Analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	17000		180	23	mg/Kg		10/07/14 10:13	10/13/14 13:34	10
RRO (nC25-nC36)	280	J	350	38	mg/Kg	₽	10/07/14 10:13	10/13/14 13:34	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	103		50 - 150				10/07/14 10:13	10/13/14 13:34	10
1-Chlorooctadecane	215	X	50 - 150				10/07/14 10:13	10/13/14 13:34	10
Client Sample ID: 20718-02							Lab S	Sample ID: 250-	21835-2
Date Collected: 10/03/14 00:00								•	x: Solid
Date Received: 10/06/14 09:10								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	14000	·	160	21	mg/Kg		10/07/14 10:13	10/13/14 13:54	10
RRO (nC25-nC36)	240	J	330		mg/Kg	₽	10/07/14 10:13	10/13/14 13:54	10
1110 (11020-11000)	240				99		10/01/11 10:10	10,10,11100	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	102		50 - 150				10/07/14 10:13	10/13/14 13:54	10
1-Chlorooctadecane	140		50 - 150				10/07/14 10:13	10/13/14 13:54	10
Client Sample ID: 20718-08							Lab S	Sample ID: 250-	21835-8
Date Collected: 10/03/14 00:00									x: Solid
Date Received: 10/06/14 09:10								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	5900		130	17		— -	10/07/14 10:13	10/13/14 14:14	10
RRO (nC25-nC36)	65	J	270		mg/Kg	₽	10/07/14 10:13	10/13/14 14:14	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	100		50 _ 150				10/07/14 10:13	10/13/14 14:14	10
1-Chlorooctadecane –	133		50 - 150				10/07/14 10:13	10/13/14 14:14	10
Client Sample ID: 20718-09							Lab S	Sample ID: 250-	21835-9
Date Collected: 10/03/14 00:00								Matri	x: Solid
Date Received: 10/06/14 09:10								Percent Soli	ds: 91.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	17	В	13	1.7	mg/Kg	<u></u>	10/07/14 10:13	10/10/14 23:25	1
RRO (nC25-nC36)	30		27	2.9	mg/Kg	₩	10/07/14 10:13	10/10/14 23:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	96		50 - 150				10/07/14 10:13	10/10/14 23:25	
1-Chlorooctadecane	91		50 - 150				10/07/14 10:13	10/10/14 23:25	1
Client Sample ID: 20718-10							Lab Sa	ample ID: 250-2	
Date Collected: 10/03/14 00:00									x: Solid
Date Received: 10/06/14 09:10								Percent Soli	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	40	В	16		mg/Kg	\$	10/07/14 10:13	10/10/14 23:45	1
RRO (nC25-nC36)	110		32	3.5	mg/Kg	₽	10/07/14 10:13	10/10/14 23:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	100		50 - 150				10/07/14 10:13	10/10/14 23:45	1
1-Chlorooctadecane	88		50 ₋ 150				10/07/14 10:13	10/10/14 23:45	1

Client Sample Results

Client: Golder Associates Inc.

TestAmerica Job ID: 250-21835-1

Project/Site: 1414827

RRO (nC25-nC36)

1-Chlorooctadecane

Surrogate

Triacontane

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

8.0 J

%Recovery Qualifier

93

84

Client Sample ID: 20718-12							Lab Sa	ample ID: 250-2	1835-12
Date Collected: 10/03/14 00:00								Matri	x: Solid
Date Received: 10/06/14 09:10								Percent Soli	ds: 82.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	13	J B	15	1.9	mg/Kg	<u> </u>	10/07/14 10:13	10/11/14 00:05	1
RRO (nC25-nC36)	23	J	30	3.2	mg/Kg	₽	10/07/14 10:13	10/11/14 00:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	94		50 - 150				10/07/14 10:13	10/11/14 00:05	1
1-Chlorooctadecane	87		50 - 150				10/07/14 10:13	10/11/14 00:05	1
Client Sample ID: 20760-01							Lab Sa	ample ID: 250-2	1835-13
Date Collected: 10/03/14 00:00								Matri	ix: Solid
Date Received: 10/06/14 09:10								Percent Soli	ds: 79.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	8.4	JB	15	2.0	mg/Kg	₩	10/07/14 10:13	10/11/14 00:25	1

31

Limits

50 - 150

50 - 150

3.3 mg/Kg

1 1

Dil Fac

10/07/14 10:13 10/11/14 00:25

10/07/14 10:13 10/11/14 00:25

Analyzed

10/11/14 00:25

Prepared

10/07/14 10:13

TestAmerica Portland

2

4

6

8

9

Client: Golder Associates Inc. Project/Site: 1414827

Date Collected: 10/03/14 00:00

Date Received: 10/06/14 09:10

Client Sample ID: 20760-01

Date Collected: 10/03/14 00:00

Analyte

3

General Chemistry

<mark>21835</mark> -	Sample ID: 250-2	Lab							Client Sample ID: 20718-01
x: Soli	Matrix								Date Collected: 10/03/14 00:00
									Date Received: 10/06/14 09:10
Dil Fa	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
	10/07/14 15:18			%	0.010	0.010		29	Percent Moisture
	10/07/14 15:18			%	0.010	0.010		71	Percent Solids
21835-	Sample ID: 250-2	Lab							Client Sample ID: 20718-02
x: Soli									Date Collected: 10/03/14 00:00
									Date Received: 10/06/14 09:10
Dil Fa	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
	10/07/14 15:18			%	0.010	0.010		23	Percent Moisture
	10/07/14 15:18			%	0.010	0.010		77	Percent Solids
2183 5 -	Sample ID: 250-2	Lab							Client Sample ID: 20718-08
x: Soli	•								Date Collected: 10/03/14 00:00
									Date Received: 10/06/14 09:10
Dil Fa	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
	10/07/14 15:18			%	0.010	0.010		8.0	Percent Moisture
	10/07/14 15:18			%	0.010	0.010		92	Percent Solids
21835-	Sample ID: 250-2	Lab							Client Sample ID: 20718-09
x: Soli	Matrix								Date Collected: 10/03/14 00:00
									Date Received: 10/06/14 09:10
Dil Fa	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
	10/07/14 15:18			%	0.010	0.010		8.9	Percent Moisture
	10/07/14 15:18			%	0.010	0.010		91	Percent Solids
1835-1	sample ID: 250-2	Lab S							Client Sample ID: 20718-10
x: Soli	Matrix								Date Collected: 10/03/14 00:00
									Date Received: 10/06/14 09:10
Dil Fa	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
	10/07/14 15:18			%	0.010	0.010		22	Percent Moisture
	10/01/14 15.10								

 Percent Moisture
 17
 0.010
 0.010
 %
 10/07/14 15:18
 1

 Percent Solids
 83
 0.010
 0.010
 %
 10/07/14 15:18
 1

RL

MDL Unit

D

Prepared

Result Qualifier

Matrix: Solid

Matrix: Solid

Analyzed

Lab Sample ID: 250-21835-13

Dil Fac

Date Received: 10/06/14 09:10 Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 0.010 0.010 % 10/07/14 15:18 **Percent Moisture** 21 0.010 0.010 % 10/07/14 15:18 **Percent Solids** 79

Client: Golder Associates Inc.

Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 250-31110/1-A

Matrix: Solid

Analysis Batch: 31138

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31110

1,1,1-Trichloroethane ND 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 Benzene ND 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 1,1-Dichloroethane ND 100 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 Ethylbenzene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 1,1-Dichloroethene ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 1,1-Dichloroethene ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Xylenes, Total ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene </th <th>Analyzed</th> <th>Prepared</th> <th>D</th> <th>Unit</th> <th>MDL</th> <th>r RL</th> <th>Result Qualifier</th> <th>Result</th> <th>Analyte</th>	Analyzed	Prepared	D	Unit	MDL	r RL	Result Qualifier	Result	Analyte
1,1-Dichloroethane ND 100 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 Ethylbenzene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 1,1-Dichloroethene ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 Xylenes, Total ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	21	100	ND	ND ND	1,1,1-Trichloroethane
Ethylbenzene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 1,1-Dichloroethene ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 Xylenes, Total ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	20	100	ND	ND	Benzene
1,1-Dichloroethene ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 Xylenes, Total ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	19	100	ND	ND	1,1-Dichloroethane
Xylenes, Total ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	18	100	ND	ND	Ethylbenzene
Naphthalene ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	16	100	ND	ND	1,1-Dichloroethene
Toluene ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	59	300	ND	ND	Xylenes, Total
cis-1,2-Dichloroethene ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	24	200	ND	ND	Naphthalene
Methylene Chloride ND 500 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	15	100	ND	ND	Toluene
Styrene ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	28	100	ND	ND	cis-1,2-Dichloroethene
Tetrachloroethene ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	14	500	ND	ND	Methylene Chloride
	10/09/14 09:04	10/08/14 14:57		ug/Kg	18	100	ND	ND	Styrene
trans 1.2 Diables extens ND 100 20 us/l/a 10/09/44.14/E7 10/09/44.0004	10/09/14 09:04	10/08/14 14:57		ug/Kg	27	100	ND	ND	Tetrachloroethene
trans-1,2-dichloroeuterie ND 100 20 ug/kg 10/06/14 14.57 10/09/14 09.04	10/09/14 09:04	10/08/14 14:57		ug/Kg	20	100	ND	ND	trans-1,2-Dichloroethene
Trichloroethene ND 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	21	100	ND	ND	Trichloroethene
Vinyl chloride ND 500 100 ug/Kg 10/08/14 14:57 10/09/14 09:04	10/09/14 09:04	10/08/14 14:57		ug/Kg	100	500	ND	ND	Vinyl chloride
		10/09/14 09:04 10/09/14 09:04	10/08/14 14:57 10/09/14 09:04 10/08/14 14:57 10/09/14 09:04	10/08/14 14:57 10/09/14 09:04 10/08/14 14:57 10/09/14 09:04	ug/Kg 10/08/14 14:57 10/09/14 09:04 ug/Kg 10/08/14 14:57 10/09/14 09:04	21 ug/Kg 10/08/14 14:57 10/09/14 09:04 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 14 ug/Kg 10/08/14 14:57 10/09/14 09:04 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 27 ug/Kg 10/08/14 14:57 10/09/14 09:04 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 21 ug/Kg 10/08/14 14:57 10/09/14 09:04	100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04	100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04	ND 100 21 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 19 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 16 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 300 59 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 200 24 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 15 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 28 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 18 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 27 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04 ND 100 20 ug/Kg 10/08/14 14:57 10/09/14 09:04

MB MB

MB MB

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	75 - 125	10/08/14 14:57	10/09/14 09:04	1
4-Bromofluorobenzene (Surr)	105	75 ₋ 125	10/08/14 14:57	10/09/14 09:04	1
Dibromofluoromethane (Surr)	98	75 ₋ 125	10/08/14 14:57	10/09/14 09:04	1
Toluene-d8 (Surr)	101	75 - 125	10/08/14 14:57	10/09/14 09:04	1

Lab Sample ID: LCS 250-31110/2-A

Matrix: Solid

Analysis Batch: 31138

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 31110

Analysis Batch: 31138							Ргер ва	tcn: 31110
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	2000	1950		ug/Kg		98	80 - 125	
Benzene	2000	1920		ug/Kg		96	80 - 120	
1,1-Dichloroethane	2000	1910		ug/Kg		95	80 _ 120	
Ethylbenzene	2000	2030		ug/Kg		101	80 _ 125	
1,1-Dichloroethene	2000	1920		ug/Kg		96	75 _ 125	
m,p-Xylene	4000	4180		ug/Kg		104	80 _ 120	
o-Xylene	2000	2070		ug/Kg		104	80 - 125	
Xylenes, Total	6000	6250		ug/Kg		104	70 - 130	
Naphthalene	2000	1920		ug/Kg		96	80 _ 130	
Toluene	2000	1990		ug/Kg		100	80 - 120	
cis-1,2-Dichloroethene	2000	1900		ug/Kg		95	75 _ 125	
Methylene Chloride	2000	1980		ug/Kg		99	75 - 125	
Styrene	2000	2110		ug/Kg		105	80 _ 125	
Tetrachloroethene	2000	1940		ug/Kg		97	80 _ 125	
trans-1,2-Dichloroethene	2000	1880		ug/Kg		94	75 - 125	
Trichloroethene	2000	1940		ug/Kg		97	80 - 125	
Vinyl chloride	2000	1790		ug/Kg		90	10 - 140	

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 75 - 125

Client: Golder Associates Inc.

Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 250-31110/2-A

Matrix: Solid

Analysis Batch: 31138

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 31110

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		75 - 125
Dibromofluoromethane (Surr)	102		75 - 125
Toluene-d8 (Surr)	101		75 - 125

Client Sample ID: 20718-09 Prep Type: Total/NA

Prep Batch: 31110

Lab Sample ID: 250-21835-9 MS Matrix: Solid

Analysis Batch: 31138

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		2300	2060		ug/Kg	₩	90	80 - 125	
Benzene	ND		2300	2020		ug/Kg	₽	88	80 _ 125	
1,1-Dichloroethane	ND		2300	2030		ug/Kg	₽	88	80 _ 125	
Ethylbenzene	ND		2300	2180		ug/Kg	₽	94	80 - 125	
1,1-Dichloroethene	ND		2300	2010		ug/Kg	₽	87	70 - 130	
m,p-Xylene	ND		4610	4490		ug/Kg	₽	97	75 - 135	
o-Xylene	ND		2300	2250		ug/Kg	₽	98	70 - 130	
Xylenes, Total	ND		6910	6740		ug/Kg	₽	98	70 - 130	
Naphthalene	ND		2300	2180		ug/Kg	₩	95	70 - 130	
Toluene	ND		2300	2020		ug/Kg	₩.	87	70 - 130	
cis-1,2-Dichloroethene	ND		2300	1990		ug/Kg	₽	87	75 - 120	
Methylene Chloride	44	J	2300	2080		ug/Kg	₩	88	70 - 120	
Styrene	ND		2300	2270		ug/Kg	\$	99	85 _ 120	
Tetrachloroethene	ND		2300	1990		ug/Kg	₽	86	75 - 140	
trans-1,2-Dichloroethene	ND		2300	1930		ug/Kg	₩	84	70 - 130	
Trichloroethene	ND		2300	2230		ug/Kg	₩	97	80 - 125	
Vinyl chloride	ND		2300	1640		ug/Kg	☼	71	10 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 125
4-Bromofluorobenzene (Surr)	101		75 - 125
Dibromofluoromethane (Surr)	100		75 - 125
Toluene-d8 (Surr)	100		75 - 125

Lab Sample ID: 250-21835-9 MSD

Matrix: Solid

Analysis Batch: 31138

Client Sample ID: 20718-09

Prep Batch: 31110

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		2300	2030		ug/Kg	*	88	80 - 125	2	25
Benzene	ND		2300	2000		ug/Kg	₽	87	80 - 125	1	25
1,1-Dichloroethane	ND		2300	1990		ug/Kg	₽	87	80 - 125	2	25
Ethylbenzene	ND		2300	2180		ug/Kg	\$	95	80 - 125	0	25
1,1-Dichloroethene	ND		2300	1980		ug/Kg	₽	86	70 - 130	2	25
m,p-Xylene	ND		4610	4460		ug/Kg	₽	97	75 ₋ 135	1	25
o-Xylene	ND		2300	2250		ug/Kg	\$	98	70 - 130	0	25
Xylenes, Total	ND		6910	6710		ug/Kg	₽	97	70 - 130	0	25
Naphthalene	ND		2300	2230		ug/Kg	₽	97	70 - 130	2	25
Toluene	ND		2300	2040		ug/Kg	₩	88	70 - 130	1	25

TestAmerica Portland

Page 16 of 24

Prep Type: Total/NA

Client: Golder Associates Inc. Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 250-21835-9 MSD

Matrix: Solid

Analysis Batch: 31138

Client Sample ID: 20718-09 Prep Type: Total/NA

Prep Batch: 31110

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	ND		2300	2020		ug/Kg	\$	88	75 - 120	1	25
Methylene Chloride	44	J	2300	2110		ug/Kg	₽	90	70 - 120	2	25
Styrene	ND		2300	2280		ug/Kg	\$	99	85 - 120	0	25
Tetrachloroethene	ND		2300	1960		ug/Kg	₽	85	75 - 140	1	25
trans-1,2-Dichloroethene	ND		2300	1980		ug/Kg	₽	86	70 - 130	3	25
Trichloroethene	ND		2300	2170		ug/Kg	₽	94	80 - 125	3	25
Vinyl chloride	ND		2300	1620		ug/Kg	₽	70	10 - 140	1	25

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 125
4-Bromofluorobenzene (Surr)	104		75 - 125
Dibromofluoromethane (Surr)	101		75 - 125
Toluene-d8 (Surr)	99		75 - 125

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 250-31054/1-A

Matrix: Solid

Analysis Batch: 31128

MB MB

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 4.0 10/07/14 09:49 Gasoline Range Organics (GRO) ND 1.3 mg/Kg 10/08/14 10:36

-C6-C10

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene (fid)	103		50 - 150	10/07/14 09:	49 10/08/14 10:36	1

Lab Sample ID: LCS 250-31054/2-A

Matrix: Solid

Analysis Batch: 31128

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 31054

Prep Batch: 31054

Spike LCS LCS Added Result Qualifier Limits Analyte Unit %Rec 25.0 Gasoline Range Organics (GRO) 26.1 mg/Kg 104 60 - 120

-C6-C10

LCS LCS Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 50 - 150 109

Lab Sample ID: LCSD 250-31054/3-A

Matrix: Solid							Prep 1	Гуре: To	tal/NA
Analysis Batch: 31128							Prep	Batch:	31054
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	25.0	26.2	-	mg/Kg		105	60 - 120	0	20

-C6-C10

TestAmerica Portland

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Golder Associates Inc. Project/Site: 1414827

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCSD 250-31054/3-A

Lab Sample ID: 250-21835-13 MS

Lab Sample ID: 250-21835-8 DU

Matrix: Solid

Matrix: Solid

Analysis Batch: 31128

Analysis Batch: 31128

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 31054

LCSD LCSD

%Recovery Qualifier Limits Surrogate 50 - 150 a,a,a-Trifluorotoluene (fid) 102

Client Sample ID: 20760-01

Prep Type: Total/NA

Prep Batch: 31054

%Rec.

%Rec Limits 100 60 - 120

Gasoline Range Organics (GRO) -C6-C10

Analyte

MS MS

Sample Sample

5.6 J

Result Qualifier

%Recovery Qualifier Limits Surrogate a,a,a-Trifluorotoluene (fid) 99 50 - 150

Client Sample ID: 20718-08

Prep Type: Total/NA

Prep Batch: 31054

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit Gasoline Range Organics (GRO) 990 1030 mg/Kg 20

-C6-C10

Matrix: Solid

Analysis Batch: 31128

DU DU

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 93 50 - 150

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 250-31056/1-A Client Sample ID: Method Blank

Spike

Added

43.0

MS MS

48.7

Result Qualifier

Unit

mg/Kg

D

Matrix: Solid

Analysis Batch: 31279

Prep Type: Total/NA Prep Batch: 31056

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	2.73	J	12	1.6	mg/Kg		10/07/14 10:13	10/10/14 21:25	1
RRO (nC25-nC36)	ND		25	2.7	mg/Kg		10/07/14 10:13	10/10/14 21:25	1

MB MB

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Triacontane	95		50 - 150	10/07/14 10.	13 10/10/14 21:25	1
1-Chlorooctadecane	81		50 - 150	10/07/14 10.	13 10/10/14 21:25	1

Lab Sample ID: LCS

Matrix: Solid

Analysis Batch: 31279

S 250-31056/2-A	Client Sample ID: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (C10-C25)	124	117		mg/Kg	_	95	75 - 125	
RRO (nC25-nC36)	74.4	70.5		mg/Kg		95	60 - 120	

TestAmerica Portland

Prep Batch: 31056

Client: Golder Associates Inc.

Project/Site: 1414827

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

(Continued)

Lab Sample ID: LCS 250-31056/2-A

Lab Sample ID: LCSD 250-31056/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 31279

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 31056

LCS LCS

Surrogate %Recovery Qualifier Limits Triacontane 97 50 - 150 1-Chlorooctadecane 86 50 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 31056

Analysis Batch: 31279 LCSD LCSD Spike %Rec. RPD Limit Analyte Limits RPD Added Result Qualifier Unit D %Rec

DRO (C10-C25) 123 121 mg/Kg 98 75 - 125 3 20 RRO (nC25-nC36) 96 74.0 71.0 mg/Kg 60 - 120 20

LCSD LCSD Surrogate %Recovery Qualifier Limits Triacontane 96 50 - 150 1-Chlorooctadecane 93 50 - 150

Method: D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

Lab Sample ID: 250-21835-13 DU Client Sample ID: 20760-01 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 31072

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier RPD Limit Unit Percent Moisture 21 20 % 3 20 Percent Solids 79 80 % 20 0.8

Certification Summary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-14
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-15
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

3

_

9

Method Summary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-21835-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PRT
AK101	Alaska - Gasoline Range Organics (GC)	ADEC	TAL PRT
AK102 & 103	Alaska - Diesel Range Organics & Residual Range Organics (GC)	ADEC	TAL PRT
D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80	ASTM	TAL PRT

Protocol References:

ADEC = Alaska Department of Environmental Conservation

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

3

4

5

6

_

3

500-4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone: 604-298-6623 Fax: 604-298-5253

CHAIN-OF-CUSTODY RE

20718

Project Number:	141482	Control (y Name:	AMERICA	
		250-21835 Chain of Custody	9405 Nimb	us Ave SW	
Golder Contact:	Zey noids	Golder E-mail Address:	Tel/Fax:	Contact:	~ .

Office the final reports should be sent to:	1		Analy	ses Required)
500–4260 Still Creek Drive 202 Burnaby, BC V5C 6C6 Abt Tel: 604-298-6623 Tel:	−2790 Gladwin Road ☐ 2640 Dougla cotsford, BC V2T 4S8	V8T 4M1	P.C.Ontainers P.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C		
Sample Control Number (SCN)	Sample Date Matrix Sampled (over) (D/M/Y)		Number of Containers DRO (REC) C1 RO STEX / VOC.	HOLD	Remarks (over)
20118-01	50:1 3/10/14		2 X X X		
02	To produce the second		1 X X X		
-03	pryssa haanist		a valencinos		
-04	de company		**************************************		i
-05	CHARLES CARREST		V		
—06	ora to become as		2 000/04		
-07	and the state of t		THE PROPERTY OF THE PROPERTY O		
-08	Amin-space		XXX		
-09	A CONTRACTOR OF THE CONTRACTOR		I X X X		
-10	Tribbonica.		$\times \times \times$		
——————————————————————————————————————	Construction of the second		- Parkingham	X	1
-12	V V		$V \times X \times X$		
Sampler's Signature	Relinguished by: Signature	Company, Date 0+3	3/14 Time	Received by: Signature Co	ompany
Sample Storage (°C)	Relinquished by: Signature	Company Date	Time .	Received by: Signature Co	ompany
Comments:	Method of Shipment:	Waybill No.:	Reg led for Lab by	Date 10/6/14	Time do
	Shipped by:	Shipment Condition: Seal Intact:	Temp (°C) Cooler op	pened by: Date	Time

WHITE: Golder copy

YELLOW: Lab copy

PINK: Lab returns with Final Report

3.8 1R/P-0

500-4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone: 604-298-6623 Fax: 604-298-5253

Project Number: 1414821		Laboratory Name:	UER, CA
		Address: 9405 Nimb	97008
Golder Contact: Tomra Leunulds	Golder E-mail Address: a	Tel/Fax:	Contact: Barry

Office the final reports should be s	ent to:				Analyses Required		V
Burnaby, BC V5C 6C6 Tel: 604-298-6623 Fax: 604-298-5253		2640 Douglas Street Victoria, BC V8T 4M1 Tel: 250-881-7372 Fax: 250-881-7470	ontainers	8 K C	7900		
Sample Control Number (SCN)	Sample Date Matrix Sampled (over) (D/M/Y)		<u> </u>	DRO CARO	BTEX	Har	Remarks (over)
20760 -01	Soil 3/10/1	Company of the Compan	2	X X	X		
-02			14 de la companya de			X	-
-03							
-04							i
-05						-	
-06	and a great						- 1
-07	Particular Control					I,	
-08							
-09							
-10							
, -11		8					
-12							
Sampler's Signature	Relinguished by Signature	Company Date	1 2	/3, /Tim	ne Received I	oy: Signature Comp	any

Sampler's Signature		Relineuished by Signature	Company /	Date of 3	3/14	∕ Tīme	Received by: Signature	Company
Sample Storage (°C)	, work	Relinquished by: Signature	Company	Date		Time	Received by: Signature	Company
·	ŧ							
Comments:	G.	Method of Shipment:	Waybill No.:		PC	red for Lab by:	Date 10/6/H	Time
		Shipped by:	Shipment Condition	:	Temp	V	ned by: Date	Time .
			Seal Intact:	_				

WHITE: Golder copy

YELLOW: Lab copy

PINK: Lab returns with Final Report

3.8 12/P-\$

Login Sample Receipt Checklist

Client: Golder Associates Inc. Job Number: 250-21835-1

Login Number: 21835 List Source: TestAmerica Portland

List Number: 1

Creator: Svabik-Seror, Philip M

oreator. Orabik-ocror, i milp iii	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Residual Chlorine Checked.	N/A

3

4

-

10

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-22477-1 Client Project/Site: 1414827

For:

Golder Associates Inc. #500-4260 Still Creek Drive Burnaby, British Columbia V5C6C6

Attn: Tamara Reynolds

Vaussa Berr

Authorized for release by: 11/11/2014 9:50:46 PM

Vanessa Berry, Project Manager II (503)906-9233 vanessa.berry@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Golder Associates Inc. Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	18
Certification Summary	21
Method Summary	22
Chain of Custody	23
Receipt Checklists	25

4

5

0

8

9

Sample Summary

Client: Golder Associates Inc. Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

34 005 15. 200 22 177 1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
250-22477-1	20700-01	Solid	10/29/14 00:00	11/03/14 08:42
250-22477-2	20700-02	Solid	10/29/14 00:00	11/03/14 08:42
250-22477-3	20700-03	Solid	10/29/14 00:00	11/03/14 08:42
250-22477-4	20700-04	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-5	20700-05	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-6	20700-06	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-7	20700-07	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-8	20700-08	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-9	20700-09	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-10	20700-10	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-11	20700-11	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-12	20700-12	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-13	20701-01	Solid	10/30/14 00:00	11/03/14 08:42
250-22477-14	20701-02	Solid	10/30/14 00:00	11/03/14 08:42

4

_

5

7

10

Case Narrative

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Job ID: 250-22477-1

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-22477-1

Comments

No additional comments.

Receipt

The samples were received on 11/3/2014 8:42 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.2° C.

Except:

Sample containers are labeled with a date of 10/29/14, however the CoC indicates a sampling date of 10/30/14. Client noted this discrepancy on the CoC and samples were logged in per CoC. 20700-04 (250-22477-4), 20700-05 (250-22477-5), 20700-06 (250-22477-6), 20700-07 (250-22477-7), 20700-08 (250-22477-8), 20700-09 (250-22477-9), 20700-10 (250-22477-10), 20700-11 (250-22477-11), 20700-12 (250-22477-12)

GC/MS VOA

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 20700-04 (250-22477-4), 20700-08 (250-22477-8), 20700-09 (250-22477-9), 20700-10 (250-22477-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) AK101: The following reported values for sample(s) within the Gasoline Range Organics (GRO) retention time window is manly due to diesel fuel: 20700-04 (250-22477-4), 20700-08 (250-22477-8), 20700-09 (250-22477-9), 20700-10 (250-22477-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: Surrogate recovery for the following sample(s) was outside control limits: 20700-04 (250-22477-4), 20700-09 (250-22477-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Portland 11/11/2014

Definitions/Glossary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

X Surrogate is outside control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

5

C

7

8

9

1(

Client: Golder Associates Inc. Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS)

22477-1	Sample ID: 250-2	Lab S							Client Sample ID: 20700-01
x: Solid	Matri								Date Collected: 10/29/14 00:00
ds: 92.4	Percent Solid								Date Received: 11/03/14 08:42
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
1	11/05/14 14:05	11/04/14 10:37	₽	ug/Kg	74	380		ND	Xylenes, Total
1	11/05/14 14:05	11/04/14 10:37	₽	ug/Kg	25	130		ND	Benzene
1	11/05/14 14:05	11/04/14 10:37	☼	ug/Kg	23	130		ND	Ethylbenzene
1	11/05/14 14:05	11/04/14 10:37		ug/Kg	19	130		ND	Toluene
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
1	11/05/14 14:05	11/04/14 10:37				75 - 125		98	1,2-Dichloroethane-d4 (Surr)
1	11/05/14 14:05	11/04/14 10:37				75 - 125		97	4-Bromofluorobenzene (Surr)
1	11/05/14 14:05	11/04/14 10:37				75 - 125		97	Dibromofluoromethane (Surr)
1	11/05/14 14:05	11/04/14 10:37				75 - 125		99	Toluene-d8 (Surr)

Date Collected: 10/29/14 00:0	00							Matri	x: Solid
Date Received: 11/03/14 08:4	2							Percent Soli	ds: 95.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		350	68	ug/Kg		11/04/14 10:37	11/05/14 14:31	1
Benzene	ND		120	23	ug/Kg	₽	11/04/14 10:37	11/05/14 14:31	1
Ethylbenzene	ND		120	21	ug/Kg	₽	11/04/14 10:37	11/05/14 14:31	1
Toluene	ND		120	17	ug/Kg	\$	11/04/14 10:37	11/05/14 14:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

ourroguic	Miccovery	Qualifici	Lillia	rrepared	Analyzea	Diriac	
1,2-Dichloroethane-d4 (Surr)	98		75 - 125	11/04/14 10:37	11/05/14 14:31	1	
4-Bromofluorobenzene (Surr)	98		75 - 125	11/04/14 10:37	11/05/14 14:31	1	
Dibromofluoromethane (Surr)	95		75 - 125	11/04/14 10:37	11/05/14 14:31	1	
Toluene-d8 (Surr)	99		75 - 125	11/04/14 10:37	11/05/14 14:31	1	

Client Sample ID: 20700-03 Lab Sample ID: 250-22477-3 Date Collected: 10/29/14 00:00 **Matrix: Solid** Date Received: 11/03/14 08:42 Percent Solids: 79.5

Date Received: 17/00/14 00:42								i creciit oon	us. 15.5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		480	94	ug/Kg	*	11/04/14 10:37	11/05/14 14:57	1
Benzene	ND		160	32	ug/Kg	₽	11/04/14 10:37	11/05/14 14:57	1
Ethylbenzene	ND		160	29	ug/Kg	₽	11/04/14 10:37	11/05/14 14:57	1
Toluene	ND		160	24	ug/Kg		11/04/14 10:37	11/05/14 14:57	1

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 14:57	1
4-Bromofluorobenzene (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 14:57	1
Dibromofluoromethane (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 14:57	1
Toluene-d8 (Surr)	100	75 - 125	11/04/14 10:37	11/05/14 14:57	1

Client Sample ID: 20700-04 Date Collected: 10/30/14 00:00							Lab S	Sample ID: 250- Matri	22477-4 x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 93.5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1000	J	1900	380	ug/Kg	₩	11/04/14 10:37	11/05/14 17:36	5
Benzene	ND		640	130	ug/Kg	₽	11/04/14 10:37	11/05/14 17:36	5
Ethylbenzene	130	J	640	110	ug/Kg	₽	11/04/14 10:37	11/05/14 17:36	5
Toluene	ND		640	95	ug/Kg	₩	11/04/14 10:37	11/05/14 17:36	5

TestAmerica Portland

Page 6 of 25

Client: Golder Associates Inc.

Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 125	11/04/14 10:37	1/05/14 17:36	5
4-Bromofluorobenzene (Surr)	101		75 - 125	11/04/14 10:37 1	1/05/14 17:36	5
Dibromofluoromethane (Surr)	98		75 - 125	11/04/14 10:37 1	1/05/14 17:36	5
Toluene-d8 (Surr)	99		75 - 125	11/04/14 10:37 1	1/05/14 17:36	5

Client Sample ID: 20700-05							Lab S	Sample ID: 250-	22477-5
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 91.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		380	75	ug/Kg	₩	11/04/14 10:37	11/05/14 15:24	1
Benzene	ND		130	26	ug/Kg	₽	11/04/14 10:37	11/05/14 15:24	1
Ethylbenzene	ND		130	23	ug/Kg	₽	11/04/14 10:37	11/05/14 15:24	1
Toluene	ND		130	19	ug/Kg	\$	11/04/14 10:37	11/05/14 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	90		75 125				11/04/14 10:37	11/05/14 15:24	1

Client Sample ID: 20700-06			Lah Sample ID: 250-22477-6
Toluene-d8 (Surr)	99	75 - 125	11/04/14 10:37 11/05/14 15:24 1
Dibromofluoromethane (Surr)	96	75 ₋ 125	11/04/14 10:37 11/05/14 15:24 1
4-Bromofluorobenzene (Surr)	97	75 - 125	11/04/14 10:37 11/05/14 15:24 1
1,2-Dichloroethane-d4 (Surr)	99	75 - 125	11/04/14 10:37 11/05/14 15:24 1

Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 95.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		350	69	ug/Kg	\	11/04/14 10:37	11/05/14 15:50	1
Benzene	ND		120	24	ug/Kg	₩	11/04/14 10:37	11/05/14 15:50	1
Ethylbenzene	ND		120	21	ug/Kg	₩	11/04/14 10:37	11/05/14 15:50	1
Toluene	ND		120	18	ug/Kg	₩	11/04/14 10:37	11/05/14 15:50	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 15:50	1
4-Bromofluorobenzene (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 15:50	1
Dibromofluoromethane (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 15:50	1
Toluene-d8 (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 15:50	1

Client Sample ID: 20700-07							Lab S	Sample ID: 250-	22477-7
Date Collected: 10/30/14 00:00								Matri	ix: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 97.3
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		330	66	ug/Kg	₩	11/04/14 10:37	11/05/14 16:17	1
Benzene	ND		110	22	ug/Kg	₽	11/04/14 10:37	11/05/14 16:17	1
Ethylbenzene	ND		110	20	ug/Kg	₽	11/04/14 10:37	11/05/14 16:17	1
Toluene	ND		110	17	ug/Kg	₽	11/04/14 10:37	11/05/14 16:17	1

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	75	5 - 125	11/04/14 10:37	11/05/14 16:17	1
4-Bromofluorobenzene (Surr)	99	75	5 - 125	11/04/14 10:37	11/05/14 16:17	1
Dibromofluoromethane (Surr)	97	75	5 - 125	11/04/14 10:37	11/05/14 16:17	1
Toluene-d8 (Surr)	100	75	5 - 125	11/04/14 10:37	11/05/14 16:17	1

Client: Golder Associates Inc.

Project/Site: 1414827

Toluene

Client Sample ID: 20700-08							Lab S	Sample ID: 250-	22477-8
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 91.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	28000		2100	410	ug/Kg		11/04/14 10:37	11/05/14 18:02	
Benzene	ND		690	140	ug/Kg	₽	11/04/14 10:37	11/05/14 18:02	5
Ethylbenzene	2600		690	120	ug/Kg	₽	11/04/14 10:37	11/05/14 18:02	5
Toluene	860		690	100	ug/Kg	⇔	11/04/14 10:37	11/05/14 18:02	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 125				11/04/14 10:37	11/05/14 18:02	5
4-Bromofluorobenzene (Surr)	109		75 - 125				11/04/14 10:37	11/05/14 18:02	5
Dibromofluoromethane (Surr)	96		75 - 125				11/04/14 10:37	11/05/14 18:02	5
Toluene-d8 (Surr)	99		75 - 125				11/04/14 10:37	11/05/14 18:02	5
Client Sample ID: 20700-09							Lab S	Sample ID: 250-	22477-9
Date Collected: 10/30/14 00:00									x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 85.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Kylenes, Total	17000		2200	440	ug/Kg		11/04/14 10:37	11/05/14 18:29	5
Benzene	ND		740	150	ug/Kg	₽	11/04/14 10:37	11/05/14 18:29	5
Ethylbenzene	740		740	130	ug/Kg	₩	11/04/14 10:37	11/05/14 18:29	5
Toluene	220	J	740	110	ug/Kg	\$	11/04/14 10:37	11/05/14 18:29	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 125				11/04/14 10:37	11/05/14 18:29	5
4-Bromofluorobenzene (Surr)	109		75 - 125				11/04/14 10:37	11/05/14 18:29	5
Dibromofluoromethane (Surr)	99		75 - 125				11/04/14 10:37	11/05/14 18:29	5
Toluene-d8 (Surr)	100		75 - 125				11/04/14 10:37	11/05/14 18:29	5
Client Sample ID: 20700-10							Lab Sa	ample ID: 250-2	2477-10
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 88.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	14000		2100	410	ug/Kg	₩	11/04/14 10:37	11/05/14 18:55	5
Benzene	ND		700		ug/Kg	₩	11/04/14 10:37	11/05/14 18:55	5
Ethylbenzene	680	J	700	130	ug/Kg		11/04/14 10:37	11/05/14 18:55	5
Toluene	180	J	700	100	ug/Kg	₩	11/04/14 10:37	11/05/14 18:55	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 125				11/04/14 10:37	11/05/14 18:55	5
4-Bromofluorobenzene (Surr)	111		75 - 125				11/04/14 10:37	11/05/14 18:55	5
Dibromofluoromethane (Surr)	98		75 - 125				11/04/14 10:37	11/05/14 18:55	5
								11/05/14 18:55	

Client Sample ID: 20700-11	Lab Sample ID: 250-22477-11
Date Collected: 10/30/14 00:00	Matrix: Solid

Date Received: 11/03/14 08:42 Percent Solids: 96.7 Analyte Result Qualifier RL MDL Unit Prepared Analyzed ₩ Xylenes, Total ND 290 58 ug/Kg 11/04/14 10:37 11/05/14 16:43 Benzene ND 98 20 ug/Kg 11/04/14 10:37 11/05/14 16:43 ₽ ND 98 18 ug/Kg 11/04/14 10:37 Ethylbenzene 11/05/14 16:43

98

15 ug/Kg

11/04/14 10:37

ND

TestAmerica Portland

11/05/14 16:43

11/11/2014

Client: Golder Associates Inc. Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 16:43	1
4-Bromofluorobenzene (Surr)	97	75 - 125	11/04/14 10:37	11/05/14 16:43	1
Dibromofluoromethane (Surr)	98	75 ₋ 125	11/04/14 10:37	11/05/14 16:43	1
Toluene-d8 (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 16:43	1

Client Sample ID: 20700-12 Lab Sample ID: 250-22477-12 Date Collected: 10/30/14 00:00 **Matrix: Solid** Date Received: 11/03/14 08:42 Percent Solids: 95.0 Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed ₩ Xylenes, Total 360 71 ug/Kg 11/04/14 10:37 ND 11/05/14 17:10 Benzene ND 120 11/04/14 10:37 11/05/14 17:10 24 ug/Kg ND Ethylbenzene 120 22 ug/Kg 11/04/14 10:37 11/05/14 17:10 Toluene ND 120 11/04/14 10:37 11/05/14 17:10 18 ug/Kg

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 17:10	1
4-Bromofluorobenzene (Surr)	98	75 - 125	11/04/14 10:37	11/05/14 17:10	1
Dibromofluoromethane (Surr)	97	75 - 125	11/04/14 10:37	11/05/14 17:10	1
Toluene-d8 (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 17:10	1

Date Received: 11/03/14 08:42

Date Received. 11/03/14 00.42									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		300	59	ug/Kg		11/04/14 10:37	11/05/14 13:12	1
Benzene	ND		100	20	ug/Kg		11/04/14 10:37	11/05/14 13:12	1
Ethylbenzene	ND		100	18	ug/Kg		11/04/14 10:37	11/05/14 13:12	1
Toluene	16	J	100	15	ug/Kg		11/04/14 10:37	11/05/14 13:12	1

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	75 - 125	11/04/14 10:37	11/05/14 13:12	1
4-Bromofluorobenzene (Surr)	96	75 ₋ 125	11/04/14 10:37	11/05/14 13:12	1
Dibromofluoromethane (Surr)	96	75 - 125	11/04/14 10:37	11/05/14 13:12	1
Toluene-d8 (Surr)	99	75 - 125	11/04/14 10:37	11/05/14 13:12	1

Client Sample ID: 20701-02

Lab Sample ID: 250-22477-14

Date Collected: 10/30/14 00:00

Matrix: Solid

Date Received: 11/03/14 08:42

2410 1100011041 11100111 00112									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		300	59	ug/Kg		11/04/14 10:37	11/05/14 13:38	1
Benzene	ND		100	20	ug/Kg		11/04/14 10:37	11/05/14 13:38	1
Ethylbenzene	ND		100	18	ug/Kg		11/04/14 10:37	11/05/14 13:38	1
Toluene	ND		100	15	ug/Kg		11/04/14 10:37	11/05/14 13:38	1

Surrogate	%Recovery	y Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	Surr) 9	7	75 - 125	11.	/04/14 10:37	11/05/14 13:38	1
4-Bromofluorobenzene	(Surr) 9	6	75 - 125	11.	/04/14 10:37	11/05/14 13:38	1
Dibromofluoromethane	(Surr) 9	7	75 - 125	11.	/04/14 10:37	11/05/14 13:38	1
Toluene-d8 (Surr)	9	9	75 - 125	11.	/04/14 10:37	11/05/14 13:38	1

TestAmerica Portland

11/11/2014

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Method: AK101 - Alaska - Gasoline Range Organics (GC)

22477-1 x: Solid	Sample ID: 250-2 Matrix	Lab S							Client Sample ID: 20700-01 Date Collected: 10/29/14 00:00
ds: 92.4	Percent Solid								Date Received: 11/03/14 08:42
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
1	11/04/14 16:58	11/04/14 10:06	- -	mg/Kg	1.6	5.0		ND	Gasoline Range Organics (GRO) -C6-C10
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
1	11/04/14 16:58	11/04/14 10:06				50 - 150		83	a,a,a-Trifluorotoluene (fid)
22477-2	Sample ID: 250-2	Lab S							Client Sample ID: 20700-02
x: Solid	Matrix								Date Collected: 10/29/14 00:00
ds: 95.1 Dil Fac	Percent Solid Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Rosult	Date Received: 11/03/14 08:42 Analyte
1	11/04/14 15:26	11/04/14 10:06	— ‡	mg/Kg		4.6		2.2	Gasoline Range Organics (GRO) -C6-C10
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
	11/04/14 15:26	11/04/14 10:06				50 - 150		86	a,a,a-Trifluorotoluene (fid)
	Sample ID: 250-2	Lab S							Client Sample ID: 20700-03
x: Solid									Date Collected: 10/29/14 00:00
	Percent Solid		_						Date Received: 11/03/14 08:42
Dil Fac	Analyzed 11/04/14 15:57	Prepared	— D		MDL	RL	Qualifier		Analyte
1	11/04/14 15:57	11/04/14 10:06	'nς	mg/Kg	2.1	6.4		ND	Gasoline Range Organics (GRO) -C6-C10
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
1	11/04/14 15:57	11/04/14 10:06				50 - 150		84	a,a,a-Trifluorotoluene (fid)
22477-4	Sample ID: 250-2	Lab S							Client Sample ID: 20700-04
x: Solid	Matrix								Date Collected: 10/30/14 00:00
	Percent Solid								Date Received: 11/03/14 08:42
Dil Fac	Analyzed	Prepared	_ D		MDL	RL	Qualifier		Analyte
4	11/04/14 20:32	11/04/14 10:06	*	mg/Kg	6.6	20		200	Gasoline Range Organics (GRO) -C6-C10
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
4	11/04/14 20:32	11/04/14 10:06				50 - 150		85	a,a,a-Trifluorotoluene (fid)
22477-5	Sample ID: 250-2	Lab S							Client Sample ID: 20700-05
x: Solid									Date Collected: 10/30/14 00:00
	Percent Solid								Date Received: 11/03/14 08:42
Dil Fac	Analyzed	Prepared	_ D		MDL	RL	Qualifier		Analyte
1	11/04/14 16:28	11/04/14 10:06	*	mg/Kg	1.7	5.1		ND	Gasoline Range Organics (GRO) -C6-C10
Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
1	11/04/14 16:28	11/04/14 10:06				50 - 150		80	a,a,a-Trifluorotoluene (fid)
22477-6	Sample ID: 250-2	Lab S							Client Sample ID: 20700-06
•	Matrix								Date Collected: 10/30/14 00:00
x: Solid									Date Received: 11/03/14 08:42
x: Solid ds: 95.1	Percent Solid								
x: Solid	Percent Solid Analyzed 11/04/14 18:30	Prepared 11/04/14 10:06	_ D <u>□</u>	Unit mg/Kg	MDL	RL 4.7	Qualifier	Result	Analyte

Client: Golder Associates Inc.

Project/Site: 1414827

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	85		50 - 150				11/04/14 10:06	11/04/14 18:30	
Client Sample ID: 20700-07							Lab S	Sample ID: 250-	22477-
Date Collected: 10/30/14 00:00									ix: Soli
Date Received: 11/03/14 08:42								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)	ND		4.5		mg/Kg	— -	11/04/14 10:06	11/05/14 17:02	
-C6-C10	110		1.0	1.0	mg/rtg		11/01/11/10:00	1770071117.02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	98		50 - 150				11/04/14 10:06	11/05/14 17:02	
Client Sample ID: 20700-08							Lab S	Sample ID: 250-	22477-
Date Collected: 10/30/14 00:00								Matri	ix: Soli
Date Received: 11/03/14 08:42								Percent Soli	ds: 91.
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	700		22	7.2	mg/Kg		11/04/14 10:06	11/04/14 21:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	77		50 - 150				11/04/14 10:06	11/04/14 21:02	
Client Sample ID: 20700-09							Lab S	Sample ID: 250-	-22477-
Date Collected: 10/30/14 00:00									ix: Soli
Date Received: 11/03/14 08:42								Percent Soli	ds: 85.
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)	740		24	7.7	mg/Kg	<u> </u>	11/04/14 10:06	11/04/14 21:33	
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	81		50 - 150				11/04/14 10:06	11/04/14 21:33	
Client Sample ID: 20700-10							Lab Sa	ample ID: 250-2	2477-1
Date Collected: 10/30/14 00:00								Matri	ix: Soli
Date Received: 11/03/14 08:42								Percent Soli	ds: 88.
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	670		22	7.2	mg/Kg	**	11/04/14 10:06	11/04/14 22:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	82		50 - 150				11/04/14 10:06	11/04/14 22:03	
Client Sample ID: 20700-11							Lab Sa	ample ID: 250-2	2477-1
Date Collected: 10/30/14 00:00								Matri	ix: Soli
Date Received: 11/03/14 08:42								Percent Soli	ds: 96.
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		3.9	1.3	mg/Kg	- -	11/04/14 10:06	11/04/14 19:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	79		50 - 150				11/04/14 10:06	11/04/14 19:31	

Client Sample Results

Client: Golder Associates Inc. TestAmerica Job ID: 250-22477-1 Project/Site: 1414827

Client Sample ID: 20700-12							Lab Sa	mple ID: 250-2	2477-12
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 95.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		4.8	1.6	mg/Kg		11/04/14 10:06	11/04/14 20:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	79		50 - 150				11/04/14 10:06	11/04/14 20:01	
Client Sample ID: 20701-01							Lab Sa	mple ID: 250-2	2477-1 :
Date Collected: 10/30/14 00:00								Matri	x: Soli
Date Received: 11/03/14 08:42									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	11		4.0	1.3	mg/Kg		11/04/14 10:06	11/04/14 14:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	80		50 - 150				11/04/14 10:06	11/04/14 14:02	

Date Collected: 10/30/14 00:00								Matri	atrix: Solid	
Date Received: 11/03/14 08:42 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO) -C6-C10	ND		4.0	1.3	mg/Kg		11/04/14 10:06	11/04/14 14:32	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
a,a,a-Trifluorotoluene (fid)	82		50 - 150				11/04/14 10:06	11/04/14 14:32	1	

Project/Site: 1414827

1-Chlorooctadecane

Client: Golder Associates Inc.

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Client Sample ID: 20700-01							Lab S	Sample ID: 250-	22477-1
Date Collected: 10/29/14 00:00								Matri	x: Solic
Date Received: 11/03/14 08:42								Percent Soli	ds: 92.4
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C25)	4.5	J	13	1.7	mg/Kg	₽	11/05/14 08:38	11/05/14 17:53	
RRO (nC25-nC36)	11	J	27	2.9	mg/Kg	₽	11/05/14 08:38	11/05/14 17:53	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Triacontane	97		50 - 150				11/05/14 08:38	11/05/14 17:53	
1-Chlorooctadecane	112		50 - 150				11/05/14 08:38	11/05/14 17:53	
Client Sample ID: 20700-02							Lab S	Sample ID: 250-	22477-2
Date Collected: 10/29/14 00:00									x: Solic
Date Received: 11/03/14 08:42								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		13	1.7	mg/Kg	<u> </u>	11/05/14 08:52	11/05/14 18:13	1
RRO (nC25-nC36)	3.6	a l	26		mg/Kg	₩	11/05/14 08:52	11/05/14 18:13	1
1410 (11020-11000)	0.0			0	99				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	99		50 - 150				11/05/14 08:52	11/05/14 18:13	1
1-Chlorooctadecane	110		50 - 150				11/05/14 08:52	11/05/14 18:13	1
Client Sample ID: 20700-03							Lab S	Sample ID: 250-	22477-3
Date Collected: 10/29/14 00:00									x: Solic
Date Received: 11/03/14 08:42								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	3.6	J	16	2.0	mg/Kg	<u></u>	11/05/14 08:52	11/05/14 18:52	1
RRO (nC25-nC36)	4.7		31	3.4	mg/Kg	₽	11/05/14 08:52	11/05/14 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	98		50 - 150				11/05/14 08:52	11/05/14 18:52	1
1-Chlorooctadecane	104		50 - 150				11/05/14 08:52	11/05/14 18:52	1
Client Sample ID: 20700-04							Lab S	Sample ID: 250-	22477-4
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 93.5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	3300		130	17	mg/Kg	<u> </u>	11/05/14 08:52	11/06/14 14:12	10
RRO (nC25-nC36)	70	J	270	29	mg/Kg	₽	11/05/14 08:52	11/06/14 14:12	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	98		50 - 150				11/05/14 08:52	11/06/14 14:12	10
1-Chlorooctadecane	106		50 - 150				11/05/14 08:52	11/06/14 14:12	10
Client Sample ID: 20700-05							Lab S	Sample ID: 250-	22477-5
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 91.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	6.6	J	14	1.7	mg/Kg	<u></u>	11/05/14 08:52	11/05/14 22:26	1
RRO (nC25-nC36)	6.6		27	2.9	mg/Kg	₽	11/05/14 08:52	11/05/14 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	104		50 - 150				11/05/14 08:52	11/05/14 22:26	

TestAmerica Portland

11/11/2014

11/05/14 08:52 11/05/14 22:26

50 - 150

Client: Golder Associates Inc.

Project/Site: 1414827

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Client Sample ID: 20700-06							Lab S	Sample ID: 250-	
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 95.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	12	J	13	1.7	mg/Kg	₩	11/05/14 08:52	11/05/14 22:46	1
RRO (nC25-nC36)	4.8	J	26	2.8	mg/Kg	\$	11/05/14 08:52	11/05/14 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	77	-	50 - 150				11/05/14 08:52	11/05/14 22:46	1
1-Chlorooctadecane	80		50 - 150				11/05/14 08:52	11/05/14 22:46	1
Client Sample ID: 20700-07							Lab S	Sample ID: 250-	22477-7
Date Collected: 10/30/14 00:00									x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 97.3
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	56		13	1.6	mg/Kg	<u> </u>	11/05/14 08:52	11/05/14 23:05	1
RRO (nC25-nC36)	12	J	26	2.8	mg/Kg	₽	11/05/14 08:52	11/05/14 23:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	87		50 - 150				11/05/14 08:52	11/05/14 23:05	1
1-Chlorooctadecane	92		50 - 150				11/05/14 08:52	11/05/14 23:05	1
Client Sample ID: 20700-08							Lab S	Sample ID: 250-	22477-8
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 91.6
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	5400		140	17	mg/Kg	<u> </u>	11/05/14 08:52	11/06/14 07:48	10
RRO (nC25-nC36)	82	J	270	29	mg/Kg	₽	11/05/14 08:52	11/06/14 07:48	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	73		50 - 150				11/05/14 08:52	11/06/14 07:48	10
1-Chlorooctadecane	86		50 - 150				11/05/14 08:52	11/06/14 07:48	10
Client Sample ID: 20700-09							Lab S	Sample ID: 250-	22477-9
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 85.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	5300		150	19	mg/Kg	\	11/05/14 08:52	11/06/14 08:07	10
RRO (nC25-nC36)	58	J	290	31	mg/Kg	₽	11/05/14 08:52	11/06/14 08:07	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	78		50 - 150				11/05/14 08:52	11/06/14 08:07	10
1-Chlorooctadecane	217	X	50 - 150				11/05/14 08:52	11/06/14 08:07	10
Client Sample ID: 20700-10							Lab Sa	ample ID: 250-2	2477-10
Date Collected: 10/30/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 88.6
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	7700		140	18	mg/Kg	*	11/05/14 08:52	11/06/14 08:26	10
RRO (nC25-nC36)	71	J	280	30	mg/Kg	\$	11/05/14 08:52	11/06/14 08:26	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	135		50 - 150				11/05/14 08:52	11/06/14 08:26	10
1-Chlorooctadecane	137		50 ₋ 150				11/05/14 08:52	11/06/14 08:26	10

Client Sample Results

Client: Golder Associates Inc. TestAmerica Job ID: 250-22477-1

Project/Site: 1414827

DRO (C10-C25)

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

ND

Client Sample ID: 20700-11							Lab Sa	ample ID: 250-2	2477-11
Date Collected: 10/30/14 00:00								Matri	ix: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 96.7
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	2.2	J	13	1.6	mg/Kg	₩	11/05/14 08:52	11/06/14 00:22	1
RRO (nC25-nC36)	3.2	J	26	2.8	mg/Kg	₽	11/05/14 08:52	11/06/14 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Triacontane	100		50 - 150				11/05/14 08:52	11/06/14 00:22	1
1-Chlorooctadecane	109		50 - 150				11/05/14 08:52	11/06/14 00:22	1
Client Sample ID: 20700-12							Lab Sa	ample ID: 250-2	2477-12
Date Collected: 10/30/14 00:00								Matri	ix: Solid
Date Received: 11/03/14 08:42								Percent Soli	ds: 95.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

RRO (nC25-nC36)	ND		26	2.8 mg/Kg	₽	11/05/14 08:52	11/06/14 00:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Triacontane	102		50 - 150			11/05/14 08:52	11/06/14 00:41	1
1-Chlorooctadecane	111		50 ₋ 150			11/05/14 08:52	11/06/14 00:41	1

13

11/05/14 08:52 11/06/14 00:41

Lab Sample ID: 250-22477-2

Client: Golder Associates Inc. Project/Site: 1414827

General Chemistry

Client Sample ID: 20700-01	Lab Sample ID: 250-22477-1
Date Collected: 10/29/14 00:00	Matrix: Solid
Data Bassiyad: 11/02/14 09:42	

Date Received: 11/03/14 08:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.6		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	92		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-02

Date Collected: 10/29/14 00:00								Matri	x: Solid
Date Received: 11/03/14 08:42									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	4.9		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	95		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-03 Lab Sample ID: 250-22477-3 Date Collected: 10/29/14 00:00 **Matrix: Solid**

Date Received: 11/03/14 08:42									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	79		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-04 Lab Sample ID: 250-22477-4 Date Collected: 10/30/14 00:00 **Matrix: Solid**

Date Received: 11/03/14 08:42

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Percent Moisture	6.5		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	94		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-05 Lab Sample ID: 250-22477-5 Date Collected: 10/30/14 00:00 **Matrix: Solid**

Date Received: 11/03/14 08:42

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Percent Moisture	8.3	0.010	0.010 %		11/04/14 10:30	1
Percent Solids	92	0.010	0.010 %		11/04/14 10:30	1

Client Sample ID: 20700-06 Lab Sample ID: 250-22477-6 **Matrix: Solid**

Date Collected: 10/30/14 00:00 Date Received: 11/03/14 08:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	4.9		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	95		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-07 Lab Sample ID: 250-22477-7 **Matrix: Solid**

Date Collected: 10/30/14 00:00

Date Received: 11/03/14 08:42									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	2.7		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	97		0.010	0.010	%			11/04/14 10:30	1

Lab Sample ID: 250-22477-8 Client Sample ID: 20700-08 **Matrix: Solid**

Date Collected: 10/30/14 00:00

Date Received: 11/03/14 08:42								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	8.4	0.010	0.010	%			11/04/14 10:30	1
Percent Solids	92	0.010	0.010	%			11/04/14 10:30	1

Client Sample Results

Client: Golder Associates Inc. TestAmerica Job ID: 250-22477-1 Project/Site: 1414827

General Chemistry

						Lab	Lab Sample ID: 250-22477-9				
							Matri	x: Solid			
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
14		0.010	0.010	%			11/04/14 10:30	1			
86		0.010	0.010	%			11/04/14 10:30	1			
	14		14 0.010	14 0.010 0.010	14 0.010 0.010 %	0.010 0.010 %	Result 14 Qualifier RL 0.010 MDL 0.010 Unit % D 9repared	Result 14 Qualifier RL 0.010 MDL 0.010 Unit white with the properties of the proper			

Client Sample ID: 20700-10 Date Collected: 10/30/14 00:00							Lab S	ample ID: 250-2 Matri	2477-10 x: Solid
Date Received: 11/03/14 08:42		0 115				_			B.: E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	89		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-11 Date Collected: 10/30/14 00:00 Date Received: 11/03/14 08:42							Lab	Sample ID: 250-2 Matri	2477-11 ix: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	3.3		0.010	0.010				11/04/14 10:30	1
Percent Solids	97		0.010	0.010	%			11/04/14 10:30	1

Client Sample ID: 20700-12 Date Collected: 10/30/14 00:00 Date Received: 11/03/14 08:42							Lab S	ample ID: 250-2 Matri	2477-12 ix: Solid
Analyte	Posult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte		Qualifier		WIDE	Onit		riepaieu	Allalyzeu	Dillac
Percent Moisture	5.0		0.010	0.010	%			11/04/14 10:30	1
Percent Solids	95		0.010	0.010	%			11/04/14 10:30	1

Client: Golder Associates Inc.

Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 250-22477-11 MS

Matrix: Solid

Analysis Batch: 32010

Client Sample ID: 20700-11 Prep Type: Total/NA

Prep Batch: 31907

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Xylenes, Total	ND		5860	6160		ug/Kg	<u> </u>	105	70 - 130	
Benzene	ND		1950	1800		ug/Kg	₩	92	80 - 125	
Ethylbenzene	ND		1950	2090		ug/Kg	₩	107	80 - 125	
Toluene	ND		1950	1930		ug/Kg	₩	99	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 125
4-Bromofluorobenzene (Surr)	103		75 - 125
Dibromofluoromethane (Surr)	99		75 - 125
Toluene-d8 (Surr)	101		75 - 125

Lab Sample ID: 250-22477-11 MSD

Matrix: Solid

Analysis Batch: 32010

Client Sample ID: 20700-11

Prep Type: Total/NA

Prep Batch: 31907

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Xylenes, Total	ND		5860	6230		ug/Kg	₩	106	70 - 130	1	25
Benzene	ND		1950	1810		ug/Kg	₩	93	80 - 125	1	25
Ethylbenzene	ND		1950	2110		ug/Kg	₩	108	80 - 125	1	25
Toluene	ND		1950	1920		ug/Kg	φ.	98	70 _ 130	0	25

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 125
4-Bromofluorobenzene (Surr)	102		75 - 125
Dibromofluoromethane (Surr)	100		75 - 125
Toluene-d8 (Surr)	102		75 - 125

Lab Sample ID: MB 250-31984/6

Matrix: Solid

Analysis Batch: 31984

Client Sample ID: Method Blank Prep Type: Total/NA

	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		300	59	ug/Kg			11/05/14 10:07	1
Benzene	ND		100	20	ug/Kg			11/05/14 10:07	1
Ethylbenzene	ND		100	18	ug/Kg			11/05/14 10:07	1
Toluene	ND		100	15	ug/Kg			11/05/14 10:07	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 125		11/05/14 10:07	1
4-Bromofluorobenzene (Surr)	99		75 - 125		11/05/14 10:07	1
Dibromofluoromethane (Surr)	98		75 - 125		11/05/14 10:07	1
Toluene-d8 (Surr)	100		75 - 125		11/05/14 10:07	1

Client: Golder Associates Inc. Project/Site: 1414827

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 250-31984/4

Matrix: Solid

Analysis Batch: 31984

Analyte Xylenes, Total Benzene Ethylbenzene Toluene

Client Sample ID:	Lab	Coi	ntrol	Sam	ple
	Prep	Ту	pe: 1	Γotal/	NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
6000	5990		ug/Kg		100	70 - 130
2000	1750		ug/Kg		87	80 - 120
2000	2030		ug/Kg		101	80 - 125
2000	1840		ug/Kg		92	80 - 120

LCS LCS Surrogate Qualifier Limits %Recovery 1,2-Dichloroethane-d4 (Surr) 99 75 - 125 75 - 125 4-Bromofluorobenzene (Surr) 103 Dibromofluoromethane (Surr) 100 75 - 125 100 75 - 125 Toluene-d8 (Surr)

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 250-31900/1-A

Matrix: Solid

Analysis Batch: 31972

мв мв

Analyte Result Qualifier

ND Gasoline Range Organics (GRO)

-C6-C10 MB MB

Qualifier Limits Surrogate %Recovery 87 50 - 150

a,a,a-Trifluorotoluene (fid)

Lab Sample ID: LCS 250-31900/2-A

Matrix: Solid

Analysis Batch: 31972

Analyte

Gasoline Range Organics (GRO) -C6-C10

Surrogate a,a,a-Trifluorotoluene (fid) LCS LCS

%Recovery Qualifier 94

Limits 50 - 150

Spike

Added

30.0

Spike

Added

30.0

RL

4.0

MDL Unit

LCS LCS

LCSD LCSD

25.7

Result Qualifier

26.4

Result Qualifier

Unit

Unit

mg/Kg

mg/Kg

1.3 mg/Kg

Lab Sample ID: LCSD 250-31900/3-A

Matrix: Solid

Analysis Batch: 31972

Analyte

Gasoline Range Organics (GRO) -C6-C10

Surrogate a,a,a-Trifluorotoluene (fid)

LCSD LCSD %Recovery Qualifier

93

Limits 50 - 150 Client Sample ID: Method Blank

Analyzed

11/04/14 12:55

Analyzed

Prep Type: Total/NA

Prep Batch: 31900

Dil Fac

Dil Fac

11/04/14 10:06 11/04/14 12:55

Prepared

11/04/14 10:06

Prepared

%Rec

88

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 31900

%Rec.

Limits 60 _ 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 31900 RPD

RPD Limit Limits 60 - 120 20

%Rec 86

Client: Golder Associates Inc. Project/Site: 1414827

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 250-31946/1-B

Lab Sample ID: LCS 250-31946/2-B

Matrix: Solid

Matrix: Solid

Analysis Batch: 31989

Analysis Batch: 31989

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31946

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		12	1.6	mg/Kg		11/05/14 08:38	11/05/14 16:55	1
RRO (nC25-nC36)	ND		25	2.7	mg/Kg		11/05/14 08:38	11/05/14 16:55	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Triacontane	96		50 - 150	11/05/14 08:38	11/05/14 16:55	1
1-Chlorooctadecane	107		50 - 150	11/05/14 08:38	11/05/14 16:55	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 31946

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (C10-C25)	125	95.6		mg/Kg		77	75 - 125	
RRO (nC25-nC36)	75.0	64.4		mg/Kg		86	60 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Triacontane	84		50 - 150
1-Chlorooctadecane	87		50 - 150

Lab Sample ID: LCSD 250-31946/3-B **Client Sample ID: Lab Control Sample Dup Matrix: Solid**

Spike

Analysis Batch: 31989

Prep Type: Total/NA

Prep Batch: 31946 %Rec. RPD

Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
DRO (C10-C25)		125	111		mg/Kg		89	75 - 125	15	20
RRO (nC25-nC36)		74.9	75.9		mg/Kg		101	60 - 120	16	20
	100D 100D									

LCSD LCSD

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Triacontane	98	-	50 - 150
1-Chlorooctadecane	100		50 - 150

Method: D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

Client Sample ID: 20700-01 Lab Sample ID: 250-22477-1 DU **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 31903

•	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	7.6		8.3		%	_	 9	20
Percent Solids	92		92		%		0.8	20

TestAmerica Portland

11/11/2014

Certification Summary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-14
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-15
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

1

6

Ω

9

Method Summary

Client: Golder Associates Inc.

Project/Site: 1414827

TestAmerica Job ID: 250-22477-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PRT
AK101	Alaska - Gasoline Range Organics (GC)	ADEC	TAL PRT
AK102 & 103	Alaska - Diesel Range Organics & Residual Range Organics (GC)	ADEC	TAL PRT
D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80	ASTM	TAL PRT

Protocol References:

ADEC = Alaska Department of Environmental Conservation

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

3

4

7

8

9

10

Burnaby, British Columbia, Canada Vocana Telephone: 604-298-6623 Fax: 604-298-5253

IN-OF-CUSTODY RECORD/ANALYSIS REQUEST

20700

roject Number: 14148	17	Laboratory Name:	men
		Address: 9405 Nimbris Beariston OR 9	Hue SW 7008
Solder Contact: Training Remodels	Golder E-mail Addres Tames - Reuncle! 5	Tel/Fax: 505 - 406-9200	Contact: Vanessa Berry
	<u></u>	Analyses Required	

Office the final reports	should be sent to:						-				Anai	yses Re	equirec	<u>i</u>				*
500–4260 Still Creel Burnaby, BC V5C 60 Tel: 604-298-6623 Fax: 604-298-5253	c Drive 20 C6 At	2–2790 Gladwin Roac obotsford, BC V2T 4St I: 604-850-8786 Ix: 604-850-8756		2640 Douglas Victoria, BC \ Tel: 250-881- Fax: 250-881	V8T 4M1 7372		Containers	30		5.20								
Sample Control Number (SCN)		Sample Matrix (over)	Date Sampled (D/M/Y)				Number of C	DRG / MRC	029	STEX/VOC.5							RUSH	Remarks (over)
20700 -01		Soil	29/10/14				2	X	X	X								
_02			a				physics	**************************************	19496	+D) Sage								
-03			1					AT MERCENSIAN CO.	- Wayprism,	- Americano								
—04			30/10/14				on Distance seasons	SPECIAL PROPERTY.	er factorise ex	P) repositor							3.4	
-05			2				. O'élephi Green	ticon motive.	CHECKARGE .	ACTION OF THE PERSON								
-06			Pida 4				To Carpor	***************************************	a de la companya de l									
- 07			and section				of confession	C. Igendaria	gs advice new	#2 mark 0 1 mark								
-08			fu Japan				- SPEERS	A principal	- De andresse	Thillipson, cho								
-09							MIL GHAVE	rae steles	Pari Pari	-						-	*	
-10			BOCKERN PERM				States Theresia	GG GG	Table Transcript	State (Application	-					-		
*		. A	Vrage (Open				Part of the	10 m	rystat.									
-11			15				\ <u>\</u>	-	1 2	V								
-12			V		4		V	V	V	A								
ampler's Signature	Carison	Relinquished by: S	ignature		Company Goldon	Date	30	/14	Tin	ne	, ,	Rec	eived	by: Sig	nature		Con	npany
ample Storage (°C)	an 195	Relinquished by: S	ignature		Company	Date 1/3/4			Tir	84	2	Rec		by: Sig	unature	X	Сод	AP
Comments:	ices	Method of Shipme	ent: Air.		Waybill No.:			Re	ceived	for La	b by:			Dat	e			Time
comments: Note Scriple 20700-04 to Oct 29 really: Sanpled	12 say	Shipped by:	mgs.		Shipment Conditi Seal Intact:	on:		Ten	np (°C)	Cı	ooler o	pened	by:	Dat	е-	4.51.4	•	Time
Sandled	Oct 30	WHITE C	older copy	VELL	OW: Lab copy	DIMI	: Lab	roturr	oc wit	th Eir	al Po	nort					27	

Sampler's Signature	Relinquished by: Signature	Company	Date	Time	Received I	by: Signature	Company
Mudden Curson		Goldon	Oct.30/1	4		110	2
Sample Storage (C)	Relinquished by: Signature	Company	Date 1/3/H	Time 05	342 Regented	by: Signature	Company
Comments:	Method of Shipment:	Waybill No.:		Received fo	r Lab by:	Date	Time
20700-04 to 12 5ay	Shipped by:	Shîpment Conditio	on:	Temp (°C)	Cooler opened by:	Date	Time
Oct 29. really they were	Wings	Seal Intact:					

Sampled Oct 30

WHITE: Golder copy

YELLOW: Lab copy

PINK: Lab returns with Final Report

24 (2.2 con) digit

500-4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6

Project Number:	14 14	827			Laboratory	/ Name:	Test Am	enca	
					Address:		Ninbus		
Golder Contact:	olds	Ta.	Golder E-mail vo _ Ress Au	, @golder.com	Tel/Fax:	5-906		Contact:	Bem,

Telephone: 604-298-6623 Fax: 604-298-525	3 Janea Royal	id s	Tano-Rey.	aulds @	golder.co	m	502	-906-9	200	- L	laness	. Benz
Office the final reports should be sent to:	1						Analy	ses Require	ed			
□ 500–4260 Still Creek Drive □ 202 Burnaby, BC V5C 6C6 Abl Tel: 604-298-6623 Tel:	2–2790 Gladwin Road botsford, BC V2T 4S8 : 604-850-8786 x: 604-850-8756	2640 Douglas S Victoria, BC V8 Tel: 250-881-73 Fax: 250-881-74	T 4M1 72	Containers	0							
Sample Control Number (SCN)	Sample Date Matrix Sampled (over) (D/M/Y)			Number of C	DRO IRRO	GRO III					RUSH	Remarks (over)
20701 -01	BLAK 70/10/14			1		XX		1.5				
2070 1 -02	Black &			1	X	χХ						
-03												
-04												
-05												
-06												
-07												
-08												
-09												, 4
-10												
-11												
–12												
		~	<u> </u>		<u> </u>			<u> </u>	1 1	- 1		
Sampler's Signature / Alunda (sicsen	Relinquished by: Signature			Date Oct.30	114	Time		Received			Con	npany
Sample Storage (C)	Relinquished by: Signature	\	ompany	Date 11/3/14	• €	Time 084	17	Received	by: Sign	ature C	Con	777
ON ICE	1.00	- 9 - 		Malu				700	ر ۽ ال	$\mathcal{U} ackslash$		1
Comments:	Method of Shipment:	W	/aybill No.:	· . "	Rece	eived for L	ab by:		Date			Time
1					·				D			-

Shipped by: Shipment Condition: Temp (°C) Cooler opened by: Time Wings Seal Intact:

WHITE: Golder copy

YELLOW: Lab copy

PINK: Lab returns with Final Report

Client: Golder Associates Inc.

Job Number: 250-22477-1

Login Number: 22477 List Source: TestAmerica Portland

List Number: 1

Creator: Svabik-Seror, Philip M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Dates on containers do not match CoC for many samples.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

ATTACHMENT 3 ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed by:	Lindsay Carson								
Title:	Environmental Engineer (E.I.T, Yukon Territory)								
Date:	December 11, 2014								
CS Report Name:	Remedial Soil Excavation, Alaska Fur Co., 363 2 nd Avenue, Skagway, Alaska								
<u> </u>	October 16, 2014 November 11, 2014								
	Golder Associates Ltd.								
Laboratory Name:	ΓestAmerica Laboratories Inc.								
Laboratory Report Nur	mber: 250-21835-1 250-22477-1								
ADEC File Number:	Not Assigned								
ADEC RecKey Number	r: Not Assigned								
 Laboratory a. Did an ADE Yes 	EC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? No Comments:								
	es were transferred to another "network" laboratory or sub-contracted to an alternate was the laboratory performing the analyses ADEC CS approved? Comments:								
Not Applicable									
2. Chain of Custody (COC)								
a. COC inform☑ Yes	nation completed, signed, and dated (including released/received by)? No Comments:								

b.	Correct anal	lyses requested?	
	Yes	□ No	Comments:
Labora	atory Sample	Receipt Document	<u>ation</u>
a.	Sample/cool	ler temperature doc	cumented and within range at receipt $(4^{\circ} \pm 2^{\circ} \text{ C})$?
	Yes	□ No	Comments:
Sa	imples were r	eceived at between	2.2°C and 3.8°C.
b.		servation acceptable lorinated Solvents,	e – acidified waters, Methanol preserved VOC soil (GRO, BTEX etc.)?
	Yes	□ No	Comments:
Sa	imples were p	properly preserved.	
c.	Sample cond	dition documented	broken, leaking (Methanol), zero headspace (VOC vials)?Comments:
Sa	mples arrived	d in good condition	
a.	containers/p samples, etc	reservation, sample .?	s, were they documented? For example, incorrect sample temperature outside of acceptable range, insufficient or missing
	Yes	□ No	Comments:
ind	licated a samp		ith a date of 10/29/14, however the chain of custoody (COC) /14. Client noted this discrepancy on the COC and samples were
e.	Data quality	or usability affects	ed? Explain. Comments:
No)		
	Narrative Present and	understandable?	
	Yes	□ No	Comments:
h	Digarananai	as amons on OC foi	ilures identified by the lab?

	⊡ Yes	□ No	Comments:
c.	Were all con	rrective action	ns documented?
	• Yes	□ No	Comments:
d.	What is the	effect on data	a quality/usability according to the case narrative? Comments:
El	evated metho	d blank may	bias higher DRO and RRO results.
møl	es Results		
_			1/ 1 0000
a.		•	ned/reported as requested on COC?
	• Yes	□ No	Comments:
b.	All applicab	ole holding tir	mes met?
	Yes	□ No	Comments:
c.	All soils rep	orted on a dr	y weight basis?
	Yes	□ No	Comments:
	-	, .	k) and 20701-02 (field blank) were reported on a wet basis; however,
the	se samples di	id not contain	ı soil.
d.	Are the repo	_	ss than the Cleanup Level or the minimum required detection level for
	Yes	⊡ No	Comments:
sta		one or more o	22, 20718-08, 20700-04, 20700-08, 20700-09, and 20700-10 exceeded f the following analytes: ethylbenzene, xylene, DRO, GRO, and
	D : 11:	1.11.	CC + 10 T - 1 *
e.	Data quality	or usability	affected? Explain. Comments:
N T	_		
No)		

		eported per matrix, analysis and 20 samples?
☑ Yes	■ No	Comments:
ii. All n	nethod blank re	sults less than PQL? Comments:
The method bla	nk for DRO and atches 250-3105	d RRO analyses contained Diesel above the method detection limit 56 and 250-31135; however, laboratory concentrations were less
iii. If ab	ove PQL, what	samples are affected? Comments:
DRO was found	l in the blank ar	nd sample for 20718-09, 20718-10, 20718-12, and 20760-01.
iv. Do tl	ne affected sam	ple(s) have data flags? If so, are the data flags clearly defined? Comments:
		comments: as higher DRO levels.
•	-	/Duplicate (LCS/LCSD) S/LCSD reported per matrix, analysis and 20 samples? Comments:
	ls/Inorganics – imples?	one LCS and one sample duplicate reported per matrix, analysis and Comments:
Not applicable		
And	project specifie	tent recoveries (%R) reported and within method or laboratory limits and DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%; AK103 60%-120%; all other analyses see the laboratory QC pages)

	• Yes	□ No	Comments:
	labo	ratory limits?	ative percent differences (RPD) reported and less than method or And project specified DQOs, if applicable. (AK Petroleum methods llyses see the laboratory QC pages)
	• Yes	C No	Comments:
	v. If %	R or RPD is o	outside of acceptable limits, what samples are affected? Comments:
None			
	vi. Do t	he affected sa	mple(s) have data flags? If so, are the data flags clearly defined? Comments:
	vii. Data	a quality or us	ability affected? Explain. Comments:
No			
c. Su	i. Are	- Organics Or surrogate reco ples?	overies reported for organic analyses – field, QC and laboratory
	• Yes	□ No	Comments:
	And	project speci	ercent recoveries (%R) reported and within method or laboratory limits? Fied DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other aboratory report pages)
	TYes	🖸 No	Comments:
1	_	-	GRO, DRO and RRO analyses was outside control limits for samples 04, 20700-09; the laboratory attributed this to matrix interferences.
		he sample res s clearly defin	ults with failed surrogate recoveries have data flags? If so, are the data ed?
	• Yes	□ No	Comments:

iv. Data o	uality or usabilit	y affected? Explain.
		Comments:
No		
d. Trip blank – 'Soil	Volatile analyses	only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water an
i. One to	ip blank reported	l per matrix, analysis and cooler?
© Yes	☑ No	Comments:
ii All re	sults less than PÇ	NI 2
• Yes		Comments:
	· •	tained concentrations of toluene less than the reporting limit but limit, and GRO greater than both the reporting limit and method
iii. If abo	ve PQL, what sar	mples are affected? Comments:
Samples 20700-(2014) were affect		ollected during the corresponding submission (October 29-30,
iv. Data o	uality or usabilit	y affected? Explain. Comments:
Elevated trip blan	nk may bias high	er GRO levels.
e. Field Duplica i. One f		omitted per matrix, analysis and 10 project samples?
• Yes	□ No	Comments:
ji Subm	tted blind to lab?)
• Yes	No	Comments:
Yes		
100		

	(Recommended: 30% water, 50% soil)		
	RPD (%) = Absolute value of: (R_1-R_2)		
	${((R_1+R_2)/2)}$ x 100		
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration		
	Yes No Comments:		
	Highest RPD value was 39% for naphthalene between duplicate samples 20718-01 and 20718-02, all other analytes less than 30% and below the recommended 50% RPD for soil.		
	iv. Data quality or usability affected? Explain.		
	Comments:		
	Not applicable		
	f. Decontamination or Equipment Blank (if applicable)		
	☐ Yes ☐ No		
	i. All results less than PQL?		
	Yes No Comments:		
	Not applicable		
ii. If above PQL, what samples are affected?			
	Comments:		
	Not applicable		
	iii. Data quality or usability affected? Explain.		
	Comments:		
	Not applicable		
7. <u>Otl</u>	ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)		
	a. Defined and appropriate?		
ı	☑ Yes ☑ No Comments:		