HOMER CLASS V INJECTION WELL CLOSURE REPORT

HOMER HIGHWAY MAINTENANCE AND OPERATION STATION HOMER, ALASKA

Prepared for:

Alaska Department of Transportation & Public Facilities 4111 Aviation Avenue Anchorage, Alaska 99519

Prepared by:

R&M CONSULTANTS, INC. 9101 Vanguard Drive Anchorage, Alaska 99507

March 2016

CLASS V INJECTION WELL CLOSURE REPORT HOMER HIGHWAY MAINTENANCE AND OPERATION STATION HOMER, ALASKA

TABLE OF CONTENTS

TABL	E OF C	ONTENTS	. i
LIST (OF TAE	BLES	. i
LIST (OF APP	ENDICES	. i
ACRC	ONYMS	AND ABBREVIATIONS	ii
EXEC	UTIVE	SUMMARYi	iii
1.0	INTRO	DDUCTION	1
	1.1	Site Description	
	1.1	Background	1
	1.2	Topography and Surface Drainage	1
	1.4	General Geology	
	1.5	Groundwater Conditions	2
	1.6	Climate	
2.0	INVES	STIGATION METHODS AND RESULTS	3
	2.1	Soil Investigation and Observations	3
	2.2	Soil Field Screening	3
	2.3	Soil Sampling and Analytical Results	4
3.0		ITY ASSURANCE/ QUALITY CONTROL	
4.0	INVES	STIGATION CONCLUSIONS	7
6.0	CLOS	URE	8
7.0	REFE	RENCES	9

LIST OF TABLES

Table 2.1: Soil Field Screening Results	4
Table 2.2: Summarized Soil Analytical Results	

LIST OF APPENDICES

- Appendix B: Photograph Log
- Appendix C: Field Notes
- Appendix D: Test Boring Logs
- Appendix E: Analytical Results and Checklist

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
°F	degrees Fahrenheit
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
bgs	below ground surface
CAFO	Consent Agreement and Final Order
DOT&PF	Department of Transportation & Public Facilities (Alaska)
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
GRO	gasoline-range organics
M&O Station	Maintenance and Operation Station
mg/kg	milligrams per kilogram
ND	non-detect
OWS	oil-water separator
РАН	polycyclic aromatic hydrocarbons
PCE	tetrachloroethene
PID	photoionization detector
ppm	parts per million
R&M	R&M Consultants, Inc.
RRO	residual-range organics
SGS	SGS North America, Inc.
SVOC	semi-volatile organic compound
TCE	trichloroethene
VOC	volatile organic compound
USGS	U.S. Geological Survey
WSO	Weather Service Office

CLASS V INJECTION WELL CLOSURE REPORT HOMER HIGHWAY MAINTENANCE AND OPERATION STATION HOMER, ALASKA

EXECUTIVE SUMMARY

Class V injection well soil sampling activities were conducted on 18 February 2016 by R&M Consultants, Inc. (R&M) at the DOT&PF Homer Highway Maintenance and Operation Station (M&O Station) in Homer, Alaska. Soil sampling activities included drilling three boreholes beneath the leach field and collecting soil samples for laboratory analysis. The soil samples were analyzed for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), and total metals (arsenic, cadmium, chromium, and lead).

Site History

The Homer M&O Station was constructed in late 1984 and is used for staging and maintenance for State of Alaska vehicles and equipment. It also serves as a material (gravel, sand, etc.) storage facility. The original as-built drawings for the maintenance building included a floor drain system with an oil-water separator (OWS). Water from the floor drain in the M&O Station enters the OWS and continues to the seepage pit, which constitutes a Class V injection well. Based on available as-built drawings and DOT&PF personnel knowledge, it does not appear that the Class V injection well ever had its own seepage pit but has been historically connected to the mounded septic field. The 1984 as-built drawings indicate that the floor drains exit the northwest side of the building and are buried along the western property line until reaching the mounded septic system located approximately 200 feet to the north-northwest of the M&O Station building where it is believed that the OWS system drains. A separate drain line runs from the septic tank to the leach field along a similar path. The depth of the pipes is unknown, but the septic leach field piping is located approximately 1.5 feet below grade based on the 1984 as-built drawings. Locations of the leach field and presumed drain and septic piping are shown on Figure A-02. The floor drain system and leach field constitutes an U.S. Environmental Protection Agency (EPA) Class V injection well for motor vehicle waste disposal identified in the Consent Agreement and Final Order (CAFO) from the EPA as docket number SDWA 10-2013-0155.

Analytical Results

The metal arsenic and the VOC 1,1,2-trichloroethane were detected at concentrations exceeding the ADEC migration to groundwater cleanup levels for the under 40-inch zone of 3.9 and 0.018 milligrams per kilogram (mg/kg), respectively. The detected arsenic concentrations ranged between 3.93 and 5.40 mg/kg and exceeded ADEC cleanup levels in all primary and duplicate samples collected. The 1,1,2-trichloroethane detection was 0.0422 mg/kg in the duplicate sample from the discharge point (HMR16-SO). Remaining parameters were either non-detect or were detected below the respective cleanup levels (Table 2.2).

Conclusions

Arsenic was detected at low concentrations that exceeded the migration to groundwater cleanup levels for soil in all samples. Concentrations of arsenic appeared consistent across all samples at relatively low concentrations. The relatively consistent concentrations of arsenic detected in the site soil samples were between 3.93 and 5.40 mg/kg and indicate that the detected concentrations are attributable to background conditions and not to contamination associated with past site use. Cadmium, chromium, and lead were detected, but the results were below the cleanup levels.

VOCs detected below cleanup levels included eight petroleum related compounds (secbutylbenzene, ethylbenzene, 4-isopropyltoluene, n-propylbenzene, toluene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, and xylene) and four chlorinated VOCs (dichlorodifluoromethane, tetrachloroethene [PCE], trichloroethene [TCE], and 1,1,2trichloroethane). Detection of SVOCs were limited to bis(2-ethylhexyl)phthalate and naphthalene, which were also below the respective migration to groundwater cleanup levels. The majority of these detections originated from soil collected from the discharge point and the western sample location.

Soil obtained from the Class V well discharge point was observed to be stained nearly black and had a distinct petroleum odor. Only 1,1,2-trichloroethane (a common component of degreasers such as TCE, PCE, or as a standalone degreaser) was detected above the migration to groundwater cleanup level in the duplicate discharge point sample (HMR16-SO) at 0.0422 mg/kg.

CLASS V INJECTION WELL CLOSURE REPORT HOMER HIGHWAY MAINTENANCE AND OPERATION STATION HOMER, ALASKA

1.0 INTRODUCTION

Class V injection well soil sampling activities were conducted on 18 February 2016 by R&M Consultants, Inc. (R&M) at the DOT&PF Homer Highway Maintenance and Operation Station (M&O Station) in Homer, Alaska. Soil sampling activities included drilling three boreholes beneath the leach field and collecting soil samples for laboratory analysis.

1.1 Site Description

The DOT&PF Homer Highway M&O Station is located at Milepost 169 of the Sterling Highway (Township 6S, Range 14W, Section 15, Seward Meridian). The site is located approximately 4 miles north of the City of Homer, Alaska (Figure A-01).

1.1 Background

The Homer M&O Station was constructed in late 1984 and is used for staging and maintenance for State of Alaska vehicles and equipment. It also serves as a material (gravel, sand, etc.) storage facility. The original as-built drawings for the maintenance building included a floor drain system with an oil-water separator (OWS). Water from the floor drain in the M&O Station enters the OWS and continues to the seepage pit, which constitutes a Class V injection well. Based on available as-built drawings and DOT&PF personnel knowledge, it does not appear that the Class V injection well ever had its own seepage pit but has been historically connected to the mounded septic field.

The 1984 as-built drawings indicate that the floor drains exit the northwest side of the building and are buried along the western property line until reaching the mounded septic system located approximately 200 feet to the north-northwest of the M&O Station building where it is believed that the OWS system drains. A separate drain line runs from the septic tank to the leach field along a similar path. The depth of the pipes is unknown, but the septic leach field piping is located approximately 1.5 feet below grade based on the 1984 as-built drawings. Locations of the leach field and presumed drain and septic piping are shown on Figure A-02. The floor drain system and leach field constitutes an U.S. Environmental Protection Agency (EPA) Class V injection well for motor vehicle waste disposal identified in the Consent Agreement and Final Order (CAFO) from the EPA as docket number SDWA 10-2013-0155.

1.2 Topography and Surface Drainage

The south side of the site is the highest portion of the site in elevation. The site is gently sloped to the north, west, and east. A drainage ditch runs along the western site boundary which drains to the north.

The 1984 as-built drawings and site observations from this investigation indicate that surface water from precipitation events runs off the site to the north and west. Stormwater runoff appears to discharge into Diamond Creek to the north and then west to Kachemak Bay. No permanent surface water was present on site at the time of investigation.

1.4 General Geology

The site is located within the Kenai Peninsula portion of the Cook Inlet-Susitna Lowlands physiographic province that is mostly underlain by poorly consolidated coal-bearing rocks from the Tertiary. Bedrock is mantled with glacial moraine, glacial outwash, marine, and lake deposits (Wahrhaftig, 1965).

1.5 Groundwater Conditions

Groundwater conditions at the site are not well understood. Based on the 7.5 minute U.S. Geological Survey topographic map (Seldovia C-5), groundwater likely slopes north into the Diamond Creek drainage; however the possibility exists that groundwater from the site travels south toward the steep bluff above Kachemak Bay. A groundwater divide must exist somewhere in the vicinity of the site. Based on the presence of the mounded septic system, groundwater is presumed to occur at a shallow depth beneath the site.

1.6 Climate

Based on climate data recorded at the Homer WSO Airport weather station (503665), the mean annual air temperature is about 38 °F, with minimum and maximum monthly averages of about 16.5 °F (February) and 60.8 °F (July), respectively. The area received an average of approximately 24.5 inches of precipitation per year, with maximum monthly mean of about 3.1 inches in October.

2.0 INVESTIGATION METHODS AND RESULTS

A well closure plan was drafted by DOT&PF and submitted to the EPA for review and approval. The 2-page closure plan, *Class V Underground Injection Well Closure Plan* dated 30 November 2015, summarized the existing site conditions, the plans for closure, and the requirements of the final report (DOT&PF, 2015). The closure plan was approved by the EPA on 13 January 2016 and was used by DOT&PF and R&M to guide field activities.

Fieldwork to investigate the Class V injection well leach field was completed on 18 February 2016 by R&M. Geotechnical drilling equipment and operators were provided by Discovery Drilling with environmental oversight and sampling performed by R&M. Christopher D. Fell with R&M was the ADEC qualified environmental professional and qualified sampler on site as required by 18 AAC 75 (ADEC, 2016).

2.1 Soil Investigation and Observations

Sampling of the soils under the leach field was accomplished using a Geoprobe[™] 7822DT. Soils were sampled from three boreholes drilled at an approximate 45 degree angle: one at the point of discharge, one on the east side of the leach field and one on the west side of the leach field (Figure A-02). The leach field and the initial point of discharge were field-located using as-built drawings provided by DOT&PF.

Soils beneath the leach field consisted of sandy gravel over poorly graded sand at the point of discharge and poorly graded sand on the east and west sides of the leach field. Soil immediately below the discharge point (sandy gravel) was observed to be discolored to nearly black with a strong petroleum odor that dissipated into the underlying poorly graded sand. A photograph of the soil beneath the discharge point is provided in Appendix B and field notes are included in Appendix C.

2.2 Soil Field Screening

Soil was field screened with a MiniRAE photoionization detector (PID) for each sample recovered for the potential presence of VOCs and petroleum hydrocarbons. Field screening was conducted using the headspace method where soil from the excavation was placed in a new resealable polyethylene bag using a new metal spoon. The bag and soil were allowed to warm for at least 10 minutes but no more than 60 minutes before recording field measurements. A bag blank was run initially to allow comparison of soil field screening results to a completely empty bag. Field screening results ranged from 5.7 to 148 parts per million (ppm) indicating the potential presence of VOCs or petroleum hydrocarbons. Field screening results are tabulated in Table 2.1.

Sample Number	Sample Depth (feet bgs)	Reading (ppm)
Bag Blank	Not applicable	0.0
HMR16-DP	1.5 to 2.5	148
HMR16-EA	3.5 to 4.2	5.7
HMR16-WE	3.3 to 4.0	74.2

Table 2.1Soil Field Screening Results

Notes

For definitions, see Acronyms and Abbreviations (Page ii). **BOLD** results indicate moderately elevated PID readings.

2.3 Soil Sampling and Analytical Results

Soil samples were collected according to procedures specified by the closure plan (DOT&PF, 2015), communication with DOT&PF, and ADEC Draft Field Sampling Guidance (ADEC, 2010). Samples were submitted to SGS North America, Inc. in Anchorage, Alaska (SGS) for analysis. SGS is an ADEC-approved laboratory (#UST-005, expires 18 December 2016). Photographs and field notes from the well closure are provided in Appendices B and C, respectively. Complete analytical results and Level 2 reports from SGS are included in Appendix E. Soil results were compared to 18 AAC 75, Table B1, under 40-inch zone cleanup levels (ADEC, 2016). Soil sample locations are shown on Figure A-02. Summarized results are included in the following sections. A complete listing of analytes and associated results are provided in Appendix E.

Soil samples were analyzed for total metals (arsenic, cadmium, chromium, and lead), VOCs, and SVOCs. Analytical results for metals were generally non-detect or detected below the applicable cleanup levels, with the exception of arsenic. Arsenic was detected at low levels ranging between 3.93 and 5.40 mg/kg.

VOCs and SVOCs were also generally non-detect or detected below the applicable cleanup levels, except for 1,1,2-trichloroethane. This analyte was detected above cleanup levels in the duplicate sample from the discharge point; it was non-detect in all other samples.

Most VOC/SVOC detections originated from soil collected from the discharge point (samples HMR16-DP and HMR16-SO). The eastern sample point (HMR16-EA) resulted in the fewest detections; however soil collected from this sample location resulted in the only detection of PCE. Table 2-2 provides summarized analytical results for analytes detected in at least one sample. Results for analytes with non-detect values from all samples are provided in Appendix E.

Table 2.2
Summarized Soil Analytical Results

	ADEC Cleanup Levels ¹ (mg/kg)		-	l Samples /kg)	
Analyte	Migration to GW	HMR16-DP (primary) (1.5 feet bgs)	HMR16-SO ² (duplicate of HMR16-DP) (1.5 feet bgs)	HMR16-EA (primary) (3.5 feet bgs)	HMR16-WE (primary) (3.3 feet bgs)
Arsenic	3.9	4.02	4.37	5.40	3.93
Cadmium	5.0	1.32	1.33	ND(<0.0656)	ND(<0.0624)
Chromium	25	15.1	10.9	17.9	20.7
Lead	400^{3}	6.84	6.66	3.01	3.27
sec-Butylbenzene	12	0.0963	0.0774	ND(<0.0172)	0.0336 J
Dichlorodifluoromethane	140	0.0459 J	0.109	1.24	0.0519 J
Ethylbenzene	6.9	0.111	0.104	ND(<0.0172)	ND(<0.014)
bis(2-ethylhexyl)phthalate	13	2.7 J	3.39 J	ND(<0.0862)	0.135 J
4-Isopropyltoluene		15.8	15.5	0.116	2.78
Naphthalene	20	0.221	0.214	ND(<0.0332)	0.0604 J
n-Propylbenzene	15	0.0795	0.0673	ND(<0.0172)	0.0291 J
Tetrachloroethene (PCE)	0.024	ND(<0.00873)	ND(<0.00833)	0.0182 J	ND(<0.00698)
Toluene	6.5	0.383	0.37	ND(<0.0172)	0.0166 J
Trichloroethene (TCE)	0.020	0.0129 J	0.0139 J	ND(<0.00862)	0.00806 J
1,1,2-Trichloroethane	0.018	ND(<0.00694)	0.0422	ND(<0.00686)	ND(<0.00555)
1,2,4-Trimethylbenzene	23	0.519	0.459	ND(<0.0332)	0.155
1,3,5-Trimethylbenzene	23	0.317	0.281	ND(<0.0172)	0.0721
Xylenes (total)	63	0.581	0.552	ND(<0.0504)	ND(<0.0408)

Notes:

Cleanup levels are based on 18 AAC 75, Table B1, Under 40-Inch Zone.
2 Sample number HMR16-SO is a duplicate sample of the primary sample HMR16-DP.

3 Migration to GW cleanup levels have not been established for lead and therefore the direct contact value of 400 mg/kg is used for comparison. Samples exceeding a cleanup level are presented as bold numbers with a light red background.

ND(0.090) = Analyte was non-detect with a detection limit of 0.090 mg/kg.

For definitions, see Acronyms and Abbreviations (Page ii).

3.0 QUALITY ASSURANCE/ QUALITY CONTROL

Samples were collected by a qualified environmental professional, as defined in 18 AAC 75 Oil and Other Hazardous Substances Pollution Control regulations (ADEC, 2016). Quality assurance and quality control (QA/QC) samples were collected in accordance with the ADEC Draft Field Sampling Guidance (ADEC, 2010).

Samples were maintained in a chilled cooler under standard chain-of-custody procedures by R&M until delivery to the analytical laboratory. During laboratory check-in, the temperature in the cooler for soil samples was measured to be 0.0° C which was below the $4 \pm 2^{\circ}$ C specified in the ADEC Draft Field Sampling Guidance. The samples were not frozen and the temperature blank (water filled container) was not frozen and did not contain any ice. Cubed water ice was present in the cooler and was melting. As the samples and temperature blank were not frozen, the data are considered usable without qualification.

Duplicate samples were obtained at a rate of one per ten samples for the soil matrix per analytical method. One duplicate sample was collected and submitted blind to the laboratory in the same manner as the primary samples. Analytical results for contaminants were generally in good agreement, except for 1,1,2-trichloroethane collected in soil from the discharge point, between the primary and duplicate soil samples. Method blanks and the trip blank were prepared and analyzed by SGS and were non-detect for all parameters. A laboratory data review checklist was completed and is included with this report along with complete laboratory results in Appendix E.

Analytical data included with this report is considered usable.

4.0 INVESTIGATION CONCLUSIONS

Based on field activities, available site information, and laboratory results from the well closure sampling conducted in February 2016, R&M has developed the following conclusions concerning soil contamination associated with the Class V injection well at the Homer Highway Maintenance Station.

Arsenic was detected at consistently low concentrations that exceed cleanup levels. The relatively consistent concentrations of arsenic detected in the soil samples were between 3.93 and 5.40 mg/kg and indicate that the detected concentrations are attributable to background conditions and not to contamination associated with past site use.

Alaska is known to have elevated concentrations of arsenic as a result of the relatively young geologic age of the rocks that formed Alaskan soils (USGS, 2001, Gough, 1988, ADEC, 2009). A 1988 U.S. Geological Survey paper studied the distribution of various metals across the state. Arsenic was detected ranging from less than 10 and up to 750 mg/kg with an arithmetic mean of 9.6 mg/kg. ADEC has acknowledged the presence of elevated arsenic in a 2009 technical memorandum (ADEC, 2009).

Chromium and lead were detected in all samples but below the cleanup levels. Cadmium was only detected at the discharge point.

VOCs detected below cleanup levels included eight petroleum related compounds (secbutylbenzene, ethylbenzene, 4-isopropyltoluene, n-propylbenzene, toluene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, and xylene) and four chlorinated VOCs (dichlorodifluoromethane, tetrachloroethene [PCE], trichloroethene [TCE], and 1,1,2trichloroethane). Detection of SVOCs were limited to bis(2-ethylhexyl)phthalate and naphthalene, which were below the respective migration to groundwater cleanup levels.

Based on the analytical data, VOCs and SVOCs were detected most frequently in soil collected from the discharge point and the western portion of the leach field (HMR16-WE). Soil at the discharge point was observed to be stained nearly black and had a distinct petroleum odor. Only 1,1,2-trichloroethane (a common component of degreasers such as TCE, PCE, or as a standalone degreaser) was detected above the migration to groundwater cleanup level in the duplicate discharge point sample (HMR16-SO).

7

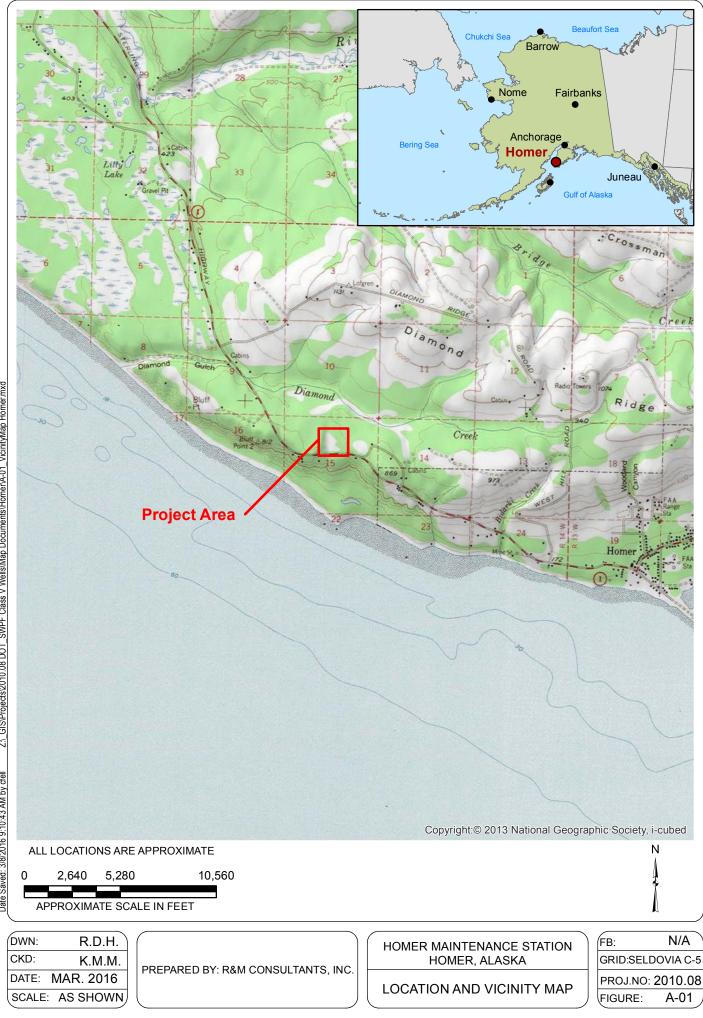
5.0 CLOSURE

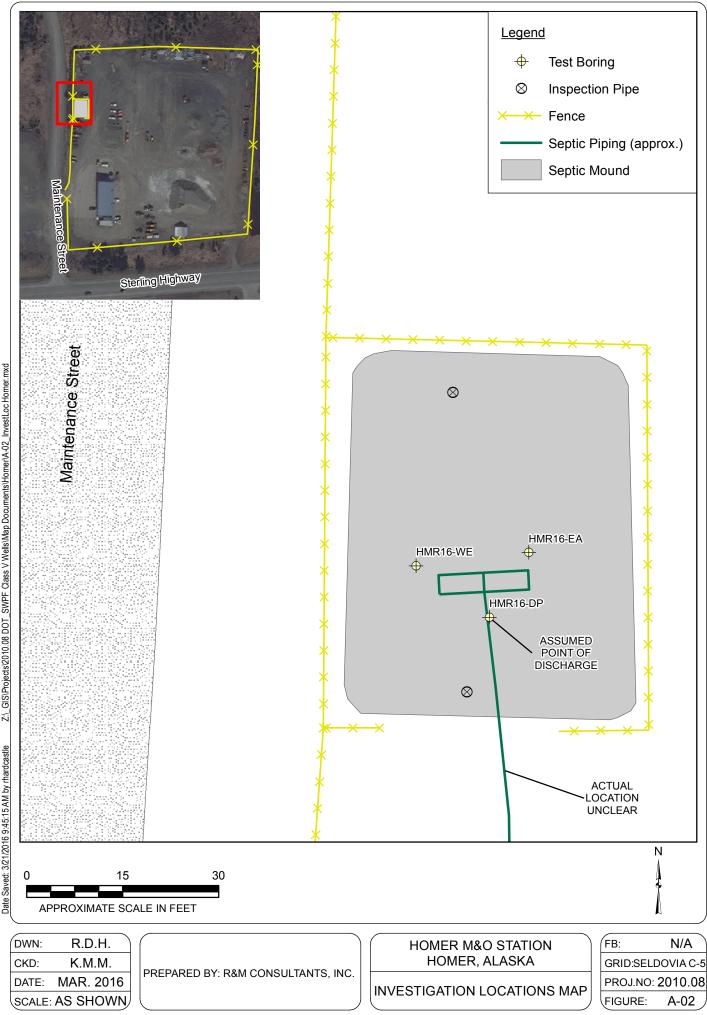
This report has been prepared for the exclusive use of the DOT&PF and their representatives in the study of this site. The findings presented within this report are based on limited sampling and laboratory analyses conducted by R&M. Since opinions of conditions prevailing on a particular site must be based on the work authorized by the client, all findings/data must be construed as representative of the site at a particular moment in time and the result of services performed within the scope, limitations, and cost of the work requested. Changes in the conditions of this site may occur with the passage of time and may be due to natural processes or the works of man. In addition, changes in government codes, either State or Federal regulations or laws, may occur. Due to such changes, which are beyond our control, observations and recommendations applicable to this site may need to be revised wholly or in part from time to time.

R&M Consultants, Inc. performed this work in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No warranty, express or implied, beyond exercise of reasonable care and professional diligence, is made. Should you require additional information regarding the investigation or this report, please contact us.

Sincerely,

R&M CONSULTANTS, INC.


Christopher D. Fell, CPG Senior Geologist


Robert M. Pintner, PE Senior Geotechnical Engineer

6.0 **REFERENCES**

- Alaska Department of Environmental Conservation (ADEC), 2016. "18 AAC 75: Oil and Other Hazardous Substances Pollution Control." 1 January 2016.
- ADEC, 2010. "Draft Field Sampling Guidance." May 2010.
- ADEC, 2009. Arsenic in Soil. March 2009. Technical Memorandum.
- Alaska Department of Transportation and Public Facilities (DOT&PF), 2015. "Class V Underground Injection Well Closure Plan." 30 November 2015.
- Gough, L.P.; Severson, R.C.; and Shacklette, H.T. (Gough, 1988); 1988. Element Concentrations in Soils and Other Surficial Materials of Alaska. U.S. Geological Survey Professional Paper 1458. 57 pages.
- U.S. Environmental Protection Agency (EPA), 2013. "Consent Agreement and Final Order." Docket No. SDWA 10-2013-0155, 25 September 2013.
- U.S. Geological Survey (USGS), 2001. Distribution of Arsenic in Water and Streambed Sediments, Cook Inlet Basin, Alaska. USGS Fact Sheet FS-083-01. September 2001. 4 pages.
- Wahrhaftig, Clyde, 1965, Physiographic divisions of Alaska: U.S. Geological Survey Professional Paper 482, 52 p., 6 sheets, scale 1:2,500,000.

Appendix A Site Maps

Z: GIS\Projects/2010.08 DOT_SWPF Class V Wells\Map Documents\Homer\A-02_InvestLoc Homer.mxd Date Saved: 3/21/2016 9:45:15 AM by rhardcastle

Appendix B Photograph Log

Photo 1: Work Site facing west. 2/18/2016

Photo 2: Work Site facing east. 2/18/2016

Photo 3: Drilling at work site. 2/18/2016

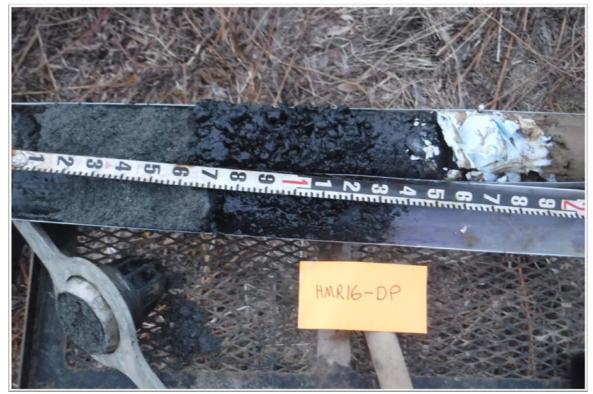
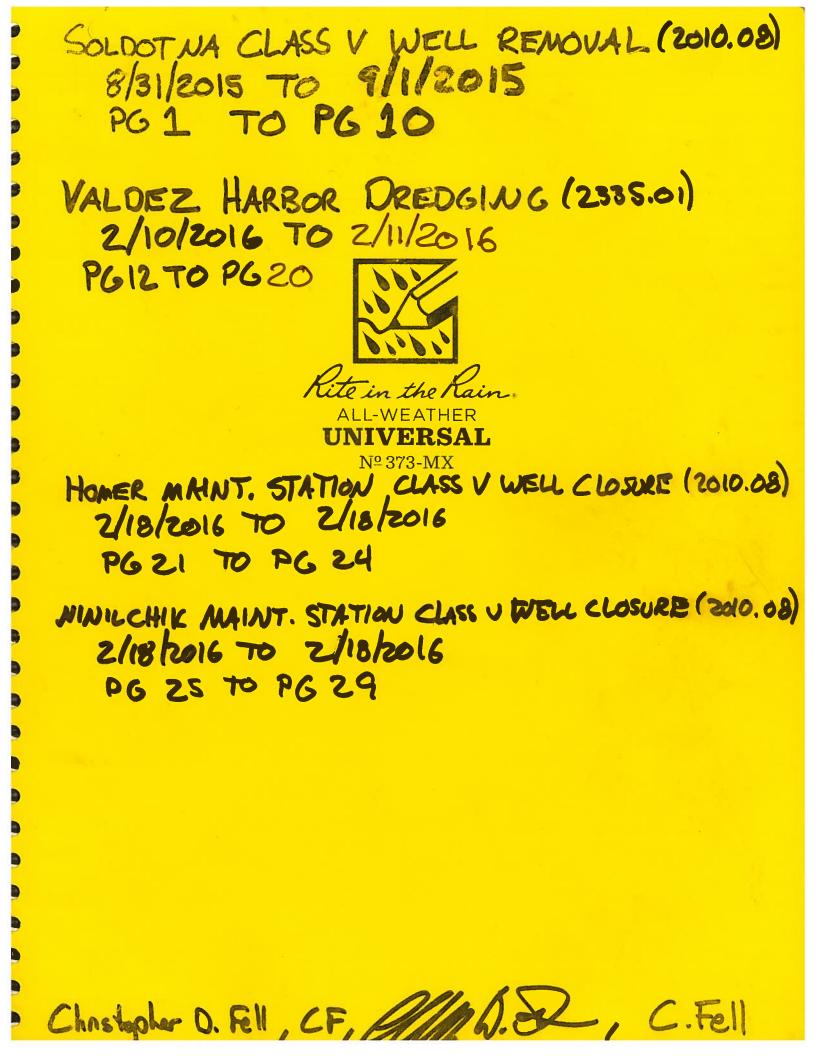
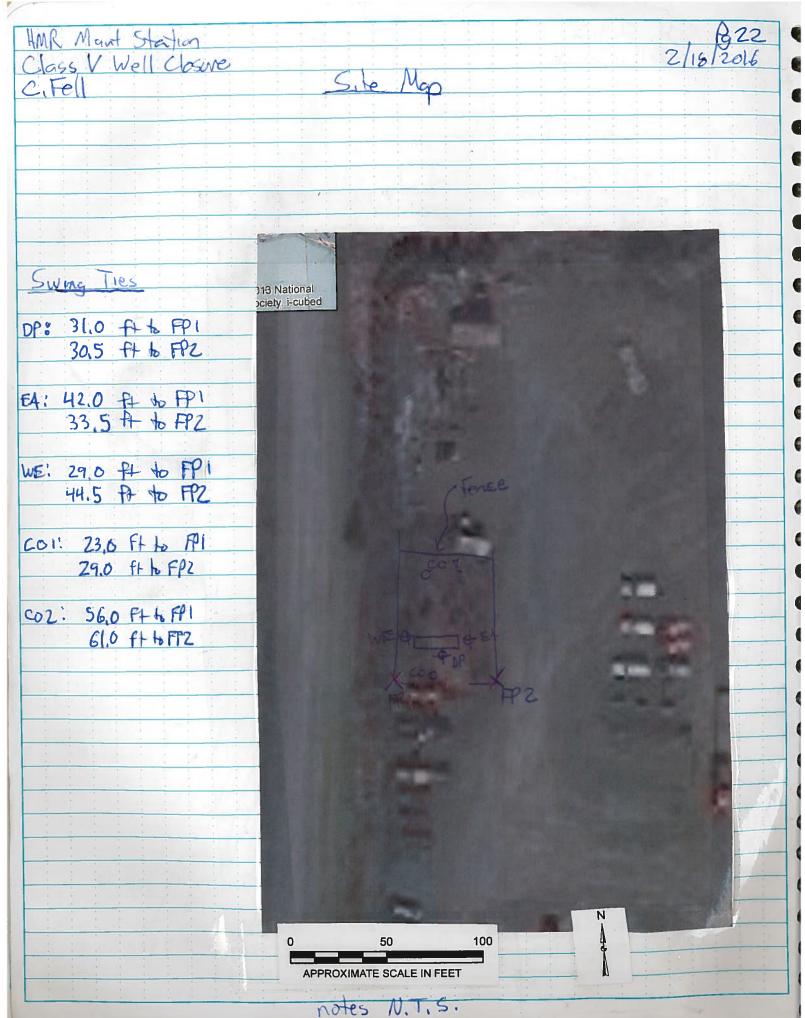



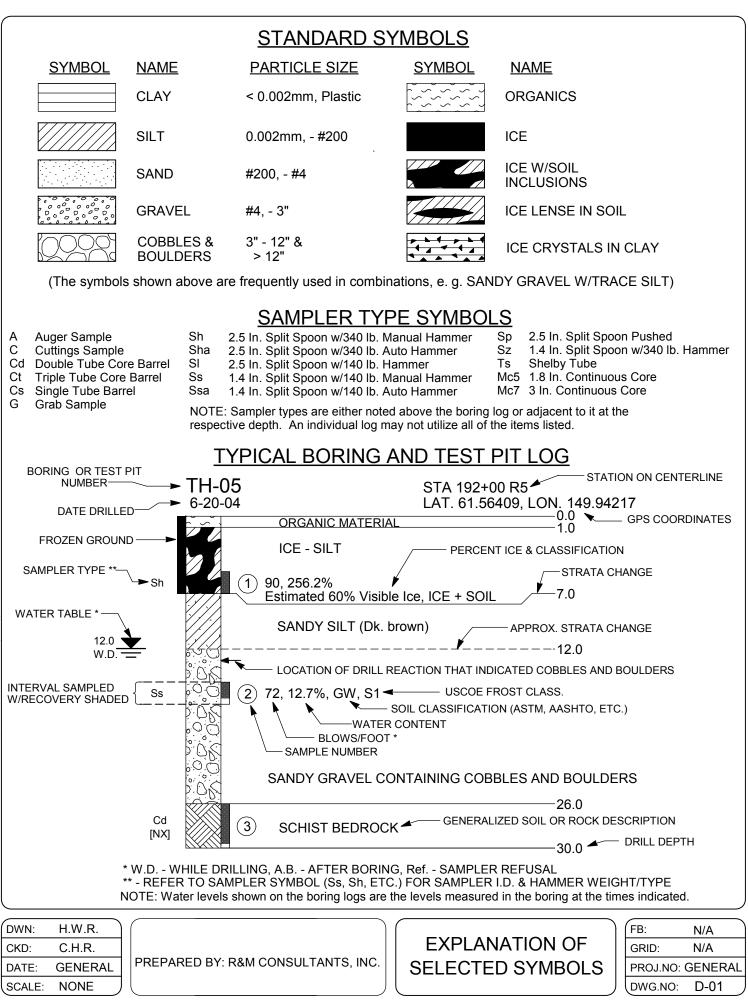
Photo 4: Core from test boring HMR16-DP showing discolored soil with a petroleum odor directly below the foam board in the middle of the core. 2/18/2016


Appendix C Field Notes

Homer Maint, Station 2/18/2011 Class V Well Closure C.Fell C. Fell arrived on site 0700 Met w/ Gordon Longe of DOTAPF (Foremen) Reviewed SSHP & DOTAPF Closure Plan. Begar layait at proposed test buchole locations La east side 5 west side 0800 Drillers arrived on site (Discovery Dalling, Inc) Scott Bom bord Dorok Doll Tailgale Meetry LA STF Ly Rig safety & check Sothing up goer /rig 0817 PiD Cal. Check (S/N 6800) La 100pm Jschotylene check= 100.0pm OK Grexp date = 1/10/2017 1 of# 15-5260 Setting up on HAVR16-DR HAR16-DP 45° ang le 0829 La Drille 45° angle tourds discharge point La Drille 45° angle tourds discharge point La Droth of Lischerge point is approx 1.5 feet based on asbuilts, entring ground approx Zisteet to The SE to avoid hitting piping Burchole Sing---- piping Ift core = 0.7 feet vert 3.541

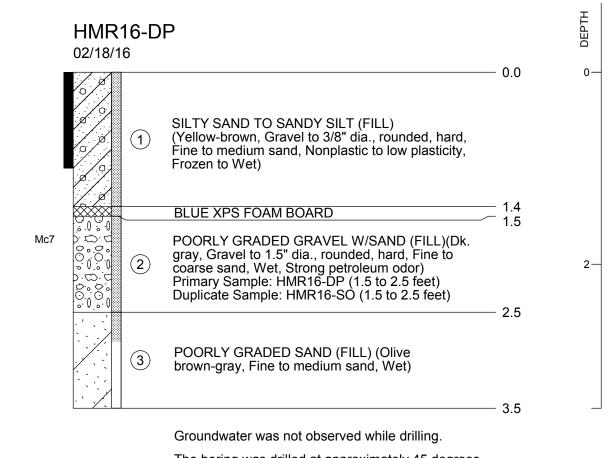
Rite in the Rain .

Scale: 1 square = _____

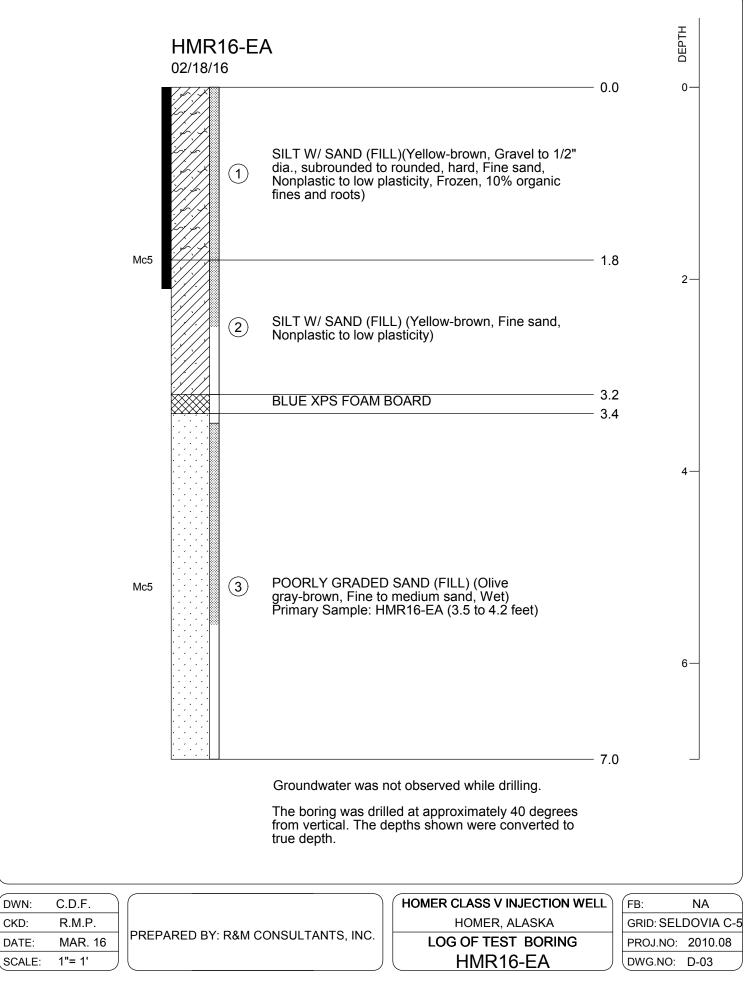

Homer Maint. Station Pg Z3 Class V. Well Closure. C.Fell * SAMPLE -K OBSS Primery HMR16-DP Ouplicate HAR16-SO GFell 2/18/2016 VOC 8260 2 402 sopramber Latore: 123,585 1 MeOH Was bitare: 125.05g IMEOH van SVOC 8270 2 Hoz amber Metals 6020 (As, Cd, Cr, Po) I moderly placed in pechilled caster following sampling PID Field Greening Dapth (F+) FS # Time Station Roome poin Blank NA 0505/0924 0.0 HARIG-DP 1.5 1.2.5 0905 0927 148 3.5+042 1014 1031 5,7 HAIRIG-EA 3.1 to 4.0 1054/1119 74,2 HMR16-WE Anthe D. Pell 18/2016 Clocking up at HMR16-DP 0925 Sotting up at HMR16-EA Advanced test barehale 40° angle Breaking Zone Monitoring fooding (pm) Locator Time HMR16-DP 0835 0.0 HMR16 EA 1000 0.0 HAR16-WE 0.0 1040

Rite in the Rain .

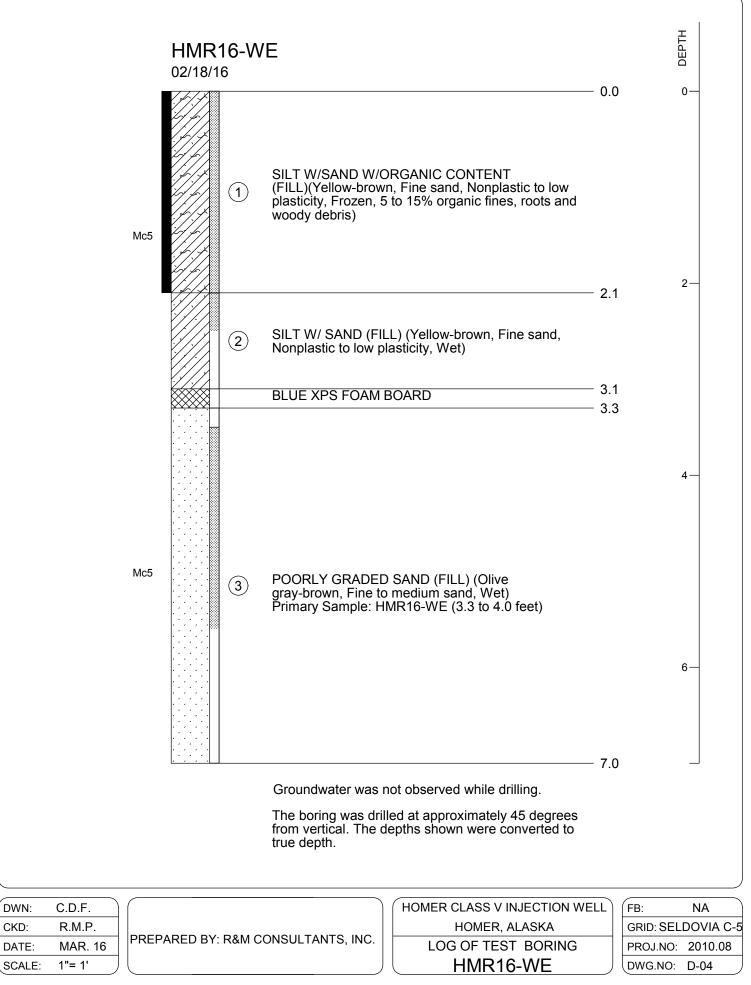
Scale: 1 square =


Homer Maint Station 624 2/18/2016 Class V Well Closure C.Fell 24 1012 X SAMPLEX HMR16-EA Drinery C,Fell G 2/18/2016 5 VOG 8260 1 402 septe amber 3º2 G Latere: 126,019 Meot von G SVOC 8270 tox 51 Hoz ander Metals 6020 6 In (As, Cr. Cd, Pb) I mechately placed in prechilled cooler following songling C C Cleaning up at HMRIG-FA 1015 Setting up at HMR16-WA THE Advancing HMR16-WA 450 1031 G * SAMPLE * 1042 HMR16-WE primery (1111) C.Fell 2/18/2016 Ê VOC 8260 1402 septa compet Lotare: 122.799 MeOH was SUDC 8270 31 402 amber Motals 6020 by As, Cr, Cd, Pb, I multitety placed in prechilled cooler following sampling C 1050 Cloning up @ HURIG-WE Cuthrags for all test barrags use used to backfull holes I to 2ft beatmite plug was placed at the top of The holes (medium chips) 1058 1130 offsite Christopler P. Rell 2/18/2016 Scale: 1 square

Appendix D Test Boring Logs


10:08 CHULITNA SEPTIC SOIL INVESTIGATION/B01&B02.GDW (DRAWING N - B-02 R&M (ENG.))

03/07/16 03:03 PM



The boring was drilled at approximately 45 degrees from vertical. The depths shown were converted to true depth.

DWN:	C.D.F.		(HOMER CLASS V INJECTION WELL	1 [FB:	NA
CKD:	R.M.P.			HOMER, ALASKA		GRID: SELE	DOVIA C
DATE:	MAR. 16	PREPARED BY: R&M CONSULTANTS, INC.		LOG OF TEST BORING		PROJ.NO:	2010.08
SCALE:	1"= 1'			HMR16-DP) [DWG.NO:	D-02

MASTER ONE COL/PAGE HOMER LOGS.GPJ MASTER2.GDT 03/07/16

Appendix E Analytical Results and Checklist

Laboratory Data Review Checklist

Completed by:	Rebecca Hardca	stle, Christoph	er Fell, CPG		
Title:	Environmental Specialist			Date:	Mar 8, 2016
CS Report Name:	Homer/Ninilchil	X		Report Date:	Mar 7, 2016
Consultant Firm:	R&M Consultan	its, Inc.			
Laboratory Name:	SGS North Ame	rica Inc.	Laboratory Report Nu	mber: 1160765	i
ADEC File Number:	Not Applicable		ADEC RecKey Numb	ber: NA	
1. Laboratory	L		1		
	ADEC CS approx	ad laboratory	receive and <u>perform</u> all of	f the submitted	comple opolycec?
• Yes		-	ase explain.)	Comments:	sample analyses?
	submitted and ana			Comments.	
b. If the sa	mples were transf	ferred to anothe	er "network" laboratory of ng the analyses ADEC CS		d to an alternate
⊖ Yes	⊖ No	• NA (Plea	se explain)	Comments:	
2. Chain of Custody	<u>(COC)</u>				
a. COC infor	mation completed	d, signed, and o	lated (including released/	received by)?	
• Yes	⊖ No	○NA (Plea	se explain)	Comments:	
b. Correct ar	nalyses requested	?			
• Yes	⊖ No	○NA (Ple	ase explain)	Comments:	
3. Laboratory Samp	le Receipt Docum	entation			
a. Sample/co	oler temperature	documented ar	nd within range at receipt	$(4^\circ \pm 2^\circ \mathrm{C})?$	
⊖ Yes	• No	• No CNA (Please explain)		Comments:	
temperature bla	-	ontainer) was i lting.	eceipt; however the samp not frozen and did not con e 1 of 8		

b. Sample preservation acceptable - a	cidified waters, Methanol	l preserved VOC soil	(GRO, BTEX,
Volatile Chlorinated Solvents, etc.))?		

• Yes	\bigcirc No	○NA (Please explain)	Comments:
c. Sample con		nted - broken, leaking (Methanol),	zero headspace (VOC vials)?
• Yes	⊖ No	○NA (Please explain)	Comments:
No issues noted.			
	• •	•	or example, incorrect sample containers/ insufficient or missing samples, etc.?
• Yes	○ No	ONA (Please explain)	Comments:
Cooler temperatur	re, see 3a.		
e Data quality	y or usability af	ffected? (Please explain)	
e. Data quanty	of usability a		Comments:
Data quality or u	sability were no	ot affected.	
1 2	<u> </u>		
Case Narrative			
a. Present and	understandable	??	
• Yes	⊖ No	○NA (Please explain)	Comments:
b. Discrepance	ies, errors or Q	C failures identified by the lab?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c Were all co	rrective actions	s documented?	
⊖ Yes	⊖ No	• NA (Please explain)	Comments:
		e-running a sample, were necessary the associated samples.	y. Analytes that had QC failures were
d. What is the	effect on data	quality/usability according to the c	case narrative? Comments:
Data quality or u	sability were no	ot affected.	

4.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes	○ No	○NA (Please explain)	Comments:
h All applicat	ble holding tim	es met?	
○ Yes	• No	○NA (Please explain)	
U Tes	() INO	() INA (Please explain)	Comments:
time should have	been based on	Id time based on the date the lab pre the day the trip blank was first "in u was met as measured from the begin	se", i.e. the morning sampling began
c. All soils rej	ported on a dry	weight basis?	
• Yes	⊖ No	○NA (Please explain)	Comments:
d. Are the rep project?	orted PQLs less	s than the Cleanup Level or the minin	mum required detection level for the
• Yes	⊖ No	○NA (Please explain)	Comments:
e. Data qualit	y or usability af	fected? (Please explain)	Comments:
Data quality or u	sability were no	ot affected.	
<u>OC Samples</u> a. Method Blai i. One me		orted per matrix, analysis and 20 sam	nples?
a. Method Blan	ethod blank rep	orted per matrix, analysis and 20 san ONA (Please explain)	nples? Comments:
a. Method Blan i. One mo • Ye	ethod blank rep		-

iii. If above PQL, what samples are affected?			Comments:
None affected			
iv. Do the	affected samp	ple(s) have data flags? If so, are the	data flags clearly defined?
⊖ Yes	• No	○NA (Please explain)	Comments:
No affected sam	ples.		
v. Data qı	ality or usabil	Comments:	
Data quality or	usability were	not affected.	
i. Organic	s - One LCS/I	ble/Duplicate (LCS/LCSD) LCSD reported per matrix, analysis a equired per SW846)	and 20 samples? (LCS/LCSD required
• Yes	🔿 No	○NA (Please explain)	Comments:
VOC, SVOC			
ii. Metals/ samples?	/Inorganics - C	One LCS and one sample duplicate r	reported per matrix, analysis and 20
• Yes	○ No	○NA (Please explain)	Comments:
Arsenic, Cadmiu	um, Chromiun	n, Lead	
project sp	ecified DQOs	ent recoveries (%R) reported and wi , if applicable. (AK Petroleum meth 6-120%; all other analyses see the la	
⊖ Yes	• No	○NA (Please explain)	Comments:
		alytes did not meet QC criteria (high associated samples. See laboratory	•
limits? Ar	nd project spec	cified DQOs, if applicable. RPD rep	ed and less than method or laboratory orted from LCS/LCSD, MS/DMSD, and all other analyses see the laboratory QC
⊖ Yes	• No	○NA (Please explain)	Comments:
Sample results v	were at least 9	-	% for SVOCs and VOCs, respectively. dicating that even if the results are high

v. If %R or RPD is outside of acceptable limits	s, what samples are affected?
---	-------------------------------

C	
Commente	
Comments:	

No, sample results were low enough that even low biased 30% they would still be below clean up levels.

vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined?

• Yes	\bigcirc No	○NA (Please explain)	Comments:
-------	---------------	----------------------	-----------

No samples were affected. MS/MSD results were marked with a "*".

vii. Data	quality or	usability	affected?	(Please expl	lain)	Commente
viii. Dutu	quality of	asaomity	unceneu.	(I lease enpl	(um)	Comments:

Data quality or usability were not affected. If sample concentrations were increased by 30% the results would still remain below cleanup levels for all analytes affected.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

● Yes ○ No ○NA (Please explain) Comments:	
---	--

ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

○ Yes● No○ NA (Please explain)Comments:

Surrogate terphenl-d14 was outside of QC criteria (54-127%) due to sample dilution (5X) and 5 mL final extraction volume.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

 $\bullet Yes \qquad \bigcirc No \qquad \bigcirc NA (Please explain) \qquad Comments:$

Yes, analytes with failed surrogate recovery are flagged "*".

iv. Data quality or usability affected? (Use the comment box to explain.).

Comments:

Data quality or usability were not affected.

d. Trip Blank - Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>

i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

 $\bullet Yes \qquad \bigcirc No \qquad \bigcirc NA (Please explain.) \qquad Comments:$

		ransport the trip blank and VOA san plaining why must be entered below	mples clearly indicated on the COC? v)
⊖ Yes	• No	○ NA (Please explain.)	Comments:
Only one cooler	was required f	or sample transport.	
iii. All res	ults less than F	PQL?	
• Yes	○ No	○ NA (Please explain.)	Comments:
iv. If abo	ve PQL, what	samples are affected?	
			Comments:
NA			
v. Data qu	ality or usabil	ity affected? (Please explain.)	
			Comments:
Data quality or	usability were	not affected.	
- Field Durali			
e. Field Duplic		omitted per matrix, analysis and 10	project samples?
I. One ner	a aupricate suc	sinteed per matrix, analysis and 10 j	project samples:
• Yes	⊖ No	○NA (Please explain)	Comments:
ii. Submi	tted blind to la	b?	
• Yes	⊖ No	○ NA (Please explain.)	Comments:
HMR16-SO (du	plicate of HMI	R16-DP)	

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute Value of: $(\underline{R_{1-} R_2})_X 100$ (($R_{1+} R_2$)/2)

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

⊖ Yes	• No	\bigcirc NA (Please explain)	Comments:
-------	------	--------------------------------	-----------

The RPDs for the primary and duplicate sample results were below the specified DQOs except for dichlorodifluoromethane which was 81.47%. Dichlorodifluoromethane was detected at very low levels (at least 1,200 times below the cleanup level) at which the precision between duplicate samples is large on a percentage basis, but extremely small on a unit basis (63ppb difference between samples, with a 140,000ppb cleanup level). PCE could not be calculated because it was ND for both the primary and duplicate sample and 1,1,2-Trichloroethane was ND for the primary sample .

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

⊖ Yes	• No	○NA (Please explain)	Comments:	
Data quality or u	sability was r	not affected.		
f. Decontamin	ation or Equi	pment Blank (if applicable)		
⊖ Yes	○ No	• NA (Please explain)	Comments:	
None collected as	s sampling eq	uipment was single use.		
i. All resul	ts less than P	QL?		
⊖ Yes	⊖ No	• NA (Please explain)	Comments:	
None collected as	s sampling eq	uipment was single use.		
ii. If above	PQL, what s	samples are affected?	Comments:	
NA				
iii. Data qu	ality or usab	ility affected? (Please explain.)	Comments:	
Data quality or us	sability were	not affected.		

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and app	oropriate?
--------------------	------------

 ○ Yes
 ○ No
 ● NA (Please explain)
 Comments:

 No additional flags were assigned.
 Comments:
 Comments:

Reset Form

Laboratory Report of Analysis To: R & M Consultants Inc 9101 Vanguard Dr Anchorage, AK 99507 (907)646-9655 Report Number: 1160765 Client Project: Homer/Ninilchik Dear Christopher Fell, Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote. If there are any questions about the report or services performed during this project, please call Stephen at (907) 562-2343. We will be happy to answer any questions or concerns which you may have. Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs. Stephen Ede 2016.03.07 Sincerely, SGS North America Inc. Alaska Division Technical Director 09:32:00 -09'00' Stephen Ede Date **Project Manager** Stephen.Ede@sgs.com

Print Date: 03/04/2016 10:25:10AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: R & M Consultants Inc SGS Project: 1160765 Project Name/Site: Homer/Ninilchik Project Contact: Christopher Fell

Refer to sample receipt form for information on sample condition.

HMR16-DP (1160765001) PS

8270D - Surrogate recovery for terphenyl-d14 (128%) does not meet QC criteria due to sample dilution (5X) and 5 mL final extraction volume.

8270D - The LOQs are elevated due to sample dilution (5X). The sample was analyzed at a dilution due to matrix.

HMR16-SO (1160765002) PS

8270D - The LOQs are elevated due to sample dilution (5X). The sample was analyzed at a dilution due to matrix.

LCS for HBN 1729692 [VXX/28542 (1314248) LCS

8260B – LCS recoveries for chloroethane and trichlorofluoromethane do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

LCS for HBN 1729724 [VXX/28546 (1314384) LCS

8260B –LCS recovery for chloroethane and trichlorofluoromethane do not meet QC criteria.

8260B – LCS recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the LOQ in the associated samples.

LCS for HBN 1729752 [VXX/28550 (1314515) LCS

8260B – LCS recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the LOQ in the associated samples.

1160731001MS (1313754) MS

8270D - MS recovery for benzoic acid (0%) and 2,4-dinitrophenol (43.4%) does not meet QC criteria. Refer to the LCS for accuracy requirements.

1160765003(1313793MS) (1313794) MS

6020A - Metals MS recoveries for multiple analytes do not meet QC criteria. The post digestion spike was successful.

1160731001MS (1314069) MS

8260B –MS/MSD recovery for several analytes does not meet QC criteria. Refer to LCS for accuracy. 8260B –MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

BBTP-1SS1-021716(1160792001MS) (1314249) MS

8260B – MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

8260B - MS recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy.

1160892001MS (1314385) MS

8260B –MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

8260B -MS recoveries for chloroethane and trichlorofluoromethane do not meet QC criteria. Refer to LCS for accuracy.

HMR16-WE(1160765004MS) (1314516) MS

8260B - MS recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy.

1160731001MSD (1313755) MSD

Print Date: 03/04/2016 10:25:11AM

SGS North America Inc.

Case Narrative

SGS Client: R & M Consultants Inc SGS Project: 1160765 Project Name/Site: Homer/Ninilchik Project Contact: Christopher Fell

8270D - MS recovery for benzoic acid (0%) and 2,4-dinitrophenol (38.2%) does not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D - MS/MSD RPD for hexachlorocyclopentadiene (24.4%), 2-methyl-4,6-dinitrophenol (21.4%) and 1-chloronaphthalene (33.1%) does not meet QC criteria. The associated sample concentrations for these analytes are less than the LOQ.

1160765003(1313793MSD) (1313795) MSD

6020A - Metals MSD recoveries for multiple analytes do not meet QC criteria. The post digestion spike was successful.

1160731001MSD (1314070) MSD

8260B –MS/MSD recovery for several analytes does not meet QC criteria. Refer to LCS for accuracy. 8260B –MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

BBTP-1SS1-02...(1160792001MSD) (1314250) MSD

8260B – MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

8260B –MSD recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy.

1160892001MSD (1314386) MSD

8260B –MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

8260B -MSD recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy.

HMR16-WE(1160765004MSD) (1314517) MSD

8260B -MSD recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy.

VW8-73-29 (1160765009) TB

8260B - Sample was recieved and analyzed past hold.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/04/2016 10:25:11AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Report of Manual Integrations					
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason	
SW8270D					
1313753	LCS for HBN 1729367 [XXX/34934	XMS9195	1-Chloronaphthalene	PNF	
1313753	LCS for HBN 1729367 [XXX/34934	XMS9195	2-Chloronaphthalene	RSP	
1313753	LCS for HBN 1729367 [XXX/34934	XMS9195	Benzoic acid	BLC	
1313754	1160731001MS	XMS9197	1-Chloronaphthalene	RSP	
1313754	1160731001MS	XMS9197	2-Chloronaphthalene	RSP	
1313755	1160731001MSD	XMS9197	1-Chloronaphthalene	RSP	
1313755	1160731001MSD	XMS9197	2-Chloronaphthalene	RSP	
1314211	CCV for HBN 1729675 [XMS/9195]	XMS9195	Benzoic acid	BLC	
1314289	CCV for HBN 1729700 [XMS/9197]	XMS9197	Benzoic acid	BLC	

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 03/04/2016 10:25:12AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 03/04/2016 10:25:12AM

Note:

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
HMR16-DP	1160765001	02/18/2016	02/19/2016	Soil/Solid (dry weight)
HMR16-SO	1160765002	02/18/2016	02/19/2016	Soil/Solid (dry weight)
HMR16-EA	1160765003	02/18/2016	02/19/2016	Soil/Solid (dry weight)
HMR16-WE	1160765004	02/18/2016	02/19/2016	Soil/Solid (dry weight)
NIN16-DP-CANCELLED	1160765005	02/18/2016	02/19/2016	Soil/Solid (dry weight)
NIN16-EA-CANCELLED	1160765006	02/18/2016	02/19/2016	Soil/Solid (dry weight)
NIN16-SO-CANCELLED	1160765007	02/18/2016	02/19/2016	Soil/Solid (dry weight)
NIN16-NO-CANCELLED	1160765008	02/18/2016	02/19/2016	Soil/Solid (dry weight)
VW8-73-29	1160765009	02/03/2016	02/19/2016	Soil/Solid (dry weight)

<u>Method</u>

SW6020A SM21 2540G SW8270D SW8260B

Method Description

Metals by ICP-MS (S) Percent Solids SM2540G SW846 8270 Semi-Volatiles by GC/MS (S) VOC 8260 (S) Field Extracted

Print Date: 03/04/2016 10:25:14AM

Detectable Results Summary

ab Sample ID: 1160765001	Parameter	Result	Units
Metals by ICP/MS	Arsenic	4.02	mg/K
	Cadmium	1.32	mg/K
	Chromium	15.1	mg/K
	Lead	6.84	mg/K
Semivolatile Organics GC/MS	bis(2-Ethylhexyl)phthalate	2.70J	mg/K
/olatile GC/MS	1,2,4-Trimethylbenzene	519	ug/K
	1,3,5-Trimethylbenzene	317	ug/K
	4-Isopropyltoluene	15800	ug/K
	Dichlorodifluoromethane	45.9J	ug/K
	Ethylbenzene	111	ug/K
	Naphthalene	221	ug/K
	n-Propylbenzene	79.5	ug/K
	o-Xylene	169	ug/K
	P & M -Xylene	413	ug/K
	sec-Butylbenzene	96.3	ug/K
	Toluene	383	ug/K
	Trichloroethene	12.9J	ug/K
	Xylenes (total)	581	ug/K
Client Sample ID: HMR16-SO			
ab Sample ID: 1160765002	<u>Parameter</u>	Result	Unite
letals by ICP/MS	Arsenic	4.37	mg/ł
-	Cadmium	1.33	mg/ł
	Chromium	10.9	mg/ł
	Lead	6.66	mg/ł
emivolatile Organics GC/MS	bis(2-Ethylhexyl)phthalate	3.39J	mg/ł
olatile GC/MS	1,1,2-Trichloroethane	42.2	ug/K
	1,2,4-Trimethylbenzene	459	ug/K
	1,3,5-Trimethylbenzene	281	ug/K
	4-Isopropyltoluene	15500	ug/K
	Dichlorodifluoromethane	109	ug/K
	Ethylbenzene	104	ug/K
	Naphthalene	214	ug/K
	n-Propylbenzene	67.3	ug/K
	o-Xylene	155	ug/K
	P & M -Xylene	397	ug/K
	sec-Butylbenzene	77.4	ug/K
	Toluene	370	ug/K
	Trichloroethene	13.9J	ug/K
	Xylenes (total)	552	ug/K

Print Date: 03/04/2016 10:25:15AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: HMR16-EA			
Lab Sample ID: 1160765003	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	5.40	mg/Kg
	Chromium	17.9	mg/Kg
	Lead	3.01	mg/Kg
Volatile GC/MS	4-Isopropyltoluene	116	ug/Kg
	Dichlorodifluoromethane	1240	ug/Kg
	Tetrachloroethene	18.2J	ug/Kg
Client Sample ID: HMR16-WE			
Lab Sample ID: 1160765004	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	3.93	mg/Kg
-	Chromium	20.7	mg/Kg
	Lead	3.27	mg/Kg
Semivolatile Organics GC/MS	bis(2-Ethylhexyl)phthalate	0.135J	mg/Kg
Volatile GC/MS	1,2,4-Trimethylbenzene	155	ug/Kg
	1,3,5-Trimethylbenzene	72.1	ug/Kg
	4-Isopropyltoluene	2780	ug/Kg
	Dichlorodifluoromethane	51.9J	ug/Kg
	Naphthalene	60.4J	ug/Kg
	n-Propylbenzene	29.1J	ug/Kg
	sec-Butylbenzene	33.6J	ug/Kg
	Toluene	16.6J	ug/Kg
	Trichloroethene	8.06J	ug/Kg

Print Date: 03/04/2016 10:25:15AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of HMR16-DP

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	4.02	1.16	0.359	mg/Kg	10		03/02/16 16:33
Cadmium	1.32	0.232	0.0718	mg/Kg	10		03/02/16 16:33
Chromium	15.1	0.463	0.139	mg/Kg	10		03/02/16 16:33
Lead	6.84	0.232	0.0718	mg/Kg	10		03/02/16 16:33

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 03/02/16 16:33 Container ID: 1160765001-A Prep Batch: MXX29542 Prep Method: SW3050B Prep Date/Time: 02/24/16 10:44 Prep Initial Wt./Vol.: 1.009 g Prep Extract Vol: 50 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765

Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Semivolatile Organics GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,2,4-Trichlorobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
1,2-Dichlorobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
1,3-Dichlorobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
1,4-Dichlorobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
1-Chloronaphthalene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
1-Methylnaphthalene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,4,5-Trichlorophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,4,6-Trichlorophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,4-Dichlorophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,4-Dimethylphenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,4-Dinitrophenol	42.9 U	85.8	26.9	mg/Kg	5		02/24/16 22:34
2,4-Dinitrotoluene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,6-Dichlorophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2,6-Dinitrotoluene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Chloronaphthalene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Chlorophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Methyl-4,6-dinitrophenol	28.6 U	57.2	17.7	mg/Kg	5		02/24/16 22:34
2-Methylnaphthalene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Methylphenol (o-Cresol)	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Nitroaniline	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
2-Nitrophenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
3&4-Methylphenol (p&m-Cresol)	14.3 U	28.6	8.87	mg/Kg	5		02/24/16 22:34
3,3-Dichlorobenzidine	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
3-Nitroaniline	7.15 U	14.3	4.29	mg/Kg	5		02/24/16 22:34
4-Bromophenyl-phenylether	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
4-Chloro-3-methylphenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
4-Chloroaniline	7.15 U	14.3	4.29	mg/Kg	5		02/24/16 22:34
4-Chlorophenyl-phenylether	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
4-Nitroaniline	42.9 U	85.8	26.9	mg/Kg	5		02/24/16 22:34
4-Nitrophenol	14.3 U	28.6	8.87	mg/Kg	5		02/24/16 22:34
Acenaphthene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Acenaphthylene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Aniline	28.6 U	57.2	17.7	mg/Kg	5		02/24/16 22:34
Anthracene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Azobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Benzo(a)Anthracene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Benzo[a]pyrene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765

Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzo[b]Fluoranthene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Benzo[g,h,i]perylene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Benzo[k]fluoranthene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Benzoic acid	21.4 U	42.9	13.4	mg/Kg	5		02/24/16 22:34
Benzyl alcohol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Bis(2chloro1methylethyl)Ether	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Bis(2-Chloroethoxy)methane	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Bis(2-Chloroethyl)ether	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
bis(2-Ethylhexyl)phthalate	2.70 J	7.15	2.23	mg/Kg	5		02/24/16 22:34
Butylbenzylphthalate	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Carbazole	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Chrysene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Dibenzo[a,h]anthracene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Dibenzofuran	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Diethylphthalate	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Dimethylphthalate	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Di-n-butylphthalate	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
di-n-Octylphthalate	7.15 U	14.3	4.29	mg/Kg	5		02/24/16 22:34
Fluoranthene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Fluorene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Hexachlorobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Hexachlorobutadiene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Hexachlorocyclopentadiene	10.0 U	20.0	5.72	mg/Kg	5		02/24/16 22:34
Hexachloroethane	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Indeno[1,2,3-c,d] pyrene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Isophorone	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Naphthalene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Nitrobenzene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
N-Nitrosodimethylamine	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
N-Nitroso-di-n-propylamine	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
N-Nitrosodiphenylamine	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Pentachlorophenol	28.6 U	57.2	17.7	mg/Kg	5		02/24/16 22:34
Phenanthrene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Phenol	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Pyrene	3.58 U	7.15	2.23	mg/Kg	5		02/24/16 22:34
Surrogates							
2,4,6-Tribromophenol (surr)	85.5	35-125		%	5		02/24/16 22:34

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
2-Fluorobiphenyl (surr)	99.7	44-115		%	5		02/24/16 22:34
2-Fluorophenol (surr)	80.7	35-115		%	5		02/24/16 22:34
Nitrobenzene-d5 (surr)	85.2	37-122		%	5		02/24/16 22:34
Phenol-d6 (surr)	89.9	33-122		%	5		02/24/16 22:34
Terphenyl-d14 (surr)	128 *	54-127		%	5		02/24/16 22:34

Batch Information

Analytical Batch: XMS9195 Analytical Method: SW8270D Analyst: DSH Analytical Date/Time: 02/24/16 22:34 Container ID: 1160765001-A Prep Batch: XXX34934 Prep Method: SW3550C Prep Date/Time: 02/24/16 08:37 Prep Initial Wt./Vol.: 22.973 g Prep Extract Vol: 5 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Results of HMR16-DP

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Bromomethane	224 U	448	139	ug/Kg	1		02/23/16 17:57
1,1,1,2-Tetrachloroethane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,1,1-Trichloroethane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,1,2,2-Tetrachloroethane	14.0 U	28.0	8.73	ug/Kg	1		02/23/16 17:57
1,1,2-Trichloroethane	11.2 U	22.4	6.94	ug/Kg	1		02/23/16 17:57
1,1-Dichloroethane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,1-Dichloroethene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,1-Dichloropropene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,2,3-Trichlorobenzene	56.0 U	112	33.6	ug/Kg	1		02/23/16 17:57
1,2,3-Trichloropropane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,2,4-Trichlorobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,2,4-Trimethylbenzene	519	112	33.6	ug/Kg	1		02/23/16 17:57
1,2-Dibromo-3-chloropropane	112 U	224	69.4	ug/Kg	1		02/23/16 17:57
1,2-Dibromoethane	11.2 U	22.4	6.94	ug/Kg	1		02/23/16 17:57
1,2-Dichlorobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,2-Dichloroethane	11.2 U	22.4	6.94	ug/Kg	1		02/23/16 17:57
1,2-Dichloropropane	11.2 U	22.4	6.94	ug/Kg	1		02/23/16 17:57
1,3,5-Trimethylbenzene	317	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,3-Dichlorobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
1,3-Dichloropropane	11.2 U	22.4	6.94	ug/Kg	1		02/23/16 17:57
1,4-Dichlorobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
2,2-Dichloropropane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
2-Butanone (MEK)	280 U	560	175	ug/Kg	1		02/23/16 17:57
2-Chlorotoluene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
2-Hexanone	280 U	560	175	ug/Kg	1		02/23/16 17:57
4-Chlorotoluene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
4-Isopropyltoluene	15800	560	175	ug/Kg	10		02/26/16 20:32
4-Methyl-2-pentanone (MIBK)	280 U	560	175	ug/Kg	1		02/23/16 17:57
Benzene	14.0 U	28.0	8.73	ug/Kg	1		02/23/16 17:57
Bromobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
Bromochloromethane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
Bromodichloromethane	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
Bromoform	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
Carbon disulfide	112 U	224	69.4	ug/Kg	1		02/23/16 17:57
Carbon tetrachloride	14.0 U	28.0	8.73	ug/Kg	1		02/23/16 17:57
Chlorobenzene	28.0 U	56.0	17.5	ug/Kg	1		02/23/16 17:57
Chloroethane	224 U	448	139	ug/Kg	1		02/23/16 17:57

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 13 of 79

Results of HMR16-DP

Client Sample ID: **HMR16-DP** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765001 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Results by Volatile GC/MS

Deserveder		1.00/01		1.1 14		Allowable
Parameter Obliger former	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
Chloroform	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Chloromethane	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
cis-1,2-Dichloroethene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
cis-1,3-Dichloropropene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Dibromochloromethane	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Dibromomethane	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Dichlorodifluoromethane	45.9 J	112	33.6	ug/Kg	1	02/23/16 17:57
Ethylbenzene	111	56.0	17.5	ug/Kg	1	02/23/16 17:57
Freon-113	112 U	224	69.4	ug/Kg	1	02/23/16 17:57
Hexachlorobutadiene	56.0 U	112	33.6	ug/Kg	1	02/23/16 17:57
Isopropylbenzene (Cumene)	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Methylene chloride	112 U	224	69.4	ug/Kg	1	02/23/16 17:57
Methyl-t-butyl ether	112 U	224	69.4	ug/Kg	1	02/23/16 17:57
Naphthalene	221	112	33.6	ug/Kg	1	03/01/16 19:03
n-Butylbenzene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
n-Propylbenzene	79.5	56.0	17.5	ug/Kg	1	02/23/16 17:57
o-Xylene	169	56.0	17.5	ug/Kg	1	02/23/16 17:57
P & M -Xylene	413	112	33.6	ug/Kg	1	02/23/16 17:57
sec-Butylbenzene	96.3	56.0	17.5	ug/Kg	1	02/23/16 17:57
Styrene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
tert-Butylbenzene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Tetrachloroethene	14.0 U	28.0	8.73	ug/Kg	1	02/23/16 17:57
Toluene	383	56.0	17.5	ug/Kg	1	02/23/16 17:57
trans-1,2-Dichloroethene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
trans-1,3-Dichloropropene	28.0 U	56.0	17.5	ug/Kg	1	02/23/16 17:57
Trichloroethene	12.9 J	28.0	8.73	ug/Kg	1	02/23/16 17:57
Trichlorofluoromethane	56.0 U	112	33.6	ug/Kg	1	02/23/16 17:57
Vinyl acetate	112 U	224	69.4	ug/Kg	1	02/23/16 17:57
Vinyl chloride	11.2 U	22.4	6.94	ug/Kg	1	02/23/16 17:57
Xylenes (total)	581	168	51.1	ug/Kg	1	02/23/16 17:57
Surrogates						
1,2-Dichloroethane-D4 (surr)	113	71-136		%	1	02/23/16 17:57
4-Bromofluorobenzene (surr)	80.5	55-151		%	1	02/23/16 17:57
Toluene-d8 (surr)	103	85-116		%	1	02/23/16 17:57

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: HMR16-DP Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765001 Lab Project ID: 1160765

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15599 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/23/16 17:57 Container ID: 1160765001-B

Analytical Batch: VMS15605 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/26/16 20:32 Container ID: 1160765001-B

Analytical Batch: VMS15608 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 03/01/16 19:03 Container ID: Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):85.6 Location:

Prep Batch: VXX28534 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 30.685 g Prep Extract Vol: 29.4146 mL

Prep Batch: VXX28542 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 30.685 g Prep Extract Vol: 29.4146 mL

Prep Batch: VXX28550 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 30.685 g Prep Extract Vol: 29.4146 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Member of SGS Group

Page 15 of 79

Results of HMR16-SO

Client Sample ID: **HMR16-SO** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765002 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	4.37	1.09	0.339	mg/Kg	10		03/02/16 16:38
Cadmium	1.33	0.219	0.0678	mg/Kg	10		03/02/16 16:38
Chromium	10.9	0.438	0.131	mg/Kg	10		03/02/16 16:38
Lead	6.66	0.219	0.0678	mg/Kg	10		03/02/16 16:38

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 03/02/16 16:38 Container ID: 1160765002-A Prep Batch: MXX29542 Prep Method: SW3050B Prep Date/Time: 02/24/16 10:44 Prep Initial Wt./Vol.: 1.062 g Prep Extract Vol: 50 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Client Sample ID: **HMR16-SO** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765002 Lab Project ID: 1160765

Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Semivolatile Organics GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,2,4-Trichlorobenzene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
1,2-Dichlorobenzene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
1,3-Dichlorobenzene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
1,4-Dichlorobenzene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
1-Chloronaphthalene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
1-Methylnaphthalene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,4,5-Trichlorophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,4,6-Trichlorophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,4-Dichlorophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,4-Dimethylphenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,4-Dinitrophenol	43.5 U	87.0	27.3	mg/Kg	5		02/24/16 22:51
2,4-Dinitrotoluene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,6-Dichlorophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2,6-Dinitrotoluene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Chloronaphthalene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Chlorophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Methyl-4,6-dinitrophenol	29.0 U	58.0	18.0	mg/Kg	5		02/24/16 22:51
2-Methylnaphthalene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Methylphenol (o-Cresol)	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Nitroaniline	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
2-Nitrophenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
3&4-Methylphenol (p&m-Cresol)	14.5 U	29.0	8.99	mg/Kg	5		02/24/16 22:51
3,3-Dichlorobenzidine	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
3-Nitroaniline	7.25 U	14.5	4.35	mg/Kg	5		02/24/16 22:51
4-Bromophenyl-phenylether	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
4-Chloro-3-methylphenol	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
4-Chloroaniline	7.25 U	14.5	4.35	mg/Kg	5		02/24/16 22:51
4-Chlorophenyl-phenylether	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
4-Nitroaniline	43.5 U	87.0	27.3	mg/Kg	5		02/24/16 22:51
4-Nitrophenol	14.5 U	29.0	8.99	mg/Kg	5		02/24/16 22:51
Acenaphthene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
Acenaphthylene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
Aniline	29.0 U	58.0	18.0	mg/Kg	5		02/24/16 22:51
Anthracene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
Azobenzene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
Benzo(a)Anthracene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51
Benzo[a]pyrene	3.63 U	7.25	2.26	mg/Kg	5		02/24/16 22:51

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: HMR16-SO Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765002 Lab Project ID: 1160765

Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Semivolatile Organics GC/MS

Benzo[b]Fluoranthene Benzo[g,h,i]perylene	esult Qual 3.63 U 3.63 U 3.63 U 21.8 U	LOQ/CL 7.25 7.25 7.25	<u>DL</u> 2.26 2.26	<u>Units</u> mg/Kg	<u>Allowable</u> <u>DF Limits</u> 5	Date Analyzed 02/24/16 22:51
Benzo[g,h,i]perylene	3.63 U 3.63 U	7.25			5	02/24/16 22:51
	3.63 U		2.26			
		7 25		mg/Kg	5	02/24/16 22:51
Benzo[k]fluoranthene	21.8 U	1.25	2.26	mg/Kg	5	02/24/16 22:51
Benzoic acid		43.5	13.6	mg/Kg	5	02/24/16 22:51
Benzyl alcohol	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Bis(2chloro1methylethyl)Ether	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Bis(2-Chloroethoxy)methane	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Bis(2-Chloroethyl)ether	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
bis(2-Ethylhexyl)phthalate	3.39 J	7.25	2.26	mg/Kg	5	02/24/16 22:51
Butylbenzylphthalate	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Carbazole	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Chrysene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Dibenzo[a,h]anthracene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Dibenzofuran	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Diethylphthalate	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Dimethylphthalate	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Di-n-butylphthalate	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
di-n-Octylphthalate	7.25 U	14.5	4.35	mg/Kg	5	02/24/16 22:51
Fluoranthene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Fluorene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Hexachlorobenzene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Hexachlorobutadiene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Hexachlorocyclopentadiene	10.2 U	20.3	5.80	mg/Kg	5	02/24/16 22:51
Hexachloroethane	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Indeno[1,2,3-c,d] pyrene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Isophorone	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Naphthalene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Nitrobenzene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
N-Nitrosodimethylamine	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
N-Nitroso-di-n-propylamine	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
N-Nitrosodiphenylamine	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Pentachlorophenol	29.0 U	58.0	18.0	mg/Kg	5	02/24/16 22:51
Phenanthrene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Phenol	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Pyrene	3.63 U	7.25	2.26	mg/Kg	5	02/24/16 22:51
Surrogates						
2,4,6-Tribromophenol (surr)	80	35-125		%	5	02/24/16 22:51

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 18 of 79

Client Sample ID: **HMR16-SO** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765002 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
2-Fluorobiphenyl (surr)	98.2	44-115		%	5		02/24/16 22:51
2-Fluorophenol (surr)	74.3	35-115		%	5		02/24/16 22:51
Nitrobenzene-d5 (surr)	83.9	37-122		%	5		02/24/16 22:51
Phenol-d6 (surr)	89.2	33-122		%	5		02/24/16 22:51
Terphenyl-d14 (surr)	123	54-127		%	5		02/24/16 22:51

Batch Information

Analytical Batch: XMS9195 Analytical Method: SW8270D Analyst: DSH Analytical Date/Time: 02/24/16 22:51 Container ID: 1160765002-A Prep Batch: XXX34934 Prep Method: SW3550C Prep Date/Time: 02/24/16 08:37 Prep Initial Wt./Vol.: 22.547 g Prep Extract Vol: 5 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Results of HMR16-SO

Client Sample ID: **HMR16-SO** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765002 Lab Project ID: 1160765 Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,1,1-Trichloroethane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,1,2,2-Tetrachloroethane	13.4 U	26.7	8.33	ug/Kg	1		02/23/16 18:13
1,1,2-Trichloroethane	42.2	21.4	6.62	ug/Kg	1		02/23/16 18:13
1,1-Dichloroethane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,1-Dichloroethene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,1-Dichloropropene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,2,3-Trichlorobenzene	53.5 U	107	32.0	ug/Kg	1		02/23/16 18:13
1,2,3-Trichloropropane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,2,4-Trichlorobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,2,4-Trimethylbenzene	459	107	32.0	ug/Kg	1		02/23/16 18:13
1,2-Dibromo-3-chloropropane	107 U	214	66.2	ug/Kg	1		02/23/16 18:13
1,2-Dibromoethane	10.7 U	21.4	6.62	ug/Kg	1		02/23/16 18:13
1,2-Dichlorobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,2-Dichloroethane	10.7 U	21.4	6.62	ug/Kg	1		02/23/16 18:13
1,2-Dichloropropane	10.7 U	21.4	6.62	ug/Kg	1		02/23/16 18:13
1,3,5-Trimethylbenzene	281	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,3-Dichlorobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
1,3-Dichloropropane	10.7 U	21.4	6.62	ug/Kg	1		02/23/16 18:13
1,4-Dichlorobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
2,2-Dichloropropane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
2-Butanone (MEK)	267 U	534	167	ug/Kg	1		02/23/16 18:13
2-Chlorotoluene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
2-Hexanone	267 U	534	167	ug/Kg	1		02/23/16 18:13
4-Chlorotoluene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
4-Isopropyltoluene	15500	534	167	ug/Kg	10		02/26/16 20:48
4-Methyl-2-pentanone (MIBK)	267 U	534	167	ug/Kg	1		02/23/16 18:13
Benzene	13.4 U	26.7	8.33	ug/Kg	1		02/23/16 18:13
Bromobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
Bromochloromethane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
Bromodichloromethane	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
Bromoform	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
Bromomethane	214 U	427	132	ug/Kg	1		02/23/16 18:13
Carbon disulfide	107 U	214	66.2	ug/Kg	1		02/23/16 18:13
Carbon tetrachloride	13.4 U	26.7	8.33	ug/Kg	1		02/23/16 18:13
Chlorobenzene	26.7 U	53.4	16.7	ug/Kg	1		02/23/16 18:13
Chloroethane	214 U	427	132	ug/Kg	1		02/23/16 18:13

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 20 of 79

Results of HMR16-SO

Client Sample ID: **HMR16-SO** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765002 Lab Project ID: 1160765

Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyze	<u>ed</u>
Chloroform	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Chloromethane	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
cis-1,2-Dichloroethene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	:13
cis-1,3-Dichloropropene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	:13
Dibromochloromethane	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Dibromomethane	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	:13
Dichlorodifluoromethane	109	107	32.0	ug/Kg	1	02/23/16 18:	:13
Ethylbenzene	104	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Freon-113	107 U	214	66.2	ug/Kg	1	02/23/16 18:	:13
Hexachlorobutadiene	53.5 U	107	32.0	ug/Kg	1	02/23/16 18:	13
Isopropylbenzene (Cumene)	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Methylene chloride	107 U	214	66.2	ug/Kg	1	02/23/16 18:	13
Methyl-t-butyl ether	107 U	214	66.2	ug/Kg	1	02/23/16 18:	13
Naphthalene	214	107	32.0	ug/Kg	1	03/01/16 19:	19
n-Butylbenzene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
n-Propylbenzene	67.3	53.4	16.7	ug/Kg	1	02/23/16 18:	:13
o-Xylene	155	53.4	16.7	ug/Kg	1	02/23/16 18:	13
P & M -Xylene	397	107	32.0	ug/Kg	1	02/23/16 18:	:13
sec-Butylbenzene	77.4	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Styrene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
tert-Butylbenzene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
Tetrachloroethene	13.4 U	26.7	8.33	ug/Kg	1	02/23/16 18:	13
Toluene	370	53.4	16.7	ug/Kg	1	02/23/16 18:	13
trans-1,2-Dichloroethene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	13
trans-1,3-Dichloropropene	26.7 U	53.4	16.7	ug/Kg	1	02/23/16 18:	:13
Trichloroethene	13.9 J	26.7	8.33	ug/Kg	1	02/23/16 18:	13
Trichlorofluoromethane	53.5 U	107	32.0	ug/Kg	1	02/23/16 18:	:13
Vinyl acetate	107 U	214	66.2	ug/Kg	1	02/23/16 18:	:13
Vinyl chloride	10.7 U	21.4	6.62	ug/Kg	1	02/23/16 18:	:13
Xylenes (total)	552	160	48.7	ug/Kg	1	02/23/16 18:	:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	117	71-136		%	1	02/23/16 18:	13
4-Bromofluorobenzene (surr)	75.7	55-151		%	1	02/23/16 18:	13
Toluene-d8 (surr)	99.4	85-116		%	1	02/23/16 18:	:13

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: HMR16-SO Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765002 Lab Project ID: 1160765

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15599 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/23/16 18:13 Container ID: 1160765002-B

Analytical Batch: VMS15605 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/26/16 20:48 Container ID: 1160765002-B

Analytical Batch: VMS15608 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 03/01/16 19:19 Container ID: Collection Date: 02/18/16 08:55 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):86.0 Location:

Prep Batch: VXX28534 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 32.074 g Prep Extract Vol: 29.4764 mL

Prep Batch: VXX28542 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 32.074 g Prep Extract Vol: 29.4764 mL

Prep Batch: VXX28550 Prep Method: SW5035A Prep Date/Time: 02/18/16 08:55 Prep Initial Wt./Vol.: 32.074 g Prep Extract Vol: 29.4764 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Page 22 of 79

Results of HMR16-EA

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/NiniIchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765 Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	5.40	1.06	0.328	mg/Kg	10		03/02/16 16:51
Cadmium	0.106 U	0.212	0.0656	mg/Kg	10		03/02/16 16:51
Chromium	17.9	0.423	0.127	mg/Kg	10		03/02/16 16:51
Lead	3.01	0.212	0.0656	mg/Kg	10		03/02/16 16:51

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 03/02/16 16:51 Container ID: 1160765003-A Prep Batch: MXX29542 Prep Method: SW3050B Prep Date/Time: 02/24/16 10:44 Prep Initial Wt./Vol.: 1.065 g Prep Extract Vol: 50 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765

Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Semivolatile Organics GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,2,4-Trichlorobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
1,2-Dichlorobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
1,3-Dichlorobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
1,4-Dichlorobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
1-Chloronaphthalene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
1-Methylnaphthalene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,4,5-Trichlorophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,4,6-Trichlorophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,4-Dichlorophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,4-Dimethylphenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,4-Dinitrophenol	1.66 U	3.31	1.04	mg/Kg	1		02/24/16 20:52
2,4-Dinitrotoluene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,6-Dichlorophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2,6-Dinitrotoluene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Chloronaphthalene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Chlorophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Methyl-4,6-dinitrophenol	1.11 U	2.21	0.685	mg/Kg	1		02/24/16 20:52
2-Methylnaphthalene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Methylphenol (o-Cresol)	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Nitroaniline	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
2-Nitrophenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
3&4-Methylphenol (p&m-Cresol)	0.550 U	1.10	0.342	mg/Kg	1		02/24/16 20:52
3,3-Dichlorobenzidine	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
3-Nitroaniline	0.276 U	0.552	0.166	mg/Kg	1		02/24/16 20:52
4-Bromophenyl-phenylether	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
4-Chloro-3-methylphenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
4-Chloroaniline	0.276 U	0.552	0.166	mg/Kg	1		02/24/16 20:52
4-Chlorophenyl-phenylether	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
4-Nitroaniline	1.66 U	3.31	1.04	mg/Kg	1		02/24/16 20:52
4-Nitrophenol	0.550 U	1.10	0.342	mg/Kg	1		02/24/16 20:52
Acenaphthene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Acenaphthylene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Aniline	1.11 U	2.21	0.685	mg/Kg	1		02/24/16 20:52
Anthracene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Azobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Benzo(a)Anthracene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Benzo[a]pyrene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 24 of 79

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765

Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Benzo[b]Fluoranthene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Benzo[g,h,i]perylene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Benzo[k]fluoranthene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Benzoic acid	0.830 U	1.66	0.519	mg/Kg	1		02/24/16 20:52
Benzyl alcohol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Bis(2chloro1methylethyl)Ether	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Bis(2-Chloroethoxy)methane	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Bis(2-Chloroethyl)ether	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
bis(2-Ethylhexyl)phthalate	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Butylbenzylphthalate	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Carbazole	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Chrysene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Dibenzo[a,h]anthracene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Dibenzofuran	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Diethylphthalate	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Dimethylphthalate	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Di-n-butylphthalate	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
di-n-Octylphthalate	0.276 U	0.552	0.166	mg/Kg	1		02/24/16 20:52
Fluoranthene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Fluorene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Hexachlorobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Hexachlorobutadiene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Hexachlorocyclopentadiene	0.387 U	0.773	0.221	mg/Kg	1		02/24/16 20:52
Hexachloroethane	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Indeno[1,2,3-c,d] pyrene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Isophorone	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Naphthalene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Nitrobenzene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
N-Nitrosodimethylamine	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
N-Nitroso-di-n-propylamine	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
N-Nitrosodiphenylamine	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Pentachlorophenol	1.11 U	2.21	0.685	mg/Kg	1		02/24/16 20:52
Phenanthrene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Phenol	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Pyrene	0.138 U	0.276	0.0862	mg/Kg	1		02/24/16 20:52
Surrogates							
2,4,6-Tribromophenol (surr)	106	35-125		%	1		02/24/16 20:52

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765 Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
2-Fluorobiphenyl (surr)	84.4	44-115		%	1		02/24/16 20:52
2-Fluorophenol (surr)	63.1	35-115		%	1		02/24/16 20:52
Nitrobenzene-d5 (surr)	71.1	37-122		%	1		02/24/16 20:52
Phenol-d6 (surr)	69.2	33-122		%	1		02/24/16 20:52
Terphenyl-d14 (surr)	114	54-127		%	1		02/24/16 20:52

Batch Information

Analytical Batch: XMS9195 Analytical Method: SW8270D Analyst: DSH Analytical Date/Time: 02/24/16 20:52 Container ID: 1160765003-A Prep Batch: XXX34934 Prep Method: SW3550C Prep Date/Time: 02/24/16 08:37 Prep Initial Wt./Vol.: 22.945 g Prep Extract Vol: 1 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Results of HMR16-EA

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765 Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,1,1-Trichloroethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,1,2,2-Tetrachloroethane	13.8 U	27.6	8.62	ug/Kg	1		02/26/16 22:23
1,1,2-Trichloroethane	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
1,1-Dichloroethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,1-Dichloroethene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,1-Dichloropropene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,2,3-Trichlorobenzene	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
1,2,3-Trichloropropane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,2,4-Trichlorobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,2,4-Trimethylbenzene	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
1,2-Dibromo-3-chloropropane	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
1,2-Dibromoethane	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
1,2-Dichlorobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,2-Dichloroethane	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
1,2-Dichloropropane	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
1,3,5-Trimethylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,3-Dichlorobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
1,3-Dichloropropane	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
1,4-Dichlorobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
2,2-Dichloropropane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
2-Butanone (MEK)	277 U	553	172	ug/Kg	1		02/26/16 22:23
2-Chlorotoluene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
2-Hexanone	277 U	553	172	ug/Kg	1		02/26/16 22:23
4-Chlorotoluene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
4-Isopropyltoluene	116	55.3	17.2	ug/Kg	1		02/26/16 22:23
4-Methyl-2-pentanone (MIBK)	277 U	553	172	ug/Kg	1		02/26/16 22:23
Benzene	13.8 U	27.6	8.62	ug/Kg	1		02/26/16 22:23
Bromobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Bromochloromethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Bromodichloromethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Bromoform	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Bromomethane	221 U	442	137	ug/Kg	1		02/26/16 22:23
Carbon disulfide	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
Carbon tetrachloride	13.8 U	27.6	8.62	ug/Kg	1		02/26/16 22:23
Chlorobenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Chloroethane	221 U	442	137	ug/Kg	1		02/26/16 22:23

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 27 of 79

Results of HMR16-EA

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765 Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Volatile GC/MS

						Allewskie	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Chloromethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
cis-1,2-Dichloroethene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
cis-1,3-Dichloropropene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Dibromochloromethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Dibromomethane	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Dichlorodifluoromethane	1240	111	33.2	ug/Kg	1		02/26/16 22:23
Ethylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Freon-113	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
Hexachlorobutadiene	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
Isopropylbenzene (Cumene)	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Methylene chloride	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
Methyl-t-butyl ether	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
Naphthalene	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
n-Butylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
n-Propylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
o-Xylene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
P & M -Xylene	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
sec-Butylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Styrene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
tert-Butylbenzene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Tetrachloroethene	18.2 J	27.6	8.62	ug/Kg	1		02/26/16 22:23
Toluene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
trans-1,2-Dichloroethene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
trans-1,3-Dichloropropene	27.6 U	55.3	17.2	ug/Kg	1		02/26/16 22:23
Trichloroethene	13.8 U	27.6	8.62	ug/Kg	1		02/26/16 22:23
Trichlorofluoromethane	55.5 U	111	33.2	ug/Kg	1		02/26/16 22:23
Vinyl acetate	111 U	221	68.6	ug/Kg	1		02/26/16 22:23
Vinyl chloride	11.1 U	22.1	6.86	ug/Kg	1		02/26/16 22:23
Xylenes (total)	83.0 U	166	50.4	ug/Kg	1		02/26/16 22:23
Surrogates							
1,2-Dichloroethane-D4 (surr)	126	71-136		%	1		02/26/16 22:23
4-Bromofluorobenzene (surr)	95.6	55-151		%	1		02/26/16 22:23
Toluene-d8 (surr)	110	85-116		%	1		02/26/16 22:23

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **HMR16-EA** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765003 Lab Project ID: 1160765

Collection Date: 02/18/16 10:12 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):88.8 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15605 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/26/16 22:23 Container ID: 1160765003-B Prep Batch: VXX28542 Prep Method: SW5035A Prep Date/Time: 02/18/16 10:12 Prep Initial Wt./Vol.: 28.755 g Prep Extract Vol: 28.2273 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Member of SGS Group

Page 29 of 79

Client Sample ID: HMR16-WE Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765004 Lab Project ID: 1160765

Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	3.93	1.01	0.312	mg/Kg	10		03/02/16 16:42
Cadmium	0.101 U	0.201	0.0624	mg/Kg	10		03/02/16 16:42
Chromium	20.7	0.402	0.121	mg/Kg	10		03/02/16 16:42
Lead	3.27	0.201	0.0624	mg/Kg	10		03/02/16 16:42

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 03/02/16 16:42 Container ID: 1160765004-A Prep Batch: MXX29542 Prep Method: SW3050B Prep Date/Time: 02/24/16 10:44 Prep Initial Wt./Vol.: 1.077 g Prep Extract Vol: 50 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Client Sample ID: **HMR16-WE** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765004 Lab Project ID: 1160765

Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Semivolatile Organics GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,2,4-Trichlorobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
1,2-Dichlorobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
1,3-Dichlorobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
1,4-Dichlorobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
1-Chloronaphthalene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
1-Methylnaphthalene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,4,5-Trichlorophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,4,6-Trichlorophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,4-Dichlorophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,4-Dimethylphenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,4-Dinitrophenol	1.60 U	3.19	0.999	mg/Kg	1		02/24/16 21:09
2,4-Dinitrotoluene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,6-Dichlorophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2,6-Dinitrotoluene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Chloronaphthalene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Chlorophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Methyl-4,6-dinitrophenol	1.06 U	2.12	0.659	mg/Kg	1		02/24/16 21:09
2-Methylnaphthalene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Methylphenol (o-Cresol)	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Nitroaniline	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
2-Nitrophenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
3&4-Methylphenol (p&m-Cresol)	0.530 U	1.06	0.329	mg/Kg	1		02/24/16 21:09
3,3-Dichlorobenzidine	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
3-Nitroaniline	0.266 U	0.531	0.159	mg/Kg	1		02/24/16 21:09
4-Bromophenyl-phenylether	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
4-Chloro-3-methylphenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
4-Chloroaniline	0.266 U	0.531	0.159	mg/Kg	1		02/24/16 21:09
4-Chlorophenyl-phenylether	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
4-Nitroaniline	1.60 U	3.19	0.999	mg/Kg	1		02/24/16 21:09
4-Nitrophenol	0.530 U	1.06	0.329	mg/Kg	1		02/24/16 21:09
Acenaphthene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Acenaphthylene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Aniline	1.06 U	2.12	0.659	mg/Kg	1		02/24/16 21:09
Anthracene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Azobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Benzo(a)Anthracene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Benzo[a]pyrene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **HMR16-WE** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765004 Lab Project ID: 1160765

Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Benzo[b]Fluoranthene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Benzo[g,h,i]perylene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Benzo[k]fluoranthene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Benzoic acid	0.795 U	1.59	0.499	mg/Kg	1		02/24/16 21:09
Benzyl alcohol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Bis(2chloro1methylethyl)Ether	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Bis(2-Chloroethoxy)methane	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Bis(2-Chloroethyl)ether	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
bis(2-Ethylhexyl)phthalate	0.135 J	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Butylbenzylphthalate	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Carbazole	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Chrysene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Dibenzo[a,h]anthracene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Dibenzofuran	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Diethylphthalate	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Dimethylphthalate	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Di-n-butylphthalate	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
di-n-Octylphthalate	0.266 U	0.531	0.159	mg/Kg	1		02/24/16 21:09
Fluoranthene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Fluorene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Hexachlorobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Hexachlorobutadiene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Hexachlorocyclopentadiene	0.372 U	0.744	0.212	mg/Kg	1		02/24/16 21:09
Hexachloroethane	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Indeno[1,2,3-c,d] pyrene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Isophorone	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Naphthalene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Nitrobenzene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
N-Nitrosodimethylamine	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
N-Nitroso-di-n-propylamine	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
N-Nitrosodiphenylamine	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Pentachlorophenol	1.06 U	2.12	0.659	mg/Kg	1		02/24/16 21:09
Phenanthrene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Phenol	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Pyrene	0.133 U	0.266	0.0829	mg/Kg	1		02/24/16 21:09
Surrogates							
2,4,6-Tribromophenol (surr)	107	35-125		%	1		02/24/16 21:09

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of HMR16-WE

Client Sample ID: **HMR16-WE** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765004 Lab Project ID: 1160765 Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Semivolatile Organics GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
2-Fluorobiphenyl (surr)	86	44-115		%	1		02/24/16 21:09
2-Fluorophenol (surr)	65.6	35-115		%	1		02/24/16 21:09
Nitrobenzene-d5 (surr)	76.5	37-122		%	1		02/24/16 21:09
Phenol-d6 (surr)	73.1	33-122		%	1		02/24/16 21:09
Terphenyl-d14 (surr)	108	54-127		%	1		02/24/16 21:09

Batch Information

Analytical Batch: XMS9195 Analytical Method: SW8270D Analyst: DSH Analytical Date/Time: 02/24/16 21:09 Container ID: 1160765004-A Prep Batch: XXX34934 Prep Method: SW3550C Prep Date/Time: 02/24/16 08:37 Prep Initial Wt./Vol.: 22.952 g Prep Extract Vol: 1 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Member of SGS Group

Results of HMR16-WE

Client Sample ID: HMR16-WE Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765004 Lab Project ID: 1160765 Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,1,1-Trichloroethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,1,2,2-Tetrachloroethane	11.2 U	22.4	6.98	ug/Kg	1		02/26/16 22:39
1,1,2-Trichloroethane	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
1,1-Dichloroethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,1-Dichloroethene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,1-Dichloropropene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,2,3-Trichlorobenzene	44.8 U	89.5	26.9	ug/Kg	1		02/26/16 22:39
1,2,3-Trichloropropane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,2,4-Trichlorobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,2,4-Trimethylbenzene	155	89.5	26.9	ug/Kg	1		02/26/16 22:39
1,2-Dibromo-3-chloropropane	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
1,2-Dibromoethane	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
1,2-Dichlorobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,2-Dichloroethane	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
1,2-Dichloropropane	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
1,3,5-Trimethylbenzene	72.1	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,3-Dichlorobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
1,3-Dichloropropane	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
1,4-Dichlorobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
2,2-Dichloropropane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
2-Butanone (MEK)	224 U	448	140	ug/Kg	1		02/26/16 22:39
2-Chlorotoluene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
2-Hexanone	224 U	448	140	ug/Kg	1		02/26/16 22:39
4-Chlorotoluene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
4-Isopropyltoluene	2780	44.8	14.0	ug/Kg	1		02/26/16 22:39
4-Methyl-2-pentanone (MIBK)	224 U	448	140	ug/Kg	1		02/26/16 22:39
Benzene	11.2 U	22.4	6.98	ug/Kg	1		02/26/16 22:39
Bromobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Bromochloromethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Bromodichloromethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Bromoform	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Bromomethane	179 U	358	111	ug/Kg	1		02/26/16 22:39
Carbon disulfide	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
Carbon tetrachloride	11.2 U	22.4	6.98	ug/Kg	1		02/26/16 22:39
Chlorobenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Chloroethane	179 U	358	111	ug/Kg	1		02/26/16 22:39

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 34 of 79

Results of HMR16-WE

Client Sample ID: **HMR16-WE** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765004 Lab Project ID: 1160765

Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Chloromethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
cis-1,2-Dichloroethene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
cis-1,3-Dichloropropene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Dibromochloromethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Dibromomethane	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Dichlorodifluoromethane	51.9 J	89.5	26.9	ug/Kg	1		02/26/16 22:39
Ethylbenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Freon-113	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
Hexachlorobutadiene	44.8 U	89.5	26.9	ug/Kg	1		02/26/16 22:39
Isopropylbenzene (Cumene)	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Methylene chloride	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
Methyl-t-butyl ether	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
Naphthalene	60.4 J	89.5	26.9	ug/Kg	1		03/01/16 18:47
n-Butylbenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
n-Propylbenzene	29.1 J	44.8	14.0	ug/Kg	1		02/26/16 22:39
o-Xylene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
P & M -Xylene	44.8 U	89.5	26.9	ug/Kg	1		02/26/16 22:39
sec-Butylbenzene	33.6 J	44.8	14.0	ug/Kg	1		02/26/16 22:39
Styrene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
tert-Butylbenzene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Tetrachloroethene	11.2 U	22.4	6.98	ug/Kg	1		02/26/16 22:39
Toluene	16.6 J	44.8	14.0	ug/Kg	1		02/26/16 22:39
trans-1,2-Dichloroethene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
trans-1,3-Dichloropropene	22.4 U	44.8	14.0	ug/Kg	1		02/26/16 22:39
Trichloroethene	8.06 J	22.4	6.98	ug/Kg	1		02/26/16 22:39
Trichlorofluoromethane	44.8 U	89.5	26.9	ug/Kg	1		02/26/16 22:39
Vinyl acetate	89.5 U	179	55.5	ug/Kg	1		02/26/16 22:39
Vinyl chloride	8.95 U	17.9	5.55	ug/Kg	1		02/26/16 22:39
Xylenes (total)	67.0 U	134	40.8	ug/Kg	1		02/26/16 22:39
Surrogates							
1,2-Dichloroethane-D4 (surr)	124	71-136		%	1		02/26/16 22:39
4-Bromofluorobenzene (surr)	87.8	55-151		%	1		02/26/16 22:39
Toluene-d8 (surr)	108	85-116		%	1		02/26/16 22:39

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of HMR16-WE

Client Sample ID: HMR16-WE Client Project ID: Homer/Ninilchik Lab Sample ID: 1160765004 Lab Project ID: 1160765

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15605 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/26/16 22:39 Container ID: 1160765004-B

Analytical Batch: VMS15608 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 03/01/16 18:47 Container ID: Collection Date: 02/18/16 10:42 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%):92.3 Location:

Prep Batch: VXX28542 Prep Method: SW5035A Prep Date/Time: 02/18/16 10:42 Prep Initial Wt./Vol.: 33.371 g Prep Extract Vol: 27.5765 mL

Prep Batch: VXX28550 Prep Method: SW5035A Prep Date/Time: 02/18/16 10:42 Prep Initial Wt./Vol.: 33.371 g Prep Extract Vol: 27.5765 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Member of SGS Group Page 36 of 79

Results of VW8-73-29

Client Sample ID: **VW8-73-29** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765009 Lab Project ID: 1160765 Collection Date: 02/03/16 08:00 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,1,1-Trichloroethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,1,2,2-Tetrachloroethane	6.30 U	12.6	3.93	ug/Kg	1		02/23/16 19:01
1,1,2-Trichloroethane	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
1,1-Dichloroethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,1-Dichloroethene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,1-Dichloropropene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,2,3-Trichlorobenzene	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
1,2,3-Trichloropropane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,2,4-Trichlorobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,2,4-Trimethylbenzene	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
1,2-Dibromo-3-chloropropane	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
1,2-Dibromoethane	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
1,2-Dichlorobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,2-Dichloroethane	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
1,2-Dichloropropane	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
1,3,5-Trimethylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,3-Dichlorobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
1,3-Dichloropropane	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
1,4-Dichlorobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
2,2-Dichloropropane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
2-Butanone (MEK)	126 U	252	78.7	ug/Kg	1		02/23/16 19:01
2-Chlorotoluene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
2-Hexanone	126 U	252	78.7	ug/Kg	1		02/23/16 19:01
4-Chlorotoluene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
4-Isopropyltoluene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
4-Methyl-2-pentanone (MIBK)	126 U	252	78.7	ug/Kg	1		02/23/16 19:01
Benzene	6.30 U	12.6	3.93	ug/Kg	1		02/23/16 19:01
Bromobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Bromochloromethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Bromodichloromethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Bromoform	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Bromomethane	101 U	202	62.5	ug/Kg	1		02/23/16 19:01
Carbon disulfide	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
Carbon tetrachloride	6.30 U	12.6	3.93	ug/Kg	1		02/23/16 19:01
Chlorobenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Chloroethane	101 U	202	62.5	ug/Kg	1		02/23/16 19:01

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 37 of 79

Results of VW8-73-29

Client Sample ID: **VW8-73-29** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765009 Lab Project ID: 1160765 Collection Date: 02/03/16 08:00 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Chloromethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
cis-1,2-Dichloroethene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
cis-1,3-Dichloropropene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Dibromochloromethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Dibromomethane	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Dichlorodifluoromethane	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
Ethylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Freon-113	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
Hexachlorobutadiene	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
Isopropylbenzene (Cumene)	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Methylene chloride	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
Methyl-t-butyl ether	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
Naphthalene	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
n-Butylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
n-Propylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
o-Xylene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
P & M -Xylene	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
sec-Butylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Styrene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
tert-Butylbenzene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Tetrachloroethene	6.30 U	12.6	3.93	ug/Kg	1		02/23/16 19:01
Toluene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
trans-1,2-Dichloroethene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
trans-1,3-Dichloropropene	12.6 U	25.2	7.87	ug/Kg	1		02/23/16 19:01
Trichloroethene	6.30 U	12.6	3.93	ug/Kg	1		02/23/16 19:01
Trichlorofluoromethane	25.2 U	50.4	15.1	ug/Kg	1		02/23/16 19:01
Vinyl acetate	50.5 U	101	31.3	ug/Kg	1		02/23/16 19:01
Vinyl chloride	5.05 U	10.1	3.13	ug/Kg	1		02/23/16 19:01
Xylenes (total)	37.9 U	75.7	23.0	ug/Kg	1		02/23/16 19:01
Surrogates							
1,2-Dichloroethane-D4 (surr)	113	71-136		%	1		02/23/16 19:01
4-Bromofluorobenzene (surr)	93.9	55-151		%	1		02/23/16 19:01
Toluene-d8 (surr)	107	85-116		%	1		02/23/16 19:01

Print Date: 03/04/2016 10:25:16AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of VW8-73-29

Client Sample ID: **VW8-73-29** Client Project ID: **Homer/Ninilchik** Lab Sample ID: 1160765009 Lab Project ID: 1160765

Collection Date: 02/03/16 08:00 Received Date: 02/19/16 10:30 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15599 Analytical Method: SW8260B Analyst: KAS Analytical Date/Time: 02/23/16 19:01 Container ID: 1160765009-A Prep Batch: VXX28534 Prep Method: SW5035A Prep Date/Time: 02/03/16 08:00 Prep Initial Wt./Vol.: 49.566 g Prep Extract Vol: 25 mL

Print Date: 03/04/2016 10:25:16AM

J flagging is activated

Member of SGS Group

Page 39 of 79

Blank ID: MB for HBN 1729374 [MXX/29542] Blank Lab ID: 1313791		Matri	k: Soil/Solid (dry	v weight)				
QC for Samples: 1160765001, 1160765	002, 1160765003, 1160765004							
Results by SW6020	A –							
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>				
Arsenic	0.500U	1.00	0.310	mg/Kg				
Cadmium	0.100U	0.200	0.0620	mg/Kg				
Chromium	0.200U	0.400	0.120	mg/Kg				
_ead	0.100U	0.200	0.0620	mg/Kg				
atch Information]							
Analytical Batch: N	1MS9262	Prep Ba	tch: MXX29542					
Analytical Method:			ethod: SW3050B					
Instrument: Perkin Elmer NexIon P5		Prep Date/Time: 2/24/2016 10:44:30AM						
	Analyst: EAB Analytical Date/Time: 3/2/2016 3:28:51PM		Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL					

Print Date: 03/04/2016 10:25:19AM

Blank Spike ID: LCS for HBN 1160765 [MXX29542] Blank Spike Lab ID: 1313792 Date Analyzed: 03/02/2016 15:33

Matrix: Soil/Solid (dry weight)

QC for Samples: 116076500

1160765001, 1160765002, 1160765003, 1160765004

Results by SW6020A

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: EAB Prep Batch: MXX29542 Prep Method: SW3050B Prep Date/Time: 02/24/2016 10:44 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/04/2016 10:25:21AM

Original Sample ID: 1313793 MS Sample ID: 1313794 MS MSD Sample ID: 1313795 MSD Analysis Date: 03/02/2016 16:51 Analysis Date: 03/02/2016 16:56 Analysis Date: 03/02/2016 17:00 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

Results by SW6020A Matrix Spike (mg/Kg) Spike Duplicate (mg/Kg) Parameter Sample Spike Result Rec (%) <u>Spike</u> Result <u>Rec (%)</u> CL RPD (%) RPD CL 4.80 Arsenic 47.7 50 95 49.3 48.4 89 82-118 3.23 (< 20) Cadmium 0.0940U 4.77 4.53 95 4.93 4.23 86 84-116 6.68 (< 20) Chromium 15.9 41.4 134 * 19.7 36.0 102 13.80 19.1 83-119 (< 20) Lead 2.67 47.7 49.1 97 49.3 46.7 89 84-118 5.02 (< 20)

Batch Information

Analytical Batch: MMS9262 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: EAB Analytical Date/Time: 3/2/2016 4:56:15PM Prep Batch: MXX29542 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 2/24/2016 10:44:30AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Print Date: 03/04/2016 10:25:22AM

Bench Spike Summary Original Sample ID: 13 ⁷ MS Sample ID: 131379 MSD Sample ID:	3793				Analysis Analysis	Date: 03 Date:	8/02/2016 8/02/2016 (Wet Weig	17:09		
QC for Samples: 1160 [°] Results by SW6020A	765001, 11607650		5003, 116		Snike	Duplicate	(ma/ka)			
<u>Parameter</u> Chromium	<u>Sample</u> 15.9	<u>Spike</u> 117	Result 137	<u>Rec (%)</u> 103	<u>Spike</u>	Result	(ing/kg) <u>Rec (%)</u>	<u>CL</u> 80-120	<u>RPD (%)</u>	<u>RPD C</u>
Batch Information Analytical Batch: MMS Analytical Method: SW Instrument: Perkin Elm Analyst: EAB Analytical Date/Time: 3	6020A er Nexlon P5	ΡΜ		Prep Prep Prep	Method: Date/Tin Initial Wi		ds Digest fo 016 10:44: 7g		y ICP-MS	

Print Date: 03/04/2016 10:25:22AM

	l			
Blank ID: MB for HBN 1729369 [SPT/9839] Blank Lab ID: 1313756 QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004		x: Soil/Solid	(dry weight)	
1100700000, 1100700004				
<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
21 2540G				
	1160765003, 1160765004 <u>Results</u>	1160765003, 1160765004 Results LOQ/CL 100 839 21 2540G 100	1160765003, 1160765004 Results LOQ/CL DL 100 100	1160765003, 1160765004 <u>Results</u> <u>LOQ/CL DL Units</u> 100 %

Print Date: 03/04/2016 10:25:23AM

 Duplicate Sample Summary Original Sample ID: 1160776001 Duplicate Sample ID: 1313757 QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004 Results by SM21 2540G 		765004	Analysis Date: Matrix: Soil/Sol	02/23/2016 16:34 lid (dry weight)	
NAME Total Solids Batch Information Analytical Batch: SPT983 Analytical Method: SM21 Instrument: Analyst: K.W		Duplicate 86.7	<u>Units</u> %	<u>RPD (%)</u> 1.00	<u>RPD CL</u> (< 15)

Print Date: 03/04/2016 10:25:24AM

Method Blank

Blank ID: MB for HBN 1729574 [VXX/28534] Blank Lab ID: 1314067

QC for Samples:

1160765001, 1160765002, 1160765009

Results by SW8260B

	<i>///</i>			
Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroe	ethane 12.5U	25.0	7.80	ug/Kg
1,1,1-Trichloroethar	ne 12.5U	25.0	7.80	ug/Kg
1,1,2,2-Tetrachloroe	ethane 6.25U	12.5	3.90	ug/Kg
1,1,2-Trichloroethar	ne 5.00U	10.0	3.10	ug/Kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/Kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/Kg
1,1-Dichloropropene	e 12.5U	25.0	7.80	ug/Kg
1,2,3-Trichlorobenze	ene 25.0U	50.0	15.0	ug/Kg
1,2,3-Trichloropropa	ane 12.5U	25.0	7.80	ug/Kg
1,2,4-Trichlorobenze	ene 12.5U	25.0	7.80	ug/Kg
1,2,4-Trimethylbenz	zene 25.0U	50.0	15.0	ug/Kg
1,2-Dibromo-3-chlor	ropropane 50.0U	100	31.0	ug/Kg
1,2-Dibromoethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichlorobenzen	e 12.5U	25.0	7.80	ug/Kg
1,2-Dichloroethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichloropropane	e 5.00U	10.0	3.10	ug/Kg
1,3,5-Trimethylbenz	ene 12.5U	25.0	7.80	ug/Kg
1,3-Dichlorobenzen	e 12.5U	25.0	7.80	ug/Kg
1,3-Dichloropropane	e 5.00U	10.0	3.10	ug/Kg
1,4-Dichlorobenzen	e 12.5U	25.0	7.80	ug/Kg
2,2-Dichloropropane	e 12.5U	25.0	7.80	ug/Kg
2-Butanone (MEK)	125U	250	78.0	ug/Kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
2-Hexanone	125U	250	78.0	ug/Kg
4-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
4-Isopropyltoluene	12.5U	25.0	7.80	ug/Kg
4-Methyl-2-pentano	ne (MIBK) 125U	250	78.0	ug/Kg
Benzene	6.25U	12.5	3.90	ug/Kg
Bromobenzene	12.5U	25.0	7.80	ug/Kg
Bromochloromethar	ne 12.5U	25.0	7.80	ug/Kg
Bromodichlorometh	ane 12.5U	25.0	7.80	ug/Kg
Bromoform	12.5U	25.0	7.80	ug/Kg
Bromomethane	100U	200	62.0	ug/Kg
Carbon disulfide	50.0U	100	31.0	ug/Kg
Carbon tetrachloride	e 6.25U	12.5	3.90	ug/Kg
Chlorobenzene	12.5U	25.0	7.80	ug/Kg
Chloroethane	100U	200	62.0	ug/Kg
Chloroform	12.5U	25.0	7.80	ug/Kg

Print Date: 03/04/2016 10:25:26AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Soil/Solid (dry weight)

Method Blank

Blank ID: MB for HBN 1729574 [VXX/28534] Blank Lab ID: 1314067 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765002, 1160765009

Results by SW8260B				
Parameter	Results	LOQ/CL	DL	Units
Chloromethane	12.5U	25.0	7.80	ug/Kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
cis-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Dibromochloromethane	12.50	25.0	7.80	ug/Kg
Dibromomethane	12.50	25.0	7.80	ug/Kg
Dichlorodifluoromethane	25.0U	50.0	15.0	ug/Kg
Ethylbenzene	12.5U	25.0	7.80	ug/Kg
Freon-113	50.0U	100	31.0	ug/Kg
Hexachlorobutadiene	25.0U	50.0	15.0	ug/Kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/Kg
Methylene chloride	50.0U	100	31.0	ug/Kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/Kg
Naphthalene	25.0U	50.0	15.0	ug/Kg
n-Butylbenzene	12.5U	25.0	7.80	ug/Kg
n-Propylbenzene	12.5U	25.0	7.80	ug/Kg
o-Xylene	12.5U	25.0	7.80	ug/Kg
P & M -Xylene	25.0U	50.0	15.0	ug/Kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Styrene	12.5U	25.0	7.80	ug/Kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Tetrachloroethene	6.25U	12.5	3.90	ug/Kg
Toluene	12.5U	25.0	7.80	ug/Kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
trans-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Trichloroethene	6.25U	12.5	3.90	ug/Kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/Kg
Vinyl acetate	50.0U	100	31.0	ug/Kg
Vinyl chloride	5.00U	10.0	3.10	ug/Kg
Xylenes (total)	37.5U	75.0	22.8	ug/Kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	111	71-136		%
4-Bromofluorobenzene (surr)	95.1	55-151		%
Toluene-d8 (surr)	105	85-116		%

Print Date: 03/04/2016 10:25:26AM

SGS North America Inc.

Method Blank

SG

Blank ID: MB for HBN 1729574 [VXX/28534] Blank Lab ID: 1314067

Results

QC for Samples: 1160765002, 1160765009

Results by SW8260B

Analytical Batch: VMS15599

Analytical Method: SW8260B

Instrument: Agilent 7890-75MS

Analytical Date/Time: 2/23/2016 10:05:00AM

Parameter

Batch Information

Analyst: KAS

Matrix: Soil/Solid (dry weight)

DL

Prep Batch: VXX28534

Prep Method: SW5035A

Prep Initial Wt./Vol.: 50 g

Prep Extract Vol: 25 mL

Prep Date/Time: 2/23/2016 8:00:00AM

Units

LOQ/CL

Print Date: 03/04/2016 10:25:26AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1160765 [VXX28534] Blank Spike Lab ID: 1314068 Date Analyzed: 02/23/2016 10:56

Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765009

Results by SW8260B

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
1,1,1,2-Tetrachloroethane	750	724	97	(78-125)
1,1,1-Trichloroethane	750	740	99	(73-130)
1,1,2,2-Tetrachloroethane	750	692	92	(70-124)
1,1,2-Trichloroethane	750	736	98	(78-121)
1,1-Dichloroethane	750	751	100	(76-125)
1,1-Dichloroethene	750	735	98	(70-131)
1,1-Dichloropropene	750	740	99	(76-125)
1,2,3-Trichlorobenzene	750	616	82	(66-130)
1,2,3-Trichloropropane	750	701	94	(73-125)
1,2,4-Trichlorobenzene	750	676	90	(67-129)
1,2,4-Trimethylbenzene	750	751	100	(75-123)
1,2-Dibromo-3-chloropropane	750	628	84	(61-132)
1,2-Dibromoethane	750	740	99	(78-122)
1,2-Dichlorobenzene	750	714	95	(78-121)
1,2-Dichloroethane	750	836	111	(73-128)
1,2-Dichloropropane	750	795	106	(76-123)
1,3,5-Trimethylbenzene	750	768	102	(73-124)
1,3-Dichlorobenzene	750	718	96	(77-121)
1,3-Dichloropropane	750	758	101	(77-121)
1,4-Dichlorobenzene	750	729	97	(75-120)
2,2-Dichloropropane	750	777	104	(67-133)
2-Butanone (MEK)	2250	2150	96	(51-148)
2-Chlorotoluene	750	768	102	(75-122)
2-Hexanone	2250	2210	98	(53-145)
4-Chlorotoluene	750	752	100	(72-124)
4-Isopropyltoluene	750	794	106	(73-127)
4-Methyl-2-pentanone (MIBK)	2250	2130	95	(65-135)
Benzene	750	728	97	(77-121)
Bromobenzene	750	753	100	(78-121)
Bromochloromethane	750	681	91	(78-125)
Bromodichloromethane	750	790	105	(75-127)
Bromoform	750	703	94	(67-132)
Bromomethane	750	885	118	(53-143)
Carbon disulfide	1130	1170	104	(63-132)

Print Date: 03/04/2016 10:25:28AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1160765 [VXX28534] Blank Spike Lab ID: 1314068 Date Analyzed: 02/23/2016 10:56

Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765009

Results by SW8260B Blank Spike (ug/Kg) Parameter <u>Spike</u> Rec (%) <u>CL</u> Result Carbon tetrachloride 750 692 92 (70-135) Chlorobenzene 750 720 96 (79-120) Chloroethane 750 1130 151 (59-139) Chloroform 750 719 96 (78-123) 750 748 100 Chloromethane (50-136) cis-1,2-Dichloroethene 750 712 95 (77-123) cis-1,3-Dichloropropene 750 776 103 (74-126) Dibromochloromethane 750 721 96 (74-126) Dibromomethane 750 749 100 (78-125) Dichlorodifluoromethane 102 750 764 (29-149) Ethylbenzene 750 741 99 (76-122) Freon-113 1130 1160 103 (66-136) Hexachlorobutadiene 750 832 111 (61-135) Isopropylbenzene (Cumene) 750 782 104 (68-134) Methylene chloride 750 671 90 (70-128) Methyl-t-butyl ether 1210 107 1130 (73-125) Naphthalene 750 604 81 (62-129) 109 n-Butylbenzene 750 820 (70-128) n-Propylbenzene 750 808 108 (73-125) 750 723 96 o-Xylene (77-123) P & M -Xylene 1500 1460 97 (77-124) sec-Butylbenzene 750 805 107 (73-126) 97 Styrene 750 730 (76-124) tert-Butylbenzene 106 750 796 (73-125) 770 Tetrachloroethene 750 103 (73-128) Toluene 100 750 747 (77-121) trans-1,2-Dichloroethene 750 707 94 (74-125) trans-1,3-Dichloropropene 102 750 769 (71-130) Trichloroethene 750 800 107 (77-123) Trichlorofluoromethane 750 1180 157 (62-140) Vinyl acetate 750 860 115 (50-151) Vinyl chloride 750 754 101 (56-135) Xylenes (total) 2250 2180 97 (78-124)

Print Date: 03/04/2016 10:25:28AM

SGS North America Inc.

Blank Spike Summary				
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1314068 Date Analyzed: 02/23/2016	3	[VXX2853	4]	Matrix: Soil/Solid (dry weight)
QC for Samples: 1160765	001, 116076	65002, 1160	0765009	
Results by SW8260B				
		Blank Spil	ke (%)	
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Surrogates				
1,2-Dichloroethane-D4 (surr)	750	111	111	(71-136)
4-Bromofluorobenzene (surr)	750	96.5	97	(55-151)
Toluene-d8 (surr)	750	104	104	(85-116)
Batch Information				
Analytical Batch: VMS15599				Prep Batch: VXX28534
Analytical Method: SW8260B				Prep Method: SW5035A
Instrument: Agilent 7890-75M	15			Prep Date/Time: 02/23/2016 08:00
Analyst: KAS				Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/04/2016 10:25:28AM

-

Original Sample ID: 1160731001 MS Sample ID: 1314069 MS MSD Sample ID: 1314070 MSD

QC for Samples: 1160765001, 1160765002, 1160765009

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD C
,1,1,2-Tetrachloroethane	29.4U	767	748	97	767	755	98	78-125	0.92	(< 20)
,1,1-Trichloroethane	29.4U	767	737	96	767	757	99	73-130	2.60	(< 20)
,1,2,2-Tetrachloroethane	14.7U	767	700	91	767	707	92	70-124	1.00	(< 20)
,1,2-Trichloroethane	11.8U	767	758	99	767	757	99	78-121	0.17	(< 20)
,1-Dichloroethane	29.4U	767	736	96	767	762	99	76-125	3.50	(< 20
,1-Dichloroethene	29.4U	767	758	99	767	776	101	70-131	2.40	(< 20
,1-Dichloropropene	29.4U	767	745	97	767	764	100	76-125	2.50	(< 20
,2,3-Trichlorobenzene	58.9U	767	807	105	767	1076	140 *	66-130	28.60	* (< 20
,2,3-Trichloropropane	29.4U	767	693	90	767	714	93	73-125	3.00	(< 20
,2,4-Trichlorobenzene	29.4U	767	814	106	767	982	128	67-129	18.70	(< 20
,2,4-Trimethylbenzene	58.9U	767	765	100	767	761	99	75-123	0.60	(< 20
,2-Dibromo-3-chloropropane	118U	767	695	91	767	779	102	61-132	11.50	(< 20
,2-Dibromoethane	11.8U	767	757	99	767	760	99	78-122	0.34	(< 20
,2-Dichlorobenzene	29.4U	767	733	96	767	734	96	78-121	0.17	(< 20
2-Dichloroethane	11.8U	767	839	109	767	851	111	73-128	1.60	(< 20
,2-Dichloropropane	11.8U	767	799	104	767	817	106	76-123	2.20	(< 20
3,5-Trimethylbenzene	29.4U	767	772	101	767	770	100	73-124	0.27	(< 20
,3-Dichlorobenzene	29.4U	767	728	95	767	731	95	77-121	0.39	(< 20
,3-Dichloropropane	11.8U	767	781	102	767	783	102	77-121	0.20	(< 20
4-Dichlorobenzene	29.4U	767	750	98	767	746	97	75-120	0.68	(< 20
,2-Dichloropropane	29.4U	767	785	102	767	801	104	67-133	2.00	(< 20
-Butanone (MEK)	294U	2304	2347	102	2304	2691	117	51-148	14.00	(< 20
-Chlorotoluene	29.4U	767	758	99	767	766	100	75-122	1.10	(< 20
-Hexanone	294U	2304	2357	102	2304	2476	107	53-145	4.90	(< 20
-Chlorotoluene	29.4U	767	761	99	767	761	99	72-124	0.03	(< 20
-Isopropyltoluene	29.4U	767	817	106	767	794	103	73-127	2.80	(< 20
-Methyl-2-pentanone (MIBK)	294U	2304	2153	93	2304	2217	96	65-135	3.30	(< 20
enzene	14.7U	767	735	96	767	737	96	77-121	0.42	(< 20
romobenzene	29.4U	767	740	96	767	751	98	78-121	1.70	(< 20
romochloromethane	29.4U	767	675	88	767	693	90	78-125	2.60	(< 20
romodichloromethane	29.4U	767	788	103	767	802	104	75-127	1.80	(< 20
romoform	29.4U	767	729	95	767	719	94	67-132	1.40	(< 20
romomethane	235U	767	970	126	767	939	122	53-143	3.30	(< 20
arbon disulfide	118U	1152	1206	105	1152	1227	107	63-132	2.20	(< 20
arbon tetrachloride	14.7U	767	691	90	767	709	92	70-135	2.60	(< 20
hlorobenzene	29.4U	767	718	94	767	744	97	79-120	3.50	(< 20
Chloroethane	235U	767	1184	154 *	767	1076	141 *	59-139	8.80	(< 20

Print Date: 03/04/2016 10:25:29AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Analysis Date: 02/23/2016 15:34 Analysis Date: 02/23/2016 11:57 Analysis Date: 02/23/2016 12:12 Matrix: Soil/Solid (dry weight)

Original Sample ID: 1160731001 MS Sample ID: 1314069 MS MSD Sample ID: 1314070 MSD

QC for Samples: 1160765001, 1160765002, 1160765009

Results by SW8260B Matrix Spike (ug/Kg) Spike Duplicate (ug/Kg) Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL <u>RPD (%)</u> RPD CL Chloroform 29.4U 767 710 93 767 734 96 78-123 3.30 (< 20) Chloromethane 29.4U 767 766 100 767 742 97 50-136 3.30 (< 20) 29.4U cis-1,2-Dichloroethene 767 705 92 767 731 95 3.70 (< 20) 77-123 (< 20) cis-1,3-Dichloropropene 29.4U 767 779 101 767 784 102 74-126 0.52 Dibromochloromethane 29.4U 767 741 96 767 743 97 74-126 0.35 (< 20) Dibromomethane 29.4U 767 738 96 767 755 98 78-125 2.20 (< 20) Dichlorodifluoromethane 58.9U 767 781 102 767 735 96 29-149 6.10 (< 20) Ethylbenzene 29.4U 767 753 98 767 753 98 76-122 0.00 (< 20) Freon-113 118U 1152 1227 107 1152 1249 108 66-136 1.10 (< 20) Hexachlorobutadiene 58.9U 767 1076 141 * 767 1206 157 61-135 10.70 (< 20) Isopropylbenzene (Cumene) 29.4U 767 791 103 767 800 104 68-134 1.00 (< 20) Methylene chloride 118U 87 89 2.30 767 672 767 687 70-128 (< 20) Methyl-t-butyl ether 118U 1152 1227 106 1152 1249 108 73-125 1.90 (< 20) Naphthalene 58.9U 767 719 94 767 906 118 62-129 23.10 * (< 20) n-Butylbenzene 29.4U 767 848 767 830 108 70-128 2.20 111 (< 20) n-Propylbenzene 29.4U 767 789 103 767 797 104 73-125 0.94 (< 20) o-Xylene 29.4U 767 732 95 767 746 97 77-123 2.00 (< 20) 58.9U 1539 97 1539 98 P & M -Xylene 1485 1507 77-124 1.40 (< 20) sec-Butylbenzene 29.4U 767 820 107 767 787 102 73-126 4.20 (< 20) Styrene 29.4U 767 749 98 767 747 97 76-124 0.27 (< 20)29.4U 103 tert-Butylbenzene 767 794 767 786 102 73-125 1.10 (< 20) Tetrachloroethene 14.7U 767 785 102 767 801 104 73-128 2.10 (< 20) Toluene 29.4U 767 757 99 767 778 101 77-121 2.90 (< 20) 29.4U 767 704 92 767 719 94 74-125 2.20 trans-1,2-Dichloroethene (< 20) trans-1,3-Dichloropropene 779 102 798 71-130 29.4U 767 767 104 2.20 (< 20)Trichloroethene 14.7U 103 767 790 767 811 106 77-123 2.60 (< 20) Trichlorofluoromethane * * 58.9U 767 1173 153 767 1270 166 62-140 7.80 (< 20) 905 886 Vinyl acetate 118U 767 118 767 115 50-151 2.20 (< 20) Vinyl chloride 11.8U 767 787 102 767 731 95 56-135 7.30 (< 20) Xylenes (total) 88.3U 2304 2217 96 2304 2250 98 78-124 1.60 (< 20) Surrogates 1,2-Dichloroethane-D4 (surr) 767 856 111 767 869 113 71-136 1.50 4-Bromofluorobenzene (surr) 2045 1668 82 2045 1701 83 55-151 1.60 Toluene-d8 (surr) 767 802 104 767 820 107 85-116 2.20

Analysis Date: 02/23/2016 15:34

Analysis Date: 02/23/2016 11:57

Analysis Date: 02/23/2016 12:12 Matrix: Soil/Solid (dry weight)

Print Date: 03/04/2016 10:25:29AM

SGS North America Inc.

SGS										
Matrix Spike Summary Original Sample ID: 1160 MS Sample ID: 1314069 MSD Sample ID: 131407 QC for Samples: 116076	MS	02, 116076	65009		Analysis	Date: 0	2/23/2016 2/23/2016 (dry weigl	12:12		
Results by SW8260B			latrix Spike	· (%)	Spi	ke Duplica	ite (%)			
Parameter	<u>Sample</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Batch Information Analytical Batch: VMS15 Analytical Method: SW82 Instrument: Agilent 7890 Analyst: KAS Analytical Date/Time: 2/2	260B -75MS			Prep Prep Prep	Method: Date/Tin Initial Wi		action SW82 016 8:00:0 .56g		d Extracted L	

Print Date: 03/04/2016 10:25:29AM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1729592 **4** VV**X**/ 832] Blank Lab ID: 1013237 Matrix: CoilXolid (dry wpight)

6 Q for CaS mpe: 115s758ss1, 115s758ss2, 115s758ss0, 115s758ss3

Rpeulte by SW8260B

ParaS ptpr	<u>Rpeulte</u>	LO6 XQL	DL	Unite
1,1,1,2-Tptrachloropthanp	12.8U	28.s	7./ s	ugЖg
1,1,1-Trichloropthanp	12.8U	28.s	7./ s	ugЖg
1,1,2,2-Tptrachloropthanp	5.28U	12.8	0.9s	ugЖg
1,1,2-Trichloropthanp	8.ssU	1s.s	0.1s	ugЖg
1,1-Dichloropthanp	12.8U	28.s	7./ s	ugЖg
1,1-Dichloropthpnp	12.8U	28.s	7./ s	ugЖg
1,1-Dichloromompnp	12.8U	28.s	7./ s	ugЖg
1,2,0-Trichlorobpnzpnp	28.sU	8s.s	18.s	ugЖg
1,2,0-Trichloromomanp	12.8U	28.s	7./ s	ugЖg
1,2,3-Trichlorobpnzpnp	12.8U	28.s	7./ s	ugЖg
1,2,3-TriS pthylbpnzpnp	28.sU	8s.s	18.s	ugЖg
1,2-DibroS o-0-chloromomanp	8s.sU	1ss	01.s	ugЖg
1,2-DibroS opthanp	8.ssU	1s.s	0.1s	ugЖg
1,2-Dichlorobpnzpnp	12.8U	28.s	7./ s	ugЖg
1,2-Dichloropthanp	8.ssU	1s.s	0.1s	ugЖg
1,2-Dichloromomanp	8.ssU	1s.s	0.1s	ugЖg
1,0,8-TriS pthylbpnzpnp	12.8U	28.s	7./ s	ugЖg
1,0-Dichlorobpnzpnp	12.8U	28.s	7./ s	ugЖg
1,0-Dichloromomanp	8.ssU	1s.s	0.1s	ugЖg
1,3-Dichlorobpnzpnp	12.8U	28.s	7./ s	ugЖg
2,2-Dichloromomanp	12.8U	28.s	7./ s	ugЖg
2-Butanonp (MEK)	128U	28s	7/ .s	ugЖg
2-Qhlorotolupnp	12.8U	28.s	7./ s	ugЖg
2-Hpxanonp	128U	28s	7/ .s	ugЖg
3-Qhlorotolupnp	12.8U	28.s	7./ s	ugЖg
3-leomonyltolupnp	12.8U	28.s	7./ s	ugЖg
3-Mpthyl-2-mpntanonp (MIBK)) 128U	28s	7/ .s	ugЖg
Bpnzpnp	5.28U	12.8	0.9s	ugЖg
BroS obpnzpnp	12.8U	28.s	7./ s	ugЖg
BroS ochloroS pthanp	12.8U	28.s	7./ s	ugЖg
BroS odichloroS pthanp	12.8U	28.s	7./ s	ugЖg
BroS oforS	12.8U	28.s	7./ s	ugЖg
BroS oS pthanp	1ssU	2ss	52.s	ugЖg
Qarbon dieulfidp	8s.sU	1ss	01.s	ugЖg
Qarbon tptrachloridp	5.28U	12.8	0.9s	ugЖg
Qhlorobpnzpnp	12.8U	28.s	7./ s	ugЖg
Qhloropthanp	1ssU	2ss	52.s	ugЖg
QhloroforS	12.8U	28.s	7./ s	ugЖg

Print Datp: s0%3%2s15 1s:28:01AM

CGC North AS prica Inc.

2ss Wpet Pottpr Drivp Anchoragp, AK 9881/ t 9s7.852.2030 f 9s7.851.80s1 www.ue.ege.coS

Method Blank

Blank ID: MB for HBN 1729592 **4** VV**X**/ 832] Blank Lab ID: 1013237 Matrix: CoilXolid (dry wpight)

6 Q for CaS mpe:

115s758ss1, 115s758ss2, 115s758ss0, 115s758ss3

Rpeulte by SW8260B				
· · · · ·			51	
ParaS ptpr	Rpeulte	LO6 XQL	<u>DL</u> 7.(-	<u>Unite</u>
QhloroS pthanp	12.8U	28.s	7./s	ugЖg
cie-1,2-Dichloropthpnp	12.8U	28.s	7./s	ugЖg
cie-1,0-Dichloromonpnp	12.8U	28.s	7./s	ugЖg
DibroS ochloroS pthanp	12.8U	28.s	7./ s	ugЖg
DibroS oS pthanp	12.8U	28.s	7./ s	ugЖg
DichlorodifluoroS pthanp	28.sU	8s.s	18.s	ugЖg
Ethylbpnzpnp	12.8U	28.s	7./ s	ugЖg
Frpon-110	8s.sU	1ss	01.s	ugЖg
Hpxachlorobutadipnp	28.sU	8s.s	18.s	ugЖg
leomonylbpnzpnp (QuSpnp)	12.8U	28.s	7./ s	ugЖg
Mpthylpnp chloridp	8s.sU	1ss	01.s	ugЖg
Mpthyl-t-butyl pthpr	8s.sU	1ss	01.s	ugЖg
Namhthalpnp	28.sU	8s.s	18.s	ugЖg
n-Butylbpnzpnp	12.8U	28.s	7./ s	ugЖg
n-Pronylbpnzpnp	12.8U	28.s	7./ s	ugЖg
o-Vylpnp	12.8U	28.s	7./ s	ugЖg
P & M -Vylpnp	28.sU	8s.s	18.s	ugЖg
epc-Butylbpnzpnp	12.8U	28.s	7./ s	ugЖg
Ctyrpnp	12.8U	28.s	7./ s	ugЖg
tprt-Butylbpnzpnp	12.8U	28.s	7./ s	ugЖg
Tptrachloropthpnp	5.28U	12.8	0.9s	ugЖg
Tolupnp	12.8U	28.s	7./ s	ugЖg
trane-1,2-Dichloropthpnp	12.8U	28.s	7./ s	ugЖg
trane-1,0-Dichloromonpnp	12.8U	28.s	7./ s	ugЖg
Trichloropthpnp	5.28U	12.8	0.9s	ugЖg
TrichlorofluoroS pthanp	28.sU	8s.s	18.s	ugЖg
[inyl acptatp	8s.sU	1ss	01.s	ugЖg
[inyl chloridp	8.ssU	1s.s	0.1s	ugЖg
Vylpnpe (total)	07.8U	78.s	22./	ugЖg
Surrogates				
1,2-Dichloropthanp-D3 (eurr)	12s	71-105		%
3-BroS ofluorobpnzpnp (eurr)	95.8	88-181		%
Tolupnp-d/ (eurr)	1s5	/ 8-115		%

Print Datp: s0%3%2s15 1s:28:01AM

CGC North AS prica Inc.

_

2ss Wpet Pottpr Drivp Anchoragp, AK 9881/ t 9s7.852.2030 f 9s7.851.80s1 www.ue.ege.coS

Method Blank

SG:

Blank ID: MB for HBN 1729592 4 VVX2/ 832] Blank Lab ID: 1013237

115s758ss1, 115s758ss2, 115s758ss0, 115s758ss3

6 Q for CaS mpe:

Matrix: CoilXolid (dry wpight)

Rpeulte by SW8260B				
ParaS ptpr	<u>Rpeulte</u>	LO6 XQL	DL	<u>Unite</u>
Batch Information				
Analytical Batch: [MC	185s8	PrpmBa	tch: [VV2/ 8	32
Analytical Mpthod: CV			othod: CW8s0	
InetruS pnt: Agilpnt 7/	9s-78MC			3X2s15 /:ss:ssAM
Analyet: KAC		PrpmInit	tial Wt.¥ ol.: 8	8s g
Analytical DatpXiSp:	2 % 5%2s15 2:89:ssPM	PrpmEx	tract [ol: 28	SL

Print Datp: s03/33/2s15 1s:28:01AM

CGC North AS prica Inc.

_

Blank Spike ID: LCS for HBN 1160765 [VXX285324 Blank Spike La] ID: 1b13238 Date Analyzed: 02/26/2016 16:2R

x atri(: Soil/Solid wdry g eih) tP

, C for Sac pleu:

1160765001911607650029116076500b91160765003

s euMtu] y SW8260B Blank Spike w/h/QhP marac eter <u>Spike</u> <u>se‰wKP</u> CL s euMt 1919192-Tetra% loroet) ane RR w78-125 P 750 733 757 101 19191-Tri%) loroet) ane 750 w7b-1b0 P 1919292-Tetra% loroet) ane 750 6R5 Rb w70-123 P 19192-Tri% loroet) ane 750 775 10b w78-121 P R8 191-Di% loroet) ane 750 7b7 w76-125 P 191-Di% loroet) ene 750 758 101 w70-1b1 P 191-Di% loropropene 750 765 102 w76-125 P 1929b-Tri% loro] enzene 750 7b0 R7 w66-1b0 P 1929b-Tri% loropropane 750 71b R5 w7b-125 P RR 19293-Tri% loro] enzene 750 732 w67-12RP 100 19293-Tric et) yl] enzene 750 753 w75-12b P 192-Di] roc o-b-% loropropane 750 6R1 R2 w61-1b2 P 192-Di] roc oet) ane 750 77b 10b w78-122 P 192-Di% loro] enzene 750 726 R7 w78-121 P 192-Di% loroet) ane 750 867 116 w7b-128 P 750 817 10R 192-Di% loropropane w76-12b P 19b95-Tric et) yl] enzene 750 761 102 w7b-123 P 19b-Di% loro] enzene 750 723 R7 w77-121 P 19b-Di% loropropane 750 7R5 106 w77-121 P R8 w75-120 P 198-Di% loro] enzene 750 7b6 292-Di% loropropane 750 7R0 105 w67-1bb P 2-BMtanone w EQP 2250 2380 110 w51-138 P RR 2-C) lorotolMene 750 736 w75-122 P 2250 10R 2-He(anone 2350 w5b-135 P 100 750 3-C) lorotolMene 73R w72-123 P 106 3-luopropyltolMene 750 7R6 w7b-127 P 3-x et) yl-2-pentanone w IBQP 2250 21R0 R7 w65-1b5 P 100 Benzene 750 73R w77-121 P 750 R8 Broc o] enzene 7b8 w78-121 P Broc o% loroc et) ane 750 682 R1 w78-125 P Broc odi% loroc et) ane 750 801 107 w75-127 P Broc oforc 750 7bb R8 w67-1b2 P Broc oc et) ane 750 RbR 125 w5b-13b P 106 Car] on diuMfide 11b0 1200 w6b-1b2 P

mint Date: 0b/03/2016 10:25:bbAx

SGS Nort) Ac eri%a In%

200 Weut motter Drive An% orahe9AQ R5518 t R07.562.2b3b f R07.561.5b01 ggg.Mu.uhu.%c

SG

Blank Spike ID: LCS for HBN 1160765 [VXX285324 Blank Spike La] ID: 1b13238 Date Analyzed: 02/26/2016 16:2R

x atri(: Soil/Solid wdry g eih) tP

, C for Sac pleu:

1160765001911607650029116076500b91160765003

s euMtu] y SW8260B

Blank Snike	v/k/h/OhP	

	E	Blank Spike	wMh/QhP	
marac eter	Spike	<u>s euMt</u>	<u>se‰wKP</u>	<u>CL</u>
Car] on tetra% loride	750	716	R6	w70-1b5 P
C) loro] enzene	750	723	R7	w7R-120 P
C) loroet) ane	750	11R0	15R *	w5R-1bRP
C) loroforc	750	721	R6	w78-12b P
C) loroc et) ane	750	72b	R6	w50-1b6 P
‰u-192-Di% loroet) ene	750	6RR	Ro	w77-12b P
%u-19o-Di%) loropropene	750	787	105	w73-126 P
Di] roc o% loroc et) ane	750	750	100	w73-126 P
Di] roc oc et) ane	750	768	102	w78-125 P
Di% lorodiflMoroc et) ane	750	75b	100	w2R-13RP
Et) yl] enzene	750	75b	100	w76-122 P
Freon-11b	11b0	1260	112	w66-1b6 P
He(a%loro] Madiene	750	8bb	111	w61-1b5 P
luopropyl] enzene vCMc eneP	750	803	107	w68-1b3 P
x et) ylene % loride	750	656	87	w70-128 P
x et) yl-t-] Myl et) er	11b0	1270	11b	w7b-125 P
Nap) t) alene	750	71b	R5	w62-12RP
n-BMyl] enzene	750	8b1	111	w70-128 P
n-mopyl] enzene	750	78R	105	w7b-125 P
o-Xylene	750	7bR	RR	w77-12b P
m&x -Xylene	1500	1520	101	w77-123 P
ue%BMyl] enzene	750	806	107	w7b-126 P
Styrene	750	751	100	w76-123 P
tert-BMyl] enzene	750	786	105	w7b-125 P
Tetra% loroet) ene	750	7Rb	106	w7b-128 P
TolMene	750	773	10b	w77-121 P
tranu-192-Di% loroet) ene	750	71b	R5	w73-125 P
tranu-190-Di%loropropene	750	7R6	106	w71-1b0 P
Tri% loroet) ene	750	807	108	w77-12b P
Tri% loroflMbroc et) ane	750	1200	160 *	w62-130 P
Vinyl a%etate	750	ROR	121	w50-151 P
Vinyl % loride	750	76b	102	w56-1b5 P
Xyleneu wotalP	2250	2250	100	w78-123 P

mrint Date: 0b/03/2016 10:25:bbAx

SGS Nort) Ac eri%a In%

200 Weut motter Drive An% orahe9AQ R5518 t R07.562.2b3b f R07.561.5b01 ggg.Mu.uhu.%c

CCC	
<u> </u>	

Blank Spike ID: LCS for HBN 1160765 [VXX285324 Blank Spike La] ID: 1b13238 Date Analyzed: 02/26/2016 16:2R

x atri(: Soil/Solid vdry g eih) tP

, C for Sac pleu:

: 1160765001911607650029116076500b91160765003

s euMtu] y SW8260B

		Blank Spil	kewiK P	
marac eter	<u>Spike</u>	<u>s euMt</u>	<u>se‰nKP</u>	
Surrogates				
192-Di% loroet) ane-D3 w/MrP	750	11b	11b	
3-Broc oflMoro] enzene w/MrP	750	Rb.8	R3	
TolMene-d8 wuMtrP	750	106	106	

Batch Information

Analyti%al Bat%): VMS15605 Analyti%al x et) od: SW8260B InutrNc ent: 9 gilent A870-A5MS Analyut: K9 S mrep Bat% : VXX28532 mrep x et) od: SW50459 mrep Date/Tic e: 02/23/2016 08:00 Spike Init Wt./Vol.: 750 Mh/Qh E(tra% Vol: 25 c L DMpe Init Wt./Vol.: E(tra% Vol:

mint Date: 0b/03/2016 10:25:bbAx

Matrix Spike Summary

Original Sample ID: 1314282 MS Sample ID: 1314249 MS MSD Sample ID: 1314250 MSD Analysis Date: 02/26/2016 21:04 Analysis Date: 02/26/2016 18:09 Analysis Date: 02/26/2016 18:25 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD (
,1,1,2-Tetrachloroethane	17.9U	1070	1080	101	1070	1080	101	78-125	0.03	(< 20
,1,1-Trichloroethane	17.9U	1070	1080	101	1070	1110	104	73-130	2.50	(< 20
,1,2,2-Tetrachloroethane	8.90U	1070	962	90	1070	1000	94	70-124	4.00	(< 20
,1,2-Trichloroethane	7.15U	1070	1120	105	1070	1120	105	78-121	0.29	(< 20
,1-Dichloroethane	17.9U	1070	1070	100	1070	1080	101	76-125	0.89	(< 20
,1-Dichloroethene	17.9U	1070	1140	107	1070	1170	109	70-131	2.30	(< 20
,1-Dichloropropene	17.9U	1070	1100	103	1070	1130	105	76-125	2.00	(< 20
,2,3-Trichlorobenzene	35.6U	1070	1040	97	1070	1440	135 *	66-130	32.30	* (< 20
,2,3-Trichloropropane	17.9U	1070	995	93	1070	1040	97	73-125	4.20	(< 20
,2,4-Trichlorobenzene	17.9U	1070	1070	100	1070	1300	122	67-129	19.30	(< 20
,2,4-Trimethylbenzene	35.6U	1070	1030	97	1070	1040	97	75-123	0.34	(< 20
,2-Dibromo-3-chloropropane	71.5U	1070	973	91	1070	1210	113	61-132	21.60	* (< 20
,2-Dibromoethane	7.15U	1070	1110	104	1070	1120	105	78-122	1.10	(< 20
,2-Dichlorobenzene	17.9U	1070	988	92	1070	1020	95	78-121	3.00	(< 20
2-Dichloroethane	7.15U	1070	1220	114	1070	1230	115	73-128	0.93	(< 20
2-Dichloropropane	7.15U	1070	1160	109	1070	1180	110	76-123	1.30	(< 20
3,5-Trimethylbenzene	17.9U	1070	1030	97	1070	1040	97	73-124	0.65	(< 20
3-Dichlorobenzene	17.9U	1070	998	93	1070	1010	94	77-121	1.00	(< 20
,3-Dichloropropane	7.15U	1070	1140	107	1070	1160	108	77-121	0.96	(< 20
,4-Dichlorobenzene	17.9U	1070	1010	94	1070	1030	96	75-120	2.10	(< 20
2-Dichloropropane	17.9U	1070	1140	106	1070	1160	108	67-133	1.60	(< 20
-Butanone (MEK)	179U	3210	3650	114	3210	4420	138	51-148	19.20	(< 20
-Chlorotoluene	17.9U	1070	1020	96	1070	1030	96	75-122	0.45	(< 20
-Hexanone	202J	3210	3770	111	3210	4070	121	53-145	7.60	(< 20
-Chlorotoluene	17.9U	1070	1020	96	1070	1040	97	72-124	1.40	(< 20
-Isopropyltoluene	13.9J	1070	1080	99	1070	1050	97	73-127	2.10	(< 20
-Methyl-2-pentanone (MIBK)	179U	3210	3180	99	3210	3360	105	65-135	5.60	(< 20
enzene	8.90U	1070	1070	100	1070	1100	103	77-121	3.10	(< 20
romobenzene	17.9U	1070	1010	94	1070	1030	96	78-121	1.80	(< 20
romochloromethane	17.9U	1070	979	92	1070	978	91	78-125	0.07	(< 20
romodichloromethane	17.9U	1070	1140	107	1070	1140	107	75-127	0.12	(< 20
romoform	17.9U	1070	1050	98	1070	1070	100	67-132	1.80	(< 20
romomethane	143U	1070	1430	133	1070	1210	113	53-143	16.30	(< 20
arbon disulfide	71.5U	1600	1770	110	1600	1830	114	63-132	3.00	(< 20
arbon tetrachloride	8.90U	1070	1020	95	1070	1030	97	70-135	1.40	(< 20
Chlorobenzene	17.9U	1070	1050	98	1070	1040	97	79-120	0.34	(< 20
Chloroethane	143U	1070	1840	172 *	1070	1500	140 *	59-139	20.40	* (< 20

Print Date: 03/04/2016 10:25:34AM

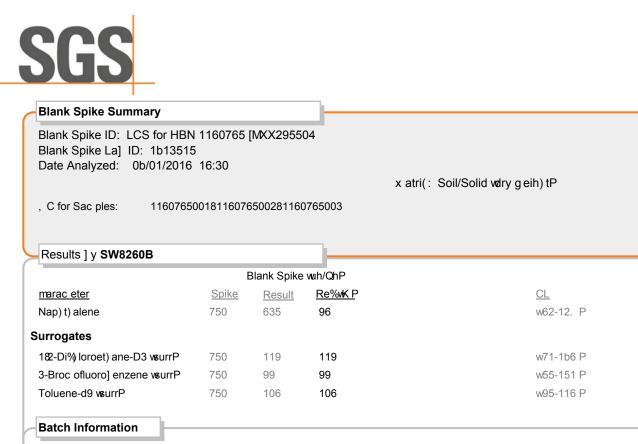
SGS North America Inc.

Original Sample ID: 1314282 MS Sample ID: 1314249 MS MSD Sample ID: 1314250 MSD Analysis Date: 02/26/2016 21:04 Analysis Date: 02/26/2016 18:09 Analysis Date: 02/26/2016 18:25 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CI
Chloroform	17.9U	1070	1020	96	1070	1040	97	78-123	1.50	(< 20)
Chloromethane	17.9U	1070	1110	104	1070	1010	95	50-136	9.40	(< 20)
cis-1,2-Dichloroethene	17.9U	1070	997	93	1070	1020	96	77-123	2.70	(< 20)
cis-1,3-Dichloropropene	17.9U	1070	1120	104	1070	1130	105	74-126	0.99	(< 20)
Dibromochloromethane	17.9U	1070	1070	100	1070	1080	101	74-126	1.00	(< 20)
Dibromomethane	17.9U	1070	1070	100	1070	1060	99	78-125	0.80	(< 20)
Dichlorodifluoromethane	35.6U	1070	1160	108	1070	1050	98	29-149	9.70	(< 20)
Ethylbenzene	17.9U	1070	1060	99	1070	1080	101	76-122	2.10	(< 20)
Freon-113	71.5U	1600	1790	112	1600	1920	119	66-136	6.60	(< 20)
lexachlorobutadiene	35.6U	1070	1290	121	1070	1390	130	61-135	7.60	(< 20)
sopropylbenzene (Cumene)	17.9U	1070	1120	105	1070	1120	105	68-134	0.06	(< 20)
Methylene chloride	71.5U	1070	960	90	1070	952	89	70-128	0.86	(< 20)
lethyl-t-butyl ether	71.5U	1600	1780	111	1600	1860	116	73-125	4.40	(< 20)
laphthalene	35.6U	1070	992	93	1070	1360	127	62-129	31.40	* (< 20)
-Butylbenzene	17.9U	1070	1110	104	1070	1090	102	70-128	2.30	(< 20)
-Propylbenzene	17.9U	1070	1070	100	1070	1060	99	73-125	0.91	(< 20)
-Xylene	17.9U	1070	1040	98	1070	1050	99	77-123	0.99	(< 20)
9 & M -Xylene	35.6U	2140	2160	101	2140	2160	101	77-124	0.10	(< 20)
ec-Butylbenzene	17.9U	1070	1080	101	1070	1040	98	73-126	3.10	(< 20)
Styrene	17.9U	1070	1050	99	1070	1060	99	76-124	0.24	(< 20)
ert-Butylbenzene	17.9U	1070	1050	99	1070	1040	98	73-125	0.95	(< 20)
Tetrachloroethene	8.90U	1070	1120	105	1070	1160	108	73-128	2.80	(< 20)
Toluene	628	1070	1670	97	1070	1700	100	77-121	2.00	(< 20)
rans-1,2-Dichloroethene	17.9U	1070	1030	97	1070	1040	98	74-125	0.93	(< 20)
rans-1,3-Dichloropropene	17.9U	1070	1150	108	1070	1160	108	71-130	0.65	(< 20)
Frichloroethene	8.90U	1070	1150	107	1070	1180	110	77-123	2.40	(< 20)
Frichlorofluoromethane	35.6U	1070	1670	156 *	1070	1910	178 *	62-140	13.30	(< 20)
/inyl acetate	71.5U	1070	1300	121	1070	1320	124	50-151	2.20	(< 20)
/inyl chloride	7.15U	1070	1150	108	1070	1060	99	56-135	8.90	(< 20)
(ylenes (total)	53.5U	3210	3210	100	3210	3210	100	78-124	0.26	(< 20)
Surrogates										
I,2-Dichloroethane-D4 (surr)		1070	1200	112	1070	1210	113	71-136	0.83	
4-Bromofluorobenzene (surr)		2850	1870	66	2850	1930	68	55-151	2.90	
Toluene-d8 (surr)		1070	1130	106	1070	1160	108	85-116	2.50	

Print Date: 03/04/2016 10:25:34AM


SGS North America Inc.

SGS										
Matrix Spike Summary	/									
	49 MS	02, 116076	5003, 116		Analysis	Date: 02 Date: 02	2/26/2016 2/26/2016 I (dry weigh	18:25		
Results by SW8260B		М	atrix Spike	(%)	Sni	ke Duplica	ate (%)			
Parameter	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Parameter Batch Information	Sample						. ,	<u>CL</u>	<u>RPD (%)</u>	RPD CL

Print Date: 03/04/2016 10:25:34AM

Blank ID: MB for HBN 17297 Blank Lab ID: 1314514 QC for Samples: 160765001, 1160765002, 1160		Matri	x: Soil/Solid (d	ry weight)	
Results by SW8260B					
P <u>arameter</u> Naphthalene	<u>Results</u> 25.0U	<u>LOQ/CL</u> 50.0	<u>DL</u> 15.0	<u>Units</u> ug/Kg	
f uor ateg ,2-Dichloroethane-D4 (surr) -Bromofluorobenzene (surr) oluene-d8 (surr)	129 92.7 109	71-136 55-151 85-116		% % %	
atsh onloumation					
Analytical Batch: VMS15608 Analytical Method: SW82608 Instrument: Agilent 7890-758 Analyst: KAS Analytical Date/Time: 3/1/20	3 AS	Prep Me Prep Da Prep Ini	atch: VXX28550 ethod: SW5035 ate/Time: 3/1/20 tial Wt./Vol.: 50 tract Vol: 25 m	A 16 8:00:00AM g	

Print Date: 03/04/2016 10:25:35AM

Analyti%al Bat%: VMS15608 Analyti%al x et) od: SW8260B Instruc ent: Agilent 7890-75MS Analyst: KAS

mrep Bat%): VXX28550 mrep x et) od: SW5035A mrep Date/Tic e: 03/01/2016 08:00 Spike Init WtVMolV 750 uh/Qh E(tra% Mol: 25 c L Dupe Init WtVMolV E(tra% Mol:

mint Date: 0b/03/2016 10:25:b7Ax

Original Sample ID: 1314523 MS Sample ID: 1314516 MS MSD Sample ID: 1314517 MSD Analysis Date: 03/01/2016 18:47 Analysis Date: 03/01/2016 17:28 Analysis Date: 03/01/2016 17:44 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765004

Results by SW8260B										
		Mat	rix Spike (ι	ug/Kg)	Spike	e Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Naphthalene	50.6J	1120	1220	104	1120	1430	123	62-129	16.30	(< 20)
Surrf oateg										
1,2-Dichloroethane-D4 (surr)		1120	1370	122	1120	1390	124	71-136	2.00	
4-Bromofluorobenzene (surr)		3000	2390	80	3000	2490	83	55-151	3.80	
Toluene-d8 (surr)		1120	1210	108	1120	1230	110	85-116	1.70	

Batsc h rf rmatif I

Analytical Batch: VMS15608 Analytical Method: SW8260B Instrument: Agilent 7890-75MS Analyst: KAS Analytical Date/Time: 3/1/2016 5:28:00PM Prep Batch: VXX28550 Prep Method: Vol. Extraction SW8260 Field Extracted L Prep Date/Time: 3/1/2016 8:00:00AM Prep Initial Wt./Vol.: 33.37g Prep Extract Vol: 25.00mL

Print Date: 03/04/2016 10:25:38AM

Method Blank

Blank ID: MB for HBN 1729547 [VVVX6/ 95/ 8 Blank 3a] ID: 15157L2 Masr,t:60,1X601,ixird(S,ywsg

b 0 for 6 aQOSm 114p74Lpp1e114p74Lpp2e114p74Lpp5e114p74Lpp/

h Sm) Ism] d SW8270D

<u>UaraQSsSr</u>	<u>h Sm) Ism</u>	<u>3ubX03</u>	<u>D3</u>	<u>Rn,sm</u>
162¢ (Pr,-wloro] SnTSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
1@@,-wloro]SnTSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
1ლნ-woro] SnTSnS	pc12LR	p@Lp	ρφ7Κρ	QyX y
1¢ (D),-wloro] SnTSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
100 wloronaOwwalSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
10MSsvdlnaOvsvalSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
2∉ eL@r,-wloroCwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX y
2¢ ଖ୍ୟେଫିr,-wloroCwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX y
2¢ 0D,-wloroOv/Snol	pc12LR	pc2Lp	ρφ7Κρ	QyX у
2@ 0D,QSsvdlOv/Snol	pc12LR	pc2Lp	ρφ7Κρ	QyX у
2¢ @,n,sroCwSnol	1d_pR	5фр	р Ф / р	QyX у
2e/ @D,n,srosol) SnS	pc12LR	pc2Lp	ρφ7Κρ	QyX у
2e40D,-wloroCwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX у
2e4@D,n,srosol)SnS	pc12LR	pc2Lp	ρφ7Κρ	QyX у
200 wloronaOwwalSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
200 włoroCwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX у
20MSsvdlØe40,n,sroCwSnol	1œpR	2фр	po42p	QyX y
20MSsvdInaOvsvalSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
200/ISsvdICvvSnol xo00 rSnolg	pc12LR	pc2Lp	ρφ7Κρ	QyX y
20N,sroan,I,nS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
20N,sroCwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX y
5z/00/ISswdlOwSnolxCzQ00rSmolg	pd_ppR	1фр	pc51p	QyX y
5e500,-wloro]SnT,i,nS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
5 0 N,sroan,I,nS	pc2LpR	pd_pp	pc1Lp	QyX y
/ @BroQoOvSndl@vSndlSsvSr	pc12LR	pc2Lp	ρφ7Κρ	QyX y
/ OD wloro (35 OQ) Savdl OwSnol	pc12LR	pc2Lp	ρφ7Κρ	QyX y
/ @woroan,I,nS	pc2LpR	pd_pp	pc1Lp	QyX y
/ OD wloroCwSndl@wSndlSawSr	pc12LR	pc2Lp	ρφ7Κρ	QyX у
/ 🗛,sroan,I,nS	1d_pR	5фр	р Ф / р	QyX у
/ ON,sroCwSnol	pd_ppR	1фр	pc51p	QyX y
E-SnaOwewSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
E-SnaOwewdISnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
En,I,nS	1œpR	2фр	po42p	QyX y
Enswra-SnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
ETo] SnTSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y
- BSnToxagEnswra-SnS	pc12LR	pc2Lp	рф7Кр	QyX y
BSnTo[a&drSnS	pc12LR	pc2Lp	рф7Кр	QyX y
BSnTo[] 8AI) oranswSnS	pc12LR	pc2Lp	ρφ7Κρ	QyX y

Ur,nsDas: p5xp/ X2p14 1p:2L:59EM

6G6 Norsw EQSr,-a In-c

-

2pp WSnosUoooSTDr,vSEn-woraySeE. 9LL1K t9p7d_42c25/5f9p7d_41d_5p1 (((c) nomynoe-oQ

Method Blank

Blank ID: MB for HBN 1729547 [VVVX6/ 95/ 8 Blank 3a] ID: 15157L2 Masr,t:60,1X601,i xird(S,ywsg

b 0 for 6 aQQSm 114p74Lpp1e114p74Lpp2e114p74Lpp5e114p74Lpp/

h Sm) Ism] d SW8270D

<u>h Sm) Ism</u>	3u b X 0 3	D3	Dn m	
	000700	<u>D0</u>	<u>Rn,sm</u>	
pc12LR	p&Lp	рф7Кр	QyX y	
pc12LR	p&Lp	рф7Кр	QyX y	
po7LpR	1d_p	pď 7p	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	ρφ7Κρ	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc2LpR	pd_pp	pclLp	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc5LpR	рс7рр	pc2pp	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	p&Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	p&Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	pc2Lp	рф7Кр	QyX y	
pc12LR	p&Lp	рф7Кр	QyX y	
1œpR	2фр	pc42p	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
pc12LR	p&Lp	ρφ7Κρ	QyX y	
9/ c1	5LCI2L		&	
7Ko7				
4LdK	5LO 1L		&	
	pcf2LR pc7LpR pcf2LR pcf2LR	pcfl2LR pd2Lp pcf2LR pd2Lp <td>pd2LR$p2Lp$$pq7Kp$$pd7LpR$$1d_p$$pd7p$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$p2Lp$$pq7Kp$$pd2LR$$pd2Lp$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$$pd2p$$pq7Kp$$pd2LR$<t< td=""><td>pd2LR pd2Lp pq7Kp QyX y pd7LpR 1d.p pd7p QyX y pd2LR pd2Lp pq7Kp QyX y pd2LR pd</td></t<></td>	pd2LR $p2Lp$ $pq7Kp$ $pd7LpR$ $1d_p$ $pd7p$ $pd2LR$ $p2Lp$ $pq7Kp$ $pd2LR$ $pd2Lp$ $pq7Kp$ $pd2LR$ $pd2p$ $pq7Kp$ $pd2LR$ <t< td=""><td>pd2LR pd2Lp pq7Kp QyX y pd7LpR 1d.p pd7p QyX y pd2LR pd2Lp pq7Kp QyX y pd2LR pd</td></t<>	pd2LR pd2Lp pq7Kp QyX y pd7LpR 1d.p pd7p QyX y pd2LR pd2Lp pq7Kp QyX y pd2LR pd

Ur,nsDasS: p5xp/ X2p14 1p:2L:59EM

6G6 Norsw EQSr,-a In-c

-

2pp WSnosUoooSTDr,vSEn-woraySeE. 9LL1K t9p7d_42c25/5f9p7d_41d_5p1 (((c) nomynoe-oQ

Blank ID: MB for HBN 1729547 [VVVX5/ 95/ 8 Blank 3a] ID: 15157L2 0 for 6aQGSm 14p74Lpp1e114p74Lpp2e114p74Lpp5e114p74Lpp/		Masr,t∶6o,lX6ol,i xird(S,ywsg					
Sm) Ism] d SW8270D							
a <u>raQSS5r</u> sro]SnTSnSOLxm)rrg vSnolO4xm)rrg SrOvvSndlO1/xm)rrg	<u>h Sm) Ism</u> 71c2 71c 1p1	<u>3u b X0 3 D3</u> 570 22 550 22 L/ 0 27	<u>Rn.sm</u> & & &				
Enalds-al Bas-w. VM6919L		UrSC Bas w. VVV5/					
Enaldş- al MSsvoi : 6 WK27p Innsr) QSns HU 4K9pX2975 Enaldnsr D6 H Enaldş- al DasSXP,QS: 2X2/ X	66E	UrSC MS9xoi: 6 W5L UrSC DasSXP,QS:2% UrSC In,sal Ws5%olc UrSC Ft sra-s %ol: 1	2/ 3 2p14 K:57:pLEM 22d_y				

Ur,nsDasS: p5xp/ X2p14 1p:2L:59EM

-

Blank Spike ID: LCS for HBN 1160765 [XXX34934] Blank Spike Lab ID: 1313753 Date Analyzed: 02/24/2016 18:52

Matrix: Soil/Solid (dry weight)

QC for Samples:

1160765001, 1160765002, 1160765003, 1160765004

Results by SW8270D

Results by SW6270D	B	lank Spike	(ma/Ka)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
1,2,4-Trichlorobenzene	4.44	3.47	78	(34-118)
1,2-Dichlorobenzene	4.44	3.04	68	(33-117)
1,3-Dichlorobenzene	4.44	3.03	68	(30-115)
1,4-Dichlorobenzene	4.44	3.06	69	(31-115)
1-Chloronaphthalene	1.78	1.57	89	(48-115)
1-Methylnaphthalene	4.44	3.70	83	(40-119)
2,4,5-Trichlorophenol	4.44	4.48	101	(41-124)
2,4,6-Trichlorophenol	4.44	4.24	96	(39-126)
2,4-Dichlorophenol	4.44	3.70	83	(40-122)
2,4-Dimethylphenol	4.44	3.55	80	(30-127)
2,4-Dinitrophenol	8	8.70	109	(62-113)
2,4-Dinitrotoluene	4.44	4.37	98	(48-126)
2,6-Dichlorophenol	1.78	1.51	85	(41-117)
2,6-Dinitrotoluene	4.44	4.14	93	(46-124)
2-Chloronaphthalene	4.44	3.92	88	(41-114)
2-Chlorophenol	4.44	3.18	72	(34-121)
2-Methyl-4,6-dinitrophenol	8	8.90	111	(29-132)
2-Methylnaphthalene	4.44	3.58	81	(38-122)
2-Methylphenol (o-Cresol)	4.44	3.36	76	(32-122)
2-Nitroaniline	4.44	4.68	105	(44-127)
2-Nitrophenol	4.44	3.83	86	(36-123)
3&4-Methylphenol (p&m-Cresol)	6.22	5.43	87	(34-119)
3,3-Dichlorobenzidine	4.44	4.16	94	(22-121)
3-Nitroaniline	4.44	4.50	101	(33-119)
4-Bromophenyl-phenylether	4.44	4.46	100	(46-124)
4-Chloro-3-methylphenol	4.44	4.02	90	(45-122)
4-Chloroaniline	4.44	3.52	79	(17-106)
4-Chlorophenyl-phenylether	4.44	4.15	93	(45-121)
4-Nitroaniline	4.44	4.55	102	(77-120)
4-Nitrophenol	6.22	6.60	106	(30-132)
Acenaphthene	4.44	4.12	93	(40-123)
Acenaphthylene	4.44	4.08	92	(32-132)
Aniline	4.44	2.46	55	(24-89)
Anthracene	4.44	4.17	94	(47-123)

Print Date: 03/04/2016 10:25:41AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1160765 [XXX34934] Blank Spike Lab ID: 1313753 Date Analyzed: 02/24/2016 18:52

Matrix: Soil/Solid (dry weight)

QC for Samples:

1160765001, 1160765002, 1160765003, 1160765004

Results by SW8270D

	E	lank Spike	(mg/Kg)	
Parameter	Spike	Result	Rec (%)	CL
Azobenzene	4.44	4.53	102	(39-125)
Benzo(a)Anthracene	4.44	4.64	104	(49-126)
Benzo[a]pyrene	4.44	4.50	101	(45-129)
Benzo[b]Fluoranthene	4.44	4.96	112	(45-132)
Benzo[g,h,i]perylene	4.44	4.67	105	(43-134)
Benzo[k]fluoranthene	4.44	4.86	109	(47-132)
Benzoic acid	6.22	6.20	100	(53-124)
Benzyl alcohol	4.44	3.37	76	(29-122)
Bis(2chloro1methylethyl)Ether	4.44	3.28	74	(33-131)
Bis(2-Chloroethoxy)methane	4.44	3.76	85	(36-121)
Bis(2-Chloroethyl)ether	4.44	2.90	65	(31-120)
bis(2-Ethylhexyl)phthalate	4.44	4.96	112	(51-133)
Butylbenzylphthalate	4.44	4.91	110	(48-132)
Carbazole	4.44	4.65	105	(50-123)
Chrysene	4.44	4.91	110	(50-124)
Dibenzo[a,h]anthracene	4.44	4.76	107	(45-134)
Dibenzofuran	4.44	4.09	92	(44-120)
Diethylphthalate	4.44	4.25	96	(50-124)
Dimethylphthalate	4.44	4.21	95	(48-124)
Di-n-butylphthalate	4.44	4.46	100	(51-128)
di-n-Octylphthalate	4.44	4.96	112	(45-140)
Fluoranthene	4.44	4.36	98	(50-127)
Fluorene	4.44	4.18	94	(43-125)
Hexachlorobenzene	4.44	4.43	100	(45-122)
Hexachlorobutadiene	4.44	3.69	83	(32-123)
Hexachlorocyclopentadiene	4.44	3.80	85	(48-97)
Hexachloroethane	4.44	2.93	66	(28-117)
Indeno[1,2,3-c,d] pyrene	4.44	4.44	100	(45-133)
Isophorone	4.44	3.62	81	(30-122)
Naphthalene	4.44	3.45	78	(35-123)
Nitrobenzene	4.44	3.64	82	(34-122)
N-Nitrosodimethylamine	4.44	2.84	64	(23-120)
N-Nitroso-di-n-propylamine	4.44	3.60	81	(36-120)
N-Nitrosodiphenylamine	4.44	3.61	81	(38-127)

Print Date: 03/04/2016 10:25:41AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1160765 [XXX34934] Blank Spike Lab ID: 1313753 Date Analyzed: 02/24/2016 18:52

Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

Results by SW8270D

	E	lank Spike	(mg/Kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Pentachlorophenol	6.22	6.64	107	(25-133)
Phenanthrene	4.44	4.35	98	(50-121)
Phenol	4.44	3.30	74	(34-121)
Pyrene	4.44	4.55	102	(47-127)
Surrogates				
2,4,6-Tribromophenol (surr)	8.89	108	108	(35-125)
2-Fluorobiphenyl (surr)	4.44	85.5	86	(44-115)
2-Fluorophenol (surr)	8.89	66.5	67	(35-115)
Nitrobenzene-d5 (surr)	4.44	81.3	81	(37-122)
Phenol-d6 (surr)	8.89	74	74	(33-122)
Terphenyl-d14 (surr)	4.44	109	109	(54-127)

Batch Information

Analytical Batch: XMS9195 Analytical Method: SW8270D Instrument: HP 6890/5973 SSA Analyst: DSH Prep Batch: XXX34934 Prep Method: SW3550C Prep Date/Time: 02/24/2016 08:37 Spike Init Wt./Vol.: 4.44 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/04/2016 10:25:41AM

Original Sample ID: 1160731001 MS Sample ID: 1313754 MS MSD Sample ID: 1313755 MSD Analysis Date: 02/26/2016 19:48 Analysis Date: 02/26/2016 20:05 Analysis Date: 02/26/2016 20:22 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD (
,2,4-Trichlorobenzene	1.33U	4.69	4.43	95	4.71	4.27	91	34-118	3.90	(< 20
,2-Dichlorobenzene	1.33U	4.69	4.22	90	4.71	3.95	84	33-117	6.50	(< 20
3-Dichlorobenzene	1.33U	4.69	4.07	87	4.71	3.80	81	30-115	6.70	(< 20
,4-Dichlorobenzene	1.33U	4.69	4.22	90	4.71	4.04	86	31-115	4.60	(< 20
Chloronaphthalene	1.33U	1.87	2.09	111	1.88	1.50	79	48-115	33.10	* (< 20
Methylnaphthalene	1.33U	4.69	4.59	98	4.71	4.43	94	40-119	3.50	(< 20
4,5-Trichlorophenol	1.33U	4.69	4.11	88	4.71	4.07	86	41-124	1.10	(< 20
4,6-Trichlorophenol	1.33U	4.69	4.66	99	4.71	4.28	91	39-126	8.40	(< 20
4-Dichlorophenol	1.33U	4.69	4.25	91	4.71	4.07	86	40-122	4.30	(< 20
4-Dimethylphenol	1.33U	4.69	4.13	88	4.71	3.61	77	30-127	13.70	(< 20
4-Dinitrophenol	16.0U	8.44	8.00U	0 *	8.48	8.00U	0 *	62-113	0.00	(< 20
4-Dinitrotoluene	1.33U	4.69	4.62	99	4.71	4.49	95	48-126	3.00	(< 20
6-Dichlorophenol	1.33U	1.87	1.80	96	1.88	1.72	92	41-117	4.20	(< 20
6-Dinitrotoluene	1.33U	4.69	4.89	104	4.71	4.56	97	46-124	6.80	(< 20
Chloronaphthalene	1.33U	4.69	4.53	97	4.71	4.66	99	41-114	2.70	(< 20
Chlorophenol	1.33U	4.69	4.14	88	4.71	3.93	83	34-121	5.40	(< 20
Methyl-4,6-dinitrophenol	10.6U	8.44	5.91J	70	8.48	4.77J	56	29-132	21.40	* (< 20
Methylnaphthalene	1.33U	4.69	4.37	93	4.71	4.24	90	38-122	3.10	(< 20
Methylphenol (o-Cresol)	1.33U	4.69	4.21	90	4.71	3.88	82	32-122	8.10	(< 20
Nitroaniline	1.33U	4.69	5.61	119	4.71	5.37	114	44-127	4.20	(< 20
Nitrophenol	1.33U	4.69	5.25	112	4.71	4.88	103	36-123	7.50	(< 20
4-Methylphenol (p&m-Cresol)	5.32U	6.57	6.66	102	6.60	6.25	95	34-119	6.40	(< 20
3-Dichlorobenzidine	1.33U	4.69	4.18	89	4.71	4.19	89	22-121	0.24	(< 20
Nitroaniline	2.66U	4.69	4.65	99	4.71	4.47	95	33-119	4.00	(< 20
Bromophenyl-phenylether	1.33U	4.69	5.12	109	4.71	4.74	100	46-124	8.00	(< 20
Chloro-3-methylphenol	1.33U	4.69	4.08	87	4.71	3.95	84	45-122	3.30	(< 20
Chloroaniline	2.66U	4.69	4.09	87	4.71	4.00	85	17-106	2.00	(< 20
Chlorophenyl-phenylether	1.33U	4.69	4.65	99	4.71	4.56	97	45-121	2.00	(< 20
Nitroaniline	16.0U	4.69	8.00U	0 *	4.71	8.00U	0 *	77-120	0.00	(< 20
Nitrophenol	5.32U	6.57	4.82J	73	6.60	4.79J	73	30-132	0.56	(< 20
enaphthene	1.33U	4.69	4.92	105	4.71	4.69	100	40-123	4.80	(< 20
enaphthylene	1.33U	4.69	4.87	104	4.71	4.68	99	32-132	3.70	(< 20
illine	10.6U	4.69	3.27J	70	4.71	5.30U	0 *	24-89	0.00	(< 20
nthracene	1.33U	4.69	4.83	103	4.71	4.66	99	47-123	3.60	(< 20
obenzene	1.33U	4.69	5.67	121	4.71	5.04	107	39-125	11.80	(< 20
enzo(a)Anthracene	1.33U	4.69	4.95	105	4.71	4.83	103	49-126	2.30	(< 20
enzo[a]pyrene	1.33U	4.69	4.85	103	4.71	4.57	97	45-129	6.00	(< 20

Print Date: 03/04/2016 10:25:41AM

SGS North America Inc.

Original Sample ID: 1160731001 MS Sample ID: 1313754 MS MSD Sample ID: 1313755 MSD Analysis Date: 02/26/2016 19:48 Analysis Date: 02/26/2016 20:05 Analysis Date: 02/26/2016 20:22 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

		Mat	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>arameter</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD (
enzo[b]Fluoranthene	1.33U	4.69	4.91	105	4.71	4.70	100	45-132	4.20	(< 20)
enzo[g,h,i]perylene	1.33U	4.69	5.13	109	4.71	5.05	107	43-134	1.70	(< 20
enzo[k]fluoranthene	1.33U	4.69	5.08	108	4.71	4.81	102	47-132	5.50	(< 20
enzoic acid	7.98U	6.57	3.99U	0 *	6.60	3.99U	0 *	53-124	0.00	(< 20
enzyl alcohol	1.33U	4.69	4.36	93	4.71	4.02	85	29-122	8.40	(< 20
is(2chloro1methylethyl)Ether	1.33U	4.69	4.52	96	4.71	4.22	90	33-131	6.90	(< 20
is(2-Chloroethoxy)methane	1.33U	4.69	4.91	105	4.71	4.78	101	36-121	2.70	(< 20
is(2-Chloroethyl)ether	1.33U	4.69	3.97	85	4.71	3.79	80	31-120	4.80	(< 20
s(2-Ethylhexyl)phthalate	1.33U	4.69	5.60	119	4.71	5.80	123	51-133	3.50	(< 20
utylbenzylphthalate	1.33U	4.69	5.76	123	4.71	5.86	124	48-132	1.70	(< 20
arbazole	1.33U	4.69	5.13	109	4.71	5.20	110	50-123	1.30	(< 20
hrysene	1.33U	4.69	5.23	112	4.71	5.03	107	50-124	4.00	(< 20
ibenzo[a,h]anthracene	1.33U	4.69	4.92	105	4.71	5.01	106	45-134	1.70	(< 20
ibenzofuran	1.33U	4.69	4.75	101	4.71	4.57	97	44-120	3.50	(< 20
iethylphthalate	1.33U	4.69	5.19	111	4.71	5.19	110	50-124	0.10	(< 20
imethylphthalate	1.33U	4.69	5.24	112	4.71	5.16	109	48-124	1.70	(< 20
i-n-butylphthalate	1.33U	4.69	5.33	114	4.71	5.45	116	51-128	2.20	(< 20
-n-Octylphthalate	2.66U	4.69	5.68	121	4.71	5.73	122	45-140	0.67	(< 20
luoranthene	1.33U	4.69	4.25	91	4.71	4.57	97	50-127	7.30	(< 20
luorene	1.33U	4.69	4.63	99	4.71	4.79	102	43-125	3.30	(< 20
exachlorobenzene	1.33U	4.69	4.98	106	4.71	4.64	99	45-122	7.10	(< 20
lexachlorobutadiene	1.33U	4.69	4.81	103	4.71	4.48	95	32-123	7.10	(< 20
exachlorocyclopentadiene	3.73U	4.69	3.09J	66	4.71	2.41J	51	48-97	24.40	* (< 20
lexachloroethane	1.33U	4.69	3.93	84	4.71	3.69	78	28-117	6.30	(< 20
ideno[1,2,3-c,d] pyrene	1.33U	4.69	4.69	100	4.71	4.70	100	45-133	0.26	(< 20
sophorone	1.33U	4.69	4.69	100	4.71	4.45	94	30-122	5.40	(< 20
aphthalene	1.33U	4.69	4.61	98	4.71	4.45	94	35-123	3.50	(< 20
itrobenzene	1.33U	4.69	4.79	102	4.71	4.60	98	34-122	4.10	(< 20
-Nitrosodimethylamine	1.33U	4.69	3.91	83	4.71	3.69	78	23-120	5.80	(< 20
-Nitroso-di-n-propylamine	1.33U	4.69	4.80	102	4.71	4.36	93	36-120	9.60	(< 20
-Nitrosodiphenylamine	1.33U	4.69	4.57	98	4.71	4.11	87	38-127	10.60	(< 20
entachlorophenol	10.6U	6.57	5.33J	81	6.60	5.19J	79	25-133	2.50	(< 20
henanthrene	1.33U	4.69	5.02	107	4.71	4.87	103	50-121	3.10	(< 20
henol	1.33U	4.69	4.21	90	4.71	3.96	84	34-121	5.90	(< 20
yrene	1.33U	4.69	5.02	107	4.71	4.90	104	47-127	2.40	(< 20
urrogates										
,4,6-Tribromophenol (surr)		9.38	9.61	103	9.43	8.97	95	35-125	7.00	

Print Date: 03/04/2016 10:25:41AM

SGS North America Inc.

Original Sample ID: 1160731001 MS Sample ID: 1313754 MS MSD Sample ID: 1313755 MSD Analysis Date: Analysis Date: 02/26/2016 20:05 Analysis Date: 02/26/2016 20:22 Matrix: Soil/Solid (dry weight)

QC for Samples: 1160765001, 1160765002, 1160765003, 1160765004

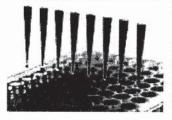
Results by SW8270D Matrix Spike (%) Spike Duplicate (%) Parameter Sample Spike Result Rec (%) <u>Spike</u> Result <u>Rec (%)</u> CL RPD (%) RPD CL 2-Fluorobiphenyl (surr) 4.69 4.83 103 4.71 4.60 98 44-115 5.00 2-Fluorophenol (surr) 9.38 8.03 9.43 7.88 35-115 2.00 86 84 Nitrobenzene-d5 (surr) 4.65 99 4.71 37-122 4.69 4.37 93 6.40 Phenol-d6 (surr) 9.38 8.46 90 9.43 7.99 85 33-122 5.80 Terphenyl-d14 (surr) 4.69 5.62 120 4.71 5.49 116 54-127 2.40

Batch Information

Analytical Batch: XMS9197 Analytical Method: SW8270D Instrument: HP 6890/5973 SSA Analyst: DSH Analytical Date/Time: 2/26/2016 8:05:00PM Prep Batch: XXX34934 Prep Method: Sonication Extraction Soil SW8270 Prep Date/Time: 2/24/2016 8:37:05AM Prep Initial Wt./Vol.: 22.95g Prep Extract Vol: 5.00mL

Print Date: 03/04/2016 10:25:41AM

Ede, Stephen (Anchorage)


From: Sent: To: Subject: Attachments: Shumway, Julie (Anchorage) Monday, February 22, 2016 7:54 AM Ede, Stephen (Anchorage) FW: Lab # 1160765 Sample Analysis Scanned from a Xerox Multifunction Device.pdf

Kindest regards,

Julie Shumway Environment, Health & Safety Business Development

Mobile: +1 907 351 4693 Direct: +1 907 550 3215 Office: +1 907 562 2343 E-mail: julie.shumway@sgs.com

SGS ACQUIRES THE ASSETS OF ACCUTEST LABORATORIES JANUARY 04, 2016

SGS is pleased to announce the acquisition of the assets of Accutest Laboratories. This combination will operate under the trade name SGS Accutest and create one of the leading environmental testing laboratory businesses in the USA. Read more.

From: Chris Fell [mailto:CFell@rmconsult.com]
Sent: Monday, February 22, 2016 7:52 AM
To: Shumway, Julie (Anchorage)
Cc: Ede, Stephen (Anchorage); Bob Pintner; Kristi McLean
Subject: Lab # 1160765 Sample Analysis

Julie,

Please hold analysis on the following samples (Annotated COC attached):

NIN16-DP NIN16-EA NIN16-SO NIN16-NO

Please let me know if extraction was started.

Thanks,

Christopher D. Fell, C.P.G. Senior Geologist

R&M CONSULTANTS, INC. | 9101 Vanguard Drive | Anchorage, Alaska 99507 907.646.9655 direct | 907.229.1617 mobile

Facebook | LinkedIn | rmconsult.com

Innovating Today for Alaska's Tomorrow

	,	
7	5	
Ì		
	7	

SGS North America Inc. CHAIN OF CUSTODY RECORD

Locations Nationwide ka Maryland Jersey New York h Carolina Indiana t Virgina Kentucky

								4				www.us.sgs.com	com	I
	CLIENT: R&M CONSULTER	¥.				Omi	Omissions:	may d	sections 1 - nay delay the	istructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	e filled o analvsis	., ۴		
	CONTACT: Chris Fell	NE NO: 6	PHONE NO: 646.965	655	Section 3	n 3				Preservative			Page of	
roiton		rect/ D/ MIT#:			* U	nwon	2 61 2 61 8 19 11 9 10 11 9 10	Joh Jot						1
-	REPORTS TO: E-MAIL CLICS Fell CFel		@m.consult	H, com	oz⊢			40						
	INVOICE TO: QUOTE REM CONSULTENTS P.O.#:	#	2010.08	00	< - z	GRAB Multi	78	17						
-	for lab use	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шко	Incre- mental Solis	201	ワ' 54/ 5124W つのから					REMARKS/	
	WA-B HMRIG-DP	2/18/15	0855	1105	2	5	X	X						T
		-	0855		2	0	X	X						Τ
	2/A-15/HMK16-EA		2101		N	, U		X						
ectio	MINIG-		1549		J.N.						_			
-	WINIG-EA		1549		20									
-	2A-B NINI6-50		1621		N			K						1
-	NINIG-NO	, A	165H		2	5	X	X						Т
-	9.A- NW8-73-29	2/3/16			-	ς Ω	X						Trin Blank	Т
-														Т
	Relinguisheedsyrath	Date	Time	Received By:				Sect	Section 4	DOD Project? Yes	Yes Mo	Data Deliver	Data Deliverable Requirements:	1
1		2/19/16	10:30	/	(Cool	Cooler ID:			and	te N	
29	Reliedurshed By: (2)	Date	Time	Received By:	h			Reque	sted Tur	Requested Turnaround Time and/or Special Instructions	Ind/or Spec	ial Instructions		T
					100 Aug				, t		the last	CON CON	<u>_</u>	
	Relinquished By: (3)	Date	Time	Received By:					-					Т
1.8	Jolinanishad Bur (A)							Temp	Temp Blank °C:	0 * D	6	Chain of Cu	Chain of Custody Seal: (Circle)	
7 of 79		a/ig/le	1030	Keceived For Laboratory By:	Laborato	и ву:		(See	or	or Ambient [] (See attached Samula Receint Form)		INTACT B	INTACT BROKEN ABSENT	\cap
	 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (91 	18 Tel: (907) 405 Tel: (910	562-2343 Fax 350-1903 Fa	:: (907) 661-5301 ::: (910) 350-1557	01			http://w	WW.SQS.C	http://www.sqs.com/ferms-and-conditions	1	loop anacien	oumpre receipt Fom	21

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SAMPLE RECEIPT FORM

	-			-
Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.		\checkmark		Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			
Temperature blank compliant* (i.e., 0-6°C after CF)?				Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?		$\mathbf{\nabla}$		
If <0 °C, were all sample containers ice free?		Z	Ħ	
Cooler ID:				
Cooler ID: @ W/ Therm.ID:				
Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID:				
Cooler ID: (a) w/ Therm.ID:				
Cooler ID: (a) w/ Therm.ID:				
If samples are received <u>without</u> a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed.
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried)				
USPS Lynden AK Air Alert Courier				
\Box UPS \Box FedEx \Box RAVN \Box C&D Delivery				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
	Yes	N/A	No	
Were samples received within hold time?				Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?				<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?		Π	Ħ	
Were samples in good condition (no leaks/cracks/breakage)?		H	Ħ	
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?				Exemption permitted for metals (e.g., 200.8/6020A).
			H	Exemption permitted for metals (e.g., 200.0/0020A).
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?			H	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?			H	
Were all soil VOAs field extracted with MeOH+BFB?				
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant?			Ц	
If pH was adjusted, were bottles flagged (i.e., stickers)?		\checkmark		
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),			_	
were bottles/paperwork flagged (e.g., sticker)?		\checkmark		
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were	<u> </u>			
containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and				SRF Completed by: D.C 02/19/2016
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of <i>sample numbering/labeling completed</i> ?	1 		\exists	Peer Reviewed by:
		\checkmark		
Additional notes (if applicable):				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1160765001-A	No Preservative Required	ОК			
1160765001-B	Methanol field pres. 4 C	ОК			
1160765002-A	No Preservative Required	ОК			
1160765002-B	Methanol field pres. 4 C	ОК			
1160765003-A	No Preservative Required	ОК			
1160765003-B	Methanol field pres. 4 C	ОК			
1160765004-A	No Preservative Required	ОК			
1160765004-B	Methanol field pres. 4 C	ОК			
1160765005-A	No Preservative Required	ОК			
1160765005-B	Methanol field pres. 4 C	ОК			
1160765006-A	No Preservative Required	ОК			
1160765006-B	Methanol field pres. 4 C	ОК			
1160765007-A	No Preservative Required	ОК			
1160765007-B	Methanol field pres. 4 C	ОК			
1160765008-A	No Preservative Required	ОК			
1160765008-B	Methanol field pres. 4 C	ОК			
1160765009-A	Methanol field pres. 4 C	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.