

global environmental solutions

2017 Water Monitoring Report Happy Valley West

SLR Ref: 105.01288.17015

ADEC File Number: 330.38.049

January 2018

2017 Water Monitoring Report Happy Valley West

Prepared for:

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

This document has been prepared by SLR International Corporation. The material and data in this report were prepared under the supervision and direction of the undersigned.

Cartyler to

Christophe Venot Senior Scientist

South CRa

Scott C. Rose Principal Geologist

Reviewed and approved by:

ACR	ONYM	Sii	ii
SUN	IMARY		1
1.	INTRO		2
	1.1 1.2 1.3 1.4	Project Background Physical Setting 1.2.1 Geology 1.2.2 Hydrogeology Previous Site Investigations Project Objectives	2 3 3 4
2.	REGU	ILATORY CRITERIA	6
	2.1 2.2	Groundwater	
3.	FIELD	ACTIVITIES	8
	3.1	Groundwater Monitoring	8 8
	3.2	Surface Water Monitoring 1 3.2.1 Sampling Procedures 3.2.2 Analytical Sampling Program 3.2.3 Shovel Sheen Test Procedures	9 0 0
	3.3	Sample Handling, Documentation, and Chain of Custody1	1
	3.4 3.5 3.6	Quality Assurance and Quality Control 1 Work Plan Deviations 1 Waste Management 1	1
4.	RESU	LTS1	2
	4.1 4.2 4.3 4.4 4.5	Groundwater Levels and Site Observations	2 3 3
5.	CONC	LUSIONS AND RECOMMENDATIONS14	4
6.	REFE	RENCES1	5

CONTENTS

FIGURES

Figure 1	Site Location Map
Figure 2	Site Detail

CONTENTS (CONTINUED)

TABLES

- Table 1
 Monitoring Well Groundwater Depths
- Table 2Groundwater Analytical Results
- Table 3
 Groundwater Petroleum Hydrocarbon VOC Results
- Table 4
 Surface Water GRO, DRO, and BTEX Analytical Results
- Table 5Surface Water PAH Analytical Results

APPENDICES

- Appendix A Photograph Log
- Appendix B Field Logbook
- Appendix C Field Forms
- Appendix D SLR Quality Assurance Review, ADEC Laboratory Data Review Checklist, and Laboratory Analytical Results

ACRONYMS

°C	degrees Celsius
±	plus or minus
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
ADNR	Alaska Department of Natural Resources
Alyeska	Alyeska Pipeline Service Company
BLM	Bureau of Land Management
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	chain of custody
DRO	diesel range organics
FCMR	flow control management reservoir
ft	feet
GRO	gasoline range organics
LOD	limit of detection
mg/L	milligrams per liter
ND	not detected
PAH	polycyclic aromatic hydrocarbon
QA	quality assurance
QAR	quality assurance review
QC	quality control
SGS	SGS North America, Inc.
SIM	selective ion monitoring
SLR	SLR International Corporation
ТАН	total aromatic hydrocarbon
TAqH	total aqueous hydrocarbon
USEPA	U.S. Environmental Protection Agency
VOC	volatile organic compound

SLR International Corporation (SLR) conducted one groundwater and surface water sampling event at Happy Valley West on August 1, 2017 on behalf of Alyeska Pipeline Service Company (Alyeska). The purpose of this event was to continue data collection for evaluation of the natural attenuation of dissolved petroleum hydrocarbons in groundwater and to monitor impacts to surface water in the adjacent Happy Valley Creek.

Groundwater samples were collected from three existing wells and surface water samples were collected at two locations. Groundwater analytical results indicated that none of the target analytes were present above Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels. The continued attenuation of petroleum hydrocarbons is indicated by declining or low concentrations of diesel range organics; the absence of benzene, toluene, ethylbenzene, and xylenes (BTEX) and gasoline range organic detections; and very limited detections of polynuclear aromatic hydrocarbons (PAHs) well below applicable cleanup levels. Additionally, analysis of 16 petroleum hydrocarbon-derived volatile organic compounds was completed for well Sentry-1R as requested by ADEC; no detections were reported.

Surface water samples were collected from Happy Valley Creek located adjacent to the historical drainage discharge and downslope from the remaining soil contamination on the pad. Surface water analytical results for sample locations WS-2R and WS-10R demonstrate a third year of non-detect BTEX and PAH concentrations and the resulting total aromatic hydrocarbons and total aqueous hydrocarbons concentrations are well below applicable water quality standards. Shovel sheen testing was also conducted in the vicinity of the surface water sample locations; no sheen was observed.

Based on the results of sampling between 2014 and 2017, SLR recommends that Alyeska request a status of Cleanup Complete for the Happy Valley West site. The results indicate the persistence of low to below-detection hydrocarbon concentrations in groundwater with no complete exposure pathways.

SLR International Corporation (SLR) conducted a single groundwater and surface water monitoring event at Happy Valley West in 2017 on behalf of Alyeska Pipeline Service Company (Alyeska). The purpose of the monitoring event was to assess the natural attenuation of dissolved petroleum hydrocarbons in groundwater downgradient of residual soil contamination on the Happy Valley pad and to monitor the water quality in the adjacent Happy Valley Creek. This report describes site activities including project approach, sampling methodology, and analytical sample results.

Project activities were conducted in accordance with the 2017 Water Monitoring Work Plan, Happy Valley West (Work Plan; SLR, 2017b).

1.1 **PROJECT BACKGROUND**

Happy Valley Camp was one of the 19 original construction camps used during the construction of the Trans Alaska Pipeline System. The camp was located north of the Brooks Range, on the Arctic Coastal Plain, between Pump Stations 2 and 3 at Milepost 336 of the Dalton Highway (Pipeline Milepost 82), (Figure 1). The historical camp facilities were divided into two locations bisected by the Dalton Highway: Happy Valley East and Happy Valley West.

Happy Valley West was constructed in 1970 by Alyeska for use as a pipeline construction camp. Alyeska operated the Happy Valley Camp under a temporary land-use permit (number F-20436) from the U.S. Department of the Interior, Bureau of Land Management (BLM). Prior to the BLM land-use permit's expiration on September 27, 1984, Happy Valley Camp was restored by a reclamation effort approved through a formal Greensheet process. The BLM then conveyed the land to the State of Alaska. The land is presently under the jurisdiction of the Alaska Department of Natural Resources (ADNR), Division of Mining, Land, and Water.

During pipeline construction, the camp held facilities for housing personnel, storing fuel, maintaining vehicles, and stockpiling material. Fuel was stored in fuel bladders or steel tanks within secondary containment areas. Waste water was treated at a chemical-physical sewage plant and discharged into an unlined flow control management reservoir (FCMR). Solid waste was either incinerated or buried at a permitted disposal site. Drinking water for Happy Valley West was obtained from a well that was installed in the Happy Valley Creek alluvium.

The Happy Valley West land has functioned as a material and equipment storage area and as a temporary work camp by different parties under permit to ADNR since the dismantling of the original facilities. The area has also been used as an unofficial camping area by the public.

Alyeska records identify four releases, totaling 16,800 gallons of diesel fuel, at Happy Valley West during Alyeska's use of the property. The documented releases are as follows:

- **1970:** 6,000 gallons of diesel fuel was spilled at an equipment parking area;
- **June 1972:** 1,000 gallons of diesel fuel was spilled between the fuel bladder farm and a utility building;

- May 1973: 8,000 gallons of diesel fuel was spilled in the area of the fuel bladder farm; and,
- April 1975: 1,800 gallons of diesel fuel was spilled at a day tank.

1.2 PHYSICAL SETTING

The Arctic Coastal Plain is treeless and rises gradually from sea level to the adjacent foothills located approximately 20 miles to the south of Happy Valley Camp. The region is underlain by thick permafrost reaching to a depth of up to 2,500 feet (ft) below ground surface. Happy Valley West is located in a transitional zone between the Arctic Coastal Plains and the Foothills, an area of well-developed drainages with coarse sediments as in Happy Valley Creek. The sediments in the area of Happy Valley West are Quaternary alluvial deposits (Mull and Adams, 1989). Shallow suprapermafrost groundwater that is frozen seasonally is present beneath the former camp, although Happy Valley Creek may flow well into the winter months.

Topographically, the northern portion of the Happy Valley West pad is relatively flat and was historically used for shop buildings, equipment parking, and the fuel bladder farm. The southern part of the pad is partially on a hillside, with two constructed terraces where the living quarters had been located. The portion of the pad adjacent to Happy Valley Creek is topographically lower by approximately 5 ft than the rest of the pad. The camp FCMR, which received the waste water effluent, was constructed in this area. The pad area on which buildings, shops, and living quarters were located is collectively referred to as the upper pad, and the pad adjacent to Happy Valley Creek on which the FCMR was built is referred to as the lower pad. There are no structures remaining on the pad from the historical pipeline construction camp.

1.2.1 GEOLOGY

The former camp pad consists of fill material that varied in thickness from 6 to 8 ft, with the thickest areas near the transition between the upper and lower pad. The sediments on the pad vary in grain size from cobbles to silt, with layers of organic material interspaced. The underlying sediments are typical of braided or meandering stream deposits. Typically, fine-grained and organic material is predominant in the upslope regions underlying the upper pad, grading to either gravel fill material or coarse streambed sediments in the area closer to Happy Valley Creek (SLR, 2003).

1.2.2 HYDROGEOLOGY

Groundwater is not continuous in the upslope area and the saturated zone thickness in the central area of the Happy Valley West pad is variable, ranging from 2 to 4 ft. A 1969 air photograph of the area indicates a drainage system was present on the northern part of the pad in the vicinity of decommissioned monitoring well MW-21 and extended down to Happy Valley Creek in the vicinity former surface water sampling point WS-10 (Figure 2). This drainage system was backfilled during pad construction.

A site investigation conducted in 2003 indicated a groundwater flow direction to the northnorthwest with a gradient varying between 0.025 and 0.039 ft per ft (SLR, 2003). In 2012, groundwater and surface water level measurements indicted that Happy Valley Creek is a gaining stream (i.e., recharged by groundwater from the gravel pad to the stream) from June to July, and a losing stream (i.e., net flow from the stream to groundwater) from August to late September (SLR, 2013).

1.3 **PREVIOUS SITE INVESTIGATIONS**

Previous site investigations, monitoring, and cleanup efforts conducted at Happy Valley West are summarized below:

- **1995:** An environmental site assessment using a non-intrusive electromagnetic survey was conducted and indications of contamination including soil discoloration, odor, stressed vegetation, and the presence of sheen on surface water were noted at the time of the survey (AGRA, 1995).
- **1996 1997:** Soil, groundwater, and surface water sampling was initiated in 1996, and a risk-based corrective action was conducted in 1997. Risk-based cleanup levels were developed for hydrocarbons in soil and surface water in conjunction with site assessment activities (EMCON, 1999; IT, 2000b; SLR, 2001, 2002, and 2014b).
- **1998:** Contaminated soil in two areas was removed and thermally treated, after which the excavated areas were backfilled with clean soil (Oasis Environmental, 1999).
- **2000:** An assessment of soil contamination on the upper pad identified an area of soil with elevated concentrations of diesel (IT, 2000a).
- **2001**: Source removal was completed to address seasonal surface water with total aromatic hydrocarbon (TAH) and total aqueous hydrocarbon (TAqH) concentrations exceeding Alaska Water Quality Standards (SLR, 2001).
- **2003:** An expanded site assessment characterized the area adjacent to Happy Valley Creek and the lateral extent of contamination on the upper pad. The findings were used to estimate the buffer width required for successful natural attenuation in preparation for further excavation (SLR, 2003).
- 2004: A removal action was completed to create a sufficient buffer for natural attenuation to prevent contamination from reaching Happy Valley Creek. The removal action did not remove impacted soil below the surface of Happy Valley Creek or from depths below frozen soil in the area adjacent to Happy Valley Creek (SLR, 2005). The removal action included excavation and relocation of stream bank in the area of surface water sample locations WS-02 and WS-10, now designated WS-02R and WS-10R (SLR, 2006).
- 2004 2006: Sentry wells Sentry-1, Sentry-2, and Sentry-3, were installed and sampled to monitor groundwater quality downslope of remediation trenches where Regenesis[®] Oxygen Release Compound[®] was applied in the saturated zone. Diesel range organics (DRO) exceeding the Alaska Department of Environmental Conservation (ADEC) cleanup level was found in the groundwater in the sentry wells; the likely source being contaminated soil used as backfill during the 2001 excavation (SLR, 2007).

- 2007: Replacement sentry wells, Sentry-1R, Sentry-2R, and Sentry-3R were installed further downslope (SLR, 2007). By 2007, TAH and TAqH concentrations in Happy Valley Creek no longer exceeded ADEC water quality standards, with the exception of surface water sampling point WS-3, between 2004 and 2006. WS-3 was likely located in the remnants of a historical interceptor trench excavated in the 1970s in response to one of the original releases. This depression was backfilled in 2007 (SLR, 2009).
- **2008**: Concentrations of DRO above the ADEC groundwater cleanup level were reported in sentry wells and concentrations were elevated relative to the 2007 analytical results (SLR, 2009). In discussions with ADEC in February 2009, Alyeska agreed to increase the monitoring frequency to two events during the 2009 field season (ADEC, 2009).
- **2012:** Evaluation of water levels in sentry wells and the creak indicated that the reach of Happy Valley Creek adjacent to the site indicated that it is a gaining stream in June and July and a losing stream through late September. This seasonal change in groundwater flow may cause DRO to leach from impacted soil into the groundwater (SLR, 2013).
- 2009 2013: Groundwater and surface water monitoring were completed twice a year from 2009 to 2012, then on an annual basis beginning in 2013. Exceedances of the cleanup level for DRO were reported in groundwater in at least one sentry well a year between 2009 and 2013; however, surface water TAH and TAqH concentrations remained below Alaska Water Quality Standards (SLR, 2014a).
- 2014: No exceedances were reported for groundwater samples, but the calculated TAH concentration for surface water were slightly above Alaska Water Quality Standards at both sampling locations. The calculated TAH concentrations were driven by the presence of toluene in these samples, which was attributed to blank contamination and thus considered to be biased high. SLR found hydrocarbon sheen in the vicinity of WS-10R upon disruption of the sediment (SLR, 2014b).
- 2015 2016: All groundwater analyte concentrations were below applicable ADEC cleanup levels for a third consecutive year and surface water analyte concentrations were below applicable ADEC cleanup levels or standards for a second consecutive year (SLR, 2015 and 2017a).

1.4 **PROJECT OBJECTIVES**

The objectives of monitoring activities completed at Happy Valley West in 2017 included:

- Collection of groundwater samples to monitor the dissolved petroleum hydrocarbons including historically sampled analytes and petroleum hydrocarbon volatile organic compounds (VOCs), added in 2017 as requested by ADEC;
- Collection of surface water samples to determine if impacted groundwater is migrating to Happy Valley Creek; and
- Conducting shovel sheen tests to monitor for hydrocarbons in the sediment of the stream bank.

The applicable regulatory criteria for groundwater and surface water are described in the following sections.

2.1 **GROUNDWATER**

Groundwater cleanup levels for contaminated sites are specified in Title 18 of the Alaska Administrative Code (AAC), Chapter 75, *Oil and Hazardous Substances Pollution Control* regulations as amended through March 23, 2017 (ADEC, 2017b). Although there has not been a drinking water well in use on the site since the work camp well was decommissioned, the shallow groundwater at the site, which is suprapermafrost groundwater, has not been reclassified as not being a potential drinking water source. Consequently, ADEC groundwater cleanup levels contained in 18 AAC 75.345, Table C, are applicable to this site. The cleanup levels for hydrocarbon constituents historically monitored in groundwater are as follows:

- Benzene, 0.0046 milligrams per liter (mg/L);
- Toluene, 1.1 mg/L;
- Ethylbenzene, 0.015 mg/L;
- Xylenes (total), 0.19 mg/L;
- Gasoline range organics (GRO), 2.2 mg/L; and
- DRO, 1.5 mg/L.

Cleanup levels for additional petroleum hydrocarbon-related VOCs monitored in 2017 for select wells include:

- 1,2,4-Trimethylbenzene, 0.015 mg/L;
- 1,3,5-Trimethylbenzene, 0.12 mg/L;
- Isopropylbenzene (Cumene), 0.45 mg/L;
- Methyl-t-butyl ether, 0.14 mg/L;
- Naphthalene; 0.0017 mg/L;
- n-Butylbenzene, 1.0 mg/L;
- n-Propylbenzene, 0.66 mg/L;
- sec-Butylbenzene, 2.0 mg/L;
- Styrene, 1.2 mg/L; and
- tert-Butylbenzene, 0.69 mg/L.

Cleanup levels for individual polycyclic aromatic hydrocarbon (PAH) compounds are presented in Table 1 due to the large number of congener compounds.

Historical data collected prior to 2017 was not revaluated with respect to the revised 2017 cleanup levels, although no impact on historic data is expected for this site.

2.2 SURFACE WATER

Alaska surface water criteria are outlined in 18 AAC 70, *Water Quality Standards,* amended as of February 5, 2017 (ADEC, 2017a), which identifies standards for water use classes and subclasses. For fresh water, these classes are as follows:

- (A) Water supply
 - (i) Drinking, culinary, and food processing
 - (ii) Agriculture, including irrigation and stock watering
 - (iii) Aquaculture
 - (iv) Industrial
- (B) Water recreation
 - (i) Contact recreation
 - (ii) Secondary recreation
- (C) Growth and propagation of fish, shellfish, other aquatic life, and wildlife

Without reclassifying a water body, it is appropriate to apply the most stringent water quality criteria to the water body. The fresh water uses with the most stringent water quality criteria are (A)(iii) water supply: aquaculture, and (C) growth and propagation of fish, shellfish, other aquatic life, and wildlife.

Water Quality Standards adopts by reference water quality criteria as listed in the *Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances* (ADEC, 2008). The appropriate surface water total hydrocarbon criteria are:

- TAH, 0.010 mg/L; and
- TAqH, 0.015 mg/L.

Water quality standards for individual PAHs are provided for reference in Table 5.

A single groundwater and surface water monitoring event was completed on August 1, 2017. All field activities were completed in accordance with Alyeska operating procedures and the ADEC-approved Work Plan (SLR, 2017b). Groundwater and surface water sampling was conducted in accordance with ADEC's *Field Sampling Guidance* (ADEC, 2016). Site features and the position of groundwater monitoring wells and surface water sampling locations are shown on Figure 2. A photograph log of site activities is provided as Appendix A and copies of the field logbook and field forms are provided as Appendix B and C, respectively.

3.1 GROUNDWATER MONITORING

Groundwater samples were collected from monitoring wells Sentry-1R, Sentry-2R, and Sentry-3R (Figure 2). A duplicate sample was collected from well Sentry-1R, and was designated Sentry-4R. Sample collection observations and groundwater quality parameters were recorded in the bound project field logbook provided in Appendix B and on groundwater sampling forms provided in Appendix C.

3.1.1 WELL GAUGING

Gauging of depth to groundwater in wells was conducted prior to collection of groundwater samples. All measurements were made to the nearest 0.01 ft using an electronic water level indicator or product interface probe. Depth to groundwater was measured from the top of the well casing for each well.

3.1.2 SAMPLING PROCEDURES

Monitoring wells were sampled using the low-flow sampling method which consisted of purging wells at a sufficiently low rate to maintain a drawdown of the water column less than 0.33 ft within the well casing. Wells were purged using a peristaltic pump with an adjustable flow rate connected to a flow cell with Teflon[®]-lined tubing; the flow rate was monitored and adjusted so drawdown did not exceed the 0.33 ft. threshold. Sample integrity was maintained by proper collection, handling, and documentation during transfer to the project laboratory as described in Section 3.3.

Water quality parameters were measured at regular intervals during purging and recorded on the field forms. Parameters were measured using a YSI[®] Model 556 multi-meter with flow-through cell. Purging was considered complete once water quality parameters stabilized and a drawdown of less than 0.33 ft. was maintained. The readings were considered stable when three successive discrete measurements, collected three to five minutes apart were within the criteria below for three of the following four parameters:

- pH, plus or minus (±) 0.1 standard units;
- Specific conductance, ± 3 percent microSiemens per centimeter;

- Oxidation-reduction potential, ± 10 millivolts; and,
- Dissolved oxygen, ± 10 percent.

3.1.3 ANALYTICAL SAMPLING PROGRAM

Groundwater samples for all wells were analyzed by the following analytical methods:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (USEPA) Method 8021B;
- PAHs by USEPA Method 8270D with selective ion monitoring (SIM);
- GRO by Alaska Method 101; and
- DRO by Alaska Method 102.

Additionally, a list of 16 petroleum hydrocarbon-related VOCs was added for sampling year 2017 at the request of ADEC to evaluate for the presence of petroleum hydrocarbon VOCs at the most impacted site well, Sentry-1R. The list of 16 VOCs evaluated by USEPA Method SW8260B includes:

- 1,2,4-Trimethylbenzene;
- 1,3,5-Trimethylbenzene;
- Benzene;
- Ethylbenzene;
- Isopropylbenzene (Cumene);
- Methyl-t-butyl ether, 0.140 mg/L;
- Naphthalene;
- n-Butylbenzene;
- n-Propylbenzene;
- o-Xylene;
- p- & m-Xylene
- sec-Butylbenzene;
- Styrene, 1.200 mg/L;
- tert-Butylbenzene, 0.690 mg/L;
- Toluene; and
- Xylenes (total).

3.2 SURFACE WATER MONITORING

Surface water samples were collected from sample locations WS-2R and WS-10R (Figure 2). A duplicate sample was collected from sample location WS-2R and was designated

WS-29R. Shovel sheen testing was also conducted along 168 ft of streambank encompassing either side of the surface water sample locations. Sample collection observations, surface water quality parameters, and shovel sheen tests were recorded in the bound project field logbook provided in Appendix B and on surface water sampling forms provided in Appendix C.

3.2.1 SAMPLING PROCEDURES

Surface water samples were collected using a new, unpreserved transfer bottle to fill sample bottles for each location. Clean nitrile gloves were worn by field staff handling sampling equipment, and new gloves were donned at each sampling location. Sample integrity was maintained by proper collection, handling, and documentation during transfer to the project laboratory as described in Section 3.3.

3.2.2 ANALYTICAL SAMPLING PROGRAM

Concentrations of TAH and TAqH in surface water were evaluated consistent with ADEC regulations, by laboratory methods specified in Note 7 of the *Water Quality Standards For Designated Uses* table included in 18 AAC 70.020(b) (ADEC, 2017a). Laboratory methods used included:

- BTEX using USEPA Method 8021B; and
- PAHs using USEPA Method 8270D with SIM for the 16 PAHs listed by USEPA Method 610.

The results of these analyses were used to calculate TAH and TAqH values using the methodology described below.

- The TAH value for each surface water sample was calculated by summing detected concentrations of BTEX compounds. For compounds that were not detected (ND), the limit of detection (LOD) was used in place of the ND value in the summation. If BTEX compounds were ND, the result was presented as ND at or above the sum of the LOD for all BTEX compounds.
- 2. The TAqH value for each surface water sample was calculated by summing the calculated TAH value (or the LOD of the TAH value if it was ND) and the detected concentrations of PAHs. For compounds that were ND, the LOD was used in place of the ND value in the summation. When neither BTEX nor PAH compounds were detected, the TAqH value for each sample was presented as ND at or above the sum of the LOD for each BTEX and PAH compound.

Total xylenes were calculated using the sum of p- and m-xylenes and o-xylene, or by the summation of LOD values for p and m-xylenes and o-xylene in place of any ND values.

3.2.3 SHOVEL SHEEN TEST PROCEDURES

Shovel sheen testing was conducted following surface water sampling to avoid impacting surface water samples. Sheen testing was conducted along the stream bank staring at a point along the stream bank approximately 60 ft upstream of sample location WS-10R. Sheen testing

was performed every 4 ft, progressing downstream from the starting point for 168 ft. The sheen test area was similar to that of the previous test conducted in 2014 (SLR, 2014b). At each test location, the sediment was disrupted and visually observed for evidence of petroleum, oil, and lubricant (POL) derived sheen in the surface water. Shovel sheen testing locations are shown on Figure 2. Observations were documented in the field logbook (Appendix B).

3.3 SAMPLE HANDLING, DOCUMENTATION, AND CHAIN OF CUSTODY

Groundwater and surface water samples were collected directly into laboratory-supplied containers appropriate for the required analyses. The samples were labeled and placed into a pre-chilled cooler with gel ice as soon as possible following collection. Sample and cooler temperatures were maintained at approximately 4 degrees Celsius (°C), \pm 2°C, throughout transport to the laboratory. Samples were handled and transported in a manner that maintained sample integrity and did not exceed specified holding times. Each sample and any accompanying trip blank(s) were documented on the project chain of custody (COC) form.

The samples were delivered directly to SGS North America, Inc. (SGS) in Fairbanks, Alaska under proper COC procedures. Samples were then transferred to the SGS Anchorage, an ADEC-approved laboratory. Samples were analyzed within the respective laboratory hold times for each requested analysis.

3.4 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance (QA)/quality control (QC) procedures were maintained throughout the sampling activities. QA procedures included the analysis of field duplicates and trip blanks, and a laboratory data QA review (QAR) by qualified SLR staff. The QAR included the completion of an ADEC Laboratory Data Review Checklist for each analytical report. QC procedures included adherence to appropriate sample collection methodology as described in the Work Plan. Any discrepancies associated with the samples collected from the site are identified in the QAR and summarized in Section 4.4. The QAR and the completed ADEC Laboratory Data Review Checklist are presented in Appendix D.

3.5 WORK PLAN DEVIATIONS

No deviations to the Work Plan occurred during the water monitoring event.

3.6 WASTE MANAGEMENT

No hazardous waste was generated during the field event. Purge and decontamination water generated during the sampling activities was transported to Alyeska Pump Station 1 for disposal. Disposable sampling materials were disposed of as non-oily in the nearest waste receptacle.

This section describes groundwater and surface water monitoring results and key findings from the laboratory data QAR. Groundwater depths are shown in Table 1. Results of historical groundwater analyses are presented in Table 2 and petroleum hydrocarbon VOC results for 2017 are shown in Table 3. Surface water analytical results for GRO, DRO, and BTEX analytes are presented in Table 4 and results for PAHs in Table 5. The QAR, completed ADEC Laboratory Data Review Checklist, and laboratory analytical report are included as Appendix D.

4.1 GROUNDWATER LEVELS AND SITE OBSERVATIONS

The groundwater depths measured in 2017 were 7.35, 7.90, and 8.31 ft for wells Sentry-1R, Sentry-2R, and Sentry-3R, respectively (Table 1). The measured depths for each well were within the typical range of 2007 to 2015 historical July and August depths for each well.

The water level and apparent flow rate in Happy Valley Creek appeared to be normal at the time of sampling in 2017 (Appendix A, Photograph 1). No substantial rainfall occurred in the three days prior to the sampling event.

4.2 GROUNDWATER ANALYTICAL RESULTS

All groundwater analyte concentrations were below cleanup levels for the fourth consecutive year (i.e., 2014 – 2017) for monitoring wells Sentry-1R, Sentry-2R, and Sentry-3R. The continued attenuation of petroleum hydrocarbons is indicated by declining or low concentrations of DRO, the absence of BTEX and GRO detections, and very limited detections of PAHs well below cleanup levels. Groundwater analytical results for historically sampled analytes are presented in Table 2 and results for 2017 are summarized as follows:

- DRO: All detections were below the cleanup level of 1.5 mg/L with wells Sentry-1R and Sentry-2R showing persistent non-detect or estimated (below the laboratory LOD) concentrations. DRO in well Sentry-3R returned to ND from a recent high of 1.01 mg/L in 2016, the highest reported concentration since 3.55 mg/L in July 2013.
- **GRO:** No detections were reported; detections at low, estimated concentrations below the laboratory LOD were reported in 2015. The cleanup level of 2.2 mg/L has never been exceeded in any well.
- **BTEX:** No detections of constituent compounds were reported; the last detection occurred in 2015 when very low concentrations of toluene from 0.00036 to 0.00855 mg/L were reported. BTEX constituents have been infrequently detected since monitoring was initiated in 2004 and all detections have been near or below the LOD.
- **PAHs:** A single detection of congener compound naphthalene was reported for primary and duplicate Sentry-1R samples at low, estimated concentrations of 0.0000611 and 0.0000546 mg/L, respectively. Naphthalene was previously detected in Sentry-1R at similar concentrations from 2014 to 2016. Other than detections of

naphthalene at Sentry-1R, historical detections of PAHs for all wells are limited to infrequent detections at estimated concentrations well below applicable cleanup levels.

Petroleum hydrocarbon VOCs analyzed by USEPA Method 8260B were not detected in monitoring well Sentry-1R and its associated duplicate sample, as shown in Table 3. As a result, petroleum VOCs are not considered contaminants of concern at this site.

4.3 SURFACE WATER ANALYTICAL RESULTS

Surface water analytical results for sample locations WS-2R and WS-10R demonstrate a third year of ND BTEX and PAH concentrations and the resulting TAH and TAqH concentrations were well below applicable cleanup levels. Calculated TAH and TAqH values are shown in Tables 4 and 5. Historical surface water sample results are summarized as follows:

- **BTEX and TAH:** No BTEX compounds have been detected in surface water samples WS-2R (primary and duplicate) and WS-10R since 2014. The 2017 TAH concentration of 0.00275 mg/L for both locations was calculated from the detection limits for BTEX compounds and is well below the TAH cleanup level of 0.010 mg/L. TAH has not exceeded the cleanup level at either sample location since 2003.
- **PAHs and TAqH:** PAH congeners have not been detected since 2014 and 2010 for WS-2R and WS-10R, respectively. Prior detections at either sampling location were limited to a single PAH reported at low or estimated concentrations well below the cleanup level; these limited PAH detections resulted in calculated TAqH concentrations well below the TAqH cleanup level of 0.015 mg/L.

4.4 SHOVEL SHEEN TEST RESULTS

No positive sheen test results were reported at any of the 43 test locations along the 168 ft length test area, including the test location nearest to WS-02R where a sheen-positive result was reported in 2014 (SLR, 2014).

4.5 ANALYTICAL DATA QUALITY

The analytical data was deemed acceptable for use with minor issues noted in the QAR with respect to sample receipt, laboratory method blanks, continuous calibration verifications, standard recoveries, and duplicate sample percent relative differences. Flagged data was considered useable without qualification. Further discussion is provided in the laboratory QAR (Appendix D).

The results of groundwater and surface water monitoring completed in 2017 at the Happy Valley West site indicates that residual soil contamination on the Happy Valley pad is naturally attenuating as demonstrated by diminishing impacts from dissolved hydrocarbons concentrations in groundwater and a lack of impacts to surface water in the adjacent creek. This evaluation is supported by the following findings:

- 1. All groundwater analyte concentrations were below cleanup levels for the fourth consecutive year for monitoring wells Sentry-1R, Sentry-2R, and Sentry-3R. The continued attenuation of petroleum hydrocarbons is indicated by declining or low concentrations of DRO, the absence of BTEX and GRO detections, and very limited detections of PAHs well below cleanup levels.
- 2. Analysis of 16 petroleum hydrocarbon VOCs USEPA Method SW8260C was completed for well Sentry-1R as requested by ADEC; no detections were reported.
- 3. Surface water analytical results for sample locations WS-2R and WS-10R demonstrate a third year of ND BTEX and PAH concentrations with the resulting TAH and TAqH concentrations well below applicable cleanup levels. The most recent data are consistent with limited, very low concentration detections since 2005.

Groundwater and surface water conditions were representative of typical hydrogeological conditions during the sampling event.

Petroleum hydrocarbon contaminated soils were excavated from the site in 1998, 2001 and 2004 resulting in a buffer zone of clean soil between the upper pad subsurface soil contamination and the creek west of the pad. The remaining soil contamination in the upper pad is found at a depth greater than 2 feet bgs. Groundwater hydrocarbon concentrations from the Sentry wells have been below ADEC groundwater cleanup levels for four consecutive years. Surface water samples collected from the creek have been below the Water Quality Criteria for TAH and TAqH for three consecutive years or longer. Based on these data, SLR recommends Alyeska request a Cleanup Complete with institutional controls designation for the Happy Valley West site.

- Alaska Department of Environmental Conservation (ADEC), 2008. Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances. As amended through December 12.
- ADEC, 2009. Letter from Keather McLoone, ADEC, to Jan Shifflett, Alyeska Pipeline Service Company. Re: Alyeska Happy Valley Camp West 2008 Report Comment. February 26.
- ADEC, 2016. Field Sampling Guidance. March.
- ADEC, 2017a. Alaska Administrative Code (18 AAC 70), Water Quality Standards. Amended as of February 5.
- ADEC, 2017b. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control. As amended through March 23, 2017.
- AGRA Earth and Environmental, Inc. (AGRA), 1995. Environmental Site Assessments of Former Alyeska Work Camps and Release Sites of the Trans Alaska Pipeline.
- EMCON Alaska, Inc. (EMCON), 1999. Final, 1999 Surface Water and Ground Water Monitoring Report, Happy Valley Camp, Alaska. December.
- IT Alaska, Inc. (IT), 2000a. Final, Additional Assessment Report, Happy Valley Camp West. December.
- IT, 2000b. 2000 Surface Water and Ground Water Monitoring Report Happy Valley Camp, Alaska. December.
- Mull, Charles G., and Karen E. Adams, 1989. Dalton Highway, Yukon River to Prudhoe Bay, Alaska, Bedrock Geology of the Eastern Koyukuk Basis, Central Brooks Range, and Eastcentral Arctic Slope. State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, Guidebook 7, Volume 1. Fairbanks, Alaska.
- Oasis Environmental, 1999. Risk-Based Corrective Action and Annual Monitoring Report at Happy Valley Camp 1998 Project Report. February.
- SLR Alaska (SLR), 2001. Corrective Action Report, Happy Valley West Camp, Milepost 336, Dalton Highway, Alaska. December.
- SLR, 2002. Surface Water Monitoring at Happy Valley West, 2002, Milepost 336, Dalton Highway, Alaska. December.
- SLR, 2003. Final Site Assessment Report, Happy Valley West, Alaska. December.
- SLR, 2005. Happy Valley West, Corrective Action Report, Milepost 336, Dalton Highway, Alaska. February.

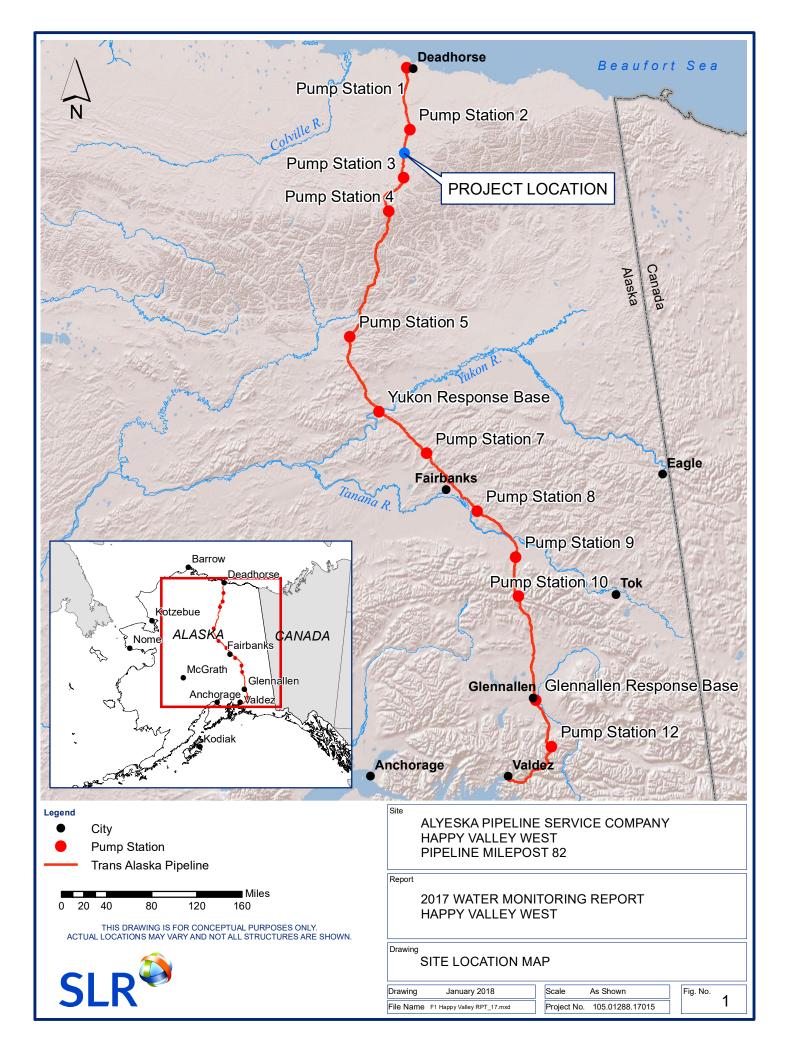
- SLR, 2006. Happy Valley West 2005 Ground Water Monitoring and Soil Disposal Report, Milepost 336, Dalton Highway, Alaska. January.
- SLR International Corp (SLR), 2007. Happy Valley West 2006 Surface and Ground Water Monitoring Report, Milepost 336, Dalton Highway, Alaska. January.
- SLR, 2009. Happy Valley West, 2008 Ground Water and Surface Water Monitoring Report, Milepost 336, Dalton Highway, Alaska. February.
- SLR International Corporation (SLR), 2013. Happy Valley West 2012 Water Monitoring Report. March.
- SLR, 2014a. Happy Valley West, 2013 Water Monitoring Report. February.
- SLR, 2014b. 2014 Water Monitoring Report. Happy Valley West. December.
- SLR, 2015. 2015 Water Monitoring Report. Happy Valley West. March.
- SLR, 2017a. 2016 Water Monitoring Report. Happy Valley West. January.
- SLR, 2017b. 2017 Water Monitoring Work Plan, Happy Valley West. May.

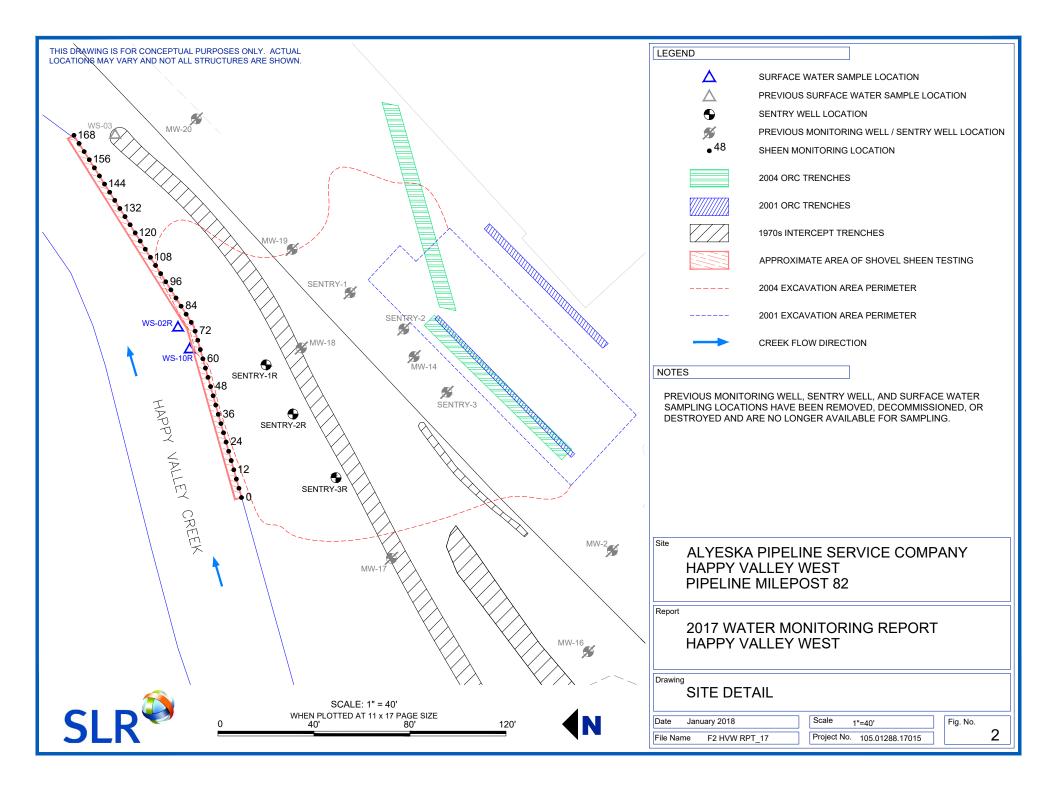
The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.


Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.


The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Detail

TABLES

- Table 1Monitoring Well Groundwater Depths
- Table 2Groundwater Analytical Results
- Table 32017 Groundwater Petroleum Hydrocarbon VOC Results
- Table 4
 Surface Water GRO, DRO, and BTEX Analytical Results
- Table 5
 Surface Water PAH Analytical Results

Table 1: Monitoring Well Groundwater DepthsHappy Valley West

Monitoring		Depth to Water from Top of Casing
Well	Date	(feet) ^A
	9/10/2007	8.77
	8/5/2008	6.38
	7/14/2009	7.41
	9/1/2009	7.03
	7/19/2010	7.98
	9/22/2010	7.95
	7/9/2011	8.11
Sentry-1R	9/12/2011	7.12
	7/3/2012	8.13
	9/26/2012	7.77
	7/2/2013	7.47
	8/20/2014	7.95
	7/24/2015	8.67
	6/19/2016	6.78
	8/1/2017	7.90
	9/10/2007	9.12
	8/5/2008	6.79
	7/14/2009	7.66
	9/1/2009	7.47
	7/19/2010	8.30
	9/22/2010	8.30
	7/9/2011	8.41
Sentry-2R	9/12/2011	7.58
	7/3/2012	8.59
	9/26/2012	8.13
	7/2/2013	7.81
	8/20/2014	8.32
	7/24/2015	9.02
	6/20/2016	7.28
	8/1/2017	8.31
	9/10/2007	8.32
	8/5/2008	5.58
	7/14/2009	6.62
	9/1/2009	6.51
	7/19/2010	7.41
	9/22/2010	7.45
	7/9/2011	7.54
Sentry-3R	9/12/2011	7.58
	7/3/2012	7.08
	9/26/2012	7.22
	7/2/2013	6.74
	8/20/2014	7.38
	7/24/2015	8.27
	6/20/2016	5.99
	8/1/2017	7.35

Notes:

Groundwater elevation above sea level not available; wells have not been surveyed

Table 2: Groundwater Analytical Results Happy Valley West (all results in mg/L)

			AK 101	AK 102		BTEX USEP	A Method 8021B			PAHs USEP/	A Method 8270D	
Monitoring Well	Sample Designation	Sample Date	Gasoline Range Organics	Diesel Range Organics	Benzene	Ethylbenzene	Toluene	Total Xylenes	Acenaphthene		Naphthalene	Pyrene
	undwater Clear		2.2	1.5	0.005	0.7	1	10	2.2	1.5	0.73	1.1
ADEC Grou	ndwater Clean		2.2	1.5	0.0046	0.015	1.1	0.19	0.53	0.29	0.0017	0.12
	Sentry-1	9/24/2004	0.203	4.67	0.000565	0.00236	ND [0.0005]	0.0178				
	Sentry-1	7/25/2005	0.121	7.71	0.00086	0.00867	ND [0.002]	0.01788				
	MW-A ^D	7/25/2005	0.125	6.72	0.00105	0.00903	ND [0.002]	0.01894				
Sentrv-1	Sentry-1	9/3/2005	ND [0.090]	4.7	0.0006	ND [0.002]	0.00929	0.00401				
eening i	Dup-1 ^D	9/3/2005	ND [0.090]	4.79	0.000544	ND [0.002]	0.00742	0.00404				
	Sentry-1	7/26/2006	0.266	6.54	0.00133	0.0226	ND [0.002]	0.0372				
	Sentry-1	9/12/2006	ND [0.100]	4.27	0.000986	0.00531	ND [0.002]	0.00592				
				ced with Sentry-1								
	Sentry-1	9/11/2007	0.208	2.06	ND [0.0005]	ND [0.002]	0.00218	0.00219				
	Sentry-1R	8/5/2008	ND [0.1]	4.26	0.000676	ND [0.002]	0.00558	0.00621				
	Sentry-4R ^D	8/5/2008	ND [0.100]	5.21	0.00063	ND [0.002]	0.00566	0.00843				
	Sentry-1	7/14/2009	0.0359 J	3.82	0.000188、	J 0.000938	ND [0.002]	0.00124				
	Sentry-4 ^D	7/14/2009	0.0429 J	3.43	0.00021 、	J 0.0012	ND [0.002]	0.00152				
	Sentry-1	9/1/2009	ND [0.1]	0.376 J	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-1R	7/19/2010	ND [0.1]	4.53	ND [0.0005]	ND [0.002]	ND [0.002]	0.00078 J				
	Sentry-4R ^D	7/19/2010	0.0353 J	4.16	ND [0.0005]	ND [0.002]	ND [0.002]	0.00063 J				
	Sentry-1R	9/22/2010	0.0536 J	1.19	ND [0.0005]	ND [0.002]	ND [0.002]	0.00157 J				
	Sentry-1R	7/9/2011	0.0352 J	3.73	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-4R ^D	7/9/2011	0.0421 J	3.77	ND [0.0005]	ND [0.002]	ND [0.002]	0.00066 J				
	Sentry-1R	9/12/2011	ND [0.1]	0.296 J	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]				
Sentry-1R	Sentry-1R	7/3/2012	0.053 J	2.98	ND [0.0003]	ND [0.00062]	ND [0.00062]	0.00115 J	ND [0.0003]	ND [0.0003]	0.000559 J	ND [0.00003]
,	Sentry-4R ^D	7/3/2012	0.0533 J	4.68	ND [0.0003]	· · ·	ND [0.00062]	0.00105 J	ND [0.00003]	ND [0.00003]	0.000903 J	ND [0.00003]
	Sentry-1R	9/26/2012	ND [0.062]	0.604 J	ND [0.0003]	ND [0.00062]	ND [0.00062]		ND [0.0000306]	ND [0.0000306]	0.0000608 J	ND [0.0000306]
	Sentry-4R ^D	9/26/2012	0.0343 J	0.296 J	ND [0.0003]		ND [0.00062]	ND [0.00062]	0.0000574	0.000077	0.000352	ND [0.00003]
	Sentry-1R	7/2/2013	0.0413 J	7.19	0.00015		0.00044 J	0.00135 J	ND [0.00003]	ND [0.00003]	ND [0.000062]	ND [0.00003]
	Sentry-4R ^D	7/2/2013	0.0404 J	6.79	ND [0.0003]		ND [0.00062]	0.00131 J	ND [0.00003]	ND [0.00003]	ND [0.000062]	ND [0.00003]
	Sentry-1R	8/20/2014	0.0409 J	1.19	ND [0.00025]	ND [0.0005]	0.0062 B, J		ND [0.0000263]	ND [0.0000263]	0.000103 J	ND [0.0000263]
	Sentry-4R ^D	8/20/2014	0.0496 J		ND [0.00025]	ND [0.0005]	0.00913 B, J	ND [0.0015]	ND [0.000025]	ND [0.000025]	0.000361 J	ND [0.000025]
	Sentry-1R	7/24/2015	ND [0.05]	1.19	ND [0.00025]	ND [0.0005]	ND [0.0005]			QL ND [0.0000252] QL	0.000166 QL,QN	
	Sentry-4R ^D	7/24/2015	0.0317 J		ND [0.00025]	ND [0.0005]	0.00036 J	ND [0.0015]	ND [0.000025]	ND [0.000025]	0.000283 QN	ND [0.000025]
	Sentry-1R	6/20/2016	ND [0.05]		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.000024]	ND [0.000024]	0.000199	ND [0.000024]
	Sentry-4R ^D	6/20/2016	ND [0.05]		ND [0.00025]	ND [0.0005]	ND [0.0005]		ND [0.0000245]	ND [0.0000245]	0.000212	ND [0.0000245]
	Sentry-1R	8/1/2017	ND [0.05]	ND [0.294]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.000025]	ND [0.000025]	0.0000611 J	ND [0.000025]
	Sentry-4R ^D	8/1/2017	ND [0.05]	0.183 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.000025]	ND [0.000025]	0.0000546 J	ND [0.000025]
	Sentry-2	9/24/2004	0.476	5.84	ND [0.0005]	0.0063	ND [0.0005]	0.0135				
	MW-Dup ^D	9/24/2004	0.454	4.53	ND [0.0005]	0.00654	ND [0.0005]	0.0143				
Sontry 0	NS	7/25/2005										
Sentry-2	Sentry-2	9/3/2005	0.121	8.5	0.0016	ND [0.002]	0.00584	0.00621				
	Sentry-2	7/26/2006	0.382	5.7	0.00176	0.0335	ND [0.002]	0.0596				
	Sentry-2	9/12/2006	0.211	4.34 ced with Sentry-2	0.00211	0.0127	ND [0.002]	0.01862				

Table 2: Groundwater Analytical Results Happy Valley West (all results in mg/L)

			AK 101	AK 102		BTEX USEP	A Method 8021B			PAHs USE	PA Method 8270D	
Monitoring Well	Sample Designation	Sample Date	Gasoline Range Organics	Diesel Range Organics	Benzene	Ethylbenzene	Toluene	Total Xylenes	Acenaphthene	Fluorene	Naphthalene	Pyrene
	Indwater Clear		2.2	1.5	0.005	0.7	1	10	2.2	1.5	0.73	1.1
ADEC Grou	ndwater Clean	up Levels ^{B,C}	2.2	1.5	0.0046	0.015	1.1	0.19	0.53	0.29	0.0017	0.12
	Sentry-2	9/11/2007	0.235	1.06	ND [0.0005]	ND [0.002]	0.0026	0.0022				
	Dup-1 ^D	9/11/2007	0.21	1.08	ND [0.0005]	ND [0.002]	0.00239	0.00202				
	Sentry-2R	8/5/2008	ND [0.100]	2.26	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-2	7/14/2009	0.0823 J	2.22	ND [0.0005]	0.00182 J	ND [0.002]	0.00392 J				
	Sentry-2	9/1/2009	0.0926 J	0.457 J	ND [0.0005]	0.000666 J	ND [0.002]	0.00265	-			
	Sentry-4 ^D	9/1/2009	0.103	0.471 J	ND [0.0005]	0.000792 J	ND [0.002]	0.00302 J	-			
	Sentry-2R	7/19/2010	0.0354 J	1.76	ND [0.0005]	ND [0.002]	ND [0.002]	0.0009 J				
	Sentry-2R	9/22/2010	0.0659 J	0.361 J	ND [0.0005]	ND [0.002]	ND [0.002]	0.00106 J				
Sentry-2R	Sentry-2R	7/9/2011	ND [0.1]	1.91	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-2R	9/12/2011	ND [0.1]	0.513 J	ND [0.0005]	ND [0.001]	ND [0.001]	0.000464 J				
	Sentry-2R	7/3/2012	0.0316 J	2.74	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]		ND [0.0003]	ND [0.000062]	ND [0.00003]
	Sentry-2R	9/26/2012	ND [0.062]	0.22 J	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]		ND [0.0000304]	ND [0.0000626]	ND [0.0000304]
	Sentry-2R	7/2/2013	0.0922 J	3.7	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]		ND [0.00003]	ND [0.000062]	ND [0.00003]
	Sentry-2R	8/20/2014	0.0372 J	0.295 J	ND [0.00025]	ND [0.0005]	0.00492 B	0.0047 J	0.0000207 J	0.0000245 J		ND [0.0000259]
	Sentry-2R	7/24/2015	ND [0.05]	ND [0.31]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.000025]	ND [0.000025]	0.000117	ND [0.000025]
	Sentry-2R	6/20/2016	ND [0.05]		ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.000024]	ND [0.000024]	ND [0.0000481]	ND [0.000024]
	Sentry-2R	8/1/2017	ND [0.05]	0.261 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.000027]	ND [0.000027]	ND [0.000054]	ND [0.000027]
	Sentry-3	9/24/2004	0.235	2.45	ND [0.0005]	0.00205	ND [0.0005]	0.00798				
	NS	7/25/2005										
Sentry-3	NS	9/3/2005										
	Sentry-3	7/26/2006	0.505	5.47	0.00185	0.0512	ND [0.002]	0.0801				
	NS	9/12/2006										
		,	, <u>-</u>	ced with Sentry-		T				T	·-r	
	Sentry-3	9/11/2007	ND [0.100]	0.366	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-3R	8/5/2008	ND [0.100]	2.23	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-3	7/14/2009	0.0415 J	2.09	0.000229	0.00241	ND [0.002]	0.0027 J				
	Sentry-3	9/1/2009	ND [0.1]	ND [0.714]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-3R	7/19/2010	ND [0.1]	2.45	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-3R	9/22/2010	ND [0.1]	0.553 J	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
	Sentry-4R ^D	9/22/2010	ND [0.1]	0.548 J	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
Contro 2D	Sentry-3R	7/9/2011	ND [0.1]	1.49	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]				
Sentry-3R	Sentry-3R	9/12/2011	ND [0.1]	ND [0.645]	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]				
	Sentry-4R ^D	9/12/2011	ND [0.1]	ND [0.645]	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]				
	Sentry-3R	7/3/2012		3.2				 ND [0.00062]		ND [0.0003]	ND [0.000062]	0.0000192 J
	Sentry-3R	9/26/2012	ND [0.062]	0.543 J	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]		ND [0.0000304]	0.0000627 J	ND [0.000304]
	Sentry-3R	7/2/2013	ND [0.062]	3.55	ND [0.0003]	ND [0.00062]	0.0004 J	ND [0.00062]		ND [0.00003]	ND [0.000062]	ND [0.00003]
	Sentry-3R	8/20/2014	0.0425 J	0.376 J	ND [0.00025]	ND [0.0005]	0.00855 B		ND [0.000263]	ND [0.0000263]	ND [0.0000525]	ND [0.0000263]
	Sentry-3R	7/24/2015 6/20/2016	ND [0.05] ND [0.05]	ND [0.302]	ND [0.00025] ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.000025] ND [0.0000236]	ND [0.000025]	ND [0.00005] ND [0.0000471]	ND [0.000025] ND [0.0000236]
	Sentry-3R			1.01			ND [0.0005]			ND [0.0000236]	· · ·	
	Sentry-3R	8/1/2017	ND [0.05]	ND [0.315]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0000265]	ND [0.0000265]	ND [0.000053]	ND [0.0000265]

Table 2: Groundwater Analytical Results Happy Valley West (all results in mg/L)

			AK 101	AK 102		BTEX USEPA	Method 8021B			PAHs USEP/	A Method 8270D	
Monitoring Well	Sample Designation	Sample Date	Gasoline Range Organics	Diesel Range Organics	Benzene	Ethylbenzene	Toluene	Total Xylenes	Acenaphthene	Fluorene	Naphthalene	Pyrene
ADEC Grou	undwater Clear	hup Levels ^A	2.2	1.5	0.005	0.7	1	10	2.2	1.5	0.73	1.1
ADEC Grou	ndwater Clean	ADEC Groundwater Cleanup Levels ^{B,C}		1.5	0.0046	0.015	1.1	0.19	0.53	0.29	0.0017	0.12

Notes:

ADEC Cleanup Levels (18 AAC 75.345, Table C) as revised on June 17, 2015; results from А 2015 and prior were compared to these cleanup levels

ADEC Cleanup Levels (18 AAC 75.345, Table C) as revised on Nov. 6, 2016; results from в 2016 were compared to these cleanup levels.

ADEC Cleanup Levels (18 AAC 75.345, Table C) as revised on March 23, 2017; results С from 2017 were compared to these cleanup levels.

D Duplicate of preceding sample

Bold results exceed ADEC cleanup levels. 3.2

ND Bracketed Values presented as Limit of Detection beginning in 2012; previous years ND [0.0005]

presented as the Limit of Quantitation or Practical Quantitation Limit

Data Flags and Abbreviations:

not analyzed ---AAC

Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Method

в Estimated with potential high bias

BTEX benzene, toluene, ethylbenzene, and xylenes

J Estimated value below the limit of quantitation (LOQ)

mg/L milligrams per liter

MN Estimated with unknown bias due to matrix ND Not detected at or above the [Limit of Detection]

NS Not sampled

PAHs polynuclear aromatic hydrocarbons

QL Estimated with potential slightly low bias

QN Estimated with unknown bias

USEPA U.S. Environmental Protection Agency

Table 3: 2017 Groundwater Petroleum Hydrocarbon VOC Results Happy Valley West (all results in mg/L)

										USEPA	Method SW	/8260C						
Monitoring Well	Sample Name		Benzene	Toluene	Ethyl- benzene	o-Xylene	P & M - Xylene	Xylenes (total)	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Isopropyl- benzene (Cumene)	Methyl-t- butyl ether	Naph- thalene	n- Butylbenzene	n- Propylbenzene	sec- Butylbenzene	Styrene	tert- Butyl- benzene
ADEC Grou	undwater (Levels ^A	Cleanup	0.0046	1.1	0.015			0.19	0.015	0.12	0.45	0.14	0.0017	1	0.66	2	1.2	0.69
	Sentry- 1R	8/1/17	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0015]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]
Sentry-TR	Sentry- 4R ^B	8/1/17	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0015]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]
Trip Blank	Trip Blank	8/1/17	ND [0.0002]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND [0.0015]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.0005]

Notes:

A ADEC Cleanup Levels (18 AAC 75.345, Table C) as revised on March 23, 2017; results from 2017 were compared to these cleanup levels.

^B Duplicate of preceding sample

3.2 Bold results exceed ADEC cleanup levels.

ND [0.0005] ND Bracketed Values presented as Limit of Detection beginning in 2012

Data Flags and Abbreviations:

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

BTEX benzene, toluene, ethylbenzene, and xylenes

J Estimated value below the limit of quantitation (LOQ)

mg/L milligram per liter

U.S. Environmental Protection Agency volatile organic compound

USEPA

VOC

Table 4: Surface Water Sample GRO, DRO, and BTEX Analytical ResultsHappy Valley West(all units in mg/L)

			AK 101	AK 102		BTEX USEPA Meth	nod 602 or 8021	В	
Sample Location	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Aromatic Hydrocarbons ^A
ADEC \	Water Quality S	tandards ^B	N/A	N/A	N/A	N/A	N/A	N/A	0.010
	HV-WS-02	8/19/1996	0.35	3.9	ND [0.001]	ND [0.001]	0.0038	0.0084	0.0122
	HV-WS-02	9/6/1997	ND	0.137	ND	ND	ND	ND	ND
	HV-WS-02	8/30/1998	0.13	2.99	ND [0.001]	ND [0.001]	0.001	0.004	0.005
	HV-WS-30 ^C	8/30/1998	0.13	2.84	ND [0.001]	ND [0.001]	0.001	0.004	0.005
	HV-WS-02	8/17/2000	0.12	49.4	0.0008	ND [1]	0.021	0.023	0.045
	HVW-SW2A	8/23/2001		6.4	0.00489	ND [0.002]	0.00945	0.01485	0.02919
	HVW-SW-2B	8/29/2001		6.11	0.00367	ND [0.002]	0.00535	0.01085	0.01987
WS-02	WS-21 ^D	8/20/2002		2.34	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
110 02	WS-2	9/4/2002		3.8	0.00066	0.00209	0.00125	0.00249	0.00649
	WS-2	7/9/2003		4.75	0.000786	ND [0.0005]	0.011	0.0227	0.0345
	FD-1 ^C	7/9/2003			0.000725	ND [0.0005]	0.0105	0.0221	0.0333
	WS-2	8/23/2003	0.314	4.04	ND [0.0005]	ND [0.0005]	0.00524	0.0139	0.0191
	WS-Dup ^C	8/23/2003	0.304	4.02	ND [0.0005]	ND [0.0005]	0.00534	0.0100	0.0153
	WS-2	9/17/2003	0.372	3.33	0.000892	ND [0.0005]	0.00451	0.0135	0.0189
	WS-2	9/13/2004			ND [0.0005]	ND [0.0005]	0.00368	0.00848	0.01216
	WS-Dup ^C	9/13/2004			ND [0.0005]	ND [0.0005]	0.00418	0.00955	0.01373
	WS-2R	9/23/2004			ND [0.0005]	ND [0.0005]	ND [0.0005]	ND [0.001]	ND
	WS-02R	7/25/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	WS-Dup ^C	7/25/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	WS-2R	9/3/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	Dup-2 ^C	9/3/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	WS-2R	7/26/2006			ND [0.0005]	ND [0.002]	ND [0.002]	0.00238	0.00238
	WS-2	9/12/2006			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	NS	9/10/2007							
	WS-2R	8/6/2008			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND
	WS-5R ^C	8/6/2008			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND
	WS-2R	7/14/2009 9/1/2009			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND ND
	WS-2R WS-2R	7/19/2010			ND [0.0005]	ND [0.002] ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-2R WS-2R				ND [0.0005]		ND [0.002] ND [0.002]	ND [0.002]	
	WS-2R WS-2R	9/22/2010 7/9/2011			ND [0.0005]	ND [0.002]		ND [0.002]	ND ND
WS-02R ^F	WS-2R WS-21R ^C	7/9/2011			ND [0.0005] ND [0.0005]	ND [0.002] ND [0.002]	ND [0.002] ND [0.002]	ND [0.002] ND [0.002]	ND
	WS-21R* WS-2R	9/12/2011			ND [0.0005] ND [0.0005]	ND [0.002] ND [0.001]	ND [0.002] ND [0.001]	ND [0.002] ND [0.001]	ND ND
	WS-2R WS-02R	7/3/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-02R WS-02R	9/26/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-21R ^C	9/26/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-02R	7/2/2013			ND [0.0003]	0.00044 J	ND [0.00062]	ND [0.00062]	0.00198 J
	WS-21R ^C	7/2/2013			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-2R	8/20/2014			ND [0.00025]	0.00611 B. J	ND [0.0005]	ND [0.0015]	0.00836 B, J
	WS-21R ^C	8/20/2014			ND [0.00025]	0.00874 B, J		ND [0.0015]	0.01099 B, J
	WS-2R	7/24/2015			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-21R ^C	7/24/2015			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-2R	6/20/2016			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-29R ^C	6/20/2016			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-2R	8/1/2017			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-99R ^C	8/1/2017			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	HV-WS-03	8/19/1996	ND [0.1]	0.24	ND [0.001]	ND [0.001]	0.0018	ND [0.003]	0.0018
	HV-WS-03	9/6/1997	ND	0.17	ND	ND	ND	ND	ND
	HV-WS-03	8/30/1998		0.17					
	HV-WS-03	9/1/1999	0.21	4.7	0.0012	ND [0.001]	0.0076	0.0104	0.0192
	HV-WS-03	8/17/2000	ND [0.050]	ND [0.100]	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]	ND
WS-03	HVW-SW3A	8/23/2001		3.52	0.00231	ND [0.002]	0.0415	0.0546	0.0984
vv 3-03	HVW-SW-3B	8/29/2001		3.63	0.000795	ND [0.002]	0.0126	0.01999	0.0334
	WS-3	8/20/2002		4.02	0.00218	ND [0.002]	0.0512	0.0638	0.1172
	WS-D ^C	8/20/2002		4.89	0.00224	ND [0.002]	0.0581	0.0709	0.1312
	WS-3	9/4/2002		2.22	ND [0.0005]	ND [0.002]	0.00646	0.01365	0.02011
	WS-3	7/9/2003		ND [0.240]	0.00337	0.000745	0.0394	0.0730	0.1165
	WS-3	8/23/2003	0.24	1.63	ND [0.0005]	ND [0.0005]	0.0112	0.0211	0.0323

Table 4: Surface Water Sample GRO, DRO, and BTEX Analytical Results **Happy Valley West** (all units in mg/L)

			AK 101	AK 102		BTEX USEPA Met	nod 602 or 8021	В	
Sample Location	Sample Designation	Date Sampled	Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Aromatic Hydrocarbons ^A
ADEC \	Water Quality S	tandards ^B	N/A	N/A	N/A	N/A	N/A	N/A	0.010
	WS-3	9/13/2004			ND [0.0005]	ND [0.0005]	0.00174	0.00342	0.00516
	WS-03R ^E	7/25/2005			ND [0.0004]	ND [0.001]	0.00195	0.00237	0.00432
WS-03	WS-3	9/3/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
Contd.	WS-3	7/26/2006			0.00345	0.00814	0.0130	0.02565	0.0502
	WS-3	9/12/2006			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	Sampling disco	ntinued after 2	006, trench ba	ckfilled in 2007	7				
	HV-WS-10	8/19/1996		0.1					
	HV-WS-10	9/6/1997	ND	ND	ND	ND	ND	ND	ND
	HV-WS-10	8/30/1998	ND [0.050]	0.14	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND
	HV-WS-10	9/1/1999	0.39	0.36	0.002	ND [0.001]	0.0065	0.0142	0.0227
	HV-WS-30 ^C	9/1/1999	0.37	0.35	0.0021	ND [0.001]	0.0061	0.0133	0.0215
	HV-WS-10	8/17/2000	ND [0.050]	0.12	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]	ND
	FD-6 ^C	8/17/2000	ND [0.050]	0.11	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]	ND
WS-10	HVW-SW10A	8/23/2001		ND	ND	ND [0.002]	ND [0.002]	ND [0.002]	ND
VV3-10	HVW-SW10B	8/29/2001		1.03	0.000628	ND [0.002]	ND [0.002]	ND [0.002]	0.000628
	WS-10	8/20/2002		ND [0.505]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10	9/4/2002		ND [0.500]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10	7/9/2003		4.35	ND [0.0005]	ND [0.0005]	0.000657	0.0143	0.0150
	WS-10	8/23/2003	ND [0.080]	ND [0.250]	ND [0.0005]	ND [0.0005]	0.000566	ND [0.001]	0.000566
	WS-10	9/17/2003	0.694	2.14	0.0018	ND [0.0005]	0.0197	0.0426	0.0641
	WS-Dup ^C	9/17/2003	0.575	1.7	0.00151	ND [0.0005]	0.0158	0.0346	0.0519
	WS-10	9/13/2004			ND [0.0005]	ND [0.0005]	0.000678	0.00169	0.00237
	WS-10R	7/25/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	WS-10R	9/3/2005			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	WS-10R	7/26/2006			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10	9/12/2006			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.002]	ND
	NS	9/10/2007							
	WS-10R	8/6/2008			ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	ND
	WS-10R	7/14/2009			ND [0.0005]	ND [0.002]	ND [0.002]	0.000783 J	ND
	WS-9R ^C	7/14/2009			ND [0.0005]	ND [0.002]	ND [0.002]	0.000927 J	0.000927 J
	WS-10R	9/1/2009			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-20R ^C	9/1/2009			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10R	7/19/2010			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-21R ^C	7/19/2010			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
WS-10R ^F	WS-10R	9/22/2010			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-21R ^C	9/22/2010			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10R	7/9/2011			ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]	ND
	WS-10R	9/12/2011			ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]	ND
	WS-21R ^C	9/12/2011			ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.001]	ND
	WS-10R	7/3/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-21R ^C	7/3/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-10R	9/26/2012			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-10R	7/2/2013			ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00062]	ND [0.00216]
	WS-10R	8/22/2014			ND [0.00025]	0.00805 B	ND [0.0005]	ND [0.0015]	0.0103 B
	WS-10R	7/24/2015			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-10R	6/20/2016			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]
	WS-10R	8/1/2017			ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.0015]	ND [0.00275]

Notes: А

Total aromatic hydrocarbons were calculated as described in report Section 3.2.2. в

ADEC Water Quality Standards (18 AAC 70) Amended as of February 5, 2017. С

Duplicate of preceding sample

D WS-02 was flooded and could not be reached; WS-21 is an alternate location for WS-02

Е WS-03 was dry; WS-03R is an alternate location for WS-03

WS-02R and WS-10R are approximate replacement sample sites for WS-02 and WS-10 F which were excavated in 2004

1.0 Bold results exceed ADEC Water Quality Standards

ND [0.001] ND bracketed values presented as Limit of Detection beginning in 2012; previous years are presented as the Limit of Quantitation or Practical Quantitation Limit

Abbreviations:

-- Not analyzed

AAC Alaska Administrative Code ADEC Alaska Department of Environmental Conservation

AK Alaska Method B Estimated value Estimated value with potential high bias

BTEX benzene, toluene, ethylbenzene and xylenes

J Estimated value below the limit of quantitation (LOQ)

milligrams per liter mg/L

N/A Not applicable USEPA U.S. Environmental Protection Agency

Table 5: Surface Water Sample PAH Analytical ResultsHappy Valley West(all units in mg/L)

Sample	Sample	Date						PAH	s USEPA Method 8	270D ^B						PAHs USEF	PA Method 8270D	³ (Continued)	Total Aqueous
Location	Name	Sampled	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]- anthracene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[g,h,i]- perylene	Chrysene	Fluoranthene	Fluorene	Indeno- [1,2,3-c,d]pyrene	Naphthalene	Phenanthrene	Pyrene	Hydrocarbons ^A
ADEC W	Vater Quality	Criteria ^C	1	N/A	9.6	N/A	0.0002	N/A	N/A	N/A	N/A	N/A	0.3	1.3	N/A	N/A	N/A	0.96	0.015
		8/19/1996	ND [0.005]		ND [0.005]	ND [0.0022]					-		ND [0.005]	ND [0.005]	ND [0.005]	0.037		ND [0.005]	0.0370
	HV-WS-02	9/6/1997	ND		ND	ND	ND	ND	0.00082	ND	ND	0.00082							
	HV-WS-02	8/30/1998	0.00008	0.0012	ND [0.00002]	-	ND [0.00002]	ND [0.00002]	0.00013	ND [0.00002]	0.0023	ND [0.00002]	ND [0.00002]	0.004					
	HV-WS-30 ^D	8/30/1998	0.00008	0.0012	ND [0.00002]	0.00013	ND [0.00002]	0.0025	ND [0.00002]	ND [0.00002]	0.004								
	HV-WS-02	8/17/2000	ND [0.00002]	0.00032	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.000								
	HVW-SW2A	8/23/2001	ND [0.00211]		ND [0.000105]	ND [0.000137]	ND [0.000158]	ND [0.000105]	ND [0.000158]	ND [0.000105]		ND [0.000105]		ND [0.00211]	ND [0.000105]	0.0122		ND [0.000105]	0.0122
	HVW-SW-2B	8/29/2001	0.000157		ND [0.000115]	ND [0.000149]	ND [0.000172]	ND [0.000115]	ND [0.000172]	ND [0.000115]		ND [0.000115]		0.000215	ND [0.000115]	0.00208		ND [0.000115]	0.00245
WS-02	WS-21 ^E	8/20/2002	ND [0.000101]		ND [0.000101]		ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]		ND [0.000101]	ND					
110 02	WS-2	9/4/2002	0.00022		ND [0.000108]		ND [0.000108]	ND [0.000108]	0.000386	ND [0.000108]	0.00584		ND [0.000108]	0.00645					
	WS-2	7/9/2003	ND [0.002]	ND [0.002]	ND [0.002]	ND [0.00002]	ND [0.002]	ND [0.002]	ND [0.00002]	0.0167	ND [0.002]	ND [0.00002]	0.0167						
	FD-1 ^D	7/9/2003	ND [0.002]	ND [0.002]	ND [0.002]	ND [0.00002]	ND [0.002]	ND [0.002]	ND [0.00002]	0.0209	ND [0.002]	ND [0.00002]	0.0209						
	WS-2	8/23/2003	ND [0.0025]	ND [0.0025]	ND [0.0001]	ND [0.0025]	ND [0.0001]	0.0203	ND [0.0001]	ND [0.0001]	0.0203								
	WS-Dup ^D	8/23/2003	ND [0.0025]	ND [0.0025]	ND [0.0001]	ND [0.0025]	ND [0.0001]	0.0224	ND [0.0001]	ND [0.0001]	0.0224								
	WS-2	9/17/2003	ND [0.001]	ND [0.001]	ND [0.0005]	ND [0.0005]	ND [0.0005]	0.00742	ND [0.0005]	ND [0.0005]	0.0074								
	WS-2	9/13/2004	0.000168	ND [0.0001]	0.000284	ND [0.0001]	ND [0.0013]	ND [0.0001]	ND [0.0001]	0.00045									
	WS-Dup ^D	9/13/2004	0.000188	ND [0.0001]	0.000273	ND [0.0001]	ND [0.0019]	ND [0.0001]	ND [0.0001]	0.00046									
	WS-2R	9/23/2004	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND										
	WS-02R	7/25/2005	ND [0.001]	ND [0.001]	ND [0.0003]	0.0001	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0002]	ND [0.0002]	ND [0.0004]	ND [0.0002]	ND [0.0002]	ND [0.001]	ND [0.0003]	ND [0.0002]	0.0001
-	WS-Dup ^D	7/25/2005	ND [0.001]	ND [0.001]	0.00047	0.00016	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0002]	ND [0.0002]	ND [0.0001]	ND [0.0002]	ND [0.0002]	0.0021	0.0024	ND [0.0002]	0.0051
-	WS-2R	9/3/2005	ND [0.00005]		ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]		ND [0.00005]	ND					
-	Dup-2 ^D	9/3/2005	ND [0.00005]		ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]		ND [0.00005]	ND					
-	WS-2R	7/26/2006	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000189	ND [0.00005]	ND [0.00005]	0.00019										
	WS-2	9/12/2006	ND [0.00005]		ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000148		ND [0.00005]	0.000148					
		9/10/2007																	
	WS-2R	8/6/2008	ND [0.0000526]		ND [0.0000526]		ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.000105]		ND [0.0000526]	ND					
	WS-5R ^c	8/6/2008	ND [0.0000526]		ND [0.0000526]		ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.000105]		ND [0.0000526]	ND 0.000425 J					
-	WS-2R WS-2R	7/14/2009 9/1/2009	ND [0.00005] ND [0.0000521]	0.0000174 J ND [0.0000521]	ND [0.00005] ND [0.0000521]	0.000408 ND [0.000104]	ND [0.00005] ND [0.0000521]	ND [0.00005] ND [0.0000521]	0.000425 J ND										
-	WS-2R WS-2R	9/1/2009	ND [0.0000521]	ND [0.0000521]	ND [0.0000521]	ND [0.0000521]	0.0000521	0.0000302 J	0.0000521	0.0000302 J	0.0000521	ND [0.0000521]	ND [0.0000521]	ND [0.0000521]	0.0000309 J	ND [0.000104]	ND [0.0000521]	ND [0.0000521]	0.000173 J
-	WS-2R WS-2R	9/22/2010	ND [0.0000505]	ND [0.0000505]	ND [0.0000505]	ND [0.000101]	ND [0.0000505]	ND [0.0000505]	0.000173 J ND										
WS-02R	WS-2R WS-2R	7/9/2011	ND [0.0000505]	ND [0.0000505]	ND [0.0000505]	ND [0.000101]	ND [0.0000505]	ND [0.0000505]	ND										
G	WS-21R ^D	7/9/2011	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	ND [0.00005]	ND										
	WS-21R WS-2R	9/12/2011	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	ND [0.00005]	ND										
	WS-02R	7/3/2012	ID [0.0000306]	ND [0.0000306]	ND [0.0000306]	ND [0.000632]	ND [0.0000306]	ND [0.0000306]	ND [0.00262]										
	WS-2R	9/26/2012	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.000062]	ND [0.00003]	ND [0.00003]	ND [0.00261]										
	WS-21R ^D	9/26/2012	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000626]	ND [0.0000304]	ND [0.0000304]	ND [0.00262]										
	WS-2R	7/2/2013	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.000062]	ND [0.00003]	ND [0.00003]	0.00249 J										
	WS-21R ^D	7/2/2013	ND [0.00003]	ND [0.00003]	ND [0.00003]	0.000045 J	ND [0.00003]	ND [0.00003]	0.00266 J										
	WS-2R	8/22/2014	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	0.0000449 J	ND [0.0000261]	ND [0.0000261]	0.008796 B,J										
	WS-21R ^D	8/22/2014	ND [0.0000257]	ND [0.0000257]	ND [0.0000257]	ND [0.0000515]	ND [0.0000257]	ND [0.0000257]	0.011427 B.J										
	WS-2R	7/24/2015	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.00005]	ND [0.000025]	ND [0.000025]	ND [0.0031]										
	WS-21R ^D	7/24/2015	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.00005]	ND [0.000025]	ND [0.000025]	ND [0.0031]										
	WS-2R	6/20/2016	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.00000925]	ND [0.0000232]	ND [0.00000925]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000463]	ND [0.0000232]	ND [0.0000232]	ND [0.003116]
	WS-29R ^D	6/20/2016	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000091]	ND [0.0000227]	ND [0.0000091]	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000227]	ND [0.0000454]	ND [0.0000227]	ND [0.0000227]	ND [0.003109]
	WS-29R WS-2R	8/1/2017	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.0000103]	ND [0.0000256]	ND [0.0000103]	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.0000256]	ND [0.000051]	ND [0.0000256]	ND [0.0000256]	ND [0.003226]
	WS-99R ^D	8/1/2017	ND [0.000024]	ND [0.000024]	ND [0.000024]	ND [0.000024]	ND [0.0000096]	ND [0.000024]	ND [0.0000096]	ND [0.000024]	ND [0.000024]	ND [0.000024]	ND [0.000024]	ND [0.000024]		ND [0.0000481]	ND [0.000024]	ND [0.000024]	ND [0.0031293]
μ	110 331	5, ., 2011		1.12 [0.00002 r]					[0.0000000]				1.12 [0.00002 1]		1.12 [0.00002 4]			1.2 [0.000024]	[0.0001200]

Notes:

A Total aqueous hydrocarbons were calculated as described in report Section 3.2.2. Refer to Table 4 for total aromatic hydrocarbon values.

PAHs not presented in this table were not detected in surface water samples.

Water quality criteria correspond to ADEC 18 AAC 70.020b (March 23, 2017), adapted by reference from Alaska Water Quality Criteria Manual for Toxic and other Deleterious Organic and Inorganic Substances (December 12, 2008).

D Duplicate of preceding sample

^E WS-02 was flooded and could not be reached; WS-21 is an alternate location.

- WS-03 was dry; WS-03R is an alternate location for WS-03
- G WS-02R and WS-10R are approximate replacement sample sites for WS-
 - 02 and WS-10 which were excavated in 2004
 - C Water Quality Standards

F

1.0

ND [0.001] previous years are presented as the Limit of Detection beginning in 2012; ND [0.001] previous years are presented as the Limit of Quantitation or Practical Quantitation Limit

Data Flags and Abbreviations:

- not analyzed

 AAC
 Alaska Administrative Code

 ADEC
 Alaska Department of Environmental Conservation

 B
 Estimated with potential high bias
- J Estimated value below the limit of quantitation (LOQ)
- mg/L milligrams per liter
- N/A not applicable; no water quality criteria listed^c
- NS Not sampled

polynuclear aromatic hyd U.S. Environmental Prote

PAH

USEPA

Table 5: Surface Water Sample PAH Analytical Results Happy Valley West (all units in mg/L)

0 l	0	Data						PAH	s USEPA Method 8	270D ^B						PAHs USEP	PA Method 8270D ^B	(Continued)	Total Aqueous
Sample .ocation	Sample Name	Date Sampled	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]- anthracene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[g,h,i]- perylene	Chrysene	Fluoranthene	Fluorene	Indeno- [1,2,3-c,d]pyrene	Naphthalene	Phenanthrene	Pyrene	Hydrocarbons ^A
ADEC V	Nater Quality	Criteria ^C	1	N/A	9.6	N/A	0.0002	N/A	N/A	N/A	N/A	N/A	0.3	1.3	N/A	N/A	N/A	0.96	0.015
	HV-WS-03	8/19/1996																	0.0000
ſ	HV-WS-03	9/6/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00313	ND	ND	0.00313
ſ	HV-WS-03	8/30/1998	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00093	ND [0.00002]	ND [0.00002]	0.00093
ſ	HV-WS-03	9/1/1999	ND [0.001]	0.0011	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	ND [0.000001]	0.0011	ND [0.000001]	0.053	ND [0.000001]	ND [0.000001]	0.055
WS-03	HV-WS-03	8/17/2000	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00008	ND [0.00002]	ND [0.00002]	0.00008
Į	HVW-SW3A	8/23/2001	ND [0.000128]		ND [0.0001]	ND [0.00013]	ND [0.00015]	ND [0.0001]	ND [0.00015]	ND [0.0001]	-	ND [0.0001]		0.000164	ND [0.0001]	0.0463		ND [0.0001]	0.0465
Į	HVW-SW-3B	8/29/2001	0.000128		ND [0.000099]	ND [0.000129]	ND [0.000149]	ND [0.000099]	ND [0.000149]	ND [0.000099]	-	ND [0.000099]		0.000228	ND [0.000099]	0.0171		ND [0.000099]	0.0175
Į	WS-3	8/20/2002	0.0002		ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	-	ND [0.0001]	ND [0.0001]	0.000322	ND [0.0001]	0.122		ND [0.0001]	0.123
	WS-D ^D	8/20/2002	0.000197		ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]		ND [0.0001]	ND [0.0001]	0.000315	ND [0.0001]	0.125		ND [0.0001]	0.125512
ļ	WS-3	9/4/2002	0.000121		ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]		ND [0.0001]	ND [0.0001]	0.000184	ND [0.0001]	0.00166		ND [0.0001]	0.00197
Į	WS-3	7/9/2003	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.0000244	ND [0.00002]	0.000614	0.0000265	ND [0.00002]	0.0007
ſ	WS-3	8/23/2003	ND [0.002]	ND [0.002]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.002]	ND [0.0001]	0.00687	ND [0.0001]	ND [0.0001]	0.0069
ſ	WS-3	9/13/2004	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0004]	ND [0.0001]	ND [0.0001]	0.00000
WS-03	WS-03R ^F	7/25/2005	ND [0.002]	ND [0.002]	0.0028	0.00026	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0004]	ND [0.0004]	ND [0.0008]	ND [0.0004]	ND [0.0004]	0.065	0.0084	ND [0.0004]	0.076
ſ	WS-3	9/3/2005	ND [0.0000515]		ND [0.0000151]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]		ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.000103]		ND [0.0000515]	ND
ſ	WS-3	7/26/2006	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000144	ND [0.00005]	0.0103	ND [0.00005]	ND [0.00005]	0.0104
Į	WS-3	9/12/2006	ND [0.0000534]		ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	-	ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	ND [0.0000534]	0.00051		ND [0.0000534]	0.00051
	Sampling disc	continued afte	er 2006, trench bao	ckfilled in 2007												Sampling discontir	nued after 2006, tre	ench backfilled in 20	007
ļ	HV-WS-10	8/19/1996	ND [0.00002]		ND [0.00002]	ND [0.00002]	ND [0.000009]		ND [0.000009]			ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00027		ND [0.00002]	0.00027
ļ	HV-WS-10	9/6/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00084	ND	ND	0.00084
ļ	HV-WS-10	8/30/1998	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00025	ND [0.00002]	ND [0.00002]	0.00025
ļ	HV-WS-10	9/1/1999	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.00043	ND [0.00005]	ND [0.00005]	0.0004
ļ	HV-WS-30 ^D	9/1/1999	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.00033	ND [0.00005]	ND [0.00005]	0.0003
ļ	HV-WS-10	8/17/2000	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00032	ND [0.00002]	ND [0.00002]	0.00032
ļ	FD-6 ^D	8/17/2000	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	0.00046	ND [0.00002]	ND [0.00002]	0.00046
WS-10	HVW-SW10A	8/23/2001	ND [0.000104]		ND [0.000104]	ND [0.000135]	ND [0.000156]	ND [0.000104]	ND [0.000156]	ND [0.000104]		ND [0.000104]		ND [0.000104]	ND [0.000104]	0.00181		ND [0.000104]	0.00181
10 10	HVW-SW10B	8/29/2001	ND [0.0001]		ND [0.0001]	ND [0.00013]	ND [0.00015]	ND [0.0001]	ND [0.00015]	ND [0.0001]		ND [0.0001]		ND [0.0001]	ND [0.0001]	ND [0.0001]		ND [0.0001]	0.000000
Į	WS-10	8/20/2002	ND [0.000101]		ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]	-	ND [0.000101]	ND [0.000101]	ND [0.000101]	ND [0.000101]	0.000478		ND [0.000101]	0.00048
ſ	WS-10	9/4/2002	ND [0.0001]		ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]		ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	0.000708		ND [0.0001]	0.000708
ſ	WS-10	7/9/2003	ND [0.002]	ND [0.002]	ND [0.002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.00002]	ND [0.002]	ND [0.002]	ND [0.00002]	0.0472	ND [0.002]	ND [0.00002]	0.0472
ſ	WS-10	8/23/2003	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	0.000789	ND [0.0001]	ND [0.0001]	0.000789
ſ	WS-10	9/17/2003	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	0.00025	ND [0.0002]	0.0135	ND [0.0002]	ND [0.0002]	0.0138
ļ	WS-Dup ^D	9/17/2003	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	0.00412	ND [0.0002]	ND [0.0002]	0.0041
F	WS-10	9/13/2004	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	0.000359	ND [0.0001]	ND [0.0001]	0.00036

Notes:

Total aqueous hydrocarbons were calculated as described in report Section 3.2.2. Refer to Table 4 А for total aromatic hydrocarbon values.

в PAHs not presented in this table were not detected in surface water samples. с

Water quality criteria correspond to ADEC 18 AAC 70.020b (March 23, 2017), adapted by reference from Alaska Water Quality Criteria Manual for Toxic and other Deleterious Organic and Inorganic Substances (December 12, 2008).

D Duplicate of preceding sample

Е WS-02 was flooded and could not be reached; WS-21 is an alternate location.

F WS-03 was dry; WS-03R is an alternate location for WS-03

- G WS-02R and WS-10R are approximate replacement sample sites for WS-
 - 02 and WS-10 which were excavated in 2004
- 1.0 C Water Quality Standards

ND bracketed values presented as Limit of Detection beginning in 2012; previous years are presented as the Limit of Quantitation or Practical ND [0.001] Quantitation Limit

Data Flags and Abbreviations:

В

J

NS

not analyzed AAC

Alaska Administrative Code ADEC

Alaska Department of Environmental Conservation Estimated with potential high bias

Estimated value below the limit of quantitation (LOQ)

milligrams per liter

mg/L N/A not applicable; no water quality criteria listed^c

Not sampled

polynuclear aromatic hyd U.S. Environmental Prote

PAH

USEPA

Table 5: Surface Water Sample PAH Analytical Results Happy Valley West (all units in mg/L)

Sample Location	Sample Name	Date						PAH		PAHs USEPA Method 8270D ^B (Continued) Total Aqueous									
		Sampled	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]- anthracene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[a]pyrene	Benzo[b]- fluoranthene	Benzo[g,h,i]- perylene	Chrysene	Fluoranthene	Fluorene	Indeno- [1,2,3-c,d]pyrene	Naphthalene	Phenanthrene	Pyrene	Hydrocarbons ^A
ADEC W	ater Quality	Criteria ^C	1	N/A	9.6	N/A	0.0002	N/A	N/A	N/A	N/A	N/A	0.3	1.3	N/A	N/A	N/A	0.96	0.015
	WS-10R	9/23/2004	ND [0.0001]	ND [0.0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0001]	ND [0.0001]	ND [0001]	0.000462	ND [0.0001]	ND [0001]	0.000462
	WS-10R	7/25/2005	ND [0.001]	ND [0.001]	ND [0.0003]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0002]	ND [0.0002]	ND [0.0004]	ND [0.0002]	ND [0.0002]	ND [0.001]	ND [0.0003]	ND [0.0002]	ND
	WS-10R	9/3/2005	ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]		ND [0.00005]	ND
	WS-10R	7/26/2006	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000474	ND [0.00005]	ND [0.00005]	0.000474
	WS-10	9/12/2006	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000167		ND [0.00005]	0.000167
	NS	9/10/2007																	
	WS-10R	8/6/2008	ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]		ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.00067		ND [0.00005]	0.00067
	WS-10R	7/14/2009	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.0000753	J ND [0.00005]	ND [0.00005]	0.0000753 J
	WS-9R ^D	7/14/2009	ND [0.0000526]		ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.0000526]	ND [0.000105]	ND [0.0000526]	ND [0.0000526]	0.000000 J
	WS-10R	9/1/2009	ND [0.0000538]		ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.0000538]	ND [0.000108]	ND [0.0000538]	ND [0.0000538]	ND
WS-10R G	WS-20R ^D	9/1/2009	ND [0.0000515]		ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.000103]	ND [0.0000515]	ND [0.0000515]	ND
	WS-10R	7/19/2010	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.0000696	J ND [0.00005]	ND [0.00005]	0.0000696 J
		7/19/2010	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.000046	J ND [0.00005]	ND [0.00005]	0.000046 J
	WS-10R	9/22/2010	ND [0.0000515]		ND [0.0000515]	0.0000169 J	ND [0.0000515]	0.0000191 J	ND [0.0000515]	0.0000191	J ND [0.0000515]		ND [0.0000515]	ND [0.0000515]	ND [0.0000515]	ND [0.000103]	ND [0.0000515]	ND [0.0000515]	0.0000794 J
	WS-21R ^D	9/22/2010	ND [0.00005]	ND [0.00005]	ND [0.00005]	0.0000232 J	0.0000151	0.000027 J	0.0000151 J	0.000027 、	J 0.0000191 J	0.0000253 J	J 0.0000383 J	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	0.0000328 J	0.000223 J
	WS-10R	7/9/2011	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	ND [0.00005]	ND
	WS-10R	9/12/2011	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	ND [0.00005]	ND
		9/12/2011	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.0001]	ND [0.00005]	ND [0.00005]	ND
	WS-10R	7/3/2012	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000032]	ND [0.000066]	ND [0.000032]	ND [0.000032]	ND [0.00271]
	WS-21R ^D	7/3/2012	ND [0.0000316]		ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000316]	ND [0.0000652]	ND [0.0000316]	ND [0.0000316]	ND [0.00267]
	WS-10R	9/26/2012	ND [0.0000304]		ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000304]	ND [0.0000626]	ND [0.0000304]	ND [0.0000304]	ND [0.00268]
	WS-10R	7/2/2013	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.00003]	ND [0.000062]	ND [0.00003]	ND [0.00003]	ND [0.00267]
	WS-10R	8/22/2014	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.000025]	ND [0.00005]	ND [0.000025]	ND [0.000025]	0.010725 B
	WS-10R	7/24/2015	ND [0.0000261]		ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.0000261]	ND [0.000052]	ND [0.0000261]	ND [0.0000261]	ND [0.0031154]
	WS-10R	6/20/2016	ND [0.0000232]		ND [0.0000232]	ND [0.0000232]	ND [0.0000925]	ND [0.0000232]	ND [0.0000925]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000232]	ND [0.0000463]	ND [0.0000232]	ND [0.0000232]	ND [0.003116]
	WS-10R	8/1/2017	ND [0.0000236]	ND [0.0000236]	ND [0.0000236]	ND [0.0000236]	ND [0.00000945]	ND [0.0000236]	ND [0.0000236]	ND [0.00000945]	ND [0.0000236]	ND [0.0000236]	ND [0.0000236]	ND [0.0000236]	ND [0.0000236]	ND [0.0000471]	ND [0.0000236]	ND [0.0000236]	ND [0.0031228]

Notes:

Total aqueous hydrocarbons were calculated as described in report Section 3.2.2. Refer to Table 4 А for total aromatic hydrocarbon values.

в PAHs not presented in this table were not detected in surface water samples.

Water quality criteria correspond to ADEC 18 AAC 70.020b (March 23, 2017), adapted by reference from Alaska Water Quality Criteria Manual for Toxic and other Deleterious Organic and С Inorganic Substances (December 12, 2008).

D Duplicate of preceding sample

Е WS-02 was flooded and could not be reached; WS-21 is an alternate location. F WS-03 was dry; WS-03R is an alternate location for WS-03

WS-02R and WS-10R are approximate replacement sample sites for WS-G

02 and WS-10 which were excavated in 2004

C Water Quality Standards 1.0

ND bracketed values presented as Limit of Detection beginning in 2012; previous years are presented as the Limit of Quantitation or Practical Quantitation Limit ND [0.001]

Data Flags and Abbreviations:

not analyzed AAC Alaska Administrative Code ADEC Alaska Department of Environmental Conservation

PAH USEPA

В Estimated with potential high bias Estimated value below the limit of quantitation (LOQ)

J

mg/L milligrams per liter

N/A not applicable; no water quality criteria listed^c NS Not sampled

polynuclear aromatic hydrocarbon

U.S. Environmental Protection Agency

APPENDIX A

PHOTOGRAPH LOG

2017 Water Monitoring Report Happy Valley West

ALYESKA PIPELINE SERVICE COMPANY PO Box 196660

3700 Centerpoint Drive Anchorage, Alaska 99519-6660

January 2018

Photo 1: Typical August creek flow at surface water sample location WS-10R. The sample was collected from surface water adjacent to the blue cooler; photograph looking east.

2017 Water Monitoring Report Happy Valley West

Job No: 105.01288.17015

Photo 2: Inspection of stream bank sediments during shovel sheen testing. A survey tape (upper right) was used to measure out testing locations.

2017 Water Monitoring Report Happy Valley West

Job No: 105.01288.17015

APPENDIX B

FIELD LOGBOOK

2017 Water Monitoring Report Happy Valley West

ALYESKA PIPELINE SERVICE COMPANY

PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

January 2018

CIVENT/BSTUFFC 6/21/16 HARY VALLEY 105.01288.16016 Huppy Valley Wayt OG20 - Depart for Huppy Valley, Tailyak Safety Meeting en Porte. 0930-Arrive of 5.7k 9 0635 - Leave Camp for Protoe 0945 - Arrive in produce fuel trace. 1000-1100- Shif Sample Coders and equipment 1100-1230 - Inp off Detty trady Check in For 0940- Collect Surface water Sample WS-2R and dephante WS-19R at "19,00" Plight 0952 - Collect Surface water sample WS-LOR 1720- Arnue of home, end of day. 0943 - Start Sentry JR purge 1020- Willert Semple Sentra-IR and hitten to diplicate Sentry-100 at "1700" Petroleum hist" Vois for both. 1100 - Sample Sentry -2R 1140 - Conduct Sheer test (over) 1155 No Shen observed. 1129 - Samp Sentry - 3k. 130-1200 - Pach egyment & Samples 1205-1500 - Petera & deudhurse, Construction Zones Slow travel. END OF DAY. OVER -> For Sectiment Notes Rite in the Rain.

10		Happy Valley GW Sampling 2/1/17
	6	Happy Valley (W Sampling 2/1/17
		111
		The Sheen tests along
		A Charles and the second secon
		no sheen visible on st
		- Doil river Sediments, or it
		- stream bank colobles. EI in
		None of the test at 3
		locations exhibited an odor.
		Consider Sampling testing It of
		from 30i-110 next
		Field event.
		- DE Q
		Star Aw
		Awson Awson
		A ws cr A ws cr 4 5 48
		· · · · · · · · · · · · · · · · · · ·
		1
		at E
	-	" Rete in the Rain

APPENDIX C

FIELD FORMS

2017 Water Monitoring Report Happy Valley West

ALYESKA PIPELINE SERVICE COMPANY

PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

January 2018

Groundwater Sampling Form

k

Site/Client Name	a: APSC PS01	1	1.1.1.1		Well I	D: 5	entry	-IR		-
roject # : 105.01	288,1601	Happ	y Jalle-	1	Samp	le ID:	Sentry	-IR		
Sampled By:	Seth	Oliver	1 7		Samp	le Time:	5:20'	Samp	e Date: 8	/ 1 /2016
Weather Conditio		UF, win			Duplic	ate ID:	Seniry	-106	F QI	1:00
Sampling Method			1		MS/M	SD 🗌 Yes			Required:] Yes 🗌 No
. /	~			Well Ir	formation	5	entry	- 42	· (Dup)
Well Type: 🕅 Pe	manent 🔲 T	emporary	V	Vell Diameter	<u>2</u> in.	Screen Int		and a second sec		ft BGS
Well Condition: 🛛	Good 🗌 Fa	air 🗌 Poor (i	the second se	and the second diversion of th	The second s	along a state of the state of t	Yes 🗌 N	o; If yes,	ft abo	ve ground
Dente de Malabara (A	DETOCH 7			Gauging/Pur		Nation Pump Depth	/# BTOC	· A.	10	
Depth to Water (fi Total Depth (ft B		-90 NM				Start Time (2			/0	
Depth to Product		NM				End Time (24		10		
Product Thicknes						Purge Time (r	nin)	17		
S	creen, then use	default value	of 0.3 ft.	Screen Depth)						pie is below top o
Min. purge volume Well Diameter			<mark>ial) =</mark> volume of 041 gal/ft		/ft) X Water o 163 gai/ft	olumn thicknes	s (fi) 4' - 0.653	X # of casing cal/ft	volumes 6' - 1	=gai .469 gal/ft
Vien Diameter	- gavit T	1 - 0.	041 gabit	Water Qual				<u>.</u>		X
(Achieve sta	able parameters	for 3 consecu	tive reading, 4	parameters if practi	cal [each rea	ding taken afte	r pumping a	minimum of 1	flow through ce	ell volume])
Time (24-hr)	Flow Rate (liter/	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	рH	Turbidity (NTU)	: DTW (ft BTOC)	Drawdown (ft)
	minute)	(gui)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0, 1)	(± 10%, or <5 NTU)		(Maxft)
0946	,200	0.6	10:37	707	2.17	241.5	6.59	L	7.95	0.05
0950	. 200	1.4	10.16	693	1.85	241.2	6.60	4	7.95	0.05
0954	200	0.7	10.17	-500	1.36	241.9	6.69	Ĺ	1.95	20.0
0958	. 200	3.0	10.21	553	1.24	222.0	6.71	L	2.9K	0.05
(1)(1))	. 700	3.4	10.27	548	0.99	222.5	6.27	Ļ	2.45	0.05
100 -	200	4.6	10.29	545	0.88	018.3	6.80	L	1.15	0.05
1000		5.4	10.41	542	0.86	215.9	6-84	L	7.95	0.05
10.10	. 200	5.4	10.11		0.00		w v)			0.03
			1	/			1			
Parameter Stable	e (Check appli	cable)	\checkmark	\checkmark		\checkmark				
Sample Color:	No	me		Sample Odor:	1.000	and the set of the set	Shee	en: M	m.	
-	Anal	yses			al Samplin	and the second se	11.04	Com	nents	
11. Aalo	- 1 I I I I I I I I I I I I I I I I I I	o C		Check	V	-				nan erre e
	BTEX	0 -								
PAN	ing the second	7			V/					
PG	0				V					
Notes:										
	T	1.11		Tubing (T	weath anoth	1/4"00	DETE-IN	Bailer Ty	ne	
Equipment: Pur		Carlant A	clube las	Tubing (T	ypercengin) eter Meter (Make/SN#)	V (+	556	PC	
Turbidity Meter (I	-			Mulu-Faidii	icici meter (ilter Lot #	-	
	(12)==					-		(
Purge Water Ha	ndling: 🔲 Di	scharged to	surface 🕱Co	ntainerized 🕅	reated (how	(?) Tran	sprter	10 05	φI	<
• BGS =	Below Group	d Surface BT	OC= Below To	p of Casing, NA =	Not Applica	ble		Pa	gelof	

701

Groundwater Sampling Form

,

Site/Client Name:	APSC PSD	ta	mon	Mun	Well II	r: Sen	try-3	R		
roject # : 105.012	288.1601		n_j		Sample	e ID: Sel	ntm-	3R		
Sampled By:	Gal	ANT	Č.	0	Sample	e Time: 11	29	Sampl	e Date: 🔏 /	1 /2016 2
Weather Condition	is: Uo	FO	loudy		Duplica	ate ID:				
Sampling Method:					MS/MS	SD 🗌 Yes 🛛	No ·	Trip Blank	Required:	Yes 🗌 No
	(1847) - 1			Well In	formation			274	1	
Well Type: 🔀 Perr	manent 🗌 T	emporary	1	Well Diameter	2 in	Screen Inte	erval:	ft B	GS to	ft BGS
Well Condition: 😡	Good 🗌 Fa	air 🗋 Poor (i	f fair or poor	and the second se	and the second se		Yes 🗌 No	; If yes,	ft abov	e ground
		20		Gauging/Pur			(# DTOO)			
Depth to Water (ft. Total Depth (ft. BT		.35				Pump Depth Start Time (24			Start B	1101
Depth to Product (1		ويدهيه				and Time (24				17
Product Thickness		<u> </u>				urge Time (m				12
	ax Draw Down reen, then use			Screen Depth)	X 0.25 =	=(ft); if	screen inter	val is not kno	own or water table	e is below top of
Min. purge volume i						lumn thickness		X # of casing		gal
Well Diameter -	- gal/ft	1' - 0.(041 gal/ft	All and the second s	163 gal/ft		4' – 0.653 g	jai/π	6 - 1 4	69 gal/ft
(Achieve stat	ple parameters	for 3 consecu	tive reading, 4	Water Qual parameters if practic			pumping a	minimum of 1	flow through cell	volume])
Time	Flow	Purge	Temp	Specific	DO	ORP	рН	Turbidity	DTW	Drawdown
(24-hr)	Rate (liter/	Volume (gal)	(°C)	Conductance (µS/cm°)	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)
	minute)	L	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(±0.1)	(± 10%, or <5 NTU)	A17	(Maxft)
1110	200	11.50	9.59	0,449	3.08	174,5	7.01	1	7.40	,05
1119	200	12.0	9.410	0.449	0,99	150.5	1,99	-	7.40	.05
1122	200	12.5	954	0,449	0.59	1151.9	10.911		1.40	.05
1125	200	13.D	9.57	0 449	0 42	18/11	1096		140	.05
112.5	200	13.5	MILY	NUT	0.51	150 0	10 910		740	.05
1100	200	1217	1.10	0, 790		10070	4114			
					-					
		1								
			l							
		i								
		1								
							1		///////	
Parameter Stable (Спеск аррис	cable)		V	. 10	V	V	<u> </u>		
Sample Color:	CHER	n		Sample Odor:	MONE	ĩ	Sheer	n: NN	ANE	
			A		al Sampling					
	Analy	yses	and S. S	Check	Applicable	Anna		Comm	ents	
Dro	GAS, BI	15.2			(\	
	PAR									
Notes:										
	Δ	a sa No			1445					
Equipment: Pump	p Type_fe	nitelti		Tubing (Ty	pe/Length)	14 00 PFT	if -lives	Bailer Typ	e	
Jater Level Meter_		Gev Sl	ife	Multi-Parame	eter Meter (N	lake/SN#)	y y j	1 556		
Turbidity Meter (Ma	ake/SN#)						Fil	ter Lot #		
		charged to a	urface Deca	ntainerized 📈 Tr	antod (how?	fran	inorte1	+ 00	w1	
Purne Water Hann	dling: Libe									

SLR

Surface Water Sampling Form

14-1

200

The second second

	lame: APSC / PS01 🛛 🕂	APPY VALLEY	Loc	ation ID:	sw- 01	LK	54
Project # : 105	0.01288-1601 17015	., /	Sam	nple ID:	NS 212		
Sampled By:	CLUENUT		Sam	nple Time: 04	940	Sample Da	ate: 3 / 6 / 20167
Weather Cond	litions: 60°F ligr	it dizzle		licate ID:			//
		1000	MS/	MSD 🗌 Yes 🗋	No Trip E	Blank Requ	iired: Ves 🗌 No
			ocation Inf				
Distance from		oth of Water (ft): D			Rapid [Slow	Stagnant Pool
Co-Located Se	ediment Sample: 🔲 Yes 🛛	No GPS Coor	dinates: No	rthing		Easting	
0			Sheen				
D No Sheen	Sheen Observed: PO						
		Wat	ter Quality	Parameters			
Temp (°C)	Specific Conductance (µS/cm ^c)	DO (mg/L)					Odor
13.47	33	9.78	7.85	13	5.4	cler	More
		A	Analytical S	ampling			
Analyses	Number/Type of Bottle	Preservativ		Analyses	Number/		Preservative/
		Comment HCI	S		Bott	le	Comments
BTEX	3x - 40 mL VOA 2x - 250 mL Amber						
PAH SIM	1x - 125 mL poly	Eq. Shop only					
Aunate	1x-120 mi-poly	- Ly Shop only					
Equipment Us Multi-Paramete GPS (Type/Uni Client / Site N		N/A6	(Type/Lo	Turbic	lity Meter (Ma N/A	ke/SN#) 5 10 fL	N/A
	01288.4604 17415	· (ple ID:	WS-10P		
Sampled By:	C. Venot	2/77.0		ple Time:	0952	Sample Da	ate: e) // / 2049/7
Weather Cond	litions: 60° F M	got drithe			15-19 A		ired: Xes 🗌 No
						biank Requ	
			ocation inte	ormation		1.00	
"Denuise"					15.		
		oth of Water (ft): 0	8 Dista	ance from Bank	(ft):	E time	
	Bank (ft): 1 Der ediment Sample: □ Yes D	oth of Water (ft): 0	odinates: No	rthing	(ft):	Easting	
Co-Located Se	ediment Sample: 🔲 Yes 🛛	oth of Water (ft): ひ ☐ No GPS Coor	dinates: No Sheen	rthing Test	(ft):	Easting	
Co-Located Se	ediment Sample: Yes Yes PO	th of Water (ft): O No GPS Coor L-fluid rainbow / Bio	dinates: No Sheen	rthing Test y / other	(ft):	Easting	
Co-Located Se	ediment Sample: Yes Sheen Observed: PO	oth of Water (ft): ひ ☐ No GPS Coor	Dista dinates: Nor Sheen ogenic-plate ter Quality I	rthing Fest y / other Parameters	(ft):		
Co-Located So No Sheen Temp (°C)	ediment Sample: Yes Yes PO	No GPS Coor C-fluid rainbow / Bio Wat	Dista dinates: No Sheen ogenic-plate ter Quality I Specifi Conducts (sS/em	rthing Test y / other Parameters ic shce shce shce	enp S))AP	Specific Conducta (µS/cm ²	T deci
Co-Located So	ediment Sample: Yes Sheen Observed: PO Specific Conductance	oth of Water (ft): No GPS Coor L-fluid rainbow / Bid Wat	dinates: No Sheen genic-plate er Quality I Specifi	rthing Test y / other Parameters ic shce shce shce	enp 25)049	-Specific Conducta	nce Odor temp
Co-Located So No Sheen Temp (°C)	ediment Sample: Sheen Observed: PO Specific Conductance (μS/cm ⁶)	And GPS Coor No GPS Coor L-fluid rainbow / Bio Wat Temp Do (*C) Do	dinates: No Sheen ⁻ ogenic-plate ter Quality I Specifi Conducts (µS/om Co2 Analytical S	rthing Test y / other Parameters ic ance of M - - / 1 ampling	enp S))AP	Specific Conducta (µS/cm ²	T dec
Co-Located So No Sheen Temp (°C) 13.51 Analyses	ediment Sample: Yes Sheen Observed: PO Specific Conductance (µS/cm ⁶) 34 Number/Type of Bottle	Analyses	Dist: dinates: No Sheen genic-plate genic-plate genic-plate genic-plate genic-plate specif Conducts (µS/om Conducts	rthing Test y / other Parameters to ance s) M ampling Number/Type of Bottle	amp SC)SRP L.3 Analy	Specific Conductar (µS/cm ² Clew	Number/Type of Bottle
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX	ediment Sample: Yes Sheen Observed: PO Specific Conductance (µS/cm ^c) 34 Number/Type of Bottle 3x - 40 mL VOA	Analyses BTEX	Dist: dinates: No Sheen genic-plater rer Quality I Specif Conducts (µStom Conducts (µSto	rthing Test y / other Parameters ic ance s) M ampling Number/Type of Bottle Bx - 40 mL VOA	Analy BTEX	Specific Conductar (µS/cm ² Clew	Number/Type of Bottle
Co-Located So No Sheen Temp (°C) 13.51 Analyses	ediment Sample: Yes Sheen Observed: PO Specific Conductance (µS/cm ⁶) 34 Number/Type of Bottle	Analyses	Dist: dinates: No Sheen genic-plate rer Quality If Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts (µSlom Conducts C	rthing Test y / other Parameters ic ampling Number/Type of Bottle Bx - 40 mL VOA 2x - 250 mL	amp SC)SRP L.3 Analy	Specific Conductar (µS/cm ² Clew	Number/Type of Bottle
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX	ediment Sample: Yes Sheen Observed: PO Specific Conductance (µS/cm ^c) 34 Number/Type of Bottle 3x - 40 mL VOA	Analyses BTEX	Dista dinates: No Sheen ogenic-plate ter Quality I Specific Conducta (µS/om E-01 Analytical S 3 2 4 4	rthing Test y / other Parameters ic ance s) M ampling Number/Type of Bottle Bx - 40 mL VOA	Analy BTEX	Specific Conductar (µS/cm ² Clew	Number/Type of Bottle
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX PAH SIM	ediment Sample: ☐ Yes ∑ ☐ Sheen Observed: PO Specific Conductance (µS/cm ^e) 3 ¹ / ₄ Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber	Analyses BTEX PAH SIM	Dista dinates: No Sheen ogenic-plate ter Quality I Specific Conducta (µS/om E-01 Analytical S 3 2 4 4	rthing Test y / other Parameters ic ampling Number/Type of Bottle bx - 40 mL VOA 2x - 250 mL Amber x - 125 mL	Analy BTEX PAH SIM	Specific Conductar (µS/cm ² Clew	Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX PAH SIM Sulfate	ediment Sample: ☐ Yes ∑ ☐ Sheen Observed: PO Specific Conductance (µS/cm ^e) 3 ¹ / ₄ Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber	Analyses	Dista dinates: No Sheen ogenic-plate conducta (pSom 2-01 Analytical S 3 2 4 4 4 5 5 6 6 7 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	rthing Test y / other Parameters ic ampling Number/Type of Bottle bx - 40 mL VOA 2x - 250 mL Amber x - 125 mL	Analy BTEX PAH SIM	Specific Conducta (#S/em*	Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX PAH SIM Sulfate Notes (indicated	ediment Sample: ☐ Yes ∑ ☐ Sheen Observed: PO Specific Conductance (µS/cm ^c) 3 ¹ / ₄ Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber -1x - 125 mL poly	Analyses BTEX PAH SIM	Dist: dinates: No Sheen ogenic-plate ier Quality I Specifi Conducte (µStom 2 o 2 Analytical S 3 2 4 4 5 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	rthing Test y / other Parameters ic ampling Number/Type of Bottle Bx - 40 mL VOA Ex - 250 mL Amber Ix - 125 mL- ady	Analy BTEX PAH SIM	Specific Conducta (#S/em* Clew ses	Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber 1x - 125 mL poly_
Co-Located So No Sheen Temp (°C) 13.51 Analyses BTEX PAH SIM Sulfate Notes (indicate Equipment Us	ediment Sample: Yes Sheen Observed: PO Specific Conductance (µS/cm ^c) 3X - 40 mL VOA 2x - 250 mL Amber -1x - 125 mL poly collection method): 250 mL	bth of Water (ft): No GPS Coor L-fluid rainbow / Bio Wat Temp Do (*C) Do * 8:72 A Analyses BTEX PAH SIM Sulfate unpreserved bottle	Dist: dinates: No Sheen ogenic-plate ier Quality I Specifi Conducte (µStom 2 o 2 Analytical S 3 2 4 4 5 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	rthing Test y / other Parameters ic ampling Number/Type of Bottle bx - 40 mL VOA 2x - 250 mL Amber Ix - 125 mL- body ength)	Analy BTEX PAH SIM	Specific Conductar (#S/cm ⁶ Clew ses	Number/Type of Bottle 3x - 40 mL VOA 2x - 250 mL Amber 1x - 125 mL poly_

APPENDIX D

SLR QUALITY ASSURANCE REVIEW, ADEC LABORATORY DATA REVIEW CHECKLIST, AND LABORATORY ANALYTICAL RESULTS

2017 Water Monitoring Report Happy Valley West ALYESKA PIPELINE SERVICE COMPANY

> PO Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

> > January 2018

Report

LABORATORY DATA QUALITY ASSURANCE REVIEW

HAPPY VALLEY WEST GROUNDWATER AND SURFACE WATER MONITORING

ALYESKA PIPELINE SERVICE COMPANY

October 2017

Prepared by: Sarah Croisant Reviewed by: Jennifer McLean

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number 105.01288.17015 ADEC File Number 330.38.049

ACRONYMS AND ABBREVIATIONS

%	percent
AAC	Alaska Administrative Code
AK	Alaska
ADEC	Alaska Department of Environmental Conservation
BTEX	benzene, toluene, ethylbenzene, and xylenes
°C	degrees Celsius
CCV	continuing calibration verification
COC	chain of custody
DL	detection limit
DRO	diesel range organics
EDD	electronic data deliverable
GRO	gasoline range organics
GW	groundwater
ID	identification
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
LV	low volume
mg/L	milligram per liter
MS	matrix spike
MSD	matrix spike duplicate
ND	not detected
PAH	polycyclic aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness, and sensitivity
QA	quality assurance
QAR	quality assurance review
QC	quality control
QCS	quality control sample
RPD	relative percent difference
SDG	sample delivery group
SGS	SGS North America, Inc.
SIM	selective ion monitoring
SLR	SLR International Corporation
SM	Standard Methods
UCL	upper control limit
μg/L	micrograms per liter
VOA	volatile organic analysis
VOC	volatile organic compounds

Introduction

This report summarizes a review of analytical data for groundwater and surface water samples collected on August 1, 2017 at Happy Valley West. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc. (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (UST-005) for analytical methods of interest, as applicable. Table 1 provides a summary of work orders, sample receipt, analytical methods, and analytes.

Table 1 Sample Receipt, Method, and Analyte Summary	Table 1	Sample Receipt, Method, and Analyte Summary
---	---------	---

SDG	Date Collected	Date Received by Laboratory	Temperature Blank	Matrix	Analytical Method	Analyte
					SW8021B	BTEX
1115170 0/1/17	SGS, Anchorage	1 2 2 2	Groundwater and	SW8260C	Petroleum VOCs ¹	
1115178	1115178 8/1/17	8/3/17	4.3°C	Surface Water	AK101	GRO
					AK102 LV	DRO
					SW8270D LV	PAH SIM

Note:

1 - A short list of petroleum VOCs were analyzed. Analytes reported were benzene, toluene, ethylbenzene, total xylenes (m,p – xylene and o-xylene), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene (cumene), methyl-t-butyl ether, naphthalene, n-butylbenzene, n-propylbenzene, sec-butylbenzene, styrene, and tert-butylbenzene.

- Acronyms:
- °C degrees Celsius AK – Alaska BTEX – benzene, toluene, ethylbenzene, and xylenes DRO – diesel range organics GRO – gasoline range organics LV – low volume PAH – polynuclear aromatic hydrocarbons SDG – sample delivery group SIM – selective ion monitoring VOC – volatile organic compounds

The laboratory final report was provided as Level II deliverable, and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) for the report was also provided. The PDF laboratory report is provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements, *ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance* (ADEC 2017b) requirements, analytical method criteria and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG, and is included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.); were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria as being outside applicable acceptance limits;
- Reviewing the case narrative for any discussion of any internal standard recoveries outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable and was reviewed only from the case narrative;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), Laboratory Control Sample Duplicates (LCSD), Matrix Spike (MS), and Matrix Spike Duplicate (MSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, and MS/MSD; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of the quality assurance review, qualifiers (i.e. flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2Data Qualifiers

Qualifier	Definition
Q	One or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed. Where applicable, an "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.
J	The analyte was positively identified but the result was outside the calibration range, between the limit of quantitation (LOQ) and the detection limit (DL); the quantitation was an estimate.
м	The concentration was an estimate due to a sample matrix quality control failure. Where applicable, an "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.
В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank, method blank, equipment blank, etc.) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone).
Р	Sample preservation requirements were not satisfied.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of the samples, except as noted below.

• The COC recorded the trip blank collection date as July 14, 2017 with no time indicated. Typically the trip blank is assigned a sample collection date and time matching that of the first sample collected. The laboratory correctly reported the trip blank as having the same collection date and time as that of the earliest sample (August 1, 2017 at 0940). Data was not impacted.

Preservation (Chemical and Temperature)

Samples were appropriately preserved and were submitted to SGS. No issues were noted in regard to sample preservation.

Holding Times

All sample analysis was conducted within holding time criteria.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected (ND) in any method blanks at or above the Limit of Detection (LOD), except as noted in Table 3. Since a high bias would be indicated by the method blank, and all associated samples had toluene results of ND, data was not affected.

Table 3 Method Blank Detections

Sample ID	Method	Analyte	Result (µg/L)	LOD (µg/L)
MB	SW8021B	Toluene	1.1	0.5

Trip Blanks

One trip blank was submitted and analyzed for volatile methods (GRO by AK101, BTEX by SW8021B, and Petroleum VOCs by SW8260C). Analytes were not detected in the trip blank at or above the LOD.

Reporting Limits

For non-detect results, LODs were compared to applicable cleanup levels for the site. For ground water samples, LODs were compared to 18 AAC 75, *Oil and Other Hazardous Substances Pollution Control*, section .345 Table C, Groundwater Cleanup Levels (ADEC, 2017c). For surface water samples, LODs were compared to 18 AAC 70, *Water Quality Standards* (ADEC, 2017a). ADEC 18 AAC 70 references *Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances* (ADEC, 2008). All results of non-detect had LODs at or below applicable cleanup levels.

Continuous Calibration Verifications (CCVs)

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits, as reviewed in the EDD, except as noted in Table 4.

Table 4 CCV Recovery Exceedances and Affected Data

Sample ID	Lab ID	Analytical Batch	Method	Analyte	Percent Recovery (%)	Recovery Limit (%)		
CCV 1765682	1403717	VEC12707	SW8021B	Benzene	122	80-120		
CCV 1765682	1403721	VFC13797			123	80-120		
All	All associated samples had results of ND for the listed analyte. Data was not affected.							

Internal Standards

No internal standards were noted in the case narrative as outside of acceptance limits. Internal standard performance criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits.

Laboratory Control Samples and Laboratory Control Duplicate Samples

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within analytical method and SGS percent recovery acceptance limits, except as noted in Table 5.

Table 5	LCS/LCSD Recovery Qualifications
---------	----------------------------------

Lab ID	Method Analyte	Prep Batch	LCSD Recovery (%)	Recovery Limits (%)			
1403711	Benzene	VXX31040	123	80-120			
All	All associated samples had results of ND for the listed analyte. Data was not affected.						

Happy Valley West GW and SW Monitoring

October 2017

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS and MSD recoveries and RPDs were within analytical method and SGS percent recovery acceptance limits.

Field Duplicates

The field duplicate sample frequency is presented in Table 6. Parent sample and field duplicate pairs are presented in Table 7. The frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

Samples with both results below the LOQ (J flagged or non-detect) were considered acceptable without qualification.

Table 6	Field Duplicate Frequency, Methods, and Analytes

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
Groundwater	SW8021B	BTEX	3	1
	AK101	GRO	3	1
	AK102 LV	DRO	3	1
	SW8270D LV	PAH SIM	2	1
Surface water	SW8021B	BTEX	2	1
	SW8270D LV	PAH SIM	2	1

Abbreviations:

BTEX – benzene, toluene, ethylbenzene, and xylenes

DRO – diesel range organics

GRO – gasoline range organics

LV – low volume

PAH – polynuclear aromatic hydrocarbons

SIM – selective ion monitoring

Table 7 Field Duplicate Identification

Sample Type	Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Y/N)
Groundwater	Sentry-1R	Sentry-4R	Ν
Surface water	WS-2R	WS-99R	Y

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met.
- Accuracy: Accuracy goals were met, except as noted in the CCV and LCS/LCSD sections.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations in accordance with applicable requirements and guidance documents.
- Comparability: Comparability goals were met. SGS laboratory provided analytical support for all methods.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis because no data were rejected.
- Sensitivity: Sensitivity goals were met, except as noted in the Method Blanks section.

This data were considered of good quality and acceptable for use with the noted limitations and qualifications in this QAR. No data were rejected.

References

- ADEC, 2008. Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances. December.
- ADEC, 2017a. Water Quality Standards. Amended as of February 5.
- ADEC, 2017b. Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. Technical Memorandum. March 2017.
- ADEC, 2017c. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control. Revised as of March 23, 2017.

Attachments

Attachment 1 – ADEC Data Review Checklist Attachment 2 – Laboratory Deliverable

Attachment 1

ADEC Data Review Checklist

Laboratory Data Review Checklist

Completed	by:
-----------	-----

Sarah Croisant

Title:

Staff Scientist

Date:

October 17, 2017

CS Report Name:

Report Date:

August 21, 2017

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS Anchorage, AK.

Laboratory Report Number:

1175178

ADEC File Number:

330.38.049

Hazard Identification Number:

N/A

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

 • Yes
 • No
 Comments:

SGS Anchorage AK is ADEC approved for the methods used.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

• Yes • No Comments:

The samples were not transferred to any other laboratory.

2. Chain of Custody (COC)

- a. COC information completed, signed, and dated (including released/received by)?
 - Yes O No Comments:

The COC recorded the trip blank collection date as July 14, 2017 with no time indicated. Typically the trip blank is assigned a sample collection date and time matching that of the first sample collected. The laboratory correctly reported the trip blank as having the same collection date and time as that of the earliest sample (August 1, 2017 at 0940). Data was not impacted.

b. Correct analyses requested?

\mathbf{V} Yes \mathbf{V} No Comments	Yes	es 🔿 No	Comments
---	-----	---------	----------

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes	🔿 No	Comments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

💿 Ye	es 🔿 No	Comments:

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes • No Comments:

All samples were received in acceptable condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

No discrepanices were noted.

Yes	🔿 No	Comments:
-----	------	-----------

e. Data quality or usability affected?

Comments:

N/A, no affect.

4. Case Narrative

a. Present and understandable?

• Yes • No Comments:

b. Discrepancies, errors or QC failures identified by the lab?

• Yes • No Comments:

The case narrative notes an LCSD exceedance and a MB detection. All affected samples, in both instances, were ND.

c. Were all corrective actions documented?

• Yes • No Comments:

N/A, no corrective actions were necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

N/A, no effect.

5. Samples Results

- a. Correct analyses performed/reported as requested on COC?
 - Yes No Comments:
- b. All applicable holding times met?

Yes O No

Comments:

c. All soils reported on a dry weight basis?

○ Yes • No Comments:

N/A, no soils were analyzed.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

All reported LOQs were less than the cleanup levels.

e. Data quality or usability affected?

Comments:

N/A, no affect.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - Yes No Comments:
 - ii. All method blank results less than limit of quantitation (LOQ)?

The method blank for toluene (Method SW8021B), had a detection of $1.1\mu g/L$. All associated samples had results of ND and data was not affected.

iii. If above LOQ, what samples are affected? Comments:

All associated samples had results of ND, therefore, no data was affected.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

N/A, no data were affected.

v. Data quality or usability affected?

Comments:

N/A, No affect.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

No metals or inorganics were analyzed.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Two CCVs and one LCSD had benzene recoveries (122%, 123%, and 123%) slightly above the acceptable upper control limit of 120%.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes No Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

A high bias was indicated and all associated samples had results of ND for the listed analyte. Data was not affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

N/A, all affected samples had results of ND.

vii. Data quality or usability affected?

Comments:

Data was not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 - Yes O No Comments:
 - ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
 - Yes No Comments:
 - iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
 - Yes No Comments:

N/A, all surrogate recoveries were acceptable.

iv. Data quality or usability affected?

Comments:

N/A, no affect.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?
 - Yes No Comments:
 - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 - Yes No Comments:

Yes, only one cooler was used to transport all samples on this workorder.

iii. All results less than LOQ?

• Yes • No Comments:

iv. If above LOQ, what samples are affected? Comments:

No samples were reported above LOQ.

v. Data quality or usability affected?

Comments:

N/A, no affect.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?
 - [⊙] Yes [○] No Comments:

One field duplicate was analyzed per 10 samples per analyte and matrix.

ii. Submitted blind to lab?

• Yes • No Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

[⊙] Yes [○] No Comments:

Samples with both results below the LOQ (J flagged or non-detect) were considered acceptable without qualification.

iv. Data quality or usability affected?

Comments:

No impact.

- f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)

 - i. All results less than LOQ?
 - Yes No Comments:

Dedicated or disposable equipment was used for the collection of all samples.

ii. If above LOQ, what samples are affected?

Comments:

N/A, no affect.

iii. Data quality or usability affected?

Comments:

N/A, no affect.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

- a. Defined and appropriate?
 - Yes No Comments:

All other data flags and qualifiers were defined appropriately.

Attachment 2 Laboratory Deliverables

(Data package and electronic files)

Laboratory Report of Analysis

To: Alyeska Pipeline Srv Co. 4601 Business Park Blvd K42 Anchorage, AK 99503 (907)222-1112

Report Number: 1175178

Client Project: APSC PS01 Happy Valley

Dear Scott Rose,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,	
SGS North America	Inc

SGS North America Inc. Environmental Services – Alaska Division Project Manager

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Revised Report - This report has been reissued to include a signature and pagination. No data has changed.

Justin Nelson

08:35:14 -08'00'

2017.10.20

Print Date: 08/18/2017 3:02:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Alyeska Pipeline Srv Co. SGS Project: 1175178 Project Name/Site: APSC PS01 Happy Valley Project Contact: Scott Rose

Refer to sample receipt form for information on sample condition.

LCSD for HBN 1765681 [VXX/3104 (1403711) LCSD

8021B - LCSD recovery for benzene (123%) does not meet QC criteria. However this analyte is non detect in the associated samples.

MB for HBN 1765681 [VXX/31040] (1403709) MB

AK101/8021B - MB has toluene concentration above LOQ and it does not meet QC criteria. However this analyte is non detect in the associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 08/18/2017 3:02:50PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Comple cummerice which i	ngluda a regult for "Tatal Calida" have already been adjusted for maisture a

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 08/18/2017 3:02:52PM

SGS

Sample Summary				
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
WS-2R	1175178001	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
WS-10R	1175178002	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
WS-99R	1175178003	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
Sentry-1R	1175178004	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
Sentry-2R	1175178005	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
Sentry-3R	1175178006	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
Sentry-4R	1175178007	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)
Trip Blank	1175178008	08/01/2017	08/03/2017	Water (Surface, Eff., Ground)

<u>Method</u>

8270D SIM LV (PAH) AK101 SW8021B SW8021B SW8260C AK102 Method Description 8270 PAH SIM GC/MS Liq/Liq ext. LV AK101/8021 Combo. AK101/8021 Combo. BTEX 8021 BTEX 8260 w/Naphthalene (W) DRO Low Volume (W)

Print Date: 08/18/2017 3:02:54PM

SGS

Parameter	<u>Result</u>	<u>Units</u>
Naphthalene	0.0611J	ug/L
Parameter	Result	Units
Diesel Range Organics	0.261J	mg/L
o-Xylene	0.330J	ug/L
Parameter	Pecult	Units
Naphthalene	0.0546J	ug/L
Diesel Range Organics	0.183J	mg/L
	Naphthalene <u>Parameter</u> Diesel Range Organics o-Xylene <u>Parameter</u> Naphthalene	Naphthalene0.0611JParameterResultDiesel Range Organics0.261Jo-Xylene0.330JParameterResultNaphthalene0.0546J

Print Date: 08/18/2017 3:02:55PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Allowable

<u>Limits</u>

Date Analyzed

08/16/17 17:18

Results of WS-2R

Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178001 Lab Project ID: 1175178			Collection Date: 08/01/17 09:40 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:				
Results by Polynuclear Aroma	tics GC/MS						
						Allo	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Li</u>	
Acenaphthene	0.0256 U	0.0512	0.0154	ug/L	1		
Acenaphthylene	0.0256 U	0.0512	0.0154	ug/L	1		
Anthracene	0.0256 U	0.0512	0.0154	ug/L	1		
Benzo(a)Anthracene	0.0256 U	0.0512	0.0154	ug/L	1		

				0		
Acenaphthylene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Anthracene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Benzo(a)Anthracene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Benzo[a]pyrene	0.0103 U	0.0205	0.00635	ug/L	1	08/16/17 17:18
Benzo[b]Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Benzo[g,h,i]perylene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Benzo[k]fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Chrysene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Dibenzo[a,h]anthracene	0.0103 U	0.0205	0.00635	ug/L	1	08/16/17 17:18
Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Fluorene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Indeno[1,2,3-c,d] pyrene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Naphthalene	0.0510 U	0.102	0.0318	ug/L	1	08/16/17 17:18
Phenanthrene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Pyrene	0.0256 U	0.0512	0.0154	ug/L	1	08/16/17 17:18
Surrogates						
2-Fluorobiphenyl (surr)	82.5	53-106		%	1	08/16/17 17:18
Terphenyl-d14 (surr)	79.5	58-132		%	1	08/16/17 17:18

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 17:18 Container ID: 1175178001-D

Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Member of SGS Group

SGS

Results of WS-2R

Results of WS-2R							
Client Sample ID: WS-2R Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178001 Lab Project ID: 1175178		R M S	ollection Da eceived Da latrix: Water olids (%): ocation:				
Results by Volatile Fuels							
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		08/07/17 22:12
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/07/17 22:12
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/07/17 22:12
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/07/17 22:12
Toluene	0.500 U	1.00	0.310	ug/L	1		08/07/17 22:12
urrogates							
1,4-Difluorobenzene (surr)	94.2	77-115		%	1		08/07/17 22:12
Batch Information							
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 22:12 Container ID: 1175178001-A			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030E me: 08/07/ <i>*</i> /t./Vol.: 5 m	17 08:00		

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Revised Report - Revision 1

Results of WS-10R

Client Sample ID: WS-10R

Client Project ID: APSC PS01 Lab Sample ID: 1175178002	Happy Valley		eceived Date atrix: Water			und)	
Lab Project ID: 1175178		S	olids (%):				
		Lo	ocation:				
Results by Polynuclear Aroma	atics GC/MS						
						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Acenaphthene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		08/16/17 17:38
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		08/16/17 17:38
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Fluorene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Naphthalene	0.0471 U	0.0943	0.0292	ug/L	1		08/16/17 17:38
Phenanthrene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		08/16/17 17:38
surrogates							
2-Fluorobiphenyl (surr)	82.8	53-106		%	1		08/16/17 17:38
Terphenyl-d14 (surr)	79.8	58-132		%	1		08/16/17 17:38

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 17:38 Container ID: 1175178002-D Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Collection Date: 08/01/17 09:52

Print Date: 08/18/2017 3:02:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Results of WS-10R

Populto hy Volotilo Fuelo	Ci Ri M Si Lo						
Results by Volatile Fuels Parameter Benzene Ethylbenzene o-Xylene P & M -Xylene Toluene	Result Qual 0.250 U 0.500 U 0.500 U 1.00 U 0.500 U	LOQ/CL 0.500 1.00 1.00 2.00 1.00	DL 0.150 0.310 0.310 0.620 0.310	<u>Units</u> ug/L ug/L ug/L ug/L ug/L	<u>DF</u> 1 1 1 1	<u>Allowable</u> Limits	Date Analyzed 08/07/17 22:31 08/07/17 22:31 08/07/17 22:31 08/07/17 22:31 08/07/17 22:31
urrogates 1,4-Difluorobenzene (surr) Batch Information Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 22:31 Container ID: 1175178002-A	93.7	F F F	Prep Batch: Prep Method Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/07/1 /t./Vol.: 5 m	7 08:00		08/07/17 22:31

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Results of WS-99R

Client Sample ID: WS-99R

				e: 08/03/ [^] (Surface,			
Results by Polynuclear Aroma	tics GC/MS						
						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/16/17 17:59
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/16/17 17:59
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		08/16/17 17:59
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/16/17 17:59
Surrogates							
2-Fluorobiphenyl (surr)	81	53-106		%	1		08/16/17 17:59
Terphenyl-d14 (surr)	79.5	58-132		%	1		08/16/17 17:59

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 17:59 Container ID: 1175178003-D Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Collection Date: 08/01/17 18:00

Print Date: 08/18/2017 3:02:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Results of WS-99R							
Client Sample ID: WS-99R Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178003 Lab Project ID: 1175178		SC PS01 Happy ValleyReceived Date: 08/03/17 10:095178003Matrix: Water (Surface, Eff., Groups)					
Results by Volatile Fuels			_				
Parameter Benzene Ethylbenzene o-Xylene P & M -Xylene Toluene	Result Qual 0.250 U 0.500 U 0.500 U 1.00 U 0.500 U	LOQ/CL 0.500 1.00 1.00 2.00 1.00	<u>DL</u> 0.150 0.310 0.310 0.620 0.310	<u>Units</u> ug/L ug/L ug/L ug/L ug/L	<u>DF</u> 1 1 1 1	<u>Allowable</u> Limits	Date Analyzed 08/07/17 22:50 08/07/17 22:50 08/07/17 22:50 08/07/17 22:50 08/07/17 22:50
Surrogates 1,4-Difluorobenzene (surr)	93.7	77-115		%	1		08/07/17 22:50
Batch Information							
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 22:50 Container ID: 1175178003-A		F F F	Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW5030E me: 08/07/ [,] /t./Vol.: 5 m	17 08:00		

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Revised Report - Revision 1

Results of Sentry-1R

Client Sample ID: Sentry-1R
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178004
Lab Project ID: 1175178

Collection Date: 08/01/17 10:20 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		08/16/17 18:19
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		08/16/17 18:19
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Naphthalene	0.0611 J	0.100	0.0310	ug/L	1		08/16/17 18:19
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 18:19
Surrogates							
2-Fluorobiphenyl (surr)	86	53-106		%	1		08/16/17 18:19
Terphenyl-d14 (surr)	82.4	58-132		%	1		08/16/17 18:19

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 18:19 Container ID: 1175178004-G Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Member of SGS Group 12 of 45

					Revised Repor	t - Revision 1		
Client Sample ID: Sentry-1R Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178004 Lab Project ID: 1175178			Collection Date: 08/01/17 10:20 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Fuels)——						
<u>Result Qual</u> 0.294 U	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 08/06/17 22:03		
80.9	50-150		%	1		08/06/17 22:03		
:03	F	Prep Method Prep Date/Ti	I: SW35200	17 09:20				
	Fuels Result Qual 0.294 U	ppy Valley Re Mi Sc Lo Fuels Result Qual LOQ/CL 0.294 U 0.588 80.9 50-150	ppy Valley Received Da Matrix: Wate Solids (%): Location: Fuels <u>Result Qual</u> LOQ/CL DL 0.294 U 0.588 0.176 80.9 50-150 Prep Batch: Prep Method	ppy Valley Received Date: 08/03/ Matrix: Water (Surface, Solids (%): Location: Fuels Image: Comparison of the second	ppy Valley Collection Date: 08/01/17 10:20 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Grossolids (%): Location: Location: Fuels No.294 U 80.9 50-150 %	ppy Valley Collection Date: 08/01/17 10:20 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Fuels Allowable Result Qual LOQ/CL DL Units DF Limits 0.294 U 0.588 0.176 mg/L 1 80.9 50-150 % 1 Prep Batch: XXX38079 Prep Method: SW3520C		

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Results of Sentry-1R							
Client Sample ID: Sentry-1R Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178004 Lab Project ID: 1175178		R M Se	ollection Da eceived Dat atrix: Water olids (%): ocation:	te: 08/03/1	17 10:09		
Results by Volatile Fuels]				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/07/17 23:0
Surrogates							
4-Bromofluorobenzene (surr)	91.9	50-150		%	1		08/07/17 23:0
Batch Information							
Analytical Batch: VFC13797 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 08/07/17 23:09 Container ID: 1175178004-A		F F F	Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 08/07/1 t./Vol.: 5 m	7 08:00		
						Allowable	
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyze 08/07/17 23:0
Ethylbenzene	0.230 U	1.00	0.310	ug/L ug/L	1		08/07/17 23:0
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:0
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/07/17 23:0
Toluene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:0
Surrogates							
1,4-Difluorobenzene (surr)	92.9	77-115		%	1		08/07/17 23:0
Batch Information							
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 23:09 Container ID: 1175178004-A		F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	SW5030B ne: 08/07/1 t./Vol.: 5 m	7 08:00		

SGS North America Inc.

CCC

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Revised Report - Revision 1

SGS

Results of Sentry-1R

Client Sample ID: Sentry-1R
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178004
Lab Project ID: 1175178

Collection Date: 08/01/17 10:20 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Benzene	0.200 U	0.400	0.120	ug/L	1		08/09/17 06:32
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/09/17 06:32
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/09/17 06:32
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Styrene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Toluene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:32
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/09/17 06:32
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		08/09/17 06:32
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/09/17 06:32
Toluene-d8 (surr)	103	89-112		%	1		08/09/17 06:32
· · · ·							

Batch Information

Analytical Batch: VMS17043 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 08/09/17 06:32 Container ID: 1175178004-D Prep Batch: VXX31056 Prep Method: SW5030B Prep Date/Time: 08/08/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:02:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Revised Report - Revision 1

Results of Sentry-2R

Client Sample ID: Sentry-2R
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178005
Lab Project ID: 1175178

Collection Date: 08/01/17 11:08 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits <u>E</u>	Date Analyzed
Acenaphthene	0.0270 U	0.0539	0.0162	ug/L	1	C	08/16/17 18:40
Acenaphthylene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Anthracene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Benzo(a)Anthracene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Benzo[a]pyrene	0.0108 U	0.0216	0.00668	ug/L	1	C	8/16/17 18:40
Benzo[b]Fluoranthene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Benzo[g,h,i]perylene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Benzo[k]fluoranthene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Chrysene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Dibenzo[a,h]anthracene	0.0108 U	0.0216	0.00668	ug/L	1	C	8/16/17 18:40
Fluoranthene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Fluorene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Indeno[1,2,3-c,d] pyrene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Naphthalene	0.0540 U	0.108	0.0334	ug/L	1	C	8/16/17 18:40
Phenanthrene	0.0270 U	0.0539	0.0162	ug/L	1	C	8/16/17 18:40
Pyrene	0.0270 U	0.0539	0.0162	ug/L	1	C	08/16/17 18:40
Surrogates							
2-Fluorobiphenyl (surr)	75.3	53-106		%	1	C	8/16/17 18:40
Terphenyl-d14 (surr)	71.5	58-132		%	1	C	08/16/17 18:40

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 18:40 Container ID: 1175178005-D Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 232 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Results of Sentry-2R								
Client Sample ID: Sentry-2R Client Project ID: APSC PS01 Happy Lab Sample ID: 1175178005 Lab Project ID: 1175178	/ Valley	Collection Date: 08/01/17 11:08 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fue	ls		_					
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.261 J	<u>LOQ/CL</u> 0.610	<u>DL</u> 0.183	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed	
Surrogates								
5a Androstane (surr)	81.4	50-150		%	1		08/06/17 22:13	
Batch Information								
Analytical Batch: XFC13638 Analytical Method: AK102 Analyst: JMG Analytical Date/Time: 08/06/17 22:13 Container ID: 1175178005-F			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/06/ /t./Vol.: 246	17 09:20			

J flagging is activated

Results of Sentry-2R Client Sample ID: Sentry-2R Client Project ID: APSC PS01 Happ Lab Sample ID: 1175178005 Lab Project ID: 1175178	y Valley	Collection Date: 08/01/17 11:08 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels]				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/07/17 23:2
Surrogates							
4-Bromofluorobenzene (surr)	95	50-150		%	1		08/07/17 23:2
Batch Information							
Analytical Batch: VFC13797 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 08/07/17 23:28 Container ID: 1175178005-A		F F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/07/1 ′t./Vol.: 5 m	7 08:00		
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	Date Analyze 08/07/17 23:2
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:2
o-Xylene	0.330 J	1.00	0.310	ug/L	1		08/07/17 23:2
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/07/17 23:2
Toluene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:2
Surrogates 1,4-Difluorobenzene (surr)	94.3	77-115		%	1		08/07/17 23:2
Batch Information							
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 23:28 Container ID: 1175178005-A		F F F	Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 08/07/1 ′t./Vol.: 5 m	7 08:00		

SGS North America Inc.

COC

Member of SGS Group

Revised Report - Revision 1

Revised Report - Revision 1

Results of Sentry-3R

Client Sample ID: Sentry-3R
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178006
Lab Project ID: 1175178

Collection Date: 08/01/17 11:29 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Acenaphthene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Acenaphthylene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Anthracene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Benzo(a)Anthracene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Benzo[a]pyrene	0.0106 U	0.0212	0.00657	ug/L	1	08/16/17 19:00
Benzo[b]Fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Benzo[g,h,i]perylene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Benzo[k]fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Chrysene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Dibenzo[a,h]anthracene	0.0106 U	0.0212	0.00657	ug/L	1	08/16/17 19:00
Fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Fluorene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Indeno[1,2,3-c,d] pyrene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Naphthalene	0.0530 U	0.106	0.0328	ug/L	1	08/16/17 19:00
Phenanthrene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Pyrene	0.0265 U	0.0530	0.0159	ug/L	1	08/16/17 19:00
Surrogates						
2-Fluorobiphenyl (surr)	81.5	53-106		%	1	08/16/17 19:00
Terphenyl-d14 (surr)	82.3	58-132		%	1	08/16/17 19:00

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 19:00 Container ID: 1175178006-D Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 236 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Results of Sentry-3R]						
Client Sample ID: Sentry-3R Client Project ID: APSC PS01 Happy Lab Sample ID: 1175178006 Lab Project ID: 1175178	Valley	Collection Date: 08/01/17 11:29 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	3		_			Allowable		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed	
Diesel Range Organics	0.315 U	0.630	0.189	mg/L	1		08/06/17 22:2	
urrogates								
5a Androstane (surr)	80.3	50-150		%	1		08/06/17 22:2	
Batch Information								
Analytical Batch: XFC13638 Analytical Method: AK102 Analyst: JMG Analytical Date/Time: 08/06/17 22:23 Container ID: 1175178006-F		Prep Batch: XXX38079 Prep Method: SW3520C Prep Date/Time: 08/06/17 09:20 Prep Initial Wt./Vol.: 238 mL Prep Extract Vol: 1 mL						

J flagging is activated

Results of Sentry-3R Client Sample ID: Sentry-3R Client Project ID: APSC PS01 Happ Lab Sample ID: 1175178006	y Valley	C R M						
Lab Project ID: 1175178		Solids (%): Location:						
Results by Volatile Fuels								
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/07/17 23:4	
Surrogates								
4-Bromofluorobenzene (surr)	94.1	50-150		%	1		08/07/17 23:4	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 08/07/17 23:47 Container ID: 1175178006-A		F F	Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 08/07/1 t./Vol.: 5 m	7 08:00			
_						Allowable	5	
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyze 08/07/17 23:4	
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:4	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:4	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/07/17 23:4	
Toluene	0.500 U	1.00	0.310	ug/L	1		08/07/17 23:4	
Surrogates								
1,4-Difluorobenzene (surr)	93.1	77-115		%	1		08/07/17 23:4	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/07/17 23:47 Container ID: 1175178006-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B ne: 08/07/1 t./Vol.: 5 m	7 08:00			

SGS North America Inc.

COC

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Revised Report - Revision 1

Revised Report - Revision 1

Results of Sentry-4R

Client Sample ID: Sentry-4R
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178007
Lab Project ID: 1175178

Collection Date: 08/01/17 17:00 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		08/16/17 19:21
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		08/16/17 19:21
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Naphthalene	0.0546 J	0.100	0.0310	ug/L	1		08/16/17 19:21
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/16/17 19:21
Surrogates							
2-Fluorobiphenyl (surr)	88.7	53-106		%	1		08/16/17 19:21
Terphenyl-d14 (surr)	85.9	58-132		%	1		08/16/17 19:21

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Analyst: NRB Analytical Date/Time: 08/16/17 19:21 Container ID: 1175178007-G Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/17 07:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

Member of SGS Group

22 of 45

Results of Sentry-4R Client Sample ID: Sentry-4R Client Project ID: APSC PS01 Happy Lab Sample ID: 1175178007 Lab Project ID: 1175178		Collection Date: 08/01/17 17:00 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuel s <u>Parameter</u> Diesel Range Organics	s <u>Result Qual</u> 0.183 J	<u>LOQ/CL</u> 0.605	<u>DL</u> 0.181	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/06/17 22:3:
urrogates 5a Androstane (surr)	73.2	50-150		%	1		08/06/17 22:3
Batch Information Analytical Batch: XFC13638 Analytical Method: AK102 Analyst: JMG Analytical Date/Time: 08/06/17 22:33 Container ID: 1175178007-I			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/06/1 /t./Vol.: 248	7 09:20		

Print Date: 08/18/2017 3:02:56PM

Results of Sentry-4R								
Client Sample ID: Sentry-4R Client Project ID: APSC PS01 Happ Lab Sample ID: 1175178007 Lab Project ID: 1175178	y Valley	Collection Date: 08/01/17 17:00 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/08/17 00:0	
Surrogates								
4-Bromofluorobenzene (surr)	96.2	50-150		%	1		08/08/17 00:0	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 08/08/17 00:07 Container ID: 1175178007-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B me: 08/07/1 t./Vol.: 5 m	7 08:00			
						Allowable		
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyze 08/08/17 00:0	
Ethylbenzene	0.250 U	0.500 1.00	0.150	ug/∟ ug/L	1		08/08/17 00:0	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/08/17 00:0	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/08/17 00:0	
Toluene	0.500 U	1.00	0.310	ug/L	1		08/08/17 00:0	
Surrogates								
1,4-Difluorobenzene (surr)	93.6	77-115		%	1		08/08/17 00:0	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/08/17 00:07 Container ID: 1175178007-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	SW5030B ne: 08/07/1 t./Vol.: 5 m	7 08:00			

CC

Revised Report - Revision 1

SGS

Results of Sentry-4R

Client Sample ID: Sentry-4R Client Project ID: APSC PS01 Happy Valley Lab Sample ID: 1175178007 Lab Project ID: 1175178 Results by Volatile GC/MS		R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 08/03/	17 10:09		
Results by Volatile GC/MS			_				
Devenuetor	DesultQuel			Linite		Allowable	Data Analyzad
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U 0.500 U	1.00 1.00	0.310	ug/L	1		08/09/17 06:49
1,3,5-Trimethylbenzene	0.300 U 0.200 U		0.310	ug/L	1		08/09/17 06:49
Benzene		0.400	0.120	ug/L	1		08/09/17 06:49
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/09/17 06:49
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/09/17 06:49
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
Styrene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
Toluene	0.500 U	1.00	0.310	ug/L	1		08/09/17 06:49
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/09/17 06:49
urrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/09/17 06:49
4-Bromofluorobenzene (surr)	99.9	85-114		%	1		08/09/17 06:49
Toluene-d8 (surr)	103	89-112		%	1		08/09/17 06:49

Batch Information

Analytical Batch: VMS17043 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 08/09/17 06:49 Container ID: 1175178007-D Prep Batch: VXX31056 Prep Method: SW5030B Prep Date/Time: 08/08/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:02:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank Client Sample ID: Trip Blank Client Project ID: APSC PS01 Happy Lab Sample ID: 1175178008 Lab Project ID: 1175178	Valley	Collection Date: 08/01/17 09:40 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/08/17 00:2	
urrogates 4-Bromofluorobenzene (surr)	94.7	50-150		%	1		08/08/17 00:2	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 08/08/17 00:26 Container ID: 1175178008-C			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/07/1 't./Vol.: 5 m	7 08:00			
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyze	
Benzene Ethylbenzene	0.250 U 0.500 U	0.500 1.00	0.150 0.310	ug/L ug/L	1 1		08/08/17 00:2 08/08/17 00:2	
o-Xylene	0.500 U	1.00	0.310	ug/L ug/L	1		08/08/17 00:2	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/08/17 00:2	
Toluene	0.500 U	1.00	0.310	ug/L	1		08/08/17 00:2	
urrogates								
1,4-Difluorobenzene (surr)	94.9	77-115		%	1		08/08/17 00:2	
Batch Information								
Analytical Batch: VFC13797 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 08/08/17 00:26 Container ID: 1175178008-C			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 08/07/1 ′t./Vol.: 5 m	7 08:00			

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

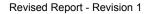
SGS

Results of Trip Blank

Client Sample ID: Trip Blank
Client Project ID: APSC PS01 Happy Valley
Lab Sample ID: 1175178008
Lab Project ID: 1175178

Collection Date: 08/01/17 09:40 Received Date: 08/03/17 10:09 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS


						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Benzene	0.200 U	0.400	0.120	ug/L	1		08/08/17 16:03
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/08/17 16:03
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/08/17 16:03
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Styrene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Toluene	0.500 U	1.00	0.310	ug/L	1		08/08/17 16:03
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/08/17 16:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		08/08/17 16:03
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/08/17 16:03
Toluene-d8 (surr)	103	89-112		%	1		08/08/17 16:03

Batch Information

Analytical Batch: VMS17042 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 08/08/17 16:03 Container ID: 1175178008-A Prep Batch: VXX31052 Prep Method: SW5030B Prep Date/Time: 08/08/17 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:02:56PM

J flagging is activated

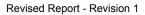
SGS	

Method Blank

Blank ID: MB for HBN 1765681 [VXX/31040] Blank Lab ID: 1403709 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007, 1175178008


	00/CL DL 00 0.0310	<u>Units</u> mg/L
0.1	00 0.0310	mg/L
50	-150	%
	Prep Batch: VXX31	1040
	Prep Method: SW5	
	Prep Extract Vol: 5	
		Prep Method: SW5 Prep Date/Time: 8/ Prep Initial Wt./Vol.

Print Date: 08/18/2017 3:03:04PM

Blank Spike Summary									
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1403712 Date Analyzed: 08/08/2017	-	VXX31040	0]	[VX] Spik	X31040] ke Duplica	ate Lab ID:	D for HBN 1 1403713 Eff., Ground		
QC for Samples: 11751780 11751780		8002, 1175	5178003, 117	75178004,	117517800	05, 1175178	006, 1175178	007,	
Results by AK101									
	E	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)			
Parameter	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.966	97	(60-120)	4.30	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	104	104	0.0500	99.1	99	(50-150)	4.30	
Batch Information									
Analytical Batch: VFC13797 Analytical Method: AK101 Instrument: Agilent 7890 PID/F Analyst: ST	ID			Prep Prep Spik	Date/Time e Init Wt./\	SW5030B e: 08/07/201 /ol.: 1.00 mg	9 7 08:00 g/L Extract \ g/L Extract V		

Print Date: 08/18/2017 3:03:07PM

Method Blank

Blank ID: MB for HBN 1765681 [VXX/31040] Blank Lab ID: 1403709 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007, 1175178008

Results by SW8021B					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Benzene	0.250U	0.500	0.150	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
Toluene	1.10*	1.00	0.310	ug/L	
Surrogates					
1,4-Difluorobenzene (surr)	92.7	77-115		%	

Analytical Batch: VFC13797 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 8/7/2017 8:17:00PM Prep Batch: VXX31040 Prep Method: SW5030B Prep Date/Time: 8/7/2017 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:10PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1175178 [VXX31040] Blank Spike Lab ID: 1403710 Date Analyzed: 08/08/2017 01:42 Spike Duplicate ID: LCSD for HBN 1175178 [VXX31040] Spike Duplicate Lab ID: 1403711 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007, 1175178008

		Blank Spike	e (ug/L)	ug/L) Spike Duplicate (ug/L)					
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	118	118	100	123	123	* (80-120)	3.60	(< 20)
Ethylbenzene	100	107	107	100	110	110	(75-125)	3.10	(< 20)
o-Xylene	100	105	105	100	108	108	(80-120)	2.40	(< 20)
P & M -Xylene	200	212	106	200	218	109	(75-130)	3.00	(< 20)
Toluene	100	110	110	100	114	114	(75-120)	3.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	103	103	50	105	105	(77-115)	1.30	

Batch Information

Analytical Batch: VFC13797 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Prep Batch: VXX31040 Prep Method: SW5030B Prep Date/Time: 08/07/2017 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:11PM

Matrix: Water (Surface, Eff., Ground)

SG:

Blank ID: MB for HBN 1765793 [VXX/31052] Blank Lab ID: 1404028

QC for Samples: 1175178008

Results by SW8260C

-				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	Units
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	103	89-112		%

Batch Information

Analytical Batch: VMS17042	Prep Batch: VXX31052
Analytical Method: SW8260C	Prep Method: SW5030B
Instrument: VPA 780/5975 GC/MS	Prep Date/Time: 8/8/2017 6:00:00AM
Analyst: FDR	Prep Initial Wt./Vol.: 5 mL
Analytical Date/Time: 8/8/2017 12:14:00PM	Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:12PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1175178 [VXX31052] Blank Spike Lab ID: 1404029 Date Analyzed: 08/08/2017 13:15 Spike Duplicate ID: LCSD for HBN 1175178 [VXX31052] Spike Duplicate Lab ID: 1404030 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1175178008

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	30.0	100	30	29.3	98	(79-124)	2.20	(< 20)
1,3,5-Trimethylbenzene	30	29.8	99	30	28.9	96	(75-124)	3.00	(< 20)
Benzene	30	27.3	91	30	26.8	89	(79-120)	1.80	(< 20)
Ethylbenzene	30	28.8	96	30	28.2	94	(79-121)	2.10	(< 20)
Isopropylbenzene (Cumene)	30	29.3	98	30	28.7	96	(72-131)	2.00	(< 20)
Methyl-t-butyl ether	45	43.1	96	45	44.2	98	(71-124)	2.60	(< 20)
Naphthalene	30	31.2	104	30	29.9	100	(61-128)	4.30	(< 20)
n-Butylbenzene	30	30.1	100	30	29.3	98	(75-128)	2.60	(< 20)
n-Propylbenzene	30	29.4	98	30	28.3	94	(76-126)	4.00	(< 20)
o-Xylene	30	29.2	97	30	28.6	95	(78-122)	1.80	(< 20)
P & M -Xylene	60	58.6	98	60	57.3	96	(80-121)	2.10	(< 20)
sec-Butylbenzene	30	29.7	99	30	28.9	96	(77-126)	2.70	(< 20)
Styrene	30	30.3	101	30	30.0	100	(78-123)	1.30	(< 20)
tert-Butylbenzene	30	29.2	97	30	28.6	95	(78-124)	2.00	(< 20)
Toluene	30	27.1	91	30	26.6	89	(80-121)	2.00	(< 20)
Xylenes (total)	90	87.7	98	90	86.0	96	(79-121)	2.00	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98.7	99	30	98.4	98	(81-118)	0.34	
4-Bromofluorobenzene (surr)	30	101	101	30	101	101	(85-114)	0.73	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.20	

Batch Information

Analytical Batch: VMS17042 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Prep Batch: VXX31052 Prep Method: SW5030B Prep Date/Time: 08/08/2017 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:14PM

SGS North America Inc.

QC for Samples:

Matrix Spike Summary

Original Sample ID: 1404172 MS Sample ID: 1404031 MS MSD Sample ID: 1404032 MSD

1175178008

Revised Report - Revision 1

Analysis Date: 08/08/2017 21:02 Analysis Date: 08/08/2017 21:19 Analysis Date: 08/08/2017 21:37 Matrix: Soil/Solid (dry weight)

Results by SW8260C

		Ма	trix Spike (ug/L)	Spik	e Duplicate	e (ug/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	25.0U	1500	1500	100	1500	1510	100	75-123	0.27	(< 20)
1,3,5-Trimethylbenzene	25.0U	1500	1480	99	1500	1470	98	73-124	0.98	(< 20)
Benzene	9.00J	1500	1380	92	1500	1350	90	77-121	2.20	(< 20)
Ethylbenzene	25.0U	1500	1450	97	1500	1420	95	76-122	2.50	(< 20)
Isopropylbenzene (Cumene)	25.0U	1500	1460	97	1500	1420	95	68-134	2.20	(< 20)
Methyl-t-butyl ether	250U	2250	2240	100	2250	2230	99	73-125	0.76	(< 20)
Naphthalene	25.0U	1500	1500	100	1500	1520	101	62-129	1.60	(< 20)
n-Butylbenzene	25.0U	1500	1500	100	1500	1470	98	70-128	1.90	(< 20)
n-Propylbenzene	25.0U	1500	1480	98	1500	1430	95	73-125	3.20	(< 20)
o-Xylene	25.0U	1500	1470	98	1500	1470	98	77-123	0.03	(< 20)
P & M -Xylene	33.5J	3000	2920	96	3000	2860	94	77-124	2.10	(< 20)
sec-Butylbenzene	25.0U	1500	1480	99	1500	1460	98	73-126	1.10	(< 20)
Styrene	25.0U	1500	1530	102	1500	1500	100	76-124	2.10	(< 20)
tert-Butylbenzene	25.0U	1500	1460	97	1500	1460	97	73-125	0.31	(< 20)
Toluene	250	1500	1600	90	1500	1540	86	77-121	3.40	(< 20)
Xylenes (total)	75.0U	4500	4390	98	4500	4330	96	78-124	1.40	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1500	1480	99	1500	1470	98	71-136	0.34	
4-Bromofluorobenzene (surr)		1500	1530	102	1500	1540	103	55-151	0.88	
Toluene-d8 (surr)		1500	1500	100	1500	1500	100	85-116	0.03	

Batch Information

Analytical Batch: VMS17042 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Analytical Date/Time: 8/8/2017 9:19:01PM Prep Batch: VXX31052 Prep Method: Volatiles Extraction 8240/8260 FULL Prep Date/Time: 8/8/2017 6:00:00AM Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 08/18/2017 3:03:16PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

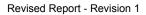
Matrix: Water (Surface, Eff., Ground)

SGS Method Blank

Blank ID: MB for HBN 1765829 [VXX/31056] Blank Lab ID: 1404187

QC for Samples: 1175178004, 1175178007

Results by SW8260C


-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	103	89-112		%

Batch Information

Analytical Batch: VMS17043	Prep Batch: VXX31056
Analytical Method: SW8260C	Prep Method: SW5030B
Instrument: VPA 780/5975 GC/MS	Prep Date/Time: 8/8/2017 6:00:00AM
Analyst: FDR	Prep Initial Wt./Vol.: 5 mL
Analytical Date/Time: 8/8/2017 11:59:00PM	Prep Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:17PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1175178 [VXX31056] Blank Spike Lab ID: 1404188 Date Analyzed: 08/09/2017 00:30 Spike Duplicate ID: LCSD for HBN 1175178 [VXX31056] Spike Duplicate Lab ID: 1404189 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1175178004, 1175178007

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,2,4-Trimethylbenzene	30	28.8	96	30	28.5	95	(79-124)	0.80	(< 20)
1,3,5-Trimethylbenzene	30	28.8	96	30	28.4	95	(75-124)	1.60	(< 20)
Benzene	30	26.7	89	30	26.1	87	(79-120)	2.10	(< 20)
Ethylbenzene	30	28.0	93	30	27.6	92	(79-121)	1.40	(< 20)
Isopropylbenzene (Cumene)	30	28.4	95	30	27.9	93	(72-131)	1.80	(< 20)
Methyl-t-butyl ether	45	41.9	93	45	43.5	97	(71-124)	3.70	(< 20)
Naphthalene	30	26.7	89	30	29.6	99	(61-128)	10.50	(< 20)
n-Butylbenzene	30	30.0	100	30	28.7	96	(75-128)	4.40	(< 20)
n-Propylbenzene	30	28.5	95	30	27.6	92	(76-126)	3.20	(< 20)
o-Xylene	30	28.2	94	30	28.2	94	(78-122)	0.00	(< 20)
P & M -Xylene	60	56.3	94	60	55.5	93	(80-121)	1.30	(< 20)
sec-Butylbenzene	30	29.7	99	30	28.5	95	(77-126)	4.10	(< 20)
Styrene	30	29.5	98	30	29.4	98	(78-123)	0.27	(< 20)
tert-Butylbenzene	30	29.0	97	30	28.0	94	(78-124)	3.40	(< 20)
Toluene	30	26.3	88	30	25.8	86	(80-121)	1.90	(< 20)
Xylenes (total)	90	84.5	94	90	83.8	93	(79-121)	0.88	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	100	100	30	98.8	99	(81-118)	1.40	
4-Bromofluorobenzene (surr)	30	101	101	30	102	102	(85-114)	1.70	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.20	

Batch Information

Analytical Batch: VMS17043 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Prep Batch: VXX31056 Prep Method: SW5030B Prep Date/Time: 08/08/2017 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/18/2017 3:03:18PM

SGS North America Inc.

Method Blank

SG

Blank ID: MB for HBN 1765290 [XXX/38062] Blank Lab ID: 1402911 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Fluorobiphenyl (surr)	106	53-106		%
Terphenyl-d14 (surr)	104	58-132		%

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 8/16/2017 1:52:00PM Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 8/4/2017 7:56:20AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/18/2017 3:03:20PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1175178 [XXX38062] Blank Spike Lab ID: 1402912 Date Analyzed: 08/16/2017 14:13

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007

Results by 8270D SIM LV (PAH)

,	· ·			
		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Acenaphthene	2	2.19	110	(48-114)
Acenaphthylene	2	1.80	90	(35-121)
Anthracene	2	1.81	91	(53-119)
Benzo(a)Anthracene	2	1.77	88	(59-120)
Benzo[a]pyrene	2	1.78	89	(53-120)
Benzo[b]Fluoranthene	2	1.78	89	(53-126)
Benzo[g,h,i]perylene	2	1.77	88	(44-128)
Benzo[k]fluoranthene	2	1.74	87	(54-125)
Chrysene	2	1.86	93	(57-120)
Dibenzo[a,h]anthracene	2	1.75	88	(44-131)
Fluoranthene	2	1.78	89	(58-120)
Fluorene	2	1.79	89	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.76	88	(48-130)
Naphthalene	2	1.76	88	(43-114)
Phenanthrene	2	1.77	88	(53-115)
Pyrene	2	1.86	93	(53-121)
Surrogates				
2-Fluorobiphenyl (surr)	2	96.6	97	(53-106)
Terphenyl-d14 (surr)	2	95.8	96	(58-132)

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: NRB Prep Batch: XXX38062 Prep Method: SW3520C Prep Date/Time: 08/04/2017 07:56 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/18/2017 3:03:22PM

Matrix Spike Summary

Original Sample ID: 1175169001 MS Sample ID: 1402913 MS MSD Sample ID: 1402914 MSD

Analysis Date: 08/16/2017 14:34 Analysis Date: 08/16/2017 14:54 Analysis Date: 08/16/2017 15:15 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1175178001, 1175178002, 1175178003, 1175178004, 1175178005, 1175178006, 1175178007

Results by 8270D SIM LV	(PAH)									
		Ма	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Acenaphthene	0.0500U	2.07	2.07	100	2.00	1.97	98	48-114	5.00	(< 20)
Acenaphthylene	0.0500U	2.07	1.69	82	2.00	1.60	80	35-121	5.50	(< 20)
Anthracene	0.0500U	2.07	1.7	82	2.00	1.63	82	53-119	4.10	(< 20)
Benzo(a)Anthracene	0.0500U	2.07	1.53	74	2.00	1.44	72	59-120	6.40	(< 20)
Benzo[a]pyrene	0.0200U	2.07	1.33	64	2.00	1.22	61	53-120	8.70	(< 20)
Benzo[b]Fluoranthene	0.0500U	2.07	1.36	66	2.00	1.27	63	53-126	7.30	(< 20)
Benzo[g,h,i]perylene	0.0500U	2.07	1.23	59	2.00	1.11	56	44-128	9.60	(< 20)
Benzo[k]fluoranthene	0.0500U	2.07	1.34	65	2.00	1.20	60	54-125	10.70	(< 20)
Chrysene	0.0500U	2.07	1.65	80	2.00	1.54	77	57-120	6.80	(< 20)
Dibenzo[a,h]anthracene	0.0200U	2.07	1.21	59	2.00	1.11	55	44-131	9.10	(< 20)
Fluoranthene	0.0500U	2.07	1.67	81	2.00	1.57	79	58-120	6.00	(< 20)
Fluorene	0.0500U	2.07	1.74	84	2.00	1.66	83	50-118	4.90	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0500U	2.07	1.2	58	2.00	1.09	55	48-130	9.30	(< 20)
Naphthalene	0.100U	2.07	1.71	83	2.00	1.62	81	43-114	5.50	(< 20)
Phenanthrene	0.0500U	2.07	1.73	84	2.00	1.66	83	53-115	4.70	(< 20)
Pyrene	0.0500U	2.07	1.78	86	2.00	1.67	83	53-121	6.70	(< 20)
Surrogates										
2-Fluorobiphenyl (surr)		2.07	1.81	88	2.00	1.70	85	53-106	6.20	
Terphenyl-d14 (surr)		2.07	1.62	79	2.00	1.51	76	58-132	7.20	

Batch Information

Analytical Batch: XMS10314 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 8/16/2017 2:54:00PM Prep Batch: XXX38062 Prep Method: 3520 Liq/Liq Ext for 8270 PAH SIM LV Prep Date/Time: 8/4/2017 7:56:20AM Prep Initial Wt./Vol.: 242.00mL Prep Extract Vol: 1.00mL

Print Date: 08/18/2017 3:03:23PM

SGS North America Inc.

SGS

Method Blank				
Blank ID: MB for HBN 176549 Blank Lab ID: 1403198	12 [XXX/38079]	Matrix	: Water (Surfa	ice, Eff., Ground)
QC for Samples: 1175178004, 1175178005, 1175	178006, 1175178007			
Results by AK102				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Diesel Range Organics	0.300U	0.600	0.180	mg/L
Surrogates				
5a Androstane (surr)	84.7	60-120		%
Batch Information				
Analytical Batch: XFC13638		Prep Bat	tch: XXX38079	
Analytical Method: AK102			thod: SW3520	
Instrument: Agilent 7890B F				17 9:20:44AM
Analyst: JMG		Prep Init	ial Wt./Vol.: 25 tract Vol: 1 mL	JIIL

Print Date: 08/18/2017 3:03:25PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1175178 [XXX38079] Blank Spike Lab ID: 1403199 Date Analyzed: 08/06/2017 21:44 Spike Duplicate ID: LCSD for HBN 1175178 [XXX38079] Spike Duplicate Lab ID: 1403200 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1175178004, 1175178005, 1175178006, 1175178007

Results by AK102									
		Blank Spike	: (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	20.4	102	20	19.1	95	(75-125)	6.70	(< 20)
Surrogates									
5a Androstane (surr)	0.4	103	103	0.4	96	96	(60-120)	6.80	
Batch Information									
Analytical Batch: XFC13638					p Batch: X				
Analytical Method: AK102					p Method:				
Instrument: Agilent 7890B F						e: 08/06/201	 U9:20 Extract Vo 	l 1 ml	
Analyst: JMG						0	Extract Vol		

Print Date: 08/18/2017 3:03:27PM

SGS North America Inc. CHAIN OF CUSTODY RECORI

Locations Nationwide	Maryland	New York	a Indiana	Kentucky	www.us.sgs.com	•	Page L of L
Location	Alaska	New Jersey	North Carolina	West Virgina	MM	un villed out.	he onset of analysis.
	2 1 7 X					- 41114	he onse

CLIENT:		SLR Intenational Corporation	oration			Instruc	Instructions: Omissions I	Jecuvia nav delav	ectuoris 1 - 0	e onse	istructions: Security 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	, illed out. analvsis.		Pace 1 of
CONTACT	Christop	PHONE NO:	907-264-6912	912	Section 3	n 3			a .	Preservative	ve			
Ction 1 PROJECT NAME:	CT APSC PS01 Happy Valley PRMID*	PROJECT/ PWSID/ Y PERMIT#:	105.01288.1701	17015	# U		104 104	1044	1014	anor A				
REPOR	REPORTS TO: Scart & SE State Bay Erre Christophe Venot	E-MAIL: ମୁନ୍ଦୁଧି ସିକ୍ଦେର୍ବ୍ୟାମିଙ୍ଘୁ -ଦ୍ୟୁ cvenot@sirconsulting.com	Srede Statenswitting www.	com com	oz⊢	Type C = COMP		(8260)		(00228	i		<u></u>	
INVOICE TO: Alveska	ICE TO: Alveska Pipeline Service Co.	QUOTE #: P.O. #:	105.01288.14014	014			S08A93	JOV mi	208 Aq	8 A93) N				
RESERVED for lab use	IVED SAMPLE IDENTIFICATION	TION DATE mm/dd/yy	TIME HH:MM	Matrix/ Matrix Code	шсо	Incre- mental Soils GRO/BT	(AK101/		а) хэта	IIS HAq				REMARKS/ LOC ID
ALE ALE	E US-28	e/1/7	04.60	3	s	ს			×	×				
010		-	09 52	3	5	Ģ			×	X				
3 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 U A 3		1 800	З	Ś	ى			X	X				
	5 X X		1020	3	_	ی	X	×		×				
	So Mar		108	3		6	××			×				
	Control -		1129	3		ۍ ا	××			×			-	
- VE		•	00E)	3	01	<u>ر</u> ا ک	X X		¥	×			_	
	1000-		1	М	ŗ,)	×	X						OF CN 6/1/12
5]						_						_	
				1									_	
	Delinen. Abod Dur (1)	Date	Time	Received By:				Sec	Section 4	DOD P	DOD Project? Yes No	Ð	Data Deli	Data Deliverable Requirements:
	Marile By (1)	tilda	10,00		1, M		l	° C	Cooler ID:				اتر	FUEL I
Relind	Relinquished By: (2)	Date / /	Time	Received By:				Reque	ested Tu	naround	Requested Turnaround Time and/or Special Instructions:	or Specia	l Instructio	Suc:
	I m. I	8/2/1	7 1009						•	CTANDALD	DALD			
Secti Reling	Relinquished By: (3)	Date	Time	Received By:	u.			Temp	Temp Blank °C:				Chain of	Chain of Custody Seal: (Circle)
buile Handler	Relinquished By: (4) 아마아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아아	Date 873/17	/ チ 10,09	Received For Laboratory By:	or Laborat	ory By:		(Se	e attache	or Ambient [] ed Sample Rec	or Ambient [] (See attached Sample Receipt Form)		INTACT See attach	INTACT BROKEN (ABSEND) (See attached Sample Receipt Form)
+ []2(] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557	AK 99518 Tel: (90 n, NC 28405 Tel: (9	17) 562-2343 Fa	ax: (907) 561- Fax: (910) 35	5301 0-1557				A.	Itp://www.sqs.com/terms- サビ、イ、3 024	and-con	Fo83-F	tit_Request_a	EPAS-Kit_Request_and_COC_Templates-Blank
								F	Gizizth	21	1	490 8/3/12	3/17	

Revised Report - Revision 1

|--|

e-Sam<u>ple Receipt Form</u>

000	e-Sam	ple Receipt	: Form			Revised Re	port - Revision 1	<u> </u>
262	SGS Workorder #:	1	1751	78			7 5 1	7 8
	Review Criteria	Condition (Yes,	No, N/A		Exce	ptions No	oted below	<u> </u>
Ch	nain of Custody / Temperature Requi			es Exem			pler hand carrie	s/delivers.
	Were Custody Seals intact? Note # &		Absent					
	COC accompanied sa							
	N/A **Exemption permitted if	f chilled & colle	cted <8 hou	u <mark>rs ago, o</mark> l	r for samp	ples where c	hilling is not req	uired
		Yes	Cooler ID:		1	@	4.3 °C Ther	rm. ID: D24
		N/A	Cooler ID:	i		@	°C Ther	m. ID:
Ter	mperature blank compliant* (i.e., 0-6 °C afte	ter CF)? N/A	Cooler ID:	<u> </u>		@	°C Ther	m. ID:
		N/A	Cooler ID:	 		@	°C Ther	
		N/A	Cooler ID:	 		@	°C Ther	
	*If >6°C, were samples collected <8 hours	rs ago? N/A		<u> </u>				
			l i					
	If <0°C, were sample containers ice	e free? N/A						
temperature" will "COOLER TEMP" w	s received <u>without</u> a temperature blank, the be documented in lieu of the temperature b will be noted to the right. In cases where no nor cooler temp can be obtained, note "amb "c	blank & neither a						
Note: Identify co	containers received at non-compliant tempe Use form FS-0029 if more space is n							
Holding Ti	ime / Documentation / Sample Condition Re	equirements	Note: Refe	<mark>r to form I</mark>	F-083 "Sa	ample Guide	" for specific hol	ding times.
	Were samples received within holding	g time? Yes						
	ch COC** (i.e.,sample IDs,dates/times colle							
	f times differ <1hr, record details & login pe		<u> </u>					
Were analyses requ	uested unambiguous? (i.e., method is speci analyses with >1 option for ar							
			N	/A <u>***Ex</u>e	emption p	permitted for	metals (e.g,200	.8/6020A).
Were proper cor	ntainers (type/mass/volume/preservative***	*)used? Yes						
	Volatile / LL-Hg Reg		1					
Were Trip E	Blanks (i.e., VOAs, LL-Hg) in cooler with sa							
-	OA vials free of headspace (i.e., bubbles ≤							
	ere all soil VOAs field extracted with MeOH		1					
	e to Client: Any "No", answer above indicates no		with standa	rd proced	ures and	may impact	data quality.	
		al notes (if a						

Sample Containers and Preservatives

<u>Container Id</u>	Preservative	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1175178001-A	HCL to pH < 2	ОК	1175178007-D	HCL to $pH < 2$	ОК
1175178001-B	HCL to pH < 2	ОК	1175178007-E	HCL to $pH < 2$	ОК
1175178001-C	HCL to pH < 2	ОК	1175178007-F	HCL to $pH < 2$	ОК
1175178001-D	No Preservative Required	ОК	1175178007-G	No Preservative Required	ОК
1175178001-E	No Preservative Required	ОК	1175178007-H	No Preservative Required	ОК
1175178002-A	HCL to $pH < 2$	ОК	1175178007-I	HCL to $pH < 2$	ОК
1175178002-В	HCL to pH < 2	ОК	1175178007-J	HCL to pH < 2	ОК
1175178002-C	HCL to pH < 2	ОК	1175178008-A	HCL to pH < 2	ОК
1175178002-D	No Preservative Required	ОК	1175178008-B	HCL to pH < 2	ОК
1175178002-E	No Preservative Required	ОК	1175178008-C	HCL to $pH < 2$	ОК
1175178003-A	HCL to pH < 2	ОК			
1175178003-В	HCL to $pH < 2$	ОК			
1175178003-C	HCL to pH < 2	ОК			
1175178003-D	No Preservative Required	ОК			
1175178003-E	No Preservative Required	ОК			
1175178004-A	HCL to $pH < 2$	ОК			
1175178004-B	HCL to $pH < 2$	ОК			
1175178004-C	HCL to $pH < 2$	ОК			
1175178004-D	HCL to $pH < 2$	ОК			
1175178004-E	HCL to $pH < 2$	ОК			
1175178004-F	HCL to $pH < 2$	ОК			
1175178004-G	No Preservative Required	ОК			
1175178004-H	No Preservative Required	ОК			
1175178004-I	HCL to pH < 2	ОК			
1175178004-J	HCL to $pH < 2$	ОК			
1175178005-A	HCL to $pH < 2$	ОК			
1175178005-В	HCL to $pH < 2$	ОК			
1175178005-C	HCL to $pH < 2$	ОК			
1175178005-D	No Preservative Required	ОК			
1175178005-E	No Preservative Required	ОК			
1175178005-F	HCL to $pH < 2$	ОК			
1175178005-G	HCL to $pH < 2$	ОК			
1175178006-A	HCL to $pH < 2$	ОК			
1175178006-В	HCL to $pH < 2$	ОК			
1175178006-C	HCL to $pH < 2$	ОК			
1175178006-D	No Preservative Required	ОК			
1175178006-E	No Preservative Required	ОК			
1175178006-F	HCL to $pH < 2$	ОК			
1175178006-G	HCL to pH < 2	ОК			
1175178007-A	HCL to $pH < 2$	ОК			
1175178007-B	HCL to pH < 2	ОК			
1175178007-C	HCL to $pH < 2$	OK			

Container Id

<u>Preservative</u>

<u>Container</u> <u>Condition</u> Container Id

Preservative

Container Revised Report - Reasidition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

 $\mathsf{OK}\xspace$ - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis