

global environmental solutions

FIRE TRAINING PIT SITE CHARACTERIZATION REPORT FAIRBANKS INTERNATIONAL AIRPORT

SLR Ref: 105.01288.18002

ADEC File Number: 100.38.070

December 2018

Fire Training Pit Site Characterization Report Fairbanks International Airport

Prepared for:

Alaska Department of Transportation and Public Facilities 6450 Airport Way Fairbanks, Alaska 99709

This document has been prepared by SLR International Corporation. The material and data in this document were prepared under the supervision and direction of the undersigned.

talla

Christophe Venot Senior Scientist

Stan Flagel Principal Scientist

Reviewed By:

CONTENTS

ACR	RONYM	S	. iii
1.	INTRO	DDUCTION	1
	1.1	Project Background	2
	1.2	Regional Setting and Site Lithology	
	1.3	FTP Construction	3
	1.4	Objectives and Scope of Work	4
	1.5	Contaminants of Potential Concern	4
2.	REGU	LATORY CRITERIA	6
	2.1	Soil Criteria	6
	2.2	Groundwater Criteria	7
3.	FIELD	METHODS	8
	3.1	Project Planning and Permits	8
	3.2	Field Survey	8
	3.3	Fire Training Pit Visual Inspection	
	3.4	Soil Sampling	
		3.4.1 Heated Headspace Soil Screening	
		3.4.2 Pit Fill Soil Sampling3.4.3 Subsurface Soil Sampling	
	3.5	Water Sampling	
	5.5	3.5.1 Groundwater Well Development and Sampling	
		3.5.2 Ponded Water Sampling	
	3.6	Field Blank and Field Rinsate Samples	
	3.7	Sampling Equipment Decontamination Procedures	11
	3.8	Sample Handling and Chain of Custody	11
	3.9	Instrument Calibration	
	3.10	Waste Management	
	3.11	Work Plan Deviations	12
4.	ANAL	YTICAL METHODS AND DATA QUALITY	13
	4.1	Analytical Methods	13
	4.2	Project Data Qualtiy and Integrity	13
	4.3	Analytical Quality Assurance and Quality Control	14
5.	FIRE [·]	TRAINING PIT INSPECTION	16
	5.1	Pit Features	16
	5.2	Liner Monitoring System Inspection and Liner Integrity	17
6.	SITE	CHARACTERIZATION	18
	6.1	Subsurface Soil	18
	6.2	Groundwater	19

CONTENTS (CONTINUED)

7.	WAS		RACTERIZATION	20
	7.1	Pit Fill	Soil	20
	7.2	Outer E	Berm Soil	20
	7.3	Pondeo	d Water	20
	7.4	Waste	Volumes	21
		7.4.1	Pit Fill	21
		7.4.2	Outer Berm Soil	21
		7.4.3	Ponded Pit Water and Soil Pore Water	21
	7.5	Waste	Disposition	22
8.	DISC	USSION	AND RECOMMENDATIONS	23
9.	REFE		S	24

FIGURES

Figure 1	Site Location
Figure 2	Site Features
Figure 3	Fire Training Pit As-Built Layout
Figure 4	Fire Training Pit As-Built Cross-Section
Figure 5	Soil and Pit Fill Sample Results
Figure 6	Water Sample Analytical Results
Figure 7	Fire Training Pit Cross-Section
TABLES	

Fire Training Pit Sample Summary
Berm Crown Soil and Pit Fill Analytical Results
Fire Training Pit Layout and Sample Locations
Fire Training Pit Cross-Section

APPENDIX

- Appendix A Survey Data
- Appendix B Laboratory Data Quality Assurance Review
- Appendix C Field Notebook
- Appendix D Field Forms
- Appendix E
- Photograph Log Waste Volume Calculations Appendix F

ACRONYMS

1,2,4-TMB	1,2,4-trimethylbenzene
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
ADS	Alaska Development Services, Inc.
AFFF	aqueous film forming foam
ASTM	American Society for Testing and Materials
DOT&PF	Alaska Department of Transportation and Public Facilities
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CFR	crash fire rescue facility
COC	chain of custody
COPC	contaminant of potential concern
cyd	cubic yards
DRO	diesel range organics
FAA	Federal Aviation Administration
FAI	Fairbanks International Airport
FTP	Fire Training Pit
ft	feet
gal	gallons
GPS	global positioning system
GRO	gasoline range organics
LOD	limit of detection
μg/L mg/kg	micrograms per liter milligrams per kilogram
mg/L	milligrams per liter
mL	milliliter
PAH	polynuclear aromatic hydrocarbon
PFAS	per- and polyfluoroalkyl substances
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
PFBS	perfluorobutanesulfonic acid
PFHxS	perfluorohexane sulfonic acid
PFHpA	perfluoroheptanoic acid

ACRONYMS (CONTINUED)

PFNA	perfluorononanoic acid
PID	photoionization detector
PVC	polyvinyl chloride
QA	quality assurance
QAR	quality assurance review
QC	quality control
RCRA	Resource Conservation and Recovery Act
RRO	residual range organics
SLR	SLR International Corporation
TCLP	toxicity characteristics leaching procedure
USEPA	U.S. Environmental Protection Agency
VOC	volatile organic compound

This report presents the findings from SLR International Corporation's (SLR) site characterization of the Fairbanks International Airport (FAI) Fire Training Pit (FTP) completed in June of 2018. This work was conducted on behalf of the Alaska Department of Transportation and Public Facilities (DOT&PF), FAI to assess current conditions at the FTP and estimate the volumes of environmental media (i.e., FTP berm soil, and fill and ponded water within the pit) exceeding applicable Alaska Department of Environmental Conservation (ADEC) cleanup levels in support of future remediation.

The FTP may serve as a source area for soil and groundwater contamination resulting from firefighting training activities and use of aqueous film forming foam (AFFF) containing per- and polyfluoroalkyl substances (PFAS). The primary contaminants of potential concern (COPCs) identified at the site during the investigation included PFAS congeners perfluorooctanoic acid (PFOS) and perfluorooctane sulfonate (PFOA) in soils outside the pit liner and PFOA in site groundwater.

Analytical sample results for site waste and site characterization samples indicate the presence of soil, groundwater, and ponded water impacted by multiple COPCs; however, no evidence of compromised liner integrity was identified. Exceedance concentrations of PFOA and/or PFOS were detected in all but one soil samples and in one of four groundwater samples collected outside of the pit. Additionally, waste characterization samples from pit fill soil and ponded water above the liner contained elevated concentrations of PFOA, PFOS, diesel range organics (DRO), naphthalene, and 1,2,4-trimethylbenzene (1,2,4-TMB). The investigation findings suggest transport of PFOA and PFOS in AFFF overspray and sediment transport from the pit to surrounding soils rather than by leakage from the liner.

Volumes of impacted environmental media were calculated to facilitate future remediation of materials within the FTP. It is estimated that PFOA and PFOS-impacted media potentially requiring removal or remediation include up to 6,660 cubic yards (cyd) of pit fill, 9,110 cyd of outer berm soil and 260,000 gallons (gal) of ponded pit and soil dewatering water.

Recommendations based on the above site and waste characterization findings include:

- Further delineating the extent of the extent of soil and groundwater cleanup level exceedances beyond the FTP area;
- Limiting tracking and transport of PFOA and PFOS-impacted soils outside of the pit and outer berm area; and
- Mitigation of impacted wastes within the pit to minimize the potential for the material to act as a source area.

This report presents the findings from SLR International Corporation's (SLR) site characterization of the FAI FTP (Figure 1) completed in June of 2018. This work was conducted on behalf of the DOT&PF to assess current conditions at the FTP and estimate the volumes of environmental media (i.e., FTP berm soil, and fill and ponded water within the pit) exceeding applicable ADEC cleanup levels in support of future remediation. The site characterization was conducted consistent with the ADEC-approved *Fire Training Pit Site Characterization Work Plan* (Work Plan; SLR, 2018a).

This report describes site characterization field activities; soil and water analytical results; and estimated volumes of environmental media exceeding applicable ADEC cleanup levels.

2.1 PROJECT BACKGROUND

The FTP is located approximately 740 feet (ft) southwest runway 2R/20L and the old crash fire rescue facility (CFR; Figure 2). The CFR consisted unlined fire training pits and a nearby burning aircraft propeller simulator. A large release of diesel fuel in 1990 resulted in listing the CFR (now the FTP site) as an ADEC Contaminated site (ADEC File Number 100.38.070).

Historical site activities are summarized as follows:

- **1989**: A site assessment conducted by Shannon and Wilson identified soil and groundwater impacts in the vicinity of the CFR with elevated concentrations of petroleum hydrocarbons, metals, and volatile organic compounds (VOCs) including 1,2-dichloroethane in soil and groundwater (DOT&PF, 1993).
- **1990**: Approximately 5,000 to 6,000 gallons was released from a fuel tanker used to store diesel fuel for fire training activities at the CFR. Additional releases from stored drums and above ground fuel tanks at the site may also have occurred. Impacted soil was excavated and landfarmed for treatment by bioremediation (DOT&PF, 1993).
- **1990**: Approximately 87 drums of hazardous materials were removed from a buried dump site located between the CFR and the "ski strip extension" (ADEC, 2018). It is unknown if all drums and debris were removed from the dump, and the exact contents and location of the drums was not well documented.
- **1993**: Construction of the current FTP was completed [Alaska Development Services, Inc. (ADS), 1993].
- **2007-2008:** The FTP liner was determined to be intact based on benzene, toluene, ethylbenzene and xylenes (BTEX); DRO; and surfactant analytical results from samples collected in wells installed on the periphery of the FTP site (ADEC, 2018).

- 2017: PFOA and PFOS were detected at 0.26 micrograms per liter (μg/L) and 1.3 μg/L, respectively, in the Landfarm Pond located north of the FTP (Figure 2) during a preliminary AFFF investigation at multiple locations on the airport property (SLR, 2017).
- **2017**: DOT&PF collected a sample from the ponded water within the FTP for preliminary screening of potential contaminants. The sample results indicated elevated concentrations of multiple PFAS including PFOS at 1.1 milligrams per liter (mg/L) and PFOA at 0.140 mg/L (ARS Aleut Analytical, 2017). Additional PFAS were detected including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), and perfluoroheptanoic acid (PFHpA).

Historical site activities have consisted primarily of investigations and remediation at the CFR. To date, no full-scale investigations of the FTP have been completed.

2.2 REGIONAL SETTING AND SITE LITHOLOGY

The FTP is located at the southwest end of the FAI property on an inside bend of a slough created by a former channel of the Tanana River. The main river channel is currently approximately 2,200 ft southeast of the FTP beyond a large man-made lake and the Tanana River Levee (Figure 2). The FTP site is relatively flat and consists of exposed dirt surrounded by low grass and few shrubs with little to no protection from wind.

Site lithology consists primarily of alluvial sediments (silt, sandy silt, and sand; or sandy silt and silty sand) with a shallow groundwater table, which is subject to seasonal variation influenced by the stage of the Tanana and Chena rivers. Field measurements collected during site characterization activities indicate that the depth to groundwater in the vicinity of the FTP ranges from 3 to 7 ft below ground surface (bgs). Historical gauging indicates a northwest flow at a gradient of 0.0025 ft/ft (DOT&PF, 1993). Groundwater recharge in the Fairbanks area is relatively low with annual precipitation averaging approximately 11 inches per year (NOAA, 2018).

2.3 FTP CONSTRUCTION

Current knowledge of the FTP construction and dimensions is based on as-built plan-view and cross-section drawings (Figures 3 and 4; ADS, 1993), and visual inspection of the FTP conducted during this project, as discussed in Section 5.1. The FTP was constructed between 1992 and 1993 and was completed as an US Environmental Protection Agency (USEPA) approved fire training area. The pit was constructed with a 50 ft wide by 4.5 ft tall berm (Figure 3) covering a footprint of approximately 322 ft by 322 ft (Figure 4). The area inside of the berm is approximately 203 ft by 203 ft. Diesel fuel used to ignite training fires was piped to a concrete burn pad located in the center of the pit from an aboveground storage tank outside the pit as shown in Figure 3.

The FTP was constructed partially below-grade with the center of the FTP excavated to approximately 5 ft bgs. The entire excavation was then lined with geotextile fabric liner placed above the static groundwater table (Figure 3). The fabric is overlain by approximately 2 ft of base fill material and contains a membrane (liner) monitoring system comprised of perforated

piping. An impermeable plastic liner was installed above the base fill and is covered by geotextile fabric, coarse plastic mesh, and approximately 2 ft to 3 ft of coarse pit fill material. The liner extends several feet horizontally beyond the crown of the pit berm (Figures 3 and 4).

2.4 OBJECTIVES AND SCOPE OF WORK

The project objectives were to collect data of sufficient quality and quantity to characterize the nature and extent of potential contaminants at the FTP and also to estimate the volume of impacted FTP-associated soil and ponded water exceeding ADEC cleanup levels. The following scope of work was implemented to meet the project objectives:

- 1. Characterization of wastes and determination of volumes for the following impacted materials:
 - **Ponded water**: Accumulated rainwater and water from fire-fighting activities accumulated within the pit;
 - **Pit Fill:** Gravel fill material above the liner and within the berms, including material saturated by ponded water;
 - **Outer Berm Material:** Gravel fill material outside the pit liner.
- 2. Delineation of impacts to soil and groundwater beneath and surrounding the FTP structure and comparison with applicable ADEC cleanup levels.

2.5 CONTAMINANTS OF POTENTIAL CONCERN

Soil, groundwater, and ponded water results for FTP COPCs are evaluated against applicable ADEC cleanup levels to determine impacts to fill material, native soil, groundwater, and ponded water. The list of potential FTP COPCs is based on historical firefighting training activities and potential contaminants resulting from the use of AFFF, diesel fuel, unknown materials used as firefighting props, and historical contamination from prior fuel releases and buried wastes within the area. The FTP COPCs are consistent with sampling requirements for fire training facilities and sites with unknown contaminants as specified in ADEC's *Field Sampling Guidance*, *Appendix F*, *Determination of Sampling and Lab Analysis for Petroleum in Soil and Groundwater, and Recommended Sampling Materials* (ADEC, 2017a). COPCs for soil, groundwater, and ponded water include:

- **Petroleum hydrocarbons**: Gasoline range organics (GRO), DRO, and residual range organics (RRO);
- **PFAS:** PFOS, PFOA, PFHxS, PFNA, PFBS, and PFHpA;
- Resource Conservation and Recovery Act (RCRA) metals: arsenic, barium, cadmium, chromium (III), lead, mercury, selenium, and silver;
- **VOCs**: full VOC list including BTEX and other VOCs listed in Table B1; and,

• **Polycyclic aromatic hydrocarbons (PAHs)**: acenaphthene, acenaphthylene, anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]pyrene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-c,d]pyrene, naphthalene, phenanthrene, and pyrene;

Soil and groundwater COPC concentrations were compared against relevant ADEC cleanup levels contained in Title 18 of the Alaska Administrative Code (AAC), Chapter 75 (18 AAC 75) *Oil and Other Hazardous Substances Pollution Control*, as amended through November 7, 2017 (ADEC, 2017b). Concentrations of COPCs in ponded water were compared against groundwater criteria for the purpose of waste classification and determination of treatment and/or final disposition. Soil and groundwater criteria are summarized below.

3.1 SOIL CRITERIA

Soil results for COPCs except PFAS congeners PFHxS, PFNA, PFBS, and PFHpA were evaluated against cleanup levels contained in 18 AAC 75.341. Soil cleanup levels that apply to the site include Method Two, Tables B1 and B2. Fairbanks is located in the Under 40 Inch Zone, for which the most stringent of the human health or migration to groundwater pathway cleanup levels apply. No soil cleanup levels currently exist for PFHxS, PFNA, PFBS, and PFHpA. The applicable Method Two soil cleanup levels for the site are as follows:

- GRO, 300 milligrams per kilogram (mg/kg).
- DRO, 250 mg/kg.
- RRO, 11,000 mg/kg.
- VOCs: Full list including:
 - Benzene: 0.022 mg/kg;
 - Toluene: 6.7 mg/kg;
 - Ethylbenzene: 0.13 mg/kg;
 - Total xylenes: 1.5 mg/kg; and
 - 61 remaining VOCS: Varies, refer to 18 AAC 75.341 Table B1.
- PFAS:
 - PFOA: 0.0017 mg/kg; and
 - PFOS: 0.0030 mg/kg.
- RCRA Metals:
 - Arsenic: 0.20 mg/kg;
 - Barium: 2,100 mg/kg;
 - Cadmium: 9.1 mg/kg;
 - Chromium (III): 100,000 mg/kg;
 - Lead: 400 mg/kg;
 - Mercury: 0.36 mg/kg;
 - Selenium: 6.9 mg/kg; and
 - Silver: 11 mg/kg.
- PAHs: varies, refer to 18 AAC 75.341 Table B1.

3.2 GROUNDWATER CRITERIA

Groundwater concentrations for COPS except PFAS congeners PFHxS, PFNA, PFBS, and PFHpA were evaluated against ADEC groundwater cleanup levels for contaminated sites specified in 18 AAC 75.345. No groundwater cleanup levels currently exist for PFHxS, PFNA, PFBS, and PFHpA. The applicable groundwater cleanup levels for the site are as follows:

- GRO: 2.2 mg/L.
- DRO: 1.5 mg/L.
- RRO: 1.1 mg/L.
- VOCs: Full list including:
 - Benzene, 0.0046 mg/L;
 - Toluene, 1.1 mg/L;
 - Ethylbenzene, 0.015 mg/L;
 - Total xylenes, 0.19 mg/L;
 - Naphthalene, 0.0017 mg/L;
 - 1,2,4-TMB: 0.015 mg/L; and
 - 59 remaining VOCs: Varies, refer to 18 AAC 75.345 Table C.
- PFAS
 - PFOA: 0.0004 mg/L; and
 - PFOS: 0.0004 mg/L.
- RCRA Metals:
 - Arsenic: 0.00052 mg/L;
 - Barium: 3.8 mg/L;
 - Cadmium: 0.0092 mg/L;
 - Chromium (III): 22.0 mg/L;
 - Lead: 0.015 mg/L;
 - Mercury: 0.00052 mg/L;
 - Selenium: 0.1 mg/L; and
 - Silver: 0.094 mg/L.
- PAHs: 17 congeners: Varies, refer to 18 AAC 75.345 Table C.

The following section describes field methods for activities conducted as part of the 2018 FTP site characterization. Field activities included sample collection from pit fill soil, subsurface soil, ponded water, and groundwater. Field methods used were consistent with ADEC's *Field Sampling Guidance* (ADEC, 2017a) and the *Fire Training Pit Site Characterization Work Plan* (SLR, 2018a). Field activities were conducted by Qualified Environmental Professionals as defined in 18 AAC 75.333. Documentation of field activities and methods is included as Appendix A *Survey Data*, Appendix B *Laboratory Data Quality Assurance Review*, Appendix C *Field Notebook*, Appendix D *Field Forms*, Appendix E *Photograph Log*, and Appendix F Waste Volume Calculations.

4.1 PROJECT PLANNING AND PERMITS

Fieldwork was conducted under the supervision of an SLR staff holding an FAI Secure Identification Display Area badge with escort privileges and in accordance with the *Fire Training Site Characterization Safety Plan and Compliance Document* (SLR, 2018b). Additionally, field activities were completed in accordance with Federal Aviation Administration (FAA) *Notice of Proposed Construction or Alteration - On Airport* permit number 2018-AAL-56-NRA.

4.2 FIELD SURVEY

Mapping-grade Trimble[®] Geo 7X survey global positioning system (GPS) equipment was used to survey the spatial coordinates of site features, sample locations, and dimensions of the FTP berm, stained soil, and ponded water. The GPS data was collected in the NAD 1983 horizontal datum using the GEOID12B geoid model. Post-processing was completed using Trimble Pathfinder[®] software. Horizontal coordinates were reported with an estimated accuracy of 0.16 ft to 0.49 ft for 98.7 percent of the data (Appendix A). Vertical data accuracy was not determined as part of the post-processing.

4.3 FIRE TRAINING PIT VISUAL INSPECTION

Prior to soil or water sampling, a visual inspection of the FTP was conducted to document the condition and size of the pit, the presence of associated infrastructure, and evidence of contaminant impacts (i.e., stained soil, sheen, or stressed vegetation). The liner monitoring port was also inspected and tested for recoverable water. The location of the monitoring port, perimeter of the FTP berm crown, locations of stained soil within the pit, and the extent of ponded water were surveyed using GPS equipment. Inspection notes were recorded in the *Field Notebook* (Appendix A).

4.4 SOIL SAMPLING

Soil samples were collected from pit fill and subsurface soil (Figures 3 and 4). All soil samples were screened for VOCs using the heated headspace method as described in the following

section and documented in the *Field Notebook (Appendix A)* and on *Boring Logs* or *Soil Sampling Forms (Appendix D)*, as appropriate.

4.4.1 HEATED HEADSPACE SOIL SCREENING

A photoionization detector (PID) was used to conduct field screening of all soil samples using the heated headspace method as described in ADEC's *Field Sampling Guidance*. Consistent with the method, a representative soil sample was placed in a re-sealable plastic bag and placed in a warm area for a sufficient time to raise the sample temperature to at least 40 degrees Fahrenheit. After warming, the sealed soil samples were agitated (shaken) for 15 to 20 seconds and the PID probe tip was inserted into the bag. The highest headspace VOC reading was recorded as the field screening value.

4.4.2 PIT FILL SOIL SAMPLING

Shallow pit fill samples were collected from three locations within the FTP to establish COPC concentrations in fill material above the liner on opposite sides of the pit (Figure 5). One sample was collected adjacent to the liner monitoring port to evaluate COPC concentrations above the mean pond water line and soil staining. The two additional samples were collected on each side of the pond to evaluate COPC concentrations in stained soil along the edge of the ponded water. All pit fill samples were collected using stainless steel hand tools from an approximate depth of 0.5 ft bgs.

4.4.3 SUBSURFACE SOIL SAMPLING

Subsurface soil samples were collected from 12 borings drilled using a tracked GeoProbe[®] 6712 DT drill rig with direct-push Macro-Core[®] MC5 Core tooling. The boring locations are shown on Figures 4 and 5. The borings drilled were divided into two categories as follows:

- Four crown borings, one on each side of the berm crown just outside of the pit membrane; each boring was completed as a temporary monitoring well as described in the next section. The crown borings were sampled for all site COPCs
- Eight perimeter borings, one on each of the four sides and corners of the pit berm. Perimeter borings were sampled for PFAS only with the exception of boring BH7, which was also sampled for DRO due to its location adjacent to buried diesel conveyance piping. The locations of all perimeter borings were moved inwards approximately 40 ft from their planned location on the berm crown based on field observations.

Two soil samples were collected from each boring including a "shallow" sample at approximately 1 ft bgs and a "deep" sample immediately above the groundwater table. New stainless steel spoons were used to collect samples directly from disposable clear PVC liners installed in decontaminated stainless Macro-Core[®] tooling.

Soil lithology was classified consistent with American Society for Testing and Materials (ASTM) D2488 Standard Practice for Description and Identification of Soil as general guidance. Borings were logged continuously from the surface to total depth. Berm crown borings, BH1 to BH4, were drilled to 10 to 11 ft bgs, respectively in order to be completed as temporary wells while

perimeter borings, BH5 to BH10, were drilled to a depth 10 ft bgs, and BH12 to 5 ft bgs to sample soil above the static water table.

4.5 WATER SAMPLING

Water samples were collected from the temporary well points installed in berm crown borings and from ponded water to evaluate COPC concentrations resulting from historical activities at the FTP. Water samples were collected using a peristaltic pump and new polyethylene tubing (non-Teflon[®]-lined) at each well location when sampling for PFAS. After the PFAS samples were collected, the polyethylene tubing was replaced with Teflon-lined tubing to sample for the remaining analytes. Groundwater sample collection, well development, and ponded water sampling were recorded in the *Field Notebook (Appendix C)* and on *Groundwater Sampling Forms (Appendix D)*.

4.5.1 GROUNDWATER WELL DEVELOPMENT AND SAMPLING

Groundwater was sampled from berm crown borings BH1 to BH4, completed as temporary monitoring wells MW-1 to MW-4 for the purpose of evaluating liner integrity and the potential of the FTP to act as a contaminant source area. Borings were completed as temporary wells by installing a 1-inch prepack polyvinyl chloride (PVC) well screen (BH2 and BH3) or SP-16 stainless screens (BH1 and BH4) following soil sampling. The wells were developed prior to sampling by pumping with a peristaltic pump until either turbidity decreased to 10 nephelometric turbidity units or stabilized after a minimum of three boring annulus volumes of water were removed.

Groundwater samples were collected using low-flow purge and sampling or purging of three well volumes, consistent with the project Work Plan and ADEC *Field Sampling Guidance*. Low-flow sampling was used for 1-inch PVC wells and three volume purge used for wells installed as SP-16 stainless groundwater sampling screens due to their narrow ½-inch inner diameter.

The temporary wells were decommissioned following sampling by pulling the SP-16 sampling screen or 1-inch pre-pack PVC screen and well casing and filling the open borehole with bentonite chips. The chips were hydrated in 6-inch lifts to create a competent seal.

4.5.2 PONDED WATER SAMPLING

One water sample (SW1) was collected from ponded water within the pit to confirm the previous pond water PFAS sample results and to test for the full suite of COPCs. The water sample was collected from the southwest edge of the ponded water, approximately 75 ft inwards from the southwest side of the pit berm (Figure 5). The water sample was collected using a peristaltic pump with tubing extending to 5 ft from the water's edge.

4.6 FIELD BLANK AND FIELD RINSATE SAMPLES

Field blank samples were collected to evaluate potential cross-contamination during the collection and handling of PFAS samples. The field blanks consisted of two laboratory-provided

bottles of PFAS-free water that were poured into a clean and empty, laboratory-provided 500 milliliter (mL) bottle. One field blank bottle was stored and transported in each cooler of PFAS samples. A minimum of 1 field blank was collected for every 20 soil and water PFAS samples.

Field equipment rinsate samples were collected to evaluate potential cross-contamination during the collection and handling PFAS soil samples. Equipment rinsate samples were collected by pouring laboratory-provided PFAS-free water over a new, disposable drill core liner and a stainless sampling spoon and collecting the rinsate into a 250 mL sample container.

4.7 SAMPLING EQUIPMENT DECONTAMINATION PROCEDURES

Industry-standard practices were followed to avoid cross-contamination of samples including us of disposable sampling equipment and decontamination of non-disposable equipment coming into contact with sample media. Disposable sampling equipment included polyethylene or Teflon-lined tubing used for groundwater sampling and disposable scoops or stainless spoons used for soil sample collection. Non-disposable sampling equipment was decontaminated off site prior to use and after use at each sampling location. Decontamination consisted of a two-part wash: first with Alconox[®] or equivalent detergent mixed with deionized water, followed by a rinse with deionized water. Water generated during decontamination of sampling equipment was disposed of as described in Section 5.8.

4.8 SAMPLE HANDLING AND CHAIN OF CUSTODY

Samples were collected directly into laboratory-supplied sample containers appropriate for the required analyses. The samples were labeled and placed into a chilled cooler immediately following collection. Sample and cooler temperatures were maintained at approximately zero to 6 degrees Celsius, throughout transport and shipment to the laboratory. Samples were handled and transported in a manner that maintained sample integrity and did not exceed specified holding times. Each sample was documented on a chain of custody (COC) form and in the field logbook. The COC form was sealed in the sample cooler and each cooler was sealed with a signed custody seal for shipment to the analytical laboratory.

4.9 INSTRUMENT CALIBRATION

Field instruments, including a YSI[®] 556 multi-parameter water quality meter and PID, were calibrated daily according to manufacturer specifications prior to use. No instrument drift was observed during sampling and screening activities. Instrument calibrations for the PID and YSI[®] 556 were recorded in the *Field Notebook (Appendix C)* and on *Water Parameter Meter Calibration Log* forms (Appendix D), respectively.

4.10 WASTE MANAGEMENT

Field generated wastes included soil cuttings, well purge water, and non-hazardous consumables. Soil cuttings and well purge water was deposited within the lined FTP area for collection during future remediation of the site. Non-hazardous consumables were bagged and disposed of at the Fairbanks North Star Borough landfill.

4.11 WORK PLAN DEVIATIONS

One deviation and three modifications to activities prescribed in the project Work Plan were made based on field conditions and sample classification. The single deviation consisted of:

• Duplicate samples were not collected for pit soil samples SS1, SS2, and SS3, and pit pond water sample SW1 which are classified as waste characterization samples.

Three modifications made to sampling locations included:

- Perimeter soil boring locations were moved towards the FTP berm crown by approximately 40 ft based on a lack of visible impacts to soils beyond the berm crown.
- Perimeter soil boring BH11 was moved approximately 60 ft towards the south berm crown corner to avoid potential buried water lines leading to a hydrant observed on the site (Figure 4);
- An additional pit fill sample (SS1) was collected to evaluate COPC concentrations in soils near the berm crown above stained soils present along the edge of ponded water.

The following section describes project analytical methods and analytical data quality including sample handling; PFAS field and equipment rinse blanks; and the *Laboratory Data Quality Assurance Review* (QAR), laboratory checklist, and laboratory analytical reports included as Appendix B. All project samples were handled, analyzed, and evaluated for quality control (QC) in accordance with the project Work Plan.

5.1 ANALYTICAL METHODS

Soil and groundwater samples were submitted to analytical laboratories for testing of project COPCs. Analyses of the six PFAS congeners were conducted by ALS Environmental of Kelso, Washington, an ADEC-accredited laboratory, by USEPA Method 537M. USEPA Method 537M provides a reporting limit of 5 nanograms per liter, two orders of magnitude lower than the ADEC groundwater cleanup levels for PFOA and PFOS.

Analysis of the remaining analytes was conducted by SGS North America, Inc. of Anchorage, Alaska, an ADEC-accredited laboratory, by the following analytical methods:

- GRO: Alaska Method 101;
- DRO: Alaska Method 102;
- RRO: Alaska Method 103;
- VOCs (Full List): USEPA Method SW8260B;
- PAHs: USEPA Method SW8270D-with selective ion monitoring; and
- Toxicity characteristics leaching procedure (TCLP) Metals: USEPA Method SW1311/6020A (soil only); and
- Total metals: USEPA Method SW6020A (groundwater only).

5.2 PROJECT DATA QUALTIY AND INTEGRITY

Project data quality and integrity were maintained during field activities by adhering to the following procedures as described in the Work Plan:

- Documentation of all field activities in a bound project field logbook and on task-specific forms;
- Maintaining sample COC and integrity from sample collection through delivery to the analytical laboratories;
- Collection of field duplicate samples at a frequency of 10 percent of the total number of samples collected during the sampling event with a minimum of one duplicate collected from each media except for samples considered to be waste characterization samples;

- Analysis of trip blanks accompanying sample containers analyzed for volatile contaminants from the laboratory through sample collection and transport back to the analytical laboratory;
- Evaluation of analytical data quality assurance (QA)/ QC procedures as discussed in the laboratory QAR and ADEC Laboratory Data Review Checklist, as discussed in the following section;
- Analysis of field blanks and equipment rinsate blank samples collected for evaluation of PFAS cross-contamination during sample handling and collection; and,
- Avoidance of cross-contamination of samples by consumer materials containing PFAS such as Teflon, Gore-Tex[®] fabric, plumbers tape, flame-resistant clothing, lubricants, and sealants.

5.3 ANALYTICAL QUALITY ASSURANCE AND QUALITY CONTROL

QA procedures included the analysis of field duplicates and trip blanks, and completion of a laboratory data QAR by a SLR chemist. The QAR includes the completion of an ADEC Laboratory Data Review Checklist for each analytical report. QC procedures included adherence to appropriate sample collection methodology, preservation, and analytical methods as described in the Work Plan. Any discrepancies associated with the samples collected from the site are identified in the QAR and summarized below. The QAR and the completed ADEC Laboratory Data Review Checklist are presented in Appendix B.

The project data were deemed acceptable for use with minor issues noted in the QAR regarding laboratory method blanks; field blanks; laboratory detection limits; surrogate recovery results; matrix spike and matrix spike duplicate samples; and field duplicates. Qualified results are outlined below and presented in detail in SLR's QAR.

- Laboratory Method Blanks: Detections in laboratory method blanks resulted in flagging of data for mercury in soil, mercury in water, chromium in soil, PFNA, and PFHxS. A high bias was indicated and all affected results were below applicable cleanup levels, therefore data usability was not impacted.
- **Reporting Limits:** For select VOC analytes, typical laboratory technological methodology limitations resulted in limits of detection (LODs) which did not meet ADEC cleanup levels. All data was considered useable as qualified, and all results of not detected confirm the absence of target analyte to the level of the reported LOD.
- **Surrogate Recovery Results:** Surrogate recoveries associated with fluoranthrene-d10 and PFNA were outside of acceptance limits. Results were below LODs and applicable cleanup levels. Therefore, all data was usable as qualified.
- Matrix Spike and Matrix Spike Duplicate Samples: A high bias was indicated for PFOS in soil sample BH1-S. The detected result was over 30-fold above the applicable ADEC cleanup level, therefore the data was usable as qualified.
- Field Duplicates: The field duplicate relative percent difference was outside of acceptable limits for parent/duplicate samples MW2/MW29 (water; chromium and lead)

and BH2-D/BH99 (soil; PFOA). In both cases, laboratory precision was established within acceptable limits, thus the impact to data was considered minimal and all data was considered usable as qualified.

It should be noted that field blank sample FB2 had detections of PFHxS and PFOS at concentrations near the laboratory LOD) All associated samples had detectable results well over ten times that of the field blank detections, therefore all data was useable without qualification. No other issues were noted with PFAS field or rinse blanks.

The visual inspection of the FTP conducted prior to characterization activities is described in the section below and documented in the *Field Notebook* (Appendix C) and Photograph Log (Appendix E). The observed site features are presented in plan view on Figure 5 and in cross-section on Figure 7.

6.1 **PIT FEATURES**

The FTP consists of a large, pit constructed of bermed soil with the following associated features relevant to waste and site characterization included:

- Berm Crown: The berm crown was identified based on historical diagrams and visual inspection of the berm profile. The square berm crown matched the as-built dimensions of approximately 203 by 203 ft, as confirmed by survey data. The crown and overall profile of the berm were difficult to identify in the field due to the relatively flat nature of the berm (Photographs 1 and 2). Field measurements and as-built drawings suggest that the berm is slightly taller and wider along the eastern extent towards borings BH3 and BH9 (Figure 4). Heavy machinery and automobile tracks within and across the dry extent of the berm suggest that the berm may have been compacted by vehicle traffic since its original construction and that soil from the berm and pit may be transported out of the FTP area. Additionally, berm soil was observed to be transported across the site by wind.
- **Pit Stained Soil**: A ring of dark, stained soil was observed, extending approximately 10 ft to 15 ft outwards from the edge of the ponded water within the FTP (Photographs 1, 2, and 4). Soil samples SS2 (Photograph 15) and SS3 were collected from the stained soil on opposite sides of the ponded water. Staining at the sample locations extended into the saturated layer. No staining was observed above perimeter of the stain ring or at soil sample SS1 collected near the liner monitoring point (Photograph 14).
- **Pit Ponded Water**: Dark colored water was present within the pit with diameter of approximately 115 ft and covering approximately 32 percent of the pit area inside the berm crown. Droplets of non-aqueous phase free product were observed along the pond edges and a strong hydrocarbon odor was present. The depth of water in the center of the pond was estimated to be 1.5 ft, decreasing outwards with the slope of the berm. The depth of water likely fluctuates with precipitation and evaporation as suggested by the extent of smeared soil above the water line (Photographs 1 and 2).
- **Pit Structures**: Structures observed within the FTP included two large steel pipes present near the center of the pit within the area of ponded water (Photographs 1 and 2). Additionally, the outlines of submerged concrete pads were observed; the pads are shown on the as-built layout on Figure 3.
- Liner Monitoring System: the liner monitoring port was located underneath a 12-inch steel cover set in a square concrete pad (Photographs 3 and 14). The liner monitoring

system consists of polyethylene tubing passing through a steel conduit. The conduit appears to continue from the monitoring port towards the center of the pit at a downward slope. The end point or attachment of the tubing below the ponded water is unknown. Liner monitoring system is discussed further in Section 5.2.

- Liner Manhole Grate: A 2 ft diameter metal sewer-type grate was observed at the edge of the ponded water and within the stained soil area (Photographs 4 and 15). The grate may correspond with a "sump" as shown on Figure 4. Water was visible beneath the grate at a depth corresponding to the surface of the pit ponded water.
- **Diesel Fuel Conveyance**: A 5000-gallon above ground, horizontal, double-walled steel tank with buried piping leading to a flow meter and valve to the north of the FTP pond. The routing of the piping appeared to be consistent with historical as-built diagrams (ADS, 1993), as indicated by vertical stand-pipes. Additionally, a private utility locate service traced the electrical lines to the tank pump, pump control panel, and emergency kill switch (Photographs 5 to 8).
- **Fire Hydrant**: A fire hydrant and buried piping shown on historical site figures were confirmed visually and by electrical tracing of the pipe. The hydrant is located in the south corner of the site (Figure 4) and is believed to be active.
- **Monitoring Well**: an unmarked monitoring well was found near boring BH7. The well appeared to be in good condition and was assigned the identification "MW-A," (Photograph 9). No other monitoring wells were observed within the project area as shown on Figure 4.

6.2 LINER MONITORING SYSTEM INSPECTION AND LINER INTEGRITY

The liner monitoring system port indicated on as-built drawings was found on the south edge of the FTP berm (Figure 4). A peristaltic pump was used to attempt to collect a water sample from the ¼ inch polyethylene tubing present in the port; however, only air could be pumped from the monitoring system. The air was screened for VOCs using a PID. A PID reading of 3.4 ppm from the monitoring system was similar to ambient air levels, suggesting either that hydrocarbon impacts from diesel fuel are not present beneath the liner or that the liner monitoring system is compromised, and only ambient air was being screened.

Field observations suggest that the FTP liner is not compromised because it retains rainwater, snowmelt, and water used during fire training exercises, at a static water level above the natural water table. Additionally, inspection of liner material collected from berm crown boring BH10 shows that the main, 1/4-inch thick plastic liner is not degraded near the berm crown. Protective geotextile fabric and plastic mesh layers were also present immediately above and below the liner.

Site characterization samples collected from soil and groundwater outside of the FTP indicate substantially lower COPC concentrations than in waste characterization samples collected from pit fill soil and ponded water. Cleanup level exceedances in site characterization soil and groundwater samples were limited to detections of PFOA and/or PFOS as described in the following sections. Concentrations of the remaining analytes including GRO, DRO, RRO, VOCs, RCRA metals, and PAHs were non-detect or below applicable cleanup levels; these analytes are not considered COPCs for site characterization. Site characterization sample results are summarized in Table 1 with analytical results presented in Tables 2 and 3. Soil and groundwater sample exceedances are shown on Figures 5 and 7, respectively with select sampling locations are shown in cross-section on Figure 6.

7.1 SUBSURFACE SOIL

The berm crown and outer fill material are impacted by PFAS congeners PFOA and/or PFOS at concentrations exceeding ADEC Method Two Migration to Groundwater soil cleanup levels of 0.0017 and 0.0030 mg/kg, respectively. No other analytes exceeded ADEC soil cleanup levels in samples collected from berm crown or perimeter borings. PFAS exceedances were reported in 11 of the 12 total borings completed as described below. Subsurface soil sample results for the berm crown borings and perimeter borings are presented in Tables 2A and 2B, respectively. Sample locations with exceedances and the known extent of cleanup level exceedances are shown on Figure 5.

Exceedances in the four berm crown borings included PFOA and/or PFOS in all borings except BH4. PFOA exceedance concentrations and included one shallow and one deep sample with concentrations of 0.0043 and 0.0021 mg/kg, respectively. PFOS exceedance concentrations were one to two orders of magnitude greater than for PFOS and included two shallow and one deep sample with concentrations of 0.013 and 0.15 mg/kg for shallow samples and 0.31 mg/kg for the deep sample. The results indicate that PFOS are more prevalent in the berm crown soil, but no correlation with sample depth is evident.

Perimeter boring exceedances included PFOA detections in three borings and PFOS in all eight borings. PFOA exceedances were detected shallow and deep samples of BH10 and only shallow samples in BH6 and BH12. Shallow exceedance concentrations ranged from 0.0052 to 0.02 mg/kg, one to two orders of magnitude less than for PFOS exceedances reported for seven shallow and six deep samples. The range of shallow and deep PFOS exceedance concentrations were 0.039 to 0.16 mg/kg and 0.0061 to 0.77 mg/kg, respectively. Concentrations of PFOS were greatest along the northwest to northeast sides of the berm perimeter as indicated by detections of 0.31, 0.56, and 0.77 mg/kg for BH7, BH8, and BH10, respectively.

No other COPCs were detected in berm crown borings BH1 to BH4 and DRO was not detected in perimeter boring BH7, the only perimeter boring sampled for DRO due to its proximity to the diesel conveyance piping (Figure 4).

7.2 **GROUNDWATER**

Water sample results indicate that fire-fighting foam use in the FTP has caused a groundwater a cleanup level exceedance along the northwest side of the pit. A single groundwater cleanup level exceedance for PFOA was detected in temporary well MW2 at a concentration of 0.00049 mg/L, slightly above the groundwater cleanup level of 0.0004 mg/L. The PFOA concentration in MW2 is two orders of magnitude lower than the 0.032 mg/L detected in ponded pit water, suggesting that pit water is not directly impacting groundwater. Groundwater results are presented in Table 3 and the location of the single exceedance is shown on Figure 6.

Additionally, the highest concentrations of PFAS congeners without cleanup levels were reported in MW1 and included 0.0039 mg/L for PFBS and 0.015 mg/L for PFHxS. PFOS concentrations for water samples were well below the cleanup level.

Waste characterization activities included an evaluation of media within the lined pit area and impacted soil in the outer berm area for the purposes of future site remediation planning. Analytical samples collected strictly for waste characterization purposes were taken from grossly-contaminated fill soil and ponded water within the lined pit. Waste characterization sample results indicated concentrations of PFOA, PFOS, DRO, naphthalene, RRO, and/or 1,2,4-TMB exceeding ADEC cleanup levels in pit fill and ponded water. This section also includes an evaluation of the extent of impact in outer berm area as defined by cleanup level exceedances for PFOA and PFOS in berm crown and perimeter soil borings.

8.1 PIT FILL SOIL

Pit fill waste characterization soil sample results indicate that the fill material is impacted by firefighting training activities. Pit fill soil PFOS concentrations exceed ADEC Method Two Migration to Groundwater cleanup level in stained soil surrounding the ponded pit water. PFOS concentrations appear to decrease with distance from the stained soil outwards to the berm crown. For example, the concentration of PFOS in sample SS1 of 0.36 mg/kg is an order of magnitude less than concentrations of 2.8 mg/kg and 3.6 mg/kg for samples SS2 and SS3, respectively.

Additionally, exceedances of ADEC Method Two Migration to Groundwater cleanup levels for PFOA, DRO, and naphthalene, were detected in samples SS2 and SS3; these samples were collected from stained soil. Exceedances of DRO and naphthalene were detected only in sample SS2 which had the highest DRO concentration (5,530 mg/kg) and PID screening value (27.7 parts per million) of any project sample.

It is assumed that all pit fill soil is impacted and exceeds applicable soil cleanup levels; therefore, all soil within the FTP is included in the waste soil volume calculated in Section 7.4.

8.2 OUTER BERM SOIL

Soil sample results from berm crown and perimeter borings indicate a large area of soil outside of the lined pit exceeding ADEC Method Two Migration to Groundwater cleanup levels for PFOA and PFOS, as discussed in Section 6.1 and shown in Figure 5. The affected area is largely defined by PFOS concentrations up to two orders of magnitude greater than cleanup level. The volume of impacted soil is calculated as described in Section 7.4.

8.3 PONDED WATER

Ponded pit water sampled for waste characterization purposes was found to be impacted by firefighting training activities, containing PFOA, PFOS, DRO, RRO, 1,2,4-TMB, and naphthalene at concentrations exceeding ADEC groundwater cleanup levels. The pit water is most impacted by PFOS with a concentration of 1.6 mg/L, four orders of magnitude above the cleanup level of

0.0004 mg/L. The volume of ponded water and water contained within the pore space of saturated soils in the pit is calculated as described in the following section.

8.4 WASTE VOLUMES

Waste volumes were determined to aid in planning of future remedial actions. Calculated volumes are based on site measurements (Figures 5 and 7), available as-built drawings (Figures 3 and 4), and analytical results as described below. Wastes present in the FTP include non-hazardous ponded water and pit fill soil. As-built and field measured volume calculations are presented in worksheets included as Appendix F.

8.4.1 PIT FILL

The volume of pit fill material includes all material above and within the lined pit area (Figure 5). The volume of pit fill material is estimated to be 5,760 to 6,660 cyd for field-measured and asbuilt calculated volumes, respectively. The volume includes inner berm slope and pit floor material. Inner berm slope material volumes were calculated using the average of berm crosssectional areas. The difference in as-built and field-measured volumes may be the result of site compaction over time since construction.

8.4.2 OUTER BERM SOIL

The volume of outer berm soil includes soil at the liner edge extending outwards to the outer perimeter borings and ranges from approximately 8,200 to 9,110 cyd for field-measured and asbuilt calculations, respectively. For as-built calculations, the outer berm was conservatively determined to include all fill soil extending outwards from the liner edge, as shown Figure 4. The outer berm soil area for field measurements is based on the impacted interval extending from buried liner edge, sloping downwards to the water table at the perimeter borings, as shown in Figure 7.

8.4.3 PONDED PIT WATER AND SOIL PORE WATER

The volume of ponded pit water and recoverable pore water within saturated soils was calculated to be approximately 190,600 and 170,000 gal, respectively, based on field measurements. The ponded water and recoverable pore water volumes were conservatively calculated from the cross-section area multiplied by the width of the ponded water, with the intent of providing a conservative value in the event of increased water levels due to seasonal precipitation.

The volume of recoverable porewater within the saturated pit soils was calculated based on the assumption that remediation dewatering of saturated pit soil will be required prior to disposal. The calculated volume assumes an average porosity of 0.33 for well-graded sand and 80 percent recoverable water content.

8.5 WASTE DISPOSITION

Waste disposal options for site remediation involving the removal of the FTP as potential PFAS source area are presented below. Based on the waste characterization results, the pit fill material and ponded water will be classified as non-hazardous under RCRA as listed in title 40 of the Code of Federal Regulations part 261 and adopted by reference in 18 AAC 62, *Hazardous Waste* (ADEC, 2003). Potential waste disposal options for identified wastes are described below.

Common remedial options for PFOA, PFOS, DRO, and naphthalene-impacted soils and pit fill may include but not be limited to:

- Permanent remediation through excavation and off-site disposal in a lower-48 states Class A landfill; soil with elevated PFAS concentrations will not likely to be accepted at the Fairbanks Municipal Landfill or approved for disposal at the facility by ADEC; or
- Temporary source area mitigation by stockpiling and/or covering impacted soils to prevent migration of PFAS.

Remedial options for ponded water and water removed to support excavation activities impacted by PFOA, PFOS, DRO, RRO, 1,2,4-TMB, and naphthalene may include:

- On-site treatment using granulated activated carbon and discharge to ground surface; or
- Off-site transport for treatment and disposal at an approved facility.

Additional remedial and waste disposition methods may be considered for a remedial site plan based on ADEC and/or landfill operator approval.

The site FTP Site Characterization was completed to provide a basis for planning of remediation of the FTP and evaluation of impacts to surrounding soils and groundwater. The findings of the project indicate that historical activities at the FTP have resulted in the following impacts to soil and groundwater outside of the pit:

- No visible impacts from firefighting activities were noted in soils outside of the pit;
- COPCs in outer fill material are limited to PFOA and PFOS at concentrations exceeding Migration to Groundwater cleanup levels in 11 of 12 soil boring locations. The area of outer fill material exceeding cleanup levels is defined by PFOS at concentrations one to two orders of magnitude greater than for PFOA.
- A single groundwater cleanup level exceedance for PFOS along the northwest side of the FTP, suggesting that high COPC concentrations in ponded pit water have limited to no impact on groundwater.
- No evidence of compromised liner integrity was identified; PFAS detections outside of the FTP are potentially due to soil transport by wind and vehicles.

Investigation of waste media within the pit indicates impacts to pit soil and ponded water with concentrations above ADEC cleanup levels but below RCRA action levels for hazardous wastes. Findings included:

- Visibly-impacted, hydrocarbon-stained soil within the pit in a ring surrounding the ponded water;
- Pit fill exceeding applicable soil cleanup levels for PFOA and PFOS, with a volume conservatively estimated to be 6,660 cyd; and
- A large outer berm area of soil exceeding applicable soil cleanup levels for PFOA and PFOS, with an estimated volume of 9,110 cyd.

Recommendations based on the above site and waste characterization findings include:

- Delineation of the extent of soil and groundwater cleanup level exceedances outside of the pit, including identification and sampling of any existing groundwater monitoring wells;
- Limiting vehicle traffic in and out of the pit to reduce tracking of PFOA and PFOSimpacted soils outside of the pit and outer berm area; and
- Remediation or mitigation of impacted wastes within the pit to minimize the potential for the material to act as a source area.

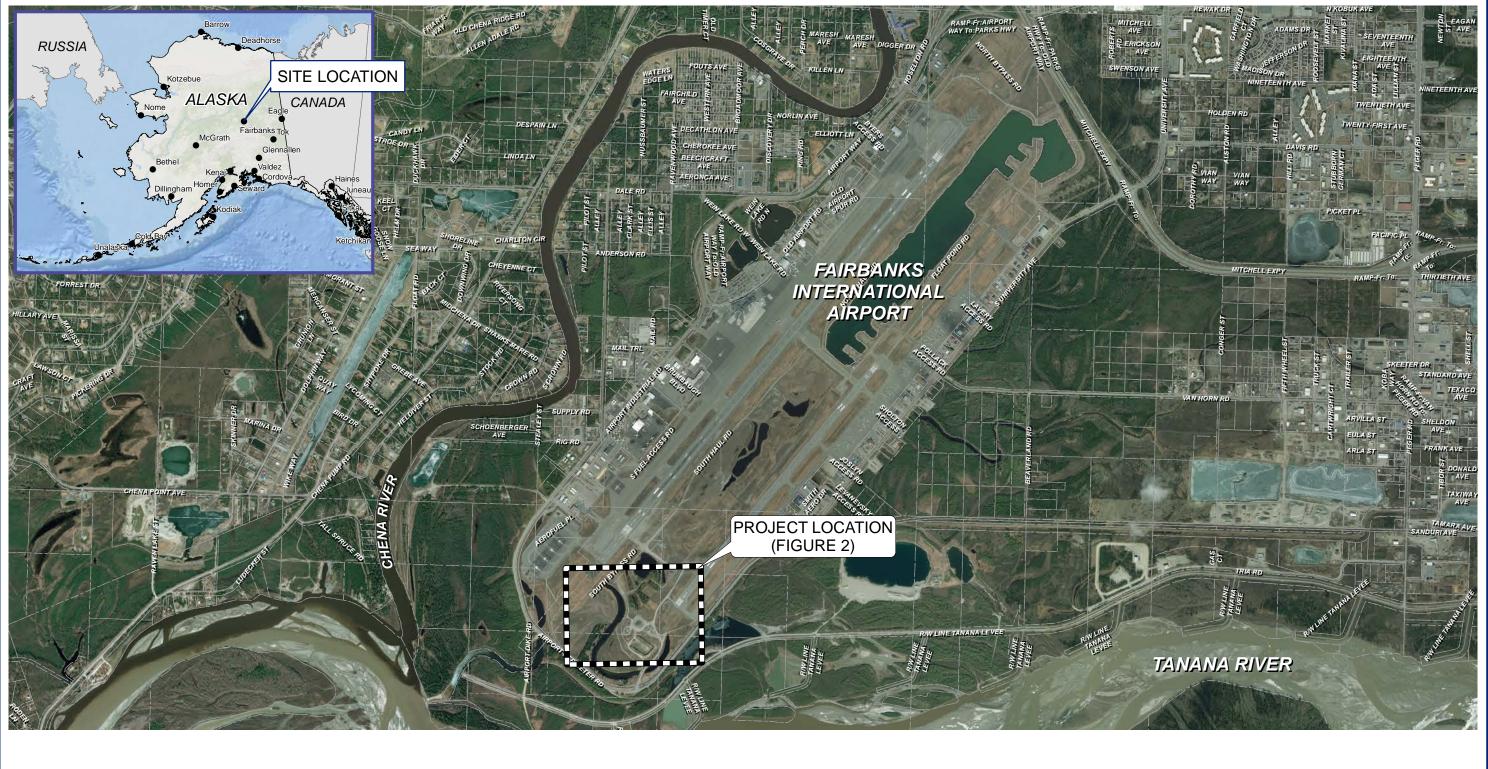
- Alaska Department of Environmental Conservation (ADEC), 2003. Hazardous Waste (18 AAC 62). August 8.
- ADEC, 2017a. Field Sampling Guidance. March.
- ADEC, 2017b. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control. As amended through November 7.
- ADEC, 2018. Site Report: FIA Fire Training Pit. Website accessed May 1, 2018. http://dec.alaska.gov/Applications/SPAR/PublicMVC/CSP/SiteReport/1071.
- Alaska Department of Transportation and Public Facilities (DOT&PF), 1993. Fairbanks International Airport Bioremediation Project Preliminary Report, January.
- Alaska Development Services, Inc. (ADS) 1993. Construction Plans for Fairbanks International Airport, EPA Approved Fire Training Area, Project Number 64849, As-Builts. June 9.
- ARS Aleut Analytical, 2017. Laboratory Report, Fai Fire Pit 2017. October 5.
- National Oceanic and Atmospheric Administration (NOAA), 2018. NOWData NOAA Online Weather Data, Monthly Climate Normals (1981-2010) – FAIRBANKS INTL AP, AK. Website accessed May 1, 2018. http://w2.weather.gov/climate/xmacis.php?wfo=pafg.
- SLR International Corporation (SLR), 2017. FAI AFFF Water Monitoring Report. December.
- SLR, 2018a. Fire Training Pit Site Characterization Work Plan, Fairbanks International Airport. May.
- SLR, 2018b. Fire Training Site Characterization Safety Plan and Compliance Document, Fairbanks International Airport. Prepared for Alaska Department of Transportation and Public Facilities. May.

The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.


Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.

The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

FIGURES

- Figure 1 Site Location
- Figure 2 Site Features
- Figure 3 Fire Training Pit As-Built Layout
- Figure 4 Fire Training Pit As-Built Cross-Section
- Figure 5 Soil and Pit Fill Sample Results
- Figure 6 Water Sample Analytical Results
- Figure 7 Fire Training Pit Cross-Section

Legend

Property Boundary

 Description
 Feet

 0
 1,000
 2,000
 4,000

 THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY.

 ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN.

N

FIRE TRAINING AREA FAIRBANKS INTERNATIONAL AIRPORT FAIRBANKS, ALASKA

Report

2018 FIRE TRAINING PIT SITE CHARACTERIZATION

Drawing

SITE LOCATION

Drawing	August 2018
File Name	F1 Site Location RPT_18.mxd

 Scale
 1 in = 2,000 feet

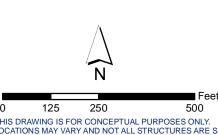
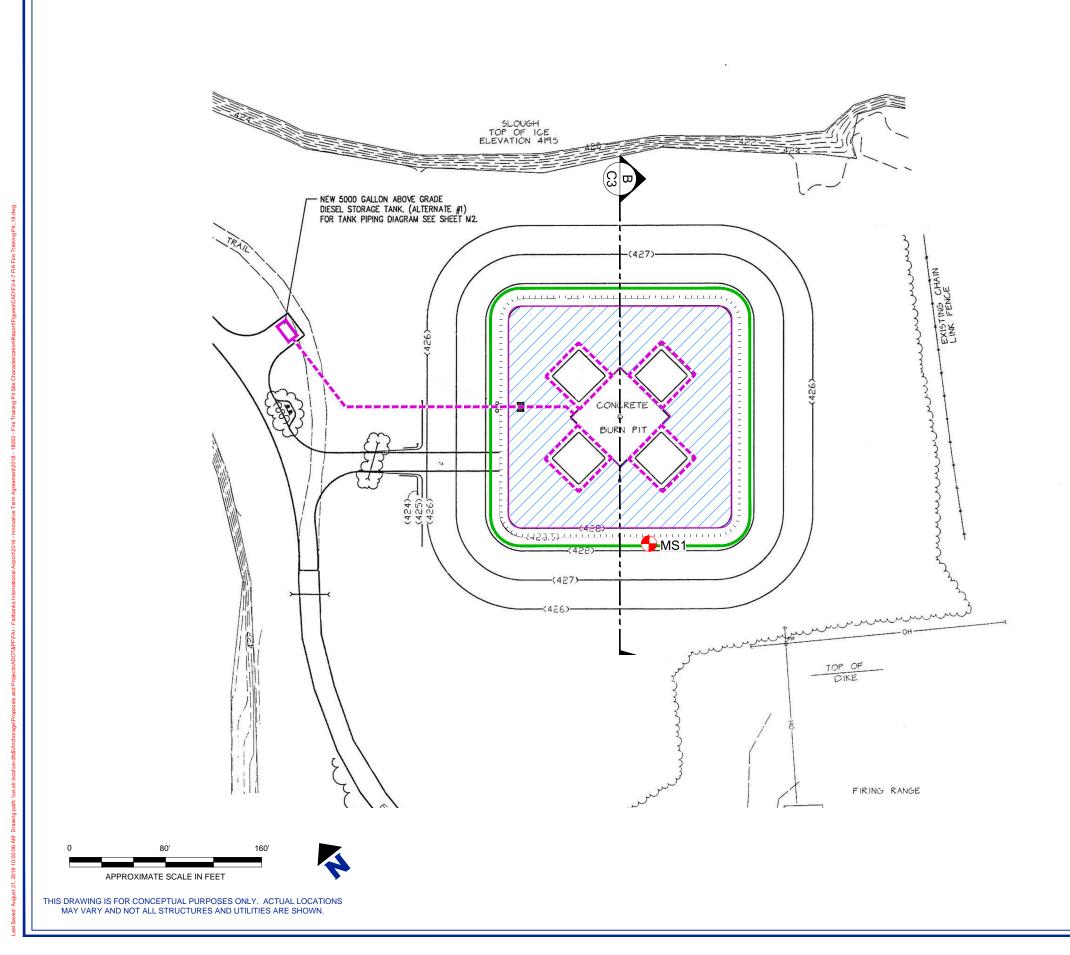
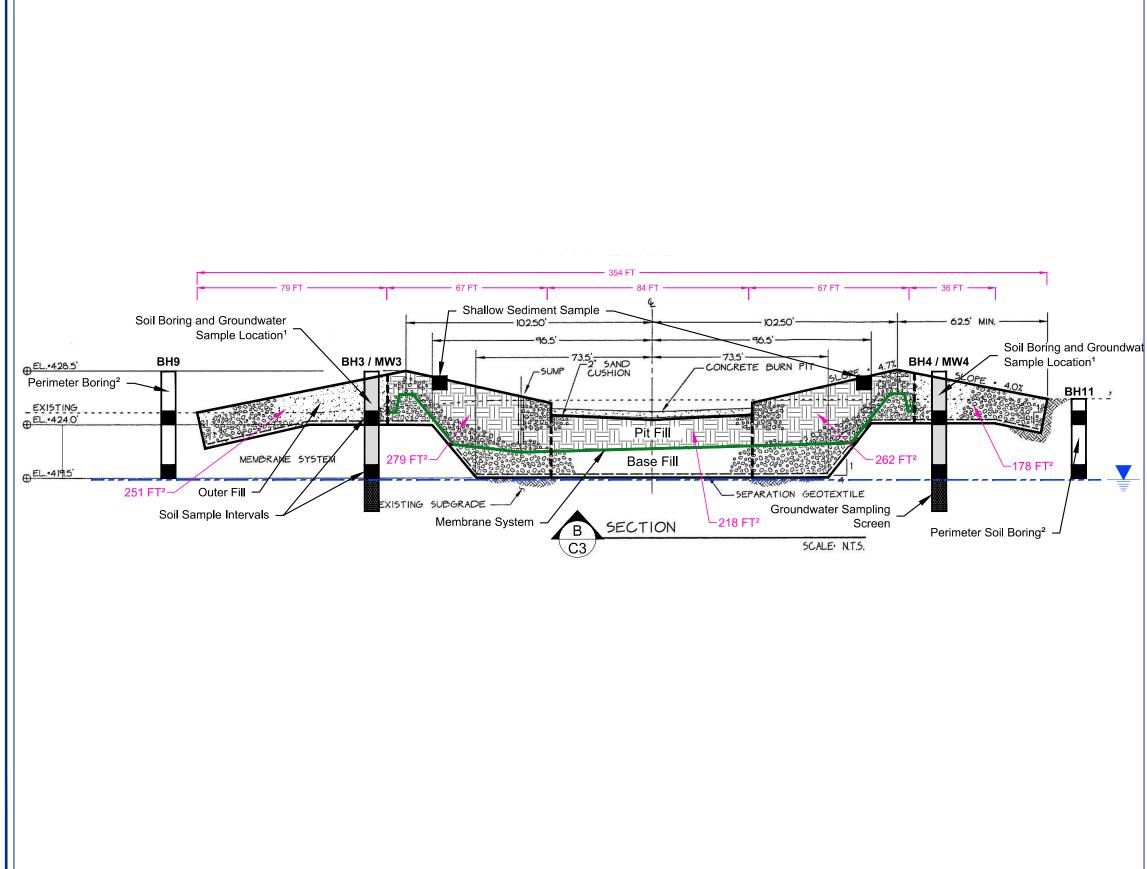

 Project No.
 105.00184.18002

Fig. No.

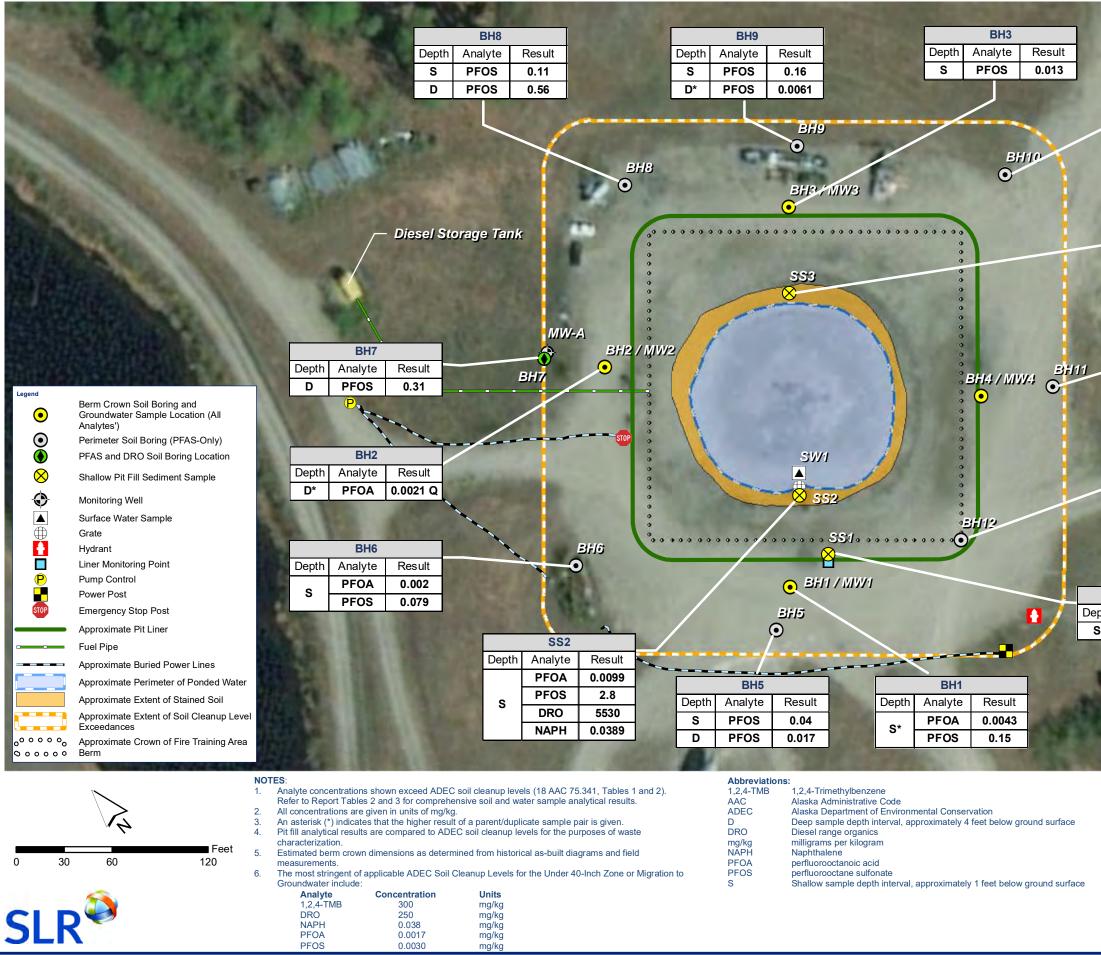
[.] 1

SLI





SITE FEATURES


August 2018 Drawing File Name F2 Site Features RPT_18.mxd Scale 1 in = 250 feet Project No. 105.00184.18002 Fig. No. 2

SOURCE NOTES		
 Fairbanks International Airport As-Built Construction Plans, EPA Approved Fire Training Area, Project #: 64848, Alaska Development Services, Inc., May 7, 1992 - June 8, 1993. 		
LEGEND		
(427)	Elevation Contour (1 Ft Interval)	
(429.5)	Crown of Fire Training Area	
	Fuel Piping and Infrastructure To Be Removed	
	Approximate Pit Liner Extent	
	Ponded Water Extent (Approximate)	
	Pit Fill	
	Outer Berm Fill	
MS1 🔂 PFAS	Membrane Monitoring System Port	
DRO	Per- and Polyfluoroalkyl Substances	
DRO	Diesel Range Organics	
Site FIRE TRAINING AREA FAIRBANKS INTERNATIONAL AIRPORT FAIRBANKS, ALASKA		
Report 2018 FIRE TRAINING PIT SITE CHARACTERIZATION		
Drawing FIRE TRAIN	NING PIT AS-BUILT LAYOUT	
Date August 2018	Scale 1" = 80 Feet Fig. No. Training Ptt 18 Project No. 105,00184.18002 3	
File Name F3-4-7 FIA Fire Training Pit_18 Project No. 105.00184.18002 3		
SLR		

SOURCE NOTES		
 Fairbanks International Airport As-Built Construction Plans, EPA Approved Fire Training Area, Project #: 64848, Alaska Development Services, Inc., May 7, 1992 - June 8, 1993. 		
	ay 7, 1992 - Sune 6, 1995.	
LEGEND		
EL. = 428.5'	Elevation (Feet)	
	Fire Pit Membrane	
	Pit Fill	
	Outer Berm Fill	
	Depth to Groundwater (Approximate)	
	Soil Sample Interval	
PFAS	Per- and Polyfluoroalkyl Substances	
DRO	Diesel Range Organics	
FT	Feet	
FT ²	Square Feet	
NOTES		
	shown in square feet for evaluation of waste volumes,	
see Report Section		
Site		
FIRE TRAINING AREA FAIRBANKS INTERNATIONAL AIRPORT		
FAIRBANKS	S, ALASKA	
Report		
	TRAINING PIT	
SITE CHAR	ACTERIZATION REPORT	
Drawing		
FIRE TRAIN	NING PIT AS-BUILT CROSS-SECTION	
Date August 2018	Scale Not to Scale Fig. No.	
File Name F3-4-7 FIA Fire T	raining Pit_18 Project No. 105.00184.18002 4	
	SLR	

	BH10	
Depth	Analyte	Result
s	PFOA	0.0065
3	PFOS	0.43
D	PFOA	0.0052
U	PFOS	0.77

		and the second se
	SS3	
Depth	Analyte	Result
s	PFOA	0.0055
3	PFOS	3.6
	(State of the local division of the local d	

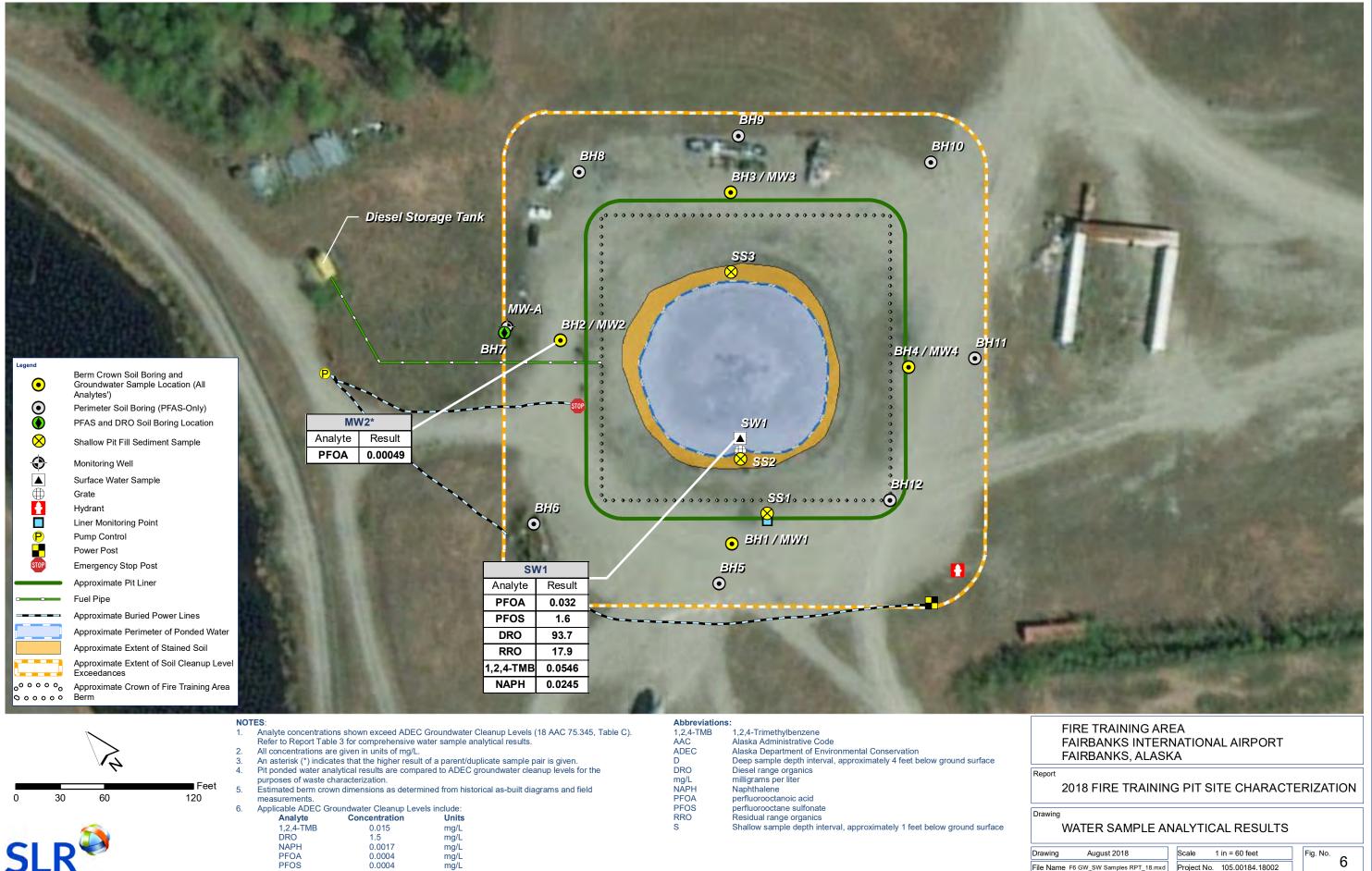
And a second sec	
BH11	
Analyte	Result
PFOS	0.064
PFOS	0.053
	Analyte PFOS

	BH12	
Depth	Analyte	Result
s	PFOA	0.0026
3	PFOS	0.039
D	PFOS	0.067

	SS1	
pth	Analyte	Result
\$	PFOS	0.36

FIRE TRAINING AREA FAIRBANKS INTERNATIONAL AIRPORT FAIRBANKS, ALASKA

Report

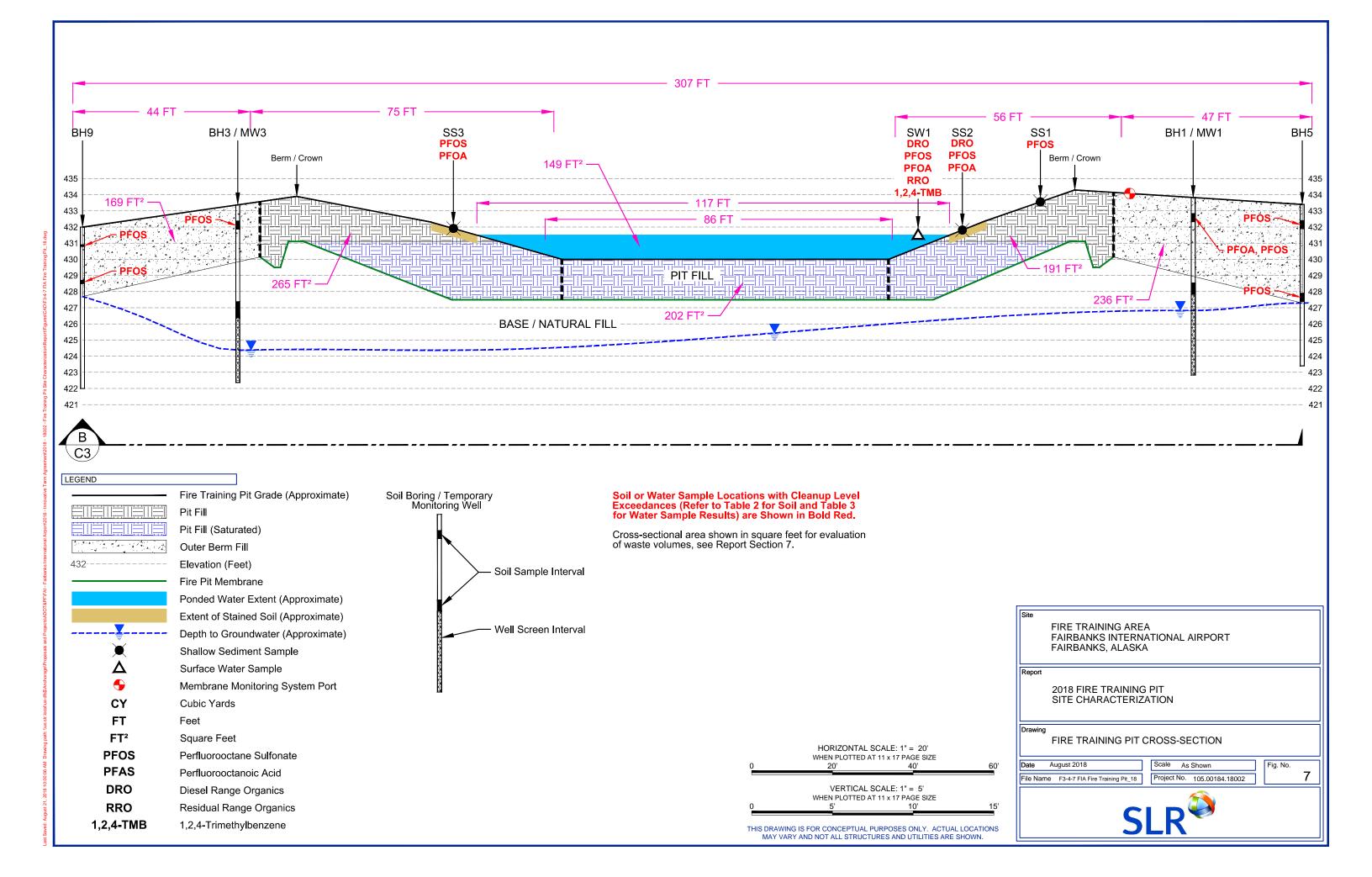

2018 FIRE TRAINING PIT SITE CHARACTERIZATION

5

Drawing

SOIL AND PIT FILL SAMPLE RESULTS

Drawing	August 2018	Scale	1 in = 60 feet]	Fig. No.
File Name	F5 Soil_Pit Fill Samples RPT_18.mxd	Project No.	105.00184.18002]	



RRO

11

mg/L

File Name F6 GW_SW Samples RPT_18.mxd Project No. 105.00184.18002

TABLES

- Table 8
 Fire Training Pit Sample Summary
- Table 9A
 Berm Crown Soil and Pit Fill Analytical Results
- Table 2BFire Training Pit Layout and Sample Locations
- Table 3Fire Training Pit Cross-Section

Table 1: Field Sample Summary Fairbanks International Airport Fire Training Pit Site Characterization

	Samples			Heated	
Sam	ple Type and Matrix	Name	Sample Interval (ft bgs)	Headspace Screening (ppm)	Contaminant of Potential Concern Cleanup Level Exceedances ^A
		BH1-S/BH97 ^B	1.0-1.5	1.9	PFOA, PFOS
		BH1-D	5.3-6.0	3.4	
		BH2-S	0.75-1.25	2.2	
	Berm Crest	BH2-D/BH99 ^B	3.0-4.0	10.0	PFOA
	Borings	BH3-S	1.0-1.5	14.7	PFOS
		BH3-D	6.0-7.0	15.5	
		BH4-S	1.0-1.5	2.3	
		BH4-D	5.0-6.0	3.3	
		BH5-S	1.0-1.5	1.3	PFOS
		BH5-D	5.5-6.0	1.6	PFOS
		BH6-S	1.0	3.3	PFOA, PFOS
ion		BH6-D	5.0-6.0	3.6	
Site Characterization		BH7-S/BH96 ^B	1.0	3.4	
cter		BH7-D	3.6	10.0	PFOS
ara		BH8-S	1.0-1.2	4.6	PFOS
ch	Berm Perimeter	BH8-D	3.4-3.6	11.0	PFOS
Site	Borings	BH9-S	1.1-1.2	4.7	PFOS
	Dornigs	BH9-D/BH98 ^B	3.3-3.5	7.0	PFOS
		BH10-S	1.0-1.2	2.0	PFOA, PFOS
		BH10-D	5.5-6.0	2.5	PFOA, PFOS
		BH11-S	1.0-1.5	1.1	PFOS
		BH11-D	5.0-5.5	2.0	PFOS
		BH12-S	1.0-1.25	3.7	PFOA, PFOS
		BH12-D	3.7-4.0	3.1	PFOS
		MW1			
	Groundwater	MW2/MW29 ^B			PFOA
	samples	MW3			
		MW4			
n		SS1	1.0	1.6	PFOS
atic	Pit Fill Surface Sample	SS2	0.5	27.7	PFOA, PFOS, DRO, Naphthalene
Waste acteriz:	Sample	SS3	0.5	7.5	PFOA, PFOS
Wa ract	Ponded				PFOA, PFOS, DRO, RRO,
Waste Characterization	Water ^B	SW1	0		1,2,4-Trimethylbenzene,
0					Naphthalene
Notes	Dotailed analyti	cal results for soi	l aro diven	2	
A	•	2A and 2B and 1	•	В	Parent and Duplicate Sample Pair
	in Table 3.				Not applicable
Abbrev					
bgs	below ground su	urface		PFOS	perfluorooctane sulfonic acid
DRO	diesel range org			PID	photoionization detector
ft	feet			ppm	parts per million
MW	monitoring well			RRO	residual range organics

PFOA perfluorooctanoic acid

Table 2A: Berm Crown Soil and Pit Fill Analytical Results Fairbanks International Airport Fire Training Pit Site Characterization

Image: and participant intermant		Screening	Criteria			Pit Fill	Sample Loca	ations ^c									Berm Crov	wn Subsu	urface Soil San	nple L	ocations ^c								
Image: Partial problem Partial problem Partial problem </th <th></th> <th></th> <th></th> <th></th> <th>SS1</th> <th></th> <th></th> <th></th> <th>SS3</th> <th></th> <th>BH1-S (Primary)</th> <th>BH97</th> <th>BH1-I</th> <th>)</th> <th>BH2</th> <th>-S</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>S</th> <th>BH3-</th> <th>D</th> <th>BH4-S</th> <th>5</th> <th>BH4-D</th> <th>т</th> <th>Trip Blank 1</th>					SS1				SS3		BH1-S (Primary)	BH97	BH1-I)	BH2	-S						S	BH3-	D	BH4-S	5	BH4-D	т	Trip Blank 1
Image: particle bits in the state in the												· · · · ·								ťt							5.0-6.0 f		•
bran bran bran bran bra												43258								025									7-Jun-18
Number less Number less Number less Number less <	igrams per mer (mg/ t/	•		Fait 201								K1805460-027															11893780	1	1189378012
nm h b		20110	Groundwater			1		1			- 1	Conc. ^D Flag			Conc. ^D	Flag	-		-		-	1	-		-	-	Conc. ^D		Conc. ^D
Name Name Name Name Na	orinated Sulfonic Acids and			USEPA N		/ ^F (mg/kg		1	1			1 1			1	1			1		r	1	1						
Pirt Pirt Pirt Pirt Pi						J 							. ,		. ,	-									. ,	U		=	
Desc Desc Desc Des						=		=		=				1			. ,		. ,	-			. ,	-		U		U	
NA NA NA NA NA NA NA NA						=	-	=		=				=		-		J		=						-		=	
control contro control control <th< td=""><td>4</td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td>=</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>. ,</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>. ,</td><td>-</td><td></td><td>U</td><td></td></th<>	4					J				=					1		. ,			-					. ,	-		U	
Socie Socie <th< td=""><td>DRO BRO by Methods AK10</td><td></td><td></td><td></td><td>0.0006</td><td>Ј, В</td><td>0.00097</td><td>Ј, В</td><td>0.00053</td><td>J, Q</td><td>0.00059 J, B</td><td>0.00073 J, B</td><td>0.00023</td><td>Ј, В</td><td>0.0003</td><td>Ј, В</td><td>0.00022</td><td>J, UB</td><td>0.00025</td><td>Ј, В</td><td>0.00027</td><td>Ј, В</td><td>0.00025</td><td>Ј, В</td><td>0.00035</td><td>Ј, В</td><td>0.00022</td><td>I, UB</td><td></td></th<>	DRO BRO by Methods AK10				0.0006	Ј, В	0.00097	Ј, В	0.00053	J, Q	0.00059 J, B	0.00073 J, B	0.00023	Ј, В	0.0003	Ј, В	0.00022	J, UB	0.00025	Ј, В	0.00027	Ј, В	0.00025	Ј, В	0.00035	Ј, В	0.00022	I, UB	
basis basis <t< td=""><td></td><td></td><td>e: e:</td><td></td><td>[0 905]</td><td>U</td><td>0 703</td><td>1</td><td>[0.86]</td><td>U</td><td>U [89.0]</td><td>I I</td><td>[1 69]</td><td>U</td><td>[0.95]</td><td>υ</td><td>[1.89]</td><td>υ</td><td>[2 09]</td><td>υ</td><td>[0 935]</td><td>U</td><td>1.69</td><td></td><td>[0.88]</td><td>U</td><td>[1 75]</td><td>U</td><td>[1.25] U</td></t<>			e : e :		[0 905]	U	0 703	1	[0.86]	U	U [89.0]	I I	[1 69]	U	[0.95]	υ	[1.89]	υ	[2 09]	υ	[0 935]	U	1.69		[0.88]	U	[1 75]	U	[1.25] U
bask bask bask bask <th< td=""><td>5 5</td><td></td><td></td><td></td><td></td><td>U</td><td></td><td>=</td><td></td><td>=</td><td></td><td>1</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>Ŭ</td><td></td><td>-</td><td></td><td>Ŭ</td><td></td><td>U</td><td></td><td>U</td><td></td></th<>	5 5					U		=		=		1		-		-		-		Ŭ		-		Ŭ		U		U	
witch stand	0 0					-		=		J		1 1		1		, j		, j		J				J		-		J	
Li Li Cale Li Li Cale <thli cale<="" th=""> Li Li Cale Li Li Cale<td></td><td></td><td></td><td></td><td>[]</td><td></td><td></td><td></td><td></td><td></td><td>(</td><td><u> </u></td><td></td><td></td><td>1</td><td>1 -</td><td></td><td>1</td><td></td><td></td><td>[===]</td><td></td><td></td><td></td><td>[]</td><td>-</td><td></td><td></td><td></td></thli>					[]						(<u> </u>			1	1 -		1			[===]				[]	-			
1.1.3 1.1.3 0.108 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 0 0.808 </td <td></td> <td>÷.</td> <td>0.022</td> <td></td> <td>[0.00725]</td> <td>U</td> <td>[0.00775]</td> <td>U</td> <td>[0.0069]</td> <td>U</td> <td>[0.00785] U</td> <td></td> <td>[0.0136]</td> <td>U</td> <td>[0.0076]</td> <td>U</td> <td>[0.0151]</td> <td>U</td> <td>[0.0166]</td> <td>U</td> <td>[0.0075]</td> <td>U</td> <td>[0.0151]</td> <td>U</td> <td>[0.00705]</td> <td>U</td> <td>[0.0141]</td> <td>U [</td> <td>[0.0101] U</td>		÷.	0.022		[0.00725]	U	[0.00775]	U	[0.0069]	U	[0.00785] U		[0.0136]	U	[0.0076]	U	[0.0151]	U	[0.0166]	U	[0.0075]	U	[0.0151]	U	[0.00705]	U	[0.0141]	U [[0.0101] U
1.1.1 1.1.1 <th< td=""><td>Trichloroethane</td><td>360</td><td>32</td><td></td><td>[0.00905]</td><td>U</td><td>[0.0097]</td><td>U</td><td>[0.0086]</td><td>U</td><td>[0.0098] U</td><td></td><td>[0.0169]</td><td>U</td><td>[0.0095]</td><td>U</td><td>[0.0189]</td><td>U</td><td>[0.0209]</td><td>U</td><td>[0.00935]</td><td>U</td><td>[0.0189]</td><td>U</td><td>[0.0088]</td><td>U</td><td>[0.0176]</td><td>U [</td><td>[0.0126] U</td></th<>	Trichloroethane	360	32		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
1)		6.1			• •	U		U		U				U		U	· · ·	U	. ,	U	. ,	U		U	. ,	U			[0.0063] U
1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0			0.0014			U		U		U				U		U		-		U		U		U		U			[0.005] U
11-0-Marce 0 0.0000 0 0.00000 0 0.00000 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	chloroethane	46	0.092		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
L3-brokensensen B B B B B <th< td=""><td>chloroethene</td><td>330</td><td>1.2</td><td></td><td>[0.00905]</td><td>U</td><td>[0.0097]</td><td>U</td><td>[0.0086]</td><td>U</td><td>[0.0098] U</td><td></td><td>[0.0169]</td><td>U</td><td>[0.0095]</td><td>U</td><td>[0.0189]</td><td>U</td><td>[0.0209]</td><td>U</td><td>[0.00935]</td><td>U</td><td>[0.0189]</td><td>U</td><td>[0.0088]</td><td>U</td><td>[0.0176]</td><td>U [</td><td>[0.0126] U</td></th<>	chloroethene	330	1.2		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
bl.1-bl.1-bl.1-bl.2-bl.2-bl.2-bl.2-bl.2-bl.2-bl.2-bl.2	chloropropene				[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
L3. Principlement 64 Conc 6 Conc Conc Conc Conc Conc <td>Trichlorobenzene</td> <td>81</td> <td>0.15</td> <td></td> <td>[0.0181]</td> <td>U</td> <td>[0.0194]</td> <td>U</td> <td>[0.0172]</td> <td>U</td> <td>[0.0196] U</td> <td></td> <td>[0.0339]</td> <td>U</td> <td>[0.0191]</td> <td>U</td> <td>[0.0378]</td> <td>U</td> <td>[0.0416]</td> <td>U</td> <td>[0.0187]</td> <td>U</td> <td>[0.0377]</td> <td>U</td> <td>[0.0176]</td> <td>U</td> <td>[0.0351]</td> <td>U [</td> <td>[0.0251] U</td>	Trichlorobenzene	81	0.15		[0.0181]	U	[0.0194]	U	[0.0172]	U	[0.0196] U		[0.0339]	U	[0.0191]	U	[0.0378]	U	[0.0416]	U	[0.0187]	U	[0.0377]	U	[0.0176]	U	[0.0351]	U [[0.0251] U
12.4-7 10.4 - 0.032 0 0.032 0 0.032 0 0.032 0 0.032 0 0.032 0 0.0333 0 0.0333 0	Trichloropropane	0.066	0.000031		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
b b	Trichlorobenzene	45	0.082		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
b-b-b-constant 0.22 0.2004 - 0.2007 0	Trimethylbenzene	43	0.16		[0.0181]	U	0.102	=	0.043	=	[0.0196] U		[0.0339]	U	[0.0191]	U	[0.0378]	U	[0.0416]	U	[0.0187]	U	[0.0377]	U	[0.0176]	U	[0.0351]	U [[0.0251] U
1>-0-0 1 0 0.0000 1 0 0.0000 1 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.0000000 0.0000000	bromo-3-chloropropane					U		U		U				U		U				U		U		U		U			[0.05] U
12. Definite 5.5 0.00075 1 0.00075 0.0 <						U	. ,	U		U				U		U				U	. ,	U	. /	-		U	. ,		[0.005] U
11. 0.016 - 0.00991 0 0.00991 0 - 5 0.00991 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td>U</td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>. ,</td> <td>U</td> <td></td> <td>U</td> <td></td> <td>-</td> <td>• •</td> <td>U</td> <td></td> <td></td> <td>[0.0126] U</td>						U		U		U				U		-		-	. ,	U		U		-	• •	U			[0.0126] U
13.3 100000 V 0.0094 0.00 V 0.0007 V 0.0007 V 0.						U		U		U				U		-		-		U		U				U	. ,		[0.005] U
1.3-betweensee 2.3 - 0.0009 V 0.0009						U		Ű	• •	U		ł – – ł		-						U		U		-		U			[0.005] U
1.3-bichickongenage 1.00073 1 0.0075 <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td>=</td> <td></td> <td>1</td> <td>. ,</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td>U</td> <td>. ,</td> <td></td> <td>[0.0126] U</td>						U				=		1	. ,			-				U					• •	U	. ,		[0.0126] U
14-0 10.077 10 0.078 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>-</td><td></td><td>0</td><td></td><td></td><td>. ,</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>0</td><td></td><td>-</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>[0.0126] U</td></th<>						0		-		0			. ,			-		-		0		-				0			[0.0126] U
2.2 Octoorspragene R 0.0000 V 0.00000 V 0.000000 V 0.0000000 V 0.0000000 V 0.						0		0	• •	0				-		0		-		0		0				0			[0.005] U [0.0126] U
2buanne (mtric) 22000 15 - 0 0 0.0297 V 0.0298 V 0.0297 V 0.0298 V 0.0297 V <t< td=""><td></td><td>21</td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td>. ,</td><td>0</td><td>. ,</td><td></td><td></td><td>0</td><td></td><td>0</td><td></td><td>-</td><td></td><td>0</td><td>. ,</td><td>0</td><td></td><td>-</td><td>. ,</td><td>0</td><td>. ,</td><td></td><td>[0.0126] U</td></t<>		21				0		0	. ,	0	. ,			0		0		-		0	. ,	0		-	. ,	0	. ,		[0.0126] U
2-Name 0.09995 U 0.09995 U 0.09985 U <th< td=""><td></td><td>23000</td><td></td><td></td><td></td><td>U</td><td></td><td>0</td><td></td><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>[0.126] U</td></th<>		23000				U		0			. ,							-				0				0			[0.126] U
2Hearsen 270 0.11 100820 U 0.0381 U 0.0753 U 0.0783 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td>-</td><td></td><td>U</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td>-</td><td></td><td></td><td></td><td>U</td><td></td><td></td><td>[0.0126] U</td></th<>						U		-		U		1								U		-				U			[0.0126] U
h h						U		-		U	. ,	1		-	. ,	U		-		U		-				U	. ,	U	[0.05] U
hbsprop/hbulene 0.0382 U 0.0382 U 0.0383 U 0.0383 U 0.0371 U 0.0381 U 0.03951 U 0.0391 U 0.0381 U 0.0391 U <						U		-		U			. ,	U		U		U		U		U				U		1 U	[0.0126] U
Methyl-2pertanone (MI8K) 2200 18 10097 U 100977 U						U		U		U	. ,		. ,	U		U				U		U	· · ·	U		U	. ,		[0.05] U
Instrume 160 0.36 10.00995 U 10.0095 U 10.0015	hyl-2-pentanone (MIBK)	2200	18		[0.0905]	U	[0.097]	U	[0.086]	U	[0.098] U		[0.169]	U	[0.095]	U	[0.189]	U	[0.209]	U	[0.0935]	U	[0.189]	U	[0.088]	U	[0.176]	U	[0.126] U
Informethane 1000905 U 100097 U 100098 U 100095 U 100095 U 100097 U 100098 U 100095 U 100095 U 100095 U 100095 U 100095 U 100097 U 100098 U 100189 U 100189 U 100189 U 100189 U 100097 U 100088 U 100189	ne	11	0.022		[0.00453]	U	[0.00486]	U	[0.0043]	U	[0.0049] U		[0.00845]	U	[0.00476]	U	[0.00945]	U	[0.0104]	U	[0.00467]	U	[0.0094]	U	[0.00441]	U	[0.00875]	U [[0.0063] U
Bromodichioromethane 3.6 0.0043 0.00905 U 0.0098 U 0.0169 U 0.0028 U 0.0029 U 0.0189 U 0.0189 U 0.0189 U 0.0189 U 0.0189 U 0.0189 U 0.0203 U 0.0189 U 0.0189 U 0.0209 U 0.0209 U 0.02035 U 0.0189 U 0.0209 U 0.0209 U 0.0209 U 0.02093 U 0.0189 U 0.02035 U 0.02037 U 0.02035 U </td <td>obenzene</td> <td>160</td> <td>0.36</td> <td></td> <td>[0.00905]</td> <td>U</td> <td>[0.0097]</td> <td>U</td> <td>[0.0086]</td> <td>U</td> <td>[0.0098] U</td> <td></td> <td>[0.0169]</td> <td>U</td> <td>[0.0095]</td> <td>U</td> <td>[0.0189]</td> <td>U</td> <td>[0.0209]</td> <td>U</td> <td>[0.00935]</td> <td>U</td> <td>[0.0189]</td> <td>U</td> <td>[0.0088]</td> <td>U</td> <td>[0.0176]</td> <td>U [</td> <td>[0.0126] U</td>	obenzene	160	0.36		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
Strondorm 240 0.1 0.00905 U 0.00985 U 0.00985 U 0.00995 U 0.00985 U 0.00995 U 0.00195 U 0.00155 U 0.00155 U 0.0115 U 0.00155 U 0.0155 U 0.0015 U 0.0015 U 0.00155 U 0.0155 U 0.0155 U 0.0181 U 0.00185 U 0.0181 U 0.00185 U 0.0181 U 0.00185 U	ochloromethane				[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
Bromomethane 10 0.024 100 0.0275 U 10.0755 U 10.0757	odichloromethane	3.6	0.0043		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098] U		[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088]	U	[0.0176]	U [[0.0126] U
Carbon disulfide 500 2.9 [0.0362] U [0.0383] U [0.0381] U	oform					U		U		U	[0.0098] U		[0.0169]	U	[0.0095]	U		U		U	• •	U		U		U			[0.0126] U
Carbon tetrachloride 9.1 0.021 0.00453 U 0.00433 U 0.00431 U 0.00491 U 0.00451 U <td>omethane</td> <td></td> <td>0.024</td> <td></td> <td></td> <td>U</td> <td></td> <td>U</td> <td></td> <td>U</td> <td>[0.0785] U</td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td>[0.101] U</td>	omethane		0.024			U		U		U	[0.0785] U			U		U		U		U		U		U		U			[0.101] U
Chlorobenzene 180 0.46 10.00905 U 10.0097 U 10.0098 U 10.0169 U 10.0295 U 10.0295 U 10.0295 U 10.0295 U 10.0295 U 10.0189 U 10.0169 U 10.0169 U 10.0169 U 10.0295 U 10.0189 U 10.0161 U 10.0293 U 10.0189 U 10.0161 U 10.0193 U 10.0189 U 10.0161 U 10.0193 U 10.0189 U 10.0161 U 10.0193 U 10.0189 U 10.0161 U 10.0181 U						U		-		U						-				U		-				U			[0.05] U
Chloroethane 1400 72 [0.0725] U [0.075] U [0.076] U [0.076] <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td>-</td> <td></td> <td>U</td> <td>. ,</td> <td>1</td> <td>. ,</td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[0.0063] U</td>						U		-		U	. ,	1	. ,			-		_				-							[0.0063] U
Chloroform 4 0.0071 - 0.00905 U 10.0086 U 10.0086 U - - 0.0169 U 0.0095 U 0.0189 U 0.0189 U 0.0293 U 0.0189 U 0.00935 U 0.0189 U 0.0189 U 0.0189 U 0.0189 U 0.0189 U 0.00935 U 0.0189 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td>. ,</td><td></td><td></td><td>_</td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>. ,</td><td></td><td>[0.0126] U</td></t<>						-				-		1			. ,			_		U						U	. ,		[0.0126] U
Chloromethane 170 0.61 [0.0095] U [0.0097] U [0.0098] U [0.0169] U [0.0189] U [0.0093] U <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td>[0.101] U</td></th<>						-		-		U						U				U						U			[0.101] U
cis-1/2-Dichloroethene 200 0.12 [0.0095] U [0.0095] U [0.0095] U [0.0095] U [0.0189] U [0.0095] U [0.0189] U [0.0095] U [0.0189] U [0.0095] U [0.0195] U [0.0196] U [0.0189] U [0.0095] U [0.0196] U [0.0196] U [0.0189] U [0.0095] U [0.0196] U [0.0196] U [0.0196] U [0.0196] U [0.0196] U [0.0196] U [0.0095] U							. ,	-	. ,	U	. ,					0				-						U			[0.0126] U
cls-1,3-Dichloropropene 21 0.018 [0.00453] U [0.00486] U [0.0049] U [0.00476] U [0.0104] U [0.00945] U [0.0104] U [0.00447] U [0.0104] U [0.00945] U [0.00476] U [0.0104] U [0.00945] U [0.00476] U [0.0104] U [0.00945] U [0.0076] U [0.007						-		-		U					. ,	-		_		0			· · ·		• •	U 	. ,		[0.0126] U
Dibromochloromethane 110 0.0027 0.00905 U 10.00907 U 10.00907 U 10.00907 U 10.0097 U 10.0169 U 10.0169 <thu< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>U</td><td></td><td>1</td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td></td><td>U </td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>[0.0126] U</td></thu<>						-		-		U		1				-		_		U 		-							[0.0126] U
Dibromethane 31 0.025 [0.09905] U [0.0997] U [0.0986] U [0.0169] U [0.0295] U [0.0293] U [0.0293] U [0.0993] U [0.0189] U [0.0293] U [0.0293] U [0.0293] U [0.0293] U [0.0293] U [0.0189] U [0.0189] U [0.0293] U [0.0293] U [0.0183] U <th< td=""><td></td><td></td><td></td><td>-</td><td>• •</td><td>-</td><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. ,</td><td></td><td>. ,</td><td></td><td>[0.0063] U</td></th<>				-	• •	-	· · ·								. ,										. ,		. ,		[0.0063] U
Dichlorodifiluoromethane 150 3.9 [0.0181] U [0.0194] U [0.0172] U [0.0172] U [0.0176] U						-										-										-			[0.0126] U
thylbenzene 49 0.13 [0.0995] U 0.0159 J [0.0086] U [0.0986] U (0.169) U [0.0095] U [0.0189] U										11		1				-		_		-						-			[0.0126] U
Free-113 740 1700 [0.362] U [0.389] U [0.345] U [0.392] U I [0.075] U [0.075]								1		11		ł – – ł		-		-		-		11						11			[0.0126] U
Hexachlorobutadiene 3.3 0.02 [0.00725] U [0.00775] U [0.0078] U [0.0136] U [0.0151] U [0.0075] U [0.00705] U [0.00705] U [0.00785] U [0.0136] U [0.0151] U [0.0075] U [0.00705] U [0.01705] U [0.01705]<						11		, U	. ,	11	. ,	1								11	. ,	-				11			[0.0126] U
Isopropylbenzene (Cumene) 54 5.6 [0.00905] U 0.014 J [0.0086] U [0.0098] U [0.0169] U [0.0095] U [0.0195] U [0.0189] U [0.0209] U [0.00935] U [0.0193] U [0.0189] U [0.						11		-		U						-		_		11		-				11			[0.0101] U
						-		1		U		1				-				-									[0.0101] U
Methylene chloride 460 0.33 [0.0362] U [0.0389] U [0.0345] U [0.0392] U [0.0675] U [0.0381] U [0.0755] U [0.0835] U [0.0374] U [0.0755] U [0.0373] U [0.0375] U [0.0375] U [0.0374] U [0.0353]	., , ,	460				Ū	[0.0389]	U	[0.0345]	U	. ,	1 1	[0.0675]			-				Ū	[0.0374]	-	[0.0755]		[0.0353]	U	[0.07]		[0.05] U
Methyl-t-butyl ether 670 0.4 [0.0362] U [0.0389] U [0.0345] U [0.0392] U [0.0675] U [0.0381] U [0.0755] U [0.0385] U [0.0374] U [0.0755] U [0.0374] U [0.0755] U [0.0373] U [0.0373] U [0.0373] U [0.0374] U [0.037						U		-		U		t t				-				Ū		-				U U			[0.05] U

Table 2A: Berm Crown Soil and Pit Fill Analytical Results Fairbanks International Airport Fire Training Pit Site Characterization

	Screening	z Criteria		Pit Fill Sample Locations ^c Berm Cro												wn Subsi	urface Soil San	nnle Lo	cations ^C										
				SS1		SS2		SS3		BH1-S (Pri	mary)	BHS	97	BH1-	·D	BH2	2-S	BH2-D (Pi		BH99 (Dupli		BH3-9	5	BH3-	D	BH4-S	BH4-	D	Trin Blank 1
Compound in milligrams per	18 AAC 75.341,	18 AAC 75.341,		1.0		0.5 f		0.5 f		1.0-1.5		(Duplie	-	5.3-6.		0.75-1.		3.0-4.		3.0-4.0 f	t	1.0-1.5		6.0-7.0		1.0-1.5 ft	5.0-6.		Trip Blank 1
kilogram (mg/kg) or	Tables B1 and B2	Tables B1 and B2		4325		4325		4325		4325		432	58	4325		432		4325		43258	025	43258		4325		43258	4325		7-Jun-18
milligrams per liter (mg/L)	Under 40 Inch	Migration to	Part 261	. K180546 118937		K180546		K1805460 1189378		K1805460 1189378		K180546	50-027	K180546 118937		K180546 118937		K180546 118937		K1805460-0 11893780		K1805460 1189378		K180546		K1805460-015 1189378007	K180546 118937		1189378012
	Zone [*]	Groundwater		Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag		Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D Flag	Conc. ^D		Conc. ^D
VOCs by Method SW8260C (Co	ntinued) (mg/kg)	•								· · · ·																			
Naphthalene	29	0.038		[0.00905]	U	0.0389	=	0.0139	J	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
n-Butylbenzene	20	23		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
n-Propylbenzene	52	9.1		[0.00905]	U	0.028	=	0.0074	J	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
o-Xylene				[0.00905]	U	0.0536	=	0.0117	J	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
P & M -Xylene				[0.0181]	U	0.0878	=	0.0112	J	[0.0196]	U			[0.0339]	U	[0.0191]	U	[0.0378]	U	[0.0416]	U	[0.0187]	U	[0.0377]	U	[0.0176] U	[0.0351]	U	[0.0251] U
sec-Butylbenzene	28	42		[0.00905]	U	0.00971	J	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
Styrene	180	10		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
tert-Butylbenzene	35	11		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
Tetrachloroethene	68	0.19		[0.00453]	U	[0.00486]	U	[0.0043]	U	[0.0049]	U			[0.00845]	U	[0.00476]	U	[0.00945]	U	[0.0104]	U	[0.00467]	U	[0.0094]	U	[0.00441] U	[0.00875]	U	[0.0063] U
Toluene	200	6.7		[0.00905]	U	0.0107	J	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
trans-1,2-Dichloroethene	960	1.3		[0.00905]	U	[0.0097]	U	[0.0086]	U	[0.0098]	U			[0.0169]	U	[0.0095]	U	[0.0189]	U	[0.0209]	U	[0.00935]	U	[0.0189]	U	[0.0088] U	[0.0176]	U	[0.0126] U
trans-1,3-Dichloropropene	21	0.018		[0.00453]	U	[0.00486]	U	[0.0043]	U	[0.0049]	U			[0.00845]	U	[0.00476]	U	[0.00945]	U	[0.0104]	U	[0.00467]	U	[0.0094]	U	[0.00441] U	[0.00875]	U	[0.0063] U
Trichloroethene	4.9	0.011		[0.00362]	U	[0.00388]	U	[0.00344]	U	[0.00392]	U			[0.00675]	U	[0.00381]	U	[0.00755]	U	[0.00835]	U	[0.00374]	U	[0.00755]	U	[0.00353] U	[0.007]	U	[0.005] U
Trichlorofluoromethane	980	41		[0.0181]	U	[0.0194]	U	[0.0172]	U	[0.0196]	U			[0.0339]	U	[0.0191]	U	[0.0378]	U	[0.0416]	U	[0.0187]	U	[0.0377]	U	[0.0176] U	[0.0351]	U	[0.0251] U
Vinyl acetate	1400	1.1		[0.0362]	U	[0.0389]	U	[0.0345]	U	[0.0392]	U			[0.0675]	U	[0.0381]	U	[0.0755]	U	[0.0835]	U	[0.0374]	U	[0.0755]	U	[0.0353] U	[0.07]	U	[0.05] U
Vinyl chloride	0.65	0.0008		[0.00362]	U	[0.00388]	U	[0.00344]	U	[0.00392]	U			[0.00675]	U	[0.00381]	U	[0.00755]	U	[0.00835]	U	[0.00374]	U	[0.00755]	U	[0.00353] U	[0.007]	U	[0.005] U
Xylenes (total) ^E	57	1.5		[0.0271]	U	0.141	=	0.0229	J	[0.0294]	U			[0.051]	U	[0.0286]	U	[0.0565]	U	[0.0625]	U	[0.0281]	U	[0.0565]	U	[0.0264] U	[0.0525]	U	[0.0377] U
PAH SIM by Method SW8270D	(mg/kg)						· · · · · ·																						
1-Methylnaphthalene	68	0.41								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
2-Methylnaphthalene	310	1.3								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Acenaphthene	4600	37								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Acenaphthylene	2300	18								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Anthracene	23000	390								[0.0129]	Ū			[0.0156]	Ū	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	Ū	
Benzo(a)anthracene	2	0.28								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Benzo[a]pyrene	0.2	0.27								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Benzo[b]fluoranthene	2	2.7								[0.0129]	Ū			[0.0156]	Ū	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	Ū	
Benzo[g,h,i]perylene	2300	15000								[0.0129]	U			[0.0156]	U	[0.0128]	U	[0.0162]	U	[0.0163]	U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	Ū	
Benzo[k]fluoranthene	20	27								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U	[0.0162]	U U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	Ŭ	
Chrysene	200	82								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U U	[0.0162]	U U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Dibenzo[a,h]anthracene	0.2	0.87								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U	[0.0162]	U U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Fluoranthene	3100	590								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U	[0.0162]	U U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Fluorene	3100	36								[0.0129]	U			[0.0156]	U U	[0.0128]	U	[0.0162]	П	[0.0163]		[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]		
Indeno[1,2,3-c,d] pyrene	2	8.8								[0.0129]	U			[0.0156]	Ŭ	[0.0128]	U U	[0.0162]	U U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
Naphthalene	29	0.038								[0.0103]	U			[0.0125]	Ŭ	[0.0103]	U	[0.0129]	U U	[0.0131]	U U	[0.0103]	U	[0.0127]	U	[0.0101] U	[0.0124]	U	
Phenanthrene	2300	39								[0.0129]	U			[0.0156]	U U	[0.0128]		[0.0162]	Ш	[0.0163]		[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]		
Pyrene	2300	87								[0.0129]	U			[0.0156]	U U	[0.0128]	U	[0.0162]	U	[0.0163]	U U	[0.0128]	U	[0.0159]	U	[0.0127] U	[0.0154]	U	
TCLP RCRA Metals by Method S		07		1						[0.0125]	0			[0.0150]	Ŭ	[0.0120]	Ŭ	[0.0102]	Ŭ	[0.0103]	Ŭ	[0.0120]	0	[0.0155]		[0.0127] 0	[0.0134]	Ŭ	
Arsenic			5		l					[0.125]	U			[0.125]	U	[0.125]	Τυ	[0.125]	υ	[0.125]	υ	[0.125]	U	[0.125]	U	[0.125] U	[0.125]	U	
Barium			100							0.371	=			0.674	=	0.267	=	0.744	=	0.677	=	0.29	=	0.567	=	0.383 =	0.629	=	
Codmium			1							[0.05]	U			[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05] U	[0.05]	U	
Chromium			5							0.148	J			0.114	J	[0.03]	U	0.136	1	0.0859	L B	0.17	1	0.115	1	0.138 J	0.112	1	
Lead			5							0.0598	=			0.0292	,	[0.025]	U	[0.025]	U	0.0853	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0.025]	U	0.021	1	[0.025] U	[0.025]	U	
Mercury			0.2							[0.005]	- U			[0.005]	J	[0.025]	U	0.00385	J, B	[0.005]	, U	0.00362	J, B	0.00437	J, B	0.00372 J, B	[0.025]	U	
Selenium			1							[0.5]	U			[0.5]	U	[0.5]	U	[0.5]	J, D U	[0.5]	U	[0.5]	J, D U	[0.5]	J, D U	[0.5] U	[0.5]	U	
Silver			5							[0.05]	U			[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05]	U	[0.05] U	[0.05]	U	
Total Solids by SM21 2540G (%		1		I	1					[0:00]	5			[0:00]	L Ŭ	[3.03]	1 Ŭ	[3.03]	L V	[0.05]	<u> </u>	[0.00]	5	[0.00]		[0:00] 0	[0.05]	1 Ŭ	
Total solids				94.9	=	88.2	=	88.3	-	96.8	=	92.6	=	79.9	=	97	=	76.9	=	76.5	= [97	=	78	=	97.5 =	80.3	=	
	I	1	i	54.5	<u> </u>	50.2		30.3	-	50.0		52.0	<u> </u>	, , , , ,			<u> </u>		<u> </u>	, , , , , , , , , , , , , , , , , , , ,	<u> </u>	51	-	70	<u> </u>	55 -	00.5	<u>1 ~</u>	I
Notes: 3.6	BOLD and yellow va	alues indicate an e	coodance	e of Method		nun levels fr	r tha lu	nder 40 Inch	Sono re	fer to Notes	R							Data Flags =		ed value above	the 10	0							
	BOLD values indica					•												1					because	the level is	below th	e laboratory LOQ,	but above	the DL.	
	Green values indica				•	-												U		ctable, LOD is									
	ADEC Method Two cleanup levels for the Under 40 Inch Zone, lowest of ingestion or inhalation, 18 AAC 75.341, Tables B1 and B2 (November 7, 2017). ADEC Method Two cleanup levels Migration to Groundwater for the Under 40 Inch Zone, 18 AAC 75.341, Tables B1 and B2 (November 7, 2017).													В		are considered													
											(Noverr	nber 7, 2017).					UB						ontaminatio	n. The bl	ank contaminatio	n was highe	r than t	he sample
	The field sample ide For detected result		,	,					•		t detecto	ed then the	highest I	I OD is shown	in [hrə	ckets]		UJ		on. Possibly a f ctable, the LOI									
=	Total values were t											ca, men ule	-ingrical l	200 13 3110 101	[018	eneroj.		Q		,				ory quality o	ontrol cr	iteria failure or ma	atrix effect	A "+" ი	ra"-" is
	For PFCs by Method									,								~						, ,, .					-
Abbreviations			-																										
	Not applicable or so	creening criteria do	es not ex	ist for this c	ompound	ł	DRO	Diesel range	organic	diesel range	organic	s	PAH	polycyclic a	romatic	hydrocarbo	ns		PFOA	perfluoroocta	anoic ac	cid			TCLP	Toxicity Character	ristic Leach	ng Proc	edure
AAC	Alaska Administrati	ve Code						gasoline ran	-	-				per- and po					PFNA	perfluoronon	anoic a	cid				United States Env		-	
		aska Department of Environmental Conservation LOD limit of detection PFBS perfluorobutane sulfonic acid														Resource and			overy A	t	VOC	volatile organic co	ompounds						
	Alaska	aulation -						limit of quar						perfluorohe						residual range									
	Code of Federal Rep detection limit	guiations						milligrams p milligrams p		ram				perfluorood perfluorohe						selective ion Standard Met		ring							
DL							iiig/L	mingrams p	ernter				ггпрА	permuorone	planol	aciu			3171	Stanuaru ivie									

Table 2B: Perimeter Soil Boring Analytical Results Fairbanks International Airport Fire Training Pit Site Characterization

	Screening	Criteria														Perime	eter Boring	7 Subsu	urface Soil Sai	nnie Loca	tions ^C													
Compound in milligrams per kilogram (mg/kg) or	18 AAC 75.341,	18 AAC 75.341,	BH5-S 1.0-1.5 ft	BH5-E 5.5-6.0		BH6-S 1.0 ft		H6-D)-6.0 ft	BH7- 1.0 f	t	BH96 1.0 ft (Duplica	t	BH7-D 3.6 ft		BH8-S 1.0-1.2 ft		BH8-D 3.4-3.6 ft		BH9-S 1.1-1.2 ft		BH9-D 3-3.5 ft rimary)	8H9 3.3-3. (Duplic	5 ft	BH10- 1.0-1.2		BH10-D 5.5-6.0 ft		3H11-S 0-1.5 ft	BH11-E		BH12-S 1.0-1.25 ft	BH1 3.7-4		Trip Blank 1
milligrams per liter (mg/L)	Tables B1 and B2 Under 40 Inch Zone ^A	Tables B1 and B2 Migration to Groundwater ^B	7-Jun-18 K1805460-02	7-Jun-1 3 K1805460	-	7-Jun-18 1805460-00		lun-18 5460-008	7-Jun- K180546 1189378	0-006	7-Jun-: 1189378	3023 H	7-Jun-18 K1805460-(11893780;	005 H	7-Jun-18 (1805460-0	00	7-Jun-18 (1805460-0		7-Jun-18 K1805460-01		-Jun-18)5460-012	7-Jun K180546		7-Jun-1 K1805460-		7-Jun-18 (1805460-01		-Jun-18)5460-017	7-Jun-1 K1805460-		7-Jun-18 <1805460-01	7-Ju 9 K18054		7-Jun-18 1189378012
			Conc. ^D Fl	lag Conc. ^D	Flag	Conc. ^D F	lag Con	c. ^D Flag	Conc. ^D		Conc. ^D		Conc. ^D		Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D F	ag Cor	nc. ^D Flag	g Conc. ^D	Flag	Conc. ^D	Flag	Conc. ^D Fl	ag Cor	nc. ^D Flag	Conc. ^D	Flag	Conc. ^D Fl	ag Conc. ¹	Flag	Conc. ^D
Perfluorinated Sulfonic Acids a	and Perfluorinated C	arboxylic Acids by	USEPA Method	d 537M ^F (mg/kg	;)										÷				÷							•								
PFOA	1.6	0.0017	0.00032	J 0.00029			Q [0.000	038] UJ	0.00074	J, Q		[0.00038]	UJ [0.00050]		010010	Q		Q 0.00		0.0016		0.0065	=	0.0052	= 0.00		0.00037	J	0.0026	- 0.0011		
PFOS	1.6	0.003	0.04	= 0.017		0.079	= 0.000)21 J	0.00026	J			0.31	=	0.11		0.56	=	0.16	= 0.00		0.0055		0.43	=	0.77	= 0.0		0.053	=	0.039	- 0.067		
PFBS	NA	NA	[0.0000.]	U 0.0003		1000001	U [0.000		[0.00044]	U			0.00036]	-	0.00034]		0.00038]	-	[0.00038]	U [0.00		[0.00038		[0.00038]	U	0.00024			[0.00034]		0.00034]	0.0001		
PFHxS	NA	NA	0.0011	= 0.011	-		, B 0.00		0.058	=			0.00096	., .	0.00034]	-	0.0046		0.0042	= 0.0		0.014		0.023	=	0.056		0075 J, B			0.024	= 0.0021		
PFHpA	NA	NA	[0.00011]	U [0.00044]			U 0.000		[0.00056]	U			0.00046]	-	0100011]		[]		[0.0005]			[0.0005		0.00031	J	0.0008			[0.00044]	-	0.0006	I [0.0005	-, -	
PFNA	NA	NA	0.0006 J,	, B 0.00023	J, B (0.0012	B 0.000	027 J, B	0.00031	J, B			0.00029	Ј, В	0.00033	J, В С	0.00035	J, B	0.00033 J	B 0.00	1033 J, B	0.00036	J, В	0.00082	Ј, В	0.0011	B 0.00	0055 J, B	0.00055	J, B (0.00031 J,	B 0.0006	1 J, B	
GRO, DRO, RRO by Methods A	, , ,	0. 0,					1	-	T			- -							1	1	-				<u>г г</u>	-	-	-	Г	1 1				
Gasoline range organics	1400	300																	·															[1.25] U
Diesel range organics	12500	250							[10.4]	U	7.22	J	[12.6]	U					•															
Residual range organics	10000	11000							14.9	J	13.9	J	12.8	J					·															
Total Solids by SM21 2540G (%	6)																								<u>. </u>					<u> </u>				
Total solids			97.8	= 91.2	=	96.8	= 96.	4 =	95.3	=	96.1	=	96.5	=	97.8	=	79.8	=	84.8	= 74	9 =	75.6	=	97.2	=	97.4	= 97	.6 =	97.5	=	96.2	- 78.8	=	
Notes:														D	ata Flags																			
3.6	BOLD and yellow va									B.					= 0	etected	d value abo	ove the	e LOQ.															
0.099	BOLD values indicat	e an exceedance o	of Method Two	cleanup levels	for Migra	ation to Gro	undwater,	refer to No	otes B						J F	lesult is	considere	d an es	stimated value	e because	the level i	s below the	laborat	ory LOQ, but	t above t	he DL.								
[0.00362]	Green values indica																		ed in brackets															
	ADEC Method Two).		B F	lesults a	are conside	ered es	timated due	o blank c	ontaminati	ion.												
В	ADEC Method Two									2 (Novem	ber 7, 201	17).			UB F	lesults a	are conside	ered es	timated due	o blank c	ontaminati	ion. The bla	nk conta	mination w	as									
C	The field sample ide			,				•							h				etection. Poss		e positive	result.												
D	For detected results										ed, then th	he highes	st LOD is sho	own i					an estimated															
	Total values were the								hest LOD w	as listed.					Q F	lesults a	are conside	ered es	timated due	o laborat	ory quality	control crit	eria failu	ure or matrix	x									
	For PFCs by Method	537M, per ADEC	guidance (April,	, 2017) twice th	e DL was	used to est	imate the L	.OD.																										
Abbreviations																			_															
	Not applicable or so		es not exist for	this compound			asoline rang		S						robutane su						ial range o													
AAC	Alaska Administrati		Composition				nit of dete								rohexane su						ive ion mo	-												
ADEC AK	Alaska Department Alaska	or Environmental	Conservation			•	nit of quan								rooctane su roheptanoio		icia		-		ard Metho	as eristic Leach	ing Dro	oduro										
7.03	Alaska Code of Federal Rea	ulations				0, 0	illigrams p	0	1						roneptanoic rooctanoic a									edure tion Agency										
DL	detection limit	sulations	mg/L milligrams per liter PAH polycyclic aromatic hydrocarbons												rononanoic							compounds		cion Agency										
DRO	diesel range organic	~							/l substance	\$					e and Cons		n Recovery	/ Act	v	SC VOIdtil	ie organit (Lompounds												
Dito	areset range of gallin					1173 h		THOUGH	, substance	5				nesoure		ci vati0i		,																

Table 3: Groundwater and Surface Water Analytical ResultsFairbanks International Airport Fire Training Pit Site Characterization

	Screening Criteria	ning Criteria Sample Locations ⁸												Trip Bla	nk
	Screening criteria	Ponded Wa	ter					Groundwate						•	
Compound in		SW1		MW1		MW2 (Prin		MW29 (Dup	•	MW3		MW4		Trip Blan	
milligrams per liter (mg/L)	18 AAC 75, Table C, Groundwater Cleanup	08-Jun-18 K1805460-0		07-Jun-2 K1805460		07-Jun-2 K1805460		07-Jun-1 K1805460		07-Jun-1 K1805460		07-Jun-: K1805460		07-Jun-:	18
(mg/t)	Levels ^A	118937802		11893780		11893780		11893780		11893780		1189378		11893780)22
	Leveis	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^c	Flag
Perfluorinated Sulfonic Acids and Pe	rfluorinated Carboxylic A	cids by USEPA N	Aethoo	1 537M ^E											
PFOA	0.0004	0.032	=	0.000013	J	0.00049	=	0.00047	=	0.000055	=	0.000061	=		
PFOS	0.0004	1.6	=	[0.00002]	U	0.000047	J	0.000059	=	0.000086	=	0.000056	=		
PFBS	NA	0.051	=	0.0039	=	0.0015	=	0.0014	=	0.00089	=	0.00018	=		
PFHxS	NA	0.42	=	0.0003	=	0.015	=	0.013	=	0.0015	=	0.003	=		
PFHpA	NA	0.019	=	0.00018	=	0.00081	=	0.00078	=	0.0001	=	0.00013	=		
PFNA	NA	0.0013	J,B	[0.0000188]	U	0.000011	J,B	0.0000094	J,B	0.000002	J,B	0.0000011	J,UB		
GRO, DRO, RRO by Methods AK101,	102, and 103														
Gasoline range organics	2.2	0.599	=	[0.05]	U	[0.05]	U								
Diesel range organics	1.5	93.7	=	0.184	J	0.179	J	0.21	J	0.27	J	0.234	J		
Residual range organics	1.1	17.9	=	0.196	J	0.184	J	0.191	J	0.194	J	0.188	J		
VOCs by Method SW8260C	· ·						-	•	-	•		•			
1,1,1,2-Tetrachloroethane	0.0057	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
1,1,1-Trichloroethane	8	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,1,2,2-Tetrachloroethane	0.00076	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
1,1,2-Trichloroethane	0.00041	[0.0002]	U	[0.0002]	U	[0.0002]	U	[0.0002]	U	[0.0002]	U	[0.0002]	U	[0.0002]	U
1,1-Dichloroethane	0.028	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,1-Dichloroethene	0.28	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,1-Dichloropropene		[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,2,3-Trichlorobenzene	0.007	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,2,3-Trichloropropane	0.0000075	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,2,4-Trichlorobenzene	0.004	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,2,4-Trimethylbenzene	0.015	0.0546	=	[0.0005]	U	[0.0005]	U								
1,2-Dibromo-3-chloropropane		[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
1,2-Dibromoethane	0.000075	[0.0000375]	U	[0.0000375]	U	[0.0000375]	U	[0.0000375]	U	[0.0000375]	U	[0.0000375]	U	[0.0000375]	U
1,2-Dichlorobenzene	0.3	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,2-Dichloroethane	0.0017	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
1,2-Dichloropropane	0.0044	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,3,5-Trimethylbenzene	0.12	0.0383	=	[0.0005]	U	[0.0005]	U								
1,3-Dichlorobenzene	0.3	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
1,3-Dichloropropane		[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
1,4-Dichlorobenzene	0.0048	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
2,2-Dichloropropane		[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
2-Butanone (MEK)	5.6	0.0134	=	[0.005]	U	[0.005]	U								
2-Chlorotoluene		[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
2-Hexanone	0.038	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
4-Chlorotoluene		[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
4-Isopropyltoluene		0.00447	=	[0.0005]	U	[0.0005]	U								
4-Methyl-2-pentanone (MIBK)	6.3	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
Benzene	0.0046	0.00111	=	[0.0002]	U	[0.0002]	U								
Bromobenzene	0.062	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Bromochloromethane		[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Bromodichloromethane	0.0013	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
Bromoform	0.033	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Bromomethane	0.0075	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U
Carbon disulfide	0.81	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
Carbon tetrachloride	0.0046	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U

Table 3: Groundwater and Surface Water Analytical ResultsFairbanks International Airport Fire Training Pit Site Characterization

	Screening Criteria						Sample	Locations ^B						Trip Bla	nk
	Screening criteria	Ponded Wat	ter					Groundwate						•	
Compound in		SW1		MW1		MW2 (Prir	••	MW29 (Dup	-	MW3		MW4		Trip Blan	
milligrams per liter	18 AAC 75, Table C,	08-Jun-18 K1805460-0		07-Jun-1		07-Jun-		07-Jun-2		07-Jun-1		07-Jun-2		07-Jun-:	18
(mg/L)	Groundwater Cleanup	118937802		K1805460 11893780		K1805460 1189378		K1805460 11893780		K1805460 11893780		K1805460 11893780		11893780	022
	Levels ^A	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. ^c	Flag
VOCs by Method SW8260C (continu	ed)		.0				.0				-0				
Chlorobenzene	0.078	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
Chloroethane	21	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Chloroform	0.0022	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Chloromethane	0.19	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
cis-1,2-Dichloroethene	0.036	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
cis-1,3-Dichloropropene	0.0047	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
Dibromochloromethane	0.0087	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U	[0.00025]	U
Dibromomethane	0.0083	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Dichlorodifluoromethane	0.2	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Ethylbenzene	0.015	0.00747	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Freon-113	55	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
Hexachlorobutadiene	0.0014	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Isopropylbenzene (Cumene)	0.45	0.00547	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Methylene chloride	0.11	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U	[0.0025]	U
Methyl-t-butyl ether	0.14	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
Naphthalene	0.0017	0.0245	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
n-Butylbenzene	1	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
n-Propylbenzene	0.66	0.00404	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
o-Xylene	0.19	0.0617	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
P & M -Xylene	0.19	0.1	=	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U
sec-Butylbenzene	2	0.00429	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Styrene	1.2	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
tert-Butylbenzene	0.69	0.00058	J	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Tetrachloroethene	0.041	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Toluene	1.1	0.00854	=	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
trans-1,2-Dichloroethene	0.36	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
trans-1,3-Dichloropropene	0.0047	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Trichloroethene	0.0028	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Trichlorofluoromethane	5.2	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U	[0.0005]	U
Vinyl acetate	0.41	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U	[0.005]	U
Vinyl chloride	0.00019	[0.000075]	U	[0.000075]	U	[0.000075]	U	[0.000075]	U	[0.000075]	U	[0.000075]	U	[0.000075]	U
Xylenes (total) ^D	0.19	0.162	=	[0.0015]	U	[0.0015]	U	[0.0015]	U	[0.0015]	U	[0.0015]	U	[0.0015]	U
PAH SIM by Method SW8270D	T				I		1		I	1		1	1	1	
1-Methylnaphthalene	0.011	0.00619	=	[0.0000245]	U	[0.0000259]	U	[0.000259]	U	[0.000265]	U	[0.000027]	U		
2-Methylnaphthalene	0.036	[0.000254]	U	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Acenaphthene	0.53	[0.000254]	U	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Acenaphthylene	0.26	[0.000254]	U	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Anthracene	0.043	[0.000254]	U	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Benzo(a)anthracene	0.00012	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Benzo[a]pyrene	0.000034	[0.0000101]	UJ	[0.000098]	U	[0.0000104]	U	[0.0000104]	U	[0.0000106]	U	[0.0000108]	U		
Benzo[b]fluoranthene	0.00034	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Benzo[g,h,i]perylene	0.00026	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Benzo[k]fluoranthene	0.0008	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Chrysene	0.002	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.000259]	U	[0.000265]	U	[0.000027]	U		
Dibenzo[a,h]anthracene	0.000034	[0.0000101]	UJ	[0.000098]	U	[0.0000104]	U	[0.0000104]	U	[0.0000106]	U	[0.0000108]	U		

Table 3: Groundwater and Surface Water Analytical Results Fairbanks International Airport Fire Training Pit Site Characterization

	Screening Criteria						Sample I	ocations ^B						Trip Bla	ank
	Screening criteria	Ponded Water Groundwater				er					The blank				
Compound in		SW1		MW1		MW2 (Prim	ary)	MW29 (Dup	licate)	MW3		MW4		Trip Blar	nk 2
milligrams per liter	18 AAC 75, Table C,	08-Jun-18		07-Jun-1		07-Jun-1		07-Jun-1		07-Jun-:		07-Jun-1		07-Jun-	18
(mg/L)	Groundwater Cleanup	K1805460-0	-	K1805460-	032	K1805460-	034	K1805460-	-036	K1805460	-033	K1805460-	-035	1189378	022
	Levels ^A	118937802		11893780		11893780		11893780		11893780	-	11893780			-
		Conc. ^C	Flag	Conc. ^c	Flag	Conc. ^C	Flag	Conc. ^c	Flag	Conc. ^c	Flag	Conc. ^c	Flag	Conc. ^c	Flag
PAH SIM by Method SW8270D (cont				-		1		-	1	T	1	1			
Fluoranthene	0.26	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Fluorene	0.29	0.00125	=	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Indeno[1,2,3-c,d] pyrene	0.00019	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Naphthalene	0.0017	0.00239	=	[0.000049]	U	[0.0000515]	U	[0.0000515]	U	[0.000053]	U	[0.000054]	U		
Phenanthrene	0.17	[0.000254]	U	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
Pyrene	0.12	[0.0000254]	UJ	[0.0000245]	U	[0.0000259]	U	[0.0000259]	U	[0.0000265]	U	[0.000027]	U		
TCLP RCRA Metals by Method SW60	20A					•				•		•			
Arsenic ^F	0.00052	0.0174	=	0.00154	J	0.0103	=	0.0135	=	0.00274	J	0.00237	J		
Barium	3.8	0.113	=	0.182	=	0.277	=	0.368	=	0.21	=	0.155	=		
Cadmium	0.0092	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U		
Chromium	22	[0.002]	UJ	[0.002]	IJ	0.0094	Q	0.0236	Q	[0.002]	UJ	0.00351	J, Q		
Lead	0.015	0.00295	Q	[0.0005]	UJ	0.00747	Q	0.0113	Q	0.00164	Q	0.00227	Q		
Mercury	0.00052	[0.0001]	U	0.0000667	J, UB	0.000171	J,B	0.0000952	J,B	0.0000883	J,B	0.0000734	J, UB		
Selenium	0.1	[0.01]	U	[0.01]	U	[0.01]	U	[0.01]	U	[0.01]	U	0.00634	J		
Silver	0.094	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U	[0.001]	U		
Notes:										Abbreviations	:				
3.6	BOLD values indicate a	n exceedance of	ADEC	Groundwater Clea	inup Levels	, see Note A.						cable or no appli	cable scree	ening level	
[0.00025]	Green values indicate u	indetectable res	ults wit	th LODs above app	olicable AD	EC screening crite	ia.			AAC	Alaska Ac	Iministrative Cod	le	0	
A	ADEC Method Two Gro	undwater Clean	up Leve	els , 18 AAC 75.34	5, Table C (November 7, 2017	').			ADEC	Alaska De	epartment of Env	rironmenta	I Conservation	
В		The field sample identification number, date collected, and laboratory sample identification number are provided.					AK	Alaska M	ethod						
C	,	For detected results, the sample result is listed in mg/L in this column. If an analyte was not detected, then the highest				DL	detection								
c		OD is shown in [brackets].							nge organics						
D	Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD					GRO		range organics							
E	For PFAS by USEPA Method 537M, per ADEC guidance (April, 2017) twice the DL was used to estimate the LOD. Arsenic concentrations are generally attributed to natural conditions (site soils), typical of the area, and not considered a					LOD LOQ	limit of de	etection uantitation							
F	site contaminant.	The are generally accounted to natural conditions (site solis), typical of the area, and not considered a				mg/L	•	s per liter							
	site containinanti									PAH		aromatic hydro	carbons		
Data Flags:										PFAS		polyfluoroalkyl si			
=	Detected value above t	he LOQ.								PFBS		butane sulfonic a			
1	Estimated value becaus	o the concentra	tion ic	holow the laborat	onuloo h	ut above the DI				DEHVS	porfluoro	hevane sulfonic	acid		

=	Detected value above the LOQ.
J	Estimated value because the concentration is below the laboratory LOQ, but above the DL.
U	Undetectable, LOD is listed in brackets to the right.
В	Results are considered estimated due to blank contamination.
UB	Estimated results due to blank contamination. The blank contamination was higher than the sample detection; potentially a false positive result.
UJ	Undetectable, the LOD is an estimated value. Estimated value due to laboratory quality control criteria failure or matrix effect. A "+" or a "-" is used as applicable to
Q	indicate a high or low bias respectively.

- PFHxS perfluorohexane sulfonic acid PFOS perfluorooctane sulfonic acid
- PFHpA perfluoroheptanoic acid
- PFOA perfluorooctanoic acid
- PFNA perfluorononanoic acid
- RCRA Resource and Conservation Recovery Act
- RRO residual range organics
- SIM selective ion monitoring
- USEPA United States Environmental Protection Agency
- VOC volatile organic compounds

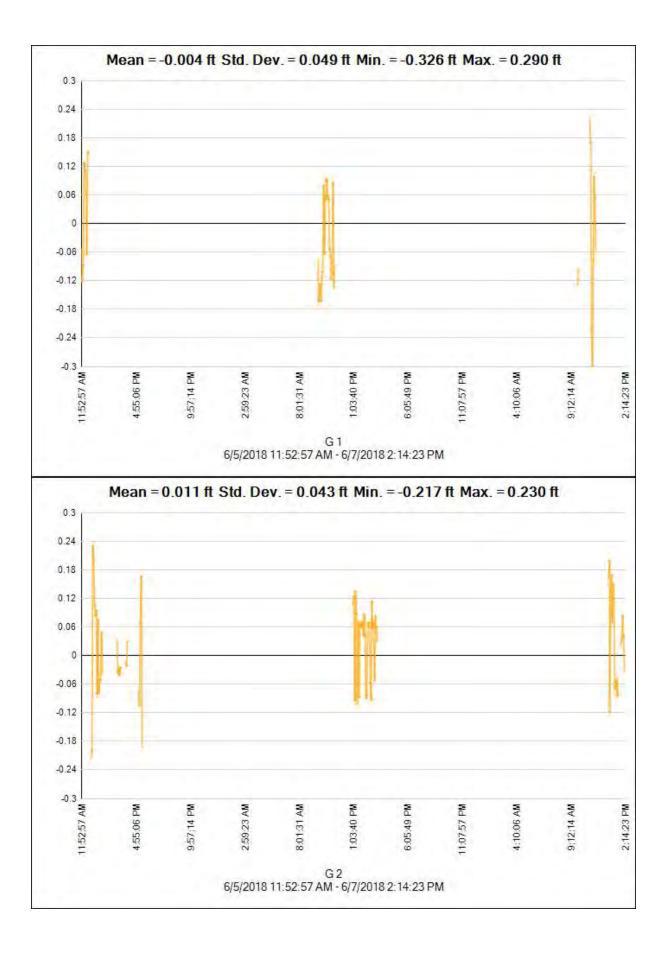
APPENDICES

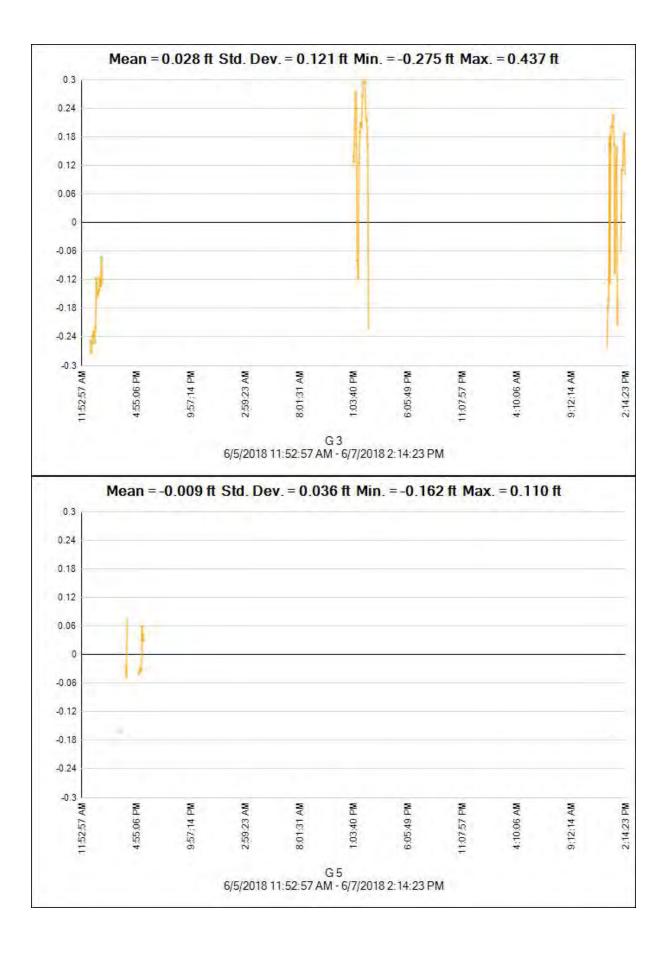
- Appendix A Survey Data
- Appendix B Laboratory Data Quality Assurance Review
- Appendix C Field Notebook
- Appendix D Field Forms
- Appendix E Photograph Log
- Appendix F Waste Volume Calculations

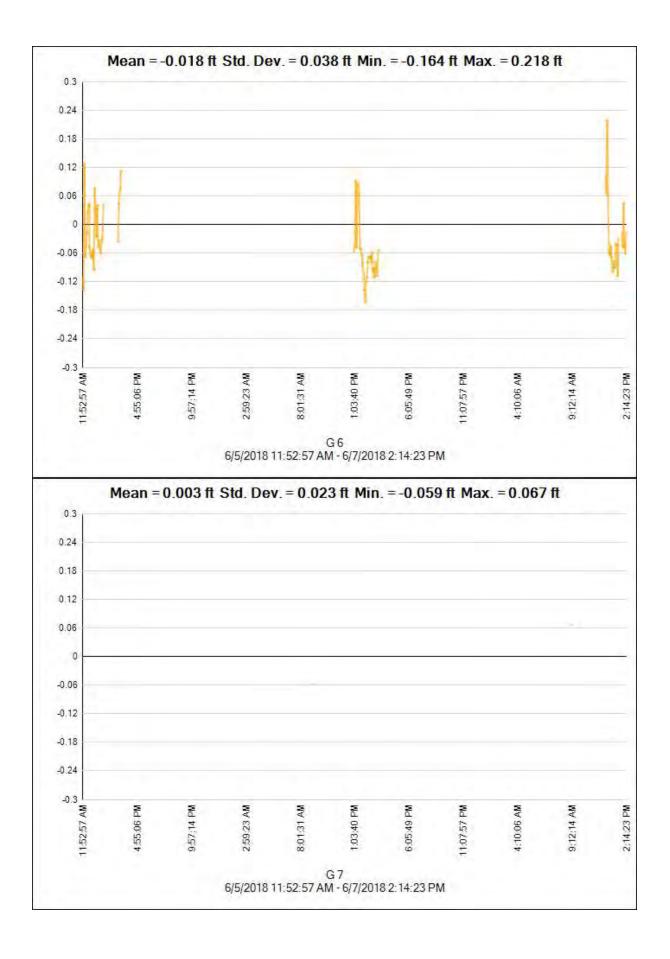
Project file data		Coordinate System	n		
Name:	C:\Users\robbo\Desktop\New folder (2)\Baseline processing SLR.vce	Name:	United States/State Plane 1983		
Size:	595 KB	Datum:	NAD 1983 (Alaska)		
Modified:	6/19/2018 9:01:28 AM (UTC:-8)	Zone:	Alaska Zone 3 5003		
Time zone:	Alaskan Standard Time	Geoid:	GEOID12B (Alaska)		
Reference number:		Vertical datum:			
Description:		Calibrated site:			
Comment 1:					
Comment 2:					
Comment 3:					
Baseline Processing Report					

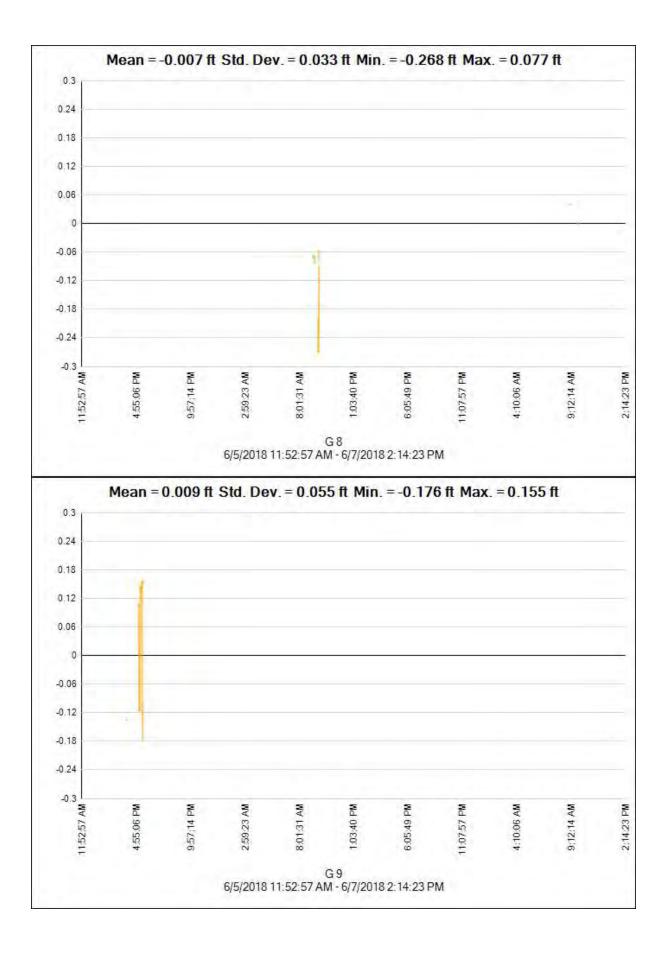
Processing Summary

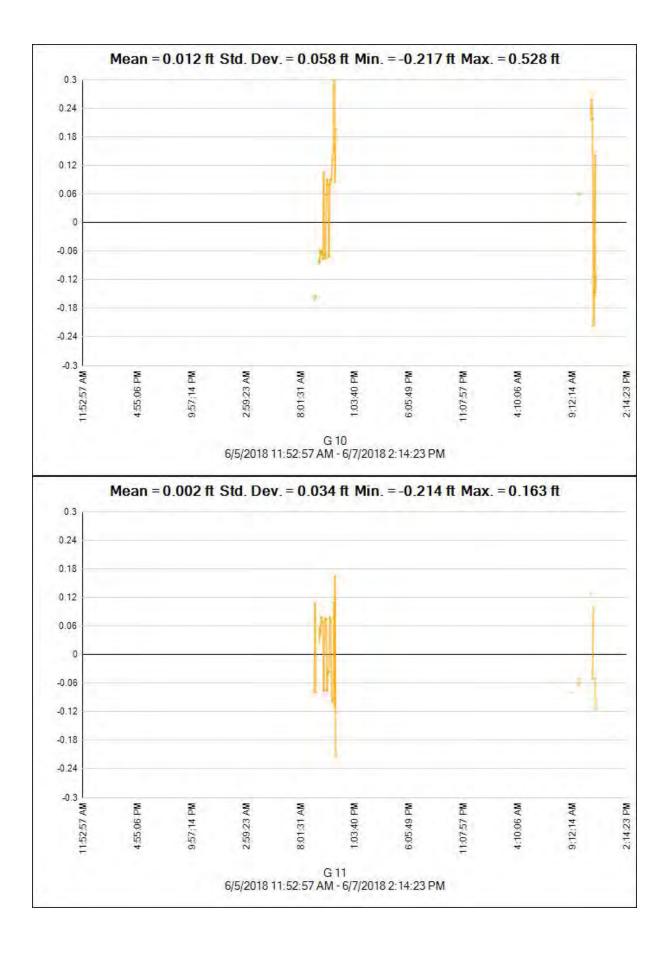
Observation	From	То	Solution Type	H. Prec. (US survey foot)	V. Prec. (US survey foot)	Geodetic Az.	Ellipsoid Dist. (US survey foot)	∆Height (US survey foot)
11:50:48 AM - 2:12:14 PM (C3)		11:50:48 AM - 2:12:14 PM (C3)	N/A	?	?	?	?	?

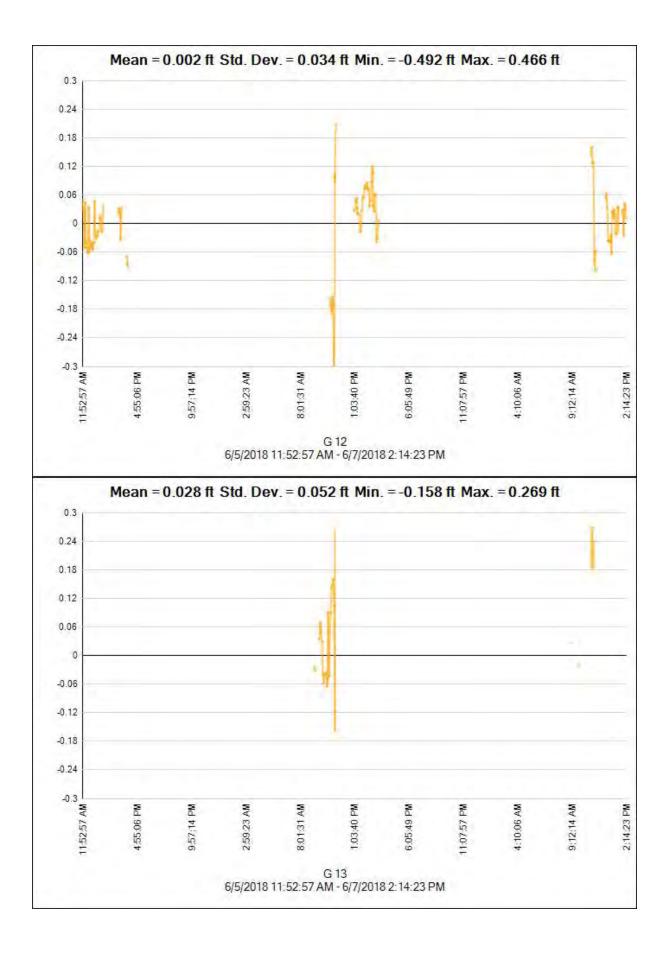

Acceptance Summary

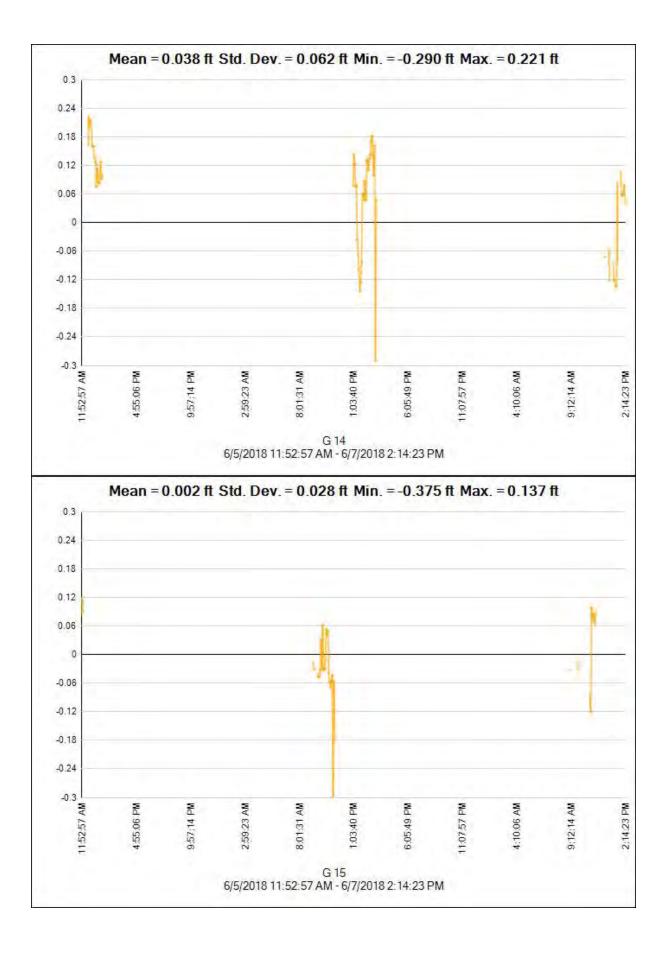

Processed	Passed	Flag	Þ	Fail	-
1 1		0		0	

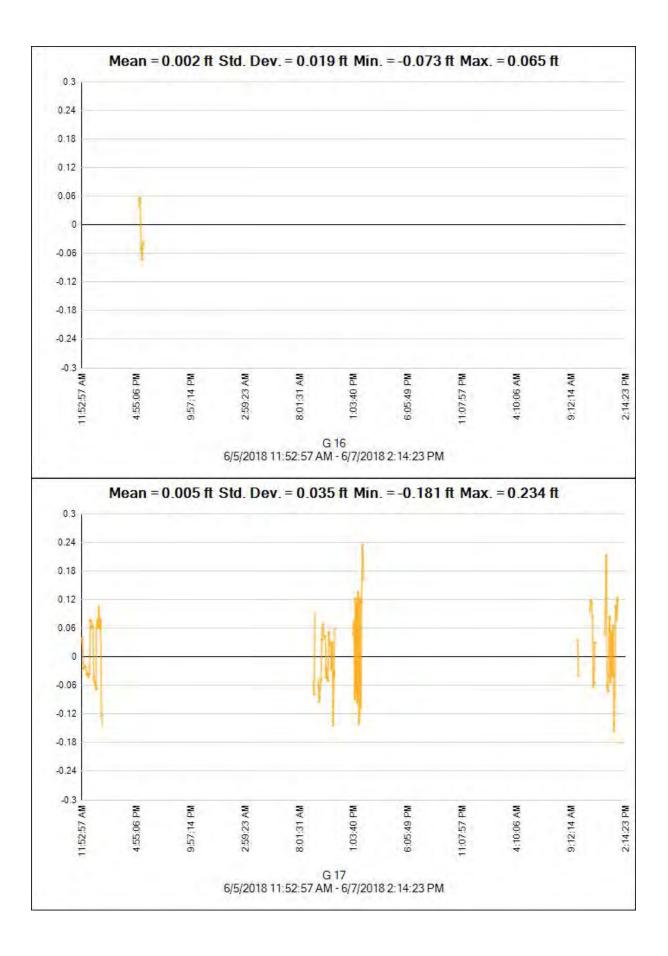

CLGO (11:50:48 AM-2:12:14 PM) (S1)

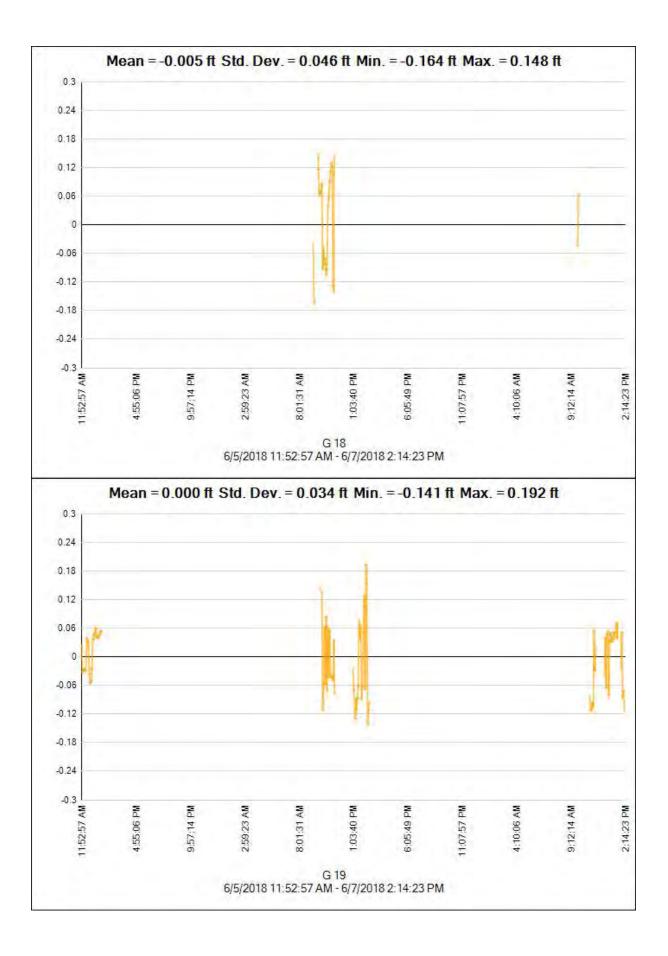

Trajectory observation:	11:50:48 AM	- 2:12:14 PM (0	C3)		
Processed:	6/19/2018 8:4	9:33 AM			
Frequency used:	Multiple Frequencies				
Solutions:	1505	(0 Passed		o 📔	1505 膟
		1485 Fixed	0 Float	20 DGPS)	•
Estimated accuracies:	0 - 5 cm:	-			
	5 - 15 cm:	98.70%			
	15 - 30 cm:	-			
	30 - 50 cm:	0.10%			
	0.5 - 1 m:	0.90%			
	1 - 2 m:	0.30%			
	2 - 5 m:	-			
	> 5 m:	-			
Ephemeris used:	Mixed				
Antenna model:	NGS Absolute	e			
Processing start time:	6/5/2018 11:5	i0:48 AM (Loca	l: UTC-8h	r)	
Processing stop time:	6/7/2018 2:12	2:14 PM (Local:	UTC-8hr))	
Processing duration:	2.02:21:26				
Processing interval:	1 second				

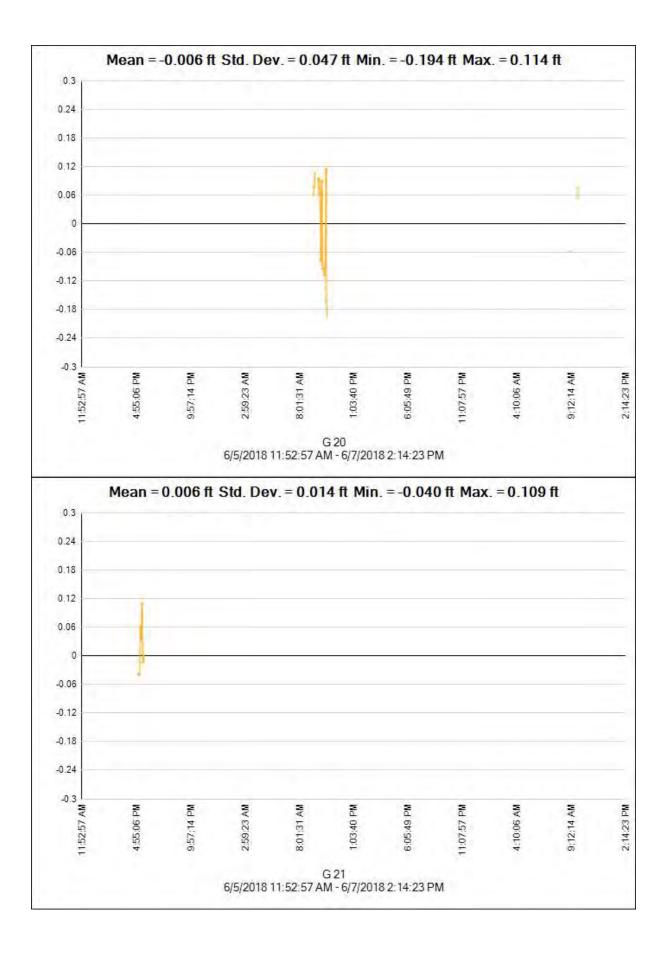

Residuals

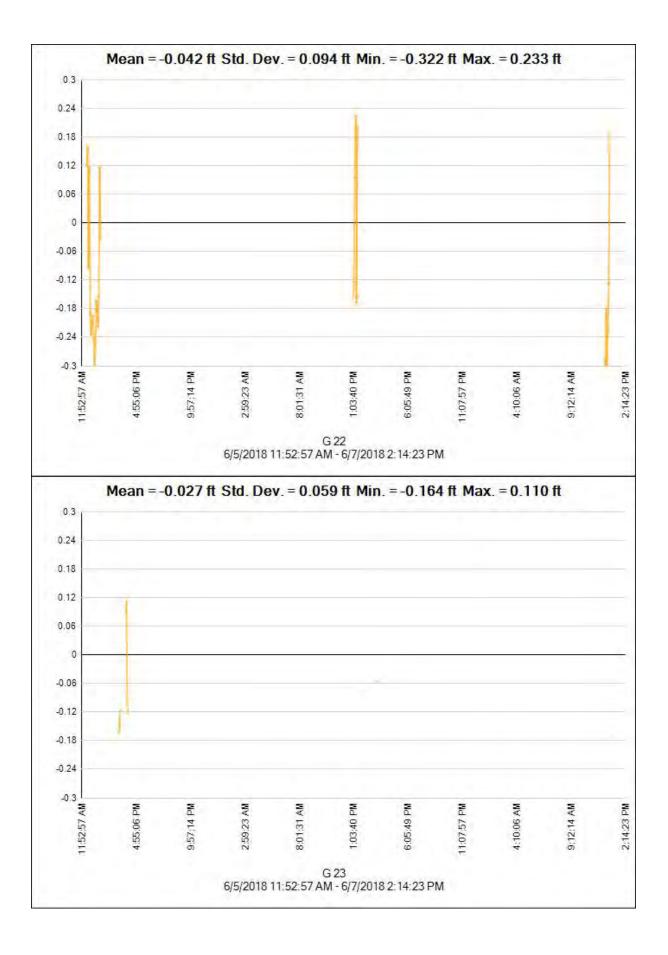


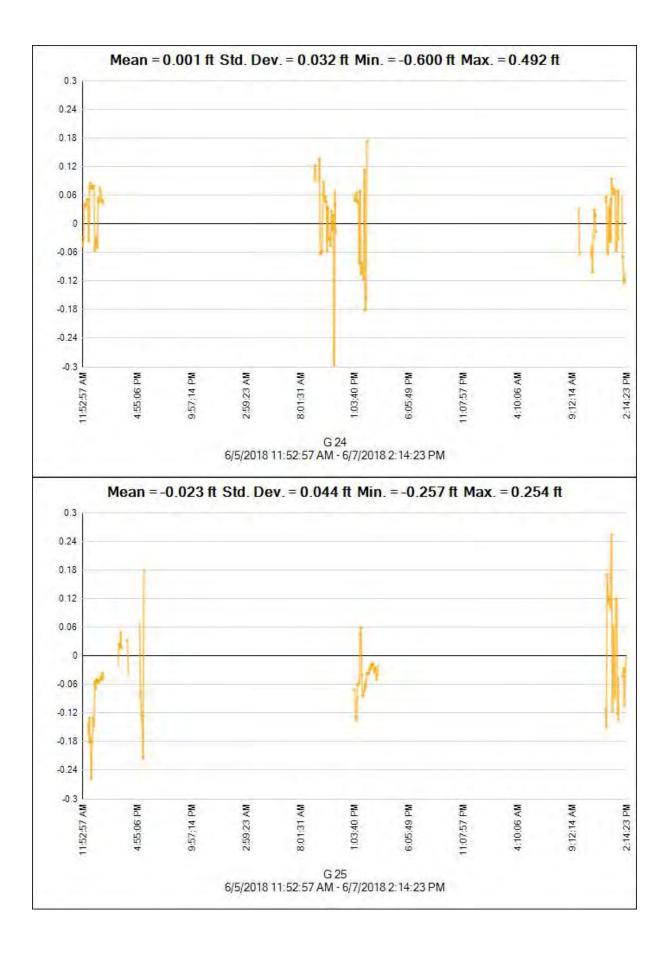


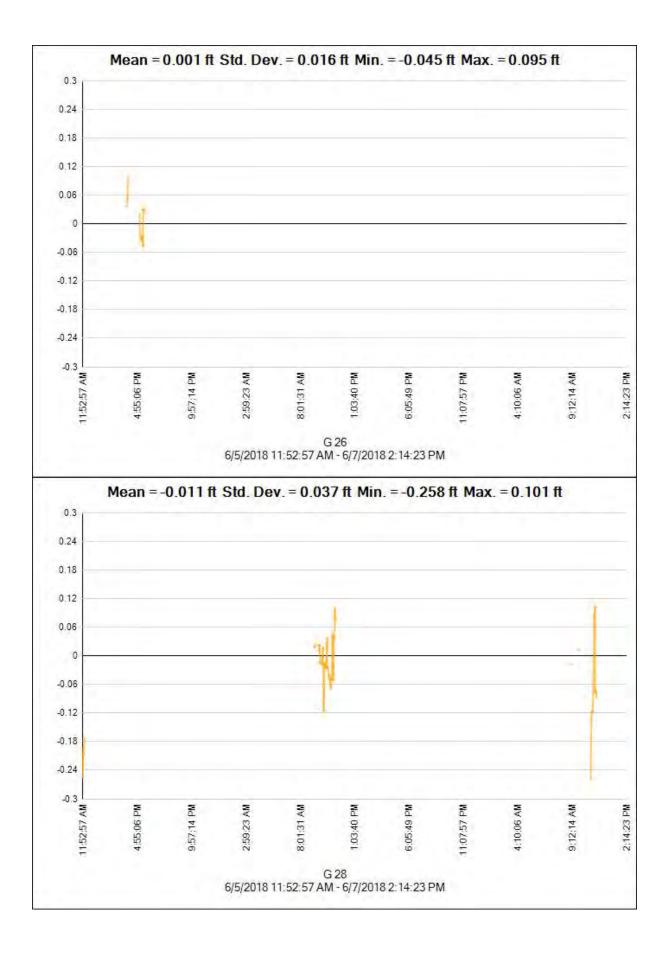


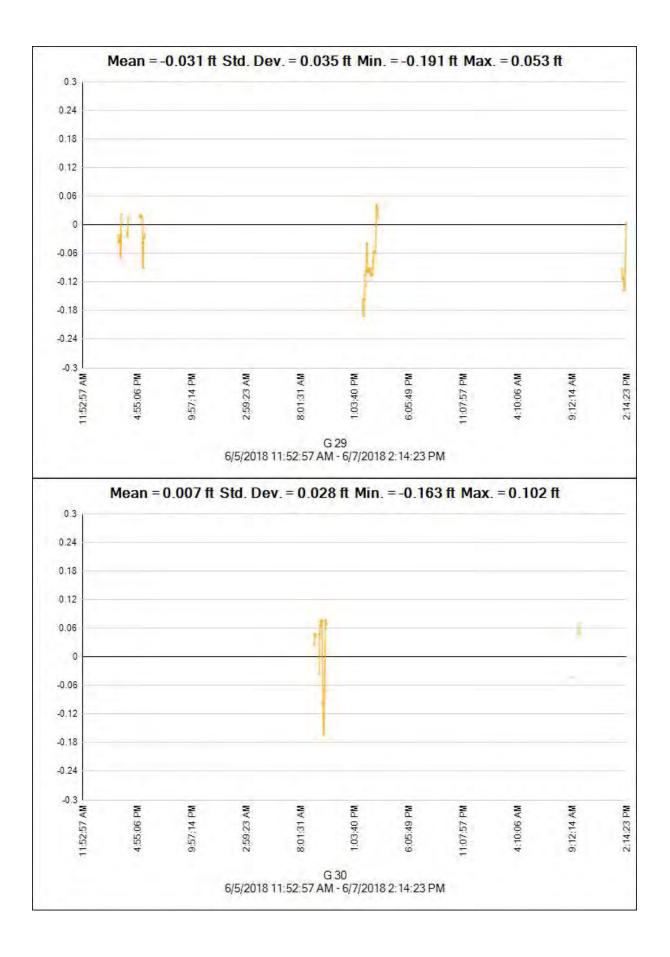


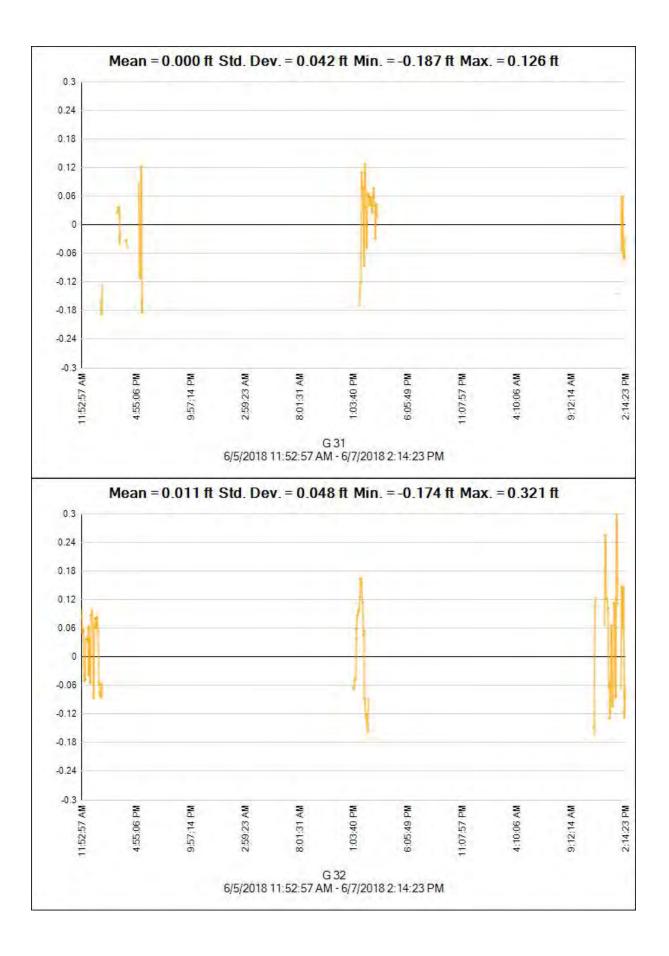












Processing style	
Elevation mask:	10°00'00.0"
Auto start processing:	Yes
Start automatic ID numbering:	AUTO0001
Continuous vectors:	No
Generate residuals:	Yes
Antenna model:	Automatic
Ephemeris type:	Automatic
Frequency:	Multiple Frequencies
Processing Interval:	Automatic
Force float:	No
GIS processing type:	Automatic Carrier and Code Processing

Acceptance Criteria

Vector Component	Flag 📄	Fail 🖡	
Horizontal Precision >	0.164 ft + 1.000 ppm	0.328 ft + 1.000 ppm	
Vertical Precision >	0.328 ft + 1.000 ppm	0.656 ft + 1.000 ppm	

6/19/2018 9:03:51 AM	C:\Users\robbo\Desktop\New folder (2)\Baseline	Trimble Business Center
	processing SLR.vce	

Project file data		Coordinate System	m
Name:	C:\Users\robbo\Desktop\New folder (2)\Baseline processing SLR.vce	Name:	United States/State Plane 1983
Size:	595 KB	Datum:	NAD 1983 (Alaska)
Modified:	6/19/2018 9:01:28 AM (UTC:-8)	Zone:	Alaska Zone 3 5003
Time zone:	Alaskan Standard Time	Geoid:	GEOID12B (Alaska)
Reference number:		Vertical datum:	
Description:		Calibrated site:	
Comment 1:			
Comment 2:			
Comment 3:			

Point List

ID	Northing (US survey foot)	Easting (US survey foot)	Elevation (US survey foot)	Feature Code
1	3950543.284	1346766.562	430.947	
2	3950223.850	1346511.664	429.548	
3	3950224.215	1346363.637	425.146	
4	3950012.656	1346694.934	430.331	
5	3949867.562	1346842.004	424.516	
6.1	3951043.345	1347196.310	433.394	
6.2	3951043.343	1347196.307	433.379	
6.3	3951043.357	1347196.307	433.386	
6.4	3951043.358	1347196.286	433.352	
6.5	3951043.340	1347196.279	433.372	
6.6	3951043.435	1347196.290	433.437	
6.7	3951042.467	1347197.596	433.647	
6.8	3951041.138	1347199.469	433.658	
6.9	3951039.392	1347201.683	433.749	
6.10	3951037.640	1347204.314	433.663	
6.11	3951035.751	1347207.138	433.787	
6.12	3951033.382	1347210.056	433.570	
6.13	3951031.169	1347212.442	433.875	
6.14	3951029.154	1347215.163	433.715	
6.15	3951026.975	1347218.051	433.748	
6.16	3951024.775	1347221.002	433.742	
6.17	3951022.530	1347223.578	433.629	
6.18	3951020.041	1347226.418	433.726	
6.19	3951017.547	1347229.502	433.675	
6.20	3951015.164	1347232.684	433.605	

		1017007.070	100 -00	
6.21	3951012.739	1347235.952	433.708	
6.22	3951010.192	1347239.058	433.677	
6.23	3951007.853	1347242.231	433.566	
6.24	3951005.512	1347245.122	433.677	
6.25	3951003.104	1347247.897	433.726	
6.26	3951000.425	1347250.193	433.902	
6.27	3950998.035	1347251.661	433.918	
6.28	3950996.064	1347254.976	433.739	
6.29	3950994.479	1347258.574	433.921	
6.30	3950992.428	1347262.222	433.941	
6.31	3950989.726	1347265.510	433.866	
6.32	3950987.063	1347268.636	433.882	
6.33	3950984.907	1347271.971	433.881	
6.34	3950982.749	1347275.338	433.854	
6.35	3950979.907	1347278.536	433.765	
6.36	3950977.405	1347281.730	433.915	
6.37	3950974.987	1347285.248	433.780	
6.38	3950972.560	1347288.940	434.000	
6.39	3950970.520	1347291.821	434.094	
6.40	3950968.215	1347294.778	434.119	
6.41	3950965.871	1347298.025	433.984	
6.42	3950963.044	1347301.420	434.024	
6.43	3950960.130	1347304.693	434.003	
6.44	3950957.435	1347308.330	434.119	
6.45	3950954.930	1347311.641	434.124	
6.46	3950952.577	1347315.144	434.170	
6.47	3950950.271	1347318.768	434.142	
6.48	3950947.771	1347322.113	433.980	
6.49	3950945.273	1347325.742	433.985	
6.50	3950942.472	1347329.178	434.092	
6.51	3950939.627	1347332.678	434.009	
6.52	3950937.100	1347336.243	433.893	
6.53	3950934.839	1347339.609	433.907	
6.54	3950932.118	1347342.562	433.923	
6.55	3950929.938	1347345.882	433.645	
6.56	3950927.681	1347348.828	433.664	
6.57	3950925.633	1347352.366	433.530	
6.58	3950923.744	1347354.863	433.277	
6.59	3950923.179	1347355.953	433.224	

6.60	3950923.154	1347355.967	433.208	
6.61	3950923.147	1347356.037	433.202	
6.62	3950923.075	1347356.072	433.179	
6.63	3950923.101	1347356.075	433.214	
6.64	3950923.036	1347355.997	433.239	
6.65	3950921.799	1347354.415	433.485	
6.66	3950918.851	1347351.825	433.621	
6.67	3950915.856	1347349.382	433.695	
6.68	3950912.562	1347346.544	433.770	
6.69	3950909.271	1347343.792	433.772	
6.70	3950905.918	1347340.834	433.859	
6.71	3950902.414	1347338.046	434.098	
6.72	3950899.025	1347334.706	434.176	
6.73	3950895.460	1347331.559	434.254	
6.74	3950891.981	1347328.776	434.172	
6.75	3950888.394	1347325.900	434.283	
6.76	3950884.736	1347323.230	434.296	
6.77	3950881.012	1347320.427	434.223	
6.78	3950877.425	1347317.598	434.132	
6.79	3950873.900	1347314.531	434.041	
6.80	3950870.626	1347311.512	434.168	
6.81	3950867.277	1347308.327	434.268	
6.82	3950864.189	1347305.085	434.166	
6.83	3950860.656	1347301.842	434.099	
6.84	3950856.869	1347298.742	434.007	
6.85	3950853.571	1347295.760	434.330	
6.86	3950850.044	1347292.662	434.489	
6.87	3950846.518	1347289.777	434.239	
6.88	3950843.206	1347286.814	434.154	
6.89	3950839.976	1347283.677	434.250	
6.90	3950836.699	1347280.572	434.235	
6.91	3950833.442	1347277.624	434.095	
6.92	3950830.283	1347274.677	433.958	
6.93	3950827.112	1347271.427	433.962	
6.94	3950823.790	1347268.583	433.973	
6.95	3950820.220	1347265.732	433.898	
6.96	3950816.828	1347262.724	433.883	
6.97	3950813.547	1347260.027	433.894	
6.98	3950810.224	1347257.012	434.037	

6.99	3950807.036	1347253.377	434.078	
6.100	3950803.805	1347250.388	433.900	
6.101	3950800.178	1347247.398	433.903	
6.102	3950796.766	1347244.510	434.132	
6.103	3950793.802	1347241.577	434.180	
6.104	3950790.760	1347238.409	434.096	
6.105	3950787.840	1347235.489	434.282	
6.106	3950784.650	1347232.738	434.219	
6.107	3950781.052	1347230.527	433.996	
6.108	3950777.759	1347228.996	433.990	
6.109	3950774.760	1347226.691	434.418	
6.110	3950774.796	1347224.965	433.794	
6.111	3950775.480	1347224.233	433.815	
6.112	3950775.560	1347224.199	433.843	
6.113	3950775.530	1347223.878	433.893	
6.114	3950775.744	1347222.694	433.992	
6.115	3950777.114	1347220.178	434.184	
6.116	3950779.787	1347216.739	434.178	
6.117	3950782.112	1347212.679	434.233	
6.118	3950784.571	1347208.790	434.354	
6.119	3950787.141	1347205.078	434.313	
6.120	3950789.818	1347201.397	434.257	
6.121	3950792.854	1347197.799	434.205	
6.122	3950795.506	1347193.773	434.423	
6.123	3950798.296	1347189.931	434.419	
6.124	3950800.924	1347186.154	434.382	
6.125	3950803.903	1347182.263	434.282	
6.126	3950806.934	1347178.563	434.204	
6.127	3950809.869	1347174.649	434.251	
6.128	3950812.178	1347170.822	434.345	
6.129	3950814.932	1347166.908	434.198	
6.130	3950817.834	1347163.293	434.162	
6.131	3950820.616	1347159.494	434.185	
6.132	3950823.525	1347155.855	434.327	
6.133	3950826.555	1347152.245	434.422	
6.134	3950829.294	1347148.537	434.380	
6.135	3950832.161	1347145.211	434.191	
6.136	3950834.663	1347141.187	434.281	
6.137	3950837.534	1347137.636	434.349	

6.138	3950840.822	1347133.455	434.463	
6.139	3950843.161	1347130.184	434.393	
6.140	3950845.940	1347126.745	434.304	
6.141	3950849.124	1347123.400	434.467	
6.142	3950852.262	1347119.493	434.573	
6.143	3950855.156	1347115.828	434.438	
6.144	3950857.359	1347112.048	434.385	
6.145	3950859.980	1347108.403	434.511	
6.146	3950862.718	1347104.711	434.557	
6.147	3950865.204	1347100.959	434.464	
6.148	3950867.915	1347097.193	434.524	
6.149	3950870.642	1347093.364	434.509	
6.150	3950873.450	1347089.426	434.581	
6.151	3950876.147	1347085.513	434.687	
6.152	3950878.991	1347081.695	434.610	
6.153	3950881.948	1347078.407	434.439	
6.154	3950884.645	1347075.019	434.586	
6.155	3950887.090	1347071.159	434.441	
6.156	3950889.176	1347067.784	434.283	
6.157	3950891.109	1347064.734	434.254	
6.158	3950892.218	1347062.889	434.063	
6.159	3950892.325	1347062.668	434.062	
6.160	3950892.238	1347062.729	434.074	
6.161	3950892.196	1347062.697	434.090	
6.162	3950892.667	1347062.867	434.179	
6.163	3950894.495	1347064.425	434.212	
6.164	3950897.446	1347067.069	434.469	
6.165	3950900.960	1347070.335	434.438	
6.166	3950904.423	1347073.506	434.432	
6.167	3950907.997	1347076.167	434.540	
6.168	3950911.315	1347079.093	434.637	
6.169	3950914.723	1347082.394	434.600	
6.170	3950918.069	1347085.504	434.498	
6.171	3950921.417	1347088.789	434.331	
6.172	3950924.432	1347092.338	434.413	
6.173	3950927.573	1347095.584	434.413	
6.174	3950930.935	1347098.671	434.279	
6.175	3950934.428	1347101.678	434.050	
6.176	3950938.339	1347104.785	434.324	

6.177	3950941.264	1347108.355	434.253	
6.178	3950945.031	1347111.010	434.270	
6.179	3950948.713	1347113.969	434.177	
6.180	3950952.167	1347116.944	434.122	
6.181	3950955.839	1347120.182	434.163	
6.182	3950959.160	1347123.531	434.216	
6.183	3950962.528	1347126.747	434.220	
6.184	3950966.112	1347129.914	434.220	
6.185	3950969.491	1347129.914	434.003	
6.186	3950973.153	1347132.037		
			433.937	
6.187	3950976.737	1347138.958	434.098	
6.188	3950980.473	1347141.650	434.059	
6.189	3950984.108	1347144.951	434.002	
6.190	3950987.432	1347148.024	433.909	
6.191	3950990.811	1347151.290	434.072	
6.192	3950994.373	1347154.585	434.031	
6.193	3950997.851	1347157.592	433.907	
6.194	3951001.272	1347160.617	433.861	
6.195	3951004.532	1347163.849	433.999	
6.196	3951007.836	1347166.991	434.047	
6.197	3951011.471	1347170.075	433.876	
6.198	3951014.875	1347172.717	433.847	
6.199	3951018.250	1347175.730	434.026	
6.200	3951021.659	1347179.044	434.187	
6.201	3951025.151	1347181.954	434.248	
6.202	3951028.887	1347184.769	434.223	
6.203	3951032.072	1347187.838	434.379	
6.204	3951035.205	1347190.778	434.468	
6.205	3951038.294	1347193.252	434.303	
6.206	3951041.139	1347195.298	434.206	
6.207	3951042.678	1347196.221	433.799	
6.208	3951043.149	1347196.356	433.766	
6.209	3951043.222	1347196.315	433.767	
6.210	3951043.211	1347196.312	433.730	
6.211	3951043.230	1347196.290	433.744	
6.212	3951043.212	1347196.294	433.736	
6.213	3951043.192	1347196.280	433.752	
6.214	3951043.195	1347196.262	433.744	
6.215	3951043.197	1347196.288	433.728	

6.216	3951043.191	1347196.284	433.716	
6.217	3951043.163	1347196.304	433.715	
6.218	3951043.149	1347196.296	433.694	
6.219	3951043.163	1347196.286	433.706	
6.220	3951043.153	1347196.273	433.695	
6.221	3951043.153	1347196.262	433.702	
6.222	3951043.159	1347196.293	433.719	
7	3950976.636	1347131.410	433.948	
8	3950817.823	1347152.401	434.707	
9	3950865.640	1347169.300	431.850	
10.1	3950858.286	1347163.751	432.040	
10.2	3950858.288	1347163.736	432.023	
10.3	3950858.268	1347163.752	432.028	
10.4	3950858.283	1347163.762	432.046	
10.5	3950858.294	1347163.753	432.030	
10.6	3950858.267	1347163.785	432.031	
10.7	3950858.260	1347163.785	432.030	
10.8	3950858.261	1347163.752	432.015	
10.9	3950858.272	1347163.795	431.993	
10.10	3950858.258	1347163.821	431.993	
10.11	3950858.261	1347163.808	431.996	
10.12	3950858.243	1347163.824	432.016	
10.13	3950857.738	1347163.549	432.237	
10.14	3950858.625	1347161.434	432.168	
10.15	3950860.528	1347158.375	432.296	
10.16	3950862.687	1347155.304	432.099	
10.17	3950865.429	1347151.754	432.249	
10.18	3950868.442	1347148.939	432.268	
10.19	3950870.591	1347145.529	432.342	
10.20	3950873.746	1347142.082	432.192	
10.21	3950877.256	1347139.168	432.232	
10.22	3950881.331	1347136.700	432.199	
10.23	3950885.649	1347134.778	432.353	
10.24	3950889.688	1347133.043	432.093	
10.25	3950893.883	1347132.098	432.098	
10.26	3950898.516	1347131.948	432.181	
10.27	3950903.101	1347131.998	432.079	
10.28	3950907.438	1347131.770	432.083	
	3950911.742	1347131.126	432.190	

40.00	2050040.050	4047400 074	400.050	
10.30	3950916.352	1347130.971	432.359	
10.31	3950920.928	1347131.180	432.303	
10.32	3950925.414	1347131.686	432.159	
10.33	3950929.580	1347132.931	432.101	
10.34	3950933.749	1347134.585	432.605	
10.35	3950937.495	1347136.597	432.507	
10.36	3950941.283	1347138.095	432.132	
10.37	3950945.356	1347139.616	432.241	
10.38	3950949.426	1347141.304	432.599	
10.39	3950953.566	1347143.017	432.547	
10.40	3950957.502	1347144.256	432.483	
10.41	3950961.285	1347146.170	432.627	
10.42	3950964.583	1347148.552	432.565	
10.43	3950967.795	1347151.343	432.470	
10.44	3950971.189	1347154.366	432.635	
10.45	3950974.070	1347157.852	432.879	
10.46	3950976.833	1347161.992	432.835	
10.47	3950978.845	1347166.457	432.766	
10.48	3950980.148	1347170.532	432.963	
10.49	3950981.346	1347175.003	432.959	
10.50	3950982.591	1347179.448	432.880	
10.51	3950984.257	1347183.602	432.966	
10.52	3950985.914	1347187.632	432.951	
10.53	3950987.366	1347191.589	433.126	
10.54	3950987.485	1347195.724	433.063	
10.55	3950986.082	1347200.073	432.804	
10.56	3950984.632	1347204.224	432.506	
10.57	3950982.858	1347208.438	432.367	
10.58	3950981.334	1347212.579	432.480	
10.59	3950980.417	1347216.997	432.399	
10.60	3950979.625	1347221.442	432.439	
10.61	3950978.384	1347225.802	432.510	
10.62	3950976.238	1347229.925	432.551	
10.63	3950973.892	1347233.854	432.414	
10.64	3950971.555	1347237.613	432.317	
10.65	3950969.137	1347241.354	432.445	
10.66	3950966.860	1347244.949	432.515	
10.67	3950964.308	1347248.851	432.352	
10.68	3950962.040	1347252.564	432.168	

10.00	0050050 740	1017050.050	100.000	
10.69	3950959.748	1347256.353		
10.70	3950956.837	1347260.032	432.490	
10.71	3950953.325	1347263.188		
10.72	3950949.546	1347265.562	432.552	
10.73	3950946.083	1347268.044	432.534	
10.74	3950942.121	1347270.298	432.621	
10.75	3950938.306	1347272.378	432.437	
10.76	3950934.463	1347274.275	432.297	
10.77	3950930.170	1347275.583	432.434	
10.78	3950925.634	1347275.998	432.483	
10.79	3950921.083	1347276.083	432.514	
10.80	3950916.658	1347276.005	432.334	
10.81	3950912.265	1347275.622	432.193	
10.82	3950907.934	1347275.111	432.362	
10.83	3950903.684	1347274.346	432.306	
10.84	3950899.519	1347273.076	432.169	
10.85	3950895.661	1347271.420	432.198	
10.86	3950891.588	1347269.533	432.328	
10.87	3950887.470	1347267.263	432.310	
10.88	3950883.201	1347265.356	432.161	
10.89	3950878.945	1347263.590	432.158	
10.90	3950874.860	1347261.646	432.277	
10.91	3950870.827	1347259.818	432.313	
10.92	3950867.077	1347257.835	432.231	
10.93	3950863.675	1347255.122	432.182	
10.94	3950860.296	1347252.024	432.305	
10.95	3950856.802	1347249.153	432.447	
10.96	3950853.725	1347246.309	432.226	
10.97	3950850.985	1347242.689	432.194	
10.98	3950848.375	1347239.120	432.026	
10.99	3950845.558	1347235.521	432.208	
10.100	3950843.207	1347231.873	432.101	
10.101	3950840.859	1347227.816	431.889	
10.102	3950838.841	1347223.752	431.951	
10.103	3950837.071	1347219.463	432.076	
10.104	3950836.348	1347215.170	432.101	
10.105	3950836.528	1347210.517	432.078	
10.106	3950837.320	1347205.973	431.894	
10.107	3950837.848	1347201.887	431.919	

10.108	3950838.657	1347198.048	431.973	
10.109	3950839.450	1347194.936	431.909	
10.110	3950840.141	1347192.217	432.164	
10.111	3950841.434	1347189.176	431.970	
10.112	3950842.413	1347185.682	432.007	
10.113	3950843.410	1347182.070	431.953	
10.114	3950844.825	1347179.416	431.804	
10.115	3950845.764	1347178.168	432.043	
10.116	3950845.690	1347177.845	432.080	
10.117	3950845.506	1347177.691	432.116	
10.118	3950845.409	1347177.626	432.122	
10.119	3950845.321	1347177.498	432.160	
10.120	3950845.277	1347177.470	432.122	
10.121	3950845.201	1347177.470	432.115	
10.122	3950845.165	1347177.336	432.101	
10.123	3950845.194	1347177.305	432.111	
10.124	3950845.110	1347177.328	432.121	
10.125	3950845.126	1347177.895	432.421	
10.126	3950845.357	1347176.808	432.186	
10.127	3950846.787	1347174.130	432.317	
10.128	3950849.093	1347170.722	432.131	
10.129	3950851.262	1347167.836	432.111	
10.130	3950853.669	1347164.849	432.054	
10.131	3950855.502	1347162.042	432.065	
10.132	3950856.654	1347161.098	432.147	
10.133	3950857.051	1347161.284	432.141	
11.1	3950864.772	1347168.438	431.996	
11.2	3950864.792	1347168.522	431.973	
11.3	3950864.742	1347168.513	431.949	
11.4	3950864.725	1347168.468	431.966	
11.5	3950864.700	1347168.487	431.959	
11.6	3950864.694	1347168.493	431.985	
11.7	3950864.679	1347168.468	432.012	
11.8	3950864.717	1347168.463	432.033	
11.9	3950865.164	1347168.303	432.002	
11.10	3950864.934	1347168.396	432.006	
11.11	3950865.027	1347168.285	432.402	
11.12	3950866.802	1347165.554	432.398	
11.13	3950868.553	1347162.206	432.277	

11.14	3950870.532	1347158.598	432.188	
11.15	3950872.854	1347155.507	432.133	
11.16	3950876.257	1347152.680	432.131	
11.17	3950879.961	1347149.821	432.050	
11.18	3950883.516	1347147.332	432.054	
11.19	3950887.415	1347145.071	431.993	
11.20	3950891.105	1347142.881	431.930	
11.21	3950895.291	1347141.151	431.770	
11.22	3950899.739	1347139.697	431.783	
11.23	3950903.948	1347138.518	431.833	
11.24	3950908.275	1347138.174	431.957	
11.25	3950912.757	1347138.832	432.278	
11.26	3950917.413	1347139.322	432.085	
11.27	3950922.010	1347140.103	432.012	
11.28	3950926.067	1347141.671	431.895	
11.29	3950930.376	1347143.485	432.073	
11.30	3950934.585	1347145.058	432.006	
11.31	3950938.725	1347146.479	431.966	
11.32	3950942.886	1347148.083	431.922	
11.33	3950946.958	1347149.836	431.994	
11.34	3950950.366	1347152.353	432.168	
11.35	3950954.090	1347155.098	432.195	
11.36	3950957.121	1347158.110	432.110	
11.37	3950959.128	1347162.258	432.013	
11.38	3950961.156	1347166.428	432.012	
11.39	3950963.047	1347170.299	432.045	
11.40	3950965.122	1347174.319	431.858	
11.41	3950967.583	1347177.654	431.877	
11.42	3950969.525	1347181.757	431.865	
11.43	3950970.687	1347186.335	431.919	
11.44	3950971.860	1347190.867	432.094	
11.45	3950973.036	1347195.534	432.153	
11.46	3950972.830	1347200.025	431.968	
11.47	3950972.311	1347204.496	431.829	
11.48	3950971.599	1347209.256	431.760	
11.49	3950970.465	1347213.637	431.829	
11.50	3950969.073	1347217.998	431.763	
11.51	3950967.630	1347221.769	431.894	
11.52	3950965.779	1347225.920	431.820	

11.53	3950963.619	1347230.046	431.955	
11.54	3950961.111	1347233.859	431.954	
11.55	3950958.404	1347237.632	431.957	
11.56	3950955.519	1347241.595	431.945	
11.57	3950952.541	1347245.144	431.804	
11.58	3950948.997	1347248.276	431.896	
11.59	3950945.567	1347251.443	432.134	
11.60	3950942.176	1347254.499	431.895	
11.61	3950939.075	1347257.397	431.869	
11.62	3950935.318	1347259.847	431.814	
11.63	3950931.227	1347261.882	431.997	
11.64	3950926.845	1347263.340	431.934	
11.65	3950922.421	1347264.607	431.893	
11.66	3950917.981	1347265.369	431.798	
11.67	3950913.693	1347265.868	431.770	
11.68	3950909.083	1347265.980	431.764	
11.69	3950904.823	1347265.661	431.594	
11.70	3950900.602	1347265.273	431.650	
11.71	3950896.203	1347264.452	431.679	
11.72	3950891.743	1347263.176	431.736	
11.73	3950887.288	1347260.962	431.841	
11.74	3950883.257	1347258.896	431.776	
11.75	3950879.098	1347256.588	431.626	
11.76	3950875.127	1347254.097	431.554	
11.77	3950871.327	1347251.009	431.705	
11.78	3950867.642	1347247.804	431.936	
11.79	3950864.060	1347244.565	431.731	
11.80	3950860.728	1347241.346	431.627	
11.81	3950857.601	1347238.111	431.593	
11.82	3950854.530	1347234.567	431.828	
11.83	3950851.472	1347230.990	431.938	
11.84	3950848.504	1347227.245	431.855	
11.85	3950846.413	1347222.862	431.769	
11.86	3950845.490	1347218.500	431.925	
11.87	3950844.421	1347213.975	432.010	
11.88	3950843.766	1347209.507	432.035	
11.89	3950843.384	1347205.315	431.979	
11.90	3950843.733	1347200.911	431.929	
11.91	3950844.661	1347196.497	431.926	

11.92	3950846.170	1347192.016	431.829	
11.93	3950848.670	1347188.159	431.902	
11.94	3950851.710	1347184.508	431.993	
11.95	3950854.841	1347180.977	431.954	
11.96	3950857.743	1347177.539	432.018	
11.97	3950860.863	1347174.846	431.966	
11.98	3950864.151	1347172.417	431.852	
11.99	3950866.167	1347170.451	431.889	
11.100	3950866.955	1347169.914	431.889	
11.101	3950867.784	1347169.793	431.967	
11.102	3950868.126	1347169.889	431.939	
11.103	3950867.965	1347170.070	431.969	
12	3951031.504	1347103.808	432.517	
13.1	3951128.558	1347028.312	435.513	
13.2	3951128.551	1347028.247	435.560	
13.3	3951128.497	1347028.208	435.530	
13.4	3951128.516	1347028.201	435.481	
13.5	3951128.493	1347028.230	435.487	
13.6	3951128.461	1347028.318	435.463	
13.7	3951129.844	1347028.952	436.018	
13.8	3951132.447	1347029.228	435.912	
13.9	3951134.451	1347029.992	435.970	
13.10	3951136.574	1347030.050	435.992	
13.11	3951138.807	1347030.493	436.041	
13.12	3951140.609	1347030.680	436.140	
13.13	3951142.776	1347031.315	435.775	
13.14	3951143.946	1347031.099	435.386	
13.15	3951143.983	1347031.067	435.409	
13.16	3951144.207	1347031.166	435.324	
13.17	3951144.328	1347031.303	435.422	
13.18	3951145.123	1347028.579	435.556	
13.19	3951145.970	1347025.535	436.016	
13.20	3951146.628	1347022.836	435.916	
13.21	3951146.028	1347022.425	435.298	
13.22	3951146.290	1347022.657	435.411	
13.23	3951146.245	1347022.653	435.455	
13.24	3951146.420	1347022.935	435.358	
13.25	3951145.764	1347022.214	435.354	
13.26	3951144.586	1347021.324	435.732	

13.27	3951141.876	1347020.299	435.524	
13.28	3951138.539	1347020.162	435.084	
13.29	3951134.905	1347019.748	435.597	
13.30	3951132.081	1347019.183	435.520	
13.31	3951129.763	1347019.132	435.218	
13.32	3951129.638	1347018.969	435.166	
13.33	3951130.271	1347018.736	435.362	
13.34	3951130.785	1347018.543	435.226	
13.35	3951130.262	1347018.918	435.301	
13.36	3951130.495	1347018.610	435.228	
13.37	3951130.510	1347018.836	435.269	
13.38	3951130.008	1347019.252	436.632	
13.39	3951128.967	1347020.450	436.727	
13.40	3951129.769	1347021.777	435.250	
13.41	3951129.046	1347023.184	435.955	
13.42	3951129.113	1347024.116	436.195	
13.43	3951129.021	1347025.233	436.544	
13.44	3951128.123	1347027.165	437.289	
13.45	3951128.684	1347028.829	435.608	
13.46	3951128.422	1347028.556	435.634	
13.47	3951128.571	1347029.025	434.990	
13.48	3951128.877	1347029.286	435.004	
13.49	3951129.309	1347029.439	434.935	
13.50	3951128.876	1347029.573	434.958	
13.51	3951128.856	1347029.636	435.031	
14	3951087.488	1346989.890	433.817	
15	3950960.004	1347105.593	438.922	
16	3950174.401	1346491.525	428.671	
17	3951001.218	1347125.382	434.390	
18	3951029.799	1347100.008	432.053	
19	3950918.760	1347031.256	432.397	
20	3951079.689	1347208.816	433.038	
21	3951028.326	1347306.465	432.069	
22	3950930.377	1347393.767	432.216	
23	3950810.142	1347330.367	432.599	
24	3950774.731	1347224.615	434.484	
25	3950708.789	1347228.557	431.873	
26	3950703.653	1347200.619	432.452	
27.1	3950703.547	1347200.851	432.417	

27.2	3950703.549	1347200.845	432.401	
27.3	3950703.558	1347200.839	432.396	
27.4	3950703.883	1347199.900	432.603	
27.5	3950704.367	1347197.453	432.894	
27.6	3950706.354	1347195.318	432.648	
27.7	3950709.327	1347192.115	432.800	
27.8	3950712.427	1347188.080	432.869	
27.9	3950715.201	1347184.067	432.899	
27.10	3950718.234	1347180.127	432.665	
27.11	3950721.292	1347175.903	432.439	
27.12	3950724.521	1347171.498	432.835	
27.13	3950727.138	1347167.632	433.063	
27.14	3950729.768	1347163.599	433.320	
27.15	3950732.632	1347159.704	433.238	
27.16	3950735.173	1347155.678	433.160	
27.17	3950737.725	1347151.916	433.007	
27.18	3950739.930	1347147.858	432.911	
27.19	3950742.424	1347143.683	432.874	
27.20	3950745.044	1347139.423	432.912	
27.21	3950748.082	1347135.215	432.958	
27.22	3950750.930	1347131.031	433.144	
27.23	3950753.980	1347127.147	433.208	
27.24	3950757.128	1347123.051	433.385	
27.25	3950760.342	1347119.080	433.434	
27.26	3950763.006	1347115.010	433.430	
27.27	3950765.844	1347110.991	433.394	
27.28	3950768.638	1347106.974	433.113	
27.29	3950771.349	1347102.750	433.072	
27.30	3950774.084	1347098.720	433.035	
27.31	3950776.855	1347094.399	433.123	
27.32	3950780.017	1347090.018	433.185	
27.33	3950783.034	1347085.954	433.488	
27.34	3950786.101	1347082.079	433.695	
27.35	3950789.398	1347078.326	433.609	
27.36	3950792.864	1347074.711	433.534	
27.37	3950796.348	1347071.289	433.868	
27.38	3950799.057	1347068.125	434.040	
27.39	3950802.193	1347064.802	433.995	
27.40	3950805.671	1347060.856	433.917	

27.41	3950809.013	1347057.451	433.830	
27.42	3950812.353	1347053.697	433.820	
27.43	3950815.751	1347050.073	433.681	
27.44	3950819.180	1347046.428	433.575	
27.45	3950822.525	1347042.680	433.426	
27.46	3950825.921	1347039.040	433.439	
27.47	3950829.462	1347035.574	433.357	
27.48	3950833.072	1347031.853	433.200	
27.49	3950837.310	1347028.635	432.902	
27.50	3950842.267	1347025.807	432.289	
27.51	3950847.266	1347023.399	432.288	
27.52	3950852.363	1347021.635	432.367	
27.53	3950857.323	1347020.485	432.444	
27.54	3950862.220	1347019.563	432.415	
27.55	3950867.149	1347019.046	432.595	
27.56	3950871.876	1347019.599	432.483	
27.57	3950876.398	1347020.971	432.411	
27.58	3950878.213	1347020.267	432.402	
27.59	3950878.274	1347017.711	432.199	
27.60	3950878.004	1347017.455	432.186	
27.61	3950878.002	1347017.539	432.159	
27.62	3950878.039	1347017.465	432.132	
27.63	3950878.042	1347017.437	432.117	
27.64	3950878.056	1347017.435	432.110	
27.65	3950878.084	1347017.389	432.111	
27.66	3950878.075	1347017.365	432.100	
27.67	3950878.038	1347017.361	432.106	
27.68	3950878.036	1347017.398	432.102	
27.69	3950878.044	1347017.413	432.096	
28.1	3950926.076	1347012.121	432.556	
28.2	3950926.100	1347012.102	432.547	
28.3	3950926.097	1347012.128	432.538	
28.4	3950926.090	1347012.088	432.561	
28.5	3950926.102	1347012.139	432.568	
28.6	3950926.138	1347012.119	432.563	
28.7	3950926.134	1347012.125	432.531	
28.8	3950926.121	1347012.128	432.516	
28.9	3950926.111	1347012.108	432.501	
28.10	3950926.103	1347012.105	432.504	

28.11	3950926.119	1347012.125	432.483	
28.12	3950926.124	1347012.111	432.509	
28.13	3950926.116	1347012.139	432.520	
28.14	3950926.146	1347012.150	432.553	
28.15	3950926.150	1347012.108	432.536	
28.16	3950926.141	1347012.120	432.522	
28.17	3950926.168	1347012.141	432.534	
28.18	3950926.147	1347012.109	432.540	
28.19	3950926.156	1347012.125	432.533	
28.20	3950926.180	1347012.176	432.580	
28.21	3950926.194	1347012.174	432.555	
28.22	3950926.209	1347012.153	432.557	
28.23	3950926.222	1347012.186	432.540	
28.24	3950926.231	1347012.188	432.533	
28.25	3950926.244	1347012.192	432.533	
28.26	3950926.235	1347012.185	432.521	
28.27	3950926.205	1347012.164	432.501	
28.28	3950926.179	1347012.156	432.510	
28.29	3950926.167	1347012.138	432.497	
28.30	3950926.177	1347012.157	432.520	
28.31	3950927.022	1347012.404	432.754	
28.32	3950929.955	1347011.952	432.594	
28.33	3950934.816	1347010.971	432.560	
28.34	3950939.882	1347009.555	432.481	
28.35	3950944.969	1347007.888	432.560	
28.36	3950950.189	1347006.479	432.703	
28.37	3950955.325	1347005.956	432.525	
28.38	3950960.751	1347005.002	432.581	
28.39	3950966.155	1347003.903	432.436	
28.40	3950971.066	1347002.708	432.153	
28.41	3950976.010	1347001.258	432.014	
28.42	3950981.104	1346999.859	432.018	
28.43	3950986.155	1346998.447	431.639	
28.44	3950991.076	1346996.967	431.357	
28.45	3950996.065	1346996.342	431.376	
28.46	3951001.163	1346995.471	432.922	
28.47	3951004.567	1346994.603	433.090	
28.48	3951009.064	1346993.773	433.807	
28.49	3951014.005	1346992.812	434.018	

28.50	3951019.341	1346992.748	433.943	
28.51	3951024.501	1346992.639	433.872	
28.52	3951024.301	1346992.625	433.785	
28.53	3951029.707	1346992.293	433.785	
28.54	3951034.823	1346992.293	433.166	
28.55	3951045.053	1346991.754	432.950	
28.56	3951050.451	1346992.117	432.813	
28.57	3951054.798	1346992.343	432.532	
28.58	3951059.597	1346992.475	432.704	
28.59	3951063.992	1346992.794	432.729	
28.60	3951068.933	1346992.481	432.854	
28.61	3951072.842	1346991.929	433.041	
28.62	3951076.050	1346991.601	433.071	
28.63	3951079.887	1346992.047	433.625	
28.64	3951083.552	1346992.063	433.728	
28.65	3951081.460	1346993.257	434.075	
28.66	3951078.678	1346992.418	433.352	
28.67	3951075.426	1346994.640	432.913	
28.68	3951070.996	1346997.258	432.802	
28.69	3951066.474	1346999.421	432.358	
28.70	3951062.184	1347001.528	432.312	
28.71	3951057.954	1347003.901	432.459	
28.72	3951053.409	1347005.571	432.449	
28.73	3951048.570	1347007.097	432.304	
28.74	3951044.156	1347009.095	432.134	
28.75	3951039.359	1347010.978	432.157	
28.76	3951034.473	1347013.184	432.187	
28.77	3951030.576	1347016.612	431.855	
28.78	3951027.005	1347020.718	431.855	
28.79	3951023.631	1347024.603	431.971	
28.80	3951020.375	1347028.600	432.016	
28.81	3951017.190	1347032.776	432.152	
28.82	3951013.795	1347036.708	432.324	
28.83	3951010.653	1347040.990	432.679	
28.84	3951008.007	1347045.153	432.551	
28.85	3951005.190	1347048.984	432.502	
28.86	3951002.254	1347053.450	432.384	
28.87	3950999.521	1347057.835	432.460	
28.88	3950996.280	1347061.925	432.511	

28.89	3950992.771	1347066.158	432.534	
28.90	3950989.107	1347070.282	432.651	
28.91	3950986.573	1347073.065	433.094	
28.92	3950986.388	1347074.184	433.081	
28.93	3950984.706	1347075.472	433.613	
28.94	3950982.755	1347079.378	433.491	
28.95	3950980.359	1347083.273	433.516	
28.96	3950977.659	1347087.288	433.762	
28.97	3950974.809	1347090.881	434.051	
28.98	3950971.906	1347094.739	434.514	
28.99	3950968.703	1347098.509	434.785	
28.100	3950965.379	1347101.802	434.821	
28.101	3950962.200	1347104.795	434.869	
28.102	3950960.744	1347106.805	435.046	
28.103	3950960.639	1347107.098	434.998	
29	3950806.905	1347100.308	433.397	
CLGO	3978092.237	1351163.021	612.287	

6/21/2018 11:25:08	C:\Users\robbo\Desktop\New folder (2)\Baseline	Trimble Business Center
AM	processing SLR.vce	

REPORT

FIRE TRAINING PIT SITE CHARACTERIZATION FAIRBANKS INTERNATIONAL AIRPORT, ALASKA

LABORATORY DATA QUALITY ASSURANCE REVIEW

AUGUST 2018

Prepared by: Jennifer McLean **Reviewed by:** Christophe Venot

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number 105.01288.18002 ADEC Number 100.38.070

ACRONYMS AND ABBREVIATIONS

NFGNational Functional GuidelinesPAHpolynuclear aromatic hydrocarbonsPFBSperfluorobutane sulfonic acidPFASper- and polyfluoroalkyl substancesPFHpAperfluoroheptanoic acidPFHxSperfluorohexane sulfonic acidPFNAperfluorononanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMSL B International Corporation	PAHpolynuclear aromatic hydrocarbonsPFBSperfluorobutane sulfonic acidPFASper- and polyfluoroalkyl substancesPFHpAperfluoroheptanoic acidPFHxSperfluorohexane sulfonic acidPFNAperfluorooctanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery group	AAC ADEC AK ALS °C CCV COC DL DRO EDD GRO ID LCL LCS LCSD LOD LOQ LV mg/L MB MS MSD NA	Alaska Administrative Code Alaska Department of Environmental Conservation Alaska ALS Environmental degrees Celsius continuing calibration verification chain of custody detection limit diesel range organics electronic data deliverable gasoline range organics identifier lower control limit laboratory control sample laboratory control sample laboratory control sample duplicate limit of detection limit of quantitation low volume milligrams per liter method blank matrix spike matrix spike duplicate not applicable
PFBSperfluorobutane sulfonic acidPFASper- and polyfluoroalkyl substancesPFHpAperfluoroheptanoic acidPFHxSperfluorohexane sulfonic acidPFNAperfluorononanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROsample delivery groupSIMselective ion monitoring	PFBSperfluorobutane sulfonic acidPFASper- and polyfluoroalkyl substancesPFHpAperfluoroheptanoic acidPFHxSperfluorohexane sulfonic acidPFNAperfluorooctanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	NFG	National Functional Guidelines
PFNAperfluorononanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoring	PFNAperfluorononanoic acidPFOAperfluorooctanoic acidPFOSperfluorooctane sulfonic acidQAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	PFBS PFAS	perfluorobutane sulfonic acid per- and polyfluoroalkyl substances
QAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoring	QAquality assuranceQARquality assurance reviewQCquality controlRCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	PFNA PFOA	perfluorononanoic acid perfluorooctanoic acid
RCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoring	RCRAResource and Conservation Recovery ActRPDrelative percent differenceRROresidual range organicsSDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	QA	quality assurance
SDGsample delivery groupSIMselective ion monitoring	SDGsample delivery groupSIMselective ion monitoringSLRSLR International CorporationSGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	RCRA RPD	Resource and Conservation Recovery Act relative percent difference
	SGSSGS North America, Inc.TCLPtoxicity characteristic leaching procedureUundetected	SDG SIM	sample delivery group selective ion monitoring

Introduction

This report summarizes a review of analytical data for samples collected on June 7, 2018 and June 8, 2018 in support of the Fire Training Pit Site Characterization at the Fairbanks International Airport, Fairbanks, Alaska. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc. (SGS) and ALS Environmental (ALS) provided analytical support to the project. SGS and ALS both maintain current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (SGS Number UST-005 and ALS Number UST-040) for analytical methods of interest, as applicable. Table 1 provides a summary of the work orders, sample receipt, analytical methods, and analytes.

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Analytical Laboratory Performing Analysis	
			SGS		AK101	GRO		
		6/8/2018	Fairbanks		AK102	DRO		
	100270		0.3 °C 0.1 °C SGS Anchorage		AK103	RRO		
1189378				Soil And	SW8260C	VOCs	SGS	
1109370				Water	SW6020A	RCRA Metals	363	
	6/7-8/2018			age C	SW1311/6020A	TCLP Metals		
			2.7°C		SW8270D	PAH SIM		
			2.8 °C	2.8 °C		SW8270D LV ¹	PAH SIM	
K1805460		6/9/2018	2.2 °C	Soil And Water	537M	PFAS ²	ALS	

Notes:

1 – The low volume (LV) method is used for water samples only.

2 - Perfluorinated compounds requested and analyzed were perfluorobutane sulfonic acid (PFBS),

perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA).

Acronyms:

°C – degrees Celsius

DRO – diesel range organics

GRO – gasoline range organics

LV – low volume

PAH SIM – polynuclear aromatic hydrocarbons - selective ion monitoring

PFAS – perfluorinated compounds

RCRA – Resource and Conservation Recovery Act

RRO - residual range organics

SDG – sample delivery group

TCLP – toxicity characteristic leaching procedure

VOCs – volatile organic compounds

The SGS laboratory final report was provided as a Level II deliverables. The ALS laboratory final report was provided as a Level IV deliverable. Both included documentation of the delivery group chain of custodies (COCs) and sample receipt condition. Microsoft Access or Excel compatible electronic data deliverables (EDDs) for the reports were also provided. The PDF laboratory reports are provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratories maintain internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the project Work Plan (SLR, 2018), the ADEC Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (ADEC, 2017b), National Functional Guidelines (NFG) [United States Environmental Protection Agency (USEPA), 2014], analytical method criteria, and laboratory criteria. ADEC Laboratory Data Review Checklists were completed for each SDG, and are included as Attachment 1 to this QAR. A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals; Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD), and Matrix Spike (MS) and Matrix Spike Duplicate (MSD), were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, MS/MSD, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for, but was not detected above the limit of detection (LOD). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the detection limit (DL). This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed or matrix effect. Where applicable, a "+" or "-" was appended to indicate a high bias, or a low bias respectively.
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than ten times that of the blank. Where applicable, "U" was appended prior to the "B" to indicate the blank detection is greater than the sample detection and the result is likely a false positive.

Table 2 Data Qualifiers

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data packages were checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data packages, except as noted below.

Work order 1189378

 The COC listed "RCRA metals TCLP SW 6020A" for soil and water samples. Via email and discussion between SLR personnel and SGS it was determined that soil samples should be analyzed by TCLP RCRA metals (SW1311/SW6020A) and water samples analyzed for total RCRA metals by SW6020A. All samples were analyzed for the requested methods. Data was not impacted.

Work order K1805460

• The COC requested a level II deliverable data package, but the laboratory provided a level IV report. Data was not impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of the samples, except as noted below.

Work order 1189378

- Sample SS3 DRO and RRO sample was received in an SGS provided 250 mL jar instead of the 4 ounce jar typically used for soil samples. Adequate volume was provided in a method appropriate container. Data was not impacted.
- Samples MW3 and MW29 arrived at the laboratory with one or more VOA vials containing air bubbles greater than 6 millimeters. For sample MW3, only one of six VOA vials contained headspace. For sample MW29, three of six VOA vials contained air bubbles. In both instances, presumably the laboratory used VOA vials without headspace for analysis. Data was not impacted.

Work order K1805460

- The type and condition of ice, presence/absence and condition of custody seals was not recorded on the COC. These were documented on the sample receipt form. Sample integrity was not compromised. Data was not impacted.
- The six perfluorinated sulfonic acids and perfluorinated carboxylic acids requested were not listed on the COC. They were noted on the project bid and confirmed via email upon submittal of samples to ALS laboratory. Data was not impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS and ALS. Sample analyses were conducted within holding time criteria. No issues were noted in regard to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were undetected (U) in any method blanks at or above the LOD or DL, except as listed in Table 3. Associated sample results of U or greater than ten times that of the blank detection were considered unaffected, and were not shown in Table 3. Data were qualified as noted in the table with either a "B" to indicate associated sample detection within ten times that of the blank, potentially biased high, or a "UB" to indicate detections less than the blank detection, potentially a false positive. Since a high bias was indicated, and all affected results were below applicable regulatory criteria, data usability was not impacted.

SDG	Sample ID	Lab ID	Batch	Method	Analyte	Result	LOD	Flag	Applicable Cleanup Criteria ¹
						(mg/kg)	(mg/kg)		(mg/L)
	MB	1452274	MXT5639	SW1311/6020A	TCLP Chromium	0.0101	0.01	J	NA
	BH99	1189378009	MXT5639	SW1311/6020A	TCLP Chromium	0.0859	0.1	J, B	5.0 ¹
	MB	1452274	MXT5639	SW1311/6020A	TCLP Mercury	0.000557	0.0005	J	NA
	BH2-D	1189378004	MXT5639	SW1311/6020A	TCLP Mercury	0.00385	0.005	J, B	0.2 ¹
	BH3-S	1189378005	MXT5639	SW1311/6020A	TCLP Mercury	0.00362	0.005	J, B	0.2 1
	BH3-D	1189378006	MXT5639	SW1311/6020A	TCLP Mercury	0.00437	0.005	J, B	0.2 ¹
1189378	BH4-S	1189378007	MXT5639	SW1311/6020A	TCLP Mercury	0.00372	0.005	J, B	0.2 ¹
1109370						(mg/L)	(mg/L)		(mg/L)
	MB	1451489	MXX31638	SW6020A	Mercury	0.0000751	0.0001	J	NA
	MW1	1189378016	MXX31638	SW6020A	Mercury	0.0000667	0.0001	J, UB	0.00052
	MW2	1189378017	MXX31638	SW6020A	Mercury	0.000171	0.0001	J, B	0.00052
	MW3	1189378018	MXX31638	SW6020A	Mercury	0.0000883	0.0001	J, B	0.00052
	MW4	1189378019	MXX31638	SW6020A	Mercury	0.0000734	0.0001	J, UB	0.00052
	MW29	1189378020	MXX31638	SW6020A	Mercury	0.0000952	0.0001	J, B	0.00052
	MB	KQ1807849-03	315741	537M	PFNA	0.0000012	0.00000188	J	NA ²
	MW3	K1805460-033	315741	537M	PFNA	0.000002	0.00000188	J, B	NA ²
	MW2	K1805460-034	315741	537M	PFNA	0.000011	0.0000188	J, B	NA ²
K1805460 ³	MW4	K1805460-035	315741	537M	PFNA	0.0000011	0.00000188	J, UB	NA ²
	MW29	K1805460-036	315741	537M	PFNA	0.0000094	0.0000188	J, B	NA ²
	MB	KQ1807913-02	315742	537M	PFNA	0.00036	0.0006	J	NA ²
	SW1	K1805460-037	315742	537M	PFNA	0.0013	0.0006	J, B	NA ²
						(mg/kg)	(mg/kg)		(mg/kg)
	MB	KQ1807773-04	315665	537M	PFHxS	0.00024	0.00034	J	NA ²
	BH3-S	K1805460-001	315665	537M	PFHxS	0.0011	0.00034	В	NA ²
	BH2-S	K1805460-003	315665	537M	PFHxS	0.00098	0.00034	В	NA ²
	BH7-D	K1805460-005	315665	537M	PFHxS	0.00096	0.00036	J, B	NA ²
K1805460	BH6-S	K1805460-007	315665	537M	PFHxS	0.00092	0.00034	J, B	NA ²
	BH4-S	K1805460-015	315665	537M	PFHxS	0.0013	0.00034	J, B	NA ²
	BH11-S	K1805460-017	315665	537M	PFHxS	0.00075	0.00034	J, B	NA ²
	BH11-D	K1805460-018	315665	537M	PFHxS	0.0018	0.00034	В	NA ²
	BH12-D	K1805460-020	315665	537M	PFHxS	0.0021	0.00042	J, B	NA ²
	MB	KQ1807773-04	315665	537M	PFNA	0.00023	0.00036	J	NA ²
	BH3-S	K1805460-001	315665	537M	PFNA	0.00027	0.00036	J, B	NA ²
	BH3-D	K1805460-002	315665	537M	PFNA	0.00025	0.00046	J, B	NA ²

Table 3 Method Blank Detections and Affected Samples

SDG	Sample ID	Lab ID	Batch	Method	Analyte	Result	LOD	Flag	Applicable Cleanup Criteria ¹
						(mg/kg)	(mg/kg)		(mg/kg)
	BH2-S	K1805460-003	315665	537M	PFNA	0.00030	0.00036	J, B	NA ²
	BH2-D	K1805460-004	315665	537M	PFNA	0.00022	0.00040	J, UB	NA ²
	BH7-D	K1805460-005	315665	537M	PFNA	0.00029	0.00038	J, B	NA ²
	BH7-S	K1805460-006	315665	537M	PFNA	0.00031	0.00046	J, B	NA ²
	BH6-S	K1805460-007	315665	537M	PFNA	0.0012	0.00036	В	NA ²
	BH6-D	K1805460-008	315665	537M	PFNA	0.00027	0.00038	J, B	NA ²
	BH8-S	K1805460-009	315665	537M	PFNA	0.00033	0.00036	J, B	NA ²
	BH8-D	K1805460-010	315665	537M	PFNA	0.00035	0.00042	J, B	NA ²
	BH9-S	K1805460-011	315665	537M	PFNA	0.00033	0.00040	J, B	NA ²
	BH9-D	K1805460-012	315665	537M	PFNA	0.00033	0.00046	J, B	NA ²
	BH10-S	K1805460-013	315665	537M	PFNA	0.00082	0.00036	J, B	NA ²
	BH10-D	K1805460-014	315665	537M	PFNA	0.0011	0.00036	В	NA ²
	BH4-S	K1805460-015	315665	537M	PFNA	0.00035	0.00036	J, B	NA ²
K4005400 ³	BH4-D	K1805460-016	315665	537M	PFNA	0.00022	0.00042	J, UB	NA ²
K1805460 ³	BH11-S	K1805460-017	315665	537M	PFNA	0.00055	0.00036	J, B	NA ²
	BH11-D	K1805460-018	315665	537M	PFNA	0.00055	0.00036	J, B	NA ²
	BH12-S	K1805460-019	315665	537M	PFNA	0.00031	0.00036	J, B	NA ²
	BH12-D	K1805460-020	315665	537M	PFNA	0.00061	0.00042	J, B	NA ²
	MB	KQ1807793-04	315665	537M	PFNA	0.00022	0.00036	J	NA ²
	BH1-S	K1805460-21	315665	537M	PFNA	0.00059	0.00038	J, B	NA ²
	BH1-D	K1805460-22	315665	537M	PFNA	0.00023	0.00042	J, B	NA ²
	BH5-S	K1805460-23	315665	537M	PFNA	0.00060	0.00036	J, B	NA ²
	BH5-D	K1805460-24	315665	537M	PFNA	0.00023	0.00036	J, B	NA ²
	BH99	K1805460-25	315665	537M	PFNA	0.00025	0.00038	J, B	NA ²
	BH98	K1805460-26	315665	537M	PFNA	0.00036	0.0040	J, B	NA ²
	BH97	K1805460-27	315665	537M	PFNA	0.00073	0.00036	J, B	NA ²
	SS1	K1805460-38	315665	537M	PFNA	0.00060	0.00036	J, B	NA ²
	SS2	K1805460-39	315665	537M	PFNA	0.00097	0.00038	J, B	NA ²
	SS3	K1805460-40	315665	537M	PFNA	0.00053	0.00036	J, Q ⁴	NA ²

Table 3 Method Blank Detections and Affected Samples

Notes:

1 – Cleanup criteria for TCLP are those listed in 40 CFR part 261.24. Cleanup criteria for all other analytes are those listed in 18 AAC 75, Tables B1, B2, and C.

2 - No groundwater criteria currently exist for this analyte.

3 - Per ADEC guidance (ADEC, 2017a), twice the detection limit (DL) was used to estimate the LOD.

4 – This data also had low surrogate recovery. Contradictory flagging (high bias due to blank detection and low bias due to surrogate) was considered inappropriate. Data were qualified "Q" as estimated with unknown bias.

mg/kg – milligrams per kilogram

mg/L – milligrams per kilogram

MB – Method Blank

NA – not applicable

Trip Blanks, Field Blanks and Rinsate Blanks

Trip blanks were analyzed at the appropriate frequencies for all work orders for all appropriate volatile analyses (GRO by AK 101 and VOCs by SW8260C). All trip blanks had results of undetected for all analytes.

For PFAS congeners, one soil rinsate blank was collected per every 20 soil samples and one field blank was collected for each day of sampling. Due to the lack of preservation for Method 537M, both rinsate blanks and field blanks for both soil and water samples were water matrix. All rinsate blanks and field blanks had results of undetected, except as noted in Table 4. Associated sample results of U or greater than ten times that of the blank were considered unaffected, and were not presented in the table. Allowing for reporting units, with field blanks reported in nanograms per liter (ng/L) and soil samples reported in nanograms per gram (ng/g), all associated samples had detectable results well over ten times that of the field blank detections shown. No data was affected. All data was usable without qualification.

SDG	Sample ID	Lab ID	Method	Analyte	Result (mg/L)	LOD (mg/L)	Flag
K1805460	FB2	K1805460-029	537M	PFHxS	0.0000011	0.00000188	J
111003400	FB2	K1805460-029	537M	PFOS	0.0000025	0.000002	J

 Table 4
 Trip Blank, Field Blank, and Rinsate Blank Detections and Affected Data

Reporting Limits

For undetectable results, LODs were compared to applicable regulatory criteria for the site. For waters, LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2017c). For soils, LODs were compared to 18 AAC 75.341 *Method Two Soil Cleanup Levels, the lowest of the Under 40 inch Zone or Migration to Groundwater* (ADEC, 2017c). No groundwater or soil criteria currently exist for PFAS, PFHxS, PFNA, PFBS, and PFHpA. TCLP RCRA metals results were compared to 40 Code of Federal Regulations (CFR), Part 261.24.

Except as noted in Tables 2 and 3 of the report, all results of undetectable analytes had LODs at or below applicable regulatory levels. For select VOC analytes, typical laboratory technological methodology limitations resulted in LODs which did not meet the ADEC limits. Where LODs did not meet project action limits, the analytical data for these samples for these analytes is valid, but it was not possible to report with complete certainty whether the analyte was present in the sample below the LOD but above regulatory criteria. The usability of the data is limited for this purpose. All data is usable, and all results of not detected confirm the absence of target analyte to the level of the reported LOD.

Continuous Calibration Verifications (CCVs)

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD for the SGS laboratory report, not in the case narrative. CCV data was included only in the PDF for the ALS laboratory report. All CCV recoveries were within acceptable limits for ALS. All CCV recoveries were within acceptable limits for SGS, except as noted below.

For work order 1189378

• For Method SW8260C, one CCV for batch VMS17882 recovered at 124% for hexachlorobutadiene, slightly above acceptable upper control limit (UCL) of 120%. All

associated samples had undetectable results for the impacted analyte; therefore, data was not affected. All data was usable without qualification.

• For Method SW8260C, one CCV for batch VMS17897 recovered at 126% for bromomethane, slightly above acceptable UCL of 120%. All associated samples had undetectable results for the impacted analyte; therefore, data was not affected. All data was usable without qualification.

Internal Standard Results

No internal standards were noted in the case narrative as being outside of acceptance limits for the SGS laboratory report. Internal standard performance was not otherwise presented in the SGS laboratory report or in the EDD. All internal standards were within acceptable limits as reviewed in the ALS laboratory report. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. Surrogates were not evaluated when samples were analyzed at dilutions of greater than five-fold as surrogate may not accurately quantify target analyte at such dilutions. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted in Table 5. Data qualified as noted in the table included:

- Fluoroanthrene-d10 surrogate recovery exceedance was likely due to matrix interference, thus the impact to data was considered minimal. All data was usable as qualified; and
- For PFNA surrogate recovery exceedance, no cleanup criteria exist, therefore data was considered usable as qualified.

For the affected PAH SIM analytes, all results were undetectable with LODs well below applicable cleanup criteria. Therefore, all data was usable as qualified.

SDG	Sample ID	Lab ID	Method Analyte	Surrogate	Sur. Rec.	Dil	LCL- UCL	Result (mg/kg)	Flag
1189378	SW1	1189378021	SW8270D	Fluoroanthene-d10	19%	1	24- 116%	U	UJ ¹
K1805460	SS3	K1805460- 040	537M PFNA	13C5-PFNA	45%	1	50- 150%	0.00053 J	Q ²

Table 5	Surrogate Recovery Exceedances and Affected Data
---------	--

Notes:

1 – Analytes associated with fluoranthene-d10 surrogate, thus impacted, are benzo(a)Anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-c,d] pyrene, and pyrene. Per NFG guidelines these analytes were qualified UJ, and should be considered as estimated non-detects. 2 – This data also had a high bias indicated due to an associated blank detection. Contradictory flagging (high bias due to blank detection and low bias due to surrogate recovery) was considered inappropriate. Data were qualified "Q" as estimated with unknown bias.

Dil. – dilution

LCL – lower control limit UCL – upper control limit

Acronyms

Laboratory Control Samples and Laboratory Control Duplicate Samples

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within acceptable limits, except as noted below.

For work order 1198378

 For chloromethane by Method SW8260C, the LCS/LCSD RPD of 21% for batch VXX32390 slightly exceeded the allowable limit of 20%. This batch also included a nonproject specific MS/MSD pair with an acceptable RPD for chloromethane. Samples MW1, MW2, MW3, MW4, MW29, and SW1, and Trip Blank 2 were included in this batch. All samples included in the batch had undetectable results for chloromethane. It was considered inappropriate to qualify undetectable results as having unknown bias based on an RPD exceedance. All data was considered usable without qualification.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD percent recoveries and RPDs were within acceptable limits, except as listed in Table 6. MS/MSD recoveries and RPDs were not evaluated, or listed, when the parent sample concentrations were greater than four times that of the spike amount, or when the MS/MSD were analyzed at a dilution of greater than five-fold due to matrix or high target analyte concentration, as these may impede accurate recovery quantification. In all cases the associated LCS recoveries were within acceptable limits establishing batch accuracy. Except as noted in the LCS/LCSD section, all LCS/LCSD RPDs were within acceptable limits establishing precision. Where an LCS/LCSD established accuracy and/or precision, only the MS/MSD parent sample was considered impacted, thus qualified due to an MS/MSD recovery or RPD exceedance.

For PFOS, where a high bias was indicated, the detected result was over 30-fold above the applicable ADEC criteria. All data was usable as qualified.

Table 6	MS/MSD Recovery	and RPD Exceedances and Affected Data
---------	-----------------	---------------------------------------

SDG	Parent Sample ID [Lab ID]	Batch	Method	Analyte	Parent Result	MS Recovery	MSD Recovery	LCL- UCL	MS/MSD RPD	RPD Limit	Flag
					(mg/L)						
	Non Project Specific 1452448 MS/MSD [1452449/1452450]	VXX32390	SW8260C	several analytes	varied	range of exceedances 127%-170%	range of exceedances 72%-155%	range of exceeded limits (66%- 143%)	33% (butanone only)	20%	NA ¹
1189378	Non Project Specific 1453232 [1453233/1453234]	VXX32418	SW8260C	Trichloro fluoromethane	U	109%	137%	62-140%	23%	20%	NA ²
	Non Project Specific 1453477 [1453478/1453479]	VXX32426	SW8260C	several analytes	varied	range of exceedances 47%-156%	range of exceedances 54%-72%	range of exceeded limits (75%- 135%)	21%-27% (4 analytes exceeded)	20%	NA ³
					mg/kg						
K1805460	BH1-S	315682	537M	PFOS	0.100	177%	123%	50%-150%	36%	50%	Q+ ⁴

Notes:

1 – The LCS and LCSD recovered within acceptable limits, establishing batch accuracy. Also, except as noted in the LCS/LCSD section, all LCS/LCSD RPDs were within acceptable limits, establishing batch precision. Data were not qualified based on non-project specific MS/MSD exceedances.

2 – The LCS for this batch recovered within acceptable limits for all analytes, establishing accuracy. Because no LCSD was analyzed, the only measure of precision for this batch is the non-project specific MS/MSD. Trichlorofluoromethane results for batch associated samples BH1-S, BH1-D, BH2-S, AND BH2-D were all undetectable. It was considered inappropriate to qualify undetectable results as estimated values with unknown bias. All data was considered usable without qualification.

3 - The LCS for this batch recovered within acceptable limits for all analytes, establishing accuracy. Because no LCSD was analyzed, the only measure of precision for this batch is the non-project specific MS/MSD. Only Trip Blank 1 was included in this batch, with all results of undetectable. Data was considered not impacted. All data was usable without qualification.

4 – The LCS recovered within acceptable limits, establishing batch accuracy. Per NFG guidelines (NFG, 2014), the original (parent) sample was qualified as having an estimated value with unknown bias.

Field Duplicates

The field duplicate sample frequency is presented in Table 7. Parent sample and field duplicates are presented in Table 8. For all methods and analytes, the frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

Samples SS1, SS2, SS3, and SW1 were collected for waste characterization purposes only. Field duplicates are not required for waste characterization samples. These samples are excluded from the parent sample and field duplicate counts.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters and 50% for soils, except as noted in Table 9, with chronologically associated samples listed in the table footnotes. Parent sample/field duplicate pairs were qualified as shown in the table. For all chronologically associated field samples and analytes, detected results were qualified "Q" and non-detect results were qualified "UJ".

To err on the conservative, for parent sample and field duplicate pairs, the higher of the two values should be used for reporting purposes. In all cases, laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. All data was considered usable as qualified.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

SDG	Matrix	No. of Primary Samples	No. of Field Duplicates	Method	Analyte
		8	1	GRO	AK101
		10	2	DRO	AK102
	coil	10	2	RRO	AK103
	soil	8	1	SW8260C	VOCs
		8	1	SW8270D	PAH SIM
1189378		8	1	TCLP RCRA Metals	SW1311/SW6020A
1109370	water	4	1	GRO	AK101
		4	1	DRO	AK102
		4	1	RRO	AK103
		4	1	SW8260C	VOCs
		4	1	SW8270D LV	PAH SIM
		4	1	RCRA Metals	SW6020A
K1005426	soil	24	3	537M	PFAS
K1805436	water	4	1	537M	PFAS

Table 7Field Duplicate Count

SDG	Matrix	Parent Sample	Field Duplicate	Method	Analytes	RPDs Acceptable (Y/N)
				AK101	GRO	Y
				AK 102	DRO	Y
		BH2-D	BH99	AK103	RRO	Y
	Soil	DHZ-D	рцээ	SW8260C	VOCs	Y
				SW8270D	PAH SIM	Y
				SW1311/SW6020A	TCLP RCRA Metals	Y
1189378		BH7-S BH9		AK 102/AK103	DRO/RRO	Y
				AK101	GRO	Y
				AK 102	DRO	Y
	Matar			AK103	RRO	Y
	Water	MW2	MW29	SW8260C	VOCs	Y
				SW8270D LV	PAH SIM	Y
				SW6020A	RCRA Metals	N
		BH1-S	BH97	537M	PFAS	Y
K1905460	Soil	BH9-D	BH98	537M	PFAS	Y
K1805460		BH2-D	BH99	537M	PFAS	N
	Water	MW2	MW29	537M	PFAS	Y

Table 8 Parent Samples and Field Duplicates

Table 9 Field Duplicate RPD Exceedances and Affected Data

SDG Matrix	Parent Sample	Duplicate Sample	Method	Analyte	Primary Result (mg/L)	Duplicate Result (mg/L)	RPD	Flag
1189378	MW2 ¹	MW20 ¹	MW29 ¹ SW6020A	chromium	0.0094	0.0236	86	Q
Water		1010029		lead	0.00747	0.0113	41	Q
					mg/kg	mg/kg		
K1805460 Soil	BH2-D ²	BH99 ²	537M	PFOA	0.0021	0.0012	55	Q

Note:

1 –Samples associated with this field duplicate pair were MW1, MW3, MW4, and SW1. Chromium and lead results for associated samples were qualified either "Q" for detected results or "UJ" for undetectable results.

2 - Three soil field duplicate pairs were collected on June 7, 2018. Samples chronologically associated with this field duplicate pair were BH2-S, BH3-S, BH3-D, BH6-S, BH6-D, BH7-D, BH7-S, BH8-S, BH8-D, and BH9-S. PFOA results for associated samples were qualified either "Q" for detected results or "UJ" for undetectable results.

Laboratory Duplicate Samples

Laboratory duplicates were analyzed at appropriate frequencies for percent solids and PFAS. All duplicate RPDs were within acceptable limits.

Summary of Quality Assurance review

- **Precision:** Precision goals were met, except as noted in the LCS/LCSD, MS/MSD, and Field Duplicates sections.
- Accuracy: Accuracy goals were met, except as noted in the CCV, Surrogate Recovery, and MS/MSD sections.
- **Representativeness:** Representativeness goals were met. The samples were collected from appropriate locations in accordance with planning documents and ADEC requirements.
- **Comparability:** Comparability goals were met. The majority of analysis were performed by SGS, Anchorage. Only PFAS by Method 537M were analyzed at ALS, Kelso. Typical methods were used for all analysis.
- **Completeness:** Completeness goals were met. The data were 100% complete with respect to analysis.
- **Sensitivity:** Sensitivity goals were met, except as noted in the Method Blanks; Trip Blanks, Field Blanks and Rinsate Blanks; and Reporting Limits sections.

This data were considered of good quality acceptable for use with the noted qualifications. No data were rejected.

References

- Alaska Department of Environmental Conservation (ADEC), 2017a. ADEC Technical Memorandum Guidelines for Treatment of Non-Detect Values, Data Reduction for Multiple-Detections and Comparison of Quantitation Limits to Cleanup Values. April.
- ADEC, 2017b. ADEC Technical Memorandum Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. March.
- ADEC, 2017c. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. November 7.
- National Functional Guidelines (NFG), 2014. EPA-540-R-014-002. National Functional Guidelines for Superfund Organic Methods Data Review. August.
- SLR International Corporation (SLR), 2018. Fire Training Pit Site Characterization Work Plan, Fairbanks International Airport. May.
- United States Environmental Protection Agency (USEPA). 2014. National Functional Guidelines for Superfund Organic Methods Data Review. August.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklists Attachment 2 – Laboratory Deliverables Attachment 1 ADEC Laboratory Data Review Checklists

Laboratory Data Review Checklist

Completed	by:
-----------	-----

Nicholas Wells

Title:

Staff Engineer

Date:

July 19, 2018

CS Report Name:

FIA – Fire Training Pit

Report Date:

June 29, 2018

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS Anchorage, AK

Laboratory Report Number:

1189378

ADEC File Number:

100.38.070

Hazard Identification Number:

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
 (•) Yes
 (•) No
 Comments:

All analyses were conducted at SGS, Anchorage. SGS is ADEC CS approved, certificate number UST-005.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

• Yes • No Comments:

Not applicable. All analyses were conducted at SGS, Anchorage.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:
-----	------	-----------

b. Correct analyses requested?

• Yes • No Comments:

The COC listed "RCRA metals TCLP SW 6020A" for soil and water samples. Via email and discussion between SLR personnel and SGS it was determined that soil samples should be analyzed by TCLP RCRA metals (SW1311/SW6020A) and water samples analyzed for total RCRA metals by SW6020A. All samples were analyzed for the requested methods. Data was not impacted.

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

|--|

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

• Yes • No Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
 Yes O No Comments:

Samples MW3 and MW29 arrived at the laboratory with one or more VOA vials containing air bubbles greater than 6 millimeters. For sample MW3, only one of six VOA vials contained headspace. For sample MW29, three of six VOA vials contained air bubbles. In both instances, presumably the laboratory used VOA vials without headspace for analysis. Data was not impacted.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Sample SS3 DRO and RRO sample was received in an SGS provided 250 mL jar instead of the 4 ounce jar typically used for soil samples. Adequate volume was provided in a method appropriate container.

e. Data quality or usability affected?

Comments:

Data was not impacted.

4. Case Narrative

- a. Present and understandable?
 - 💿 Yes 🛛 No

Comments:

b. Discrepancies, errors or QC failures identified by the lab?

🖲 Yes 🛛 No	Comments:
------------	-----------

c. Were all corrective actions documented?

Yes	🖱 No	Comments:	

d. What is the effect on data quality/usability according to the case narrative?

Comments:

No impact.

5. <u>Samples Results</u>

- a. Correct analyses performed/reported as requested on COC?
 - Yes No Comments:

The COC listed "RCRA metals TCLP SW 6020A" for soil and water samples. Via email and discussion between SLR personnel and SGS it was determined that soil samples should be analyzed by TCLP RCRA metals (SW1311/SW6020A) and water samples analyzed for total RCRA metals by SW6020A. All samples were analyzed for the requested methods. Data was not impacted.

b. All applicable holding times met?

• Yes • No Comments:

c. All soils reported on a dry weight basis?

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

○ Yes ⊙ No Comments:

For undetectable results, LODs were compared to 18 Alaska Administrative Code (AAC) 75 Tables B1, B2, and C. TCLP RCRA metals results were compared to 40 Code of Federal Regulations (CFR), Part 261.24.

Except as noted in Tables 2 and 3 of the report, all results of undetectable analytes had LODs at or below applicable regulatory levels. For select VOC analytes, typical laboratory technological methodology limitations resulted in LODs which did not meet the ADEC limits.

e. Data quality or usability affected?

Comments:

Where LODs did not meet project action limits, the analytical data for these samples for these analytes is valid, but it was not possible to report with complete certainty whether the analyte was present in the sample below the LOD but above regulatory criteria. The usability of the data is limited for this purpose. All data is usable, and all results of not detected confirm the absence of target analyte to the level of the reported LOD.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

One method blank for TCLP Chromium and TCLP Mercury was detected above the LOD but below the LOQ. One method blank for total Mercury was detected above the DL but below the LOD.

iii. If above LOQ, what samples are affected? Comments:

N/A

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Batch associated samples with results within ten times that of the blank were qualified "B" for detected results greater than the blank detection, and "UB" for detected results below the blank detection (possibly false positive results).

Qualified data is shown in Table 3 of the QAR.

• Yes O No

Comments:

v. Data quality or usability affected?

Comments:

Since a high bias was indicated, and all affected results were below applicable the applicable regulatory criteria, data usability was not impacted.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
- Yes No Comments:
- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes O No Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

For Method SW8260C:

1- One CCV for batch VMS17882 recovered at 124% for hexachlorobutadiene, slightly above acceptable upper control limit (UCL) of 120%.

2 - One CCV for batch VMS17897 recovered at 126% for bromomethane, slightly above acceptable UCL of 120%.

3 – Two non-project specific batch MS/MSDs had recoveries for several analytes outside acceptable limits. In both instances, the LCS or LCS/LCSD recovered within acceptable limits.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

LCS/LCSD - For chloromethane by Method SW8260C, the LCS/LCSD RPD of 21% for batch VXX32390 slightly exceeded the allowable limit of 20%. This batch also included a non-project specific MS/MSD pair with an acceptable RPD for chloromethane. Samples MW1, MW2, MW3, MW4, MW29, and SW1, and Trip Blank 2 were included in this batch. All samples included in the batch had undetectable results for chloromethane.

MS/MSD – For Method SW8260C, three non-project specific batch MS/MSD pairs had between one and four target analytes with RPDs exceeding the allowed 20% limit.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

CCV recoveries - All associated samples had undetectable results for both impacted analytes; therefore, data was not affected. All data was usable without qualification.

MS/MSD recoveries - Because the LCS or LCS/LCSD established accuracy, only the parent sample, not associated with this project was affected.

LCS/LCSD RPD - It was considered inappropriate to qualify undetectable results as having unknown bias based on an RPD exceedance. All data was considered usable without qualification. MS/MSD RPDs – In all cases, either the LCS/LCSD established batch precision or all associated samples had results of undetectable for the impacted analytes. Undetectable results were considered not impacted by RPD exceedances.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ● No Comments:

It was considered inappropriate to qualify undetectable results as having either unknown bias (due to RPD exceedances) or as having a high bias. No data from this work order was qualified.

vii. Data quality or usability affected?

Comments:

All data for this work order was usable without qualification.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes ⊙ No Comments:

PAH surrogate Fluoroanthene-d10 was recovered outside acceptable limits for one sample: Sample SW1, Fluoroanthene-d10 recovered at 19%, below the lower control limit of 24%.

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
- Yes No Comments:

Analytes associated with fluoranthene-d10 surrogate, thus impacted, are benzo(a)Anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-c,d] pyrene, and pyrene. Per NFG guidelines these analytes were qualified UJ, and should be considered as estimated non-detects.

iv. Data quality or usability affected?

Comments:

All affected analytes have undetectable results with LODs well below the applicable regulatory criteria. Therefore, all data was usable as qualified.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?
 - Yes No Comments:

Trip blanks were analyzed at the appropriate frequencies for all volatile analyses (GRO by AK 101 and VOCs by SW8260C).

- ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
- Yes No Comments:

iii. All results less than LOQ?

○ Yes ○ No Comments:

Yes

iv. If above LOQ, what samples are affected? Comments:

Not applicable. No samples were affected.

v. Data quality or usability affected?

Comments:

All volatile samples were accompanied by a trip blank at all times. No data was affected.

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- Yes No Comments:

Samples SS1, SS2, SS3, and SW1 were collected for waste characterization purposes only. Field duplicates are not required for waste characterization samples. These samples are excluded from the parent sample and field duplicate counts.

- ii. Submitted blind to lab?
- Yes No Comments:

Soil parent sample BH2-D corresponds to duplicate BH99 for all analyses. Soil parent sample BH7-S corresponds to duplicate BH96 for DRO/RRO only. Water parent sample MW2 corresponds to duplicate MW29 for all analyses. iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

```
© Yes <sup>●</sup> No Comments:
```

Samples MW2 and MW29 exceeded the 30% RPD: for total chromium, RPD of 86%, and total lead, RPD of 41%.

iv. Data quality or usability affected?

Comments:

Samples associated with this field duplicate pair were MW1, MW3, MW4, and SW1. Chromium and lead results for associated samples were qualified either "Q" for detected results or "UJ" for undetectable results. All impacted results were over 100-fold below the applicable cleanup level. Data usability was not impacted.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)

below.)

i. All results less than LOQ?

• Yes • No Comments:

Dedicated or disposable sampling equipment was used in the collection of all samples.

ii. If above LOQ, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected?

Comments:

Not applicable.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes	© No	Comments:

Laboratory Data Review Checklist

Completed by:

Jennifer McLean

Title:

Associate Scientist

Date:

July 23, 2018

CS Report Name:

FIA – Fire Training Pit

Report Date:

June 18, 2018

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS Anchorage, AK

Laboratory Report Number:

K1805460

ADEC File Number:

100.38.070

Hazard Identification Number:

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
 (•) Yes
 (•) No
 (•) Comments:

All analyses were conducted at ALS in Kelso, Washington. ALS is ADEC CS approved, certificate number UST-040.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

• Yes • No Comments:

Not applicable. All analyses were conducted at ALS in Kelso, Washington.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:
-----	------	-----------

The COC requested a level II deliverable data package, but the laboratory provided a level IV report. Data was not impacted.

b. Correct analyses requested?

• Yes O No Comments:

The six perfluorinated sulfonic acids and perfluorinated carboxylic acids requested were not listed on the COC. They were noted on the project bid and confirmed via email upon submittal of samples to ALS laboratory. Data was not impacted.

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

• Yes • No Comments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

• Yes • No Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
 Yes O No Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

No issues were noted.

• Yes O No Co	omments:
---------------	----------

			Comments:
 e. Data quality or usability affected? Comments: Data was not impacted. Case Narrative a. Present and understandable? @ Yes No b. Discrepancies, errors or QC failures identified by the lab? @ Yes No Comments: c. Were all corrective actions documented? @ Yes No Comments: c. Were all corrective actions documented? @ Yes No Comments: d. What is the effect on data quality/usability according to the case narrative? Comments: No impact. Samples Results a. Correct analyses performed/reported as requested on COC? @ Yes No Comments: The six perfluorinated sulfonic acids and perfluorinated carboxylic acids requested we on the COC. They were noted on the project bid and confirmed via email upon submit samples to ALS laboratory. Data was not impacted. b. All applicable holding times met?			
Case	Narrative		
a	. Present and	understandabl	le?
	Yes	© No	Comments:
Γ			
b	. Discrepanci	ies, errors or Q	C failures identified by the lab?
C	-		- •
[
c	. Were all co	rrective action	s documented?
-			
Γ			
г			Comments:
	No impact.		
Sam			
	ples Results	lyses performe	ed/reported as requested on COC?
	ples Results	•	
a	ples Results . Correct ana • Yes The six perflu on the COC. T	© No norinated sulfo They were note	Comments: nic acids and perfluorinated carboxylic acids requested were not listed ed on the project bid and confirmed via email upon submittal of
a	ples Results Correct ana Yes The six perflu on the COC. T samples to AL	© No norinated sulfo They were note LS laboratory. I	Comments: nic acids and perfluorinated carboxylic acids requested were not listed ed on the project bid and confirmed via email upon submittal of Data was not impacted.
a	ples Results Correct ana Yes The six perflu on the COC. T samples to AL	© No norinated sulfo They were note LS laboratory. I	Comments: nic acids and perfluorinated carboxylic acids requested were not listed ed on the project bid and confirmed via email upon submittal of Data was not impacted.
a	ples Results Correct ana Yes The six perflu on the COC. T samples to AL All applicat	© No norinated sulfo They were note and aboratory. I ble holding time	Comments: nic acids and perfluorinated carboxylic acids requested were not listed ed on the project bid and confirmed via email upon submittal of Data was not impacted.
a [ples Results Correct ana Yes The six perflu on the COC. T samples to AL All applicat	© No norinated sulfo They were note as laboratory. I ble holding tim © No	Comments: nic acids and perfluorinated carboxylic acids requested were not listed ed on the project bid and confirmed via email upon submittal of Data was not impacted. nes met? Comments:

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

For undetectable results, LODs were compared to 18 Alaska Administrative Code (AAC) 75 Tables B2 and C. No groundwater or soil criteria currently exist for PFCs PFHxS, PFNA, PFBS, and PFHpA.

All results of undetectable analytes had LODs at or below applicable regulatory levels.

e. Data quality or usability affected?

Comments:

No impact.		

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - [●] Yes [●] No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes O No Comments:

One method blank had PFHxS detection between the detection limit and limit of detection. Two method blanks had PFNA detections between the detection limit and limit of detection.

iii. If above LOQ, what samples are affected? Comments:

N/A

- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
- Yes O No Comments:

Batch associated samples with results within ten times that of the blank were qualified "B" for detected results greater than the blank detection, and "UB" for detected results below the blank detection (possibly false positive results).

Qualified data is shown in Table 3 of the QAR.

v. Data quality or usability affected?

Comments:

No ADEC regulatory criteria exist for PFHxS or PFNA. Data usability was not impacted.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

- Yes No Comments:
- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes O No Comments:

Not Applicable.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

For parent sample BH1-S, the MS recovery for PFOS, of 177%, exceeded the upper control limit of 150%.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Because the LCS recovered within acceptable limits, establishing batch accuracy, only parent sample BH1-S was considered impacted.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

• Yes • No Comments:

The PFOS result for sample BH1-S was qualified "Q+" and should be considered an estimated value with a potential high bias.

vii. Data quality or usability affected?

Comments:

Sample BH1-S PFOS result of 0.1 mg/kg was well over the ADEC criteria of 0.003 mg/kg. All data was usable as qualified.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 Yes
 No
 Comments:

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes No Comments:

For sample SS3, 13C5-PFNA surrogate recovered at 45%, below the lower control limit of 50%.

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
- Yes No Comments:

While the surrogate recovery indicates a slightly low bias, this data also has a high bias indicated due to an associated blank detection. Contradictory flagging is considered inappropriate. Data was qualified "Q" as estimated with unknown bias.

iv. Data quality or usability affected?

Comments:

No ADEC criteria exist for PFNA. All data was considered usable as qualified.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?
 - Yes No Comments:

Field blanks were analyzed at the appropriate frequencies for all volatile analyses and PFAS.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

• Yes • No Comments:

- iii. All results less than LOQ?
- Yes No Comments:

Yes. Two field blanks had detections between the LOD and LOQ; one blank detection was for PFHxS, and the other was for PFOS.

iv. If above LOQ, what samples are affected? Comments:

Allowing for reporting units, with field blanks reported in nanograms per liter (ng/L) and soil samples reported in nanograms per gram (ng/g), all associated samples had detectable results well over ten times that of the field blank detections shown.

v. Data quality or usability affected?

Comments:

No data was affected. All data was usable without qualification.

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- Yes No Comments:

ii. Submitted blind to lab?

Yes
 No
 Comments:
 Soil parent sample BH1-S corresponds to duplicate BH97.
 Soil parent sample BH9-D corresponds to duplicate BH98.
 Soil parent sample BH2-D corresponds to duplicate BH99.
 Water parent sample MW2 corresponds to duplicate MW29.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

○ Yes ● No Comments:

Samples BH2-D and BH99 exceeded the 50% RPD for PFOA, RPD of 55%.

iv. Data quality or usability affected?

Comments:

Three soil field duplicate pairs were collected on June 7, 2018. Samples chronologically associated with this field duplicate pair were BH2-S, BH3-S, BH3-D, BH6-S, BH6-D, BH7-D, BH7-S, BH8-S, BH8-D, and BH9-S. PFOA results for associated samples were qualified either "Q" for detected results or "UJ" for undetectable results.

To err on the conservative, for parent sample and field duplicate pairs, the higher of the two values should be used for reporting purposes. In all cases, laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. All data was considered usable as qualified.

- f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)
 - Yes No Not Applicable
 - i. All results less than LOQ?
 - Yes No Comments:

Rinsate blanks had results of undetectable for all analytes.

ii. If above LOQ, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected?

Comments:

No impact.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

• Yes • No Comments:

Attachment 2 Laboratory Deliverables

(Data packages)

Scale: 1 square = 146/05/2018 Fire Training Pit B. WOELARE 2105- Ene 1925 - 2055 Sat Samples and equipment 1825 1 At Hotel - Break 1630 - 1710- MRajur at approximate 1622 - Annive Fire Training Aras Begin 1810 - Call BOT Quarters, Marin of 1754 End from Place Samply From 6/5/18 in Finge. 1710 Inspect site. Photograph site Safely Nuting. outsile of Janza's Water Also Surveyer ponded in FTA 200' X 200' Square. Take Site borneter or been chain, as MW-A Survey boundary them, all angles. Find one site orientation. Tailyate Shupper to ar day CIVENUT Scale: 1 square = 0932- PID Calibration 1205 - Sumpre Bills For plas 0423 - Drive BAR to loft hap 1135 re-locate Bills to 40' OKE come with 1010 - beg & MW3 Pine 1015 - collect Sample BH2-10 C3-44 1020 - Collect Sample BH2-10 C3-44 0935 - Callert BH3-5 1-1.5A 69 Su- collect BH3-9 6-70+ (about which 1100 - Setul on BHT, Mover & Hoft outwards Obar - Depart hot 0400 - Thillyok Safety Muding , plan Obor - mut drillers FAIL from BH2 bused on Scale or Sitrand boring locations. observer biss extent. bern, more N. to cool pite Daberry mund W Dup Bigg int " 1900" Post Cali Zero Air= Oppin 100pm=99.8 Pre Cal: Zero-Air= Oppm 100ppm=968 Set well point FTP SIFE CHAR. CIENT/BINGERBER 6/7/19 15 Kite in the Rain OVER

Scale: 1 square = informat) 16 FAIL & FTO SATE Star Electric for su hok is site up 1255- Sample BH3-MW3 Water 1258 - DNIL BHID, Mariel 4014 OFF of Come 1278 . Sa My BHB-D Q 3.4-7.4 1432 - Driv BHA 11 Thous to control 1233 - Sample BAB-S @ LOFF 1320- 1355 - Printe which beak by 1353- DHY 64.7989731930 HIB: BAY-5 130 5 - Sampe Bitto -S Phil-1.2+ BH9-S 1412 - Dr. N BILY TO 10 Ft. Set 13 28 Sampe BH10-D 5.5-61+ 1310 - DAN BING Hort offor come 1707- Janple Billio D 0 3.3-3.54 Billion 212 1205 13 24 Sample BHIB-S 1.0Ft 1225. aver be hat water utility line off PUC WEN SCALLY Spect your line + bates. been wine Sw), BHE-S Re-lock DAP 12 11 are SHU-D - 147,8801350536 14 12:0HU-D いろう CURNET / B. WEELBER-P 5-64 CIFL (SH CA) 8/17/0 1103 - Sample BATT-S C 1.0.5+ 34pm, - Collect DRO due BH96 C "2000" Scale: 1 square = 1800 Dump Purga Water in 1820 - Callert Field Blue I 1723- Sampe Much 732 - Sample MW1 1449 - Sanyle BAtter-D. FAT FTP STRE OWEN BLOW 1635 - Muit is not pracing waters remove I" for wen screen rinjtill 1555 - Ofill BHS, 1547-Sumper Mid 2 1455 - DAV 2412 1443 - Sangle BHZ-S 1603 - Sanger BH 5-5 1,25-1.5 15/1 1506 -1009 - Sample RNS-D 5.5-6.04 15/8 - Orin RE1/MW1 1531 - Sample BHI-D 5.3-60++ 1524 - Sample BHI-S 1-1.25w Dur BH97 19645 Sp-16 Well point too 12 st bys, Sp-16 Scrien develops will ane provided Liver perstates at 1.5ft by septer Sample BH12-9 Janpe BH12-S C. VENIT / B. WOR USEA FBI FTP punces water 1.0-1.25ft 3.7-4.0Ft Rite in the Kain 5.0-5.594 1.06+ 814/0

Scale: 1 siguare = 18 C. JENT / BYWORLDEN 200 - 2230 Check Sample labels, prop 1920 - 2000 Bran 1800 - Collect Scil Ring blenn 1, 1810 SRB2 (acredite) 1900 1970 at office FAI FTP SITE CHAR. Depart Site Coulors / cocs for shipment ちない 017 10 01419 Scale: 1 square = 0916- callet 552 ABLS- Calibrate DI 09-----* NO UNSI Water Sumple OP20 - Inject har Maniholy System # 0027- Read air from montan 0755 - Prop Samples For shyment/drops/F ARD UTIS C.VENT deport for KOFFICE. 0910, Walket SSI IFF down FAT FIP STE CHARACTEDARTED Hock-up peritelting fungto existing tubing bern Concentrations. Have day to lithing. (1/41 of Home), force puil and from bern from MST to evaluate upor penilatie "pump. No parameters Sy Sten with pto, delue = 3. 4 ppn. years Consident with Shallow Soil Manhale, hand - day 0.5ft. Collecter, water is any Scheening Value From fresh air = 0.1 ffm. Calibrate PID, Span Cal -160 pm . produced. 1 Ft uphin of BH4. 10 Rite in the hain (Jelle CUER 19

20 Scale: 1 square = 1300 - 1400 -1000- Depart Site, retion Ky and 0925- collect 553 0940- Collect Freiz Blanc 1100-1300. 1reg Sile ofener. W/PFAS-Free Worker Frein ALS CARD. PA# FITP SITE CIMO 1218 105.00 184, (800.2 Drep Sandre Sungles for Sugnert at SGS/A4 Ar CUENST FB2 6/8/18 Scale: 1 square = Rite in the Rain 21

Start Date Completic	on Date/Time	17/18 ,	1518		Drilling Contractor: Discussery Driller's Name (License [V/D): Scott Longers Borehole Detail
Drilling Me	athod: THS	A Direct P	Pueb		Completed as Well? X Yes No IF YES, COMPLETE WELL LOG
		Sonic Oth			Well ID:
		Scopula		T	Well diameter (in): /* SI-16 to 53 Gifteen
Sampling	Method:	Main	C CUNE		Screen Top (ft bgs): Screen Bottom (ft bgs):
	diameter (in.		2611		Well Type: Monitoring (temporary/permanent) Extraction
	Total Depth				Surface Completion: X Stickup I Flush mount
		(ft bgs): 7.3		e:	Water Level in Well (ft bgs): 7.0 Date/Time: 1700
		<u></u>			Location Information
Survey Me	ethod:	Geo 7×			Location Sketch:
Survey Co		SLA			
	Name (Lice			_	See Cor N 1
Northing:		~			See GIS Data
Easting:		Section	5 Da	a	
Ground St	urface Elevat	tion:			
		1000			Drilling Log
GRAVEL (3 – 0.08 in)	SAND (0.08 -	0.003 in)	SILT (<	(< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil)
GW GP	GM GC	SW SP S	M SC	N	ML CL OL MH CH OH PT
	20.00				D Description
Drive	Blow	Recovery	USCS	Lith	e Sample Interval - MATERIAL TYPE; color; % coarse material;
Interval	(per 6")	(% or ft)	Code	Log	p 76 line material, angularity of grains; moisture;
	Aber 0)			- 1 	t sheen/stain; odor; consistency. (Sample ID if Applicable).
				1	
/					MO-3.7 Gray, gravely F. SAND with M-c Sune one truce Silt, Morit,
)-5		11		2	A-c Sunt one truck Silt, Moint,
		4.0		5	5-Lineral. 5 dense.
					PID: 1.9
7	***				PID:
					-3.3-3.8 Braun V. Silty F. SAND; dang, V. Sense. 3.6 - 4.0 Gray F. Sant, Ory PID.
					V. NOGH.
					74-40 GRA E Sunt D. C. D.
				P	A Die Grad P. Jan J Gray PID
			0 0	N	Ne louse.
		11		-	77 5-6.4 Same
		4.0		F F	
		,		[D	D GIY-73 BRUN SELT W/ F.SANL, PID. 3.4 # 1.3
				7	A Sact the time pipe of 1.3
				4	4 Ph. Sort, Firm, Wet.
		1		4	7.3- 9,0 Brown F.SAND WHY SINA,
				4	
				K	E wet, dense.
			1	V	
		1		100 M	P3 7
				K	4- 14
				pe	De No recovery 9-10 At. PID: E
otes: (india	cate IDW cont	ainerization and	disposal r	nethods; P	; PID model)
	1.574	- Sampl	L RH	11-5	€ 1-1.5 v/Dup BH47 e "1445"
	12~1	00000			

3

SLR®

Client / Site Nam		Save Cil	42		2 /Mw2	
Project # :	105.00104.18	NL IN		Logged By:	CUENDIT	
Start Date/Time:	6/7/18	1010		Drilling Contractor:	DISCONFRM	
Completion Date	/Time: 017/14	1 8 1020			y/n]): Scott. Lombars	
Dalla AA U I F			Borehol			1100
		Jush			IF YES, COMPLETE WEL	LL LOG
	ir) Sonic Of		Well ID:	Mw2		
Sampling Method	225" Mai			meter (in): 1 in AVC	eroon Bottom /# hants // a	
Borehole diamete	r (in.): 2,2				creen Bottom (ft bgs): //.o ry/permanent) Extraction	
Borehole Total De				Completion: X Stickup		
	ring (ft bgs): ~ 56			evel in Well (ft bgs): 10-61		
Trator Lever III De	ning (it bgs). it ji	Date/ Time. 10	Location Ir		Date/Time. 730-	
Survey Method:	620 -4	Trimble Ge		Location Sketch		
Survey Contracto		LA	0 1%	LUCATION SKEICH		
Surveyor's Name					CAC N 1	
Northing:				- 2-	ee GPS Data	
Easting:		-	1.1.1.1.1.1	-		
Ground Surface E	levation:	See GPS	duter	T		
11			Drillin	g Log		
GRAVEL (3 - 0.08	in) SAND (0.08 -	- 0.003 in) SIL	T (< 0.003 in)	CLAY (no grains visible)	HIGH ORGANIC (< 50% min	neral soil)
GW GP GM G			ML	CL OL MH CH OH	PT	
	/	1	D	Descripti		17
Drive Blo	nts Recovery	USCS Lith	n	Interval - MATERIAL TYPE; % fine material: and	color; % coarse material; jularity of grains; moisture;	Well
Interval	6") (% or ft)	Code Log	t t		onsistency, (Sample ID if	Sketch
			h	Applicable)		
		10	10-7	3.2 Gray, grave trace silt, M. den	IN F SAND WHY	
0-5 20		SP M2		l'gue		
5.	(=+->	"5	5	trace SIIt, M. Den	ise, and (Fill)	
L I		1.	H		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>		PID	
		1	4			
		1	2			
		SM WY2	3.2	- 3.4 Drun, Si	Ity F. SAND,	
		00	KRA	- 3.4 Brin, Si damp, dense		
			ME	Camp, dense	PID: 2.2	
				-185.5		
_			1107	-1077	11 10 0211	
5-10 564	_	SP	1 Bre	IN, F. SAND W	174 TIACE) 11+	V
5-10 5Ft		MLT	TT da	MD. June Th	il ander the Fabril	
		-	-Ft da	my ourse, m	ily SILT with	
		SP	-55-6	Gray F Sittal Sna	Un Stlit with	
		tome	1 10	in had mad		
			1110	a peak wer.		
			1-6-9	Brown F.SAND	intly for cit.	Б
	-					6
			H '	dense, wet goal :	y to damp.	2
		1, +				K
		SM	19-10	hown Siltin F	SAND, Dense, 2400P.	5
Notes: (indicate IDW	containerization an	d disposal metho		Olever Mariel 12	VII OI OI OF POPIDI	
	S unte	RH2-0	5-15-1	25Ft @ 1015		E
	Jamp W					E -
		BH2-D) 3-4F	+ 01020		
		Dusa -	12.11	"21400"		
		13114((m) 254	61400		

SLR®

Project #	ite Name:		8 SATE	1002		Boring ID: D Logged By: C.U	13/MW3	_
Start Dat		06/07/17	2 00	150		Drilling Contractor:	Discovery	
	on Date/Tim			0925		Driller's Name (License [20
			<u> </u>	1-1	Borehol		YOP Scort Lomba	4143
Drilling M	ethod:	A 🗖 Direct F	Durah					
		Sonic Of Ot					IF YES, COMPLETE WE	LLLOG
		EORODE (Well ID:		w 3	
		254 MACA						
	diameter (in.		U CONT			op (ft bgs): 6F S	creen Bottom (ft bgs): //	F+
			10		vveil Typ	e: Monitoring (tempora	Whermanent) 🗌 Extractio	n
	Total Depth			101.0		Completion: X Stickup		
vvaler Lev	ver in Boring	(ft bgs): ~7	Date/ I Ime			evel in Well (ft bgs): 9,07	Date/Time: 617 103	0
· · · ·					ocation In	formation		
Survey M		TRIMBLE	(SEO FX			Location Sketch:		
Survey Co	-	SLA						
	s Name (Lice						See GPS data	
Northing:		<	jee G	PS Dat	a		e ors one	
Easting:								
Ground S	urface Elevat	tion:				Law and the second		
	mar in				Drilling) Log		
GRAVEL ((3 – 0.08 in)	SAND (0.08	0.003 in)	SILT (<	0.003 in)	CLAY (no grains visible)	HIGH ORGANIC (< 50% mi	neral soil)
GW GP	GM GC		M SC		IL	CL OL MH CH OH	PT	
						Descripti		17
Drive	Blow	Recovery	USCS	Lith e	Sample	Interval - MATERIAL TYPE;	color; % coarse material;	
Interval	Counts	(% or ft)	Code	Log		% fine material; ang	ularity of grains; moisture;	Well
	(per 6")	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		t t			onsistency, (Sample ID if	Sketch
		-		n	-	Applicable)		
0-5		1	SP		0-	4. frace sitt, dre	My F. SAND	
•		- 24		2	1 1.1	1 100 000 10	1. C. (Gu)	
ust		3.UA		643-5	Wit	" How silt, die	1) deale (FILL)	
3, 1 ·				P				
recovery				- K			1-20 PID 14.7	
			sp-	V	10 -	27 0 (1)		
		1.	SM-	1	1-2-	>2 Brown, Sill	7 t. SANO,	1111
			•••	4	1 . 9	uml, dense.		
		1		19	-	oense.		
			ML		13.7-7	b.y Blown SITI	T with F. PID:	
					C	h l h	PiD.	4
				PR	1 .741	i, hard, damp.		1111
-		H.H.C.	-	. 4			Salar Pilat	
5-10		4.49	SE-	1	5-9	3 Bronn F.SAN	עוויפ אייש פ	1111
•		1	2W	V				
		-		K	00	ing, M. Einsl.	PID	
			2	12.0 0				
			9	N N	~7	begans wet		∇
			SP-	VI			2 TA	14
			5M	14	NO	Edina Provin	6-1A	F
			0.1	1/	U	proving & SITL	1 1 14AU, PID: 15.5	3
				V,	1	Nat Fort	6-7A 1 E SAND, PID: 15-5	2
				6	· ·	J. J. C.		4
					- en	2 Gill	~	2
	· · · · · · · · · ·	1				11	PID;	6
Notes: (india	cate IDW conta	ainerization and	disposal n	nethods; Pl	D model)			2
	<u> </u>	c. sice	<	01	1601	> 4.2 C		S
•	DEMAR	BH3	- 2	RI	-1284	~-0710		
	- divert		0	<u> </u>	-	- 1		-
		BKJ	- V	21	s-TP2	-0950		
						A		
					1			
	Sample 12.9	MIN	Wate	5 0	1750			

SLR®

Drilling Ma		e: 6/7	141		Borehole			SCUTT LOMBH	-
		A 🛛 Direct F			Well ID:	ed as Well? 🕅 Yes 🗌 No	DIFYE	S, COMPLETE WEI	LLOG
		Sergnove		6717		neter (in): i' PU c		4	
Sampling		mains.	core	w 1)			Screen B	ottom (ft bgs):	
	diameter (in.): 22	5"			e: Monitoring (tempora	perma	anent) Extraction	1
	Fotal Depth				Surface C	Completion: X Stickup	Flush	mount	
Water Lev	el in Boring	(ft bgs): 9.5	Date/Tim	ne: 140		vel in Well (ft bgs): 9,13	Date/	Time: 6/7/(8 i	720
		5.8	1.00		Location Int	1			
Survey Me		TREMBLY		7×		Location Sketch:			
Survey Co	Name (Lice	ance ivin	sin			-			
Northing:	Hame (Liot					Ser	GRO	Data	
Easting:)	ee 6	15 00	ita	m	01/	party	
Ground SL	Irface Eleva	tion: 👻	-						
		5 3			Drilling	Log			
	3 – 0.08 in)	SAND (0.08 -		SILT	(< 0.003 in)	CLAY (no grains visible)	HIGH	ORGANIC (< 50% mir	neral soil)
GW GP	GM GC	SW SP S	M SC	-	ML	CL OL MH CH OH		PT	
	Blow				D e Sample I	Descript nterval - MATERIAL TYPE			
Drive Interval	Counts	(% or ft)	USCS Code	Lith	p Sample i	% fine material; ang	jularity of	grains; moisture:	Well
mervar	(per 6")	(76 0/ 11)	Code	Log	t	sheen/stain; odor; o			Sketch
				-	h h	Applicable)			\square
			SP	S	210-010	in gravely Fin	SAND	1Jil	
0-5		U.O		max +	to	ic shit. Most,	Sense.	(FILL)	111
J-2		1.0		814-5	3	/		()	
		1						PID: 2.3	
				1	1				111
				- 1	1 .	Quart T D	1	6 CAL	
		1	SM		5 3.0	Brown F. SAND My, Sense,	wi	לוויב או	
) du	mp, dense,			
		-			+			PID:	111
					112				
		51			50	GAME - Cales			
5-10		3,1		O MILO	2 3.0	3412 45 4800	۷.		
)-10		1		hours -	5.8	Same as about ft - becomes L	set.	PID: 3.3	4
				k					1
					1	Gray-		1	
		-	-	- 7	1-7.0	Brown F. SAM	שיט) , נ	+, M. loose.	H
			Sp		1				I
			~1		1			PID:	1
				l í	1				11
					10				14
					T I				11
otes: (indic	ate IDW cont	ainerization and	disposal	methods	PID model)			PID:	<u> </u>
ì					[.	, 1418 2 1422			11
, , , , , , , , , , , , , , , , , , ,	C	AL 17	ilu	C 1	010 O				ы

SLR

Boring Log Form

Client / Site		FAT FTP		e Ch	ta.	Boring ID: BH5 Logged By: CVENST
Project # :	/1	5.001841	4002			**
Start Date/		617/18 C				Drilling Contractor: D+SCOUP.04 Driller's Name (License [y/h]): SCOT LOMBAND
Completion	Date/Time:	617112	216	000		
10.32 1	1. 18 2. 1. 1.		1	1.1.1		le Detail
Rotary	(mud/air)	Sonic 🗌 Oth	er:		Well ID	
Rig (Make/	Model): GA	engrobe 1	6712 (7(ameter (in):
Sampling N	Nethod: 2	25" Macr	v-core	2		Top (ft bgs): Screen Bottom (ft bgs):
	ameter (in.)					pe: Monitoring (temporary/permanent) Extraction
	otal Depth (f			-	Surface	Completion: C Stickup C Flush mount
	l in Boring (Date/Time	1600	Water I	evel in Well (ft bgs): Date/Time;
where a l			111		ocation	nformation
Survey Met	thad	Trimble	allo 7	x		Location Sketch:
Survey Cor			ich	Ľ		
			0.			See GPS data
	Name (Lice	see G	is det	-		- decorre
Northing:		200 1	17 041	1		
Easting:	free Elouati	ion:				
srouna Su	rface Elevat		-	-	Deilli	ng Log
the state of the	14- 11		0.000 1-1		0.003 in)	CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil
GRAVEL (3		SAND (0.08 -			VL	CL OL MH CH OH PT
GW GP	GM GC	SW SP S	M SC	1		Description
Drive Interval	Blow Counts (per 6")	Recovery (% ör ft)	USCS Code	Lith	e Samp	e Interval - MATERIAL TYPE; color; % coarse material; % fine material; angularity of grains; moisture; sheen/stain; odor; consistency_(Sample ID if Applicable).
0-5		4.5	SP-SM SP-SM	BIS-S	(fil) 2,4	-3.2 Brann F. SAND with Sill, pip: 1.3 -3.2 Brann F. SAND with Sill, appidense. 3.6 Bluch Organic Start with trace F. Sand
		3,5	- SP	SP	3.6	and F. 100 to j camp, hard. PID - 4.5 - Res/gray F. Sane uj fran Silt, dense/damp.
5-10		37)	1 - 1	BH5-D	20-01	PID: 1. O
			9 <i>Q</i>	and the second sec	1	trace Silt & M-i Sand, dense, moist
					den s	8,5 - Brown F. S.AND with trace With any wood babas From 77.5 Ft PID: Mi Linse, Wet:
				ĥ	18	
			1		_	PID
Notes: (ind	1603-	Sample Sample - Sample	BAS	-5 6	ا-ا خ	SFT

Client / Site Name: Project # : /05.	FAX FT STE CHAN	Boring ID: Ballo				
	6/7/18	Logged By: C.JEWT				
Completion Date/Tir		Drilling Contractor:				
Completion Date/ III		Driller's Name (License [y/n]): Borehole Detail				
Drilling Method:	ISA Direct Duch					
Rotary (mud/air)	Sonic Other	Completed as Well? Yes X No IF YES, COMPLETE WELL LO				
	Sevenstre OT 6712	Well diameter (in):				
Sampling Method:						
Borehole diameter (in						
Borehole Total Depth		Well Type: Monitoring (temporary/permanent) Extraction Surface Completion: Stickup Flush mount				
Water Level in Boring						
VValor Level III Donni						
Survey Method:	Geo 7X	Location Information				
Survey Contractor:		Location Sketch:				
Surveyor's Name (Li	SLA SLA					
Northing:		See Gps Data				
Easting:	See GPS Deta	Jee of the				
Ground Surface Elev	ation					
		Dalling Law				
CRAVEL /9 0.00	CAND (0.00. 0.000 + 1 - 0.1 -	Drilling Log				
GRAVEL (3 - 0.08 in) GW GP GM GC		(< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral s				
	SW SP SM SC	ML CLOLMHCHOH PT				
Drive Blow	n	D Description e Sample Interval - MATERIAL TYPE; color; % coarse material;				
Counts	Recovery USCS Lith	P % fine material: angularity of grains: moisture				
Interval (per 6")	(% or ft) Code Log	t sheen/stain; odor; consistency. (Sample ID if				
		h Applicable).				
		FLO-2 GEAN NEW ELAND IN				
0-5	21 SP JULS	and a start graving , t. Hard with				
	3.6 SP BHL-S	face silt. M. Lense, Morit to Sump				
	j į					
		(FMI) PID: 3.3				
	58	2-3,6 Brown E. SAND With frace				
	24	Sitt. Luce Land.				
		3.6 this pert/worelayer. PID:				
	PT/WD [7 3.6 thin leat / would ager. PID:				
		NA I I I I I I I I I I I I I I I I I I I				
• ,		= J-6 Brown to gray F. SAND will trace				
5-10	3.8 Sp MLD	Built and have an in a fill work				
	St Mark	M. Lause, damp. of organic pent/ woods.				
-						
		- lo Becoms wet				
		Samen				
		PID:				
	L	S B.B ene core				
		and was some and and the				
Notes: (indicate IDW co	ntainerization and disposal methods;	PID model)				
	Mart Sala D	346-S 0 LOCH 1205				
(
C	plue sange					
C	julieit Sample F Sample	$BHL = 0 P \leq L \leq 1212$				

		ite Name:	FA: FTP	SIFE	CAAR	٤.	Boring ID:	W 7	
-	oject # :		ey.10007				Logged By:	C.VENOS	
-		e/Time:	6/7/12				Drilling Contractor:	DISCOVERY	
00	mpietio	n Date/Time	= 6/7/10	10	55		Driller's Name (License [y/0): SCOTT LO.	MBARD
-	Drilling Method: 🔲 HSA 🖄 Direct Push						e Detail		
							ed as Well? 🗌 Yes 🗖 No	IF YES, COMPLETE	WELL LC
			Sonic 🗌 Ot	-		Well ID:		-	
		/Model): G			12	Well dian	neter (in):		
		Method: 2		10-665	r	Screen T	op (ft bgs) S	creen Bottom (ft bgs):	
		diameter (in.)	2.25	Sec. 19		Well Type	e: 🗌 Monitoring (temporar	y/permanent) 🗌 Extra	action
Bor	rehole	Total Depth (ft bgs):	0		Surface (Completion: Stickup	Flush mount	
Wa	ater Lev	el in Boring	(ft bgs)+3.9	Date/Tim			vel in Well (ft bgs):	Date/Time:	
			(1) (1) (1) (1) (1)		L	ocation In	formation		
Sur	rvey Me	ethod:	Ge	. 31	(Location Sketch:		
		ntractor:		CIP	a				
		Name (Lice	nse (v/nD	1-1					
	rthing:			. (0,60	5	The see	- GIS data	
	sting:		-	2	e ul	Data	0		
		Inface Elevat	ion:				1		
1					-	Drilling	log		
GR	RAVEL	3 – 0.08 in)	SAND (0.08 -	0.003 int	SILTIZ	0.003 in)	CLAY (no grains visible)		0/
		GM GC	SW SP S			0.003 In) /L	CLAY (no grains visible) CL OL MH CH OH	HIGH ORGANIC (< 50	% mineral s
		5				1		PT	
	.	Blow					Descripti nterval - MATERIAL TYPE;		
	rive	Counts	Recovery	USCS	Lith	oumpier	% fine material: and	ularity of grains; moistur	v
Inte	erval	(per 6")	(% or ft)	Code	Log t			onsistency_ (Sample ID i	
-					h		Applicable)		
	/			SP		1 n-1	u Sit, Moist, M	ILLA & SAND LAN	u l
0-	- 1	2.6		51	Las E		· · · · · · · · · · · · · · · · · · ·	1. 1. 1	
		fr	11	1	BH17-5	1 + fa	ic sit, Moit M	dense (Fill)	
		1,	1 - 1			T	- MI		
	_			SN/ML		1.4-	SITE SAMD/F SA	L STIT WING	
1.00		-					. 5110511.14	UTEL PIN	-
						Lycib -	Sittle. SAND/ F. Sw insee layers of ong hunse / Firm, moint	nichatinal (bru	m/6/wei
			1		the at	- An'	Luce lot can It	i	
				C.P.	1 -> 17	h ha	acrise (Min, Mosti	p camp. Dion	
				SP	BAT-D				
-			-	JT	0				10.0
					INF	3	73.1 Brownlyn	4 F SAND WH	5
			1.1.						-
			4.5pt			+ +rai	ve silt, dense,	damg-mont.	V
5-	10		14C. b.	SM					
-	-			SIL	1	22	becomes deme	to Wet . PID:	
					K	LEY .	P becomes during Brown F. SAND	1.45 CHL	
								(interition	
							ouse, wet		
					V.			11	
				1	V	10.27	- Gray F. Sand L	NI Frace Silt DID.	
				58 -	1/	1	lance and		
					1	6	my wegi		
				SA	1/1	0.15 -	hose, wet. B. T. Brown Silly	F. SAND, look, wet.	
				SP	INR	18.5-0	1.5 Gray & SAM	a logi with a	
Note	es: (indic	ate IDW conta	ainerization and		nethods P	ID model)	Wood Lebric P	wur wei PID:	_
		C-Mal-	QU1	D O	21.0	N	, PFAS only Ili	×1	
		Sanda	- DNT-	- <u>v</u> (J.Q H	DH	ittas only in	7.6	
			12 4-1	\mathbf{c}	104	- 10	, PFAS ONLY,	1/02	

Client / Sit Project # :		FALL FIP		5 CHA	Logged By: CVENT	
Start Date		6/4/18	0 12	25	Drilling Contractor: DISCOVERY	
	Date/Time		~	1230	Driller's Name (License [y6]): SCOTT LA	nDARD
Completion	- Date - Fille	- Wills			Borehole Detail	
			Joh		Completed as Well? Tyes KNo IF YES, COMPLETE	WELL LOG
		Sonic Offect Pt	1911		Well ID:	
					Well diameter (in):	
			Ç712			
Sampling N		Maine -	cure	-		action
	iameter (in.)		r"			action
Borehole T	otal Depth (f	t bgs): /		-	Surface Completion: Stickup Elush mount	
Water Leve	el in Boring (f	ft bgs): 3,70	Date/Tim	e: 1230	Water Level in Well (ft bgs): Date/Time	
and the state	and the second second	La Carlos		1	cation Information	1.1
Survey Me	thod:	Geo 77			Location Sketch:	
Survey Col		SLA				
	Name (Licer				Son CRC Anto	
Northing:	1	and the second second	c0.	n 1	See GPS Data	
Easting:		Jee	695	Dat		
	rface Elevati	ion:				
Siculta ou					Drilling Log	100
	0.00	SAND 10 00	0.002 1-1		0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 5	0% mineral soil)
GRAVEL (SAND (0.08			CL OL MH CH OH	
GW GP		3VV 3P 31	VI SC	1		E.
Drive Interval	Blow Counts (per 6")	Recovery (% or ft)	USCS Code	Lith Log	Sample Interval - MATERIAL TYPE; color; % coarse mater % fine material; angularity of grains; moistu sheen/stain; odor; consistency. (Sample ID Applicable).	ire; Sketch
0-5		3.CA 4.oft	SP SP	Bine-S	2.1-3.6- Brown, F. SAND with trace Silt, U. Enge, nuist. S.U-9.0- Brown F. SAND With these Silt, dense, Wet. PI	<u>p: 4.6</u> <u>p: 11.8</u> <u>√</u> ~
Notes: (indi		tainerization and	BHB	-5 0		D:

Boring Log Form

Date/Time: UHIP 1300 Drilling Contractor: Discurve Completion Date/Time: UHIP 1300 Driller's Name (License (Vid): Scort Go0.49.0 Drilling Method: HSA 27 Dired Push Completed as Well? Yes Qi No. IF YES, COMPLETE WELL LOG Rotary (mud/air) Sorehole Detail Well diameter (in): Screen Bottom (ft bgs): Barphing Method: Macro-care Screen Top (ft bgs): Screen Bottom (ft bgs): Sorehole diameter (in): Screen Top (ft bgs): Distractor moleton: Extraction Sorehole diameter (in): Screen Top (ft bgs): Distractor Extraction Sorehole diameter (in): Screen Top (ft bgs): Distractor Extraction Sorehole diameter (in): Screen Top (ft bgs): Distractor Extraction Sorehole Total Dottiling Log Utact Level in Well (ft bgs): Date/Time: Survey Contractor: Scree G15 Date Screen Status Screen Status Survey Contractor: Scree G15 Date Screen Status Screen Status Survey Contractor: Scree G15 Date Screen Status Scort Status Screen Status	Client / Sit		FAT FIP	STIFE	CHAR		Boring ID: BH9	
Server Method Server Located Prilling Method: H16 H25 Drilling Method: H16 Completed as Well? Yes Retary (mudain) Bonch Other: Completed as Well? Yes Retary (mudain) Sonce Other: Completed as Well? Yes Retary (mudain) Sonce Other: Completed as Well? Yes Retary (mudain) Sonce Other: Completed as Well? Yes Sorbhold diameter (in): Screen Top (ft bab): Screen Bottom (ft bap): Screen Bottom (ft bap): Sorbhold diameter (in): Screen Bottom (ft bap): Jota/Time: Jota/Time: Were Level in Bottig (ft bap): Jota/Time: Jota/Time: Jota/Time: Survey Method: Gc 7.4 Location Information Screen Bottom (ft bap): Survey Method: Sc 7.4 Location Sketch: Screen Bottom (ft bap): Survey Method: Sc 7.4 Location Sketch: Screen Bottom (ft bap): Survey Method: Sc 7.4 Diversition Screen Bottom (ft bap): Survey Method: Sc 7.4 Diversition Screen Bottom (ft bap): Survey Method: Sc 7.4 Diversition Screen Bottom (ft bap): Survey Method: Sc 7.4 Diversiti	Project #	107.00	184, 18007	2			Logged By: C.U.S. CT	
Diring Method: Office / Push Completed as Wel? Yes (No IF YES, COMPLETE WELL LOG Printing Method: Plack (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Ising Method: Plack (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Ising Method: Method: Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) Softward (Madel) <	Start Date	/Time:	GATIB,	1300				
Ariling Method: HSA BOINED Plush Completed as Well? Yes IN 0 IF YES, COMPLETE WELLLOG Reary (mudar) Sond: Other: Well ID: (g Marc/Model) Serven Top (ft bgs): Screen Bottom (ft bgs): (g Marc/Model) Serven Top (ft bgs): Screen Bottom (ft bgs): (g Marc/Model) Serven Top (ft bgs): Used Completed as Well? Description (g Marc/Model) Serven Top (ft bgs): Jurace Completion: Statucto Survey Method: Sever Total Depth (ft bgs): Jurace Completion: Statucto Survey Method: Sever Total Depth (ft bgs): Jurace Completion: Statucto Survey Method: Sever G12 Sever G12 Sever G12	Completion	n Date/Time	6/7/10,1	1305			Driller's Name (License (y/10): >Cor't 6	4)
Proteins Well D: Ig (Matke/Model): Some Other: Well D: Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Control (16 bas): Data (16 bas): Ig (Matke/Model): Ig (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Screen Bottom (16 bas): Screen Bottom (16 bas): Ig (Matke/Model): Screen Bottom (16 bas): Screen Bottom (16 bas):	er gel i maar	28.5E I.			1000			1.0.0
Big (MaceAndoce): Get/Avec. (GH2_9): Yet Well diameter (n): Screen Bottom (ft bgs): Sorehole diameter (n): 2.25 Well Type: Monitoring (temporary/permanent) Extraction Sorehole diameter (n): 2.25 Well Type: Monitoring (temporary/permanent) Extraction Sorehole diameter (n): 2.25 Well Type: Monitoring (temporary/permanent) Extraction Sorehole diameter (n): 2.25 Well Type: Stract Completion: Extraction Sorehole diameter (n): 2.25 Well Type: Stract Completion: Date/Time: Survey Contractor: 5.4 3.0 ter (nos sin) Cocation Information Sec 615 deth Survey Contractor: 5.4 5.4 5.4 Sec 615 deth Survey Contractor: 5.4 5.4 5.4 Sec 615 deth Survey Contractor: 5.4 5.4 5.4 Sec 615 deth Sec 615 deth Survey Contractor: 5.4 5.4 5.4 Sec 615 deth Sec 615 deth Survey Contractor: 5.4 6.4 Code 10 PT Description Sec 615 deth Drive	Drilling Me	thod: 🔲 HS (mud/air) 🗌	A A Direct Pu Sonic D Oth	ush er:	1		ed as Well? 🗋 Yes 📈 No 🛛 IF YES, COMPLETE WELL	LOG
Sampling Method: Marcho-corre Screen Top (ft bgs): Screen Top (ft bgs): Screen Top (ft bgs): Sorbrole diameter (n.) 2.25 Well Yne: Monitoring (temporanent). Stataction Starbole Total Depth (ft bgs): ////////////////////////////////////	Rig (Make)	/Model):	ednike	6712	DT	Well diam	neter (in):	
Sorehole diameter (m.) 2.25 Well Type: Monitoring (temporary/Jermanet) Extraction Sorehole Total Depth (ft bgs): // 3 Date/Time: /3/20 Surves competition: Stock p Flush mount Vare Level in Boring (ft bgs): // 3 Date/Time: /3/20 Water Level in Well (ft bgs): Date/Time: Vare Level in Boring (ft bgs): // 3 Date/Time: /3/20 Water Level in Well (ft bgs): Date/Time: Vare Level in Boring (ft bgs): // 3 Date/Time: /3/20 Location Information Survey Method: Sca. 7 // Survey Method: Survey Method: Survey Method: Recovery Courts Rec						Screen T	op (ft bgs): Screen Bottom (ft bgs):	
Jarenole Total Depth (ft bgs): /2 Surface Completion: □ Diskup □ Flush mount Vater Level in Boring (ft bgs): /4,3 Date/Time: /2 Date/Time: Date/Time: Jurvey Method: Geo 74 Location Information See 615 defa Jurvey Contractor Set A Location Sketch: See 615 defa Jurvey Contractor See 615 defa See 615 defa See 615 defa Sarting: See 615 defa See 615 defa See 615 defa GRAVEL (G=0.08 IN) SAND (C.06=-0.003 IN) Set (C.001 morains visible) HIGH ORGANIC (< 50% mineral and 000 morains visible)						Well Type	e: Monitoring (temporary/permanent) Extraction	-
Notes: (indicate IDW containerization and disposal methods, PID model) Sampu Binder in DW containerization and disposal methods, PID model) Sampu Binder in Sand disposal methods, PID model) Sampu Binder in Sand Sand Sampu Binder, Sand Sand Sand Sand Sand Sand Sand Sand						Surface (Completion: Stickup 🔲 Flush mount	
Location Information Survey Mathod: Geo 74 Location Information Survey Contractor: SLA Drilling Log Brown GC SW SP SM SC ML Out of Colspan="2">Counts Counts (% or ft) Code Lith P Drive Counts Recovery USCS Lith Code Ling Counts Recovery USCS Lith Code Code Simple Interval Mode Code Simple Interval On the Code Simple Interval On the Code Simple Interval Sample Interval On the Code Simple Interval Interval Code Simple Interval On the Code Simple Interval Sample Interval Sample Interval Sint An Analy Fract Figure 10, Figure 10, Figure 10, Figure 10, Figure 10, Figure 10,	Water Leve	el in Boring			1300	Water Le	evel in Well (ft bgs): Date/Time:	
Survey Method: Geo 7X Survey Contractor: SLA Survey Contractor: SLA Survey Contractor: SLA Sourd Surface Elevation: - Sound Surface Elevation: - Drilling Log Brandel (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Contractor: - Drilling Log Brandel (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Interval (Cance In) SAND (0.08 - 0.005 in) SLT (< 0.003 in) CLAY (no graine visible) HIGH ORGANIC (< 50% minoral sol Brandel Sandel Sandel Sandel Interval (In) (In) (In) (In) (In) (In) (In) (In)	Trator Ebr	or in Doning			L	ocation In	formation	
Survey Or is Name (License [NG): Survey	Survey Me	thod:	Gen 74					
Sar Gfs data Order of the General sandians visible HIGH Cog Order of the General sandians visible HIGH Colspan="2">Order of the General sandians visible Order of the General sandians visible HIGH Colspan="2">Order of the General sandians visible Order of the Ge								
Normal Example Interval Surface Elevation	Survey 00	Name (Lice					C. cle data	
Saturd Surface Elevation: C G f S D a Her GRAVEL (3 - 0.08 in) SAND (0.06 - 0.003 in) SLT (< 0.03 in)		rearrie (Lioc					Jee UP Con	
Sinund Surface Elevation: Drilling Log GRAVEL (3 - 0.08 m) SAND (0.08 - 0.003 in) SILT (< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil GRAVEL (3 - 0.08 m) SAND (0.08 - 0.003 in) SILT (< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil Origin Colspan="2">Provide Colspan="2">Sanple Interval - MATERIAL TYPE; color, % coarse material, with colspan="2">We counts interval - MATERIAL TYPE; color, % coarse material, with colspan="2">We counts interval - MATERIAL TYPE; color, % coarse material, with colspan="2">We counts interval - MATERIAL TYPE; color, % coarse material, moisture; we counts interval - MATERIAL TYPE; color, % coarse material, applicable). Drive Blow Recovery USCS Lift P Sample Interval - MATERIAL TYPE; color, % coarse material, applicable). We see the state of th			2 5	×0 6.15	Dat	0		
Drilling Log GRAVEL (3 - 0.08 in) SAND (0.08 - 0.003 in) SILT (< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral sol GW GP GM GC SW SP SM SC ML CL OL MH CH OH PT Drive Blow Counts (per 6') Recovery (% or ft) USCS Lift P Sample Interval - MATERIAL TYPE; color, % coarse material; sheen/stain; odor, consistency; (Sample ID If Applicable) We Sket 0-5 IV, 3/A SP BMS 0 - 1.1 - 6Rry, y rewelly, F. SAAD witrak Sket 0-5 IV, 3/A SP BMS 0 - 1.1 - 6Rry, y rewelly, F. SAAD witrak Sket 0-5 SH/M IV-4.3 - Brown F. SAAD witrak Shit, pip. 4/.7 cllcrostry with Svity F. SAAD, M. Awe/denc, Have, 1 and 16 uset at botton. PID: 7.0 5-w D #sc anded 5 -1v Fr, all Wettor. PID: 7.0 PID: 7.0 5-w D #sc anded 5 -1v Fr, all Wettor. PID: 7.0 90: 7.0 PID: 7.0 PID: 7		Inface Eleva		1×				
GRAVEL (3-0.08 in) SAND (0.08-0.003 in) SILT (< 0.003 in)				122		Drilling	a Loa	
Blow Drive Sw SP SM SC ML CL OL MH CH OH PT Drive Blow Recovery USCS Lith P Drive Blow Recovery USCS Lith P Sample Interval Mathemal Mathemal Mathemal Mathemal Drive Blow Recovery USCS Lith P Sample Interval Mathemal Mathemal Mathemal Mathemal Applicable) Washing Sample Interval Mathemal Mathemal 0-5 W.3.AL SP Bins Bins Bins Bins 0-5 Washing Sample Interval Mathemal Mathemal Mathemal 0-5 Washing SA SP Bins Bins Bins 0-5 Washing Sample Interval Mathemal Mathemal Sittle pill 0-5 Washing Sample Dif Mathemal Sittle pill Sittle pill 0-5 Sample Dif Sample Dif Mathemal Sittle pill Sittle pill 0-5 Sample Dif Sample Dif Sample Dif Sample Dif Pill 5-w Difference Difference Sample Dif Sampl	CRAVEL	3 . 0.09 -	SAND ID 08	0.003 in 1	SILTIC			eral soil)
Or of on the control Data of the control Drive Interval Blow Counts (per 6") Recovery (% or ft) USCS Code Lith Code Sample Interval - MATERIAL TYPE; color; % coarse material; % fine material; angulanty of grains; moisture; sheenstain; odor consistency. (Sample ID if Applicable). We Sket 0-5 4.364 SP SAMPL 0 - 5.1 - 500 w. f. 5.4A.0 w. / fract. Si 11, M. Sancy, Mai's f. (frin) We Sket 0-5 4.364 SP SAMPL Bins 0 - 5.1 - 500 w. f. 5.4A.0 w. / fract. Si 11, M. Sancy, Mai's f. (frin) Notes: 0-5 4.364 SP SAMPL Bins D - 5.1 - 500 w. f. 5.4A.0 w. / fract. Si 11, M. Sancy, Mai's f. (frin) Notes: 0-5 9.70 Bins Notes: 0 - 5.1 - 500 w. f. 5.4A.0 w. / fract. Si 14, M. Sancy, Mai's f. (frin) Notes: 5-w D # 50 cased 5 - (v Fr, all Wettyp: Pip: Pip: Pip: Pip: 5-w D # 50 cased 5 - (v Fr, all Wettyp: Pip: Pip: Notes: (indicate IDW containerization and disposal methods; PID model) Pip: Pip: Sample BH4 - S C 1305, 1.1-1.2 Cr BH17-D Pip: 7.3								
Drive Interval Blow Counts (per 6°) Recovery (% or ft) USCS Code Lith Log P Sample Interval - MATERIAL Shift MATERIAL results Code We Sket 0-5 U.36A SP BMAS 0-5.1.1 ~ Shift SAMD with rate Shift Shift Shift <td>GW GP</td> <td>GIVI GC</td> <td>3W 3F 3</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	GW GP	GIVI GC	3W 3F 3					1
Notes: (Indicate IDW containerization and disposal methods; PID model) Notes: (Indicate IDW containerization and disposal methods; PID model) Sample BH9-5 C 1305, 1.1-1.2 Ft [3H9-0] C 1307, 3.3-3.5 Ft		Counts	,		Lith	e Sample	Interval - MATERIAL TYPE; color; % coarse material; % fine material; angularity of grains; moisture sheen/stain; odor; consistency. (Sample ID if	Well Sketch
S-W DISC and S -10 FL all WEHD PID: 7.0 TH DISC and S -10 FL all WEHD PID:	0-5		4.34		Bing-S	511	t, M. Series Maist (Fill) 1.3 - Brown F. SAND With Silt, PID. 4.7	
S-W DISCARDER 5-10 FL all Wellso PID: Notes: (Indicate IDW containerization and disposal methods; PID model) Sample BH9S C 1305, 1.1-1.2 FL BH9-D C 1307, 3.3-3.5 FL					BH4-D	Hari	PID: 7.0	
Notes: (indicate IDW containerization and disposal methods; PID model) Sample BH9-S C1305, 1.1-1.2 FF BH9-9 C1307, 3.3-3.5 FF	5-10				2	tat D		- <u>×</u> 4:
Notes: (indicate IDW containerization and disposal methods; PID model) Sample BH9-S C1305, 1.1-1.2 Ft BH9-D R1307, 3.3-3.5 Ft								
Notes: (indicate IDW containerization and disposal methods; PID model) Sample BH9-S C1305, 1.1-1.2 Ft BH9-D R1307, 3.3-3.5 Ft							סוס	
Sample BH9-5 C1305, 1.1-1.2 Ft BH9-0 R1307, 3.3-3.5Ft				1.12			PID:	
	Notes: (inc	licate IDW co		ye !	BHg	- 5		
RH98 ()"1930" 3.3-3.54 (DUP)								
				3	RH91	6 (P "1930" 33-3,54 (DUD)	

Boring Log Form

Client / Si	te Name:	FAI FTP	STT	CHA	RAR, Boring ID: BILO
Project # :		5.00104.12			Logged By: C.VENT
Start Date	e/Time: (0/7/18	1310		Drilling Contractor: DISCOVERY
Completio	n Date/Time	617/18	1313		Driller's Name (License [y/p]): Scott icmBre
的性性和能	「新聞書」	Mark Carlos		0.00	Borehole Detail
Drilling Me	ethod: 🗋 HS.	A Direct Pu	ush		Completed as Well? Ves XNo IF YES, COMPLETE WELL LO
C Rotary	(mud/air)	Sonic 🗌 Oth	er:		Well ID:
Rig (Make	/Model): G	eurone (3712		Well diameter (in):
		25h Much	v-ion	r	Screen Top (ft bgs): Screen Bottom (ft bgs):
	diameter (in.)				Well Type: Monitoring (temporary/permanent) Extraction
	Total Depth (-		Surface Completion: Stickup Flush mount
	el in Boring (91	Date/Tim	e: 1211	Water Level in Well (ft bgs): Date/Time:
THE SHOP			12:515	the second se	Location Information
Current bår	thad: D	20 7×			Location Sketch:
Survey Me		SLA	-		
Survey Co					
	Name (Lice		1 1.		See 5fs deta
Northing:		See Ups	datos		
Easting:	(
Ground SL	urface Elevat	ion:			BURGETER
12 1 6 6 1		1.1.	1	1	Drilling Log (< 0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral s
	3 – 0.08 in)	SAND (0.08			
GW GP	GM GC	SW SP SI	M SC	1	
Drive Interval	Blow Counts (per 6")	Recovery (% or ft)	USCS Code	Lith	D Description e Sample Interval - MATERIAL TYPE; color; % coarse material; p % fine material; angularity of grains; moisture; t sheen/stain; odor; consistency. (Sample ID if
			-		h Applicable)
D-5	~	3,364	59	Billo-	PID: 2.0
			st-sm		1.9-7.3 -Brown, F. SAND With
			1000		Silt, deuse, denf.
			- 5P	- 2	
					3.3 Brun, F. SAND with trace Sitt.
		-	1		dawa la
		1		P	Ve cenzy, dany.
			-Sial	-	End Rom COMING EN CAND MARK
5-14			200	BAND-D	C. Sand and track Silt, 10050, damp. PID:2.5
3-14		3.6		17	C. Sand and track silt, roose, camp. PID:2.3
			-	- +	
					6 - 6my, F. SAND with leases of M.C. Study
			SP		wet, louse.
	· .				
		1		E	
		1.1			PID:
				- +	2-
				6	X No recovery 8.6-10
			1.17	1	PID:
	ticate IDVALCOR	itainerization and	o disposa	i metnoas;	is; PID model)
Notes: (ind					
Notes: (inc		Scal	e B	410-5	5 1.0 -1.2 Ft
Notes: (inc		- Sampl	c B	H10-5	5 1.0 -1.2 Ft
Notes: (inc	1324	- Sample Sample			

Client / Si		FAI F	19 55		ila	AA Boring ID: BAII	
Project # :		105.0010				Logged By: C.VENT	_
Start Date		64118		32	-	Drilling Contractor: Dits WVERY	
Completio	n Date/Time	e: 101-	7114	1434		Driller's Name (License [y/6]): SLOTT LOMBARD	
1.			31	on ne	100	Borehole Detail	
Drilling Me	ethod: 🔲 HS	SA Direct P	ush			Completed as Well? Ves 🔼 No IF YES, COMPLETE WELL L	OG
Rotary	/ (mud/air) [Sonic 🗌 Oth	ner:			Well ID:	
Rig (Make	/Model):	Clopube	67120	T	1	Well diameter (in):	
Sampling		Macro			_	Screen Top (ft bgs): Screen Bottom (ft bgs):	
Borehole (diameter (in.): 2	.25"			Well Type: Monitoring (temporary/permanent) Extraction	
	Total Depth			_		Surface Completion: Stickup Flush mount	
		(ft bgs): w.u		e: 143			
	J	(ocation Information	-
Survey Me	thod	Geo 74	610	-	LUI		-
Survey Co			015	-		Location Sketch:	
		turn turn	SLA	_	-	S. CALDI	
	Name (Lice	ense (y/m)):	-			See GPS Date	
Northing:		-	C	- CA	1	Data	
Easting:		-	_ Je	2 64	2	Y WAR	
Ground Su	urface Eleva	tion: —			1.1		
1.2.0						Drilling Log	
GRAVEL (3 – 0.08 in)	SAND (0.08 -	0.003 in)	SILT	(< 0.	0.003 in) CLAY (no grains visible) HIGH ORGANIC (< 50% mineral	soil
GW GP	GM GC	SW SP S	M SC		ML		
					D	Description	
Drive	Blow	Recovery	USCS	Lith	e	Sample Interval - MATERIAL TYPE; color; % coarse material;	We
Interval	Counts	(% or ft)	Code	Lin	р	% fine material; angularity of grains; moisture;	vve Skete
	(per 6")			Log	t	sneen/stain; odor; consistency. (Sample ID if	
					h	Applicable).	
		1.1			1/2	Out firm when COAD	
0-5		2.4	SPAN		4	A VIEW, granning F. SAN	
0-0		3.4	Nim	SHI.	5	With Mrt Sund, draw dense	
		1.1		1 1	1	O-4-Gray, gravely F.SAND With M.C. Sand, dang, dense (FILL) PID: [1]	
			-		1	(File) PID: (1)	.,
		70			1/		1
					[/	/	/
					11	1 /	
					11	/	
					1		
	_	-		-	-	PID:	
			1.7.1.7		11	4.0-4.3 - Brown F. SAND W/ Hace	
			<.0		11	A A A A A A A A A A A A A A A A A A A	
		20	16	hun-	4	Silt, Damp, dense	
		3.0	1	BHIL	D	Show De Carton	
					11	5.0-8.0 BRWN F. SAND Mith gravels PID: 2.0 1	1
		1. 1	Siv		11	(rundes), dung, M. Denje	
			1300.	_ I	14	(Inners) , curry in our se	
					11	6.0-6.5 band of F-C SAND, net	
			03		1/	winner ware as in string wer	
			52		11		
		-	-	-	1	PID:	
						No recovery 8-10 Ft	
11					A		
		1			Pr		
			1			PID:	
	cate IDW con	tainerization and	disposal	methods	; Pil	PID model)	
Notes: (india							
Notes: (indi		C	L P	SH D	-5	5,10-15Ft Q 1443	
Notes: (indi		Tr. AND					
Notes: (indi		· · ·					
Notes: (indi		· · ·					
Notes: (india		· · ·				-D, 5.0-5.5Fr @ 1449	

Rev. 2012

SLR

Project # : Start Date	e Name: TA /Time: () Date/Time:	7118 145		12	Boring ID: BH12 Logged By: C.V E Drilling Contractor: D Driller's Name (License I)	ASTANERY ASCONERY 11011: SCOTT LONBADD	
Completion	Date/Time.	STILL I	7) /	Boreho	le Detail		
		-		Comple	ted as Well? Thes Dr No	IF YES, COMPLETE WELL	LOG
Drilling Met	thod: 📋 HSA	Direct PL	ISN				
		Sonic 🗌 Oth		Well ID			
Rig (Make/		jeograbe			ameter (in):	creen Bottom (ft bgs):	
Sampling N		pleiro-	con	Screen			
Borehole d	iameter (in.):	245"			pe: Monitoring (temporar		
	otal Depth (f				Completion: Completion		
Water Leve	el in Boring (f	t bgs):5	Date/Time 145		_evel in Well (ft bgs):	Date/Time	and sense of
1000				Location	Information		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Survey Me	thod:	rimble 6.	w TX		Location Sketch:		
Survey Co		SLA			- S. C	pr Data	
	Name (Licer	nse (y/Q):			Jee U	۲-۱۷- مو م <u>م</u> ا	
Northing:			Sport	0-1-	_		
Easting:			the GAS	Daifa	_		
	irface Elevati	on:					-
and the second sec	in the second	18 Roman			ng Log		and an th
GRAVEL (3 - 0.08 in)	SAND (0.08 -	0.003 in) SIL	T (< 0.003 in)		HIGH ORGANIC (< 50% min	erai soli)
GW GP	GM GC	SW SP SI	M SC	ML	CL OL MH CH OH	PT	-
		1		D			
Drive	Blow	Recovery	USCS Lith		le Interval - MATERIAL TYPE	gularity of grains; moisture;	Well
Interval	Counts	(% or ft)	Code Log	P	sheen/stain: odor: r	consistency. (Sample ID if	Sketch
	(per 6")			h	Applicable).		
		1	1 1	VI	- Internet in		
			00	110-	3.0 - Gray, growell ilt and C-M Sa	F.S.AND W/ trace	
		4.084	59	1/ 0	sit I'J'		1
5-5		4.014	~	1 2	ill and C-m Sa	nd, m. dense, Moirt	
				1/1	(FILL	•	15. C
	Concernance of the second			1		1	
			BHIZS	2 1.7	0 - plastic FTA	Liner, when thick	
				11	- 11-21- 1-10		
					al geostextus Fabric	-	1 2
			1 1	VI		PID: 3.7	
				14-		PID: * *	1 /
	1			IA			1/
				IA			1
				1A			
				11			1
		-	1	1/1		PID	-
		1	1	120	- 4.0 Brown F.	SAND with	
				1A			
		1		1/2 +	once sith danjy	damp	
		1			- my	and the second se	
	1		BHI	0		PID: 3.	
_			1	H			
		1			Paralen LA-5 CL		
				S N	· recovery 4-5 Ft		
							1
		1	<u>p</u>			PID:	1
Notes: (inc	licate IDW con	tainerization an	d disposal meth	ods; PID mod	el) Ditw of 5.0 ft	estimates have on wet Sungle	- tip.
		C	1 51	16 C	Laber O	1 mg	
		201	mple 13t	12-31	1-1.254+ C	1200	
			•				
				in a	, 3.7-4.0F+ C	1511	
			//	N 17 ~ 11		1211	

Site Name:	FAI FIL S	FRE CHAR		Location/Area:	KAD		
Sampled By:	C.VENO"			Sample ID:	551		
Approx. Air Ten		60°F		the Content of the second s	9910 Sample	Date: 6/8	10
Weather Condit				Duplicate ID;	110 cumple	Bate. 910	48
				MS/MSD 🗌 Yes 🕅	No Trip Blank Re	uired: 😰 Yes 🗌	1 No
				n Information	Alto The Bidnik Her		1140
Surface	Boring 🔲 Test Pit	t (floor / sidewall)	Excavation (floor / s		mple Depth (ft bgs):	1.0	
Water level Dep	th (ft bgs) 1) A	K, Frozen Sc	Depth (ft bas)	A/A	inple Depth (it bgs).	1.0	
Note- If not know	wn at sample locati	on, list as not deter	mined "ND"				
	_	Sample	Description - cire	cle applicable class	sification(s)		
GRAVEL (3 - GW GP G		SAND (0.08 - 0.003 IN)	SILT	(< 0.003 IN) C	LAY (NO GRAINS VISIBL	E) ORGANIC	SOIL PE
GW GP G		W SP SM SC		MH	CL CH	01/0	H P
Color	%Co	arse I	%Fines	15 P	eat/Organic Soil Likely I	Present (V/N)	
Moisture (Dry. M	oist, Wet/Saturated)	Mors			Odor		
PID 1.6		pace 🗌 In-Sample			0dor	Bioney	
	-ppin Hilleaus						
Analyses	Check		Check	1	Check	_	Check
-	Applicable	Analyses	Applicable	Analyses	Applicable	Analyses	Applicabl
vocs		ORO/RRO		(RCRA Meta)		-	
BTEX		PAHS		Lead (only)			
GRO		PCBS	· · · · · · · ·	PFAS			
Equipment Used	: PID/FID(Model\S	N) MIM	RAP Colle	ction Method			1
lotes/Comment	s (indicate general la	ocation, and possible	other relevant cond	ditions not listed abov	(e).		
Site Name:	FAI APP			ocation/Area:	í fr	p	
Sampled By:		A-0	5	Sample ID:	552		-
Approx. Air Tem		OF		Sample Time: 🛛 🗘	16 Sample D	ate: 6/8//	B
Weather Condition	ons: fur	JUNNY		Duplicate ID:			
			N	/IS/MSD 🔲 Yes 🕅	No Trip Blank Req	uired: 🗘 Yes 🗌	No
V			Location	Information			
	Boring I Test Pit	(floor / sidewall)	xcavation (floor / si	dewall) Sam	ple Depth (ft bgs):	0.SFt	
vater level Dept	h (ft bgs) 0.5	Frozen Soil n, list as not determ	Depth (ft bgs)	MD			
	in at sample locatio			a an all a bland			
GRAVEL (3-0	08 (N) S	AND (0.08 - 0.003 IN)	Surry	e applicable class	ification(s)		
		V SP SM SC	ML	MH GL	AY (NO GRAINS VISIBLE CL CH) ORGANIC OL/OF	
AK 6	101 0	ar		15		the second se	Г
- Dia	10000	36	%Fines	Pe	at/Organic Soil Likely P	resent (YAN)	_
	st, Wet/Saturated)	wet	Stained	Yes	Odor	Diesel	
nd 27.7	_ppm X Headspa	ace 🗌 In-Sampler	🔲 In-Situ				
Analyses	Check	Analyses	Check	Analyses	Check	Analyses	Check
OCs	Applicable	DRO/RRO	Applicable		Applicable	Analyses	Applicable
TEX		PAHs		RCRA Metal 5			
RO		PCBs		Lead (only)			
A-62	PID/FID(Model\SN			PEAS	1	·	
			Collec	tion Method tions not listed above			
eres comments	(indicate general loc	auon, and possible (uner relevant condi	tions not listed above	9):		
6	ralely Gr	ey-brack	SAINE	M) will	C C	11 1-0	Cul
0	day II /		SALLS (F-	1.1		NJ frace	
	any p u	Rt M. loose	- Shein	Staining an	Sitrang 1	y dro carlo	n oder.
ev. 2016				V	(3)	
1975 C					12		

Soil Sampling Form

Site Name:	FAL FID	STIF CAMP	~	Location/Area:	FTP		-	
Sampled By:	CUENOT			Sample ID:	553	1		
Approx. Air Temp		ST.		Sample Time:	0425 Sample	Date:		
Weather Conditio		Clady.		Duplicate ID:		1		
	1.01	1.		MS/MSD [] Yes	No Trip Blank Re	quired: 🚺 Yes 🔲 I	No	
				n Information				
Surface B	oring 🔲 Test Pit	(floor / sidewall)			Sample Depth (ft bgs):			
Water level Depth	n (ft bas)	Frozen Soil	Depth (ft bgs)					
Note- If not know	n at sample locatio	on, list as not determi						-
0.041				cle applicable cla				PEAT
GRAVEL (3 - 0. GW GP GM		AND (0.08 - 0.003 IN) SP SM SC	SILT	(< 0.003 IN) L MH	CLAY (NO GRAINS VISIBI CL CH	ORGANIC OL/OF		PT
Color DK BR Moisture (Dry, Moi PID 7.5	ist, Wet/Saturated)_ _ppm ☐ Headsp	mse_ <u>95</u> Moirt-w≥f pace □In-Sampler	%Fines Stained □ In-Situ	±5 ₀yes	Peat/Organic Soil Likely Odor	A		
Analyses	Check	Analyses	Check	Analyses	Check	Analyses	Check	
	Applicable	DRO/RRO	Applicable	RCRA Metal	Applicable		Applica	DIE
VOCs BTEX		PAHs		Lead (only)				-
GRO		PCBs					1.2	-
	PID/FID(Model\SI		Coll	ection Method	1		1	
Site Name: Sampled By: Approx. Air Temp Weather Conditio	ons:	(floor / sidewall) 🔲 E>	Locatio	Location/Area: Sample ID: Sample Time: Duplicate ID: MS/MSD Yes on Information sidewall)	Sample	Date: equired: 🗌 Yes 🗌	No	
Water level Dept	h (ft bas)	Frozen Soil	Depth (ft bgs)		F			
NOTE- IT NOT KNOW	m at sample locatio	on, list as not determ Sample D		rcle applicable cla	assification(e)			
GRAVEL (3 - 0	.08 IN)	SAND (0.08 - 0.003 IN).		(< 0.003 IN)	CLAY (NO GRAINS VISIB	LE) ORGANIC		PEAT
GW GP GN		W SP SM SC			CL CH	OL/OI		PT
Color	0/0-	1150	% Einer	1	Peat/Organic Soil Likely	Present (Y/N)		
					Odor			
		bace 🗌 In-Sampler			0001			
Analyses	Check Applicable	Analyses	Check Applicable	Analyses	Check Applicable	Analyses	Chec Applica	
VOCs		DRO/RRO		RCRA Metal		1		
BTEX	1	PAHs		Lead (only)			12	
GRO		PCBs		and the second			1.	
Equipment Used Notes/Comments	: PID/FID(Model\S s (indicate general lo	N) ocation, and possible o		lection Method nditions not listed a	bove):			
Rev. 2016								

Site/Client Na	me: FAI	L FTP	STTE	CHAR.	Well I	D:	MINT			
Project # :	105.001	104.18	200		Sampl	e ID:	MW)			100
Sampled By:		ENDT			Sampl	e Time:	1732	Sample	Date: (.)	7/18
Weather Condi		Part	Cloudy	1	Duplic					110
Sampling Method			puge				No	Trin Blank B	Required: 🗹	
	-		10	Well In	formation		Q.	пр ыапк г	required.	
Well Type: 🗋 Pe				Well Diameter		Screen In	terval:	ft BG	S to 12	ft BGS
Well Condition:	Good 🗌 Fa	air 🗌 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes 🙀	o; If yes, Or	So ft above	e ground
Depth to Water (f	PTOPIC . (10	Gauging/Pur						
Total Depth (ft B		· · · · · ·	+.0			Pump Dept Start Time (h (ft. BTOC		_	
Depth to Product		-	1.10			and Time (2		1650		
Product Thicknes		~				urge Time (30		
LOW FLOW:	Max Draw Dowr screen, then use	n ≃ (Tubing D	epth – Top of	Screen Depth)	X 0.25 =	(ft);	if screen inte	rval is not know	n or water table	e is below top of
Min. purge volume Well Diameter	if required: pu	irge volume (g			n) X Water co 163 gal/ft	umn thickne	ss(ft) 4" - 0.653	X # of casing v		= <u>gal</u> 69 gal/ft
				Water Quali	ity Paramete	ers			10 C	
				parameters if practic	al [each read	ing taken afte	er pumping a	minimum of 1 fl	ow through cell	volume])
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW 🗲 (ft BTOC)	Drawdown (ft)
1. 1. 1. 1.	minute)	. (gal).	(± 3 %)	(µS/cm ^c)		(1.0.4)		(± 10%, or	(1.5100)	
1702		Ø;	1	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)
1200		BL	5.23	1763	6.20	6.57	57.6	Mer.	NM	NM
1405	~600	8.25	5.25	1260	4.55	6.52	44.5	136	-1	1
1414	~ 600	13.5	5,24	1260	4.51	6.57	48.7	86		
1.11 F	~402	14.75	5.27	1260	4.41	6.52	48,0	34		
1720	~350	15.5	5.40	1260	4.38	6.52	47.2	20	V	-4
			-							
_	-		-							
Parameter Stat	ole (Check ann	licable)	2		1					
Sample Color:			\square	Campela Ordera	V	V	Y	\sim		-
cample color.	Clear	-		Sample Odor:	Nor	le	Sheer	" non	e	
	Analys	ses			I Sampling Applicable	1		Commer	Its	
Druiki	20			-		D	15			
GRO						17	45			
Vol										
RIRA	Metai	ذ								
Notes:	650-717	102 -	well	more very	Purge	of G	L S	P-16 W.21	point	
	702-172				1		5	-	1	
4	Count	04	india (1						
Equipment: Pum	Type De	nictalitic	L Diw	Tubing (Typ	wen 5	DE /PFT	F.	Bailer Type_	-	
Nater Level Meter		M 920	SLOPE	Multi-Paramet	er Meter (Ma	ke/SN#)	YS= 5			
Furbidity Meter (M	ake/SN#)	Lamit	e				1	er Lot #		
	8-16 V	Den s	screen,	1/2" JD	Casin	1				
Purge Water Hand	Discl	narged to su	rface UCon	tainerized 🔲 Tre	ated (how?)	i	JIN P	te liner		

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Page 1 of ____

Site/Client Name	EAL	TO	T	1. C . to	Well II	ŋ.		Mh	14	
Project # :		20184.1	2 Anz	ning site	Sampl		011		W4	
Sampled By:		elber	000-		_	e Time:	1723	Sample		7/10
Weather Condition	1 VIVV				Duplic		1745	Gample	Date. P.	1110
							TH No.	Trin Dianis F	Required:	
Sampling Method:	LOW FIOM	Other_		Moll In	formation		LA INO	пр валк н		
Well Type: 🗌 Perm	anent DKT	emporary		Nell Diameter	in.	Screep#n	terval:	ft BG	S to	ft BGS
Well Condition:									3 ft abov	
T.			R: A	Gauging/Purg	ing Inform					
Depth to Water (ft E			-0.30	29,13				: 10.00		
Total Depth (ft BTC		10.00							pment,1	1:06
Depth to Product (fi Product Thickness			_			urge Time (2		6 (Devele	pinent)	
	5.0	= (Tubing D	epth – Top of	Screen Depth)				val is not know	vn or water tabl	e is below top of
SCR	een, then use	default value	of 0.3 ft.;		-					
Min. purge volume if Well Diameter -			al) = volume of 041 gal/ft		ft) X Water cc 163 gal/ft	olumn thickne	ss(ft) 4" – 0.653 g	X # of casing v al/ft		_ =gal 69 gal/ft
	3		/	Water Qual		ers				
(Achieve stabl	e parameters	for 3 consecu	tive reading, 4	parameters if practic			er pumping a	minimum of 1 f	lów through cell	volume])
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)
(24-nr)	(liter/	stgal)		(µS/cm°)				(± 10%, or	(((1000)	
1	minute)	L	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)
17:08	1	6	Coll	859	4.53	6.77	45.7		9.75	0.32
17:12	F.	6.5	6.14	865	4.99	6.75	44.9	-	9.75	0.32
17:14	1	1	6.06	847	4,35	6.74	45.0	-	9.75	0.32
17:17	1	7.5	5.97	850	4.36	6.74	46.2	-	9.72	0.29
17:20	X	8	6.10	852	4.36	6.74	46.2	-	9,73	0,30
			1.0							
/										
1										
/										
			2							
									1	
Parameter Stabl	e (Check ap	plicable)		V	V				V	V
Sample Color:	Clear	-		Sample Odor:	Mon		Shee	n: Non	L.	
-1-			-	Analytica	al Sampling					
	Analy	/ses		Check	Applicable			Comme	ents	
PFAS						1)AH			
	Ra						1000			-
Deolpa		,				-		_		
Notes:	MEIALO			n ald relat					-	
	1 YUC	Scr	een.	D.010-5107.		. 1 .	1-30	1.		
-	5 liter	s purg	ed as a	port of d	eneropm	ent by	17°C	00		
			1	2	1	1	11.01			
Equipment: Pump			(peri	· · · · · · · · · · · · · · · · · · ·		1	tertor	Bailer Type		
Water Level Meter_	Slope		nctor	Multi-Parame	eter Meter (M	//dke/SN#)_	751	556 N	173	
Turbidity Meter (Ma	ke/SN#)	~			_		Fi	Iter Lot #		
Purge Water Hand	lling: 🕅 Dis	charged to s	urface 🗌 Co	ntainerized 🔲 Tr	eated (how?	?)	- 71			

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

1

Site/Client Nam	ie: FAI	FireT	ining	Pit	Well	D: 24	3 B	H2/MI	NZ	100
Project # ;)		Samp		nwz	9.4		2 M
Sampled By:	B. U	belbe	r		Samp	le Time: 🏻	AWZ	12 VSample	e Date: 6	7/18
Weather Conditi	ons: 50	nny					MWZ	9 10	1:30	
Sampling Method:	A Low Flor	w 🖾 Óther	Switch			SD 🗌 Ye	s 🖾 No	Trip Blank	Required:	Pyes 🗌 No
Well Type: D Perr	manent 2	emporary		Well In Well Diameter	formation	Screen II	nterval:	ft B(GS to	ft BGS
Well Condition:	Good G Fa	air 🗌 Poor (95 ft abov	
			199	Gauging/Pur	ging Inform		<u></u>		160	
Depth to Water (ft Total Depth (ft BT		3,46			Tubing	/Pump Dep	th (ft. BTOC	1: 14.8	7	
Depth to Product (1		4.87			Purge	Start Time	(24-hr) 13	130 Derele	pment), 1	5:06 (Purg
Product Thickness						urge Time		100 (Revel	g(0 min	
LOW FLOW: Ma	een, then use	n = (Tubing default value	Depth – Top of of 0.3 ft.:	Screen Depth)				erval is not know	wn or water tab	le is below top of
Min. purge volume in Well Diameter –	f required: pu		gal) = volume o 041 gal/ft		/ft) X Water co	olumn thickne	ess(ft)) X # of casing	volumes	= <u> g</u> al
	*			Water Qual	.163 gal/ft ity Paramet	ors	4" – 0.653			469 gal/ft
	le parameters	for 3 consecu	itive reading, 4	parameters if practi	cal [each read	ling taken af	ter pumping a	minimum of 1	flow through cel	l volume])
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	рН	ORP	Turbidity	DTW	Drawdown
(2.1.11)	(liter/	(gel)		(μS/cm°)	(riig/L)		(mV)	(NTU) (± 10%, or	(ft BTOC)	(ft)
	minute)	L	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)
1506	-	24	6.27	1.560	4.42	6.52	82.0	-	13:97	0.51
1512		25	5,19	1,551	4.25	6.48	77.01	-	13.87	0.41
1517		26	4,75	1.549	2.33	6.44	74.9	-	13.85	0.39
1520		27	4.68	1.555	2.05	6.45	71.8	-	13,39	0.43
1523		28	4.62	1.559	1.93	6.45	69.3	-	13.91	0.45
1526		29	4.71	1,554	2,3	6.46	68.5	-	13.43	0.47
	-					- 10		-	100 (3	
	1		-							
						1			1.20	
Parameter Stable	e (Check app	olicable)	М	M	1	\checkmark	\checkmark			
Sample Color:				Sample Odor:			Shee	n:		
	A				I Sampling	-				
	Analy	ses		Check	Applicable			Comme	nts	
			_			-				
						-				
						-				
Notes: Begir Prin	n well	develo samp	pment e Mui	@ 13!30 2 @ 19) 547,1	Dup !	NWZ9	@ A	30	
quipment: Pump Vater Level Meter (2 (per	Tubing (Ty	pe/Length)	poly .	and tet	Bailer Type	0	
urbidity Meter (Mak		pe in	dicato	<u>Multi-Parame</u>	ter Meter (M	ake/SN#)_	Filt	556 ///	È,	
ungo Motoo Harait	\sim		/ T -		100.0.000	-				
Purge Water Handl						1				
BGS = Below Ground	d Surface, BT	OC= Below	Top of Casing.	NA = Not Applica	ble		Pa	age 1 of		

1346-3,85 = 10.61 H

Site/Client Nam	e: FAI	Fire	Trainir	v Pit	Well I	: BH3	3 / MW	3		
Project # :			A TO STAT	3	Sampl		MW3			
Sampled By: B	illa	Iber			Sampl	e Time:	1255	Sample	Date: 01	1
Weather Conditi	0 00/23	and			Duplic				UP1	
Sampling Method:		W DA Other	Switch t	o 3 volume		SD 🗌 Yes	MNo	Trin Blank R	equired: 🚺	Yes 🗌 No
Sampling Wethou.	Low Tio		200110111		ormation		HUNO		icquired. M	
Well Type: 🗌 Per		Temporary	V	Vell Diameter		Screen Int	terval:	ft BG	S to	ft BGS
Well Condition:									84 ft above	e ground
Д				Gauging/Purg	ing Inform					3-1-2
Depth to Water (ft	BTOC): 17	.91					h (ft. BTOC)			1
Total Depth (ft BT		1-91	_			Start Time (2		130 (dere		11840 (pl
Depth to Product (End Time (2		OB (depe		
Product Thickness		n = (Tubina D	enth - Top of	Screen Depth)		urge Time (nelopment)	e is below top of
	creen, then use			Screen Depui)	X 0,23	(it),	Il scieen inter	Val 13 Hot Kilow		
Min. purge volume Well Diameter			al) = volume of 041 gal/ft	water/ft(gal/ft 2** - 0.1	t) X Water co 63 gal/ft	olumn thickne	ss(ft) 4" – 0.653 g	X # of casing v gal/ft		_=gal 69 gal/ft
(Appionente	ble parameters	for 2 consoour	tive reading A	Water Qualit	v Paramet	ers			low through cell	volume])
Time	Flow	Purge	Temp	Specific	DO	pH	ORP	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)		(mV)	(NTU)	(ft BTOC)	(ft)
	(liter/ minute)	(gal)	(± 3 %)	(μS/cm [°]) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)
Inter	0.25	Lites	-	1.544	9.2	6.59	83.9		13.49	0,58
11949	0.25	11 000	8-61			-		-	12:17	0.52
11078	-	12.20	6.31	1.548	6.9	6,52	87.1		12,47	0034
11:52	0.25	13	le.27		6.2	0.46	87,2		13.40	0.49
11:55	0:25	14	6,35	1.558	6.0	6.49	84.5		13:43	0,52
		1								
								·	1	
						S _ 1 7		1.000		
Parameter Stal	ble (Check a	pplicable)	V	./	1	V	V			
Commis Colom	al			Sample Odor:			Shee	n' 0 a.e	0	
Sample Color:	clear				12		Silee	n: non	e l	
	Ana	lyses			I Sampling Applicable			Comme	ents	
		.,				1				
						-				
						-1				
			-			1				
Notes:	in Lite		1 10-		11]01	ul. cast.	,t-			
	10 IIFG	-s pur	ges or	ining we	an au	Clopiner	ų			
		•	°							
		and the second second	/	1		-				
Equipment: Pur		Ropum	PLLP	Uni Jubing (Ty	pe/Length)	POLY	[10]	Bailer Type	00	
Water Level Mete	and the second second	slope h	Adicatory	Multi-Parame	ter Meter (I	Make/SN#)_	YSI	556 A	APS	
Turbidity Meter (M	/lake/SN#)	1	-		_	_	Fi	Iter Lot #		
Purdo Mater U	dling the Di	echarged to a		ntainerized 🔲 Tre	ated (how	2)				

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	UW.1	7/10/201	14/2018	6.93	7.01	± 0.10
рН	4.00	4.00	US1	7/10/201	8/2018	4.17	4.00	± 0.10
	10.00	10018	UNANE	7/10/201	16/2013	10.08	10.18	± 0_10
Sp Cond (mS/cm)	1.413	1.278	UW1	7/10/2017	4/2018	1.327	1.278	± 10%
ORP (mV)	240	(Enti					BUMP	
DO*	741,3 the	i				92,5	97.5	± 2%
	ufacturer and Standard	Identification #:	Time: 934	56 MPS		B. WOR	Reading	
				56 MPS		PreCalibration	Reading	
		True Value	<u></u> Lot#	Date Opened	Expiration Date		Reading After Calibration	Acceptance Criteria
	Standard	True Value	_ 451 59	Date Opened	Expiration Date	PreCallbration Reading	Reading After Calibration 7.02	Acceptance Criteria ± 0.10
Parameter	Standard 7.00	True Value 7,02 4,00	YSI 59 Lot# UW:1_ US:1_	Date Opened 7/10/2017 7/10/2017	Expiration Date 4/2018 8/2018	PreCallbration Reading	Reading After Calibration 7.02 4.00	Acceptance Criteria ± 0.10 ± 0.10
Parameter pH Sp Cond	Standard 7.00 4.00	True Value	<u></u> Lot#	Date Opened	Expiration Date 4/2018 8/2018 6/2018	PreCallbration Reading	Reading After Calibration 7.02	Acceptance Criteria ± 0.10
Parameter pH Sp Cond	Standard 7.00 4.00 10.00	True Value 7,02 4,00 10,08	<u>VSI</u> Lot# UWL US1 UV2	Date Opened 7/10/2017 7/10/2017 7/10/2017	Expiration Date 4/2018 8/2018 6/2018	PreCallbration Reading	$\begin{array}{c} \text{Reading} \\ \text{After} \\ \text{Calibration} \\ \hline 7 \cdot 02 \\ \hline 4 \cdot 00 \\ 10_{9} 08 \end{array}$	± 0.10 ± 0.10 ± 0.10
Parameter pH Sp Cond (mS/cm) ORP (mV) DO*	Standard 7.00 4.00 10.00 1.413 240 7.42	True Value 7,02 4,00 10.08 1.225	<u>451</u> 59 Lot# UW1 US1 UU2 UW1	56 MPS Date Opened 7/10/2017 7/10/2017 7/10/2017 7/10/2017	Expiration Date 4/2018 8/2018 6/2018 4/2018	PreCallbration Reading	Reading After Calibration 7.02 4.00 10.08 1.225	Acceptance Criteria ± 0.10 ± 0.10 ± 0.10
Parameter pH Sp Cond (mS/cm) ORP (mV) DO*	Standard 7.00 4.00 10.00 1.413 240 7.42.al f parameter not in Note that the True	True Value 7.02 4.00 10.08 1.225	Lot # UW 1. US 1. UV 2. UW 1. UW 1. UW 1. UW 1. Time:	Date Opened 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 NA (not applicable and altitude; refer	Expiration Date 4/201% 8/201% 6/201% 4/201% ence the DO Calibr Calibration By:	PreCalibration Reading 47.08 3,95 10-10 1225 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Reading After Calibration 7.02 4.00 10.08 1.225 BUMP 98.6	Accepts Criter ± 0.1 ± 0.1 ± 0.1 ± 109 ± 2% Calibrat
Parameter pH Sp Cond (mS/cm) ORP (mV) DO* teter Manu	Standard 7.00 4.00 10.00 1.413 240 742_1 f parameter not in Note that the True	True Value 7,02 4,00 10,08 1,225	VSI 59 Lot# UW1 US1 UU2 UW1 event, fill in box with pendent on pressure	Date Opened 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 NA (not applicable and altitude; refer	Expiration Date 4/201% 8/201% 4/201% 4/201% ence the DO Calibr	PreCalibration Reading 47.08 3,95 $10 \circ 10$ 1528 1225 3 47.3 98 1225 3 3 1225 3 3 12 3 12 3 3 12 3 3 12 3 3 12 3 3 12 3 3 12 3 3 3 12 3 3 3 12 3 3 3 3 3 3 3 3 3 3	Reading After Calibration 7.02 4.00 10.08 1,225 BUMP 98.6	Acceptance Criteria ± 0.10 ± 0.10 ± 0.10 ± 10% ± 2% Calibration Acceptance Criteria
Parameter pH Sp Cond (mS/cm) ORP (mV) DO* *	Standard 7.00 4.00 10.00 1.413 240 742.al f parameter not ir Note that the True Unfacturer and I Standard	True Value 7.02 4.00 10.08 1.225	Lot # UW 1. US 1. UV 2. UW 1. UW 1. UW 1. UW 1. Time:	Date Opened 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 7/10/2017 NA (not applicable and altitude; refer	Expiration Date 4/201% 8/201% 6/201% 4/201% ence the DO Calibr Calibration By:	PreCalibration Reading 47.08 3,95 10.0 1598 1225 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Reading After Calibration 7.02 4.00 10.08 1.225 BUMP 98.6	Acceptanc Criteria ± 0.10 ± 0.10 ± 0.10 ± 10% ± 2% Calibration Acceptanc

. .

± 10%

± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

「「「「「「「」」」」

Sp Cond

(mS/cm) ORP

(mV)

1.413

240

Yest

Photo 1: Fire Training Pit (FTP) area and associated features, view to east (June 5, 2018).

Photo 2: Fire Training Pit area and associated features, view to north east (June 5, 2018).

Photo 3: Purging soil gas from liner monitoring system sample port to south of the FTP pond (June 7, 2018).

Photo 4: Liner system manhole grate along north edge of FTP pond (June 5, 2018)

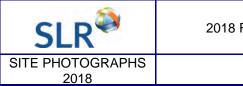


Photo 5: Fuel conveyance piping and flow meter to the north of the FTP pond (June 5, 2018).

Photo 6: Fuel tank pump electric control panel, view to south east (June 5, 2018).

Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Photo 7: Diesel supply tank for FTP, view to north (June 5, 2018).

Photo 8: FTP diesel pump kill switch, view to east (June 5, 2018)

Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Photo 9: Unknown monitoring well "MW-A" located to the north of the FTP pond (June 5, 2018).

Photo 10:

Drilling perimeter boring location BH8 near cars and an airplane fuselage used for rescue training, view to north (June 7, 2018).

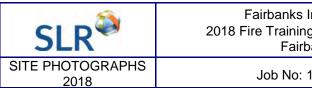

Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Photo 11: Boring BH1 0 to 4 foot (ft) soil core with FTP liner components visible at approximately 1.5 ft below ground surface (June 7, 2018).

Photo 12: Temporary well BH3 during groundwater sample purge, view to southeast (June 7, 2018).

Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Photo 13: Surface water sampling of the FTP pond using a peristaltic pump (June 8, 2018).

Photo 14: Surface soil sample SS1 collection adjacent to liner monitoring port, view to northeast (June 8, 2018).

Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Photo 15: Surface soil sample SS2 located in stained soil adjacent to FTP manhole (June 8, 2018).

Photo 16: Field equipment rinsate sample collection from acetal Macro Core drill liner (June 7, 2018).

OUTER BERM VOLOME - AS-BUILT = 9,110 CYD N 2 105.001841800 5 1. Average berm area (let. Figure 4) = 251 sq 11 + Ha3 sq 14 = 215 sq fr 2. Average born Slope With (Ref. Four 4): 394+5601 = 68F+ Sheet 3. Bern length = Outer bern length - slope with : 35417+ - 681+ = 2061+ 4. Bern Volume = 4 x volume of each burn Side = 2155711 - 236 Ft - loy2 = 2,277 Project No. 4× 3,277 cays = 9,110 cy2 275% 012 CALCULATIONS INNER BERM/PAT VOLUME = 5,982 + 678 cy1=6,660 cyp Average berm alea (101 fig 4) : 2795911 + 262 59 Ft = 271 59 Ft Project FERE TRAJULA PAT SITE CHARGEFEEDAL 2 Average bern Stope with (rer. Figure 4) = 67.11 + 67.11 + 67.11 WASTE SOM VOLUME 3. Berny length = Liner With - slope with = 2164 - 67+ = 149++ 4. Bern Nowme = 4 × Volume of each burn size = 27/59/1+0/49/1+0/242 = 1,49/042 27596 4×1,496 cy2 = 5,982 cy2 5. Pit floor Volume = floor with x area (lef Fig 4) = 844+ . 218 Saft. Ins 45-Butht = 678 C4D 27591+ -3544 Subject. 2,277040 684 Outer berm slope 1,495 044 8/13/18 8 3 18 Liner edge Pit 3544 FLOOR 678042 Date. Date Berm Crown 644 UN C.UENOT Checked By Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska Waste Volume Job No: 105.00184.18002 Calculations

OUTER BERM NOLUME - FIELD MEASURED = 8,197 CHd 3 5 lo Average berm area (ref. figure 7); 19159 H + 236 54H = 21254 H 105.00184.18 5 2. Average berm Slope Width (ref. Fig7): 44F1 + 47F1 = 46F+ N Sheet 3. Berne kergth (each site)= Outer berne kength - Slope width: 307 At - 46 Ar = 261 At Ho BARM Volume = 4 x volume of each born 5 40 = 261 1At. 21259 At. Icyd = 2,049 cy2 Project No. 27 syft 4x 2,049 = B,197 Cyp いったいうろう INNER BERM/PAT NOLVME = 5,067 CUL + 694 CUL = 5,761 CYE 1. Average bern area (let. figure 7) : 19/39 ft+ 265 sylt = 228 sqft Project FIRE THANKING PIT SITE CHARATERINITSN 2. ANaroye barry slole wish (led. Fy 7) : 75A + Slort = 66ft VOLUME 3. Berm length (each size) = outer barn length - slope winth = 216ft - 66/t = 150ft MASTE 4. Berm Volume = 4x volume of each size = 2285+ 1+ . 150 Ft . 1cud = 1.267 - cub 27590+ HX 1,267 cy2 = 5,067 cy2 Subject FIELD - MEASUREMENT 5. Pit full Volume = Floor width a area (lef figure 7) = 864 + 218 sqft alcut = 699 and 275411 PONDED WATER VOLVME = 190,593 gal 1. Volume = area × length (assume squere) = 1495gft.171ft. 7.48gal = 190, 583gel SATURATED SOTL RECOVERABLE WATER JOUVIE = 169,964 501 1. Volume of Subrated Soils = Area x Width = 453564.1901 - Bb,020 curi + 1012 = 3,188642 2. Volume of Water = Joil Volume . Poros. ty = 80,07000 = 0.33" + 7.40001 = 212,4550-1 - 3071+-> 3. Reconscible Volume - assume 20%, resident 8/13/8 2,049 cyć Suturation : 212,455 gal : (1-0.20) = 8/13/18 1 Lines edge 169,964941 outer berm slope 26796 Saturated Soil Area 111 Date Date -9611 PIT FLOOD 30 24 Gaucyt 2D C.VENOT BETH CLOWN A. Alleringe Unlie For Well-graded Smith (SW) From Checked By Das. B., Advanced Soil Mechanics. Taylor T 4- 216 Fr Frencis, London & New York, 2008, Fairbanks International Airport 2018 Fire Training Pit Site Characterization Fairbanks, Alaska

Waste Volume

Calculations