

March 28, 2016

Mr. Grant Lidren Alaska Department of Environmental Conservation-SPAR 555 Cordova St. Anchorage, AK 99501

RE: June 2015 Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842)

Dear Mr. Lidren:

This report presents the results of the June 2015 groundwater monitoring conducted at the Municipal Light and Power's (ML&P) Transformer Shop Site at 1130 E. First Avenue (formerly 1201 E. Third Ave.), in Anchorage, Alaska. The Site is listed with the Alaska Department of Environmental Conservation (ADEC) as File # 2100.26.302, Record Key # 90210001102, and Hazard ID: 23842. The petroleum hydrocarbon contamination in the groundwater is attributed to leaking underground storage tanks removed in 1989. All of the groundwater monitoring wells are flush mounted and located in an asphalt paved lot adjacent the Transformer Shop Building (Figures 1 and 2).

Except for items noted in this report, the sampling activities were conducted in accordance with the December 3, 2002 Work Plan, and subsequent modifications approved by ADEC. These modifications include:

- ADEC's February 3, 2004 letter approving the September 2003 Groundwater Monitoring Event which requested ML&P to continue groundwater sampling of five of the six monitoring wells at the Site (MW-3, MW-5, MW-6, MW-7 and MW-9). The monitoring was to be conducted annually in June and the samples analyzed for diesel range organics (DRO), gasoline range organics (GRO) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Sampling of MW-8, which is adjacent to MW-9, was not requested for annual monitoring and sampling was discontinued.
- ADEC's February 3, 2015 letter approving a reduction in the number monitoring wells to be sampled to four (MW-5, MW-6, MW-7 and MW-9). Well MW-3 was damaged the previous winter due to frost heaving and was no longer functional (the casing was apparently broken in the subsurface and well was blocked at 17 feet below ground surface with only a foot of water in the well in June 2014).

2016 Groundwater Sampling

SLR International Corporation (SLR) personnel collected groundwater samples at four monitoring wells (MW-5, MW-6, MW-7, and MW-9) on June 25 and June 26, 2015. The sampling effort was completed by Aleria Knudson and Kyle Johnson, who meet the criteria of ADEC qualified environmental professionals and samplers per 18 AAC 75.333. Groundwater sampling forms documenting the sampling of the wells are included in the Appendix of this letter. A photograph log is also included documenting the site conditions during the sampling event.

Prior to the collection of the groundwater samples, the water levels in all wells were measured using an electronic water level indicator. With the exception of monitoring well MW-9 (discussed below) groundwater samples were collected using a low-flow sampling technique (method) by means of a peristaltic pump to improve sample quality (decreased turbidity) and reduce the volume of purge water generated. This method differs from the 2002 Work Plan, which detailed the removal of 3 well casing volumes of purge water with a bailer prior to sampling. Low-flow sampling methods have been used for the annual monitoring since 2011. The low-flow sampling method consist of purging at low flow rate [between 0.05 and 0.5 liters per minute (L/min)], while maintaining a drawdown of less than 0.3 feet, if possible. During the purging, up to six water quality parameters are measured [temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity] at three to five minute intervals. Water quality parameters are considered stable when three consecutive readings of at least three parameters [or four in temperatures is used are within:

- $\pm 3\%$ for temperature (minimum of $\pm 0.2 \circ C$),
- ± 0.1 for pH,
- \pm 3% for conductivity,
- ± 10 mv for ORP,
- $\pm 10\%$ for DO, and
- $\pm 10\%$ for turbidity.

All monitoring wells except MW-9 sustained near constant water levels during purging, at flow rates of 0.1 to 0.25 L/min. While purging, the water quality parameters were measured using a YSI 556 multi-parameter instrument. Turbidity was measured with a La Motte 2020 e/i turbidity meter. Stability criteria was met for all wells except MW-9. Water level data and final water quality parameters are presented in Table 1. Purge water generated during sampling activities was placed in labeled containers and disposed of by ML&P following the receipt of analytical results.

MW-9 has typically been a poor yielding well, which has repeatedly gone dry when purging while attempting achieve stable parameters, even at low flow rates. In 2015, MW-9 was purged dry on June 25. During the purging, the water level dropped continually and the parameters did not meet stabilization criteria. A total of 3 gallons of water were purged, which was over three times the volume of water in the casing (Table 1). The water in the well was as allowed to recover approximately 24 hours and analytical samples were collected on June 26, without

ML&P Transformer Shop Groundwater Monitoring Report-2015 Page 3

additional purging. At the time, the water level well had recovered approximately 50%. Water quality parameters were measured both days for comparison purposes.

Laboratory Analyses

Groundwater samples collected from the four monitoring wells, including a duplicate sample from well MW-9, were submitted to SGS North America in Anchorage using chain-of-custody procedures. The samples were analyzed for DRO by Method AK 102, GRO by Method AK101 and BTEX by Method SW8021B.

Analytical data was reviewed for consistency with the *ADEC Technical Memorandum*, *Environmental Laboratory Data and Quality Assurance Requirements* (ADEC 2009). Appendices contain the laboratory analytical data package, ADEC Laboratory Data Review Checklist, and Data Quality Assessment (DQA). One anomaly was associated with the data. The BTEX surrogate recovered high for parent sample MW-9TS and its duplicate MW-99TS. Sample results were flagged "QH" and are considered estimated with a potentially high bias. For all affected results, either the parent and field duplicate results for the analyte were above the applicable project cleanup level (e.g., benzene), or the parent and field duplicate results for an analyte were below the applicable project cleanup level (18 AAC 75, Table C, January 2016); In addition, results were consistent with historical data. Therefore, data usability was not impacted. The DQA indicated that the laboratory data was of good quality and 100% complete.

Analytical Results

The June 2015 analytical results are provided in Table 2. Table 3 provides a summary of current and historical analytical results. Of the four wells sampled, monitoring well MW-9 was the only well with detected concentrations above applicable groundwater cleanup levels (18 AAC 75.345, Table C).

Groundwater cleanup levels in MW-9 were exceeded for benzene, GRO and DRO as shown on Table 2. Benzene was 3.62 mg/L in the primary sample and 2.79 mg/L in the duplicate, which was greater than the groundwater cleanup level of 0.005 mg/L. GRO was detected at 12.5 mg/L in the primary sample and 9.85 mg/L in the duplicate, which was greater the groundwater cleanup level of 2.2 mg/L. Concentrations of DRO were 3.22 mg/L and 2.83 mg/L in the duplicate, which were slightly greater than the groundwater cleanup level of 1.5 mg/L. The field team noted a petroleum-like odor when collecting the MW-9 samples, and possible sheen on the meniscus of the GRO/BTEX sample containers.

Samples from monitoring wells MW-5, MW-6, and MW-7 had concentrations well below groundwater cleanup levels. MW-6 and MW-7 contained detectable but trace levels of DRO [concentrations were between the detection limit (DL) and limit of quantitation (LOQ]. All other analytical results for MW-5, MW-6, and MW-7 were non-detectable. This is consistent with the historical data set, and indicates the plume of petroleum hydrocarbon impacted groundwater is very localized around MW-9. Wells MW-7 and MW-6 are located less than 150 feet down gradient from MW-9, and show essentially no petroleum hydrocarbon impacted groundwater.

Monitoring well MW-9 has historically contained the highest concentrations of analytes (Table 3). The concentration of analytes in MW-9 in 2015 was lower than in 2014 but similar to the

ML&P Transformer Shop Groundwater Monitoring Report-2015 Page 4

2013 results for the samples collected after purging. The 2015 and 2014 results for the samples collected without purging appear to be somewhat anomalous with respect to the long term trend. The water sampled results collected after purging are more likely representative of the formation water and not biased high.

Based on the long term data set (2000-2015), the concentration of the contaminants of concern has dropped over time, with the greatest reduction in the first few years of monitoring. Over the past 3-5 years concentrations have tended to remain relatively constant, with slight oscillations (especially if the results for samples collected without purging are eliminated from the data set). DRO is close the groundwater cleanup level, but GRO and benzene remain well above the groundwater cleanup level.

It is noted that DO concentrations measured in the down gradient wells (MW-6 and MW-7) are low, relative to the concentration in the hydraulically upgradient well (MW-5). DO levels measured in MW-9 were also low during the initial purging on June 25, but elevated after the well had recharged. This suggests biological activity (by microorganisms) is still occurring in the area and attenuating the petroleum hydrocarbons. The apparent low groundwater movement in the area surrounding MW-9 as evidenced by the poor recharge, would tend to favor a slow rate of attenuation.

Conclusions and Recommendations

The groundwater monitoring at the Transformer Shop Site indicates the petroleum hydrocarbons in the groundwater are decreasing over time but still exceed ADEC groundwater cleanup levels at one monitoring location (MW-9) for DRO, GRO and benzene. The extent of petroleum hydrocarbon impacted groundwater is very localized, and plume is stable or decreasing.

In accordance with the ADEC monitoring request (ADEC 2004), the next groundwater monitoring event at the Site is planned for June of 2016. As noted, ground water samples have been collected using a low-flow sampling technique with a peristaltic pump since 2011, and this technique is proposed for subsequent events. The benzene and GRO concentrations in MW-9 are well above groundwater cleanup levels in MW-9, and well below in the other wells so the potential slight loss of VOCs using a peristaltic pump does not appear to relevant to accessing the site conditions. In addition, the stairs over MW-5 make the use of a peristaltic pump the most practical. Therefore, ML&P requests approval for the use of a peristaltic pump for sampling at this site.

ML&P Transformer Shop Groundwater Monitoring Report-2015 Page 5

If you have any questions or concerns, please contact Bret Berglund (SLR, 907-563-2128) or Yelena Saville (ML&P, 907-263-5273).

Sincerely,

Bret Berglund Project Manager, C.P.G.

CC: Yelena Saville, ML&P

Attachments:

Table 1 – June 2015 Water Sampling Log Table 2 – June 2015 Groundwater Sample Results Table 3 – Historical Groundwater Analytical Results Figure 1 – Site Vicinity Map Figure 2 – Site Map with June 2015 Groundwater Sampling Results Photograph Log

Appendices A-Data Quality Assessment B-ADEC Laboratory Data Review Checklist

C-SGS Laboratory Data Reports

D-Groundwater Sampling Forms

TABLES

- Table 1June 2015 Water Sampling Log
- Table 2
 June 2015 Groundwater Sample Results
- Table 3
 Historical Groundwater Analytical Results

TABLE 1 - JUNE 2015 WATER SAMPLING LOG ML&P TRANSFORMER SHOP

Well Number ^{1,2,3}	MW-5	MW-6	MW-7	MW-	9
Water Level & Well Purging Data					
Date Water Level Measured	6/25/2015	6/25/2015	6/25/2015	6/25/2015	6/26/2015
Time Water Level Measured	13:16	11:21	12:12	9:53	9:05
TOC Elevation, ft	Unknown	Unknown ⁴	49.23	51.23	51.23
Depth to Water Below TOC, ft	4.88	15.75	17.40	4.23	6.54
Water Level Elevation, ft	NC	NC	31.83	47.00	44.69
Depth of Well Below Top of Casing, ft	13.77	20.98	20.94	8.72	8.72
Water Column in Well, ft	8.89	5.23	3.54	4.49	2.18
Diameter of Well Casing, inch	2	2	2	2	2
Gallons per Foot	0.163	0.163	0.163	0.163	0.163
Gallons in Well	1.45	0.85	0.58	0.73	0.36
Total Gallons Purged (Low Flow)	1.7	2.3	1.4	3 (purged dry)	0.0
Sampling/Water Parameters					
Date Sampled	6/25/2015	6/25/2015	6/25/2015	6/25/2015	6/26/2015
Time Sampled	13:42	11:54	12:39		9:05
Temperature, C	9.13	7.22	8.08	12.47	13.71
Specific Conductance, uS/cm	610	6.23	829	1299	1063
Turbidity (NTU)	2.08	4.04	2.01	23.40	7.10
рН	7.06	6.46	6.49	7.03	6.86
Dissolved Oxygen, mg/L	5.47	0.47	1.13	0.95	5.56
Sample Number	MW-5TS	MW-6TS	MW-7TS	Not applicable	MW-9TS, MW-99TS (duplicate)

Abbreviations:

С Celsius

feet ft

uS/cm microsiemens per centimeter TOC Top of casing

mg/L milligrams per liter

NC Not calculated (TOC elevation not known).

<u>Notes</u>

1 Sampled By SLR: Kyle Johnson, and Aleria Knudson.

2 All wells were purged and sampled by a low-flow method with a peristaltic pump, except for MW-9. MW-9 was purged dry on 6/25/15, and was sampled 24 hours later without additional purging. Water level was about 50% recovered.

3 All wells are flush-mounted in paved areas surrounding the Transformer Shop.

⁴ The top of MW-6 casing was reduced (cut) 1 inch in 2015 for maintenance purposes after sampling. Depth to water listed is prior to cutting.

TABLE 2 - JUNE 2015 GROUNDWATER SAMPLE RESULTS ML&P TRANSFORMER SHOP June 25, 2015

		18 AAC 75.345	Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well
Compound (mg/L)	Method	Table C Cleanup Level	MW-3	MW-5	MW-6	MW-7	MW-9
Sample ID ¹				MW-5TS	MW-6TS	MW-7TS	MW-9TS/MW-99TS
Diesel Range Organics (DRO)	AK 102	1.5		0.423 J	0.223 J	0.878	3.22/2.83
Gasoline Range Organics (GRO)	AK 101	2.2	Due to damage	ND [0.05]	ND [0.05]	ND [0.05]	12.5/9.85
			no sample was collected.				
Benzene	SW8021B	0.005	collected.	ND [0.00025]	ND [0.00025]	ND [0.00025]	3.62 QH/2.79 QH
Toluene	SW8021B	1.0		ND [0.0005]	ND [0.0005]	ND [0.0005]	0.133/0.126
Ethylbenzene	SW8021B	0.7		ND [0.0005]	ND [0.0005]	ND [0.0005]	0.237/0.231
Total Xylenes	SW8021B	10.0		ND[0.0015]	ND[0.0015]	ND[0.0015]	1.2458/1.0952

Notes:

¹All wells were purged and sampled by low-flow methodwith a peristaltic pump, except for MW-9. MW-9 was sampled without purging.

ND [0.360] Analyte not detected above the Limit of Quantitation (LOQ).

2.63 Bold/Shaded - Concentration exceeded the 18 AAC 75.345, Table C groundwater cleanup level (January 2016).

0.945/1.72 Primary sample concentration followed by duplicate sample concentration

Abbreviations:

- AAC Alaska Administrate Code
- J Compound was positively identified. Concentration is above the method detection limit (DL), but below the LOQ.
- ft Feet
- Q The quantitation is an estimate. A "H", "L", or "N" indicates a potential high, low, or unknown bias respectively.
- mg/L milligrams/liter

TABLE 3 - HISTORICAL GROUNDWATER ANALYTICAL RESULTS
ML&P TRANSFORMER SHOP

Compound (mg/L)		DRO	GRO	Benzene	Total BTEX
Cleanup (18 AAC 75.34		1.5	2.2	0.005	
Monitoring Well	Date ¹			•	
	8/27/1998	0.206			
	12/31/1998	0.669			
	3/19/1999	ND [0.333]			
	6/23/1999	0.427			
	9/30/1999	4.42			
	2/2/2000	ND [0.395]	ND [0.0900]	ND [0.00050]	
	5/26/2000	0.700	ND [0.0900]	ND [0.00050]	
	8/25/2000	0.622	ND [0.0900]	ND [0.00050]	0.0194
	12/1/2000	ND [0.326]	ND [0.0900]	ND [0.00050]	0.00303
MW-3	6/24/2004	ND [0.300]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.337]	ND [0.0900]	ND [0.00050]	ND
	8/3/2006	0.465	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.357]	ND [0.100]	ND [0.00050]	ND
	7/10/2008	0.495 B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.574]	ND [0.062]	ND [0.0003]	ND
	6/23/2011	ND [0.266]	ND [0.031]	0.00029 J	0.00029 J
	6/22/2012	ND [0.382]	ND [0.0620]	ND [0.0003]	ND
	7/12/2013	ND [0.360]	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	[]	Well damaged,		
	7/16/2004	0.352	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	8/2/2006	ND [0.370]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.328]	ND [0.100]	ND [0.00050]	ND
	7/11/2008	0.276 J, B	ND [0.100]	ND [0.00050]	ND
MW-5	7/29/2010	ND [0.526]	ND [0.062]	ND [0.0003]	ND
	6/22/2011 6/22/2012	ND [0.266] ND [0.392]	ND [0.031] ND [0.0620]	ND [0.00015]	ND 0.00016 J
	7/11/2013	0.236 J	ND [0.0620]	0.00016 J ND [0.0003]	ND
	6/25/2014	ND [0.308]	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.423 J	ND [0.05]	ND [0.00025]	ND
	8/27/1998	0.282			
	12/31/1998	0.759			
	3/19/1999	1.21			
	6/23/1999	2.17			
	9/30/1999	1.43			
	2/2/2000	0.419	ND [0.0900]	ND [0.00050]	ND
	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND
	8/25/2000	ND [0.323]	ND [0.0900]	ND [0.00050]	ND
	12/1/2000	1.29	ND [0.0900]	ND [0.00050]	ND
	6/24/2004	ND [0.366]	ND [0.0900]	ND [0.00050]	ND
MW-6	6/15/2005	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	8/3/2006	ND [0.366]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	0.519	ND [0.100]	ND [0.00050]	ND
	7/11/2008	0.407 B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.544]	ND [0.062]	ND [0.0003]	ND
	6/22/2011	ND [0.260]	ND [0.031] QN	ND [0.00015]	ND
	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.0003]	ND
	7/12/2013	0.185 J	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	0.189 J	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.223 J	ND [0.05]	ND [0.00025]	ND

Compound					
(mg/L)		DRO	GRO	Benzene	Total BTEX
	Cleanup Level				
(18 AAC 75.34		1.5	2.2	0.005	
Monitoring Well	Date				
	8/27/1998	ND [0.104]			
	12/31/1998	0.158			
	3/19/1999	ND [0.309]			
	6/23/1999	ND [0.297]			
	9/30/1999	ND [0.319]			
	2/2/2000	ND [0.357]	ND [0.0900]	ND [0.00050]	ND
	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND
	8/25/2000	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	12/1/2000	ND [0.330]	ND [0.0900]	ND [0.00050]	ND
MW-7	6/24/2004	ND [0.361]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005 8/3/2006	ND [0.375]	ND [0.0900]	ND [0.00050]	ND ND
	8/3/2006 8/1/2007	ND [0.368] ND [0.321]	ND [0.100] ND [0.100]	ND [0.00050] ND [0.00050]	ND
	7/11/2007	ND [0.621] B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.538]	ND [0.062]	ND [0.00030]	ND
	6/23/2010	ND [0.336] ND [0.266]	ND [0.062]	0.00035 J	0.00035 J
	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.0003]	ND
	7/11/2013	0.465 J	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	0.211 J	ND [0.0500]	ND [0.00025]	ND ND
	6/25/2015	0.878	ND [0.05] 0.25	ND [0.00025] 0.103	
	6/23/1999	7.53			0.109
	9/30/1999 2/2/2000	<u>5.34</u> 12	0.22	0.0599 0.172	0.0759 0.177
	5/26/2000	4.73	0.33	0.172	0.177
MW-8	9/13/2002 ²	3.06	0.464	0.0158	0.160
	12/4/2002	2.31	1.40	0.00677	0.449
	3/20/2003	3.02	1.04	0.00489	0.364
	6/26/2003	4.78	0.862	0.726	0.762
	9/23/2003	2.37	1.410	0.019	0.7762
	5/26/2000	18.8	31	7.97	19.8
	8/25/2000 12/1/2000	36.1	47.6	3.42	21.4
		11.92	44.9	3.3	6.55
	9/13/2002 ²	6.11	15.1	3.36	5.94
	12/4/2002	8.03	9.76	2.44	3.52
	3/20/2003	3.39	9.67	1.82	3.38
	6/26/2003	61.2	10.2	3.84	6.97
	9/23/2003	7.47	14.1	4.95	9.25
	6/24/2004	6.33	17.7	3.89	7.40
MW-9	6/15/2005	4.51	13.4	3.50	5.81
	8/3/2006	2.23	5.53	2.01	3.20
	8/1/2007 7/11/2008	8.22 4.81	9.99 15.4	1.93 4.14	3.74 8.26
	7/30/2010	5.44	15.4	6.01 Q+	8.49
	6/23/2011	5.25/4.07	11.2/11.8	3.94/4.10	5.71/5.80
	6/21/2012	5.09/3.89	14.5/16.2	4.97/5.12	7.18 QN/7.99 QN
	7/11/2013 ³	0.871 QN / 1.75 QN	8.31 QN/15.9 QN	2.14 QN/5.62 QN	3.47 QN/7.94 QN
	7/11/2013	2.61			
	6/25/2013				 8.79 QN/1.45 QN
		2.63/1.97	17.1 QN/2.87 QN	6.16 QN/0.996 QN	
	6/25/2015	3.22/2.83	12.5/9.85	3.62 QH/2.79 QH	5.24 QH/4.24 QH

TABLE 3, Continued - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

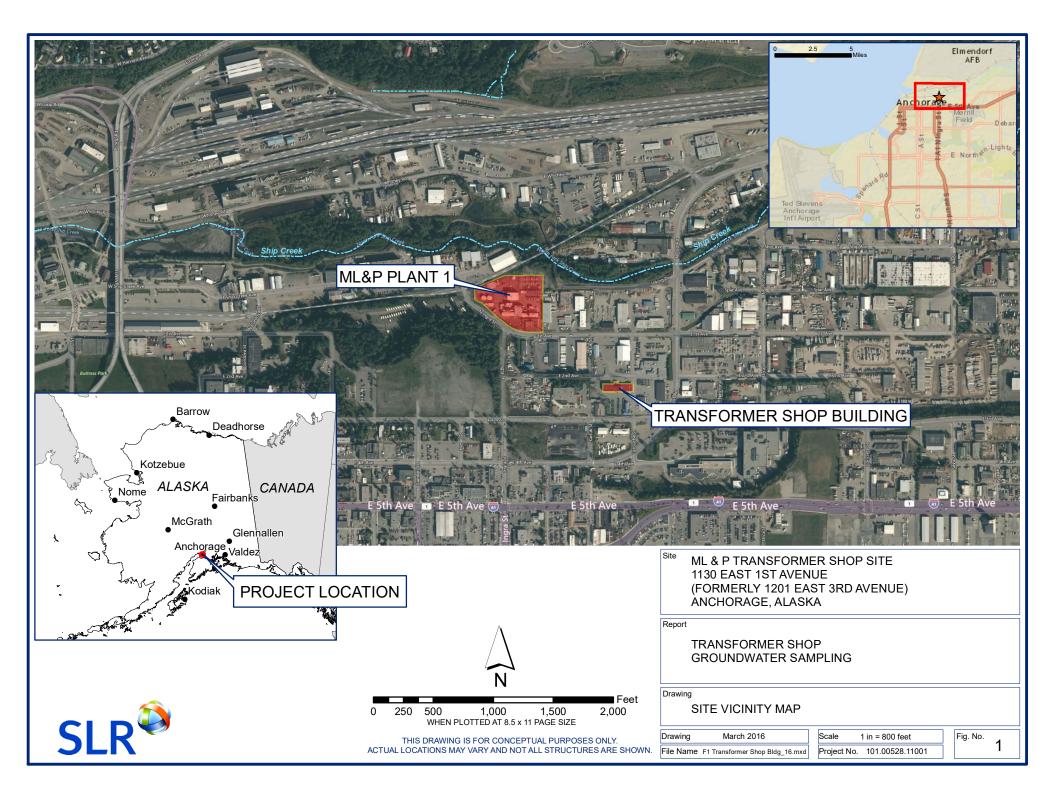
Notes:

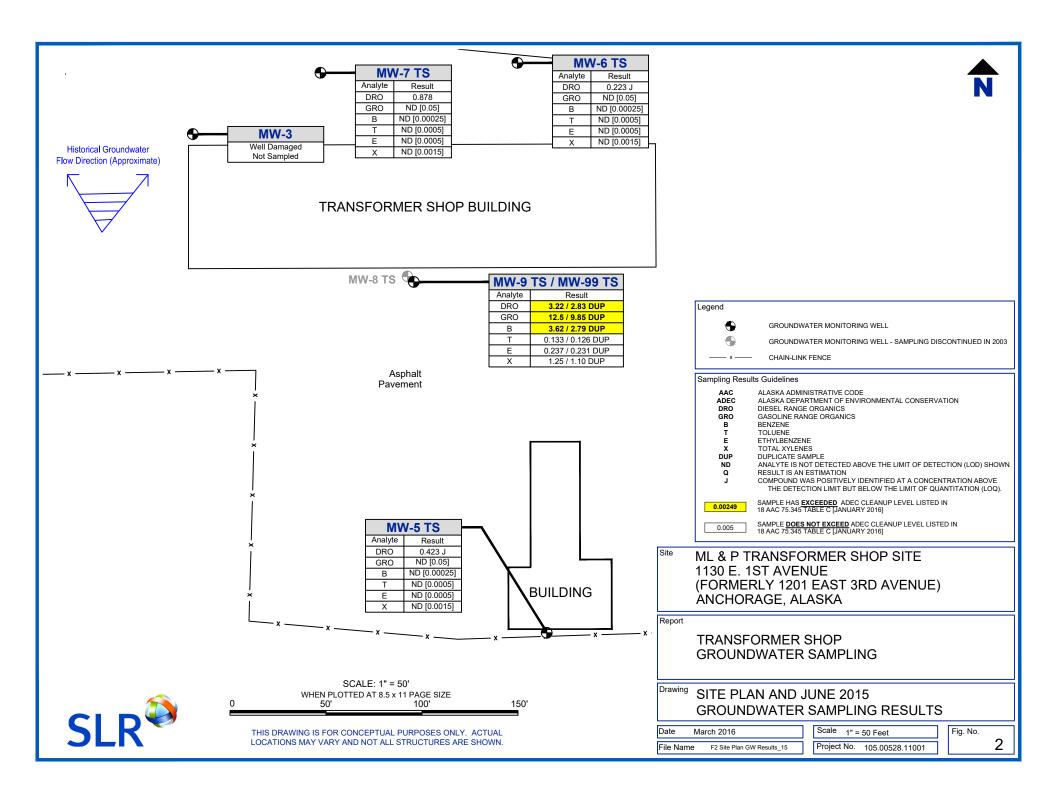
1 Sampling method prior to 2011 was purging 3 casing volumes with a bailer, followed by sample collection with a bailer. Starting in 2011 the sampling method switched to a low flow sampling technique with purging and sampling performed with a perastaltic pump and tubing.

²Analytical results are suspected to have been mislabeled or switched for monitoring wells MW-8 and MW-9 during sampling handling of 9/13/2002 samples. Analytical results in this table have been placed in corrected locations.

³ Sample collected without prior purging.

⁴ Well purged dry and sampled the approximately 24 hours later.

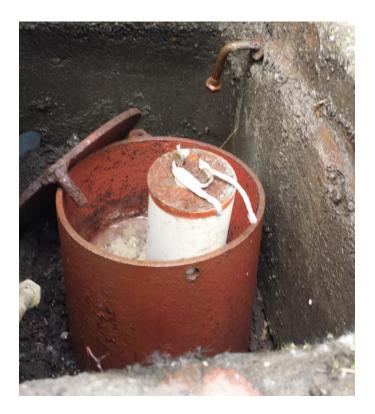

<u>Coding</u>


0.377 / 0.364	Primary sample concentration followed by duplicate sample concentration
4.81	Bold and Shaded - Concentration exceeded the 18 AAC 75.345, Table C groundwater cleanup level
ND [0.0900]	Analyte not detected above the practical quantitation limit (limit of quantitation, or LOQ), data prior to 2012 analytes were not detect above the Detection Limit (DL)
Abbreviations:	
AAC	Alaska Administration Code
В	Compound was positively identified in the trip blank or method blank.
BTEX	benzene, toluene, ethylbenzene, and total xylenes
DRO	diesel range organics
J	Compound was positively identified, above the detection limit, but below the Limit of Quantitation.
GRO	gasoline range organics
Q	The quantitation is an estimate. A "H", "L", or "N" indicates a potential high, low, or unknown bias respectively.
mg/L	milligrams/liter
ND	not detected
	Sample not analyzed for parameter

Sample not analyzed for parameter

FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Site Map with June 2015 Groundwater Sampling Results



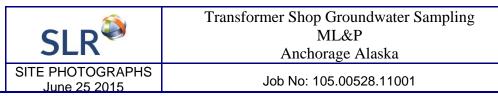

PHOTOGRAPH LOG

Photo 1: Monitoring Well MW-5, located under the stairs.

Photo 2: Monitoring Well MW-5 located in a cement utility enclosure under staircase.

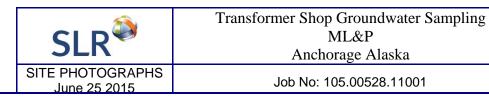




Photo 3: Maintenance at MW-6 included removing (cutting off) 1 inch from top of the well casing, so it was not hitting the monument cover.

Photo 4: Monitoring Well MW-9 in front of transformer building.

Photo 5: Monitoring Well MW-9 in front of Transformer building.

Transformer Shop Groundwater Sampling ML&P Anchorage Alaska

Job No: 105.00528.11001

APPENDIX A

DATA QUALITY ASSESSMENT

Data Quality Assessment Report:

2015 Groundwater Monitoring At Transformer Shop Area (1130 E. 1st Ave., Anchorage, AK)

Prepared By: Jenifer McLean, SLR Project Chemist July 20, 2015

1 LAB ANALYSIS, DATA VALIDATION, AND REPORTING

This Data Quality Assessment (DQA) covers sampling conducted at the ML&P Transformer Shop at 1201 East Third Avenue on June 25 and June 26, 2015. SGS North America Inc. (SGS), in Anchorage, Alaska (an ADEC-approved laboratory) provided the analytical support for this project. Table 1 provides the laboratory work order number and corresponding receipt temperature.

Samples were taken according to the specifications in Table 2. The chain of custody form was completed as the samples were packaged into a cooler for transport. A temperature blank and gel ice were added as required. The samples were placed in a cooler at the time of collection and were kept chilled until delivery to the laboratory. Documentation pertaining to chain of custody and sample condition was filed in field and laboratory records.

 Table 1
 Summary of Work Order and Cooler Receipt Information

Work Order	Matrix	Date of	Temperature	Cooler
Number		Receipt	Blank	Temperature
1153180	Water	06/26/2015	4.8°C	NA

NA – Not Applicable

°C – degrees Celsius

 Table 2
 Summary of Sample Containers and Preservatives

Method	Container Volume	Container Material	Preservative	Hold time (days)	Trip Blank ¹
GRO/BTEX (AK101/SW8021B)	3 x 40 mL VOA vials	Glass	HCl, 4°C (±2°)	14	Required
DRO (AK102)	2 x 1 Liter	Amber Glass	HCl, 4°C (±2°)	7	NA

Notes:

1 - This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody. Abbreviations:

GRO - gasoline range organics

BTEX - benzene, toluene, ethylbenzene, and xylene

DRO – diesel range organics

HCl – hydrochloric acid

mL – milliliter

VOA – volatile organic analysis

The SGS final report was presented as hard copy Level II data deliverable package and electronic deliverables compatible with Microsoft Access. The analytic data was reviewed for consistency with *ADEC Technical Memorandum 06-002, Environmental Laboratory Data and Quality Assurance* (ADEC 2009) requirements. An ADEC Laboratory Data Review Checklist was completed for each analytical work order and was included in this report. Any anomalies to the

requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are discussed below and the data were flagged where appropriate.

Application of Data Flags

General data quality flagging conventions in Table 3 were used to indicate quality control anomalies. Data was flagged, where appropriate. A data quality summary is provided below.

Qualifier	Description
ND	The analyte was analyzed for, but not detected. The associated numerical value was at or below the detection limit (DL).
Q	The reported value was considered an estimate. Where applicable, a "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.
J	Compound was positively identified. Concentration wass above the detection limit, but below the limit of quantitation.

Table 3Data Qualifiers

Preservation, Temperature, and Hold Time

All preservation and holding time criteria were considered met.

PRECISION

Precision was measured from the Field Duplicate, and the Relative Percent Difference (RPD) between the Laboratory Control Spike (LCS)/Laboratory Control Spike Duplicate (LCSD), and Matrix Spike (MS)/Matrix Spike Duplicate (MSD).

Field Duplicate

The ADEC requirement of one field duplicate per ten samples or less was met. One field duplicate was collected for four samples for GRO, DRO, and BTEX. Sample MW-99TS was a field duplicate of MW-9TS. All RPDs between field duplicate and the parent sample were within limits (less than the 30% required for water samples).

Laboratory Control Sample and Duplicate (LCS/LCSD) RPD

Analytical batch precision was established through the extraction and analysis of an LCS/LCSD, one per batch of 20 samples or less. For DRO, one MS/MSD pair was also analyzed. All LCS/LCSD and MS/MSD RPDs were within control limits.

1.1 ACCURACY

Accuracy was measured from laboratory QC sample percent recoveries to include LCS/LCSD, ICVs and CCVs, and surrogates. No MS/MSDs were evaluated.

Continuing Calibration Verification (CCV)

All ICVs and CCVs were within method and laboratory limits.

Surrogates

With the exceptions noted below, all surrogate recoveries were within established control limits.

- Sample MW-9TS BTEX surrogate 1,4-Difluorbenzene recovered at 128% (limits 77-115%). The data were qualified "QH" with a potential high bias indicated.
- Sample MW-99TS (Field Duplicate of MW-9TS) BTEX surrogate 1,4-Difluorbenzene recovered at 127% (limits 77-115%). The data were qualified "QH" with a potential high bias indicated.

Sample results were above the ADEC Table C cleanup level of 0.005 mg/L for benzene at 3.62 mg/L and 2.79 mg/L, respectively. In addition, results were comparable to historical data. Therefore, there was no impact to the usability of the data for groundwater monitoring.

Laboratory Control Sample and Duplicate (LCS/LCSD) Recovery

An LCS/LCSD was analyzed for each batch of 20 samples or less. For DRO, one MS/MSD pair was also analyzed. All LCS/LCSD and MS/MSD recoveries were within ADEC and laboratory limits.

Internal Standards

Not applicable to the analyses included in this work order.

1.2 REPRESENTATIVENESS

The data deliverables were consistent with the site conditions. Samples were collected from usual locations.

1.3 COMPARABILITY

Comparability between laboratories was not applicable to this investigation. Standard SW846 and Alaska methods were used by SGS, an ADEC-approved laboratory.

1.5 COMPLETENESS

Completeness was measured as the number of usable results versus the total number of results. The data set was 100% complete with no omissions or rejections with respect to analysis. The information fulfilled the data quality objectives of this sampling event.

1.6 SENSITIVITY

Sensitivity was measured by evaluating whether the limit of detection (LOD) was less than the regulatory clean up levels or project required goals. Additionally, sensitivity was evaluated by determining whether method blank results were less than the LOD or detection limit (DL).

Blanks (Method and Trip)

One trip blank was included in the cooler with samples. One method blank was analyzed for every analytical batch of twenty samples or less. There were no detections in any method blanks or the trip blank.

Reporting Limits

The LODs for non-detect values were evaluated against 18 AAC 75, Table C (January 2016). All LODs were below project goals.

2 SUMMARY

The data were considered good quality. No data was rejected and all data was considered usable for the intended purpose.

APPENDIX B

ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Data Review Checklist

Completed by: J	ennifer McLean		
Title:	Project Scientist	Date:	July 20, 2015
CS Report Name:	ML&P Transformer Shop, 1201 E. 3rd	l Report Date:	July 20, 2015
Consultant Firm:	SLR International Corporation		
Laboratory Name:	SGS North America, Inc.	aboratory Report Nu	mber: 1153180
ADEC File Number	r: 2100.26.302 ADE	C RecKey Number:	90210001102
1. <u>Laboratory</u> a. Did an A X	ADEC CS approved laboratory receive a les INO INA (Please	-	submitted sample analyses? Comments:
laborato	mples were transferred to another "network, was the laboratory performing the and the control of the second	alyses ADEC CS ap	
2. <u>Chain of Custoc</u> a. COC inf X	Formation completed, signed, and dated (eceived by)? Comments:
b. Correct	analyses requested? (es No NA (Please	e explain.)	Comments:
	nple Receipt Documentation cooler temperature documented and with les INO NA (Please		$4^{\circ} \pm 2^{\circ} \text{ C}$)? Comments:
	preservation acceptable – acidified wate Chlorinated Solvents, etc.)? (es No NA (Please	-	ed VOC soil (GRO, BTEX, Comments:

	c.	Sample condition Yes	n documented -	- broken, leaking (Methanol), zero hea	dspace (VOC vials)? Comments:
	d.	containers/preser samples, etc.?	vation, sample	were they documented? For example, temperature outside of acceptable ran	
		Yes	∐ No	NA (Please explain.)	Comments:
	N	o discrepancies w	ere noted.		
	e.	Data quality or u	sability affecte	d? (Please explain.) Comments:	
	N	o impact.			
Cas		Jarrative			
<u></u>		Present and unde	rstandable?	NA (Please explain.)	Comments:
	b.	Discrepancies, er Yes	rors or QC fail	ures identified by the lab?	Comments:
	c.	Were all correctiv	ve actions docu	umented? NA (Please explain.)	Comments:
	N	None were taken.			
	d.	What is the effec	t on data qualit	ty/usability according to the case narra Comments:	tive?
	1	No impact.			
<u>Sar</u>		<u>es Results</u> Correct analyses ⊠ Yes	performed/rep	orted as requested on COC?	Comments:
	b.	All applicable ho	lding times me	et?	Comments:

5.

4.

	c.	All soils reporte	ed on a dry wei	ight basis? ⊠ NA (Please explain.)	Comments:
				ated with this work order.	
		Siny water samp		ared with this work order.	
	d.	Are the reported project?	d PQLs less tha	an the Cleanup Level or the minim	um required detection level for the
		Yes	🗌 No	NA (Please explain.)	Comments:
	e.	Data quality or	usability affec	ted? Commen	nts:
	1	No impact.			
6. <u>(</u>	<u>QC Sa</u> a.	amples Method Blank i. One me ⊠ Yes	thod blank rep No	orted per matrix, analysis and 20 sa	amples? Comments:
		ii. All metl ⊠ Yes	nod blank resul	lts less than PQL?	Comments:
		iii. If above	PQL, what sa	mples are affected? Comme	nts:
	1	Not applicable.			
		iv. Do the a	affected sample	e(s) have data flags and if so, are th NA (Please explain.)	ne data flags clearly defined? Comments:
		v. Data qu	ality or usabili	ty affected? (Please explain.) Comme	nts:
		Data quality was	not impacted.		
	b.	Laboratory Con	trol Sample/D	uplicate (LCS/LCSD)	
				LCSD reported per matrix, analysis ods, LCS required per SW846) NA (Please explain.)	and 20 samples? (LCS/LCSD Comments:

11.	samples?	organics – or	ne LCS and one sample duplicate re	eporteu per matrix, anarysis and 2
	Yes	🗌 No	NA (Please explain.)	Comments:
_	And proje	ect specified	t recoveries (%R) reported and wit DQOs, if applicable. (AK Petroleu K103 60%-120%; all other analyse NA (Please explain.)	m methods: AK101 60%-120%,
	laborator LCS/LCS	y limits? And SD, MS/MSD	e percent differences (RPD) reporte l project specified DQOs, if applica), and or sample/sample duplicate. laboratory QC pages) NA (Please explain.)	able. RPD reported from
v.	If %R or	RPD is outsid	de of acceptable limits, what sampl Commen	
Not app	olicable.			
vi	i. Do the af] Yes	fected sample	e(s) have data flags? If so, are the c NA (Please explain.)	lata flags clearly defined? Comments:
vi	ii. Data qual	ity or usabili	ty affected? (Use comment box to Comment	1 ,
No imp	oact.			
Surro	gates – Org	anics Only		
i.		gate recoveri	es reported for organic analyses – NA (Please explain.)	field, QC and laboratory samples' Comments:
ii	And proje	ect specified see the laboration of the section of	t recoveries (%R) reported and wit DQOs, if applicable. (AK Petroleu atory report pages)	
	Yes	🛛 No	NA (Please explain.)	Comments:
	-		nzene recovered at 128% and 127% opticate MW-99TS (limits 77-115%)	

	iii.		nple results wi ly defined?	th failed surrogate recoveries have da	ata flags? If so, are the data
	\boxtimes	Yes		NA (Please explain.)	Comments:
BTE	X re	esults were	flagged QH		
	iv.	Data quali	ty or usability	affected? (Use the comment box to e Comments:	explain.)
				er, the data was considered usable. Be vel and data were consistent with his	
d. Trij <u>Soi</u>		ank – Vola	tile analyses o	nly (GRO, BTEX, Volatile Chlorinat	ed Solvents, etc.): <u>Water and</u>
	i.	-	lank reported p ter explanation	per matrix, analysis and for each cool below.)	er containing volatile samples? Comments:
		100			
	_			sport the trip blank and VOA sample ining why must be entered below) NA (Please explain.)	es clearly indicated on the COC? Comments:
		All results Yes	less than PQL	.? NA (Please explain.)	Comments:
	iv.	If above P	QL, what sam	ples are affected? Comments:	
Not a	ıppl	icable.			
	v.	Data quali	ty or usability	affected? (Please explain.) Comments:	
No in	npa	ct.			
e. Fie	ld I	Duplicate			
	i.		duplicate subn	nitted per matrix, analysis and 10 proj	ject samples? Comments:
One f	ield	duplicate v	was collected f	for four samples for BTEX, GRO, and	d DRO.

	ii. Submitted blind to lab? ∑ Yes □ No	NA (Please explain.)	Comments:
	Sample MW-99TS was a field dup	licate of MW-9TS.	
	iii. Precision – All relative p (Recommended: 30% wat)	ercent differences (RPD) less that ter, 50% soil)	an specified DQOs?
	RPD (%) = Absolute val	ue of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$	
	Where $R_1 = Sample$ $R_2 = Field Du$ \boxtimes Yes \square No	Concentration plicate Concentration NA (Please explain.)	Comments:
		affected? (Use the comment box Commen	•••
	No impact.		
f	Decontamination or Equipment	Blank (If not used explain why).	
	Yes No	X NA (Please explain.)	Comments:
	Disposable sampling equipment wa	s used for collection of all samp	les.
_	i. All results less than PQL	9	
Γ	Yes No	. NA (Please explain.)	Comments:
	ii. If above PQL, what sam	ples are affected?	nts:
	Not applicable.		
	iii. Data quality or usability	affected? (Please explain.) Commer	nte.
	Not applicable.	Colline	115.
	er Data Flags/Qualifiers (ACOE, AF a. Defined and appropriate? Yes No	FCEE, Lab Specific, etc.)	Comments:

7.

APPENDIX C

SGS LABORATORY DATA REPORTS

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell Street, Suite 200 Anchorage, AK 99503 907-222-1112

Report Number: **1153180**

Client Project: ML&P Transformer Shop

Dear Bret Berglund,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

March March	Heather Hall
SGS North America	2015.07.17
Environmental Services – Alaska Division Client Services/Continuous Improvement Lead	<u> 19:22:55 -08'0</u> 0'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 07/17/2015 3:23:08PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1153180 Project Name/Site: ML&P Transformer Shop Project Contact: Bret Berglund

Refer to sample receipt form for information on sample condition.

MW-9TS (1153180004) PS

8021B - Surrogate recovery for 1,4-difluorobenzene (128%) does not meet QC criteria due to matrix interference.

MW-99TS (1153180005) PS

8021B - Surrogate recovery for 1,4-difluorobenzene (127%) does not meet QC criteria due to matrix interference.

GW-062715-MW2-02 MS (1153093003) BMS

AK101 - Surrogate recovery for 4-bromofluorobenzene (200%) does not meet QC criteria due to matrix interference.

GW-062715-MW2-02 MSD (1153093004) BMSD

AK101 - Surrogate recovery for 4-bromofluorobenzene (201%) does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/17/2015 3:23:10PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 07/17/2015 3:23:11PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary					
Client Sample ID	Lab Sample ID	Collected	Received	Matrix	
GW-062715-MW2-02 MS	1153093003	06/27/2015	06/29/2015	Water (Surface, Eff., Ground)	
GW-062715-MW2-02 MSD	1153093004	06/27/2015	06/29/2015	Water (Surface, Eff., Ground)	
<u>Method</u>	Method Des	<u>scription</u>			
AK101	AK101/802	1 Combo.			
SW8021B	AK101/802	1 Combo.			
AK102	DRO Low V	/olume (W)			
MW-6TS	1153180001	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
MW-7TS	1153180002	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
MW-5TS	1153180003	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
MW-9TS	1153180004	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
MW-99TS	1153180005	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
TB-062515	1153180006	06/25/2015	06/26/2015	Water (Surface, Eff., Ground)	
<u>Method</u>	Method Des	scription			
AK101	AK101/802	1 Combo.			
SW8021B	AK101/802	1 Combo.			
AK102	DRO Low V	/olume (W)			
MW-99TS TB-062515 <u>Method</u> AK101 SW8021B	1153180005 1153180006 <u>Method De:</u> AK101/802 AK101/802	06/25/2015 06/25/2015 scription 1 Combo. 1 Combo.	06/26/2015	Water (Surface, Eff., Ground)	

Detectable Results Summary

Client Sample ID: MW-6TS Lab Sample ID: 1153180001	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.223J	mg/L
Client Sample ID: MW-7TS			
Lab Sample ID: 1153180002	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.878	mg/L
Client Sample ID: MW-5TS			
Lab Sample ID: 1153180003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.423J	mg/L
•			5
Client Sample ID: MW-9TS Lab Sample ID: 1153180004	Deremeter	Deput	Lipito
Semivolatile Organic Fuels	Parameter Diesel Range Organics	<u>Result</u> 3.22	<u>Units</u> mg/L
Volatile Fuels	Benzene	3620	ug/L
Volatile i deis	Ethylbenzene	237	ug/L
	Gasoline Range Organics	12.5	mg/L
	o-Xylene	35.8	ug/L
	P & M -Xylene	1210	ug/L
	Toluene	133	ug/L
Client Sample ID: MW-99TS			-
Lab Sample ID: 1153180005	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	2.83	mg/L
Volatile Fuels	Benzene	2790	ug/L
Volatile i dels	Ethylbenzene	231	ug/L
	Gasoline Range Organics	9.85	mg/L
	o-Xylene	35.2	ug/L
	P & M -Xylene	1060	ug/L
	Toluene	126	ug/L
			-

Print Date: 07/17/2015 3:23:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-6TS Client Sample ID: MW-6TS Client Project ID: ML&P Transformer Shop Lab Sample ID: 1153180001 Lab Project ID: 1153180		F M S	eceived Da				
Results by Semivolatile Organic Fuels	3]				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.223 J	<u>LOQ/CL</u> 0.610	<u>DL</u> 0.183	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/11/15 16:40
Surrogates							
5a Androstane (surr)	91.5	50-150		%	1		07/11/15 16:40
Batch Information							
Analytical Batch: XFC11934 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/11/15 16:40 Container ID: 1153180001-A			Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	: SW3520C me: 07/08/1 /t./Vol.: 246	5 09:13		

Results of MW-6TS							
Client Sample ID: MW-6TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180001 Lab Project ID: 1153180	Collection Date: 06/25/15 11:54 Received Date: 06/26/15 09:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 06/30/15 13:3
urrogates				-			
4-Bromofluorobenzene (surr)	90.5	50-150		%	1		06/30/15 13:3
Batch Information Analytical Batch: VFC12498 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 06/30/15 13:35 Container ID: 1153180001-C			Prep Batch: ' Prep Method: Prep Date/Tir Prep Initial W Prep Extract '	: SW5030B me: 06/30/1 ′t./Vol.: 5 m	5 08:00		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyze
Benzene	0.250 U	0.500	0.150	ug/L	1		06/30/15 13:3
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/30/15 13:3
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/30/15 13:3
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/30/15 13:3
Toluene	0.500 U	1.00	0.310	ug/L	1		06/30/15 13:3
urrogates 1,4-Difluorobenzene (surr)	83.8	77-115		%	1		06/30/15 13:3
Batch Information Analytical Batch: VFC12498 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 06/30/15 13:35 Container ID: 1153180001-C			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 06/30/1 ′t./Vol.: 5 m	5 08:00		

SGS							
Results of MW-7TS							
Client Sample ID: MW-7TS Client Project ID: ML&P Transforme Lab Sample ID: 1153180002 Lab Project ID: 1153180	r Shop	R M S	collection Da acceived Da latrix: Wate olids (%): ocation:	te: 06/26/	15 09:58		
Results by Semivolatile Organic Fue	els						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.878	<u>LOQ/CL</u> 0.605	<u>DL</u> 0.181	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 07/11/15 17:00
Surrogates							
5a Androstane (surr)	101	50-150		%	1		07/11/15 17:00
Batch Information Analytical Batch: XFC11934 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/11/15 17:00 Container ID: 1153180002-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 07/08/ [,] /t./Vol.: 248	15 09:13		

J flagging is activated

Results of MW-7TS Client Sample ID: MW-7TS Client Project ID: ML&P Transformer	Shop		Collection Da				
Lab Sample ID: 1153180002 Lab Project ID: 1153180		S	Aatrix: Wate Solids (%): .ocation:	r (Surface	, Eff., Gro	und)	
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed
Surrogates 4-Bromofluorobenzene (surr)	92.4	50-150		%	1		06/30/15 13:54
Batch Information							
Analytical Batch: VFC12498 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 06/30/15 13:54 Container ID: 1153180002-C			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/30/1 ′t./Vol.: 5 m	5 08:00		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1	Linito	06/30/15 13:54
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/30/15 13:54
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/30/15 13:54
P & M -Xylene Toluene	1.00 U 0.500 U	2.00 1.00	0.620 0.310	ug/L	1 1		06/30/15 13:5- 06/30/15 13:5-
Toldene	0.500 0	1.00	0.310	ug/L	I		00/30/15 13.5
Surrogates 1,4-Difluorobenzene (surr)	83.3	77-115		%	1		06/30/15 13:5
	00.0	11-110		70			00/00/10 10:0
Batch InformationAnalytical Batch: VFC12498Analytical Method: SW8021BAnalyst: CRDAnalytical Date/Time: 06/30/15 13:54Container ID: 1153180002-C			Prep Batch: ' Prep Method: Prep Date/Tir Prep Initial W Prep Extract '	: SW5030B me: 06/30/1 't./Vol.: 5 m	5 08:00		

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

- Results of MW-5TS							
Client Sample ID: MW-5TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180003 Lab Project ID: 1153180	Shop	F M S	Collection Da Received Da Matrix: Wate Solids (%): ocation:	ite: 06/26/	15 09:58		
Results by Semivolatile Organic Fuel	5		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.423 J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 07/11/15 17:2
Surrogates 5a Androstane (surr)	93.5	50-150		%	1		07/11/15 17:2
Batch Information							
Analytical Batch: XFC11934 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/11/15 17:21			Prep Batch: Prep Method Prep Date/Ti Prep Initial W	: SW35200 me: 07/08/1	5 09:13		

Results of MW-5TS							
Client Sample ID: MW-5TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180003 Lab Project ID: 1153180	Shop	R M S	collection Da teceived Dat fatrix: Wate colids (%): ocation:	te: 06/26/ [,]	15 09:58	ound)	
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 06/30/15 14:13
urrogates							
4-Bromofluorobenzene (surr)	92.1	50-150		%	1		06/30/15 14:13
Batch Information Analytical Batch: VFC12498 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 06/30/15 14:13 Container ID: 1153180003-C			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/30/1 ′t./Vol.: 5 m	5 08:00		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1	Linito	06/30/15 14:1:
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/30/15 14:13
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/30/15 14:1
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/30/15 14:13
Toluene	0.500 U	1.00	0.310	ug/L	1		06/30/15 14:1
urrogates 1,4-Difluorobenzene (surr)	85.1	77-115		%	1		06/30/15 14:13
Batch Information Analytical Batch: VFC12498 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 06/30/15 14:13 Container ID: 1153180003-C			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030B me: 06/30/1 ′t./Vol.: 5 m	5 08:00		

SGS							
Results of MW-9TS							
Client Sample ID: MW-9TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180004 Lab Project ID: 1153180	Shop	R M S	Collection Da Received Da Matrix: Wate Colids (%): ocation:	ite: 06/26/	15 09:58		
- Results by Semivolatile Organic Fuel	S						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 3.22	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 07/11/15 17:41
Surrogates							
5a Androstane (surr)	85.8	50-150		%	1		07/11/15 17:41
Batch Information							
Analytical Batch: XFC11934 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/11/15 17:41 Container ID: 1153180004-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	: SW35200 me: 07/08/ /t./Vol.: 250	15 09:13		

Results of MW-9TS Client Sample ID: MW-9TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180004 Lab Project ID: 1153180	Shop	F N S	Collection Da Received Da Matrix: Wate Solids (%): Location:	te: 06/26/2	15 09:58	und)	
Results by Volatile Fuels						Allowable	
Parameter Gasoline Range Organics	<u>Result Qual</u> 12.5	<u>LOQ/CL</u> 2.00	<u>DL</u> 0.620	<u>Units</u> mg/L	<u>DF</u> 20	Limits	<u>Date Analyze</u> 07/01/15 16:0
Surrogates							
4-Bromofluorobenzene (surr)	88.4	50-150		%	20		07/01/15 16:0
Batch Information							
Analytical Batch: VFC12501 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/01/15 16:08 Container ID: 1153180004-D			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030B me: 07/01/1 /t./Vol.: 5 m	5 08:00		
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyze
Benzene	3620	10.0	3.00	ug/L	20		07/01/15 16:0
Ethylbenzene	237	1.00	0.310	ug/L	1		06/30/15 14:3
o-Xylene	35.8	1.00	0.310	ug/L	1		06/30/15 14:3
P & M -Xylene	1210	40.0	12.4	ug/L	20		07/01/15 16:0
Toluene	133	1.00	0.310	ug/L	1		06/30/15 14:3
Surrogates							
1,4-Difluorobenzene (surr)	128 *	77-115		%	1		06/30/15 14:3
Batch Information							
Analytical Batch: VFC12498 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 06/30/15 14:32 Container ID: 1153180004-C			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030B me: 06/30/1 /t./Vol.: 5 m	5 08:00		
Analytical Batch: VFC12501 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/01/15 16:08 Container ID: 1153180004-D			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030B me: 07/01/1 /t./Vol.: 5 m	5 08:00		

SGS North America Inc.

COC

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-99TS							
Client Sample ID: MW-99TS Client Project ID: ML&P Transformer Lab Sample ID: 1153180005 Lab Project ID: 1153180	- 	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	ite: 06/26/	15 09:58	-	
					55	Allowable	
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 2.83	<u>LOQ/CL</u> 0.610	<u>DL</u> 0.183	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	<u>Date Analyzed</u> 07/11/15 18:01
Surrogates							
5a Androstane (surr)	95	50-150		%	1		07/11/15 18:01
Batch Information Analytical Batch: XFC11934 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 07/11/15 18:01 Container ID: 1153180005-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	: SW35200 me: 07/08/1 /t./Vol.: 246	15 09:13		

Results of MW-99TS									
Client Sample ID: MW-99TS Client Project ID: ML&P Transform Lab Sample ID: 1153180005 Lab Project ID: 1153180	er Shop	Collection Date: 06/25/15 13:42 Received Date: 06/26/15 09:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Volatile Fuels			_						
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyze		
Gasoline Range Organics	9.85	2.00	0.620	mg/L	20		07/01/15 16:2		
urrogates									
4-Bromofluorobenzene (surr)	88.7	50-150		%	20		07/01/15 16:2		
				,,,			0170171012		
Batch Information									
Analytical Batch: VFC12501 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/01/15 16:27 Container ID: 1153180005-D			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW5030B me: 07/01/1 /t./Vol.: 5 m	5 08:00				
						Allowable			
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyze		
Benzene	2790	10.0	3.00	ug/L	20		07/01/15 16:2		
Ethylbenzene	231	1.00	0.310	ug/L	1		06/30/15 14:5		
o-Xylene	35.2 1060	1.00 40.0	0.310 12.4	ug/L	1 20		06/30/15 14:5 07/01/15 16:2		
P & M -Xylene Toluene	126	40.0 1.00	12.4 0.310	ug/L ug/L	20 1		06/30/15 14:5		
	120	1.00	0.510	ug/L			00/00/10 14.0		
Surrogates	10-			0/					
1,4-Difluorobenzene (surr)	127 *	77-115		%	1		06/30/15 14:5		
Batch Information									
Analytical Batch: VFC12498 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 06/30/15 14:51 Container ID: 1153180005-C			Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW5030B me: 06/30/1 /t./Vol.: 5 m	5 08:00				
Analytical Batch: VFC12501 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/01/15 16:27 Container ID: 1153180005-D			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030B me: 07/01/1 /t./Vol.: 5 m	5 08:00				

SGS North America Inc.

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: TB-062515 Client Project ID: ML&P Transformer S Lab Sample ID: 1153180006 Lab Project ID: 1153180 Results by Volatile Fuels Parameter Gasoline Range Organics urrogates 4-Bromofluorobenzene (surr)	Shop Result Qual 0.0500 U	R M S La LoQ/CL	collection Da Received Dat Matrix: Water colids (%): ocation:	te: 06/26/1 r (Surface,	15 09:58		
Parameter Gasoline Range Organics urrogates			DL			Allering	
Gasoline Range Organics			DL			All.c	
-		0.100	0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzec 07/07/15 18:24
	104	50-150		%	1		07/07/15 18:2
				,,,	·		01101101012
Batch Information Analytical Batch: VFC12507 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 07/07/15 18:24 Container ID: 1153180006-B		F	Prep Batch: \ Prep Method: Prep Date/Tin Prep Initial W Prep Extract \	SW5030B me: 07/07/1 t./Vol.: 5 ml	5 08:00		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		07/07/15 18:2
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/07/15 18:2
	0.500 U	1.00	0.310	ug/L	1		07/07/15 18:2
P & M -Xylene Toluene	1.00 U 0.500 U	2.00 1.00	0.620 0.310	ug/L ug/L	1 1		07/07/15 18:2 07/07/15 18:2
urrogates							
1,4-Difluorobenzene (surr)	83.9	77-115		%	1		07/07/15 18:2
Batch Information							
Analytical Batch: VFC12507 Analytical Method: SW8021B Analyst: CRD Analytical Date/Time: 07/07/15 18:24 Container ID: 1153180006-B		F	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SW5030B me: 07/07/1 t./Vol.: 5 ml	5 08:00		

000

J flagging is activated

Method Blank					
Blank ID: MB for HBN 17121 Blank Lab ID: 1274398	38 [VXX/27520]	Matrix	: Water (Surfa	ce, Eff., Ground)	
QC for Samples: 1153180001, 1153180002, 115	3180003, 1153180004, 1153	3180005, 1153180006			
Results by AK101					
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Surrogates 4-Bromofluorobenzene (surr)	93.1	50-150		%	
Batch Information					
Analytical Batch: VFC12498 Analytical Method: AK101 Instrument: Agilent 7890 PI Analyst: CRD Analytical Date/Time: 6/30/2	D/FID	Prep Ba Prep Me Prep Da Prep Init Prep Ext	015 8:00:00AM		

Print Date: 07/17/2015 3:23:17PM

Blank Spike ID: LCS for HBN 1153180 [VXX27520] Blank Spike Lab ID: 1274401 Date Analyzed: 06/30/2015 12:00 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27520] Spike Duplicate Lab ID: 1274402 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180001, 1153180002, 1153180003, 1153180004, 1153180005, 1153180006

	I	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)			
Parameter	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.12	112	1.00	1.05	105	(60-120)	5.70	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	97.6	98	0.0500	91.7	92	(50-150)	6.20	
Analytical Batch: VFC12498 Analytical Method: AK101 Instrument: Agilent 7890 PID/I Analyst: CRD	FID			Prep Prep Spik	e Init Wt./\	SW5030B e: 06/30/201 /ol.: 1.00 mg	5 08:00 g/L Extract \ g/L Extract V		

Print Date: 07/17/2015 3:23:19PM

Method Blank

Blank ID: MB for HBN 1712138 [VXX/27520] Blank Lab ID: 1274398 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1153180001, 1153180002, 1153180003, 1153180004, 1153180005, 1153180006

Results by SW8021B					
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>	
Benzene	0.250U	0.500	0.150	ug/L	
Ethylbenzene	0.500U	1.00	0.310	ug/L	
o-Xylene	0.500U	1.00	0.310	ug/L	
P & M -Xylene	1.00U	2.00	0.620	ug/L	
Toluene	0.500U	1.00	0.310	ug/L	
Surrogates					
1,4-Difluorobenzene (surr)	81.9	77-115		%	

Analytical Batch: VFC12498 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: CRD Analytical Date/Time: 6/30/2015 10:37:00AM Prep Batch: VXX27520 Prep Method: SW5030B Prep Date/Time: 6/30/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/17/2015 3:23:20PM

Blank Spike ID: LCS for HBN 1153180 [VXX27520] Blank Spike Lab ID: 1274399 Date Analyzed: 06/30/2015 11:15 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27520] Spike Duplicate Lab ID: 1274400 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180001, 1153180002, 1153180003, 1153180004, 1153180005, 1153180006

Results by SW8021B			_						
		Blank Spike	e (ug/L)	:	Spike Dupli				
Parameter	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	114	114	100	112	112	(80-120)	2.50	(< 20)
Ethylbenzene	100	113	113	100	110	110	(75-125)	3.20	(< 20)
o-Xylene	100	109	109	100	105	105	(80-120)	3.60	(< 20)
P & M -Xylene	200	223	112	200	215	108	(75-130)	3.50	(< 20)
Toluene	100	113	113	100	112	112	(75-120)	1.20	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	91.1	91	50	89	89	(77-115)	2.30	

Analytical Batch: VFC12498 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: CRD Prep Batch: VXX27520 Prep Method: SW5030B Prep Date/Time: 06/30/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/17/2015 3:23:21PM

Method Blank									
Blank ID: MB for HBN 17122 [.] Blank Lab ID: 1274765	10 [VXX/27527]	Matrix: Water (Surface, Eff., Ground)							
QC for Samples: 1153180004, 1153180005									
Results by AK101									
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L					
Surrogates 4-Bromofluorobenzene (surr)	94.2	50-150		%					
Batch Information									
Analyst: CRD	Analytical Method: AK101 Instrument: Agilent 7890 PID/FID		ch: VXX27527 thod: SW5030E ce/Time: 7/1/20 al Wt./Vol.: 5 n ract Vol: 5 mL	B 15 8:00:00AM					

Blank Spike ID: LCS for HBN 1153180 [VXX27527] Blank Spike Lab ID: 1274768 Date Analyzed: 07/01/2015 13:55 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27527] Spike Duplicate Lab ID: 1274769 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180004, 1153180005

Results by AK101			_							
	I	Blank Spike	e (mg/L)	S	pike Duplio					
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	1.11	111	1.00	1.11	111	(60-120)	0.40	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	0.0500	96.8	97	0.0500	97.3	97	(50-150)	0.54		
Batch Information										
Analytical Batch: VFC12501				Prep	Batch: V	XX27527				
Analytical Method: AK101				Prep Method: SW5030B						
Instrument: Agilent 7890 PID	/FID			Prep Date/Time: 07/01/2015 08:00						
Analyst: CRD						·	g/L Extract \			
				Dup	e Init Wt./\	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL		

Print Date: 07/17/2015 3:23:24PM

b ID: 1274765 mples: 04, 1153180005 y SW8021B : Results 0.250U 0.500 0.250U 0.500 0.00U 2.00 ss robenzene (surr) 82.7 rrmation cal Batch: VFC12501 cal Method: SW8021B hent: Agilent 7890 PID/FID t: CRD	Method Blank								
04, 1153180005 y SW8021B	Blank ID: MB for HBN 1712210 [VXX/27527] Blank Lab ID: 1274765		Matrix: Water (Surface, Eff., Ground)						
Results LOQ/CL DL Units 0.250U 0.500 0.150 ug/L lene 1.00U 2.00 0.620 ug/L rs s s s s robenzene (surr) 82.7 77-115 % rmation	QC for Samples: 153180004, 1153180005								
0.250U 0.500 0.150 ug/L lene 1.00U 2.00 0.620 ug/L is is is is is is robenzene (surr) 82.7 77-115 % is is is is is is is	Results by SW8021B								
lene 1.00U 2.00 0.620 ug/L is robenzene (surr) 82.7 77-115 % irmation	Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>				
rmation 82.7 77-115 % rmation Prep Batch: VXX27527 cal Batch: VFC12501 Prep Method: SW5030B cal Method: SW8021B Prep Method: SW5030B nent: Agilent 7890 PID/FID Prep Date/Time: 7/1/2015 8:00:00AM t: CRD Prep Initial Wt./Vol.: 5 mL	Benzene								
vmation 82.7 77-115 % rmation Prep Batch: VXX27527 cal Batch: VFC12501 Prep Method: SW5030B cal Method: SW8021B Prep Date/Time: 7/1/2015 nent: Agilent 7890 PID/FID Prep Date/Time: 7/1/2015 t: CRD Prep Initial Wt./Vol.: 5 mL	^o & M -Xylene	1.00U	2.00	0.620	ug/L				
cal Batch: VFC12501Prep Batch: VXX27527cal Method: SW8021BPrep Method: SW5030Bnent: Agilent 7890 PID/FIDPrep Date/Time: 7/1/2015 8:00:00AMt: CRDPrep Initial Wt./Vol.: 5 mL	urrogates I,4-Difluorobenzene (surr)	82.7	77-115		%				
cal Method: SW8021BPrep Method: SW5030Bnent: Agilent 7890 PID/FIDPrep Date/Time: 7/1/2015 8:00:00AMt: CRDPrep Initial Wt./Vol.: 5 mL	atch Information								
	Instrument: Agilent 7890 F Analyst: CRD	21B PID/FID	Prep Me Prep Da Prep Init	thod: SW5030E te/Time: 7/1/20 ial Wt./Vol.: 5 m	15 8:00:00AM				
	Instrument: Agilent 7890 F Analyst: CRD	Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: CRD Analytical Date/Time: 7/1/2015 12:58:00PM		te/Time: 7/1/20 ial Wt./Vol.: 5 m	15 8:00:00AM				

Blank Spike ID: LCS for HBN 1153180 [VXX27527] Blank Spike Lab ID: 1274766 Date Analyzed: 07/01/2015 13:36 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27527] Spike Duplicate Lab ID: 1274767 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180004, 1153180005

Results by SW8021B			_						
		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	100	114	114	100	112	112	(80-120)	1.90	(< 20)
P & M -Xylene	200	222	111	200	222	111	(75-130)	0.13	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	89.7	90	50	92	92	(77-115)	2.50	
Batch Information									

Analytical Batch: VFC12501 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: CRD

Prep Batch: VXX27527 Prep Method: SW5030B Prep Date/Time: 07/01/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/17/2015 3:23:26PM

Method Blank Blank ID: MB for HBN 1712748 [VXX/27546] Blank Lab ID: 1275537 QC for Samples: 1153180006	Matrix: Water (Surface, Eff., Ground)
Results by AK101	7
ParameterResultsGasoline Range Organics0.0500U	<u>LOQ/CL</u> <u>DL</u> <u>Units</u> 0.100 0.0310 mg/L
Surrogates 4-Bromofluorobenzene (surr) 104	50-150 %
Analyst: CRD Analytical Date/Time: 7/7/2015 4:49:00PM	Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1153180 [VXX27546] Blank Spike Lab ID: 1275540 Date Analyzed: 07/07/2015 17:46 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27546] Spike Duplicate Lab ID: 1275541 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180006

Results by AK101			_								
	Blank Spike (S	pike Duplio	cate (mg/L)					
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL		
Gasoline Range Organics	1.00	1.02	102	1.00	0.980	98	(60-120)	3.70	(< 20)		
Surrogates											
4-Bromofluorobenzene (surr)	0.0500	107	107	0.0500	107	107	(50-150)	0.80			
Batch Information											
Analytical Batch: VFC12507				Prep Batch: VXX27546							
Analytical Method: AK101				Prep Method: SW5030B Prep Date/Time: 07/07/2015 08:00							
Instrument: Agilent 7890A PIE Analyst: CRD	DIFID						g/L Extract	/ol: 5 ml			
Analyst. OND						·	g/L Extract V				

Print Date: 07/17/2015 3:23:29PM

Method Blank

Blank ID: MB for HBN 1712748 [VXX/27546] Blank Lab ID: 1275537

QC for Samples: 1153180006

Results by SW8021B

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	83.2	77-115		%

Batch Information

Analytical Batch: VFC12507 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Analytical Date/Time: 7/7/2015 4:49:00PM Prep Batch: VXX27546 Prep Method: SW5030B Prep Date/Time: 7/7/2015 8:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/17/2015 3:23:31PM

Blank Spike ID: LCS for HBN 1153180 [VXX27546] Blank Spike Lab ID: 1275538 Date Analyzed: 07/07/2015 17:27 Spike Duplicate ID: LCSD for HBN 1153180 [VXX27546] Spike Duplicate Lab ID: 1275539 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180006

Results by SW8021B

		Blank Spike	e (ug/L)	:	Spike Duplicate (ug/L)				
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	100	98.1	98	100	96.2	96	(80-120)	1.90	(< 20)
Ethylbenzene	100	104	104	100	100	100	(75-125)	3.50	(< 20)
o-Xylene	100	105	105	100	101	101	(80-120)	3.40	(< 20)
P & M -Xylene	200	210	105	200	203	101	(75-130)	3.50	(< 20)
Toluene	100	101	101	100	99.0	99	(75-120)	2.30	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	94.6	95	50	98.8	99	(77-115)	4.40	

Batch Information

Analytical Batch: VFC12507 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: CRD Prep Batch: VXX27546 Prep Method: SW5030B Prep Date/Time: 07/07/2015 08:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/17/2015 3:23:33PM

SGS

Blank ID: MB for HBN 171 Blank Lab ID: 1275472	2735 [XXX/33486]	Matrix	k: Water (Surfa	ce, Eff., Ground)
QC for Samples: 1153180001, 1153180002, 1	153180003, 1153180004, 11531	80005		
Results by AK102				
Parameter Discol Pango Organico	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u>
Diesel Range Organics Surrogates	0.3000	0.600	0.160	mg/L
5a Androstane (surr)	97.9	60-120		%
Batch Information				
Analytical Batch: XFC11	934	Prep Ba	tch: XXX33486	
Analytical Method: AK10 Instrument: HP 7890A			ethod: SW35200	
	FID SV E F		ite/Time: 7/8/20 tial Wt./Vol.: 250	
Analyst: NLL			tract Vol: 1 mL	

Blank Spike Summary

Blank Spike ID: LCS for HBN 1153180 [XXX33486] Blank Spike Lab ID: 1275473 Date Analyzed: 07/11/2015 13:58 Spike Duplicate ID: LCSD for HBN 1153180 [XXX33486] Spike Duplicate Lab ID: 1275474 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180001, 1153180002, 1153180003, 1153180004, 1153180005

		Blank Spike	e (mg/L)	5	Spike Duplic	ate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	21.1	106	20	21.3	107	(75-125)	1.10	(< 20)
urrogates									
5a Androstane (surr)	0.4	106	106	0.4	105	105	(60-120)	0.46	
Batch Information									
Analytical Batch: XFC11934	4			Pre	o Batch: X	XX33486			
Analytical Method: AK102					o Method:				
Instrument: HP 7890A	FID SV E F					e: 07/08/201		ا معا	
Analyst: NLL							Extract Vo		

Print Date: 07/17/2015 3:23:36PM

Billable Matrix Spike Summary

Original Sample ID: 1153093002 MS Sample ID: 1153093003 BMS MSD Sample ID: 1153093004 BMSD Analysis Date: 07/11/2015 21:25 Analysis Date: 07/11/2015 21:45 Analysis Date: 07/11/2015 22:05 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1153180001, 1153180002, 1153180003, 1153180004, 1153180005

		Mat	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
Parameter	<u>Sample</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD C
Diesel Range Organics	3.61	22.3	27.7	108	21.6	25.7	103	75-125	7.40	(< 30)
Surrogates										
5a Androstane (surr)		0.446	.529	118	0.431	0.494	115	50-150	6.80	
Batch Information Analytical Batch: XFC119 Analytical Method: AK102 Instrument: HP 7890A Analyst: NLL Analytical Date/Time: 7/1	FID SV E F	PM		Prep Prep Prep	Method: Date/Tim Initial Wt		iq Ext. for A 15 9:13:09 4.00mL		ow Vol	

Print Date: 07/17/2015 3:23:38PM

~

F083-Blank_COC_Templates_2015-03-19

[] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) (

1153180

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.	\checkmark			Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			1F, 1B
Temperature blank compliant* (i.e., 0-6°C after CF)?				Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?	ΙЦ		Ц	
If <0 °C, were all sample containers ice free?		\checkmark		
Cooler ID:				
Cooler ID:				
Cooler ID: (a) w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID: If samples are received <u>without</u> a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried)				
USPS Lynden AK Air Alert Courier				
\Box UPS \Box FedEx \Box RAVN \Box C&D Delivery				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
	Yes	N/A	No	
Were samples received within hold time?				Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?				<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?	\checkmark			
Were samples in good condition (no leaks/cracks/breakage)?	\checkmark			
Packing material used (specify all that apply):				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?		Ц	Ц	<i>Exemption permitted for metals (e.g., 200.8/6020A).</i>
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?		Ц	Ц	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?		\square	H	
Were all soil VOAs field extracted with MeOH+BFB?		\checkmark		
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant ?		\mathbb{H}	H	
If pH was adjusted, were bottles flagged (i.e., stickers)? For special handling (e.g., "MI" soils, foreign soils, lab filter for		V		
dissolved, lab extract for volatiles, Ref Lab, limited volume),				
were bottles/paperwork flagged (e.g., sticker)?		\checkmark		
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were				
containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and		ليكن		SRF Completed by: D. C 06/26/2015
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of sample numbering/labeling completed?				Peer Reviewed by: AAL
Additional notes (if applicable):				1

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	Preservative	Container Condition
1153180001-A	HCL to pH < 2	OK			
1153180001-В	HCL to pH < 2	OK			
1153180001-C	HCL to pH < 2	OK			
1153180001-D	HCL to pH < 2	OK			
1153180001-Е	HCL to pH < 2	OK			
1153180002-A	HCL to pH < 2	OK			
1153180002-В	HCL to pH < 2	OK			
1153180002-С	HCL to pH < 2	OK			
1153180002-D	HCL to pH < 2	OK			
1153180002-Е	HCL to pH < 2	OK			
1153180003-A	HCL to pH < 2	OK			
1153180003-В	HCL to pH < 2	OK			
1153180003-С	HCL to pH < 2	OK			
1153180003-D	HCL to pH < 2	OK			
1153180003-Е	HCL to pH < 2	OK			
1153180004-A	HCL to pH < 2	ОК			
1153180004-В	HCL to pH < 2	OK			
1153180004-C	HCL to pH < 2	OK			
1153180004-D	HCL to pH < 2	OK			
1153180004-Е	HCL to pH < 2	ОК			
1153180005-A	HCL to pH < 2	ОК			
1153180005-В	HCL to pH < 2	ОК			
1153180005-С	HCL to pH < 2	OK			
1153180005-D	HCL to pH < 2	ОК			
1153180005-Е	HCL to pH < 2	ОК			
1153180006-A	HCL to pH < 2	OK			
1153180006-В	HCL to pH < 2	OK			
1153180006-С	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

APPENDIX D

GROUNDWATER SAMPLING FORMS

				100	0									
	Site/Clie	nt Name:	ML+P			We	II ID:	mw-	75S					
	Project #					_	mple		W-7T	5				
	Sampled	By: A. Ka	udson k	. John	son	Sa	mple	Time: 2			e Date: 🏼 🎸	25/15		
		Conditions:	cloud			Du	Duplicate ID:							
	Sampling	Method:	Low Flow			MS	MS/MSD 🗌 Yes 💭 No Trip Blank Required: 🔯 Yes 🗌 No							
		1				ell Info								
e lete			inent 🗌 Ten		Vell Diameter 🗾 📿									
one stalph bolt stalph	Well Con	ndition: 🕅 G	ood 🗌 Fair	Poor (if fa	air or poor explain									
Po	Donth to	Water (ft BT	OC): 17.4	10	Gauging/	Purgir	ig Infe	ormation Pump Depth		11 210				
			C): 20/		diven . hard			art Time (24						
		Product (ft.					A state of the local diversion of the local d	nd Time (24-	the second se	and the second se				
		Thickness (f		6				rge Time (m						
	LOW FLO	is be pump	oing a minimur	een, then use m of 1 flow thr	ubing Depth – Top o e default value of 0. ough cell volume).	3 ft.; ao	hieve	stable param	eter for 3 c	onsecutive re	eading (each			
	OTHER:	Purg Purg 28.3	e Volume = 3.1	imum of 3 cas 4 X (\ s) (1 gallon =	well radius squared i	le parameters for 3 consecutive readings, or maximum of 10 casing volumes purged, n ft.) X (water column in ft.) X(number of casing volume to be purge)X								
	1* Casing	y Vol (liters) =	0.154 * Water		2" Casing Vol (liter	rs) = 0.617 * Water Column (ft) 4" Casing Vol (liters) = 2.47 * Water Column (ft)								
	Time	Flow	Purge	Temp	Water O Specific	Quality		ORP	рН	Turbidity	DTW	Drawdown		
	(24-hr)	Rate (liters or	Volume (liters or gal)	(°C)	Conductance (µS/cm [°])	(mg		(mV)	P	(NTU)	(ft BTOC)			
		minute)	901)	(± 3 %)	(± 3%)	(± 3%) (± 10		(± 10mV)	(± 0.1)	(± 10%)		(Maxft.)		
30.	1218 300ml 8.2001 8.69				825	3.2	0	8.3	6.93	231	17.44	.04		
	1221	300	Ø.4	8.54	658	1.7	Ζ	20.5	6.71	69	17.45	05		
	1224	300	0.6	8.29	824	1.5	57	15.0	6.61	17.1	17.45			
	1227	300	0.8	8.23	827	1.3	35	9.4	6.58	6.56	17.49	5.05		
	1230	300	01.0	8.15	828	÷.	24	6.1		41.28	17.49	5.05		
	1233	300	1.2	8.13	828	1.	29	3.5	6.52	2.13	17.46	.06		
	1236	300	1.4	8.08	829	1.	1.13 2.9		6.41	2.01	17.40	06		
	12	39	Sam	ple	Time									
				1										
	Sample	Color:	Leon		Sample Odor:	No	o ne		Shee	n: Anone	🗌 light 🔲	med 🗌 heavy		
						alytical Sampling								
	Analys	ses Nur	nber/Type o	fBottle	Preservative/ Comments		A	nalyses	Number	/Type of Bo		Preservative/ Comments		
	GRO/BTE	X			¥.		0.3030350	Metals						
	DRO						Disso	olved Metals						
	RRO VOCs													
	SVOCs													
	PAHs													
	Notes:_	water	orange	- bec.	un to sh	net,	mð	nor pri	cipt at	bottom	of Se	ow that		
	19 <u>11</u>													
	·													
	Equine	ont lleade l	Pump Type_	Peri	Tubi			ıgth)		Bailer	VDE			
	1	evel Meter_	ump Type_	1 1				Meter (Make	CALHA)	ISTZ	36			
		/ Meter (Mak	(e/SN#) Z	100P						0	71100	ST3. MLIP		
		5	11	7411		-				~	1	Q L) D		
	I IDW Dis	snosal: 🗌 🖸	ischarged to	surface	Treated (how?)				RIC	Other: 41	ven to	TUT		

Tubing	left in	well
--------	---------	------

				0	0		0						
Site/Client Na	ame: 🁔	1LTP			Well I	D: MW	-GTS			2			
Project # : /					Samp		N-GTS	5					
Sampled By:		Jem	K. Jo		Samp	le Time: 11			e Date: 4/2	5/15-			
Weather Con			CO°F	INSOM		ate ID:							
		1				MS/MSD 🗌 Yes 🖄 No 🛛 Trip Blank Required: 😡 Yes 🗋 No							
Sampling Met	thoa: 🛤	LOW FIOW [10/									
Well Type: 🔀	1 Perman	ent 🗂 Ter	nnorary V	Vell Diameter		Screen Inte	rval:	ft. E	BTOC to	ft BTOC			
				air or poor explain						ve ground			
Their Containe						nformation	4						
Depth to Wate	er (ft BTC	DC): 15,	75		Tubing	/Pump Depth	(ft. BTOC	19.98	,				
Total Depth (1			0.98 9	nod-haed		Start Time (24		21					
Depth to Proc			al			End Time (24-		58					
Product Thick LOW FLOW:		raw Down	<i>φ</i> (Τ	ubing Depth – Top c		Purge Time (m		7 min	terval is not kno	wn or water table			
	is belc pumpii	ow top of sci ng a minimu	reen, then use m of 1 flow thr	e default value of 0 ough cell volume).	.3 ft.; achie	ve stable param	neter for 3	consecutive r	eading (each rea	ading taken after			
OTHER: Purge Volume minimum of 3 casing volume and stable parameters for 3 consecutive readings, or maximum of 10 casing volumes purged. Purge Volume = 3.14 X (well radius squared in ft.) X (water column in ft.) X (number of casing volume to be purge)X 28.3 = (liters) (1 gallon = 3.79 liters)													
1" Casing Vol (liters) = 0.154 * Water Column (ft) 2" Casing Vol (liters) = 0.617 * Water Column (ft) 4" Casing Vol (liters) = 2.47 * Water Column (ft)													
Water Quality Parameters Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown (mit) Definition (mit) <													
(24-hr) F	Rate ters or	Volume (liters or	(°C)	Conductance (µS/cm°)	(mg/L)	(mV)	рп	(NTU)	(ft BTOC)	(ft)			
	gal/ iinute)	gal)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(± 10%)		(Maxft.)			
1123 25	50ml	500 ml	7.84	672	4,14	1 19,4	7.15	326	15.76	.01			
	//	". 75 cm	7.52	642	0.99	-15.6	6.69	76.8	15.77	.02			
1131 Z	50	1,04	7.36	632		2-19.6	6.58			. O Z			
	50	1.2	7.32	628		-21,4	6.53			,02			
	50	14	7.51	624		6-22.8	6.52		15.77				
	50	1.1	7.28			5-24.4		10.3	15.77				
		1.7		626		3-26.1			15,77	.02			
	50	1,75	7.32					9.71		.oZ			
	50	1.0	7.26	623		5-27.0		4.99					
1150 Z:	50	2.25	7.22	6.23	0.4	7-281	6.46	4.04	15.77	.02			
	Ja.	npre		54			L		1				
Sample Cold	or: 📶	leal		Sample Odor:	organ	PC	Shee	en: R none	🗌 light 🗋 m	ned 🗌 heavy			
				Ana	lytical Sa	mpling							
Analyses	Num	ber/Type o	of Bottle	Preservative Comments		Analyses	Numbe	r/Type of B	ottle	reservative/ Comments			
GRO/BTEX	3	×40m	L	W/1	То	tal Metals							
DRO		× 250.		TICL	Di	ssolved Metals							
RRO	-												
VOCs													
SVOCs	_												
PAHs													
Notes:	rst s	500 ml	orang	e color	SEDR	reh							
			U										
			0 -	die .			0.0						
Equipment	Used: P	ump Type_	Pari	Tubi	ng (Type/L	.ength) 📉 🕞	rell	Bailer	Туре				
Water Level	Meter	SLR 1	00'	Mult	i-Paramete	er Meter (Make	e/SN#)	VSI	OFLID	OSIZ MLIP			
Turbidity Met	ter (Make	e/SN#)	ach 11	Filte	r Lot #			N0		-			
	722							6. E	Juga to	P			
IDW Dispos	al: 🗌 Di	scharged to	surface 🗌	Treated (how?)_			[X	Other: 9	I were ve	ML LTI			

-	_	T. bo	re left i	n we	ll	AK 9	125/15				
Site/Client Na	me: ML+P	1.000	0	Well I	D: AA		Mw-	St	5		
Project # :	alti				le ID: MU	1-5				-	
	A.Knudson	V -	Tohnson			242		e Date:	6/25	1.5	
	itions: cloudy	-			ate ID: -	3-1	Gampi	c Date.	125		
		LICH	Rain			5140	T . DI . I	-			
Sampling Meth	nod: 🗌 Low Flow	Other		1000323-200	SD 🗌 Yes]	ANO	Trip Blank	Require	ed: ATY		
	Permanent 🗌 Te	moorany	Well Diameter 3	ell Informa		n/al+	ft. E	TOC to	-	ft BTOC	
			fair or poor explain		Stickup					** 35	
Weil Condition.					formation		o, ii jeo,		in above	ground	
Depth to Water	r (ft BTOC): 4	88			/Pump Depth	(ft. BTOC)	12.7	F			
Total Depth (ft	BTOC): 13	.77			Start Time (24		316				
Depth to Produ		-1			End Time (24		215				
Product Thickn	ness (ft) Max Draw Down	7	Tubing Depth – Top o		Purge Time (m		9 min	topyol in r	ant known	or water table	
LOW FLOW.	is below top of so pumping a minim	creen, then us um of 1 flow th	se default value of 0. rough cell volume).	.3 ft.; achiev	e stable paran	neter for 3	consecutive re	eading (e	each readi	ing taken after	
OTHER: Purge Volume minimum of 3 casing volume and stable parameters for 3 consecutive readings, or maximum of 10 casing volumes purged, Purge Volume = 3.14 X (well radius squared in ft.) X (water column in ft.) X (number of casing volume to be purge)X 28.3 = (liters) (1 gallon = 3.79 liters) 1" Control = 0.454 * Write Column (ft) 2.47 * Write Column (ft)											
1" Casing Vol (liters) = 0.154 * Water Column (ft) 2" Casing Vol (liters) = 0.617 * Water Column (ft) 4" Casing Vol (liters) = 2.47 * Water Column (ft)											
Water Quality Parameters Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown											
Time Flow Purge Temp Specific DO ORP pH Tubbulty DTW Drawdown (24-hr) Rate Volume (°C) Conductance (mg/L) (mV) (NTU) (ft BTOC) (ft) (liters or gal/ gal/ gal/ gal (μS/cm°) (mV) (mV) (NTU) (ft BTOC) (ft)											
min	ute)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1) (± 10%)		(Max 33 ft.)			
1319 30	20 600 m	7.71	622	6.53	3 3 4.3	7.29	7.88	5.2	0	1.3Z	
1322 25	0 Ø. 3gel	7.91	616	6.02	48.7	7.10	7.93	5.	09 0	0.21	
1325 25	00,5	8.18	613	6.00	36,5	7.08	4578	5.	110	0.23	
1328 29		8.50	610	6.07	2 23.8	7.11	6.10	5	16	85.0	
1331 25		101/8.81	607	5,94		7.13	4.30		.171	0.29	
1334 25		8.99	608	5.6		7,10	3.12	1.000	17	Ø.29	
1357 25		9.08	610	5.54		2.08			18	0.30	
1340 25		9.13		5.47	-				19	0.31	
1510 60	242	C	610		- P/0	7.06	CNO			4.51	
	376	Damp	le I.m.	2							
		1		Δ		<u> </u>					
Sample Color	Cheor		Sample Odor:	long		Shee	en: Mone	L] light		I 🗌 heavy	
				lytical Sar	npling				Dura		
Analyses	Number/Type	of Bottle	Preservative/ Comments		Analyses	Numbe	r/Type of Bo	ottle		ervative/ mments	
GRO/BTEX	3×40ml		Hel		al Metals			8	1		
DRO	2×250	ml	HCL	Dis	solved Metals			~			
RRO								-			
VOCs											
SVOCs	/										
PAHs	1.11 6	~	1	0							
Notes: W	ell PVC jac	ked to	side m	Casiy							
	0			(9						
	sed: Pump Type	. /			ength) <u>``</u>		Bailer-1				
	leter <u>SLR</u> r (Make/SN#)	100' lach 11]		r Lot #	r Meter (Make		07L100				
IDW Disposal	I: 🗍 Discharged t	o surface 🗌] Treated (how?)				Other:	L+P	dispo	sal	

Page 1082

Site/Clie	ent Nar	ne: 🖊	MLA P		0	Well ID	in h	1-97	7				
Project #	_		ar oue /			Sample		N-9	5		4		
Sampleo		1 - 15	LACO	A - Knul	Kom		e Time: 90			e Date: 4/2	· Chit		
Weather			Överco	and the second second			ate ID: N	~		o 2010. /2	-7.5		
			Low Flow							Required: D	Yes 🗌 No		
Camping	givicui	ou (ja	Low Flow		W	ell Informat	-	3110	пр ыапк		1 103 [] 110		
Well Typ	e: 🔀 F	Permai	nent 🗌 Ter	mporary V	Vell Diameter		Screen Inte	erval:	ft. E	BTOC to	ft BTOC		
Well Cor	ndition:	GG	ood 🗌 Fair	Poor (if f	air or poor explain	or explain in Notes) Stickup 🗌 Yes 📈 No; If yes,ft above ground							
Danih ia	Mater	(A DT)	00)	11 2 2	Gauging	Purging In		(A DTOO)			-110 1 1		
Depth to Total De				4,23	Hard bottom	Purge S	Start Time (24	(ff. BIOC	2	- moved	z"frem bet		
Depth to				0.12	/ ulci p-ti-		nd Time (24		26				
Product							urge Time (m		3 Min=				
LOW FLC		is bel pump	ow top of sc ing a minimu	reen, then use im of 1 flow thr	ubing Depth – Top c e default value of 0 ough cell volume).	3 ft.; achieve	e stable paran	neter for 3	consecutive re	eading (each re	-		
OTHER:		Purge 28,3 =	Volume = 3; =(liter	14 X (rs) (1 gallon =		n ft.) X	_ (water colun	nn in ft.) X _	(numbe	r of casing volur	ne to be purge)X		
1" Casing	g Vol (lit	ers) = () 154 * Water	Column (ft)	2" Casing Vol (lite Water (rs) = 0.617 * 1 Quality Par		(ft) 4"	Casing Vol (li	ters) = 2_47 * W	ater Column (ft)		
Time (24-hr)	Flo Ra (liter	te	Purge Volume (liters or	Temp (°C)	Specific Conductance (µS/cm ^o)	DO (mg/L)	ORP (mV)	рН	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)		
	ga minu	ute)	gal)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(± 10%)		(Maxft.)		
957	45	01	0.5	14.64	1097	1.44	46.9	6.84	12.7	4.64	-41		
1001	35	Oml	1.0	15.20	1055	0.91	17.2	6.64	11.8	5,32			
1005		Onl	2:250	14.71	1030	0.79	-4,1	6.63	9.85	5-68			
1011	A COSUL - C				1063	0-72	-25.3	6.67	13.8	6.32	2.09		
1019	45			13.09	1222		-49.2		13.3	6.95	2.		
023	415	50	3.0	12:47	1299	0.95	-77.2	7.03	25,4	7.69			
						JKY							
Sample	Color:	: (leor		Sample Odor:	Hud	rocort	or Shee	en: 🗋 none	A light Am	ied 🗌 heavy		
		1			Ana Preservative/	lytical Sam	pling				eservative/		
Analys		Num	iber/Type o	of Bottle	Comments		nalyses	Numbe	r/Type of B	ottle	Comments		
GRO/BTE DRO							I Metals olved Metals						
RRO						2.00							
VOCs		_											
SVOCs													
PAHs													
Notes:_			fubing	Set	1300t fro	m bo	Hom						
Water Le	evel Me	eter			Tubii Multi Filter	-Parameter	Meter (Make	e/SN#)		Type			
Water Le	evel Me Meter	eter (Make	e/SN# <u>) Z/</u> 91	1009 H N 11741		-Parameter Lot #	Meter (Make	e/SN#)		rype			

Page 2052

Site/Clien	it Name: ,	MLLP			Well	ID: MW-	975					
Project # :		N			Samp	ole ID: 🔥	1W-9T	5				
Sampled E	ву: 14	Johnson	A.Kn	udson	Samp	ole Time: 09	05	Samp	le Date	0/2	6/15	
		overcas				cate ID: N						
		Low Flow				ISD Ves			Requir	ed R	Yes	
oumping	incurod C				ell Inform			Thp Diam	rioqui	00.023		
Well Type	Perm	anent 🗌 Te	mporary N	Well Diameter			erval:	ft. I	BTOC to		- ft B ¹	гос
				fair or poor explain								
				Gauging	/Purging	Information	1 B B -	611			1	
Depth to V	Vater (ft B	TOC):	6.54			g/Pump Depth	(ft. BTOC): 1ft	bottor	1e	14J	
Total Dept			8.7	2		Start Time (24		0905				
Depth to F			-		_	End Time (24		0911	101			
Product TI	·	Draw Down	= (1	ubing Depth - Top c		Purge Time (m				not knov	vn or water	table
	is b	elow top of so	reen, then us	e default value of 0	.3 ft.; achie	ve stable paran	neter for 3	consecutive r	eading (e	each rea	ding taken	after
OTHER:				rough cell volume). sing volume and stab	ole paramete	ers for 3 consecu	utive reading	as. or maximu	m of 10 c	asing vo	lumes pura	ed.
	Purg	e Volume = 3		(well radius squared i								
1" Casing V	28.3 Vol (liters) =			2" Casing Vol (lite	ers) = 0.617	* Water Column	(ft) 4	" Casing Vol (I	iters) = 2	47 * Wa	ter Column	(ft)
				Water	Quality Pa	arameters						
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	ORP (mV)	pН	Turbidity (NTU)		TW TOC)	Drawdo (ft)	
(24-11)	(liters or	(liters or		(μS/cm°)	(119/2)	((1,10	,	()	
	gal/ minute)	gal)	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(± 10%)			(Max	ft.)
	1000000						· · ·					
0910	NA		13.71	1.063	5.56	185.7	6.86	7.10	7.0	13		-
												-
									-			
							-					
									-			_
						_						
	-	T					1					
			-				1	-				
Sample C	Color:			Sample Odor:			She	en: 🗌 none	A light	t Ame	ed 🗌 he	avy
			r		lytical Sa	mpling	r					1
Analyse	es Nu	mber/Type o	of Bottle	Preservative Comments		Analyses	Numbe	er/Type of B	ottle		eservative omments	
GRO/BTEX	(3 × 40 +		Hel		otal Metals						
DRO		2×25	ome	Hel	Di	ssolved Metals						
RRO												
VOCs												
SVOCs PAHs												
Notes:		well	recoverd	1 Only 5	0%	Sampled	wit	h phou	uh	wate	1 10	
h	jell.	Jocar bon	00500	ver on	Medi	seus of	E WOA		_	filly	sample,	() ()
	- ye											
Equipme	nt Used:	Pump Type_	SLR	Tubi	ng (Type/L	ength) I1	well	Bailer			-	_
Water Lev		SLR	100 ft	Mult		er Meter (Make				3 4	SLR	
Turbidity N	Meter (Ma	ke/SN#)	ach 11	7 / 11	r Lot #		· · · · · · · · · · · · · · · · · · ·		Ø 51	MPS	554	
								Other: ML	10	2.1	~ 1	
IDW Disp	osal: 🗌 🛛	Discharged to	o surface 🔲	Treated (how?)			D	Other: ML	97	Disyog	101	

6/25/15 Kitchvison A. Kaulson SYNny 0900 Arrive on site and sprak to steve Stungel, recieve De KJ Purge water buckets. 0913 - (alibute YSI Ø741 ØØ513 0930 - Safety meeting 0935- locate MW-975 note: take 1/2 inch Sacket to remove Flush mouthts. 0945- Setup at MW-9TS 1 0953 start purge at MW-975 1023 well gone Dry return of ofte others sampled. Well recovers approx . 10 ft every G-7 min, well should take 6-7 min 3-4 hours to recovery full. 1118 arrive and set up @ MW-GTS 1120 DTW 15.75 Total 20.98 moderate hord 1121 Purge shart time MW-655 Sample MW-GTS 1152 1158 onto MW-775 Sinish move 1207 setupat mw-775 short purging mw-715 1212 ple nw-775 Sam 1239 1245 Finish purging 1255 herd one to MW-S.

overrust 50°F K. Johnson A. Knudson 6/26/15 continuec 6/25/ 1310 well packed to the side in 0830 Hive at site MW-975, checkin Casimo 1315 ODTW 4,88 MW5TS with stere Stangel. 0840- Safety Meeting Total 13.77 hard bottom 0842 - culibrate YSI 07L100513 1342 Sample time MW STS 0905 - MW-975 Sample 1345 stoppunge take down Sample MW- 99TS Sile_ 0926 - check in with steve and show check Recover in MW-915 14/06 In coance Dru 5.38 215. 3.34 only at where jurge water Stored & labeled. 0940- take sumples to 565 kib. 75% RECOVER go to MW-STS AL DEST 1026 - Lut down PUC at MU-675 her cono back So flux w/ ray on Road took approx. 1414 MW-375 DTW 15.61 1" off cosino well PVC. Torel 17.15 5014 II BE 1037 - Atlempt I Water level at MW-8 water level mater has bentifete on Flush mount 150 needs special tool for it. Rush to bong into bottom, 1.5 inches six inches of Adding covered. Theow vemoval of Ld. but tubing 1 1453 Return to MW-975 water only a is at 7.37 previous Reiding wrong 1. 10 love well to recover Jour night. Art. in The Marin

Date: Callbration Callbration LOG Meter Identification and Identification #: 07100513 Callbration Callbration

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading Calibration Reading	Calibration Acceptance Criteria
pН	4.00	21,400	SWI	6/22/15	04/2016	4.14	4.00	± 0.10
	7.00	7.01	341	0/02/2015	02/2016	6.97	7.01	± 0.10
	10.00 档		5V1	6/22	05/2016	9.87	10.03	± 0.10
Sp Cond (mS/cm)	1,413	1.413	TY2	6122	09/2017	1.473	1.413	± 10%
ORP	240	240	4118	10/4/12	03/2017	223.5	Z40.0	
DO	700.2	HHng				99.2	100.0	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

 Water Parameter YSI 556 Meter Calibration Log

 Date:
 6/26/15
 Time:
 0842
 Calibration By:
 A Kundson

 Meter Identification and Identification #:
 07L100513
 Calibration By:
 A Kundson

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading Calibration Reading	Calibration Acceptance Criteria
pН	4.00	4.00	SW1	6/22/15	04/16	4.21	4.00	± 0.10
	7.00	7.01	SVI	6/22/15	2/16	731	7.01	± 0.10
	10.00	10.06	SVI	6/22	5/14	13710.02	20110.0	± 0.10
Sp Cond (mS/cm)	1.413	1.413	TYZ	6/22	02/17	1.3841	1.413	± 10%
ORP	240	240	4118	10/4/12	03/17	239.0	240.5	
DO	760.	-1			1			± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

Water Parameter YSI 556 Meter Calibration Log

Date:

_____ Time: ______ Calibration By: _____

Meter Identification and Identification #:

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading Calibration Reading	Calibration Acceptance Criteria
рН	4.00							± 0.10
	7.00							± 0.10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP	240							
DO								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)