

October 8, 2018

Mr. Grant Lidren Alaska Department of Environmental Conservation-SPAR 555 Cordova St. Anchorage, AK 99501

RE: 2018 Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842)

Dear Mr. Lidren:

This report presents the results of the 2018 groundwater monitoring conducted at the Municipal Light and Power's (ML&P) Transformer Shop Site at 1130 E. First Avenue (formerly 1201 E. Third Ave.), in Anchorage, Alaska. The Site is listed with the Alaska Department of Environmental Conservation (ADEC) as File # 2100.26.302, Record Key # 90210001102, and Hazard ID 23842. The petroleum hydrocarbon contamination in the groundwater is attributed to leaking underground storage tanks removed in 1989. All of the groundwater monitoring wells are flush-mounted and located in an asphalt paved lot adjacent to the Transformer Shop Building (Figures 1 and 2). The sampling activities were conducted in accordance with the ADEC 2018 Work Plan Addendum *SLR 2018) which is an addendum to the 2002 Work Plan, ML&P 2002).

2018 Groundwater Sampling

SLR International Corporation (SLR) personnel collected groundwater samples at four monitoring wells (MW-5, MW-6, MW-7, and MW-9) on July 31 and August 3, 2018. The sampling effort was completed by Brett Woelber and Nick Wells, who meet the criteria of ADEC-qualified environmental professionals and samplers per 18 AAC 75.333. Groundwater sampling forms documenting the sampling of the wells are included in Appendix E of this report. A photograph log is also included documenting the site conditions during the sampling event (Appendix A).

Prior to the collection of the groundwater samples, the water levels in all wells were measured using an electronic water level indicator. With the exception of monitoring well MW-9 (discussed below) groundwater samples were collected using a low-flow sampling method by means of a peristaltic pump. The low-flow sampling method has been used for the annual monitoring at the site since 2011. The low-flow sampling method consists of purging at a low flow rate (between 0.05 and 0.5 liters per minute [L/min]), while maintaining a drawdown of less than 0.3 feet, if possible. During the purging, up to six water quality parameters are measured (temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity) at three to five minute intervals. Water quality parameters are considered stable when three consecutive readings of at least three parameters (or four if temperature is used) are within:

ML&P Transformer Shop Groundwater Monitoring Report - 2018 Page 2

- ± 3% for temperature (minimum of ± 0.2 ° C),
- ± 0.1 for pH,
- ± 3% for conductivity,
- ± 10 mv for ORP,
- ± 10% for DO, and
- ± 10% for turbidity.

All monitoring wells except MW-9 sustained near constant water levels during purging, at flow rates of 0.2 to 0.3 L/min. While purging, the water quality parameters were measured using a YSI 556 multi-parameter instrument. Turbidity was measured qualitatively (low, medium, or high). Stability criteria were met for all wells except MW-9. Water level data and final water quality parameters are presented in Table 1. Purge water generated during sampling activities was placed in labeled containers and disposed of by ML&P following the receipt of analytical results.

MW-9 has typically been a poor yielding well, which has repeatedly gone dry when purging and attempting to achieve stable parameters, even at very low flow rates. Since 2015, the standard sampling protocol for MW-9 is to purge the well dry and collect samples at least 24 hours later. On July 30, sampling was attempted at MW-9 using the low-flow technique. However, drawdown at MW-9 exceeded low-flow criteria (0.33 feet) and well purge was ended. On July 31, MW-9 was intentionally purged dry without attempting to achieve stable parameters. A total of 5.0 gallons of water were purged on July 30 and July 31. The water in the well was as allowed to recover for approximately 72 hours and analytical samples were collected on August 3 without additional purging. At that time, the water level well had recovered approximately 80%. Water quality parameters were measured on August 3 concurrent with sampling.

Laboratory Analyses

Groundwater samples were collected from the four monitoring wells, including a duplicate sample from well MW-9, and submitted to SGS North America in Anchorage using chain-of-custody procedures. All of the groundwater samples were analyzed for DRO by Method AK 102, GRO by Method AK101, BTEX by Method SW8260C. In addition, MW-9 samples were analyzed for the full list of Volatile Organic Compounds by SW8260C and polycyclic aromatic hydrocarbons (PAH) by 8270D LV. The full-list VOCs and PAHs were added to the analytical suite in 2018 per the request of ADEC and subsequent Work Plan Addendum (SLR 2018).

Analytical data was reviewed for consistency with the *ADEC Technical Memorandum*, *Environmental Laboratory Data and Quality Assurance Requirements* (ADEC 2009). Appendices B, C, and D contain a Data Quality Assessment (DQA), ADEC Laboratory Data Review Checklist, and the laboratory analytical data package. Based on the DQA, the data were considered to be of good quality and acceptable for use with the noted qualifications. No data were rejected.

Analytical Results

The 2018 analytical results are provided in Table 2 and Figure 2. Table 3 provides a summary of current and historical analytical results for DRO, GRO, Benzene, and Total BTEX analytes. The results were screened against the current ADEC ground water cleanup levels (18 AAC

75.345, Table C, revised September 2018). Of the four wells sampled, monitoring well MW-9 was the only well with detected concentrations above applicable groundwater cleanup levels.

Groundwater cleanup levels in MW-9 were exceeded for GRO, DRO, benzene, ethylbenzene, total xylenes, 1,2,4-Trimethylbenzene, 1,2-Dichloroethane and naphthalene as shown on Table 2. In MW-9, GRO was detected at 3.25 mg/L in the primary sample and 2.59 mg/L in the duplicate, which was slightly higher than the groundwater cleanup level of 2.2 mg/L. Concentrations of DRO were 2.69 mg/L and 2.84 mg/L in the duplicate, which were slightly greater than the groundwater cleanup level of 1.5 mg/L. Benzene was 1.3 milligrams per liter (mg/L) in the primary sample and 1.2 mg/L in the duplicate, which was significantly greater than the groundwater cleanup level of 0.0046 mg/L. Ethylbenzene was detected at 0.0645 mg/L in the primary sample and 0.0668 mg/L in the duplicate, which was slightly higher than the groundwater cleanup level of 0.015 mg/L. Total xylenes was detected at 0.456 mg/L in the primary sample and 0.244 mg/L in the duplicate, which was slightly higher than the groundwater cleanup level of 0.19 mg/L. 1,2,4-Trimethylbenzene was 0.191 mg/L in the primary sample and 0.14 mg/L in the duplicate, which was greater than the groundwater cleanup level of 0.015 mg/L. 1,2-Dichloroethane was 0.00965 mg/L in the primary sample and 0.00663 mg/L in the duplicate, which was greater than the groundwater cleanup level of 0.0017 mg/L. Naphthalene was 0.068 mg/L in the primary sample and 0.0438 mg/L in the duplicate when analyzed by SW8260C, and was 0.0161 mg/L in the primary sample and 0.015 mg/L in the duplicate when analyzed by SW8270D, which was greater than the groundwater cleanup level of 0.0017 mg/L. All sample results for perchloroethylene (PCE) and related daughter products including trichloroethylene (TCE) and vinyl chloride were below detection limits.

Samples from monitoring wells MW-5, MW-6, and MW-7 had contaminant concentrations well below groundwater cleanup levels. MW-5, MW-6, and MW-7 contained detectable but trace levels of DRO (concentrations were between the detection limit (DL) and limit of quantitation (LOQ)). This is consistent with the historical data set, and indicates the plume of petroleum hydrocarbon-impacted groundwater is localized around MW-9. MW-9 is located where the former USTs were removed, and is the presumed source area. Wells MW-7 and MW-6 are located less than 150 feet down gradient from MW-9, and show essentially no petroleum hydrocarbon-impacted groundwater.

Monitoring well MW-9 has historically contained the highest concentrations of BTEX, GRO and DRO (Table 3). The concentration of these analytes in MW-9 was slightly higher in 2018 than 2016, but continues a long-term declining trend in contaminant concentrations. Based on the groundwater monitoring conducted since May 2000, the long term trend has been a gradual decline for these contaminants of concern.

A plot of historical data from monitoring well MW-9 shows the long term trend of contamination at the Site (Figure 3). A primary and a duplicate sample have been taken beginning in 2011 and at each sampling event thereafter, and the higher of the two results were plotted on the figure. As illustrated by the data plot, contamination levels in MW-9 have been decreasing gradually since the early 2000s, with occasional oscillations. In 2003, a large increase in DRO may have been the result of free product in the sample. In 2013 and 2014, samples were taken without prior purging of the well, which seem to have produced anomalous results. A change in sampling method in 2011 from purging three volumes with a bailer to low-flow sampling with a

ML&P Transformer Shop Groundwater Monitoring Report - 2018 Page 4

peristaltic pump does not seem to have created a measurable bias in sample data. As noted, since 2015 the sampling protocol for MW-9 has been to purge the well dry and collect the sample approximately 24 -72 hours later which has produced consistent data set for comparison with respect to sampling methodology.

Groundwater data was also compared against ADEC's vapor intrusion target level for the vapor intrusion pathway for commercial site use as defined by *Vapor Intrusion Guidance for Contaminated Sites* (ADEC, 2017). The target levels for benzene and 1,2,4-Trimethylbenzene were exceeded in the water sample from MW-9 as shown on Table 2.

Conclusions and Recommendations

The groundwater monitoring at the Transformer Shop Site indicates that petroleum hydrocarbons in the groundwater are decreasing over time but still exceed ADEC groundwater cleanup levels at one monitoring well (MW-9). In 2018, DRO, GRO, total xylenes, 1,2-Dichloroethane, ethylbenzene, and naphthalene were slightly above the groundwater cleanup level, while benzene and 1,2,4-Trimethylbenzene were significantly above the groundwater cleanup level. Based on the monitoring well network, the extent of petroleum hydrocarbon impacted groundwater is small and localized around MW-9, and the plume is steady state or decreasing. There is minimal groundwater movement in the immediate area of the plume, as evidenced by the poor recharge in MW-9. This further supports the conclusion that the plume will not migrate, and will slowly degrade with time, as is shown in Figure 3.

In accordance with the April 13, 2017 letter from ADEC to ML&P, the groundwater monitoring schedule at the transformer shop was changed from annual to biennial (every two years, on even numbered years). The next monitoring event is scheduled for 2020.

If you have any questions or concerns, please contact Bret Berglund (SLR, 907-563-2128) or Yelena Saville (ML&P, 907-263-5273).

Sincerely,

Bret Berglund

Project Manager, C.P.G.

CC: Yelena Saville, ML&P

References

Municipal Light and Power (ML&P) 2002. Work Plan for Groundwater Monitoring at 1201 E. 3rd Ave. Anchorage; File #L69.07, Fac ID Fac ID #1420, Event ID #133, Reckey # 90210001102. August 26. Note: The site address is now referred to as 1130 E. First Avenue.

SLR International Corporation (SLR). 2018. Work Plan Addendum for Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842). July 9.

<u>Attachments</u>

/ tetaoriiiio	nte
Table 1	2018 Water Sampling Log
Table 2	2018 Groundwater Sample Results
Table 3	Historical Groundwater Analytical Results
Figure 1	Site Vicinity Map
Figure 2	Site Map with 2018 Groundwater Sampling Results for GRO, DRO, and BTEX
Figure 3	Historical Groundwater GRO, DRO, and BTEX Concentrations in MW-9

Appendices

A	Photograph Log
В	Data Quality Assessment
С	ADEC Laboratory Data Review Checklist
D	SGS Laboratory Data Reports
E	Groundwater Sampling Forms

TABLE 1 - 2018 WATER SAMPLING LOG ML&P TRANSFORMER SHOP

Well Number ^{1,2,3}	MW-5 TS	MW-6 TS	MW-7 TS	MW-9 TS
Water Level & Well Purging Data		•	•	
Date Water Level Measured	7/31/2018	7/31/2018	7/31/2018	7/31/2018
Time Water Level Measured	8:30	10:50	12:30	9:35
TOC Elevation, ft	Unknown	Unknown	49.23	51.23
Depth to Water Below TOC, ft	5.10	15.49	17.27	4.26
Water Level Elevation, ft	NC	NC	31.96	46.97
Depth of Well Below Top of Casing, ft	13.80	21.19	21.00	8.79
Water Column in Well, ft	8.70	5.70	3.73	4.53
Diameter of Well Casing, inch	2	2	2	2
Gallons per Foot	0.163	0.163	0.163	0.163
Gallons in Well	1.42	0.93	0.61	0.74
Total Gallons Purged (Low Flow)	1.6	1.6	1.1	5.0
Sampling/Water Parameters				
Date Sampled	7/31/2018	7/31/2018	7/31/2018	8/3/2018
Time Sampled	9:15	11:30	13:00	9:00
Temperature, C	10.5	8.93	10.52	15.59
Specific Conductance, μS/cm	794	887	1198	957
Turbidity (NTU)	Low	Low	Low	Low
pH	7.38	6.79	6.78	6.03
Dissolved Oxygen, mg/L	6.38	0.39	1.08	5.95
Sample Number	MW-5 TS	MW-6 TS	MW-7 TS	MW-9 TS, MW-99 TS
Sample Number	MVV-5 IS	MW-6 IS	MW-71S	MW-99 T (duplicate

Abbreviations:

C Celsius

 $\mu S/cm$ microsiemens per centimeter

ft feet

TOC Top of casing

mg/L milligrams per liter

NC Not calculated (TOC elevation not known).

Notes

- 1 Sampled By SLR: Brett Woelber and Nick Wells
- 2 All wells were purged and sampled using the low-flow method with a peristaltic pump, except for MW-9. MW-9 was purged dry on 7/31/18, and was sampled 72 hours later on 8/3/2018 without additional purging. Water level recovered 80%.
- 3 All wells are flush-mounted in paved areas surrounding the Transformer Shop.

Table 2 - Transformer Shop: 2018 Groundwater Results

Compound in milligrams per Liter (mg/L)	Target Level for Groundwater, Commercial Site Using/L)	MW-5 TS 31-Jul-18 1184186001	MW-6 TS 31-Jul-18 1184186002 Conc. 4 [0.05] U 0.419 J	MW-7 TS 31-Jul-18 1184186003 Conc. 4 [0.05] U 0.276 J	Primary:	Duplicate: MW-99 TS 03-Aug-18 1184186005 Conc. ⁴ 2.59 Q+ 2.84 [0.00025] U [0.0005] U	Trip Blank 03-Aug-18 1184186006 Conc. 4 [0.05] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U
Fuels (AK101 and 102) Gasoline Range Organics 2.2 Diesel Range Organics 1.5 VOCS (SW8260C) 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 0.000 1,1,2-Trichloroethane 0.000 1,1-Dichloroethane 0.02 1,1-Dichloroethane 0.02 1,1-Dichloroethane 0.02 1,1-Dichloropropene 1,2-J-Trichlorobenzene 0.00 1,2,3-Trichloropenane 0.000 1,2,3-Trichloropenane 0.000 1,2,4-Trimethylbenzene 0.01 1,2-Trichlorobenzene 0.00 1,2-Trichlorobenzene 0.00 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 0.00 1,2-Dichlorobenzene 0.00 1,2-Dichloropenpane 0.00 1,2-Dichlorobenzene 0.00 1,3-Dichlorobenzene 0.00 1,3-Dichlorobenzene 0.00 2,2-Dichloropropane 1,4-Dichlorobenzene 0.00 2,2-Dichloropropane	7 0.16 31 6 0.14 1 0.026 1 0.38 2 75 0.94 0.12 75 0.007 1 1 7 0.098 4 0.01 8.1 9400 9400 34	[0.05] U 0.208 J	[0.05] U 0.419 J	[0.05] U 0.276 J	3.25 2.69 [0.00025] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U	2.59 Q+ 2.84 [0.00025] U [0.0005] U	[0.05] U [0.00025] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U
Diesel Range Organics 1.5 VOCs (SW8260C) 1,1,2,7-Tetrachloroethane 0.005 1,1,1,2-Tetrachloroethane 8 1,1,2,1-Trichloroethane 0.000 1,1,2-Trichloroethane 0.000 1,1-Dichloroethane 0.02 1,1-Dichloroethane 0.02 1,1-Dichloroethene 0.02 1,1-Dichloropropene 1,2-3-Trichlorobenzene 0.00 1,2,3-Trichloropropane 0.000 1,2,4-Trichlorobenzene 0.00 1,2,4-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 0.000 1,2-Dichlorobenzene 0.03 1,2-Dichlorobenzene 0.03 1,2-Dichloropropane 1,3-Dichlorobenzene 0.04 2,2-Dichloropropane 1,3-Dichlorobenzene 0.004 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.004 2,2-Dichloroethane	7 0.16 31 6 0.14 1 0.026 - 0.33	0.208 J	0.419 J	0.276 J	2.69 [0.00025] U [0.00025] U [0.0005] U [0.0002] U [0.0005] U	2.84 [0.00025] U [0.00025] U [0.00025] U [0.0002] U [0.0005] U	[0.00025] U [0.00025] U [0.00025] U [0.00025] U [0.0002] U [0.0005] U
VOCs (SW8260C) 1,1,1,2-Tetrachloroethane 0.005 1,1,1-Trichloroethane 8 1,1,2-Trichloroethane 0.000 1,1,2-Trichloroethane 0.000 1,1-Dichloroethane 0.02 1,1-Dichloroethane 0.02 1,1-Dichloropropene 1,2,3-Trichloropropane 0.000 1,2,3-Trichloropropane 0.000 1,2,4-Trichlorobenzene 0.00 1,2-Jirchlorobenzene 0.00 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 0.000 1,2-Dichlorobenzene 0.03 1,2-Dichloropropane 0.00 1,3-5-Trimethylbenzene ^b 0.12 1,3-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Hexanone 0.00 2,2-D	7 0.16 31 6 0.14 1 0.026 1 0.33 0.82 75 0.094 0.15 0.12 75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.00025] U [0.00025] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U [0.00025] U	[0.00025] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U	[0.00025] U [0.0005] U
1,1,1,2-Tetrachloroethane 0.005 1,1,1-Trichloroethane 8 1,1,2-Trichloroethane 0.000 1,1,2-Trichloroethane 0.000 1,1-Dichloroethane 0.020 1,1-Dichloroethane 0.02 1,1-Dichloropropene	31 6 0.14 1 0.026 1 0.33 0.82 75 0.094 0.15 0.12 75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U	[0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U	[0.0005] U [0.00025] U [0.00025] U [0.0005] U
1,1,1-Trichloroethane	31 6 0.14 1 0.026 1 0.33 0.82 75 0.094 0.15 0.12 75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U	[0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U	[0.0005] U [0.00025] U [0.00025] U [0.0005] U
1,1,2,2-Tetrachloroethane 0.000 1,1,2-Trichloroethane 0.000 1,1-Dichloroethane 0.02 1,1-Dichloroethane 0.28 1,1-Dichloroethene	6 0.14 1 0.026 2 0.33 0.82 75 0.094 0.15 0.12 75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.00025] U [0.0002] U [0.0005] U	[0.00025] U [0.00025] U [0.0005] U	[0.00025] U [0.0002] U [0.0002] U [0.0005] U
1,1-Dichloroethane 0.02 1,1-Dichloroethene 0.28 1,1-Dichloropropene 1,2,3-Trichlorobenzene 0.000 1,2,3-Trichloropropane 0.000 1,2,4-Trichlorobenzene 0.00 1,2,4-Trimethylbenzene⁵ 0.01 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 0.000 1,2-Dichlorobenzene 0.3 1,2-Dichloropenane 0.004 1,2-Dichloropropane 1,3-Dichlorobenzene 0.3 1,3-Dichloropenzene 0.004 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Hexanone 0.03 4-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene⁵ 0.006 Bromoehnzene 0.06 Bromochloromethane Bromoform 0.03 Bromoform 0.03	75 0.094				[0.0005] U	[0.0005] U	[0.0005] U
1,1-Dichloroethene 0.28 1,1-Dichloropropene	0.82				[0.0005] U	[0.0005] U	[0.0005] U
1,1-Dichloropropene 1,2,3-Trichlorobenzene 0.00 1,2,3-Trichloropropane 0.0000 1,2,4-Trichlorobenzene 0.00 1,2,4-Trichlorobenzene 0.00 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 0.3 1,2-Dichlorobenzene 0.00 1,2-Dichloropropane 0.00 1,2-Dichloropropane 0.00 1,3-Dichlorobenzene 0.3 1,3-Dichloropenzene 0.00 2,2-Dichloropropane 1,4-Dichlorobenzene 0.00 2,2-Dichloropropane 2-Hexanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.00 Bromochloromethane Bromochloromethane Bromodichloromethane 0.00 Bromoform 0.03 Bromoform 0	75 0.094 0.15 0.12 75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.0005] U	[0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U 0.14 Q [0.005] U [0.0005] U [0.0005] U [0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U	[0.0005] U
1,2,3-Trichlorobenzene 0.00 1,2,3-Trichloropropane 0.0000 1,2,4-Trichloropropane 0.000 1,2,4-Trichloropropane 0.01 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 0.000 1,2-Dichlorobenzene 0.3 1,2-Dichloropropane 0.001 1,3-Dichloropropane 0.002 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 0.004 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁵ 0.004 Bromobenzene 0.06 Bromodichloromethane Bromodichloromethane 0.00 Bromodisulfide 0.03 Carbon disulfide 0.03 Carbon disulfide	75 0.094 0.15 0.12				[0.0005] U	[0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.000375] U [0.0005] U	[0.0005] U
1,2,3-Trichloropropane 0.0000 1,2,4-Trichlorobenzene 0.00 1,2,4-Trimethylbenzene ⁶ 0.01 1,2-Dibromo-3-chloropropane 0.00 1,2-Dichlorobenzene 0.3 1,2-Dichlorobenzene 0.00 1,2-Dichloropropane 0.004 1,2-Dichloropropane 0.00 1,3-Dichlorobenzene 0.12 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.00 Bromochloromethane Bromodichloromethane Bromoform 0.03 Bromoform 0.03 Bromoform 0.00 Carbon disulfide 0.81 Carbon disulfide 0.81 <	75 0.094 0.15 0.12				[0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.00005] U [0.0005] U	[0.0005] U [0.0005] U [0.0005] U 0.14 Q [0.0005] U [0.0005] U [0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00058 Q 0.00088 Q	[0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.00025] U [0.0005] U
1,2,4-Trimethylbenzene ⁶ 0.01 1,2-Dibromo-3-chloropropane	0.12				0.191 Q [0.005] U [0.000375] U [0.000375] U 0.00965 Q [0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.00025] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.0005] U 0.0005] U	0.14 Q [0.005] U [0.000375] U [0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.0707 J, Q [0.0005] U 0.0005] U	[0.0005] U [0.0005] U [0.000375] U [0.000375] U [0.00025] U [0.00025] U [0.0005] U
1,2-Dibromo-3-chloropropane	75 0.0077 11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.005] U [0.000375] U [0.0005] U [0.0005] U 0.00965 Q [0.0005] U 0.0537 Q [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.0005] U 0.00857 Q 0.00639 J	[0.005] U [0.000375] U [0.0005] U [0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.000588 Q 0.0042 J	[0.005] U [0.000375] U [0.000375] U [0.0005] U
1,2-Dibromoethane 0.0000 1,2-Dichlorobenzene 0.3 1,2-Dichloroethane 0.001 1,3-Dichloropropane 0.002 1,3-Dichloropropane 0.12 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁵ 0.000 Bromobenzene 0.06 Bromobenzene 0.06 Bromoformethane Bromoformethane 0.003 Bromoformethane 0.007 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloroform 0.002 Chloroform 0.002 Chloroformethane 0.01 Cis-	75 0.0077 11 7 0.098 4 0.11 				[0.000375] U [0.0005] U 0.00965 Q [0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.104 Q [0.0005] U 0.1129 Q [0.0005] U 0.0005] U 0.0005] U 0.0005] U 0.0005] U 0.0005] U 0.0005] U	[0.000375] U [0.000375] U [0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.000375] U [0.000375] U [0.0005] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U
1,2-Dichlorobenzene 0.3 1,2-Dichloroethane 0.001 1,2-Dichloropropane 0.004 1,3-5-Dichlorobenzene 0.12 1,3-Dichlorobenzene 0.04 1,3-Dichloropropane 1,4-Dichlorobenzene 0.004 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromoform 0.03 Bromoform 0.03 Bromoform 0.00 Carbon disulfide 0.81 Carbon disulfide 0.81 Carbon tetrachloride 0.00 Chlorobenzene 0.07 Chloroethane 21.0 Chloromethane 0.12 Cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.00 D	11 7 0.098 4 0.11 8.1 3 0.11 9400 34				[0.0005] U 0.00965 Q [0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	[0.0005] U 0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.0707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U
1,2-Dichloroethane 0.001 1,2-Dichloropropane 0.004 1,3-Dichlorobenzene 0.12 1,3-Dichlorobenzene 0.3 1,3-Dichlorobenzene 0.004 2,2-Dichloropropane 2,2-Dichloropropane 2-Eutanone (MEK) 5.6 2-Chlorotoluene 4-Isanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.006 Bromochloromethane Bromodichloromethane 0.001 Bromodichloromethane 0.002 Bromoform 0.03 Bromoform 0.03 Carbon disulfide 0.81 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chloroethane 0.10 Chloroform 0.002 Chloromethane 0.12 Cis-1,2-Dichloroethene 0.003 cis-1,3-Dichloropropene 0.004 <t< td=""><td>7 0.098 4 0.11 </td><td></td><td></td><td></td><td>0.00965 Q [0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J</td><td>0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00053 U</td><td>[0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U</td></t<>	7 0.098 4 0.11 				0.00965 Q [0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	0.00663 Q [0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00053 U	[0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U
1,2-Dichloropropane 0.004 1,3,5-Trimethylbenzene⁵ 0.12 1,3-Dichlorobenzene 0.3 1,3-Dichloropropane 1,4-Dichlorobenzene 0.004 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene⁵ 0.004 Bromobenzene 0.06 Bromochloromethane Bromoform 0.03 Bromoform 0.03 Bromoform 0.03 Bromofethane 0.007 Carbon disulfide 0.83 Carbon tetrachloride 0.002 Chlorobenzene 0.07 Chloroethane 2.1.0 Chloroform 0.03 Cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.00 Dibromochloromethane 0.00 Dibrom	4 0.11 8.1 3 0.11 9400 34				[0.0005] U 0.0537 Q [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.0005] U 0.0005] U	[0.0005] U 0.0318 Q [0.0005] U [0.00025] U [0.00025] U [0.00025] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00088 Q 0.0042 J	[0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.00025] U [0.00025] U [0.0005] U
1,3-Dichlorobenzene 0.3 1,3-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.001 Bromoform 0.03 Bromomethane 0.007 Carbon disulfide 0.81 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloroform 0.002 Chloromethane 0.12 cis-1,3-Dichloropethene 0.004 Dibromochloromethane 0.002 Dibromochloromethane 0.006 Dichlorodifluoromethane 0.00	8.1 3 0.11 9400 34 				[0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	[0.0005] U [0.00025] U [0.00025] U [0.0005] U 0.0727 Q [0.0005] U 0.007071, Q [0.0005] U 0.00588 Q 0.0042 J	[0.0005] U [0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U
1,3-Dichloropropane 1,4-Dichlorobenzene 0.004 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.00 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.00 Bromoform 0.03 Bromoform 0.03 Bromoform 0.00 Carbon disulfide 0.81 Carbon tetrachloride 0.00 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloroethane 0.12 Chloromethane 0.12 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.00 Dibromochloromethane 0.00 Dibromochloromethane 0.00 Dichlorodifluoromethane 0.2 Ethy	9400 34 				[0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	[0.00025] U [0.00025] U [0.0005] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.00025] U [0.00025] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U
1,4-Dichlorobenzene 0.004 2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.006 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.001 Bromoform 0.03 Bromomethane 0.002 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloroethane 0.12 Chloromethane 0.12 Cis-1,2-Dichloroethene 0.03 Cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.005 Dibromochloromethane 0.006 Dichlorodifluoromethane 0.01 Ethylbenzene ⁶ 0.01 Freon-113 55	3 0.11 9400 34 				[0.00025] U [0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	[0.00025] U [0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.00025] U [0.0005] U [0.005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U
2,2-Dichloropropane 2-Butanone (MEK) 5.6 2-Chlorotoluene 2-Hexanone 0.03 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.003 Bromoform 0.03 Bromoform 0.03 Bromoferm 0.007 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloroform 0.002 Chloromethane 0.15 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dichlorodifluoromethane 0.00 Dichlorodifluoromethane 0.01 Ethylbenzene ⁶ 0.01 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.44	9400 34 				[0.0005] U 0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	[0.0005] U 0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.0005] U [0.005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U [0.0005] U
2-Butanone (MEK) 5.6 2-Chlorotoluene	9400 34 				0.104 Q [0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	0.0727 Q [0.0005] U 0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.005] U [0.0005] U [0.005] U [0.005] U [0.0005] U [0.0005] U
2-Chlorotoluene	34				[0.0005] U 0.0129 Q [0.0005] U 0.00857 Q 0.00639 J	0.00707 J, Q [0.0005] U 0.00588 Q 0.0042 J	[0.0005] U [0.005] U [0.0005] U [0.0005] U [0.005] U
4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.001 Bromoform 0.03 Bromomethane 0.002 Carbon disulfide 0.81 Carbon disulfide 0.04 Chlorobenzene 0.07 Chlorobenzene 0.07 Chlorobenzene 0.07 Chloromethane 0.12 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.002 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.003 Isopropylbenzene (Cumene) 0.43 Methylene chloride 0.13					[0.0005] U 0.00857 Q 0.00639 J	[0.0005] U 0.00588 Q 0.0042 J	[0.0005] U [0.0005] U [0.005] U
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.00 Bromobenzene 0.06 Bromodichloromethane Bromodichloromethane 0.001 Bromoform 0.03 Bromomethane 0.007 Carbon disulfide 0.83 Carbon tetrachloride 0.002 Chlorobenzene 0.07 Chloroethane 21.0 Chloromethane 0.02 Cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.02 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11					0.00857 Q 0.00639 J	0.00588 Q 0.0042 J	[0.0005] U [0.005] U
4-Methyl-2-pentanone (MIBK) 6.3 Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromochloromethane 0.003 Bromoform 0.03 Bromomethane 0.007 Carbon disulfide 0.81 Carbon tetrachloride 0.002 Chlorobenzene 0.07 Chloroform 0.002 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Methylene chloride 0.13					0.00639 J	0.0042 J	[0.005] U
Benzene ⁶ 0.004 Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.001 Bromodichloromethane 0.003 Bromomethane 0.007 Carbon disulfide 0.81 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 21.0 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11	2300						
Bromobenzene 0.06 Bromochloromethane Bromodichloromethane 0.001 Bromoform 0.03 Bromoform 0.03 Bromomethane 0.002 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chloroethane 21.0 Chloromethane 0.12 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethyloenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.13		[0.0002] 0					
Bromodichloromethane 0.001 Bromoform 0.03 Bromomethane 0.007 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chloroethane 21.0 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.006 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Methylene chloride 0.13					[0.0005] U	[0.0005] U	[0.0002] U
Bromoform 0.03 Bromomethane 0.007 Carbon disulfide 0.83 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 21.C Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene* 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11					[0.0005] U	[0.0005] U	[0.0005] U
Bromomethane 0.007 Carbon disulfide 0.81 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chlorobenzene 21.0 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.04 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11					[0.00025] U	[0.00025] U	[0.00025] U
Carbon disulfide 0.81 Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chloroethane 21.0 Chloroethane 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromochloromethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.003 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11					[0.0005] U	[0.0005] U	[0.0005] U
Carbon tetrachloride 0.004 Chlorobenzene 0.07 Chloroethane 21.0 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromodethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.004 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.13	5 0.073				[0.0025] UJ [0.005] U	[0.0025] UJ [0.005] U	[0.0025] UJ [0.005] U
Chlorobenzene 0.07 Chloroethane 21.0 Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.006 Dibromochloromethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.000 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11					[0.005] U	[0.005] U	[0.0005] U
Chloroform 0.002 Chloromethane 0.15 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.20 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.003 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11					[0.00025] U	[0.00025] U	[0.00025] U
Chloromethane 0.19 cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.004 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.13	97.0				[0.0005] U	[0.0005] U	[0.0005] U
cis-1,2-Dichloroethene 0.03 cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11					[0.0005] U	[0.0005] U	[0.0005] U
cis-1,3-Dichloropropene 0.004 Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.00 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11	1.1				[0.0005] U [0.0005] U	[0.0005] U	[0.0005] U [0.0005] U
Dibromochloromethane 0.008 Dibromomethane 0.008 Dichlorodifluoromethane 0.2 Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11					[0.0005] U	[0.0005] U	[0.0005] U
Dichlorodifluoromethane 0.2 Ethylbenzene ⁶ 0.01 Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.44 Methylene chloride 0.11					[0.00025] U	[0.00025] U	[0.00025] U
Ethylbenzene ⁵ 0.01 Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11	3 0.52				[0.0005] U	[0.0005] U	[0.0005] U
Freon-113 55 Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11	0.031				[0.0005] U	[0.0005] U	[0.0005] U
Hexachlorobutadiene 0.001 Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11	0.15	[0.0005] U	[0.0005] U	[0.0005] U	0.0645 [0.005] U	0.0668 [0.005] U	[0.0005] U [0.005] U
Isopropylbenzene (Cumene) 0.45 Methylene chloride 0.11					[0.005] U	[0.005] U	[0.005] U
Methylene chloride 0.11	3.7				0.00325 Q	0.00481 Q	[0.0005] U
Methyl-t-butyl ether 0.14	20				[0.0025] U	[0.0025] U	[0.0025] U
	20				[0.005] U	[0.005] U	[0.005] U
Naphthalene ⁶ 0.001					0.068 Q	0.0438 Q	[0.0005] U
n-Butylbenzene ⁶ 1.00 n-Propylbenzene ⁶ 0.66					[0.0005] U	[0.0005] U	[0.0005] U [0.0005] U
n-Propylbenzene ^b 0.66 o-Xylene	10 	[0.0005] UJ	[0.0005] UJ	[0.0005] UJ	0.00581 Q 0.0158 Q	0.00913 Q 0.0104 Q	[0.0005] U
P & M -Xylene		[0.001] UJ	[0.001] UJ	[0.001] UJ	0.44 Q	0.233 Q	[0.001] U
sec-Butylbenzene ⁶ 2.00					[0.0005] U	0.00061 J	[0.0005] U
Styrene 1.2					[0.0005] U	[0.0005] U	[0.0005] U
tert-Butylbenzene ⁶ 0.69	 39				[0.0005] U	[0.0005] U	[0.0005] U
Tetrachloroethene 0.04 Toluene ⁶ 1.1	 39 	 [0.0005] U	[0.0005] U	 [0.0005] U	[0.0005] U 0.0214	[0.0005] U 0.0129	[0.0005] U [0.0005] U
trans-1,2-Dichloroethene 0.36	39 0.24	[บ.บบบว] ป	[U.UU05] U 	[U.UUU5] U 	[0.0005] U	[0.0005] U	[0.0005] U
trans-1,3-Dichloropropene 0.004	 39 0.24 81				[0.0005] U	[0.0005] U	[0.0005] U
Trichloroethene 0.002	 39 0.24 81				[0.0005] U	[0.0005] U	[0.0005] U
Trichlorofluoromethane 5.2	 39 0.24 81 7 0.21			1	[0.0005] U	[0.0005] U	[0.0005] U
Vinyl acetate 0.41					[0.005]	[0.005] U	[0.005] U [0.000075] U
Vinyl chloride 0.000 Xylenes (total) ^{5,6} 0.19					[0.005] U [0.000075] U	[0.000075] U	

Table 2 - Transformer Shop: 2018 Groundwater Results

	Screening Eriteria		Sample Location ³					Trip Blank
Compound in milligrams per Liter (mg/L)	18 AAC 75, Table C Groundwater Cleanup Level	Vapor Intrusion Target Level for Groundwater, Commercial Site Use ²	MW-5 TS 31-Jul-18 1184186001	MW-6 TS 31-Jul-18 1184186002	MW-7 TS 31-Jul-18 1184186003	Primary: MW-9 TS 03-Aug-18 1184186004	Duplicate: MW-99 TS 03-Aug-18 1184186005	Trip Blank 03-Aug-18 1184186006
	(mg/L) ¹	(mg/L)	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc.4	Conc.4	Conc.4
PAH SIM (SW8270D LV)								
1-Methylnaphthalene ⁶	0.011					0.00605	0.0059	
2-Methylnaphthalene ⁶	0.036					0.000348 Q	0.00104 Q	
Acenaphthene ⁶	0.53					0.000206	0.000179	
Fluorene ⁶	0.29					0.000186	0.000169	
Naphthalene ⁶	0.0017	0.2				0.0161	0.015	
Phenanthrene ⁶	0.17					[0.0000252] U	0.0000358 J	
Wellers and Beld	Malua auganda Matha	d.T d d. la d						

Yellow and Bold Value exceeds Method Two cleanup level

Shaded Blue Groundwater result for this analyte exceeds the ADEC vapor intrusion target level for groundwater (commercial site use).

Notes:

- 1 The cleanup level corresponds to those listed in 18 AAC 75.345, Method Two, Table C, Groundwater Cleanup Levels (ADEC, September 29, 2018).
- 2 The level corresponds to the target level listed in ADEC Vapor Intrusion Guidance for Contaminated Sites (January 2017), Appendix F.
- 3 The sample type, field sample identification number, date collected, and laboratory sample identification number are provided.
- 4 For detected results, the sample result is listed in this column. For undetectable results, the Limit of Detection (LOD) is listed in brackets in this column. Associated flag(s) are shown to the right.
- 5 Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.
- 6 The ADEC Vapor Intrusion Guidance for Contaminated Sites (January 2017), Appendix F, states these chemicals should be investigated as chemicals of potential concern for vapor intrusion when petroleum is present.

Data Flags

Estimated concentration between the LOQ and DL.

Q The result is estimated, due to a laboratory quality control failure or a matrix effect. Where applicable, a "+" or "-" was appended

to indicate a high or low bias.

U Nondetect, LOD is shown in brackets.

UJ The analyte was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

Abbreviations

1113			
	Not applicable or screening criteria does not exist for this compound	LOQ	limit of quantitation
AAC	Alaska Administrative Code	LV	low volume
ADEC	Alaska Department of Environmental Conservation	mg/L	milligrams per liter
AK	Alaska	PAH	polycyclic aromatic hydrocarbons
DL	detection limit	SIM	selective ion monitoring
LOD	limit of detection	VOCs	volatile organic compounds

TABLE 3 - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

	npound ng/L)	DRO	GRO	Benzene	Total BTEX
	18 Cleanup Level 5.345, Table C)	1.5	2.2	0.0046	-
Monitoring Well	Date ¹				
	8/27/1998	0.206			
	12/31/1998	0.669			-
	3/19/1999	ND [0.333]			-
	6/23/1999	0.427			
	9/30/1999	4.42			
	2/2/2000	ND [0.395]	ND [0.0900]	ND [0.00050]	
	5/26/2000	0.700	ND [0.0900]	ND [0.00050]	
	8/25/2000	0.622	ND [0.0900]	ND [0.00050]	0.0194
	12/1/2000	ND [0.326]	ND [0.0900]	ND [0.00050]	0.00303
MW-3	6/24/2004	ND [0.300]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.337]	ND [0.0900]	ND [0.00050]	ND
	8/3/2006	0.465	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.357]	ND [0.100]	ND [0.00050]	ND
	7/10/2008	0.495 B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.574]	ND [0.062]	ND [0.0003]	ND
	6/23/2011	ND [0.266]	ND [0.031]	0.00029 J	0.00029 J
	6/22/2012	ND [0.382]	ND [0.0620]	ND [0.0003]	ND
	7/12/2013	ND [0.360]	ND [0.0620]	ND [0.0003]	ND
	6/25/2014			jed, not sampled.	
	7/16/2004	0.352	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	8/2/2006	ND [0.370]	ND [0.100]	ND [0.00050]	ND ND
	8/1/2007 7/11/2008	ND [0.328] 0.276 J, B	ND [0.100] ND [0.100]	ND [0.00050] ND [0.00050]	ND ND
-	7/11/2008	ND [0.526]	ND [0.062]	ND [0.00030]	ND ND
MW-5	6/22/2011	ND [0.266]	ND [0.031]	ND [0.0005]	ND ND
	6/22/2012	ND [0.392]	ND [0.0620]	0.00016 J	0.00016 J
	7/11/2013	0.236 J	ND [0.0620]	ND [0.0003]	ND
MW-5	6/25/2014	ND [0.308]	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.423 J	ND [0.05]	ND [0.00025]	ND
	6/15/2016	ND [0.294]	ND [0.05]	ND [0.0002]	ND
	7/31/2018 8/27/1998	0.208 J 0.282	ND [0.05]	ND [0.0002]	ND
-	12/31/1998	0.759			
-	3/19/1999	1.21			
-	6/23/1999	2.17			
-	9/30/1999	1.43	<u></u>		
-	2/2/2000	0.419	ND [0.0900]	ND [0.00050]	 ND
-	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND ND
	8/25/2000	ND [0.323]	ND [0.0900]	ND [0.00050]	ND ND
	12/1/2000	1.29	ND [0.0900]	ND [0.00050]	ND
	6/24/2004	ND [0.366]	ND [0.0900]	ND [0.00050]	ND ND
	6/15/2005	ND [0.333]	ND [0.0900]	ND [0.00050]	ND ND
MW-6	8/3/2006	ND [0.366]	ND [0.100]	ND [0.00050]	ND ND
-	8/1/2007	0.519	ND [0.100]	ND [0.00050]	ND ND
-	7/11/2008	0.407 B	ND [0.100]	ND [0.00050]	ND ND
-	7/11/2008	ND [0.544]	ND [0.062]	ND [0.00030]	ND ND
<u> </u>	6/22/2011	ND [0.260]	ND [0.002]	ND [0.0003]	ND ND
<u> </u>	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.00013]	ND
<u> </u>	7/12/2013	0.185 J	ND [0.0620]	ND [0.0003]	ND
-	6/25/2014	0.189 J	ND [0.0500]	ND [0.0003]	ND ND
	6/25/2015	0.169 J 0.223 J	ND [0.050]	ND [0.00025]	ND ND
	6/15/2016	0.223 J 0.191 J	ND [0.05]	ND [0.00023]	ND ND
-	7/31/2018	0.191 J 0.419 J		ND [0.0002]	ND
	113112018	U.418 J	ND [0.05]	[עוו [0.0002]	חאר

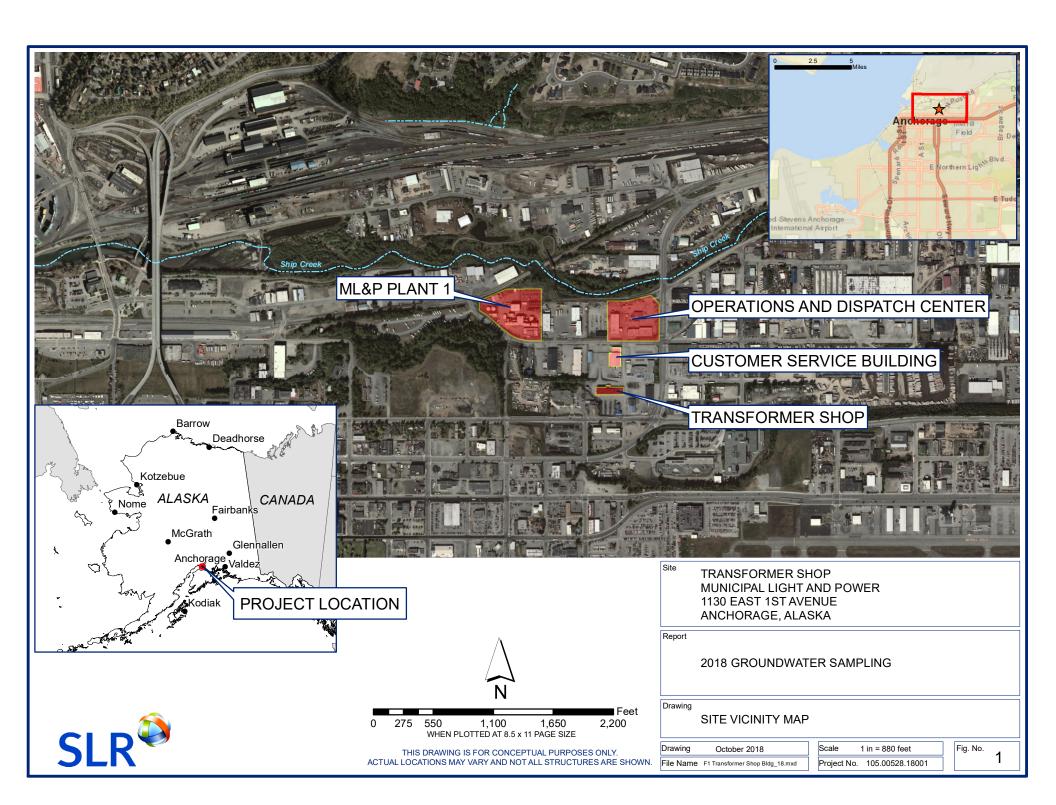
TABLE 3, Continued - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

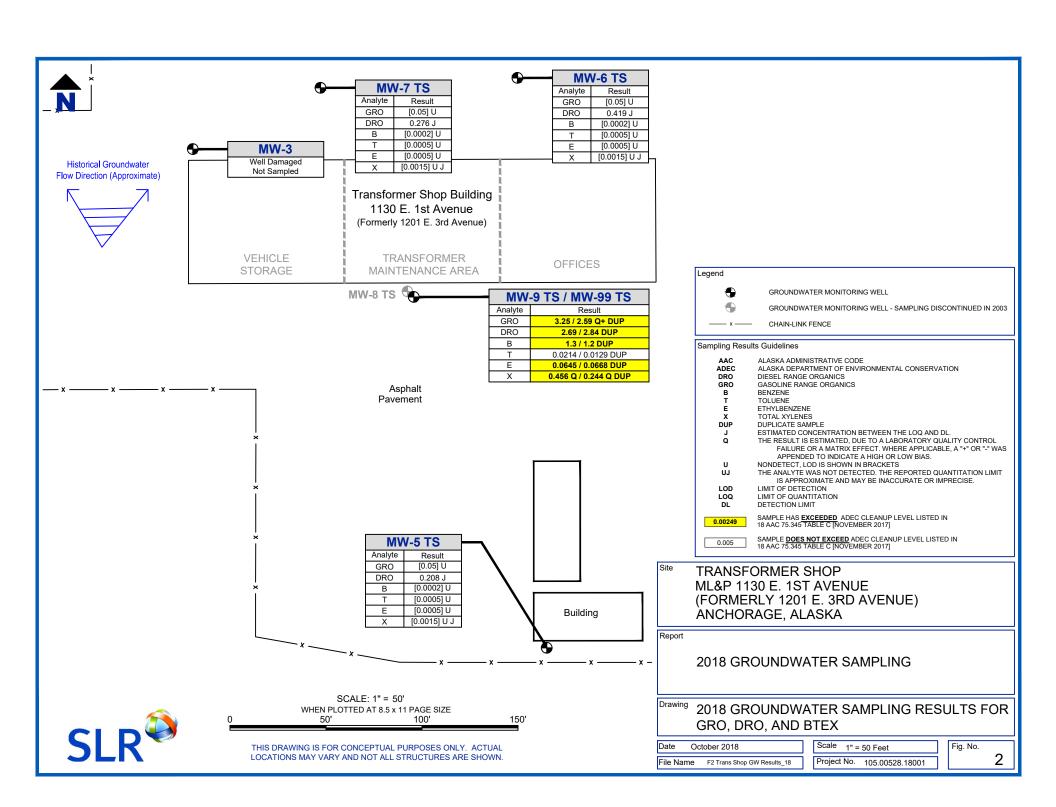
	mpound mg/L)	DRO	GRO	Benzene	Total BTEX
•	Cleanup Level	-			TOTAL DIEX
	5.345, Table C)	1.5	2.2	0.0046	
Monitoring Well	Date				
	8/27/1998	ND [0.104]			
	12/31/1998	0.158			
	3/19/1999	ND [0.309]			-
	6/23/1999	ND [0.297]			
	9/30/1999	ND [0.319]			
	2/2/2000	ND [0.357]	ND [0.0900]	ND [0.00050]	ND
	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND
	8/25/2000	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	12/1/2000	ND [0.330]	ND [0.0900]	ND [0.00050]	ND
	6/24/2004	ND [0.361]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.375]	ND [0.0900]	ND [0.00050]	ND
MW-7	8/3/2006	ND [0.368]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.321]	ND [0.100]	ND [0.00050]	ND
	7/11/2008	ND [0.621] B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.538]	ND [0.062]	ND [0.0003]	ND
	6/23/2011	ND [0.266]	ND [0.031]	0.00035 J	0.00035 J
	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.0003]	ND
	7/11/2013	0.465 J	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	0.211 J	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.878	ND [0.05]	ND [0.00025]	ND
	6/15/2016	ND [0.3]	ND [0.05]	ND [0.0002]	0.00055 J
	7/31/2018	0.276 J	ND [0.05]	ND [0.0002]	ND
	6/23/1999	7.53	0.25	0.103	0.109
	9/30/1999	5.34	0.22	0.0599	0.0759
	2/2/2000	12	0.33	0.172	0.177
	5/26/2000	4.73	0.94	0.473	0.473
MW-8	9/13/2002 ²	3.06	0.464	0.0158	0.160
	12/4/2002	2.31	1.40	0.00677	0.449
	3/20/2003	3.02	1.04	0.00489	0.364
	6/26/2003	4.78	0.862	0.726	0.762
	9/23/2003	2.37	1.410	0.019	0.7762

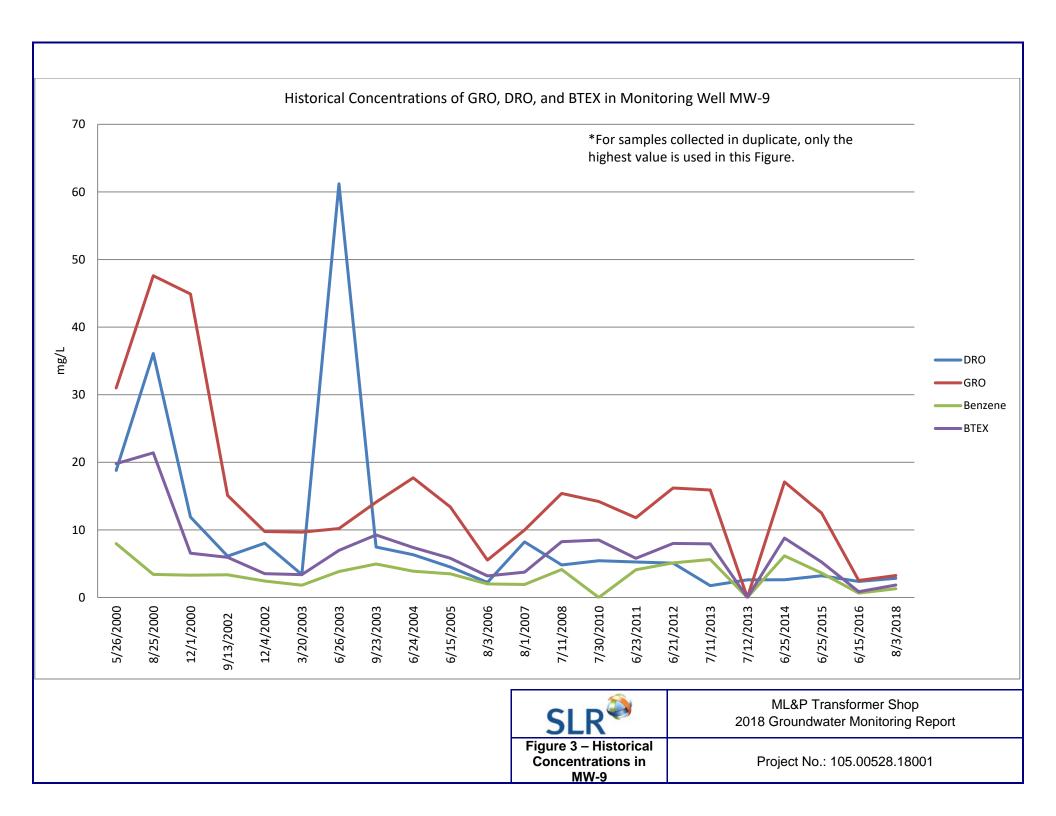
TABLE 3, Continued - HISTORICAL GROUNDWATER ANALYTICAL RESULTS **ML&P TRANSFORMER SHOP**

	mpound mg/L)	DRO	GRO	Benzene	Total BTEX
Nov 2016 Cleanup Level (18 AAC 75.345, Table C)		1.5	2.2	0.0046	
Monitoring Well	Date				
	5/26/2000	18.8	31	7.97	19.8
	8/25/2000	36.1	47.6	3.42	21.4
	12/1/2000	11.92	44.9	3.3	6.55
	9/13/2002 ²	6.11	15.1	3.36	5.94
	12/4/2002	8.03	9.76	2.44	3.52
	3/20/2003	3.39	9.67	1.82	3.38
	6/26/2003	61.2	10.2	3.84	6.97
	9/23/2003	7.47	14.1	4.95	9.25
	6/24/2004	6.33	17.7	3.89	7.40
	6/15/2005	4.51	13.4	3.50	5.81
MW-9 ⁴	8/3/2006	2.23	5.53	2.01	3.20
IVIV 0	8/1/2007	8.22	9.99	1.93	3.74
	7/11/2008	4.81	15.4	4.14	8.26
	7/30/2010	5.44	14.2	6.01 Q+	8.49
	6/23/2011	5.25/4.07	11.2/11.8	3.94/4.10	5.71/5.80
	6/21/2012	5.09/3.89	14.5/16.2	4.97/5.12	7.18 QN/7.99 QN
	7/11/2013 ³	0.871 QN / 1.75 QN	8.31 QN/15.9 QN	2.14 QN/5.62 QN	3.47 QN/7.94 QN
	7/12/2013	2.61			
	6/25/2014 ³	2.63/1.97	17.1 QN/2.87 QN	6.16 QN/0.996 QN	8.79 QN/1.45 QN
	6/25/2015	3.22/2.83	12.5/9.85	3.62 QH/2.79 QH	5.24 QH/4.24 QH
	6/15/2016	2.16/2.38	2.34/2.52	0.645/0.5	0.8609 MN/0.7033 MN
	8/3/2018	2.69/2.84	3.25/2.59 Q+	1.3/1.2	1.8419 Q/ 1.5237 Q

Notes:


- 1. Sampling method prior to 2011 was purging 3 casing volumes with a bailer, followed by sample collection with a bailer. Starting in 2011, the sampling method switched to a low-flow sampling technique with purging and sampling performed with a peristaltic pump and tubing.
- 2. Analytical results are suspected to have been mislabeled or switched for monitoring wells MW-8 and MW-9 during sampling handling of 9/13/2002 samples. Analytical results in this table have been placed in corrected locations.
- 3. Monitoring well MW-9 sample was collected without prior purging in 2013 and 2014
- 4. MW-9 is a poor producer of groundwater and typically was purged dry when trying to achieve standard parameters using a low-flow sampling technique. Since 2015, the standard sampling protocol for MW-9 is to purge the well dry and collect the sample approximately 24 -72 hours later. Water level recovery has been on the order of 40 to 80% at the time of sampling.


Coding


0.377 / 0.364	Primary sample concentration followed by duplicate sample concentration
4.81	Bold and Shaded - Concentration exceeded the 18 AAC 75.345, Table C groundwater cleanup level (September 2018).
ND [0.0900]	Analyte not detected above the practical quantitation limit (limit of quantitation, or LOQ). Data prior to 2012 analytes were not detect above the Detection Limit (DL).

<u>Ab</u>

Abbreviations:	
AAC	Alaska Administration Code
В	Compound was positively identified in the trip blank or method blank.
BTEX	benzene, toluene, ethylbenzene, and total xylenes
DRO	diesel range organics
J	Compound was positively identified, above the detection limit, but below the Limit of Quantitation
GRO	gasoline range organics
Q	The quantitation is an estimate. An "H/+", "L/-", or "N" indicates a potential high, low, or unknown bias respectively
mg/L	milligrams/liter
М	The quantitation is an estimate due to a sample matrix quality control failure. An "H", "L", or "N" indicates a potential high, low, or unknown bias respectively.
ND	not detected
	Sample not analyzed for parameter

Appendix A Photograph Log

Photo 1: Monitoring Well MW-5 TS, located under the stairs, being purged prior to sampling.

Monitoring Well MW-9 TS as it was being purged on 7/30/18. The well was not sampled until 8/3/18, after being purged dry on 7/31/18. The well is located south of the Transformer Shop.

Transformer Shop Groundwater Sampling ML&P
Anchorage, Alaska

Job No: 105.00528.18001

Photo 3: MW-6 TS site prior to purging. Location is near top of ramp north of Transformer Shop.

Photo 4: Monitoring Well MW-7 TS as it is being purged. Location is north of Transformer Shop.

SLR	
SITE PHOTOGRAPHS	
July 31 2018	

Transformer Shop Groundwater Sampling ML&P
Anchorage, Alaska

Job No: 105.00528.18001

Appendix B Data Quality Assessment

LABORATORY DATA QUALITY ASSURANCE REVIEW ML&P

2018 GROUNDWATER MONITORING AT THE ML&P TRANSFORMER SHOP (1130 EAST 1ST AVE., ANCHORAGE, AK)

OCTOBER 2018

Prepared by: Nicholas Wells Reviewed by: Jennifer McLean

SLR Project Number: 105.00528.18001

ADEC Number: 2100.26.302 ADEC Hazard ID: 23842

SLR International Corporation 2700 Gambell Street, Suite 200

Anchorage, AK 99503

ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code

AK Alaska

ADEC Alaska Department of Environmental Conservation

BTEX benzene, toluene, ethylbenzene, xylenes

°C degrees Celsius

CCV continuing calibration verification

COC chain of custody DL detection limit

DRO diesel range organics
EDD electronic data deliverable
GRO gasoline range organics

LCL lower control limit

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection LOQ limit of quantitation

LV low volume MS matrix spike

MSD matrix spike duplicate

NA not applicable

NFG National Functional Guidelines
PAH polynuclear aromatic hydrocarbons

PARCCS precision, accuracy, representativeness, comparability, completeness, and

sensitivity

QA quality assurance

QAR quality assurance review

QC quality control

RPD relative percent difference
SDG sample delivery group
SIM selective ion monitoring

SLR SLR International Corporation SGS SGS North America, Inc.

UCL upper control limit

μg/L upper control limit
μg/L micrograms per liter

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

This report summarizes a review of analytical data for samples collected on July 31, 2018 and August 3, 2018 in support of ML&P Transformer Shop Area groundwater monitoring activities. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (UST-005) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1 Sample Summary

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank ¹
1184186	7/31/2018, 8/3/2018	8/3/2018	-0.2°C	GW	SW8260C SW8260C AK101 AK102 SW8270D LV	VOCs BTEX GRO DRO PAH SIM	Required Required Required NA NA

Notes:

1 – This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody.

Acronyms:

°C - degrees Celsius

BTEX - benzene, toluene, ethylbenzene, and total xylenes

DRO - diesel range organics

GRO – gasoline range organics

GW - groundwater

PAH – polynuclear aromatic hydrocarbons

SDG - sample delivery group

SIM - selective ion monitoring

VOCs - volatile organic compounds

The laboratory final report was presented as a Level II deliverable and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided. The PDF laboratory report is provided electronically as Appendix D.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the Work Plan Addendum (SLR 2018), ADEC Technical Memorandum *Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (ADEC 2017a), National Functional Guidelines (NFG, United States Environmental Protection Agency [USEPA] 2014), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG, and is included as Appendix C. A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals; Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD), and Matrix Spike (MS) and Matrix Spike Duplicate (MSD), were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, MS/MSD, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2 Data Qualifiers

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for, but was not detected above the limit of detection (LOD). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the Detection Limit (DL). This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	υJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection is greater than the sample detection and the result is likely a false positive.

Notes:

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

^{1 -} Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

^{2 -} Only flags in **bold** were applicable and appended to data for this project.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples, except as noted below.

- On the COC, the temperature blank was listed as -0.2°C, but the Sample Receipt Form noted 0.2°C. The discrepancy was likely due to a transcription error. No evidence of freezing was noted on the Sample Receipt Form; therefore, data was considered not impacted.
- The trip blank was noted on the COC as having a collection date and time of August 3, 2018 at 0500, when the earliest sample was collected on July 31, 2018 at 0915. The trip blank accompanied sample containers and samples at all times during transit from and to the laboratory and in the field. Data was not impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted with regards to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the limit of detection (LOD) in any method blanks.

Trip Blanks

One trip blank was analyzed for VOCs by Method SW8260C and GRO by Method AK101. All BTEX analytes are included in the VOC list, so an additional trip blank for BTEX by Method SW8260C was not required. Analytes were not detected at or above the LOD in the trip blank.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). Except as noted in Table 2 of the report, all analytes with results of non-detect had LODs at or below applicable regulatory criteria.

Only the LODs for 1,2,3-trichloropropane by Method SW8260C, for samples MW-9 TS and duplicate MW-99 TS, did not meet ADEC cleanup levels. This was due to typical laboratory methodology limitations. For this compound it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. 1,2,3-trichloropropane data is limited in usability for that purpose. Data usability was considered minimally impacted, and all data was usable without qualification.

Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD, except as noted below.

• For Method SW8260C, the CCV recovered outside acceptable limits for two analytes. The dichlorodifluoromethane recovery of 126% and the bromomethane recovery of 47% exceeded acceptable control limits of 80-120%. Associated samples were MW-9 TS, MW-99 TS, and the trip blank. For dichlorodifluoromethane, since a high bias was indicated, and all associated sample results were undetectable, data was not impacted. All data was usable without qualification. For bromomethane, the LCS and LCSD also recovered below the acceptable lower control limit (LCL). Refer to the LCS and LCSD section of this QAR for data qualifications.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted below.

• For Method AK101, 4-bromofluorobenzene surrogate recovered at 269%, above the acceptable upper control limit of 150% in sample MW-99 TS. This sample was analyzed at a five-fold dilution and was noted by the laboratory as having matrix interference, both of which likely contributed to the surrogate recovery exceedance. The GRO result for sample MW-99 TS was qualified "Q+" and should be considered potentially biased high. However, sample MW-99 TS, with a GRO result of 2.59 mg/L, was a field duplicate of MW9-TS, which had a GRO result of 3.25 mg/L. Both the primary and duplicate were above the applicable ADEC cleanup level of 2.2 mg/L. Data was considered minimally impacted, and all data was usable as qualified.

Laboratory Control Samples and Laboratory Control Duplicate Samples done

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within acceptable limits, except as noted below.

For Method SW8260C, bromomethane recovered at 47% and 51% in the LCS and LCSD, below the LCL of 53%. Associated samples were MW-9 TS, MW-99 TS, and the trip blank. Bromomethane results for samples MW-9 TS, MW-99 TS, and the trip blank were qualified with a "UJ" and should be considered un-detectable values with possibly inaccurate LODs. The LODs of 0.0025 mg/L were one-third that of the ADEC cleanup level of 0.0075 mg/L. Data usability was not impacted.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD recoveries and RPDs were within acceptable limits.

Field Duplicates

The field duplicate sample frequency is presented in Table 3. Parent sample and field duplicates are presented in Table 4. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. A duplicate was not submitted for BTEX by Method SW8260C, as a duplicate for the full VOCs by Method SW8260C was submitted, which includes the BTEX analytes. Field duplicates were submitted blind to the laboratory.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters, except as noted in Table 5 with chronologically associated samples listed in the table footnotes. Parent sample/duplicate results were qualified as shown in the table. To err on the conservative, impacted analytes for all chronologically associated field samples, listed in the Table 5 footnotes, were also qualified. Detected results were qualified "Q" and non-detect results were qualified "UJ." Associated trip blank data were not listed in the footnotes, nor qualified, as the trip blank, prepared in the laboratory, was considered unaffected by field precision.

In all cases, either both the parent sample and duplicate results were below, or both parent sample and duplicate results were above, the applicable ADEC cleanup level; therefore, data usability was not impacted.

Regarding field associated samples, in all instances laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. Associated field samples, MW-5 TS, MW-6 TS, and MW-7 TS were analyzed for BTEX by SW8260C, thus only xylenes were affected by field precision exceedances. All associated samples had xylene results of undetectable, and were qualified "UJ" with LODs over 1000-fold below the applicable cleanup level. All data was usable as qualified.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Table 3 Field Duplicate Count

Number of Primary Samples	Number of Field Duplicates	Method	Analytes
4	1	AK101	GRO
4	1	AK 102	DRO
3	1	SW8260C	BTEX ¹
1	1	SW8260C	VOCs
1	1	SW8270D LV	PAH SIM

Notes:

1 – BTEX are included in the VOCs analyte list.

Table 4 Parent Samples and Field Duplicates

Matrix	Parent Sample	Field Duplicate	Method	Analytes
Groundwater	MW-9 TS	MW-99 TS	SW8260C AK101 AK102 SW8270D LV	BTEX/VOCs GRO DRO PAH SIM

Table 5 Field Duplicate RPD Exceedances

Method	Analyte	Primary: MW-9 TS Result (mg/L)	Duplicate: MW-99 TS Result (mg/L)	RPD (%)	Flag	ADEC Cleanup Level (mg/L) ¹
	1,2,4-Trimethylbenzene	0.191	0.14	31	Q	0.015
	1,2-Dichloroethane	0.00965	0.00663	37	Q	0.0017
	1,3,5-Trimethylbenzene	0.0537	0.0318	51	Q	0.12
	2-Butanone (MEK)	0.104	0.0727	35	Q	5.6
	2-Hexanone	0.0129	0.00707J	58	Q	0.038
	4-Isopropyltoluene	0.00857	0.00588	37	Q	NA
SW8260C	Isopropylbenzene (Cumene)	0.00325	0.00481	39	Q	0.45
	Naphthalene	0.068	0.0438	43	Q	0.0017
	n-Propylbenzene	0.00581	0.00913	44	Q	0.66
	o-Xylene	0.0158	0.0104	41	Q	NA
	P & M -Xylene	0.44	0.233	62	Q	NA
	Toluene	0.0214	0.0129	50	Q	1.1
	Xylenes (total)	0.456	0.244	61	Q	0.19
SW8270D LV	2-Methylnaphthalene	0.000348	0.00104	100	Q	0.036

Bold indicates an exceedance of ADEC criteria.

Notes:

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

This data were considered of good quality acceptable for use with the noted qualifications. No data were rejected.

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Field Duplicates section.
- Accuracy: Accuracy goals were met, except as noted in the CCV, LCS/LCSD, and Surrogate Recovery sections.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis.
- Sensitivity: Sensitivity goals were met, except as noted in the Reporting Limits section.

^{1 -} Limits shown are 18 AAC 75, Table C (ADEC, 2018).

^{2 –} Samples chronologically associated with this parent sample field duplicate pair were MW-5 TS, MW-6 TS, and MW-7 TS.

References

ADEC. 2017a. ADEC Technical Memorandum Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. March.

ADEC. 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. September 29.

SLR International Corporation (SLR). 2018. Work Plan Addendum for Groundwater Monitoring at the ML&P Transformer Shop. July 9.

U.S. Environmental Protection Agency (USEPA). 2014. *National Functional Guidelines for Superfund Organic Methods Data Review*. August.

Appendix C ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed by:
Nicholas Wells
Title:
Staff Engineer
Date:
10/01/2018
CS Report Name:
ML&P Transformer Shop, 1130 E. 1st
Report Date:
August 16, 2018
Consultant Firm:
SLR International Corporation
Laboratory Name:
SGS North America. Inc
Laboratory Report Number:
1184186
ADEC File Number:
2100.26.302
Hazard Identification Number:
23842

	Yes	O No	Comments:
		vere conducted aber UST-005	d at SGS North America, Inc., Anchorage. SGS is ADEC CS appro
b.			Gerred to another "network" laboratory or sub-contracted to an alteratory performing the analyses ADEC CS approved?
	Yes	O No	Comments:
1	Not applicable	e. All analyses	s were conducted at SGS, Anchorage.
ain_	of Custody (COC)	
a.	COC inform • Yes	nation comple	ted, signed, and dated (including released/received by)? Comments:
b.	Correct anal	lyses requeste	d?
_	• Yes	O No	Comments:
	• Yes	O No	Comments:
		© No Receipt Docu	
bora	atory Sample	Receipt Docu	
bora	atory Sample	Receipt Docu	<u>imentation</u>
bora a.	Sample/coo	Receipt Docu ler temperatur O No	re documented and within range at receipt (0° to 6° C)?
a.	Sample/coo Yes On the COC, 0.2°C. Sample pres	Receipt Doculer temperature No the temperature	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, B7)
a.	Sample/coo Yes On the COC, 0.2°C. Sample pres	Receipt Doculer temperature No the temperature	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, BT
a.	Sample/coo Yes On the COC, 0.2°C. Sample pres	Receipt Doculer temperature No the temperature servation accelerinated Solve	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, BT ents, etc.)?
a.	Sample/coo. • Yes On the COC, 0.2°C. Sample pres Volatile Chl • Yes Sample cone	Receipt Doculer temperature No the temperature servation acceleration acceleration acceleration acceleration accelerated Solver No	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, B7 ents, etc.)? Comments:
a.	Sample/coo Yes On the COC, 0.2°C. Sample pres Volatile Chl	Receipt Doculer temperature No the temperature servation accelerinated Solve No	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, BT ents, etc.)? Comments:
a.	Sample/coo. • Yes On the COC, 0.2°C. Sample pres Volatile Chl • Yes Sample cone	Receipt Doculer temperature No the temperature servation acceleration acceleration acceleration acceleration accelerated Solver No	re documented and within range at receipt (0° to 6° C)? Comments: re blank was listed as -0.2°C, but the Sample Receipt Form noted ptable – acidified waters, Methanol preserved VOC soil (GRO, BT ents, etc.)? Comments:

0500, when the earliest sample was collected on July 31, 2018 at 0915.

1. <u>Laboratory</u>

	e. Data quality or usability affected? Comments:
	The trip blank accompanied sample containers and samples at all times during transit from and to the laboratory and in the field. Data was not impacted. Regarding receipt temperature, the discrepancy was likely due to a transcription error. No evidence of freezing was noted on the Sample Receipt Form; therefore, data was considered not impacted.
4.	Case Narrative
	a. Present and understandable? • Yes • No Comments:
	b. Discrepancies, errors or QC failures identified by the lab? • Yes • No Comments:
	c. Were all corrective actions documented?
	• Yes • No Comments:
	No corrective actions were necessary.
	d. What is the effect on data quality/usability according to the case narrative? Comments:
	No impact.
5.	Samples Results
	a. Correct analyses performed/reported as requested on COC?
	• Yes • No Comments:
	b. All applicable holding times met?
	• Yes • No Comments:
	c. All soils reported on a dry weight basis?
	• Yes • No Comments:
	Not applicable. Only water samples were analyzed.

• Yes • No Comments:

	Yes	O No	Comments:
duplic	ate MW-	, ,	trichloropropane by Method SW8260C, for samples MW-9 TS and not meet ADEC cleanup levels. This was due to typical laboratory
e. Data	a quality	or usability	
			Comments:
labora usabili	tory LOI ity for the), but above	ot possible to state with certainty the absence of target analyte below the the ADEC cleanup level. 1,2,3-trichloropropane data is limited in Data usability was considered minimally impacted, and all data was on.
C Sample	es		
<u>=</u>	_		
	thod Blar i. One		nk reported per matrix, analysis and 20 samples?
	• Yes	No No	Comments:
	100	110	
	ii. All n	nethod blan	k results less than limit of quantitation (LOQ)?
	ii. All n • Yes	nethod blan	k results less than limit of quantitation (LOQ)? Comments:
	• Yes	O No	Comments: what samples are affected?
	• Yes	O No	Comments:
	• Yes	© No ove LOQ, w	Comments: what samples are affected?
Not ap	• Yes	© No ove LOQ, w	Comments: what samples are affected? Comments:
Not a	Yes iii. If abo pplicable iv. Do th	© No ove LOQ, we he affected s	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined?
Not a	Yes iii. If about the pplicable iv. Do the Yes	No No No ne affected s No	Comments: what samples are affected? Comments:
Not a	Yes iii. If abo pplicable iv. Do th	No No No ne affected s No	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined?
Not a	iii. If about the pplicable iv. Do the Yes at a were a	ove LOQ, we he affected so No affected.	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments:
Not a	iii. If about the pplicable iv. Do the Yes at a were a	ove LOQ, we he affected so No affected.	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments:
Not a	iii. If about the pplicable iv. Do the Yes ta were a v. Data	ove LOQ, we he affected so No affected.	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments:
No da	iii. If about the pplicable iv. Do the Yes at a were a v. Data appact.	ove LOQ, we have affected so affected.	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments: asability affected? Comments:
No da No im b. Lab	iii. If about the pplicable iv. Do the Yes at a were a v. Data apact.	ove LOQ, we he affected so No affected. Control Sam	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments: asability affected? Comments:
No da No im b. Lab	iii. If about the pplicable iv. Do the Yes at a were a v. Data appact. oratory C. i. Orga	ove LOQ, we he affected so No affected. Control Samunics – One	Comments: what samples are affected? Comments: sample(s) have data flags? If so, are the data flags clearly defined? Comments: asability affected? Comments:

ii. Metal sampl	_	one LCS and one sample duplicate reported per matrix, analysis and 20
•	O No	Comments:
No inorganics	were analyzed.	
And p	project specifie	ent recoveries (%R) reported and within method or laboratory limits? d DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK103 60%-120%; all other analyses see the laboratory QC pages) Comments:
The dichlorodif	luoromethane r rol limits of 80 For Method S	W8260C, bromomethane recovered at 47% and 51% in the LCS and
labora LCS/I other	ntory limits? An LCSD, MS/MS analyses see th	ive percent differences (RPD) reported and less than method or and project specified DQOs, if applicable. RPD reported from SD, and or sample/sample duplicate. (AK Petroleum methods 20%; all le laboratory QC pages)
• Yes	O No	Comments:
CCV: Associat	ed samples we	side of acceptable limits, what samples are affected? Comments: re MW-9 TS, MW-99 TS, and the trip blank. les were MW-9 TS, MW-99 TS, and the trip blank.
	e affected samp	ple(s) have data flags? If so, are the data flags clearly defined? Comments:
results were und LCS/LCSD: Bi	letectable, data comomethane r	thane, since a high bias was indicated, and all associated sample was not impacted. All data was usable without qualification. esults for samples MW-9 TS, MW-99 TS, and the trip blank were ald be considered un-detectable values with possibly inaccurate
vii. Data e	quality or usab	ility affected? Comments:
		ected samples were 0.0025 mg/L, one-third that of the ADEC cleanup ability was not impacted.
_	Organics Only arrogate recove	eries reported for organic analyses – field, QC and laboratory samples? Comments:

And p		recoveries (%R) reported and within method or laboratory limits? QOs, if applicable. (AK Petroleum methods 50-150 %R; all other bry report pages)
© Yes	No	Comments:
upper control lin	nit of 150% in sam	probenzene surrogate recovered at 269%, above the acceptable apple MW-99 TS. This sample was analyzed at a five-fold dilution having matrix interference, both of which likely contributed to .
	e sample results wi clearly defined?	th failed surrogate recoveries have data flags? If so, are the data
Yes	O No	Comments:
The GRO result biased high.	for sample MW-9	99 TS was qualified "Q+" and should be considered potentially
iv. Data q	uality or usability	affected? Comments:
GRO result of 3	.25 mg/L. Both res	result of 2.59 mg/L, was a field duplicate of MW9-TS, which had a sults were above the ADEC cleanup level of 2.2 mg/L. Data was and all data was usable as qualified.
Soil i. One tr	ip blank reported p	or matrix, analysis and cooler?
	O No	Comments:
-	are included in the	VOCs by Method SW8260C and GRO by Method AK101. All VOC list, so an additional trip blank for BTEX by Method
(If not		sport the trip blank and VOA samples clearly indicated on the COC? ining why must be entered below) Comments:
iii. All res	sults less than LOC	2?
© Yes	O No	Comments:
Analytes were r	not detected at or a	bove the LOD in the trip blank.
iv. If abo	ve LOQ, what san	nples are affected? Comments:
Not applicable		

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1\text{-}R_2)}{} \times 100$$

$$((R_1+R_2)/2)$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

© Yes © No Comments:

Table 5 of the QAR lists RPD exceedances.

iv. Data quality or usability affected?

Comments:

Affected parent sample/duplicate results were qualified "Q" and should be considered estimated values with unknown bias. To err on the conservative, impacted analytes for all chronologically associated field samples, MW-5 TS, MW-6 TS, and MW-7 TS, were also qualified. Associated non-detect results were qualified "UJ," and should be considered undetectable results with approximate or inaccurate LODs. Associated trip blank data were not listed in the footnotes, nor qualified, as the trip blank, prepared in the laboratory, was considered unaffected by field precision.

In all cases, either both the parent sample and duplicate results were below, or both parent sample and duplicate results were above, the applicable ADEC cleanup level; therefore, data usability was not impacted,

In all instances laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. Associated field samples, MW-5 TS, MW-6 TS, and MW-7 TS were analyzed for BTEX by SW8260C, thus only xylene results were affected by field precision exceedances. All associated samples had xylene results of undetectable with LODs over 1000-fold below the applicable cleanup level. All data was usable as qualified.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered
below.)
○ Yes ○ No ○ Not Applicable
i. All results less than LOQ?
• Yes • No Comments:
Not applicable
ii. If above LOQ, what samples are affected?
Comments:
Not applicable
iii. Data quality or usability affected?
Comments:
No impact
. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
© Yes ○ No Comments:

Appendix D SGS Laboratory Data Reports

Laboratory Report of Analysis

To: SLR Alaska-Anchorage

2700 Gambell Street, Suite 200 Anchorage, AK 99503 907-222-1112

Report Number: 1184186

Client Project: 105.00528.18001 MLP Transform

Dear Bret Berglund,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 08/16/2018 12:02:28PM Results via Engage

Case Narrative

SGS Client: **SLR Alaska-Anchorage**SGS Project: **1184186**Project Name/Site: **105.00528.18001 MLP Transform**Project Contact: **Bret Berglund**

Refer to sample receipt form for information on sample condition.

MW-99 TS (1184186005) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (269 %) does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 08/16/2018 12:02:30PM

Report of Manual Integrations

<u>Laboratory ID</u> <u>Client Sample ID</u> <u>Analytical Batch</u> <u>Analyte</u> <u>Reason</u>

8270D SIM LV (PAH)

1184186005 MW-99 TS XMS10961 Phenanthrene BLC

Manual Integration Reason Code Descriptions

Code Description

O Original Chromatogram
M Modified Chromatogram
SS Skimmed surrogate
BLG Closed baseline gap
RP Reassign peak name
PIR Pattern integration required

IT Included tail SP Split peak

RSP Removed split peak
FPS Forced peak start/stop
BLC Baseline correction

PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 08/16/2018 12:02:31PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 06/11/2018 for Mercury by EPA245.1,Beryllium and Copper by EPA200.8) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 08/16/2018 12:02:32PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>
MW-5 TS	1184186001	07/31/2018	08/03/2018	Water (Surface, Eff., Ground)
MW-6 TS	1184186002	07/31/2018	08/03/2018	Water (Surface, Eff., Ground)
MW-7 TS	1184186003	07/31/2018	08/03/2018	Water (Surface, Eff., Ground)
MW-9 TS	1184186004	08/03/2018	08/03/2018	Water (Surface, Eff., Ground)
MW-99 TS	1184186005	08/03/2018	08/03/2018	Water (Surface, Eff., Ground)
Trip Blank	1184186006	08/03/2018	08/03/2018	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV

AK102 DRO Low Volume (W)

AK101 Gasoline Range Organics (W)
SW8260C Volatile Organic Compounds (W)
SW8260C Volatile Organic Compounds (W) FULL

Print Date: 08/16/2018 12:02:33PM

Detectable Results Summary

Client Sample ID: MW-5 TS Lab Sample ID: 1184186001 Semivolatile Organic Fuels	Parameter Diesel Range Organics	Result 0.208J	Units mg/L
Client Sample ID: MW-6 TS Lab Sample ID: 1184186002 Semivolatile Organic Fuels	Parameter Diesel Range Organics	Result 0.419J	Units mg/L
Client Sample ID: MW-7 TS Lab Sample ID: 1184186003 Semivolatile Organic Fuels	Parameter Diesel Range Organics	Result 0.276J	Units mg/L
Client Sample ID: MW-9 TS Lab Sample ID: 1184186004 Polynuclear Aromatics GC/MS	Parameter 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene	Result 6.05 0.348 0.206 0.186 16.1	Units ug/L ug/L ug/L ug/L ug/L
Semivolatile Organic Fuels Volatile Fuels Volatile GC/MS	Diesel Range Organics Gasoline Range Organics 1,2,4-Trimethylbenzene 1,2-Dichloroethane 1,3,5-Trimethylbenzene 2-Butanone (MEK)	2.69 3.25 191 9.65 53.7	mg/L mg/L ug/L ug/L ug/L ug/L
	2-Hexanone 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) Benzene Ethylbenzene	12.9 8.57 6.39J 1300 64.5	ug/L ug/L ug/L ug/L ug/L
	Isopropylbenzene (Cumene) Naphthalene n-Propylbenzene o-Xylene	3.25 68.0 5.81 15.8	ug/L ug/L ug/L ug/L
	P & M -Xylene Toluene Xylenes (total)	440 21.4 456	ug/L ug/L ug/L

Print Date: 08/16/2018 12:02:34PM

Detectable Results Summary

Polynuclear Aromatics GC/MS
Lab Sample ID: 1184186005
Client Sample ID: MW-99 TS

Semivolatile Organic Fuels **Volatile Fuels Volatile GC/MS**

<u>Parameter</u>	Result	<u>Units</u>
1-Methylnaphthalene	5.90	ug/L
2-Methylnaphthalene	1.04	ug/L
Acenaphthene	0.179	ug/L
Fluorene	0.169	ug/L
Naphthalene	15.0	ug/L
Phenanthrene	0.0358J	ug/L
Diesel Range Organics	2.84	mg/L
Gasoline Range Organics	2.59	mg/L
1,2,4-Trimethylbenzene	140	ug/L
1,2-Dichloroethane	6.63	ug/L
1,3,5-Trimethylbenzene	31.8	ug/L
2-Butanone (MEK)	72.7	ug/L
2-Hexanone	7.07J	ug/L
4-Isopropyltoluene	5.88	ug/L
4-Methyl-2-pentanone (MIBK)	4.20J	ug/L
Benzene	1200	ug/L
Ethylbenzene	66.8	ug/L
Isopropylbenzene (Cumene)	4.81	ug/L
Naphthalene	43.8	ug/L
n-Propylbenzene	9.13	ug/L
o-Xylene	10.4	ug/L
P & M -Xylene	233	ug/L
sec-Butylbenzene	0.610J	ug/L
Toluene	12.9	ug/L
Xylenes (total)	244	ug/L

Print Date: 08/16/2018 12:02:34PM

Client Sample ID: MW-5 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186001 Lab Project ID: 1184186 Collection Date: 07/31/18 09:15 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.208 J	0.615	0.184	mg/L	1	Limits	08/06/18 11:37
Surrogates 5a Androstane (surr)	80.2	50-150		%	1		08/06/18 11:37

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 08/06/18 11:37 Container ID: 1184186001-G

Prep Batch: XXX40094 Prep Method: SW3520C Prep Date/Time: 08/04/18 08:08 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-5 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186001 Lab Project ID: 1184186 Collection Date: 07/31/18 09:15 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		08/05/18 08:00
Surrogates							
4-Bromofluorobenzene (surr)	74.3	50-150		%	1		08/05/18 08:00

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/05/18 08:00 Container ID: 1184186001-D Prep Batch: VXX32796 Prep Method: SW5030B Prep Date/Time: 08/04/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-5 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186001 Lab Project ID: 1184186 Collection Date: 07/31/18 09:15 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/06/18 18:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/06/18 18:08
Toluene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/06/18 18:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/06/18 18:08
4-Bromofluorobenzene (surr)	101	85-114		%	1		08/06/18 18:08
Toluene-d8 (surr)	100	89-112		%	1		08/06/18 18:08

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 18:08 Container ID: 1184186001-A Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-6 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186002 Lab Project ID: 1184186 Collection Date: 07/31/18 11:30 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

					<u>Allowable</u>			
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed	
Diesel Range Organics	0.419 J	0.600	0.180	mg/L	1		08/06/18 11:47	
Surrogates								
5a Androstane (surr)	78.5	50-150		%	1		08/06/18 11:47	

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 08/06/18 11:47 Container ID: 1184186002-G

Prep Batch: XXX40094
Prep Method: SW3520C
Prep Date/Time: 08/04/18 08:08
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-6 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186002 Lab Project ID: 1184186 Collection Date: 07/31/18 11:30 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Doromotor	Decult Ougl	1.00/01	DI	Linita	DE	Allowable	Data Analyzad
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		08/05/18 08:18
Surrogates							
4-Bromofluorobenzene (surr)	74.9	50-150		%	1		08/05/18 08:18

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/05/18 08:18 Container ID: 1184186002-D

Prep Batch: VXX32796 Prep Method: SW5030B Prep Date/Time: 08/04/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-6 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186002 Lab Project ID: 1184186 Collection Date: 07/31/18 11:30 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/06/18 18:25
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:25
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/06/18 18:25
Toluene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:25
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/06/18 18:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/06/18 18:25
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/06/18 18:25
Toluene-d8 (surr)	101	89-112		%	1		08/06/18 18:25

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 18:25 Container ID: 1184186002-A Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-7 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186003 Lab Project ID: 1184186 Collection Date: 07/31/18 13:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	0.276 J	0.625	0.188	mg/L	1		08/06/18 11:56
Surrogates							
5a Androstane (surr)	79.2	50-150		%	1		08/06/18 11:56

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 08/06/18 11:56 Container ID: 1184186003-G Prep Batch: XXX40094 Prep Method: SW3520C Prep Date/Time: 08/04/18 08:08 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-7 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186003 Lab Project ID: 1184186 Collection Date: 07/31/18 13:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/05/18 08:36
Surrogates 4-Bromofluorobenzene (surr)	74.2	50-150		%	1		08/05/18 08:36

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/05/18 08:36 Container ID: 1184186003-D

Prep Batch: VXX32796
Prep Method: SW5030B
Prep Date/Time: 08/04/18 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-7 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186003 Lab Project ID: 1184186 Collection Date: 07/31/18 13:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/06/18 18:42
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:42
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:42
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/06/18 18:42
Toluene	0.500 U	1.00	0.310	ug/L	1		08/06/18 18:42
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/06/18 18:42
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/06/18 18:42
4-Bromofluorobenzene (surr)	102	85-114		%	1		08/06/18 18:42
Toluene-d8 (surr)	100	89-112		%	1		08/06/18 18:42

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 18:42 Container ID: 1184186003-A Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Deremeter	Deput Ougl	1.00/01	DI	Linita	DE	Allowable	Data Analyzad
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	6.05	0.0504	0.0151	ug/L	1		08/10/18 17:06
2-Methylnaphthalene	0.348	0.0504	0.0151	ug/L	1		08/10/18 17:06
Acenaphthene	0.206	0.0504	0.0151	ug/L	1		08/10/18 17:06
Acenaphthylene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Benzo(a)Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Benzo[a]pyrene	0.0101 U	0.0202	0.00625	ug/L	1		08/10/18 17:06
Benzo[b]Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Benzo[g,h,i]perylene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Benzo[k]fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Chrysene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Dibenzo[a,h]anthracene	0.0101 U	0.0202	0.00625	ug/L	1		08/10/18 17:06
Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Fluorene	0.186	0.0504	0.0151	ug/L	1		08/10/18 17:06
Indeno[1,2,3-c,d] pyrene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Naphthalene	16.1	0.504	0.156	ug/L	5		08/14/18 13:32
Phenanthrene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Pyrene	0.0252 U	0.0504	0.0151	ug/L	1		08/10/18 17:06
Surrogates							
2-Methylnaphthalene-d10 (surr)	81.8	47-106		%	1		08/10/18 17:06
Fluoranthene-d10 (surr)	92.2	24-116		%	1		08/10/18 17:06

Batch Information

Analytical Batch: XMS10971

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 08/14/18 13:32

Container ID: 1184186004-I

Analytical Batch: XMS10961

Analytical Method: 8270D SIM LV (PAH)

Analyst: BMZ

Analytical Date/Time: 08/10/18 17:06

Container ID: 1184186004-I

Prep Batch: XXX40096 Prep Method: SW3520C Prep Date/Time: 08/05/18 08:05 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Prep Batch: XXX40096 Prep Method: SW3520C Prep Date/Time: 08/05/18 08:05 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 2.69	<u>LOQ/CL</u> 0.625	<u>DL</u> 0.188	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/06/18 12:06
Surrogates 5a Androstane (surr)	76.6	50-150		%	1		08/06/18 12:06

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 08/06/18 12:06 Container ID: 1184186004-G Prep Batch: XXX40094
Prep Method: SW3520C
Prep Date/Time: 08/04/18 08:08
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 3.25	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/05/18 08:54
Surrogates							
4-Bromofluorobenzene (surr)	92.1	50-150		%	1		08/05/18 08:54

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/05/18 08:54 Container ID: 1184186004-D Prep Batch: VXX32796 Prep Method: SW5030B Prep Date/Time: 08/04/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08/06/18 19:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,2,4-Trimethylbenzene	191	1.00	0.310	ug/L	1	08/06/18 19:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08/06/18 19:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/06/18 19:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,2-Dichloroethane	9.65	0.500	0.150	ug/L	1	08/06/18 19:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,3,5-Trimethylbenzene	53.7	1.00	0.310	ug/L	1	08/06/18 19:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
2-Butanone (MEK)	104	10.0	3.10	ug/L	1	08/06/18 19:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
2-Hexanone	12.9	10.0	3.10	ug/L	1	08/06/18 19:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
4-Isopropyltoluene	8.57	1.00	0.310	ug/L	1	08/06/18 19:52
4-Methyl-2-pentanone (MIBK)	6.39 J	10.0	3.10	ug/L	1	08/06/18 19:52
Benzene	1300	4.00	1.20	ug/L	10	08/06/18 19:17
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
Bromoform	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
Bromomethane	2.50 U	5.00	1.50	ug/L	1	08/06/18 19:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	08/06/18 19:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:52

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u> <u>Date Analyze</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Chloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:5
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 19:5
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Ethylbenzene	64.5	1.00	0.310	ug/L	1	08/06/18 19:5
Freon-113	5.00 U	10.0	3.10	ug/L	1	08/06/18 19:5
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Isopropylbenzene (Cumene)	3.25	1.00	0.310	ug/L	1	08/06/18 19:5
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	08/06/18 19:5
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/06/18 19:5
Naphthalene	68.0	1.00	0.310	ug/L	1	08/06/18 19:5
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
n-Propylbenzene	5.81	1.00	0.310	ug/L	1	08/06/18 19:5
o-Xylene	15.8	1.00	0.310	ug/L	1	08/06/18 19:5
P & M -Xylene	440	20.0	6.20	ug/L	10	08/06/18 19:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Styrene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Toluene	21.4	1.00	0.310	ug/L	1	08/06/18 19:5
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 19:5
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	08/06/18 19:5
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	08/06/18 19:5
Xylenes (total)	456	30.0	10.0	ug/L	10	08/06/18 19:
urrogates						
1,2-Dichloroethane-D4 (surr)	95.9	81-118		%	1	08/06/18 19:5
4-Bromofluorobenzene (surr)	98.2	85-114		%	1	08/06/18 19:5

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-9 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186004 Lab Project ID: 1184186 Collection Date: 08/03/18 09:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 19:17 Container ID: 1184186004-A

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 19:52 Container ID: 1184186004-A Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	5.90	0.0543	0.0163	ug/L	1		08/10/18 17:26
2-Methylnaphthalene	1.04	0.0543	0.0163	ug/L	1		08/10/18 17:26
Acenaphthene	0.179	0.0543	0.0163	ug/L	1		08/10/18 17:26
Acenaphthylene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Anthracene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Benzo(a)Anthracene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Benzo[a]pyrene	0.0109 U	0.0217	0.00674	ug/L	1		08/10/18 17:26
Benzo[b]Fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Benzo[g,h,i]perylene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Benzo[k]fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Chrysene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Dibenzo[a,h]anthracene	0.0109 U	0.0217	0.00674	ug/L	1		08/10/18 17:26
Fluoranthene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Fluorene	0.169	0.0543	0.0163	ug/L	1		08/10/18 17:26
Indeno[1,2,3-c,d] pyrene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Naphthalene	15.0	0.543	0.168	ug/L	5		08/14/18 13:52
Phenanthrene	0.0358 J	0.0543	0.0163	ug/L	1		08/10/18 17:26
Pyrene	0.0272 U	0.0543	0.0163	ug/L	1		08/10/18 17:26
Surrogates							
2-Methylnaphthalene-d10 (surr)	72	47-106		%	1		08/10/18 17:26
Fluoranthene-d10 (surr)	76.6	24-116		%	1		08/10/18 17:26

Batch Information

Analytical Batch: XMS10971

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 08/14/18 13:52

Container ID: 1184186005-I

Analytical Batch: XMS10961

Analytical Method: 8270D SIM LV (PAH)

Analyst: BMZ

Analytical Date/Time: 08/10/18 17:26

Container ID: 1184186005-I

Prep Batch: XXX40096 Prep Method: SW3520C Prep Date/Time: 08/05/18 08:05 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Prep Batch: XXX40096 Prep Method: SW3520C Prep Date/Time: 08/05/18 08:05 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	2.84	0.600	0.180	mg/L	1	Limits	08/06/18 12:16
Surrogates 5a Androstane (surr)	76.8	50-150		%	1		08/06/18 12:16

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 08/06/18 12:16 Container ID: 1184186005-G

Prep Batch: XXX40094
Prep Method: SW3520C
Prep Date/Time: 08/04/18 08:08
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	2.59	0.500	0.155	mg/L	5	Limits	08/07/18 14:24
Surrogates 4-Bromofluorobenzene (surr)	269 *	50-150		%	5		08/07/18 14:24

Batch Information

Analytical Batch: VFC14329 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/07/18 14:24 Container ID: 1184186005-E Prep Batch: VXX32820 Prep Method: SW5030B Prep Date/Time: 08/06/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		te Analyzed
,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08.	/06/18 20:09
,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:09
,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08.	/06/18 20:09
,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08.	/06/18 20:09
,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:09
,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:09
,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2,4-Trimethylbenzene	140	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08.	/06/18 20:0
,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08.	/06/18 20:0
,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,2-Dichloroethane	6.63	0.500	0.150	ug/L	1	08.	/06/18 20:0
,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,3,5-Trimethylbenzene	31.8	1.00	0.310	ug/L	1	08.	/06/18 20:0
,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08.	/06/18 20:0
,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08.	/06/18 20:0
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
2-Butanone (MEK)	72.7	10.0	3.10	ug/L	1	08.	/06/18 20:0
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
P-Hexanone	7.07 J	10.0	3.10	ug/L	1	08.	/06/18 20:0
I-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
I-Isopropyltoluene	5.88	1.00	0.310	ug/L	1	08.	/06/18 20:0
I-Methyl-2-pentanone (MIBK)	4.20 J	10.0	3.10	ug/L	1	08.	/06/18 20:0
Benzene	1200	4.00	1.20	ug/L	10	08.	/06/18 19:3
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		/06/18 20:0
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		/06/18 20:0
Bromoform	0.500 U	1.00	0.310	ug/L	1	08.	/06/18 20:0
Bromomethane	2.50 U	5.00	1.50	ug/L	1		/06/18 20:0
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		/06/18 20:0
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		/06/18 20:0
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		/06/18 20:0
Chloroethane	0.500 U	1.00	0.310	ug/L	1		/06/18 20:0

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Chloromethane	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		08/06/18 20:09
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		08/06/18 20:09
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Ethylbenzene	66.8	1.00	0.310	ug/L	1		08/06/18 20:09
Freon-113	5.00 U	10.0	3.10	ug/L	1		08/06/18 20:09
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Isopropylbenzene (Cumene)	4.81	1.00	0.310	ug/L	1		08/06/18 20:09
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		08/06/18 20:09
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/06/18 20:09
Naphthalene	43.8	1.00	0.310	ug/L	1		08/06/18 20:09
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
n-Propylbenzene	9.13	1.00	0.310	ug/L	1		08/06/18 20:09
o-Xylene	10.4	1.00	0.310	ug/L	1		08/06/18 20:09
P & M -Xylene	233	2.00	0.620	ug/L	1		08/06/18 20:09
sec-Butylbenzene	0.610 J	1.00	0.310	ug/L	1		08/06/18 20:09
Styrene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Toluene	12.9	1.00	0.310	ug/L	1		08/06/18 20:09
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		08/06/18 20:09
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		08/06/18 20:09
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		08/06/18 20:09
Xylenes (total)	244	3.00	1.00	ug/L	1		08/06/18 20:09
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.9	81-118		%	1		08/06/18 20:09
4-Bromofluorobenzene (surr)	101	85-114		%	1		08/06/18 20:09
Toluene-d8 (surr)	100	89-112		%	1		08/06/18 20:09

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: MW-99 TS

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186005 Lab Project ID: 1184186 Collection Date: 08/03/18 06:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 19:34 Container ID: 1184186005-A

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 20:09 Container ID: 1184186005-A Prep Batch: VXX32813 Prep Method: SW5030B Prep Date/Time: 08/06/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX32813
Prep Method: SW5030B
Prep Date/Time: 08/06/18 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186006 Lab Project ID: 1184186 Collection Date: 08/03/18 05:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		08/05/18 07:24	
Surrogates								
4-Bromofluorobenzene (surr)	76.1	50-150		%	1		08/05/18 07:24	

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 08/05/18 07:24 Container ID: 1184186006-D

Prep Batch: VXX32796
Prep Method: SW5030B
Prep Date/Time: 08/04/18 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186006 Lab Project ID: 1184186 Collection Date: 08/03/18 05:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	08/06/18 16:58
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:58
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	08/06/18 16:58
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:58
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:58
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:58
Benzene	0.200 U	0.400	0.120	ug/L	1	08/06/18 16:58
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
Bromoform	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
Bromomethane	2.50 U	5.00	1.50	ug/L	1	08/06/18 16:58
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:58
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:58
Chloroethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:58

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: Trip Blank

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186006 Lab Project ID: 1184186 Collection Date: 08/03/18 05:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyze</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Chloromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:5
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	08/06/18 16:5
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Freon-113	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:5
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	08/06/18 16:5
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:5
Naphthalene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
o-Xylene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	08/06/18 16:5
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Styrene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Toluene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	08/06/18 16:5
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	08/06/18 16:5
Vinyl chloride	0.0750 U	0.150	0.0500 ug/L 1		08/06/18 16:5	
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	08/06/18 16:5
urrogates						
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1	08/06/18 16:5
4-Bromofluorobenzene (surr)	101	85-114		%	1	08/06/18 16:5

Print Date: 08/16/2018 12:02:36PM

Client Sample ID: Trip Blank

Client Project ID: 105.00528.18001 MLP Transform

Lab Sample ID: 1184186006 Lab Project ID: 1184186 Collection Date: 08/03/18 05:00 Received Date: 08/03/18 10:23 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 08/06/18 16:58 Container ID: 1184186006-A Prep Batch: VXX32813 Prep Method: SW5030B Prep Date/Time: 08/06/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1783673 [VXX/32796]

Blank Lab ID: 1464640

QC for Samples:

1184186001, 1184186002, 1184186003, 1184186004, 1184186006

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 79.7 50-150 %

Batch Information

Analytical Batch: VFC14325 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 8/4/2018 9:13:00PM

Prep Batch: VXX32796 Prep Method: SW5030B

Prep Date/Time: 8/4/2018 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:38PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1184186 [VXX32796]

Blank Spike Lab ID: 1464643

Date Analyzed: 08/05/2018 04:25

Spike Duplicate ID: LCSD for HBN 1184186

[VXX32796]

Spike Duplicate Lab ID: 1464644

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186001, 1184186002, 1184186003, 1184186004, 1184186006

84.5

0.0500

Results by AK101

	I	Blank Spike (mg/L)			Spike Duplicate (mg/L)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.927	93	1.00	0.921	92	(60-120)	0.67	(< 20)
Surrogates									

0.0500 81.9

85

Batch Information

4-Bromofluorobenzene (surr)

Analytical Batch: VFC14325
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX32796
Prep Method: SW5030B

Prep Date/Time: 08/04/2018 08:00

82

Spike Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L $\,$ Extract Vol: 5 mL $\,$

(50-150) 3.10

Print Date: 08/16/2018 12:02:40PM

Blank ID: MB for HBN 1783769 [VXX/32813]

Blank Lab ID: 1465053

QC for Samples:

1184186001, 1184186002, 1184186003, 1184186004, 1184186005, 1184186006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 08/16/2018 12:02:41PM

Blank ID: MB for HBN 1783769 [VXX/32813]

Blank Lab ID: 1465053

QC for Samples:

 $1184186001,\,1184186002,\,1184186003,\,1184186004,\,1184186005,\,1184186006$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	101	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	100	89-112		%

Print Date: 08/16/2018 12:02:41PM

Blank ID: MB for HBN 1783769 [VXX/32813]

Blank Lab ID: 1465053

QC for Samples:

 $1184186001,\,1184186002,\,1184186003,\,1184186004,\,1184186005,\,1184186006$

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS

Analyst: FDR

Analytical Date/Time: 8/6/2018 1:54:00PM

Prep Batch: VXX32813 Prep Method: SW5030B

Prep Date/Time: 8/6/2018 12:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:41PM

Blank Spike ID: LCS for HBN 1184186 [VXX32813]

Blank Spike Lab ID: 1465054 Date Analyzed: 08/06/2018 14:57 Spike Duplicate ID: LCSD for HBN 1184186

[VXX32813]

Spike Duplicate Lab ID: 1465055 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186001, 1184186002, 1184186003, 1184186004, 1184186005, 1184186006

Results by SW8260C

	Blank Spike (ug/L) Spike Duplicate (ug/L)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL	
1,1,1,2-Tetrachloroethane	30	32.1	107	30	31.9	106	(78-124)	0.69	(< 20)	
1,1,1-Trichloroethane	30	31.6	105	30	30.7	102	(74-131)	2.70	(< 20)	
1,1,2,2-Tetrachloroethane	30	30.4	101	30	31.1	104	(71-121)	2.40	(< 20)	
1,1,2-Trichloroethane	30	30.6	102	30	30.4	101	(80-119)	0.59	(< 20)	
1,1-Dichloroethane	30	30.6	102	30	29.8	99	(77-125)	2.70	(< 20)	
1,1-Dichloroethene	30	31.0	103	30	29.9	100	(71-131)	3.60	(< 20)	
1,1-Dichloropropene	30	31.3	104	30	30.4	101	(79-125)	2.90	(< 20)	
1,2,3-Trichlorobenzene	30	28.4	95	30	32.1	107	(69-129)	12.40	(< 20)	
1,2,3-Trichloropropane	30	29.9	100	30	30.9	103	(73-122)	3.30	(< 20)	
1,2,4-Trichlorobenzene	30	30.5	102	30	31.8	106	(69-130)	4.00	(< 20)	
1,2,4-Trimethylbenzene	30	32.7	109	30	31.9	106	(79-124)	2.50	(< 20)	
1,2-Dibromo-3-chloropropane	30	29.0	97	30	32.9	110	(62-128)	12.50	(< 20)	
1,2-Dibromoethane	30	31.3	104	30	31.2	104	(77-121)	0.26	(< 20)	
1,2-Dichlorobenzene	30	31.1	104	30	30.8	103	(80-119)	1.10	(< 20)	
1,2-Dichloroethane	30	28.6	95	30	28.0	93	(73-128)	2.00	(< 20)	
1,2-Dichloropropane	30	31.5	105	30	30.1	100	(78-122)	4.40	(< 20)	
1,3,5-Trimethylbenzene	30	32.5	108	30	31.5	105	(75-124)	3.20	(< 20)	
1,3-Dichlorobenzene	30	32.2	107	30	31.0	103	(80-119)	3.70	(< 20)	
1,3-Dichloropropane	30	30.9	103	30	30.5	102	(80-119)	1.40	(< 20)	
1,4-Dichlorobenzene	30	31.4	105	30	30.9	103	(79-118)	1.60	(< 20)	
2,2-Dichloropropane	30	34.1	114	30	33.1	110	(60-139)	3.20	(< 20)	
2-Butanone (MEK)	90	80.6	90	90	92.3	103	(56-143)	13.50	(< 20)	
2-Chlorotoluene	30	31.7	106	30	31.0	103	(79-122)	2.10	(< 20)	
2-Hexanone	90	92.2	102	90	102	113	(57-139)	9.80	(< 20)	
4-Chlorotoluene	30	32.3	108	30	31.5	105	(78-122)	2.50	(< 20)	
4-Isopropyltoluene	30	33.8	113	30	32.4	108	(77-127)	4.20	(< 20)	
4-Methyl-2-pentanone (MIBK)	90	93.8	104	90	99.8	111	(67-130)	6.20	(< 20)	
Benzene	30	30.6	102	30	30.0	100	(79-120)	1.90	(< 20)	
Bromobenzene	30	30.9	103	30	30.3	101	(80-120)	2.10	(< 20)	
Bromochloromethane	30	31.2	104	30	30.1	100	(78-123)	3.60	(< 20)	
Bromodichloromethane	30	31.6	105	30	30.8	103	(79-125)	2.40	(< 20)	
Bromoform	30	32.6	109	30	32.6	109	(66-130)	0.18	(< 20)	
Bromomethane	30	14.0	47	* 30	15.3	51	* (53-141)	8.80	(< 20)	
Carbon disulfide	45	46.7	104	45	44.8	100	(64-133)	4.00	(< 20)	

Print Date: 08/16/2018 12:02:42PM

Blank Spike ID: LCS for HBN 1184186 [VXX32813]

Blank Spike Lab ID: 1465054 Date Analyzed: 08/06/2018 14:57 Spike Duplicate ID: LCSD for HBN 1184186

[VXX32813]

Spike Duplicate Lab ID: 1465055 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186001, 1184186002, 1184186003, 1184186004, 1184186005, 1184186006

Results by SW8260C

	Blank Spike (ug/L) Spike Duplicate (ug/L)								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	32.2	107	30	31.2	104	(72-136)	3.30	(< 20)
Chlorobenzene	30	30.2	101	30	29.6	99	(82-118)	1.70	(< 20)
Chloroethane	30	30.8	103	30	30.0	100	(60-138)	2.50	(< 20)
Chloroform	30	30.1	100	30	29.6	99	(79-124)	1.80	(< 20)
Chloromethane	30	27.0	90	30	26.8	90	(50-139)	0.41	(< 20)
cis-1,2-Dichloroethene	30	30.7	102	30	29.8	99	(78-123)	2.90	(< 20)
cis-1,3-Dichloropropene	30	33.2	111	30	32.4	108	(75-124)	2.20	(< 20)
Dibromochloromethane	30	32.3	108	30	32.0	107	(74-126)	0.96	(< 20)
Dibromomethane	30	30.8	103	30	29.8	99	(79-123)	3.20	(< 20)
Dichlorodifluoromethane	30	37.9	126	30	35.7	119	(32-152)	6.20	(< 20)
Ethylbenzene	30	31.3	104	30	30.8	103	(79-121)	1.50	(< 20)
Freon-113	45	47.8	106	45	46.4	103	(70-136)	3.10	(< 20)
Hexachlorobutadiene	30	32.9	110	30	31.4	105	(66-134)	4.60	(< 20)
Isopropylbenzene (Cumene)	30	32.4	108	30	31.5	105	(72-131)	2.90	(< 20)
Methylene chloride	30	29.5	98	30	28.6	95	(74-124)	3.20	(< 20)
Methyl-t-butyl ether	45	46.0	102	45	45.6	101	(71-124)	0.83	(< 20)
Naphthalene	30	28.0	93	30	33.9	113	(61-128)	19.10	(< 20)
n-Butylbenzene	30	34.2	114	30	32.3	108	(75-128)	5.80	(< 20)
n-Propylbenzene	30	32.7	109	30	31.6	105	(76-126)	3.30	(< 20)
o-Xylene	30	31.3	104	30	30.9	103	(78-122)	1.60	(< 20)
P & M -Xylene	60	63.7	106	60	62.6	104	(80-121)	1.70	(< 20)
sec-Butylbenzene	30	33.1	110	30	31.6	105	(77-126)	4.70	(< 20)
Styrene	30	32.6	109	30	31.9	106	(78-123)	2.40	(< 20)
tert-Butylbenzene	30	32.9	110	30	31.6	105	(78-124)	4.00	(< 20)
Tetrachloroethene	30	31.7	106	30	31.2	104	(74-129)	1.70	(< 20)
Toluene	30	30.0	100	30	29.4	98	(80-121)	1.90	(< 20)
trans-1,2-Dichloroethene	30	30.6	102	30	29.6	99	(75-124)	3.20	(< 20)
trans-1,3-Dichloropropene	30	34.1	114	30	33.3	111	(73-127)	2.10	(< 20)
Trichloroethene	30	30.7	102	30	30.1	100	(79-123)	1.90	(< 20)
Trichlorofluoromethane	30	31.6	105	30	30.7	102	(65-141)	2.70	(< 20)
Vinyl acetate	30	33.6	112	30	33.8	113	(54-146)	0.47	(< 20)
Vinyl chloride	30	31.9	106	30	30.7	102	(58-137)	4.00	(< 20)
Xylenes (total)	90	95.0	106	90	93.4	104	(79-121)	1.70	(< 20)

Print Date: 08/16/2018 12:02:42PM

Blank Spike ID: LCS for HBN 1184186 [VXX32813]

Blank Spike Lab ID: 1465054 Date Analyzed: 08/06/2018 14:57 Spike Duplicate ID: LCSD for HBN 1184186

[VXX32813]

Spike Duplicate Lab ID: 1465055 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186001, 1184186002, 1184186003, 1184186004, 1184186005, 1184186006

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	96.9	97	30	97.9	98	(81-118)	0.99	
4-Bromofluorobenzene (surr)	30	100	100	30	99.8	100	(85-114)	0.30	
Toluene-d8 (surr)	30	101	101	30	100	100	(89-112)	0.33	

Batch Information

Analytical Batch: VMS18132 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS

Analyst: FDR

Prep Batch: VXX32813
Prep Method: SW5030B

Prep Date/Time: 08/06/2018 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:42PM

Blank ID: MB for HBN 1783826 [VXX/32820]

Blank Lab ID: 1465283

QC for Samples: 1184186005

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 79.6 50-150 %

Batch Information

Analytical Batch: VFC14329 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 8/6/2018 3:53:00PM

Prep Batch: VXX32820 Prep Method: SW5030B

Prep Date/Time: 8/6/2018 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:43PM

Blank Spike ID: LCS for HBN 1184186 [VXX32820]

Blank Spike Lab ID: 1465286 Date Analyzed: 08/07/2018 05:24 [VXX32820]

Spike Duplicate ID: LCSD for HBN 1184186

Spike Duplicate Lab ID: 1465287 Matrix: Water (Surface, Eff., Ground)

1184186005 QC for Samples:

Results by AK101

Blank Spike (mg/L) Spike Duplicate (mg/L) Result Rec (%) Spike Rec (%) CL RPD (%) RPD CL Result

<u>Parameter</u> Spike Gasoline Range Organics 0.917 0.899 1.00 92 1.00 90 (60-120) 2.00 (< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 83 83 0.0500 85.8 86 (50-150) 3.30

Batch Information

Analytical Batch: VFC14329 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX32820 Prep Method: SW5030B

Prep Date/Time: 08/06/2018 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 08/16/2018 12:02:45PM

Blank ID: MB for HBN 1783655 [XXX/40094]

Blank Lab ID: 1464550

QC for Samples:

1184186001, 1184186002, 1184186003, 1184186004, 1184186005

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 84.4 60-120 %

Batch Information

Analytical Batch: XFC14453 Prep Batch: XXX40094
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 8/4/2018 8:08:27AM

Analyst: CMS Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 8/6/2018 9:02:00AM Prep Extract Vol: 1 mL

Print Date: 08/16/2018 12:02:47PM

Blank Spike ID: LCS for HBN 1184186 [XXX40094]

Blank Spike Lab ID: 1464551

Date Analyzed: 08/06/2018 09:11

Spike Duplicate ID: LCSD for HBN 1184186

[XXX40094]

Spike Duplicate Lab ID: 1464552

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186001, 1184186002, 1184186003, 1184186004, 1184186005

Results by AK102

	[Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.6	93	20	16.3	82	(75-125)	13.00	(< 20)
Surrogates									
5a Androstane (surr)	0.4	105	105	0.4	95.1	95	(60-120)	9.50	

Batch Information

Analytical Batch: XFC14453 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CMS

Prep Batch: XXX40094 Prep Method: SW3520C

Prep Date/Time: 08/04/2018 08:08

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 08/16/2018 12:02:48PM

Blank ID: MB for HBN 1783667 [XXX/40096]

Blank Lab ID: 1464613

QC for Samples:

1184186004, 1184186005

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	76.8	47-106		%
Fluoranthene-d10 (surr)	101	24-116		%

Batch Information

Analytical Batch: XMS10961

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 8/10/2018 11:37:00AM

Prep Batch: XXX40096 Prep Method: SW3520C

Prep Date/Time: 8/5/2018 8:05:04AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 08/16/2018 12:02:50PM

Blank Spike ID: LCS for HBN 1184186 [XXX40096]

Blank Spike Lab ID: 1464614 Date Analyzed: 08/10/2018 11:58

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1184186004, 1184186005

Results by 8270D SIM LV (PAH)

	-	Blank Spike	e (ug/L)	
Parameter	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	2	1.87	94	(41-115)
2-Methylnaphthalene	2	1.75	88	(39-114)
Acenaphthene	2	1.99	100	(48-114)
Acenaphthylene	2	1.83	92	(35-121)
Anthracene	2	1.71	85	(53-119)
Benzo(a)Anthracene	2	1.88	94	(59-120)
Benzo[a]pyrene	2	1.65	83	(53-120)
Benzo[b]Fluoranthene	2	1.87	94	(53-126)
Benzo[g,h,i]perylene	2	1.66	83	(44-128)
Benzo[k]fluoranthene	2	1.98	99	(54-125)
Chrysene	2	2.08	104	(57-120)
Dibenzo[a,h]anthracene	2	1.53	77	(44-131)
Fluoranthene	2	2.17	109	(58-120)
Fluorene	2	1.72	86	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.67	84	(48-130)
Naphthalene	2	1.96	98	(43-114)
Phenanthrene	2	1.65	83	(53-115)
Pyrene	2	2.21	111	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	87	87	(47-106)
Fluoranthene-d10 (surr)	2	102	102	(24-116)

Batch Information

Analytical Batch: XMS10961

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX40096 Prep Method: SW3520C

Prep Date/Time: 08/05/2018 08:05

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/16/2018 12:02:52PM

Matrix Spike Summary

Original Sample ID: 1184182006 MS Sample ID: 1464615 MS MSD Sample ID: 1464616 MSD

QC for Samples: 1184186004, 1184186005

Analysis Date: 08/10/2018 12:39 Analysis Date: 08/10/2018 12:59 Analysis Date: 08/10/2018 13:20 Matrix: Water (Surface, Eff., Ground)

Water (Garace, En

Results by 8270D SIM LV (PAH)

		Ма	trix Spike ((ug/L)	Spik	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0232U	1.85	1.79	97	1.85	1.67	90	41-115	7.20	(< 20)
2-Methylnaphthalene	0.0232U	1.85	1.67	90	1.85	1.57	85	39-114	5.80	(< 20)
Acenaphthene	0.0232U	1.85	1.8	97	1.85	1.76	95	48-114	2.30	(< 20)
Acenaphthylene	0.0232U	1.85	1.72	93	1.85	1.66	90	35-121	4.00	(< 20)
Anthracene	0.0232U	1.85	1.49	80	1.85	1.44	78	53-119	3.30	(< 20)
Benzo(a)Anthracene	0.0232U	1.85	1.6	87	1.85	1.51	82	59-120	5.80	(< 20)
Benzo[a]pyrene	0.00925U	1.85	1.29	70	1.85	1.23	66	53-120	4.80	(< 20)
Benzo[b]Fluoranthene	0.0232U	1.85	1.34	73	1.85	1.45	78	53-126	7.50	(< 20)
Benzo[g,h,i]perylene	0.0232U	1.85	1.11	60	1.85	1.04	56	44-128	6.40	(< 20)
Benzo[k]fluoranthene	0.0232U	1.85	1.39	75	1.85	1.48	80	54-125	6.30	(< 20)
Chrysene	0.0232U	1.85	1.74	94	1.85	1.74	94	57-120	0.09	(< 20)
Dibenzo[a,h]anthracene	0.00925U	1.85	.988	53	1.85	0.932	50	44-131	5.80	(< 20)
Fluoranthene	0.0232U	1.85	1.94	105	1.85	1.81	98	58-120	6.70	(< 20)
Fluorene	0.0232U	1.85	1.64	89	1.85	1.52	82	50-118	7.30	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0232U	1.85	1.06	57	1.85	0.997	54	48-130	5.90	(< 20)
Naphthalene	0.0463U	1.85	1.92	104	1.85	1.79	97	43-114	6.80	(< 20)
Phenanthrene	0.0232U	1.85	1.49	80	1.85	1.37	74	53-115	8.60	(< 20)
Pyrene	0.0232U	1.85	2.02	109	1.85	1.93	104	53-121	5.00	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.85	1.67	90	1.85	1.57	85	47-106	6.30	
Fluoranthene-d10 (surr)		1.85	1.84	99	1.85	1.68	91	24-116	9.00	

Batch Information

Analytical Batch: XMS10961

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 8/10/2018 12:59:00PM

Prep Batch: XXX40096

Prep Method: 3520 Liq/Liq Ext for 8270 PAH SIM LV

Prep Date/Time: 8/5/2018 8:05:04AM

Prep Initial Wt./Vol.: 270.00mL Prep Extract Vol: 1.00mL

Print Date: 08/16/2018 12:02:53PM

SGS North America Inc. CHAIN OF CUSTODY RECORD

	CLIENT: 5	LR International											must nset d					Pageof
	CONTACT:	Brett Woelber PHO	ONE NO: 2	77 - 111	2	Sec	tion 3						rvative					Page of
ection 1	PROJECT // NAME:	11 Transformer PWS Shop F-M	ID/ (05.0(MIT#:)528.180i -)1 T0351	# C		110	HCI	174	HCI							
	Bret B	beralund b	AIL: berglund(DTE#:	2 s/ cons	ulting.com	O N T	Type C = COMP G =	Full List	0368	10	(0)	8270-Sim						
	INVOICE TO:	P.O				I N	GRAB MI = Multi Incre-			AK 101	₹,	3 >					1	
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	mental Soils	V0Cs	BTEX	GR0	DRO, AK 102	PAH						REMARKS/ LOC ID
	(DA-H	MW-5 TS	7/31/18		GW	8	G		X	X	X							
	2)A-H	MW-6 TS	7/31/18		GW	8	G		X	X	X							
Section 2	3)A-H	MW-7 TS	7/31/18	13:00	GW	8	6		X	X	X	\ <u>\</u>						
	9A-J_	MW-9 TS	8/3/18	09:00	GW GW	10	G /-	X		X	X	X						
	(5) A - J	MW-99 TS Trip Blank	8/3/18	06:00	Water	 	6	X		X	_			·				
	6A-F	1 LIA DIANK	10118	02500	vala			<u> </u>										
					-													
	Relinquishe	d By: (1)	Date ,	Time	Received By					Sect	tion 4	DOI) Proje	ct? Yes	s (No)	Data	a Delive	erable Requirements:
	Um	d By: (1)	8/3/18	10:23	-			_		Coo	ler ID:							
	Relinquished		Date	Time	Received By	<u>':</u>						urnaroı	und Tim	e and/	or Spec	ial Inst	truction	s:
Section 5											5	tan	dan	d				
Sect	Relinquished	d By: (3)	Date	Time	Received By	7:										<u> </u>		
0,	•		:							Temp	Blank	°c: <u>^_(</u>	<u> </u>	<u>D2</u>	<u>5 </u>	Cha	ain of C	ustody Seal: (Circle)
	Relinquished	d By: (4)	Date	Time	Received Fo								bient [INT	ACT	BROKEN ABSENT
			8/3/14	10:23	ni h	me				(Sec	attacl	ned Sar	nple Re	ceipt F	orm)	(See a	ttached	I Sample Receipt Form

SGS North America Inc.

200 W. Potter Dr., Anchorage, AK 99518 (ph) 190, Fairbanks, AK 907-562-2343, (fax) 907-561- 99709 (ph) 907-474-5301 9656

1184186	

Client pickup Date: 7/30/2018

Time:

08:00

***************************************							Be sure to ask if client	will ship by ground	(DOT) or air ca	arrier (IATA)
		• •	se send a request for nev	w profile buiu.		111111	Deliver to client:	···		
	Client Name:		Consulting							·
	Ordered By:		Phone #:				Airbill Number:			_
D.	Email:						Date to ship by: Notes:			
Ρ.	roject Name: Quote #:						Kit request taken by:	JAN	Date:	July 25, 2018
	Quote #.		FIOINE #.	-			Kit request taken by:		Date:	7/27/18
Delive	ery Address:				—— Kit <i>(in</i>	cluding lid tightness f	or pres'd bottles) checked by:	1.7	Date:	7/27/18
50	,, , , , , , , , , , , , , , , , , , ,						Kit packed & shipped by:		Date:	7/27/18
	Filename:	SKIT_SLR Consulting_ML&P Transformer Shop GW	/_R·*Required Items							
No.							Preservative	Hold	# QC	Total
Samp	les Matrix	Analysis	Container	Size & Type	Pres.	Bottle Lot #	Lot#	Time	Bottles	Bottles
6	Water	AK101/8021 - GRO/BTEX	3 x 40 mL	VOA	HCI			14 d	0	18
6	Water	AK102 - DRO	2 x 250 mL	Amber	HCI			14 d	0	12
3	Water	8260C - VOC	3 x 40 mL	VOA	HCI			14 d	0	9
3	Water	8270D SIM - PAH	2 x 250 mL	Amber	None			7 d	0	6
		·								
			~							
-										
		<u> </u>		_		-				
				-						
	ale fau Chinni	Land Control	 □ Total # include	hottles for %	Solide		Attention Client/Sampler:			
		ng via <i>ground</i> (DOT) ng via <i>air carrier</i> (IATA)	☐ Track all Lot#?				Attorneon ononeoumpron			
_		lank (<i>circle one:</i> 120-ml OR 500-ml		(required for	505)		1. Do not rinse container; b	e aware of any ac	id preservativ	e in container.
	oil VOA Trip B	•	i, 🗀 Toroigireoii				2. Fill container, but do not	overfill (except vo	latile waters).	
	•	Blank - Lot#:	Other Not	tes/Reminde	rs for Kit Prep:		3. Label the container with			
_	4 VOA Trip B				•	7	4. Fill out the Chain of Cust			
	•	cury Trip Blank- Lot#:	2 x	Water Trip	Blanks		5. Add frozen gel packs or i	ice to your cooler	& pack to pre	vent breakage.
	oolers						Charges may be invoiced			or improperly used
☑ Ge	el Ice						If you have any questions	concerning this	sample kit,	W I
☑ Bι	ıbble Wrap						please contact your Project	ct Manager for a	ssistance. Ti	nank you.
☑ La	bels								_	
☑ Cu	ıstody Seals						*This will email a copy			
		Circle req'd format: ☑ Blank COC	☐ DW COC		by PM (attached)		confirmation to the client		ne	
□ Se	end additional	instructions/documents (Note to PM	: Be sure to attach c	opy of requeste	ed form.)		form to the network. Th	ns snoula not be	I	

Returned Bottles Inventory

Name of individual returning bottles:				eate Received:	8/3/18	-
Client Name:	SLR Con ML+P Trai	sulting_	F	Received by:	ACT	
Project Name:	ML+PTrav Shop		S	GGS PM:	JAN	
	1-L					
	500-ml					
lalge	250-ml or 8-oz					
HDPE/Nalgene:	125-ml or 4-oz					
Œ	60-ml or 2-oz					
	other					
	1-L					ananin masaranya mananja di manana mata
ió	500-ml					
glase	250-ml or 8-oz	4 6041	es @ \$4]	ea.		
amber glass:	125-ml or 4-oz with or without septa					
r d	40-ml VOA vial	15 vials	. @ 54 ea	.•		
	other					
Subtotal:						
Note: R	eturned bottles (re	gardless of size/p	ores.) are billed bo	ack at \$4/bottle u	inless otherwise	quoted .
		·				
Amount to Inv	roice Client \$:	76.0	00	_ W O#:	11841	86

e-Sample Receipt Form

SGS Workorder #:

1184186

	<u> </u>			1 1 0	4 1 0	,
Review Criteria	Condition (Yes	, No, N/A		ions Noted b		
Chain of Custody / Temperature Requ	irements	Y	Exemption permit	ted if sampler ha	and carries/del	ivers.
Were Custody Seals intact? Note # &	& location N/A					
COC accompanied s	samples? YES					
N/A **Exemption permitted i	if chilled & coll	ected <8 hou	rs ago, or for sample	s where chilling	is not required	
	YES				C Therm. ID	
	N/A	Cooler ID:		@	°C Therm. ID):
Temperature blank compliant* (i.e., 0-6 °C aft	ter CF)? N/A			@	°C Therm. ID	
(, 2 0 0 3	N/A			@	°C Therm. IC	
	N/A			@	°C Therm. ID	
*If >6°C, were samples collected <8 hour	-				1 -1	
	14/	1				
If <0°C, were sample containers ic	ce free?	_				
ii vo o, noto sample containers to	N/A	1				
If samples received without a temperature blank, the	"cooler					
temperature" will be documented in lieu of the temperature						
"COOLER TEMP" will be noted to the right. In cases where n	neither a					
temp blank nor cooler temp can be obtained, note "amb						
"	'chilled".					
Note: Identify containers received at non-compliant temperature	erature .					
Use form FS-0029 if more space is a						
Holding Time / Documentation / Sample Condition R	Requirements	Note: Refe	r to form F-083 "Sam	ple Guide" for so	ecific holding	times.
Were samples received within holdin			130 0411			,
Do samples match COC** (i.e.,sample IDs,dates/times coll	lected)?					
**Note: If times differ <1hr, record details & login pe	· ·					
Were analyses requested unambiguous? (i.e., method is spec						
analyses requested unambiguous? (i.e., method is spec	analysis)					
,	, ,					
			***Exemption per	mitted for metals	e.g,200.8/60	20A).
Were proper containers (type/mass/volume/preservative**	*)used? YES	5				
Volatile / LL-Hg Rec						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa	amples? YES	6				
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? YES	6				
Were all soil VOAs field extracted with MeOF	H+BFB? N/A					
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd procedures and ma	ay impact data q	uality.	
Addition	al notes (if	annlicable)				
Addition	iai Hules (II i	applicable				

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1184186001-A	HCL to pH < 2	ОК			
1184186001-B	HCL to pH < 2	OK			
1184186001-C	HCL to pH < 2	OK			
1184186001-D	HCL to pH < 2	OK			
1184186001-E	HCL to pH < 2	OK			
1184186001-F	HCL to pH < 2	OK			
1184186001-G	HCL to pH < 2	OK			
1184186001-H	HCL to pH < 2	OK			
1184186002-A	HCL to pH < 2	OK			
1184186002-B	HCL to pH < 2	OK			
1184186002-C	HCL to pH < 2	OK			
1184186002-D	HCL to pH < 2	OK			
1184186002-E	HCL to pH < 2	OK			
1184186002-F	HCL to pH < 2	ОК			
1184186002-G	HCL to pH < 2	OK			
1184186002-H	HCL to pH < 2	OK			
1184186003-A	HCL to pH < 2	OK			
1184186003-B	HCL to pH < 2	OK			
1184186003-C	HCL to pH < 2	OK			
1184186003-D	HCL to pH < 2	OK			
1184186003-E	HCL to pH < 2	OK			
1184186003-F	HCL to pH < 2	ОК			
1184186003-G	HCL to pH < 2	ОК			
1184186003-H	HCL to pH < 2	ОК			
1184186004-A	HCL to pH < 2	OK			
1184186004-B	HCL to pH < 2	ОК			
1184186004-C	HCL to pH < 2	ОК			
1184186004-D	HCL to pH < 2	ОК			
1184186004-E	HCL to pH < 2	OK			
1184186004-F	HCL to pH < 2	OK			
1184186004-G	HCL to pH < 2	OK			
1184186004-H	HCL to pH < 2	OK			
1184186004-I	No Preservative Required	OK			
1184186004-J	No Preservative Required	OK			
1184186005-A	HCL to $pH < 2$	OK			
1184186005-B	HCL to $pH < 2$	OK			
1184186005-C	HCL to pH < 2	OK			
1184186005-D	HCL to $pH < 2$	OK			
1184186005-E	HCL to $pH < 2$	OK			
1184186005-F	HCL to pH < 2	OK			
1184186005-G	HCL to $pH < 2$	OK			
1184186005-H	HCL to $pH < 2$	OK			
1184186005-I	No Preservative Required	OK			
1184186005-J	No Preservative Required	OK			
1184186006-A	HCL to pH < 2	OK			
1184186006-B	HCL to pH < 2	OK			
1184186006-C	HCL to pH < 2	OK			
1184186006-D	HCL to pH < 2	OK			
1184186006-E	HCL to pH < 2	OK			
1184186006-F	HCL to pH < 2	OK			52 of 53
					02 OI 00

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Appendix E Groundwater Sampling Forms

Site/Client Name:	MLUP	Environ	mental	Support	Well II	Well ID: MW-5 TS						
Project # : 105 ₀ 0	0528.1	8001 T	0351			Sample ID: MW-5 TS						
Sampled By: N,	B. Ells	World	18.0			le Time: ()	915	Samp	le Date: 7/	21/18		
Weather Conditions	s: Sunny	700-1	7.01			ate ID: -	11.	·	1/2	1110		
Sampling Method:		Other_				SD Yes	No No	Trip Blank	Required:	Yes □ No		
				Well In	formation	X E I	<i>y</i>	1119 2.2	Troquitou, pa	100 🗀		
Well Type: Pern				Well Diameter	<u>}_</u> in.	Screen Inte	erval:	ft E	BGS to	ft BGS		
Well Condition:	Good ☐ Fa	ir 🗌 Poor (i	f fair or poor	explain in Notes)		, Stickup 🔲	Yes N	o; If yes,	ft abov	ve ground		
Daniel to Water (# E	TOO! #* 1	^		Gauging/Purg	Married Street, or other Designation of the last of th	- Table 1 and 1			فينسب	_ U_ = L 9.		
Depth to Water (ft E Total Depth (ft BT)		U				Pump Depth						
Depth to Product (ff		_				Start Time (2- End Time (24						
Product Thickness			N.			urge Time (m		110				
scr	screen, then use default value of 0.3 ft.;											
Min. purge volume if Well Diameter –			al) = volume of 041 gal/ft			lumn thickness		X # of casing		_ =gal		
VVCII Diametei –	yairit	1 - 0.0	J4 i gal/it		163 gal/ft		4' – 0.653	gai/π	6 - 1.	469 gal/ft		
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell volume])												
Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown												
(24-hr)	Rate (liter/	Volume	(°C)	Conductance (μS/cm ^c)	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)		
	minute)	1	(± 3 %)				(± 0.1)	(± 10%,				
		L		(± 3%)	(± 10%)	(± 10mV)		or <5 NTU)		(Max <u>0,33</u> ft)		
0839		1/4	9.65	1107	8.15	214.2	7.05	L	5.16	0,06		
0844		1	9,61	865	6.18	213.1	7.13	L	5.19	0.09		
0849		2	4.78	807	6.03	312.0	7.16	1_	5.22	0.12		
0854		3	10.02	796	5.90	21819	7.12	1_	5.93	0.13		
0859		4	10.29	793	5.48	231.5	7.31	i.	5, 25	0.15		
0904		5	10.41	796	6.38	214.4	7.36	1	5,25	0.15		
0909		6	10.50	794	6.38	216,9	7.38	1	2,32	0.15		
					0155	01011	1. 20	-	318-	0.10		
Parameter Stable (C	Check applica	able)	./	. /		. /						
		,	V	2 1 21-	41	V	V	41				
Sample Color: N	०१८			Sample Odor:	None		Shee	n: None				
	Analys	ses			I Sampling Applicable			Comm	onte			
		3260			/			00/1	ICIICO			
	GRO A	Kioi		v	/							
		K 10 2			/			-				
	Pive											
Notes:												
Equipment: Pump	Pear	the P	oc. + 17:	L Tubing (Typ	1	tofloal	land.					
Water Level Meter 5		dusta	CHIZIMILI	Tubing (Typ	e/Length) _	TO TON Y	5 T T	Bailer Typ	e			
Turbidity Meter (Mak		AI CU TUI		Multi-Paramet	er Meter (M	ake/SN#)	J	136 /4	73			
randing weter (man						1		ter Lot #				
Purge Water Handi	ing: 🗌 Discl	narged to su	ırface X Con	tainerized 🔲 Tre	ated (how?)							

Site/Client Name:	MLDPI	Environ	mental.	Support	Well II	Well ID: MW-6 TS						
Project # : 105 , 6	00528.	18001	T0351	1.0	Sampl	e ID MW-	6 TS					
Sampled By: B						e Time:	11:30	Samp	le Date: 7/3	1/18		
Weather Conditions	S. Sunnia	11111		2.11	Duplic	Duplicate ID:						
Sampling Method:		√ ☐ Other				MS/MSD ☐ Yes No Trip Blank Required: No Yes ☐ No						
-				Well In	formation		-	THE SIGNAL	T.COG. TOU.	100 🗀 110		
Well Type: Perm	nanent 🗀 T	emporary	2	Well Diameter	<u>}</u> in.	Screen Into	erval:	ft E	3GS to	ft BGS		
Well Condition:	Good □ Fa	ir 🔲 Poor (i	f fair or poor	explain in Notes)	+	Stickup 🔲	Yes N	o; If yes,	ft above	ground		
				Gauging/Pur								
Depth to Water (ft B						Pump Depth		-				
Total Depth (ft BTC Depth to Product (ft		119				Start Time (2 End Time (24		27				
Product Thickness						urge Time (24		47				
LOW FLOW: Max Draw Down = (Tubing Depth – Top of Screen Depth) X 0.25 =(ft); if screen interval is not known or water table is below top of screen, then use default value of 0.3 ft.;												
Min. purge volume if required: purge volume (gal) = volume of water/ft(gal/ft) X Water column thickness(ft) X # of casing volumes =gal												
Well Diameter – gal/ft 1" – 0.04↑ gal/ft 2" – 0.163 gal/ft 4' – 0.653 gal/ft 6' – 1.469 gal/ft												
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell volume])												
Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown												
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)		
	(liter/ minute)	(gal)-	(± 3 %)	(μS/cm ^c)			(± 0.1)	(± 10%,		0.33		
	'	L	(= 0 /0)	(± 3%)	(± 10%)	(± 10mV)	(2 0.7)	or <5	1	(Maxft)		
1054		1/4	9.65	432	5,01	54.0	6.63	MTU)	15.48	0.03		
1059		1	9.38	907		30.7	1	M	15,52			
11 04		-	1		0.83	30.0	6,76			0.03		
		3	4.03	895	0.68	1111	6.79	M	15.52	0.03		
1104		3	8.92		0.58_	-6.7	6.80	M	15.53	0.03		
1114		4	8.91	888	0,47	15.3	6.80		15.53	0.03		
1119		5	894	888	0.43	-18.6	6.79		12.29	0.03		
1124		6	8.13	887	0,39	-99'4	6,74	L	12.29	0.03		
	^											
13.4												
Parameter Stable (0												
Sample Color:	ear with	prown/	sed patiet		None		Shee	n: Nonc				
	Analy	202			I Sampling Applicable	1		Comn				
N'S				Clieck	Applicable			Collin	nents			
	TEX 83				V							
	RO AKI				/							
וע	RO AKI	04			V	-						
Notes:												
	equipment: Pump Type Pegasus Peristaltic Tubing (Type/Length) teflon lined Bailer Type											
Equipment: Pump	Type Yeq 0	isus Y	eristal	TIL Tubing (TV	pe/Length)	retion	lined	Bailer Typ	oe			
Water Level Meter_		indicato	1	Multi-Parame	ter Meter (M	lake/SN#) Y	SI 551	MPS				
Turbidity Meter (Mal		_						Iter Lot #	-			
Purge Water Handl	ling: 🗌 Disc	harged to s	urface XCo	ntainerized 🔲 Tre	eated (how?)						

Site/Client Name:	Site/Client Name: MLTP Environmental Support Well ID: MW-7 TS											
Project # : 05.	00528.1	8001	10351	7	Sampl	Sample ID: MIN - 7 TS						
Sampled By: B.	Noelber.	N. Well	<u> </u>				300		e Date: 7/	Ri /18		
Weather Condition	s: Sunnu				Duplic	ate ID: -				1110		
Sampling Method:)						MS/MSD ☐ Yes ☑ No Trip Blank Required: ☑ Yes ☐ No						
				Well In	formation		2	THE BIGHT	rtoquilou, A	103 🗀 110		
Well Type: Pern				Well Diameter	} in.	Screen Int	erval:	ft B	GS to	ft BGS		
Well Condition:	Good 🗌 Fa	ir 🔲 Poor (i	f fair or poor	explain in Notes)		Stickup 🗌	Yes 🗌 N	o; If yes,	ft abov	e ground		
5 4 14 14 6		1		Gauging/Purg								
Depth to Water (ft I Total Depth (ft BT)		d7				Pump Depth						
Depth to Product (f						Start Time (2 End Time (24		-				
Product Thickness						urge Time (r						
LOW FLOW: Ma	LOW FLOW: Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0.25 =(ft); if screen interval is not known or water table is below top of screen, then use default value of 0.3 ft.;											
Min. purge volume if	required: pu	rge volume (g	al) = volume o	f water/ft(gal/	t) X Water co	lumn thicknes	s(ft)	X # of casing		=gal		
Well Diameter –	Well Diameter – gal/ft 1" – 0.041 gal/ft 2" – 0.163 gal/ft 4' – 0.653 gal/ft 6' – 1.469 gal/ft Water Quality Parameters											
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell volume])												
Time Flow Purge Temp Specific DO ORP pH Turbidity DTW Drawdown												
(24-hr)	Rate (liter/	Volume	(°C)	Conductance (μS/cm°)	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)		
	minute)	Ĩ	(± 3 %)		/	4. 45 10	(± 0.1)	(± 10%,		0,33		
				(± 3%)	(± 10%)	(± 10mV)		or <5 NTU)		(Maxft)		
1234		74	1153	1249	9.21	45.2	6.85	H	17.30	0.03		
1239		_1_	11.93	1910	1,22	34.8	6.76	L	17.30	0.03		
1244		3	10.76	1198	6.94	34,1	6.78		17.32	0.05		
1249		3	10.53	1148	1.01	35,1	6.78	L	17.32	0.05		
1921		7	10.52	1198	1.08	36.8	6.78		17,32	0.05		
					_				1.7.5	0.03		
:4												
Parameter Stable (0	Check applica	able)	/	/		V	/					
Sample Color:	bre			Sample Odor:	None		Shee	n: No1	.			
					Sampling			, 015				
	Analy			Check A	Applicable			Comm	ents			
	TEX	8700		V	/							
	-RO	YKIDI	200									
	DRO	AK 10	٨									
Notes:												
Notes:												
Equipment: Pump	Type Pega	ISUC P	eristal ti	Tukin o (To		tetlon	linel	12 N 22	_			
Water Level Meter		icator	0 1314111	L Tubing (Type Multi-Paramet			SI 551	Bailer Type	9			
Turbidity Meter (Mal				wuu-raramet	er weter (M	akeroin#)[ter Lot #	_			
Purge Water Handl	ing: Disc	harged to su	urface Cor	ntainerized Tre	ated (how?)	US						

Site/Client Name:	ML	P Env	COAM	ntal Suppor	Well ID	: MW	-9				
Project#: 105	005			0351		ID: MU	7-9				
Sampled By: 3	, Was	elber	7		Sample	Sample Time: - Sample Date: 7/30/18					
Weather Conditions	: 100	dy			Duplica	Duplicate ID:					
Sampling Method:	☐ Low Flow	Other }	Vrose, 8	0% recover	MS/MS	/ MS/MSD ☐ Yes ☑No Trip Blank Required: ☑ Yes ☐ No					
				Well Inf	ormation						
Well Type: Pern				Tell Blaffictor	2,in.	Screen Inte			GS to	ft BGS	
Well Condition:	Good ☐ Fai	r 🗌 Poor (if	fair or poor e				Yes XN	o; If yes,	ft abov	e ground	
Depth to Water (ft E	STOCK H	210	- 8	Gauging/Purg		Pump Depth	(ft BTOC)				
Total Depth (ft BT)		79			110000000000000000000000000000000000000	tart Time (24	I-hr)	301-13	Dr 09	39	
Depth to Product (f)		nd Time (24		308			
Product Thickness	(ft)	/			_	ırge Time (m					
. scr	een, then use	default value o	of 0.3 ft.;	Screen Depth)		(1				e is below top of	
Min. purge volume if Well Diameter –			al) = volume of 41 gal/ft	water/ft(gal/f	t) X Water col I 63 gal/ft	umn thickness	(ft) - 0.653	X # of casing		=gal 69 gal/ft	
Water Quality Parameters (Achieve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell volume])											
(Achieve stab	le parameters f	or 3 consecut	ive reading, 4 ¡	parameters if practic	al [each readi	ng taken after	pumping a	minimum of 1	I flow through cel	l volume])	
Time	Flow	Purge	Temp	Specific	DO (mg/L)	ORP (mV)	pН	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)	
(24-hr)	Rate (liter/	Volume - (gal)-	(°C)	Conductance (μS/cm ^c)	(mg/L)	(1114)		, ,	(11.11.00)	(1.5)	
	minute)	7	(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	(± 10%, or <5		(Maxft)	
	MUm	14.	4.4 4				7 07	NTU)			
0939	300	1/4	15.23	1780	5,59	200.3	7.01	M	4.5 7	0.31	
0946										0.55	
0949	600	2	15.12	1.343	0.60	-32.1	6.79	4	5.27	1,01	
0952	600	32	15.79	10230	0.29	-27.1	6.71	<u></u>	5.62	1.36	
0956	600	5	15,84	1.241	0.29	-32.9	6.72	<u></u>	5.90	1.69	
1000	600	62	15.59	1.287	0.28	-53.60	6.81	7	6.31	2.05	
1004	600	8.	15016	1.372	0.23	-73.3	6.95	1	6.70	2.44	
1008	600	9.5	14,86	1.441	0.23	-87.9	7.07	4	7.02	2.76	
						2 E			1.		
EN	DP	URGE	. NO	SAM	PLT.	ALLC	W 5	TO R	EBOUM	ND	
			/								
Parameter Stable (Check applic	able)					::				
Sample Color:	the			Sample Odor:	- 1		Shee	en:			
					I Sampling			0			
	Analy	ses		Check	Applicable			Comr	nents		
Notes:			101	1 2			1 .	0 1	, ,	Howe	
	0.16	3 gal	1HX L	1.53 X3	= 2.	22 ga	1 =	8.4	Lor	الجيما	
م ا	02000	م م ما	+ 10	AR 1,111.	فأمميت	hw 1	DW-F	10.2 00	7/3/0 V	olunes	
End purge	on	1750 9	5	VUE WIN	JUNY W	to Clina	1200		_		
Equipment: Pump	Type I da	asus	i eristal	Tubing (Ty	pe/Length)	I CTION	VET E	_ Bailer Ty	pe		
water Level Meter	21012	[ver	cator	Multi-Parame	eter Meter (N	nake/SN#)	, , ,	ilter Lot #_	,—		
Turbidity Meter (Ma	ake/SN#)						r	III.EI LUI#			
Purge Water Hand	dling: 🗌 Dis	charged to s	urface XCo	ntainerized Tr	eated (how?)					

Site/Client Name:	MLTP	Tran	sforme	r Shop	Well ID: MW-9 TS					
Project #: 105	0052	8.1800	T	03511	Sample		-			12.W
Sampled By: B		lber.		Jells	Sample	e Time:		Sampl	e Date: <	7/3/18
Weather Conditions			,	0 - 1.1	Duplica	ate ID:	_			8 11510
Sampling Method: [SD Yes [<u>~</u> N∩	Trin Blank	Required:	Yes WNo
camping weared.		Д. Сито		Well Info		D [103[7,340	тпр ыапк	rtequired.	i res 🖂 ivo
Well Type: DPerm	anent 🔲 Te	emporary	1	Well Diameter2	in.	Screen Inte	rval:	ft B	GS to	ft BGS
Well Condition: ₩\0						Stickup 🔲	Yes N			ve ground
- A				Gauging/Purgin	g Informa		- <i>T</i>			
Depth to Water (ft B		12 bo	SCTOC		Tubing/	Pump Depth	(ft. BTOC);		
Total Depth (ft BTC		79 9	,	<u>*</u>	Purge Start Time (24-hr) 0941					
Depth to Product (ft.						nd Time (24		10	414	
Product Thickness (LOW FLOW: Max		= (Tubing De	onth - Ton of	Screen Depth)		urge Time (m		nual is not kno	we or water tob	le is below top of
		default value o		Эсгеен Берш)	^ 0.25 -	(II), II	screen inte	IVALIS HOLKIIC	own or water tab	ie is below top of
Min. purge volume if						lumn thickness		X # of casing		gal
Well Diameter –	gal/ft	1" - 0.0	41 gal/ft	2"-0.16	3 gal/ft	4	- 0.653	gal/ft	6' – 1.	469 gal/ft
(Achieve stable	norometers f	or 3 consecuti	ue reading 4	Water Quality parameters if practical	Paramete	ers	numning o	minimum of 1	flow through an	II volumol)
Time	Flow			Specific	DO	ORP			DTW	Drawdown
(24-hr)	Rate	Purge Volume	Temp (°C)	Conductance	(mg/L)	(mV)	pН	Turbidity (NTU)	(ft BTOC)	(ft)
	(liter/ minute)	(gal)	(1.2.0()	(μS/cm ^c)			/+ D 1\	(± 10%,		
	minute)		(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0.1)	or <5		(Maxft)
00111								NTU)	/ 12	
0941	~	-							6.12	A
1040		and the	-			-			8,79	2.67
										1751
2.6	2 1		- 37				100			- m3
	1.1	1	371			85				F. F.
Parameter Stable (C	heck applica	able)					8			
Sample Color:			ė)	Sample Odor:			Shee	n:		
				Analytical S	Sampling					
	Analy	ses		Check Ap	plicable			Comm	ients	
Notes: Well po	urged	entir	ely c	lry, and	Miw	be al	lowed	to	rebou	nd
80%	Deto	€ 20	mpir	ng.		y				- 1
			Paris	taltubing (Type		Lalla	Local		-	
Equipment: Pump			10015	S 1 CA (Pubing (Type	/Length) _	tetion -	Tired	Bailer Typ	e	-
Water Level Meter	-	ndreat	01	Multi-Parameter	r Meter (M	ake/SN#)	F-1	 	_	
Turbidity Meter (Mak	(F/2I/I#)						F1	Iter Lot #		
Purge Water Handl	ing: 🗌 Disc	harged to su	rface 💢 or	ntainerized Treat	ed (how?))				

Site/Client Name:	MW	-9 ×	42		Well ID: MW-9TS					
Project # :			*		Sample	e ID: M	W-C	1 75		
Sampled By: B	Worl	her 1	N. W	rells	Sampl	e Time: 9	100	Sampl	le Date: 8/3	TIX
Weather Conditions	s: Sun					ate ID: 🔥		9 75	(a) 06	000
Sampling Method: [SD 🗌 Yes	00	Trip Blank	Required:	
					formation		t		. /`	
Well Type: Perm					2_in.				GS to	ft BGS
Well Condition:	§ood □ Fa	ir 🗌 Poor (if	f fair or poor				Yes XX	o; If yes,	ft abov	e ground
Depth to Water (ft B	TOCK F	-30		Gauging/Purg		ation /Pump Depth	/# PTOC	\		
Total Depth (ft BTC		3.79				Start Time (2):	-	
Depth to Product (ft		_				End Time (24		_		
Product Thickness (urge Time (m		-		
scre	een, then use	default value	of 0.3 ft.;	f Screen Depth)						le is below top of
Min. purge volume if Well Diameter –			gal) = volume of 041 gal/ft		/ft) X Water col			X # of casing		_ =gal 469 qal/ft
vveli Diameter –	gaint	1 - 0.0	J41 gai/it	Water Quali			4' – 0.653	gai/π	0 - 1.4	169 gai/īt
(Achieve stable	e parameters	for 3 consecut	tive reading, 4	parameters if practic	al [each read	e rs ling taken after	r pumping a	minimum of 1	flow through cell	l volume])
Time	Flow	Purge	Temp	Specific	DO	ORP	pН	Turbidity	DTW	Drawdown
(24-hr)	Rate (liter/	Volume (gal)	(°C)	Conductance (µS/cm°)	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)
	minute)	10	(± 3 %)	" '	(1.400()	(: 40:) ()	(± 0.1)	(± 10%,		(11
			-	(± 3%)	(± 10%)	(± 10mV)		or <5 NTU)		(Maxft)
WEL	L /	ALLO	WED	TO V	REBO	-	80	5%		
0932		ă.	15.35	1342	17.02	155.0	6.64			
0935	1		15.59	0,957	5.95	109.2	6.03	L		
,	- V									
	it is	7								
				27						
V:										
			-							
Parameter Stable (C	Check applic	cable)								
Sample Color:				Sample Odor:			Shee	n:		
54				Analytica	al Sampling					
	Analy	/ses		Check	Applicable			Comm	ients	
LET.	EX	8260	0	7	ALA			RU /	4	
G	KO	AKI	2/		7					
D	RCZ	AITI	Q7 No		V,					
Natan	JUCS	2005	3-400		<u> </u>					
Notes:	KA#	5W8	570a							
			_							
	Da	ansus	Daris	Litic	9	1 often	Land			
Equipment: Pump	Type TO	Jasus	m Cl		pe/Length)		- 111WC	Bailer Typ	e AADs	
Water Level Meter_	1 CILC	100	WH	Multi-Paramet	ter Meter (M	ake/SN#)	121		2017	
Turbidity Meter (Mak	(e/SIN#)					TV.	F	Iter Lot #		
Purge Water Handl	ling: 🔲 Disc	charged to si	urface 🛣 co	ntainerized Tre	eated (how?))				

Water Parameter Meter Calibration Log

Time: 0907

Calibration By: Bo War ber

Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.00	VOI	7/30/18	12/2019	7,03	7,08	± 0.10
рН	4.00	4.00	WXI	7/30/18	03/2020	3.87	4.00	± 0.10
-	10.00	10.03	WYZ	7/30/18	02 2020	9,98	10.03	± 0.10
Sp Cond (mS/cm)	1,413	1,359	W1A	10/3/17	05/2019	1,005-	1.359	± 10%
ORP (mV)	240	240	9099	4/10/18	07/2020	250,6	240	*******
DO*					~	96.4%	101.42	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table 770, 3 mm Hy

7/31/18

Time: 0750

Calibration By: N. Wells

Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.00	VOI.	7/30/18	12/2019	7.03	7.00	± 0,10
рН	4.00	4.01	WX I	7/30/18	03/2020	4.06 1	1.01	± 0,10
	10.00	10006	WY2	7/30/18	02/2020	9.97	10,06	± 0.10
Sp Cond (mS/cm)	1.413	1.386	W1A	10/3/17	05/2019	1,008	1.386	± 10%
ORP (mV)	240	240	9099	4/10/18	07/2020	235.6	240	*******
DO*	\	Macalipos		· · · · · · ·		108.48	101.0	6 ± 2%

If parameter not included in sampling event, fill in box with NA (not applicable) * Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

@ 767.5 mm ltg 30,22 in ltg

Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.01	Vol	7/30/18	12/2019	7.07	7.01	± 0,10
рН	4,00	4.00	MXI	7/30/18	03/2020	3.92	4.00	± 0.10
	10.00	10.06	MYZ	7/30/18	09/3030	10,09	10.07	± 0.10
Sp Cond (mS/cm)	1.413	1,278	WIA	10/3/17	05/2019	1.265	1.278	± 10%
ORP (mV)	240	240	9539	4/13/17	11/2020	249.0	240.0	
DO*	(marine)	-		1		43.9	99.0	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

^{*} Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table