SITE CHARACTERIZATION FINAL REPORT

FORMER KONGIGANAK SCHOOL TANK FARM KONGIGANAK, ALASKA

FINAL August 2009

Prepared for:

Prepared by:

825 W. 8th Ave. Anchorage, AK 99501

TABLE OF CONTENTS

AC	RON	YMS AND ABBREVIATIONSv
1.	INTR 1.1. 1.2. 1.3. 1.4. 1.5. 1.6.	ODUCTION1Background1Objectives1Scope of Work1Regulatory Framework2Contaminants of Concern2Limitations2
2.	FIEL 2.1. 2.2. 2.3. 2.4.	D ACTIVITIES5Site Description5Test Pits5Temporary Well Points5Sources of Drinking Water in Kongiganak6
3.	FIND 3.1. 3.2.	INGS 7 Sampling Strategy 7 Results 7
4.	QUA	LITY ASSURANCE REVIEW9
5.	CON	CEPTUAL SITE MODEL
6.	SUM 6.1. 6.2.	MARY
7.	REF	ERENCES
ТА	BLES 1: 2: 3: 4:	Contaminants of Concern Screening Levels (in text) Sample Summary Test Pit Analytical Results Selected Soil VOC and PAH Analytical Results
	5: 6: 7:	Non-Detect Compounds with MDL Greater than ADEC Cleanup Level Conceptual Site Model Summary (in text) Complete Receptor Pathways (in text)
FIC	5: 6: 7: GURE :	Non-Detect Compounds with MDL Greater than ADEC Cleanup Level Conceptual Site Model Summary (in text) Complete Receptor Pathways (in text) S

APPENDICES

A: Field Notes

- B: Photographic Log
- C: Laboratory Reports
- D: Laboratory Review Checklist
- E: CSM Scoping Form and Human Health CSM

ACRONYMS AND ABBREVIATIONS

AAC	. Alaska Administrative Code
ADEC	. Alaska Department of Environmental Conservation
AK	. Alaska
bgs	. Below ground surface
BTEX	. Benzene, toluene, ethylbenzene, and xylenes
CSM	. Conceptual site model
DRO	. Diesel range organics
EPA	. U.S. Environmental Protection Agency
GRO	. Gasoline range organics
LCS	. Laboratory control sample
LCSD	. Laboratory control sample duplicate
LKSD	. Lower Kuskokwim School District
mg/kg	. Milligrams per kilogram
MDL	. Method detection limit
MRL	. Method reporting limit
MS/MSD	. Matrix spike/matrix spike duplicate
OASIS	. OASIS Environmental, Inc.
PAH	. Polycyclic aromatic hydrocarbon
PID	. Photo-ionization detector
ppmv	. Parts per million by volume
QA	. Quality assurance
QC	. Quality control
RPD	. Relative percent difference
SIM	. Selective Ion Mode
SCL	. Soil cleanup level
VOC	. Volatile organic compound

1. INTRODUCTION

Under Notice-to-Proceed 18-9028-13-77, the Alaska Department of Environmental Conservation (ADEC) tasked OASIS Environmental, Inc. (OASIS) with conducting a site characterization of the former school tank farm (hereafter, "the site") in Kongiganak, Alaska. Kongiganak is located on the west shore of Kuskokwim Bay and west of the mouth of the Kuskokwim River (Figure 1). The site is located on the north side of the school, which is on the eastern side of the community (Figure 2).

This document presents field observations and analytical results from the site characterization. It also includes a conceptual site model based on data collected during field activities.

1.1. Background

The former Kongiganak school tank farm was operated by the Lower Kuskokwim School District (LKSD) and consisted of ten vertical aboveground storage tanks on a wood platform surrounded by a dirt berm. The tank farm was dismantled in April 2003, at which time a leaky pipe, surface staining, and petroleum odors were noted. Figure 3 presents an aerial view of the site after tank decommissioning in April 2003.

1.2. Objectives

The objectives for this project are to evaluate the potential threat to human health, safety, and welfare and to the environment from releases and spills at the former tank farm and to support the development of potential future remedial activities at the former tank farm.

1.3. Scope of Work

OASIS was contracted to perform the following tasks to meet the objectives outlined in Section 1.2:

- Excavate as many as ten test pits at the former tank farm and use field screening and laboratory sample analysis to evaluate impact to the environment.
- Install three temporary well points around the perimeter of the former tank farm if groundwater was encountered within 10 feet of ground surface.
- Collect as many as three water samples from surface water bodies within 50 feet of the former tank farm.
- Document sources of drinking water within the village.

The scope of work was followed as closely as field conditions allowed. A temporary well point driven to 12 feet below ground surface (bgs) did not encounter groundwater; thus, no groundwater samples were obtained. There were no surface water bodies within 50 feet of the site, so no surface water samples were obtained.

1.4. Regulatory Framework

A regulatory framework for this project has been developed using the following regulations and guidance documents:

- ADEC, 18 Alaska Administrative Code (AAC) 75, *Oil and Other Hazardous Substances Pollution Control*, revised as of October 9, 2008
- ADEC, Underground Storage Tanks Procedures Manual: Guidance for Treatment of Petroleum-Contaminated Soil and Water and Standard Sampling Procedures, November 7, 2002
- ADEC, 18 AAC 70, Water Quality Standards, amended as of December 28, 2006
- ADEC, Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances, Draft, as amended through December 12, 2008

1.5. Contaminants of Concern

The contaminants of concern are those compounds that are commonly associated with storage tanks containing petroleum hydrocarbon-based fuels. The list includes the following contaminants: benzene, toluene, ethylbenzene, and xylenes (BTEX); gasoline range organics (GRO); diesel range organics (DRO); and polycyclic aromatic hydrocarbons (PAHs).

Analytical results for soil samples have been evaluated using ADEC's Method Two guidelines as described in 18 AAC 75.341. Results have been compared to soil cleanup levels (SCLs) of the "Under 40 Inch Zone" presented in Table B1. SCLs are based upon the most restrictive benchmark for the direct contact pathway, the outdoor inhalation pathway, or the state-wide migration to groundwater pathway. Table 1 summarizes the applicable screening levels for the site.

Compound	ADEC SCL (mg/kg)
Benzene	0.025
Toluene	6.5
Ethylbenzene	6.9
Xylenes	63
GRO	300
DRO	250

TABLE 1. CONTAMINANTS OF CONCERN SCREENING LEVELS, FORMER KONGIGANAK SCHOOL TANK FARM, KONGIGANAK, ALASKA

Note: mg/kg – Milligrams per kilogram

1.6. Limitations

This site characterization has attempted to locate and quantify source areas of contamination. Based on limited resources and the extent of the area under investigation, there is no guarantee that sufficient data was collected to fully delineate all source areas.

Investigation activities were limited to locations where access was physically possible around the remaining tank farm infrastructure.

Much of the investigation strategy was based on field decisions made using fieldgenerated data. The qualitative nature of field data may not allow for a full understanding of contaminant mass and distribution; therefore, field decisions may not be as informed as decisions made using more quantitative laboratory data.

2. FIELD ACTIVITIES

This section describes the field activities performed by two OASIS personnel at the former Kongiganak school tank farm during the site characterization from May 26–30, 2009. Field notes are included in Appendix A.

2.1. Site Description

The aerial photograph dated September 17, 2004 (Figure 3), shows the remaining former tank farm infrastructure consisting of a roughly 40 by 40 foot deck and a 40 by 85 foot deck. At the time of the site visit, only the larger of the two decks was standing. The wooden pilings that supported the smaller deck remain in place. A berm partially enclosing an area south of the smaller deck and east of the large deck was found at the southeast corner of the site. Debris consisting of old sections of pipe, liner remnants, lumber, and miscellaneous household items were found on-site.

The photographic log in Appendix B documents the physical status of current site.

2.2. Test Pits

An excavator and operator were hired through the tribal office to dig ten test pits in the former tank farm vicinity. Test pit locations were based on areas that the excavator could physically access, areas where locals remember spills occurring, and field observations (Figure 3). The large wooden platform still exists in the center of the former tank farm area, so no test pits were excavated in this area. Shallow test pits were dug by hand beneath the platform and under a valve south of the platform where the excavator could not access.

Soil found in all test pits was olive gray, well sorted, silt to very fine sand. The nearsurface soil was rust colored.

An approximately 1-foot-thick layer of frozen soil was encountered at 8 to 10 inches bgs. The backhoe was able to scratch through the frozen layer and dig to a maximum of 6 to 8 feet bgs, depending on the terrain. Ten test pits were excavated before a clogged fuel line shut down the excavator. Between three and six field screenings were obtained from each test pit at varying depths. Heated headspace photo-ionization detector (PID) analyses helped field personnel determine which samples would be submitted for GRO, BTEX, and DRO analysis. In addition, the two screenings with the highest PID values were also selected for volatile organic compound (VOC) and PAH laboratory analysis. The samples collected from the two hand-dug test pits were not submitted for laboratory analysis due to low PID readings.

2.3. Temporary Well Points

Due to the difficulty of hand-driving a temporary well point through frozen soil, the backfilled test pit, TP-4, was selected as the initial location to install a temporary well point. TP-4 was also lower in elevation than other test pits; therefore, groundwater should have been closer to surface. The temporary well point was initially driven from

7.5 feet bgs (undisturbed soil at the base of the TP-4 excavation) to a depth of 10 feet bgs. The probe was backed off 4 inches to expose the open tip. The probe was allowed to sit for two hours while the rod was periodically checked for groundwater intrusion with a water level indicator. No groundwater entered the rod tip. The rods were pulled from the hole, cleaned, and driven down the same hole to 12 feet bgs. The probe was backed off 4 inches to allow for water infiltration. The water level indicator was used periodically for 30 minutes to check for groundwater influx. No groundwater was found at a depth of 12 feet bgs; therefore, no groundwater samples were collected.

2.4. Sources of Drinking Water in Kongiganak

Personal interviews of Kongiganak residents were conducted to identify local sources of drinking water. Findings include the following:

- Residences in Kongiganak are not plumbed. Residents haul their water, and "honey buckets" are dumped in a lagoon southeast of town. According to local sources, money has been designated to plumb the village.
- The Village Safe Water treatment plant receives its water via a pipeline from Contractor Lake approximately 1 mile north of town, located at a higher elevation that the surrounding area. Residents can purchase water at the treatment plant from a coin-operated pump.
- Residents catch rainwater and melt snow. A popular place for obtaining snow for melt water is upriver along the bluffs on the Kongiganak River about ½ mile northwest of town. The school obtains its water from rainwater, snowmelt, and by purchasing it from Village Safe Water.
- A well was installed in town near the water treatment plant, but it was not used due to high salinity. Photograph 10 in the Photographic Log (Appendix B) shows the old drinking water well casing. The old well is approximately 350 feet south of the former tank farm. No depth or installation date was found for the old well.

3. FINDINGS

This section discusses PID headspace screenings and analytical results for the soil samples that were obtained in Kongiganak. Tables 2, 3, and 4 show sample designations; PID screenings and GRO/BTEX/DRO analytical results; and VOC/PAH analytical results, respectively. Figure 3 is an aerial photograph displaying sample locations and DRO results. The laboratory analytical report is included in Appendix C.

3.1. Sampling Strategy

A total of 47 PID screenings were taken from the ten test pits and two hand-dug shallow test pits at varying depths. Laboratory sample selection was based on the following criteria:

- At least one sample was submitted from each test pit to delineate the horizontal extents of contamination.
- A sample was submitted from the deepest point in each test pit to delineate the vertical extents of contamination.
- Samples were collected from depths with higher PID headspace readings in order to determine if contamination was above SCLs.

Twenty-three samples, including two field duplicates and a sample for matrix spike/matrix spike duplicate (MS/MSD) analysis were submitted to Test America, Anchorage, for analysis of GRO using Alaska (AK) method 101, BTEX using U.S. Environmental Protection Agency (EPA) method 8021B, and DRO using method AK 102. Three samples, including one field duplicate, were submitted to Test America, Portland, for analysis of VOCs using EPA method 8260B and PAHs using EPA method 8270M by Selective Ion Mode (SIM). Samples for VOC and PAH analysis were taken from the two test pits with the highest PID results.

3.2. Results

Test pit TP-4, located just east of the large platform, had the highest PID headspace reading of all test pit samples. The PID results were 715 and 376 parts per million by volume (ppmv) at 4 and 6 feet bgs, respectively. Sample 09-KON-106-SB and field duplicate 09-KON-107-SB were collected from TP-4 at 4 feet bgs and submitted for GRO, BTEX, DRO, VOC, and PAH analysis. DRO results for the sample and the duplicate both exceeded ADEC SCLs with values of 356 and 397 mg/kg, respectively. All other analyses from TP-4 at 4 feet bgs had values below the SCLs. The shallowest screening sample from TP-4 at 2.5 feet bgs had a headspace of 68.7 ppmv. At 7 and 7.5 feet bgs, headspace readings were 44.5 and 43.4 ppmv, respectively. The DRO concentration in sample 09-KON-108-SB, collected at 7.5 feet bgs in TP-4, was 266 mg/kg, which is above the ADEC SCL.

Test pit TP-1, located at the northeastern corner of the old tank platform, had the second highest headspace reading from the test pits. Samples were submitted from TP-1 at 6

and 8 feet bgs where headspace readings were 82.3 and 53.1 ppmv, respectively. DRO concentrations from these locations, identified as samples 09-KON-101-SB and 09-KON-102-SB, respectively, were less than the ADEC SCLs. The toluene concentration in 09-KON-101-SB was 10 mg/kg, exceeding the SCL of 6.5 mg/kg. This was the only non-DRO result of all the samples submitted that exceeded ADEC SCLs.

Test pit TP-6, located outside the old berm at the southeastern corner of the site, was sampled at 3.5 feet bgs (09-KON-111-SB) and 7 feet bgs (09-KON-122-SB). The shallower sample had a DRO result of 1,460 mg/kg. Its corresponding headspace value was only 14 ppmv. The deeper sample had a headspace reading of 8.2 ppmv and no detectable DRO values.

Test pit TP-10, located just north of the large platform, was sampled at 2 feet bgs (09-KON-113-SB and duplicate 09-KON-114-SB) and at 7 feet bgs (09-KON-112-SB). The headspace reading from the shallower sample was 59.1 ppmv and had corresponding DRO concentrations of 2,730 and 555 mg/kg for the duplicate pair. The deeper sample had a headspace reading of 15.4 ppmv and a DRO concentration of 59.4 mg/kg.

All other samples submitted had GRO, BTEX, and DRO concentrations below ADEC SCLs. Samples 09-KON-101-SB (TP-1 at 6 feet bgs) and duplicate pair 09-KON-106-SB/09-KON-107-SB (TP-4 at 4 feet bgs) were also sampled for VOCs and PAHs. None of the VOC or PAH compounds in the samples exceeded ADEC SCLs except for toluene in 09-KON-101-SB.

4. QUALITY ASSURANCE REVIEW

OASIS evaluated the field procedures and laboratory results for quality assurance (QA), and quality control (QC). The data were reviewed to determine the integrity of the reported analytical results and ensure they met data quality objectives. The ADEC laboratory data review checklist was used to guide the data review and is included in Appendix D.

While excavating test pits, samples were collected for field screening and laboratory analyses simultaneously and placed in separate re-sealable plastic bags. Samples were field screened, the PID data were evaluated, and analytical samples were selected for placement in jars and preserved. However, GRO, BTEX, and VOC analytical values should be considered low-biased estimates because the analytical samples were not placed in jars and preserved immediately following collection from the test pits. In addition, non-detect results for GRO/BTEX/VOC analyses should not be used for regulatory compliance determinations because of the low bias.

OASIS delivered the test pit soil samples to Test America, Inc. in Anchorage, Alaska, on June 1, 2009, under appropriate chain-of-custody procedures. The laboratory received the shipment with interior cooler temperatures within the range of 2.0° to 6.0° Celsius. All of the samples collected were analyzed within acceptable holding times.

The method reporting limits (MRLs) listed by the lab for several volatile compounds were above the corresponding ADEC Method Two Migration to Groundwater cleanup levels. The laboratory stated the limits were high due to high moisture content in the samples. OASIS asked the laboratory to report the results to the method detection limit (MDL). Results detected above the MDL but below the MRL were flagged as estimated due to quantitation uncertainty. Several MDLs were still above the ADEC cleanup levels including: 1,2-dichloroethane, methylene chloride. 1,1,2,2-tetrachloroethane, tetrachloroethene, 1,1,2-trichloroethane, trichloroethene, 1,2,3-trichloropropane, and vinyl chloride. Table 5 shows the compounds with ADEC cleanup levels higher than the laboratory MDL. None of these chlorinated compounds were considered contaminants of concern at the site and the data should be acceptable for use. OASIS has no reason to believe that spills containing chlorinated compounds occurred at the site.

Method blank samples were analyzed in the laboratory with each batch of samples to evaluate instrument and systematic laboratory preparation contamination. Method blanks did not contain any analytes at concentrations above their respective reporting limits.

Laboratory control samples (LCS) and duplicates (LCSD) and MS/MSD samples were within acceptable limits for all analytical methods with the following exception. The BTEX LCSD recovery was very low because the analyst forgot to spike the sample. The corresponding LCS, MS, and MSD recoveries were within control limits. The relative percent difference (RPD) for the MS/MSD pair was also within the control limits. The

BTEX results should be acceptable for use without qualification for the LCSD recovery failure.

The GRO LCS and LCSD surrogate recoveries were biased high. The corresponding MS/MSD surrogate recoveries and the LCS/LCSD RPDs were within control limits. The DRO MSD surrogate recovery was also biased high. Again the corresponding DRO QC samples were within control limits. The surrogate recoveries for all project samples were within control limits and no qualification is necessary.

One trip blank was submitted for analysis of BTEX and one for VOCs. The BTEX trip blank contained 0.314 mg/kg toluene. The VOC trip blank contained 0.288 mg/kg toluene and 0.025 mg/kg trichloroethene. All detected toluene results with concentrations less than ten times that in the trip blanks have been flagged "B" for blank contamination.

Surrogate recoveries were within acceptable recovery ranges for all organic analyses.

RPDs were calculated for field duplicate results above the MDLs. The GRO RPD for the 09-KON-106-SB and -107-SB sample pair was 65%, above the ADEC suggested limit of 50%. The DRO RPD for the 09-KON-113-SB and -114-SB sample pair was 132%, also above the suggested limit of 50%. The data have not been qualified based on the RPD discrepancies due to the inherent heterogeneity of soil.

The data should be acceptable for use with the qualifications noted.

5. CONCEPTUAL SITE MODEL

The contaminants of concern, already mentioned in Section 1.5, have been identified from a review of ADEC's contaminated sites database and the results of this site characterization.

The following tables present a human health conceptual site model (CSM) for the contaminants of concern at the former Kongiganak school tank farm site. Appendix E contains a copy of ADEC's CSM Scoping Form and Human Health CSM for the site. The CSM Scoping Form was used to generate the Human Health CSM form and Table 6.

Elements of CSM	Site Specific Factors
Source	Aboveground storage tanks
Release Mechanism	Spills; leaks; direct discharges
Impacted Media	Surface soil; subsurface soil; possible groundwater
Transport Mechanism	Migration or leaching to subsurface; migration or leaching to groundwater
Exposure Media	Soil; groundwater; biota
Exposure Routes	Ingestion of soil and groundwater; ingestion of wild foods
Receptors	Residents; commercial or industrial workers; site visitors; construction workers

TABLE 6. CONCEPTUAL SITE MODEL SUMMARY

The pathways shown in Table 7 for current and future receptors are considered complete at this time for the contaminants of concern because the pathways are complete or may become complete in the future based on potential development or use. Although migration to groundwater has not been evaluated because groundwater was not encountered during this investigation, it is included as a possibly impacted media. Ingestion of biota was not identified as a complete pathway because no compounds listed in Table A-1, List of Compounds of Potential Concern for Bioaccumulation, in the CSM Scoping Form were found in measurable quantities.

TABLE 7. COMPLETE RECEPTOR PATHWAYS

Residents	Site Worker	Site Worker Site Visitor		Subsistence
Incidental Soil	Incidental Soil	Incidental Soil	Incidental Soil	Incidental Soil
Ingestion	Ingestion	Ingestion	Ingestion	Ingestion
Ingestion of	Ingestion of	Ingestion of	Ingestion of	Ingestion of
Groundwater	Groundwater	Groundwater	Groundwater	Groundwater

6. SUMMARY

OASIS performed a site characterization at the former Kongiganak school tank farm from May 26–30, 2009. Ten test pits were dug with a locally contracted backhoe; two shallow pits were dug by hand; 47 headspace readings were obtained from varying depths; 23 soil samples were submitted for analysis; and interviews were conducted with residents about drinking water sources. No surface bodies of water were found to be located within 50 feet of contamination. Groundwater was not encountered at 12 feet bgs; therefore, it was not sampled.

6.1. Discussion

DRO concentrations above ADEC SCLs were found in three of the ten pits (TP-4, TP-6, and TP-10). The PID and DRO results from test pit TP-10 suggest that DRO contamination does not extend below 3.5 feet bgs. In addition, the DRO results from the test pits surrounding TP-10 were all below the ADEC SCL. Therefore, the DRO impacts around TP-10 have been assessed in the vertical direction, and to the north, west, and east in the horizontal direction. Because no test pits could be advanced below the large tank deck, immediately south of TP-10 has not been fully assessed. However, the DRO results from test pit TP-2 located south of the large tank deck were below the ADEC SCL, so there is horizontal control in the southern direction.

Test pit TP-4 had DRO results above ADEC SCLs in all samples, including the deepest sample collected from the pit at 7.5 feet bgs. The DRO results in the surrounding test pits were all below the ADEC SCL. The vertical extent of DRO contamination in TP-4 was not determined as all samples collected from the test pit, including the deepest sample, exceeded ADEC SCLs for DRO. The northern extent of the DRO contamination was determined by the clean samples in TP-3. The eastern extent is between TP-4 and TP-6. No test pits were advanced to the south-southeast of TP-4 or to the west, due to the presence of the large tank deck.

Test pit TP-6 had a DRO result of 1,460 mg/kg at 3.5 feet bgs, although the PID result was only 14 ppmv. The field notes state that this sample had high organic content. An OASIS chemist reviewed the chromatogram from this DRO sample and noted that the response in the DRO range was due to biogenic interference. It is unlikely that this location is impacted by petroleum hydrocarbons. The chromatogram for this DRO sample is included at the end of the laboratory report in Appendix C.

Test pit TP-1 contained toluene above the ADEC SCL at a depth of 6 feet bgs. The TP-1 sample from 8 feet bgs contained detectable toluene below the SCL; hence, the vertical extent of toluene contamination was assessed. The northern and southern extents of the toluene contamination are determined by test pits TP-5 and TP-9. The areas to the southwest and southeast of TP-1 were not tested and the extent of toluene contamination is not fully assessed horizontally.

There are no current drinking water sources that might be impacted by the former tank farm site. Groundwater was not encountered at 12 feet bgs and groundwater petroleum hydrocarbon impacts have not been assessed.

6.2. Recommendations

An updated CSM model displays that the exposure pathways are complete for incidental soil ingestion and ingestion of groundwater. Groundwater was not sampled because the water table was deeper than could be accessed by hand-driven test points. For the CSM model, it is assumed that the groundwater has been impacted. Temporary, mechanically installed wells will need to be driven to confirm effects on groundwater. Additional soil samples may be required beneath the large tank deck, once it is removed, southwest of TP-1, and east of TP-4.

At this time, OASIS does not recommend pursuing remedial options given what appears to be a minimal extent of contamination and because groundwater is not used for drinking water and there is a new school opening this fall on the other side of Kongiganak. Therefore, staff and students will be removed from the contamination. However, any future improvements at the former school tank farm will require corrective action to address the soil contamination.

7. REFERENCES

Alaska Department of Environmental Conservation (ADEC), March 2009, Contaminated Sites Database, File # 2454.38.004, accessed via the Internet at: http://www.dec.state.ak.us/spar/csp/search/IC_Tracking/Site_Report.aspx?Hazar d_ID=4015.

TABLES

TABLE 2 Sample Summary

Former Kongiganak School Tank Farm

Comula ID	Dete	Sample	Danth	Analyses				Commonto
Sample ID	Date	Location	Depth	GRO/BTEX	DRO	PAH	VOC's	Comments
09-KON-101-SB	5/27/2009	TP-1	6 ft	~	✓	~	~	
09-KON-102-SB	5/27/2009	TP-1	8 ft	~	*			
09-KON-103-SB	5/27/2009	TP-2	4.5 ft	~	*			
09-KON-104-SB	5/27/2009	TP-2	7.5 ft	~	*			MS/MSD for DRO/GRO/BTEX
09-KON-105-SB	5/27/2009	TP-3	3.5 ft	~	*			Wet (from above frozen ground)
09-KON-106-SB	5/27/2009	TP-4	4 ft	~	*	~	~	
09-KON-107-SB	5/27/2009	TP-4	4 ft (duplicate)	~	*	~	~	Duplicate of 09-KON-106-SB
09-KON-108-SB	5/27/2009	TP-4	7.5 ft	~	*			
09-KON-109-SB	5/27/2009	TP-5	6.5 ft	~	*			
09-KON-110-SB	5/27/2009	TP-5	8 ft	~	*			
09-KON-111-SB	5/27/2009	TP-6	3.5 ft	~	*			High organic content
09-KON-112-SB	5/28/2009	TP-10	7 ft	>	*			
09-KON-113-SB	5/28/2009	TP-10	2 ft	>	*			
09-KON-114-SB	5/28/2009	TP-10	2 ft (duplicate)	>	*			Duplicate of 09-KON-113-SB
09-KON-115-SB	5/28/2009	TP-8	3.5 ft	>	*			Moderate organic content
09-KON-116-SB	5/28/2009	TP-9	7.5 ft	~	*			
09-KON-117-SB	5/28/2009	TP-8	5.5 ft	~	*			
09-KON-118-SB	5/28/2009	TP-7	5.5 ft	~	*			
09-KON-119-SB	5/28/2009	TP-7	7 ft	~	*			
09-KON-120-SB	5/29/2009	TP-5	3 ft	~	*			
09-KON-121-SB	5/29/2009	TP-9	4 ft	~	*			
09-KON-122-SB	5/29/2009	TP-6	7 ft	~	~			
09-KON-123-SB	5/29/2009	TP-3	4 ft	~	~			

Key:

ft = Feet

GRO = Gasoline-range organics (AK 101)

BTEX = Benzene, toluene, ethylbenzene, xylenes (total) (EPA 8021B)

DRO = Diesel-range organics (AK 102)

PAH = Polynuclear aromatic compound (EPA 8270M-SIM)

VOC = Volatile organic compound (EPA 8260B)

TABLE 3Test Pit Analytical ResultsFormer Kongiganak School Tank Farm

	Sample	Sample	PID	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	DRO
Test Pit	Depth (feet)	Number	(ppmv)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TP-1	1		15.3						
	2.5		9						
	5		14						
	6	09-KON-101-SB	82.3	22.4 JL	ND (0.0105)	10.0 JL	ND (0.290)	0.0459 JL	201
	8	09-KON-102-SB	53.1	6.97 JL	0.00246 JL	2.72 B	ND (0.00574)	ND (0.0275)	161
TP-2	2		12.6						
	3		14.1						
	4.5	09-KON-103-SB	20	0.843 JL	0.00180 JL	0.0373 JB	0.00731 JL	ND (0.0751)	142
	6		12.9						
	7		13.1						
	7.5	09-KON-104-SB	13.6	0.594 JL	0.00272 JL	0.0293 JB	ND (0.00475)	ND (0.0227)	21.8 J
TP-3	2.5		11.7						
	3.5	09-KON-105-SB	16.3	0.857 JL	0.00160 JL	0.121 JB	ND (0.00694)	ND (0.0332)	32.4
	4	09-KON-123-SB	12.5	1.39 JL	0.00343 JL	0.268 B	ND (0.00635)	ND (0.0304)	174
TP-4	2.5		68.7						
	4	09-KON-106-SB	715	55.8 JL	0.00571 JL	0.181 B	1.00 JL	5.57 JL	356
	4 (dup)	09-KON-107-SB	715	28.4 JL	0.00433 JL	0.150 B	0.721 JL	4.82 JL	397
	6		376						
	7		44.5						
	7.5	09-KON-108-SB	43.4	10.5 JL	0.00325 JL	0.107 B	0.0659 JL	0.496 JL	266
TP-5	3	09-KON-120-SB	12.4	0.585 J	0.00427 JL	0.0238 JB	ND (0.00587)	ND (0.0281)	183
	4		12.3						
	5.5		12.7						
	6.5	09-KON-109-SB	39.6	4.03 JL	0.000881 JL	1.53 B	0.00430 JL	ND (0.0197)	40.9
	8	09-KON-110-SB	29.5	2.92 JL	0.00233 JL	1.04 B	0.00642 JL	ND (0.0260)	33.9
TP-6	3.5	09-KON-111-SB	14	13.4 JL	0.0612 JL	0.344 B	0.0617 JL	0.308	1460
	6		11.3						
	7	09-KON-122-SB	8.2	0.633 JL	0.00787 JL	0.0757 B	ND (0.0643)	ND (0.0308)	24.5 J
TP-7	1.5		3.7						
	3.5		8.3						
	5.5	09-KON-118-SB	10.6	0.672 JL	0.00147 JL	0.0584 B	ND (0.00441)	ND (0.0211)	41.5
	6.5		8.5						
	7	09-KON-119-SB	10.1	0.535 JL	0.00312 JL	0.0426 JB	ND (0.00543)	ND (0.0260)	50.7
TP-8	2.5		11.3						
	3.5	09-KON-115-SB	37	3.98 JL	0.00163 JL	1.36 B	ND (0.00544)	ND (0.0261)	94.5
	4.5		28.5						
	5.5	09-KON-117-SB	20.1	2.19 JL	0.00231 JL	0.637 B	ND (0.00692)	ND (0.0331)	149
TP-9	2.5		15.6						
	4	09-KON-121-SB	15.6	0.869 JL	0.0163 JL	0.0693 B	0.00779 JL	ND (0.0206)	198
	5		15.4						
	7		17.3						
	7.5	09-KON-116-SB	17.4	0.888 JL	0.00129 JL	0.105 B	ND (0.00378)	ND (0.0181)	45.9
TP-10	2	09-KON-113-SB	59.1	13.6 JL	0.00624 JL	0.0419 JB	0.0171 JL	ND (0.0484)	2730
	2 (dup)	09-KON-114-SB	59.1	22.6 JL	0.0866 JL	0.108 JB	ND (0.0425)	ND (0.203)	555
	3.5		17.7						
	5		17.2						
	7	09-KON-112-SB	15.4	0.767 JL	0.00380 JL	0.0701 JB	ND (0.00634)	ND (0.0303)	59.4
SS-1	0.25		15						
SS-2	0.5		13.7						
		ADEC SCL		300	0.025	6.5	6.9	63	250

Notes:

Bolded value indicates result exceeds ADEC SCL.

Benzene, toluene, ethylbenzene, total xylenes were analyzed by EPA method 8021B.

All results for GRO, benzene, toluene, ethylbenzene, and xylenes are considered low-biased estimates because of gap between time of collection and time of bottling.

Key:

ADEC = Alaska Department of Environmental Conservation

 $B=\mbox{Results}$ with concentrations less than 10 times that in the trip blanks

DRO = Diesel-range organics (AK 102)

GRO = Gasoline-range organics (AK 101)

J = Result is estimated because it is below the method reporting limit, but above the method detection limit

L = Low bias

mg/kg = Milligrams per kilogram

ND = Not detected below limit listed in parentheses (Method Detection Limit in parentheses).

PID = Photo-ionization detector

ppmv = Parts per million by volume

SCL = Soil cleanup level (ADEC Method Two Migration to Groundwater)

TABLE 4 Selected Soil VOC and PAH Analytical Results

Former Kongiganak School Tank Far	m
-----------------------------------	---

				Submitted Soil Samples				
			ADEC	TP-1 @ 6 ft	TP-4 @ 4 ft	TP-4 @ 4 ft (duplicate)		
Analyses	Compound	Units	SCL	09-KON-101-SB	09-KON-106-SB	09-KON-107-SB		
Volatile Organic Compounds (EPA 8260B)								
	n-Butylbenzene	mg/kg	15	0.0289 JL	0.652 JL	0.514 JL		
	sec-Butylbenzene	mg/kg	12	ND (0.0154)	0.289 JL	0.249 JL		
	Ethylbenzene	mg/kg	6.9	0.0227 JL	0.594 JL	0.494 JL		
	Isopropylbenzene	mg/kg	51	ND (0.0197)	0.260 JL	0.217 JL		
	p-Isopropyltoluene	mg/kg		ND (0.0200)	0.283 JL	0.228 JL		
	Napthalene	mg/kg	20	0.314 JL	0.627 JL	0.525 JL		
	n-Propylbenzene	mg/kg	15	ND (0.0204)	0.667 JL	0.570 JL		
	Toluene	mg/kg	6.5	9.15 JL	0.13 JL	0.113 JL		
	1,2,4-Trimethylbenzene	mg/kg	23	0.0827 JL	4.77 JL	4.09 JL		
	1,3,5-Trimethylbenzene	mg/kg	23	0.0331 JL	1.30 JL	1.10 JL		
	o-Xylene	mg/kg	63	ND (0.0240)	1.57 JL	1.32 JL		
	m,p-Xylene	mg/kg	63	0.0372 JL	2.46 JL	2.06 JL		
Polynuclear Aromat	Polynuclear Aromatic Compounds (EPA 8270M-							
	Fluoranthene	mg/kg	1400	ND (0.00597)	0.0083 J	0.0073 J		
	Fluorene	mg/kg	220	ND (0.00597)	0.0213	0.0169 J		
	Napthalene	mg/kg	20	ND (0.0242)	0.377	0.307		
	Phenanthrene	mg/kg	3000	ND (0.00597)	0.021	0.0175 J		
	Pyrene	mg/kg	1000	ND (0.00597)	0.00524 J	0.00503 J		

Notes:

Bolded value indicates result exceeds ADEC SCL.

All VOC results are considered low-biased estimates because of gap between time of collection and time of bottling.

Key:

ADEC = Alaska Department of Environmental Conservation

EPA = U.S. Environmental Protection Agency

ft = Feet

J = Result is estimated because it is below the method reporting limit, but above the method detection limit

L = Low bias

mg/kg = Milligrams per kilogram

ND = Not detected at the limit listed in parentheses (Method Detection Limit in parentheses).

PAH = Polycyclic aromatic hydrocarbon

SCL = Soil cleanup level (ADEC Method Two Migration to Groundwater)

SIM = Selective Ion Mode

VOC = Volatile organic compound

Oasis ENVIRONMENTAL

TABLE 5 Non-Detect Compounds with MDL Greater than ADEC Cleanup Level

				Submitted Soil Samples				
			ADEC	TP-1 @ 6 ft	TP-4 @ 4 ft	TP-4 @ 4 ft (duplicate)		
Analysis	Compound	Units	SCL	09-KON-101-SB	09-KON-106-SB	09-KON-107-SB		
Volatile Organic Compounds (EPA 8260B)								
	1,2-Dichloroethane	mg/kg	0.016	ND (0.0232)	ND (0.00964)	ND (0.00852)		
	Methylene chloride	mg/kg	0.016	ND (0.517)	ND (0.00964)	ND (0.190)		
	1,1,2,2-Tetrachloroethane	mg/kg	0.017	ND (0.0436)	ND (0.0182)	ND (0.0160)		
	Tetrachloroethene (PCE)	mg/kg	0.024	ND (0.0349)	ND (0.0145)	ND (0.0129)		
	1,1,2-Trichloroethane	mg/kg	0.018	ND (0.0374)	ND (0.0156)	ND (0.0138)		
	Trichloroethene (TCE)	mg/kg	0.020	ND (0.0248)	ND (0.0103)	ND (0.00913)		
	1,2,3-Trichloropropane	mg/kg	0.00053	ND (0.102)	ND (0.0423)	ND (0.0374)		
	Vinyl chloride	mg/kg	0.0085	ND (0.0119)	ND (0.00494)	ND (0.00437)		

Former Kongiganak School Tank Farm

Notes:

Bolded value indicates MDL exceeds ADEC SCL.

All VOC results are considered low-biased estimates because of gap between time of collection and time of bottling.

Key:

ADEC = Alaska Department of Environmental Conservation

EPA = U.S. Environmental Protection Agency

ft = Feet

J = Result is estimated because it is below the method reporting limit, but above the method detection limit

mg/kg = Milligrams per kilogram

ND = Not detected at the limit listed in parentheses (Method Detection Limit in parentheses).

PAH = Polycyclic aromatic hydrocarbon

SCL = Soil cleanup level (ADEC Method Two Migration to Groundwater)

VOC = Volatile organic compound

FIGURES

PATH: V:\Project Drawings\ADEC\Kongiganak\09 Kong RPT FILE: 14-157-KON-RPT-F2.DWG PLOTTED: 6/25/09.

APPENDIX A

Field Notes

0850 Call Harriey - V Note: on 5/2010, Maring from 5/27/09 0815 Meet Nicholas David us the \sim P.J. Spills by the old tank fam answerry map - everything has charged. or able to use the backhor he the previous marketime a missage that we upind the tribul conjuct Wighto cal tword he says that this is an old Runt Was -Peter Daniel Sr. le show Nichalas the map Frank Mule Sr. L. Nicholson; A. Weller. thin + gives up the names of ne was certain not we needed to call The or busy each the blackhat operation , aguined Haviney Servera Inna called & x 5631 - Thinkes E A l ſ 1.11 - 2011. ¥:_____ Star- Mark Q,) - 29 1000 0860 0930 5/27/09 (control we would be better want tound frozen sin at a price & Enound. ONTHOR backhot that they have Call Harvey Form Tribal we needed it. out when the trubou Sur Mur fort believe the MANE G Seen Cal to the relictric utult, Manager Mary It turns when Harvey starts y suggested that we DIND He sain 200 C ranna L'Hurbine site tarvey - wake ant that thereas 1202 Mrcal the back hole of Ni Kolan at ime to call Surface, we are ukely (D:50) ; 1004 avi Harrey about Sha , which Z H Man ω

1245 Finish teat pet TI Willy and Ralph teat pet TI Willy Plan-go thurngus with digit teat pets Drive one with digit the will able to die to abud backfill each one i lise with digit the will die the remaining in to abud backfill each one i lise will backfill one i will backfille	the clichic will and Parph from the clichic which and Parph from they surface what they annue and since they they and they through the write they through the form they are and the they through the they through the borg through the they through the borg through the borg through the the borg through the borg through the borg through the borg through the borg through the borg through the borg they through the borg through the borg they through the borg through the borg they they they they they they they they
1115 Willy and Rayon to pick 1200 Backhoe is backhoe at si tank trigging TI nowing at si nere with not be able at there with not be able at	4 5/27/69 (cnt2) 4 us und not make it to buck it us und not make it to pick it we can borrow a pick due . It said he while buck due . It said he while the said new a put to the the said new out to ste the said Andrew out to ste to test depth to frozen growned to the the house the

.

.

And Association and

Starlog (andd) Huo Willy and Palph back. Backfill = PID raddings TP 1 more to TP 2 on south Stale of tank form platform of the TS on two hat form of the TS on two hat form of tank platform between of tank platform between of tank platform between of tank platform between plungs for sinally platform of tank platform at 18 as 1 and to any to be bad suntae blatform of tank platform between plungs for sinally platform about a between of tank platform between to all to the to asts de to any the bad suntae blatform about a between to all the bad suntae blatform about a between buakes the the the bad suntae to all the bad sub section the all the bad super preside bag the all the bad super to be the bad super to be the bad to all the bad super to bad the bad super to be the bad to all the bad super to be the bad super to be the bad to all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad super to be the bad the all the bad super to be the bad		Den Ast	They want
Starlog (andd) Hop Willy and Polyn back. Backfill And Starlog (widd) Starlog (andd) Starlog			high PID readys and 4 4 6 min
Storley (condi) (400) Willy and Polph back. Backfill TP 1. More to TP 2 and south Side of tank form pattern. Side of tank form pattern. Coning able to the the pattern Side of tank platform battern Coning able to the the pattern Stort diagona TP 3. What frozen have battern between Stort diagona TP 3. What frozen have battern between Stort diagona TP 3. What to any battern between Stort diagona to the the battern and to any battern and to any battern and to any battern and to any battern and the south of smaller to be any battern to a b 7.5. I labe to any battern and the south of smaller battern and the south of south of smaller battern and the south of south of smaller battern and the south of souther battern and the souther	duepest possible deri		Not: Find elevated PID at
Slotlog (condit) 1400 Willy and Polph back. Backfill = Slotlog (condit). TP: 1. More to TP: 2. on South Side of tank form platform. Side of tank form platform. PID readings PID r			List cat ches up write PD
Slatlog (and) Hubby Willy and Palph back. Backfill TP: 1 More to TP 2 an South TP: 1 More to TP 2 an South TP: 1 More to TP 2 an South Stat P: 1 More to TP 2 an South TP: 1 P: 1 More to TP 2 an South Stat P: 1 P: 1 P: 2 Stat P: 2 More to Parts de Stat P: 2 More to Parts de S		TP4 2.5 68.7	Just south of smaller temp palings
Startlog (andd) Hope Willy and Palph back. Backfill = Startlog (wild) TP1. More to TP2. on south Stide of tank farm plat form. Only able to due to to on south to tal 15 m two hat form. Only able to due to to on south to tal 15 m two hat form. Cackfill TP-2. Backfill TP-2. Cackfill TP-2. Cac	deepest possible degin	4 4 12,5 10,7	~1545 Move to TP of un lund sport un
S127109 (andd) 1400 Willy and Palph back. Backfill SIZ109 (could) TP.1 More to TP 2. on South Side of tank farm plat torm. Only able to due to to on so to TS. m two hole. BID readings Only able to due to to on so to TS. m two hole. BID readings TO 1 7.5 m two hole. BID readings TO 1 7.5 m two hole. BID readings TO 1 7.5 g. 15.3 Comments Start Pt Pole. Start Pt Pole. Start Pt Pole. Start Pt Pole. Start Alaging TP 3. Usry to a second we water backfull. Start Alaging TP 3. Usry Start alaging TP 3. Usry Start alaging TP 3. Usry Start alaging TP 3. Usry Start alaging to smalle backfull. Start alaging to smalle backfu		173 2.5 11.1	4. 0 1. 0 m 1.0 2
Starlog (andd) Hoo Willy and Palph back. Backfill All Starlog (andd). TP-1 More to TP-2 on South Side of tank farm plat form. Only able to dug to to on south to TP-1 More to to south to TP-1 More to astside to more backfill TP-2. Backfill TP-3. Backfill TP-3. B	Contraction and and and and and and and and and an	00.11 5.100	In alis flue line. Only able
Starlog (and) How Willy and Palph back. Backfill Starlog (unity) TP.1 More to TP 2 on south TP.1 More to TP 2 on south Stale of tank farm plat form. How to the to an south to to tank fill TP 2. Backfill TP 2. Start digging TP 3. Yery Start digging TP 3. Yery Start digging TP 3. Yery	And And And		about 6" belows surface. Bucklue
5/27/09 (andid) Hop Willy and Palph back. Backfill Spith PID readings TP.1 Mone to TP 2 on South Side of tank farm plat form. Only able to due to to on south to 7.5' on thus hole. Backfill TP-2. Backfill TP-2. Connue backne to lastside of tank platform between of tank platform between that for smaller platform TP 2 2 3.1 TP 1 1 10 5' 14.0 5' 14.0 53.1	ng heast of 10	× 4.5' 20.0	Start digging TP-3, Very
5/27/09 (andid) Hub Willy and Palph back. Backfill Sz7/09 (cm/d) TP-1 Mone to TP 2 on South Side of tamk form plat form. Only able to due to to on south to 1.5 on this to to on so Backfill TP-2. Backfill TP-2. Ho mone backhoe to bastside Ho 2 2 2 3.1 Ho 2 2 2 3.1	- - - - -	· · · · · · · · · · · · · · · · · · ·	of links for smaller platfum
5/27/09 (andid) 1400 Willy and Palph back. Backfill Szzilag (curtil) 1400 Willy and Palph back. Backfill PilD readings Side of tank to TP 2 on South Side of tank to to an South 15 m true hat form. 15 m true hale. 15 m true hale.			1450 move backne to lastsive
5/27/09 (andid) 1400 Willy and Palph back. Backfill = 5/27/09 (andid) TP-1 Mone to TP 2 on south Side of tank form platform. Only able to due to to on south 160 7.5' on this hole.			Backfill TP-Z.
5/27/09 (and) 1400 Willy and Palph back. Backfill = 5/27/09 (cutil) 1400 Willy and Palph back. Backfill = PID readings 1701 more to TP 2 on South = 7010 readings Side of tank form platform. 1701 1 153 comments		5, 14,0	to 7.5 m this hole.
5/27/09 (and) 1400 Willy and Palph back. Backfill = PID readings T.P.I. More to T.P.2 on South = ToI rest PH Depth PID Comments		25, 90	Star of tank tarm put on the
5/27/09 (andid) = 5/27/09 (andid) - 5/27/09 (andid) - 1400 Willy and Palph back. Backfill = PID readings	- (CXYIYMUX)	TOIL AND RUD	TP-1. Move to TP 2 in South
5/27/09 (and) 5/27/09 (until)		PID readings	1400 Willy and Palph back. Backfill
		5/27/09 (undid)	5/27/09 (anuta)

	Children and a second sec			2300 trid of day		Finen Sampling - fill out	Sared on I de	Samplus from Jaular Zuplacs	2000 start collecting analytrail	additional sampling.	tindings and plans the	Solo Call ben to during that a good	Junio Druver	Marin in ot 04000	Willy and Kaypin will return	1850 End of dugging tar today.	12 Dy that to I test under to oly duper	and a step out to TP-4.	1745 nove to TP-6 putside, the berned	the ruler Abe to diritty 8:	but not exactly and the toward	a lover ulevation than IP-1	of Tr-1 - this location is at	1645 Move to TP-5 toward river (NE)	5/27/bg (confé)	
*75		UT.	-	tpoq a,5	2.5 *	4 5	2°2	Circ 89T	* 7.0	e.S	× 5,5	2,60 T 3,5		5/28/09	Swed 7	6.0	706 3.5	Swind S	6.5	رۍ بري.	4	TP-Sand 3	Test Pit Depting	PID reading	5/27/09 (cont	8
17.4 pasche		C5 F	56	15.6	20.1 Average Dossiler	2) 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	37.0 clothes dryer.	11.3 warned on	1.0		10.6	8	(j) 1		8.2 Deepert possible	ć	4.0	29 5 5 5	3.6	t+ \$	2.3 (12.3)	7,6	H) PID Commence	5 (and)	() * possible ununginue supe 9	i i i i i i i i i i i i i i i i i i i

69	6/291	n And	in the second seco			607 £	5/2	a the	ž	
	5/29/61	1240	123			X	N X	123 11	<u>_</u>	ບ
	5/29/19	1535	ם קר קר		where a	x		22		6
	5/29/09	1530	<u>P</u>			י א	ۍ ۲	1. 10/	4	م ،
5/29/04	5/29/18	1525	120	Ř	6	X	ע א	120 1	60	5
5/28/69	5/28/A	Shbl	9	28	5	X		119 1	7.0	
	5/28/09	1940				X	~	118 11	55	7
	5/28/09	1935				′ ×	o ×	11 2	ני גו	8
c	5/28/09	1930	=			×	7 X	116 1	75	9
moderate maan is	5/28/19	1925	<u>57</u>			×	7 1	115 3	ς Υγ	\sim
	5/28/09	1055	114(dup)			X	<u>26</u> ×	114	2 (dup)	0
	5/28/09	1950				` X.	م لا	13 0	ie,	10
C	5/20/09	1920	112			X	<u>א</u>		-	spallon 10
Hiomanics	5/27/16	2125				X	4	1/1 1	С С	57 6
	5/27/09	1200	- Ho			X	ŏ ×	0	8	57 OT
	5/27/09	2025			_	×	ō ×	109 L	б _ј	ণ
	5/27/09	<u>1</u> 1 2 4 1 8	801		·	^ X	ن ن ۲	, <u>s</u> al	З, Г	F
	5/27/09) 2155	10-7(dup	×	×	×	ମ ×	r 101(pu	4	Ł
Gena /	5/27/109	27.12	106	×	×	r X	দ্য স	106 7	4	7
wat (from above from	5/27/69	25	105			×	e e	105	ຜ ່ຽ	ω ν
	5/27/109		-10	<u>}</u>	I/SW)	A X	¥	104	-1 01	શ્ર
	5/27/109	2135	103			r x	S S	103	45	نع
	Spila	2235	102			X	ν γ	102 :	ø	-
	5/07/09	3 2230	69-401-5E		×	X	82 22	9-Kon-101-siz	6	
Comments	Dave	Time	TIN T	Ŕ	x PAH	6 B B B B B B B B B B B B B B B B B B B	<u>8</u>	Sample 12	Deptin	10#
							U.	Sample:	Htical	Anal
<u>ــ</u>	5	7 (cont'a	5/27/00					<i>d</i>)	09 (cont	5/27/
	-						- 8			10

0900 2 5/28/09 9120 0000 Ŀ, ō Ó tip (see ulustration below) w iby hand down to T.5 fat The probe can be pushed water to come vito Drive from 7.5 - 10'. Back off 500 get aquanted with go probe to unfiltrate into rod. Willy arrives. Descant É 9 probe about 3-4" to allow key to the backhae - Gores back home to get it. Liba and Andrew put @ Guysment Lish Him to site to durie guptithe. K-Nicholson prote sit to allow water With == = = = = --------A. Weller 90 # J. ~ bouter open E Race ((T 8 (Linear of 1.1 N S and the particular 5 - T і 1 Same and 1 1 1 1 - S - D Hoos Pa/86/9 1030 Andrew and 000 0930 anno Geophate navins Dac IT MAT 1 H Whomes. FING and a cur chea P of the du the MULLA CINNED NO. Jun wh and the started Ralph annes, Further hom the appino 岛 ğ いてん under -120 ble burge at engine 159 20 t L L to chean out the una ame un accordiz UD 4 with the The the ਰੋ 8 7-97 70-7 Willy is back plattoms Å R back alant ٩ ب 44 The Same neur Stop Poruna and manue NED Sulda beer Pull 5 9 anes d Ś చే

		- not not		Bren Hank	
		Chin Chile		(see page 10)	
				Backhoe antinues to have problems	
				40 feet Northeast of TP-5	
				duging TP-8, approximately	
		H		Willy and Ralph annue. Start 1	1300
· ·	-	2		77-7	
				Measures PID samples from	
				> Andrew calibrates MD.	1230
				tile lunch break	
				1200. Anchew & Lisa also	
		10-6 7		Hake a which break until	
		TP-3 4		there the Willy and Kalph	1200
		7P-9 4		gan was temporaruly stored.	- w (65-46)
		1P-5-3-8 stu	,5,	thim where the rest of the type	
6	4			ipprosite side of the building	in the second
2maly fred	plus for	dutional sam		and finds the tripod on the	
				Andrew goes back to airstrup 1	
beneath lalve	Ê Ê	S-2 6"		and only have is of them	
putterm	0. <u></u>	5-1 3"		have support 14 pieces out here	
	15.4	* 7,		call the office and find out we	
	17.2	e) _		the tripod for the notical level.	
	17.7	3.5		We realize that we don't have	
	59,1	20		elevations for each test pet	
2 Continuet	PID(ppm	P# Deptn(Ft)		use level to difermine relative	
		1D readings		Andrew and Usa decide to	1100
	-	128/09 (could)		glog (contid)	5
15					14

ź

2/545 Take affer bred, " 2/6/5 Back to digging - more to TP 10 - we low sport downhill ~1430 Move to TP-9 on west side 000 01410 10 5/28/09 (undd) 12nt willy keeps it going λ γ of tank platform Dig to 07.5 feet and sample Backfi tran about 45 to 5.5. ENER & publis Simple. Bac of TPI and w Fint of (Not tank Wattam. Dig to 7 and SAC MM AIL Only able to dig to 5.5 feet More to 12har - 8 asit was timen and frozen (backtriller thaved frazer the back hote ourowat D use wants to ran the Willy and 5 5+4 5 e V 2- 40N Scale backlue Ø Rahr IK. - K. 1. J. ŧ H E 5120109 (undit) 20 1900 Bring out gallion bage 100 -One way thrin Securic was train 3" believe the surface. (55-1) Note Another took 2 near surface Samples with a travel/sharel dimper 2 demans South Side i har prog-See PID reading on page R Loron ion Thush raining up san plus à 150 & thous valve i the am the he and End of day electric 3 9 analy trial samples beneath the anti-P-2) underneatr Qual tor atchi oh are going located m folattorm UDYK Ś ~

میں میں اور			
Son Aler	100-0039 Low Tying area south of small tank platform with a large amout of wood & metal delevis. Only pointial berm surjounds two area on east sides	100-0031 Measuring depth of test pet TP:1 100-0032 Bobrat backhoe wird for this job 100-0033 Looking N from schurt at 100-0034 Day tank hurt to conex's wi 100-0035 Tank platform platform 100-0035 Tank platform looking E 100-0036 South side of tank platform (looking E) shows piping coming off platform green value mean piping T 100-0038 Pillings for smaller tank platform m E side of lance ore (looking N) konalganat R. in well amund:	18 5/28/09 (cond'd) Photo Log. 100-0030 ~10"thick organuic layer above
In Un	102-0048 Welds old drinking water well asing next to old water well 102-0049 New tank sonth of old water tank well casing at veny lift (1001king NE).	100-0043 Linur material last of small 100-0043 Wind turburies includes 100-0044 Backhoe digging TP-1 100-0045 Backhoe digging TP-6 outside the bermed area SE of small 5/27/100 the Backhoe digging TP-6 outside the bermed area SE of small 101-0047 Backhoe digging TP-7 on (100king SW (100king SW (100king SW (100king SW (100king SW TP-5) working SE.	5/28/09 (contid) Throto Log (contid) 100-0038

.

0800 Call Ben Martich to discuss involcing for backhoe and 2160 1100 5/29/09 L. Nicholson, A. Weller 000 0900 20 Weather: Low 30's - overcast sught wind through. Go to Tribul office to talk At Purvale Power Co. office all phone - unable to get Paid by the power compary so he doesn't have to fill out 2 w 4's Initial connect time shuets aska me to discuss this willie would prefer to get we should have the O Willie to Mary. She says that, with Mary Nikolan at Try culturing willie on his agam. She will work Talk to Mary Nikolay operator and labour. Tribel Council office out so that the tribed Shar Mar F Å 1 1 H 1 8 . K -1200 Willie comes by and says he finger seen to. We will not finger seen to. We will not dig any more holes. 1115 5/29/09 (and d) 1130 1330 and we then ran the tribu what we've unviced office Durp the Dower elevations Pack up acer. Prepare to Suip. Call Frontier Agent Ralph Keunge Senior. and lot operativ Pay Mara aret (school operator Backhoe level to descrime relative all to locartions - 67 Ser Ant reaser to the Ben and fell hurs laborer. between test pet 57.50 /hom 100.00 15.00 buicknoe and Prepare, /hun 1200 S L . م Ŋ

Scher Leader	Sole type in all test puts is well sorted silt to very five scund. Color is generally a live gray but near surface soil is rusty atored.	7 py - 5.24 7 plo - 8.86' Soil type notes	7ps = 6.64 7ps = -9.82	7 0 - 4.64' 7 02 - 3.92' 7 04 - 7.64' - 38'	22 5/29/09 (cont'd) 1evel notes 773 109-36' (AU)
Scould 1051-1 Scould 1051-1 Sc		TP222	$\frac{1}{1+\frac{1}{2}}$	· · · · · · · · · · · · · · · · · · ·	5/29/09 (cont d) 5/29/09 (cont d) 7/1 10 5/20 (cont

~1700 ~ 1600 out to site to dump remains 5/29/09 (cout'd) D Nicholas David. Day to dupose of as trash. four but it couldn't be used soil. Put Zeplocs in parbage and Jan them up. Fill out more sets of jars. We add NOTE: talked with several 5258 people about drinking water because the water was too the ground water samples Water treatment plant the >> we find that we have 4 There is a new Village Sofe - there is a con-operated filling Coc and re-ice samples. point on the side of the builds People can buy water from the we dedn't use the budget next to the washedence There used to be a well in John Mu н Н and the second secon Π ас 511 200 1.1 2.2 2.2 1 1 5/29/09 (unt'd) 2) Mourganet Active (schupt secretary) bluff. He doesn't know of anyone in torm who gets their water the pand runs dean at that north side of the runway get warden from a pond on the time of your People in town this is the best fasting weigh Vauniatur and ice meter also get sum furn along the bluft. He doesn't know of ongoine People only buy work as last pulse to collect snow She sup take 4-wheelen out to snow finn any other source. She sup that people got up on the hullside. 1) Nicholas David wtenriew (aut d) naunwater and ice melt and San Art Village safer Watch gots it's an buy welly fum VSW. The school gets its water from **3** 3 3 4 27

88 5/29/09 (with) 3) Trent Muller (school mandenave Utility amployees working on the VSW builds We ask one of them of he knows where the photograph it. It still has a The a pump, but no cover. monument, PVC cause and wiring water tank of the new water the area between the old Sofe upter tank. There are that looked like a well. This be. There was a tall pipe next to where he was standing old well was . He points to Sweral Water and Wasternate 15 not it. He says he tacks the well was near the Village used to be a well without but it was too sally. knows where the well wired to reart. She also said there Dun Alehmechanic). Ask Trent of he Π Acres Sec. 1020 1000 0800 Reice samples and spack remains 0900 Call Ralph Kunya (Frontier 5/20/09 080 Weather: Cool (30's) and clearing the plane Mane Shunda be King And Samples Via Frontien. gar. anstrop 6 back no order (More table us in school office if it shows back to corner Fly to Bethel. Try to to office. Make sure sc is locked up & head to agent) tannorram. Autures. TOO Dlaces Key W Nicholas Andrew annies heavy gear will not have a flyld up early. to anstrup Knows the D we will be an David's box and close dow L. Nicholson; A. Make sure gym is put to make sure. Thuy well not Go to Alaska Make sure school Weller à Shung A av 28

- Page Intentionally Left Blank -

APPENDIX B

Photographic Log

- Page Intentionally Left Blank -

PHOTO 1: BACKHOE, OPERATOR, AND LABORER REMOVING DEBRIS BEFORE DIGGING TEST PIT TP-1, VIEW TO THE NORTH

PHOTO 2: VIEW TO THE NORTH OF FORMER TANK FARM DECK

PHOTO 3: FROZEN LAYER, 1 FOOT BELOW GROUND SURFACE

PHOTO 4: DEBRIS AND OLD TANK FARM DECK, VIEW TO THE NORTH FROM EAST SIDE OF SITE

PHOTO 5: VIEW TO NORTHEAST FROM SOUTHWEST CORNER OF SITE

PHOTO 6: PILINGS FROM SMALLER OLD TANK FARM DECK AT NORTH CORNER OF SITE, VIEW TO THE NORTHEAST, TEST PIT TP-3 LOCATED TO THE RIGHT OF THE PHOTO

PHOTO 7: DEBRIS AND BERM AT SOUTHEAST CORNER OF SITE, VIEW TO THE SOUTHEAST, TEST PIT TP-4 IS LOCATED AT THE PHOTOGRAPHER'S LOCATION, TEST PIT TP-6 IS LOCATED JUST OUTSIDE THE BERM

PHOTO 8: DIGGING TP-6 OUTSIDE OF BERM AT SOUTHEASTERN CORNER OF SITE; VIEW TO THE SOUTHEAST.

PHOTO 9: DIGGING TEST PIT TP-7, VIEW TO THE SOUTH FROM THE NORTHERN CORNER OF THE SITE

PHOTO 10: CASING IN CENTER OF PHOTO IS OLD WELL LOCATED NEAR WASHETERIA, APPROXIMATELY 350 FEET SOUTH OF THE FORMER SCHOOL TANK FARM, VIEW TO THE NORTH

- Page Intentionally Left Blank -

APPENDIX C

Laboratory Reports

- Page Intentionally Left Blank -

June 24, 2009

Ben Martich Oasis Environmental, Inc. 825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

RE: Kongiginak

Enclosed are the results of analyses for samples received by the laboratory on 06/01/09 13:55. The following list is a summary of the Work Orders contained in this report, generated on 06/24/09 14:14.

If you have any questions concerning this report, please feel free to contact me.

ASF0006 Ko	ongiginak	14-157

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
09-KON-101-SB	ASF0006-01	Soil	05/27/09 22:30	06/01/09 13:55
09-KON-102-SB	ASF0006-02	Soil	05/27/09 22:35	06/01/09 13:55
09-KON-103-SB	ASF0006-03	Soil	05/27/09 21:35	06/01/09 13:55
09-KON-104-SB	ASF0006-04	Soil	05/27/09 22:10	06/01/09 13:55
09-KON-105-SB	ASF0006-05	Soil	05/27/09 22:15	06/01/09 13:55
09-KON-106-SB	ASF0006-06	Soil	05/27/09 21:50	06/01/09 13:55
09-KON-107-SB	ASF0006-07	Soil	05/27/09 21:55	06/01/09 13:55
09-KON-108-SB	ASF0006-08	Soil	05/27/09 21:45	06/01/09 13:55
09-KON-109-SB	ASF0006-09	Soil	05/27/09 22:05	06/01/09 13:55
09-KON-110-SB	ASF0006-10	Soil	05/27/09 22:00	06/01/09 13:55
09-KON-111-SB	ASF0006-11	Soil	05/27/09 21:25	06/01/09 13:55
09-KON-112-SB	ASF0006-12	Soil	05/28/09 19:20	06/01/09 13:55
09-KON-113-SB	ASF0006-13	Soil	05/28/09 19:50	06/01/09 13:55
09-KON-114-SB	ASF0006-14	Soil	05/28/09 19:55	06/01/09 13:55
09-KON-115-SB	ASF0006-15	Soil	05/28/09 19:25	06/01/09 13:55
09-KON-116-SB	ASF0006-16	Soil	05/28/09 19:30	06/01/09 13:55
09-KON-117-SB	ASF0006-17	Soil	05/28/09 19:35	06/01/09 13:55
09-KON-118-SB	ASF0006-18	Soil	05/28/09 19:40	06/01/09 13:55
09-KON-119-SB	ASF0006-19	Soil	05/28/09 19:45	06/01/09 13:55
09-KON-120-SB	ASF0006-20	Soil	05/29/09 15:25	06/01/09 13:55
09-KON-121-SB	ASF0006-21	Soil	05/29/09 15:30	06/01/09 13:55
09-KON-122-SB	ASF0006-22	Soil	05/29/09 15:35	06/01/09 13:55
09-KON-123-SB	ASF0006-23	Soil	05/29/09 15:40	06/01/09 13:55
Trip Blank	ASF0006-24	Soil	05/27/09 22:00	06/01/09 13:55

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.	Project Name:	Kongiginak	
825 W 8th Ave, ste 200	Project Number:	14-157	Report Created:
Anchorage, AK/USA 99501-4427	Project Manager:	Ben Martich	06/24/09 14:14
Ans	alvtical Case Na	rrative	

TestAmerica - Anchorage, AK

ASF0006

The Chain of Custody requested sample ASF0006 - 04 be used as the MS/MSD source for AK102 (DRO) and 8260 (GRO/BTEX). The requested sample was used for for the DRO run but not for the GRO/BTEX. Sample ASF0006-22 was used in one of the two GRO/BTEX batches.

The BTEX LCS Dup (9060016-BSD2) was not spiked due to laboratory error.

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

		Gasoline	e Range ()rgani TestA	cs (C6-C America A	C10) an	d BTE	CX per A	K101			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-02	(09-KON-102-SB)		:	Soil		:	Sampled	: 05/27/09 2	2:35			
Gasoline Range (Organics	AK101 GRO/BTEX	6.97	0.474	4.92	mg/kg dry	0.751 x	9060016	06/04/09 15:19	06/05/09 22:28	DS	
Benzene		n	0.00246	0.00029 6	0.0246	"		"		"	DS	J
Toluene		"	2.72	0.00735	0.0492	"		"		"	DS	
Ethylbenzene			ND	0.00574	0.0492	"		"		"	DS	
Xylenes (total)		"	ND	0.0275	0.0738	"	"	"	"	"	DS	
Surrogate(s).	a,a,a-TFT (FID)			78.4%		50	150 %	"			"	
	a,a,a-TFT (PID)			80.1%		50	150 %	"			"	
ASF0006-03	(09-KON-103-SB)		:	Soil		;	Sampled	: 05/27/09 2	1:35			
Gasoline Range (Organics	AK101 GRO/BTEX	0.843	0.482	5.00	mg/kg dry	1x	9060016	06/04/09 15:19	06/05/09 23:01	DS	J
Benzene		"	0.00180	0.00030 1	0.0250	"		"	"	"	DS	J
Toluene			0.0373	0.00748	0.0500	"		"		"	DS	J
Ethylbenzene			0.00731	0.00585	0.0500	"		"		"	DS	J
Xylenes (total)			ND	0.0280	0.0751	"	"	"	"	"	DS	
Surrogate(s).	a,a,a-TFT (FID)			93.9%		50 -	150 %	"			"	
	a,a,a-TFT (PID)			96.6%		50	150 %	"			"	
ASF0006-04	(09-KON-104-SB)		:	Soil		;	Sampled	: 05/27/09 2	2:10			
Gasoline Range (Organics	AK101 GRO/BTEX	0.594	0.392	4.07	mg/kg dry	1x	9060016	06/04/09 15:19	06/05/09 23:29	DS	J
Benzene		n	0.00272	0.00024 4	0.0203	"		"	"	"	DS	1
Toluene			0.0293	0.00608	0.0407	"		"		"	DS	J
Ethylbenzene			ND	0.00475	0.0407	"		"		"	DS	
Xylenes (total)			ND	0.0227	0.0610	"	"	"	"	"	DS	
Surrogate(s):	a,a,a-TFT (FID)			97.3%		50 -	150 %	"			"	
	a,a,a-TFT (PID)			100%		50	150 %	"			"	
ASF0006-05	(09-KON-105-SB)		:	Soil		:	Sampled	: 05/27/09 2	2:15			
Gasoline Range (Organics	AK101 GRO/BTEX	0.857	0.572	5.94	mg/kg dry	2.25x	9060016	06/04/09 15:19	06/05/09 23:58	DS	1
Benzene		n	0.00160	0.00035 7	0.0297	"		"	"	"	DS	1
Toluene		"	0.121	0.00888	0.0594	"	"	"	"	"	DS	
Ethylbenzene			ND	0.00694	0.0594		"	"	"	"	DS	
Xylenes (total)		"	ND	0.0332	0.0891	"	"	"	"	"	DS	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

	Gasolin	e Range O	rgani TestA	cs (C6-0 America A	C 10) ar Anchorag	nd BT	EX per A	K101			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-05 (09-KON-105-SB)		S	oil			Sample	d: 05/27/09 2	2:15			
Surrogate(s): a,a,a-TFT (FID)			109%	ő	50 -	150 %	2.25x		06/05	/09 23:58	
a,a,a-TFT (PID)			109%	ő	50 -	150 %	"			"	
ASF0006-08 (09-KON-108-SB)		S	oil			Sample	d: 05/27/09 2	:1:45			
Gasoline Range Organics	AK101 GRO/BTEX	10.5	0.447	4.64	mg/kg dry	0.751 x	9060016	06/04/09 15:19	06/06/09 01:54	DS	
Benzene	"	0.00325	0.00027 9	0.0232	"	"	"	"	"	DS	J
Toluene	"	0.107	0.00693	0.0464			"			DS	
Ethylbenzene	"	0.0659	0.00542	0.0464			"			DS	
Xylenes (total)	"	0.496	0.0259	0.0696	"		"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			89.1%	5	50 -	150 %	"			"	
a,a,a-TFT (PID)			91.2%	5	50 -	150 %	"			"	
ASF0006-09 (09-KON-109-SB)		S	oil			Sample	d: 05/27/09 2	22:05			
Gasoline Range Organics	AK101 GRO/BTEX	4.03	0.340	3.52	mg/kg dry	1x	9060016	06/04/09 15:19	06/06/09 02:28	DS	
Benzene	"	0.000881	0.00021 2	0.0176	"	"	"	"	"	DS	J
Toluene	"	1.53	0.00527	0.0352	"	"	"			DS	
Ethylbenzene	"	0.00430	0.00411	0.0352	"	"	"		"	DS	J
Xylenes (total)	"	ND	0.0197	0.0528	"	"	"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			90.8%	5	50 -	150 %	"			"	
a,a,a-TFT (PID)			94.0%	í	50 -	150 %	"			"	
ASF0006-10 (09-KON-110-SB)		S	oil			Sample	d: 05/27/09 2	22:00			
Gasoline Range Organics	AK101 GRO/BTEX	2.92	0.449	4.65	mg/kg dry	1.5x	9060016	06/04/09 15:19	06/06/09 02:54	DS	J
Benzene	"	0.00233	0.00028 0	0.0233	"	"	"	"	"	DS	J
Toluene	"	1.04	0.00696	0.0465			"		"	DS	
Ethylbenzene	"	0.00642	0.00544	0.0465	"	"	"		"	DS	J

Surrogate(s): a,a,a-TFT (FID) a,a,a-TFT (PID) ..

TestAmerica Anchorage

Xylenes (total)

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

..

"

"

50 - 150 %

50 - 150 %

..

DS

,,

ND 0.0260

90.3%

90.9%

0.0698

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager: Ben Martich

Report Created:

06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 TestAmerica Anchorage											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-11 (09-KON-111-SB)		Soil				Sampled	d: 05/27/09 2	1:25			
Gasoline Range Organics	AK101 GRO/BTEX	13.4	1.76	18.3	mg/kg	0.751	9060016	06/04/09 15:19	06/06/09 03:23	DS	J
Benzene	"	0.0612	0.00110	0.0913	"	"	"		"	DS	J
Toluene	"	0.344	0.0273	0.183		"	"		"	DS	
Ethylbenzene	"	0.0617	0.0213	0.183		"	"		"	DS	J
Xylenes (total)	"	0.308	0.102	0.274	"	"	"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			73.5%		50 -	150 %	"			"	
a,a,a-TFT (PID)			74.6%		50 -	150 %	"			"	
ASF0006-12 (09-KON-112-SB)		Soil				Sampled	d: 05/28/09 1	9:20			
Gasoline Range Organics	AK101 GRO/BTEX	0.767	0.523	5.43	mg/kg drv	1.5x	9060016	06/04/09 15:19	06/06/09 03:51	DS	1
Benzene	"	0.00380	0.00032	0.0271	"	"	"	"	"	DS	J
Toluene	"	0.0701	0.00812	0.0543		"			"	DS	
Ethylbenzene	"	ND	0.00634	0.0543		"				DS	
Xylenes (total)		ND	0.0303	0.0814	"			"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			99.5%		50 -	150 %	"			"	
a,a,a-TFT (PID)			100%		50 -	150 %	"			"	
ASF0006-13 (09-KON-113-SB)		S	Soil		Sampled: 05/28/09 1			9:50			
Gasoline Range Organics	AK101 GRO/BTEX	13.6	0.835	8.66	mg/kg drv	1x	9060016	06/04/09 15:19	06/06/09 04:18	DS	
Benzene	"	0.00624	0.00052 0	0.0433	"	"	"	"	"	DS	J
Toluene	"	0.0419	0.0129	0.0866		"	"			DS	J
Ethylbenzene	"	0.0171	0.0101	0.0866		"	"		"	DS	J
Xylenes (total)	"	ND	0.0484	0.130	"		"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			94.3%		50 -	150 %	"			"	
a,a,a-TFT (PID)			96.6%		50 -	150 %	"			"	
ASF0006-14 (09-KON-114-SB)		5	Soil		Sampled: 05/28/09			9:55			
Gasoline Range Organics	AK101 GRO/BTEX	22.6	3.51	36.4	mg/kg dry	3x	9060016	06/04/09 15:19	06/06/09 04:51	DS	J
Benzene	"	0.0866	0.00219	0.182	"	"	"	"	"	DS	J
Toluene	"	0.108	0.0544	0.364		"	"		"	DS	J

a,a,a-TFT (FID) Surrogate(s): a,a,a-TFT (PID)

TestAmerica Anchorage

Ethylbenzene

Xylenes (total)

Johanna Dreher

"

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

" ..

of custody document. This analytical report must be reproduced in its entirety.

DS

DS

"

,,

0.364

0.546

50 - 150 %

50 - 150 %

"

"

ND 0.0425

ND

0.203

71.7%

71.6%

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 TestAmerica Anchorage												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-15	(09-KON-115-SB)		Soil			Sampled: 05/28/09 19:25						
Gasoline Range (Organics	AK101 GRO/BTEX	3.98	0.449	4.66	mg/kg dry	0.751 x	9060016	06/04/09 15:19	06/06/09 05:23	DS	J
Benzene		"	0.00163	0.00028 0	0.0233	"	"	"	"	"	DS	J
Toluene		"	1.36	0.00697	0.0466	"		"	"		DS	
Ethylbenzene		"	ND	0.00544	0.0466	"	"	"	"		DS	
Xylenes (total)		"	ND	0.0261	0.0699	"		"	"	"	DS	
Surrogate(s):	a,a,a-TFT (FID)		89.4%			50 - 150 % "					"	
5 ()	a,a,a-TFT (PID)			91.7%	ó	50 -	150 %	"			"	
ASF0006-16	(09-KON-116-SB)		Soil			Sampled: 05/28/09			9:30			
Gasoline Range (Organics	AK101 GRO/BTEX	0.888	0.312	3.23	mg/kg dry	0.751 x	9060016	06/04/09 15:19	06/06/09 06:55	DS	J
Benzene		"	0.00129	0.00019 4	0.0162	"	"	"	"	"	DS	J
Toluene		"	0.105	0.00484	0.0323	"		"	"		DS	
Ethylbenzene		"	ND	0.00378	0.0323	"	"	"	"		DS	
Xylenes (total)		"	ND	0.0181	0.0485	"		"	"	"	DS	
Surrogate(s):	a,a,a-TFT (FID)			85.6%	5	50 -	150 %	"			"	
	a,a,a-TFT (PID)			88.2%	ó	50 -	150 %	"			"	
ASF0006-17	(09-KON-117-SB)		:	Soil		Sampled: 05/28/09 1			9:35			
Gasoline Range (Organics	AK101	2.19	0.572	5.93	mg/kg	1.5x	9060016	06/04/09 15:19	06/06/09 07:21	DS	J
Benzene		GKU/BIEX "	0.00231	0.00035	0.0296	ary "		"	"	"	DS	J
Toluene			0.637	0 0 00886	0.0593	"	"	"		"	DS	
Ethylbenzene		"	0.037 ND	0.00692	0.0593	"	"	"	"	"	DS	
Xylenes (total)		"	ND	0.0331	0.0889	"			"	"	DS	
Surrogate(s):	a,a,a-TFT (FID)			82.2%	6	50 -	150 %	"			"	
2 ()	a,a,a-TFT (PID)			83.7%	6	50 -	150 %	"			"	
ASF0006-18	(09-KON-118-SB)		:	Soil		Sampled: 05/28/09			9:40			
Gasoline Range G	Organics	AK101	0.672	0.364	3.77	mg/kg	1x	9060016	06/04/09 15:19	06/06/09 07:51	DS	J

Gasoline Range Organics	AK101 GRO/BTEX	0.672	0.364	3.77	mg/kg dry	1x	9060016	06/04/09 15:19	06/06/09 07:51	DS	J
Benzene	"	0.00147	0.00022 7	0.0189	"	"	"	"	"	DS	J
Toluene	"	0.0584	0.00564	0.0377	"	"	"	"	"	DS	
Ethylbenzene	"	ND	0.00441	0.0377	"	"	"	"	"	DS	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of susted document. This methads analyzed in strengthered in its artificity

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

	Gasoline	e Range C	Drgani TestA	cs (C6-0 America A	C 10) an Anchorag	d BTI e	EX per A	K101			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-18 (09-KON-118-SB)		Soil			Sampled: 05/28/09 19:40						
Xylenes (total)	AK101 GRO/BTEX	ND	0.0211	0.0566	mg/kg dry	1x	9060016	06/04/09 15:19	06/06/09 07:51	DS	
Surrogate(s): a,a,a-TFT (FID) a,a,a-TFT (PID)			101% 103%	5	50 - 50 -	150 % 150 %	"			"	
ASF0006-19 (09-KON-119-SB)		Soil		Sampled: 05/28/09 1			9:45				
Gasoline Range Organics	AK101 GRO/BTEX	0.535	0.448	4.65	mg/kg drv	1.5x	9060018	06/04/09 13:41	06/06/09 10:40	DS	J
Benzene	"	0.00312	0.00027 9	0.0232	"		"	"	"	DS	J
Toluene	"	0.0426	0.00695	0.0465	"		"	"	"	DS	J
Ethylbenzene	"	ND	0.00543	0.0465	"	"	"		"	DS	
Xylenes (total)	"	ND	0.0260	0.0697	"	"	"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			107%	ő	50 -	150 %	"			"	
a,a,a-TFT (PID)			109%	6	50 -	150 %	"			"	
ASF0006-20 (09-KON-120-SB)		Soil		Sampled: 05/29/09 1			5:25				
Gasoline Range Organics	AK101 GRO/BTEX	0.585	0.484	5.02	mg/kg dry	1.5x	9060018	06/04/09 13:41	06/06/09 11:07	DS	J
Benzene	"	0.00427	0.00030 2	0.0251	"	"	"	"	"	DS	J
Toluene	"	0.0238	0.00751	0.0502	"	"	"		"	DS	J
Ethylbenzene	"	ND	0.00587	0.0502	"	"	"		"	DS	
Xylenes (total)	"	ND	0.0281	0.0754	"		"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID) a,a,a-TFT (PID)			106% 107%	ő	50 - 50 -	150 % 150 %	"			"	
ASF0006-21 (09-KON-121-SB)		5	Soil			Sampleo	d: 05/29/09 1	5:30			
Gasoline Range Organics	AK101 GRO/BTEX	0.869	0.356	3.69	mg/kg	0.751	9060018	06/04/09 13:41	06/06/09 13:04	DS	J
Benzene	"	0.0163	0.00022	0.0185	"	"	"	"	"	DS	J
Toluene	"	0.0693	0.00552	0.0369	"		"	"	"	DS	
Ethylbenzene	"	0.00779	0.00431	0.0369	"		"		"	DS	J
Xylenes (total)	"	ND	0.0206	0.0554	"		"	"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			87.5%	;	50 -	50 - 150 % "				"	
a,a,a-TFT (PID)			90.4%	i	50 -	150 %	"			"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 TestAmerica Anchorage

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-22 (09-KON-122-SB)		5	Soil			Sampled	l: 05/29/09 1	5:35			
Gasoline Range Organics	AK101 GRO/BTEX	0.633	0.531	5.51	mg/kg dry	1.5x	9060018	06/04/09 13:41	06/06/09 13:33	DS	J
Benzene	"	0.00787	0.00033 1	0.0275	"	"	"	"	"	DS	J
Toluene	"	0.0757	0.00823	0.0551	"	"	"			DS	
Ethylbenzene		ND	0.00643	0.0551	"					DS	
Xylenes (total)	"	ND	0.0308	0.0826	"			"	"	DS	
Surrogate(s): a,a,a-TFT (FID)			106%	5	50 -	150 %	"			"	
a,a,a-TFT (PID)			111%		50 -	150 %	"			"	
			2			Compled	. 05/20/00 1	5.40			

ASF0006-23	(09-KON-123-SB)		5	Soil			Sampled	: 05/29/09 15	5:40			
Gasoline Range O	rganics	AK101 GRO/BTEX	1.39	0.524	5.44	mg/kg dry	1x	9060018	06/04/09 13:41	06/06/09 15:25	DS	J
Benzene		"	0.00343	0.00032 7	0.0272	"	"	"	"	"	DS	J
Toluene		"	0.268	0.00813	0.0544			"	"	"	DS	
Ethylbenzene		"	ND	0.00635	0.0544		"	"	"	"	DS	
Xylenes (total)			ND	0.0304	0.0816	"	"	"	"	"	DS	
Surrogate(s):	a,a,a-TFT (FID)			73.8%		50 -	150 %	"		1	"	
	a,a,a-TFT (PID)			75.3%		50 -	150 %	"			"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.			Proje	ct Name:	Ko	ngigina	k				
825 W 8th Ave, ste 200			Proje	ct Number:	14-	157				Report C	reated:
Anchorage, AK/USA 99501-4427			Proje	ct Manager:	Ber	Martich	1			06/24/09	14:14
	Ι	Diesel Range	e Orga TestAi	anics (C merica Ar	10-C2	5) per	AK102				
Analyte	Method	Result M	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-01 (09-KON-101-SB)		So	il			Sampled	1: 05/27/09 2	2:30			
Diesel Range Organics	AK 102	201	28.7	174	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 19:37	JN	RL1
Surrogate(s): 1-Chlorooctadecane			108%		50 -	150 %	"			"	
ASF0006-02 (09-KON-102-SB)		So	il			Sampled	l: 05/27/09 2	2:35			
Diesel Range Organics	AK 102	161	20.7	126	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 20:10	JN	RL1
Surrogate(s): 1-Chlorooctadecane			115%		50 -	150 %	"			"	
ASF0006-03 (09-KON-103-SB)		So	il			Sampled	1: 05/27/09 2	1:35			
Diesel Range Organics	AK 102	142	15.2	92.4	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 20:10	JN	RL1
Surrogate(s): 1-Chlorooctadecane			95.8%		50 -	150 %	"			"	
ASF0006-04 (09-KON-104-SB)		So	il			Sampled	l: 05/27/09 2	2:10			
Diesel Range Organics	AK 102	21.8	4.50	27.4	mg/kg dry	1x	9060015	06/04/09 08:38	06/08/09 17:14	JPN	J
Surrogate(s): 1-Chlorooctadecane			96.7%		50 -	150 %	"			"	
ASF0006-05 (09-KON-105-SB)		So	il			Sampled	l: 05/27/09 2	2:15			
Diesel Range Organics	AK 102	32.4	4.25	25.8	mg/kg dry	1x	9060015	06/04/09 08:38	06/06/09 00:31	JN	
Surrogate(s): 1-Chlorooctadecane			87.6%		50 -	150 %	"			"	
ASF0006-06 (09-KON-106-SB)		So	il			Sampled	l: 05/27/09 2	1:50			
Diesel Range Organics	AK 102	356	4.53	27.5	mg/kg dry	1x	9060015	06/04/09 08:38	06/05/09 23:59	JN	
Surrogate(s): 1-Chlorooctadecane			95.8%		50 -	150 %	"			"	
ASF0006-07 (09-KON-107-SB)		So	il			Sampled	1: 05/27/09 2	1:55			
Diesel Range Organics	AK 102	397	4.44	27.0	mg/kg dry	1x	9060015	06/04/09 08:38	06/06/09 01:04	JN	
Surrogate(s): 1-Chlorooctadecane			101%		50 -	150 %	"			"	
ASF0006-08 (09-KON-108-SB)		So	il			Sampled	1: 05/27/09 2	1:45			
Diesel Range Organics	AK 102	266	36.6	223	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 20:43	JN	RL1
Surrogate(s): 1-Chlorooctadecane			116%		50 -	150 %	"			"	
TestAmerica Anchorage							The results in	this report apply to th	e samples analyzed in	n accordance wi	th the chain
Johanna Dreher							oj cust	ouy uocument. 1 nis dh	aiyucai report must i	л тергоцисец In	us enurely.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc. 825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427			Project Name: Project Numbe Project Manage	Ko r: 14- er: Ber	ngiginal 157 1 Martich	k			Report C 06/24/09	reated: 14:14
	I	Diesel Range	Organics (TestAmerica A	C10-C2	5) per e	AK102				
Analyte	Method	Result M	DL* MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-09 (09-KON-109-SB)		Soil		:	Sampled	: 05/27/09 2	2:05			
Diesel Range Organics	AK 102	40.9 3	.92 23.9	mg/kg dry	1x	9060015	06/04/09 08:38	06/06/09 01:04	JN	
Surrogate(s): 1-Chlorooctadecane			102%	50	150 %	"			"	
ASF0006-10 (09-KON-110-SB)		Soil		:	Sampled	: 05/27/09 2	2:00			
Diesel Range Organics	AK 102	33.9 4	.15 25.2	mg/kg dry	1x	9060015	06/04/09 08:38	06/06/09 00:31	JN	
Surrogate(s): 1-Chlorooctadecane			107%	50	150 %	"			"	
ASF0006-11 (09-KON-111-SB)		Soil		:	Sampled	: 05/27/09 2	1:25			
Diesel Range Organics	AK 102	1460	67 1020	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 19:37	JN	RL1
Surrogate(s): 1-Chlorooctadecane			101%	50	150 %	"			"	
ASF0006-12 (09-KON-112-SB)		Soil		:	Sampled	: 05/28/09 1	9:20			
Diesel Range Organics	AK 102	59.4 4	.38 26.6	mg/kg dry	1x	9060015	06/04/09 08:38	06/05/09 23:59	JN	
Surrogate(s): 1-Chlorooctadecane			90.4%	50	150 %	"			"	
ASF0006-13 (09-KON-113-SB)		Soil		:	Sampled	: 05/28/09 1	9:50			
Diesel Range Organics	AK 102	2730 ³	5.1 214	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 20:43	JN	RL1
Surrogate(s): 1-Chlorooctadecane			89.2%	50	150 %	"			"	
ASF0006-14 (09-KON-114-SB)		Soil		:	Sampled	: 05/28/09 1	9:55			
Diesel Range Organics	AK 102	555 8	2.6 502	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 21:16	JN	RL1
Surrogate(s): 1-Chlorooctadecane			89.2%	50	150 %	"			"	
ASF0006-15 (09-KON-115-SB)		Soil		:	Sampled	: 05/28/09 1	9:25			
Diesel Range Organics	AK 102	94.5 ¹	3.0 79.0	mg/kg dry	10x	9060015	06/04/09 08:38	06/10/09 21:16	JN	RL1
Surrogate(s): 1-Chlorooctadecane			96.4%	50	150 %	"			"	
ASF0006-16 (09-KON-116-SB)		Soil			Sampled	: 05/28/09 1	9:30			
Diesel Range Organics	AK 102	45.9 4	.17 25.3	mg/kg dry	lx	9060015	06/04/09 08:38	06/11/09 14:52	JN	
TestAmerica Anchorage						The results in	this report apply to th	e samples analyzed is	n accordance wi	th the chain

Johanna Dheher

Oasis Environmental, Inc.		Project Name:	Kongiginak	
825 W 8th Ave, ste 200		Project Number	: 14-157	Report Created:
Anchorage, AK/USA 99501-4427		Project Manage	r: Ben Martich	06/24/09 14:14
	D	iesel Range Organics (TestAmerica A	C10-C25) per AK102 Anchorage	
Analyte	Method	Result MDL* MRL	Units Dil Batch Prepared	Analyzed Analyst Notes
ASF0006-16 (09-KON-116-SB)		Soil	Sampled: 05/28/09 19:30	
Surrogate(s): 1-Chlorooctadecane		117%	50 - 150 % 1x	06/11/09 14:52
ASF0006-17 (09-KON-117-SB)		Soil	Sampled: 05/28/09 19:35	
Diesel Range Organics	AK 102	149 <i>23.0</i> 140	mg/kg 10x 9060027 06/08/09 15:34 dry	06/10/09 21:49 JN RL1
Surrogate(s): 1-Chlorooctadecane		122%	50 - 150 % "	"
ASF0006-18 (09-KON-118-SB)		Soil	Sampled: 05/28/09 19:40	
Diesel Range Organics	AK 102	41.5 <i>4.20</i> 25.5	mg/kg 1x 9060027 06/08/09 15:34 dry	06/10/09 22:22 JN
Surrogate(s): 1-Chlorooctadecane		92.7%	50 - 150 % "	"
ASF0006-19 (09-KON-119-SB)		Soil	Sampled: 05/28/09 19:45	
Diesel Range Organics	AK 102	50.7 <i>4.22</i> 25.7	mg/kg 1x 9060027 06/08/09 15:34 dry	06/10/09 22:22 JN
Surrogate(s): 1-Chlorooctadecane		101%	50 - 150 % "	"
ASF0006-20 (09-KON-120-SB)		Soil	Sampled: 05/29/09 15:25	
Diesel Range Organics	AK 102	183 22.2 135	mg/kg 10x 9060027 06/08/09 15:34 dry	06/10/09 22:55 JN RL1
Surrogate(s): 1-Chlorooctadecane		116%	50 - 150 % "	"
ASF0006-21 (09-KON-121-SB)		Soil	Sampled: 05/29/09 15:30	
Diesel Range Organics	AK 102	198 <i>32.1</i> 195	mg/kg 10x 9060027 06/08/09 15:34 dry	06/10/09 22:55 JN RL1
Surrogate(s): 1-Chlorooctadecane		120%	50 - 150 % "	"
ASF0006-22 (09-KON-122-SB)		Soil	Sampled: 05/29/09 15:35	
Diesel Range Organics	AK 102	24.5 <i>4.41</i> 26.8	mg/kg 1x 9060027 06/08/09 15:34 dry	06/10/09 23:28 JN J
Surrogate(s): I-Chlorooctadecane		94.5%	50 - 150 % "	"
ASF0006-23 (09-KON-123-SB)		Soil	Sampled: 05/29/09 15:40	
Diesel Range Organics	AK 102	174 <i>26.7</i> 162	mg/kg 10x 9060027 06/08/09 15:34 dry	06/10/09 23:28 JN RL1
Surrogate(s): 1-Chlorooctadecane		102%	50 - 150 % "	"

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

		Phys	ical Paramet	t ers by AP TestAmerica	HA/AS Anchora	TM/EP	A Metho	ods			
Analyte		Method	Result M	DL* MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-01	(09-KON-101-SB)		Soil			Sampled	l: 05/27/09 2	2:30			
Dry Weight		TA-SOP	56.9 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-02	(09-KON-102-SB)		Soil			Sampled	I: 05/27/09 2	2:35			
Dry Weight		TA-SOP	60.9 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-03	(09-KON-103-SB)		Soil			Sampled	I: 05/27/09 2	:1:35			
Dry Weight		TA-SOP	64.7 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-04	(09-KON-104-SB)		Soil			Sampled	l: 05/27/09 2	2:10			
Dry Weight		TA-SOP	72.6 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-05	(09-KON-105-SB)		Soil			Sampled	l: 05/27/09 2	2:15			
Dry Weight		TA-SOP	76.1 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-06	(09-KON-106-SB)		Soil			Sampled	I: 05/27/09 2	21:50			
Dry Weight		TA-SOP	72.6 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-07	(09-KON-107-SB)		Soil			Sampled	I: 05/27/09 2	:1:55			
Dry Weight		TA-SOP	72.7 ¹	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-08	(09-KON-108-SB)		Soil			Sampled	I: 05/27/09 2	21:45			
Dry Weight		TA-SOP	63.9 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-09	(09-KON-109-SB)		Soil			Sampled	l: 05/27/09 2	2:05			
Dry Weight		TA-SOP	78.1 ¹	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-10	(09-KON-110-SB)		Soil			Sampled	l: 05/27/09 2	22:00			
Dry Weight		TA-SOP	77.5 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	
ASF0006-11	(09-KON-111-SB)		Soil			Sampled	1: 05/27/09 2	21:25			
Dry Weight		TA-SOP	27.6 1	.00 1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

	Physical Parameters by APHA/ASTM/EPA Methods TestAmerica Anchorage alvte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Analyst Notes F0006-12 (09-KON-112-SB)												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ASF0006-12	(09-KON-112-SB)			Soil			Sampled	1: 05/28/09 1	9:20				
Dry Weight		TA-SOP	73.4	1.00	1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN		
ASF0006-13	(09-KON-113-SB)			Soil			Sampled	l: 05/28/09 1	9:50				
Dry Weight		TA-SOP	46.0	1.00	1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN		
ASF0006-14	(09-KON-114-SB)			Soil			Sampled	l: 05/28/09 1	9:55				
Dry Weight		TA-SOP	39.8	1.00	1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN		
ASF0006-15	(09-KON-115-SB)			Soil			Sampled	l: 05/28/09 1	9:25				
Dry Weight		TA-SOP	70.9	1.00	1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN		
ASF0006-16	(09-KON-116-SB)			Soil			Sampled	l: 05/28/09 1	9:30				
Dry Weight		TA-SOP	77.0	1.00	1.00	%	1x	9060017	06/04/09 10:48	06/05/09 10:50	JN		
ASF0006-17	(09-KON-117-SB)			Soil			Sampled	l: 05/28/09 1	9:35				
Dry Weight		TA-SOP	70.8	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-18	(09-KON-118-SB)			Soil			Sampled	l: 05/28/09 1	9:40				
Dry Weight		TA-SOP	77.4	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-19	(09-KON-119-SB)			Soil			Sampled	l: 05/28/09 1	9:45				
Dry Weight		TA-SOP	76.4	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-20	(09-KON-120-SB)			Soil			Sampled	l: 05/29/09 1	5:25				
Dry Weight		TA-SOP	72.2	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-21	(09-KON-121-SB)			Soil			Sampled	l: 05/29/09 1	5:30				
Dry Weight		TA-SOP	76.3	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-22	(09-KON-122-SB)			Soil			Sampled	l: 05/29/09 1	5:35				
Dry Weight	,	TA-SOP	73.6	1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

		Phys	ical Parameters TestA	by API merica A	HA/AST Anchorag	ГМ/ЕР	PA Metho	ods				
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ASF0006-23	(09-KON-123-SB)		Soil Sampled: 05/29/09 15:40									
Dry Weight		TA-SOP	60.5 1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		
ASF0006-24	(Trip Blank)		Soil Sampled: 05/27/09 22:00									
Dry Weight		TA-SOP	100 1.00	1.00	%	1x	9060028	06/08/09 15:41	06/09/09 11:35	JN		

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Enviro	nmental, Inc.			Proj	ect Name:	Ko	ngigina	ık				
825 W 8th Av	re, ste 200			Proj	ect Number	: 14-	157				Report C	reated:
Anchorage, A	K/USA 99501-4427			Proj	ect Manager	r: Bei	n Marticl	1			06/24/09	9 14:14
				-								
		Casalina Da	ngo Ong	nias (C6 C10) and D	TEV	non AV1	1/0031D			
		Gasonne Ka	inge Org	anics (v Teat) and B Dortland	IEA	per AKI	J1/8021B			
				Test	America	Portiand						
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-01 (09-KON-101-SB)		1	Soil			Sampleo	1: 05/27/09 2	2:30			
Gasoline Range Or	ganics	AK101/8021B	22.4	2.40	11.6	mg/kg	1x	9060271	06/08/09 13:15	06/08/09 22:38	SYB	QP
Gusonne Runge Of	guines					dry						-
Surrogate(s):	a.a.a-TFT (FID)			81.2%	5	50 -	150 %	"			"	
5 ()												
ASF0006-01RE1	(09-KON-101-SB)		1	Soil			Sampleo	d: 05/27/09 2	2:30			
Benzene		AK101/8021B	ND	0.0105	0.0579	mg/kg	1x	9060271	06/08/09 13:15	06/09/09 15:32	SYB	
						dry						
Toluene		"	10.0	0.0128	0.290	"		"	"	"	SYB	
Ethylbenzene			ND	0.0143	0.290	"		"	"	"	SYB	
Xylenes (total)		"	0.0459	0.0391	0.290	"	"	"	"	"	SYB	J
Surrogate(s):	a,a,a-TFT (PID)			74.1%	i -	50 -	150 %	"			"	
				~ ••			~ .					
ASF0006-06 ((09-KON-106-SB)			Soil			Sampleo	1: 05/27/09 2	:1:50			S14
Gasoline Range Or	ganics	AK101/8021B	55.8	1.04	5.02	mg/kg	1x	9060271	06/08/09 13:15	06/08/09 23:33	SYB	
						dry						
Surrogate(s):	a,a,a-TFT (FID)			95.0%	5	50 -	150 %	"			"	
ACEAAAC ACEE1	(00 KON 10(0D)			Soil			Sampla	1. 05/27/00 2	1.50			S1 /
ASF0006-06KE1	(09-KON-106-8B)		1	5011			Sample	1: 03/2//09 2	1.30			512
Benzene		AK101/8021B	0.00571	0.00454	0.0251	mg/kg	1x	9060271	06/08/09 13:15	06/09/09 13:34	SYB	J
Toluono			0 181	0.00555	0.125	ary "		"	"		SYB	
Ethylhongono			1.00	0.00619	0.125	"		"	"		SYB	
Xylenes (total)		"	5.57	0.0169	0.125	"		"	"		SYB	
Aylenes (total)			5.57	0.0105	0.120						-	
Surrogate(s):	a,a,a-TFT (PID)			94.2%		50 -	150 %	"			"	
ASF0006-07RF1	(09-KON-107-SB)			Soil			Sampleo	1: 05/27/09 2	1:55			S1 4
AST 0000-0714ET		41/101/00010		0.050	1.(2		~P	00(0271	06/08/00 12:15	06/00/00 11 15	evp	
Gasoline Range Or	ganics	AK101/8021B	28.4	0.959	4.62	mg/kg drv	Ix	9060271	06/08/09 13:15	06/09/09 11:15	STB	
Benzene		"	0.00433	0.00418	0.0231	"		"	"	"	SYB	J
Toluene		"	0.150	0.00511	0.116	"		"	"	"	SYB	
Ethylbenzene		"	0.721	0.00569	0.116	"		"		"	SYB	
Xylenes (total)		"	4.82	0.0156	0.116	"		"	"	"	SYB	
Surrogate(s)	a a a-TET (FID)			54.4%	í	50 -	150 %	"			"	
Sur. Oguic(3).	a a a-TFT (PID)			56.5%	i	50 -	150 %	"			"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

	Gasoline Range Organics (C6-C10) and BTEX per AK101/8021B TestAmerica Portland												
Analyte	Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes			
ASF0006-24 (Trip Blank)		Soil			Sampleo	d: 05/27/09 2	22:00						
Gasoline Range Organics	AK101/8021B	1.42 0.830	4.00	mg/kg wet	lx	9060271	06/08/09 13:15	06/08/09 22:10	SYB	J			
Surrogate(s): a,a,a-TFT (FID)		107	%	50 -	150 %	"			"				
ASF0006-24RE1 (Trip Blank)		Soil			Sampleo	d: 05/27/09 2	22:00						
Benzene	AK101/8021B	ND 0.00362	0.0200	mg/kg wet	1x	9060271	06/08/09 13:15	06/09/09 10:48	SYB				
Toluene	"	0.314 0.00442	0.100	"		"			SYB	A-01			
Ethylbenzene	"	ND 0.00493	0.100	"					SYB				
Xylenes (total)	"	ND 0.0135	0.100	"	"	"	"	"	SYB				
Surrogate(s): a,a,a-TFT (PID)		121	%	50 -	150 %	"			"				

Surrogate(s): a,a,a-TFT (PID)

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

	Volati	le Organi	ic Com Test	pounds America	5 per El Portland	PA Me	ethod 826	50B			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-01 (09-KON-101-SB	3)	Ś	Soil		S	Sampled	1: 05/27/09 2	22:30			
Acetone	EPA 8260B	ND	298	5170	ug/kg	1x	9060183	06/04/09 11:00	06/04/09 17:36	TDB	
Benzene	"	ND	9.18	41.3	ary "		"	"	"	TDB	
Bromobenzene	"	ND	25.2	207	"		"		"	TDB	
Bromochloromethane		ND	33.9	207	"		"	"	"	TDB	
Bromodichloromethane	"	ND	21.1	207	"		"		"	TDB	
Bromoform	"	ND	32.7	207	"		"		"	TDB	
Bromomethane	"	ND	10.5	1030	"		"		"	TDB	
2-Butanone (MEK)	"	ND	306	2070	"		"		"	TDB	
n-Butylbenzene	"	28.9	23.4	1030	"		"		"	TDB	J
sec-Butylbenzene	"	ND	15.4	207	"	"	"	"	"	TDB	
tert-Butylbenzene	"	ND	31.4	207	"	"	"		"	TDB	
Carbon disulfide	"	ND	14.9	2070	"	"	"	"	"	TDB	
Carbon tetrachloride	"	ND	15.8	207	"	"	"	"	"	TDB	
Chlorobenzene	"	ND	16.7	207	"		"		"	TDB	
Chloroethane	"	ND	22.1	207	"		"		"	TDB	
Chloroform	"	ND	15.0	207	"		"		"	TDB	
Chloromethane	"	ND	13.9	1030	"		"		"	TDB	
2-Chlorotoluene	"	ND	22.7	207	"		"		"	TDB	
4-Chlorotoluene	"	ND	21.5	207	"		"		"	TDB	
1,2-Dibromo-3-chloropropane	"	ND	53.7	1030	"		"		"	TDB	
Dibromochloromethane	"	ND	23.2	207	"		"		"	TDB	
1,2-Dibromoethane	"	ND	24.0	207	"		"		"	TDB	
Dibromomethane	"	ND	30.4	207	"		"		"	TDB	
1,2-Dichlorobenzene	"	ND	29.8	207	"		"		"	TDB	
1,3-Dichlorobenzene	"	ND	12.1	207	"		"		"	TDB	
1,4-Dichlorobenzene	"	ND	30.8	207	"	"	"	"	"	TDB	
Dichlorodifluoromethane	"	ND	24.4	1030	"		"		"	TDB	
1,1-Dichloroethane	"	ND	24.6	207	"	"	"		"	TDB	
1,2-Dichloroethane	"	ND	23.2	207	"		"		"	TDB	
1,1-Dichloroethene	"	ND	24.6	207	"	"	"	"	"	TDB	
cis-1,2-Dichloroethene	"	ND	26.0	207	"		"	"	"	TDB	
trans-1,2-Dichloroethene	"	ND	18.5	207	"		"	"	"	TDB	
1,2-Dichloropropane	"	ND	15.4	207	"		"	"	"	TDB	
1,3-Dichloropropane	"	ND	36.0	207	"		"	"	"	TDB	
2,2-Dichloropropane	"	ND	16.7	207	"		"	"	"	TDB	
1,1-Dichloropropene	"	ND	22.5	207	"	"	"		"	TDB	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

	Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland uvte Method Result MRL Units Dil Batch Prepared Analyzed Analyst Notes Sail												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ASF0006-01 ((09-KON-101-SB)		5	Soil		;	Sampleo	d: 05/27/09 2	22:30				
cis-1,3-Dichloroprop	pene	EPA 8260B	ND	10.2	207	ug/kg drv	1x	9060183	06/04/09 11:00	06/04/09 17:36	TDB		
trans-1,3-Dichlorop	ropene		ND	17.1	207	"	"	"	"	"	TDB		
Ethylbenzene			22.7	19.4	207	"	"	"	"	"	TDB	J	
Hexachlorobutadien	ie	"	ND	143	827	"	"	"	"	"	TDB		
2-Hexanone		"	ND	118	2070	"	"	"	"	"	TDB		
Isopropylbenzene		"	ND	19.7	413	"	"	"		"	TDB		
p-Isopropyltoluene		"	ND	20.0	413	"	"	"		"	TDB		
4-Methyl-2-pentano	ne	"	ND	242	1030	"	"	"	"	"	TDB		
Methyl tert-butyl eth	her	"	ND	24.6	207	"	"	"	"	"	TDB		
Methylene chloride		"	ND	517	1030	"	"	"		"	TDB		
Naphthalene		"	314	29.1	413		"	"	"	"	TDB	J	
n-Propylbenzene		"	ND	20.4	207	"	"	"	"	"	TDB		
Styrene		"	ND	18.4	207	"	"	"		"	TDB		
1,1,1,2-Tetrachloroe	ethane		ND	19.1	207	"	"	"		"	TDB		
1,1,2,2-Tetrachloroe	ethane		ND	43.6	207	"	"	"		"	TDB		
Tetrachloroethene		"	ND	34.9	207		"	"		"	TDB		
Toluene		"	9150	13.0	207		"	"		"	TDB		
1,2,3-Trichlorobenz	ene	"	ND	34.9	207	"	"	"	"	"	TDB		
1,2,4-Trichlorobenz	ene	"	ND	44.2	207	"	"	"	"	"	TDB		
1,1,1-Trichloroethar	ne	"	ND	12.7	207	"	"	"		"	TDB		
1,1,2-Trichloroethar	ne	"	ND	37.4	207	"	"	"		"	TDB		
Trichloroethene		"	ND	24.8	207		"	"		"	TDB		
Trichlorofluorometh	nane	"	ND	18.5	207		"	"		"	TDB		
1,2,3-Trichloroprop	ane		ND	102	207	"	"	"		"	TDB		
1,2,4-Trimethylben	zene	"	82.7	14.0	207		"	"		"	TDB	J	
1,3,5-Trimethylben	izene		33.1	19.3	207		"	"		"	TDB	J	
Vinyl chloride		"	ND	11.9	207	"	"	"		"	TDB		
o-Xylene		"	ND	24.0	207	"	"	"	"	"	TDB		
m,p-Xylene		"	37.2	23.6	413	"	"	"	"	"	TDB	J	
Surrogate(s):	Dibromofluoromethane	2		97.4%		75 -	125 %	0.01x			"		
	1,2-DCA-d4			97.6%		75 -	125 %	"			"		
	Toluene-d8			101%		75	125 %	"			"		
	4-BFB			101%		75	125 %	"			"		

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ASF0006-06 (09-K0	ON-106-SB)	S	Soil		1	Sampled	l: 05/27/09 2	21:50					
Acetone	EPA 8260B	ND	124	2150	ug/kg	1x	9060183	06/04/09 11:00	06/04/09 17:09	TDB			
Benzene	"	ND	3.82	17.2	dry "			"	"	TDB			
Bromobenzene	"	ND	10.5	86.0	"	"	"	"	"	TDB			
Bromochloromethane	"	ND	14.1	86.0		"		"	"	TDB			
Bromodichloromethane	"	ND	8.77	86.0	"	"	"		"	TDB			
Bromoform	"	ND	13.6	86.0	"	"	"		"	TDB			
Bromomethane	"	ND	4.38	430	"	"	"	"	"	TDB			
2-Butanone (MEK)	"	ND	127	860	"	"	"		"	TDB			
n-Butylbenzene	"	652	9.72	430	"				"	TDB			
sec-Butylbenzene	"	289	6.41	86.0	"		"		"	TDB			
tert-Butylbenzene	"	ND	13.1	86.0	"	"	"		"	TDB			
Carbon disulfide		ND	6.19	860	"	"	"		"	TDB			
Carbon tetrachloride	"	ND	6.57	86.0	"	"	"		"	TDB			
Chlorobenzene	"	ND	6.96	86.0	"	"	"	"	"	TDB			
Chloroethane	"	ND	9.21	86.0	"	"	"		"	TDB			
Chloroform	"	ND	6.25	86.0	"	"	"	"	"	TDB			
Chloromethane	"	ND	5.78	430	"	"			"	TDB			
2-Chlorotoluene	"	ND	9.46	86.0	"	"			"	TDB			
4-Chlorotoluene	"	ND	8.95	86.0	"	"			"	TDB			
1,2-Dibromo-3-chloroprop	ane "	ND	22.4	430	"	"			"	TDB			
Dibromochloromethane	"	ND	9.64	86.0	"	"			"	TDB			
1,2-Dibromoethane	"	ND	9.98	86.0	"	"			"	TDB			
Dibromomethane	"	ND	12.6	86.0	"	"			"	TDB			
1,2-Dichlorobenzene	"	ND	12.4	86.0	"	"	"		"	TDB			
1,3-Dichlorobenzene	"	ND	5.04	86.0	"	"			"	TDB			
1,4-Dichlorobenzene	"	ND	12.8	86.0	"	"			"	TDB			
Dichlorodifluoromethane	"	ND	10.2	430	"	"			"	TDB			
1,1-Dichloroethane	"	ND	10.2	86.0	"	"			"	TDB			
1,2-Dichloroethane	"	ND	9.64	86.0	"	"			"	TDB			
1,1-Dichloroethene	"	ND	10.2	86.0	"	"	"		"	TDB			
cis-1,2-Dichloroethene	"	ND	10.8	86.0	"	"	"		"	TDB			
trans-1,2-Dichloroethene	n	ND	7.72	86.0	"	"	"	"	"	TDB			
1,2-Dichloropropane	n	ND	6.41	86.0	"	"	"	"	"	TDB			
1,3-Dichloropropane	"	ND	15.0	86.0	"	"		"	"	TDB			
2,2-Dichloropropane	n	ND	6.96	86.0	"	"	"	"	"	TDB			
1,1-Dichloropropene	n	ND	9.38	86.0	"	"	"		"	TDB			

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ASF0006-06 (09-KON-106-SB)		5	Soil		;	Sample	d: 05/27/09 2	21:50					
cis-1,3-Dichloropropene	EPA 8260B	ND	4.26	86.0	ug/kg dry	1x	9060183	06/04/09 11:00	06/04/09 17:09	TDB			
trans-1,3-Dichloropropene	"	ND	7.13	86.0		"	"	"	"	TDB			
Ethylbenzene	"	594	8.09	86.0		"	"		"	TDB			
Hexachlorobutadiene	"	ND	59.7	344		"			"	TDB			
2-Hexanone	"	ND	49.2	860		"	"		"	TDB			
Isopropylbenzene	"	260	8.22	172			"		"	TDB			
p-Isopropyltoluene	"	283	8.33	172			"		"	TDB			
4-Methyl-2-pentanone	"	ND	101	430		"	"		"	TDB			
Methyl tert-butyl ether	"	ND	10.2	86.0		"			"	TDB			
Methylene chloride	"	ND	215	430		"	"		"	TDB			
Naphthalene	"	627	12.1	172			"		"	TDB			
n-Propylbenzene	"	667	8.51	86.0	"		"			TDB			
Styrene	"	ND	7.65	86.0		"			"	TDB			
1,1,1,2-Tetrachloroethane	"	ND	7.96	86.0		"	"		"	TDB			
1,1,2,2-Tetrachloroethane	"	ND	18.2	86.0		"	"		"	TDB			
Tetrachloroethene	"	ND	14.5	86.0		"	"		"	TDB			
Toluene	"	130	5.41	86.0	"		"		"	TDB			
1,2,3-Trichlorobenzene	"	ND	14.5	86.0	"	"	"		"	TDB			
1,2,4-Trichlorobenzene	"	ND	18.4	86.0		"	"		"	TDB			
1,1,1-Trichloroethane	"	ND	5.27	86.0		"	"		"	TDB			
1,1,2-Trichloroethane	"	ND	15.6	86.0		"	"		"	TDB			
Trichloroethene	"	ND	10.3	86.0		"	"		"	TDB			
Trichlorofluoromethane	"	ND	7.72	86.0		"	"		"	TDB			
1,2,3-Trichloropropane	"	ND	42.3	86.0		"	"		"	TDB			
1,2,4-Trimethylbenzene	"	4770	5.81	86.0			"		"	TDB			
1,3,5-Trimethylbenzene	"	1300	8.03	86.0			"		"	TDB			
Vinyl chloride	"	ND	4.94	86.0	"	"	"		"	TDB			
o-Xylene	"	1570	9.98	86.0			"		"	TDB			
m,p-Xylene	"	2460	9.81	172			"	"	"	TDB			
Surrogate(s): Dibromofluoromethan	e		102%		75	125 %	0.01x			"			
1,2-DCA-d4			103%		75	125 %	"			"			
Toluene-d8			106%		75	125 %	"			"			

TestAmerica Anchorage

Johanna Dreher

4**-***BFB*

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

107%

75 - 125 %

"

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ASF0006-07 (09-KON-	107-SB)	S	Soil		;	Sampled	l: 05/27/09 2	21:55					
Acetone	EPA 8260B	ND	110	1900	ug/kg	1x	9060183	06/04/09 11:00	06/04/09 16:14	TDB			
Benzene	"	ND	3.38	15.2	dry "			"	"	TDB			
Bromobenzene	"	ND	9.28	76.0			"	"	"	TDB			
Bromochloromethane	"	ND	12.5	76.0			"	"	"	TDB			
Bromodichloromethane	"	ND	7.76	76.0			"	"	"	TDB			
Bromoform	"	ND	12.0	76.0		"	"		"	TDB			
Bromomethane	"	ND	3.87	380			"		"	TDB			
2-Butanone (MEK)	"	ND	113	760			"		"	TDB			
n-Butylbenzene	"	514	8.59	380		"			"	TDB			
sec-Butylbenzene	'n	249	5.67	76.0		"	"		"	TDB			
tert-Butylbenzene	"	ND	11.6	76.0	"	"	"		"	TDB			
Carbon disulfide	"	ND	5.47	760		"	"		"	TDB			
Carbon tetrachloride	"	ND	5.81	76.0		"	"	"	"	TDB			
Chlorobenzene	"	ND	6.15	76.0		"	"	"	"	TDB			
Chloroethane	"	ND	8.14	76.0		"	"		"	TDB			
Chloroform	"	ND	5.52	76.0		"	"		"	TDB			
Chloromethane	"	ND	5.11	380		"	"		"	TDB			
2-Chlorotoluene	"	ND	8.37	76.0		"	"		"	TDB			
4-Chlorotoluene	"	ND	7.91	76.0		"	"		"	TDB			
1,2-Dibromo-3-chloropropane	"	ND	19.8	380		"	"		"	TDB			
Dibromochloromethane	"	ND	8.52	76.0		"	"		"	TDB			
1,2-Dibromoethane	"	ND	8.82	76.0		"	"		"	TDB			
Dibromomethane	"	ND	11.2	76.0		"	"		"	TDB			
1,2-Dichlorobenzene	"	ND	11.0	76.0		"	"		"	TDB			
1,3-Dichlorobenzene	"	ND	4.46	76.0		"	"		"	TDB			
1,4-Dichlorobenzene	"	ND	11.3	76.0		"	"		"	TDB			
Dichlorodifluoromethane	"	ND	8.97	380		"	"		"	TDB			
1,1-Dichloroethane	"	ND	9.05	76.0		"	"		"	TDB			
1,2-Dichloroethane	"	ND	8.52	76.0		"	"		"	TDB			
1,1-Dichloroethene	"	ND	9.05	76.0		"	"	"	"	TDB			
cis-1,2-Dichloroethene	"	ND	9.58	76.0		"	"		"	TDB			
trans-1,2-Dichloroethene	"	ND	6.82	76.0			"	"	"	TDB			
1,2-Dichloropropane	"	ND	5.67	76.0			"	"	"	TDB			
1,3-Dichloropropane	"	ND	13.2	76.0			"	"	"	TDB			
2,2-Dichloropropane	"	ND	6.15	76.0			"	"	"	TDB			
1,1-Dichloropropene	"	ND	8.29	76.0		"	"		"	TDB			

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ASF0006-07	(09-KON-107-SB)		5	Soil		;	Sample	d: 05/27/09 2	21:55				
cis-1,3-Dichloropro	pene	EPA 8260B	ND	3.76	76.0	ug/kg	1x	9060183	06/04/09 11:00	06/04/09 16:14	TDB		
trans-1,3-Dichlorop	ropene	"	ND	6.30	76.0	dry "			"	"	TDB		
Ethylbenzene		"	494	7.15	76.0		"			"	TDB		
Hexachlorobutadien	ne	"	ND	52.8	304		"	"	"	"	TDB		
2-Hexanone		"	ND	43.5	760		"		"	"	TDB		
Isopropylbenzene			217	7.26	152		"		"	"	TDB		
p-Isopropyltoluene	2		228	7.36	152	"	"	"	"	"	TDB		
4-Methyl-2-pentano	one		ND	89.0	380		"	"		"	TDB		
Methyl tert-butyl eth	her		ND	9.05	76.0					"	TDB		
Methylene chloride			ND	190	380		"			"	TDB		
Naphthalene		"	525	10.7	152		"	"		"	TDB		
n-Propylbenzene			570	7.52	76.0		"		"	"	TDB		
Styrene		"	ND	6.76	76.0		"		"	"	TDB		
1,1,1,2-Tetrachloroe	ethane		ND	7.03	76.0					"	TDB		
1,1,2,2-Tetrachloroe	ethane	"	ND	16.0	76.0		"			"	TDB		
Tetrachloroethene			ND	12.9	76.0		"			"	TDB		
Toluene		"	113	4.78	76.0		"	"		"	TDB		
1,2,3-Trichlorobenz	zene		ND	12.9	76.0		"			"	TDB		
1,2,4-Trichlorobenz	zene	"	ND	16.3	76.0		"			"	TDB		
1,1,1-Trichloroetha	ne		ND	4.66	76.0		"			"	TDB		
1.1.2-Trichloroetha	ne		ND	13.8	76.0					"	TDB		
Trichloroethene			ND	9.13	76.0					"	TDB		
Trichlorofluorometh	hane		ND	6.82	76.0					"	TDB		
1 2 3-Trichloroprop	ane		ND	37.4	76.0					"	TDB		
1.2.4-Trimethylber	izene		4090	5.13	76.0		"	"		"	TDB		
1.3.5-Trimethylben	izene	"	1100	7.10	76.0		"			"	TDB		
Vinyl chloride			ND	4.37	76.0		"			"	TDB		
o-Xvlene		"	1320	8.82	76.0		"			"	TDB		
m,p-Xylene		"	2060	8.67	152	"	"	"	"	"	TDB		
Surrogate(s):	Dibromofluoromethane			95.5%		75	125 %	0.01x			"		
/	1,2-DCA-d4			96.8%		75	125 %	"			"		
	Toluene-d8			<i>99.9%</i>		75 -	125 %	"			"		
	4-BFB			99.8%		75	125 %	"			"		

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ASF0006-24 (Trip Blank)	S	Soil		;	Sampleo	d: 05/27/09 2	22:00					
Acetone	EPA 8260B	ND	144	2500	ug/kg	1x	9060183	06/04/09 11:00	06/04/09 15:46	TDB			
Benzene	"	ND	4 44	20.0	wet	"		"		TDB			
Bromohenzene	"	ND	12.2	100		"	"		"	TDB			
Bromochloromethane	"	ND	16.4	100		"	"		"	TDB			
Bromodichloromethane	"	ND	10.2	100		"	"	"	"	TDB			
Bromoform	"	ND	15.8	100		"	"	"	"	TDB			
Bromomethane	"	ND	5.09	500		"	"		"	TDB			
2-Butanone (MEK)	"	ND	148	1000		"	"		"	TDB			
n-Butylbenzene	"	ND	11.3	500		"	"		"	TDB			
sec-Butvlbenzene	"	ND	7.45	100		"	"		"	TDB			
tert-Butylbenzene	"	ND	15.2	100		"	"		"	TDB			
Carbon disulfide	"	ND	7.19	1000		"	"		"	TDB			
Carbon tetrachloride	"	ND	7.64	100		"	"		"	TDB			
Chlorobenzene	"	ND	8.09	100		"	"		"	TDB			
Chloroethane	"	ND	10.7	100		"	"			TDB			
Chloroform	"	ND	7.26	100		"	"			TDB			
Chloromethane	"	ND	6.72	500		"	"			TDB			
2-Chlorotoluene	"	ND	11.0	100		"	"		"	TDB			
4-Chlorotoluene	"	ND	10.4	100		"	"		"	TDB			
1,2-Dibromo-3-chloropropane	"	ND	26.0	500		"	"		"	TDB			
Dibromochloromethane	"	ND	11.2	100		"	"		"	TDB			
1,2-Dibromoethane	"	ND	11.6	100		"	"	"	"	TDB			
Dibromomethane	"	ND	14.7	100		"	"	"	"	TDB			
1,2-Dichlorobenzene	"	ND	14.4	100		"	"	"	"	TDB			
1,3-Dichlorobenzene	"	ND	5.86	100		"	"		"	TDB			
1,4-Dichlorobenzene	"	ND	14.9	100		"	"	"	"	TDB			
Dichlorodifluoromethane	"	ND	11.8	500		"	"	"	"	TDB			
1,1-Dichloroethane	"	ND	11.9	100		"	"	"	"	TDB			
1,2-Dichloroethane	"	ND	11.2	100		"	"	"	"	TDB			
1,1-Dichloroethene	"	ND	11.9	100		"	"	"	"	TDB			
cis-1,2-Dichloroethene	"	ND	12.6	100		"	"	"	"	TDB			
trans-1,2-Dichloroethene	"	ND	8.97	100		"	"	"	"	TDB			
1,2-Dichloropropane	"	ND	7.45	100		"	"	"	"	TDB			
1,3-Dichloropropane	n	ND	17.4	100		"	"	"	"	TDB			
2,2-Dichloropropane	n	ND	8.09	100		"	"	"	"	TDB			
1,1-Dichloropropene	"	ND	10.9	100		"	"	"	"	TDB			

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name:KongiginakProject Number:14-157

Project Manager:

Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B TestAmerica Portland													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ASF0006-24 (Trip Blank)		S	Soil		1	Sampleo	d: 05/27/09 2	22:00					
cis-1,3-Dichloropropene	EPA 8260B	ND	4.95	100	ug/kg wet	1x	9060183	06/04/09 11:00	06/04/09 15:46	TDB			
trans-1,3-Dichloropropene	"	ND	8.29	100	"	"	"	"	"	TDB			
Ethylbenzene	"	ND	9.40	100		"	"		"	TDB			
Hexachlorobutadiene	"	ND	69.4	400	"	"	"		"	TDB			
2-Hexanone	"	ND	57.2	1000	"	"	"		"	TDB			
Isopropylbenzene	"	ND	9.55	200	"	"	"		"	TDB			
p-Isopropyltoluene	"	ND	9.68	200	"	"	"	"	"	TDB			
4-Methyl-2-pentanone	"	ND	117	500	"	"	"	"	"	TDB			
Methyl tert-butyl ether	"	ND	11.9	100		"	"		"	TDB			
Methylene chloride	"	ND	250	500		"	"		"	TDB			
Naphthalene	"	ND	14.1	200		"	"		"	TDB			
n-Propylbenzene	"	ND	9.89	100		"	"		"	TDB			
Styrene	"	ND	8.89	100		"	"		"	TDB			
1,1,1,2-Tetrachloroethane	"	ND	9.25	100		"	"		"	TDB			
1,1,2,2-Tetrachloroethane	"	ND	21.1	100		"	"		"	TDB			
Tetrachloroethene	"	ND	16.9	100		"	"		"	TDB			
Toluene	"	288	6.29	100		"	"		"	TDB			
1,2,3-Trichlorobenzene	"	ND	16.9	100	"	"	"		"	TDB			
1,2,4-Trichlorobenzene	"	ND	21.4	100	"	"	"	"	"	TDB			
1,1,1-Trichloroethane	"	ND	6.13	100	"	"	"		"	TDB			
1,1,2-Trichloroethane	"	ND	18.1	100	"	"	"	"	"	TDB			
Trichloroethene	"	25.0	12.0	100		"	"		"	TDB	J		
Trichlorofluoromethane	"	ND	8.97	100		"	"		"	TDB			
1,2,3-Trichloropropane	"	ND	49.2	100	"	"	"		"	TDB			
1,2,4-Trimethylbenzene	"	ND	6.75	100		"	"		"	TDB			
1,3,5-Trimethylbenzene	"	ND	9.33	100		"	"		"	TDB			
Vinyl chloride	"	ND	5.74	100	"	"	"		"	TDB			
o-Xylene	"	ND	11.6	100		"	"		"	TDB			
m,p-Xylene	"	ND	11.4	200	"	"	"	"	"	TDB			
Surrogate(s): Dibromofluoromethe	ane		94.2%		75 - 1	125 %	0.01x			"			
1,2-DCA-d4		94.7%		75 - 1	125 %	"			"				
Toluene-d8			97.2%		75 - 1	125 %	"			"			

TestAmerica Anchorage

Johanna Dreher

4-BFB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

"

75 - 125 %

Johanna L Dreher, Client Services Manager

98.2%

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ASF0006-01 (09-KON-101-SB)		S	oil		5	Sampled	: 05/27/09 2	2:30			
Acenaphthene	EPA 8270m	ND	5.97	24.2	ug/kg dry	1x	9060214	06/05/09 18:00	06/09/09 13:48	NAF	
Acenaphthylene	"	ND	5.97	24.2	"	"	"	"	"	NAF	
Anthracene	"	ND	5.97	24.2	"	"	"	"	"	NAF	
Benzo (a) anthracene		ND	5.97	24.2	"	"	"	"	"	NAF	
Benzo (a) pyrene		ND	5.97	24.2	"	"	"	"	"	NAF	
Benzo (b) fluoranthene		ND	5.97	24.2	"	"	"	"	"	NAF	
Benzo (ghi) perylene		ND	5.97	24.2	"	"	"		"	NAF	
Benzo (k) fluoranthene	"	ND	5.97	24.2	"	"	"		"	NAF	
Chrysene		ND	5.97	24.2	"	"	"	"	"	NAF	
Dibenzo (a,h) anthracene		ND	5.97	24.2	"	"	"		"	NAF	
Fluoranthene		ND	5.97	24.2	"	"	"		"	NAF	
Fluorene		ND	5.97	24.2	"	"	"	"	"	NAF	
Indeno (1,2,3-cd) pyrene		ND	24.2	24.2	"	"	"	"	"	NAF	
Naphthalene	"	ND	24.2	24.2	"	"	"	"	"	NAF	
Phenanthrene		ND	5.97	24.2	"	"	"	"	"	NAF	
Pyrene	"	ND	5.97	24.2	"	"	"	"	"	NAF	
Surrogate(s): Fluorene-d10			72.3%		24 - 1	25 %	"			"	
Pyrene-d10			59.0%		41 - 1	41 %	"			"	
Benzo (a) pyrene-d12			68.6%		38 - 1	43 %	"			"	

ASF0000-00 (09-KON-100-	-зв)	5	on		L. L.	Jampicu	. 05/2//07 2	1.50			
Acenaphthene	EPA 8270m	ND	18.7	18.7	ug/kg drv	1x	9060214	06/05/09 18:00	06/09/09 14:19	NAF	
Acenaphthylene	"	ND	18.7	18.7	"	"	"	"	"	NAF	
Anthracene	"	ND	4.60	18.7	"	"	"	"	"	NAF	
Benzo (a) anthracene	"	ND	4.60	18.7	"	"	"		"	NAF	
Benzo (a) pyrene	"	ND	4.60	18.7	"	"	"			NAF	
Benzo (b) fluoranthene	"	ND	4.60	18.7	"	"	"			NAF	
Benzo (ghi) perylene	"	ND	4.60	18.7	"	"	"			NAF	
Benzo (k) fluoranthene	"	ND	4.60	18.7	"	"	"			NAF	
Chrysene	"	ND	4.60	18.7	"	"	"			NAF	
Dibenzo (a,h) anthracene	"	ND	4.60	18.7	"	"	"			NAF	
Fluoranthene	"	8.30	4.60	18.7	"	"	"			NAF	J
Fluorene	"	21.3	4.60	18.7	"	"	"		"	NAF	
Indeno (1,2,3-cd) pyrene	"	ND	4.60	18.7	"	"	"			NAF	
Naphthalene	"	377	4.60	18.7	"		"		"	NAF	
Phenanthrene	"	21.1	4.60	18.7	"		"		"	NAF	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

TestAmerica Portland													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ASF0006-06	(09-KON-106-SB)		5	oil			Sampleo	1: 05/27/09 2	1:50				
Pyrene		EPA 8270m	5.24	4.60	18.7	ug/kg dry	1x	9060214	06/05/09 18:00	06/09/09 14:19	NAF	J	
Surrogate(s):	Fluorene-d10			76.9%		24 -	125 %	"			"		
	Pyrene-d10			70.4%		41 -	141 %	"			"		
	Benzo (a) pyrene-d12			77.3%		38 -	143 %	"			"		
ASF0006-07	(09-KON-107-SB)		S	oil			Sampleo	l: 05/27/09 2	21:55				
Acenaphthene		EPA 8270m	ND	18.6	18.6	ug/kg dry	1x	9060214	06/05/09 18:00	06/09/09 14:50	NAF		
Acenaphthylene		"	ND	18.6	18.6	"	"	"	"	"	NAF		
Anthracene		"	ND	4.57	18.6	"	"	"		"	NAF		
Benzo (a) anthracer	ne	"	ND	4.57	18.6	"	"	"		"	NAF		
Benzo (a) pyrene		"	ND	4.57	18.6	"	"	"	"	"	NAF		
Benzo (b) fluoranth	iene	"	ND	4.57	18.6	"	"	"	"	"	NAF		
Benzo (ghi) perylen	ie	"	ND	4.57	18.6	"	"	"	"	"	NAF		
Benzo (k) fluoranth	iene	"	ND	4.57	18.6	"	"	"	"	"	NAF		
Chrysene		"	ND	4.57	18.6	"	"	"	"	"	NAF		
Dibenzo (a,h) anthr	acene	"	ND	4.57	18.6	"	"	"		"	NAF		
Fluoranthene			7.30	4.57	18.6	"		"	"	"	NAF	J	
Fluorene		"	16.9	4.57	18.6	"	"	"		"	NAF	J	
Indeno (1,2,3-cd) p	yrene	"	ND	4.57	18.6	"	"	"		"	NAF		
Naphthalene		"	307	4.57	18.6	"	"	"	"	"	NAF		
Phenanthrene		"	17.5	4.57	18.6	"	"	"	"	"	NAF	J	
Pyrene	yrene " 5.03 4.57 18.6				18.6	"	"	"	"	"	NAF	J	
Surrogate(s):	Surrogate(s): Fluorene-d10 63.4%					24 -	125 %	"			"		
	Pyrene-d10			55.3%		41 -	141 %	"			"		
	Benzo (a) pyrene-d12			54.9%		38 -	143 %	"			"		

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

	Percent Dry Weight (Solids) per ASTM D2216-80 TestAmerica Portland														
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes				
ASF0006-01	(09-KON-101-SB)		Soil			Sampled	l: 05/27/09 2	22:30							
% Solids		NCA SOP 54.7 0.0100 0.0100 % by 1x 9060146 06/03/09 14:29 06/03/09 14:29 JJM Weight													
ASF0006-06	(09-KON-106-SB)		Soil			Sampled	l: 05/27/09 2	21:50							
% Solids		NCA SOP	71.7 0.0100	0.0100	% by Weight	1x	9060146	06/03/09 14:29	06/03/09 14:29	JJM					
ASF0006-07	(09-KON-107-SB)		Soil			Sampled	l: 05/27/09 2	21:55							
% Solids		NCA SOP	71.7 0.0100	0.0100	% by Weight	lx	9060146	06/03/09 14:29	06/03/09 14:29	JJM					

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

ізшак ,

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

TestAmerica Anchorage

QC Bate	h: 9060016	Soil Pre	eparation N	lethod: AK1	01 Field	Prep									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (906001	6-BLK1)								Ext	racted:	06/04/09 15	5:19			
Gasoline Range Org	anics	AK101	0.510	0.321	3.33	mg/kg wet	1x							06/05/09 14:40	J
Benzene		GRO/BTEX	0.00286	0.000200	0.0166	"									1
Toluene			0.00200	0.00498	0.0333	"									
Ethylbenzene			0.00769	0.00389	0.0333										j
Xylenes (total)			ND	0.0186	0.0500	"									
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	94.7% 96.7%	L	imits: 50-150% 50-150%	6 "							06/05/09 14:40 "	
LCS (9060016	-BS1)								Ext	racted:	06/04/09 15	5:19			
Gasoline Range Org	anics	AK101 GRO/BTEX	23.1	0.321	3.33	mg/kg wet	1x		22.0	105%	(60-120)			06/05/09 15:06	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	128% 112%	I	imits: 60-120% 60-120%	6 "							06/05/09 15:06 "	Z
LCS (9060016	-BS2)								Ext	racted:	06/04/09 15	5:19			
Benzene		AK101 GRO/BTEX	0.713	0.000200	0.0166	mg/kg wet	1x		0.800	89.1%	(70-130)			06/05/09 16:12	
Toluene			0.742	0.00498	0.0333	"	"		"	92.8%	"				
Ethylbenzene			0.730	0.00389	0.0333	"	"		"	91.3%	"			"	
Xylenes (total)		"	2.22	0.0186	0.0500	"	"		2.40	92.5%	"			"	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	101% 102%	L	imits: 60-120% 60-120%	6 "							06/05/09 16:12 "	
LCS Dup (906	60016-BSD1)								Ext	racted:	06/04/09 15	5:19			
Gasoline Range Org	anics	AK101 GRO/BTEX	22.5	0.321	3.33	mg/kg wet	1x		22.0	102%	(60-120)	2.63%	6 (20)	06/05/09 15:44	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	123% 104%	I	imits: 60-120% 60-1209	6 "							06/05/09 15:44 "	Z
LCS Dup (906	60016-BSD2)								Ext	racted:	06/04/09 15	5:19			
Benzene		AK101 GRO/BTEX	0.00183	0.000200	0.0166	mg/kg wet	1x		0.800	0.229%	(70-130)	199%	6 (20)	06/05/09 16:38	L2, J
Toluene			ND	0.00498	0.0333	"			"	NR	"		"		L2
Ethylbenzene			ND	0.00389	0.0333	"	"		"	NR	"		"		L2
Xylenes (total)		"	ND	0.0186	0.0500	"	"		2.40	NR	"		"	"	L2
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	0.175% NR	I	imits: 60-120% 60-120%	6 "							06/05/09 16:38 "	 Z6, L L

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

TestAmerica Anchorage

QC Bate	h: 9060016	Soil Pre	paration N	fethod: AK	101 Field	Prep									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Duplicate (90	60016-DUP1)				QC Sourc	e: ASF0009-2	28		Ext	racted:	06/04/09 15	5:19			
Gasoline Range Org	anics	AK101 GRO/BTEX	0.431	0.303	3.14	mg/kg dry	1.5x	0.523				19.3%	(35)	06/05/09 18:23	J
Benzene		"	0.000408	0.000189	0.0157	"		0.00970				184%	(200)	"	J
Toluene		"	ND	0.00469	0.0314	"		ND				NR	"	"	
Ethylbenzene		"	ND	0.00367	0.0314	"		ND				NR	"	"	
Xylenes (total)		"	ND	0.0176	0.0471	"		ND				NR	"	"	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	99.7% 102%	L	imits: 50-1509 50-150	% " % "							06/05/09 18:23 "	
Matrix Spike	(9060016-MS1)			QC Source: ASF0009-28							06/04/09 15	5:19			
Benzene		AK101 GRO/BTEX	0.458	0.000189	0.0157	mg/kg dry	1.5x	0.00970	0.585	76.6%	(60-140)			06/05/09 19:55	
Toluene		"	0.477	0.00469	0.0314	"		ND	"	81.6%				"	
Ethylbenzene		"	0.464	0.00367	0.0314	"	"	ND	"	79.2%					
Xylenes (total)		"	1.39	0.0176	0.0471	"		ND	1.76	79.2%					
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	96.7% 98.9%	L	imits: 50-1509 50-150	% " % "							06/05/09 19:55 "	
Matrix Spike I	Dup (9060016-MS	D1)			QC Sourc	e: ASF0009-2	28		Ext	racted:	06/04/09 15	5:19			
Benzene		AK101 GRO/BTEX	0.538	0.000189	0.0157	mg/kg dry	1.5x	0.00970	0.585	90.3%	(60-140)	16.1%	(30)	06/05/09 20:27	
Toluene		"	0.555	0.00469	0.0314	"	"	ND	"	94.8%		14.9%	"		
Ethylbenzene		"	0.547	0.00367	0.0314	"	"	ND	"	93.5%		16.5%	"		
Xylenes (total)		"	1.66	0.0176	0.0471	"		ND	1.76	94.5%		17.6%	"	"	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	97.2% 99.3%	L	imits: 50-1509 50-150	% "							06/05/09 20:27 "	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Kongiginak Project Number: 14-157 Project Manager: Ben Martich

пак

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

TestAmerica Anchorage

QC Bate	h: 9060018	Soil Pre	paration N	1ethod: AK1	01 Field	Prep									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (90600	18-BLK1)								Ext	racted:	06/04/09 13	3:41			
Gasoline Range Org	anics	AK101 GRO/BTEX	0.442	0.321	3.33	mg/kg wet	1x							06/06/09 10:14	J
Benzene		"	0.00336	0.000200	0.0166	"									J
Toluene		"	0.00879	0.00498	0.0333	"									J
Ethylbenzene		"	0.00403	0.00389	0.0333	"									J
Xylenes (total)		"	ND	0.0186	0.0500	"									
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	95.3% 97.8%	I	imits: 50-150% 50-150%	" 5 "							06/06/09 10:14 "	
LCS (9060018	8-BS1)								Ext	racted:	06/04/09 13	8:41			
Gasoline Range Org	anics	AK101 GRO/BTEX	19.0	0.321	3.33	mg/kg wet	1x		22.0	86.2%	(60-120)			06/06/09 08:19	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	111% 97.3%	Ι	imits: 60-120% 60-120%	" 5 "							06/06/09 08:19 "	
LCS (9060018	8-BS2)								Ext	racted:	06/04/09 13	3:41			
Benzene		AK101 GRO/BTEX	0.696	0.000200	0.0166	mg/kg wet	1x		0.800	87.0%	(70-130)			06/06/09 09:18	
Toluene		"	0.728	0.00498	0.0333	"			"	91.0%	"				
Ethylbenzene		"	0.718	0.00389	0.0333	"			"	89.8%	"				
Xylenes (total)		"	2.16	0.0186	0.0500	"			2.40	89.9%	"				
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	96.7% 99.1%	Ι	imits: 60-120% 60-120%	" 5 "							06/06/09 09:18 "	
LCS Dup (90	60018-BSD1)								Ext	racted:	06/04/09 13	3:41			
Gasoline Range Org	ganics	AK101 GRO/BTEX	19.5	0.321	3.33	mg/kg wet	1x		22.0	88.8%	(60-120)	2.89%	% (20)	06/06/09 08:46	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	115% 100%	I	imits: 60-120% 60-120%	" 5 "							06/06/09 08:46 "	
LCS Dup (90	60018-BSD2)								Ext	racted:	06/04/09 13	3:41			
Benzene		AK101 GRO/BTEX	0.714	0.000200	0.0166	mg/kg wet	1x		0.800	89.2%	(70-130)	2.55%	6 (20)	06/06/09 09:44	
Toluene		"	0.744	0.00498	0.0333	"	"		"	93.1%	"	2.19%	6 "	"	
Ethylbenzene		"	0.725	0.00389	0.0333	"	"		"	90.6%	"	0.882	% "	"	
Xylenes (total)		"	2.18	0.0186	0.0500	"	"		2.40	90.8%	"	0.909	% "	"	
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	94.8% 97.9%	Ι	imits: 60-120% 60-120%	" 5 "							06/06/09 09:44 "	

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101 - Laboratory Quality Control Results

TestAmerica Anchorage

QC Batc	h: 9060018	Soil Pre	paration N	lethod: AK	101 Field	Prep									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Duplicate (90	60018-DUP1)				QC Source	e: ASF0006-2	22		Ext	racted:	06/04/09 13	:41			
Gasoline Range Org	anics	AK101 GRO/BTEX	0.662	0.531	5.51	mg/kg dry	1.5x	0.633				4.39%	(35)	06/06/09 14:00	J
Benzene		"	0.00341	0.000331	0.0275	"		0.00787				79.0%	(200)		J
Toluene		"	0.0769	0.00823	0.0551	"		0.0757				1.52%	"		
Ethylbenzene		"	0.00798	0.00643	0.0551	"		ND					"		J
Xylenes (total)		"	ND	0.0308	0.0826	"		ND				NR	"		
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	93.7% 96.4%	L	imits: 50-1509 50-150	% " % "							06/06/09 14:00 "	
Matrix Spike	(9060018-MS1)				QC Sourc	e: ASF0006-2	22		Ext	racted:	06/04/09 13	:41			
Benzene		AK101 GRO/BTEX	0.987	0.000331	0.0275	mg/kg dry	1.5x	0.00787	0.741	132%	(60-140)			06/06/09 14:26	
Toluene		"	1.08	0.00823	0.0551	"		0.0757		136%	"			"	
Ethylbenzene			0.988	0.00643	0.0551	"		ND		133%	"			"	
Xylenes (total)		"	2.98	0.0308	0.0826	"		ND	2.22	134%					
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	99.8% 102%	L	imits: 50-1509 50-150	% " % "							06/06/09 14:26 "	
Matrix Spike I	Dup (9060018-MS	D1)			QC Sourc	e: ASF0006-2	22		Ext	racted:	06/04/09 13	:41			
Benzene		AK101 GRO/BTEX	0.773	0.000331	0.0275	mg/kg dry	1.5x	0.00787	0.741	103%	(60-140)	24.4%	(30)	06/06/09 14:53	
Toluene		"	0.870	0.00823	0.0551	"		0.0757		107%	"	21.6%	"	"	
Ethylbenzene			0.780	0.00643	0.0551	"	"	ND	"	105%		23.6%	"		
Xylenes (total)		"	2.34	0.0308	0.0826	"		ND	2.22	105%		24.3%	"		
Surrogate(s):	a,a,a-TFT (FID) a,a,a-TFT (PID)		Recovery:	96.0% 99.4%	L	imits: 50-1509 50-150	%"							06/06/09 14:53 "	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.				Project Name:	ŀ	Kongig	ginak							
825 W 8th Ave, ste 200				Project Numbe	er: 1	4-157							Report Create	ed:
Anchorage, AK/USA 99501-44	127			Project Manag	er: E	en Ma	rtich						06/24/09 14:	14
	Diesel Ra	nge Organ	lics (C10-C2	5) per AK1(02 - La	borat	ory Qual	lity Co	ntrol	Results				
			Т	estAmerica A	nchorage	;								
QC Batch: 9060015	Soil Pr	eparation N	fethod: EP	A 3545										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (9060015-BLK1)								Ext	racted:	06/04/09 08	8:38			
Diesel Range Organics	AK 102	4.50	3.29	20.0 mg	/kg wet	1x							06/05/09 19:40	J
Surrogate(s): 1-Chlorooctadecane		Recovery:	83.3%	Limits	: 50-150%	"							06/05/09 19:40	
LCS (9060015-BS1)								Ext	racted:	06/04/09 08	8:38			
Diesel Range Organics	AK 102	131	3.29	20.0 mg	/kg wet	1x		132	98.8%	(75-125)			06/05/09 21:18	
Surrogate(s): 1-Chlorooctadecane		Recovery:	84.3%	Limits	: 60-120%	"							06/05/09 21:18	
LCS Dup (9060015-BSD1)								Ext	racted:	06/04/09 08	8:38			
Diesel Range Organics	AK 102	137	3.29	20.0 mg	/kg wet	1x		132	103%	(75-125)	4.25%	6 (20)	06/05/09 20:13	
Surrogate(s): 1-Chlorooctadecane		Recovery:	85.0%	Limits	: 60-120%	"							06/05/09 20:13	
Duplicate (9060015-DUP1)				QC Source: A	SF0006-04	ļ		Ext	racted:	06/04/09 08	3:38			
Diesel Range Organics	AK 102	94.0	4.50	27.4 mg	/kg dry	1x	21.8				125%	(20)	06/08/09 16:41	R2
Surrogate(s): 1-Chlorooctadecane		Recovery:	102%	Limits	: 50-150%	"							06/08/09 16:41	
Matrix Spike (9060015-MS1)				QC Source: A	SF0006-04	ļ		Ext	racted:	06/04/09 08	3:38			
Diesel Range Organics	AK 102	186	4.48	27.2 mg	/kg dry	1x	21.8	180	90.8%	(75-125)			06/08/09 19:24	
Surrogate(s): 1-Chlorooctadecane		Recovery:	103%	Limits	: 50-150%	"							06/08/09 19:24	
Matrix Spike Dup (9060015-MSI	D1)			QC Source: A	SF0006-04	ł		Ext	racted:	06/04/09 08	8:38			
Diesel Range Organics	AK 102	191	4.44	27.0 mg	/kg dry	1x	21.8	179	94.5%	(75-125)	2.68%	6 (25)	06/08/09 19:57	
Surrogate(s): 1-Chlorooctadecane		Recovery:	107%	Limits	: 50-150%	"							06/08/09 19:57	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.				Project Name	e: I	Kongig	ginak							
825 W 8th Ave, ste 200				Project Num	ber:]	4-157							Report Create	ed:
Anchorage, AK/USA 99501-44	27			Project Mana	ager: I	Ben Ma	rtich						06/24/09 14:	14
	Diesel Ra	nge Organ	ics (C10-C2	5) per AK	102 - La	aborat	tory Qua	lity Co	ntrol	Results				
			Т	estAmerica /	Anchorag	e								
QC Batch: 9060027	Soil Pr	eparation M	lethod: ***	DEFAULT	PREP									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (9060027-BLK1)								Extr	acted:	06/08/09 15	5:34			
Diesel Range Organics	AK 102	7.28	3.29	20.0 m	ng/kg wet	1x							06/09/09 12:35	J
Surrogate(s): 1-Chlorooctadecane		Recovery:	95.0%	Limi	its: 50-150%	ó "							06/09/09 12:35	
LCS (9060027-BS1)								Extr	acted:	06/08/09 15	5:34			
Diesel Range Organics	AK 102	144	3.29	20.0 m	ng/kg wet	1x		132	108%	(75-125)			06/09/09 13:07	
Surrogate(s): 1-Chlorooctadecane		Recovery:	103%	Limi	its: 60-120%	ó "							06/09/09 13:07	
LCS Dup (9060027-BSD1)								Extr	acted:	06/08/09 15	5:34			
Diesel Range Organics	AK 102	138	3.29	20.0 m	ng/kg wet	1x		132	104%	(75-125)	3.84%	6 (20)	06/09/09 13:40	
Surrogate(s): 1-Chlorooctadecane		Recovery:	100%	Limi	its: 60-120%	ó "							06/09/09 13:40	
Duplicate (9060027-DUP1)				QC Source:	ASE0065-0	1RE1		Extr	acted:	06/08/09 15	5:34			
Diesel Range Organics	AK 102	1340	3.26	19.8 m	ng/kg wet	1x	1070				22.5%	6 (20)	06/09/09 11:30	R2
Surrogate(s): 1-Chlorooctadecane		Recovery:	110%	Limi	its: 50-150%	ó "							06/09/09 11:30	
Matrix Snike (9060027-MS1)				OC Source:	ASE0065-0	1RE1		Extr	acted:	06/08/09 15	5:34			
Diesel Range Organics	AK 102	1330	3.24	19.7 m	ng/kg wet	1x	1070	130	201%	(75-125)			06/09/09 12:35	M8
Surrogate(s): 1-Chlorooctadecane		Recovery:	106%	Limi	its: 50-150%	ó "							06/09/09 12:35	
				00 5	A SEAACT A	1051		Б. (07/00/00 12	24			
Natrix Spike Dup (9060027-MSI	JI) AK 102	212	3.24	10.7 w	ASE0065-0		1070	130	-655%	(75-125)	1/150/	(25)	06/00/00 13:07	M8 P2
Surrogate(s): 1-Chlorooctadecane	AK 102	Recovery	2.05%	I.J.I II	its: 50-150%	1A 6 "	1070	150	05570	(15-125)	1757	(23)	06/09/09 13:07	76
Sancio, i chiorocolidadetane		10000 rer y.	=	211111		-								20

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.			1	Project New		Kongig	inak							
			1			14 167	mun						Denert Core	4 - J.
825 W 8th Ave, ste 200			1	roject Nun	iber:	14-15/							Report Crea	tea:
Anchorage, AK/USA 99501-	4427		1	Project Man	ager:	Ben Mar	tich						06/24/09 14	4:14
	Physical Paran	neters by Al	PHA/ASTI	M/EPA M	1ethods	- Labo	ratory (Duality	Cont	rol Resu	ılts			
	2	v	Te	stAmerica	Anchora	ige	•							
QC Batch: 9060017	Soil Prep	aration Met	hod: *** l	DEFAULT	Г PREP									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (9060017-DUP1)				QC Source:	ASF0006	-02		Extr	acted:	06/04/09 10	:48			
Dry Weight	TA-SOP	60.0	1.00	1.00	%	1x	60.9				1.39%	6 (25)	06/05/09 10:50	
QC Batch: 9060028	Soil Prep	aration Met	hod: *** l	DEFAULT	Г PREP									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (9060028-DUP1)				QC Source:	ASF0006	-17		Extr	acted:	06/08/09 15	:41			
Dry Weight	TA-SOP	65.6	1.00	1.00	%	1x	70.8				7.57%	6 (25)	06/09/09 11:35	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc. 825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-44	27			Project Na Project Nu Project Ma	ame: amber: anager:	Kongig 14-157 Ben Mai	inak rtich						Report Created 06/24/09 14:	d: 14
Gasolin	e Range Org	anics (C6-	-C10) and B	TEX per TestAmeri	r AK101/8 ica Portlanc	8021B -	Labora	atory Q	Qualit	y Contro	ol Res	ults		
QC Batch: 9060271	Soil Pre	paration M	lethod: EP	A 5035 M	odified									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	%∧ RPD	(Limits) Analyzed	Notes
Blank (9060271-BLK1)								Ext	racted:	06/08/09 13	:15			
Gasoline Range Organics	AK101/8021	ND	0.810	3.90	mg/kg wet	1x							06/08/09 21:43	
Surrogate(s): a,a,a-TFT (FID)	Б	Recovery:	116%	L	imits: 50-150	% "							06/08/09 21:43	
Blank (9060271-BLK2)								Ext	racted:	06/08/09 13	:15			
Benzene	AK101/8021	ND	0.00353	0.0195	mg/kg wet	1x							06/09/09 10:06	
Toluene	В "	ND	0.00432	0.0976	"	"							"	
Ethylbenzene	"	ND	0.00481	0.0976	"	"							"	
Xylenes (total)	"	ND	0.0132	0.0976	"	"							"	
Surrogate(s): a,a,a-TFT (PID)		Recovery:	126%	L	imits: 50-150	% "							06/09/09 10:06	
LCS (9060271-BS2)								Ext	acted:	06/08/09 13	:15			
Gasoline Range Organics	AK101/8021 B	23.1	0.809	3.90	mg/kg wet	1x		24.4	94.7%	(60-120)			06/08/09 20:47	
Surrogate(s): a,a,a-TFT (FID)		Recovery:	119%	L	imits: 50-150	% "							06/08/09 20:47	
LCS (9060271-BS3)								Ext	racted:	06/08/09 13	:15			
Benzene	AK101/8021	1.04	0.00351	0.0194	mg/kg wet	1x		0.969	107%	(70-130)			06/09/09 09:11	
Toluene	В "	1.11	0.00429	0.0969	"	"		"	114%				"	
Ethylbenzene	"	1.13	0.00478	0.0969	"	"		"	117%				"	
Xylenes (total)	"	3.42	0.0131	0.0969	"	"		2.91	118%				"	
Surrogate(s): a,a,a-TFT (PID)		Recovery:	136%	L	imits: 50-150	% "							06/09/09 09:11	
LCS Dup (9060271-BSD2)								Ext	acted:	06/08/09 13	:15			
Gasoline Range Organics	AK101/8021 B	24.6	0.825	3.97	mg/kg wet	1x		24.8	99.1%	(60-120)	6.50%	(20)	06/08/09 21:15	
Surrogate(s): a,a,a-TFT (FID)		Recovery:	121%	L	imits: 50-150	% "							06/08/09 21:15	
LCS Dup (9060271-BSD3)								Ext	racted:	06/08/09 13	:15			
Benzene	AK101/8021	1.03	0.00358	0.0198	mg/kg wet	1x		0.990	104%	(70-130)	0.343%	6 (20)	06/09/09 09:39	
Toluene	"	1.08	0.00438	0.0990	"	"		"	109%		2.33%	"	"	
Ethylbenzene	"	1.08	0.00488	0.0990	"	"		"	110%		4.26%		"	
Xylenes (total)	"	3.28	0.0134	0.0990	"	"		2.97	111%		4.05%	"	"	
Surrogate(s): a,a,a-TFT (PID)		Recovery:	132%	L	imits: 50-150	% "							06/09/09 09:39	
Duplicate (9060271-DUP1)				QC Sourc	e: ASF0006-	06		Ext	racted:	06/08/09 13	:15			S14
Gasoline Range Organics	AK101/8021	55.7	1.04	5.02	mg/kg dry	1x	55.8				0.248%	6 (50)	06/08/09 23:06	
Surrogate(s): a,a,a-TFT (FID)	U	Recovery:	95.2%	L	imits: 50-150	% "							06/08/09 23:06	

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: 14-157 Project Manager: Ben Martich

Report Created: 06/24/09 14:14

Gasoline Range Organics (C6-C10) and BTEX per AK101/8021B - Laboratory Quality Control Results TestAmerica Portland

QC Batch: 9060271	Soil Pre	paration N	fethod: EPA	5035 M	odified									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Matrix Spike (9060271-MS2)				QC Sourc	e: ASF0006-0	7		Extr	acted:	06/08/09 13	:15			S14
Benzene	AK101/8021 B	1.06	0.00418	0.0231	mg/kg dry	1x	0.00433	0.760	139%	(50-150)			06/09/09 11:43	
Toluene	"	1.29	0.00511	0.116	"	"	0.150	"	150%	"				
Ethylbenzene	"	1.83	0.00569	0.116	"	"	0.721	"	146%	"				
Xylenes (total)	"	8.04	0.0156	0.116	"	"	4.82	2.28	141%					
Surrogate(s): a,a,a-TFT (PID)		Recovery:	50.4%	L	imits: 50-150%	, "							06/09/09 11:43	
Matrix Spike Dup (9060271-M	SD2)			QC Sourc	e: ASF0006-0	7		Extr	acted:	06/08/09 13	:15			S14
Benzene	AK101/8021 B	1.06	0.00418	0.0231	mg/kg dry	1x	0.00433	0.760	138%	(50-150)	0.360	6 (20)	06/09/09 12:11	
Toluene	"	1.31	0.00511	0.116	"	"	0.150	"	152%	"	1.10%	, "		M1
Ethylbenzene	"	1.87	0.00569	0.116	"	"	0.721	"	151%	"	2.05%	, " D		M1
Xylenes (total)	"	8.27	0.0156	0.116	"	"	4.82	2.28	151%	"	2.76%	, "	"	M1
Surrogate(s): a,a,a-TFT (PID)		Recovery:	52.8%	I	imits: 50-150%	5 "							06/09/09 12:11	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Project Number: Project Manager:

Kongiginak 14-157 Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica Portland QC Batch: 9060183 **Soil Preparation Method:** EPA 5035A Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD REC Result Amt Blank (9060183-BLK1) Extracted: 06/04/09 10:00 143 EPA 8260B ND 2490 06/04/09 15:14 Acetone ug/kg wet 1x ------ND 4.42 19.9 Benzene ---.. ND 12.1 99.5 Bromobenzen --------.. ... ND 16.3 99.5 Bromochloromethane --------------Bromodichloromethane ND 10.1 99.5 ---------Bromoform ND 15.7 99.5 Bromomethane ND 5.06 498 --2-Butanone (MEK) ND 147 995 -----------ND 11.2 498 n-Butylbenzene --sec-Butylbenzene ND 7.41 99.5 --tert-Butylbenzene ND 15.1 99.5 --------------Carbon disulfide ND 7.15 995 ---------------Carbon tetrachloride ND 7.60 99.5 ___ ___ ---Chlorobenzene ND 8.05 99.5 ---Chloroethane ND 10.6 99.5 ____ -----Chloroform ND 7.22 99.5 ---____ Chloromethane ND 6.69 498 ---2-Chlorotoluene ND 99.5 10.9 ---------------4-Chlorotoluene ND 10.3 99 5 ---------1,2-Dibromo-3-chloropropane ND 25.9 498 Dibromochloromethane ND 11.1 99.5 ---ND 11.5 99.5 1.2-Dibromoethane --------Dibromomethane ND 14.6 99.5 ---1,2-Dichlorobenzene ND 14.3 99.5 1.3-Dichlorobenzene ND 5.83 99.5 --------------1,4-Dichlorobenzene ND 14.8 99.5 ---------------Dichlorodifluoromethane ND 11.7 498 ---1,1-Dichloroethane ND 11.8 99.5 99.5 1,2-Dichloroethane ND 11.1 ----------1,1-Dichloroethene ND 11.8 99.5 ------------cis-1.2-Dichloroethene ND 12.5 99.5 trans-1.2-Dichloroethene ND 8.93 99.5 ---------------1,2-Dichloropropane ND 741 99.5 ---------------1,3-Dichloropropane ND 17.3 99.5 ____ ---___ ND 99.5 2,2-Dichloropropane 8.05 ND 10.8 99.5 1.1-Dichloropropene ___ -----cis-1,3-Dichloropropene ND 4 93 99.5 ___ ---___ ---ND trans-1,3-Dichloropropene 8.25 99.5 Ethylbenzene ND 9.35 99.5

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Project Number: Project Manager:

Kongiginak 14-157 Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica Portland

QC Batcl	n: 9060183	Soil Pre	paration M	ethod: EPA	5035A										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (906018	3-BLK1)								Extr	racted:	06/04/09 10):00			
Hexachlorobutadiene	:	EPA 8260B	ND	69.1	398	ug/kg wet	1x						(06/04/09 15:14	
2-Hexanone			ND	56.9	995	"								"	
Isopropylbenzene			ND	9.50	199	"								"	
p-Isopropyltoluene			ND	9.63	199	"								"	
4-Methyl-2-pentanon	e	"	ND	116	498	"								"	
Methyl tert-butyl eth	er	"	ND	11.8	99.5	"								"	
Methylene chloride		"	ND	249	498	"								"	
Naphthalene			ND	14.0	199	"								"	
n-Propylbenzene			ND	9.84	99.5	"								"	
Styrene			ND	8.85	99.5	"								"	
1,1,1,2-Tetrachloroet	hane		ND	9.20	99.5	"								"	
1,1,2,2-Tetrachloroet	hane		ND	21.0	99.5	"								"	
Tetrachloroethene			ND	16.8	99.5	"								"	
Toluene			ND	6.26	99.5	"								"	
1,2,3-Trichlorobenze	ne		ND	16.8	99.5	"								"	
1,2,4-Trichlorobenze	ne		ND	21.3	99.5	"								"	
1,1,1-Trichloroethan	e		ND	6.10	99.5	"								"	
1,1,2-Trichloroethan	e		ND	18.0	99.5	"								"	
Trichloroethene			ND	11.9	99.5	"								"	
Trichlorofluorometha	ine		ND	8.93	99.5	"								"	
1.2.3-Trichloropropa	ne		ND	49.0	99.5	"								"	
1,2,4-Trimethylbenze	ene		ND	6.72	99.5	"								"	
1.3.5-Trimethylbenze	ene		ND	9.28	99.5	"								"	
Vinvl chloride			ND	5.71	99.5	"								"	
o-Xvlene			ND	11.5	99.5	"								"	
m,p-Xylene		"	ND	11.3	199	"								"	
Surrogate(s):	Dibromofluoromethane		Recovery:	101%	Li	mits: 75-125%	6 0.01x							06/04/09 15:14	1
0 ()	1,2-DCA-d4			102%		75-125	% "							"	
	Toluene-d8			104%		75-125	% "							"	
	4-BFB			103%		75-125	% "							"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica Portland

QC Bate	h: 9060183	Soil Pre	paration N	fethod: EP	A 5035A										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (9060183	3-BS1)								Ext	racted:	06/04/09 10):00			
Benzene		EPA 8260B	2170	4.44	20.0	ug/kg wet	1x		2000	108%	(81.9-125)			06/04/09 11:33	
Chlorobenzene		"	2160	8.09	100	"			"	108%	(79.2-125)			"	
1,1-Dichloroethene		"	2160	11.9	100	"			"	108%	(66.1-125)			"	
Toluene		"	2140	6.29	100	"	"		"	107%	(80-125)			"	
Trichloroethene		"	2210	12.0	100	"			"	111%	(76-125)				
Surrogate(s):	Dibromofluoromethane		Recovery:	103%	L	imits: 75-125	5% 0.01x							06/04/09 11:33	
	1,2-DCA-d4			101%		75-12	5% "							"	
	Toluene-d8			101%		75-12	5% "							"	
	4-BFB			101%		75-12.	5% "							"	
Matrix Spike	(9060183-MS1)				QC Source	e: ASF0006-	-07		Ext	racted:	06/04/09 11	:00			
Benzene		EPA 8260B	1730	3.38	15.2	ug/kg dry	1x	ND	608	284%	(68.5-125)			06/04/09 12:14	M7
Chlorobenzene		"	1730	6.15	76.0	"		ND	"	285%	(65.9-125)			"	M7
1,1-Dichloroethene		"	1730	9.05	76.0	"		ND	"	284%	(55.8-125)			"	M7
Toluene		"	1840	4.78	76.0	"		113	"	284%	(70.3-125)			"	M7
Trichloroethene		"	1760	9.13	76.0	"		ND	"	290%	(65.5-125)				M7
Surrogate(s):	Dibromofluoromethane		Recovery:	102%	L	imits: 75-125	5% 0.01x							06/04/09 12:14	
	1,2-DCA-d4			99.4%		75-12	5% "							"	
	Toluene-d8			101%		75-12	5% "							"	
	4-BFB			101%		75-12.	5% "							"	
Matrix Spike I	Dup (9060183-MSD	91)			QC Source	e: ASF0006-	-07		Ext	racted:	06/04/09 11	:00			
Benzene	• •	EPA 8260B	1670	3.38	15.2	ug/kg dry	1x	ND	608	275%	(68.5-125)	3.27%	6 (25)	06/04/09 12:43	M7
Chlorobenzene		"	1690	6.15	76.0	"		ND	"	278%	(65.9-125)	2.35%	6 "	"	M7
1,1-Dichloroethene		"	1610	9.05	76.0	"		ND	"	264%	(55.8-125)	7.29%	6 "	"	M7
Toluene		"	1780	4.78	76.0			113	"	274%	(70.3-125)	3.57%	6 "		M7
Trichloroethene		"	1680	9.13	76.0	"		ND	"	276%	(65.5-125)	4.91%	6 "	"	M7
Surrogate(s):	Dibromofluoromethane		Recovery:	98.5%	L	imits: 75-125	5% 0.01x							06/04/09 12:43	
	1,2-DCA-d4			97.0%		75-12	5% "							"	
	Toluene-d8			98.9%		75-12	5% "							"	
	4-BFB			99.6%		75-12	5% "							"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Project Number: Project Manager:

Kongiginak r: 14-157 er: Ben Martich

Report Created: 06/24/09 14:14

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica Portland

QC Bate	h: 9060214	Soil Pre	eparation N	fethod: EPA	3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (90602	14-BLK1)								Ext	racted:	06/05/09 18	:00			
Benzo (e) pyrene		EPA 8270m	ND	3.30	13.4	ug/kg wet	1x							06/08/09 15:12	ID5
Acenaphthene			ND	3.30	13.4	"	"								
Acenaphthylene			ND	3.30	13.4	"									
Anthracene			ND	3.30	13.4	"									
Benzo (a) anthracen	e		ND	3.30	13.4	"									
Benzo (a) pyrene			ND	3.30	13.4										
Benzo (b) fluoranthe	ene	"	ND	3.30	13.4	"								"	
Benzo (ghi) perylen	2		ND	3.30	13.4	"									
Benzo (k) fluoranthe	ene		ND	3.30	13.4	"									ID4
Chrysene			ND	3.30	13.4	"									
Dibenzo (a,h) anthra	cene		ND	3.30	13.4	"									
Fluoranthene			ND	3.30	13.4	"									
Fluorene			ND	3.30	13.4	"									
Indeno (1,2,3-cd) py	rene		ND	3.30	13.4	"									
Naphthalene			ND	3.30	13.4	"									
Phenanthrene			ND	3.30	13.4										
Pyrene			ND	3.30	13.4										
2-Methylnaphthalen	e	"	ND	3.30	13.4									"	
Surrogate(s):	Fluorene-d10		Recovery:	54.2%	L	imits: 24-1259	% "							06/08/09 15:12	
	Pyrene-d10			68.1%		41-141	% "							"	
	Benzo (a) pyrene-d12			79.4%		38-143	% "							"	
LCS (9060214	I-BS1)								Ext	racted:	06/05/09 18	:00			
Acenaphthene		EPA 8270m	156	3.27	13.3	ug/kg wet	1x		165	94.7%	(33-139)			06/08/09 16:45	
Benzo (a) pyrene		"	155	3.27	13.3					93.6%	(45-149)				
Pyrene		"	130	3.27	13.3				"	78.5%	(39-138)				
Surrogate(s):	Fluorene-d10		Recovery:	46.0%	L	imits: 24-125%	% "							06/08/09 16:45	
	Pyrene-d10			64.5%		41-141	% "							"	
	Benzo (a) pyrene-d12			76.8%		38-143	% "							"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica Portland

QC Bate	h: 9060214	Soil Pre	paration N	fethod: EP	A 3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Matrix Spike	(9060214-MS1)				QC Sourc	e: PSE0857-02			Ext	racted:	06/05/09 18	3:00			
Acenaphthene		EPA 8270m	348	200	812	ug/kg dry	10x	ND	404	86.0%	(33-139)			06/08/09 20:23	J
Benzo (a) pyrene		"	342	200	812	"	"	ND	"	84.6%	(45-149)				J
Pyrene		"	376	200	812	"		119	"	63.6%	(39-138)				J
Surrogate(s):	Fluorene-d10		Recovery:	85.6%	L	imits: 24-125%	"							06/08/09 20:23	Z3
	Pyrene-d10			60.0%		41-141%	"							"	Z3
	Benzo (a) pyrene-d12			70.0%		38-143%	"							"	Z3
Matrix Spike I	Dup (9060214-MSI	D1)			QC Source	e: PSE0857-02			Ext	racted:	06/05/09 18	3:00			
Acenaphthene		EPA 8270m	350	200	813	ug/kg dry	10x	ND	404	86.5%	(33-139)	0.5659	% (60)	06/08/09 20:54	J
Benzo (a) pyrene		"	365	200	813	"		ND	"	90.3%	(45-149)	6.58%	6 "	"	J
Pyrene		"	387	200	813			119	"	66.2%	(39-138)	2.76%	6 "		J
Surrogate(s):	Fluorene-d10		Recovery:	87.1%	L	imits: 24-125%	"							06/08/09 20:54	Z3
	Pyrene-d10			65.5%		41-141%	"							"	Z3
	Benzo (a) pyrene-d12			81.6%		38-143%	"							"	Z3

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427 Project Name: Project Number: Project Manager:

e: **Kongiginak** ber: 14-157 ager: Ben Martich

Report Created: 06/24/09 14:14

	Percent Dry	Weight (So	lids) per A	STM D22	216-80 -	Labor	atory Qu	uality Control Results
			Т	estAmeric	a Portland			
QC Batch: 9060146	Soil Pre	paration Met	thod: Dry	Weight				
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Notes
Duplicate (9060146-DUP1)				QC Source:	: PSF0127-01			Extracted: 06/03/09 14:29
% Solids	NCA SOP	90.3	0.0100	0.0100 %	% by Weight	1x	90.7	0.442% (20) 06/03/09 14:29

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

Oasis Environmental, Inc.

825 W 8th Ave, ste 200 Anchorage, AK/USA 99501-4427

Kongiginak Project Name: Project Number: Project Manager:

14-157 Ben Martich

Report Created: 06/24/09 14:14

Notes and Definitions

Report Specific Notes:

	-	This Toluene hit was confirmed and is present in the trip blank.
ID4	-	Benzo(j)fluoranthene coelutes with Benzo(k)fluoranthene. The reported result is a summation of the isomers and the concentration is based on the response factor of Benzo(k)fluoranthene.
ID5	-	Benzo(e)pyrene concentration is based on the response factor of Benzo(a)pyrene, and has not been calibrated independently.
J	-	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
L2	-	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits.
M1	-	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M7	-	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
M8	-	The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
QP	-	Hydrocarbon result partly due to individual peak(s) in quantitation range.
R2	-	The RPD exceeded the acceptance limit.
RL1	-	Reporting limit raised due to sample matrix effects.
S14	-	The weight of the sample relative to the volume of methanol exceeds the method maximum 1:1 ratio.
Z1	-	Surrogate recovery was above acceptance limits.
Z3	-	The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.
Z6 Laborator	- r <u>y Re</u>	Surrogate recovery was below acceptance limits.
Z6 Laborator	- ry Re	Surrogate recovery was below acceptance limits.
Z6 <u>aborator</u> DET	- r <u>y Re</u> -	Surrogate recovery was below acceptance limits. Prorting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MDL or appropriate)
Z6 <u>aborator</u> DET ND	- r <u>y Re</u> -	Surrogate recovery was below acceptance limits. porting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
Z6 <u>aborator</u> DET ND NR/NA	- r <u>y Re</u> - -	Surrogate recovery was below acceptance limits. Pporting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available
Z6 aborator DET ND NR/NA dry	- r <u>y Re</u> - - -	Surrogate recovery was below acceptance limits. Prorting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
Z6 <u>aborator</u> DET ND NR/NA dry wet	- - - - -	Surrogate recovery was below acceptance limits. Pporting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
Z6 aborator DET ND NR/NA dry wet RPD	- - - - -	Surrogate recovery was below acceptance limits. Prorting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis. RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
Z6 <u>Laborator</u> DET ND NR/NA dry wet RPD MRL	- - - - - - -	Surrogate recovery was below acceptance limits. porting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis. RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
Z6 DET ND NR/NA dry wet RPD MRL MDL*	- - - - - - -	Surrogate recovery was below acceptance limits.
Z6 <u>Laborator</u> DET ND NR/NA dry wet RPD MRL MDL*	- - - - - - - - -	Surrogate recovery was below acceptance limits. porting Conventions: Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis. RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Johanna Dreher

Johanna L Dreher, Client Services Manager

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

Oasis Environmental, Inc.	Project Name:	Kongiginak	
825 W 8th Ave, ste 200	Project Number:	14-157	Report Created:
Anchorage, AK/USA 99501-4427	Project Manager:	Ben Martich	06/24/09 14:14

Electronic - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425.420-9200 FAX 420-9210
 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200 FAX 924-9290
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 503-906-9200 FAX 965-9210
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200 FAX 563-9210 X

TAL-1000(0408)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT

Drder #: AST 0006	I UKNAKUUNU KEQUEST in Business Days *	Organic & Inorganic Analyses	Petroleum Hydrocarbon Analyses	4 3 2 1 <1		THER Specify:	l Requests less than standard may incur Rush Charges.	# OF LOCATION/ TA CONT: COMMENTS WO ID	= ~	71	61	[4	12	(P	- E	8)	6) •		DATE: 6/1/00	Anchorade TIME 13.55	DATE	TIME	
SFURI Work C					211	LES 0	* Turnaround	MATRIX (W, S, O)	S								~		VED BY:	NAME Anastasia Sumula HRM.	VED BY:	NAME: FIRM:	
CHAIN UF CUSTOUT KI	Same		P.O. NUMBER:	PRESERVATIVE	over revert	REQUESTED ANALYS	Att 1000	And States											DATE: 5/30/09 NECE	TIME JODD PRINT	DATE: RECE	TIME: PRINT	
		まで	907-258-4033		Nove Medit		volson non agrica	SAMPLING AKIO AKIO	27109 / 2126 X X	28/09 / 1920 X X	28/09 / 1930 X X	22/09/1955 X X	128/09/1925 X X	28/69 / 1930 X X	19109 /1935 X X	\$ x X 0+61/60/	28/09/1945 X X	29109/1525 X X		n FIRM OASIS		FIRM:	
	REPORT TO: BON MONALCH	ADDRESS: 825 W. STY	PHONE: 401-258-4550 FAX: 6	PROJECT NAME: L'ANDIA ON		HAUBELT NUMBERS (4-121	SAMPLED BY: LISA NICh	CLIENT SAMPLE IDENTIFICATION	09-KON-111-SB 512	209-KON-112-56 6/2	, 69-KON-113-58 5/2	109-Kon-114-58 51	· 09-KON-115-58 51	·09-KON-116-58 5/:	109-KON-117-58 5/2	* 09-KON-18-58 5/2	.09-KON-119-56 5/2	10 09-1CON-120-58 5/5	RELEASED BY: JUL WAL	PRINT NAME: LISO NICHOLSON	RELEASED BY:	PRINT NAME:	ADDITIONAL REMARKS:

TAL-1000(0408)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

		•			CH	O NIE	F CUS	loby	REPC)RT				Work C	order #:	ACECOCAS		
CLIENT: OASIS ENV	rironmen	tru			4	IVOICE TO									TURNAH	OUND REQUE	TS	
REPORT TO: BEN Mart	ich ich				<u> </u>		S	z							.5	usiness Days *		
ADDRESS: 825 W. D.	AK, 995	10			<u>-</u>									ľ	Organic & I	norganic Analyses 4 3 2	[⊽ [-	
PHONE 907 - 258 - 486	FAX: 907 -258	-4033			P.C	. NUMBER									Petroleum I	lydrocarbon Analyse]"	
PROJECT NAME: KONG LGO	hak						PR	ESERVATI	VE							3 2 1		
PROJECT NUMBER: 14 -1 5	Γ	1				<u>,</u>								211]]]]]	
) 				8			REQUE	STED AN	ALYSES					<u> </u>	THER	secify:		
SAMPLED BY: How NIG	cholsen		7	202 Vo2	80									* Turnaround	Requests less	han standard may inc.	ur Rush Charge	ń
CLIENT SAMPLE IDENTIFICATION	SAMPLIN DATE/TIM	E	9 9 7 10	3/101	978				.					MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID	
09-KON-121-58	5/29/09/	1530	X	×										540	б		ਜ	
2 09-KON-122-50	5/29/09/	1535	X	×										5 20	ц		a	1
3 09-KoN - 125-58	5/29/09 /	1540	×	X										s S S S S	к		23	
Trip blank	0/1/5								+		_						Ø	
Trip blank	5/27/09/	3200		\times	\times									ner -	-		5	<u> </u>
ę										1								
-																		-т-
												 					-	·
9	-							<u> </u>										
RELEASED BY: LUNU	1		.	-		DATE: 5/	50100	-	RECEIVED B							DATE	611/09	-
PRINT NAME: LISA NICHI	olton	FIRM: OA:	515			TIME: 10	000		RINT NAME	And	tana	Gumu	الم	FIRM:	Anch	OCOC TIME	(ð · 55	
RELEASED BY:					-	DATE:			RECEIVED BY							DATE:		
PRINT NAME:		FIRM:				TIME:		_	RINT NAME					HRM:		TIME		
ADDITIONAL KEMAKKS:																TEMP: 2,2, PAGE	ι ε ε	

TAL-1000(0408)

Test America Coole (Army Corps. Con	r Receir	ot Form		
WORK ORDER # AST 0006 CLIENT: _ C	ASIS	PROJE	CT: Konaio	ime
Date /Time Cooler Arrived 06 / 01 / 09 13:55	Cooler signed	for by: <u>Anasta</u>	zsia Gumu	lia
Preliminary Examination Phase: Date cooler opened:	(sign) (sign)]NAC []LYi (include copy o []Yes []Yes []Yes []Yes	ANUSAN (Print nar (Print nar NDEN <u>/CLIE</u> of shipping papers in Date/ No No No	<u>ENT</u> <u>Other:</u> 1 file)	<u>Iland</u>
5. Did you sign the custody papers in the appropriate place?	🗹 Yes	No		
6. Was ice used? Yes No Type of ice: <u>blue ice</u> <u>gel ic</u> Temperature by Digi-Thermo Probe <u>24</u> °C Therm	ce <u>realice</u> nometer #	∏dry ice Cond Rac ≇3	ition of Ice: Froz	<u>;en</u>
7 Packing in Cooler: A hubble upon Daturation I and head D				
8 Did samples arrive in plastic bags?	Van			
9. Did all bottles arrive unbroken, and with labels in good condition?				
 Did an bottles arrive unbroken, and with labels in good condition? Are all bottle labels complete (ID, date, time, etc.) 	✓ Yes	∐ No		
11. Do bottle labels and Chain of Custody agree?	Yes	√ No C	19- KON - 125-	sB is melhanol
12. Are the containers and preservatives correct for the tests indicate	d? 🗹 Yes	No	kit tor c	19-KON - 121-SB
13. Conoco Phillips, Alyeska, BP H2O samples only:" pH < 2?	Yes	No	☑ N/A	
14. Is there adequate volume for the tests requested?	☑ Yes	No		
15. Were VOA vials free of bubbles? J N/A If "NO" which containers contained "head space" or bubble	☐ Yes s?	□ No		
Log-in Phase: Date of sample log-in <u>06 / 01 / 09</u> Samples logged in by (print) Anastana Gumula	(sign)	Anexant		
 Was project identifiable from custody papers? Do Turn Around Times and Due Dates agree? Was the Project Manager notified of status? Was the Lab notified of status? Was the COC scanned and copied? 	 ✓ Yes 	□ No □ No □ No □ No □ No □ No		·

·

Quantitation Report

- Page Intentionally Left Blank -

APPENDIX D

Laboratory Review Checklist

- Page Intentionally Left Blank -

Laboratory Data Review Checklist

Completed by:	Lisa Nicholson
Title:	Geologist
Date:	June 23, 2009
CS Report Name:	Former Kongiganak School Tank Farm Site Characterization Report
Report Date:	June 30, 2009
Consultant Firm:	OASIS Environmental, Inc.
Laboratory Name:	Test America
Laboratory Report N	umber: ASF0006
ADEC File Number:	2454.38.004
ADEC RecKey Num	per:

1. Laboratory

- a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? 🖸 Yes 🖸 No Comments:
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

🖸 Yes	🖸 No	Comments:

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)? Ο

Yes	🖸 No	Comments:

b. Correct analyses requested?

	• •	
🖸 Yes	🖸 No	Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/co	olei temperatui	c documented and within range at receipt $(4 \pm 2 \ C)!$
🖸 Yes	C No	Comments:
h Sample pr	eservation acce	ntable – acidified waters. Methanol preserved VOC soil (GRO F
Volatile C	hlorinated Solv	ents, etc.)?
C Yes	C No	Comments:
a Samula ac	ndition docume	ntad broken leaking (Methenel) zere headenees (VOC viale)?
		Generation (Wethanol), zero headspace (WOC viais)?
LELYES		Comments:
d. If there we	ere any discrepa	ncies, were they documented? For example, incorrect sample
d. If there we containers samples, e	ere any discrepa /preservation, sa	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or m
d. If there we containers samples, e	ere any discrepa /preservation, sa etc.?	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments:
 d. If there we containers samples, e C Yes One sample v 	ere any discrepa /preservation, sa otc.?	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead.
 d. If there we containers samples, e C Yes One sample v e. Data quali 	ere any discrepa /preservation, sate.?	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead.
 d. If there we containers samples, e C Yes One sample v e. Data quality 	ere any discrepa /preservation, sate tc.? In No vas mislabeled, ty or usability a	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead. ffected? Explain. Comments:
 d. If there we containers samples, e C Yes One sample v e. Data quality r 	ere any discrepa /preservation, satt.? In No was mislabeled, ty or usability a not affected.	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead. ffected? Explain. Comments:
 d. If there we containers samples, e C Yes One sample v e. Data quality r bata quality r 	ere any discrepa /preservation, sa etc.? I No vas mislabeled, ty or usability a tot affected.	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead. ffected? Explain. Comments:
 d. If there we containers samples, e C Yes One sample v e. Data quality r Data quality r 	ere any discrepa /preservation, sate otc.? In No vas mislabeled, ty or usability a not affected.	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or mi Comments: but was corrected after lab's discussion with field lead. ffected? Explain. Comments:

🖸 Yes 🛛 🖾 No

Comments:

b. Discrepancies, errors or QC failures identified by the lab?

Yes No Comments:

c. Were all corrective actions documented?

Yes No Comments:

	No	one needed		
	d.	What is the	effect on da	ta quality/usability according to the case narrative? Comments:
	No	o effect on da	ta quality.	
<u>Sa</u>	<u>mpl</u>	es Results		
	a.	Correct anal	lyses perfori	med/reported as requested on COC?
		🖸 Yes	🖸 No	Comments:
	b.	All applicat	ole holding t	imes met?
		🖸 Yes	🖸 No	Comments:
	c.	All soils rep	orted on a d	lry weight basis?
		🖸 Yes	🗖 No	Comments:
	Ex	cept trip blar	ık.	
	d.	Are the repo the project?	orted PQLs l	ess than the Cleanup Level or the minimum required detection level for
		🖸 Yes	🖸 No	Comments:
	Th the teti	ne results are Cleanup Lev rachloroethen	reported to t vels, includin e, trichloroe	the MDL rather than the MRL (or PQL). Several MDLs are still above ng 1,2-dichloroethene, methylene chloride, 1,1,2,2-tetrachloroethane, ethene, and 1,2,3-trichloropropane.
	e.	Data quality	or usability	v affected? Explain.

Comments:

The above compounds are not considered contaminants of concern for the site and are not expected to be present. The data quality and usability should not be affected.

5.

6. QC Samples

a. M	i One	nk method blank	reported per matrix analysis and 20 samples?
	I. One Yes		Comments:
	11. All 1	nethod blank i	results less than PQL?
	O Yes	L NO	Comments:
	iii. If ab	ove PQL, wha	at samples are affected? Comments:
N/A			
	iv. Do t	he affected sau	mple(s) have data flags? If so, are the data flags clearly defined? Comments:
N/A			
	v. Data	quality or usa	ability affected? Explain. Comments:
Data	quality ha	s not been affe	ected.
b. L	aboratory i. Orga	Control Sampl anics – One LO	le/Duplicate (LCS/LCSD) CS/LCSD reported per matrix, analysis and 20 samples?
	🕑 Yes	L No	Comments:
<u> </u>	ii. Meta 20 s	als/Inorganics amples?	- one LCS and one sample duplicate reported per matrix, analysis and
	🖸 Yes	🖸 No	Comments:
N/A			

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

The percent recoveries for one of the BTEX LCSDs were below acceptance limits, with recoveries of less than 0.3 percent. The laboratory stated that the analyst forgot to spike the LCSD.

Yes No Comments:

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Samples 09-KON-102SB through -105SB, and -108SB through-118SB

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No Comments:

vii. Data quality or usability affected? Explain. Comments:

The corresponding LCS, MS, MSD, and MS/MSD RPDs are all within control limits and the data should not be affected by the lack of LCSD result.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?

Yes No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No Comments:

The GRO LCS and LCSD surrogate recoveries were biased high. The BTEX LCSD surrogate recovery was biased very low (0.175%). The DRO MSD surrogate recovery was biased high, but the MS, the LCSD and the LCSD DRO surrogates were within control limits.

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
- Yes No Comments:

iv. Data quality or usability affected? Explain.

Comments:

BTEX results associated with the LCSD

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and cooler?

Yes No Comments:

ii. All results less than PQL?

Yes No Comments:

Toluene and trichloroethene were above the MDL in the trip blank.

iii. If above PQL, what samples are affected? Comments:

All samples with detected toluene or trichloroethene results less than 10 times the result in the trip blank.

iv. Data quality or usability affected? Explain.

Comments:

Samples mentioned above should be flagged "B" for blank contamination

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes No Comments:

ii. Submitted blind to lab?

Yes No Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$ Where R_1 = Sample Concentration

 $R_2 =$ Field Duplicate Concentration

Yes No Comments:

The GRO RPD was 65% for the 09-KON-106SB/-107SB sample pair. The DRO RPD was 132% for the 09-KON-113SB/-114SB sample pair.

iv. Data quality or usability affected? Explain.

Comments:

The sample data has not been qualified based on the high RPDs due to the inherent heterogeneity of soil.

f. Decontamination or Equipment Blank (if applicable)

Yes No Not Applicable

i. All results less than PQL?

Yes No Comments:

N/A

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? Explain.

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

- a. Defined and appropriate?
 - Yes No Comments:

APPENDIX E

CSM Scoping Form and Human Health CSM

- Page Intentionally Left Blank -

HUMAN HEALTH CONCEPTUAL SITE MODEL

Site:			<i>Follow the directions below. <u>Do no</u> or land use controls when describ</i>	<u>ot</u> cor ing p	nsider e athway:	ngine s.	erinę	7		
Completed By: _ Date Completed:					Identify the	recepto	(5) rs. pote	ntially	affecte	ed by
(1) Check the media that could be directly affected by the release.	(2) For each medium identified in (1), follow the top arrow <u>and</u> check possible transport mechanisms. Briefly list other mechanisms or reference the report for details.	(3) Check exposure mec identified in (2).	(4) lia Check exposure pathways that are complete or need further evaluation. <u>The pathways</u> <u>identified must agree with Sections 2 and 3</u> of the CSM Scoping Form.		each expos receptors, ' both currer, Curre	sure pati "F" for fu at and fu ent & F	ture re ture re ture rec	eptors eptors eptors	;; or "C ;; or "C	urrent VF" for
Media	Transport Mechanisms	Exposure Media	Exposure Pathways	/	hildren) ^I or ^I orkers	trespasse nal users	n workers	- valsteng	e consumer	
Surface (0-2 ft bgs)	A check soil with a check soil with a check soil with a check soil with a check soil che			Residents (adm.	Commercia industrial Site visit	or recreatio Construction	Farmers or	Subsistenc	Other	
	Runoff or erosion <u>check surface water</u> Uptake by plants or animals <u>check biota</u> Other (<i>list</i>):	soil	Incidental Soil Ingestion Dermal Absorption of Contaminants from Soil							
Subsurface Soil (2-15 ft bgs)	rect release to subsurface soil check soil Migration to groundwater Check groundwater Colatilization Check air Other (list):	groundwater	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water							
Ground- water	rect release to groundwater check groundwater Volatilization check air Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust							
Surface Water	irect release to surface water check surface water Volatilization check air Sedimentation check sediment Uptake by plants or animals check biota	surface water	 Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water 							
Sediment	irect release to sediment check sediment Resuspension, runoff, or erosion check surface water	sediment	Direct Contact with Sediment							
	Oplane by plants or animilais <u>cneck biola</u> Other (list):	biota	Ingestion of Wild Foods							

Human Health Conceptual Site Model Scoping Form

Site Name:	
File Number:	
Completed by:	

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, a CSM graphic and text must be submitted with the site characterization work plan.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	Uehicles
ASTs	Landfills
Dispensers/fuel loading racks	Transformers
Drums	Other:
Release Mechanisms (check potential release mec	hanisms at the site)
Spills	Direct discharge
Leaks	Burning
	Other:
Impacted Media (check potentially-impacted media	ia at the site)
Surface soil (0-2 feet bgs [*])	Groundwater
Subsurface Soil (>2 feet bgs)	Surface water
Air	Other:
Receptors (check receptors that could be affected b	by contamination at the site)
Residents (adult or child)	Site visitor
Commercial or industrial worker	Trespasser
Construction worker	Recreational user
Subsistence harvester (i.e., gathers wild foods)	Farmer
Subsistence consumer (i.e., eats wild foods)	Other:

1

2. **Exposure Pathways:** (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)

a)	Direct Contact – 1 Incidental Soil Ingestion		
	Is soil contaminated anywhere between 0 a	and 15 feet bgs?	
	Do people use the site or is there a chance they will use the site in the future?		
	If both boxes are checked, label this pathway complete:		
	2 Dermal Absorption of Contaminants	s from Soil	
	Is soil contaminated anywhere between 0 a	and 15 feet bgs?	
	Do people use the site or is there a chance future?	they will use the site in the	
	Can the soil contaminants permeate the ski or within the groups listed below, should b absorption).	in? (Contaminants listed below, e evaluated for dermal	
	Arsenic	Lindane	
	Cadmium	PAHs	
	Chlordane	Pentachlorophenol	
	2,4-dichlorophenoxyacetic acid	PCBs	
	Dioxins	SVOCs	
	DDT		
	If all of the boxes are checked, label this p	athway complete:	
b)	Ingestion – 1 Ingestion of Groundwater		
	Have contaminants been detected or are the groundwater, OR are contaminants expected the future?	ey expected to be detected in the ed to migrate to groundwater in	
	Could the potentially affected groundwater	be used as a current or future	

Could the potentially affected groundwater be used as a current or future drinking water source? *Please note, only leave the box unchecked if ADEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.*

If both the boxes are checked, label this pathway complete:

2 Ingestion of Surface Water

	Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future?	
	Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? <i>Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).</i>	
	If both boxes are checked, label this pathway complete:	
	3 Ingestion of Wild Foods	
	Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food?	
	Do the site contaminants have the potential to bioaccumulate (<i>see</i> Appendix A)?	
	Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that could be connected to surface water, etc.)	
	If all of the boxes are checked, label this pathway complete:	
c)	Inhalation 1 Inhalation of Outdoor Air	
	Is soil contaminated anywhere between 0 and 15 feet bgs?	
	Do people use the site or is there a chance they will use the site in the future?	
	Are the contaminants in soil volatile (See Appendix B)?	
	If all of the boxes are checked, label this pathway complete:	
	2 Inhalation of Indoor Air	
	Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, <u>or</u> subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures)	
	Are volatile compounds present in soil or groundwater (See Appendix C)?	
	If both boxes are checked, label this pathway complete:	

3. Additional Exposure Pathways: (Although there are no definitive

questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- o Climate permits recreational use of waters for swimming,
- Climate permits exposure to groundwater during activities, such as construction, without protective clothing, or
- o Groundwater or surface water is used for household purposes.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Volatile Compounds in Household Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- The contaminated water is used for household purposes such as showering, laundering, and dish washing, and
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Fugitive Dust

Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during recreational or some types of subsistence activities. People then incidentally **ingest** sediment from normal hand-to-mouth activities. In addition, **dermal absorption of contaminants** may be of concern if people come in contact with sediment and the contaminants are able to permeate the skin (see dermal exposure to soil section). This type of exposure is rare but it should be investigated if:

- Climate permits recreational activities around sediment, and/or
- Community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

ADEC soil ingestion cleanup levels are protective of direct contact with sediment. If they are determined to be over-protective for sediment exposure at a particular site, other screening levels could be adopted or developed.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

APPENDIX A

BIOACCUMULATIVE COMPOUNDS

Table A-1: List of Compounds of Potential Concern for Bioaccumulation

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table X of 18 AAC 75.345 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greater than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are

listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler

is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS

Table B-1: List of Volatile Compounds of Potential Concern

Common volatile contaminants of concern at contaminated sites. A chemical is defined as volatile if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater and the molecular weight less than 200 g/mole (g/mole; EPA 2004a). Those compounds in Table X of 18 AAC 75.345 that are volatile, based on the definition above, are listed below.

Acenaphthene	1,4-dichlorobenzene	Pyrene
Acetone	1,1-dichloroethane	Styrene
Anthracene	1,2-dichloroethane	1,1,2,2-tetrachloroethane
Benzene	1,1-dichloroethylene	Tetrachloroethylene
Bis(2-chlorethyl)ether	Cis-1,2-dichloroethylene	Toluene
Bromodichloromethane	Trans-1,2-dichloroethylene	1,2,4-trichlorobenzene
Carbon disulfide	1,2-dichloropropane	1,1,1-trichloroethane
Carbon tetrachloride	1,3-dichloropropane	1,1,2-trichloroethane
Chlorobenzene	Ethylbenzene	Trichloroethylene
Chlorodibromomethane	Fluorene	Vinyl acetate
Chloroform	Methyl bromide	Vinyl chloride
2-chlorophenol	Methylene chloride	Xylenes
Cyanide	Naphthalene	GRO
1,2-dichlorobenzene	Nitrobenzene	DRO

APPENDIX C

COMPOUNDS OF CONCERN FOR VAPOR MIGRATION

Table C-1: List of Compounds of Potential Concern for the Vapor Migration

A chemical is considered sufficiently toxic if the vapor concentration of the pure component poses an incremental lifetime cancer risk greater than 10-6 or a non-cancer hazard index greater than 1. A chemical is considered sufficiently volatile if it's Henry's Law constant is 1×10^{-5} atm-m³/mol or greater.

is constacted sufficiently volution		
Acenaphthene	Dibenzofuran	Hexachlorobenzene
Acetaldehyde	1,2-Dibromo-3-chloropropane	Hexachlorocyclopentadiene
Acetone	1,2-Dibromoethane (EDB)	Hexachloroethane
Acetonitrile	1,3-Dichlorobenzene	Hexane
Acetophenone	1,2-Dichlorobenzene	Hydrogen cyanide
Acrolein	1,4-Dichlorobenzene	Isobutanol
Acrylonitrile	2-Nitropropane	Mercury (elemental)
Aldrin	N-Nitroso-di-n-butylamine	Methacrylonitrile
alpha-HCH (alpha-BHC)	n-Propylbenzene	Methoxychlor
Benzaldehyde	o-Nitrotoluene	Methyl acetate
Benzene	o-Xylene	Methyl acrylate
Benzo(b)fluoranthene	p-Xylene	Methyl bromide
Benzylchloride	Pyrene	Methyl chloride chloromethane)
beta-Chloronaphthalene	sec-Butylbenzene	Methylcyclohexane
Biphenyl	Styrene	Methylene bromide
Bis(2-chloroethyl)ether	tert-Butylbenzene	Methylene chloride
Bis(2-chloroisopropyl)ether	1,1,1,2-Tetrachloroethane	Methylethylketone (2-butanone)
Bis(chloromethyl)ether	1,1,2,2-Tetrachloroethane	Methylisobutylketone
Bromodichloromethane	Tetrachloroethylene	Methylmethacrylate
Bromoform	Dichlorodifluoromethane	2-Methylnaphthalene
1,3-Butadiene	1,1-Dichloroethane	MTBE
Carbon disulfide	1,2-Dichloroethane	m-Xylene
Carbon tetrachloride	1,1-Dichloroethylene	Naphthalene
Chlordane	1,2-Dichloropropane	n-Butylbenzene
2-Chloro-1,3-butadiene	1,3-Dichloropropene	Nitrobenzene
(chloroprene)		
Chlorobenzene	Dieldrin	Toluene
1-Chlorobutane	Endosulfan	trans-1,2-Dichloroethylene
Chlorodibromomethane	Epichlorohydrin	1,1,2-Trichloro-1,2,2-
		trifluoroethane
Chlorodifluoromethane	Ethyl ether	1,2,4-Trichlorobenzene
Chloroethane (ethyl	Ethylacetate	1,1,2-Trichloroethane
chloride)		
Chloroform	Ethylbenzene	1,1,1-Trichloroethane
2-Chlorophenol	Ethylene oxide	Trichloroethylene
2-Chloropropane	Ethylmethacrylate	Trichlorofluoromethane
Chrysene	Fluorene	1,2,3-Trichloropropane
cis-1,2-Dichloroethylene	Furan	1,2,4-Trimethylbenzene
Crotonaldehyde (2-butenal)	Gamma-HCH (Lindane)	1,3,5-Trimethylbenzene
Cumene	Heptachlor	Vinyl acetate
DDE	Hexachloro-1.3-butadiene	Vinvl chloride (chloroethene)

Source: EPA 2002.