

FINAL REPORT NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION ENVIRONMENTAL LIABILITIES EVALUATION LITTLE PORT WALTER RESEARCH STATION, ALASKA

JULY 28, 2017

CONTRACT NUMBER WE-133F-16-SE-1706

Prepared For:

National Oceanic and Atmospheric Administration Auke Bay Laboratories Ted Stevens Marine R.I., 17109 Pt. Lena Loop Rd. Juneau, Alaska 99801

Prepared By:
Ahtna Environmental, Inc.
110 West 38th Avenue, Suite 200B
Anchorage, Alaska 99503

APPROVAL PAGE

The following Environmental Liabilities Evaluation Report for the National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service, and Alaska Fisheries Science Center (AFSC) at the Little Port Walter Research Station (LPW) in Little Port Walter, Alaska has been prepared by Ahtna Environmental, Incorporated (Ahtna). The following people have reviewed and approved this report.

Bernie Wong, LEG, LHG Ahtna Environmental, Incorporated Regional Director, Seattle Qualified Environmental Professional as defined by 18 AAC 75.333

Vivian Tokar Ahtna Environmental, Incorporated Program Manager, Alaska Qualified Environmental Professional as defined by 18 AAC 75.333

Kathryn Cleveland Ahtna Environmental Incorporated Assistant Project Manager, Seattle Qualified Environmental Professional as defined by 18 AAC 75.333 (This Page Intentionally Left Blank)

TABLE OF CONTENTS

	PPROVAL PAGE		
AC	CRONYMS AND ABBREVIATIONS	9)
1.0	INTRODUCTION	. 12	2
1.1	Project Objectives	. 12	2
1.2			
1.3	Location and Physical Settings	. 13	3
	1.3.1 Climate	. 14	4
	1.3.2 Geology and Soils	. 14	4
	1.3.3 Hydrology	. 14	4
	1.3.4 Sensitive Environments		
2.0	REGULATORY SETTING AND CLEANUP CRITERIA	. 16	6
2.1	6 · · · · · · · · · · · · · · · · · · ·		
2.2	—		
3.0	FIELD ACTIVITIES	. 19)
3.1	· · · · · · · · · · · · · · · · · · ·		
3.2			
	3.2.1 Lead-Based Paint on Painted Surfaces and Paint Chip Collection	. 19)
	3.2.2 Mercury		
	3.2.3 Asbestos-Containing Material (ACM)	. 19)
3.3			
	3.3.1 Petroleum Hydrocarbon Contamination Investigation	. 20)
	3.3.2 Lead-Based Paint Investigation in Soil		
	3.3.3 Treated Lumber Investigation		
3.4	J		
3.5			
3.6			
3.7			
3.8			
4.0			
4.1			
4.2			
	4.2.1 Lead-Based Paint on Painted Surfaces	. 25	5
	4.2.2 Mercury	. 26	_
	4.2.3 Asbestos-Containing Material		
4.3	1 6		
	4.3.1 Petroleum Hydrocarbon Contamination		
	4.3.2 Lead-Based Paint in Soil		
	4.3.3 Treated Lumber		
5.0			
5.1			
5.2			
5.3	1		
5.4			
5.5	Equipment Calibration	. 29)

5.6 A	Analytical Data Quality Review	29
5.6.1	Analytical Methods	30
5.6.2	Sample Handling	30
5.6.3	Holding Time and Preservation Compliance	30
5.6.4	Precision	31
5	.6.4.1 Field Duplicates	31
5	.6.4.2 Matrix Spike/ Matrix Spike Duplicate Precision	31
5.6.5	Accuracy	31
5	.6.5.1 Surrogate Percent Recoveries	32
5.6.6	Representativeness	32
5.6.7	Comparability	32
5.6.8	T	
5.6.9	~ · / · J	
	.6.9.1 Limits of Detection	
	6.9.2 Blank Results (Trip Blank and Method Blanks)	
	Data Summary	
	PDATED CONCEPTUAL SITE MODEL	
	Sources and Release Mechanisms	
	mpacted Media	
	Direct Contact with Soil	
	ngestion of Groundwater, Surface Water, Wild Foods	
	nhalation of Outdoor and Indoor Air	
	Dermal Exposure to Contaminants in Groundwater and Surface Water	
	nhalation of Volatile Compounds in Tap Water	
	nhalation of Fugitive Dust	
	Direct Contact with Sediment	
	ngestion of Wild or Farmed Foods	
	ONCLUSIONS AND RECOMMENDATIONS	
	Building and Infrastructure Sampling	
	Lead-Based Paint on Painted Surfaces	
	Mercury	
7.1.3		
	oil Sampling	
7.2.1	J =	
	Lead in Soil	
	Treated Lumber	
Q N D	FFFFFNCFS	11

TABLES

Table 1-1 Structure Inventor

Table 2-1 Summary of Soil Cleanup and Screening Levels

FIGURES

Figure 1	State and Site Vicinity Map
Figure 2	Area of Investigation
Figure 3	Lead-Based Paint and Treated Lumber Soil Investigation Results-Sheet 1
Figure 4	Lead-Based Paint and Treated Lumber Soil Investigation Results-Sheet 2
Figure 5	Lead-Based Paint and Treated Lumber Soil Investigation Results-Sheet 3
Figure 6	Petroleum Hydrocarbon Soil Investigation Results- Sheet 2
Figure 7	Petroleum Hydrocarbon Soil Investigation Results- Sheet 3

CSM

Conceptual Site Model

APPENDICES

Appendix A	Field Notes
Appendix B	Photo Log
Appendix C	Analytical Results Tables and Laboratory Analytical Data (electronic only)
Table C-1	Summary of Sample Collection
Table C-2	Lead-Based Paint Analytical Infrastructure Results
Table C-3	Asbestos Analytical Infrastructure Results
Table C-4	Petroleum Hydrocarbon and VOC Analytical Soil Results
Table C-5	Lead-Based Paint Analytical Soil Results
Table C-6	Treated Lumber Analytical Soil Results
Table C-7	Background Sample Results
Appendix D	Data Quality Review and ADEC Checklist
Appendix E	Vapor Intrusion Building Survey
Appendix F	Fuel Line Snag Report
Appendix G	ADEC Comments

(This Page Intentionally Left Blank)

ACRONYMS AND ABBREVIATIONS

~	
	.Alaska Administrative Code
	asbestos-containing material
	.Alaska Department of Environmental Conservation
	.Alaska Fisheries Service Center
	Asbestos Hazard Emergency Response Act
	Ahtna Environmental Incorporated
	aboveground storage tank
	below ground surface
	chain of custody
	contaminant of potential concern
CSM	.conceptual site model
cy	
	.Department of Defense
	data quality report.
	diesel range organics.
EPA	Environmental Protection Agency
°F	degrees Fahrenheit.
	gasoline range organics
	global positioning system.
LBP	.lead-based paint
LCS	laboratory control sample
	laboratory control sample duplicate
LPW	Little Port Walter
MDL	method detection limit
mg/kg	.milligram per kilogram
μg/L	.microgram per liter
MS	.matrix spike
MS/MSD	.matrix spike/matrix spike duplicate
NOAA	.National Oceanic and Atmospheric Administration
NOV	notice of violation
OSHA	Occupational Safety and Health Administration
PAH	polycyclic aromatic hydrocarbons.
PCB	polychlorinated biphenyls
PID	photoionization detector
PLM	polarized light microscopy.
QA/QC	.quality assurance/quality control
RCRA	Resource Conservation and Recovery Act
RPD	relative percent differences
	residual range organics.
	turn around time
TCLP	toxicity leaching characteristic procedure.
	total organic carbon
	.United States Department of Agriculture Forest Service
	volatile organic compounds.

Little Port Walter Research Station Final Report	NOAA
•	
WPwork plan	
XRFx-ray fluorescence	

(This Page Intentionally Left Blank)

1.0 INTRODUCTION

Ahtna Environmental, Incorporated (Ahtna) developed this report to detail the field activities and results performed to evaluate potential environmental liabilities at the Little Port Walter Research Station (LPW), in Little Port Walter, Alaska. This work was performed under Contract Number WE-133F-16-SE-1706 with the National Oceanic and Atmospheric Administration (NOAA). The general location of the site is shown in Figure 1. Work was performed in general conformance with the contract documents, including the Scope of Work and the approved site work plan dated April 20, 2017 (Ahtna, 2017).

The Alaska Department of Environmental Conservation (ADEC) contaminated sites database entry for LPW is:

ADEC Site Name: NOAA Little Port Walter Hatchery

ADEC File No.: 1523.38.0002 ADEC Hazard ID: 25999

1.1 Project Objectives

The primary objectives for the Little Port Walter Environmental Liabilities Evaluation were to:

- 1. Investigate soil around present and historical fuel system infrastructure to confirm the presence or absence of petroleum hydrocarbon contamination in soil. These results will be compared to the appropriate ADEC cleanup levels.
- 2. Investigate painted structures to verify presence or absence of lead-based paint (LBP), and investigate the soils to confirm the presence or absence of lead contamination in soil.
- 3. Determine areas within buildings or structures where thermometers and/or manometers were used and stored and then test these areas using a mercury vapor analyzer for the presence of residual mercury contamination from broken equipment.
- 4. Visually inspect twenty-two building/structures potentially constructed of chemically-treated lumber, and collect and analyze samples for contaminates in soils related to wood preservation chemicals.
- 5. Review and confirm the information on location, quantity, and condition of Asbestos-Containing Material (ACM) identified in the 1996 *Asbestos & PCB Survey Report* (Lee, NA, 1996).

1.2 Background

The LPW is located on Baranof Island approximately 53 miles south-southeast of Sitka, Alaska and approximately 140 miles south-southwest of Juneau, Alaska. LPW is a remote laboratory campus on the south end of the Tongass National Forest. The facility is used to conduct a variety of fish rearing studies on various species of Chinook salmon.

ADEC Contaminated Sites Program File Number 1523.38.0002, Site Name "NOAA Little Port Walter Hatchery" describes historic petroleum releases at the LPW Research Station (ADEC 2012). The background from ADEC records on previous releases includes:

- Indication that a diesel spill occurred in March of 1980. On March 4, the spill was reported
 to the Coast Guard, the Tongass National Forest Supervisor, and the ADEC. The site was
 remediated in full conformity with all applicable laws and regulations in effect at that time.
- On October 20, 2012, ADEC added a diesel spill of unknown quantity that was not reported to the site's file. It was potentially a multiple petroleum release from corroded fuel lines running underground to the generator shed. NOAA formally responded on November 23, 2012 to the ADEC Notice of Violation (NOV), stating that NOAA Alaska Fisheries Science Center (AFSC) did not violate Alaska Statues Title 46 or ACC 18 section 75. No environmentally or technically accurate information was provided to ADEC to confirm environmental contamination at the site prior to the NOV. The site was added to the ADEC Contaminated Soils Program for long term monitoring.

1.3 Location and Physical Settings

The project site is located at 56°23′30″ North latitude, 134°39′23″ West longitude and is the oldest year-round biological research station for salmonid experimentation in the State of Alaska. LPW is the primary research station for Auke Bay Laboratory, and is located within an estuarine environment adjacent to Chatham Strait near the open Gulf of Alaska. There are no road systems to this facility. LPW is accessible only by barge, boat, or seaplane (Figure 1).

LPW is comprised of 12 main buildings, including a weir, generator shed, workshops, floating wet-labs including many fresh and salt-water floating raceways and net-pens, feed shed, several residences, and a permanent concrete fish weir on Sashin Creek, a total of 22 structures (Figure 2 and Table 1-1). Three generators, one of which runs continuously, power the facilities. The buildings each have an approximately 100 to 300-gallon diesel fuel tank used for heating. There are two 5,000-gallon diesel aboveground fuel tanks co-located between the warehouse and generator shed. These bulk tanks are filled three times per year via vessel or barge. A buried pipeline from the bulk tanks provides fuel to the generators. The remaining 100 – 300 gallon building fuel tanks are filled annually by portable fuel cans. Equipment refueling is done with drip pans and absorbent pads. All equipment maintenance is performed inside the warehouse on concrete floors.

Item Number	Structure Name	Structure Type
1	Weir Cabin	Building
2	Weir Storage Area	Wood Structure
3	Weir Pan Abode Shack	Building
4	Weir Bridge	Wood Structure
5	Pan Abode Cabin	Building
6	Pan Abode Fuel Tank	Sheltered Pad
7	Pan Abode Bridge	Wood Structure
8	Cove Cabin Bridge	Wood Structure
9	Cove Cabin	Building
10	Cove Cabin Fuel Tank	Sheltered Pad
11	Incinerator Shed	Unoccupied Building
12	Dock (Tag & Feed) Sheds	Building
13	Warehouse Complex	Building

TABLE 1-1 STRUCTURE INVENTORY

Item Number	Structure Name	Structure Type	
14	Generator Shed	Unoccupied Building	
15	Fuel Tank Shed	Unoccupied Building	
16	Hazmat Storage	Unoccupied Building	
17	Woodworking/Metal Shop	Building	
18	Outboard Motor Storage Shed	Unoccupied Building	
19	White House Bridge	Wood Structure	
20	Walk-In Freezer / Hot Tub	Unoccupied Building	
	Shed		
21	White House Fuel Tank	Sheltered Pad	
22	White House	Building	

1.3.1 Climate

The field work occurred in May 2017. The mean temperatures at LPW for the month of May range from mid-50s degrees Fahrenheit (°F) to high-60s °F. The average temperature in May for this area is in the mid-60s °F. This area receives an annual precipitation of 224 inches per year.

1.3.2 Geology and Soils

The most profound effect on the soils and plants of the area is glaciation. The Wisconsin glaciation, which ended 12,000 to 13,000 years ago, along with earlier glaciations, has resulted in U-shaped valleys and higher elevation cirque basins [United States Department of Agriculture Forest Service (USFS), 2004]. The glaciers scoured many areas down to the bedrock and then till was deposited. The Wisconsin deglaciation resulted in a sea level that was much higher than it is today. This accounts for the presence of marine silts and sands in many of the low-lying valleys of northern Southeast Alaska (USFS, 2004). Erosion has had a large effect on local topography and many colluvial and alluvial fans were deposited on the valley floors during this time (USFS, 2004). Soils in the area have developed from unconsolidated and weathered mineral or organic parent materials. The soil is approximately 1 to 5 feet thick and overlies bedrock. During the construction of the facility, soils were removed and bedrock blasted in order to level areas for structures. These areas have 1 to 3 feet of gravel material overlying bedrock.

1.3.3 Hydrology

According to the NOAA site description, surface water primarily drains through the soils and into bedrock fissures or cracks. Surface water infiltrating through surface soil into fractured bedrock drains into Little Port Walter or Sashin Creek. Site investigations of the surface water and groundwater interaction have not been conducted at LPW. Little Port Walter is connected to Port Walter and Chatham Strait. Drinking water for LPW is piped in from the upstream Sashin Creek and is filtered and treated by ultra-violet light prior to distribution. The Alaska State Well Log Tracking System did not have any entries for Baranof Island in the Chatham Regional Education Attendance Area (Alaska Department of Natural Resources, 2016). The groundwater flow direction has not been determined, but is presumed to follow the topographic relief from the interior uplands towards the shoreline.

1.3.4 Sensitive Environments

LPW is in a remote region in Alaska. The built-up area of this remote region consists only of the NOAA Research Station and surrounded by wilderness, marine habitat, and undisturbed upland forest. LPW is bordered by marine shoreline modified by human activities only in short stretches. The entire LPW and associated shoreline is not classified as a wetland. The area immediately north of LPW is mapped as a Freshwater Forest/Shrub Wetland and the area across the bay to the south is mapped as an Estuarine and Marine Wetland (United States Fish and Wildlife Service, 2016).

2.0 REGULATORY SETTING AND CLEANUP CRITERIA

The ADEC Title 18 Alaska Administrative Code, Chapter 75 (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control* (ADEC, 2017b), with cleanup levels revised as of November 6, 2016, is the regulatory framework for potential petroleum hydrocarbon, lead in soil, and treated wood contamination in soil and water. Sampling was also conducted to identify if any residual mercury inside laboratory buildings associated with broken thermometers and other mercury-containing devices is present. LBP was tested by x-ray fluorescence (XRF), and paint chips from buildings were submitted for laboratory analysis of lead.

40 Code of Federal Regulations 76 is the regulatory framework for the comprehensive asbestos inspection. An accredited Asbestos Hazard Emergency Response Act (AHERA) Building Inspector performed inspections.

2.1 Soil Cleanup and Screening Levels

The applicable soil cleanup levels provided in Table 2-1 for LWP are the lowest value of the State of Alaska cleanup levels (human health or migration to groundwater) from 18 AAC 75, Table B1 and B2, Over 40-inch Zone (ADEC, 2017b). Table 2-1 includes compounds associated with petroleum spills. The list of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) include those associated with petroleum identified in Appendix D of the ADEC *Policy Guidance on Developing Conceptual Site Models* (ADEC, 2017b).

The Inhalation Risk Screening Levels for carcinogens and non-carcinogens listed in Appendix B, Over 40 Inch, of *Procedures for Calculating Cumulative Risk* (ADEC, 2016b) are also included in Table 2-1.

Analyte	Over 40 Inch Zone Ingestion/Human Health ¹ (mg/kg)	Migration to Groundwater ¹ (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic ² (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic ² (mg/kg)
	Petrole	um Hydrocarbons		
DRO	8,250	230	-	-
RRO	8,300	9,700	•	-
GRO	1,400	260	-	-
		VOCs		
Benzene	8.1	0.022	74.9	8.62
Toluene	200	6.7	14,100	-
Ethylbenzene	35	0.13	3,470	37.4
Xylenes (total)	57	1.5	355	-
1,2,4-Trimethylbenzene	33	0.16	32.7	-
1,3,5-Trimethylbenzene	37	1.3	-	-
		Metals		
Arsenic	7.2	0.20^{3}	94700	39,500
Chromium III	1.52E+05	1.0E+05		-
Chromium VI	3.2	0.089	632000	731
Copper	3,300	370	_	_

TABLE 2-1: SUMMARY OF SOIL CLEANUP AND SCREENING LEVELS

Analyte	Over 40 Inch Zone Ingestion/Human Health ¹ (mg/kg)	Migration to Groundwater ¹ (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic ² (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic ² (mg/kg)
Total Chromium	250			
Lead	400			
Mercury	3.13	0.36	13.8	-
		PAHs		
1-Methylnaphthalene	68	0.41	-	=
2-Methylnaphthalene	250	1.3	-	=
Acenaphthene	3,800	37	-	=
Acenaphthylene	1,900	18	-	=
Anthracene	19,000	390	=	-
Benzo(a)anthracene	1.7	0.28	-	211
Benzo(b)fluoranthene	1.7	2.7	-	558,000
Benzo(k)fluoranthene	17	27	-	558,000
Benzo(g.h.i)perylene	1,900	15,000	-	-
Benzo(a)pyrene	0.17	0.27	-	55,800
n-butyl benzene	20	23	-	-
sec-Butylbenzene	28	42	-	-
tert-Butylbenzene	35	11	-	-
Chrysene	170	82	-	5.58 x 10 ⁶
Cyclohexane	77	150	6730	-
Dibenzo(a,h)anthracene	0.17	0.87	-	51,200
Fluoranthene	2,500	590	-	-
Fluorene	2,500	36	-	-
Indeno(1,2,3-c,d)pyrene	1.7	8.8	-	558,000
Isopropylbenzene (cumene)	54	5.6	1480	-
n-Hexane	130	130	752	-
Propyl benzene	52	9.1	4110	-
Naphthalene	20	0.038	77.3	20.4
Phenanthrene	1,900	39	-	-
Pyrene	1,900	87	-	-
Styrene	180	10	5580	-

Notes:

- 1- Source of Cleanup Levels: 18 AAC 75.341, Tables B1 and B2 Over 40 Inch Zone, March 23, 2017
- 2-Source of Screening Levels: Appendix B, Over 40 Inch *Procedures for Calculation Cumulative Risk*, September 15, 2016c
- 3- Note that per ADEC 18 AAC 75, "Due to the prevalence of naturally occurring arsenic throughout the state, arsenic at a site will be considered background arsenic unless anthropogenic contribution from a source, activity, or mobilization by means of another introduced contaminant is known or suspected."

DRO = diesel range organics

GRO = gasoline range organics

mg/kg = milligrams per kilogram

PAH = polycyclic aromatic hydrocarbon

RRO = residual range organics

VOC = volatile organic compound

2.2 Building Material Samples

ADEC does not provide cleanup levels for building materials, which include asbestos, LBP, and mercury which are regulated by applicable Occupational Safety and Health Administration (OSHA) and Resource Conservation and Recovery Act (RCRA) standards. ADEC does regulate the disposal of friable and non-friable ACM under 18 AAC 60.450. Building material samples for asbestos analysis were collected under OSHA's Class III asbestos operations protocol [Environmental Protection Agency (EPA), 2017].

3.0 FIELD ACTIVITIES

All field and sampling procedures described in this section were performed in general accordance with those specified in ADEC's *Field Sampling Guidance* (ADEC, 2016). Deviations from the work plan are presented in Section 3.8. Brief descriptions of the performed field activities and other project-specific details are presented below and field notes are included in Appendix A.

3.1 Site Preparation

Ahtna personnel met in Juneau, Alaska on Friday May 5, 2017 to gather food, equipment, and supplies required to perform the Environmental Liabilities Evaluation. On the morning of Saturday May 6, 2017, Ahtna personnel, including one Site Superintendent/AHERA Inspector, one operator, and one Site Safety and Health Officer/Lead Investigator, met with the NOAA representative at Ward Air to charter a Super Otter seaplane to transport personnel, equipment, and supplies to LPW. All field personnel arrived at LPW around 12:30 pm local time that same day.

3.2 Building and Infrastructure Investigation and Sampling

The building and infrastructure investigation is related to the presence of LBP, mercury related to potential releases in the buildings from mercury-containing equipment, and the presence of ACM. Painted surfaces were screened using XRF to determine if lead was present. A Jerome Mercury Monitor was used as a screening method to determine if mercury was present.

3.2.1 Lead-Based Paint on Painted Surfaces and Paint Chip Collection

All homogenous painted surfaces throughout each structure identified in the Work Plan (WP) as potentially containing LBP were screened using a calibrated XRF meter. Paint chip samples were collected from locations with the highest XRF readings at each of the structures. Information on the samples collected are presented in Table C-1.

3.2.2 Mercury

According to documentation and onsite NOAA personnel, the only areas mercury thermometers and/or manometers were used and stored were in the wet lab on the northeast side of the Workshop/Offices building (Figure 4). The wet lab is currently active and the Jerome Mercury Monitor is only accurate with dry material. Ahtna identified three different dry locations within this room, including the northwest corner, southwest corner, and southeast sidewall. At each sample location a pneumatic drill with plastic shield was used to create a small amount of dry fine concrete from the floor. The probe end of the Jerome Monitor was then inserted into the plastic guard to collect a reading. None of the locations had any screening detections and as a result, no samples were collected.

3.2.3 Asbestos-Containing Material (ACM)

The Asbestos Survey conducted in July of 1996 was reviewed and each of the structures inspected. Additional samples of potential ACM were collected in order to verify that no asbestos was present

at previously non-sampled locations. Additional sample locations were identified by the building inspection of suspect areas to further identify if additional asbestos containing material is present. Sample information is presented in Table C-1.

3.3 Soil Investigation and Sampling

Ahtna's qualified environmental professional/sampler collected field screening and analytical soil samples from surface soils and subsurface soils up to 3 feet below ground surface (bgs) at locations associated with petroleum hydrocarbon contamination, lead, and treated lumber investigation activities. Field screening and analytical sampling locations were based on the location of existing structures, historical structure location as identified by NOAA personnel, and professional judgement as identified in the Work Plan.

Surface samples (up to 2 feet bgs) were collected with a clean shovel and subsurface soil samples were collected using an AFSC-provided Case 50-Series mini excavator. Samples were collected using disposable spoons, disposable nitrile gloves, and laboratory supplied sample containers.

Background samples were collected to identify the concentration of any analytes naturally occurring in the soils. Locations for background sampling were chosen among areas that were within a safe distance from the site and did not have any existing or current structures on them. Two background samples were collected at approximately 1 to 1.5 feet bgs, one from the far west side of the facility near the Pan Abode Cabin and Weir (Sample LPW17-Bkgd-Weir-01(1.5), and the second from the east side of the White House (Sample LPW17-Bkgd-WH-02(1) near the coast. Background samples were analyzed for Total Organic Carbon (TOC), and Diesel Range Organics (DRO) and Residual Range Organics (RRO). One additional background sample was collected from the north side of the elevated walkway near the Pan Abode Cabin and analyzed for arsenic, chromium, and copper.

A vapor intrusion investigation was conducted for all 22 structures located onsite (ADEC, 2017a). Refer to Appendix E for the completed ADEC Building Inventory and Indoor Air Sampling Questionnaire Forms.

3.3.1 Petroleum Hydrocarbon Contamination Investigation

A total of 17 soil samples were collected and analyzed for petroleum hydrocarbons and associated constituents. All sample locations were screened using a calibrated photoionization detector (PID) and visually examined for staining prior to sample collection. Information on the observations and samples collected near various structures is presented below. A summary of the samples collected is provided in Table C-1. All samples were analyzed for:

- Gasoline Range Organics (GRO) AK 101
- DRO and RRO AK102/103
- VOCs 8260C (low level)
- PAHs 8270D

Pan Abode Cabin: is a known location of a former fuel leak due to mechanical malfunction during the filling of the 200-gallon aboveground storage tank (AST). Four samples from test pits,

including one duplicate, were collected. Ahtna excavated an area just down-gradient (south) of the AST. The soil turned from organic rich black to a clumpy gray with a moderate petroleum odor approximately 1.5 feet bgs. Ahtna collected sample LPW17-SL-WeirP-01(2) from this location. Ahtna excavated another test pit approximately 5 feet down-gradient from the previous sample location (across the path). Similar soils were discovered and the PID had similar readings. A third test pit was excavated an additional 3 feet down-gradient where sample LPW17-SL-WeirP-02(2) and LPW17-SL-WeirP-02D(2) were collected at approximately 2 feet bgs. A final test pit was excavated and screened 4 feet west of the third test pit. The test pit was excavated to 2.5 feet bgs and screened using the PID. The soil was a brown silty to sandy loam, and had no odor or visual evidence of staining with sample LPW17-SS-WeirP-03(2.5) collected from this test pit (Figure 6).

Cove Cabin: has a 200 gallon AST located at the northeast corner of the cabin. There is no information regarding a past spill or leak at this location. Two samples were collected within 5 feet of the tank along the north side at approximately 2 feet bgs. Due to steep slopes and minimal soil above bedrock, no sample locations were feasible along the south side of the tank. Both test pits were screened with the PID with no readings. Sample LPW17-SL-CCP-01(2) was collected 2 feet from the northwest corner of the tank. The second sample location was collected 2 feet from the northeast corner, Sample LPW17-SL-CCP-02(2) (Figure 6). The soil from both locations was a medium brown with a higher content of sand and organics in comparison to the Pan Abode Cabin soils. Neither test pit had any odor or evidence of staining.

Generator Shed: the south hillside of the Generator Shed Area was blasted to bedrock and covered with 1 to 3 feet of overlaying gravel. Currently, a few inches of high organic soil overlays the gravel. The majority of utilities run through this corridor to other structures onsite. Two samples were collected, one from the west side and one from the south side at approximately 1.5 to 2 feet bgs. The north and east sides of the shed were not easily accessible due to the original steep bedrock hillside. Sample LPW17-GSP-01(2) from the west side and Sample LPW17-GSP-03(1.5) from the south side had no odor or visual staining in the soils (Figure 6). Sample LPW17-GSP-02(2) was attempted near the Bulk Fuel Tanks (two 5,000 gallon tanks) but during excavation the active fuel line was snagged and attempts to sample this location were halted (refer to Appendix F for a detailed report).

Workshop: One sample was collected from the workshop, storage shed, and flammable shed area at a depth of 2 feet bgs. Sample LPW17-SL-WSP-01(2) had no PID reading, odor, or visible staining (Figures 6 and 7). The sample was collected down-gradient of Generator Shed Area with minimal soil and primarily gravel overlying bedrock. Due to the topography and bedrock, the sample was highly saturated with water and consisted mostly of gravel fines.

Hazmat Shed: also resides down-gradient of the Generator Shed Area. There is approximately 1 foot of soil before the gravel base layer. Two samples were collected along the southeast and southwest corners of the shop near the Hazardous Materials Shed. The PID did not pick up any readings from either test pit. Sample LPW17-SL-HMP-01(2) was collected along the southwest corner at 2 feet bgs. Sample LPW17-SS-HMP-02(2.5) was collected along the southeast corner at 2.5 feet bgs (Figures 6 and 7). Neither sample had any odor or evidence of staining. Both samples were highly saturated with water.

The Outboard Motor Shed: has a few feet of soil overlying bedrock. Two samples were collected, one from the west side, and the other from the south side of the shed. Soils consisted of dark brown, high organic silty to sandy loam. Sample LPW17-SL-OBP-01(1.5) was collected at 1.5 feet bgs from the west side. Sample LPW17-SL-OBP-02(2) was collected at 2 feet bgs from the south side (Figures 6 and 7). Neither test pit had any PID readings, odors, or visible staining.

White House: currently has an up-hill 200 gallon AST near the northwest corner of the building. Previously, the AST was located approximately 75 feet west along the path and located 15 feet up-hill into the wooded area. Five total samples, including 1 duplicate, were collected from both the former and current AST locations. Three (1 duplicate) samples were collected down-gradient from the former tank, and two additional samples were collected down-gradient from the current AST location. Sample LPW17-SL-WHP-01(2) and LPW17-SL-WHP-01D(2) were collected 2 feet bgs from beneath where the former tank was located. The top few inches of soil were highly organic transitioning into a dark silty loam. Sample LPW17-SL-WHP-02(1) was collected 1 foot bgs, 10 feet east (down-gradient) along the path. Soils appeared similar. Neither location had any PID reading, odor, or evidence of staining. The remaining two samples were collected downhill (south) and down-gradient (east) of the current AST. Sample LPW17-SL-WHP-03(1) was collected south and Sample LPW17-SL-WHP-04(1) was collected east of the current AST (Figure 7). Both samples were collected 1 foot bgs. Neither sample had any PID readings, odor, or evidence of staining.

3.3.2 Lead-Based Paint Investigation in Soil

Based on the XRF field screening of the painted surfaces and the recommendations/history of the site from onsite NOAA personnel, a total of 17 surface soil samples (including 2 duplicates) were collected from approximately 6 inches bgs (Figures 3-5). All samples were analyzed for lead, chromium, and arsenic. Refer to Tables C-1 for structure/building, specific sample locations, and sample number.

3.3.3 Treated Lumber Investigation

Ahtna and NOAA personnel surveyed all the structures and determined the highest concentration areas of treated lumber. Soil samples were collected from these areas and analyzed for chromium, arsenic, and copper. Refer to Table C-1 and Figures 3-5 for structure/building, specific sample locations, and sample number.

3.4 Location Survey

A survey grade Trimble global positioning system (GPS) was to be used to collect sample locations onsite but due to the remote location, weather, forested areas, and satellite coverage the locational data was not very accurate. As a result, Ahtna measured the sample locations from the nearest corner of the associated structure. Refer to Figures 3 through Figure 7 for sample locations.

3.5 Site Restoration

All excavated sample locations were backfilled with the excavation spoils. LBP paint chip samples and ACM samples were collected in a manner to disturb as little as possible. An ACM Fiberlock

spray was used on all ACM sample locations to prevent any disturbance during sampling from becoming friable.

3.6 Investigation-Derived Waste Management

All investigation-derived waste was collected in double bagged trash bags and incinerated onsite. No waste was removed from the site.

3.7 Groundwater

Water encountered during sampling events occurred in gravel areas just above bedrock during heavy rains. Groundwater or pore water was not encountered during field work and sampling activities. Therefore, no groundwater samples were collected.

3.8 Deviations from the Work Plan

The following deviations from the work plan occurred; these deviations did not affect the conduct nor results of the investigation.

- GPS did not provide accurate sample locations due to site and satellite conditions. As such, sample locations were measured from fixed structures.
- It was not feasible to use the XRF for screening of soils prior to sampling due to highly saturated soil conditions.
- PID calibration gas did not arrive in time for the charter flight and PID did not charge sufficiently, likely due to the stability of the power being fed by the generator. Only fresh air calibration was used and the PID needed to be charging continuously.
- The fuel line from the two 5,000 gallon bulk tanks to the generators was snagged by the excavator bucket and a minor leak occurred, refer to Appendix F for detailed reporting and the cleanup.
- The analytical laboratory was unable to run LPW17-SL-WSP-01(2) VOC due to insufficient amount of methanol in the sample by the time it reached the lab. As a result this analysis was cancelled.
- The analytical laboratory did not run LPW17-Bkdg-Weir-01(1.5) for DRO and RRO. When the error was identified the laboratory ran the sample even though the holding time was exceeded due to the nature of the two categories of diesel.
- Low level VOC samples were not preserved with methanol.
- Lead samples were submitted for Total Lead but not for Toxicity Leaching Characteristic Procedure (TCLP) Lead. TCLP testing will be required to support any future disposal.

•	The laboratory did not run the Silica Gel Cleanup on the submitted DRO/RRO and also did
	not run Hexavalent Chromium analysis on samples with chromium results over 250 mg/kg
	as request on the chain of custody (CoC).

4.0 RESULTS

A summary of all samples collected and laboratory and field quality control data are presented in Tables C-1 through C-6 in Appendix C. The following tables are contained in Appendix C

- Table C-1 Summary of Sample Collection
- Table C-2 Lead-Based Paint Analytical Infrastructure Results
- Table C-3 Asbestos Analytical Infrastructure Results
- Table C-4 Petroleum Hydrocarbon and VOC Analytical Soil Results
- Table C-5 Lead-Based Paint Analytical Soil Results
- Table C-6 Treated Lumber Analytical Soil Results

ADEC laboratory checklists and a data quality report (DQR) is provided in Appendix D. Soil sample exceedances are denoted on Figures 3-7.

4.1 Background Sample Results

The purpose of the background samples was to establish representative background concentrations in soil and to determine site-related contamination from naturally occurring contaminants. Background samples were selected from locations that were safe from wildlife and that had no current or existing structures present or around them. Two background samples were collected and analyzed for TOC, DRO and RRO. One additional background sample was collected and analyzed for Arsenic, Chromium, and Copper. Background sample results are located in Table C-7.

No background results exceeded the most stringent Migration to Groundwater ADEC Cleanup Levels (18 AAC 75.341)

4.2 Building and Infrastructure Sampling Results

Analytical results from the building and infrastructure indicate concentrations of lead in LBP on the Weir Cabin and White House. For lead results of soil around buildings/structures containing high levels of LBP, refer to Table C-1. Mercury related to potential releases in the wet lab portion of the warehouse/workshop complex from mercury containing equipment was not detected. ACM were not detected in any of the samples collected.

4.2.1 Lead-Based Paint on Painted Surfaces

Screening and sampling locations of Weir Cabin and White House painted surfaces had XRF screening results that ranged from 0.00 to 8.0 mg/cm². The remaining structures screened had no XRF detections. Paint chips from the interior of the structures were evaluated to determine presence or absence of lead based paint for future disposal and renovation purposes. Lead was present in all samples submitted at the locations specified in Table C-2.

4.2.2 Mercury

Three different dry locations within the wet lab (inside the workshop/warehouse complex) building including the floor northwest corner, southwest corner, and concrete portion of the southeast screened using the Jerome Mercury Monitor. None of these locations had any screening detections for mercury and as a result, no analytical samples were collected.

4.2.3 Asbestos-Containing Material

Eleven samples of potential asbestos containing material (ACM) were collected and delivered to NVL Laboratories located in Seattle, WA. The ACM samples were analyzed by Polarized Light Microscopy (PLM). Sample results can be viewed in Table C-3. All of the sample results were non-detect for asbestos. No additional locations with ACM were identified. Sample results and Chain-of-Custody (CoC) are provide in Appendix C with the laboratory analytical results.

4.3 Soil Sampling Results

Field screening and analytical soil samples were collected throughout the site from surface soils and subsurface soils up to 3 feet bgs associated with petroleum hydrocarbon contamination, lead, and treated lumber investigation activities. Sample results can be viewed in Tables C-2 through C-6. The ADEC checklists are included in Appendix D.

Analytical results did not exceed vapor intrusion screening levels. While on site the NOAA staff completed the ADEC Building Inventory and Indoor Air Sampling Questionnaire Forms, provided in Appendix E.

4.3.1 Petroleum Hydrocarbon Contamination

Soils encountered during screening and investigation were primarily high organic content for the top layer with a moderately sandy loam with varying silt content above bedrock. Screening and sampling locations near the Pan Abode Cabin and the Generator Shed Area including the bulk fuel tank storage locations had visual and olfactory indicators of petroleum hydrocarbons. PID screening results ranged from 0.0 ppm to 13.3 ppm. Full suite, low level method SW8260 was run on all samples submitted for VOC analyses. The full suite results from the Outboard Motor Storage Area, Hazmat Locker, and the area between the Workshops and the Generator Building are discussed in the sections below. Discussion of the additional sample locations will be limited to the target VOC analytes identified in the work plan. Results can be viewed in Table C-4.

Pan Abode Cabin: All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels. DRO was detected at a value above the migration to groundwater screening levels in samples LPW17-SL-WeirP-01(2) and LPW17-SL-WeirP-02(2).DRO was detected above the human health cleanup level of 8,250 milligrams per kilogram (mg/kg). VOCs and PAHs, 1,2,4-Trimethylbenzene, naphthalene, 1-methylnaphthalene, Benzo(a)anthracene, and Benzo(a)pyrene were also detected above the migration to groundwater cleanup levels in samples with high DRO concentrations.

Cove Cabin: All results for DRO, RRO, GRO, VOC and PAH with detections had soil concentrations lower than their respective cleanup levels and soil inhalation risk screening levels.

HazMat Shed: DRO was detected above migration to groundwater cleanup levels. No VOCs were detected at the reporting limits specified by the laboratory in both samples submitted for the site. Benzene was the only VOC detected at concentrations below the migration to groundwater cleanup level. PAHs were also detected below the migration to groundwater cleanup levels. All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels.

Outboard Motor Shed: No analytes were detected above screening levels. All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels.

Generator Shed: DRO, RRO, PAHs, VOCs were not detected above cleanup levels in either sample submitted from the area between the Generator Shed and Workshop Area. All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels.

White House: DRO, 1,2,4-trimethylbenzene, and Naphthalene were detected above migration to groundwater cleanup levels. DRO was detected above the maximum allowable concentration of 12,500 mg/kg; therefore, an ADEC Method 3 alternate cleanup level calculation would not be applicable at this site. All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels.

Vapor intrusion ADEC forms were completed and are included in Appendix E. The lack of petroleum contamination at many locations, the small number of occupied buildings, the specific results of the checklist, and nature of DRO mitigates the potential for vapor intrusion into occupied structures.

4.3.2 Lead-Based Paint in Soil

Screening and samples were collected from the top 6 inches of soil from the dripline of painted structures. The soil in all areas was a dark lightly organic peat moss. The vicinity of the Weir Cabin had visual indicators of paint chip debris within the top few inches of the soil. No other visual indicators were observed at the remaining screening and sampling locations. Analytical results are located in Table C-5 within Appendix C.

4.3.3 Treated Lumber

Screening and analytical samples were collected from the top 6 inches of soil from the dripline (under the buildings) of structures containing treated lumber including bridges, decks, and buildings. The soil along or near the coastline or small creeks flowing under the bridges were highly saturated sandy soils; and the soil surrounding structures was a dark lightly organic peat moss. There was no visual or olfactory evidence of contamination from chemical preservation of treated lumber.

The only structures with exceedances were for copper in soil at the Weir Cabin, Pan Abode Shop, Pan Abode Cabin, and Warehouse. Arsenic was detected in all samples at levels above the

migration to groundwater screening criteria of 0.2~mg/kg. Analytical results are located in Table C-6 within Appendix C.

5.0 QUALITY ASSURANCE

The following sections detail the quality assurance and quality control (QA/QC) measures taken during the project to ensure achievement of the quality objectives.

5.1 Personnel

Fieldwork, including analytical sampling, was performed by Kathryn Cleveland, who meets the definition of "qualified person" per 18 AAC 75.990(100) and certified AHERA Building Inspector. Marsh McComb, certified lead abatement and Nick Peck, operator, were also onsite to assist with site activities.

5.2 Decontamination

For general sample collection, disposable equipment was used (spoons, plastic bags, nitrile gloves). For the snagged fuel line Alconox and water was used for decontamination, the water was disposed of within the petroleum-impacted soil for future offsite disposal.

5.3 Sample Collection

Soil samples were collected into laboratory-provided containers with disposable sampling spoons. Samples were preserved in the field as specified in the work plan. However, the incorrect jars were provided by the laboratory for the 8260C analysis, which caused the 8260C results to be flagged, this is discussed in more detail in Section 5.6.2.

5.4 Sample Handling

Following collection, samples were placed in coolers with sufficient gel ice to maintain temperatures for sample preservation. At the end of each day, samples were transferred to a refrigerator until shipment to the laboratory for analysis. Samples were tracked by use of CoC forms for each sample with the trip blank and other QC samples individually identified on the forms. The forms were signed and dated when the samples were shipped to and received by the laboratories.

5.5 Equipment Calibration

Equipment used for this project that required calibration included a PID, XRF, and Jerome Mercury Monitor. Each were calibrated daily prior to use and occasionally checked against a standard during use. Note that for the PID the calibration gas was not delivered to the project site and therefore fresh air calibration was used.

5.6 Analytical Data Quality Review

This section presents an evaluation of precision, accuracy, sensitivity, representativeness, comparability, and completeness by reviewing laboratory supplied QA/QC information as well as to perform independent QA/QC checks on the data.

All samples were collected and delivered to the project laboratory in accordance with the ADEC-approved work plan (WP). Soil and paint chip samples were delivered to TestAmerica Seattle, ACM samples were delivered to NVL Laboratories located in Seattle; both are Department of Defense (DoD) Environmental Laboratory Accreditation Program certified facilities and ADEC-approved laboratories. Samples were analyzed with standard turnaround times (TATs) and in accordance with applicable specifications in U.S. Environmental Protection Agency Test Methods for Evaluating Solid Waste, SW-846. CoC documentation was maintained to track collection, requested analyses and TAT, shipment, laboratory receipt, custody, and disposal of the samples.

Two work-orders were received and reviewed as part of the data quality review:

- 580-68287
- 1708569

Analytical data reports from TestAmerica and NVL Laboratories are included in Appendix C. The data quality review prepared by the Ahtna Project Chemist and ADEC Data Review Checklists are provided in Appendix D.

5.6.1 Analytical Methods

Samples were analyzed for the following analysis:

- GRO by Method AK101
- DRO/RRO by Method AK102/103;
- VOCs by Method 8260C (low level);
- PAHs by Method 8270-SIM;
- Lead, Arsenic, Copper and Chromium by Method 6020A; and
- Asbestos by PLM.

5.6.2 Sample Handling

All samples were shipped or hand delivered to the appropriate laboratory by the project field team. CoC forms, laboratory sample receipt forms, and case narratives were reviewed to determine if any sample handling activities might affect the integrity of the samples and the quality of the associated data.

All sample containers within the sample coolers were received at the laboratory intact and within the target temperature range of $4^{\circ}C \pm 2^{\circ}C$.

Conversations between the laboratory and Kathryn Cleveland corrected the majority of sample ID errors between the CoCs and the jars labels.

5.6.3 Holding Time and Preservation Compliance

All samples were extracted, digested, and/or analyzed within the holding time criteria for the applicable analytical methods and in accordance with work plan specifications with the following exception:

• SDG 580-68267-2: Sample LPW17-Bkgd-Weir-01(1.5): the same was analyzed for AK 102/103 outside of hold time.

5.6.4 Precision

Precision criteria are used to monitor analytical reproducibility. Precision (and accuracy) were evaluated by comparing field duplicates, matrix spike/matrix spike duplicate (MS/MSD), and laboratory control sample/laboratory control sample (LCS/LCSD) duplicate pairs for this project.

5.6.4.1 Field Duplicates

A total of eight duplicate pairs were collected for 80 primary samples, which meets the required minimum frequency of 10 percent. Relative percent differences (RPDs) were calculated when results in both the primary and duplicate sample were detected above the limit of quantitation. All RPDs for primary and duplicate samples were with the Data Quality Assessment limit of 50% for soil samples.

5.6.4.2 Matrix Spike/ Matrix Spike Duplicate Precision

Laboratory precision was assessed by calculating the RPD between the LCS/LCSD and MS/MSD. LCS/LCSD and MS/MSD analyses were conducted at the required frequency.

The RPDs for the LCS/LCSD, MS/MSD, lab duplicate samples, and quality control criteria were within laboratory limits with the following exceptions:

• The RPD calculated for RRO between the MS and MSD in analytical batch 580-246593 was outside control limits.

No qualifications were made since additional quality control criteria were available and within recommended limits.

5.6.5 Accuracy

Accuracy was assessed by calculating the percent recovery for LCS, MS, and surrogates. Surrogate recoveries represent the extraction efficiencies for groups of analytes within a sample. %R were within control limits with the exceptions listed below:

- The %R for Lead and Chromium was outside control limits for the MS, MSD, or laboratory duplicates in batches 580-246576 and 580-24300.
- The %R for various PAH analytes was outside control limits for the MS and MSD in analytical batches 580-247152 and 580-246475.
- The %R for various 2-Butanone was outside control limits for the LCS in analytical batch 580-246075.

No qualifications were made since additional quality control criteria were available and within recommended limits.

5.6.5.1 Surrogate Percent Recoveries

Accuracy was assessed by calculating the percent recovery for LCS, MS, and surrogates.

Surrogates recoveries represent the extraction efficiencies for groups of analytes within a sample. A majority of the surrogate recoveries were outside of the recommended control limits, which was due to the evidence of matrix interference.

For failed surrogate recoveries in quality control samples, no qualifiers were applied if the surrogates of the associated samples were within control limits.

5.6.6 Representativeness

Representativeness is a qualitative parameter used to assess whether sample results are representative of true site conditions. Representativeness relative to analytical measurements is primarily influenced by application of consistent sampling and analytical methodology. The following measures were taken to address the representativeness of any material collected for analysis:

- 1. Sample collection was performed by a qualified person as required by 18 AAC 75 using methods listed in the approved work plan (Ahtna, 2017).
- 2. To minimize the potential for cross-contamination, new disposable collection equipment and new, pre-cleaned containers were used as specified in the approved work plan. Field instruments and measuring devices were calibrated daily and operated in accordance with the manufacturer recommendations.
- 3. Samples were labeled and uniquely identified in accordance with the work plan, and field records indicate the location from which each field sample was collected.
- 4. Laboratory protocol was performed in accordance with laboratory standard operating procedures.

Therefore, measurement representativeness is considered acceptable for this project.

5.6.7 Comparability

Generally, PID field screening readings were used qualitatively to assist with determining whether soil was contaminated at concentrations greater than the ADEC-approved site-specific cleanup levels. Field personnel worked carefully to utilize consistent field screening procedures. At this site, screening readings appeared to be influenced by high organic content and other variables that are beyond the control of the field sampler. Other field observations were also taken into account, such as staining, odor, and historical data.

5.6.8 Completeness

All data necessary to complete a level II data quality assurance summary was provided. None of the soil samples were rejected due to data quality errors, this results in a completion rate of 100% for soil samples. No water samples were collected (Section 3.7) since groundwater and/or pore water was not encountered during sampling, so 100% of the results are usable indicating completeness of 100%.

32

5.6.9 Sensitivity

5.6.9.1 Limits of Detection

Limits of detection of undiluted sample results were less than the regulatory cleanup levels and project goals. All results are evaluated to the method reporting limit.

5.6.9.2 Blank Results (Trip Blank and Method Blanks)

One trip blank was submitted for this project.

The method blanks were analyzed at the required frequencies of one per matrix, analysis, and 20 samples. Analytes were detected in method blanks in the following work orders:

- Hexachlorobutadiene was detected above the MDL in analytical batches 580-246075 and 580-246158.
- Benzo[a]anthracene was detected above the MDL in analytical batches 580-246433 and 580-247152.
- Benzo[a]anthracene, Fluoranthene, Phenanthrene, and Pyrene were detected above the MDL in analytical batch 580-246750.

The method blank detections were less than half of the reporting limit therefore no sample results were deemed affected.

5.7 Data Summary

Based on the review completed on the laboratory work order data, many samples were assigned data qualifiers. Qualified data can be viewed on the data tables found in Appendix C.

All additional sample results are considered valid with no data qualifiers assigned. All analytical data is considered usable for the purpose of evaluating the presence or absence and magnitude of the suspected site contaminants.

6.0 UPDATED CONCEPTUAL SITE MODEL

An updated human health conceptual site model (CSM) scoping and graphical forms are included in this report after the figures.

6.1 Sources and Release Mechanisms

Sources of petroleum hydrocarbons, lead, and copper and arsenic associated with treated lumber, were identified during field screening and soil sampling. The primary release mechanisms for petroleum contamination are leaking heating oil and diesel ASTs and their associated piping at the Pan Abode Cabin, near the HazMat lockers, and at the former AST location for the White House. The primary release for lead in soil is flaking or chipping of LBP from exterior building surfaces onto the ground surface at the Weir Cabin and White House. The primary release mechanisms for arsenic, copper, and chromium is leaching from wood preservation chemicals in and around the majority of pressure treated wood onsite.

Field screening did not indicate a source of mercury related to the storage of fluorescent lamps, mechanical tilt switches, float control switches, barometers, thermometers, paint residues and/or manometers.

6.2 Impacted Media

Impacted media at the LPW Research Station includes surface soil and subsurface soil. Surface soil around the buildings or structures has been impacted by the release of contaminants of potential concern (COPCs) into site soils.

Air, sediment, groundwater, surface water, and biota are potentially impacted media. Direct sampling of these media was not performed during the sampling effort. Water infiltrating into site soil could become contaminated and impact groundwater and/or hydrologically connected surface water. Indoor and outdoor air could be impacted by contaminants potentially present in petroleum hydrocarbons. Biota is potentially impacted media due to the potential uptake of contaminated soil or water by plants or animals.

6.3 Direct Contact with Soil

DRO, VOCs, And PAHs were detected at the LPW site between 0 and 3 feet below ground surface. The direct contact exposure pathways of dermal adsorption, incidental soil ingestion, and bioaccumulation are considered complete.

Potential receptors to contamination from the direct contact exposure route include:

- current and future residents and scientists;
- current and future commercial or industrial workers;
- current and future site visitors, trespassers or recreational users;
- current and future construction workers.

6.4 Ingestion of Groundwater, Surface Water, Wild Foods

The suspected COPCs at the LPW site include soluble contaminants that could migrate to groundwater or hydrologically connected surface water and bioaccumulate in organisms. The ingestion of groundwater water exposure pathway is considered complete due to the hydrologically connected surface water. Potential receptors to contamination from the ingestion of groundwater exposure route include:

- current and future residents and scientists;
- current and future commercial or industrial workers:
- current and future site visitors, trespassers or recreational users;
- current and future construction workers.

6.5 Inhalation of Outdoor and Indoor Air

There were limited detections of VOCs in surface soil samples and the concentration of detections were below inhalation risk screening and human health cleanup levels and therefore the inhalation of outdoor exposure pathway is not considered complete. Occupied buildings are on site and may be within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater and possibly within 100 feet of a non-petroleum source and therefore the inhalation of indoor air exposure pathway is considered complete. Potential receptors to contamination from the inhalation of outdoor and indoor air exposure routes include:

- current and future residents and scientists;
- current and future commercial or industrial workers;
- current and future site visitors, trespassers or recreational users; and
- current and future construction workers.

6.6 Dermal Exposure to Contaminants in Groundwater and Surface Water

The suspected COPCs at the LPW site include soluble contaminants that could migrate to groundwater or hydrologically connected surface water and are included in Appendix C of the ADEC CSM Guidance (ADEC, 2017b). Therefore, the dermal exposure to contaminants in groundwater and surface water pathway is considered complete. Potential receptors to contamination from this exposure routes include:

- current and future residents and scientists;
- current and future commercial or industrial workers;
- current and future site visitors, trespassers or recreational users;
- current and future construction workers.

6.7 Inhalation of Volatile Compounds in Tap Water

Drinking water is provided to the LPW Research Station from surface water from Sashin Creek located up-gradient from the site. Therefore, the inhalation of volatile compound in tap water is not considered a complete pathway for potential contamination from the site.

6.8 Inhalation of Fugitive Dust

The suspected COPCs at the LPW site include nonvolatile contaminants in the top 2 centimeters of soil. The surrounding soils of the Weir Cabin and the White House had lead exceedances in soil. It is unknown whether dust particles less than 10 micrometers in diameter are present at a level sufficient to be considered a nuisance. Therefore, the inhalation of fugitive dust exposure pathway is considered complete. Potential receptors to contamination from this exposure routes include:

- current and future residents and scientists;
- current and future commercial or industrial workers;
- current and future site visitors, trespassers or recreational users;
- current and future construction workers.

6.9 Direct Contact with Sediment

The suspected COPCs at the LPW site are potentially present in sediment and are listed in Appendix B and Appendix C of the ADEC CSM Guidance (ADEC, 2017b). Therefore, the direct contact exposure pathways of dermal adsorption and bioaccumulation are considered complete. Potential receptors to contamination from the ingestion of surface water and direct contact with sediment exposure routes include:

- current and future residents and scientists;
- current and future commercial or industrial workers;
- current and future site visitors, trespassers or recreational users;
- current and future construction workers.

6.10 Ingestion of Wild or Farmed Foods

There are long term caretaker residents at the LPW site and potential receptors to the contamination for ingestion of wild or farmed foods include current and future residents but is considered insignificant for workers and site visitors.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Building and Infrastructure Sampling

The following conclusions and recommendations are associated with the building and infrastructure results

7.1.1 Lead-Based Paint on Painted Surfaces

The results indicate that the Weir Cabin and White House have LBP present; all other buildings did not have any detections. The lead-based paint information should be maintained by NOAA to support future infrastructure project scoping or demolition and disposal plans. Contractors must be qualified to perform renovations of buildings with lead-based paint present. Prior to disposal, TCLP samples should be submitted from the locations and structures identified as containing lead based paint per the requirements on the disposal facility.

7.1.2 Mercury

Three locations were screened in the wet lab for mercury that may have been associated with thermometers and manometers. All of the screening results were negative for mercury and therefore it is unlikely there were any spills or releases of mercury inside the building from previous equipment storage. No further action is recommended. This information should be maintained by NOAA for future infrastructure project scoping or demolition and disposal plans.

7.1.3 Asbestos-Containing Materials

All samples analyzed for ACM had non-detect results and therefore no additional ACM were identified and located onsite. These results are consistent with the findings from the 1996 asbestos survey that was conducted at LPW. No additional actions are recommended for ACM sampling at this time. This information should be maintained by NOAA for future infrastructure project scoping or demolition and disposal plans.

7.2 Soil Sampling

The following conclusions and recommendations are based on the soil sampling results.

7.2.1 Petroleum Hydrocarbon Contamination

Pan Abode Cabin: Historical documents, analytical results and visual inspection indicate a previous release of fuel from the 200 gallon AST has occurred at this location and remedial action is necessary. The location had been previously remediated to the ADEC standards at the time of the spill. Investigation showed that not all the contamination had been removed, however, visual observation indicates that contamination had not migrated over the last 20 plus years.

• **Recommendations-**. Remedial action including the excavation of soil contaminated with DRO and co-located VOC and PAHs above the migration to groundwater cleanup levels.

Local soils or crushed rock would be used to backfill and grade the impacted area. The estimated vertical extent of contamination is approximately 4 to 5 feet bgs or until underlying bedrock. The horizontal extent of contamination starts at the current AST location and travels primarily southeast towards the shoreline. The extent does not travel south towards the Pan Abode Cabin and is not anticipated to travel north due to the site's topographic gradient. The estimated surface area of contamination is 40 feet by 20 feet with an estimated depth of 4 to 5 feet bgs which translates into an estimated soil volume of 150 cubic yards (cy), although the estimated soil volume could be less if bedrock is encountered at shallower depths. The surface in the area is composed of a steep flower bed directly below the AST sloping gently into grass and then rocky shoreline and the utilities in the area are located underneath the gravel pathway.

Cove Cabin: Visual inspection and results from samples collected on the accessible side of the AST do not indicate a current or historic release at this location. No further action is recommended at this location.

Generator Shed: Visual inspection and results from samples collected in this location do not indicate a current spill or historic release. No further action is recommended at this location.

Workshop: Although there are no VOC results due to lab error; the detections of DRO, RRO and GRO do no indicate a current spill or historic release to the ground surface in the workshop area. Visual inspection of the area did not identify stained soil. Containers of materials or fuels are not stored outside the building in contact with the ground surface. No further action is recommended at this location.

HazMat Shed: DRO and naphthalene were detected above migration to groundwater cleanup levels. All VOC and PAH soil concentrations were lower than their respective soil inhalation risk screening levels. There is evidence of a release in the soil around the hazmat shed; however the source is most likely associated with the bulk fuel storage releases.

• Recommendations-. Remedial action including the excavation and soil removal of soils contaminated with DRO and co-located naphthalene above the migration to groundwater cleanup levels. Local soils or crushed rock would be used to backfill and grade the impacted area. The vertical extent of contamination is approximately 3 to 4 feet bgs or until underlying bedrock. The horizontal extent is unknown and depends on the severity and number of past releases. Due to the gravel content of these locations, contamination migration would be greater than in other areas of the site. Though it is anticipated that the horizontal extent would not be greater than 20 or so feet down-gradient and down-slope of the bulk fuel storage area due to the analytical results. It is estimated that 75 to 100 cy of soil would require excavation to a depth of 4 feet bgs, although the estimated soil volume could be less if bedrock is encountered at shallower depths. The surface in the area is composed of steep bedrock with minimal vegetation to the north and leveled gravel fill material near the HazMat Shed and Workshops. There are a variety of utilities in the area all running from the Generator Shed down-hill towards the incinerator, workshops, warehouse, and offices.

Outboard Motor Shed: Visual inspection and results from samples collected in this location do not indicate a spill or release. The old boat parts are stored on a concrete pad inside the shed and are not in contact with the ground surface. No further action is recommended at this location.

White House: Results indicate soil has been impacted by historic release from ASTs in this location; most likely form the old AST located 75ft from the building. There are no indications of release from the current 200 gallon AST. Exceedances included DRO and associated VOCs (1,2,3-trichlorobenzene, 1,2,4-trimethylbenzene, and naphthalene) were detected above migration to groundwater cleanup levels. DRO is present in concentrations above the maximum allowable DRO level (12,500 mg/kg). All VOC and PAH soil concentrations were lower than their respective Soil Inhalation Risk Screening Levels.

• Recommendations-DRO is present above the maximum allowable concentration and a remedial action including excavation and soil removal is required at this location. Local soils or crushed rock would be use to backfill and grade the impacted area. The vertical extent of contamination is approximately 5 feet bgs or until underlying bedrock. The horizontal extent of contamination at the former AST location is not anticipated to have traveled more than 20 feet due to the high organic content of the soil but will need to be delineated during any removal activities. The horizontal extent of contamination at the current AST location is anticipated to be less than the former location due to the lower analytical results and numbers of years in use. It is estimated that 200 to 250 cy of soil would require excavation to a depth of 5 feet bgs, although the estimated soil volume could be less if bedrock is encountered at shallower depths. The surface in the area is composed of heavily vegetated hill sides near a leveled gravel pathway and there are utilities in the area located along side and beneath the gravel pathway.

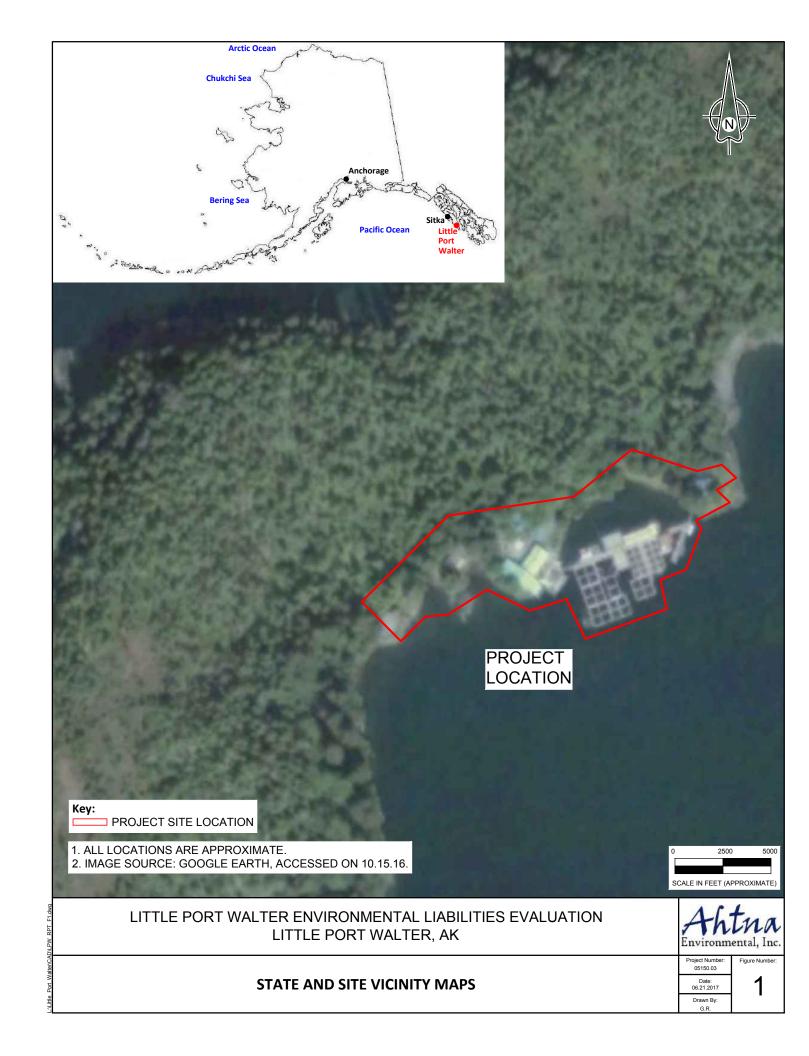
7.2.2 Lead in Soil

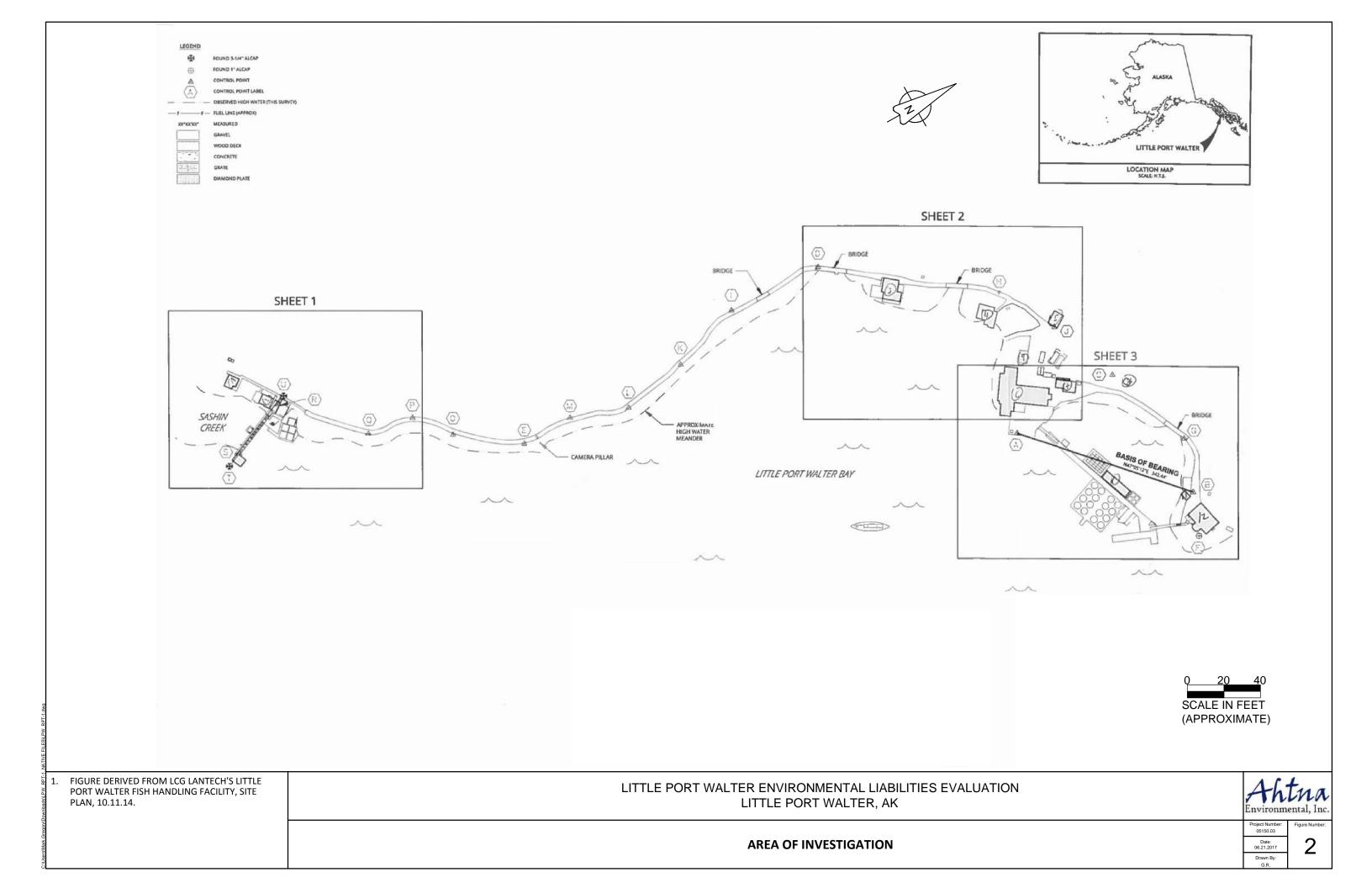
Lead in soil was detected above the cleanup level of 400 mg/kg at two locations- Weir Cabin and White House. Further characterization to determine the extent of soil with concentrations with lead above 400 mg/kg could be performed, however, the impacted areas are most likely shallow and limited to the dripline.

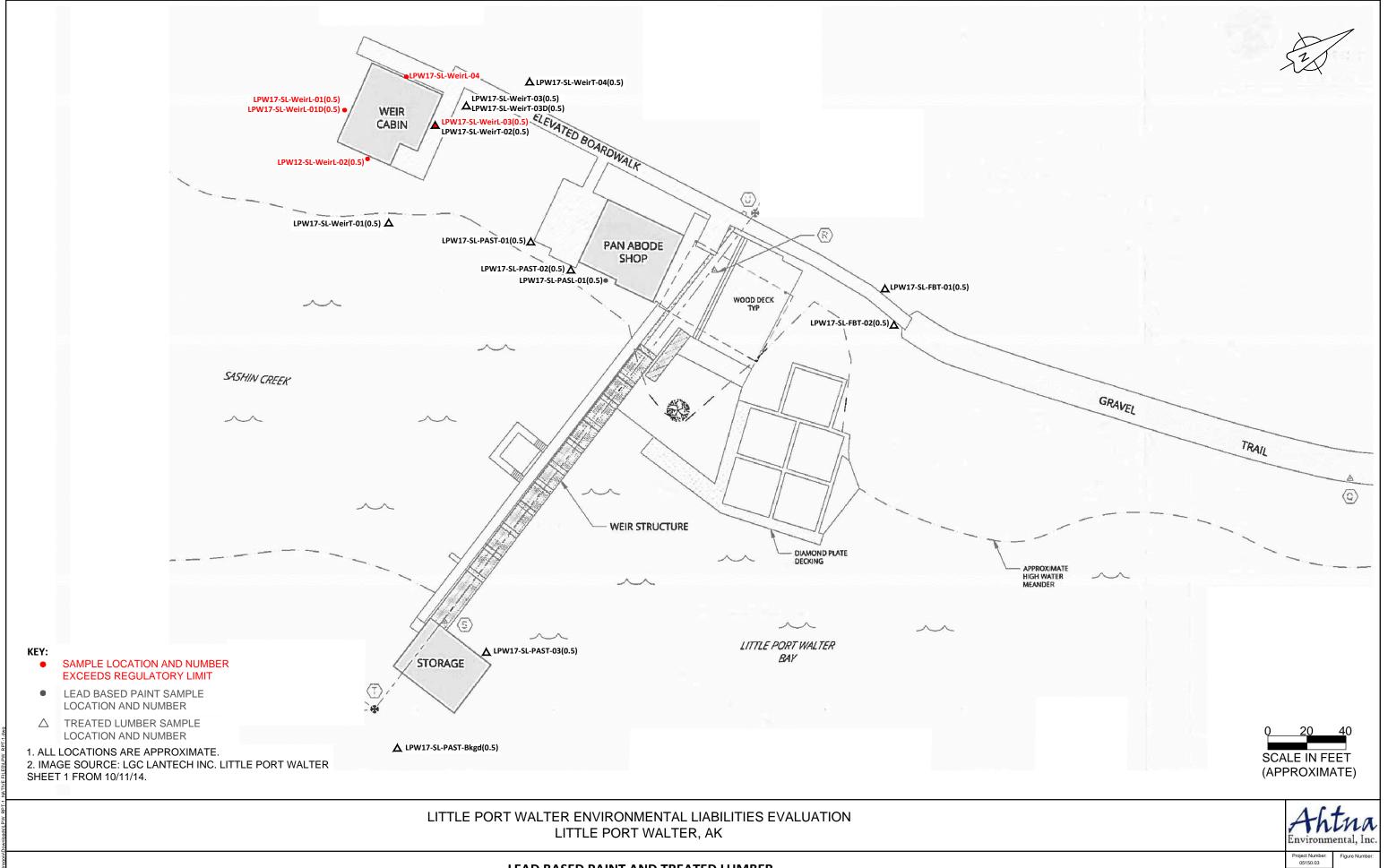
The Weir Cabin is currently unoccupied and exterior paint is continuing to chip and flake. Remedial action for the soil in the location should occur concurrent with demolition of the structure.

The White House is currently used a dormitory and there is a potential for disturbance of the soil impacted with lead above 400 mg/kg. Remedial action is recommended for this location and could include capping the soil with a layer of crushed rock or limited removal (soil is likely to be non-hazardous, limited to less than 1 cubic yard). The outside of white house has new siding limiting further contamination of the soil by chipping or flaking of lead based paint.

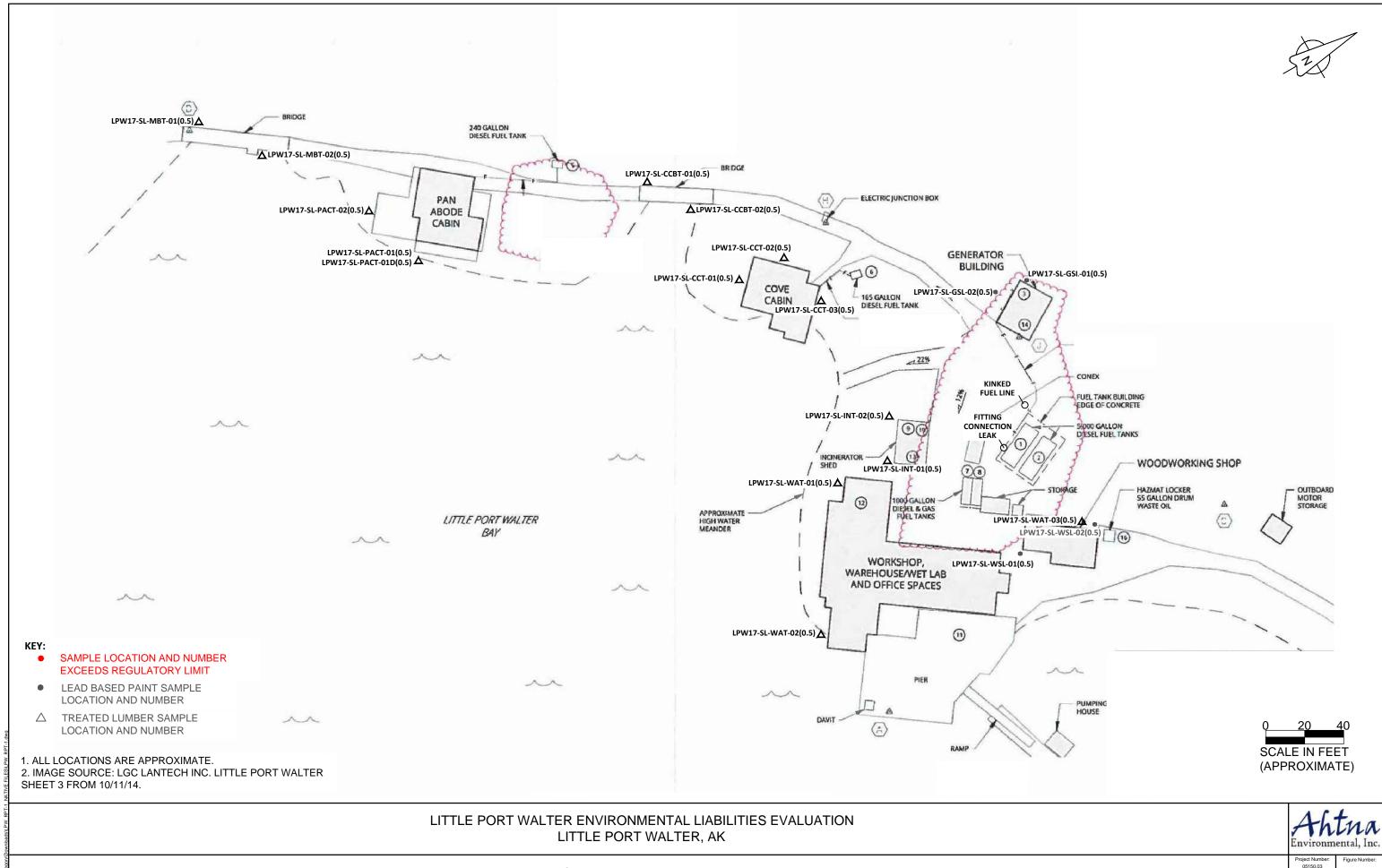
7.2.3 Treated Lumber


The majority of the wooden structures in contact with water are constructed of pressure treated lumber. The results for arsenic, total chromium, and copper are above the limited background sample results and indicate some leaching into the ground has occurred in the dripline locations.

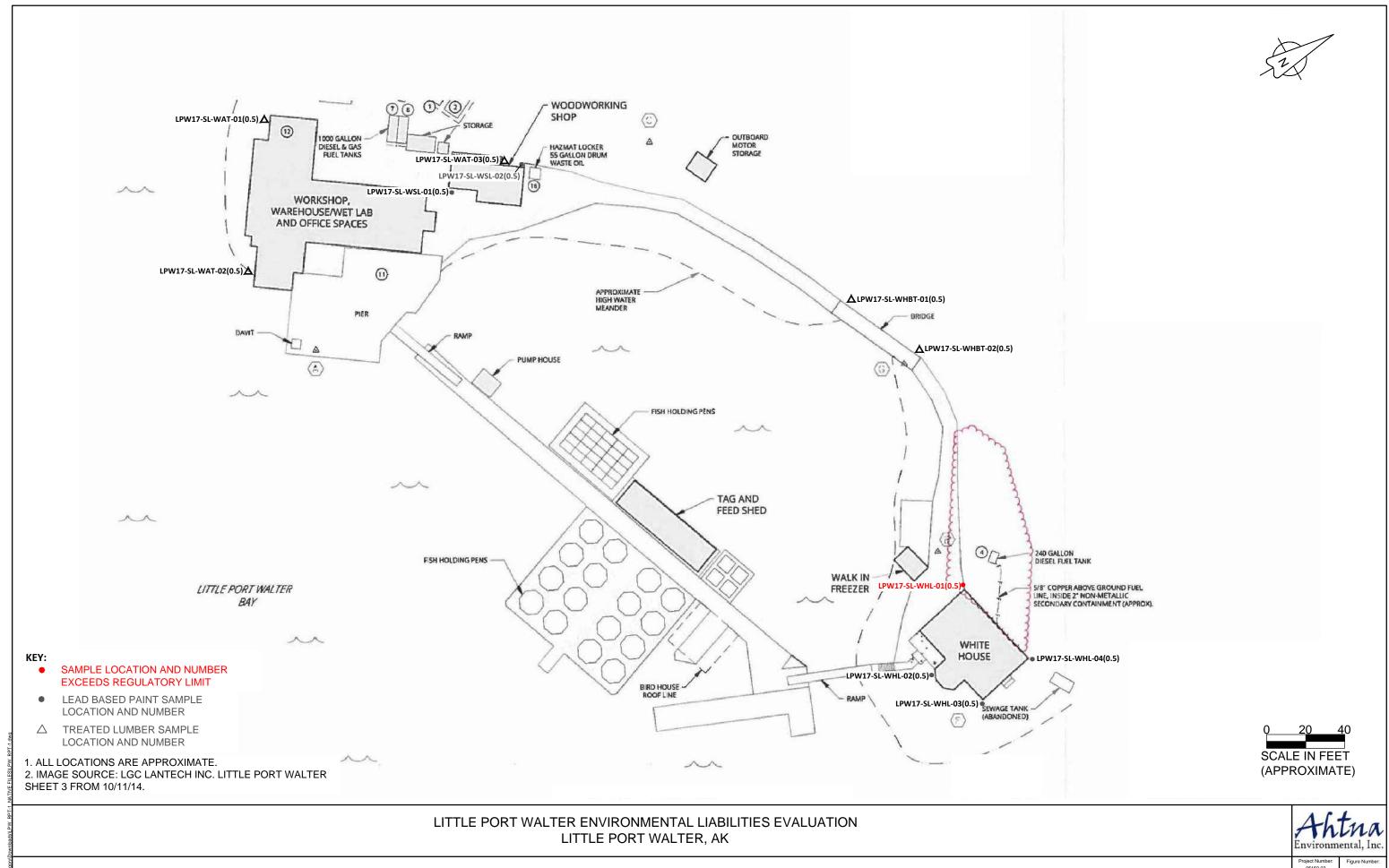

Wood treated with CCA should not be reused or burned. During disposal, eye protection and a dust mask should be worn. A hazardous waste determination should be made prior to disposal of the treated lumber at a permitted facility. Proper maintenance, staining, and sealing are best management practices to limit the impact on the environment.


8.0 REFERENCES

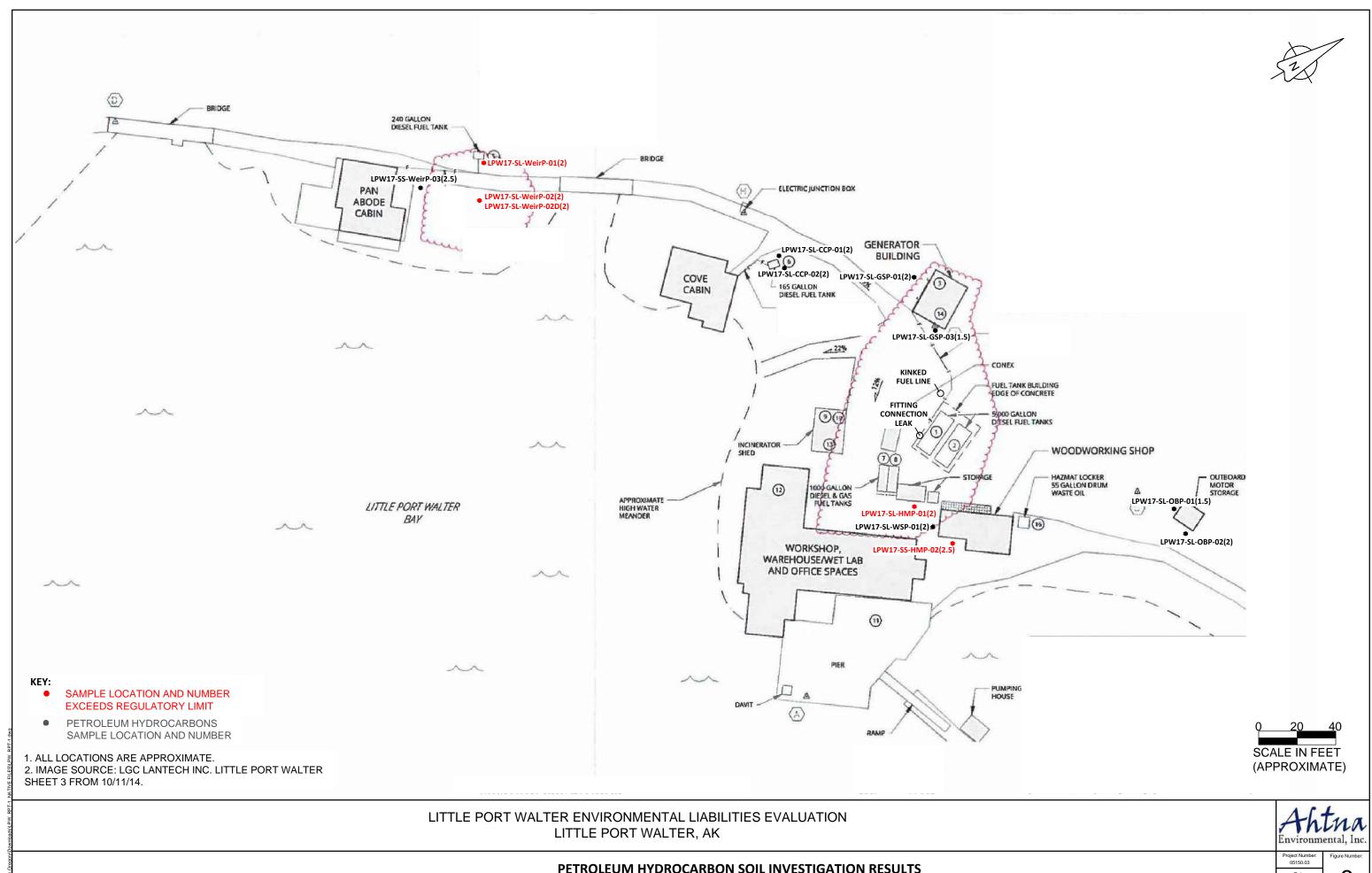
- Ahtna Environmental Incorporated, 2017. *Final Work Plan, Environmental Liabilities Evaluation, Little Port Walter Alaska*. National Oceanic and Atmospheric Administration, 2017.
- Alaska Department of Environmental Conservation (ADEC), 2012. Guidelines for Data Reporting, Data Averaging and Treatment of Non-Detect Values. Technical Memorandum. June.
- Alaska Department of Environmental Conservation (ADEC), 2016a. *Field Sampling Guidance*. March.
- Alaska Department of Environmental Conservation (ADEC), 2016b. *Procedures for Calculating Cumulative Risk*. September.
- Alaska Department of Environmental Conservation (ADEC), 2017a. *Vapor Intrusion Guidance for Contaminated Sites*. January.
- Alaska Department of Environmental Conservation (ADEC), 2017b. *Title 18 Alaska Administrative Code 75 Oil and Other Hazardous Substances Pollution Control*, March 23.
- Alaska Department of Natural Resources. WELTS database search (2016, October 19). Retrieved from https://dnr.alaska.gov/welts/#show-welts-intro-template/
- "Ecosystem and Climate History of Alaska." *Geosciences and Environmental Change Science Center*. United States Forest Service, 2004.
- Lee, Nany A, CIH. Asbestos Operations & Maintenance Plan, Little Port Walter, Alaska. National Oceanic and Atmospheric Administration, 1996.
- "Little Port Walter Facility." *Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration*. United States Department of Commerce, 2012.
- U.S. Department of Agriculture Forest Service (USFS), Tongass National Forest Sitka Ranger District, 2004. *Sitka Sound Landscape Assessment*, September.
- U.S. Department of Fish and Wildlife Service. National Wetlands Inventory (2016, October 19). Retrieved from https://www.fws.gov/wetlands/data/mapper.html
- U.S. Environmental Protection Agency, Code of Federal Regulations Title 40, Part 763- Asbestos. 2017


(This Page Intentionally Left Blank)

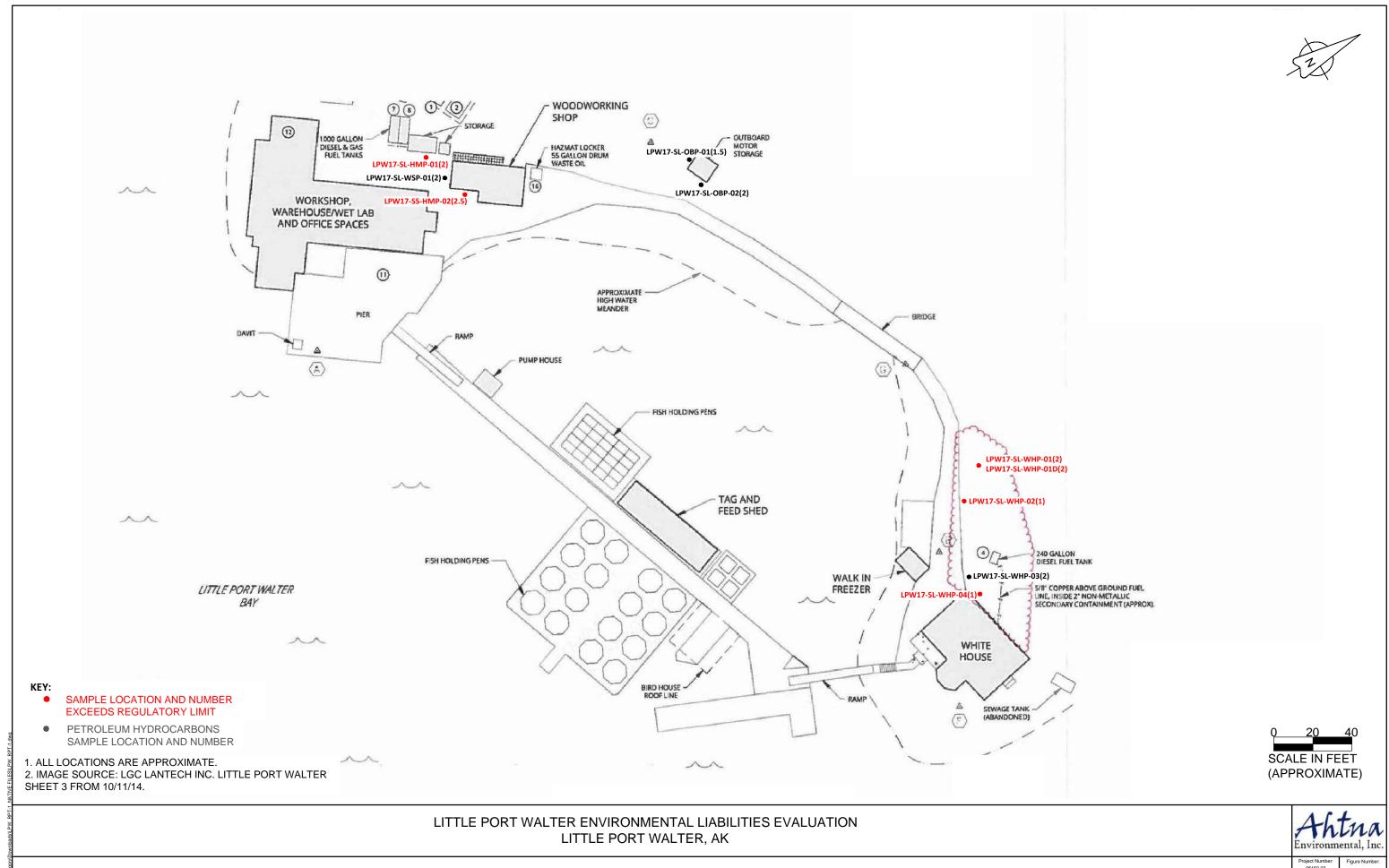
LEAD BASED PAINT AND TREATED LUMBER SOIL INVESTIGATION RESULTS- SHEET 1



LEAD BASED PAINT AND TREATED LUMBER SOIL INVESTIGATION RESULTS - SHEET 2


Project Number: Fig 05150.03

Date: 06.21.2017


Drawn By:

LEAD BASED PAINT AND TREATED LUMBER SOIL INVESTIGATION RESULTS - SHEET 3

PETROLEUM HYDROCARBON SOIL INVESTIGATION RESULTS
SHEET 2

PETROLEUM HYDROCARBON SOIL INVESTIGATION RESULTS SHEET 3

(This Page Intentionally Left Blank)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Little Port Walter		Instructions: Follow the numbered consider contaminant concentrations use controls when describing path	ons or	enginee			t	
Completed By: A. Pennino		use controls when describing pati	iways	•				
(1) Check the media that could be directly affected by the release. (2) For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	expo "F" f futur	tify the receptors are pathway or future receptors, current	otors po ay: Ente eptors, or "I" fo & Fu	er "C" for "C/F" for or insignit	current re both curr ficant exp	eceptors, rent and posure. ptors
Media Transport Mechanisms Direct release to surface soil Check soil Surface Migration to subsurface Check soil Check soil Check soil Check soil	Exposure Media	Exposure Pathway/Route	Residents (adult	Commercial or Site Visitors 4.	Construction	Farmers or subsistence	Subsistence consumers	
Soil ✓ Migration to groundwater check groundwater (0-2 ft bgs) ✓ Volatilization check air			Resignation	Site Site	Cons	Farm	Subsis	
Runoff or erosion check surface water	✓ Inci	idental Soil Ingestion	C/F	C/F C/F	C/F			
✓ Uptake by plants or animals check biota Other (list):	soil V Der	rmal Absorption of Contaminants from Soil	C/F	C/F C/F	C/F			
	l Inha	alation of Fugitive Dust						
Subsurface Soil Volatilization C-15 ft bgs) Direct release to subsurface soil Wigration to groundwater Check groundwater Check air Check biota Check biota Check biota Check biota	☑ groundwater ☑ Der	estion of Groundwater rmal Absorption of Contaminants in Groundwater alation of Volatile Compounds in Tap Water		C/F C/F				
Ground- water Direct release to groundwater Volatilization Volatilization Check groundwater check groundwater Check surface water Check surface water Check sediment Check sediment Check sediment Check biota Other (list):	air Inha	alation of Outdoor Air alation of Indoor Air alation of Fugitive Dust		C/F C/F				
Direct release to surface water check surface water	\ ✓ Inge	estion of Surface Water	C/F	C/F C/F	C/F			
Surface Volatilization check air	surface water	mal Absorption of Contaminants in Surface Water	C/F	C/F C/F	C/F			
Water ✓ Sedimentation <u>check sediment</u> ✓ Uptake by plants or animals <u>check biota</u>	☐ Inha	alation of Volatile Compounds in Tap Water						
Other (list): Direct release to sediment check sediment Sediment Resuspension, runoff, or erosion check surface water	sediment	ect Contact with Sediment	C/F	C/F C/F	C/F			
Uptake by plants or animals check biota Other (list):	✓ biota ✓ Ing	estion of Wild or Farmed Foods	C/F		l			

Print Form

Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	NOAA Little Port Walter Hatchery			
File Number:	1523.38.0002			
Completed by:	Ahtna Environmental Inc, A. Pennino			
about which expo	be used to reach agreement with the osure pathways should be further intout the CSM and a graphic depicting	vestigated du	ring site characte	erization. From this information
- Wi	work plan and updated as needed in		A	
General Instruct	tions: Follow the italicized instruct	tions in each	section below.	
	nformation: potential sources at the site)			
☐ USTs		☐ Vehicle:	S	
⊠ ASTs		☐ Landfill	S	
⊠ Dispensers/fu	el loading racks	Transfor	mers	
Drums		⊠ Other:	Shallow buried fue preservation	el line, lead based paint, wood
Release Mechan	isms (check potential release mech	anisms at the	site)	
⊠ Spills		☐ Direct d	ischarge	
⊠ Leaks		☐ Burning		
		Other:		
Impacted Media	ı (check potentially-impacted media	at the site)		
⊠ Surface soil (€	0-2 feet bgs*)	⊠ Ground	water	
Subsurface so	oil (>2 feet bgs)	⊠ Surface	water	
⊠ Air		⊠ Biota		
⊠ Sediment		Other:		
Receptors (chec	k receptors that could be affected by) contaminati	on at the site)	
⊠ Residents (ad	ult or child)	⊠ Site visi	tor	
⊠ Commercial of	or industrial worker	⊠ Trespass	ser	
⊠ Construction	worker	Recreati	onal user	
☐ Subsistence h	arvester (i.e. gathers wild foods)	☐ Farmer		
☐ Subsistence c	onsumer (i.e. eats wild foods)	Other:		

1

^{*} bgs - below ground surface

2.	Exposure Pathways: (The answers to the following questions will identify con exposure pathways at the site. Check each box where the answer to the question	
a)	Direct Contact - 1. Incidental Soil Ingestion	
	Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site-specific basis.)	the ground surface
	If the box is checked, label this pathway complete:	
	Comments:	
	2. Dermal Absorption of Contaminants from Soil Are contaminants present or potentially present in surface soil between 0 and 15 feet below (Contamination at deeper depths may require evaluation on a site specific basis.)	the ground surface
	Can the soil contaminants permeate the skin (see Appendix B in the guidance document)?	
	If both boxes are checked, label this pathway complete: Comments:	
b)	Ingestion - 1. Ingestion of Groundwater	
	Have contaminants been detected or are they expected to be detected in the groundwater, or are contaminants expected to migrate to groundwater in the future?	
	Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if DEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.	
	If both boxes are checked, label this pathway complete:	
	Comments:	

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). If both boxes are checked, label this pathway complete: Comments: 3. Ingestion of Wild and Farmed Foods Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods? Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: Comments: c) Inhalation-1. Inhalation of Outdoor Air Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.) Are the contaminants in soil volatile (see Appendix D in the guidance document)? If both boxes are checked, label this pathway complete: Comments:

2. Ingestion of Surface Water

2. Inhalation of Indoor Air		
Are occupied buildings on the site or reasonably expected to be the site in an area that could be affected by contaminant vapor or vertical feet of petroleum contaminated soil or groundwater non-petroleum contaminted soil or groundwater; or subject to which promote easy airflow like utility conduits or rock fractu	rs? (within 30 horizontal r; within 100 feet of "preferential pathways,"	
Are volatile compounds present in soil or groundwater (see Agdocument)?	ppendix D in the guidance	
If both boxes are checked, label this pathway complete:		
Comments:		

3.	Additional Exposure Pathways:	(Although there are no	definitive questions provid	ded in this section,
	these exposure pathways should also be	considered at each site.	Use the guidelines provide	ded below to
	determine if further evaluation of each p	athway is warranted.)		

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- o Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

	nents:	
' Inhala	tion of Volatile Compounds in Tap Water	
Inh:	alation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering, l	aundering, and dish
	washing.	
0	The contaminants of concern are volatile (common volatile contaminants are listed guidance document.)	in Appendix D in the
_	roundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway becaus during normal household activities is incorporated into the groundwater exposure equat	
	eck the box if further evaluation of this pathway is needed:	
Ch		
Ch Comn	nents:	
	nents:	

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation. Check the box if further evaluation of this pathway is needed: Comments: **Direct Contact with Sediment** This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if: Climate permits recreational activities around sediment. 0 The community has identified subsistence or recreational activities that would result in exposure to the 0 sediment, such as clam digging. Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment. Check the box if further evaluation of this pathway is needed: Comments:

Other Comments (Provide other comments as necessary to support the information provided in this m.)					

APPENDIX A

FIELD NOTES

Site Manager (907) 723-		hannel 82]
AFSC Safety Officer (206)	526-4165 Jim Malchow	
acility Manager (907) 789	-6632 / (907) 723-4506 John	Cooper [COR]
COK (206) 526-4165 / (301) 385-0125 Richard Koster [SE	CO/Ahtna onsite escort]
USCG Command Center (+	re + Search + Rescue) (907) 463-2000	1(907) 271-6769
Ward Air (907) 789-9150		
TIT Environmental	Geotech Environmental Equipme 8910 122nd Ave	ent. he
4201 B St.	8910 122nd Ave	
Anchorage, Ak 99503	Kirkland, WA 98188	
(907) 770-9041	(425) 968-5384 / (360) 90	08-398Z
Test America Laboratory, Inc	White Environmental Consultan	45 Warehouse
5755 8th St. East	383 Industrial Way #3	16214 57 HAVE E #
Tacoma, WA 98424	Anchorage, Ak 19501	Puyallup, WA 98375
(253) 248 - 4472	(907) 258-8661	
Elaine Walker / Kim Presley		
	NVL Laboratories, Inc.	
EMSL Seattle	4708 Aurora Ave N	
3317 3rd Ave 5 #D	Seattle, WA 98103	
Scattle, WA 98134	(206) 547-0100	
(206) 269 - 6310		

Reten the Rame

		5/6
LPW		
700	Nick, Marsh + Kale met in looky of Best Western to discuss project	
745	Dropped gen at ward Arr, met up with Rich Kober (NOAA)	
	Pithed up remaining freld supplies	
7900	Wonte to Alaska Sea Plane to pick up PID from Ak office - unable to locate - located PID in Huna (sp) - another Alaska town -> told to come back at 11 am	
	- located PID in Huna (sp) - another Alaska town -> told to come lack at Ilan	
030	Checked in at Alaska Sea Plane - Fire at Huna airport, Flights deleged until 1:30/m or so	
	Alutha discussed with NOAA to use PID w/ort cal gas that was already onsite - Fresh An Calibration will be used - Deviation will be noted in report	
100	Finalized packing /paperwork at Word Arr	
11 30	Took off in Super Other to LPW - 1hr 15mm travel time	
1230	Cycled LPW to collect photos Canded Met staff and unloaded gear Torned white horse	
1315	Met with Brod (NOAA) for history lesson and four	
545	* Herth and Satety Mtg - Brad, Nich, Marsh, Nick, Kate Althon went through sample coolers and equipment - incurrent jars arrived; 30 Mech 4unt vois instead of 30 Me OH 40 - Ideviation in sampleing procedure will be noted in report	12 jan
1700	Althor + NOAA packed up year and headed to Wir Cabin to performed 4	BP Surv

(1/2)r (.1). 1PD VDE	5/6/17
Meir Cabin - LBP, XRF	
1772 () 111	- LAP-Weir-Ol
1733 () While extrine fin Bug/cm2 (sampled 18	20) > N side
(3. With externed window sill 3.8 mg/cm2	
(green exterior shoughts 60 ing com2	
(1) thre exterior shingles 0.24 mg/cm	
O white exterior window Sash Silvylen	
(4) - 5 ren exterior walow such 1.8 m len / tage (4)	in white) 1795
(3) white semi-exterior workers 3.9 mg/cm² (sampled 6) indeer worker sill green 0.04 mg/cm² (sampled 6)	30) LIWH 61-WEN-03
18) indeer wanter sill green 0.04 mg/cm2 12017-188-100	1-02
(D) indoor door frame freen Silng/cm2 (Sampled	1875)
10 Indoor walls while thick U-12 mg/cm2	
(B) moles and solin Oil moles	
(12) motor green green Oil ng/Em2	
(12) motor grey base floor 0.04 mg/cm² (13) undoor front ceiling 0.04 mg/cm² (19) mice of new colorets 0.13 mg/cm² (19) motor walls white them 2.65 mg/cm²	
(9)	
(TB) Vine will it it it is it	
(1)	
(15) 1 still writer trim white 5.1 mg/cm	
(17) wasters ceiling green 3,000 mg/cm2	
18) ystores toor grey 0.12 inglant	
(10) 111 1 11 11 11 11 11 11 11 11 11	
	11. 1/11/2 150 1.
-two of 4 VOE	ple: LINI7-LEP-WENTO
-100 Wet to XXX	ple: LINI7-LEP-Weir o
ACM - Wer dabin	ple: LINI7-LBP-Weir o
ACM - Wer dabin	ple: LINI7-LBP-Wex o
ACIN-Wer dabin	ple: LINI7-LEP-Weir o
ACIN-Wer dubin	ple: LINI7-LEP-Weir o
ACM - were derbir	ple: LINI7-LEP-Weix o
ACM - were derbir	ple: LINI7-LEP-Weix o
ACM - were derbir	ple: LINI7-LEP-Weix o
ACIN-Wer dubin	ple: LINI7-LEP-Weix o
ACM - were derbir	ple: LINI7-LEP-Weix to
ACM - were derbir	ple: LINI7-LEP-Weix o
ACIN-Wer dubin	ple: LINI7-LEP-Weix to
ACIN-Wer dabin	ple: LINI7-LEP-Weix o
ACIN-Wer dabin	1835
ACM - Wer dubin	ple: LINI7-LEP-Went
ACIN - Wen cubin SHOWINDOW prtty - New Schiple 325 base CHB - Existing from report	ple: LINI7-LEP-Weir o
ACM - Wer debin	ple: LINIT-LEP-Well o

1/	11 1 01 101				
Van	Abode Shop - 1840				
while	interior carled benches and				
, , , ,	interior painted benches 0.00 S= E benches				
		9			
D A	1160		1-1-		
	bade Cabin -1845				
D WELDE	(lauredry) grey flooring 0.0		1-1-1		
2) Intern	(loundry) white word wall 0.63		1-1-		
3) interior	(lovady) whole smooth walls 0.0		-		
9 interio	or (lounday) white window to a 0.0	192			
(3) cxte	in beign piller, sofet, under roof eve a.O				
(6) exter	or electrical closet grey floor 0.0				
General	or Bldg				
	new interior siding 0.0				
green	Studs / 44 months 0.17 / 0.03				
5 mes	out N/A -some pant as generate				
J					
Str	Frel Tank				
0.7/1	own pair 00				
uneL	es interes white walls 000				
leach	is interior painted grey floor D. J				
PSTE	I whater beinger died too.				
10.11	0 1 0				
Over	ord motor storage of green doors und			+	-
CXLICI	of green agors				
			1 2		
Han	error white O.6				_
CX	green Old				
m	error white 0.6				
	0.16.3		Bay The		
Plan	in able thed small				
Plan	terrer green 0,0				

Wellship Wellship John with minto pile in coase John white wills West working / Metal Ship Externs white the 0.0 Externs white walls harry put 0.0 Interior chile walls or 2 Small path interior of green 0.15 Pring Horse Externs free works walls (opper) Tay and Feel Shiel Interior bism walls (opper) Oo Interior bism walls (force) 0.0 Interior bism walls (force) 0.0 Interior bism walls (force) 0.0 Interior Boat from green forces 0.0 Walk In Tourse I drive look in this pant 0.0 Walk In Tourse I drive look in while pant 0.0	Inchester Shed						
Western gothers white wills Western yesters white wills Western green there 0.0 externe white walls howfrest 0.11 Inherity green lame 0.0 inherity while walls 0.02 Small pake inherer of green 0.26 Prop Home exterior green wordow from 0.02 Tay and Feel Shell interpretable hould (lever) 0.0 Interpretable hould (lever) 0.0 Interpretable hould (lever) 0.0 Interpretable from bound 0.0 District Bout from green pairs 0.0 Unite new roof hy They dech 0.0 While he Freezer	No new pointed stribus						
Prop Hore extension beauty of green of the state of green whole wills open of green							
Prop Hore extension white walls Need working / Metal Shep externer green trier 0.0 externer white walls how that 0.11 where green love 0.0 interior white walls 0.02 Small patch inderer of green of 2% Prop Horse exterior green wadow from 0.02 Tay and Feel Sheel interior brain halls (upper) 0.0 interior brain halls (love) 0.0 interior door from brain 0.0 Walk in Freezer							
rotern upstans white walls Wood backeng / Metal Shep externer green trier 0.0 externer white walls horizont 0.11 When green love 0.0 Interior white walls 0.02 Small patch inderer of green 0.25 Prop House exterior green wordow from 0.02 Tay and Feel Steel interior brinn halls (upper) 0.0 Interior brinn halls (love) 0.0 Interior back from brinn 0.00 White near roof hy - 947 deck 0.0	Westeshin					100	
Medworking / Metal Shop externer green time 0.0 externer white walls harrown 0.11 interior white walls 0.02 small path interior of green 0.25 Promo House exterior green window from 0.02 Promo House exterior green window from 0.02 Tay and Feed Steel interior brown high lands (leptor) 0.0 interior brown walls (leptor) 0.0 interior brown walls (leptor) 0.0 interior brown walls (leptor) 0.0 interior door from brown 0.02 Differ Poiss 0.0 unite per 100 While In Freezer							
Weidwarkay / Metal Shop 2 kterner green teine 0.0 externer which walls harifant 0.11 interior which wells 0.02 Small patch interior of green 0.28 Primo House exterior green wrodow from 0.02 Tay and Feel Steel interior brain halls (lone) 0.0 Interior brain halls (lone) 0.0 Interior brain brain 0.0 Differ Pout from green pout 0.0 unite new roof his -grey dich 0.0 While In Freezer	Colores workers and the world						
Externer white walls horizontal 0.11 Interior green larger 0.0 Interior white walls 0.02 Small patch interior of green 0.28 Prop Horse Exterior green worden from 0.02 Tay and Feed Steel Interior boun talls (veger) 0.0 Interior boun talls (love) 0.0 Interior dear trin boun one Ditative Boat from green point 0.0 Unite new south his - grey deck 0.0 Walk la Freezer	THE WATER WATER						
Externer white walls horizontal 0.11 Interior green larger 0.0 Interior white walls 0.02 Small patch interior of green 0.28 Prop Horse Exterior green worden from 0.02 Tay and Feed Steel Interior boun talls (veger) 0.0 Interior boun talls (love) 0.0 Interior dear trin boun one Ditative Boat from green point 0.0 Unite new south his - grey deck 0.0 Walk la Freezer	Why Cha						
hterse green love 0.0 Interver white walls 0.02 Small patch inderes of green o. 26 Pring House experien wholese from 0.02 Tay and Feel Sheel interver brann walls (upper) 0.0 Interver brann walls (upper) 0.0 Interver brann walls (lever) 0.0 Interver door from brann 0.02 Differ Part from brann 0.02 White per soft 1.4 — 9 eg dich cho	and a contract of the Contract			7			7
Interior while wells 0,02 Small path interior of green 0.28 Pump House exterior green wordow from 0.02 Tay and Feel Sheel interiors brown walls (love) 0.0 Interior brown walls (love) 0.0 Interior bound walls (love) 0.0 Interior bout from 0.02 Detain Point from green point 0.0 Unite new roof 1.4 - 9.49 diche 0.00 While In Freezer	experience of the second of th						18
Pump House Exterior green wordow from 0.02 Tay and Feed Shell Interior brown walls (lone) 0.0 Interior brown one) Detailor Bant from green point 0.0 unite per sout 1.4 — 147 dick cho					1777		1
Prince Horse exterior green wholen from 0.02 Tay and Feed Sheel intercommon to the walls (upper) 0.0 interper boun walls (lower) 0.0 interper door trim bound one) Detive Boat from green point 0.0 unite new soof his - 127 dech cho	mer green were					1	
Pump House exterior green worden from 0.02 Tay and Feed Sheel intercommontal halls (upper) 0.0 intercommontal halls (lane) 0.0 intercommon walls (lane) 0.0 intercommon from bourn 0.02 Deterior Boat from green points 0.0 unite new roof 1.4 - 1.2 dich cho						1	+-
Tay and Feed Sheel interiors. white walls (upper) 0.0 interior bown walls (love) 0.0 interior bown walls (love) 0.0 interior bown bown 0.0 interior bown bown 0.0 interior bown bown 0.0 interior bown walls (love) 0.0 interior bown bown 0.0 interior bown bown 0.0 green point 0.0 unite new soct litt - quy deck 0.0 Write In Freezer	small paten indering of green d. is					++	
Tay and Feed Sheel interiorantite walls (upper) 0.0 interior brown walls (love) 0.0 interior boun walls (love) 0.0 interior boun walls (love) 0.0 interior Bant from green point 0.0 unite new sort his - grap dick cho						+	
Tay and Feed Sheel interiorantite walls (upper) 0.0 interior brown walls (love) 0.0 interior boun walls (love) 0.0 interior boun walls (love) 0.0 interior Bant from green point 0.0 unite new sort his - grap dick cho	7) (/					+	+
Tay and Feed Sheel interiorantite walls (upper) 0.0 interior brown walls (love) 0.0 interior boun walls (love) 0.0 interior boun walls (love) 0.0 interior Bant from green point 0.0 unite new sort his - grap dick cho	Pump House						+-
Tay and Feed Sheel interiorantite walls (upper) 0.0 interior brown walls (love) 0.0 interior boun walls (love) 0.0 interior boun walls (love) 0.0 interior Bout from green point 0.0 unite new sort his - grap dick cho	exterior green window from 0.02						+
interior brown walls (love) 0.0 interior brown walls (love) 0.0 interior brown walls (love) 0.0 interior boar from board out Detalor Boart from green points 0.0 unite new soct his - gray deck cho						-	
interior brown walls (love) 0.0 interior brown walls (love) 0.0 interior brown walls (love) 0.0 interior boar from board out Detalor Boart from green points 0.0 unite new soct his - gray deck cho				++		-	-
interior boun walls (love) 0.0 interior Bout from one? Deteror Bout from green points 0.0 unite new roof 1.4 - 127 deck cho Walk In Freezer	Tay and Feel Steel			-			-
Deter Bout from green points 0-0 white new roof 14 - grey dich cho	interioranhite halls (upper) 0.0					-	10
Detator Bout form green poiss O.D unlike new roof 1.4 - Trey deck cho Walk In Freezer	l'aferier bown walls (love) 0.0			- 14-		-	
unite new sort hy - ney deck cho	interes down trin bown on						-
unite new sort 114 - green points 0-0 unite new sort 114 - grey deck cho							
unite new sort hy - ney deck cho						4	
Malk In Freeter						ori .	
Walk In Freezer	green poiss O-D						
Malk In Freeter	white new soof 14		Sellis - I				
Wik In Freeter	- neg deck cho						
	Walk In Freeze						
		Metal Shap Len + 1: or 0.0 Inite walls horizon 0.11 Ceen lover 0.0 Thick walls 0.02 Inderes of green 0.26 Len Shep Let Shep Like halls (leper) 0.0 Lear trim brown 0.02 Rout from Poiss 0.0 Lear or of his Lech 0.0					
	A 43 ion 1 C MISTING MINISTER LAND						
							+
						-	

exterior white burds plank 0.0 exterior white burds plank 0.0 exterior white come boards 0.0 519 0945 whenever board town 1.8 - 84 de 104 134 134		
exterior white hard plank 00	rellace board founding 0,02	
externer white comer boards 0.0	Safe 00	1
	crowd change of 11 0	7
interes white walls 0,0	- lande (6 117 took of	3
Brown familed adment at backward in kitchen 0.03	-suple control BP-WH-d	5 5/9
It green kitchen look 0.00	Closet wi fritze oviside kitchen	
	- interior closes white pain	[-3
Znd Fl usinge wisher linear closet 0.7 5/9 Stancing cycling trin (white) 21 Sample - 16111	- Sample CIWIT-LBP-WA	
Havely certine dear (dil) 7 1 6 min 1000	0930	5
Standard (certing term (white) 2,1 sample - LAWI	7-LBF-WH-01	
green Egebered artiste Witchen 21 suns	19 0935	
Interes gray Cabout Statury outs role kitchen 1.4 green Equebrard cutsive kitchen 21 Sample - Con Pan Alade Cutsin - tank O1: you- layer of change Soil	17-168-WH-02	
Caulor Face		
01:00-1 000		
01: yet lager of thongy soil		4-
Sondy loan		840
1. 15 5. 3 / wel alw	LL VOC Freeze In 5	77 1015
Cap Sh Llin	Out s	19 060
Sondy loan PID 13.3 / mud alar de sh 22 m D Sayle LPOVIT-SC-Wert-01(2) (20930)		
02: []		
02: fourt same gren lager		
Julian lorm, brown tof hour		
Here other		
PID 10, 7		11
depti-24in		10
AND Simple: Lifed 17 - St WENT		
03 - high color on first scoop		
som yang layer		
7.29		
Sandy loans		
Pin 69		+++
Piss 619 soth: 24 or		
Piss 619 soth: 24 or		
Piss 619 soth: 24 or	LLVCK fruiter: IN S	
PID 619 Apth: 24 an South: 40W17-SL-WeivT-07(2) (2094) diplomate: LPW17-SL-WeivT-07(2) (3004)		
Soudy loans PID 69 Appli: 24 on Sough: 40W17-SL-West-02(2) 60940 diplocate: LPW17-SL-West-02D(2) 60940 04 ro odor, Soudy loan		
Sandy learn PID 6 9 Apth: 24 an South: 40W17-SL-WeirT-02(2) 60940 diplocate: LPW17-SL-WeirT-02D(2) 60940 O4 no oder, South loann learn sit to south loann		
Soudy loans PID 69 Appli: 24 on Sough: 40W17-SL-West-02(2) 60940 diplocate: LPW17-SL-West-02D(2) 60940 04 ro odor, Soudy loan		17 10 19 ce

Colu Cabin				
Dresel tank -uncube to sample cubin side of tank				
CCOI		-		
wed from, higher sand concentration, high enjages				
PID: 0.01	44 1/20	frep 72	: 12 5	17 1127
PID: 0.01 Sample: LPW17-SL-CCT-01(Z) @ 1050				19 0000
CCO2				
mediane high-sized conc. thigh arranies	LL Vac	fruzer:	In 5/7	1127
Lin caph, no odo			5/9	0600
PID: 0.00				
Sough LPW17-8-CCT-02(2) @1100				
Generator Shed		1		
SESTITIVE SIGN				
en OI:				
ante four/black - topseil-esc				
PID-0.00				
depth: 18m, reader	LLV	ic freez	e. : Lu	5/7 1320
Engle: Lrw 17-51-45T-01(2) @ 1305				579 060
en OZ!				
didn't make it They gravel until caught trel has				
- Knied hose, dix not break				100
- Knilled hose, dix not break - gulled fitting from wall				
didn't make it there gravel until cought first had have - Kingled hose, dix not break - pulled fitting from wall				
- Kniked hose, dir not brook - pulled fitting from wall - details on next page				

· 1/30	AJ	(axi)	Ma	ful	Ut	116	Lor	le	ų	1/0	Cal	lim	5	F-1		KA	in	las	C	fa	انک	Le.	S	44	0	-	/	3550	m	Hiz	11	of
* 1130	5	run	sh	alis	ht	e	xı./	1/4	, ,	7_	Sk	vit	we	a	-ul	co	ster	3	5	the	M	d.			1		//		/			L
	į	11				4				1							1															
·Ex	AUN	ter	hs	J_8	1500	1	Wi	K	9	104	21	a	POGI	ķi	nal	47	_3.	F	C I	4_	34154	eci	el.	lin	2	0				-	54ky	1.
	12	7	4-6	phic	hes	1	- 3	/a	إير	-	64	ere	6	Lite	hm	5	blu	٠.	Ve	1	10M		1.1	۸۸۸	j-	1/0	*	_5	290	90	don	10
	7	1	gen	NI	tex	1	he	es.	al 6		-		.1.	1	1	+	÷	+			-	1	-		+	+					1	
	1/1	t I	not	Pu	· AC t	ure.	-1	I/U	-,-	GI	14	7	Ŀ	ala K	18	+	i	-			10. 10.			-			- 0			-		-
		1.5			1						- 1			1				j.	i i			1										
10	, 5	50		\$	P	Ida	(20	1200 {	be	دریا دریا	0	01	ned Mari		1.4	In	دااء	А	100		HV	0	76	/ /	0/	1	YM.	1/4	124	1/4	.1	0
· P.	Si	na/		120	K	1	٨	دار	12		D.	J	M.3.		TURDS.				LAL			у <u>—</u> 	7		140		7	Lia W.				
	·W	Hin	^_6	1/	en	n	444		× 5,	eil	1	ki	tι	VKS	į.	See	1 1	2 5	ar l	۷,	0	as	M	vel	۱,	Fue	1	ج 3	DC.	116	le	
									,																1				1			
						1										1	1	4							1					1		_
					-	-	-			18			<u>.</u>	-		1		-				<u> </u>	-		_		_			_	U	
	·					1	4							·	ļ	-	_	-					-	-	-				-		_	
					-	-	_								-	-	+	-			Ţ			- -	1					-	-	-
	-			ì	-	+	+	-			+					+	+					1	-	÷	+	1	-			1		+
						-	+							-	ļ	-		1				1	-		+				-	-	-	+
			-			-	+			-	-			-	-	-		-		-		-	-	+	+				-	-		+
				4	Ī	-				-	1						-				3	ļ				-			-	-	Ì	t
					1	+				1.	1			1	!	+		T					T		1				T		1	
										i			1			-								T								1
						-		·	! 							1		T	i					T					Ī		Ì	Ţ
																															-	
				Î	Ì	100																										
																						L		1					-			
	<u>.</u>			ļ			_			ļ.				<u> </u>		_								1						_		
		-			1	1				1	-		122541			-		1					Ŀ	-	4				L	-		+
	1					_	_			1				ļ			-						1_						Ļ	-		
	<u> </u>	-	1			_									4		4					-	-			H				-	Ī	1
	1		ļ							-	-					-	#							+	8				-	-	+	
		12			1	+	1		-	-	-				1			1				1	1	+	+				16			-
											- 11										1							1	1	10.		

Gen 03-	
PID 0.0	LL VOC Freezer: IN 5/7 16/0
Sample: LPW17-SL-GST-03(1.5) @ 1530	Dit 5/9 4600
1.4	7,07 37 7 5600
Dept 1.5'	
111 16/10	
WS 01-	LL VOC Frater: 1~ 5/7 16/0
~> <i>B</i> /1=	5/9 0600
PID 0.0	
Sample - CPW17-SL-WST-01(2) @1555	
July 2013 1 32 133 1 3 3 3 3 3 3 3 3 3 3 3 3 3	
HazMat Shed	
Ha z 0 -	
PID a.O	
Depth (2)	LL VOC FREEZET: IN 5/7 1610
Simple 'LPW17-SL HMT-01(2) @ 1545	Out 5/9 6603
Haz 02-	
PIDOO	
Defth (25) Sample LEW17-55-HMT-02125)@ 1630	11 voc freeze: /N 5/7 1700
Sample LEW 17-55-HMT-02(2.5) (W 1630	04 5/9 0600
24 181 01	
attand Motor Shel	
OB 01-	
PID = 0.0	11 va freezer: IN 5/7 1700
	0 Out 519 0600
Sample: LPW 17-66-08F01 (1.5)@ 1635	000
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

OB 02-	
PID 0.0 lepth (2)	
lepth (2)	
found and in hole presed showers	LL Vac freezer. W 5/7 1700
Suple: LEW 17-51-081-02(2)@ 1645	OLT 5/A 0600
	- i i i i i i i i i i i i i i i i i i i
White House	
WHOI-	
Former diesel tank location	
PID 9.0	
Depth (2) (b.drzck)	LLVOC Freezer: IN 5/7 1835
Sunte: LFW 17-51-WHF-01 (2) @ 1750	04 5/9 0600
WHOID P Sample: LPW17-56-WHT-01D(2)@1750	
Sample: LPW17-SL-WHT-0/D(2) @1750	LL VOC freezer. IN 5/7 183
	OU+ 5/9 OL
WHOZ-	
Along Path, down gradhent from Former touch	
P15 0:0	
Depth to 1.0 (bedrock)	LL VUC freezer: IN 5/7 183
Simple: LFW17-4-WHT-02(1) @ 1810	04 5/9 04
WH03 -	
Below, down gondant of corner tonk	
PID 6.0	LL VUC Freezer: IN 5/7 1833
Repth 1.0 (badrown)	Oct 5/9 060
Sugle: CPW17 -SL-WHT-03(1) @ 1815	
P	
WHOU-	
P10 600	
	The same and the second of the
Depth 1.0 (bedrock) Somple: LPW 17 - SL-WITT-041)(01820	LL VOC freezer: IN 5/7 18

Between Ran Sample - CPW Depth 1.5 (d Weir along s	isle of path	
Shoresiste of Deeph 1.0 (h Sangle: LPI	WHITE House, new elrich) U17-BKgd-W4-02	tlag pole		
Heath + Safety Calibrated XRF	MM			5/8
aflicate	LAWI7-SL-WeirL- LAWI7-SL-WeirL-	010 (0.5) 20905] PE	
E side - Sample B side - Sample	LPW17-St-Went	03 (0.5) @0115		
55:de: Sample	LIWIZ-SL Went	-01 (0.5) @ 0911		
	LAWIZ-SL-WeirT Le LAWIZ-SL-Weir He LAWIZ-SL-Weir	- 02 (0.5) (0 0920 T - 03 (0.5) @ 6923 T - 03 D (6.5) @ 092	2 22.	As Cr, Cu
N side (upstream	lacios bridge) -	Sample LPW17-SL	- Weir T - 04 @ 097	6

Attended Rains

Van Abade Shop	
S side: Sample LIWIT-SL-PASL-01 (0:5) @ 0945	J 86
5W corner leck: Sample LPW17-52-PAST-01(0.5)@ 29	38 As, C, C
SW come house: Sample LAW17-SL- PAST -02 (0.5)@ 694	2
Storage: sample LAWI7-SL-PAST-03 (6.5) @ 1002	
Briliagrand: Sample Liwit-SC-1AST-Bled (US) @ 0956	
Far Bridge	
N Side: sample LPWI7-SL-FBT-01(015)(2) 1016	
S side: Sample LPW17-SL-FBT-07(0.5)@ 1019] A	5, 6, 60
Middle Bridge	
N side: Saugle LPW17-SL-MBT-01 (0.5) (2) 1078 . As,	, Cr, Cu
S side: Sample LAW 17-SL-MBT-02 (6.5) @ 1031	
Pan Abode Caten	
5 side: Sample LPW17-51-PACT-01 (0.5) 8/039 duplicate LPW17-51-PACT-010 (0.5) (2/039	9 As, Cr, Co
W Side: Scripte CFW17-56-PACT - 02 (0.5) @1044	
Cove Cabin Bridge	
5 side: sample LPW17-SL-CLBT-01 (0.5) @ 1055	As, C, Cu
NW side: Sample LAWIZ-SL-CCBJ-02 (0.5) @1100	

(1	e Cabin -	-188	1 1 ;						
Whit	walls and	deilby in m	id coon	0.0					
wind	in sill in m	ul room (white) 0.0						
		to Kitchen O	0					-1	
plve	walls kitchen	0.0							
Witte	e Walls 111/14	100 m /helrosm	0,0						
							11		
Wsid	: Sample	LPW17-SL-CC	L -01/0	5 @ 1108	796				
WSIN	2 Sample	LIWIT -SL-CE	F-021	011 5) (5 1110					
					11				
NSTO	e: Sumple	LIWIZ-SL-CO	F-03 ((2) (B)	As, C,	(0		4-4	
			/4						
E 5,20	1: Surge 1	fult -SL- (4	-04 (0	5/0 1145	4			-	
1.1.1									
Gen	crater Shed								
720	JAT -VULGI	-							
NSIE	le sample L	PW17-SL-45	L-01 (o.	5) @ 1203 -	5				4
1 1 1	(2)		1 1 1		2 (10)				
W s,	de: Sample 1	1W17-SL-GSL	-07 (0.5	7 (2) 1206) 0				
lnen	vertor								
			, , ,					1	
SW s	No Former	LPWI7-SL-IA	IT -01 /	05) @171	2				
	are - grayar	WIT SE IN	01 01 6	0.3 / 6 /21	As, C	1.60			
NES	ils: Samele	LOWIZ-SL-IN	JT -02 (05) @121			1		
		L							
War	heise								
NW	(evel - Jamp	4 LPW17-SL	WAT - C	1 (0.5) (2121	8.				
1.2		1. 1 N n=		- (-\0.55	4510	CICU		-	
W	WINII : Jan	pu LAW17-54	-WAT -U	210216151				-	
		21 H 1 D				92			

Workshop		
Sw Corner: Sample	LPW17-SL-WSL-U1 (0.5) @ 1232	
NE siche / Corner : San	-plu LPINI7-SL-SUSL-UZ (0.5) @ 1242	P6
N side: Sample LI	217 -SL- WSL -03 (Q5) @ 1245	
White House Bridge	_	
NE srole: Sample	LPW17-5L-WHBT-01 (U.S)@1250	
Not side: Sample	LPW17-51-WHBT-02(015)@(253)	As, Cr, Cv
White House Deck		
Su siele? Sample L	(WH-SL-WHDT-01 (0:5)@1300	
S. Side Sample L duplicate	1W17-5L-WHOT-02(05)@1804 LAWI7-SL-WHOT-02D(05)@1304.	As, G, Co
White House		
U corner: Sample	LIWI7-82-WHL-UI (O.F)@1312	
E solz E	LIWH -SL -WHL -UZ (05)@ 1314	P6
Ecorner: Sample diplicate	LPN17-SL-WHL-03 (05) @13/6 LFW17-SL-WHL-031) (0.5) @13/6	
Normer: Sample	LPW17-56-WHL -04 (05) @ 13(8	

1.1.0 / 17	Re-Investigat					
Walked site, u	reather not	anny				
Notice/ubserved	sheer along mordent o	the west 5/7/17	side of the	_geneinter	shel	
	- Bl - Mi - J - S	0				5/8
Single collected	15 from Sh	Corner inder	drp line	LL VOL	Freezer: In	5/9 0
			tunk			
1 Sough Collected LFW 7-51-45T-1e	Z' west isser akoi @ 420		tank	7/		
2 Sample collected Lfw17-SL-GST-L	B'North was his	cknk-E	0 777	exiau	sted continued	ا (۵۵ ا
3 Sample collected						
			Out 5/10	9 0600		
Mercury Monito	ring					
Calibrated Jerome 409						
collected 3 air s	overglas	Net Lab , Use 1635	I doill to make Dist kell	e min hate in dy pla	and create dis	Sample
7) 0.1	000 00/2	1640				
2) SOV COTAL!		1000			1.2	
3) SE Side	0.00 مرا رسال 0.00	/672				
	0.00 mg/m3	/6 72				

White House ACM S	ampling			PCM	Managan with the state of the s	5/9/
LFW17-AS-WH-0						
Brown cove base	z -throughout					
LPW17-AS-WH-02						
White cove base						
LPW17-AS-WH-03	7 4					
LPW17-AS-WH-03 Stair Frends - 1st,	and 3rd floors,	todat is a	lifterent from	Ind floor		
LPW17 - AS-W4-04						
12×12 (ciling tile	s - throughout ist	m13rd flux	n product	is different f	ion 2nd floor	ceiling til
LPW17-A5-WH-U5						
Dywall -1st fl	or North hallwa	9				
LAW17-AS-WH-06						
Digwall - downstains	buth, 1st floor					
LPW17-AS-WH-07						
Staismells (all) - D	cy best					
LPW17-AS WH-03						
2nd floor galley - [)-ywell					
LPW17-A5-WH-09						
Window Pully - 0	riginal?					
L9W17-AS-WH-09						
White lindleum -gall	ė-j		1			
· Lfw17.As-WH-10						
Red linekum - 1st fle.	of toilet					
0.17 1.5-1110-01						
Window Putty Torigi	17 CH	61.				

Ahtna Da	aily Fi	eld Co	nstructio	n Report	Project #:	05150	Date:	5/6/17	
Project Title:	L	PW				Con	tract #:		
ite Address	: 1	A			Superintendent:				
Veather Cla					Classificatio	n or Other:		With the same	
LASS A) No	o interru	ptions of	any kind fron	n weather con	ditions occurrir	ng on this or p	revious shifts		
					a complete sto				
					a partial stopp				
					ely stopped du		weather effec	ts.	
		-			stopped due to				
xplain if Otl			-		, ,				
emperature	e (F):		Precip	itation (in):		High Windsp	eed (MPH):		
Ahtna Perso	onnel or	Site (Li	ist Names / Ti	itle Below)	Start Time	Finish Time	2nd Start	2nd Finis	
Kafe Cleve				-	0700	1900			
March Me					0700	1900			
Nick Pec					0700	1900	= =		
1 -01									
quipment	on Site		Start Time	Finish Time	Equipment o	n Site	Start Time	Finish Time	
NA									
				_					
Charles		k	n Activities	Inconctions 9	Tests (Contin	us on Notae I	Shoot if Nood		
ubcontract		JEI GCEIO	in Meditales,	# of Empl		Ide on Notes.	meet II Ideed	cu)	
			· ·	1		·			
Subcontract	or:			# of Empl	oyees:				
Subcontract	or:			# of Empl	ovees:	<u>T</u>			
7					-,				
All Other Vis									
/endor Act	ivities /	Materia	al Deliveries	(Continue on	Notes Sheet if I	Needed)	A P		
		•							
•									
Deficiencie:	s, Confli	cts, Issu	es to be Res	olved (Contin	ue on Notes Sh	eet if Needed	J)		
Short Term	Look A	head Ac	tivities (Con	tinue on Notes	Sheet if Need:	ed)	ALC: NO		
Ahtna Supe	ripton	ant Cia-	atura	Date	Client Donra	contative Si-	matura	Dete	
Zitt.					Chentkepre	sentative Sig	mature	Date	
Wh	mg /94	-	leveland	5/6/17					

pject Title:	uction Report: Comments,	
yet litte:	Project #:	Date:
 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•	
	··· <u></u>	
	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
		· · · · · · · · · · · · · · · · · · ·
		
		·
		-
원		· · · · · · · · · · · · · · · · · · ·
		
•	···	
	 	
·		
· -	•	
· .		
	<u> </u>	
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	its as needed)
Sketches (or use sp	ace for notes and additional note shee	its as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)
Sketches (or use sp	ace for notes and additional note shee	ets as needed)

Ahtna Dail	y Field Co	nstructio	n Report	Project #:	65/50	Date:	5/7/17	
Project Title:					Contract #:			
ite Address:	NA			Superintendent:				
Veather Class	ification			Classificatio	n or Other:			
LASS A No in	terruptions of	any kind from	n weather con	ditions occurrin	ng on this or p	revious shifts		
				a complete sto			6 0	
				a partial stopp				
				ely stopped du		weather effect	5.	
				stopped due to				
xplain if Other			- +	t did not s	<u> </u>		Q=	
emperature (F			itation (in):		High Winds	eed (MPH):		
htna Personr	el on Site (Li	ist Names / T	itle Below)	Start Time	Finish Time		2nd Finis	
Kate Cleine				6730	1300	1400	2100	
Marsh McC				0730	1300	1400	1900	
Nick Peck				0730	1300	1400	1900	
TOTAL PECK	•		=10	10+30	1300	7700	1.7.9.	
quipment on	Site	Start Time	Finish Time	Equipment o	n Site	Start Time	Finish Time	
Case excave		0.900	1300					
(M) CKOLOW	OUDHA)	0.100	7700			 		
ubcontractor: ubcontractor: ubcontractor:	Construction	n Activities,	# of Empl		ue on Notes :	Sheet if Neede	d)	
ubcontractor:	Ţ		# of Empl	oyees:				
All Other Visito								
endor Activit/	ies / Materia	al Deliveries	(Continue on I	Notes Sheet if I	Needed)			
	21.			ENGLAND TO SERVICE				
				ue on Notes Sh		1)	1 1 1 1 1 1 1	
Snaged five	line he	1 bulk fre	I area and	generalm	Shed			
						····		
Short Term Lo	ok Ahead Ac	tivities (Con	tinue on Notes	Sheet if Neede	ed)		e (energy)	
	1 1 2		Off word a terminal	-				
Ahtna Superin			Date	Client Repre	sentative Sig	nature	Date	
Zetta :	1 Clevel	had	5/7/17					

	Daily Field Construction Report: Comments, Notes, & Calculations
roject Title:	Project #: Date:
Frel I'm	
Exerc	
+Jex	Fitting at bulk fuel tanks. Altha used spill kit to remove major
	lost fuel. Alatina excavated Ferbir feet of potentially impacted
، آنوک	
NOAA	is nowmed and happy w/ Jemp for
<u> </u>	W 1 C
Sec. 4.	Il report for more details
	<u>-</u>
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	Sketches (or use space for notes and additional note sheets as needed)
<u> </u>	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
9	Sketches (or use space for notes and additional note sheets as needed)
9	Sketches (or use space for notes and additional note sheets as needed)
6	Sketches (or use space for notes and additional note sheets as needed)
19	Sketches (or use space for notes and additional note sheets as needed)
2	Sketches (or use space for notes and additional note sheets as needed)
0	Sketches (or use space for notes and additional note sheets as needed)
9	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
19	Sketches (or use space for notes and additional note sheets as needed)
19	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
19	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)
	Sketches (or use space for notes and additional note sheets as needed)

Ahtna Da	aily Fi	eld Co	nstructio	n Report	Project #:	05150	D	ate:	5/8/17
Project Title: LPW						Co	ntract #		
Site Address		VA			Superintend	ent:			
Weather Cl					Classification	n or Other:		The Later	SECTION.
CLASS A) N	o interru	uptions of	any kind from	n weather con	ditions occurrin	g on this or	previou	s shifts	
CLASS B W	eather (occurred (during this sh	ift that caused	a complete sto	ppage of all	work.		
CLASS C W	eather	occurred	during this sh	ift that caused	a partial stoppa	ge of work.			
CLASS D W	eather 1	was good	during shift.	Work complet	ely stopped due	to previous	s weath	er effect	s.
CLASS E W	eather '	was good	during shift.	Work partially	stopped due to	previous w	eather e	effects.	
Explain if Ot	her:								
Temperature	≘ (F):		Precip	itation (in):		High Winds	speed (f	MPH):	
Ahtna Perso	onnel o	n Site (Ll	st Names / T	itle Below)	Start Time	Finish Tin	ne Zp	d Start	2nd Finish
Kafe Cl	eveland	1			0800	19-00			
Marsh					0800	1400			
Nick 1					0800	1400	\neg		
							\neg		1
Equipment	on Site	F-SIST	Start Time	Finish Time	Equipment o	n Site	Start	Time	Finish Time
NA									
						• .			
Ahtna Cons	tructio	n Activiti	ies, Inspectio	ons & Tests (0	Continue on No	tes Sheet if	Needed)	
Mercun	invest	shation -	Sampling						
LBP Soil		ction	200						
			Anal Struct	1.14	,				
TPH Soi		mato		SAAA					
- Charles 1			77000	-7 7					
			Activities.	Inspections &	Tests (Contin	ue on Notes	Sheet i	f Neede	d)
Subcontract			11,1211,121	# of Emplo					The Appropriate Co.
				in or ampr	-,				
Subcontract	or:	· · · · · · · · · · · · · · · · · · ·		# of Emplo	ovees:				
			•	1					
Subcontract	or:			# of Empl	ovees:				
				ļ.: -: -::.j.:.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		
All Other Vis	itors:								
		Materia	al Deliveries	(Continue on I	Notes Sheet if N	leeded)		35- 50	nieu mays
TEMODI ACE	ioides /	MICEITE	ii Deliveries	(Continue on	HOLES SHEEL IN IN	iecoeu)			
									
Defining in	· C		4- b- D	-1	blaca of	1f bl f	11		
	•		es to de kes	Olvea (Contin	ue on Notes Sh	eet ii Need	ea)		
Ter ven	erse si	de							
									
		Service of the							
2001t Term	LOOK A	nead Ac	tivities (Conf	tinue on Notes	Sheet if Neede	a)	0.5	V 2	
					 -				
Ahtna Supe				Date	Client Repres	entative S	ignatur	е	Date
Latter	1	Web.		5/8/17					

Ahtna ect Title:					Project #:		Date:	
al la	-1				roject #.		Logic:	
ver ime	- >/29-	///	A -1 -	Surrowns	4 1 -		· · · · · · · · · · · · · · · · · · ·	
Collecte	d Add	Hanal	samples	Surrand	my leak	cite.		
					<u> </u>			
			5					
								_
							·	
	-					<u>.</u>		
_								
			· .			••••		
				<u> </u>				

							-	
n line		. Ashani	y in the Library Library		11-9			
	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	9
	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	<u> </u>
	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	
	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	2
St.	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	7
St.	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	92
58	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	92
95	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	
95	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
595	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
93	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
93	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
93	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
	sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
52	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
5th	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
St#	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	
598	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	
St#	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
Sta	Sk	etches (or	use space fo	or notes and ad	ditional no	te sheets as	needed)	
	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
St.	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
93	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
St.	Sk	etches (or	r use space fo	or notes and ad	ditional no	te sheets as	needed)	
St.	Sk	etches (or	r use space fo	or notes and ac	ditional no	te sheets as	needed)	
Sta	Sk	etches (or	r use space fo	or notes and ac	ditional no	te sheets as	needed)	

Ahtna Daily Field Construction Report					Project #:	05150	Date:	5/9/17	
Project Title	:	LPW				Conf	tract #:		
Site Address	S:	NA			Superintend	lent:			
Weather Cl					Classification or Other:				
					ditions occurrin				
					a complete sto		ork.		
					a partial stoppa				
					ely stopped due			ts.	
		r was good	during shift.	Work partially	stopped due to	previous wea	ther effects.		
Explain if Ot		<u> </u>	<u> </u>	4	,	·	17	<u> </u>	
Temperatur				itation (in):		High Windsp			
			st Names / Ti	rcie Below)	Start Time	Finish Time	2nd Start	2nd Finish	
Kale Cla					0600	1700			
	McCar	<u>th</u>			0700	1700			
Nick	Pech				0100	1700	_	+	
Equipment	on Si	te	Start Time	Finish Time	Equipment o	n Site	Start Time	Finish Time	
NA	011 01		Juli IIII	T MIGHT TAILE	Equipment	John	July IIIIC	7 IIII SII TIJITE	
/v n					 				
							-		
Charler 1 Subcontract Subcontract	tor C		Activities,	Inspections & # of Empl # of Empl		ue on Notes 5	heet if Needo	ed)	
Subcontract	tor:			# of Empl	oyees:	l			
All Other Vi	sitors:								
			l Deliveries	(Continue on	Notes Sheet if N	Veeded)		est in the	
					ue on Notes Sh Sheet if Neede				
Ahtna Sup				Date	Client Repres	entative Sig	nature	Date	
21	1	Mules	,	5/9/17	Lii -				

oject Title:		port: Comments, N	Date:
		(i tojust iii	pate.
		······································	
		·	
	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	*		<u></u>
			
	<u>-</u>	"	
			
	_		
·*·	. -		
·		<u> </u>	<u> </u>
			
	-		
		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	
 			
	 .		
			
		· · · · · · · · · · · · · · · · · · ·	

Skotches			
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet:	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet:	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet:	s as needed)
Sketches	or use space for notes	and additional note sheet:	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)
Sketches	or use space for notes	and additional note sheet	s as needed)

ľ

(This Page Intentionally Left Blank)

APPENDIX B

PHOTO LOG

PHOTOGRAPHIC LOG

Figure 1. Aerial photo of LPW

Figure 2. Aerial photo of Weir Cabin and Pan Abode Shop

Figure 3. White House - residence

Figure 4. Weir Cabin - not currently in use

Figure 5. Pan Abode Cabin with pressure treated deck

Figure 6. Generator Shed and Bulk Fuel Tanks

Figure 7. HazMat Shed and Work/Metal Shop

Figure 8. Bridge constructed of pressure treated lumber

Figure 9. Interior of Weir Cabin

Figure 10. XRF result of LBP at Weir Cabin

Figure 11. ACM sample location of bathroom drywall in White House

Figure 12. Storage tank at Pan Abode Cabin with history of spill

Figure 13. TPH soil investigation at the Pan Abode Cabin

Figure 14. LBP and Treated Lumber soil sample along dripline of White House

(This Page Intentionally Left Blank)

APPENDIX C

ANALYTICAL RESULTS TABLE

ANALYTICAL LABORATORY REPORTS

- TESTAMERICA LABORATORY RESULTS
- NVL LABORATORY RESULTS

(NOT PRINTED IN HARD COPIES)

Table C-1 Sample Collection Summary

Sample Location	Associated Field Screening	Specific Location/Description	Sample Number						
Soil Treated Lumber Investigation Samples									
Pan Abode Storage Area, across river from shop		Background Sample	LPW17-SL-PAST-Bkgd(0.5)						
		South side	LPW17-SL-WeirT-01(0.5)						
		East side	LPW17-SL-WeirT-02(0.5)						
Weir Cabin		Northeast corner with duplicate	LPW17-SL-WeirT-03(0.5) LPW17-SL-WeirT-03D(0.5)						
		Upstream across bride on the north side	LPW17-SL-WeirT-04(0.5)						
		Southwest corner of the deck	LPW17-SL-PAST-01(0.5)						
Pan Abode Shop and Storage		Southwest corner of house	LPW17-SL-PAST-02(0.5)						
		North side of Storage Area	LPW17-SL-PAST-03(0.5)						
Pan Abode Shop and Cabin		North side	LPW17-SL-FBT-01(0.5)						
Closest to Shop		South side	LPW17-SL-FBT-02(0.5)						
Middle Bridge between Pan Abode Shop and Cabin		North side	LPW17-SL-MBT-01(0.5)						
(closest to cabin)		South side	LPW17-SL-MBT-02(0.5)						
Pan Abode Cabin		South side with duplicate	LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01D(0.5)						
		West side	LPW17-SL-PACT-02(0.5)						
Bridge between Pan Abode		South side	LPW17-SL-CCBT-01(0.5)						
Cabin and the Cove Cabin		Northwest Side	LPW17-SL-CCBT-02(0.5)						
		West side	LPW17-SL-CCT-01(0.5)						
Cove Cabin		North side	LPW17-SL-CCT-02(0.5) ¹						
		East side	LPW17-SL-CCT-03(0.5) ¹						
Incinerator Shed		Southwest corner	LPW17-SL-INT-01(0.5)						
incinciator Siled		Northeast corner	LPW17-SL-INT-02(0.5)						
Warehouse, under		Northwest corner	LPW17-WAT-01(0.5)						
overhanging portion of dock	_	Southwest corer	LPW17-WAT-02(0.5)						
White House Pridge		Northeast side	LPW17-SL-WHBT-01(0.5)						
White House Bridge		Northwest side	LPW17-SL-WHBT-02(0.5)						
		Southwest side	LPW17-SL-WHDT-01(0.5)						
White House Deck		Southside	LPW17-SL-WHDT-02(0.5) LPW17-SL-WHDT-02D(0.5)						

Table C-1 Sample Collection Summary

Sample Location	Associated Field Screening	Specific Location/Description	Sample Number
	Lead Paint (Chip Samples	
		Exterior white trim	LPW17-LBP-Weir-01
		Interior green window sill	LPW17-LBP-Weir-02
Weir Cabin	19	White door on semi- exterior porch	LPW17-LBP-Weir-03
		Wood pile south of cabin near shore	LPW17-LBP-Weir-04
Pan Abode Cabin	7	XRF did not register for lead	NA
Generator Shed, Bulk Tanks, and Materials Shed	9	XRF did not register for lead	NA
Incinerator Shed	No Painted Surfaces	NA	NA
Metal/Woodworking Shop	6	XRF did not register for lead except very low value on interior lighter green painted in metal shop	NA
Outboard Motor Shed, Pump House, Tag and Feed Shed, Boat Barn		XRF did not register for lead except very low value on white paint near roof on Boat Barn	NA
		White stairway ceiling trim	LPW17-LBP-WH-01
		Green baseboard outside kitchen	LPW17-LBP-WH-02
White House	15	Orange chimney opening near laundry and dryer area	LPW17-LBP-WH-03
		Brown interior trim	LPW17-LBP-WH-04
		White painted interior pantry/closet	LPW17-LBP-WH-05
	Lead Soi	il Samples	
		West side of cabin	LPW17-SL-WeirL-01(0.5)
Weir Cabin		West side of cabin, duplicate	LPW17-SL-WeirL-01D(0.5)
wen Caom		South side of cabin	LPW17-SL-WeirL-02(0.5)
		East side of cabin	LPW17-SL-WeirL-03(0.5)
		North side of cabin	LPW17-SL-WeirL-04(0.5)
Pan Abode Shop		Dripline south side of shop	LPW17-SL-PASL-01(0.5)
Cove Cabin		Dripline of west side of cabin	LPW17-SL-CCL-01(0.5).
Generator Shed		North side of shed	LPW17-SL-GSL-01(0.5)
		West side of shed	LPW17-SL-GSL-02(0.5)
		Southwest corner	LPW17-SL-WSL-01(0.5)
Workshop and Office Bldg.		Northeast side	LPW17-SL-WSL-02(0.5)
		North side	LPW17-SL-WSL-03(0.5)
		West corner	LPW17-SL-WHL-01(0.5)
		West corner	LPW17-SL-WHL-02(0.5)
White House		East corner with duplicate	LPW17-SL-WHL-02(0.5) LPW17-SL-WHL-03D(0.5)
		North corner	LPW17-SL-WHL-04(0.5)

Table C-1 Sample Collection Summary

Sample Location	Associated Field Screening	Specific Location/Description	Sample Number
	Petroleum Hydr	ocarbon Samples	
Far west of Pan Abode Cabin and Weir		Background Sample (TOC, DRO, and RRO)	LPW17-Bkgd-Weir-01(1.5) ²
East side of White House		Background Sample (TOC, DRO, and RRO)	LPW17-Bkgd-WH-02(1) ²
		1 st Test Pit - Immediately down-gradient of AST	LPW17-SL-WeirP-01(2)
Pan Abode Cabin (former leak location)		2 nd Test Pit – 5' further down-gradient, similar conditions existed	No Sample Collected
icar iocation)		3 rd Test Pit – 3' further down-gradient, 2' bgs	LPW17-SL-WeirP-02(2)
		Final Test Pit – 4' west of Test Pit 3, 2.5 bgs, no odor or staining	LPW17-SS-WeirP-03(2.5)
0 01:		Within 5' of AST, 2' bgs, 2' Northwest tank corner	LPW17-SL-CCP-01(2)
Cove Cabin		Within 5' of AST, 2' bgs, 2' Northeast tank corner	LPW17-SL-CCP-02(2)
Generator Shed, South Hill		West side, 2' bgs	LPW17-SL-GSP-01(2)
Side, Utility Corridor		Southside, no odor/staining, 1.5' bgs	LPW17-GSP-03(1.5)
Workshop, Storage, and Flammables Sheds		No odor, PID reading, nor visible staining	LPW17-SL-WSP-01(2)
Woodworking/Metal Shop		Southeast corner near Hazardous Material Shed	LPW17-SS-HMP-02(2.5)
woodworking/wetar shop		Southwest corner near Hazardous Material Shed	LPW17-SL-HMP-01(2)
Outboard Motor Shed		West side, no odor, PID reading, nor visible staining	LPW17-SL-OBP-01(1.5)
Outboard Wotor Sned		South side, No odor, PID reading, nor visible staining	LPW17-SL-OBP-02(2)
		2' bgs from location of former tank, no odor, PID reading, nor staining	LPW17-SL-WHP-01(2)
White House		1' bgs 10 feet east (down- gradient) along path, no odor, PID reading, nor staining	LPW17-SL-WHP-02(1)
		South of current AST, no odor, PID reading, nor staining	LPW17-SL-WHP-03(1)
		East of current AST, no odor, PID reading, nor staining	LPW17-SL-WHP-04(1)

Table C-1 Sample Collection Summary

Sample Location	Associated Field Screening	Specific Location/Description	Sample Number
	Soil/Treated L	umber Samples	
Pan Abode Storage Area, across river from shop		Background Sample	LPW17-SL-PAST-Bkgd(0.5)
•		South side	LPW17-SL-WeirT-01(0.5)
		East side	LPW17-SL-WeirT-02(0.5)
Weir Cabin		Northeast corner with	LPW17-SL-WeirT-03(0.5)
		duplicate	LPW17-SL-WeirT-03D(0.5)
		Upstream across bride on the north side	LPW17-SL-WeirT-04(0.5)
		Southwest corner of the deck	LPW17-SL-PAST-01(0.5)
Pan Abode Shop and Storage		Southwest corner of house	LPW17-SL-PAST-02(0.5)
		North side of Storage Area	LPW17-SL-PAST-03(0.5)
Pan Abode Shop and Cabin		North side	LPW17-SL-FBT-01(0.5)
Closest to Shop		South side	LPW17-SL-FBT-02(0.5)
Middle Bridge between Pan		North side	LPW17-SL-MBT-01(0.5)
Abode Shop and Cabin (closest to cabin)		South side	LPW17-SL-MBT-02(0.5)
Pan Abode Cabin		South side with duplicate	LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01D(0.5)
		West side	LPW17-SL-PACT-02(0.5)
Bridge between Pan Abode		South side	LPW17-SL-CCBT-01(0.5)
Cabin and the Cove Cabin		Northwest Side	LPW17-SL-CCBT-02(0.5)
		West side	LPW17-SL-CCT-01(0.5)
Cove Cabin		North side	LPW17-SL-CCT-02(0.5) ¹
		East side	LPW17-SL-CCT-03(0.5) ¹
T		Southwest corner	LPW17-SL-INT-01(0.5)
Incinerator Shed		Northeast corner	LPW17-SL-INT-02(0.5)
Warehouse, under		Northwest corner	LPW17-WAT-01(0.5)
overhanging portion of dock		Southwest corer	LPW17-WAT-02(0.5)
W/L:4- H D : 1		Northeast side	LPW17-SL-WHBT-01(0.5)
White House Bridge		Northwest side	LPW17-SL-WHBT-02(0.5)
		Southwest side	LPW17-SL-WHDT-01(0.5)
White House Deck		Southside	LPW17-SL-WHDT-02(0.5) LPW17-SL-WHDT-02D(0.5)

Notes:

AST = above ground storage tank

DRO = diesel range organics

 $PID = photoionization\ detector$

RRO = residual range organics

¹: Analytical report identified these samples as LPW17-SL-CCL-02(0.5) and LPW17-SL-CCL-03(0.5) respectively; correct sample numbers are located in the table above.

 $^{^2}$ GRO analysis was not run for this sample.

^{*}Values in parenthesis are sample depths in feet bgs

^{**}Duplicate samples are not noted in the table

Table C-2 Lead-Based Paint Chip Analytical Results

Analysis	Lead (EPA 6020A)
Sample ID	(mg/kg)
Weir Cabin Interior	
LPW17-LBP-Weir-01	51000
LPW17-LBP-Weir-02	32000
LPW17-LBP-Weir-03	60000
LPW17-LBP-Weir-04	39
White House Interior	
LPW17-LBP-WH-01	8500
LPW17-LBP-WH-02	1100
LPW17-LBP-WH-03	78000
LPW17-LBP-WH-04	14000
LPW17-LBP-WH-05	54000

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance, 2017.
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
 - QC crieria we note met and the element or
 - compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
 - bgs below ground surface
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram
 - ND not detected at the reporting limit listed in parantheses
 - PAH polycyclic aromatic hydrocarbons
 - VOC volatile organic compounds
 - **Bold** Result exceeded one of the cleanup criteria
 - Red Result was not detected. Reporting limit was above cleanup criteria
 - not analyzed

Table C-3 Asbestos Analytical Infrastrure Results

Analysis	
Sample ID	Asbestos (PLM)
Over 40 Inch Zone Ingestion/Human Health (mg/kg)	8,250
Groundwater Cleanup Levels (μg/L)	1,500
Weir Cabin	
LPW17-AS-Weir-01	ND
White House	
LPW17-AS-WH-01	ND
LPW17-AS-WH-02	ND
LPW17-AS-WH-03	ND
LPW17-AS-WH-04	ND
LPW17-AS-WH-05	ND
LPW17-AS-WH-06	ND
LPW17-AS-WH-07	ND
LPW17-AS-WH-08	ND
LPW17-AS-WH-09	ND
LPW17-AS-WH-10	ND

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance, 2017.
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
 - QC crieria we note met and the element or
 - compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
 - bgs below ground surface
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram
 - ND not detected at the reporting limit listed in parantheses
 - PAH polycyclic aromatic hydrocarbons
 - VOC volatile organic compounds
 - **Bold** Result exceeded one of the cleanup criteria
- Red Result was not detected. Reporting limit was above cleanup criteria
 - not analyzed

Table C-4 Petroleum Hydrocarbon and VOC Analytical Soil Results

Tuble e 41 caroleum myuroca		Locations							Pan Abo	ode Cabin					Genera	tor Shed			Cove	Cabin		Workshop	р
					Sample ID	LPW17-SL- WeirP-01(2)		LPW17-SL- WeirP-02(2)		LPW17-SL- WeirP-02D(2)		LPW17-SL- WeirP-03(2.5)		LPW17-SL-GSP- 01(2)		LPW17-SL-GSP- 03(1.5)		LPW17-SL-CCP- 01(2)		LPW17-SL-CCP- 02(2)		LPW17-SL-WSP- 01(2)	
Analysis	Units	Over 40 Inch Zone Ingestion/Huma n Health (mg/kg)	Migration to Ground-water (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic3 (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic3 (mg/kg)	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
PETROLUEM HYDORCARBONS (AK10		1		<u> </u>					Ū		Ü		J		J		U		J		J		
Diesel range organics (DRO)	mg/kg	8,250	230			1100		11000	Q		Q	44		33		17		60		30		13	
Residual range organics (RRO) Gasoline range organics (GRO)	mg/kg mg/kg	8,300 1,400	9,700 260			100 ND(4.6)		670 ND(4.1)		440 6.3		97 ND(10)		120 ND(5.8)		15 ND(1.9)		270 ND(10)		150 ND		53 6.6	
Low Level VOC (EPA 8260B)						112(112)		()	l	0.0		(23)		(5.5)		(2.0)	l	(35)				,	
1,1,1,2-Tetrachloroethane	mg/kg	15	0.022			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	<u> </u>
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	360 4.4	0.003			ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
1,1,2-Trichloroethane	mg/kg	1.1	0.003			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
1,1-Dichloroethane	mg/kg	33	0.092			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
1,2,3-Trichlorobenzene	mg/kg	66	0.15			ND(0.0313)		ND(0.0091)		ND(0.00621)		ND(0.00659)		ND(0.0101)		ND(0.0318)		ND(0.0099)		ND(0.0189)		-	<u> </u>
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/kg mg/kg	0.054 32	3.1 x 10 ⁻⁵ 0.082	1		ND(0.0125) ND(0.0313)		ND(0.00364) ND(0.0091)		ND(0.00248) ND(0.00621)		ND(0.00264) ND(0.00659)		ND(0.00405) ND(0.0101)		ND(0.0127) ND(0.0318)		ND(0.00396) ND(0.0099)		ND(0.00757) ND(0.0189)		-	
1,2,4-Trimethylbenzene	mg/kg	33	0.082	32.7	-	ND(0.0313)		0.208		0.0468		ND(0.00033)		ND(0.0101)		ND(0.0318)		ND(0.0099)		ND(0.0189)		-	
1,2-Dibromoethane	mg/kg	0.31	0.00024			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
1,2-Dichlorobenzene	mg/kg	78	2.4			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	<u> </u>
1,2-Dichloroethane 1,2-Dichloropropane	mg/kg mg/kg	33	0.092 0.0055			ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
1,3,5-Trimethylbenzene	mg/kg	37	1.3	-	-	ND(0.00625)		0.171		0.0235		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
1,3-Dichlorobenzene	mg/kg	62	2.3			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
1,4-Dichlorobenzene	mg/kg	15	0.037			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
2-Butanone 2-Chlorotoluene	mg/kg mg/kg	23000	15			0.22 ND(0.00625)		ND(0.0091) ND(0.00182)		(0.0264) ND(0.00124)		ND(0.00659) ND(0.00132)		0.0323 ND(0.00203)		ND(0.0318) ND(0.00636)		0.0488 ND(0.00198)		0.025 ND(0.00379)		-	
2-Hexanone	mg/kg	210	0.11			ND(0.00023)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.0030)		ND(0.00198)		ND(0.00379)		-	
4-Chlorotoluene	mg/kg					ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
4-Isopropyltoluene	mg/kg	2222	10			ND(0.00625)		0.153		0.0302		ND(0.00132)		ND(0.00203)		ND(0.00636)		(0.00278)		ND(0.00379)		-	
4-Methyl-2-pentanone Acetone	mg/kg mg/kg	2200 65000	18 38			ND(0.0313) 1.05		ND(0.0091) 0.148		ND(0.00621) 0.174		ND(0.00659) 0.0196		ND(0.0101) 0.987		ND(0.0318) 0.0681		ND(0.0099) 0.2		ND(0.0189) 0.303		-	
Benzene	mg/kg	8.1	0.022	74.9	8.62	ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Bromobenzene	mg/kg	160	0.36			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Bromodichloromethane Bromoform	mg/kg	2.6 170	0.0043			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Bromoform Bromomethane	mg/kg mg/kg	7.4	0.1			ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
Carbon disulfide	mg/kg	500	2.9			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Carbon tetrachloride	mg/kg	6.6	0.021			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Chlorobenzene Chloroform	mg/kg	180 2.9	0.46 0.0071			ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
Chloromethane	mg/kg mg/kg	120	0.61			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Dibromochloromethane	mg/kg	88	0.0027			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	$\overline{}$
Dibromomethane	mg/kg	22	0.025			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Dichlorodifluoromethane Ethylbenzene	mg/kg mg/kg	110 35	3.9 0.13	3,470	37.4	ND(0.00625) ND(0.00625)		ND(0.00182) 0.0367		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
Hexachlorobutadiene	mg/kg	3.3	0.02	3,470	37.4	ND(0.00023)		ND(0.0091)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.0030)		ND(0.00198)		ND(0.00379)		-	
Isopropylbenzene	mg/kg					ND(0.00625)		0.0267		0.0037		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	$\overline{}$
Methyl-tert-butyl ether	mg/kg	360	0.22			ND(0.00625		ND(0.00182)		0.0463		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND0.00198		ND0.00379		-	
Methylene chloride Naphthalene	mg/kg mg/kg	360 20	0.33	1		ND(0.0125) ND(0.0313)		ND(0.00364) ND(0.0091)		ND(0.00248) 0.0132		ND(0.00264) ND(0.00659)		ND(0.00405) ND(0.0101)		ND(0.0127) ND(0.0318)		ND(0.00396) ND(0.0099)		ND(0.00757) ND(0.0189)		-	
n-Butylbenzene	mg/kg	20	23			ND(0.00625)		ND(0.0031)		0.0463		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
n-Propylbenzene	mg/kg					ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	\equiv
sec-Butylbenzene	mg/kg	28	42	1		ND(0.00625)		0.0879		0.0189 ND(0.00134)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Styrene tert-Butylbenzene	mg/kg mg/kg	180 35	10 11			ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
Tetrachloroethene (PCE)	mg/kg					ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Toluene	mg/kg	200	6.7	14,100	-	ND(0.00625)		0.00316		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		0.528		0.00442		-	$\overline{}$
Trichloroethene (TCE)	mg/kg	000	41			ND(0.00625)		ND(0.00182)		ND(0.00124)		ND(0.00132)		ND(0.00203)		ND(0.00636)		ND(0.00198)		ND(0.00379)		-	
Trichlorofluoromethane Vinyl chloride	mg/kg mg/kg	980 0.61	0.0008	+		ND(0.00625) ND(0.00625)		ND(0.00182) ND(0.00182)		ND(0.00124) ND(0.00124)		ND(0.00132) ND(0.00132)		ND(0.00203) ND(0.00203)		ND(0.00636) ND(0.00636)		ND(0.00198) ND(0.00198)		ND(0.00379) ND(0.00379)		-	
Xylenes (total)	mg/kg	57	1.5	355	-	ND(0.0125)		0.087		0.00304		ND(0.00132)		ND(0.00405)		ND(0.0127)		ND(0.00136)		ND(0.00373)		-	
P		•	•	•				-		-					•								

Table C-4 Petroleum Hydrocarbon and VOC Analytical Soil Results

Table C-4 Petroleum Hydrocam		Locations					HazMa	at Shed		outboard	Motor Shed						White House	e				
					Sample ID	LPW17-SL-HMP- 01(2)		LPW17-SS-HMP- 02(2.5)	LPW17-SL-OBP- 01(1.5)		LPW17-SL-OBP- 02(2)		LPW17-SL-WHP- 01(2)		LPW17-SL-WHP- 01D(2)		LPW17-SL-WHP- 02(1)	L	.PW17-SL-WHP- 03(1)		LPW17-SL-WHP- 04(1)	
		Over 40 Inch Zone Ingestion/Huma n Health (mg/kg)	Migration to Ground-water (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic3 (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic3 (mg/kg)																	
Analysis PETROLUEM HYDORCARBONS (AK101,	Units					Result	Flag	Result Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Diesel range organics (DRO)	mg/kg	8,250	230			1100		1700	46		59		26000		18000		3900		55		2800	
Residual range organics (RRO)	mg/kg	8,300	9,700			210		3700	62		130		1700		1500		630		160		800	
Gasoline range organics (GRO) Low Level VOC (EPA 8260B)	mg/kg	1,400	260			1.9		ND(2.7)	ND(3.6)		ND(5.5)		ND(18)		ND(14)		ND(6.5)		ND(3.8)		99	
1,1,1,2-Tetrachloroethane	mg/kg	15	0.022	1		ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
1,1,1-Trichloroethane	mg/kg	360	32			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
1,1,2,2-Tetrachloroethane	mg/kg	4.4	0.003			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
1,1,2-Trichloroethane 1,1-Dichloroethane	mg/kg mg/kg	1.1 33	0.0014 0.092			ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359) ND(0.00359)	+1
1,2,3-Trichlorobenzene	mg/kg	66	0.15			ND(0.0324)		ND(0.0133)	ND(0.0121)		ND(0.0108)		ND(0.00346)		ND(0.00599)		ND(0.0144)		ND(0.0201)		ND(0.018)	
1,2,3-Trichloropropane	mg/kg	0.054	3.1 x 10 ⁻⁵			ND(0.0129)		ND(0.00532)	ND(0.00484)		ND(0.00433)		ND(0.00138)		ND(0.0024)		ND(0.00575)		ND(0.00802)		ND(0.00718)	
1,2,4-Trichlorobenzene	mg/kg	32	0.082			ND(0.0324)		ND(0.0133)	ND(0.0121)		ND(0.0108)		ND(0.00346)		ND(0.00599)		ND(0.0144)		ND(0.0201)		ND(0.018)	
1,2,4-Trimethylbenzene 1,2-Dibromoethane	mg/kg mg/kg	33 0.31	0.16 0.00024	32.7	-	ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		1.98 ND(0.00359)	-
1,2-Dichlorobenzene	mg/kg	78	2.4			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
1,2-Dichloroethane	mg/kg	33	0.092			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
1,2-Dichloropropane	mg/kg	3.9	0.0055			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	\perp
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	mg/kg mg/kg	37 62	1.3 2.3	-	-	ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		1.25 ND(0.00359)	
1,4-Dichlorobenzene	mg/kg	15	0.037			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
2-Butanone	mg/kg	23000	15			ND(0.0324)		ND(0.0133)	0.0228		0.0631		0.319		0.137		0.161		0.0933		ND(0.018)	
2-Chlorotoluene	mg/kg	240	0.11			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
2-Hexanone 4-Chlorotoluene	mg/kg mg/kg	210	0.11			ND(0.0324) ND(0.00647)		ND(0.0133) ND(0.00266)	ND(0.0121) ND(0.00242)		ND(0.0108) ND(0.00217)		ND(0.00346) ND(0.00069)		ND(0.00599) ND(0.0012)		ND(0.0144) ND(0.00288)	+	ND(0.0201) ND(0.00401)		ND(0.018) ND(0.00359)	
4-Isopropyltoluene	mg/kg					ND(0.00647)		ND(0.00266)	0.0446		0.00547		ND(0.00069)		0.0122		0.0173		0.0133		0.755	
4-Methyl-2-pentanone	mg/kg	2200	18			ND(0.0324)		ND(0.0133)	ND(0.0121)		ND(0.0108)		ND(0.00346)		ND(0.00599)		ND(0.0144)		ND(0.0201)		ND(0.018)	
Acetone	mg/kg	65000	38	74.0	0.62	0.171		0.0415	1.07		1.51		0.409		2.33		4.91		1.08		0.213	
Benzene Bromobenzene	mg/kg mg/kg	8.1 160	0.022	74.9	8.62	ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359) ND(0.00359)	
Bromodichloromethane	mg/kg	2.6	0.0043			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Bromoform	mg/kg	170	0.1			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Bromomethane	mg/kg	7.4 500	0.024			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359)	1
Carbon disulfide Carbon tetrachloride	mg/kg mg/kg	6.6	2.9 0.021			ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359) ND(0.00359)	
Chlorobenzene	mg/kg	180	0.46			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Chloroform	mg/kg	2.9	0.0071			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		(0.00511)		ND(0.00401)		ND(0.00359)	
Chloromethane Dibromochloromethane	mg/kg mg/kg	120 88	0.61 0.0027			ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359) ND(0.00359)	-
Dibromomethane	mg/kg	22	0.0027			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359)	+
Dichlorodifluoromethane	mg/kg	110	3.9			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Ethylbenzene	mg/kg	35	0.13	3,470	37.4	ND(0.00647)		ND(0.00266)	0.00344		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		0.0862	1
Hexachlorobutadiene Isopropylbenzene	mg/kg mg/kg	3.3	0.02			ND(0.0324) ND(0.00647)		ND(0.0133) ND(0.00266)	ND(0.0121) ND(0.00242)		ND(0.0108) ND(0.00217)		ND(0.00346) ND(0.00069)		ND(0.00599) ND(0.0012)		ND(0.0144) ND(0.00288)		ND(0.0201) ND(0.00401)		ND(0.018) 0.181	+1
Methyl-tert-butyl ether	mg/kg					ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND0.0012		ND0.00288		ND0.00401		ND0.00359	
Methylene chloride	mg/kg	360	0.33			ND(0.0129)		ND(0.00532)	ND(0.00484)		ND(0.00433)		ND(0.00138)		ND(0.0024)		ND(0.00575)		ND(0.00802)		ND(0.00718)	
Naphthalene	mg/kg	20	0.038			ND(0.0324)		ND(0.0133)	ND(0.0121)		ND(0.0108)		ND(0.00346)		ND(0.00599)		ND(0.0144)		ND(0.0201)		0.122	-
n-Butylbenzene n-Propylbenzene	mg/kg mg/kg	20	23			ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) ND(0.00242)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		1.11 0.412	+
sec-Butylbenzene	mg/kg	28	42			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		0.612	
Styrene	mg/kg	180	10			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)	•	ND(0.00359)	
tert-Butylbenzene	mg/kg	35	11			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Tetrachloroethene (PCE) Toluene	mg/kg mg/kg	200	6.7	14,100	_	ND(0.00647) ND(0.00647)		ND(0.00266) ND(0.00266)	ND(0.00242) (0.0151)		ND(0.00217) ND(0.00217)		ND(0.00069) ND(0.00069)		ND(0.0012) ND(0.0012)		ND(0.00288) ND(0.00288)		ND(0.00401) ND(0.00401)		ND(0.00359) ND(0.00359)	+
Trichloroethene (TCE)	mg/kg		5.7	1.,100		ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Trichlorofluoromethane	mg/kg	980	41			ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	
Vinyl chloride	mg/kg	0.61	0.0008	255		ND(0.00647)		ND(0.00266)	ND(0.00242)		ND(0.00217)		ND(0.00069)		ND(0.0012)		ND(0.00288)		ND(0.00401)		ND(0.00359)	1
Xylenes (total)	mg/kg	57	1.5	355	-	ND(0.0129)		ND(0.00532)	(0.0227)		ND(0.00433)		ND(0.00138)		ND(0.0024)		ND(0.00575)		ND(0.00802)		0.21	

Table C-4 Petroleum Hydrocarbon and VOC Analytical Soil Results (continued)

		Locations							Pan Abo	de Cabin					Genera	tor Shed			Cove	Cabin		Worksho	р
					Sample ID	LPW17-SL- WeirP-01(2)		LPW17-SL- WeirP-02(2)		LPW17-SL- WeirP-02D(2)		LPW17-SL- WeirP-03(2.5)		LPW17-SL-GSP- 01(2)		LPW17-SL-GSP- 03(1.5)		LPW17-SL-CCP- 01(2)		LPW17-SL-CCP- 02(2)		LPW17-SL-WSP- 01(2)	
Analysis	Units	Over 40 Inch Zone Ingestion/Huma n Health (mg/kg)	Migration to Ground-water (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic3 (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic3 (mg/kg)	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
PAH (EPA 8270D SIM)																							
1-Methylnaphthalene	mg/kg	68	0.41	-	-	0.022		1.7		0.12		0.0041		0.003		0.0058		0.003		0.0058		ND(0.0048)	
2-Methylnaphthalene	mg/kg	250	1.3	-	-	0.022		1.3		0.15		0.0067		0.0031		0.013		0.0031		0.013		0.0011	
Acenaphthene	mg/kg	3,800	37	-	-	ND(0.0076)		ND(0.072)		0.029		ND(0.012)		ND(0.0086)		0.035		ND(0.0086)		0.035		ND(0.0048)	
Acenaphthylene	mg/kg	1,900	18	-	-	0.029		ND(0.072)		0.051		ND(0.012)		ND(0.0086)		0.0027		ND(0.0086)		0.0027		0.0012	
Anthracene	mg/kg	19,000	390	-	-	ND(0.0076)		ND(0.072)		0.11		ND(0.012)		ND(0.0086)		0.0096		ND(0.0086)		0.0096		0.0021	
Benzo(a)anthracene	mg/kg	1.7	0.3	-	211.0	0.013		0.18		0.31		0.0084		0.0020		0.0079		0.0020		0.0079		0.008	
Benzo(a)pyrene	mg/kg	0.17	0.27	-	55,800	0.0066		0.14		0.3		0.0042		ND(0.0086)		0.0042		ND(0.0086)		0.0042		0.0066	
Benzo(b)fluoranthene	mg/kg	1.70	2.70	-	558000.00	0.03		0.18		0.4		0.017		0.0042		0.013		0.0042		0.013		0.012	
Benzo(g.h.i)perylene	mg/kg	1,900	15,000	-	-	0.0051		0.082		0.16		0.0035		ND(0.0086)		0.0048		ND(0.0086)		0.0048		0.0051	
Benzo(k)fluoranthene	mg/kg	17	27	-	558000.00	0.011		0.076		0.17		0.0057		ND(0.0086)		0.0041		ND(0.0086)		0.0041		0.0054	
Chrysene	mg/kg	170	82	-	5.58 x 106	0.037		0.23		0.45		0.027		0.0079		0.015		0.0079		0.015		0.013	
Dibenzo(a,h)anthracene	mg/kg	0.17	0.87	-	51,200	0.0015		0.014		0.035		ND(0.012)		ND(0.0086)		ND(0.0054)		ND(0.0086)		ND(0.0054)		ND(0.0048)	
Fluoranthene	mg/kg	2,500	590	-	-	0.044		0.44		0.55		0.027		0.0089		0.035		0.0089		0.035		0.016	
Fluorene	mg/kg	2,500	36	-	-	ND(0.0076)		0.26		0.04		ND(0.012)		ND(0.0086)		0.018		ND(0.0086)		0.018		ND(0.0048)	
Indeno(1,2,3-c,d)pyrene	mg/kg	2	9	-	558,000	0.0073		0.086		0.21		0.0046		ND(0.0086)		0.0061		ND(0.0086)		0.0061		0.0061	
Phenanthrene	mg/kg	1,900	39	-	-	0.012		0.46		0.44		0.022		0.0055		0.025		0.0055		0.025		0.0049	
Pyrene	mg/kg	1,900	87	-	-	0.065		0.57		0.67		0.02		0.0035		0.031		0.0035		0.031		0.014	
Naphthalene	mg/kg	20	0.038	77	20	0.0087		0.75		0.1		0.023		0.0058		0.029		0.0058		0.029		0.0011	

Kev

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance , 2017.
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because

QC crieria we note met and the element or

compound was not detected

H estimated detected result due to hold time error

ADEC Alaska Department of Environmental Conservation

bgs below ground surface

DRO diesel range organics

GRO gasoline range organics

mg/kg milligrams per kilogram

ND not detected at the reporting limit listed in parantheses

PAH polycyclic aromatic hydrocarbons

VOC volatile organic compounds

Bold Result exceeded one of the cleanup criteria

Red Result was not detected. Reporting limit was above cleanup criteria

- not analyzed

Table C-4 Petroleum Hydrocarbon and VOC Analytical Soil Results (continued)

,		Locations					HazM	at Shed		0	utboard I	Motor Shed		White House									
					Sample ID	LPW17-SL-HMP- 01(2)		LPW17-SS-HMP- 02(2.5)		LPW17-SL-OBP- 01(1.5)		LPW17-SL-OBP- 02(2)		LPW17-SL-WHP- 01(2)		LPW17-SL-WHP- 01D(2)		LPW17-SL-WHP- 02(1)		LPW17-SL-WHP- 03(1)		LPW17-SL-WHP- 04(1)	
Analysis	Units	Over 40 Inch Zone Ingestion/Huma n Health (mg/kg)	Migration to Ground-water (mg/kg)	Soil Inhalation Risk Screening Level Non- Carcinogenic3 (mg/kg)	Soil Inhalation Risk Screening Level Carcinogenic3 (mg/kg)	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
PAH (EPA 8270D SIM)									Ū		Ü				Ū						Ū		
1-Methylnaphthalene	mg/kg	68	0.41	-	-	0.03		0.082		0.0062		0.014		0.1		0.055		ND (0.0077)	1	0.0031		0.36	
2-Methylnaphthalene	mg/kg	250	1.3	-	-	0.024		0.098		0.017		0.028		0.17		0.12		0.0016		0.0056		0.54	
Acenaphthene	mg/kg	3,800	37	-	-	ND(0.0056)		ND(0.0066)		ND(0.0070)		ND(0.0076)		ND (0.019)		ND (0.015)		ND (0.0077)		ND (0.0063)		ND (0.030)	1
Acenaphthylene	mg/kg	1,900	18	-	-	0.028		0.07		ND(0.0070)		ND(0.0076)		0.13		ND (0.015)		ND (0.0077)		ND (0.0063)		0.05	
Anthracene	mg/kg	19,000	390	-	-	ND(0.0056)		0.039		0.0033		0.0018		ND (0.019)		ND (0.015)		ND (0.0077)		0.0023		0.0096	
Benzo(a)anthracene	mg/kg	1.7	0.3	-	211.0	0.0018		0.021		ND(0.0070)		ND(0.0076)		0.0084		0.012		ND (0.0077)		0.0093		0.018	
Benzo(a)pyrene	mg/kg	0.17	0.27	-	55,800	ND(0.0056)		0.055		ND(0.0070)		ND(0.0076)		ND (0.019)		ND (0.015)		ND (0.0077)		0.0077		0.023	
Benzo(b)fluoranthene	mg/kg	1.70	2.70	-	558000.00	ND(0.0056)		0.064		0.0038		0.0028		0.033		0.03		0.0074		0.016		0.035	
Benzo(g.h.i)perylene	mg/kg	1,900	15,000	-	-	ND(0.0056)		0.066		ND(0.0070)		ND(0.0076)		ND (0.019)		ND (0.015)		ND (0.0077)		0.0037		0.016	
Benzo(k)fluoranthene	mg/kg	17	27	-	558000.00	ND(0.0056)		0.019		ND(0.0070)		ND(0.0076)		0.0074		0.0067		0.0011		0.0038		0.013	1
Chrysene	mg/kg	170	82	-	5.58 x 106	0.0086		0.033		0.0041		ND(0.0076)		0.084		0.059		0.0074		0.011		0.029	1
Dibenzo(a,h)anthracene	mg/kg	0.17	0.87	-	51,200	ND(0.0056)		0.0099		ND(0.0070)		ND(0.0076)		ND (0.019)		ND (0.015)		ND (0.0077)		ND (0.0063)		ND (0.030)	
Fluoranthene	mg/kg	2,500	590	-	-	ND(0.0056)		0.027		0.0039		0.0037		ND (0.019)		0.067		0.0075		0.02		0.04	
Fluorene	mg/kg	2,500	36	-	-	0.11		ND(0.0066)		0.0021		0.0027		ND (0.019)		ND (0.015)		ND (0.0077)		0.013		0.066	
Indeno(1,2,3-c,d)pyrene	mg/kg	2	9	-	558,000	ND(0.0056)		0.12		ND(0.0070)		ND(0.0076)		ND (0.019)		ND (0.015)		ND (0.0077)		0.0071		0.028	
Phenanthrene	mg/kg	1,900	39	-	-	ND(0.0056)		0.032		0.016		0.024		ND (0.019)		ND (0.015)		0.0059		0.011		0.049	1
Pyrene	mg/kg	1,900	87	-	-	0.028		0.029		0.0035		0.0025		0.1		0.081		0.0031		0.021		0.043	
Naphthalene	mg/kg	20	0.038	77	20	0.017		0.044		12		0.022		0.099		0.063		0.007		0.0076		0.21	

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance , 2017.
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
- QC crieria we note met and the element or
- compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
- bgs below ground surface
- DRO diesel range organics GRO gasoline range organics
- mg/kg milligrams per kilogram
- ND not detected at the reporting limit listed in parantheses
- PAH polycyclic aromatic hydrocarbons
- VOC volatile organic compounds
- **Bold** Result exceeded one of the cleanup criteria
- Red Result was not detected. Reporting limit was above cleanup criteria
- not analyzed

Table C-5 Lead-Based Paint Analytical Soil Results

Analysis		Metals (EF	PA 6020A)	
	Arsenic	Chromium	Copper	Lead
Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Over 40 Inch Zone Ingestion/Human Health (mg/kg)	7.2	250	3,300	400
Migration to Groundwater(mg/kg)	0.2		370	
Soil Inhalation Risk Screening Level Non-Carcinogenic (mg/kg)	94,700	-	-	
Soil Inhalation Risk Screening Level Carcinogenic (mg/kg)	39,500	-	-	
Weir Cabin				
LPW17-SL-WeirL-01(0.5)	33	120		600
LPW17-SL-WeirL-01D(0.5)	24	68		550
LPW17-SL-WeirL-02(0.5)	8.0	65		1200
LPW17-SL-WeirL-03(0.5)	44	52		720
LPW17-SL-WeirL-04(0.5)	18	120		3000
Pan Abode Shop				
LPW17-SL-PASL-01(0.5)	140	81		150
Cove Cabin				
LPW17-SL-CCL-01(0.5)	4.3	35	12	88
Generator Shed				
LPW17-SL-GSL-01(0.5)	13	29		29
LPW17-SL-GSL-02(0.5)	2.7	18		3.9
Workshop				
LPW17-SL-WSL-01(0.5)	12	14		34
LPW17-SL-WSL-02(0.5)	9.0	21		33
LPW17-SL-WSL-03(0.5)	12	22		19
White House				
LPW17-SL-WHL-01(0.5)	5.2	22		580
LPW17-SL-WHL-02(0.5)	23	27		130
LPW17-SL-WHL-03(0.5)	19	41		140
LPW17-SL-WHL-03D(0.5)	15	30		110
LPW17-SL-WHL-04(0.5)	19	25		300

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance, 2017.
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
 - QC crieria we note met and the element or
 - compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
 - bgs below ground surface
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram
 - ND not detected at the reporting limit listed in parantheses
 - PAH polycyclic aromatic hydrocarbons
 - VOC volatile organic compounds
- **Bold** Result exceeded one of the cleanup criteria
- Red Result was not detected. Reporting limit was above cleanup criteria
 - not analyzed

Table C-6 Treated Lumber Analytical Soil Results

Analysis		Metals (El	ΡΔ 6020Δ)	
Allalysis		Total	A 0020A)	
	Arsenic	Chromium	Copper	Lead
Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Over 40 Inch Zone Ingestion/Human Health (mg/kg) Chromium III	7.2	100,000	3,300	400
Migration to Groundwater(mg/kg)	0.2		370	
Soil Inhalation Risk Screening Level Non-Carcinogenic (mg/kg)	94,700			
Soil Inhalation Risk Screening Level Carcinogenic (mg/kg)	39,500			
Weir Cabin				
LPW17-SL-WeirT-01(0.5)	45	160	71	
LPW17-SL-WeirT-02(0.5)	49	280	49	
LPW17-SL-WeirT-03(0.5)	44	180	110	
LPW17-SL-WeirT-03D(0.5)	240	650	370	
LPW17-SL-WeirT-04(0.5)	4.3	49	3.4	
Pan Abode Shop				
LPW17-SL-PAST-01(0.5)	780	730	170	
LPW17-SL-PAST-02(0.5)	150	290	170	
LPW17-SL-PAST-03(0.5)	49	100	50	
Far Bridge				
LPW17-SL-FBT-01(0.5)	43	180	65	
LPW17-SL-FBT-02(0.5)	530	210	35	
Middle Bridge				
LPW17-SL-MBT-01(0.5)	39	46	21	
LPW17-SL-MBT-02(0.5)	13	72	7.4	
Pan Abode Cabin				
LPW17-SL-PACT-01(0.5)	9.7	15	15	
LPW17-SL-PACT-01D(0.5)	4.9	17	16	
LPW17-SL-PACT-02(0.5)	26	410	44	
Cove Cabin Bridge				
LPW17-SL-CCBT-01(0.5)	2.7	17	15	
LPW17-SL-CCBT-02(0.5)	1.7	8.0	18	
Cove Cabin				
LPW17-SL-CCT-02(0.5)	3.1	10	22	
LPW17-SL-CCT-03(0.5)	1.5	9.9	8.5	
Incinerator Shed				
LPW17-SL-INT-01(0.5)	22	110	30	
LPW17-SL-INT-02(0.5)	31	100	43	
Warehouse				
LPW17-SL-WAT-01(0.5)	18	100	29	
LPW17-SL-WAT-02(0.5)	340	820	79	
White House Bridge				ı
LPW17-SL-WHBT-01(0.5)	14	35	21	
LPW17-SL-WHBT-02(0.5)	8.1	11	20	
White House Deck	ı	1		ı
LPW17-SL-WHDT-01(0.5)	37	72	38	
LPW17-SL-WHDT-02(0.5)	15	120	31	
LPW17-SL-WHDT-02D(0.5)	14	130	26	

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- ${\it 2 \ Source \ of \ Target \ Levels: \ Appendix \ G, \ \it Vapor \ Intrusion \ Guidance \ , \ 2017.}$
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
 - QC crieria we note met and the element or
 - compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
- bgs below ground surface
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram
 - ND not detected at the reporting limit listed in parantheses
 - PAH polycyclic aromatic hydrocarbons
- VOC volatile organic compounds
- **Bold** Result exceeded one of the cleanup criteria
- Red Result was not detected. Reporting limit was above cleanup criteria
 - not analyzed

Table C-7 Background Sample Results

								Background Sa	mples		
					Sample ID	LPW17-Bkgd- Weir-01(1.5)		LPW17-Bkgd- WH-02(1)		LPW17-SL- PAST-Bkgd(0.5)	
					Sample Date						
					Sampling Results						
		Over 40 Inch		Soil Inhalation	Soil Inhalation						
		Zone		Risk Screening	Risk Screening						
		Ingestion/Huma	Migration to	Level Non-	Level						
		n Health	Groundwater(Carcinogenic3	Carcinogenic3						
		(mg/Kg)	mg/Kg)	(mg/Kg)	(mg/kg)						
Analysis	Units					Result	Flag	Result	Flag	Result	Flag
PETROLUEM HYDORCARBONS (AK101,102,103)											
Diesel range organics (DRO)	mg/kg	8,250	230			31	Н	37		-	-
Residual range organics (RRO)	mg/kg	8,300	9,700			77	Н	110		-	-
Gasoline range organics (GRO)	mg/kg	1,400	260			-		-		-	-
Metals(EPA 6020A)											
Arsenic	mg/kg	7.2	0.2	94700	39,500	-		-		3.9	
Copper	mg/kg	3,300	370	-	-	-		-		12	
Total Chromium	mg/kg	250				-		-		4.5	
Lead	mg/kg	400				-		-		-	
Mercury	mg/kg	3.13	0.36	13.8	-	-		-		-	
Total Organic Carbon											
Total Organic Carbon	mg/kg					41000		28000		-	-

- 1 Source of Cleanup Levels: 18 AAC 75.341, Tables B1/B2 Over 40 In Zone
- 2 Source of Target Levels: Appendix G, Vapor Intrusion Guidance, 2017.
- 3 Source of Screening Levels: Appendix B, Over 40 Inch Procedures for Calculation Cumulative Risk, September 15, 2016c
- Q Estimated quantity due to quality control errors.
- UJ The reported quantitation limit is estimated because
 - QC crieria we note met and the element or
 - compound was not detected
- H estimated detected result due to hold time error
- ADEC Alaska Department of Environmental Conservation
- bgs below ground surface
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram
 - ND not detected at the reporting limit listed in parantheses
- PAH polycyclic aromatic hydrocarbons
- VOC volatile organic compounds
- **Bold** Result exceeded one of the cleanup criteria
- Red Result was not detected. Reporting limit was above cleanup criteria
- Blue Result was not detected. Reporting limit was above Migration to Groundwater but below Over 40 inch Ingestion/Human Health Criteria
 - not analyzed

(This Page Intentionally Left Blank)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-68287-1

Client Project/Site: Little Port Walter AK

Revision: 1

For:

Ahtna Engineering Services LLC 19540 International Blvd. Suite 201 Seatac, Washington 98188

Attn: Kathryn Cleveland

M. Elaine Walker

Authorized for release by: 7/6/2017 3:23:12 PM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	6
Client Sample Results	8
QC Sample Results	91
QC Association	112
Chronicle	124
Certification Summary	152
Sample Summary	153
Subcontract Data	155
Chain of Custody	232
Receipt Checklists	241

3

4

6

9

10

19

Case Narrative

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK TestAmerica Job ID: 580-68287-1

Job ID: 580-68287-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-68287-1

Revision 1: July 6, 2017

Per client request, the medium level 8260C VOC analysis has been cancelled and only the low level analysis is being reported.

Comments

The samples requesting low level 8260C VOC analysis were subcontracted to ARI Laboratories, located in Tukwila, WA. Their data is included as an addendum to this report.

Receipt

Eighty-two samples were received on 5/10/2017 2:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 0.5° C, 0.5° C, 1.0° C and 3.3° C.

Receipt Exceptions

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): LPW17-SL-WeirP-01(2) (580-68287-4), LPW17-SL-WeirP-02(2) (580-68287-5), LPW17-SL-WeirP-02D(2) (580-68287-6), LPW17-SL-WeirP-03(2.5) (580-68287-7), LPW17-SL-WeirP-03(2.5) (580-68287-7[MSD]), LPW17-SL-CCP-01(2) (580-68287-7), LPW17-SL-CCP-02(2) (580-68287-7[MSD]), LPW17-SL-GSP-03(1.5) (580-68287-11), LPW17-SL-WSP-01(2) (580-68287-12), LPW17-SL-HMP-02(2.5) (580-68287-14), LPW17-SL-HMP-02(2.5) (580-68287-14[MSD]), LPW17-SL-HMP-02(2.5) (580-68287-15), LPW17-SL-PAST-Bkgd(0.5) (580-68287-38), LPW17-SL-FBT-02(0.5) (580-68287-40), LPW17-SL-CCL-01(0.5) (580-68287-49), LPW17-SL-CCL-03(0.5) (580-68287-51), LPW17-SL-GSP-W-01 (580-68287-71), LPW17-SL-GSP-W-01 (580-68287-71), LPW17-SL-GSP-W-01 (580-68287-71[MSD]). The container labels contain a "T" in the name while the COC sample ID contains a "P". The sample ID was taken from the COC. Sample dates and times matched the COC.

The following samples was collected in a 4 oz. pre-tared MeOH container, but tape and labels were added to the jar, and the pre-tared weight label is obscured: LPW17-SL-WeirP-01(2) (580-68287-4), LPW17-SL-WeirP-02(2) (580-68287-5), LPW17-SL-WeirP-02(2) (580-68287-5), LPW17-SL-WeirP-03(2.5) (580-68287-7), LPW17-SL-WeirP-03(2.5) (580-68287-7][MSD]), LPW17-SL-CCP-01(2) (580-68287-8), LPW17-SL-CCP-02(2) (580-68287-9), LPW17-SL-GSP-03(1.5) (580-68287-11), LPW17-SL-OBP-02(2) (580-68287-16), LPW17-SL-WHP-01(2) (580-68287-17), LPW17-SL-WHP-01D(2) (580-68287-18), LPW17-SL-WHP-2(1) (580-68287-19), LPW17-SL-WHP-3(1) (580-68287-20), LPW17-SL-WHP-4(1) (580-68287-21), LPW17-SL-GSP-W-01 (580-68287-71), LPW17-SL-GSP-W-01 (580-68287-71), LPW17-SL-GSP-Leak01 (580-68287-72), LPW17-SL-GSP-Leak02 (580-68287-73) and LPW17-SL-GSP-Leak03 (580-68287-74). The weight of these samples may be estimated because of the need to remove the labels and tape in the laboratory.

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): LPW17-SL-GSP-Leak01 (580-68287-72), LPW17-SL-GSP-Leak02 (580-68287-73) and LPW17-SL-GSP-Leak03 (580-68287-74). The sample time on the sample labels and the COC do not match. -72 label time 1500, COC time 1505; -73 label time 1555, COC time 1605; -74 label time 1605, COC time 1620. The sample time was logged in using the the COC.

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): LPW17-SL-CCL-01(0.5) (580-68287-49) and LPW17-SL-CCL-03(0.5) (580-68287-51). 580-68287-49 The container label lists -CCT-01(0.5) while the COC lists -CCT02(0.5)

580-68287-51 The container label lists -CCT-03(0.5) while the COC lists -CCT02(0.5) These two samples were logged in per the container label as this follows the standard nomenclature of the samples.

The following samples was activated for BTEX (medium level) Volatiles analysis by the client on 5-17-2017: LPW17-SL-GSP-Leak01 (580-68287-72), LPW17-SL-GSP-Leak02 (580-68287-73), and LPW17-SL-GSP-Leak03 (580-68287-74). This analysis was not originally requested on the chain-of-custody (COC).

GC VOA

Method(s) AK101: Surrogate recovery for the following samples was outside control limits: LPW17-SL-WeirP-01(2) (580-68287-4), LPW17-SL-WeirP-02(2) (580-68287-5), LPW17-SL-WeirP-02(2) (580-68287-7),

TestAmerica Seattle 7/6/2017

3

4

7

8

9

11

12

Ц

Case Narrative

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Job ID: 580-68287-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

LPW17-SL-WeirP-03(2.5) (580-68287-7[MS]), LPW17-SL-WeirP-03(2.5) (580-68287-7[MSD]), LPW17-SL-CCP-01(2) (580-68287-8), LPW17-SL-GSP-01(2) (580-68287-10), LPW17-SL-HMP-02(2.5) (580-68287-14), LPW17-SL-HMP-02(2.5) (580-68287-14[MS]), LPW17-SL-HMP-02(2.5) (580-68287-14[MSD]), LPW17-SL-OBP-02(2) (580-68287-16), LPW17-SL-WHP-01D(2) (580-68287-18) and LPW17-SL-WHP-4(1) (580-68287-21). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D SIM: The method blank for preparation batch 580-246324 and analytical batch 580-246433 contained Benzo[a]anthracene above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 8270D SIM: The following samples was diluted due to the nature of the sample matrix: LPW17-SL-WeirP-02(2) (580-68287-5), LPW17-SL-WeirP-02D(2) (580-68287-6) and LPW17-SL-CCP-02(2) (580-68287-9). Elevated reporting limits (RLs) are provided.

Method(s) 8270D SIM: The method blank for preparation batch 580-246669 and analytical batch 580-246750 contained Benzo[a]anthracene, Fluoranthene, Phenanthrene and Pyrene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8270D SIM: Reanalysis of the following sample was performed outside of the analytical holding time due to failure of quality control parameters in the initial analysis: LPW17-SL-GSP-Leak01 (580-68287-72).

Method(s) 8270D SIM: Surrogate recovery for the following samples was outside control limits: LPW17-SL-HMP-01(2) (580-68287-13), LPW17-SL-GSP-Leak01 (580-68287-72) and (580-68287-B-72-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270D SIM: The method blank for preparation batch 580-246467 and analytical batch 580-247152 contained Benzo[a]anthracene above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8270D SIM: The matrix spike/matrix spike duplicate (MS/MSD) recoveries for preparation batch 580-246436 and analytical batch 580-246475 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 8270D SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 580-246467 and analytical batch 580-247152 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) AK102 & 103: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: LPW17-SL-CCP-01(2) (580-68287-8), LPW17-SL-CCP-02(2) (580-68287-9), LPW17-SL-OBP-01(1.5) (580-68287-15), LPW17-SL-OBP-02(2) (580-68287-16), and LPW17-SL-WHP-3(1) (580-68287-20), LPW17-Bkgd-WH-02(1) (580-68287-23), LPW17-SL-GSP-Leak02 (580-68287-73) and LPW17-SL-GSP-Leak04 (580-68287-82).

Method(s) AK102 & 103: The following sample contained a hydrocarbon pattern in the diesel range; however, the elution pattern was both earlier and later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: LPW17-SL-HMP-02(2.5) (580-68287-14).

Method(s) AK102 & 103: Due to the high concentration of DRO (nC10-<nC25), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 580-246440 and analytical batch 580-246593 could not be evaluated for accuracy and precision for DRO (nC10-<nC25). The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Case Narrative

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Job ID: 580-68287-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Method(s) AK102 & 103: The matrix spike / matrix spike duplicate (MS/MSD) precision for RRO (nC25-nC36) for preparation batch 580-246440 and analytical batch 580-246593 was outside control limits. Sample non-homogeneity is suspected.

Method(s) AK102 & 103: Surrogate o-Terphenyl recovery for the following sample was outside control limits: LPW17-SL-WHP-01(2) (580-68287-17) and LPW17-SL-WHP-01D(2) (580-68287-18). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) AK102 & 103: Due to the high concentration of DRO (nC10-<nC25) and RRO (nC25-nC36), the matrix spike duplicate (MS/MSD) for preparation batch 580-246440 and analytical batch 580-246482 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Method(s) AK102 & 103: The following sample(s) was re-prepared outside of preparation holding time due to the client provided MS/MSD not being extracted along its parent sample in the initial preparation. Both sets of data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020A: The matrix spike / matrix spike duplicate (MS/MSD) and Sample Duplicate recoveries for lead in preparation batch 580-246145 and analysis batch 580-246300 were outside control limits. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Method(s) 6020A: The matrix spike / matrix spike duplicate (MS/MSD) and Sample Duplicate recoveries for lead in preparation batch 580-246491 and analysis batch 580-246576 were outside control limits. The MSD was outside control limits for Chromium. The %RPD was outside control limits for Lead. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

8

9

1 4

40

Definitions/Glossary

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
X	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
E	Result exceeded calibration range.
GC VOA	

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
X	Surrogate is outside control limits
Н	Sample was prepped or analyzed beyond the specified holding time

Metals

Qualifier Q	Qualifier Description
F3 Dı	ouplicate RPD exceeds the control limit
F1 M	IS and/or MSD Recovery is outside acceptance limits.
J R	lesult is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2 M	IS/MSD RPD exceeds control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

TestAmerica Seattle

Page 6 of 241

Definitions/Glossary

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

4

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-Weir-01

Lab Sample ID: 580-68287-1 Date Collected: 05/06/17 18:20

Matrix: Solid

Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 69 05/16/17 14:16 05/17/17 13:31 1000 Lead 51000 6.6 mg/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-Weir-02 Lab Sample ID: 580-68287-2

Date Collected: 05/06/17 18:25

Matrix: Solid

Date Received: 05/10/17 14:00

 Method: 6020A - Metals (ICP/MS)

 Analyte
 Result Lead
 Qualifier
 RL 75
 MDL 75
 Unit mg/Kg
 D 05/16/17 14:16
 Prepared 05/16/17 14:16
 Analyzed 05/17/17 13:35
 D 1000

4

5

0

10

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-LBP-Weir-03

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-3

Matrix: Solid

Date Collected: 05/06/17 18:30 Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 1000

54 5.2 mg/Kg 05/16/17 14:16 05/17/17 13:40 Lead 60000

TestAmerica Job ID: 580-68287-1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-WeirP-01(2)

Lab Sample ID: 580-68287-4 Date Collected: 05/07/17 09:30 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 64.4

Method: 8270D SIM - Semivola Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	22		7.6	0.95	ug/Kg	<u> </u>	05/19/17 09:58	05/20/17 13:42	
2-Methylnaphthalene	22		7.6	0.68	ug/Kg	☼	05/19/17 09:58	05/20/17 13:42	
Acenaphthene	ND		7.6	0.91	ug/Kg	☼	05/19/17 09:58	05/20/17 13:42	
Acenaphthylene	29		7.6	0.76	ug/Kg	₽	05/19/17 09:58	05/20/17 13:42	
Anthracene	ND		7.6	0.91	ug/Kg	₩	05/19/17 09:58	05/20/17 13:42	
Benzo[a]anthracene	13	В	7.6	1.2	ug/Kg	☼	05/19/17 09:58	05/20/17 13:42	
Benzo[a]pyrene	6.6	J	7.6	0.61	ug/Kg		05/19/17 09:58	05/20/17 13:42	
Benzo[b]fluoranthene	30		7.6	0.89	ug/Kg	₩	05/19/17 09:58	05/20/17 13:42	
Benzo[g,h,i]perylene	5.1	J	7.6	0.76	ug/Kg	₩	05/19/17 09:58	05/20/17 13:42	
Benzo[k]fluoranthene	11		7.6	0.91	ug/Kg		05/19/17 09:58	05/20/17 13:42	
Chrysene	37		7.6	2.3	ug/Kg	☼	05/19/17 09:58	05/20/17 13:42	
Dibenz(a,h)anthracene	1.5	J	7.6	1.1	ug/Kg	≎	05/19/17 09:58	05/20/17 13:42	
Fluoranthene	44		7.6	2.1	ug/Kg	₽	05/19/17 09:58	05/20/17 13:42	
Fluorene	ND		7.6		ug/Kg	₽	05/19/17 09:58	05/20/17 13:42	
Indeno[1,2,3-cd]pyrene	7.3	J	7.6		ug/Kg	₽	05/19/17 09:58	05/20/17 13:42	
Naphthalene	8.7		7.6	1.2	ug/Kg		05/19/17 09:58	05/20/17 13:42	
Phenanthrene	12		7.6		ug/Kg	₩	05/19/17 09:58	05/20/17 13:42	
Pyrene	65		7.6		ug/Kg	₩	05/19/17 09:58	05/20/17 13:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	68		68 - 138				05/19/17 09:58	05/20/17 13:42	
Method: AK101 - Alaska - Gasc			s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		4.6	1.4	mg/Kg	— ☆	05/16/17 08:55	05/16/17 16:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	49	X	50 - 150				05/16/17 08:55	05/16/17 16:24	
4-Bromofluorobenzene (Surr)	97		50 - 150				05/16/17 08:55	05/16/17 16:24	
Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orga	nics & Residu	ıal Ran	ge Orgar	nics (C	GC)		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>1100</td><td></td><td>30</td><td>9.2</td><td>mg/Kg</td><td></td><td>05/19/17 10:38</td><td>05/23/17 20:05</td><td></td></nc25)<>	1100		30	9.2	mg/Kg		05/19/17 10:38	05/23/17 20:05	
RRO (nC25-nC36)	100		75		mg/Kg	₩	05/19/17 10:38	05/23/17 20:05	
		Qualifior	Limits				Prepared	Analyzed	Dil Fa
Surrogate	%Recovery						•	-	
_	%Recovery	Qualifier	50 - 150				05/19/17 10:38	05/23/17 20:05	
o-Terphenyl	%Recovery 72 76	Quainiei	50 - 150 50 - 150					05/23/17 20:05 05/23/17 20:05	
o-Terphenyl n-Triacontane-d62	72	quainer							
o-Terphenyl n-Triacontane-d62 General Chemistry	72 76		50 - 150	MDL	Unit	D	05/19/17 10:38	05/23/17 20:05	
Surrogate o-Terphenyl n-Triacontane-d62 General Chemistry Analyte Percent Solids	72 76	Qualifier		MDL 0.1	Unit	D			Dil Fa

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-WeirP-02(2)

Lab Sample ID: 580-68287-5

Date Collected: 05/07/17 09:40 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 30.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	1700		72	9.0	ug/Kg	<u> </u>	05/19/17 09:58	05/20/17 14:05	5
2-Methylnaphthalene	1300		72	6.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Acenaphthene	ND		72	8.6	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Acenaphthylene	ND		72	7.2	ug/Kg	φ.	05/19/17 09:58	05/20/17 14:05	5
Anthracene	ND		72	8.6	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Benzo[a]anthracene	180	В	72	11	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Benzo[a]pyrene	140		72	5.7	ug/Kg	₽	05/19/17 09:58	05/20/17 14:05	5
Benzo[b]fluoranthene	180		72	8.5	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Benzo[g,h,i]perylene	82		72	7.2	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Benzo[k]fluoranthene	76		72	8.6	ug/Kg	₽	05/19/17 09:58	05/20/17 14:05	5
Chrysene	230		72	21	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Dibenz(a,h)anthracene	14	J	72	10	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Fluoranthene	440		72	20	ug/Kg	₽	05/19/17 09:58	05/20/17 14:05	5
Fluorene	260		72	7.2	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Indeno[1,2,3-cd]pyrene	86		72	8.6	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Naphthalene	750		72	11	ug/Kg	₽	05/19/17 09:58	05/20/17 14:05	5
Phenanthrene	460		72	9.9	ug/Kg	☼	05/19/17 09:58	05/20/17 14:05	5
Pyrene	570		72	14	ug/Kg	₩	05/19/17 09:58	05/20/17 14:05	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	81		68 - 138				05/19/17 09:58	05/20/17 14:05	5
- Method: AK101 - Alaska - G	asoline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		14	4.1	mg/Kg	<u> </u>	05/16/17 08:55	05/16/17 16:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)		X	50 - 150				05/16/17 08:55	05/16/17 16:55	1

Result	Qualifier	KL	MDL	Unit	ט	Prepared	Analyzed	DII Fac
ND		14	4.1	mg/Kg	₩	05/16/17 08:55	05/16/17 16:55	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
39	X	50 - 150				05/16/17 08:55	05/16/17 16:55	1
100		50 - 150				05/16/17 08:55	05/16/17 16:55	1
	%Recovery	%Recovery Qualifier 39 X	ND 14 %Recovery Qualifier Limits 39 X 50 - 150	ND 14 4.1 %Recovery Qualifier Limits 39 X 50 - 150	%Recovery Qualifier Limits 39 X 50 - 150	ND 14 4.1 mg/Kg ☼ %Recovery Qualifier Limits 39 X 50 - 150	ND 14 4.1 mg/Kg ©5/16/17 08:55 %Recovery Qualifier Limits Prepared 39 X 50 - 150 05/16/17 08:55	ND 14 4.1 mg/Kg © 05/16/17 08:55 05/16/17 16:55 %Recovery Qualifier Limits Prepared Analyzed 39 X 50 - 150 05/16/17 08:55 05/16/17 16:55

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
DRO (nC10- <nc25)< td=""><td>11000</td><td></td><td>61</td><td>19</td><td>mg/Kg</td><td>₩</td><td>05/19/17 10:38</td><td>05/23/17 20:36</td><td>1</td></nc25)<>	11000		61	19	mg/Kg	₩	05/19/17 10:38	05/23/17 20:36	1	
RRO (nC25-nC36)	670		150	33	mg/Kg	₩	05/19/17 10:38	05/23/17 20:36	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	79		50 - 150				05/19/17 10:38	05/23/17 20:36	1	
n-Triacontane-d62	83		50 - 150				05/19/17 10:38	05/23/17 20:36	1	

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	30.4	0.1	0.1	%			05/21/17 12:53	1
Percent Moisture	69.6	0.1	0.1	%			05/21/17 12:53	1

TestAmerica Seattle

64

64

64

64

64

MDL Unit

8.1 ug/Kg

5.8 ug/Kg

7.7 ug/Kg

6.4 ug/Kg

7.7 ug/Kg

9.7 ug/Kg

Analyzed

Client: Ahtna Engineering Services LLC

Client Sample ID: LPW17-SL-WeirP-02D(2)

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Result Qualifier

120

150

29 J

51

310 B

110

Project/Site: Little Port Walter AK

Date Collected: 05/07/17 09:40

Date Received: 05/10/17 14:00

Analyte

1-Methylnaphthalene

2-Methylnaphthalene

Benzo[a]anthracene

Acenaphthene

Anthracene

Acenaphthylene

Lab Sample ID: 580-68287-6

Matrix: Solid Percent Solids: 38.9

Prepared

□ 5/19/17 09:58 □ 05/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/17 14:27
□ 5/20/1

☼ 05/19/17 09:58 05/20/17 14:27

☼ 05/19/17 09:58 05/20/17 14:27 05/19/17 09:58 05/20/17 14:27

© 05/19/17 09:58 05/20/17 14:27

© 05/19/17 09:58 05/20/17 14:27

D

Dil Fac	5
5	
5	
5	
5	
5	
5	8
5	
5	Q
5	

Benzo[a]pyrene	300		64		ug/Kg	☼	05/19/17 09:58	05/20/17 14:27	
Benzo[b]fluoranthene	400		64	7.6	ug/Kg	☼	05/19/17 09:58	05/20/17 14:27	:
Benzo[g,h,i]perylene	160		64	6.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:27	
Benzo[k]fluoranthene	170		64	7.7	ug/Kg	₽	05/19/17 09:58	05/20/17 14:27	
Chrysene	450		64	19	ug/Kg	₩	05/19/17 09:58	05/20/17 14:27	
Dibenz(a,h)anthracene	35	J	64	9.2	ug/Kg	₩	05/19/17 09:58	05/20/17 14:27	
Fluoranthene	550		64	18	ug/Kg	\$	05/19/17 09:58	05/20/17 14:27	
Fluorene	40	J	64	6.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:27	
Indeno[1,2,3-cd]pyrene	210		64	7.7	ug/Kg	☼	05/19/17 09:58	05/20/17 14:27	
Naphthalene	100		64	10	ug/Kg		05/19/17 09:58	05/20/17 14:27	
Phenanthrene	440		64	8.8	ug/Kg	₩	05/19/17 09:58	05/20/17 14:27	
Pyrene	670		64	12	ug/Kg	₽	05/19/17 09:58	05/20/17 14:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	79		68 - 138				05/19/17 09:58	05/20/17 14:27	-
Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10		Qualifier	RL 9.1		Unit mg/Kg	D <u>☆</u>	Prepared 05/16/17 08:55	Analyzed 05/16/17 17:26	Dil Fa
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	-	X	50 - 150				05/16/17 08:55	05/16/17 17:26	
							05/16/17 08:55	05/46/47 47:06	
4-Bromofluorobenzene (Surr)	103		50 - 150				00/10/11 00:00	05/16/17 17:26	
, ,		ange Orga		ual Ran	ge Organ	nics (C		05/16/17 17:26	
Method: AK102 & 103 - Alask Analyte	a - Diesel Ra Result	ange Orga Qualifier	nics & Resid RL	MDL	Unit	Ď	C) Prepared	Analyzed	
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25)< td=""><td>a - Diesel Ra</td><td></td><td>nics & Resid</td><td>MDL</td><td>_</td><td>•</td><td>GC)</td><td></td><td></td></nc25)<>	a - Diesel Ra		nics & Resid	MDL	_	•	GC)		
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25)< td=""><td>a - Diesel Ra Result</td><td></td><td>nics & Resid RL</td><td>MDL 16</td><td>Unit</td><td>Ď</td><td>C) Prepared</td><td>Analyzed 05/23/17 21:08</td><td>Dil Fa</td></nc25)<>	a - Diesel Ra Result		nics & Resid RL	MDL 16	Unit	Ď	C) Prepared	Analyzed 05/23/17 21:08	Dil Fa
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) RRO (nC25-nC36)</nc25) 	a - Diesel Ra Result 5000 440 %Recovery	Qualifier	nics & Resid	MDL 16	Unit mg/Kg	— D ⊕	Prepared 05/19/17 10:38	Analyzed 05/23/17 21:08	Dil Fa
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) RRO (nC25-nC36)</nc25) 	a - Diesel Ra Result 5000 440	Qualifier	nics & Resident RL 51 130	MDL 16	Unit mg/Kg	— D ⊕	Prepared 05/19/17 10:38 05/19/17 10:38 Prepared	Analyzed 05/23/17 21:08 05/23/17 21:08	Dil Fa
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) RRO (nC25-nC36) Surrogate p-Terphenyl</nc25) 	a - Diesel Ra Result 5000 440 %Recovery	Qualifier	nics & Resident RL 51 130	MDL 16	Unit mg/Kg	— D ⊕	Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed	Dil Fa
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) RRO (nC25-nC36) Surrogate o-Terphenyl n-Triacontane-d62</nc25) 	a - Diesel Ra Result 5000 440 %Recovery	Qualifier	nics & Resident	MDL 16	Unit mg/Kg	— D ⊕	Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed 05/23/17 21:08	Dil Fa
Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) RRO (nC25-nC36) Surrogate D-Terphenyl n-Triacontane-d62 General Chemistry</nc25) 	a - Diesel Ra Result 5000 440 %Recovery 77 81	Qualifier	nics & Resident RL	MDL 16 28 MDL	Unit mg/Kg mg/Kg	— D ⊕	Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed	Dil Fa
4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" analyte="" chemistry="" general="" n-triacontane-d62="" o-terphenyl="" percent="" rro="" solids<="" surrogate="" td=""><td>a - Diesel Ra Result 5000 440 %Recovery 77 81</td><td>Qualifier Qualifier</td><td>nics & Resident</td><td>MDL 16 28</td><td>Unit mg/Kg mg/Kg</td><td>— * *</td><td>Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38</td><td>Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed 05/23/17 21:08 05/23/17 21:08</td><td>Dil Fa</td></nc25)>	a - Diesel Ra Result 5000 440 %Recovery 77 81	Qualifier Qualifier	nics & Resident	MDL 16 28	Unit mg/Kg mg/Kg	— * *	Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38	Analyzed 05/23/17 21:08 05/23/17 21:08 Analyzed 05/23/17 21:08 05/23/17 21:08	Dil Fa

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 10:00

Date Received: 05/10/17 14:00

General Chemistry

Analyte

Percent Solids

Percent Moisture

Client Sample ID: LPW17-SL-WeirP-03(2.5)

Lab Sample ID: 580-68287-7

Matrix: Solid
Percent Solids: 39.8

4

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
1-Methylnaphthalene	4.1	J	12	1.5	ug/Kg	<u>₩</u>	05/19/17 09:58	05/20/17 14:50	
2-Methylnaphthalene	6.7	J	12	1.0	ug/Kg	₩	05/19/17 09:58	05/20/17 14:50	
Acenaphthene	ND		12	1.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Acenaphthylene	ND		12	1.2	ug/Kg	₩	05/19/17 09:58	05/20/17 14:50	
Anthracene	ND		12	1.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Benzo[a]anthracene	8.4	JB	12	1.8	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Benzo[a]pyrene	4.2	J	12	0.92	ug/Kg		05/19/17 09:58	05/20/17 14:50	
Benzo[b]fluoranthene	17		12	1.4	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Benzo[g,h,i]perylene	3.5	J	12	1.2	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Benzo[k]fluoranthene	5.7	J	12	1.4	ug/Kg		05/19/17 09:58	05/20/17 14:50	
Chrysene	27		12	3.5	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Dibenz(a,h)anthracene	ND		12	1.7	ug/Kg	☼	05/19/17 09:58	05/20/17 14:50	
Fluoranthene	27		12		ug/Kg	·	05/19/17 09:58	05/20/17 14:50	
Fluorene	ND		12		ug/Kg	₩	05/19/17 09:58	05/20/17 14:50	
Indeno[1,2,3-cd]pyrene	4.6	J	12		ug/Kg	☼		05/20/17 14:50	
Naphthalene	23		12		ug/Kg	· · · · · · · · · · · · · · · · · · ·	05/19/17 09:58	05/20/17 14:50	
Phenanthrene	22		12		ug/Kg	☼		05/20/17 14:50	
Pyrene	20		12	2.2	ug/Kg	₽	05/19/17 09:58	05/20/17 14:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
Terphenyl-d14	74		68 - 138				05/19/17 09:58	05/20/17 14:50	
Method: AK101 - Alaska - Ga	soline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)	ND		10	3.1	mg/Kg	<u></u>	05/16/17 08:55	05/16/17 17:56	
-C6-C10							_		
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil
Trifluorotoluene (Surr)	28	X	50 - 150					05/16/17 17:56	
4-Bromofluorobenzene (Surr)	94		50 - 150				05/16/17 08:55	05/16/17 17:56	
Method: AK102 & 103 - Alasi						nics (C	SC)		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil
DRO (nC10- <nc25)< td=""><td>44</td><td>J</td><td>45</td><td></td><td>mg/Kg</td><td></td><td>05/19/17 10:38</td><td>05/23/17 21:39</td><td>-</td></nc25)<>	44	J	45		mg/Kg		05/19/17 10:38	05/23/17 21:39	-
RRO (nC25-nC36)	97	J	110	25	mg/Kg	☼	05/19/17 10:38	05/23/17 21:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
o-Terphenyl	63		50 - 150				05/19/17 10:38	05/23/17 21:39	
n-Triacontane-d62	70		50 ₋ 150				05/40/47 40:30	05/23/17 21:39	

Analyzed

05/23/17 09:15

05/23/17 09:15

Dil Fac

RL

0.1

0.1

MDL Unit

0.1 %

0.1 %

Prepared

Result Qualifier

39.8

60.2

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 10:50

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-CCP-01(2)

Lab Sample ID: 580-68287-8

Matrix: Solid Percent Solids: 39.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	1.6	J	12	1.6	ug/Kg	₩	05/19/17 09:58	05/20/17 15:57	
2-Methylnaphthalene	2.5	J	12	1.1	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Acenaphthene	ND		12	1.5	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Acenaphthylene	ND		12	1.2	ug/Kg	₽	05/19/17 09:58	05/20/17 15:57	
Anthracene	3.4	J	12	1.5	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Benzo[a]anthracene	7.9	JB	12	1.9	ug/Kg	≎	05/19/17 09:58	05/20/17 15:57	
Benzo[a]pyrene	3.3	J	12	1.0	ug/Kg	₽	05/19/17 09:58	05/20/17 15:57	
Benzo[b]fluoranthene	12		12	1.5	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Benzo[g,h,i]perylene	2.8	J	12	1.2	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Benzo[k]fluoranthene	4.1	J	12	1.5	ug/Kg	\$	05/19/17 09:58	05/20/17 15:57	
Chrysene	17		12	3.7	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Dibenz(a,h)anthracene	ND		12	1.8	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Fluoranthene	29		12	3.5	ug/Kg	₽	05/19/17 09:58	05/20/17 15:57	
Fluorene	ND		12	1.2	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Indeno[1,2,3-cd]pyrene	4.2	J	12	1.5	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Naphthalene	5.4	J	12	2.0	ug/Kg	\$	05/19/17 09:58	05/20/17 15:57	
Phenanthrene	9.7	J	12	1.7	ug/Kg	☼	05/19/17 09:58	05/20/17 15:57	
Pyrene	18		12	2.4	ug/Kg	≎	05/19/17 09:58	05/20/17 15:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	86		68 - 138				05/19/17 09:58	05/20/17 15:57	
Method: AK101 - Alaska - G	asoline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		10	3.1	mg/Kg	— ÿ	05/16/17 08:55	05/16/17 19:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	156	X	50 - 150				05/16/17 08:55	05/16/17 19:58	
4-Bromofluorobenzene (Surr)	94		50 - 150				05/16/17 08:55	05/16/17 19:58	

Analyte	Result	Qualifier	RL		ge <mark>Organ</mark> Unit	Ď	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>60</td><td></td><td>47</td><td>14</td><td>mg/Kg</td><td><u> </u></td><td>05/19/17 10:38</td><td>05/23/17 23:39</td><td>1</td></nc25)<>	60		47	14	mg/Kg	<u> </u>	05/19/17 10:38	05/23/17 23:39	1
RRO (nC25-nC36)	270		120	26	mg/Kg	☼	05/19/17 10:38	05/23/17 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	68		50 - 150				05/19/17 10:38	05/23/17 23:39	1
n-Triacontane-d62	76		50 - 150				05/19/17 10:38	05/23/17 23:39	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	39.6		0.1	0.1	%			05/21/17 12:53	1
Percent Moisture	60.4		0.1	0.1	%			05/21/17 12:53	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-CCP-02(2)

Lab Sample ID: 580-68287-9 Date Collected: 05/07/17 11:00 Matrix: Solid

Method: 8270D SIM - Semivo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	12		35	4.4	ug/Kg	<u>\</u>	05/19/17 09:58	05/20/17 16:20	5
2-Methylnaphthalene	15	J	35	3.2	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Acenaphthene	11	J	35		ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Acenaphthylene	6.2	J	35	3.5	ug/Kg		05/19/17 09:58	05/20/17 16:20	5
Anthracene	44		35	4.2	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Benzo[a]anthracene	68	В	35	5.3	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Benzo[a]pyrene	47		35	2.8	ug/Kg		05/19/17 09:58	05/20/17 16:20	5
Benzo[b]fluoranthene	78		35	4.1	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Benzo[g,h,i]perylene	30	J	35	3.5	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Benzo[k]fluoranthene	27	J	35	4.2	ug/Kg	Φ.	05/19/17 09:58	05/20/17 16:20	5
Chrysene	110		35	11	ug/Kg	₩	05/19/17 09:58	05/20/17 16:20	5
Dibenz(a,h)anthracene	5.1	J	35	5.1	ug/Kg	☼	05/19/17 09:58	05/20/17 16:20	5
Fluoranthene	170		35	9.8	ug/Kg		05/19/17 09:58	05/20/17 16:20	5
Fluorene	12	J	35	3.5	ug/Kg	☼	05/19/17 09:58	05/20/17 16:20	5
ndeno[1,2,3-cd]pyrene	34	J	35	4.2	ug/Kg	☼	05/19/17 09:58	05/20/17 16:20	5
Naphthalene	11	J	35	5.6	ug/Kg	₩.	05/19/17 09:58	05/20/17 16:20	5
Phenanthrene	130		35	4.8	ug/Kg	☼	05/19/17 09:58	05/20/17 16:20	5
Pyrene	160		35	6.8	ug/Kg	₽	05/19/17 09:58	05/20/17 16:20	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	92		68 - 138				05/19/17 09:58	05/20/17 16:20	5
Method: AK101 - Alaska - Ga	scolino Bang	o Organica	- (CC)						
Metriou. AKTOT - Alaska - Ga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6-C10	ND ND		4.6		mg/Kg	— ¤	05/16/17 08:55	05/16/17 20:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	KL	MDL	Unit	ט	Prepared	Anaiyzed	DII Fac
Gasoline Range Organics (GRO)	ND		4.6	1.4	mg/Kg	\	05/16/17 08:55	05/16/17 20:28	1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	80		50 - 150				05/16/17 08:55	05/16/17 20:28	1
4-Bromofluorobenzene (Surr)	92		50 - 150				05/16/17 08:55	05/16/17 20:28	1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
DRO (nC10- <nc25)< td=""><td>30</td><td></td><td>27</td><td>8.1</td><td>mg/Kg</td><td>₩</td><td>05/19/17 10:38</td><td>05/24/17 00:08</td><td>1</td></nc25)<>	30		27	8.1	mg/Kg	₩	05/19/17 10:38	05/24/17 00:08	1	
RRO (nC25-nC36)	150		66	15	mg/Kg	₩	05/19/17 10:38	05/24/17 00:08	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	71		50 - 150				05/19/17 10:38	05/24/17 00:08	1	
n-Triacontane-d62	78		50 - 150				05/19/17 10:38	05/24/17 00:08	1	

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	70.7	0.1	0.1	%			05/30/17 09:51	1
Percent Moisture	29.3	0.1	0.1	%			05/30/17 09:51	1

TestAmerica Seattle

8.6

MDL Unit

1.1 ug/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 13:05

Date Received: 05/10/17 14:00

Analyte

1-Methylnaphthalene

Client Sample ID: LPW17-SL-GSP-01(2)

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Result Qualifier

3.0 J

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-10

Prepared

Dil Fac

Matrix: Solid

Percent Solids: 53.4

Analyzed

1-weutymaphunaiene	3.0	J	0.0	1.1	ug/itg		03/13/17 03.30	03/20/17 10.42	•
2-Methylnaphthalene	3.1	J	8.6	0.77	ug/Kg	☼	05/19/17 09:58	05/20/17 16:42	1
Acenaphthene	ND		8.6	1.0	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Acenaphthylene	ND		8.6	0.86	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Anthracene	ND		8.6	1.0	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Benzo[a]anthracene	2.0	JB	8.6	1.3	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Benzo[a]pyrene	ND		8.6	0.69	ug/Kg	φ.	05/19/17 09:58	05/20/17 16:42	1
Benzo[b]fluoranthene	4.2	J	8.6	1.0	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Benzo[g,h,i]perylene	ND		8.6	0.86	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Benzo[k]fluoranthene	ND		8.6	1.0	ug/Kg	₩.	05/19/17 09:58	05/20/17 16:42	1
Chrysene	7.9	J	8.6	2.6	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Dibenz(a,h)anthracene	ND		8.6	1.2	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Fluoranthene	8.9		8.6	2.4	ug/Kg	₩.	05/19/17 09:58	05/20/17 16:42	1
Fluorene	ND		8.6	0.86	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Indeno[1,2,3-cd]pyrene	ND		8.6	1.0	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Naphthalene	5.8	J	8.6	1.4	ug/Kg	₩.	05/19/17 09:58	05/20/17 16:42	1
Phenanthrene	5.5	J	8.6	1.2	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Pyrene	3.5	J	8.6	1.7	ug/Kg	₩	05/19/17 09:58	05/20/17 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	82		68 - 138				05/19/17 09:58	05/20/17 16:42	1
Made al. Al/404 Alaska Os	a a line a Dans as								
Method: AK101 - Alaska - Ga	_	_	• •	MDI	11	_	Dunnanad	A a b a d	Dil Faa
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)	_	_	• •		Unit mg/Kg	D	•	Analyzed 05/24/17 16:37	Dil Fac
Analyte	Result	_	RL				•	-	
Analyte Gasoline Range Organics (GRO)	Result	Qualifier	RL				•	-	
Analyte Gasoline Range Organics (GRO) -C6-C10	Result ND	Qualifier Qualifier	RL 5.8				05/24/17 12:00 Prepared	05/24/17 16:37	1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result ND %Recovery	Qualifier Qualifier	RL 5.8				05/24/17 12:00 Prepared 05/24/17 12:00	05/24/17 16:37 Analyzed	1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Result ND %Recovery 29	Qualifier Qualifier	RL 5.8 Limits 50 - 150				05/24/17 12:00 Prepared 05/24/17 12:00	05/24/17 16:37 Analyzed 05/24/17 16:37	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask	Result ND %Recovery 29 92 (a - Diesel Ra	Qualifier Qualifier X ange Orga	RL 5.8 Limits 50 - 150 50 - 150 nics & Residu	1.7	mg/Kg ge Organ		05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00	05/24/17 16:37 Analyzed 05/24/17 16:37	1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte	Result ND %Recovery 29 92 (a - Diesel Ra Result	Qualifier Qualifier X ange Orga Qualifier	RL 5.8 Limits 50 - 150 50 - 150 nics & Resident	1.7 ual Ran MDL	mg/Kg ge Organ Unit	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed	Dil Fac Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25)< td=""><td>Result ND %Recovery 29 92 (a - Diesel Ra</td><td>Qualifier Qualifier X ange Orga Qualifier</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared</td><td>05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37</td><td>1 Dil Fac</td></nc25)<>	Result ND %Recovery 29 92 (a - Diesel Ra	Qualifier Qualifier X ange Orga Qualifier	RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37	1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte	Result ND %Recovery 29 92 (a - Diesel Ra Result	Qualifier Qualifier X ange Orga Qualifier	RL 5.8 Limits 50 - 150 50 - 150 nics & Resident	1.7 ual Ran MDL 11	mg/Kg ge Organ Unit	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 C) Prepared 05/19/17 10:38	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed	Dil Fac Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)<="" rro="" td=""><td>%Recovery 29 92 Ka - Diesel Ra Result 33 120</td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 05/19/17 10:38</td><td>05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38</td><td>Dil Fac Dil Fac 1 1 Dil Fac 1</td></nc25)>	%Recovery 29 92 Ka - Diesel Ra Result 33 120	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 05/19/17 10:38	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38	Dil Fac Dil Fac 1 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" rro="" surrogate<="" td=""><td>%Recovery 29 92 4a - Diesel Ra Result 33 120 %Recovery</td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90 Limits</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared</td><td>Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed</td><td>Dil Fac Dil Fac Dil Fac Dil Fac</td></nc25)>	%Recovery 29 92 4a - Diesel Ra Result 33 120 %Recovery	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90 Limits	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared	Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" o-terphenyl<="" rro="" surrogate="" td=""><td>## Result ND </td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Residu RL 36 90 Limits 50 - 150</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38</td><td>Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38</td><td>Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1</td></nc25)>	## Result ND	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Residu RL 36 90 Limits 50 - 150	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" rro="" surrogate<="" td=""><td>%Recovery 29 92 4a - Diesel Ra Result 33 120 %Recovery</td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90 Limits</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38</td><td>Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed</td><td>Dil Fac Dil Fac Dil Fac Dil Fac</td></nc25)>	%Recovery 29 92 4a - Diesel Ra Result 33 120 %Recovery	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Reside RL 36 90 Limits	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" n-triacontane-d62<="" o-terphenyl="" rro="" surrogate="" td=""><td>## Result ND </td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Residu RL 36 90 Limits 50 - 150</td><td>1.7 ual Ran MDL 11</td><td>ge Organ Unit mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38</td><td>Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38</td><td>Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1</td></nc25)>	## Result ND	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Residu RL 36 90 Limits 50 - 150	1.7 ual Ran MDL 11	ge Organ Unit mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38	Analyzed 05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" chemistry<="" general="" n-triacontane-d62="" o-terphenyl="" rro="" surrogate="" td=""><td>### Result ND </td><td>Qualifier Qualifier X ange Orga Qualifier J Qualifier</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150</td><td>1.7 ual Ran MDL 11 20</td><td>ge Organ Unit mg/Kg mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38</td><td>05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 05/24/17 00:38</td><td>Dil Fac Dil Fac 1</td></nc25)>	### Result ND	Qualifier Qualifier X ange Orga Qualifier J Qualifier	RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150	1.7 ual Ran MDL 11 20	ge Organ Unit mg/Kg mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 05/24/17 00:38	Dil Fac Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" analyte<="" chemistry="" general="" n-triacontane-d62="" o-terphenyl="" rro="" surrogate="" td=""><td>## Result ND </td><td>Qualifier Qualifier X ange Orga Qualifier J</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150</td><td>1.7 ual Ran MDL 11 20</td><td>ge Organ Unit mg/Kg mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38</td><td>05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38</td><td>Dil Fac Dil Fac Dil Fac 1 Dil Fac</td></nc25)>	## Result ND	Qualifier Qualifier X ange Orga Qualifier J	RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150	1.7 ual Ran MDL 11 20	ge Organ Unit mg/Kg mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 6C) Prepared 05/19/17 10:38 Prepared 05/19/17 10:38	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 Analyzed 05/24/17 00:38	Dil Fac Dil Fac Dil Fac 1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" chemistry<="" general="" n-triacontane-d62="" o-terphenyl="" rro="" surrogate="" td=""><td>### Result ND </td><td>Qualifier Qualifier X ange Orga Qualifier J Qualifier</td><td>RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150</td><td>1.7 ual Ran MDL 11 20</td><td>ge Organ Unit mg/Kg mg/Kg</td><td>nics (G</td><td>Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38</td><td>05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 05/24/17 00:38</td><td>Dil Fac Dil Fac 1 Dil Fac 1 1</td></nc25)>	### Result ND	Qualifier Qualifier X ange Orga Qualifier J Qualifier	RL 5.8 Limits 50 - 150 50 - 150 nics & Residual RL 36 90 Limits 50 - 150 50 - 150	1.7 ual Ran MDL 11 20	ge Organ Unit mg/Kg mg/Kg	nics (G	Prepared 05/24/17 12:00 Prepared 05/24/17 12:00 05/24/17 12:00 GC) Prepared 05/19/17 10:38 05/19/17 10:38 Prepared 05/19/17 10:38 05/19/17 10:38	05/24/17 16:37 Analyzed 05/24/17 16:37 05/24/17 16:37 Analyzed 05/24/17 00:38 05/24/17 00:38 Analyzed 05/24/17 00:38 05/24/17 00:38	Dil Fac Dil Fac 1 Dil Fac 1 1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 15:30

Date Received: 05/10/17 14:00

4-Bromofluorobenzene (Surr)

Client Sample ID: LPW17-SL-GSP-03(1.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-11

Matrix: Solid
Percent Solids: 90.7

05/16/17 08:55 05/16/17 20:59

 Method: 8270D SIM - Semivola	atile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	5.8		5.4	0.68	ug/Kg	<u> </u>	05/19/17 09:58	05/20/17 17:05	1
2-Methylnaphthalene	13		5.4	0.49	ug/Kg	☼	05/19/17 09:58	05/20/17 17:05	1
Acenaphthene	35		5.4	0.65	ug/Kg	☼	05/19/17 09:58	05/20/17 17:05	1
Acenaphthylene	2.7	J	5.4	0.54	ug/Kg		05/19/17 09:58	05/20/17 17:05	1
Anthracene	9.6		5.4	0.65	ug/Kg	☼	05/19/17 09:58	05/20/17 17:05	1
Benzo[a]anthracene	7.9	В	5.4	0.82	ug/Kg	☼	05/19/17 09:58	05/20/17 17:05	1
Benzo[a]pyrene	4.2	J	5.4	0.43	ug/Kg		05/19/17 09:58	05/20/17 17:05	1
Benzo[b]fluoranthene	13		5.4	0.64	ug/Kg	☼	05/19/17 09:58	05/20/17 17:05	1
Benzo[g,h,i]perylene	4.8	J	5.4	0.54	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Benzo[k]fluoranthene	4.1	J	5.4	0.65	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Chrysene	15		5.4	1.6	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Dibenz(a,h)anthracene	ND		5.4	0.78	ug/Kg	₩	05/19/17 09:58	05/20/17 17:05	1
Fluoranthene	35		5.4	1.5	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Fluorene	18		5.4	0.54	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Indeno[1,2,3-cd]pyrene	6.1		5.4	0.65	ug/Kg	≎	05/19/17 09:58	05/20/17 17:05	1
Naphthalene	29		5.4	0.87	ug/Kg	₽	05/19/17 09:58	05/20/17 17:05	1
Phenanthrene	25		5.4	0.75	ug/Kg	≎	05/19/17 09:58	05/20/17 17:05	1
Pyrene	31		5.4	1.1	ug/Kg	₩	05/19/17 09:58	05/20/17 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	86		68 - 138				05/19/17 09:58	05/20/17 17:05	1
_ Method: AK101 - Alaska - Gas	oline Range	e Organics	s (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND		1.9	0.58	mg/Kg	<u></u>	05/16/17 08:55	05/16/17 20:59	1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	84		50 - 150				05/16/17 08:55	05/16/17 20:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>17</td><td>J</td><td>19</td><td>5.9</td><td>mg/Kg</td><td>₩</td><td>05/19/17 10:38</td><td>05/24/17 01:07</td><td>1</td></nc25)<>	17	J	19	5.9	mg/Kg	₩	05/19/17 10:38	05/24/17 01:07	1
RRO (nC25-nC36)	15	J	48	11	mg/Kg	☆	05/19/17 10:38	05/24/17 01:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Juliogate									
o-Terphenyl			50 - 150				05/19/17 10:38	05/24/17 01:07	1

50 - 150

98

General Chemistry	Danult	O	D.	MDI	11:4	_	Duamanad	A l	Dil Faa
Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fac
Percent Solids	90.7		0.1	0.1	%			05/30/17 09:51	1
Percent Moisture	9.3		0.1	0.1	%			05/30/17 09:51	1

TestAmerica Seattle

_

4

e

8

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 15:55

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WSP-01(2)

TestAmerica Job ID: 580-68287-1

Percent Solids: 89.5

Lab Sample ID: 580-68287-12 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		4.8	0.60	ug/Kg	<u> </u>	05/19/17 09:58	05/20/17 17:27	1
2-Methylnaphthalene	1.1	J	4.8	0.43	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Acenaphthene	ND		4.8	0.57	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Acenaphthylene	1.2	J	4.8	0.48	ug/Kg	₽	05/19/17 09:58	05/20/17 17:27	1
Anthracene	2.1	J	4.8	0.57	ug/Kg	₩	05/19/17 09:58	05/20/17 17:27	1
Benzo[a]anthracene	8.0	В	4.8	0.73	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Benzo[a]pyrene	6.6		4.8	0.38	ug/Kg	φ.	05/19/17 09:58	05/20/17 17:27	1
Benzo[b]fluoranthene	12		4.8	0.57	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Benzo[g,h,i]perylene	5.1		4.8	0.48	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Benzo[k]fluoranthene	5.4		4.8	0.57	ug/Kg	₩	05/19/17 09:58	05/20/17 17:27	1
Chrysene	13		4.8	1.4	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Dibenz(a,h)anthracene	ND		4.8	0.69	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Fluoranthene	16		4.8	1.3	ug/Kg	₩	05/19/17 09:58	05/20/17 17:27	1
Fluorene	ND		4.8	0.48	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Indeno[1,2,3-cd]pyrene	6.1		4.8	0.57	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Naphthalene	1.1	J	4.8	0.77	ug/Kg	₩	05/19/17 09:58	05/20/17 17:27	1
Phenanthrene	4.9		4.8	0.66	ug/Kg	☼	05/19/17 09:58	05/20/17 17:27	1
Pyrene	14		4.8	0.93	ug/Kg	₩	05/19/17 09:58	05/20/17 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	86		68 - 138				05/19/17 09:58	05/20/17 17:27	1
Method: AK101 - Alaska - Gas	oline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Pange Organics (GPO)	6.6		1.8	0.55	ma/Ka	<u></u>	05/16/17 08:55	05/16/17 21:30	1

Analyte	Resuit	Qualifier	NL.	IVIDE	Ullit	U	riepaieu	Allalyzeu	DII Fac
Gasoline Range Organics (GRO) -C6-C10	6.6		1.8	0.55	mg/Kg	 	05/16/17 08:55	05/16/17 21:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	82		50 - 150				05/16/17 08:55	05/16/17 21:30	1
4-Bromofluorobenzene (Surr)	132		50 - 150				05/16/17 08:55	05/16/17 21:30	1

Method: AK102 & 103 - Ala	GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>13</td><td>J</td><td>17</td><td>5.3</td><td>mg/Kg</td><td>₩</td><td>05/19/17 10:38</td><td>05/24/17 01:36</td><td>1</td></nc25)<>	13	J	17	5.3	mg/Kg	₩	05/19/17 10:38	05/24/17 01:36	1
RRO (nC25-nC36)	53		43	9.5	mg/Kg	₩	05/19/17 10:38	05/24/17 01:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150				05/19/17 10:38	05/24/17 01:36	1
n-Triacontane-d62	79		50 - 150				05/19/17 10:38	05/24/17 01:36	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	89.5		0.1	0.1	%			05/30/17 09:51	1
Percent Moisture	10.5		0.1	0.1	%			05/30/17 09:51	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-HMP-01(2)

Lab Sample ID: 580-68287-13

 Date Collected: 05/07/17 15:45
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 87.4

Method: 8270D SIM - Semivola Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	30		5.6	0.71	ug/Kg	<u>₩</u>	05/19/17 09:58	05/20/17 17:50	
2-Methylnaphthalene	24		5.6	0.50	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Acenaphthene	ND		5.6	0.67	ug/Kg	☼	05/19/17 09:58	05/20/17 17:50	
Acenaphthylene	28		5.6	0.56	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Anthracene	ND		5.6	0.67	ug/Kg	☼	05/19/17 09:58	05/20/17 17:50	
Benzo[a]anthracene	1.8	JB	5.6	0.85	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Benzo[a]pyrene	ND		5.6	0.45	ug/Kg		05/19/17 09:58	05/20/17 17:50	
Benzo[b]fluoranthene	ND		5.6	0.66	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Benzo[g,h,i]perylene	ND		5.6	0.56	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Benzo[k]fluoranthene	ND		5.6	0.67	ug/Kg		05/19/17 09:58	05/20/17 17:50	
Chrysene	8.6		5.6	1.7	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Dibenz(a,h)anthracene	ND		5.6	0.81	ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Fluoranthene	ND		5.6		ug/Kg			05/20/17 17:50	
Fluorene	110		5.6		ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
ndeno[1,2,3-cd]pyrene	ND		5.6		ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Naphthalene	17		5.6	0.90	ug/Kg		05/19/17 09:58	05/20/17 17:50	
Phenanthrene	ND		5.6		ug/Kg	₩	05/19/17 09:58	05/20/17 17:50	
Pyrene	28		5.6		ug/Kg	₽	05/19/17 09:58	05/20/17 17:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14	65	X	68 - 138				05/19/17 09:58	05/20/17 17:50	
Method: AK101 - Alaska - Gas	olina Bana	o Organias	(CC)						
Metriod. AKTOT - Alaska - Gas Analyte	_	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)	1.9	Qualifier	1.5		mg/Kg	— -	05/24/17 12:00	05/24/17 17:07	
-C6-C10	1.5		1.0	0.40	mg/rtg		00/24/17 12:00	00/24/17 17:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	80		50 - 150				05/24/17 12:00	05/24/17 17:07	
4-Bromofluorobenzene (Surr)	129		50 - 150				05/24/17 12:00	05/24/17 17:07	
Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Organ	ics (C	GC)		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>1100</td><td></td><td>21</td><td>6.3</td><td>mg/Kg</td><td><u></u></td><td>05/19/17 10:38</td><td>05/24/17 02:06</td><td></td></nc25)<>	1100		21	6.3	mg/Kg	<u></u>	05/19/17 10:38	05/24/17 02:06	
RRO (nC25-nC36)	210		52	11	mg/Kg	₽	05/19/17 10:38	05/24/17 02:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	77		50 - 150				05/19/17 10:38	05/24/17 02:06	
n-Triacontane-d62	80		50 - 150				05/19/17 10:38	05/24/17 02:06	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

05/30/17 09:51

0.1

0.1 %

12.6

Percent Moisture

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Percent Moisture

Client Sample ID: LPW17-SL-HMP-02(2.5)

Lab Sample ID: 580-68287-14

 Date Collected: 05/07/17 16:30
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 76.0

Method: 8270D SIM - Semivo Analyte		Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	82	F1 F2	6.6	0.83	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 16:39	
2-Methylnaphthalene	98	F1 F2	6.6	0.59	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Acenaphthene	ND		6.6	0.79	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Acenaphthylene	70		6.6	0.66	ug/Kg	ф	05/20/17 11:34	05/22/17 16:39	
Anthracene	39		6.6	0.79	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Benzo[a]anthracene	21	F1	6.6	1.0	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Benzo[a]pyrene	55		6.6	0.52	ug/Kg	ф	05/20/17 11:34	05/22/17 16:39	
Benzo[b]fluoranthene	64		6.6	0.77	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Benzo[g,h,i]perylene	66	F1	6.6	0.66	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Benzo[k]fluoranthene	19		6.6	0.79	ug/Kg	₩.	05/20/17 11:34	05/22/17 16:39	•
Chrysene	33	F1	6.6	2.0	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Dibenz(a,h)anthracene	9.9	F1	6.6	0.94	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Fluoranthene	27		6.6	1.8	ug/Kg		05/20/17 11:34	05/22/17 16:39	· · · · · · · · · ·
Fluorene	ND		6.6	0.66	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Indeno[1,2,3-cd]pyrene	120	F1	6.6	0.79	ug/Kg	☼	05/20/17 11:34	05/22/17 16:39	
Naphthalene	44	F1 F2	6.6	1.0	ug/Kg	Φ.	05/20/17 11:34	05/22/17 16:39	· · · · · · · · ·
Phenanthrene	32	F1	6.6	0.90	ug/Kg	₩	05/20/17 11:34	05/22/17 16:39	
Pyrene	29		6.6	1.3	ug/Kg	₽	05/20/17 11:34	05/22/17 16:39	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	83		68 - 138				05/20/17 11:34	05/22/17 16:39	
Method: AK101 - Alaska - Ga	asoline Rang	e Organics	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	ND		2.7	0.81	mg/Kg	<u>₩</u>	05/24/17 12:00	05/24/17 17:37	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	39	X	50 - 150				05/24/17 12:00	05/24/17 17:37	
4-Bromofluorobenzene (Surr)	95		50 - 150				05/24/17 12:00	05/24/17 17:37	
Method: AK102 & 103 - Alas	ka - Diesel Ra	ange Orgai	nics & Resid	ual Ran	ge Organ	ics (C	SC)		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>1700</td><td>F1 F2</td><td>27</td><td>8.1</td><td>mg/Kg</td><td><u></u></td><td>05/20/17 12:17</td><td>05/22/17 18:24</td><td></td></nc25)<>	1700	F1 F2	27	8.1	mg/Kg	<u></u>	05/20/17 12:17	05/22/17 18:24	
RRO (nC25-nC36)	3700	F2	67	15	mg/Kg	₩	05/20/17 12:17	05/22/17 18:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	72		50 - 150				05/20/17 12:17	05/22/17 18:24	
n-Triacontane-d62	78		50 - 150				05/20/17 12:17	05/22/17 18:24	
General Chemistry									
•		O	RL	MDI	Unit	D	Dramarad	Anglyzad	Dil Fa
Analyte	Result	Qualifier	KL	MDL	Ullit	ט	Prepared	Analyzed	DII Fa
Analyte Percent Solids	76.0	Qualifier	0.1	0.1		— -		05/30/17 09:51	DII Fat

05/30/17 09:51

0.1

0.1 %

24.0

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-OBP-01(1.5)

Lab Sample ID: 580-68287-15

Date Collected: 05/07/17 16:35

Date Received: 05/10/17 14:00

Matrix: Solid
Percent Solids: 68.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	6.2	J	7.0	0.89	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 17:53	
2-Methylnaphthalene	17		7.0	0.63	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Acenaphthene	ND		7.0	0.84	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Acenaphthylene	ND		7.0	0.70	ug/Kg	φ.	05/20/17 11:34	05/22/17 17:53	
Anthracene	3.3	J	7.0	0.84	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Benzo[a]anthracene	ND		7.0	1.1	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Benzo[a]pyrene	ND		7.0	0.56	ug/Kg	ф	05/20/17 11:34	05/22/17 17:53	
Benzo[b]fluoranthene	3.8	J	7.0	0.83	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Benzo[g,h,i]perylene	ND		7.0	0.70	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Benzo[k]fluoranthene	ND		7.0	0.84	ug/Kg	₩.	05/20/17 11:34	05/22/17 17:53	
Chrysene	4.1	J	7.0	2.1	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Dibenz(a,h)anthracene	ND		7.0	1.0	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
luoranthene	3.9	J	7.0	2.0	ug/Kg	₩.	05/20/17 11:34	05/22/17 17:53	
luorene	2.1	J	7.0	0.70	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
ndeno[1,2,3-cd]pyrene	ND		7.0	0.84	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Naphthalene	12		7.0	1.1	ug/Kg		05/20/17 11:34	05/22/17 17:53	
Phenanthrene	16		7.0	0.97	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Pyrene	3.5	J	7.0	1.4	ug/Kg	₩	05/20/17 11:34	05/22/17 17:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14	89		68 - 138				05/20/17 11:34	05/22/17 17:53	
Method: AK101 - Alaska - Ga	asoline Rang	e Organics	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO) C6-C10	ND		3.6	1.1	mg/Kg	<u>₩</u>	05/24/17 12:00	05/24/17 19:08	
Gurrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
rifluorotoluene (Surr)	57		50 - 150				05/24/17 12:00	05/24/17 19:08	
-Bromofluorobenzene (Surr)	93		50 - 150				05/24/17 12:00	05/24/17 19:08	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>46</th><th></th><th>29</th><th>8.8</th><th>mg/Kg</th><th>₩</th><th>05/20/17 12:17</th><th>05/22/17 19:34</th><th>1</th></nc25)<>	46		29	8.8	mg/Kg	₩	05/20/17 12:17	05/22/17 19:34	1
RRO (nC25-nC36)	62	J	72	16	mg/Kg	☼	05/20/17 12:17	05/22/17 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		50 - 150				05/20/17 12:17	05/22/17 19:34	1
n-Triacontane-d62	64		50 - 150				05/20/17 12:17	05/22/17 19:34	1
General Chemistry	D	0	D.	MDI	1124	_	Dan a san d	A a la a . d	B" F

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	68.7		0.1	0.1	%			05/30/17 12:06	1
Percent Moisture	31.3		0.1	0.1	%			05/30/17 12:06	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-OBP-02(2)

Lab Sample ID: 580-68287-16

 Date Collected: 05/07/17 16:45
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 61.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	14		7.6	0.96	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 18:18	1
2-Methylnaphthalene	28		7.6	0.69	ug/Kg	₩	05/20/17 11:34	05/22/17 18:18	1
Acenaphthene	ND		7.6	0.92	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Acenaphthylene	ND		7.6	0.76	ug/Kg	₩	05/20/17 11:34	05/22/17 18:18	1
Anthracene	1.8	J	7.6	0.92	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Benzo[a]anthracene	ND		7.6	1.2	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Benzo[a]pyrene	ND		7.6	0.61	ug/Kg	₩.	05/20/17 11:34	05/22/17 18:18	1
Benzo[b]fluoranthene	2.8	J	7.6	0.90	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Benzo[g,h,i]perylene	ND		7.6	0.76	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Benzo[k]fluoranthene	ND		7.6	0.92	ug/Kg	₽	05/20/17 11:34	05/22/17 18:18	1
Chrysene	ND		7.6	2.3	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Dibenz(a,h)anthracene	ND		7.6	1.1	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Fluoranthene	3.7	J	7.6	2.1	ug/Kg	₽	05/20/17 11:34	05/22/17 18:18	1
Fluorene	2.7	J	7.6	0.76	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Indeno[1,2,3-cd]pyrene	ND		7.6	0.92	ug/Kg	₩	05/20/17 11:34	05/22/17 18:18	1
Naphthalene	22		7.6	1.2	ug/Kg	₩	05/20/17 11:34	05/22/17 18:18	1
Phenanthrene	24		7.6	1.1	ug/Kg	☼	05/20/17 11:34	05/22/17 18:18	1
Pyrene	2.5	J	7.6	1.5	ug/Kg	₩	05/20/17 11:34	05/22/17 18:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	86		68 - 138				05/20/17 11:34	05/22/17 18:18	1
- Method: AK101 - Alaska - Ga	asoline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND	<u> </u>	5.5	1.6	mg/Kg	- -	05/16/17 08:55	05/16/17 22:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	42	X	50 - 150				05/16/17 08:55	05/16/17 22:00	1
1 Dramaficarahanzana (Corr	00		FO 4FO				05/46/47 00:55	05/46/47 22:00	4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	42 X	50 - 150	05/16/17 08:55	05/16/17 22:00	1
4-Bromofluorobenzene (Surr)	92	50 - 150	05/16/17 08:55	05/16/17 22:00	1
Method: AK102 & 103 - Alaska	- Diesel Range Organ		inge Organics (GC)	A seals see al	DUF

Method: AK102 & 103 - Alaska	ı - Diesei Ra	ange Orgar	iics & Resia	uai Kan	ge Orgar	iics ((3 C)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>59</td><td></td><td>33</td><td>10</td><td>mg/Kg</td><td>₩</td><td>05/20/17 12:17</td><td>05/22/17 19:57</td><td>1</td></nc25)<>	59		33	10	mg/Kg	₩	05/20/17 12:17	05/22/17 19:57	1
RRO (nC25-nC36)	130		83	18	mg/Kg	₩	05/20/17 12:17	05/22/17 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150				05/20/17 12:17	05/22/17 19:57	1
n-Triacontane-d62	74		50 - 150				05/20/17 12:17	05/22/17 19:57	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	61.9		0.1	0.1	%			05/30/17 12:06	1
Percent Moisture	38.1		0.1	0.1	%			05/30/17 12:06	1

TestAmerica Seattle

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-WHP-01(2)

Lab Sample ID: 580-68287-17

 Date Collected: 05/07/17 17:50
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 27.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	100		19	2.3	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 18:43	1
2-Methylnaphthalene	170		19	1.7	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Acenaphthene	ND		19	2.2	ug/Kg	₽	05/20/17 11:34	05/22/17 18:43	1
Acenaphthylene	130		19	1.9	ug/Kg	\$	05/20/17 11:34	05/22/17 18:43	1
Anthracene	ND		19	2.2	ug/Kg	≎	05/20/17 11:34	05/22/17 18:43	1
Benzo[a]anthracene	8.4	J	19	2.8	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Benzo[a]pyrene	ND		19	1.5	ug/Kg	\$	05/20/17 11:34	05/22/17 18:43	1
Benzo[b]fluoranthene	33		19	2.2	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Benzo[g,h,i]perylene	ND		19	1.9	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Benzo[k]fluoranthene	7.4	J	19	2.2	ug/Kg	₽	05/20/17 11:34	05/22/17 18:43	1
Chrysene	84		19	5.6	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Dibenz(a,h)anthracene	ND		19	2.7	ug/Kg	≎	05/20/17 11:34	05/22/17 18:43	1
Fluoranthene	ND		19	5.2	ug/Kg	₽	05/20/17 11:34	05/22/17 18:43	1
Fluorene	ND		19	1.9	ug/Kg	≎	05/20/17 11:34	05/22/17 18:43	1
Indeno[1,2,3-cd]pyrene	ND		19	2.2	ug/Kg	≎	05/20/17 11:34	05/22/17 18:43	1
Naphthalene	99		19	3.0	ug/Kg	₽	05/20/17 11:34	05/22/17 18:43	1
Phenanthrene	ND		19	2.6	ug/Kg	☼	05/20/17 11:34	05/22/17 18:43	1
Pyrene	100		19	3.6	ug/Kg	₩	05/20/17 11:34	05/22/17 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	82		68 - 138				05/20/17 11:34	05/22/17 18:43	1
- Method: AK101 - Alaska - Ga	soline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		18	5.4	mg/Kg		05/16/17 08:55	05/16/17 22:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	65		50 - 150				05/16/17 08:55	05/16/17 22:30	1
4-Bromofluorobenzene (Surr)	100		50 - 150				05/16/17 08:55	05/16/17 22:30	1
Method: AK102 & 103 - Alask	a - Diesel R	ange Orga	nics & Resid	ual Ran	ge Orgar	nics (C	GC)		
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>26000</td><td></td><td>68</td><td>21</td><td>mg/Kg</td><td>₽</td><td>05/20/17 12:17</td><td>05/22/17 20:19</td><td>1</td></nc25)<>	26000		68	21	mg/Kg	₽	05/20/17 12:17	05/22/17 20:19	1
RRO (nC25-nC36)	1700		170	38	ma/Ka	₩	05/20/17 12:17	05/22/17 20:19	1

Analyte	Result	Qualifier	KL	MDL	Unit	ט	Prepared	Analyzed	DII Fac
DRO (nC10- <nc25)< td=""><td>26000</td><td></td><td>68</td><td>21</td><td>mg/Kg</td><td>₩</td><td>05/20/17 12:17</td><td>05/22/17 20:19</td><td>1</td></nc25)<>	26000		68	21	mg/Kg	₩	05/20/17 12:17	05/22/17 20:19	1
RRO (nC25-nC36)	1700		170	38	mg/Kg	≎	05/20/17 12:17	05/22/17 20:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate o-Terphenyl	%Recovery		Limits 50 - 150					Analyzed 05/22/17 20:19	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	27.0		0.1	0.1	%			05/30/17 12:06	1
Percent Moisture	73.0		0.1	0.1	%			05/30/17 12:06	1

TestAmerica Seattle

Percent Moisture

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WHP-01D(2)

Lab Sample ID: 580-68287-18 Date Collected: 05/07/17 17:50 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 31.4

1-Methylnaphthalene	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	55		15	1.9	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 19:07	
2-Methylnaphthalene	120		15	1.4	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Acenaphthene	ND		15	1.8	ug/Kg	☼	05/20/17 11:34	05/22/17 19:07	
Acenaphthylene	ND		15	1.5	ug/Kg	₩.	05/20/17 11:34	05/22/17 19:07	
Anthracene	ND		15	1.8	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Benzo[a]anthracene	12	J	15	2.3	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Benzo[a]pyrene	ND		15	1.2	ug/Kg		05/20/17 11:34	05/22/17 19:07	
Benzo[b]fluoranthene	30		15		ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Benzo[g,h,i]perylene	ND		15	1.5	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Benzo[k]fluoranthene	6.7	J	15	1.8	ug/Kg		05/20/17 11:34	05/22/17 19:07	
Chrysene	59		15	4.5	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Dibenz(a,h)anthracene	ND		15	2.2	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Fluoranthene	67		15		ug/Kg	₩.	05/20/17 11:34	05/22/17 19:07	
Fluorene	ND		15	1.5	ug/Kg	₩	05/20/17 11:34		
ndeno[1,2,3-cd]pyrene	ND		15	1.8	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Naphthalene	63		15	2.4	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Phenanthrene	ND		15	2.1	ug/Kg	₩	05/20/17 11:34		
Pyrene	81		15	2.9	ug/Kg	₩	05/20/17 11:34	05/22/17 19:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	77		68 - 138				05/20/17 11:34	05/22/17 19:07	
Method: AK101 - Alaska - Ga Analyte		e Organics Qualifier	s (GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)	ND	<u> </u>	14	4.1	mg/Kg	<u></u>	05/16/17 08:55	•	
-C6-C10									
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	. –	X	50 - 150				05/16/17 08:55	05/16/17 23:01	
4-Bromofluorobenzene (Surr)	95		50 - 150				05/16/17 08:55	05/16/17 23:01	
Method: AK102 & 103 - Alask						ics (C	SC)		
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
DRO (nC10- <nc25)< td=""><td>18000</td><td></td><td>61</td><td></td><td>mg/Kg</td><td></td><td></td><td>05/22/17 20:43</td><td></td></nc25)<>	18000		61		mg/Kg			05/22/17 20:43	
	1500		150	33	mg/Kg	₩	05/20/17 12:17	05/22/17 20:43	
RRO (nC25-nC36)		Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrogate	%Recovery								
Surrogate	%Recovery 255		50 - 150				05/20/17 12:17	05/22/17 20:43	
Surrogate o-Terphenyl	•		50 - 150 50 - 150					05/22/17 20:43 05/22/17 20:43	
Surrogate o-Terphenyl n-Triacontane-d62	255								
RRO (nC25-nC36) Surrogate o-Terphenyl n-Triacontane-d62 General Chemistry Analyte	255 97			MDL 0.1	Unit	D			Dil Fa

05/30/17 10:01

0.1

68.6

0.1 %

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-WHP-2(1)

Lab Sample ID: 580-68287-19 Date Collected: 05/07/17 18:10 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 60.2

Date Received: 05/10/17 14:00	,							Percent Sono	5. 60.2
Method: 8270D SIM - Semivo	_	c Compou	inds (GC/MS	•	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		7.7	0.97	ug/Kg	\	05/20/17 11:34	05/22/17 19:32	1
2-Methylnaphthalene	1.6	J	7.7	0.69	ug/Kg	₩	05/20/17 11:34	05/22/17 19:32	1
Acenaphthene	ND		7.7	0.93	ug/Kg	₩	05/20/17 11:34	05/22/17 19:32	1
Acenaphthylene	ND		7.7	0.77	ug/Kg		05/20/17 11:34	05/22/17 19:32	1
Anthracene	ND		7.7	0.93	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Benzo[a]anthracene	ND		7.7	1.2	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Benzo[a]pyrene	ND		7.7	0.62	ug/Kg		05/20/17 11:34	05/22/17 19:32	1
Benzo[b]fluoranthene	7.4	J	7.7	0.91	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Benzo[g,h,i]perylene	ND		7.7	0.77	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Benzo[k]fluoranthene	1.1	J	7.7	0.93	ug/Kg	φ.	05/20/17 11:34	05/22/17 19:32	1
Chrysene	7.4	J	7.7	2.3	ug/Kg	₩	05/20/17 11:34	05/22/17 19:32	1
Dibenz(a,h)anthracene	ND		7.7	1.1	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Fluoranthene	7.5	J	7.7	2.2	ug/Kg	₽	05/20/17 11:34	05/22/17 19:32	1
Fluorene	ND		7.7	0.77	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Indeno[1,2,3-cd]pyrene	ND		7.7	0.93	ug/Kg	₩	05/20/17 11:34	05/22/17 19:32	1
Naphthalene	7.0	J	7.7	1.2	ug/Kg	₽	05/20/17 11:34	05/22/17 19:32	1
Phenanthrene	5.9	J	7.7	1.1	ug/Kg	☼	05/20/17 11:34	05/22/17 19:32	1
Pyrene	3.1	J	7.7	1.5	ug/Kg	₩	05/20/17 11:34	05/22/17 19:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	87		68 - 138				05/20/17 11:34	05/22/17 19:32	1
Method: AK101 - Alaska - Ga	asoline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		6.5	2.0	mg/Kg	<u> </u>	05/16/17 08:55	05/16/17 23:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	58		50 - 150				05/16/17 08:55	05/16/17 23:32	1
4-Bromofluorobenzene (Surr)	88		50 - 150				05/16/17 08:55	05/16/17 23:32	1

-C6-C10					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	58	50 - 150	05/16/17 08:	55 05/16/17 23:32	1
4-Bromofluorobenzene (Surr)	88	50 - 150	05/16/17 08:	55 05/16/17 23:32	1
_					

Method: AK102 & 103 - Ala	aska - Diesel Ra	inge Orgai	nics & Resid	ual Ran	ge Orgar	nics (C	GC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>3900</td><td></td><td>32</td><td>9.7</td><td>mg/Kg</td><td>₩</td><td>05/20/17 12:17</td><td>05/23/17 12:44</td><td>1</td></nc25)<>	3900		32	9.7	mg/Kg	₩	05/20/17 12:17	05/23/17 12:44	1
RRO (nC25-nC36)	630		80	18	mg/Kg	₩	05/20/17 12:17	05/23/17 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	120		50 - 150				05/20/17 12:17	05/23/17 12:44	1
n-Triacontane-d62	80		50 - 150				05/20/17 12:17	05/23/17 12:44	1

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60.2	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	39.8	0.1	0.1	%			05/30/17 10:01	1

TestAmerica Seattle

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/07/17 18:15

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHP-3(1)

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-20

Matrix: Solid

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	3.1	J	6.3	0.80	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 19:57	1
2-Methylnaphthalene	5.6	J	6.3	0.57	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Acenaphthene	ND		6.3	0.76	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Acenaphthylene	ND		6.3	0.63	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Anthracene	2.3	J	6.3	0.76	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Benzo[a]anthracene	9.3		6.3	0.96	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Benzo[a]pyrene	7.7		6.3	0.51	ug/Kg	ф.	05/20/17 11:34	05/22/17 19:57	1
Benzo[b]fluoranthene	16		6.3	0.75	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Benzo[g,h,i]perylene	3.7	J	6.3	0.63	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Benzo[k]fluoranthene	3.8	J	6.3	0.76	ug/Kg	₽	05/20/17 11:34	05/22/17 19:57	1
Chrysene	11		6.3	1.9	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Dibenz(a,h)anthracene	ND		6.3	0.91	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Fluoranthene	20		6.3	1.8	ug/Kg	₽	05/20/17 11:34	05/22/17 19:57	1
Fluorene	13		6.3	0.63	ug/Kg	☼	05/20/17 11:34	05/22/17 19:57	1
Indeno[1,2,3-cd]pyrene	7.1		6.3	0.76	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Naphthalene	7.6		6.3	1.0	ug/Kg	₩	05/20/17 11:34	05/22/17 19:57	1
Phenanthrene	11		6.3	0.87	ug/Kg	☼	05/20/17 11:34	05/22/17 19:57	1
Pyrene	21		6.3	1.2	ug/Kg	₽	05/20/17 11:34	05/22/17 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	92		68 - 138				05/20/17 11:34	05/22/17 19:57	1
_ Method: AK101 - Alaska - Ga	soline Rang	e Organics	s (GC)						
Method: AK101 - Alaska - Ga Analyte	Result	e Organics Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	_	_	• •		Unit mg/Kg	— D	•	Analyzed 05/17/17 00:02	Dil Fac
Analyte Gasoline Range Organics (GRO)	Result	Qualifier	RL				•	-	
Analyte Gasoline Range Organics (GRO) -C6-C10	Result ND	Qualifier	RL 3.8				05/16/17 08:55 Prepared	05/17/17 00:02	1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result ND %Recovery	Qualifier	RL 3.8				05/16/17 08:55 Prepared 05/16/17 08:55	05/17/17 00:02 Analyzed	1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Result ND %Recovery 81 89	Qualifier Qualifier	RL 3.8 Limits 50 - 150 50 - 150	1.2	mg/Kg	<u>∓</u>	05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55	05/17/17 00:02 Analyzed 05/17/17 00:02	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Result ND %Recovery 81 89 (a - Diesel Ra	Qualifier Qualifier	RL 3.8 Limits 50 - 150 50 - 150	1.2	mg/Kg	<u>∓</u>	05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55	05/17/17 00:02 Analyzed 05/17/17 00:02	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte	Result ND %Recovery 81 89 (a - Diesel Ra Result	Qualifier Qualifier ange Orga	RL 3.8 Limits 50 - 150 50 - 150 nics & Resid	1.2 ual Ran MDL	mg/Kg	mics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 GC) Prepared	05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask	Result ND %Recovery 81 89 (a - Diesel Ra	Qualifier Qualifier ange Orga	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident	1.2 ual Ran MDL 8.1	mg/Kg ge Organ Unit	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 C) Prepared 05/20/17 12:17	05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)<="" rro="" td=""><td>## Result ND </td><td>Qualifier Qualifier ange Orga Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27</td><td>1.2 ual Ran MDL 8.1</td><td>ge Organ Unit mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 6C) Prepared 05/20/17 12:17 05/20/17 12:17</td><td>Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07</td><td>Dil Fac Dil Fac 1 1</td></nc25)>	## Result ND	Qualifier Qualifier ange Orga Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27	1.2 ual Ran MDL 8.1	ge Organ Unit mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 6C) Prepared 05/20/17 12:17 05/20/17 12:17	Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07	Dil Fac Dil Fac 1 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" rro="" surrogate<="" td=""><td>Result ND %Recovery 81 89 (a - Diesel Range Result 55</td><td>Qualifier Qualifier ange Orga Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67</td><td>1.2 ual Ran MDL 8.1</td><td>ge Organ Unit mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 6C) Prepared 05/20/17 12:17 05/20/17 12:17 Prepared</td><td>05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07</td><td>Dil Fac Dil Fac 1 1 Dil Fac</td></nc25)>	Result ND %Recovery 81 89 (a - Diesel Range Result 55	Qualifier Qualifier ange Orga Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67	1.2 ual Ran MDL 8.1	ge Organ Unit mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 6C) Prepared 05/20/17 12:17 05/20/17 12:17 Prepared	05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07	Dil Fac Dil Fac 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)<="" rro="" td=""><td>%Recovery %Recovery 81 89 Ka - Diesel Ra Result 55 160 %Recovery</td><td>Qualifier Qualifier ange Orga Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits</td><td>1.2 ual Ran MDL 8.1</td><td>ge Organ Unit mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17</td><td>Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07 Analyzed</td><td>Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac</td></nc25)>	%Recovery %Recovery 81 89 Ka - Diesel Ra Result 55 160 %Recovery	Qualifier Qualifier ange Orga Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits	1.2 ual Ran MDL 8.1	ge Organ Unit mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17	Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07 Analyzed	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" n-triacontane-d62<="" o-terphenyl="" rro="" surrogate="" td=""><td>## Result ND </td><td>Qualifier Qualifier ange Orga Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150</td><td>1.2 ual Ran MDL 8.1</td><td>ge Organ Unit mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17</td><td>Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 Analyzed 05/23/17 13:07</td><td>Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1</td></nc25)>	## Result ND	Qualifier Qualifier ange Orga Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150	1.2 ual Ran MDL 8.1	ge Organ Unit mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17	Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 Analyzed 05/23/17 13:07	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" chemistry<="" general="" n-triacontane-d62="" o-terphenyl="" rro="" surrogate="" td=""><td>### Result ND </td><td>Qualifier Qualifier ange Orga Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150</td><td>1.2 ual Ran MDL 8.1</td><td>ge Organ Unit mg/Kg mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 GC) Prepared 05/20/17 12:17 05/20/17 12:17 Prepared 05/20/17 12:17 05/20/17 12:17</td><td>Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07 Analyzed 05/23/17 13:07 05/23/17 13:07</td><td>Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1</td></nc25)>	### Result ND	Qualifier Qualifier ange Orga Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150	1.2 ual Ran MDL 8.1	ge Organ Unit mg/Kg mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 GC) Prepared 05/20/17 12:17 05/20/17 12:17 Prepared 05/20/17 12:17 05/20/17 12:17	Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 05/23/17 13:07 Analyzed 05/23/17 13:07 05/23/17 13:07	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte DRO (nC10- <nc25) (nc25-nc36)="" n-triacontane-d62<="" o-terphenyl="" rro="" surrogate="" td=""><td>### Result ND </td><td>Qualifier Qualifier ange Orga Qualifier Qualifier</td><td>RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150 50 - 150</td><td>1.2 ual Ran MDL 8.1 15</td><td>ge Organ Unit mg/Kg mg/Kg</td><td>nics (C</td><td>Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17</td><td>Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 Analyzed 05/23/17 13:07</td><td>Dil Fac Dil Fac 1 Dil Fac 1 1</td></nc25)>	### Result ND	Qualifier Qualifier ange Orga Qualifier Qualifier	RL 3.8 Limits 50 - 150 50 - 150 nics & Resident RL 27 67 Limits 50 - 150 50 - 150	1.2 ual Ran MDL 8.1 15	ge Organ Unit mg/Kg mg/Kg	nics (C	Prepared 05/16/17 08:55 Prepared 05/16/17 08:55 05/16/17 08:55 05/20/17 12:17 Prepared 05/20/17 12:17	Analyzed 05/17/17 00:02 Analyzed 05/17/17 00:02 05/17/17 00:02 Analyzed 05/23/17 13:07 Analyzed 05/23/17 13:07	Dil Fac Dil Fac 1 Dil Fac 1 1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Percent Moisture

Client Sample ID: LPW17-SL-WHP-4(1)

Lab Sample ID: 580-68287-21 Date Collected: 05/07/17 18:20 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 81.0

Method: 8270D SIM - Semivola Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	360		30	3.8	ug/Kg	<u> </u>	05/20/17 11:34	05/22/17 20:22	5
2-Methylnaphthalene	540		30	2.7	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Acenaphthene	ND		30	3.6	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Acenaphthylene	50		30	3.0	ug/Kg	₽	05/20/17 11:34	05/22/17 20:22	5
Anthracene	9.6	J	30	3.6	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Benzo[a]anthracene	18	J	30	4.6	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Benzo[a]pyrene	23	J	30	2.4	ug/Kg	₽	05/20/17 11:34	05/22/17 20:22	5
Benzo[b]fluoranthene	35		30	3.5	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Benzo[g,h,i]perylene	16	J	30	3.0	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Benzo[k]fluoranthene	13	J	30	3.6	ug/Kg	₩.	05/20/17 11:34	05/22/17 20:22	5
Chrysene	29	J	30	9.0	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Dibenz(a,h)anthracene	ND		30	4.3	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Fluoranthene	40		30	8.4	ug/Kg		05/20/17 11:34	05/22/17 20:22	5
Fluorene	66		30	3.0	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Indeno[1,2,3-cd]pyrene	28	J	30	3.6	ug/Kg	☼	05/20/17 11:34	05/22/17 20:22	5
Naphthalene	210		30	4.8	ug/Kg	₩.	05/20/17 11:34	05/22/17 20:22	5
Phenanthrene	49		30	4.1	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Pyrene	43		30	5.8	ug/Kg	₩	05/20/17 11:34	05/22/17 20:22	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	98		68 - 138				05/20/17 11:34	05/22/17 20:22	5
Method: AK101 - Alaska - Gas Analyte	_	e Organics Qualifier	s (GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	99		2.6	0.79	mg/Kg	<u>∓</u>	05/16/17 08:55	05/17/17 00:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	92		50 - 150				05/16/17 08:55	05/17/17 00:32	1
4-Bromofluorobenzene (Surr)	590	X	50 - 150				05/16/17 08:55	05/17/17 00:32	1
Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orga	nics & Residi	ual Ran	ge Organ	ics (C	GC)		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>2800</td><td>-</td><td>24</td><td>7.2</td><td>mg/Kg</td><td><u> </u></td><td>05/20/17 12:17</td><td>-</td><td>1</td></nc25)<>	2800	-	24	7.2	mg/Kg	<u> </u>	05/20/17 12:17	-	1
RRO (nC25-nC36)	800		59	13	mg/Kg	₩	05/20/17 12:17	05/23/17 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				05/20/17 12:17	05/23/17 13:29	1
n-Triacontane-d62	84		50 - 150				05/20/17 12:17	05/23/17 13:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•								•	

05/30/17 10:01

0.1

0.1 %

19.0

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-22

Client Sample ID: LPW17-Bkgd-Weir-01(1.5)

Date Collected: 05/07/17 20:00 Matrix: Solid

Date Received: 05/10/17 14:00

lyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
al Organic Carbon - Average	41000	2000	44 mg/Kg			05/23/17 16:56	1

5

5

7

ð

10

111

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

General Chemistry

Total Organic Carbon - Average

Analyte

Percent Solids

Percent Moisture

Client Sample ID: LPW17-Bkgd-WH-02(1)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-23

Analyzed

05/23/17 16:37

05/30/17 10:01

05/30/17 10:01

Date Collected: 05/07/17 20:10 Matrix: Solid
Date Received: 05/10/17 14:00 Percent Solids: 64.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>37</th><th></th><th>32</th><th>9.6</th><th>mg/Kg</th><th><u> </u></th><th>05/20/17 12:17</th><th>05/23/17 13:52</th><th>1</th></nc25)<>	37		32	9.6	mg/Kg	<u> </u>	05/20/17 12:17	05/23/17 13:52	1
DRO (nC10- <nc25)< td=""><td>43</td><td>Н</td><td>30</td><td>9.3</td><td>mg/Kg</td><td>₩</td><td>05/23/17 13:39</td><td>05/25/17 01:06</td><td>1</td></nc25)<>	43	Н	30	9.3	mg/Kg	₩	05/23/17 13:39	05/25/17 01:06	1
RRO (nC25-nC36)	110		79	17	mg/Kg	₩	05/20/17 12:17	05/23/17 13:52	1
RRO (nC25-nC36)	210	Н	76	17	mg/Kg		05/23/17 13:39	05/25/17 01:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150				05/20/17 12:17	05/23/17 13:52	1
o-Terphenyl	81		50 - 150				05/23/17 13:39	05/25/17 01:06	1
n-Triacontane-d62	86		50 - 150				05/20/17 12:17	05/23/17 13:52	1
n-Triacontane-d62	71		50 - 150				05/23/17 13:39	05/25/17 01:06	1

RL

2000

0.1

0.1

MDL Unit

0.1 %

0.1 %

44 mg/Kg

D

Prepared

Result Qualifier

28000

64.5

35.5

Dil Fac

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WeirL-01(0.5)

Date Collected: 05/08/17 09:05 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-24

Matrix: Solid Percent Solids: 13.7

P/MS)								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
33		2.8	0.55	mg/Kg	<u> </u>	05/16/17 14:16	05/17/17 12:15	10
120		2.8	0.35	mg/Kg	☼	05/16/17 14:16	05/17/17 12:15	10
600		2.8	0.26	mg/Kg	₩	05/16/17 14:16	05/17/17 12:15	10
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
13.7		0.1	0.1	%			05/30/17 12:06	1
86.3		0.1	0.1	%			05/30/17 12:06	1
	33 120 600 Result	Result Qualifier	Result 33 Qualifier 2.8 120 600 2.8 Result 13.7 Qualifier RL Qualifier RL 0.1	Result 33 Qualifier RL 2.8 MDL 0.55 120 2.8 0.35 0.35 600 2.8 0.26 Result 13.7 Qualifier Qualifier RL 0.1 MDL 0.1	Result Qualifier RL MDL Unit 33 2.8 0.55 mg/Kg 120 2.8 0.35 mg/Kg 600 2.8 0.26 mg/Kg Result Qualifier RL MDL Unit 13.7 0.1 0.1 %	Result Qualifier RL MDL Unit D mg/Kg 33 2.8 0.55 mg/Kg 34 35 mg/Kg 35 36 36 36 36 36 36 36	Result 33 Qualifier RL 2.8 MDL mg/Kg D 05/16/17 14:16 120 2.8 0.35 mg/Kg 05/16/17 14:16 600 2.8 0.26 mg/Kg 05/16/17 14:16 Result Qualifier RL MDL mg/Kg 05/16/17 14:16 13.7 0.1 0.1 0.1	Result 33 Qualifier RL 2.8 MDL 0.55 mg/Kg D 0.55 mg/Kg Prepared 0.5/16/17 14:16 0.5/17/17 12:15 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/17 0.5/16/

5

8

9

10

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

2

Client Sample ID: LPW17-SL-WeirL-01D(0.5)

Date Collected: 05/08/17 09:05 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-25 Matrix: Solid

Percent Solids: 19.3

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	24	2.1	0.42	mg/Kg	<u> </u>	05/16/17 14:16	05/17/17 12:19	10
Chromium	68	2.1	0.27	mg/Kg	☼	05/16/17 14:16	05/17/17 12:19	10
Lead	550	2.1	0.20	mg/Kg	₩	05/16/17 14:16	05/17/17 12:19	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	19.3	0.1	0.1	%			05/30/17 12:06	1
Percent Moisture	80.7	0.1	0.1	%			05/30/17 12:06	1

6

8

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-26

Client Sample ID: LPW17-SL-WeirL-02(0.5)

Date Collected: 05/08/17 09:08

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 26.1

Method: 6020A - Metals (ICP	/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.0		1.6	0.32	mg/Kg	<u> </u>	05/16/17 14:16	05/17/17 12:24	10
Chromium	65		1.6	0.20	mg/Kg	₩	05/16/17 14:16	05/17/17 12:24	10
_Lead _	1200		1.6	0.16	mg/Kg	₩	05/16/17 14:16	05/17/17 12:24	10
General Chemistry	Dogult	O !! fi	DI	MDI	11:4		Duamanad	Amahamad	D:: F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	26.1		0.1	0.1	%			05/30/17 12:06	1
Percent Moisture	73.9		0.1	0.1	%			05/30/17 12:06	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:15

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirL-03(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-27

Matrix: Solid

Percent Solids: 17.7

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	44	2.5	0.49	mg/Kg	<u>₩</u>	05/16/17 14:16	05/17/17 12:28	10
Chromium	52	2.5	0.31	mg/Kg	☼	05/16/17 14:16	05/17/17 12:28	10
Lead	720	2.5	0.24	mg/Kg	₩	05/16/17 14:16	05/17/17 12:28	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	17.7	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	82.3	0.1	0.1	%			05/30/17 10:01	1

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:18

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirL-04(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-28

Matrix: Solid

Percent Solids: 17.6

Method: 6020A - Metals (I	CP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	18		2.5	0.49	mg/Kg	₩	05/16/17 14:16	05/17/17 12:33	10
Chromium	120		2.5	0.31	mg/Kg	₩	05/16/17 14:16	05/17/17 12:33	10
Lead	3000		2.5	0.24	mg/Kg	₩	05/16/17 14:16	05/17/17 12:33	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	17.6		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	82.4		0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:11

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirT-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-29

Matrix: Solid

Percent Solids: 6.1

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	45	6.9	1.4	mg/Kg	<u> </u>	05/16/17 14:16	05/17/17 12:37	10
Chromium	71	6.9	0.87	mg/Kg	☆	05/16/17 14:16	05/17/17 12:37	10
Copper	160	14	3.0	mg/Kg	₩	05/16/17 14:16	05/17/17 12:37	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	6.1	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	93.9	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:20

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirT-02(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-30

Matrix: Solid

Percent Solids: 8.0

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	49	4.2	0.84	mg/Kg	<u></u>	05/16/17 14:16	05/17/17 12:42	10
Chromium	49	4.2	0.53	mg/Kg	☼	05/16/17 14:16	05/17/17 12:42	10
Copper	280	8.4	1.9	mg/Kg	₩	05/16/17 14:16	05/17/17 12:42	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	8.0	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	92.0	0.1	0.1	%			05/30/17 10:01	1

9

10

12

1:

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-31

Client Sample ID: LPW17-SL-WeirT-03(0.5)

Date Collected: 05/08/17 09:22

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 12.1

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	44	2.9	0.59	mg/Kg	<u> </u>	05/16/17 14:16	05/17/17 12:46	10
Chromium	110	2.9	0.37	mg/Kg	₩	05/16/17 14:16	05/17/17 12:46	10
Copper	180	5.9	1.3	mg/Kg	₩	05/16/17 14:16	05/17/17 12:46	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	12.1	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	87.9	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:22 Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirT-03D(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-32

Lun	Gampio		000	OOLOI	-
			M	atrix: S	olid
		Per	rcent	Solids:	4.4

Method: 6020A - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	240		9.4	1.9	mg/Kg	<u></u>	05/17/17 15:12	05/18/17 12:41	10
Chromium	370		9.4	1.2	mg/Kg	☼	05/17/17 15:12	05/18/17 12:41	10
Copper	650		19	4.1	mg/Kg	₩	05/17/17 15:12	05/18/17 12:41	10
General Chemistry Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analvzed	Dil Fac
		Qualifier					Frepareu		Dil Fac
Percent Solids	4.4		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	95.6		0.1	0.1	%			05/30/17 10:01	1

9

10

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WeirT-04(0.5)

Lab Sample ID: 580-68287-33

Date Collected: 05/08/17 09:26

Date Received: 05/10/17 14:00

Matrix: Solid
Percent Solids: 15.0

Date Received. 05/10/17 14.00								Percent Sond	5. 15.0
Method: 6020A - Metals (ICP/N	/IS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aromio	4.2		2.0	0.59	ma/Ka	77-	05/17/17 15:12	05/19/17 12:22	10

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Copper	49	5.8	1.3 mg/Kg	₩	05/17/17 15:12	05/18/17 13:22	10
Chromium	3.4	2.9	0.36 mg/Kg	₩	05/17/17 15:12	05/18/17 13:22	10
Arsenic	4.3	2.9	0.58 mg/Kg	₩	05/17/17 15:12	05/18/17 13:22	10

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	15.0	0.1	0.1 %			05/30/17 10:01	1
Percent Moisture	85.0	0.1	0.1 %			05/30/17 10:01	1

3

4

6

0

10

11

12

1.

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-PASL-01(0.5)

Lab Sample ID: 580-68287-34 Date Collected: 05/08/17 09:45 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 17.3

Method: 6020A - Metals (IC	•							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	140	2.5	0.51	mg/Kg	<u></u>	05/17/17 15:12	05/18/17 13:26	10
Chromium	81	2.5	0.32	mg/Kg	☼	05/17/17 15:12	05/18/17 13:26	10
Lead	150	2.5	0.24	mg/Kg	₩	05/17/17 15:12	05/18/17 13:26	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	17.3	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	82.7	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 09:38

Client Sample ID: LPW17-SL-PAST-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-35

Matrix: Solid

Date Received: 05/10/17 14:00				Percent Sol		ds: 17.1	
Method: 6020A - Metals (ICP/MS)							
Analyte	Result Qualifier	RI	MDI Unit	D	Prepared	Analyzed	Dil Fac

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	780	2.3	0.46	mg/Kg	<u></u>	05/17/17 15:12	05/18/17 13:31	10
Chromium	170	2.3	0.29	mg/Kg	₩	05/17/17 15:12	05/18/17 13:31	10
Copper	730	4.6	1.0	mg/Kg	₩	05/17/17 15:12	05/18/17 13:31	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	17.1	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	82.9	0.1	0.1	%			05/30/17 10:01	1

8

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Received: 05/10/17 14:00

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-PAST-02(0.5)

Date Collected: 05/08/17 09:42

Lab Sample ID: 580-68287-36
Matrix: Solid

Percent Solids: 29.7

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	150		1.4	0.28	mg/Kg	₩	05/17/17 15:12	05/18/17 13:35	10
Chromium	170		1.4	0.17	mg/Kg	₩	05/17/17 15:12	05/18/17 13:35	10
Copper	290		2.8	0.61	mg/Kg	₩	05/17/17 15:12	05/18/17 13:35	10
General Chemistry									
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	29.7		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	70.3		0.1	0.1	%			05/30/17 10:01	1

5

0

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

2

Client Sample ID: LPW17-SL-PAST-03(0.5)

Date Collected: 05/08/17 10:02 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-37 Matrix: Solid

Percent Solids: 28.8

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	49	1.1	0.22	mg/Kg	<u></u>	05/17/17 15:12	05/18/17 13:40	10
Chromium	50	1.1	0.14	mg/Kg	☼	05/17/17 15:12	05/18/17 13:40	10
Copper	100	2.2	0.48	mg/Kg	₩	05/17/17 15:12	05/18/17 13:40	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	28.8	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	71.2	0.1	0.1	%			05/30/17 10:01	1

6

0

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-PAST-Bkgd(0.5)

Date Collected: 05/08/17 09:56
Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-38
Matrix: Solid

Percent Solids: 17.7

Method: 6020A - Metals (IC	CP/MS)								
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.9		2.5	0.50	mg/Kg	₩	05/17/17 15:12	05/18/17 13:44	10
Chromium	4.5		2.5	0.32	mg/Kg	☼	05/17/17 15:12	05/18/17 13:44	10
Copper	12		5.0	1.1	mg/Kg	₩	05/17/17 15:12	05/18/17 13:44	10
General Chemistry									
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	17.7		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	82.3		0.1	0.1	%			05/30/17 10:01	1

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-FBT-01(0.5)

Date Collected: 05/08/17 10:16
Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-39 Matrix: Solid

Percent Solids: 21.9

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	43		1.6	0.31	mg/Kg	<u></u>	05/17/17 15:12	05/18/17 13:49	10
Chromium	65		1.6	0.20	mg/Kg	☼	05/17/17 15:12	05/18/17 13:49	10
Copper	180		3.1	0.68	mg/Kg	≎	05/17/17 15:12	05/18/17 13:49	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	21.9		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	78.1		0.1	0.1	%			05/30/17 10:01	1

6

8

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-FBT-02(0.5)

Lab Sample ID: 580-68287-40 Date Collected: 05/08/17 10:19 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 16.9

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	530		2.7	0.54	mg/Kg	<u> </u>	05/17/17 15:12	05/18/17 13:53	10
Chromium	35		2.7	0.34	mg/Kg	☼	05/17/17 15:12	05/18/17 13:53	10
Copper	210		5.4	1.2	mg/Kg	₩	05/17/17 15:12	05/18/17 13:53	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	16.9		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	83.1		0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-MBT-01(0.5)

Lab Sample ID: 580-68287-41

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	39		0.66	0.13	mg/Kg	₩	05/17/17 15:12	05/18/17 13:58	10
Chromium	21		0.66	0.084	mg/Kg	☼	05/17/17 15:12	05/18/17 13:58	10
Copper	46		1.3	0.29	mg/Kg	₩	05/17/17 15:12	05/18/17 13:58	10
General Chemistry									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60.9		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	39.1		0.1	0.1	%			05/30/17 10:01	1

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Received: 05/10/17 14:00

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-42 Client Sample ID: LPW17-SL-MBT-02(0.5) Date Collected: 05/08/17 10:31 **Matrix: Solid**

Percent Solids: 18.5

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic		2.0	0.40	mg/Kg	<u>₩</u>	05/17/17 15:12	05/18/17 14:20	10
Chromium	7.4	2.0	0.25	mg/Kg	☆	05/17/17 15:12	05/18/17 14:20	10
Copper	72	4.0	0.89	mg/Kg	₩	05/17/17 15:12	05/18/17 14:20	10
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	18.5	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	81.5	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-PACT-01(0.5)

Date Collected: 05/08/17 10:39 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-43

Matrix: Solid
Percent Solids: 71.4

Method: 6020A - Metals (I	ICP/MS)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.7		0.64	0.13	mg/Kg	<u> </u>	05/17/17 15:12	05/18/17 14:25	10
Chromium	15		0.64	0.080	mg/Kg	☼	05/17/17 15:12	05/18/17 14:25	10
Copper	15		1.3	0.28	mg/Kg	≎	05/17/17 15:12	05/18/17 14:25	10
General Chemistry									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	71.4		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	28.6		0.1	0.1	%			05/30/17 10:01	1

6

0

Q

10

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 10:39

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-PACT-01D(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-44

Matrix: Solid

Percent Solids: 74.6

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9	0.62	0.12	mg/Kg	<u></u>	05/18/17 11:56	05/19/17 00:33	10
Chromium	16	0.62	0.079	mg/Kg	☼	05/18/17 11:56	05/19/17 00:33	10
Copper	17	1.2	0.27	mg/Kg	₩	05/18/17 11:56	05/19/17 00:33	10
General Chemistry								
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	74.6	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	25.4	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-PACT-02(0.5)

Lab Sample ID: 580-68287-45 Date Collected: 05/08/17 10:44 Matrix: Solid Date Received: 05/10/17 14:00

Percent Solids: 24.0

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<u> 26</u>	2.0	0.39	mg/Kg	<u></u>	05/18/17 11:56	05/19/17 00:37	10
Chromium	44	2.0	0.25	mg/Kg	₩	05/18/17 11:56	05/19/17 00:37	10
Copper	410	3.9	0.87	mg/Kg	₩	05/18/17 11:56	05/19/17 00:37	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	24.0	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	76.0	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 10:55

Date Received: 05/10/17 14:00

Percent Moisture

Client Sample ID: LPW17-SL-CCBT-01(0.5)

20.1

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-46 **Matrix: Solid**

Percent Solids: 79.9

05/30/17 10:01

Method: 6020A - Metals (IC	•							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.7	0.55	0.11	mg/Kg	<u> </u>	05/18/17 11:56	05/19/17 00:42	10
Chromium	15	0.55	0.069	mg/Kg	☼	05/18/17 11:56	05/19/17 00:42	10
Copper	17	1.1	0.24	mg/Kg	₩	05/18/17 11:56	05/19/17 00:42	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	79.9	0.1	0.1	%			05/30/17 10:01	

0.1

0.1 %

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 11:00

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-CCBT-02(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-47

Matrix: Solid

Percent Solids: 66.9

Method: 6020A - Metals (IC	P/MS) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic		0.62	0.12	mg/Kg	<u></u>	05/18/17 11:56	05/19/17 00:46	10
Chromium	18	0.62	0.079	mg/Kg	₩	05/18/17 11:56	05/19/17 00:46	10
Copper	8.0	1.2	0.27	mg/Kg	₩	05/18/17 11:56	05/19/17 00:46	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	66.9	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	33.1	0.1	0.1	%			05/30/17 10:01	1

0

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-CCL-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-48

Matrix: Solid

Date Collected: 05/08/17 11:08 Date Received: 05/10/17 14:00

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	15.0	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	85.0	0.1	0.1	%			05/30/17 10:01	1

E

7

8

9

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-CCL-01(0.5)

Lab Sample ID: 580-68287-48

Date Collected: 05/08/17 11:08

Matrix: Solid

Date Respired: 05/08/17 14:00

Date Received: 05/10/17 14:00 Percent Solids: 15.0

	Method: 6020A - Metals (ICP/M	S)								
١	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Lead	88		3.0	0.29	mg/Kg		05/18/17 11:56	05/19/17 00:50	10

Δ

5

8

10

11

12

1:

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-CCL-01(0.5)

Lab Sample ID: 580-68287-49 Date Collected: 05/08/17 11:10 Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 14.2

Method: 6020A - Metals (IC	•				_			- · · -
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.3	3.4	0.68	mg/Kg	₩	05/18/17 11:56	05/19/17 00:55	10
Chromium	12	3.4	0.43	mg/Kg	₩	05/18/17 11:56	05/19/17 00:55	10
Copper	35	6.8	1.5	mg/Kg	₩	05/18/17 11:56	05/19/17 00:55	10
- General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	14.2	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	85.8	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-CCL-02(0.5)

Date Collected: 05/08/17 11:40 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-50

Matrix: Solid Percent Solids: 63.5

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1		0.68	0.14	mg/Kg	<u> </u>	05/18/17 11:56	05/19/17 00:59	10
Chromium	22		0.68	0.086	mg/Kg	☼	05/18/17 11:56	05/19/17 00:59	10
Copper	10		1.4	0.30	mg/Kg	₩	05/18/17 11:56	05/19/17 00:59	10
General Chemistry	- · · ·					_			
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	63.5		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	36.5		0.1	0.1	%			05/30/17 10:01	1

6

7

8

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 11:45

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-CCL-03(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-51

Matrix: Solid

Percent Solids: 12.9

Method: 6020A - Metals (I	CP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5	J	3.6	0.71	mg/Kg	<u> </u>	05/18/17 11:56	05/19/17 01:04	10
Chromium	8.5		3.6	0.45	mg/Kg	☼	05/18/17 11:56	05/19/17 01:04	10
Copper	9.9		7.1	1.6	mg/Kg	₩	05/18/17 11:56	05/19/17 01:04	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	12.9		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	87.1		0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:03

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-GSL-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-52

Matrix: Solid

Percent Solids: 71.6

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<u> </u>	0.68	0.14	mg/Kg	<u></u>	05/18/17 11:56	05/19/17 01:08	10
Chromium	29	0.68	0.086	mg/Kg	☼	05/18/17 11:56	05/19/17 01:08	10
Lead	29	0.68	0.065	mg/Kg	₩	05/18/17 11:56	05/19/17 01:08	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	71.6	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	28.4	0.1	0.1	%			05/30/17 10:01	1

7

9

10

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:06

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-GSL-02(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-53

Matrix: Solid

Percent Solids: 63.6

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.7	0.75	0.15	mg/Kg	₩	05/18/17 11:56	05/19/17 01:31	10
Chromium	18	0.75	0.094	mg/Kg	₩	05/18/17 11:56	05/19/17 01:31	10
_Lead	3.9	0.75	0.072	mg/Kg	₩	05/18/17 11:56	05/19/17 01:31	10
_ General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	63.6	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	36.4	0.1	0.1	%			05/30/17 10:01	1

6

0

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:12

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-INT-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-54

Matrix: Solid

Percent Solids: 70.3

Method: 6020A - Metals (IC	•				_			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	22	0.62	0.12	mg/Kg	₽	05/18/17 11:56	05/19/17 01:35	10
Chromium	30	0.62	0.078	mg/Kg	☼	05/18/17 11:56	05/19/17 01:35	10
Copper	110	1.2	0.27	mg/Kg	₩	05/18/17 11:56	05/19/17 01:35	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	70.3	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	29.7	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:16

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-INT-02(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-55

Matrix: Solid

Percent Solids: 55.6

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	31		0.84	0.17	mg/Kg	₩	05/18/17 11:56	05/19/17 01:39	10
Chromium	43		0.84	0.11	mg/Kg	☼	05/18/17 11:56	05/19/17 01:39	10
Copper	100		1.7	0.37	mg/Kg	₩	05/18/17 11:56	05/19/17 01:39	10
General Chemistry									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	55.6		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	44.4		0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:18

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WAT-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-56

Matrix: Solid

Percent Solids: 79.2

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic		0.55	0.11	mg/Kg	<u> </u>	05/18/17 11:56	05/19/17 01:44	10
Chromium	29	0.55	0.069	mg/Kg	☆	05/18/17 11:56	05/19/17 01:44	10
Copper	100	1.1	0.24	mg/Kg	₩	05/18/17 11:56	05/19/17 01:44	10
- General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	79.2	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	20.8	0.1	0.1	%			05/30/17 10:01	1

10

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Received: 05/10/17 14:00

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WAT-02(0.5)

Date Collected: 05/08/17 12:20

Lab Sample ID: 580-68287-57 Matrix: Solid Percent Solids: 47.1

Method: 6020A - Metals (IC	CP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	340		0.94	0.19	mg/Kg	₩	05/18/17 11:56	05/19/17 01:48	10
Chromium	79		0.94	0.12	mg/Kg	☼	05/18/17 11:56	05/19/17 01:48	10
Copper	820		1.9	0.41	mg/Kg	₩	05/18/17 11:56	05/19/17 01:48	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	47.1		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	52.9		0.1	0.1	%			05/30/17 10:01	1

5

a

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:32

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WSL-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-58

Matrix: Solid

Percent Solids: 73.1

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	12	0.57	0.11	mg/Kg	<u></u>	05/18/17 11:56	05/19/17 01:53	10
Chromium	14	0.57	0.072	mg/Kg	≎	05/18/17 11:56	05/19/17 01:53	10
Lead	34	0.57	0.055	mg/Kg	₩	05/18/17 11:56	05/19/17 01:53	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73.1	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	26.9	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Received: 05/10/17 14:00

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WSL-02(0.5)

Date Collected: 05/08/17 12:42

Lab Sample ID: 580-68287-59
Matrix: Solid

Percent Solids: 51.8

P/MS)								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
9.0		0.94	0.19	mg/Kg	<u> </u>	05/22/17 10:05	05/22/17 18:27	10
21		0.94	0.12	mg/Kg	☼	05/22/17 10:05	05/22/17 18:27	10
33		0.94	0.090	mg/Kg	≎	05/22/17 10:05	05/22/17 18:27	10
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
51.8		0.1	0.1	%			05/30/17 10:01	1
48.2		0.1	0.1	%			05/30/17 10:01	1
	9.0 21 33 Result 51.8	Result Qualifier 9.0 21 33 Result Qualifier 51.8	Result Qualifier RL 9.0 0.94 21 0.94 33 0.94 Result Qualifier RL 51.8 0.1	Result Qualifier RL 0.94 MDL 0.19 21 0.94 0.12 33 0.94 0.090 Result Qualifier RL MDL 0.1 51.8 0.1	Result Qualifier RL MDL unit 9.0 0.94 0.19 mg/Kg 21 0.94 0.12 mg/Kg 33 0.94 0.090 mg/Kg Result State of The State o	Result Qualifier RL MDL Unit D 9.0 0.94 0.19 mg/Kg 33 21 0.94 0.12 mg/Kg 32 33 0.94 0.090 mg/Kg 32 Result Qualifier RL MDL Unit D 51.8 0.1 0.1 %	Result Qualifier RL MDL unit D 05/22/17 10:05 9.0 0.94 0.19 mg/Kg 05/22/17 10:05 21 0.94 0.12 mg/Kg 05/22/17 10:05 33 0.94 0.090 mg/Kg 05/22/17 10:05 Result Qualifier RL MDL Unit D Prepared 51.8 0.1 0.1 % Prepared	Result Qualifier RL MDL mg/Kg Unit mg/Kg D mg/Kg Prepared model Analyzed mg/zed mg/Kg 21 0.94 0.12 mg/Kg 0.5/22/17 10:05 mg/Kg 05/22/17 10:05 mg/Kg 0

6

10

11

1:

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:45

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WSL-03(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-60

Matrix: Solid

Percent Solids: 58.1

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<u> </u>	0.76	0.15	mg/Kg	<u></u>	05/22/17 10:05	05/22/17 18:31	10
Chromium	22	0.76	0.096	mg/Kg	₩	05/22/17 10:05	05/22/17 18:31	10
Lead	19	0.76	0.073	mg/Kg	₩	05/22/17 10:05	05/22/17 18:31	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58.1	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	41.9	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 12:50

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHBT-01(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-61 **Matrix: Solid**

Percent Solids: 15.6

Method: 6020A - Metals (IC Analyte	P/MS) Result Qu	.alifiar	RL	MDL	l Init	D	Droporod	Analyzed	Dil Fac
Analyte	Result Qu	iaiiilei	KL	MIDE	Ullit	D	Prepared	Allalyzeu	DII Fac
Arsenic	14		3.1	0.62	mg/Kg	₩	05/22/17 10:05	05/22/17 18:36	10
Chromium	21		3.1	0.39	mg/Kg	₩	05/22/17 10:05	05/22/17 18:36	10
Copper	35		6.2	1.4	mg/Kg	₩	05/22/17 10:05	05/22/17 18:36	10
General Chemistry									
Analyte	Result Qu	ıalifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	15.6		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	84.4		0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WHBT-02(0.5)

Date Collected: 05/08/17 12:53 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-62 **Matrix: Solid**

Percent Solids: 51.9

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.1	0.77	0.15	mg/Kg	<u></u>	05/22/17 10:05	05/22/17 18:06	10
Chromium	20	0.77	0.097	mg/Kg	☆	05/22/17 10:05	05/22/17 18:06	10
Copper	11	1.5	0.34	mg/Kg	₩	05/22/17 10:05	05/22/17 18:06	10
- General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	51.9	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	48.1	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

3

Client Sample ID: LPW17-SL-WHDT-01(0.5)

Date Collected: 05/08/17 13:00 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-63 Matrix: Solid

Percent Solids: 57.6

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	37	0.83	0.17	mg/Kg	<u> </u>	05/22/17 10:05	05/22/17 18:10	10
Chromium	38	0.83	0.10	mg/Kg	₩	05/22/17 10:05	05/22/17 18:10	10
Copper	72	1.7	0.36	mg/Kg	₽	05/22/17 10:05	05/22/17 18:10	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	57.6	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	42.4	0.1	0.1	%			05/30/17 10:01	1

6

8

9

10

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 13:04

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHDT-02(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-64

Matrix: Solid

Percent Solids: 30.9

P/MS)							
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
15	1.4	0.29	mg/Kg	<u></u>	05/22/17 10:05	05/22/17 18:15	10
31	1.4	0.18	mg/Kg	☆	05/22/17 10:05	05/22/17 18:15	10
120	2.9	0.63	mg/Kg	₩	05/22/17 10:05	05/22/17 18:15	10
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
30.9	0.1	0.1	%			05/30/17 10:01	1
69.1	0.1	0.1	%			05/30/17 10:01	1
	15 31 120 Result Qualifier 30.9	Result Qualifier RL 15 1.4 31 1.4 120 2.9 Result Qualifier RL 30.9 0.1	Result Qualifier RL MDL 15 1.4 0.29 31 1.4 0.18 120 2.9 0.63 Result Qualifier RL MDL 30.9 0.1 0.1	Result Qualifier RL MDL Unit 15 1.4 0.29 mg/Kg 31 1.4 0.18 mg/Kg 120 2.9 0.63 mg/Kg Result Qualifier RL MDL Unit 30.9 0.1 0.1 %	Result 15 Qualifier 21 RL 31 MDL 31 Unit 32 MRKg 32 MRKg 33 MRKg 33 MRKg 33 MRKg 33 MRKg 34 MRKg 34	Result Qualifier RL MDL Unit D Prepared 15 1.4 0.29 mg/Kg © 05/22/17 10:05 31 1.4 0.18 mg/Kg © 05/22/17 10:05 120 2.9 0.63 mg/Kg © 05/22/17 10:05 Result Qualifier RL MDL Unit D Prepared 30.9 0.1 0.1 % Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed 15 1.4 0.29 mg/Kg © 05/22/17 10:05 05/22/17 18:15 31 1.4 0.18 mg/Kg © 05/22/17 10:05 05/22/17 18:15 120 2.9 0.63 mg/Kg © 05/22/17 10:05 05/22/17 18:15 Result Qualifier RL MDL Unit D Prepared Analyzed 30.9 0.1 0.1 % D 05/30/17 10:01

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 13:04 Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHDT-02D(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-65

Matrix: Solid	
Percent Solids: 26.8	

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<u> </u>	1.7	0.33	mg/Kg	<u></u>	05/22/17 10:05	05/22/17 18:19	10
Chromium	26	1.7	0.21	mg/Kg	₩	05/22/17 10:05	05/22/17 18:19	10
Copper	130	3.3	0.73	mg/Kg	₩	05/22/17 10:05	05/22/17 18:19	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	26.8	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	73.2	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WHL-01(0.5)

59.5

Date Collected: 05/08/17 13:12

Lab Sample ID: 580-68287-66
Matrix: Solid
Percent Solids: 40.5

05/30/17 10:01

Date Received: 05/10/17 14:00

Percent Moisture

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.2	1.2	0.24	mg/Kg	₩	05/22/17 10:05	05/22/17 18:23	10
Chromium	22	1.2	0.15	mg/Kg	₩	05/22/17 10:05	05/22/17 18:23	10
Lead	580	1.2	0.11	mg/Kg	₩	05/22/17 10:05	05/22/17 18:23	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	40.5	0.1	0.1	%			05/30/17 10:01	1

0.1

0.1 %

5

8

9

10

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

2

Client Sample ID: LPW17-SL-WHL-02(0.5)

Date Collected: 05/08/17 13:14 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-67 Matrix: Solid

Percent Solids: 60.9

Method: 6020A - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	23		0.60	0.12	mg/Kg	<u> </u>	05/22/17 11:58	05/22/17 21:33	10
Chromium	37	F1	0.60	0.075	mg/Kg	☼	05/22/17 11:58	05/22/17 21:33	10
Lead	130	F1 F2	0.60	0.057	mg/Kg	₩	05/22/17 11:58	05/22/17 21:33	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60.9		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	39.1		0.1	0.1	%			05/30/17 10:01	1

6

ŏ

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WHL-03(0.5)

Date Collected: 05/08/17 13:16 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-68 Matrix: Solid

Percent Solids: 56.7

Method: 6020A - Metals (IC	CP/MS)							
Analyte	Result Qu	ualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	19	0.8	3 0.17	mg/Kg	<u></u>	05/22/17 11:58	05/22/17 22:11	10
Chromium	41	0.8	3 0.10	mg/Kg	☆	05/22/17 11:58	05/22/17 22:11	10
Lead	140	0.8	3 0.079	mg/Kg	₩	05/22/17 11:58	05/22/17 22:11	10
General Chemistry								
Analyte	Result Qu	ualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	56.7	0.	0.1	%			05/30/17 10:01	1
Percent Moisture	43.3	0.	1 0.1	%			05/30/17 10:01	1

8

9

10

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-WHL-03D(0.5)

Date Collected: 05/08/17 13:16 Date Received: 05/10/17 14:00 Lab Sample ID: 580-68287-69

Matrix: Solid Percent Solids: 60.7

Method: 6020A - Metals (IC	CP/MS)								
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	15		0.62	0.12	mg/Kg	₩	05/22/17 11:58	05/22/17 22:15	10
Chromium	30		0.62	0.079	mg/Kg	☼	05/22/17 11:58	05/22/17 22:15	10
_Lead _	110		0.62	0.060	mg/Kg	₩	05/22/17 11:58	05/22/17 22:15	10
- General Chemistry									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60.7		0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	39.3		0.1	0.1	%			05/30/17 10:01	1

8

9

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 13:18

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHL-04(0.5)

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-70

Matrix: Solid

Percent Solids: 39.9

Method: 6020A - Metals (IC	P/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<u></u>	1.0	0.21	mg/Kg	<u></u>	05/22/17 11:58	05/22/17 22:19	10
Chromium	25	1.0	0.13	mg/Kg	☼	05/22/17 11:58	05/22/17 22:19	10
Lead	300	1.0	0.10	mg/Kg	₩	05/22/17 11:58	05/22/17 22:19	10
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	39.9	0.1	0.1	%			05/30/17 10:01	1
Percent Moisture	60.1	0.1	0.1	%			05/30/17 10:01	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 15:40

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-GSP-W-01

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-71

Matrix: Solid
Percent Solids: 58.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	870		8.3	1.0	ug/Kg	<u> </u>	05/22/17 09:33	05/30/17 13:35	1
2-Methylnaphthalene	1200	F1	8.3	0.75	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Acenaphthene	58		8.3	1.0	ug/Kg	₩	05/22/17 09:33	05/30/17 13:35	1
Acenaphthylene	ND		8.3	0.83	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Anthracene	20		8.3	1.0	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Benzo[a]anthracene	7.0	JB	8.3	1.3	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Benzo[a]pyrene	2.9	J	8.3	0.66	ug/Kg	φ.	05/22/17 09:33	05/30/17 13:35	1
Benzo[b]fluoranthene	13		8.3	0.98	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Benzo[g,h,i]perylene	3.7	J	8.3	0.83	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Benzo[k]fluoranthene	4.7	J	8.3	1.0	ug/Kg		05/22/17 09:33	05/30/17 13:35	1
Chrysene	19		8.3	2.5	ug/Kg	₩	05/22/17 09:33	05/30/17 13:35	1
Dibenz(a,h)anthracene	1.2	J	8.3	1.2	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Fluoranthene	43		8.3	2.3	ug/Kg		05/22/17 09:33	05/30/17 13:35	1
Fluorene	120		8.3	0.83	ug/Kg	₩	05/22/17 09:33	05/30/17 13:35	1
Indeno[1,2,3-cd]pyrene	4.0	J	8.3	1.0	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Naphthalene	630		8.3	1.3	ug/Kg	₩.	05/22/17 09:33	05/30/17 13:35	1
Phenanthrene	98		8.3	1.1	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Pyrene	74		8.3	1.6	ug/Kg	₩	05/22/17 09:33	05/30/17 13:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tornhanyl d14	72		60 120				05/22/17 00:22	05/20/17 12:25	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	73		68 - 138	05/22/17 09:33	05/30/17 13:35	1

L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>9000</td><td>F2</td><td>32</td><td>9.9</td><td>mg/Kg</td><td>\</td><td>05/20/17 12:17</td><td>05/23/17 14:15</td><td>1</td></nc25)<>	9000	F2	32	9.9	mg/Kg	\	05/20/17 12:17	05/23/17 14:15	1
RRO (nC25-nC36)	200	F2	81	18	mg/Kg	≎	05/20/17 12:17	05/23/17 14:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	106		50 - 150				05/20/17 12:17	05/23/17 14:15	1
n-Triacontane-d62	89		50 ₋ 150				05/20/17 12:17	05/23/17 14:15	1

General Chemistry							
Analyte	Result Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Percent Solids	58.4	0.1	0.1 %			05/23/17 15:47	1
Percent Moisture	41.6	0.1	0.1 %	•		05/23/17 15:47	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-GSP-Leak01

Lab Sample ID: 580-68287-72 Date Collected: 05/08/17 15:55 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		11	4.7	ug/Kg	<u></u>	05/17/17 14:40	05/18/17 00:47	1
Toluene	25	J	83	17	ug/Kg	☼	05/17/17 14:40	05/18/17 00:47	1
Ethylbenzene	93		22	5.0	ug/Kg	☼	05/17/17 14:40	05/18/17 00:47	1
m-Xylene & p-Xylene	370		110	18	ug/Kg	₽	05/17/17 14:40	05/18/17 00:47	1
o-Xylene	240		22	7.4	ug/Kg	≎	05/17/17 14:40	05/18/17 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	91		52 - 152				05/17/17 14:40	05/18/17 00:47	1
Toluene-d8 (Surr)	97		79 - 119				05/17/17 14:40	05/18/17 00:47	1
1,2-Dichloroethane-d4 (Surr)	102		81 - 121				05/17/17 14:40	05/18/17 00:47	1
4-Bromofluorobenzene (Surr)	97		79 - 120				05/17/17 14:40	05/18/17 00:47	1
Dibromofluoromethane (Surr)	98		78 - 118				05/17/17 14:40	05/18/17 00:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	75		5.8	0.73	ug/Kg	<u></u>	05/22/17 09:33	05/30/17 15:04	1
2-Methylnaphthalene	77		5.8	0.52	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Acenaphthene	18		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Acenaphthylene	13		5.8	0.58	ug/Kg	φ.	05/22/17 09:33	05/30/17 15:04	1
Anthracene	11		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Benzo[a]anthracene	15	В	5.8	0.89	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[a]pyrene	43		5.8	0.47	ug/Kg	\$	05/22/17 09:33	05/30/17 15:04	1
Benzo[b]fluoranthene	60		5.8	0.69	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[g,h,i]perylene	71		5.8	0.58	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[k]fluoranthene	18		5.8	0.70	ug/Kg	\$	05/22/17 09:33	05/30/17 15:04	1
Chrysene	22		5.8	1.7	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Dibenz(a,h)anthracene	8.3		5.8	0.84	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Fluoranthene	45		5.8	1.6	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Fluorene	20		5.8	0.58	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Indeno[1,2,3-cd]pyrene	80		5.8	0.70	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Naphthalene	45		5.8	0.93	ug/Kg	\$	05/22/17 09:33	05/30/17 15:04	1
Phenanthrene	26		5.8	0.80	ug/Kg	≎	05/22/17 09:33	05/30/17 15:04	1
Pyrene	74		5.8	1.1	ug/Kg	₩	05/22/17 09:33	05/30/17 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	76		68 - 138				05/22/17 09:33	05/30/17 15:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>750</th><th></th><th>22</th><th>6.7</th><th>mg/Kg</th><th>₩</th><th>05/20/17 12:17</th><th>05/23/17 15:23</th><th>•</th></nc25)<>	750		22	6.7	mg/Kg	₩	05/20/17 12:17	05/23/17 15:23	•
RRO (nC25-nC36)	47	J	55	12	mg/Kg	₩	05/20/17 12:17	05/23/17 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				05/20/17 12:17	05/23/17 15:23	1
n-Triacontane-d62	87		50 - 150				05/20/17 12:17	05/23/17 15:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	84.2		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	15.8		0.1	0.1	%			05/23/17 15:47	1

TestAmerica Seattle

Page 80 of 241

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 16:05

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-GSP-Leak02

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-73

Matrix: Solid

Percent Solids: 84.6

Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		12	5.4	ug/Kg	<u></u>	05/17/17 14:40	05/18/17 01:13	1
Toluene	ND		94	20	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
Ethylbenzene	ND		25	5.7	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
m-Xylene & p-Xylene	ND		120	20	ug/Kg		05/17/17 14:40	05/18/17 01:13	1
o-Xylene	ND		25	8.4	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	109		52 - 152				05/17/17 14:40	05/18/17 01:13	1
Toluene-d8 (Surr)	98		79 - 119				05/17/17 14:40	05/18/17 01:13	1
1,2-Dichloroethane-d4 (Surr)	101		81 - 121				05/17/17 14:40	05/18/17 01:13	1
4-Bromofluorobenzene (Surr)	98		79 - 120				05/17/17 14:40	05/18/17 01:13	1
Dibromofluoromethane (Surr)	96		78 - 118				05/17/17 14:40	05/18/17 01:13	1
Method: 8270D SIM - Semivola	atile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	11		5.4	0.68	ug/Kg	<u></u>	05/22/17 09:33	05/30/17 14:42	1
2-Methylnaphthalene	11		5.4	0.49	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Acenaphthene	3.9	J	5.4	0.65	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Acenaphthylene	3.9	J	5.4	0.54	ug/Kg	₩.	05/22/17 09:33	05/30/17 14:42	1
Anthracene	6.9		5.4	0.65	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Benzo[a]anthracene	14	В	5.4	0.82	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Benzo[a]pyrene	65		5.4	0.43	ug/Kg	₽	05/22/17 09:33	05/30/17 14:42	1
Benzo[b]fluoranthene	73		5.4	0.64	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Benzo[g,h,i]perylene	71		5.4	0.54	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Benzo[k]fluoranthene	27		5.4	0.65	ug/Kg	₽	05/22/17 09:33	05/30/17 14:42	1
Chrysene	35		5.4	1.6	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Dibenz(a,h)anthracene	11		5.4	0.78	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Fluoranthene	32		5.4	1.5	ug/Kg	₽	05/22/17 09:33	05/30/17 14:42	1
Fluorene	4.0	J	5.4	0.54	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Indeno[1,2,3-cd]pyrene	82		5.4	0.65	ug/Kg	₽	05/22/17 09:33	05/30/17 14:42	1
Naphthalene	9.8		5.4	0.87	ug/Kg	\$	05/22/17 09:33	05/30/17 14:42	1
Phenanthrene	15		5.4	0.75	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Pyrene	32		5.4	1.1	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	74		68 - 138				05/22/17 09:33	05/30/17 14:42	1
Method: AK102 & 103 - Alaska	ı - Diesel Ra	ange Orga	nics & Resid	ual Rand	ge Organ	ics (G	SC)		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>47</td><td></td><td></td><td>6.8</td><td>mg/Kg</td><td><u></u></td><td>05/20/17 12:17</td><td>05/23/17 15:46</td><td>1</td></nc25)<>	47			6.8	mg/Kg	<u></u>	05/20/17 12:17	05/23/17 15:46	1
RRO (nC25-nC36)	50	J	56		mg/Kg	₩	05/20/17 12:17	05/23/17 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				05/20/17 12:17	05/23/17 15:46	
n-Triacontane-d62	83		50 - 150					05/23/17 15:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	84.6		0.1	0.1		_ -		05/23/17 15:47	1
Percent Moisture	15.4		0.1	0.1				05/23/17 15:47	1
			U. 1	0.1	. •			13.20.11	•

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-GSP-Leak03

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-74

 Date Collected: 05/08/17 16:20
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 85.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		10	4.5	ug/Kg	<u> </u>	05/17/17 14:40	05/18/17 01:40	1
Toluene	ND		78	16	ug/Kg	₩	05/17/17 14:40	05/18/17 01:40	1
Ethylbenzene	ND		21	4.7	ug/Kg	₩	05/17/17 14:40	05/18/17 01:40	1
m-Xylene & p-Xylene	ND		100	17	ug/Kg	₽	05/17/17 14:40	05/18/17 01:40	1
o-Xylene	ND		21	7.0	ug/Kg	☼	05/17/17 14:40	05/18/17 01:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	98		52 - 152				05/17/17 14:40	05/18/17 01:40	1
Toluene-d8 (Surr)	98		79 - 119				05/17/17 14:40	05/18/17 01:40	1
1,2-Dichloroethane-d4 (Surr)	100		81 - 121				05/17/17 14:40	05/18/17 01:40	1
4-Bromofluorobenzene (Surr)	98		79 - 120				05/17/17 14:40	05/18/17 01:40	1
Dibromofluoromethane (Surr)	106		78 ₋ 118				05/17/17 14:40	05/18/17 01:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	5.2	J	5.6	0.71	ug/Kg	<u></u>	05/22/17 09:33	05/30/17 15:27	1
2-Methylnaphthalene	7.1		5.6	0.51	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Acenaphthene	1.3	J	5.6	0.68	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Acenaphthylene	2.0	J	5.6	0.56	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Anthracene	2.8	J	5.6	0.68	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[a]anthracene	5.6	В	5.6	0.86	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[a]pyrene	19		5.6	0.45	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Benzo[b]fluoranthene	18		5.6	0.67	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[g,h,i]perylene	21		5.6	0.56	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[k]fluoranthene	5.8		5.6	0.68	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Chrysene	10		5.6	1.7	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Dibenz(a,h)anthracene	3.0	J	5.6	0.81	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Fluoranthene	8.3		5.6	1.6	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Fluorene	1.5	J	5.6	0.56	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Indeno[1,2,3-cd]pyrene	23		5.6	0.68	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Naphthalene	4.4	J	5.6	0.90	ug/Kg	ф.	05/22/17 09:33	05/30/17 15:27	1
Phenanthrene	4.9	J	5.6		ug/Kg	≎	05/22/17 09:33	05/30/17 15:27	1
Pyrene	9.4		5.6	1.1	ug/Kg	₩	05/22/17 09:33	05/30/17 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78		68 - 138				05/22/17 09:33	05/30/17 15:27	1

- Terprierryi-u 14 	70		00 - 130				05/22/17 09.55	05/30/17 15.27	1
_ Method: AK102 & 103 - A	laska - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgar	nics (C	GC)		
Analyte		Qualifier	RL		Unit	Ď	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>9.9</td><td>J</td><td></td><td>6.7</td><td>mg/Kg</td><td><u> </u></td><td>05/20/17 12:17</td><td>05/23/17 16:09</td><td>1</td></nc25)<>	9.9	J		6.7	mg/Kg	<u> </u>	05/20/17 12:17	05/23/17 16:09	1
RRO (nC25-nC36)	19	J	55	12	mg/Kg	≎	05/20/17 12:17	05/23/17 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150				05/20/17 12:17	05/23/17 16:09	1
n-Triacontane-d62	78		50 - 150				05/20/17 12:17	05/23/17 16:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85.4		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	14.6		0.1	0.1	%			05/23/17 15:47	1

TestAmerica Seattle

Page 82 of 241

3

_

7

10

12

1

7/6/2017

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-WH-01

Lab Sample ID: 580-68287-75 Date Collected: 05/09/17 09:30 Matrix: Solid

Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 6.3 05/22/17 11:58 05/22/17 22:49 Lead 8500 0.61 mg/Kg 100

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-WH-02

Lab Sample ID: 580-68287-76 Date Collected: 05/09/17 09:35 Matrix: Solid

Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 47 05/22/17 11:58 05/22/17 22:57 100 Lead 1100 4.5 mg/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-WH-03

Lab Sample ID: 580-68287-77

Matrix: Solid

Date Collected: 05/09/17 09:40 Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 50

05/22/17 11:58 05/22/17 22:53 100 Lead 78000 4.8 mg/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-LBP-WH-04 Lab Sample ID: 580-68287-78

Date Collected: 05/09/17 09:45 Matrix: Solid

Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS	3)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	14000		44	4.3	mg/Kg		05/22/17 11:58	05/22/17 23:01	100

3

6

9

10

4.0

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-LBP-WH-05

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-79

Matrix: Solid

Date Collected: 05/09/17 09:50 Date Received: 05/10/17 14:00

Method: 6020A - Metals (ICP/MS)

 Analyte
 Result Lead
 Qualifier
 RL State
 MDL With Image of MDL MIT Ima

5

5

6

8

9

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-LBP-Weir04

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-80

Matrix: Solid

Date Collected: 05/06/17 18:35 Date Received: 05/10/17 14:00

5

7

a

10

4.6

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: Trip Blank

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-81

Date Collected: 05/08/17 00:00 Date Received: 05/10/17 14:00

Matrix: Solid

Method: AK101 - Alaska - G	asoline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		100	30	mg/Kg		05/16/17 08:55	05/16/17 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	99		50 - 150				05/16/17 08:55	05/16/17 15:54	1
4-Bromofluorobenzene (Surr)	93		50 - 150				05/16/17 08:55	05/16/17 15:54	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Date Collected: 05/08/17 16:20

Date Received: 05/10/17 14:00

o-Terphenyl

n-Triacontane-d62

Client Sample ID: LPW17-SL-GSP-Leak04

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-82

<u>05/20/17 12:17</u> <u>05/23/17 16:55</u>

05/20/17 12:17 05/23/17 16:55

Matrix: Solid Percent Solids: 58.0

:	5

8

10

12

L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		8.2	1.0	ug/Kg	<u> </u>	05/22/17 09:33	05/30/17 15:49	1
2-Methylnaphthalene	ND		8.2	0.73	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Acenaphthene	ND		8.2	0.98	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Acenaphthylene	ND		8.2	0.82	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Anthracene	1.1	J	8.2	0.98	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Benzo[a]anthracene	4.3	JB	8.2	1.2	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Benzo[a]pyrene	7.3	J	8.2	0.65	ug/Kg	φ.	05/22/17 09:33	05/30/17 15:49	1
Benzo[b]fluoranthene	9.0		8.2	0.96	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Benzo[g,h,i]perylene	6.1	J	8.2	0.82	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Benzo[k]fluoranthene	3.0	J	8.2	0.98	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Chrysene	3.3	J	8.2	2.4	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Dibenz(a,h)anthracene	ND		8.2	1.2	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Fluoranthene	5.4	J	8.2	2.3	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Fluorene	ND		8.2	0.82	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Indeno[1,2,3-cd]pyrene	6.4	J	8.2	0.98	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Naphthalene	ND		8.2	1.3	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Phenanthrene	4.3	J	8.2	1.1	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Pyrene	4.5	J	8.2	1.6	ug/Kg	≎	05/22/17 09:33	05/30/17 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	82		68 - 138				05/22/17 09:33	05/30/17 15:49	1
: Method: AK102 & 103 - A	laska - Diosol R:	ange Orga	nice & Rosidi	ual Ran	ne Ornar	nice ((3C)		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>42</td><td></td><td>33</td><td>10</td><td>mg/Kg</td><td><u> </u></td><td>05/20/17 12:17</td><td>05/23/17 16:55</td><td>1</td></nc25)<>	42		33	10	mg/Kg	<u> </u>	05/20/17 12:17	05/23/17 16:55	1
RRO (nC25-nC36)	110		82	18	mg/Kg	₩	05/20/17 12:17	05/23/17 16:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58.0		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	42.0		0.1	0.1	%			05/23/17 15:47	1
-									

50 - 150

50 - 150

83

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Dil Fac

Analyzod

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-246134/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Prep Batch: 246134

Analysis Batch: 246158

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		20	8.6	ug/Kg		05/17/17 14:40	05/17/17 22:33	1
Toluene	ND		150	32	ug/Kg		05/17/17 14:40	05/17/17 22:33	1
Ethylbenzene	ND		40	9.1	ug/Kg		05/17/17 14:40	05/17/17 22:33	1
m-Xylene & p-Xylene	ND		200	33	ug/Kg		05/17/17 14:40	05/17/17 22:33	1
o-Xylene	ND		40	13	ug/Kg		05/17/17 14:40	05/17/17 22:33	1
	MB	MB							

%Recovery Qualifier Surrogato I imite

Surroyate	701 YELOVEI Y	Qualifier Liffic	riepaieu	Allalyzeu	Diriac
Trifluorotoluene (Surr)	105	52 - 152	05/17/17 14:40	05/17/17 22:33	1
Toluene-d8 (Surr)	98	79 - 119	05/17/17 14:40	05/17/17 22:33	1
1,2-Dichloroethane-d4 (Surr)	107	81 - 121	05/17/17 14:40	05/17/17 22:33	1
4-Bromofluorobenzene (Surr)	98	79 - 120	05/17/17 14:40	05/17/17 22:33	1
Dibromofluoromethane (Surr)	104	78 - 118	05/17/17 14:40	05/17/17 22:33	1

Lab Sample ID: LCS 580-246134/2-A

Matrix: Solid Prep Type: Total/NA Analysis Batch: 246158 Prep Batch: 246134

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit I	D %Rec	Limits	
Benzene	800	879		ug/Kg	110	70 - 118	
Toluene	800	881		ug/Kg	110	67 - 119	
Ethylbenzene	800	880		ug/Kg	110	66 - 119	
m-Xylene & p-Xylene	800	870		ug/Kg	109	69 - 126	
o-Xylene	800	816		ug/Kg	102	66 - 127	

Spike

Added

800

800

800

800

800

LCSD LCSD

852

840

872

848

776

Result Qualifier Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	102		52 - 152
Toluene-d8 (Surr)	104		79 - 119
1,2-Dichloroethane-d4 (Surr)	97		81 - 121
4-Bromofluorobenzene (Surr)	99		79 - 120
Dibromofluoromethane (Surr)	99		78 - 118

Lab Sample ID: LCSD 580-246134/3-A

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 246158

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

97

Propared

Prep Batch: 246134 %Rec. **RPD** D %Rec Limits RPD Limit 70 - 118 3 19 106 105 67 - 119 19 5 23 109 66 - 119 1 106 69 - 126 23

66 - 127

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	99		52 - 152
Toluene-d8 (Surr)	97		79 - 119
1,2-Dichloroethane-d4 (Surr)	96		81 - 121
4-Bromofluorobenzene (Surr)	88		79 - 120

TestAmerica Seattle

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-246134/3-A

Matrix: Solid

Analysis Batch: 246158

LCSD LCSD

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 78 - 118 97

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 246134

Analysis Batch: 246433

Lab Sample ID: MB 580-246324/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Solid** Prep Batch: 246324

Analysis Dateil. 240400								Trep Batem.	240024
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		5.0	0.63	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
2-Methylnaphthalene	ND		5.0	0.45	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Acenaphthene	ND		5.0	0.60	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Acenaphthylene	ND		5.0	0.50	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Anthracene	ND		5.0	0.60	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Benzo[a]anthracene	0.939	J	5.0	0.76	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Benzo[a]pyrene	ND		5.0	0.40	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Benzo[b]fluoranthene	ND		5.0	0.59	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Benzo[g,h,i]perylene	ND		5.0	0.50	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Benzo[k]fluoranthene	ND		5.0	0.60	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Chrysene	ND		5.0	1.5	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Dibenz(a,h)anthracene	ND		5.0	0.72	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Fluoranthene	ND		5.0	1.4	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Fluorene	ND		5.0	0.50	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.60	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Naphthalene	ND		5.0	0.80	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Phenanthrene	ND		5.0	0.69	ug/Kg		05/19/17 09:58	05/20/17 11:50	1
Pyrene	ND		5.0	0.97	ug/Kg		05/19/17 09:58	05/20/17 11:50	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Terphenyl-d14 98 68 - 138 05/19/17 09:58 05/20/17 11:50

Lab Sample ID: LCS 580-246324/2-A

Matrix: Solid

Benzo[k]fluoranthene

Chrysene

Analysis Batch: 246433	Spike	LCS	LCS				Prep Batch: 246324 %Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	1000	891		ug/Kg		89	71 - 118
2-Methylnaphthalene	1000	911		ug/Kg		91	75 ₋ 119
Acenaphthene	1000	870		ug/Kg		87	68 - 116
Acenaphthylene	1000	910		ug/Kg		91	68 - 120
Anthracene	1000	984		ug/Kg		98	73 - 125
Benzo[a]anthracene	1000	911		ug/Kg		91	66 - 119
Benzo[a]pyrene	1000	987		ug/Kg		99	72 - 124
Benzo[b]fluoranthene	1000	869		ug/Kg		87	63 - 121
Benzo[g,h,i]perylene	1000	916		ug/Kg		92	63 - 124

TestAmerica Seattle

Page 92 of 241

939

926

ug/Kg

ug/Kg

1000

1000

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

94

93

63 - 129

69 - 120

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-246324/2-A

Matrix: Solid

Analysis Batch: 246433

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 246324

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibenz(a,h)anthracene	1000	937	-	ug/Kg		94	70 - 125	
Fluoranthene	1000	933		ug/Kg		93	65 - 125	
Fluorene	1000	921		ug/Kg		92	66 - 121	
Indeno[1,2,3-cd]pyrene	1000	842		ug/Kg		84	65 - 121	
Naphthalene	1000	878		ug/Kg		88	70 - 112	
Phenanthrene	1000	865		ug/Kg		87	73 - 106	
Pyrene	1000	874		ug/Kg		87	64 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 82 68 - 138

Matrix: Solid Analysis Batch: 24643	3								Prep Type: Total/NA Prep Batch: 246324
7 many old Dutom 2 to 10	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	4.1	J	2150	1750	-	ug/Kg	₩	81	71 - 118
2-Methylnaphthalene	6.7	J	2150	1780		ug/Kg	₽	82	75 - 119
Acenaphthene	ND		2150	1600		ug/Kg	☼	74	68 - 116
Acenaphthylene	ND		2150	1700		ug/Kg	₽	79	68 - 120
Anthracene	ND		2150	1900		ug/Kg	₽	88	73 - 125
Benzo[a]anthracene	8.4	JB	2150	1800		ug/Kg	☼	83	66 - 119
Benzo[a]pyrene	4.2	J	2150	1690		ug/Kg	₽	78	72 - 124
Benzo[b]fluoranthene	17		2150	1540		ug/Kg	₽	71	63 - 121
Benzo[g,h,i]perylene	3.5	J	2150	1490		ug/Kg	☼	69	63 - 124
Benzo[k]fluoranthene	5.7	J	2150	1490		ug/Kg	₽	69	63 - 129
Chrysene	27		2150	1750		ug/Kg	☼	80	69 - 120
Dibenz(a,h)anthracene	ND		2150	1550		ug/Kg	☼	72	70 - 125
Fluoranthene	27		2150	1770		ug/Kg	₽	81	65 - 125
Fluorene	ND		2150	1690		ug/Kg	☼	78	66 - 121
Indeno[1,2,3-cd]pyrene	4.6	J	2150	1620		ug/Kg	☼	75	65 - 121
Naphthalene	23		2150	1720		ug/Kg	₽	79	70 - 112
Phenanthrene	22		2150	1670		ug/Kg	☼	77	73 - 106
Pyrene	20		2150	1690		ug/Kg	₩	78	64 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate Limits **%Recovery Qualifier** Terphenyl-d14 68 - 138

Lab Sample ID: 580-68287-7 MSD

Matrix: Solid

Analysis Batch: 246433

Client Sample ID:	LPW17-SL-WeirP-03(2.5)
	Drop Type: Total/NA

Prep Type: Total/NA Prep Batch: 246324

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	4.1	J	2320	1900		ug/Kg	\	82	71 - 118	8	40
2-Methylnaphthalene	6.7	J	2320	1930		ug/Kg	☼	83	75 - 119	8	40
Acenaphthene	ND		2320	1760		ug/Kg	☼	76	68 - 116	10	40
Acenaphthylene	ND		2320	1880		ug/Kg	₩.	81	68 - 120	10	40
Anthracene	ND		2320	2070		ug/Kg	☼	89	73 - 125	8	40
							\$			10 8	

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 580-68287-7 MSD

Matrix: Solid

Analysis Batch: 246433

Client Sample ID: LPW17-SL-WeirP-03(2.5)

Prep Type: Total/NA Prep Batch: 246324

Alialysis Datell. 240400									i icp De	ALCII. Z-	10027
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	8.4	JB	2320	2030	-	ug/Kg	₩	87	66 - 119	12	40
Benzo[a]pyrene	4.2	J	2320	1860		ug/Kg	₩	80	72 - 124	9	40
Benzo[b]fluoranthene	17		2320	1680		ug/Kg	₩	71	63 - 121	8	40
Benzo[g,h,i]perylene	3.5	J	2320	1610		ug/Kg	₩	69	63 - 124	8	40
Benzo[k]fluoranthene	5.7	J	2320	1660		ug/Kg	₩.	71	63 - 129	11	40
Chrysene	27		2320	1860		ug/Kg	₩	79	69 - 120	6	40
Dibenz(a,h)anthracene	ND		2320	1710		ug/Kg	₩	74	70 - 125	9	40
Fluoranthene	27		2320	1930		ug/Kg	☼	82	65 - 125	9	40
Fluorene	ND		2320	1850		ug/Kg	₩	80	66 - 121	9	40
Indeno[1,2,3-cd]pyrene	4.6	J	2320	1750		ug/Kg	₩	75	65 - 121	8	40
Naphthalene	23		2320	1870		ug/Kg	☼	79	70 - 112	8	40
Phenanthrene	22		2320	1820		ug/Kg	₩	78	73 - 106	8	40
Pyrene	20		2320	1840		ua/Ka	₩	78	64 - 120	8	40

MSD MSD

%Recovery Qualifier Surrogate Limits Terphenyl-d14 73 68 - 138

Lab Sample ID: MB 580-246436/1-A

Matrix: Solid

Analysis Batch: 246475

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 246436

Alialysis Batch. 246475	МВ	MB						Ргер Баксп.	240430
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		5.0	0.63	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
2-Methylnaphthalene	ND		5.0	0.45	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Acenaphthene	ND		5.0	0.60	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Acenaphthylene	ND		5.0	0.50	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Anthracene	ND		5.0	0.60	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Benzo[a]anthracene	ND		5.0	0.76	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Benzo[a]pyrene	ND		5.0	0.40	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Benzo[b]fluoranthene	ND		5.0	0.59	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Benzo[g,h,i]perylene	ND		5.0	0.50	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Benzo[k]fluoranthene	ND		5.0	0.60	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Chrysene	ND		5.0	1.5	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Dibenz(a,h)anthracene	ND		5.0	0.72	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Fluoranthene	ND		5.0	1.4	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Fluorene	ND		5.0	0.50	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.60	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Naphthalene	ND		5.0	0.80	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Phenanthrene	ND		5.0	0.69	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
Pyrene	ND		5.0	0.97	ug/Kg		05/20/17 11:34	05/22/17 10:06	1
	MB	MB							
Surrogate	%Recovery	Qualifier	l imite				Propared	Analyzod	Dil Fac

Surrogate %Recovery Qualifier Limits Prepared Analyzed Terphenyl-d14 79 68 - 138 <u>05/20/17 11:34</u> <u>05/22/17 10:06</u>

TestAmerica Seattle

Page 94 of 241

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-246436/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 246475** Prep Batch: 246436 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1000 922 92 71 - 118 1-Methylnaphthalene ug/Kg 1000 1070 107 2-Methylnaphthalene ug/Kg 75 - 119 1000 Acenaphthene 886 ug/Kg 89 68 - 116 Acenaphthylene 1000 103 68 - 120 1030 ug/Kg Anthracene 1000 871 ug/Kg 87 73 - 125 Benzo[a]anthracene 1000 1060 ug/Kg 106 66 - 119 1000 1050 105 72 - 124 Benzo[a]pyrene ug/Kg Benzo[b]fluoranthene 1000 1020 102 63 - 121 ug/Kg 1000 928 93 Benzo[g,h,i]perylene ug/Kg 63 - 124Benzo[k]fluoranthene 1000 951 ug/Kg 95 63 - 129 Chrysene 1000 85 845 ug/Kg 69 - 120 Dibenz(a,h)anthracene 1000 948 ug/Kg 95 70 - 125 Fluoranthene 1000 931 ug/Kg 93 65 - 125 Fluorene 1000 97 971 ug/Kg 66 - 121 Indeno[1,2,3-cd]pyrene 1000 936 ug/Kg 94 65 - 121 928 93 Naphthalene 1000 ug/Kg 70 - 112 Phenanthrene 1000 984 ug/Kg 98 73 - 106 1000 Pyrene 897 ug/Kg 90 64 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 68 - 138 79

Lab Sample ID: 580-68287-14 MS

Matrix: Solid

Client Sample ID: LPW17-SL-HMP-02(2.5) Prep Type: Total/NA

Analysis Batch: 246475	Sample	Sample	Spike	MS	MS				Prep Batch: 246436 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	82	F1 F2	1260	16200	E F1	ug/Kg	₩	1281	71 - 118
2-Methylnaphthalene	98	F1 F2	1260	19700	E F1	ug/Kg	☼	1562	75 - 119
Acenaphthene	ND		1260	1250		ug/Kg	☼	100	68 - 116
Acenaphthylene	70		1260	1350		ug/Kg	₩.	102	68 - 120
Anthracene	39		1260	1230		ug/Kg	☼	95	73 - 125
Benzo[a]anthracene	21	F1	1260	1110		ug/Kg	☼	87	66 - 119
Benzo[a]pyrene	55		1260	1300		ug/Kg	₩	99	72 - 124
Benzo[b]fluoranthene	64		1260	1290		ug/Kg	₩	97	63 - 121
Benzo[g,h,i]perylene	66	F1	1260	721	F1	ug/Kg	₩	52	63 - 124
Benzo[k]fluoranthene	19		1260	1110		ug/Kg	₩.	87	63 - 129
Chrysene	33	F1	1260	857	F1	ug/Kg	₩	66	69 - 120
Dibenz(a,h)anthracene	9.9	F1	1260	804	F1	ug/Kg	₩	63	70 - 125
Fluoranthene	27		1260	1200		ug/Kg	₩.	93	65 - 125
Fluorene	ND		1260	1340		ug/Kg	☼	107	66 - 121
Indeno[1,2,3-cd]pyrene	120	F1	1260	888	F1	ug/Kg	₩	61	65 - 121
Naphthalene	44	F1 F2	1260	10100	EF1	ug/Kg	₩	800	70 - 112
Phenanthrene	32	F1	1260	1600	F1	ug/Kg	₩	125	73 - 106
Pyrene	29		1260	1290		ug/Kg	☼	101	64 - 120

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 580-68287-14 MS

Lab Sample ID: 580-68287-14 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 246475

MS MS

%Recovery Qualifier Surrogate Limits Terphenyl-d14 68 - 138 75

Client Sample ID: LPW17-SL-HMP-02(2.5)

Client Sample ID: LPW17-SL-HMP-02(2.5)

Prep Type: Total/NA

Prep Batch: 246436

Prep Type: Total/NA Prep Batch: 246436

Analysis Batch: 246475 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier RPD **Analyte** Unit D %Rec Limits Limit ₩ 1-Methylnaphthalene 82 F1 F2 1240 1460 F2 ug/Kg 112 71 - 118 167 40 ₩ 98 F1 F2 1240 1760 F1 F2 134 2-Methylnaphthalene ug/Kg 75 - 119 167 40 Ö Acenaphthene ND 1240 1220 ug/Kg 98 68 - 116 3 40 ₽ 68 - 120 Acenaphthylene 70 1240 1440 111 7 40 ug/Kg ₩ Anthracene 39 1240 1330 ug/Kg 104 73 - 125 8 40 Benzo[a]anthracene 21 F1 1240 1510 F1 ug/Kg ₩ 120 66 - 119 30 40 55 ₩ 104 3 40 Benzo[a]pyrene 1240 1340 ug/Kg 72 - 124₩ Benzo[b]fluoranthene 64 1240 1390 107 63 - 121 7 40 ug/Kg ☼ 66 F1 1240 710 F1 52 63 - 124 2 40 Benzo[g,h,i]perylene ug/Kg Benzo[k]fluoranthene 19 1240 1200 ₩ 95 63 - 129 8 ug/Kg 40 ₩ 1240 Chrysene 33 F1 1130 ug/Kg 89 69 - 120 28 40 Ö Dibenz(a,h)anthracene 99 1240 844 F1 ug/Kg 67 70 - 125 40 ₩ Fluoranthene 27 1240 1400 ug/Kg 111 65 - 125 16 40 Fluorene ND 1240 1360 ₩ 110 66 - 121 40 ug/Kg 120 F1 1240 ☼ 65 65 - 121 3 40 Indeno[1,2,3-cd]pyrene 918 ug/Kg . . Naphthalene 44 F1 F2 1240 1390 F2 ug/Kg 108 70 - 112 152 40

1240

1240

1530 F1

1510

MSD MSD

32 F1

29

Surrogate Qualifier Limits %Recovery Terphenyl-d14 91 68 - 138

Lab Sample ID: MB 580-246467/1-A

Matrix: Solid

Phenanthrene

Pyrene

Analysis Batch: 247152

Client Sample ID: Method Blank Prep Type: Total/NA

73 - 106

64 - 120

₩

₩

ug/Kg

ug/Kg

121

120

Prep Batch: 246467

4

15

40

40

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		5.0	0.63	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
2-Methylnaphthalene	ND		5.0	0.45	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Acenaphthene	ND		5.0	0.60	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Acenaphthylene	ND		5.0	0.50	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Anthracene	ND		5.0	0.60	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Benzo[a]anthracene	0.788	J	5.0	0.76	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Benzo[a]pyrene	ND		5.0	0.40	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Benzo[b]fluoranthene	ND		5.0	0.59	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Benzo[g,h,i]perylene	ND		5.0	0.50	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Benzo[k]fluoranthene	ND		5.0	0.60	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Chrysene	ND		5.0	1.5	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Dibenz(a,h)anthracene	ND		5.0	0.72	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Fluoranthene	ND		5.0	1.4	ug/Kg		05/22/17 09:33	05/30/17 12:51	1
Fluorene	ND		5.0	0.50	ug/Kg		05/22/17 09:33	05/30/17 12:51	1

TestAmerica Seattle

Page 96 of 241

7/6/2017

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-246467/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 247152	Prep Batch: 246467

	MB MB							
Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND —	5.0	0.60 u	ıg/Kg		05/22/17 09:33	05/30/17 12:51	1
Naphthalene	ND	5.0	0.80 u	ıg/Kg		05/22/17 09:33	05/30/17 12:51	1
Phenanthrene	ND	5.0	0.69 u	ıg/Kg		05/22/17 09:33	05/30/17 12:51	1
Pyrene	ND	5.0	0.97 u	ıg/Kg		05/22/17 09:33	05/30/17 12:51	1
	445 445							

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	83		68 - 138	05/22/17 09:33	05/30/17 12:51	1

Lab Sample ID: LCS 580-246467/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 247152 **Prep Batch: 246467**

Analysis Batch. 247 132	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	1000	924		ug/Kg		92	71 - 118
2-Methylnaphthalene	1000	932		ug/Kg		93	75 ₋ 119
Acenaphthene	1000	949		ug/Kg		95	68 - 116
Acenaphthylene	1000	1000		ug/Kg		100	68 - 120
Anthracene	1000	1030		ug/Kg		103	73 - 125
Benzo[a]anthracene	1000	1010		ug/Kg		101	66 - 119
Benzo[a]pyrene	1000	1060		ug/Kg		106	72 - 124
Benzo[b]fluoranthene	1000	937		ug/Kg		94	63 - 121
Benzo[g,h,i]perylene	1000	975		ug/Kg		97	63 - 124
Benzo[k]fluoranthene	1000	986		ug/Kg		99	63 - 129
Chrysene	1000	999		ug/Kg		100	69 - 120
Dibenz(a,h)anthracene	1000	962		ug/Kg		96	70 - 125
Fluoranthene	1000	985		ug/Kg		98	65 - 125
Fluorene	1000	1000		ug/Kg		100	66 - 121
Indeno[1,2,3-cd]pyrene	1000	984		ug/Kg		98	65 - 121
Naphthalene	1000	924		ug/Kg		92	70 - 112
Phenanthrene	1000	930		ug/Kg		93	73 - 106
Pyrene	1000	920		ug/Kg		92	64 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Terphenyl-d14 68 - 138

Lab Sample ID: 580-68287-71 MS Client Sample ID: LPW17-SL-GSP-W-01 Matrix: Solid **Prep Type: Total/NA**

Analysis Batch: 247152	Sample	Sample	Spike	MS	MS				Prep Batch: 246467 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	870		1600	2170		ug/Kg	<u> </u>	81	71 - 118
2-Methylnaphthalene	1200	F1	1600	2400	F1	ug/Kg	☼	72	75 - 119
Acenaphthene	58		1600	1550		ug/Kg	☼	93	68 - 116
Acenaphthylene	ND		1600	1410		ug/Kg	₽	88	68 - 120
Anthracene	20		1600	1600		ug/Kg	₩	99	73 - 125
Benzo[a]anthracene	7.0	JB	1600	1530		ug/Kg	₩	95	66 - 119
Benzo[a]pyrene	2.9	J	1600	1490		ug/Kg	₩.	93	72 - 124
Benzo[b]fluoranthene	13		1600	1370		ug/Kg	☼	85	63 - 121

TestAmerica Seattle

Page 97 of 241

MS MS

1360

1330

1460

1350

1550

1630

1450

1870

1510

1470

Result Qualifier

Unit

ug/Kg

TestAmerica Job ID: 580-68287-1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Spike

Added

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

Lab Sample ID: 580-68287-71 MS

Sample Sample

3.7 J

4.7 J

19

1.2

43

120

4.0

630

98

74

Result Qualifier

Matrix: Solid

Analysis Batch: 247152

Analyte

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Client Sample ID: LPW17-SL-GSP-W-01 Prep Type: Total/NA

Prep Batch: 246467 %Rec. D %Rec Limits ₩ 85 63 - 124 ₩ 83 63 - 129 90 69 - 120 ∜ 85 70 - 125 ₩ 94 65 - 125 ₩ 94 66 - 121 ₩ 90 65 - 121 . . 78 70 - 112 ₩

73 - 106

64 - 120

MS MS Surrogate %Recovery Qualifier Limits 68 - 138 Terphenyl-d14 74

Lab Sample ID: 580-68287-71 MSD

Matrix: Solid

Analysis Batch: 247152

Client Sample ID: LPW17-SL-GSP-W-01

89

87

₩

Prep Type: Total/NA Pren Batch: 246467

Analysis Batch: 24/152	Sample	Sample	Spike	MSD	MSD				%Rec.	itcn: 24	RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	870		1650	2510		ug/Kg	<u>∓</u>	99	71 - 118	15	40
2-Methylnaphthalene	1200	F1	1650	2790		ug/Kg	☼	93	75 - 119	15	40
Acenaphthene	58		1650	1300		ug/Kg	₩	75	68 - 116	18	40
Acenaphthylene	ND		1650	1320		ug/Kg		80	68 - 120	7	40
Anthracene	20		1650	1640		ug/Kg	₩	98	73 - 125	2	40
Benzo[a]anthracene	7.0	JB	1650	1660		ug/Kg	☼	100	66 - 119	8	40
Benzo[a]pyrene	2.9	J	1650	1540		ug/Kg	₩.	93	72 - 124	3	40
Benzo[b]fluoranthene	13		1650	1350		ug/Kg	☼	81	63 - 121	2	40
Benzo[g,h,i]perylene	3.7	J	1650	1400		ug/Kg	☼	85	63 - 124	3	40
Benzo[k]fluoranthene	4.7	J	1650	1440		ug/Kg		87	63 - 129	8	40
Chrysene	19		1650	1570		ug/Kg	₩	94	69 - 120	7	40
Dibenz(a,h)anthracene	1.2	J	1650	1420		ug/Kg	☼	86	70 - 125	5	40
Fluoranthene	43		1650	1600		ug/Kg	₩.	94	65 - 125	3	40
Fluorene	120		1650	1470		ug/Kg	₩	81	66 - 121	10	40
Indeno[1,2,3-cd]pyrene	4.0	J	1650	1460		ug/Kg	☼	88	65 - 121	0	40
Naphthalene	630		1650	1950		ug/Kg	₩	80	70 - 112	4	40
Phenanthrene	98		1650	1580		ug/Kg	☼	89	73 - 106	4	40
Pyrene	74		1650	1530		ug/Kg	☼	88	64 - 120	4	40

MSD MSD

%Recovery Qualifier Limits Surrogate 68 - 138 Terphenyl-d14 75

TestAmerica Seattle

Page 98 of 241

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Ahtna Engineering Services LLC

Project/Site: Little Port Walter AK

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 580-245940/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Analysis Batch: 245984 **Prep Batch: 245940**

MR MR

	IVID IVID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND —	4.0	1.2 mg/Kg		05/16/17 08:55	05/16/17 14:23	1

-C6-C10

	MB MB				
Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	102	50 - 150	05/16/17 08:55	05/16/17 14:23	1
4-Bromofluorobenzene (Surr)	96	50 - 150	05/16/17 08:55	05/16/17 14:23	1

Lab Sample ID: LCS 580-245940/2-A

Matrix: Solid

Rec.
imits
0 - 120
iı

-C6-C10

LCS LCS Surrogate %Recovery Qualifier Limits 50 - 150 Trifluorotoluene (Surr) 97 50 - 150 4-Bromofluorobenzene (Surr) 96

Lab Sample ID: LCSD 580-245940/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 245984							Prep Ba	atch: 24	45940
_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	40.0	40.0		mg/Kg		100	60 - 120	1	20

-C6-C10

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	98		50 - 150
4-Bromofluorobenzene (Surr)	96		50 ₋ 150

Lab Sample ID: 580-68287-7 MS Client Sample ID: LPW17-SL-WeirP-03(2.5) Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 245984									Prep B	atch: 245940
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	ND		102	94.2		mg/Kg	₩	92	60 - 120	

-C6-C10

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	27	X	50 - 150
4-Bromofluorobenzene (Surr)	97		50 - 150

TestAmerica Seattle

7/6/2017

60 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 246738

Prep Type: Total/NA

Client: Ahtna Engineering Services LLC

Project/Site: Little Port Walter AK

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

ND

Lab Sample ID: 580-68287-7	Client Sample ID: LPW17-SL-WeirP-03(2.5										
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 245984									Prep Ba	atch: 24	15940
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

mg/Kg

102

-C6-C10

MSD MSD Surrogate %Recovery Qualifier Limits 26 X Trifluorotoluene (Surr) 50 - 150 4-Bromofluorobenzene (Surr) 50 - 150 98

Lab Sample ID: MB 580-246738/1-A **Client Sample ID: Method Blank**

Matrix: Solid Analysis Batch: 246740

Gasoline Range Organics (GRO)

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND		4.0	1.2	mg/Kg		05/24/17 12:00	05/24/17 12:49	1
-C6-C10									

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 05/24/17 12:00 05/24/17 12:49 Trifluorotoluene (Surr) 94 50 - 150 05/24/17 12:00 05/24/17 12:49 4-Bromofluorobenzene (Surr) 95 50 - 150

Lab Sample ID: LCS 580-246738/2-A

Matrix: Solid

Analysis Batch: 246740

Prep Batch: 246738 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Gasoline Range Organics (GRO) 40.0 36.5 mg/Kg 91 60 - 120

-C6-C10

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
Trifluorotoluene (Surr)	92	50 - 150
4-Bromofluorobenzene (Surr)	95	50 - 150

Lab Sample ID: LCSD 580-246738/3-A

Matrix: Solid							Prep Ty	pe: Tot	al/NA
Analysis Batch: 246740							Prep Ba	itch: 24	46738
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	40.0	38.6		mg/Kg		97	60 - 120	5	20

-C6-C10

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	93		50 - 150
4-Bromofluorobenzene (Surr)	98		50 ₋ 150

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Prep Type: Total/NA

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: 580-68287-14 I	MS				Client Sample ID: LF	PW17-SL-HMP-02(2.5)
Matrix: Solid						Prep Type: Total/NA
Analysis Batch: 246740						Prep Batch: 246738
	Sample	Sample	Spike	MS MS		%Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 29.1 26.4 ND mg/Kg 91 60 - 120 Gasoline Range Organics (GRO)

-C6-C10

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	31	X	50 - 150
4-Bromofluorobenzene (Surr)	96		50 - 150

Lab Sample ID: 580-68287-14 MSD Client Sample ID: LPW17-SL-HMP-02(2.5)

Matrix: Solid

Analysis Batch: 246740									Prep Ba	atch: 24	46738
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	ND		29.1	26.4	-	mg/Kg		91	60 - 120	0	20

-C6-C10

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	30	X	50 - 150
4-Bromofluorobenzene (Surr)	98		50 ₋ 150

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 580-246328/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 246473** Prep Batch: 246328

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac DRO (nC10-<nC25) $\overline{\mathsf{ND}}$ 20 6.1 mg/Kg 05/19/17 10:38 05/22/17 17:15 RRO (nC25-nC36) ND 50 11 mg/Kg 05/19/17 10:38 05/22/17 17:15

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 91 50 - 150 05/19/17 10:38 05/22/17 17:15 n-Triacontane-d62 60 50 - 150 05/19/17 10:38 05/22/17 17:15

Lab Sample ID: MB 580-246328/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 246650 Prep Batch: 246328 MB MB

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>ND</th><th>20</th><th>6.1</th><th>mg/Kg</th><th></th><th>05/19/17 10:38</th><th>05/23/17 17:59</th><th>1</th></nc25)<>	ND	20	6.1	mg/Kg		05/19/17 10:38	05/23/17 17:59	1
RRO (nC25-nC36)	ND	50	11	mg/Kg		05/19/17 10:38	05/23/17 17:59	1
	MD MD							

	IVID	INID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150	05/19/17 10:38	05/23/17 17:59	1
n-Triacontane-d62	81		50 - 150	05/19/17 10:38	05/23/17 17:59	1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: LCS 580-246328/2-A	Client Sample ID: Lab Control Sample

Matrix: Solid

Chent Sample	in: rap control sample
	Prep Type: Total/NA

Analysis Batch: 2464/3	Spike	LCS	LCS				%Rec.	tcn: 246328
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (nC10- <nc25)< td=""><td>503</td><td>453</td><td>-</td><td>mg/Kg</td><td></td><td>90</td><td>75 - 125</td><td></td></nc25)<>	503	453	-	mg/Kg		90	75 - 125	
RRO (nC25-nC36)	503	465		mg/Kg		92	60 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 85 50 - 150 n-Triacontane-d62 73 50 - 150

Lab Sample ID: LCSD 580-246328/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 246473

Prep Type: Total/NA

Prep Batch: 246328

Spike LCSD LCSD %Rec. **RPD** Limit Added Result Qualifier Limits RPD Analyte Unit D %Rec DRO (nC10-<nC25) 503 460 mg/Kg 91 75 - 125 2 20 503 RRO (nC25-nC36) 477 mg/Kg 95 60 - 120 2 20

LCSD LCSD Surrogate %Recovery Qualifier Limits o-Terphenyl 85 50 - 150 n-Triacontane-d62 72 50 - 150

Lab Sample ID: 580-68287-7 MS Client Sample ID: LPW17-SL-WeirP-03(2.5)

Matrix: Solid

Analysis Batch: 246650

Prep Type: Total/NA Prep Batch: 246328

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Limits **Analyte** Unit D %Rec DRO (nC10-<nC25) 44 J 1130 ₩ 952 mg/Kg 80 75 - 125 RRO (nC25-nC36) 97 J 1130 1180 mg/Kg ₩ 95 60 - 120

MS MS Surrogate %Recovery Qualifier I imits o-Terphenyl 77 50 - 150 77 n-Triacontane-d62 50 - 150

Lab Sample ID: 580-68287-7 MSD Client Sample ID: LPW17-SL-WeirP-03(2.5)

Matrix: Solid

Analysis Batch: 246650

Prep Type: Total/NA Prep Batch: 246328 RPD %Rec.

MSD MSD Sample Sample Spike RPD Analyte Result Qualifier Added Result Qualifier %Rec Limits Limit Unit D ☼ 75 - 125 DRO (nC10-<nC25) J 1150 951 79 20 44 mg/Kg n RRO (nC25-nC36) 97 J 1150 1250 mg/Kg ₩ 101 60 - 120 20

MSD MSD Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 76 n-Triacontane-d62 73 50 - 150

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

America 300 iD. 300-00207-1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: MB 580-246440/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 247366

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 246440

ı	Analysis Batch. 247000								i rep Dateii.	L-10-1-10
I	-	MB	MB						-	
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	DRO (nC10- <nc25)< td=""><td>ND</td><td></td><td>20</td><td>6.1</td><td>mg/Kg</td><td></td><td>05/20/17 12:17</td><td>06/01/17 14:33</td><td>1</td></nc25)<>	ND		20	6.1	mg/Kg		05/20/17 12:17	06/01/17 14:33	1
	RRO (nC25-nC36)	ND		50	11	mg/Kg		05/20/17 12:17	06/01/17 14:33	1
		МВ	МВ							
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	o-Terphenyl	88		50 - 150				05/20/17 12:17	06/01/17 14:33	1
	n-Triacontane-d62	92		50 - 150				05/20/17 12:17	06/01/17 14:33	1

Lab Sample ID: LCS 580-246440/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 246482

Prep Type: Total/NA Prep Batch: 246440

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Analyte Unit DRO (nC10-<nC25) 503 443 mg/Kg 88 75 - 125 RRO (nC25-nC36) 503 423 mg/Kg 84 60 - 120

 Surrogate
 %Recovery o-Terphenyl
 Qualifier
 Limits

 n-Triacontane-d62
 66
 50 - 150

Lab Sample ID: LCSD 580-246440/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 246482

Prep Batch: 246440

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec DRO (nC10-<nC25) 503 427 mg/Kg 85 75 - 125 20 4 RRO (nC25-nC36) 503 409 mg/Kg 60 - 120 20

 Surrogate
 %Recovery o-Terphenyl
 Qualifier
 Limits

 n-Triacontane-d62
 63
 50 - 150

Lab Sample ID: 580-68287-14 MS Client Sample ID: LP

Matrix: Solid

Analysis Batch: 246482

Client Sample ID: LPW17-SL-HMP-02(2.5) Prep Type: Total/NA

Prep Batch: 246440 %Rec.

MS MS Sample Sample Spike Analyte Result Qualifier Added Result Qualifier %Rec Unit D Limits 1430 F1 ☼ DRO (nC10-<nC25) 1700 F1 F2 711 -34 mg/Kg 75 - 125 RRO (nC25-nC36) 3700 F2 711 2640 4 mg/Kg ₩ -152 60 - 120

 Surrogate
 %Recovery o-Terphenyl
 Qualifier of 50 - 150
 Limits of 50 - 150

 n-Triacontane-d62
 90
 50 - 150

TestAmerica Seattle

Л

_

6

8

10

11

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: 580-68287-14 MSD Client Sample ID: LPW17-SL-HMP-02(2.5)

Matrix: Solid

(Continued)

Prep Type: Total/NA **Prep Batch: 246440 Analysis Batch: 246482**

Sample Sample Spike MSD MSD RPD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit DRO (nC10-<nC25) 1700 F1 F2 660 1130 F1 F2 mg/Kg ₩ -81 75 - 125 23 20 Ö RRO (nC25-nC36) 3700 F2 661 32 20 1910 4 F2 mg/Kg -274 60 - 120

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 74 n-Triacontane-d62 88 50 - 150

Lab Sample ID: 580-68287-71 MS Client Sample ID: LPW17-SL-GSP-W-01

Matrix: Solid

Prep Batch: 246440 Analysis Batch: 246593 Sample Sample Spike MS MS

%Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec 77 DRO (nC10-<nC25) 9000 F2 942 6760 4 mg/Kg -241 75 - 125 RRO (nC25-nC36) 200 F2 942 972 mg/Kg 81 60 - 120

MS MS

Limits Surrogate %Recovery Qualifier o-Terphenyl 102 50 - 150 n-Triacontane-d62 83 50 - 150

Lab Sample ID: 580-68287-71 MSD Client Sample ID: LPW17-SL-GSP-W-01

Matrix: Solid

Analysis Batch: 246593

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D DRO (nC10-<nC25) 9000 F2 791 4200 4 F2 ₩ mg/Kg -610 75 - 125 47 20 mg/Kg RRO (nC25-nC36) 791 ά 70 200 F2 760 F2 60 - 120 24 20

MSD MSD %Recovery Qualifier Surrogate I imits

o-Terphenyl 91 50 - 150 n-Triacontane-d62 77 50 - 150

Lab Sample ID: MB 580-246621/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 246770 Prep Batch: 246621 MR MR **MDL** Unit Analyzed Dil Fac Analyte Result Qualifier RL Prepared

05/23/17 11:51 05/24/17 18:27 DRO (nC10-<nC25) 20 $\overline{\mathsf{ND}}$ 6.1 mg/Kg RRO (nC25-nC36) ND 50 mg/Kg 05/23/17 11:51 05/24/17 18:27

MB MB Dil Fac Surrogate Qualifier Limits %Recovery Prepared Analyzed

50 - 150 o-Terphenyl 89 05/23/17 11:51 05/24/17 18:27 n-Triacontane-d62 90 50 - 150 05/23/17 11:51 05/24/17 18:27

TestAmerica Seattle

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 246440

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: LCS 580-2 Matrix: Solid Analysis Batch: 246770	246621/2-A					Clier	nt Sai	mple ID	2: Lab Control Sample Prep Type: Total/NA Prep Batch: 246621
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
DRO (nC10- <nc25)< td=""><td></td><td></td><td>503</td><td>481</td><td>-</td><td>mg/Kg</td><td></td><td>96</td><td>75 - 125</td></nc25)<>			503	481	-	mg/Kg		96	75 - 125
RRO (nC25-nC36)			503	490		mg/Kg		97	60 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	81		50 - 150						
n-Triacontane-d62	88		50 - 150						

Lab Sample ID: LCSD 580-246621/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 246770 Prep Batch: 246621** Spike LCSD LCSD %Rec. **RPD** Result Qualifier Unit Limit Analyte Added D %Rec Limits RPD DRO (nC10-<nC25) 503 511 mg/Kg 102 75 - 125 6 20 RRO (nC25-nC36) 503 523 mg/Kg 104 60 - 120 7 20

Surrogate %Recovery Qualifier Limits o-Terphenyl 87 50 - 150 n-Triacontane-d62 91 50 - 150

LCSD LCSD

Lab Sample ID: 580-68287-23 MS Client Sample ID: LPW17-Bkgd-WH-02(1) **Matrix: Solid Prep Type: Total/NA**

Prep Batch: 246621

Analysis Batch: 246770 Sample Sample Spike MS MS %Rec.

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (nC10- <nc25)< th=""><th>43</th><th>Н</th><th>772</th><th>826</th><th>Н</th><th>mg/Kg</th><th>₩</th><th>101</th><th>75 - 125</th><th></th></nc25)<>	43	Н	772	826	Н	mg/Kg	₩	101	75 - 125	
RRO (nC25-nC36)	210	Н	772	1130	Н	mg/Kg	≎	119	60 - 120	
	MS	MS								
Surre mete	0/ December 1		Limita							

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	80		50 - 150
n-Triacontane-d62	88		50 - 150

Lab Sample ID: 580-68287-23 MSD Client Sample ID: LPW17-Bkgd-WH-02(1) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 246770									Prep Ba	Prep Batch: 246621		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
DRO (nC10- <nc25)< td=""><td>43</td><td>Н</td><td>740</td><td>758</td><td>Н</td><td>mg/Kg</td><td>₩</td><td>97</td><td>75 - 125</td><td>9</td><td>20</td></nc25)<>	43	Н	740	758	Н	mg/Kg	₩	97	75 - 125	9	20	
RRO (nC25-nC36)	210	Н	740	948	Н	mg/Kg	₩	100	60 - 120	17	20	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	79		50 - 150
n-Triacontane-d62	90		50 - 150

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 580-246022/22-A

Lab Sample ID: LCS 580-246022/23-A

Matrix: Solid

Analysis Batch: 246144

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 246022

Prep Type: Total/NA

Prep Batch: 246022

Prep Type: Total/NA

Prep Batch: 246145

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.50	0.10	mg/Kg		05/16/17 14:16	05/17/17 11:21	10
Chromium	ND		0.50	0.063	mg/Kg		05/16/17 14:16	05/17/17 11:21	10
Copper	ND		1.0	0.22	mg/Kg		05/16/17 14:16	05/17/17 11:21	10
Lead	ND		0.50	0.048	mg/Kg		05/16/17 14:16	05/17/17 11:21	10

MD MD

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 246144

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	201		mg/Kg		101	80 - 120	
Chromium	20.0	20.4		mg/Kg		102	80 - 120	
Copper	25.0	25.5		mg/Kg		102	80 - 120	
Lead	50.0	48.7		mg/Kg		97	80 - 120	

Lab Sample ID: LCSD 580-246022/24-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 246144

Prep Batch: 246022 Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Arsenic 200 195 mg/Kg 98 80 - 120 3 20 20.0 Chromium 19.7 mg/Kg 98 80 - 120 20 25.0 Copper 24.9 mg/Kg 99 80 - 120 2 20 Lead 50.0 47.8 mg/Kg 80 - 120 20

Lab Sample ID: MB 580-246145/21-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 246300

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	ND		0.50	0.10	mg/Kg		05/17/17 15:12	05/18/17 12:19	10	
Chromium	ND		0.50	0.063	mg/Kg		05/17/17 15:12	05/18/17 12:19	10	
Copper	ND		1.0	0.22	mg/Kg		05/17/17 15:12	05/18/17 12:19	10	
Lead	ND		0.50	0.048	mg/Kg		05/17/17 15:12	05/18/17 12:19	10	

Lab Sample ID: LCS 580-246145/22-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 246300

Analysis Batch: 246300							Prep Batch: 246145
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	200	203		mg/Kg		101	80 - 120
Chromium	20.0	19.5		mg/Kg		97	80 - 120
Copper	25.0	25.5		mg/Kg		102	80 - 120
Lead	50.0	47.2		mg/Kg		94	80 - 120

80 - 120

80 - 120

103

94

mg/Kg

mg/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Copper

Lead

Lead

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-246145/23-A	Client Sample ID: Lab Control Sample Dup								
Matrix: Solid						Prep Ty	pe: Tot	al/NA	
Analysis Batch: 246300							Prep Ba	atch: 24	46145
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	200	205		mg/Kg		103	80 - 120	1	20
Chromium	20.0	19.7		mg/Kg		99	80 - 120	2	20

25.7

47.2

25.0

50.0

Lab Sample ID: 580-68287-32 MS Client Sample ID: LPW17-SL-WeirT-03D(0.5) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 246300 Prep Batch: 246145** Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 3890 ☼ Arsenic 240 3440 mg/Kg 106 80 - 120 ₩ 370 344 692 Chromium mg/Kg 94 80 - 120 430 ₩ 650 1140 mg/Kg 115 80 - 120 Copper ₩ 2300 F1 860 3340 F1 mg/Kg 125 80 - 120

Lab Sample ID: 580-68287-32 MSD Client Sample ID: LPW17-SL-WeirT-03D(0.5) **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 246300 **Prep Batch: 246145** Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit D ₩ Arsenic 240 4000 4390 mg/Kg 104 80 - 120 12 20 mg/Kg ☼ Chromium 370 400 743 94 80 - 120 7 20 500 Ö Copper 650 1160 mg/Kg 102 80 - 120 20 Lead 2300 F1 999 3190 mg/Kg ₽ 93 80 - 120 20

Lab Sample ID: 580-68287-32 DU Client Sample ID: LPW17-SL-WeirT-03D(0.5) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 246300 Prep Batch: 246145** DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** Arsenic 240 249 ₩ mg/Kg 5 20 ť Chromium 370 360 mg/Kg 2 20 mg/Kg ₩ 650 765 20 Copper 16 Lead 2300 F1 2790 F3 mg/Kg

Lab Sample ID: MB 580-246236/21-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 246300**

MB MB **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Arsenic $\overline{\mathsf{ND}}$ 0.50 0.10 mg/Kg 05/18/17 11:56 05/18/17 16:40 10 Chromium ND 0.50 0.063 mg/Kg 05/18/17 16:40 10 05/18/17 11:56 Copper ND 1.0 0.22 mg/Kg 05/18/17 11:56 05/18/17 16:40 10 ND 0.50 0.048 mg/Kg 05/18/17 11:56 05/18/17 16:40 Lead 10

TestAmerica Seattle

20

20

Limit

20

Prep Batch: 246236

2

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 580-246236/22-A

Matrix: Solid

Analysis Batch: 246300

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 246236

%Rec.

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	201		mg/Kg		101	80 - 120	
Chromium	20.0	19.5		mg/Kg		97	80 - 120	
Copper	25.0	25.0		mg/Kg		100	80 - 120	
Lead	50.0	46.9		mg/Kg		94	80 - 120	

Lab Sample ID: LCSD 580-246236/23-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Matrix: Solid Analysis Batch: 246300** Prep Batch: 246236 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 200 Arsenic 203 mg/Kg 101 80 - 120 1 20 20.0 19.3 20 Chromium mg/Kg 97 80 - 120 1 Copper 25.0 25.5 mg/Kg 102 80 - 120 2 20 50.0 47.8 80 - 120 20 Lead mg/Kg 96 2

Lab Sample ID: MB 580-246480/20-A

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 246480

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed 0.25 Arsenic $\overline{\mathsf{ND}}$ 0.050 mg/Kg 05/22/17 10:05 05/22/17 17:16 Chromium ND 0.25 0.032 mg/Kg 05/22/17 10:05 05/22/17 17:16 5 Copper ND 0.50 0.11 mg/Kg 05/22/17 10:05 05/22/17 17:16 5 Lead ND 0.25 0.024 mg/Kg 05/22/17 10:05 05/22/17 17:16

Lab Sample ID: LCS 580-246480/21-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 246480 Analysis Batch: 246576** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Arsenic 200 193 96 80 - 120 mg/Kg Chromium 20.0 18.5 mg/Kg 93 80 - 120 25.0 24.1 mg/Kg 97 80 - 120 Copper 50.0 90 Lead 45.2 mg/Kg 80 - 120

Lab Sample ID: LCSD 580-246480/22-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 246576** Prep Batch: 246480 LCSD LCSD Spike %Rec. **RPD Analyte** Added Result Qualifier Unit %Rec I imits RPD Limit Arsenic 200 194 mg/Kg 97 80 - 120 20 Chromium 20.0 19.1 mg/Kg 96 80 - 120 20 3 Copper 25.0 24.2 mg/Kg 97 80 - 120 20 50.0 45.4 91 80 - 120 20 Lead mg/Kg

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 6020A - Metals (ICP/MS) (Continued)

MD MD

Lab Sample ID: MB 580-246491/17-A

Lab Sample ID: LCS 580-246491/18-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 246491

epared Analyzed	D11 E
spareu Anaryzeu	Dil Fac
<u>/17 11:58</u>	5
/17 11:58 05/22/17 21:16	5
/17 11:58 05/22/17 21:16	5
5/22	5/22/17 11:58 05/22/17 21:16 5/22/17 11:58 05/22/17 21:16 5/22/17 11:58 05/22/17 21:16 5/22/17 21:16 05/22/17 21:16

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 246491

Analysis Batch: 246576 Spike LCS LCS %Rec. Result Qualifier Analyte Added l imits Unit D %Rec 200 201 80 - 120 Arsenic mg/Kg 101 20.0 Chromium 19.6 mg/Kg 98 80 - 120 50.0 47.5 95 Lead mg/Kg 80 - 120

Lab Sample ID: LCSD 580-246491/19-A

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 246491

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Limits **RPD** Limit **Analyte** Unit D %Rec Arsenic 200 201 mg/Kg 101 80 - 120 0 20 Chromium 20.0 194 mg/Kg 97 80 - 120 20 50.0 47.9 Lead mg/Kg 96 80 - 120 20

Lab Sample ID: 580-68287-67 MS

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: LPW17-SL-WHL-02(0.5)

Prep Type: Total/NA **Prep Batch: 246491**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ Arsenic 23 245 267 mq/Kq 100 80 - 120 Chromium 37 F1 24 5 63 1 mg/Kg ₩ 107 80 - 120176 F1 Lead 130 F1 F2 61.1 mg/Kg 80 - 120

Lab Sample ID: 580-68287-67 MSD

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: LPW17-SL-WHL-02(0.5)

Prep Type: Total/NA **Prep Batch: 246491**

%Rec. **RPD** Limits **RPD** Limit 80 - 120 20 20

Sample Sample Spike MSD MSD Result Qualifier Analyte Added Result Qualifier Unit D %Rec 77 Arsenic 23 264 325 114 mg/Kg ☼ 26.4 Chromium 37 F1 77.0 F1 mg/Kg 152 80 - 120 20 20 130 F1 F2 66.1 220 F1 F2 ₩ 130 80 - 120 Lead mq/Kq 20

Lab Sample ID: 580-68287-67 DU

Matrix: Solid

Analysis Batch: 246576

Client Sample ID: LPW17-SL-WHL-02(0.5)

Prep Type: Total/NA

Prep Batch: 246491

Analysis Baton, 240010							i icp Batcii.		7701
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	D I	Limit
Arsenic	23		21.8		mg/Kg	₩		5	20
Chromium	37	F1	36.7		mg/Kg	₩	0	4	20
Lead	130	F1 F2	129		mg/Kg	₩		5	20

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

49 - 151

%Rec.

Limits

49 - 151

%Rec.

Limits

50 - 140

%Rec.

Limits

50 - 140

%Rec

D %Rec

D %Rec

%Rec

85

91

99

102

Client Sample ID: Lab Control Sample Dup

Client Sample ID: LPW17-Bkgd-WH-02(1)

Client Sample ID: LPW17-Bkgd-WH-02(1)

Client Sample ID: LPW17-Bkgd-WH-02(1)

Client Sample ID: LPW17-SL-FBT-02(0.5)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

RPD

3

RPD

Limit

RPD

Limit

RPD

Limit

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 580-246730/3

Matrix: Solid

Analysis Batch: 246730

MB MB

Sample Sample

Sample Sample

Sample Sample

Result Qualifier

Result Qualifier

28000

28000

28000

Result Qualifier

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte **Prepared** 2000 Total Organic Carbon - Average Dup ND 44 mg/Kg 05/23/17 15:22

LCS LCS

LCSD LCSD

MS MS

MSD MSD

DU DU

29900

Result Qualifier

Result Qualifier

138000

131000

Result Qualifier

4560

Result Qualifier

4700

Result Qualifier

Unit

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Spike

Added

4620

Spike

Added

4620

Spike

Added

120000

Spike

Added

120000

Lab Sample ID: LCS 580-246730/4

Matrix: Solid

Analysis Batch: 246730

Analyte Total Organic Carbon - Average

Dup

Lab Sample ID: LCSD 580-246730/5

Matrix: Solid

Analysis Batch: 246730

Analyte

Total Organic Carbon - Average Dup

Lab Sample ID: 580-68287-23 MS

Matrix: Solid

Analysis Batch: 246730

Analyte

Total Organic Carbon - Average Dup

Lab Sample ID: 580-68287-23 MSD

Matrix: Solid

Analysis Batch: 246730

Analyte Total Organic Carbon - Average

Dup

Lab Sample ID: 580-68287-23 DU **Matrix: Solid**

Analysis Batch: 246730

Analyte

Total Organic Carbon - Average Dup

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-68287-40 DU

Matrix: Solid

Analysis Batch: 247141

Sample Sample Analyte

Percent Solids

Result Qualifier 16.9

20.8

DU DU

Result Qualifier

Unit

D

RPD RPD Limit

Prep Type: Total/NA

TestAmerica Seattle

7/6/2017

QC Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Method: D 2216 - Percent Moisture (Continued)

Lab Sample ID: 580-68287-40 DU Client Sample ID: LPW17-SL-FBT-02(0.5) **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 247141

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Moisture	83.1		 79.2		%		 	0.7	20

Client Sample ID: LPW17-SL-WAT-01(0.5) Lab Sample ID: 580-68287-56 DU **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 247141

U	RPD
ualifier Unit D RPD	Limit
 	20
% 18	20
u	% - 4 -

Lab Sample ID: 580-68287-73 DU Client Sample ID: LPW17-SL-GSP-Leak02 **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 247141

1		Sample	Sample	DU	DU				RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	Percent Solids	86.9		86.0		%		 1	20
	Percent Moisture	13.1		14.0		%		7	20

Lab Sample ID: 580-68287-15 DU Client Sample ID: LPW17-SL-OBP-01(1.5) Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 247156

-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	68.7		61.8		%		 11	20
Percent Moisture	31.3		38.2		%		20	20

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

GC/MS VOA

Prep Batch: 246134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	5035	
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	5035	
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	5035	
MB 580-246134/1-A	Method Blank	Total/NA	Solid	5035	
LCS 580-246134/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 580-246134/3-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 246158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	8260C	246134
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	8260C	246134
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	8260C	246134
MB 580-246134/1-A	Method Blank	Total/NA	Solid	8260C	246134
LCS 580-246134/2-A	Lab Control Sample	Total/NA	Solid	8260C	246134
LCSD 580-246134/3-A	Lab Control Sample Dup	Total/NA	Solid	8260C	246134

GC/MS Semi VOA

Prep Batch: 246324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	3546	
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	3546	
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	3546	
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	3546	
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	3546	
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	3546	
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	3546	
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	3546	
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	3546	
MB 580-246324/1-A	Method Blank	Total/NA	Solid	3546	
LCS 580-246324/2-A	Lab Control Sample	Total/NA	Solid	3546	
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	

Analysis Batch: 246433

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	8270D SIM	246324
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	8270D SIM	246324
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	8270D SIM	246324
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	8270D SIM	246324
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	8270D SIM	246324
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	8270D SIM	246324
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	8270D SIM	246324
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	8270D SIM	246324
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	8270D SIM	246324
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	8270D SIM	246324
MB 580-246324/1-A	Method Blank	Total/NA	Solid	8270D SIM	246324
LCS 580-246324/2-A	Lab Control Sample	Total/NA	Solid	8270D SIM	246324
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	8270D SIM	246324

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

GC/MS Semi VOA (Continued)

Analysis Batch: 246433 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	8270D SIM	246324

Prep Batch: 246436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	3546	
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	3546	
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	3546	
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	3546	
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	3546	
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	3546	
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	3546	
MB 580-246436/1-A	Method Blank	Total/NA	Solid	3546	
LCS 580-246436/2-A	Lab Control Sample	Total/NA	Solid	3546	
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	

Prep Batch: 246467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-71	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	3546	
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	3546	
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	3546	
580-68287-82	LPW17-SL-GSP-Leak04	Total/NA	Solid	3546	
MB 580-246467/1-A	Method Blank	Total/NA	Solid	3546	
LCS 580-246467/2-A	Lab Control Sample	Total/NA	Solid	3546	
580-68287-71 MS	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	
580-68287-71 MSD	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	

Analysis Batch: 246475

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	8270D SIM	246436
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	8270D SIM	246436
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	8270D SIM	246436
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	8270D SIM	246436
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	8270D SIM	246436
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	8270D SIM	246436
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	8270D SIM	246436
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	8270D SIM	246436
MB 580-246436/1-A	Method Blank	Total/NA	Solid	8270D SIM	246436
LCS 580-246436/2-A	Lab Control Sample	Total/NA	Solid	8270D SIM	246436
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	8270D SIM	246436
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	8270D SIM	246436

Analysis Batch: 247152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-71	LPW17-SL-GSP-W-01	Total/NA	Solid	8270D SIM	246467
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	8270D SIM	246467
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	8270D SIM	246467
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	8270D SIM	246467
580-68287-82	LPW17-SL-GSP-Leak04	Total/NA	Solid	8270D SIM	246467

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

GC/MS Semi VOA (Continued)

Analysis Batch: 247152 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 580-246467/1-A	Method Blank	Total/NA	Solid	8270D SIM	246467
LCS 580-246467/2-A	Lab Control Sample	Total/NA	Solid	8270D SIM	246467
580-68287-71 MS	LPW17-SL-GSP-W-01	Total/NA	Solid	8270D SIM	246467
580-68287-71 MSD	LPW17-SL-GSP-W-01	Total/NA	Solid	8270D SIM	246467

GC VOA

Prep Batch: 245940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	5035	
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	5035	
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	5035	
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	5035	
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	5035	
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	5035	
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	5035	
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	5035	
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	5035	
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	5035	
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	5035	
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	5035	
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	5035	
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	5035	
580-68287-81	Trip Blank	Total/NA	Solid	5035	
MB 580-245940/1-A	Method Blank	Total/NA	Solid	5035	
LCS 580-245940/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 580-245940/3-A	Lab Control Sample Dup	Total/NA	Solid	5035	
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	5035	
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	5035	

Analysis Batch: 245984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	AK101	245940
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	AK101	245940
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	AK101	245940
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK101	245940
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	AK101	245940
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	AK101	245940
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	AK101	245940
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	AK101	245940
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	AK101	245940
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	AK101	245940
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	AK101	245940
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	AK101	245940
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	AK101	245940
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	AK101	245940
580-68287-81	Trip Blank	Total/NA	Solid	AK101	245940
MB 580-245940/1-A	Method Blank	Total/NA	Solid	AK101	245940
LCS 580-245940/2-A	Lab Control Sample	Total/NA	Solid	AK101	245940
LCSD 580-245940/3-A	Lab Control Sample Dup	Total/NA	Solid	AK101	245940

TestAmerica Seattle

Page 114 of 241

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

GC VOA (Continued)

Analysis Batch: 245984 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK101	245940
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK101	245940

Prep Batch: 246738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	5035	
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	5035	
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	5035	
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	5035	
MB 580-246738/1-A	Method Blank	Total/NA	Solid	5035	
LCS 580-246738/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 580-246738/3-A	Lab Control Sample Dup	Total/NA	Solid	5035	
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	5035	
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	5035	

Analysis Batch: 246740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	AK101	246738
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	AK101	246738
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK101	246738
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	AK101	246738
MB 580-246738/1-A	Method Blank	Total/NA	Solid	AK101	246738
LCS 580-246738/2-A	Lab Control Sample	Total/NA	Solid	AK101	246738
LCSD 580-246738/3-A	Lab Control Sample Dup	Total/NA	Solid	AK101	246738
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK101	246738
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK101	246738

GC Semi VOA

Prep Batch: 246328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	3546	
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	3546	
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	3546	
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	3546	
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	3546	
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	3546	
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	3546	
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	3546	
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	3546	
MB 580-246328/1-A	Method Blank	Total/NA	Solid	3546	
_CS 580-246328/2-A	Lab Control Sample	Total/NA	Solid	3546	
_CSD 580-246328/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	3546	

Prep Batch: 246440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	<u> </u>

TestAmerica Seattle

Page 115 of 241

-

1

4

6

7

10

11

12

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

GC Semi VOA (Continued)

Prep Batch: 246440 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	3546	
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	3546	
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	3546	
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	3546	
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	3546	
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	3546	
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	3546	
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	3546	
580-68287-71	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	3546	
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	3546	
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	3546	
580-68287-82	LPW17-SL-GSP-Leak04	Total/NA	Solid	3546	
MB 580-246440/1-A	Method Blank	Total/NA	Solid	3546	
LCS 580-246440/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 580-246440/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	3546	
580-68287-71 MS	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	
580-68287-71 MSD	LPW17-SL-GSP-W-01	Total/NA	Solid	3546	

Analysis Batch: 246473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 580-246328/1-A	Method Blank	Total/NA	Solid	AK102 & 103	246328
LCS 580-246328/2-A	Lab Control Sample	Total/NA	Solid	AK102 & 103	246328
LCSD 580-246328/3-A	Lab Control Sample Dup	Total/NA	Solid	AK102 & 103	246328

Analysis Batch: 246482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK102 & 103	246440
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	AK102 & 103	246440
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	AK102 & 103	246440
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	AK102 & 103	246440
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	AK102 & 103	246440
LCS 580-246440/2-A	Lab Control Sample	Total/NA	Solid	AK102 & 103	246440
LCSD 580-246440/3-A	Lab Control Sample Dup	Total/NA	Solid	AK102 & 103	246440
580-68287-14 MS	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK102 & 103	246440
580-68287-14 MSD	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	AK102 & 103	246440

Analysis Batch: 246593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	AK102 & 103	246440
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	AK102 & 103	246440
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	AK102 & 103	246440
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	AK102 & 103	246440
580-68287-71	LPW17-SL-GSP-W-01	Total/NA	Solid	AK102 & 103	246440
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	AK102 & 103	246440
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	AK102 & 103	246440
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	AK102 & 103	246440
580-68287-82	LPW17-SL-GSP-Leak04	Total/NA	Solid	AK102 & 103	246440
580-68287-71 MS	LPW17-SL-GSP-W-01	Total/NA	Solid	AK102 & 103	246440

TestAmerica Seattle

Page 116 of 241

6

3

4

6

7

9

10

15

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

GC Semi VOA (Continued)

Analysis Batch: 246593 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-71 MSD	LPW17-SL-GSP-W-01	Total/NA	Solid	AK102 & 103	246440

Prep Batch: 246621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	3546	<u> </u>
MB 580-246621/1-A	Method Blank	Total/NA	Solid	3546	
LCS 580-246621/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 580-246621/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
580-68287-23 MS	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	3546	
580-68287-23 MSD	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	3546	

Analysis Batch: 246650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK102 & 103	246328
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	AK102 & 103	246328
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	AK102 & 103	246328
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	AK102 & 103	246328
MB 580-246328/1-A	Method Blank	Total/NA	Solid	AK102 & 103	246328
580-68287-7 MS	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK102 & 103	246328
580-68287-7 MSD	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	AK102 & 103	246328

Analysis Batch: 246770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	AK102 & 103	246621
MB 580-246621/1-A	Method Blank	Total/NA	Solid	AK102 & 103	246621
LCS 580-246621/2-A	Lab Control Sample	Total/NA	Solid	AK102 & 103	246621
LCSD 580-246621/3-A	Lab Control Sample Dup	Total/NA	Solid	AK102 & 103	246621
580-68287-23 MS	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	AK102 & 103	246621
580-68287-23 MSD	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	AK102 & 103	246621

Analysis Batch: 247366

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 580-246440/1-A	Method Blank	Total/NA	Solid	AK102 & 103	246440

Metals

Prep Batch: 246022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-1	LPW17-LBP-Weir-01	Total/NA	Solid	3050B	
580-68287-2	LPW17-LBP-Weir-02	Total/NA	Solid	3050B	
580-68287-3	LPW17-LBP-Weir-03	Total/NA	Solid	3050B	
580-68287-24	LPW17-SL-WeirL-01(0.5)	Total/NA	Solid	3050B	
580-68287-25	LPW17-SL-WeirL-01D(0.5)	Total/NA	Solid	3050B	
580-68287-26	LPW17-SL-WeirL-02(0.5)	Total/NA	Solid	3050B	

TestAmerica Seattle

Page 117 of 241

7/6/2017

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Metals (Continued)

Prep Batch: 246022 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-27	LPW17-SL-WeirL-03(0.5)	Total/NA	Solid	3050B	
580-68287-28	LPW17-SL-WeirL-04(0.5)	Total/NA	Solid	3050B	
580-68287-29	LPW17-SL-WeirT-01(0.5)	Total/NA	Solid	3050B	
580-68287-30	LPW17-SL-WeirT-02(0.5)	Total/NA	Solid	3050B	
580-68287-31	LPW17-SL-WeirT-03(0.5)	Total/NA	Solid	3050B	
MB 580-246022/22-A	Method Blank	Total/NA	Solid	3050B	
LCS 580-246022/23-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-246022/24-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 246144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-1	LPW17-LBP-Weir-01	Total/NA	Solid	6020A	246022
580-68287-2	LPW17-LBP-Weir-02	Total/NA	Solid	6020A	246022
580-68287-3	LPW17-LBP-Weir-03	Total/NA	Solid	6020A	246022
580-68287-24	LPW17-SL-WeirL-01(0.5)	Total/NA	Solid	6020A	246022
580-68287-25	LPW17-SL-WeirL-01D(0.5)	Total/NA	Solid	6020A	246022
580-68287-26	LPW17-SL-WeirL-02(0.5)	Total/NA	Solid	6020A	246022
580-68287-27	LPW17-SL-WeirL-03(0.5)	Total/NA	Solid	6020A	246022
580-68287-28	LPW17-SL-WeirL-04(0.5)	Total/NA	Solid	6020A	246022
580-68287-29	LPW17-SL-WeirT-01(0.5)	Total/NA	Solid	6020A	246022
580-68287-30	LPW17-SL-WeirT-02(0.5)	Total/NA	Solid	6020A	246022
580-68287-31	LPW17-SL-WeirT-03(0.5)	Total/NA	Solid	6020A	246022
MB 580-246022/22-A	Method Blank	Total/NA	Solid	6020A	246022
LCS 580-246022/23-A	Lab Control Sample	Total/NA	Solid	6020A	246022
LCSD 580-246022/24-A	Lab Control Sample Dup	Total/NA	Solid	6020A	246022

Prep Batch: 246145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-32	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	3050B	_
580-68287-33	LPW17-SL-WeirT-04(0.5)	Total/NA	Solid	3050B	
580-68287-34	LPW17-SL-PASL-01(0.5)	Total/NA	Solid	3050B	
580-68287-35	LPW17-SL-PAST-01(0.5)	Total/NA	Solid	3050B	
580-68287-36	LPW17-SL-PAST-02(0.5)	Total/NA	Solid	3050B	
580-68287-37	LPW17-SL-PAST-03(0.5)	Total/NA	Solid	3050B	
580-68287-38	LPW17-SL-PAST-Bkgd(0.5)	Total/NA	Solid	3050B	
580-68287-39	LPW17-SL-FBT-01(0.5)	Total/NA	Solid	3050B	
580-68287-40	LPW17-SL-FBT-02(0.5)	Total/NA	Solid	3050B	
580-68287-41	LPW17-SL-MBT-01(0.5)	Total/NA	Solid	3050B	
580-68287-42	LPW17-SL-MBT-02(0.5)	Total/NA	Solid	3050B	
580-68287-43	LPW17-SL-PACT-01(0.5)	Total/NA	Solid	3050B	
MB 580-246145/21-A	Method Blank	Total/NA	Solid	3050B	
LCS 580-246145/22-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-246145/23-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
580-68287-32 MS	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	3050B	
580-68287-32 MSD	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	3050B	
580-68287-32 DU	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	3050B	

Prep Batch: 246236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-44	LPW17-SL-PACT-01D(0.5)	Total/NA	Solid	3050B	<u> </u>
580-68287-45	LPW17-SL-PACT-02(0.5)	Total/NA	Solid	3050B	

TestAmerica Seattle

Page 118 of 241

G

3

0

8

9

10

15

1

monoa ocatii

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Metals (Continued)

Prep Batch: 246236 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-46	LPW17-SL-CCBT-01(0.5)	Total/NA	Solid	3050B	
580-68287-47	LPW17-SL-CCBT-02(0.5)	Total/NA	Solid	3050B	
580-68287-48	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	3050B	
580-68287-49	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	3050B	
580-68287-50	LPW17-SL-CCL-02(0.5)	Total/NA	Solid	3050B	
580-68287-51	LPW17-SL-CCL-03(0.5)	Total/NA	Solid	3050B	
580-68287-52	LPW17-SL-GSL-01(0.5)	Total/NA	Solid	3050B	
580-68287-53	LPW17-SL-GSL-02(0.5)	Total/NA	Solid	3050B	
580-68287-54	LPW17-SL-INT-01(0.5)	Total/NA	Solid	3050B	
580-68287-55	LPW17-SL-INT-02(0.5)	Total/NA	Solid	3050B	
580-68287-56	LPW17-SL-WAT-01(0.5)	Total/NA	Solid	3050B	
580-68287-57	LPW17-SL-WAT-02(0.5)	Total/NA	Solid	3050B	
580-68287-58	LPW17-SL-WSL-01(0.5)	Total/NA	Solid	3050B	
MB 580-246236/21-A	Method Blank	Total/NA	Solid	3050B	
LCS 580-246236/22-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-246236/23-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 246300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-32	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	6020A	246145
580-68287-33	LPW17-SL-WeirT-04(0.5)	Total/NA	Solid	6020A	246145
580-68287-34	LPW17-SL-PASL-01(0.5)	Total/NA	Solid	6020A	246145
580-68287-35	LPW17-SL-PAST-01(0.5)	Total/NA	Solid	6020A	246145
580-68287-36	LPW17-SL-PAST-02(0.5)	Total/NA	Solid	6020A	246145
580-68287-37	LPW17-SL-PAST-03(0.5)	Total/NA	Solid	6020A	246145
580-68287-38	LPW17-SL-PAST-Bkgd(0.5)	Total/NA	Solid	6020A	246145
580-68287-39	LPW17-SL-FBT-01(0.5)	Total/NA	Solid	6020A	246145
580-68287-40	LPW17-SL-FBT-02(0.5)	Total/NA	Solid	6020A	246145
580-68287-41	LPW17-SL-MBT-01(0.5)	Total/NA	Solid	6020A	246145
580-68287-42	LPW17-SL-MBT-02(0.5)	Total/NA	Solid	6020A	246145
580-68287-43	LPW17-SL-PACT-01(0.5)	Total/NA	Solid	6020A	246145
580-68287-44	LPW17-SL-PACT-01D(0.5)	Total/NA	Solid	6020A	246236
580-68287-45	LPW17-SL-PACT-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-46	LPW17-SL-CCBT-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-47	LPW17-SL-CCBT-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-48	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-49	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-50	LPW17-SL-CCL-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-51	LPW17-SL-CCL-03(0.5)	Total/NA	Solid	6020A	246236
580-68287-52	LPW17-SL-GSL-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-53	LPW17-SL-GSL-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-54	LPW17-SL-INT-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-55	LPW17-SL-INT-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-56	LPW17-SL-WAT-01(0.5)	Total/NA	Solid	6020A	246236
580-68287-57	LPW17-SL-WAT-02(0.5)	Total/NA	Solid	6020A	246236
580-68287-58	LPW17-SL-WSL-01(0.5)	Total/NA	Solid	6020A	246236
MB 580-246145/21-A	Method Blank	Total/NA	Solid	6020A	24614
MB 580-246236/21-A	Method Blank	Total/NA	Solid	6020A	246236
LCS 580-246145/22-A	Lab Control Sample	Total/NA	Solid	6020A	24614
LCS 580-246236/22-A	Lab Control Sample	Total/NA	Solid	6020A	246236
LCSD 580-246145/23-A	Lab Control Sample Dup	Total/NA	Solid	6020A	246145

TestAmerica Seattle

А

5

7

10

12

L

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Metals (Continued)

Analysis Batch: 246300 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 580-246236/23-A	Lab Control Sample Dup	Total/NA	Solid	6020A	246236
580-68287-32 MS	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	6020A	246145
580-68287-32 MSD	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	6020A	246145
580-68287-32 DU	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	6020A	246145

Prep Batch: 246480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-59	LPW17-SL-WSL-02(0.5)	Total/NA	Solid	3050B	_
580-68287-60	LPW17-SL-WSL-03(0.5)	Total/NA	Solid	3050B	
580-68287-61	LPW17-SL-WHBT-01(0.5)	Total/NA	Solid	3050B	
580-68287-62	LPW17-SL-WHBT-02(0.5)	Total/NA	Solid	3050B	
580-68287-63	LPW17-SL-WHDT-01(0.5)	Total/NA	Solid	3050B	
580-68287-64	LPW17-SL-WHDT-02(0.5)	Total/NA	Solid	3050B	
580-68287-65	LPW17-SL-WHDT-02D(0.5)	Total/NA	Solid	3050B	
580-68287-66	LPW17-SL-WHL-01(0.5)	Total/NA	Solid	3050B	
MB 580-246480/20-A	Method Blank	Total/NA	Solid	3050B	
LCS 580-246480/21-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-246480/22-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Prep Batch: 246491

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-67	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	3050B	_
580-68287-68	LPW17-SL-WHL-03(0.5)	Total/NA	Solid	3050B	
580-68287-69	LPW17-SL-WHL-03D(0.5)	Total/NA	Solid	3050B	
580-68287-70	LPW17-SL-WHL-04(0.5)	Total/NA	Solid	3050B	
580-68287-75	LPW17-LBP-WH-01	Total/NA	Solid	3050B	
580-68287-76	LPW17-LBP-WH-02	Total/NA	Solid	3050B	
580-68287-77	LPW17-LBP-WH-03	Total/NA	Solid	3050B	
580-68287-78	LPW17-LBP-WH-04	Total/NA	Solid	3050B	
580-68287-79	LPW17-LBP-WH-05	Total/NA	Solid	3050B	
580-68287-80	LPW17-LBP-Weir04	Total/NA	Solid	3050B	
MB 580-246491/17-A	Method Blank	Total/NA	Solid	3050B	
LCS 580-246491/18-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-246491/19-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
580-68287-67 MS	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	3050B	
580-68287-67 MSD	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	3050B	
580-68287-67 DU	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	3050B	

Analysis Batch: 246576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-59	LPW17-SL-WSL-02(0.5)	Total/NA	Solid	6020A	246480
580-68287-60	LPW17-SL-WSL-03(0.5)	Total/NA	Solid	6020A	246480
580-68287-61	LPW17-SL-WHBT-01(0.5)	Total/NA	Solid	6020A	246480
580-68287-62	LPW17-SL-WHBT-02(0.5)	Total/NA	Solid	6020A	246480
580-68287-63	LPW17-SL-WHDT-01(0.5)	Total/NA	Solid	6020A	246480
580-68287-64	LPW17-SL-WHDT-02(0.5)	Total/NA	Solid	6020A	246480
580-68287-65	LPW17-SL-WHDT-02D(0.5)	Total/NA	Solid	6020A	246480
580-68287-66	LPW17-SL-WHL-01(0.5)	Total/NA	Solid	6020A	246480
580-68287-67	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	6020A	246491
580-68287-68	LPW17-SL-WHL-03(0.5)	Total/NA	Solid	6020A	246491
580-68287-69	LPW17-SL-WHL-03D(0.5)	Total/NA	Solid	6020A	246491

TestAmerica Seattle

8

10

13

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Metals (Continued)

Analysis Batch: 246576 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-70	LPW17-SL-WHL-04(0.5)	Total/NA	Solid	6020A	246491
580-68287-75	LPW17-LBP-WH-01	Total/NA	Solid	6020A	246491
580-68287-76	LPW17-LBP-WH-02	Total/NA	Solid	6020A	246491
580-68287-77	LPW17-LBP-WH-03	Total/NA	Solid	6020A	246491
580-68287-78	LPW17-LBP-WH-04	Total/NA	Solid	6020A	246491
580-68287-79	LPW17-LBP-WH-05	Total/NA	Solid	6020A	246491
580-68287-80	LPW17-LBP-Weir04	Total/NA	Solid	6020A	246491
MB 580-246480/20-A	Method Blank	Total/NA	Solid	6020A	246480
MB 580-246491/17-A	Method Blank	Total/NA	Solid	6020A	246491
LCS 580-246480/21-A	Lab Control Sample	Total/NA	Solid	6020A	246480
LCS 580-246491/18-A	Lab Control Sample	Total/NA	Solid	6020A	246491
LCSD 580-246480/22-A	Lab Control Sample Dup	Total/NA	Solid	6020A	246480
LCSD 580-246491/19-A	Lab Control Sample Dup	Total/NA	Solid	6020A	246491
580-68287-67 MS	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	6020A	246491
580-68287-67 MSD	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	6020A	246491
580-68287-67 DU	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	6020A	246491

General Chemistry

Analysis Batch: 246450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-4	LPW17-SL-WeirP-01(2)	Total/NA	Solid	D 2216	
580-68287-5	LPW17-SL-WeirP-02(2)	Total/NA	Solid	D 2216	
580-68287-6	LPW17-SL-WeirP-02D(2)	Total/NA	Solid	D 2216	
580-68287-8	LPW17-SL-CCP-01(2)	Total/NA	Solid	D 2216	

Analysis Batch: 246595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-7	LPW17-SL-WeirP-03(2.5)	Total/NA	Solid	D 2216	

Analysis Batch: 246667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-71	LPW17-SL-GSP-W-01	Total/NA	Solid	D 2216	
580-68287-72	LPW17-SL-GSP-Leak01	Total/NA	Solid	D 2216	
580-68287-73	LPW17-SL-GSP-Leak02	Total/NA	Solid	D 2216	
580-68287-74	LPW17-SL-GSP-Leak03	Total/NA	Solid	D 2216	
580-68287-82	LPW17-SL-GSP-Leak04	Total/NA	Solid	D 2216	

Analysis Batch: 246730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-22	LPW17-Bkgd-Weir-01(1.5)	Total/NA	Solid	9060A	
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	9060A	
MB 580-246730/3	Method Blank	Total/NA	Solid	9060A	
LCS 580-246730/4	Lab Control Sample	Total/NA	Solid	9060A	
LCSD 580-246730/5	Lab Control Sample Dup	Total/NA	Solid	9060A	
580-68287-23 MS	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	9060A	
580-68287-23 MSD	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	9060A	
580-68287-23 DU	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	9060A	

TestAmerica Seattle

Page 121 of 241

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

General Chemistry (Continued)

Analysis Batch: 247136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-9	LPW17-SL-CCP-02(2)	Total/NA	Solid	D 2216	
580-68287-10	LPW17-SL-GSP-01(2)	Total/NA	Solid	D 2216	
580-68287-11	LPW17-SL-GSP-03(1.5)	Total/NA	Solid	D 2216	
580-68287-12	LPW17-SL-WSP-01(2)	Total/NA	Solid	D 2216	
580-68287-13	LPW17-SL-HMP-01(2)	Total/NA	Solid	D 2216	
580-68287-14	LPW17-SL-HMP-02(2.5)	Total/NA	Solid	D 2216	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
580-68287-18	LPW17-SL-WHP-01D(2)	Total/NA	Solid	D 2216	
580-68287-19	LPW17-SL-WHP-2(1)	Total/NA	Solid	D 2216	
580-68287-20	LPW17-SL-WHP-3(1)	Total/NA	Solid	D 2216	
580-68287-21	LPW17-SL-WHP-4(1)	Total/NA	Solid	D 2216	
580-68287-23	LPW17-Bkgd-WH-02(1)	Total/NA	Solid	D 2216	
580-68287-27	LPW17-SL-WeirL-03(0.5)	Total/NA	Solid	D 2216	
580-68287-28	LPW17-SL-WeirL-04(0.5)	Total/NA	Solid	D 2216	
580-68287-29	LPW17-SL-WeirT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-30	LPW17-SL-WeirT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-31	LPW17-SL-WeirT-03(0.5)	Total/NA	Solid	D 2216	
580-68287-32	LPW17-SL-WeirT-03D(0.5)	Total/NA	Solid	D 2216	
580-68287-33	LPW17-SL-WeirT-04(0.5)	Total/NA	Solid	D 2216	
580-68287-34	LPW17-SL-PASL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-35	LPW17-SL-PAST-01(0.5)	Total/NA	Solid	D 2216	
580-68287-36	LPW17-SL-PAST-02(0.5)	Total/NA	Solid	D 2216	
580-68287-37	LPW17-SL-PAST-03(0.5)	Total/NA	Solid	D 2216	
580-68287-38	LPW17-SL-PAST-Bkgd(0.5)	Total/NA	Solid	D 2216	
580-68287-39	LPW17-SL-FBT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-40	LPW17-SL-FBT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-41	LPW17-SL-MBT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-42	LPW17-SL-MBT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-43	LPW17-SL-PACT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-44	LPW17-SL-PACT-01D(0.5)	Total/NA	Solid	D 2216	
580-68287-45	LPW17-SL-PACT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-46	LPW17-SL-CCBT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-47	LPW17-SL-CCBT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-48	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-49	LPW17-SL-CCL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-50	LPW17-SL-CCL-02(0.5)	Total/NA	Solid	D 2216	
580-68287-51	LPW17-SL-CCL-03(0.5)	Total/NA	Solid	D 2216	
580-68287-52	LPW17-SL-GSL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-53	LPW17-SL-GSL-02(0.5)	Total/NA	Solid	D 2216	
580-68287-54	LPW17-SL-INT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-55	LPW17-SL-INT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-56	LPW17-SL-WAT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-57	LPW17-SL-WAT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-58	LPW17-SL-WSL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-59	LPW17-SL-WSL-02(0.5)	Total/NA	Solid	D 2216	
580-68287-60	LPW17-SL-WSL-03(0.5)	Total/NA	Solid	D 2216	
580-68287-61	LPW17-SL-WHBT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-62	LPW17-SL-WHBT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-63	LPW17-SL-WHDT-01(0.5)	Total/NA	Solid	D 2216	

TestAmerica Seattle

Page 122 of 241

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

General Chemistry (Continued)

Analysis Batch: 247141 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-64	LPW17-SL-WHDT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-65	LPW17-SL-WHDT-02D(0.5)	Total/NA	Solid	D 2216	
580-68287-66	LPW17-SL-WHL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-67	LPW17-SL-WHL-02(0.5)	Total/NA	Solid	D 2216	
580-68287-68	LPW17-SL-WHL-03(0.5)	Total/NA	Solid	D 2216	
580-68287-69	LPW17-SL-WHL-03D(0.5)	Total/NA	Solid	D 2216	
580-68287-70	LPW17-SL-WHL-04(0.5)	Total/NA	Solid	D 2216	
580-68287-40 DU	LPW17-SL-FBT-02(0.5)	Total/NA	Solid	D 2216	
580-68287-56 DU	LPW17-SL-WAT-01(0.5)	Total/NA	Solid	D 2216	
580-68287-73 DU	LPW17-SL-GSP-Leak02	Total/NA	Solid	D 2216	

Analysis Batch: 247156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-68287-15	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	D 2216	
580-68287-16	LPW17-SL-OBP-02(2)	Total/NA	Solid	D 2216	
580-68287-17	LPW17-SL-WHP-01(2)	Total/NA	Solid	D 2216	
580-68287-24	LPW17-SL-WeirL-01(0.5)	Total/NA	Solid	D 2216	
580-68287-25	LPW17-SL-WeirL-01D(0.5)	Total/NA	Solid	D 2216	
580-68287-26	LPW17-SL-WeirL-02(0.5)	Total/NA	Solid	D 2216	
580-68287-15 DU	LPW17-SL-OBP-01(1.5)	Total/NA	Solid	D 2216	

2

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-LBP-Weir-01

Lab Sample ID: 580-68287-1

Matrix: Solid

Matrix: Solid

Date Collected: 05/06/17 18:20 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246022	05/16/17 14:16	PAB	TAL SEA
Total/NA	Analysis	6020A		1000	246144	05/17/17 13:31	FCW	TAL SEA

Client Sample ID: LPW17-LBP-Weir-02 Lab Sample ID: 580-68287-2

Matrix: Solid

Date Collected: 05/06/17 18:25 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type **Factor** Number or Analyzed Analyst Run Lab TAL SEA Total/NA Prep 3050B 246022 05/16/17 14:16 PAB Total/NA 6020A 246144 05/17/17 13:35 FCW TAL SEA Analysis 1000

Client Sample ID: LPW17-LBP-Weir-03 Lab Sample ID: 580-68287-3

Date Collected: 05/06/17 18:30 East Sample 15: 600 60257 6

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246022 05/16/17 14:16 PAB TAL SEA TAL SEA Total/NA Analysis 6020A 1000 246144 05/17/17 13:40 FCW

Client Sample ID: LPW17-SL-WeirP-01(2)

Lab Sample ID: 580-68287-4

Date Collected: 05/07/17 09:30 Matrix: Solid

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			246450	05/21/17 12:53	JCV	TAL SEA

Client Sample ID: LPW17-SL-WeirP-01(2)

Lab Sample ID: 580-68287-4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 13:42	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 16:24	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/23/17 20:05	KZ1	TAL SEA

Lab Sample ID: 580-68287-5

Matrix: Solid

Client Sample ID: LPW17-SL-WeirP-02(2)

Date Collected: 05/07/17 09:40 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	246450	05/21/17 12:53	JCV	TAL SEA

Client Sample ID: LPW17-SL-WeirP-02(2) Lab Sample ID: 580-68287-5

Date Collected: 05/07/17 09:40 Date Received: 05/10/17 14:00

Matrix: Solid Percent Solids: 30.4

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		5	246433	05/20/17 14:05	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 16:55	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/23/17 20:36	KZ1	TAL SEA

Lab Sample ID: 580-68287-6 Client Sample ID: LPW17-SL-WeirP-02D(2)

Date Collected: 05/07/17 09:40 Date Received: 05/10/17 14:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	246450	05/21/17 12:53	JCV	TAL SEA

Client Sample ID: LPW17-SL-WeirP-02D(2) Lab Sample ID: 580-68287-6

Date Collected: 05/07/17 09:40 Date Received: 05/10/17 14:00

Matrix: Solid

Percent Solids: 38.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		5	246433	05/20/17 14:27	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 17:26	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/23/17 21:08	KZ1	TAL SEA

Client Sample ID: LPW17-SL-WeirP-03(2.5) Lab Sample ID: 580-68287-7

Date Collected: 05/07/17 10:00 Date Received: 05/10/17 14:00

Matrix: Solid

Dilution Batch Batch Batch Prepared **Prep Type** Type Method **Factor** Number or Analyzed Analyst Run Total/NA 246595 05/23/17 09:15 Y1W TAL SEA Analysis D 2216

Client Sample ID: LPW17-SL-WeirP-03(2.5)

Date Collected: 05/07/17 10:00 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-7

Matrix: Solid Percent Solids: 39.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 14:50	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 17:56	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/23/17 21:39	KZ1	TAL SEA

Client Sample ID: LPW17-SL-CCP-01(2) Lab Sample ID: 580-68287-8

Date Collected: 05/07/17 10:50

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 246450 05/21/17 12:53 JCV TAL SEA

Client Sample ID: LPW17-SL-CCP-01(2) Lab Sample ID: 580-68287-8

Date Collected: 05/07/17 10:50 Date Received: 05/10/17 14:00

Matrix: Solid Percent Solids: 39.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 15:57	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 19:58	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/23/17 23:39	KZ1	TAL SEA

Lab Sample ID: 580-68287-9 Client Sample ID: LPW17-SL-CCP-02(2)

Date Collected: 05/07/17 11:00 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared** Method Туре Factor Number or Analyzed Analyst Lab **Prep Type** Run D 2216 247136 05/30/17 09:51 DSO TAL SEA Total/NA Analysis

Client Sample ID: LPW17-SL-CCP-02(2) Lab Sample ID: 580-68287-9

Date Collected: 05/07/17 11:00

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 70.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		5	246433	05/20/17 16:20	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 20:28	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA

TestAmerica Seattle

Matrix: Solid

Matrix: Solid

Date Collected: 05/07/17 11:00

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-CCP-02(2)

Lab Sample ID: 580-68287-9

Matrix: Solid

Percent Solids: 70.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	AK102 & 103			246650	05/24/17 00:08	KZ1	TAL SEA

Client Sample ID: LPW17-SL-GSP-01(2) Lab Sample ID: 580-68287-10

Date Collected: 05/07/17 13:05 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247136	05/30/17 09:51	DSO	TAL SEA

Client Sample ID: LPW17-SL-GSP-01(2) Lab Sample ID: 580-68287-10

Date Collected: 05/07/17 13:05 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 53.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 16:42	D1R	TAL SEA
Total/NA	Prep	5035			246738	05/24/17 12:00	J1J	TAL SEA
Total/NA	Analysis	AK101		1	246740	05/24/17 16:37	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/24/17 00:38	KZ1	TAL SEA

Client Sample ID: LPW17-SL-GSP-03(1.5) Lab Sample ID: 580-68287-11

Date Collected: 05/07/17 15:30 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247136	05/30/17 09:51	DSO	TAL SEA

Client Sample ID: LPW17-SL-GSP-03(1.5) Lab Sample ID: 580-68287-11

Date Collected: 05/07/17 15:30 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 17:05	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 20:59	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/24/17 01:07	KZ1	TAL SEA

Dilution

Factor

Batch

Prepared

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Batch

Type

Analysis

Lab Sample ID: 580-68287-12

Matrix: Solid

Number or Analyzed Analyst Lab 247136 05/30/17 09:51 DSO TAL SEA

Client Sample ID: LPW17-SL-WSP-01(2)

Client Sample ID: LPW17-SL-WSP-01(2)

Batch

Method

D 2216

Date Collected: 05/07/17 15:55 Date Received: 05/10/17 14:00

Date Collected: 05/07/17 15:55

Date Received: 05/10/17 14:00

Prep Type

Total/NA

Lab Sample ID: 580-68287-12 Matrix: Solid

Percent Solids: 89.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 17:27	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 21:30	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/24/17 01:36	KZ1	TAL SEA

Run

Client Sample ID: LPW17-SL-HMP-01(2)

Date Collected: 05/07/17 15:45 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-13

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247136	05/30/17 09:51	DSO	TAL SEA

Client Sample ID: LPW17-SL-HMP-01(2)

Date Collected: 05/07/17 15:45

Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-13 **Matrix: Solid**

Lab Sample ID: 580-68287-14

Percent Solids: 87.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246324	05/19/17 09:58	Y1W	TAL SEA
Total/NA	Analysis	8270D SIM		1	246433	05/20/17 17:50	D1R	TAL SEA
Total/NA	Prep	5035			246738	05/24/17 12:00	J1J	TAL SEA
Total/NA	Analysis	AK101		1	246740	05/24/17 17:07	J1J	TAL SEA
Total/NA	Prep	3546			246328	05/19/17 10:38	DSO	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246650	05/24/17 02:06	KZ1	TAL SEA

Client Sample ID: LPW17-SL-HMP-02(2.5)

Date Collected: 05/07/17 16:30

Date Received: 05/10/17 14:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247136	05/30/17 09:51	DSO	TAL SEA

TestAmerica Seattle

Matrix: Solid

Client Sample ID: LPW17-SL-HMP-02(2.5)

Lab Sample ID: 580-68287-14

Date Collected: 05/07/17 16:30 Date Received: 05/10/17 14:00

Matrix: Solid Percent Solids: 76.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 16:39	D1R	TAL SEA
Total/NA	Prep	5035			246738	05/24/17 12:00	J1J	TAL SEA
Total/NA	Analysis	AK101		1	246740	05/24/17 17:37	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246482	05/22/17 18:24	CJ	TAL SEA

Client Sample ID: LPW17-SL-OBP-01(1.5) Lab Sample ID: 580-68287-15

Date Collected: 05/07/17 16:35 **Matrix: Solid**

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis D 2216 247156 05/30/17 12:06 DSO TAL SEA

Lab Sample ID: 580-68287-15 Client Sample ID: LPW17-SL-OBP-01(1.5)

Date Collected: 05/07/17 16:35 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 68.7

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 17:53	D1R	TAL SEA
Total/NA	Prep	5035			246738	05/24/17 12:00	J1J	TAL SEA
Total/NA	Analysis	AK101		1	246740	05/24/17 19:08	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246482	05/22/17 19:34	CJ	TAL SEA

Client Sample ID: LPW17-SL-OBP-02(2) Lab Sample ID: 580-68287-16

Date Collected: 05/07/17 16:45 Date Received: 05/10/17 14:00

Analysis

Prep

Total/NA

Total/NA

D 2216

3546

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed Analyst **Prep Type** Type Run Lab

Client Sample ID: LPW17-SL-OBP-02(2) Lab Sample ID: 580-68287-16

247156 05/30/17 12:06 DSO

246440 05/20/17 12:17 KZ1

Date Collected: 05/07/17 16:45 Matrix: Solid Date Received: 05/10/17 14:00

Batch		Batch		Dilution	tion Batch Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 18:18	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 22:00	J1J	TAL SEA

TestAmerica Seattle

Matrix: Solid

TAL SEA

TAL SEA

Percent Solids: 61.9

Client Sample ID: LPW17-SL-OBP-02(2)

Lab Sample ID: 580-68287-16

Matrix: Solid

Percent Solids: 61.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	AK102 & 103		1	246482	05/22/17 19:57	CJ	TAL SEA

Lab Sample ID: 580-68287-17 Client Sample ID: LPW17-SL-WHP-01(2)

Date Collected: 05/07/17 17:50 Date Received: 05/10/17 14:00

Date Collected: 05/07/17 16:45

Date Received: 05/10/17 14:00

Matrix: Solid

Batch Batch Dilution Batch Prepared Method Number or Analyzed Prep Type Type Run **Factor** Analyst Lab TAL SEA D 2216 247156 05/30/17 12:06 DSO Total/NA Analysis

Client Sample ID: LPW17-SL-WHP-01(2) Lab Sample ID: 580-68287-17

Date Collected: 05/07/17 17:50 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 27.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 18:43	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 22:30	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246482	05/22/17 20:19	CJ	TAL SEA

Client Sample ID: LPW17-SL-WHP-01D(2) Lab Sample ID: 580-68287-18

Date Collected: 05/07/17 17:50 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Lab Sample ID: 580-68287-18 Client Sample ID: LPW17-SL-WHP-01D(2)

Date Collected: 05/07/17 17:50 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 31.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 19:07	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 23:01	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246482	05/22/17 20:43	CJ	TAL SEA

TestAmerica Seattle

Matrix: Solid

Lab Sample ID: 580-68287-20

Lab Sample ID: 580-68287-20

Lab Sample ID: 580-68287-21

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Lab Sample ID: 580-68287-19

Matrix: Solid

Matrix: Solid

Client Sample ID: LPW17-SL-WHP-2(1)

Date Collected: 05/07/17 18:10 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WHP-2(1)

Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-19 Date Collected: 05/07/17 18:10 Matrix: Solid Percent Solids: 60.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 19:32	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 23:32	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 12:44	KZ1	TAL SEA

Client Sample ID: LPW17-SL-WHP-3(1)

Date Collected: 05/07/17 18:15

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: I PW17-SI -WHP-3(1)

Date Collected: 05/07/17					Matrix: Solid
Date Received: 05/10/17	14:00				Percent Solids: 76.0
Batch	Batch	Dilution	Batch	Prepared	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		1	246475	05/22/17 19:57	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/17/17 00:02	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 13:07	KZ1	TAL SEA

Client Sample ID: LPW17-SL-WHP-4(1)

Date Collected: 05/07/17 18:20 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Matrix: Solid

Date Collected: 05/07/17 18:20

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WHP-4(1)

Lab Sample ID: 580-68287-21

Matrix: Solid

Percent Solids: 81.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246436	05/20/17 11:34	ERZ	TAL SEA
Total/NA	Analysis	8270D SIM		5	246475	05/22/17 20:22	D1R	TAL SEA
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/17/17 00:32	J1J	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 13:29	KZ1	TAL SEA

Client Sample ID: LPW17-Bkgd-Weir-01(1.5)

Lab Sample ID: 580-68287-22

Lab

Matrix: Solid

Date Collected: 05/07/17 20:00 Date Received: 05/10/17 14:00

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst

Total/NA Analysis 9060A 246730 05/23/17 16:56 Z1T TAL SEA

Client Sample ID: LPW17-Bkgd-WH-02(1)

Lab Sample ID: 580-68287-23

Matrix: Solid

Date Collected: 05/07/17 20:10 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060A			246730	05/23/17 16:37	Z1T	TAL SEA
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-Bkgd-WH-02(1)

Lab Sample ID: 580-68287-23 Date Collected: 05/07/17 20:10

Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 64.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 13:52	KZ1	TAL SEA
Total/NA	Prep	3546			246621	05/23/17 13:39	APR	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246770	05/25/17 01:06	TL1	TAL SEA

Client Sample ID: LPW17-SL-WeirL-01(0.5)

Lab Sample ID: 580-68287-24 Date Collected: 05/08/17 09:05

Matrix: Solid

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247156	05/30/17 12:06	DSO	TAL SEA

Client Sample ID: LPW17-SL-WeirL-01(0.5)

Lab Sample ID: 580-68287-24

Matrix: Solid

Percent Solids: 13.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246022	05/16/17 14:16	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246144	05/17/17 12:15	FCW	TAL SEA

Client Sample ID: LPW17-SL-WeirL-01D(0.5)

Lab Sample ID: 580-68287-25

Matrix: Solid

Matrix: Solid

Date Collected: 05/08/17 09:05 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 09:05

Date Received: 05/10/17 14:00

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247156 05/30/17 12:06 DSO TAL SEA

Client Sample ID: LPW17-SL-WeirL-01D(0.5) Lab Sample ID: 580-68287-25

Date Collected: 05/08/17 09:05 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 19.3

Batch **Batch** Dilution Batch **Prepared**

Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab PAB TAL SEA Total/NA Prep 3050B 246022 05/16/17 14:16 Total/NA Analysis 246144 05/17/17 12:19 FCW TAL SEA 6020A 10

Client Sample ID: LPW17-SL-WeirL-02(0.5) Lab Sample ID: 580-68287-26

Date Collected: 05/08/17 09:08

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247156 05/30/17 12:06 DSO TAL SEA

Client Sample ID: LPW17-SL-WeirL-02(0.5) Lab Sample ID: 580-68287-26

Date Collected: 05/08/17 09:08

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 26.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246022	05/16/17 14:16	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246144	05/17/17 12:24	FCW	TAL SEA

Client Sample ID: LPW17-SL-WeirL-03(0.5) Lab Sample ID: 580-68287-27

Date Collected: 05/08/17 09:15 Matrix: Solid

Date Received: 05/10/17 14:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Date Collected: 05/08/17 09:15

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 09:18

Date Received: 05/10/17 14:00

Client Sample ID: LPW17-SL-WeirL-03(0.5)

Client Sample ID: LPW17-SL-WeirL-04(0.5)

Lab Sample ID: 580-68287-27

Matrix: Solid

Percent Solids: 17.7

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246022 05/16/17 14:16 PAB TAL SEA Total/NA Analysis 6020A 10 246144 05/17/17 12:28 FCW TAL SEA

Lab Sample ID: 580-68287-28

Matrix: Solid

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WeirL-04(0.5) Lab Sample ID: 580-68287-28

Date Collected: 05/08/17 09:18 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 17.6

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Lab **Prep Type** 3050B PAB TAL SEA Total/NA Prep 246022 05/16/17 14:16 Total/NA Analysis 10 246144 05/17/17 12:33 **FCW** TAL SEA 6020A

Client Sample ID: LPW17-SL-WeirT-01(0.5) Lab Sample ID: 580-68287-29

Date Collected: 05/08/17 09:11

Matrix: Solid

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WeirT-01(0.5) Lab Sample ID: 580-68287-29

Date Collected: 05/08/17 09:11 Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 6.1

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246022 05/16/17 14:16 PAB Analysis 6020A TAL SEA Total/NA 10 246144 05/17/17 12:37 FCW

Client Sample ID: LPW17-SL-WeirT-02(0.5) Lab Sample ID: 580-68287-30

Date Collected: 05/08/17 09:20 **Matrix: Solid**

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

Date Collected: 05/08/17 09:20

Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-30

Matrix: Solid

Percent Solids: 8.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246022	05/16/17 14:16	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246144	05/17/17 12:42	FCW	TAL SEA

Dilution

Factor

Batch

Client Sample ID: LPW17-SL-WeirT-03(0.5)

Client Sample ID: LPW17-SL-WeirT-02(0.5)

Lab Sample ID: 580-68287-31

Matrix: Solid

Date Received: 05/10/17 14:00 Batch **Batch Prep Type** Type Method

Total/NA

Total/NA

Date Collected: 05/08/17 09:22

Analyst

Lab

TAL SEA

Prepared

247141 05/30/17 10:01 JCV

Number or Analyzed

Lab Sample ID: 580-68287-31

Matrix: Solid

Percent Solids: 12.1

Client Sample ID: LPW17-SL-WeirT-03(0.5)

D 2216

Analysis

Date Collected: 05/08/17 09:22

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246022	05/16/17 14:16	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246144	05/17/17 12:46	FCW	TAL SEA

Run

Client Sample ID: LPW17-SL-WeirT-03D(0.5)

Lab Sample ID: 580-68287-32 Matrix: Solid

Date Collected: 05/08/17 09:22

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Р
Prep Type	Type	Method	Run	Factor	Number	or

Prepared

247141 05/30/17 10:01 JCV

or Analyzed Analyst Lab

TAL SEA

Client Sample ID: LPW17-SL-WeirT-03D(0.5) Date Collected: 05/08/17 09:22

Analysis

D 2216

Lab Sample ID: 580-68287-32

Matrix: Solid

Date Received: 05/10/17 14:00

Percent	Solids:	4.4

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
l	Total/NA	Analysis	6020A		10	246300	05/18/17 12:41	FCW	TAL SEA

Client Sample ID: LPW17-SL-WeirT-04(0.5)

Lab Sample ID: 580-68287-33

Matrix: Solid

Date Collected: 05/08/17 09:26

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-WeirT-04(0.5)

Lab Sample ID: 580-68287-33

Matrix: Solid

Percent Solids: 15.0

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246145 05/17/17 15:12 PAB TAL SEA Total/NA Analysis 6020A 10 246300 05/18/17 13:22 FCW TAL SEA

Client Sample ID: LPW17-SL-PASL-01(0.5) Lab Sample ID: 580-68287-34

Date Collected: 05/08/17 09:45 **Matrix: Solid**

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 09:26

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-PASL-01(0.5) Lab Sample ID: 580-68287-34

Date Collected: 05/08/17 09:45 Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 17.3

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3050B PAB TAL SEA Total/NA Prep 246145 05/17/17 15:12 Total/NA Analysis 10 246300 05/18/17 13:26 FCW TAL SEA 6020A

Client Sample ID: LPW17-SL-PAST-01(0.5) Lab Sample ID: 580-68287-35

Date Collected: 05/08/17 09:38 Matrix: Solid

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-PAST-01(0.5) Lab Sample ID: 580-68287-35

Date Collected: 05/08/17 09:38 Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 17.1

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246145 05/17/17 15:12 PAB Analysis 6020A TAL SEA Total/NA 10 246300 05/18/17 13:31 FCW

Lab Sample ID: 580-68287-36 Client Sample ID: LPW17-SL-PAST-02(0.5)

Date Collected: 05/08/17 09:42 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-PAST-02(0.5)

Lab Sample ID: 580-68287-36

Matrix: Solid

Percent Solids: 29.7

Batch Batch Dilution Batch **Prepared** Number **Prep Type** Type Method Run **Factor** or Analyzed Analyst Lab Total/NA Prep 3050B 246145 05/17/17 15:12 PAB TAL SEA Total/NA Analysis 6020A 246300 05/18/17 13:35 FCW TAL SEA 10

Dilution

Factor

Batch

Number

Client Sample ID: LPW17-SL-PAST-03(0.5)

Lab Sample ID: 580-68287-37

Matrix: Solid

Date Collected: 05/08/17 10:02 Date Received: 05/10/17 14:00

Prep Type

Total/NA

Batch

Type

Analysis

Date Collected: 05/08/17 09:42

Date Received: 05/10/17 14:00

Prepared or Analyzed Analyst Lab

247141 05/30/17 10:01 TAL SEA

Client Sample ID: LPW17-SL-PAST-03(0.5)

Batch

Method

D 2216

Lab Sample ID: 580-68287-37

Matrix: Solid Percent Solids: 28.8

Date Collected: 05/08/17 10:02 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/18/17 13:40	FCW	TAL SEA

Run

Client Sample ID: LPW17-SL-PAST-Bkgd(0.5)

Lab Sample ID: 580-68287-38

Matrix: Solid

Date Collected: 05/08/17 09:56 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-PAST-Bkgd(0.5)

Lab Sample ID: 580-68287-38

Matrix: Solid

Date Collected: 05/08/17 09:56 Date Received: 05/10/17 14:00 Percent Solids: 17.7

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
١	Total/NA	Analysis	6020A		10	246300	05/18/17 13:44	FCW	TAL SEA

Client Sample ID: LPW17-SL-FBT-01(0.5)

Lab Sample ID: 580-68287-39

Matrix: Solid

Date Collected: 05/08/17 10:16 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Lab Sample ID: 580-68287-39

Matrix: Solid

Percent Solids: 21.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/18/17 13:49	FCW	TAL SEA

Client Sample ID: LPW17-SL-FBT-02(0.5)

Client Sample ID: LPW17-SL-FBT-01(0.5)

Lab Sample ID: 580-68287-40

Matrix: Solid

Date Collected: 05/08/17 10:19 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 10:16

Date Received: 05/10/17 14:00

Analyst Lab

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-FBT-02(0.5) Date Collected: 05/08/17 10:19

Lab Sample ID: 580-68287-40

Matrix: Solid

Date Received: 05/10/17 14:00

Percent Solids: 16.9

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
	Total/NA	Analysis	6020A		10	246300	05/18/17 13:53	FCW	TAL SEA

Client Sample ID: LPW17-SL-MBT-01(0.5)

Lab Sample ID: 580-68287-41

Matrix: Solid

Date Collected: 05/08/17 10:28 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 10:28

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-MBT-01(0.5)

Lab Sample ID: 580-68287-41

Matrix: Solid

Date Received: 05/10/17 14:00

Percent Solids: 60.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/18/17 13:58	FCW	TAL SEA

Client Sample ID: LPW17-SL-MBT-02(0.5)

Lab Sample ID: 580-68287-42

Matrix: Solid

Date Collected: 05/08/17 10:31 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Lab Sample ID: 580-68287-42

Client Sample ID: LPW17-SL-MBT-02(0.5) Date Collected: 05/08/17 10:31

Matrix: Solid Percent Solids: 18.5

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/18/17 14:20	FCW	TAL SEA

Client Sample ID: LPW17-SL-PACT-01(0.5)

Lab Sample ID: 580-68287-43

Matrix: Solid

Date Collected: 05/08/17 10:39 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-PACT-01(0.5) Date Collected: 05/08/17 10:39

Lab Sample ID: 580-68287-43

Matrix: Solid

Date Received: 05/10/17 14:00

Percent Solids: 71.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246145	05/17/17 15:12	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/18/17 14:25	FCW	TAL SEA

Client Sample ID: LPW17-SL-PACT-01D(0.5)

Client Sample ID: LPW17-SL-PACT-01D(0.5)

Lab Sample ID: 580-68287-44

Matrix: Solid

Date Collected: 05/08/17 10:39 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 10:39

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Lab Sample ID: 580-68287-44

Matrix: Solid

Percent Solids: 74.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 00:33	FCW	TAL SEA

Client Sample ID: LPW17-SL-PACT-02(0.5) Date Collected: 05/08/17 10:44

Lab Sample ID: 580-68287-45

Matrix: Solid

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Date Collected: 05/08/17 10:44

Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-45

Matrix: Solid

Percent Solids: 24.0

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 00:37	FCW	TAL SEA

Client Sample ID: LPW17-SL-CCBT-01(0.5)

Client Sample ID: LPW17-SL-PACT-02(0.5)

Lab Sample ID: 580-68287-46

Matrix: Solid

Date Collected: 05/08/17 10:55 Date Received: 05/10/17 14:00

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-CCBT-01(0.5) Lab Sample ID: 580-68287-46

Date Collected: 05/08/17 10:55 Matrix: Solid Date Received: 05/10/17 14:00

Percent Solids: 79.9

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Total/NA Analysis 246300 05/19/17 00:42 FCW TAL SEA 6020A 10

Client Sample ID: LPW17-SL-CCBT-02(0.5) Lab Sample ID: 580-68287-47

Date Collected: 05/08/17 11:00 Date Received: 05/10/17 14:00

Matrix: Solid

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst I ab TAL SEA Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-CCBT-02(0.5) Lab Sample ID: 580-68287-47

Date Collected: 05/08/17 11:00

Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 66.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 00:46	FCW	TAL SEA

Client Sample ID: LPW17-SL-CCL-01(0.5) Lab Sample ID: 580-68287-48

Date Collected: 05/08/17 11:08 **Matrix: Solid**

Date Received: 05/10/17 14:00

Batch **Batch** Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

Client Sample ID: LPW17-SL-CCL-01(0.5)

Date Collected: 05/08/17 11:08 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-48

Matrix: Solid Percent Solids: 15.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 00:50	FCW	TAL SEA

Client Sample ID: LPW17-SL-CCL-01(0.5)

Date Collected: 05/08/17 11:10

Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-49 **Matrix: Solid**

Lab Sample ID: 580-68287-49

Lab Sample ID: 580-68287-50

Lab Sample ID: 580-68287-51

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-CCL-01(0.5)

Date Collected: 05/08/17 11:10

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 14.2

		Batch	Batch		Dilution	Batch	Prepared		
Prep T	уре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/N	Α	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/N	Α	Analysis	6020A		10	246300	05/19/17 00:55	FCW	TAL SEA

Client Sample ID: LPW17-SL-CCL-02(0.5)

Date Collected: 05/08/17 11:40

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA	

Client Sample ID: LPW17-SL-CCL-02(0.5)

Lab Sample ID: 580-68287-50 Date Collected: 05/08/17 11:40 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 63.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 00:59	FCW	TAL SEA

Client Sample ID: LPW17-SL-CCL-03(0.5)

Date Collected: 05/08/17 11:45

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

TestAmerica Seattle

Matrix: Solid

Client Sample ID: LPW17-SL-CCL-03(0.5)

Lab Sample ID: 580-68287-51

Matrix: Solid

Percent Solids: 12.9

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246236 05/18/17 11:56 ADB TAL SEA Total/NA Analysis 6020A 10 246300 05/19/17 01:04 FCW TAL SEA

Client Sample ID: LPW17-SL-GSL-01(0.5) Lab Sample ID: 580-68287-52

Date Collected: 05/08/17 12:03 **Matrix: Solid**

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 11:45

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-GSL-01(0.5) Lab Sample ID: 580-68287-52

Date Collected: 05/08/17 12:03 Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 71.6

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Lab **Prep Type** TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Total/NA 10 246300 05/19/17 01:08 **FCW** TAL SEA Analysis 6020A

Client Sample ID: LPW17-SL-GSL-02(0.5) Lab Sample ID: 580-68287-53

Date Collected: 05/08/17 12:06 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-GSL-02(0.5) Lab Sample ID: 580-68287-53

Date Collected: 05/08/17 12:06 Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 63.6

Dilution Batch Batch Batch **Prepared** Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Analysis 6020A TAL SEA Total/NA 10 246300 05/19/17 01:31 FCW

Client Sample ID: LPW17-SL-INT-01(0.5) Lab Sample ID: 580-68287-54

Date Collected: 05/08/17 12:12 **Matrix: Solid**

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

TestAmerica Seattle

Matrix: Solid

Client Sample ID: LPW17-SL-INT-01(0.5)

Lab Sample ID: 580-68287-54

Matrix: Solid

Matrix: Solid

Percent Solids: 70.3

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246236 05/18/17 11:56 ADB TAL SEA Total/NA Analysis 6020A 10 246300 05/19/17 01:35 FCW TAL SEA

Client Sample ID: LPW17-SL-INT-02(0.5) Lab Sample ID: 580-68287-55 Date Collected: 05/08/17 12:16

Matrix: Solid

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 12:12

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-INT-02(0.5) Lab Sample ID: 580-68287-55

Date Collected: 05/08/17 12:16 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 55.6

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Lab **Prep Type** TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Total/NA Analysis 10 246300 05/19/17 01:39 **FCW** TAL SEA 6020A

Lab Sample ID: 580-68287-56

Client Sample ID: LPW17-SL-WAT-01(0.5)

Date Collected: 05/08/17 12:18 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-WAT-01(0.5) Lab Sample ID: 580-68287-56

Date Collected: 05/08/17 12:18 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 79.2

Dilution Batch Batch Batch **Prepared** Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Analysis 6020A TAL SEA Total/NA 10 246300 05/19/17 01:44 FCW

Client Sample ID: LPW17-SL-WAT-02(0.5) Lab Sample ID: 580-68287-57

Date Collected: 05/08/17 12:20 **Matrix: Solid**

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

Client Sample ID: LPW17-SL-WAT-02(0.5)

Date Collected: 05/08/17 12:20 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-57

Matrix: Solid Percent Solids: 47.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246236	05/18/17 11:56	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246300	05/19/17 01:48	FCW	TAL SEA

Client Sample ID: LPW17-SL-WSL-01(0.5)

Date Collected: 05/08/17 12:32 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-58 **Matrix: Solid**

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WSL-01(0.5) Lab Sample ID: 580-68287-58

Date Collected: 05/08/17 12:32

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 73.1

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Prep 3050B 246236 05/18/17 11:56 ADB Total/NA Analysis 6020A 10 246300 05/19/17 01:53 FCW TAL SEA

Client Sample ID: LPW17-SL-WSL-02(0.5) Lab Sample ID: 580-68287-59

Date Collected: 05/08/17 12:42

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-WSL-02(0.5) Lab Sample ID: 580-68287-59

Date Collected: 05/08/17 12:42

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 51.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246480	05/22/17 10:05	ADB	TAL SEA
Total/NA	Analysis	6020A		10	246576	05/22/17 18:27	FCW	TAL SEA

Client Sample ID: LPW17-SL-WSL-03(0.5) Lab Sample ID: 580-68287-60

Date Collected: 05/08/17 12:45

Date Received: 05/10/17 14:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

TestAmerica Seattle

Matrix: Solid

Matrix: Solid

Date Collected: 05/08/17 12:45

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 12:50

Total/NA

Client Sample ID: LPW17-SL-WSL-03(0.5)

Client Sample ID: LPW17-SL-WHBT-01(0.5)

D 2216

Analysis

Lab Sample ID: 580-68287-60

Matrix: Solid

Percent Solids: 58.1

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246480 05/22/17 10:05 ADB TAL SEA

Total/NA Analysis 6020A 10 246576 05/22/17 18:31 FCW TAL SEA

Lab Sample ID: 580-68287-61

TAL SEA

Matrix: Solid

Matrix: Solid

Date Received: 05/10/17 14:00 Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab

Client Sample ID: LPW17-SL-WHBT-01(0.5) Lab Sample ID: 580-68287-61

247141

05/30/17 10:01

JCV

Date Collected: 05/08/17 12:50 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 15.6

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3050B 05/22/17 10:05 TAL SEA Total/NA Prep 246480 ADB Total/NA Analysis 10 246576 05/22/17 18:36 **FCW** TAL SEA 6020A

Client Sample ID: LPW17-SL-WHBT-02(0.5) Lab Sample ID: 580-68287-62

Date Collected: 05/08/17 12:53 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-WHBT-02(0.5) Lab Sample ID: 580-68287-62

Date Collected: 05/08/17 12:53

Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 51.9

Dilution Batch Batch Batch **Prepared** Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246480 05/22/17 10:05 ADB Analysis 6020A TAL SEA Total/NA 10 246576 05/22/17 18:06 FCW

Client Sample ID: LPW17-SL-WHDT-01(0.5) Lab Sample ID: 580-68287-63

Date Collected: 05/08/17 13:00 **Matrix: Solid**

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

Lab Sample ID: 580-68287-63

Matrix: Solid

Lab

Percent Solids: 57.6

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Prep 3050B 246480 05/22/17 10:05 ADB TAL SEA Total/NA Analysis 6020A 10 246576 05/22/17 18:10 FCW TAL SEA

Client Sample ID: LPW17-SL-WHDT-02(0.5)

Client Sample ID: LPW17-SL-WHDT-01(0.5)

Lab Sample ID: 580-68287-64

Matrix: Solid

Date Collected: 05/08/17 13:04 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 13:00

Date Received: 05/10/17 14:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WHDT-02(0.5)

Lab Sample ID: 580-68287-64

Date Collected: 05/08/17 13:04 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 30.9

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3050B TAL SEA Total/NA Prep 246480 05/22/17 10:05 ADB Total/NA Analysis 10 246576 05/22/17 18:15 FCW TAL SEA 6020A

Client Sample ID: LPW17-SL-WHDT-02D(0.5)

Lab Sample ID: 580-68287-65

Matrix: Solid

Date Collected: 05/08/17 13:04 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 13:04

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV

Client Sample ID: LPW17-SL-WHDT-02D(0.5)

Lab Sample ID: 580-68287-65

Matrix: Solid

Date Received: 05/10/17 14:00 Percent Solids: 26.8

Dilution Batch Batch Batch **Prepared** Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Prep 3050B 246480 05/22/17 10:05 ADB Analysis 6020A TAL SEA Total/NA 10 246576 05/22/17 18:19 FCW

Client Sample ID: LPW17-SL-WHL-01(0.5)

Lab Sample ID: 580-68287-66

Matrix: Solid

Date Collected: 05/08/17 13:12 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-WHL-01(0.5)

Lab Sample ID: 580-68287-66

Date Collected: 05/08/17 13:12 Date Received: 05/10/17 14:00

Matrix: Solid Percent Solids: 40.5

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 246480 05/22/17 10:05 ADB TAL SEA Total/NA Analysis 6020A 246576 05/22/17 18:23 FCW TAL SEA 10

Client Sample ID: LPW17-SL-WHL-02(0.5)

Lab Sample ID: 580-68287-67

Matrix: Solid

Date Collected: 05/08/17 13:14 Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247141	05/30/17 10:01	JCV	TAL SEA

Client Sample ID: LPW17-SL-WHL-02(0.5)

Lab Sample ID: 580-68287-67

Matrix: Solid

Date Collected: 05/08/17 13:14 Date Received: 05/10/17 14:00

Percent Solids: 60.9

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
L	Total/NA	Analysis	6020A		10	246576	05/22/17 21:33	FCW	TAL SEA

Client Sample ID: LPW17-SL-WHL-03(0.5)

Client Sample ID: LPW17-SL-WHL-03(0.5)

Lab Sample ID: 580-68287-68

Matrix: Solid

Date Collected: 05/08/17 13:16 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 13:16

Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared**

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab D 2216 Total/NA Analysis 247141 05/30/17 10:01 JCV TAL SEA

Lab Sample ID: 580-68287-68

Matrix: Solid

Percent Solids: 56.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246576	05/22/17 22:11	FCW	TAL SEA

Client Sample ID: LPW17-SL-WHL-03D(0.5)

Lab Sample ID: 580-68287-69

Matrix: Solid

Date Collected: 05/08/17 13:16 Date Received: 05/10/17 14:00

Batch **Batch** Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Lab Analyst Total/NA D 2216 247141 05/30/17 10:01 JCV TAL SEA Analysis

Client Sample ID: LPW17-SL-WHL-03D(0.5)

Lab Sample ID: 580-68287-69

Matrix: Solid

Matrix: Solid

Percent Solids: 60.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		10	246576	05/22/17 22:15	FCW	TAL SEA

Client Sample ID: LPW17-SL-WHL-04(0.5) Lab Sample ID: 580-68287-70

Date Collected: 05/08/17 13:18 **Matrix: Solid**

Date Received: 05/10/17 14:00

Date Collected: 05/08/17 13:16

Date Received: 05/10/17 14:00

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis D 2216 247141 05/30/17 10:01 JCV TAL SEA

Client Sample ID: LPW17-SL-WHL-04(0.5) Lab Sample ID: 580-68287-70

Date Collected: 05/08/17 13:18 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 39.9

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab PAB TAL SEA Total/NA Prep 3050B 246491 05/22/17 11:58 Total/NA Analysis 10 246576 05/22/17 22:19 FCW TAL SEA 6020A

Client Sample ID: LPW17-SL-GSP-W-01 Lab Sample ID: 580-68287-71

Date Collected: 05/08/17 15:40 Date Received: 05/10/17 14:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 246667 05/23/17 15:47 DSO TAL SEA

Client Sample ID: LPW17-SL-GSP-W-01 Lab Sample ID: 580-68287-71

Date Collected: 05/08/17 15:40 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 58.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246467	05/22/17 09:33	APR	TAL SEA
Total/NA	Analysis	8270D SIM		1	247152	05/30/17 13:35	ERZ	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 14:15	KZ1	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak01 Lab Sample ID: 580-68287-72

Date Collected: 05/08/17 15:55 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor		or Analyzed		Lab
Total/NA	Analysis	D 2216		1	246667	05/23/17 15:47	DSO	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak01

Date Collected: 05/08/17 15:55 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-72

Matrix: Solid Percent Solids: 84.2

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			246134	05/17/17 14:40	JSM	TAL SEA
Total/NA	Analysis	8260C		1	246158	05/18/17 00:47	JSM	TAL SEA
Total/NA	Prep	3546			246467	05/22/17 09:33	APR	TAL SEA
Total/NA	Analysis	8270D SIM		1	247152	05/30/17 15:04	ERZ	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 15:23	KZ1	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak02 Lab Sample ID: 580-68287-73

Date Collected: 05/08/17 16:05

Date Received: 05/10/17 14:00

Batch **Prepared**

Dilution Batch Batch **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 246667 05/23/17 15:47 DSO TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak02

Date Collected: 05/08/17 16:05 Date Received: 05/10/17 14:00

Lab Sample ID: 580-68287-73 **Matrix: Solid** Percent Solids: 84.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			246134	05/17/17 14:40	JSM	TAL SEA
Total/NA	Analysis	8260C		1	246158	05/18/17 01:13	JSM	TAL SEA
Total/NA	Prep	3546			246467	05/22/17 09:33	APR	TAL SEA
Total/NA	Analysis	8270D SIM		1	247152	05/30/17 14:42	ERZ	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 15:46	KZ1	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak03 Lab Sample ID: 580-68287-74

Date Collected: 05/08/17 16:20 **Matrix: Solid** Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	246667	05/23/17 15:47	DSO	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak03

Lab Sample ID: 580-68287-74 Date Collected: 05/08/17 16:20 Matrix: Solid Date Received: 05/10/17 14:00 Percent Solids: 85.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			246134	05/17/17 14:40	JSM	TAL SEA
Total/NA	Analysis	8260C		1	246158	05/18/17 01:40	JSM	TAL SEA
Total/NA	Prep	3546			246467	05/22/17 09:33	APR	TAL SEA
Total/NA	Analysis	8270D SIM		1	247152	05/30/17 15:27	ERZ	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA

TestAmerica Seattle

Page 149 of 241

Client Sample ID: LPW17-SL-GSP-Leak03

Lab Sample ID: 580-68287-74

Matrix: Solid

Percent Solids: 85.4

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis AK102 & 103 246593 05/23/17 16:09 KZ1 TAL SEA

Client Sample ID: LPW17-LBP-WH-01 Lab Sample ID: 580-68287-75

Matrix: Solid

Date Collected: 05/09/17 09:30 Date Received: 05/10/17 14:00

Date Collected: 05/08/17 16:20

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		100	246576	05/22/17 22:49	FCW	TAL SEA

Client Sample ID: LPW17-LBP-WH-02 Lab Sample ID: 580-68287-76

Date Collected: 05/09/17 09:35 **Matrix: Solid**

Date Received: 05/10/17 14:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		100	246576	05/22/17 22:57	FCW	TAL SEA

Client Sample ID: LPW17-LBP-WH-03 Lab Sample ID: 580-68287-77

Date Collected: 05/09/17 09:40

Date Received: 05/10/17 14:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		100	246576	05/22/17 22:53	FCW	TAL SEA

Client Sample ID: LPW17-LBP-WH-04 Lab Sample ID: 580-68287-78

Date Collected: 05/09/17 09:45 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		100	246576	05/22/17 23:01	FCW	TAL SEA

Client Sample ID: LPW17-LBP-WH-05 Lab Sample ID: 580-68287-79

Date Collected: 05/09/17 09:50 **Matrix: Solid**

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
Total/NA	Analysis	6020A		100	246576	05/22/17 22:44	FCW	TAL SEA

TestAmerica Seattle

Matrix: Solid

Lab Sample ID: 580-68287-80

Matrix: Solid

Client Sample ID: LPW17-LBP-Weir04

Date Collected: 05/06/17 18:35 Date Received: 05/10/17 14:00

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			246491	05/22/17 11:58	PAB	TAL SEA
	Total/NA	Analysis	6020A		100	246576	05/22/17 22:40	FCW	TAL SEA

Lab Sample ID: 580-68287-81

Matrix: Solid

Date Received: 05/10/17 14:00

Client Sample ID: Trip Blank

Date Collected: 05/08/17 00:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			245940	05/16/17 08:55	RSB	TAL SEA
Total/NA	Analysis	AK101		1	245984	05/16/17 15:54	J1J	TAL SEA

Lab Sample ID: 580-68287-82 Client Sample ID: LPW17-SL-GSP-Leak04 Date Collected: 05/08/17 16:20

Matrix: Solid

Date Received: 05/10/17 14:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	246667	05/23/17 15:47	DSO	TAL SEA

Client Sample ID: LPW17-SL-GSP-Leak04 Lab Sample ID: 580-68287-82

Date Collected: 05/08/17 16:20 Date Received: 05/10/17 14:00

Matrix: Solid Percent Solids: 58.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			246467	05/22/17 09:33	APR	TAL SEA
Total/NA	Analysis	8270D SIM		1	247152	05/30/17 15:49	ERZ	TAL SEA
Total/NA	Prep	3546			246440	05/20/17 12:17	KZ1	TAL SEA
Total/NA	Analysis	AK102 & 103		1	246593	05/23/17 16:55	KZ1	TAL SEA

Laboratory References:

SC0056 = Analytical Resources, Inc, 4611 South 134th Place, Suite 100, Tukwila, WA 98168, TEL (206)695-6200 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-18
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-17
US Fish & Wildlife	Federal		LE058448-0	10-31-17
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-18

3

4

5

6

8

9

10

11

Sample Summary

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

LPW17-LBP-Weir-01	Solid	05/06/17 18:20	05/10/17 14:00
LPW17-LBP-Weir-02	Solid	05/06/17 18:25	05/10/17 14:00
LPW17-LBP-Weir-03	Solid	05/06/17 18:30	05/10/17 14:00
LPW17-SL-WeirP-01(2)	Solid	05/07/17 09:30	05/10/17 14:00
LPW17-SL-WeirP-02(2)	Solid	05/07/17 09:40	05/10/17 14:00
LPW17-SL-WeirP-02D(2)	Solid	05/07/17 09:40	05/10/17 14:00
LPW17-SL-WeirP-03(2.5)	Solid	05/07/17 10:00	05/10/17 14:00
	Solid	05/07/17 10:50	05/10/17 14:00
LPW17-SL-CCP-02(2)	Solid	05/07/17 11:00	05/10/17 14:00
			05/10/17 14:00
` '			
` ,			
. ,			
, ,			
. ,			
			05/10/17 14:00
- , ,			
			05/10/17 14:00
, ,			05/10/17 14:00
` '			
` ,			05/10/17 14:00
, ,			05/10/17 14:00
LPW17-SL-WeirT-03(0.5)	Solid	05/08/17 09:22	05/10/17 14:00
LPW17-SL-WeirT-03D(0.5)	Solid	05/08/17 09:22	05/10/17 14:00
LPW17-SL-WeirT-04(0.5)	Solid	05/08/17 09:26	05/10/17 14:00
LPW17-SL-PASL-01(0.5)	Solid	05/08/17 09:45	05/10/17 14:00
LPW17-SL-PAST-01(0.5)	Solid	05/08/17 09:38	05/10/17 14:00
LPW17-SL-PAST-02(0.5)	Solid	05/08/17 09:42	05/10/17 14:00
LPW17-SL-PAST-03(0.5)	Solid	05/08/17 10:02	05/10/17 14:00
LPW17-SL-PAST-Bkgd(0.5)	Solid	05/08/17 09:56	05/10/17 14:00
LPW17-SL-FBT-01(0.5)	Solid	05/08/17 10:16	05/10/17 14:00
LPW17-SL-FBT-02(0.5)	Solid	05/08/17 10:19	05/10/17 14:00
LPW17-SL-MBT-01(0.5)	Solid	05/08/17 10:28	05/10/17 14:00
LPW17-SL-MBT-02(0.5)	Solid	05/08/17 10:31	05/10/17 14:00
LPW17-SL-PACT-01(0.5)	Solid	05/08/17 10:39	05/10/17 14:00
LPW17-SL-PACT-01D(0.5)	Solid	05/08/17 10:39	05/10/17 14:00
LPW17-SL-PACT-02(0.5)	Solid	05/08/17 10:44	05/10/17 14:00
` ,		05/08/17 10:55	05/10/17 14:00
LPW17-SL-CCBT-02(0.5)	Solid		
` ,			
• •			
LPW17-SL-GSL-01(0.5)	Solid	05/08/17 12:06	
	LPW17-LBP-Weir-03 LPW17-SL-WeirP-01(2) LPW17-SL-WeirP-02(2) LPW17-SL-WeirP-02(2) LPW17-SL-WeirP-03(2.5) LPW17-SL-CCP-01(2) LPW17-SL-CCP-01(2) LPW17-SL-GSP-01(2) LPW17-SL-GSP-01(2) LPW17-SL-WeirP-03(1.5) LPW17-SL-WSP-01(2) LPW17-SL-HMP-01(2) LPW17-SL-HMP-01(2) LPW17-SL-HMP-01(2) LPW17-SL-WHP-01(2) LPW17-SL-WHP-01(2) LPW17-SL-WHP-01(2) LPW17-SL-WHP-01(2) LPW17-SL-WHP-01(2) LPW17-SL-WHP-01(1.5) LPW17-SL-WHP-01(1.5) LPW17-SL-WHP-01(1.5) LPW17-SL-WeirL-01(0.5) LPW17-SL-WeirL-01(0.5) LPW17-SL-WeirL-01(0.5) LPW17-SL-WeirL-01(0.5) LPW17-SL-WeirT-01(0.5) LPW17-SL-WeirT-01(0.5) LPW17-SL-WeirT-01(0.5) LPW17-SL-WeirT-03(0.5) LPW17-SL-WeirT-03(0.5) LPW17-SL-WeirT-03(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PAST-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-PACT-01(0.5) LPW17-SL-CCBT-01(0.5) LPW17-SL-CCBT-01(0.5) LPW17-SL-CCBT-01(0.5) LPW17-SL-CCBT-01(0.5) LPW17-SL-CCCL-01(0.5) LPW17-SL-CCL-01(0.5)	LPW17-SL-WeirP-01(2) Solid LPW17-SL-WeirP-02(2) Solid LPW17-SL-WeirP-02(2) Solid LPW17-SL-WeirP-02(2) Solid LPW17-SL-WeirP-02(2) Solid LPW17-SL-WeirP-03(2.5) Solid LPW17-SL-COP-01(2) Solid LPW17-SL-COP-02(2) Solid LPW17-SL-GSP-01(2) Solid LPW17-SL-GSP-03(1.5) Solid LPW17-SL-MSP-01(2) Solid LPW17-SL-HMP-01(2) Solid LPW17-SL-HMP-01(2) Solid LPW17-SL-HMP-01(2) Solid LPW17-SL-HMP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-01(2) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WHP-2(1) Solid LPW17-SL-WeirL-01(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-WeirT-03(0.5) Solid LPW17-SL-PAST-01(0.5) Solid LPW17-SL-CCL-01(0.5) Solid LPW17-SL-CCL-0	LPW17-SL-WeirP-01(2)

TestAmerica Seattle

Page 153 of 241

3

0

8

10

11

12

Ш

Sample Summary

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-68287-54	LPW17-SL-INT-01(0.5)	Solid	05/08/17 12:12	05/10/17 14:00
580-68287-55	LPW17-SL-INT-02(0.5)	Solid	05/08/17 12:16 (05/10/17 14:00
580-68287-56	LPW17-SL-WAT-01(0.5)	Solid	05/08/17 12:18 (05/10/17 14:00
580-68287-57	LPW17-SL-WAT-02(0.5)	Solid	05/08/17 12:20 (05/10/17 14:00
580-68287-58	LPW17-SL-WSL-01(0.5)	Solid	05/08/17 12:32 (05/10/17 14:00
580-68287-59	LPW17-SL-WSL-02(0.5)	Solid	05/08/17 12:42 (05/10/17 14:00
580-68287-60	LPW17-SL-WSL-03(0.5)	Solid	05/08/17 12:45	05/10/17 14:00
580-68287-61	LPW17-SL-WHBT-01(0.5)	Solid	05/08/17 12:50	05/10/17 14:00
580-68287-62	LPW17-SL-WHBT-02(0.5)	Solid	05/08/17 12:53 (05/10/17 14:00
580-68287-63	LPW17-SL-WHDT-01(0.5)	Solid	05/08/17 13:00 (05/10/17 14:00
580-68287-64	LPW17-SL-WHDT-02(0.5)	Solid	05/08/17 13:04 (05/10/17 14:00
580-68287-65	LPW17-SL-WHDT-02D(0.5)	Solid	05/08/17 13:04 (05/10/17 14:00
580-68287-66	LPW17-SL-WHL-01(0.5)	Solid	05/08/17 13:12 (05/10/17 14:00
580-68287-67	LPW17-SL-WHL-02(0.5)	Solid	05/08/17 13:14 (05/10/17 14:00
580-68287-68	LPW17-SL-WHL-03(0.5)	Solid	05/08/17 13:16	05/10/17 14:00
580-68287-69	LPW17-SL-WHL-03D(0.5)	Solid	05/08/17 13:16	05/10/17 14:00
580-68287-70	LPW17-SL-WHL-04(0.5)	Solid	05/08/17 13:18 (05/10/17 14:00
580-68287-71	LPW17-SL-GSP-W-01	Solid	05/08/17 15:40 (05/10/17 14:00
580-68287-72	LPW17-SL-GSP-Leak01	Solid	05/08/17 15:55 (05/10/17 14:00
580-68287-73	LPW17-SL-GSP-Leak02	Solid	05/08/17 16:05 (05/10/17 14:00
580-68287-74	LPW17-SL-GSP-Leak03	Solid	05/08/17 16:20 (05/10/17 14:00
580-68287-75	LPW17-LBP-WH-01	Solid	05/09/17 09:30 (05/10/17 14:00
580-68287-76	LPW17-LBP-WH-02	Solid	05/09/17 09:35	05/10/17 14:00
580-68287-77	LPW17-LBP-WH-03	Solid	05/09/17 09:40 (05/10/17 14:00
580-68287-78	LPW17-LBP-WH-04	Solid	05/09/17 09:45	05/10/17 14:00
580-68287-79	LPW17-LBP-WH-05	Solid	05/09/17 09:50	05/10/17 14:00
580-68287-80	LPW17-LBP-Weir04	Solid	05/06/17 18:35	05/10/17 14:00
580-68287-81	Trip Blank	Solid	05/08/17 00:00	05/10/17 14:00
580-68287-82	LPW17-SL-GSP-Leak04	Solid	05/08/17 16:20 (05/10/17 14:00

3

6

0

9

10

11

12

07 June 2017

Elaine Walker Test America-Tacoma 5755 8th Street East Tacoma, WA 98424

RE: Little Port Walter AK

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) Associated SDG ID(s) N/A

17E0281

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

3

4

7

10

11

13

	Sampler			Lab PM:			Carrier Tracking No(s):	:(s)c	COC No:	
Client Information (Sub Contract Lab)				Walker, Elaine M	laine M				580-46902.2	
Client Contact: Shipping/Receiving	Phone:			E-Mail: elaine.wa	lker@test	E-Mait: elaine.walker@testamericainc.com	State of Origin: Alaska		Page: Page 2 of 2	
Company:				Accre	ditations Re	Accreditations Required (See note).			Job#:	
Address:	Due Date Requested:			+					Preservation Codes	des:
4611 South 134th Place, Suite 100,	5/26/2017			-		Analysis	Requested		A HCL	
City. Tukwila	TAT Requested (days):							USIV.	B - NaOH C - Zn Acetate	
State, Zip: WA, 98168					(18				D - Nitric Acid E - NaHSO4	P - Na2SO3
Phone: 206-695-6200(Tel)	# 00			(0	IA - Iav				G - Amchior H - Ascorbic Acid	
Email:	WO#:				-					
Project Name: Little Port Walter AK	Project #: 58011097							zeujet.		W - pH 4-5 Z - other (specify)
Site:	#MOSS				-			103 30	Other:	
Sample Identification - Client ID	Sample Date	Sample (0	Sample (viewater, Type Seadle, owwaten, Gegrab) Britissue, Avalir)	Field Filtered S	Perform MS/M SUB (Volatiles, s			Jodani W letoT	Total Number No operations of the second of	Special Instructions/Note:
	/ \	\	1 00	X	V					
LPW17-SL-OBP-02(2)	5/7/17	16:45 Jaskan	Solid	P.	×			, v	2	
LPW17-SL-WHP-01(2)	5/7/17	17:50 Alaskan	Solid	pi	×				2	
LPW17-SL-WHP-01D(2)	5/7/17	17:50 Alaskan	Solid	Pi	×				2	
LPW17-SL-WHP-2(1)	5/7/17	18:10 Alaskan	Solid	Þi	×				2	
LPW17-SL-WHP-3(1)	5/7/17 A	18:15 Alaskan	Solid	pi	×				2	
LPW17-SL-WHP-4(1)	5/7/17 A	18:20 Alaskan	Solid	<u>.</u>	×				2	
								¥8,87		
				T				1 704 9-0		
Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. I	aboratories, Inc. places the own	ership of met	nod, analyte & accre	ditation comp	iliance upon	out subcontract laboratori	es. This sample shipmen	nt is forwarded unc	der chain-of-custody.	
Possible Hazard Identification				S	ample Di	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e assessed if sam	ples are retain	ned longer than 1	(month)
Unconfirmed					Retu	Return To Client	Disposal By Lab	Arc	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Rank: 2		S	pecial Ins	Special Instructions/QC Requirements	ments			
Empty Kit Relinquished by:	Date:	ie:		Time:			Method of Shipment	pment		
O Relinguished by	Date/Time	0160	Compan	Company CA	Received by	D.O. MONO	A COLO	Date/Time:	CHO	Company of M
Relinquished by:	Date/Time:		Company	,	Received by) idi	ď	Date/Time:		Сотрапу
Relinquished by:	Date/Time		Company		Received by:	lby	Ö	Date/Time:		Company
Custody Seals Intact: Custody Seal No.:					Cooler Te	Cooler Temperature(s) ^a C and Other Remarks	r Remarks:			

Chain of Custody Record

TestAmerica

Cooler Receipt Form

ARI Client: Test Am	revica Senttle	Project Name: Little Po	rt Wa	Her 7	AK
COC No(s):	NA	Delivered by: Fed-Ex UPS Cour	-	West Control of the C	1
Assigned ARI Job No: 17E	0281				
Preliminary Examination Phase		Tracking No:			(NA)
Were intact, properly signed and	dated custody seals attached	I to the outside of the outside of		2007.00000	1
Were custody papers included w				YES	(NO)
				YES	NO
Were custody papers properly fill Temperature of Cooler(s) (°C) (r	recommended 2.0-6.0 °C for all	hamilto N		YES	NO
Time: 9:10	14	O_9			
If cooler temperature is out of co	mpliance fill out form 00070F		Temp Gun II	#:DOO5	206
Cooler Accepted by:	B. H.	Date: 5/19/17 Time:	9:1		
	Complete custody form	is and attach all shipping documents			
Log-In Phase:					
Was a temperature blank include	ed in the cooler?			1	
		rap Wet Ice Gel Packs Baggies Foam I		(YES)	NO
Was sufficient ice used (if approp	oriste)?	ap Wet Ice Gel Packs Baggies Foam I		-	
		······································	NA	YES	NO
				(YES)	NO
		•••••		YES	NO
		mber of containers received?		(ES)	NO
Did all bottle labels and tags agre	se with custody papers?	mbel of containers received?		YES	MO
Were all bottles used correct for	the requested analyses?			YES	NO
		preservation sheet, excluding VOCs)		YES	NO
Were all VOC vials free of air but			NA	YES	NO
			NA	YES	NO
		*		YES	NO
Was Sample Split by ARI: (N			NA		
	_	Equipment		Split by:	
Samples Logged by:	PM_Da	te: 5/19/2017 Time:	11:00		
	** Notify Project Manag	ger of discrepancies or concerns **			
		18.50	-		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sam	ple ID on CC)C
	1.,			-	
		7			
Additional Notes, Discrepancie	os P Danalutiana				
Cac lists 14 sample	5 with 2 containers	each. 23 samples arrived u	with cooler	Shioms	eat
All samples listed on	COC are accounted	for the except for MS/MSD	sample:	. south	-111.
	es that are not listed			****	
	ite: 5/19/2017	4			
Small Air Bubbles Peabubb		Small → "sm" (<2 mm)			
= 2mm 2-4 mm	F DALLOT AND PROPERTY	Peabubbles > "pb" (2 to < 4 mm)	9207		
0.0	9999	Large > "lg" (4 to < 6 mm)		_	
		Headspace > "hs" (> 6 mm)			
	- 9	Transpace > 118 (> 6 mm)			

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LPW17-SL-WeirP-01(2)	17E0281-01	Solid	07-May-2017 09:30	19-May-2017 09:10
LPW17-SL-WeirP-02(2)	17E0281-02	Solid	07-May-2017 09:40	19-May-2017 09:10
LPW17-SL-WeirP-02D(2)	17E0281-03	Solid	07-May-2017 09:40	19-May-2017 09:10
LPW17-SL-WeirP-03(2.5)	17E0281-04	Solid	07-May-2017 10:00	19-May-2017 09:10
LPW17-SL-CCP-01(2)	17E0281-05	Solid	07-May-2017 10:50	19-May-2017 09:10
LPW17-SL-CCP-02(2)	17E0281-06	Solid	07-May-2017 11:00	19-May-2017 09:10
LPW17-SL-GSP-03(1.5)	17E0281-07	Solid	07-May-2017 15:30	19-May-2017 09:10
LPW17-SL-OBP-02(2)	17E0281-08	Solid	07-May-2017 16:45	19-May-2017 09:10
LPW17-SL-WHP-01(2)	17E0281-09	Solid	07-May-2017 17:50	19-May-2017 09:10
LPW17-SL-WHP-01D(2)	17E0281-10	Solid	07-May-2017 17:50	19-May-2017 09:10
LPW17-SL-WHP-2(1)	17E0281-11	Solid	07-May-2017 18:10	19-May-2017 09:10
LPW17-SL-WHP-3(1)	17E0281-12	Solid	07-May-2017 18:15	19-May-2017 09:10
LPW17-SL-WHP-4(1)	17E0281-13	Solid	07-May-2017 18:20	19-May-2017 09:10
LPW17-SL-GSP-01(2)	17E0281-14	Solid	07-May-2017 13:05	19-May-2017 09:10
LPW17-SL-WSP-01(2)	17E0281-15	Solid	07-May-2017 15:55	19-May-2017 09:10
LPW17-SL-HMP-01(2)	17E0281-16	Solid	07-May-2017 15:45	19-May-2017 09:10
LPW17-SS-HMP-02(2.5)	17E0281-17	Solid	07-May-2017 16:30	19-May-2017 09:10
LPW17-SL-OBP-01(1.5)	17E0281-18	Solid	07-May-2017 16:35	19-May-2017 09:10

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 158 of 241

ı

Ę

8

11

12

Test America-TacomaProject: Little Port Walter AK5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

Case Narrative

Client: Test America-Tacoma Project: Little Port Walter AK Workorder: 17E0281

Sample receipt

The samples listed on the preceding page were received 19-May-2017 09:10 under ARI work order 17E0281. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

These samples were prepared and analyzed within the recommended holding time.

The percent relative standard deviations (%RSDs) for all compounds were within acceptable QC limits for the initial calibration (ICAL).

The percent differences (%Ds) for bromomethane, chloroethane, trichlorofluoromethane and acrolein were high for the 5/19/17 initial calibration verification (ICV) standard that was analyzed in conjunction with these samples. All positive results for these compounds have been flagged with a "Q" qualifier to denote the high %Ds.

The %D for bromomethane was high for the 5/20/17 ICV standard that was analyzed in conjunction with these samples. All positive results for this compound have been flagged with a "Q" qualifier to denote the high %D.

The %Ds for acetone, trans-1,4-dichloro-2-butene and dichlorodifluoromethane were low for the 5/20/17 ICV standard that was analyzed in conjunction with these samples. All positive results for these compounds have been flagged with a "Q" qualifier to denote the low %Ds.

The %Ds for all compounds were within acceptable QC limits for the continuing calibrations (CCALs).

The areas for all internal standards were within acceptable QC limits.

The percent recovery for the surrogate, d4-1,2-dichloroethane, was low following the analysis of sample 'LPW17-SL-GSP-03(1.5)'. Since the percent recovery was low by <10%, and the percent recoveries for all other surrogates were within established QC limits for this sample, no corrective actions were taken. The percent recoveries for all remaining surrogates were within established QC limits.

No target compounds were detected in the method blanks above the LOQs.

The percent recoveries for bromomethane were high following the 5/19/17 analyses of the LCS/LCSD associated with these samples. Since this compound was not detected in any sample associated with this LCS/LCSD, the high bias does not compromise any LOQ. No corrective actions were taken.

The percent recoveries and RPDs for all other compounds were within established QC limits for the LCSs/LCSDs.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

Ę

6

8

1 N

11

12

R

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-01(2) 17E0281-01 (Solid)

Volatile Organic Compounds

Test America-Tacoma

Method: EPA 8260C Sampled: 05/07/2017 09:30 Instrument: NT5 Analyzed: 19-May-2017 12:06

Sample Preparation: Preparation Method: No Prep - Volatiles

Dry Weight:0.80 g Preparation Batch: BFE0507 Sample Size: 2.247 g (wet) Prepared: 19-May-2017 Final Volume: 5 g % Solids: 35.60

Prepared: 19-May-2017	Final volume:	o g	/0 3	onas: 33.60		
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	6.25	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	6.25	ND	ug/kg	U
Bromomethane	74-83-9	1	6.25	ND	ug/kg	U
Chloroethane	75-00-3	1	6.25	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	6.25	ND	ug/kg	U
Acrolein	107-02-8	1	31.3	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	12.5	ND	ug/kg	U
Acetone	67-64-1	1	31.3	1050	ug/kg	
1,1-Dichloroethene	75-35-4	1	6.25	ND	ug/kg	U
Bromoethane	74-96-4	1	12.5	ND	ug/kg	U
Iodomethane	74-88-4	1	6.25	ND	ug/kg	U
Methylene Chloride	75-09-2	1	12.5	ND	ug/kg	U
Acrylonitrile	107-13-1	1	31.3	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	6.25	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	6.25	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	31.3	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	6.25	ND	ug/kg	U
2-Butanone	78-93-3	1	31.3	220	ug/kg	
2,2-Dichloropropane	594-20-7	1	6.25	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	6.25	ND	ug/kg	U
Chloroform	67-66-3	1	6.25	ND	ug/kg	U
Bromochloromethane	74-97-5	1	6.25	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	6.25	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	6.25	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	6.25	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	6.25	ND	ug/kg	U
Benzene	71-43-2	1	6.25	ND	ug/kg	U
Trichloroethene	79-01-6	1	6.25	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	6.25	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	6.25	ND	ug/kg	U
Dibromomethane	74-95-3	1	6.25	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	31.3	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	31.3	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	6.25	ND	ug/kg	U
Toluene	108-88-3	1	6.25	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	6.25	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-01(2) 17E0281-01 (Solid)

Volatile Organic Compounds

Test America-Tacoma

Method: EPA 8260C Sampled: 05/07/2017 09:30 Instrument: NT5 Analyzed: 19-May-2017 12:06

Instrument: NT5				Alla	lyzed: 19-M	ay-201/ 12:
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	31.3	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	6.25	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	6.25	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	6.25	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	6.25	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	6.25	ND	ug/kg	U
Chlorobenzene	108-90-7	1	6.25	ND	ug/kg	U
Ethylbenzene	100-41-4	1	6.25	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	6.25	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	6.25	ND	ug/kg	U
o-Xylene	95-47-6	1	6.25	ND	ug/kg	U
Xylenes, total	1330-20-7	1	12.5	ND	ug/kg	U
Styrene	100-42-5	1	6.25	ND	ug/kg	U
Bromoform	75-25-2	1	6.25	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	6.25	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	12.5	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	31.3	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	6.25	ND	ug/kg	U
Bromobenzene	108-86-1	1	6.25	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	6.25	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	6.25	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	6.25	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	6.25	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	6.25	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	6.25	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	6.25	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	6.25	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	6.25	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	6.25	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	6.25	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	6.25	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	31.3	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	31.3	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	31.3	ND	ug/kg	U
Naphthalene	91-20-3	1	31.3	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	31.3	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	6.25	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	6.25	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

106 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2

3

6

9

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-01(2) 17E0281-01 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 09:30

 Instrument: NT5
 Analyzed: 19-May-2017 12:06

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	91.3	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	92.7	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	111	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 162 of 241

ı

5

6

Q

9

10

_

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-02(2) 17E0281-02 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 09:40

 Instrument: NT5
 Analyzed: 19-May-2017 12:29

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 3.948 g (wet) Dry Weight: 2.75 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 69.60

Prepared: 19-May-2017	Final volume:	5 g	70 S	011as: 69.60	,		
			Reporting				
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes	
Chloromethane	74-87-3	1	1.82	ND	ug/kg	U	
Vinyl Chloride	75-01-4	1	1.82	ND	ug/kg	U	
Bromomethane	74-83-9	1	1.82	ND	ug/kg	U	
Chloroethane	75-00-3	1	1.82	ND	ug/kg	U	
Trichlorofluoromethane	75-69-4	1	1.82	ND	ug/kg	U	
Acrolein	107-02-8	1	9.10	ND	ug/kg	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	3.64	ND	ug/kg	U	
Acetone	67-64-1	1	9.10	148	ug/kg		
1,1-Dichloroethene	75-35-4	1	1.82	ND	ug/kg	U	
Bromoethane	74-96-4	1	3.64	ND	ug/kg	U	
Iodomethane	74-88-4	1	1.82	ND	ug/kg	U	
Methylene Chloride	75-09-2	1	3.64	ND	ug/kg	U	
Acrylonitrile	107-13-1	1	9.10	ND	ug/kg	U	
Carbon Disulfide	75-15-0	1	1.82	ND	ug/kg	U	
trans-1,2-Dichloroethene	156-60-5	1	1.82	ND	ug/kg	U	
Vinyl Acetate	108-05-4	1	9.10	ND	ug/kg	U	
1,1-Dichloroethane	75-34-3	1	1.82	ND	ug/kg	U	
2-Butanone	78-93-3	1	9.10	ND	ug/kg	U	
2,2-Dichloropropane	594-20-7	1	1.82	ND	ug/kg	U	
cis-1,2-Dichloroethene	156-59-2	1	1.82	ND	ug/kg	U	
Chloroform	67-66-3	1	1.82	ND	ug/kg	U	
Bromochloromethane	74-97-5	1	1.82	ND	ug/kg	U	
1,1,1-Trichloroethane	71-55-6	1	1.82	ND	ug/kg	U	
1,1-Dichloropropene	563-58-6	1	1.82	ND	ug/kg	U	
Carbon tetrachloride	56-23-5	1	1.82	ND	ug/kg	U	
1,2-Dichloroethane	107-06-2	1	1.82	ND	ug/kg	U	
Benzene	71-43-2	1	1.82	ND	ug/kg	U	
Trichloroethene	79-01-6	1	1.82	ND	ug/kg	U	
1,2-Dichloropropane	78-87-5	1	1.82	ND	ug/kg	U	
Bromodichloromethane	75-27-4	1	1.82	ND	ug/kg	U	
Dibromomethane	74-95-3	1	1.82	ND	ug/kg	U	
2-Chloroethyl vinyl ether	110-75-8	1	9.10	ND	ug/kg	U	
4-Methyl-2-Pentanone	108-10-1	1	9.10	ND	ug/kg	U	
cis-1,3-Dichloropropene	10061-01-5	1	1.82	ND	ug/kg	U	
Toluene	108-88-3	1	1.82	3.16	ug/kg		
trans-1,3-Dichloropropene	10061-02-6	1	1.82	ND	ug/kg	U	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

5

7

0

10

| |

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-02(2) 17E0281-02 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 09:40

 Instrument: NT5
 Analyzed: 19-May-2017 12:29

Instrument: NT5				Anal	lyzed: 19-M	ay-2017 12:29
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	9.10	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	1.82	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	1.82	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	1.82	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	1.82	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	1.82	ND	ug/kg	U
Chlorobenzene	108-90-7	1	1.82	ND	ug/kg	U
Ethylbenzene	100-41-4	1	1.82	36.7	ug/kg	
1,1,1,2-Tetrachloroethane	630-20-6	1	1.82	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	1.82	49.4	ug/kg	
o-Xylene	95-47-6	1	1.82	37.6	ug/kg	
Xylenes, total	1330-20-7	1	3.64	87.0	ug/kg	
Styrene	100-42-5	1	1.82	ND	ug/kg	U
Bromoform	75-25-2	1	1.82	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	1.82	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	3.64	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	9.10	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	1.82	ND	ug/kg	U
Bromobenzene	108-86-1	1	1.82	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	1.82	26.7	ug/kg	
2-Chlorotoluene	95-49-8	1	1.82	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	1.82	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	1.82	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	1.82	171	ug/kg	
1,2,4-Trimethylbenzene	95-63-6	1	1.82	208	ug/kg	
s-Butylbenzene	135-98-8	1	1.82	87.9	ug/kg	
4-Isopropyl Toluene	99-87-6	1	1.82	153	ug/kg	
1,3-Dichlorobenzene	541-73-1	1	1.82	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	1.82	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	1.82	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	1.82	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	9.10	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	9.10	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	9.10	ND	ug/kg	U
Naphthalene	91-20-3	1	9.10	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	9.10	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	1.82	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	1.82	ND	ug/kg	U
· · · · · · · · · · · · · · · · · · ·					~ ~	

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

102 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

5

6

8

9

11

1

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-02(2) 17E0281-02 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 09:40

 Instrument: NT5
 Analyzed: 19-May-2017 12:29

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	92.5	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	88.3	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	114	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 165 of 241

3

4

5

7

8

9

. .

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-02D(2) 17E0281-03 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 09:40

 Instrument: NT5
 Analyzed: 19-May-2017 12:51

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 6.594 g (wet) Dry Weight: 4.03 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 61.10

Prepared: 19-May-2017	Final volume:	o g	70 S	onas: 61.10	,	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	1.24	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	1.24	ND	ug/kg	U
Bromomethane	74-83-9	1	1.24	ND	ug/kg	U
Chloroethane	75-00-3	1	1.24	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	1.24	ND	ug/kg	U
Acrolein	107-02-8	1	6.21	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	2.48	ND	ug/kg	U
Acetone	67-64-1	1	6.21	174	ug/kg	
1,1-Dichloroethene	75-35-4	1	1.24	ND	ug/kg	U
Bromoethane	74-96-4	1	2.48	ND	ug/kg	U
Iodomethane	74-88-4	1	1.24	ND	ug/kg	U
Methylene Chloride	75-09-2	1	2.48	ND	ug/kg	U
Acrylonitrile	107-13-1	1	6.21	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	1.24	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	1.24	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	6.21	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	1.24	ND	ug/kg	U
2-Butanone	78-93-3	1	6.21	26.4	ug/kg	
2,2-Dichloropropane	594-20-7	1	1.24	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	1.24	ND	ug/kg	U
Chloroform	67-66-3	1	1.24	ND	ug/kg	U
Bromochloromethane	74-97-5	1	1.24	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	1.24	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	1.24	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	1.24	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	1.24	ND	ug/kg	U
Benzene	71-43-2	1	1.24	ND	ug/kg	U
Trichloroethene	79-01-6	1	1.24	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	1.24	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	1.24	ND	ug/kg	U
Dibromomethane	74-95-3	1	1.24	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	6.21	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	6.21	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	1.24	ND	ug/kg	U
Toluene	108-88-3	1	1.24	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	1.24	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

16

6

0

9

10

12

Ш

Project: Little Port Walter AK

Project Number: 58011097 Reported:
Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-02D(2) 17E0281-03 (Solid)

Volatile Organic Compounds

Test America-Tacoma

5755 8th Street East

Tacoma WA, 98424

Method: EPA 8260C Sampled: 05/07/2017 09:40
Instrument: NT5 Analyzed: 19-May-2017 12:51

Instrument: NT5				Anal	lyzed: 19-M	ay-2017 12:51
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	6.21	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	1.24	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	1.24	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	1.24	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	1.24	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	1.24	ND	ug/kg	U
Chlorobenzene	108-90-7	1	1.24	ND	ug/kg	U
Ethylbenzene	100-41-4	1	1.24	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	1.24	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	1.24	1.34	ug/kg	
o-Xylene	95-47-6	1	1.24	1.70	ug/kg	
Xylenes, total	1330-20-7	1	2.48	3.04	ug/kg	
Styrene	100-42-5	1	1.24	ND	ug/kg	U
Bromoform	75-25-2	1	1.24	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	1.24	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	2.48	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	6.21	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	1.24	ND	ug/kg	U
Bromobenzene	108-86-1	1	1.24	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	1.24	3.70	ug/kg	
2-Chlorotoluene	95-49-8	1	1.24	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	1.24	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	1.24	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	1.24	23.5	ug/kg	
1,2,4-Trimethylbenzene	95-63-6	1	1.24	46.8	ug/kg	
s-Butylbenzene	135-98-8	1	1.24	18.9	ug/kg	
4-Isopropyl Toluene	99-87-6	1	1.24	30.2	ug/kg	
1,3-Dichlorobenzene	541-73-1	1	1.24	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	1.24	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	1.24	46.3	ug/kg	
1,2-Dichlorobenzene	95-50-1	1	1.24	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	6.21	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	6.21	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	6.21	ND	ug/kg	U
Naphthalene	91-20-3	1	6.21	13.2	ug/kg	
1,2,3-Trichlorobenzene	87-61-6	1	6.21	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	1.24	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	1.24	ND	ug/kg	U
- · · · · · · · · · · · · · · · · · · ·					~ ~	

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

101 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2

5

6

8

46

11

46

7/6/2017

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-02D(2) 17E0281-03 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 09:40

 Instrument: NT5
 Analyzed: 19-May-2017 12:51

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	100	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	83.3	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	119	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 168 of 241

ort

J

4

5

7

9

10

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-03(2.5) 17E0281-04 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 10:00

 Instrument: NT5
 Analyzed: 19-May-2017 13:14

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 6.297 g (wet) Dry Weight: 3.79 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 60.20

Trepared. 17-iviay-2017	i mai voiume.	9 5	70 5	001us. 00.20	·	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	1.32	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	1.32	ND	ug/kg	U
Bromomethane	74-83-9	1	1.32	ND	ug/kg	U
Chloroethane	75-00-3	1	1.32	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	1.32	ND	ug/kg	U
Acrolein	107-02-8	1	6.59	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	2.64	ND	ug/kg	U
Acetone	67-64-1	1	6.59	19.6	ug/kg	
1,1-Dichloroethene	75-35-4	1	1.32	ND	ug/kg	U
Bromoethane	74-96-4	1	2.64	ND	ug/kg	U
Iodomethane	74-88-4	1	1.32	ND	ug/kg	U
Methylene Chloride	75-09-2	1	2.64	ND	ug/kg	U
Acrylonitrile	107-13-1	1	6.59	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	1.32	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	1.32	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	6.59	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	1.32	ND	ug/kg	U
2-Butanone	78-93-3	1	6.59	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	1.32	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	1.32	ND	ug/kg	U
Chloroform	67-66-3	1	1.32	ND	ug/kg	U
Bromochloromethane	74-97-5	1	1.32	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	1.32	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	1.32	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	1.32	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	1.32	ND	ug/kg	U
Benzene	71-43-2	1	1.32	ND	ug/kg	U
Trichloroethene	79-01-6	1	1.32	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	1.32	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	1.32	ND	ug/kg	U
Dibromomethane	74-95-3	1	1.32	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	6.59	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	6.59	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	1.32	ND	ug/kg	U
Toluene	108-88-3	1	1.32	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	1.32	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

6

0

9

10

10

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WeirP-03(2.5) 17E0281-04 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 10:00

 Instrument: NT5
 Analyzed: 19-May-2017 13:14

Instrument: NT5				Ana	lyzed: 19-M	ay-2017 13:14
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	6.59	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	1.32	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	1.32	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	1.32	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	1.32	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	1.32	ND	ug/kg	U
Chlorobenzene	108-90-7	1	1.32	ND	ug/kg	U
Ethylbenzene	100-41-4	1	1.32	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	1.32	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	1.32	ND	ug/kg	U
o-Xylene	95-47-6	1	1.32	ND	ug/kg	U
Xylenes, total	1330-20-7	1	2.64	ND	ug/kg	U
Styrene	100-42-5	1	1.32	ND	ug/kg	U
Bromoform	75-25-2	1	1.32	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	1.32	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	2.64	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	6.59	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	1.32	ND	ug/kg	U
Bromobenzene	108-86-1	1	1.32	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	1.32	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	1.32	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	1.32	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	1.32	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	1.32	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	1.32	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	1.32	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	1.32	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	1.32	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	1.32	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	1.32	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	1.32	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	6.59	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	6.59	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	6.59	ND	ug/kg	U
Naphthalene	91-20-3	1	6.59	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	6.59	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	1.32	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	1.32	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

99.8 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

А

5

6

8

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WeirP-03(2.5) 17E0281-04 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 10:00

 Instrument: NT5
 Analyzed: 19-May-2017 13:14

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	98.4	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	86.7	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	96.9	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-CCP-01(2) 17E0281-05 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 10:50

 Instrument: NT5
 Analyzed: 20-May-2017 19:31

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFF0131Sample Size: 4.179 g (wet)Dry Weight: 2.52 gPrepared: 20-May-2017Final Volume: 5 g% Solids: 60.40

Prepared: 20-May-2017	Final Volume:	5 g	% Solids: 60.40)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	1.98	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	1.98	ND	ug/kg	U
Bromomethane	74-83-9	1	1.98	ND	ug/kg	U
Chloroethane	75-00-3	1	1.98	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	1.98	ND	ug/kg	U
Acrolein	107-02-8	1	9.90	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	3.96	ND	ug/kg	U
Acetone	67-64-1	1	9.90	200	ug/kg	Q
1,1-Dichloroethene	75-35-4	1	1.98	ND	ug/kg	U
Bromoethane	74-96-4	1	3.96	ND	ug/kg	U
Iodomethane	74-88-4	1	1.98	ND	ug/kg	U
Methylene Chloride	75-09-2	1	3.96	ND	ug/kg	U
Acrylonitrile	107-13-1	1	9.90	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	1.98	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	1.98	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	9.90	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	1.98	ND	ug/kg	U
2-Butanone	78-93-3	1	9.90	48.8	ug/kg	
2,2-Dichloropropane	594-20-7	1	1.98	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	1.98	ND	ug/kg	U
Chloroform	67-66-3	1	1.98	ND	ug/kg	U
Bromochloromethane	74-97-5	1	1.98	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	1.98	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	1.98	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	1.98	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	1.98	ND	ug/kg	U
Benzene	71-43-2	1	1.98	ND	ug/kg	U
Trichloroethene	79-01-6	1	1.98	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	1.98	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	1.98	ND	ug/kg	U
Dibromomethane	74-95-3	1	1.98	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	9.90	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	9.90	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	1.98	ND	ug/kg	U
Toluene	108-88-3	1	1.98	528	ug/kg	E
trans-1,3-Dichloropropene	10061-02-6	1	1.98	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

4

Q Q

9

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-CCP-01(2) 17E0281-05 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 10:50

 Instrument: NT5
 Analyzed: 20-May-2017 19:31

Instrument: NT5				yzed: 20-M	ay-2017 19:3	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	9.90	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	1.98	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	1.98	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	1.98	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	1.98	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	1.98	ND	ug/kg	U
Chlorobenzene	108-90-7	1	1.98	ND	ug/kg	U
Ethylbenzene	100-41-4	1	1.98	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	1.98	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	1.98	ND	ug/kg	U
o-Xylene	95-47-6	1	1.98	ND	ug/kg	U
Xylenes, total	1330-20-7	1	3.96	ND	ug/kg	U
Styrene	100-42-5	1	1.98	ND	ug/kg	U
Bromoform	75-25-2	1	1.98	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	1.98	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	3.96	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	9.90	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	1.98	ND	ug/kg	U
Bromobenzene	108-86-1	1	1.98	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	1.98	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	1.98	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	1.98	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	1.98	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	1.98	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	1.98	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	1.98	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	1.98	2.78	ug/kg	
1,3-Dichlorobenzene	541-73-1	1	1.98	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	1.98	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	1.98	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	1.98	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	9.90	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	9.90	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	9.90	ND	ug/kg	U
Naphthalene	91-20-3	1	9.90	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	9.90	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	1.98	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	1.98	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

93.9 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

_

0

_

10

12

7/6/2017

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-CCP-01(2) 17E0281-05 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 10:50

 Instrument: NT5
 Analyzed: 20-May-2017 19:31

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	97.9	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	94.2	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	97.0	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-CCP-02(2) 17E0281-06 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 11:00

 Instrument: NT5
 Analyzed: 19-May-2017 14:00

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 4.506 g (wet) Dry Weight:1.32 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 29.30

Prepared: 19-May-2017	Final volume:	5 g	/0 3	onas: 29.30	,	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	3.79	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	3.79	ND	ug/kg	U
Bromomethane	74-83-9	1	3.79	ND	ug/kg	U
Chloroethane	75-00-3	1	3.79	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	3.79	ND	ug/kg	U
Acrolein	107-02-8	1	18.9	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	7.57	ND	ug/kg	U
Acetone	67-64-1	1	18.9	303	ug/kg	
1,1-Dichloroethene	75-35-4	1	3.79	ND	ug/kg	U
Bromoethane	74-96-4	1	7.57	ND	ug/kg	U
Iodomethane	74-88-4	1	3.79	ND	ug/kg	U
Methylene Chloride	75-09-2	1	7.57	ND	ug/kg	U
Acrylonitrile	107-13-1	1	18.9	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	3.79	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	3.79	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	18.9	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	3.79	ND	ug/kg	U
2-Butanone	78-93-3	1	18.9	25.0	ug/kg	
2,2-Dichloropropane	594-20-7	1	3.79	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	3.79	ND	ug/kg	U
Chloroform	67-66-3	1	3.79	ND	ug/kg	U
Bromochloromethane	74-97-5	1	3.79	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	3.79	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	3.79	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	3.79	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	3.79	ND	ug/kg	U
Benzene	71-43-2	1	3.79	ND	ug/kg	U
Trichloroethene	79-01-6	1	3.79	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	3.79	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	3.79	ND	ug/kg	U
Dibromomethane	74-95-3	1	3.79	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	18.9	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	18.9	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	3.79	ND	ug/kg	U
Toluene	108-88-3	1	3.79	4.42	ug/kg	
trans-1,3-Dichloropropene	10061-02-6	1	3.79	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

E

6

_

9

10

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-CCP-02(2) 17E0281-06 (Solid)

Volatile Organic Compounds

Test America-Tacoma

Method: EPA 8260C Sampled: 05/07/2017 11:00

Instrument: NT5				Ana	lyzed: 19-M	ay-2017 14:00
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	18.9	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	3.79	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	3.79	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	3.79	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	3.79	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	3.79	ND	ug/kg	U
Chlorobenzene	108-90-7	1	3.79	ND	ug/kg	U
Ethylbenzene	100-41-4	1	3.79	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	3.79	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	3.79	ND	ug/kg	U
o-Xylene	95-47-6	1	3.79	ND	ug/kg	U
Xylenes, total	1330-20-7	1	7.57	ND	ug/kg	U
Styrene	100-42-5	1	3.79	ND	ug/kg	U
Bromoform	75-25-2	1	3.79	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	3.79	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	7.57	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	18.9	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	3.79	ND	ug/kg	U
Bromobenzene	108-86-1	1	3.79	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	3.79	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	3.79	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	3.79	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	3.79	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	3.79	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	3.79	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	3.79	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	3.79	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	3.79	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	3.79	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	3.79	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	3.79	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	18.9	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	18.9	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	18.9	ND	ug/kg	U
Naphthalene	91-20-3	1	18.9	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	18.9	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	3.79	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	3.79	ND	ug/kg	U

Surrogate: 1,2-Dichloroethane-d4

80-149 %

104

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7/6/2017

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-CCP-02(2) 17E0281-06 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 11:00

 Instrument: NT5
 Analyzed: 19-May-2017 14:00

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	98.8	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	92.7	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	99.0	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-GSP-03(1.5) 17E0281-07 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 15:30

 Instrument: NT5
 Analyzed: 19-May-2017 14:22

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 8.448 g (wet) Dry Weight: 0.79 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 9.30

Prepared: 19-May-2017	Final volume: 5 g % Solids: 9.30					
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	6.36	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	6.36	ND	ug/kg	U
Bromomethane	74-83-9	1	6.36	ND	ug/kg	U
Chloroethane	75-00-3	1	6.36	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	6.36	ND	ug/kg	U
Acrolein	107-02-8	1	31.8	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	12.7	ND	ug/kg	U
Acetone	67-64-1	1	31.8	68.1	ug/kg	
1,1-Dichloroethene	75-35-4	1	6.36	ND	ug/kg	U
Bromoethane	74-96-4	1	12.7	ND	ug/kg	U
Iodomethane	74-88-4	1	6.36	ND	ug/kg	U
Methylene Chloride	75-09-2	1	12.7	ND	ug/kg	U
Acrylonitrile	107-13-1	1	31.8	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	6.36	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	6.36	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	31.8	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	6.36	ND	ug/kg	U
2-Butanone	78-93-3	1	31.8	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	6.36	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	6.36	ND	ug/kg	U
Chloroform	67-66-3	1	6.36	ND	ug/kg	U
Bromochloromethane	74-97-5	1	6.36	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	6.36	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	6.36	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	6.36	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	6.36	ND	ug/kg	U
Benzene	71-43-2	1	6.36	ND	ug/kg	U
Trichloroethene	79-01-6	1	6.36	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	6.36	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	6.36	ND	ug/kg	U
Dibromomethane	74-95-3	1	6.36	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	31.8	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	31.8	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	6.36	ND	ug/kg	U
Toluene	108-88-3	1	6.36	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	6.36	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

Ę

6

8

9

10

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-GSP-03(1.5) 17E0281-07 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 15:30

 Instrument: NT5
 Analyzed: 19-May-2017 14:22

Instrument: NT5				Analyzed: 19-May-2017 14:22		
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	31.8	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	6.36	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	6.36	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	6.36	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	6.36	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	6.36	ND	ug/kg	U
Chlorobenzene	108-90-7	1	6.36	ND	ug/kg	U
Ethylbenzene	100-41-4	1	6.36	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	6.36	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	6.36	ND	ug/kg	U
o-Xylene	95-47-6	1	6.36	ND	ug/kg	U
Xylenes, total	1330-20-7	1	12.7	ND	ug/kg	U
Styrene	100-42-5	1	6.36	ND	ug/kg	U
Bromoform	75-25-2	1	6.36	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	6.36	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	12.7	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	31.8	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	6.36	ND	ug/kg	U
Bromobenzene	108-86-1	1	6.36	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	6.36	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	6.36	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	6.36	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	6.36	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	6.36	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	6.36	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	6.36	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	6.36	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	6.36	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	6.36	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	6.36	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	6.36	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	31.8	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	31.8	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	31.8	ND	ug/kg	U
Naphthalene	91-20-3	1	31.8	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	31.8	ND	ug/kg ug/kg	U
Dichlorodifluoromethane	75-71-8	1	6.36	ND	ug/kg ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	6.36	ND	ug/kg ug/kg	U

Surrogate: 1,2-Dichloroethane-d4

80-149 %

70.6 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

16

0

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-GSP-03(1.5) 17E0281-07 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 15:30

 Instrument: NT5
 Analyzed: 19-May-2017 14:22

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	97.3	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	94.2	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	94.2	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-OBP-02(2) 17E0281-08 (Solid)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 05/07/2017 16:45 Instrument: NT5 Analyzed: 19-May-2017 14:45

Sample Preparation: Preparation Method: No Prep - Volatiles

Dry Weight:2.31 g Preparation Batch: BFE0507 Sample Size: 6.061 g (wet)

Analyte CAS Number Dilution Result Units Chloromethane 74-87-3 1 2.17 ND ug/kg	Notes U U U
	U U
Chloromethane 74-87-3 1 2.17 ND ug/kg	U
Vinyl Chloride 75-01-4 1 2.17 ND ug/kg	11
Bromomethane 74-83-9 1 2.17 ND ug/kg	U
Chloroethane 75-00-3 1 2.17 ND ug/kg	U
Trichlorofluoromethane 75-69-4 1 2.17 ND ug/kg	U
Acrolein 107-02-8 1 10.8 ND ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 1 4.33 ND ug/kg	U
Acetone 67-64-1 1 10.8 1510 ug/kg	
1,1-Dichloroethene 75-35-4 1 2.17 ND ug/kg	U
Bromoethane 74-96-4 1 4.33 ND ug/kg	U
Iodomethane 74-88-4 1 2.17 ND ug/kg	U
Methylene Chloride 75-09-2 1 4.33 ND ug/kg	U
Acrylonitrile 107-13-1 1 10.8 ND ug/kg	U
Carbon Disulfide 75-15-0 1 2.17 ND ug/kg	U
trans-1,2-Dichloroethene 156-60-5 1 2.17 ND ug/kg	U
Vinyl Acetate 108-05-4 1 10.8 ND ug/kg	U
1,1-Dichloroethane 75-34-3 1 2.17 ND ug/kg	U
2-Butanone 78-93-3 1 10.8 63.1 ug/kg	
2,2-Dichloropropane 594-20-7 1 2.17 ND ug/kg	U
cis-1,2-Dichloroethene 156-59-2 1 2.17 ND ug/kg	U
Chloroform 67-66-3 1 2.17 ND ug/kg	U
Bromochloromethane 74-97-5 1 2.17 ND ug/kg	U
1,1,1-Trichloroethane 71-55-6 1 2.17 ND ug/kg	U
1,1-Dichloropropene 563-58-6 1 2.17 ND ug/kg	U
Carbon tetrachloride 56-23-5 1 2.17 ND ug/kg	U
1,2-Dichloroethane 107-06-2 1 2.17 ND ug/kg	U
Benzene 71-43-2 1 2.17 ND ug/kg	U
Trichloroethene 79-01-6 1 2.17 ND ug/kg	U
1,2-Dichloropropane 78-87-5 1 2.17 ND ug/kg	U
Bromodichloromethane 75-27-4 1 2.17 ND ug/kg	U
Dibromomethane 74-95-3 1 2.17 ND ug/kg	U
2-Chloroethyl vinyl ether 110-75-8 1 10.8 ND ug/kg	U
4-Methyl-2-Pentanone 108-10-1 1 10.8 ND ug/kg	U
cis-1,3-Dichloropropene 10061-01-5 1 2.17 ND ug/kg	U
Toluene 108-88-3 1 2.17 ND ug/kg	U
trans-1,3-Dichloropropene 10061-02-6 1 2.17 ND ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

Project Number: 58011097 Reported:
Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-OBP-02(2) 17E0281-08 (Solid)

Volatile Organic Compounds

Test America-Tacoma

5755 8th Street East

Tacoma WA, 98424

 Method: EPA 8260C
 Sampled: 05/07/2017 16:45

 Instrument: NT5
 Analyzed: 19-May-2017 14:45

Instrument: NT5				Ana	yzed: 19-M	ay-2017 14:45
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	10.8	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	2.17	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	2.17	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	2.17	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	2.17	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	2.17	ND	ug/kg	U
Chlorobenzene	108-90-7	1	2.17	ND	ug/kg	U
Ethylbenzene	100-41-4	1	2.17	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	2.17	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	2.17	ND	ug/kg	U
o-Xylene	95-47-6	1	2.17	ND	ug/kg	U
Xylenes, total	1330-20-7	1	4.33	ND	ug/kg	U
Styrene	100-42-5	1	2.17	ND	ug/kg	U
Bromoform	75-25-2	1	2.17	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	2.17	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	4.33	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	10.8	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	2.17	ND	ug/kg	U
Bromobenzene	108-86-1	1	2.17	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	2.17	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	2.17	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	2.17	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	2.17	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	2.17	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	2.17	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	2.17	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	2.17	5.47	ug/kg	
1.3-Dichlorobenzene	541-73-1	1	2.17	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	2.17	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	2.17	ND	ug/kg ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	2.17	ND	ug/kg ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	10.8	ND	ug/kg ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	10.8	ND	ug/kg ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	10.8	ND	ug/kg ug/kg	U
Naphthalene	91-20-3	1	10.8	ND	ug/kg ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	10.8	ND ND	ug/kg ug/kg	U
Dichlorodifluoromethane	75-71-8	1	2.17	ND ND		U
	1634-04-4	1			ug/kg	U
Methyl tert-butyl Ether	1634-04-4	I	2.17	ND	ug/kg	U

Surrogate: 1,2-Dichloroethane-d4

80-149 %

104 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7/6/2017

2

-0

E

ŏ

10

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-OBP-02(2) 17E0281-08 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 16:45

 Instrument: NT5
 Analyzed: 19-May-2017 14:45

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	98.4	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	93.3	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	97.3	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 183 of 241

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-01(2) 17E0281-09 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 17:50

 Instrument: NT5
 Analyzed: 19-May-2017 15:08

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 9.902 g (wet) Dry Weight: 7.23 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 73.00

Prepared: 19-May-2017	Final Volume:	5 g	% S	Solids: 73.00)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.69	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	0.69	ND	ug/kg	U
Bromomethane	74-83-9	1	0.69	ND	ug/kg	U
Chloroethane	75-00-3	1	0.69	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	0.69	ND	ug/kg	U
Acrolein	107-02-8	1	3.46	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	1.38	ND	ug/kg	U
Acetone	67-64-1	1	3.46	409	ug/kg	
1,1-Dichloroethene	75-35-4	1	0.69	ND	ug/kg	U
Bromoethane	74-96-4	1	1.38	ND	ug/kg	U
Iodomethane	74-88-4	1	0.69	ND	ug/kg	U
Methylene Chloride	75-09-2	1	1.38	ND	ug/kg	U
Acrylonitrile	107-13-1	1	3.46	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	0.69	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	0.69	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	3.46	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	0.69	ND	ug/kg	U
2-Butanone	78-93-3	1	3.46	31.9	ug/kg	
2,2-Dichloropropane	594-20-7	1	0.69	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	0.69	ND	ug/kg	U
Chloroform	67-66-3	1	0.69	ND	ug/kg	U
Bromochloromethane	74-97-5	1	0.69	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	0.69	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	0.69	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	0.69	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	0.69	ND	ug/kg	U
Benzene	71-43-2	1	0.69	ND	ug/kg	U
Trichloroethene	79-01-6	1	0.69	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	0.69	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	0.69	ND	ug/kg	U
Dibromomethane	74-95-3	1	0.69	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	3.46	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	3.46	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	0.69	ND	ug/kg	U
Toluene	108-88-3	1	0.69	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	0.69	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

3

_

9

10

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WHP-01(2) 17E0281-09 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 17:50

 Instrument: NT5
 Analyzed: 19-May-2017 15:08

Instrument: NT5				Ana	lyzed: 19-M	ay-2017 15:08
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	3.46	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	0.69	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	0.69	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	0.69	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	0.69	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	0.69	ND	ug/kg	U
Chlorobenzene	108-90-7	1	0.69	ND	ug/kg	U
Ethylbenzene	100-41-4	1	0.69	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.69	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	0.69	ND	ug/kg	U
o-Xylene	95-47-6	1	0.69	ND	ug/kg	U
Xylenes, total	1330-20-7	1	1.38	ND	ug/kg	U
Styrene	100-42-5	1	0.69	ND	ug/kg	U
Bromoform	75-25-2	1	0.69	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.69	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	1.38	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	3.46	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	0.69	ND	ug/kg	U
Bromobenzene	108-86-1	1	0.69	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	0.69	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	0.69	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	0.69	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	0.69	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	0.69	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	0.69	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	0.69	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	0.69	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	0.69	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	0.69	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	0.69	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	0.69	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	3.46	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	3.46	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	3.46	ND	ug/kg	U
Naphthalene	91-20-3	1	3.46	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	3.46	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	0.69	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	0.69	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

105 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

A

5

6

8

11

14

1.

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-01(2) 17E0281-09 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 17:50

 Instrument: NT5
 Analyzed: 19-May-2017 15:08

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	99.2	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	98.0	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	96.2	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

6

1

0

10

11

12

L

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-01D(2) 17E0281-10 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 17:50

 Instrument: NT5
 Analyzed: 20-May-2017 18:00

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFF0131 Sample Size: 6.084 g (wet) Dry Weight: 4.17 g
Prepared: 20-May-2017 Final Volume: 5 g % Solids: 68.60

Trepared: 20-May-2017	i mai voidine.	- 5	, , ,	011us. 00.00		
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	1.20	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	1.20	ND	ug/kg	U
Bromomethane	74-83-9	1	1.20	ND	ug/kg	U
Chloroethane	75-00-3	1	1.20	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	1.20	ND	ug/kg	U
Acrolein	107-02-8	1	5.99	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	2.40	ND	ug/kg	U
Acetone	67-64-1	1	5.99	2330	ug/kg	Q, E
1,1-Dichloroethene	75-35-4	1	1.20	ND	ug/kg	U
Bromoethane	74-96-4	1	2.40	ND	ug/kg	U
Iodomethane	74-88-4	1	1.20	ND	ug/kg	U
Methylene Chloride	75-09-2	1	2.40	ND	ug/kg	U
Acrylonitrile	107-13-1	1	5.99	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	1.20	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	1.20	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	5.99	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	1.20	ND	ug/kg	U
2-Butanone	78-93-3	1	5.99	137	ug/kg	
2,2-Dichloropropane	594-20-7	1	1.20	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	1.20	ND	ug/kg	U
Chloroform	67-66-3	1	1.20	ND	ug/kg	U
Bromochloromethane	74-97-5	1	1.20	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	1.20	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	1.20	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	1.20	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	1.20	ND	ug/kg	U
Benzene	71-43-2	1	1.20	ND	ug/kg	U
Trichloroethene	79-01-6	1	1.20	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	1.20	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	1.20	ND	ug/kg	U
Dibromomethane	74-95-3	1	1.20	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	5.99	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	5.99	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	1.20	ND	ug/kg	U
Toluene	108-88-3	1	1.20	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	1.20	ND	ug/kg	U
					~ ~	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

5

6

8

9

11

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WHP-01D(2) 17E0281-10 (Solid)

Volatile Organic Compounds

Test America-Tacoma

Method: EPA 8260C Sampled: 05/07/2017 17:50 Instrument: NT5 Analyzed: 20-May-2017 18:00

			Reporting		yzed: 20-M	-
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	5.99	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	1.20	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	1.20	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	1.20	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	1.20	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	1.20	ND	ug/kg	U
Chlorobenzene	108-90-7	1	1.20	ND	ug/kg	U
Ethylbenzene	100-41-4	1	1.20	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	1.20	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	1.20	ND	ug/kg	U
o-Xylene	95-47-6	1	1.20	ND	ug/kg	U
Xylenes, total	1330-20-7	1	2.40	ND	ug/kg	U
Styrene	100-42-5	1	1.20	ND	ug/kg	U
Bromoform	75-25-2	1	1.20	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	1.20	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	2.40	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	5.99	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	1.20	ND	ug/kg	U
Bromobenzene	108-86-1	1	1.20	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	1.20	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	1.20	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	1.20	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	1.20	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	1.20	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	1.20	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	1.20	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	1.20	12.2	ug/kg	
1,3-Dichlorobenzene	541-73-1	1	1.20	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	1.20	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	1.20	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	1.20	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	5.99	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	5.99	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	5.99	ND	ug/kg	U
Naphthalene	91-20-3	1	5.99	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	5.99	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	1.20	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	1.20	ND	ug/kg	U

Surrogate: 1,2-Dichloroethane-d4

80-149 %

% 94.5

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 188 of 241

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-01D(2) 17E0281-10 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 17:50

 Instrument: NT5
 Analyzed: 20-May-2017 18:00

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	95.1	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	84.4	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	81.4	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WHP-2(1) 17E0281-11 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 18:10

 Instrument: NT5
 Analyzed: 19-May-2017 15:53

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507Sample Size: 4.366 g (wet)Dry Weight: 1.74 gPrepared: 19-May-2017Final Volume: 5 g% Solids: 39.80

Prepared: 19-May-2017	Final Volume:	5 g	% S	Solids: 39.80)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	2.88	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	2.88	ND	ug/kg	U
Bromomethane	74-83-9	1	2.88	ND	ug/kg	U
Chloroethane	75-00-3	1	2.88	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	2.88	ND	ug/kg	U
Acrolein	107-02-8	1	14.4	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	5.75	ND	ug/kg	U
Acetone	67-64-1	1	14.4	4910	ug/kg	E
1,1-Dichloroethene	75-35-4	1	2.88	ND	ug/kg	U
Bromoethane	74-96-4	1	5.75	ND	ug/kg	U
Iodomethane	74-88-4	1	2.88	ND	ug/kg	U
Methylene Chloride	75-09-2	1	5.75	ND	ug/kg	U
Acrylonitrile	107-13-1	1	14.4	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	2.88	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	2.88	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	14.4	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	2.88	ND	ug/kg	U
2-Butanone	78-93-3	1	14.4	161	ug/kg	
2,2-Dichloropropane	594-20-7	1	2.88	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	2.88	ND	ug/kg	U
Chloroform	67-66-3	1	2.88	5.11	ug/kg	
Bromochloromethane	74-97-5	1	2.88	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	2.88	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	2.88	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	2.88	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	2.88	ND	ug/kg	U
Benzene	71-43-2	1	2.88	ND	ug/kg	U
Trichloroethene	79-01-6	1	2.88	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	2.88	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	2.88	ND	ug/kg	U
Dibromomethane	74-95-3	1	2.88	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	14.4	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	14.4	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	2.88	ND	ug/kg	U
Toluene	108-88-3	1	2.88	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	2.88	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

5

7

9

10

10

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-2(1) 17E0281-11 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 18:10

 Instrument: NT5
 Analyzed: 19-May-2017 15:53

Instrument: NT5			n.	7 11141	yzed: 19-Ma	*J 2017 13
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	14.4	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	2.88	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	2.88	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	2.88	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	2.88	ND	ug/kg	U
,2-Dibromoethane	106-93-4	1	2.88	ND	ug/kg	U
Chlorobenzene	108-90-7	1	2.88	ND	ug/kg	U
Ethylbenzene	100-41-4	1	2.88	ND	ug/kg	U
,1,1,2-Tetrachloroethane	630-20-6	1	2.88	ND	ug/kg	U
n,p-Xylene	179601-23-1	1	2.88	ND	ug/kg	U
o-Xylene	95-47-6	1	2.88	ND	ug/kg	U
Xylenes, total	1330-20-7	1	5.75	ND	ug/kg	U
Styrene	100-42-5	1	2.88	ND	ug/kg	U
Bromoform	75-25-2	1	2.88	ND	ug/kg	U
,1,2,2-Tetrachloroethane	79-34-5	1	2.88	ND	ug/kg	U
,2,3-Trichloropropane	96-18-4	1	5.75	ND	ug/kg	U
rans-1,4-Dichloro 2-Butene	110-57-6	1	14.4	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	2.88	ND	ug/kg	U
Bromobenzene	108-86-1	1	2.88	ND	ug/kg	U
sopropyl Benzene	98-82-8	1	2.88	ND	ug/kg	U
-Chlorotoluene	95-49-8	1	2.88	ND	ug/kg	U
1-Chlorotoluene	106-43-4	1	2.88	ND	ug/kg	U
Butylbenzene	98-06-6	1	2.88	ND	ug/kg	U
,3,5-Trimethylbenzene	108-67-8	1	2.88	ND	ug/kg	U
,2,4-Trimethylbenzene	95-63-6	1	2.88	ND	ug/kg	U
-Butylbenzene	135-98-8	1	2.88	ND	ug/kg	U
-Isopropyl Toluene	99-87-6	1	2.88	17.3	ug/kg	
,3-Dichlorobenzene	541-73-1	1	2.88	ND	ug/kg	U
,4-Dichlorobenzene	106-46-7	1	2.88	ND	ug/kg	U
-Butylbenzene	104-51-8	1	2.88	ND	ug/kg	U
,2-Dichlorobenzene	95-50-1	1	2.88	ND	ug/kg	U
,2-Dibromo-3-chloropropane	96-12-8	1	14.4	ND	ug/kg	U
,2,4-Trichlorobenzene	120-82-1	1	14.4	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	14.4	ND	ug/kg	U
Naphthalene	91-20-3	1	14.4	ND	ug/kg	U
,2,3-Trichlorobenzene	87-61-6	1	14.4	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	2.88	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	2.88	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

99.2 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

J

4

1

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-2(1) 17E0281-11 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 18:10

 Instrument: NT5
 Analyzed: 19-May-2017 15:53

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	98.6	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	94.8	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	98.8	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

E

6

8

9

Ľ

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-3(1) 17E0281-12 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 18:15

 Instrument: NT5
 Analyzed: 19-May-2017 16:15

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 5.195 g (wet) Dry Weight: 1.25 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 24.00

Prepared: 19-May-2017	Final volume:	o g	/0 S	onas: 24.00	,	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	4.01	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	4.01	ND	ug/kg	U
Bromomethane	74-83-9	1	4.01	ND	ug/kg	U
Chloroethane	75-00-3	1	4.01	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	4.01	ND	ug/kg	U
Acrolein	107-02-8	1	20.1	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	8.02	ND	ug/kg	U
Acetone	67-64-1	1	20.1	1080	ug/kg	
1,1-Dichloroethene	75-35-4	1	4.01	ND	ug/kg	U
Bromoethane	74-96-4	1	8.02	ND	ug/kg	U
Iodomethane	74-88-4	1	4.01	ND	ug/kg	U
Methylene Chloride	75-09-2	1	8.02	ND	ug/kg	U
Acrylonitrile	107-13-1	1	20.1	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	4.01	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	4.01	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	20.1	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	4.01	ND	ug/kg	U
2-Butanone	78-93-3	1	20.1	93.3	ug/kg	
2,2-Dichloropropane	594-20-7	1	4.01	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	4.01	ND	ug/kg	U
Chloroform	67-66-3	1	4.01	ND	ug/kg	U
Bromochloromethane	74-97-5	1	4.01	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	4.01	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	4.01	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	4.01	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	4.01	ND	ug/kg	U
Benzene	71-43-2	1	4.01	ND	ug/kg	U
Trichloroethene	79-01-6	1	4.01	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	4.01	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	4.01	ND	ug/kg	U
Dibromomethane	74-95-3	1	4.01	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	20.1	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	20.1	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	4.01	ND	ug/kg	U
Toluene	108-88-3	1	4.01	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	4.01	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

Project: Little Port Walter AK

Project Number: 58011097 Reported: Project Manager: Elaine Walker 07-Jun-2017 06:00

> **LPW17-SL-WHP-3(1)** 17E0281-12 (Solid)

Volatile Organic Compounds

Test America-Tacoma

5755 8th Street East

Tacoma WA, 98424

Method: EPA 8260C Sampled: 05/07/2017 18:15 Instrument: NT5 Analyzed: 19-May-2017 16:15

Instrument: NT5				Analyzed: 19-May-2017 16:			
	GAGNI A	B.1:	Reporting	n 1	** *	NT -	
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes	
2-Hexanone	591-78-6	1	20.1	ND	ug/kg	U	
1,1,2-Trichloroethane	79-00-5	1	4.01	ND	ug/kg	U	
1,3-Dichloropropane	142-28-9	1	4.01	ND	ug/kg	U	
Tetrachloroethene	127-18-4	1	4.01	ND	ug/kg	U	
Dibromochloromethane	124-48-1	1	4.01	ND	ug/kg	U	
1,2-Dibromoethane	106-93-4	1	4.01	ND	ug/kg	U	
Chlorobenzene	108-90-7	1	4.01	ND	ug/kg	U	
Ethylbenzene	100-41-4	1	4.01	ND	ug/kg	U	
1,1,1,2-Tetrachloroethane	630-20-6	1	4.01	ND	ug/kg	U	
m,p-Xylene	179601-23-1	1	4.01	ND	ug/kg	U	
o-Xylene	95-47-6	1	4.01	ND	ug/kg	U	
Xylenes, total	1330-20-7	1	8.02	ND	ug/kg	U	
Styrene	100-42-5	1	4.01	ND	ug/kg	U	
Bromoform	75-25-2	1	4.01	ND	ug/kg	U	
1,1,2,2-Tetrachloroethane	79-34-5	1	4.01	ND	ug/kg	U	
1,2,3-Trichloropropane	96-18-4	1	8.02	ND	ug/kg	U	
trans-1,4-Dichloro 2-Butene	110-57-6	1	20.1	ND	ug/kg	U	
n-Propylbenzene	103-65-1	1	4.01	ND	ug/kg	U	
Bromobenzene	108-86-1	1	4.01	ND	ug/kg	U	
Isopropyl Benzene	98-82-8	1	4.01	ND	ug/kg	U	
2-Chlorotoluene	95-49-8	1	4.01	ND	ug/kg	U	
4-Chlorotoluene	106-43-4	1	4.01	ND	ug/kg	U	
t-Butylbenzene	98-06-6	1	4.01	ND	ug/kg	U	
1,3,5-Trimethylbenzene	108-67-8	1	4.01	ND	ug/kg	U	
1,2,4-Trimethylbenzene	95-63-6	1	4.01	ND	ug/kg	U	
s-Butylbenzene	135-98-8	1	4.01	ND	ug/kg	U	
4-Isopropyl Toluene	99-87-6	1	4.01	13.3	ug/kg		
1,3-Dichlorobenzene	541-73-1	1	4.01	ND	ug/kg	U	
1,4-Dichlorobenzene	106-46-7	1	4.01	ND	ug/kg	U	
n-Butylbenzene	104-51-8	1	4.01	ND	ug/kg	U	
1,2-Dichlorobenzene	95-50-1	1	4.01	ND	ug/kg	U	
1,2-Dibromo-3-chloropropane	96-12-8	1	20.1	ND	ug/kg	U	
1,2,4-Trichlorobenzene	120-82-1	1	20.1	ND	ug/kg	U	
Hexachloro-1,3-Butadiene	87-68-3	1	20.1	ND	ug/kg	U	
Naphthalene	91-20-3	1	20.1	ND	ug/kg	U	
1,2,3-Trichlorobenzene	87-61-6	1	20.1	ND	ug/kg	U	
Dichlorodifluoromethane	75-71-8	1	4.01	ND	ug/kg	U	
Methyl tert-butyl Ether	1634-04-4	1	4.01	ND	ug/kg	U	

Surrogate: 1,2-Dichloroethane-d4

80-149 %

98.6 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-3(1) 17E0281-12 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 18:15

 Instrument: NT5
 Analyzed: 19-May-2017 16:15

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	99.4	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	92.6	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	97.0	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 195 of 241

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-4(1) 17E0281-13 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 18:20

 Instrument: NT5
 Analyzed: 20-May-2017 18:45

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFF0131Sample Size: 7.329 g (wet)Dry Weight: 1.39 gPrepared: 20-May-2017Final Volume: 5 g% Solids: 19.00

Prepared: 20-May-2017	Final Volume:	5 g	% S	Solids: 19.00)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	3.59	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	3.59	ND	ug/kg	U
Bromomethane	74-83-9	1	3.59	ND	ug/kg	U
Chloroethane	75-00-3	1	3.59	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	3.59	ND	ug/kg	U
Acrolein	107-02-8	1	18.0	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	7.18	ND	ug/kg	U
Acetone	67-64-1	1	18.0	213	ug/kg	Q
1,1-Dichloroethene	75-35-4	1	3.59	ND	ug/kg	U
Bromoethane	74-96-4	1	7.18	ND	ug/kg	U
Iodomethane	74-88-4	1	3.59	ND	ug/kg	U
Methylene Chloride	75-09-2	1	7.18	ND	ug/kg	U
Acrylonitrile	107-13-1	1	18.0	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	3.59	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	3.59	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	18.0	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	3.59	ND	ug/kg	U
2-Butanone	78-93-3	1	18.0	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	3.59	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	3.59	ND	ug/kg	U
Chloroform	67-66-3	1	3.59	ND	ug/kg	U
Bromochloromethane	74-97-5	1	3.59	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	3.59	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	3.59	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	3.59	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	3.59	ND	ug/kg	U
Benzene	71-43-2	1	3.59	ND	ug/kg	U
Trichloroethene	79-01-6	1	3.59	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	3.59	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	3.59	ND	ug/kg	U
Dibromomethane	74-95-3	1	3.59	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	18.0	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	18.0	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	3.59	ND	ug/kg	U
Toluene	108-88-3	1	3.59	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	3.59	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

- 0

5

6

1 0

11

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WHP-4(1) 17E0281-13 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 18:20

 Instrument: NT5
 Analyzed: 20-May-2017 18:45

Instrument: NT5			Domontino		yzed: 20-Ma	, ==== 10
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	18.0	ND	ug/kg	U
,1,2-Trichloroethane	79-00-5	1	3.59	ND	ug/kg	U
,3-Dichloropropane	142-28-9	1	3.59	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	3.59	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	3.59	ND	ug/kg	U
,2-Dibromoethane	106-93-4	1	3.59	ND	ug/kg	U
Chlorobenzene	108-90-7	1	3.59	ND	ug/kg	U
Ethylbenzene	100-41-4	1	3.59	86.2	ug/kg	
,1,1,2-Tetrachloroethane	630-20-6	1	3.59	ND	ug/kg	U
n,p-Xylene	179601-23-1	1	3.59	125	ug/kg	
-Xylene	95-47-6	1	3.59	85.0	ug/kg	
Kylenes, total	1330-20-7	1	7.18	210	ug/kg	
Styrene	100-42-5	1	3.59	ND	ug/kg	U
Bromoform	75-25-2	1	3.59	ND	ug/kg	U
,1,2,2-Tetrachloroethane	79-34-5	1	3.59	ND	ug/kg	U
,2,3-Trichloropropane	96-18-4	1	7.18	ND	ug/kg	U
rans-1,4-Dichloro 2-Butene	110-57-6	1	18.0	ND	ug/kg	U
-Propylbenzene	103-65-1	1	3.59	412	ug/kg	
Bromobenzene	108-86-1	1	3.59	ND	ug/kg	U
sopropyl Benzene	98-82-8	1	3.59	181	ug/kg	
-Chlorotoluene	95-49-8	1	3.59	ND	ug/kg	U
-Chlorotoluene	106-43-4	1	3.59	ND	ug/kg	U
Butylbenzene	98-06-6	1	3.59	ND	ug/kg	U
,3,5-Trimethylbenzene	108-67-8	1	3.59	1250	ug/kg	E
,2,4-Trimethylbenzene	95-63-6	1	3.59	1980	ug/kg	E
-Butylbenzene	135-98-8	1	3.59	612	ug/kg	
-Isopropyl Toluene	99-87-6	1	3.59	755	ug/kg	E
,3-Dichlorobenzene	541-73-1	1	3.59	ND	ug/kg	U
,4-Dichlorobenzene	106-46-7	1	3.59	ND	ug/kg	U
-Butylbenzene	104-51-8	1	3.59	1110	ug/kg	E
,2-Dichlorobenzene	95-50-1	1	3.59	ND	ug/kg	U
,2-Dibromo-3-chloropropane	96-12-8	1	18.0	ND	ug/kg	U
,2,4-Trichlorobenzene	120-82-1	1	18.0	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	18.0	ND	ug/kg	U
Naphthalene	91-20-3	1	18.0	122	ug/kg	
,2,3-Trichlorobenzene	87-61-6	1	18.0	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	3.59	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	3.59	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

102

%

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

А

5

9

10

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WHP-4(1) 17E0281-13 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 18:20

 Instrument: NT5
 Analyzed: 20-May-2017 18:45

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	93.0	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	110	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	118	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

3

4

5

_

8

3

40

1:

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-GSP-01(2) 17E0281-14 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 13:05

 Instrument: NT5
 Analyzed: 19-May-2017 17:01

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 5.298 g (wet) Dry Weight: 2.47 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 46.60

Prepared: 19-May-2017	Final volume:	<i>y</i> g	70 3	onas: 46.60	,	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	2.03	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	2.03	ND	ug/kg	U
Bromomethane	74-83-9	1	2.03	ND	ug/kg	U
Chloroethane	75-00-3	1	2.03	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	2.03	ND	ug/kg	U
Acrolein	107-02-8	1	10.1	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	4.05	ND	ug/kg	U
Acetone	67-64-1	1	10.1	987	ug/kg	
1,1-Dichloroethene	75-35-4	1	2.03	ND	ug/kg	U
Bromoethane	74-96-4	1	4.05	ND	ug/kg	U
Iodomethane	74-88-4	1	2.03	ND	ug/kg	U
Methylene Chloride	75-09-2	1	4.05	ND	ug/kg	U
Acrylonitrile	107-13-1	1	10.1	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	2.03	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	2.03	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	10.1	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	2.03	ND	ug/kg	U
2-Butanone	78-93-3	1	10.1	32.3	ug/kg	
2,2-Dichloropropane	594-20-7	1	2.03	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	2.03	ND	ug/kg	U
Chloroform	67-66-3	1	2.03	ND	ug/kg	U
Bromochloromethane	74-97-5	1	2.03	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	2.03	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	2.03	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	2.03	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	2.03	ND	ug/kg	U
Benzene	71-43-2	1	2.03	ND	ug/kg	U
Trichloroethene	79-01-6	1	2.03	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	2.03	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	2.03	ND	ug/kg	U
Dibromomethane	74-95-3	1	2.03	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	10.1	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	10.1	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	2.03	ND	ug/kg	U
Toluene	108-88-3	1	2.03	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	2.03	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-GSP-01(2) 17E0281-14 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 13:05

 Instrument: NT5
 Analyzed: 19-May-2017 17:01

Instrument: NT5						Analyzed: 19-May-2017 17:0			
			Reporting						
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes			
2-Hexanone	591-78-6	1	10.1	ND	ug/kg	U			
1,1,2-Trichloroethane	79-00-5	1	2.03	ND	ug/kg	U			
1,3-Dichloropropane	142-28-9	1	2.03	ND	ug/kg	U			
Tetrachloroethene	127-18-4	1	2.03	ND	ug/kg	U			
Dibromochloromethane	124-48-1	1	2.03	ND	ug/kg	U			
1,2-Dibromoethane	106-93-4	1	2.03	ND	ug/kg	U			
Chlorobenzene	108-90-7	1	2.03	ND	ug/kg	U			
Ethylbenzene	100-41-4	1	2.03	ND	ug/kg	U			
1,1,1,2-Tetrachloroethane	630-20-6	1	2.03	ND	ug/kg	U			
m,p-Xylene	179601-23-1	1	2.03	ND	ug/kg	U			
o-Xylene	95-47-6	1	2.03	ND	ug/kg	U			
Xylenes, total	1330-20-7	1	4.05	ND	ug/kg	U			
Styrene	100-42-5	1	2.03	ND	ug/kg	U			
Bromoform	75-25-2	1	2.03	ND	ug/kg	U			
1,1,2,2-Tetrachloroethane	79-34-5	1	2.03	ND	ug/kg	U			
1,2,3-Trichloropropane	96-18-4	1	4.05	ND	ug/kg	U			
trans-1,4-Dichloro 2-Butene	110-57-6	1	10.1	ND	ug/kg	U			
n-Propylbenzene	103-65-1	1	2.03	ND	ug/kg	U			
Bromobenzene	108-86-1	1	2.03	ND	ug/kg	U			
Isopropyl Benzene	98-82-8	1	2.03	ND	ug/kg	U			
2-Chlorotoluene	95-49-8	1	2.03	ND	ug/kg	U			
4-Chlorotoluene	106-43-4	1	2.03	ND	ug/kg	U			
t-Butylbenzene	98-06-6	1	2.03	ND	ug/kg	U			
1,3,5-Trimethylbenzene	108-67-8	1	2.03	ND	ug/kg	U			
1,2,4-Trimethylbenzene	95-63-6	1	2.03	ND	ug/kg	U			
s-Butylbenzene	135-98-8	1	2.03	ND	ug/kg	U			
4-Isopropyl Toluene	99-87-6	1	2.03	ND	ug/kg	U			
1,3-Dichlorobenzene	541-73-1	1	2.03	ND	ug/kg	U			
1,4-Dichlorobenzene	106-46-7	1	2.03	ND	ug/kg	U			
n-Butylbenzene	104-51-8	1	2.03	ND	ug/kg	U			
1,2-Dichlorobenzene	95-50-1	1	2.03	ND	ug/kg	U			
1,2-Dibromo-3-chloropropane	96-12-8	1	10.1	ND	ug/kg	U			
1,2,4-Trichlorobenzene	120-82-1	1	10.1	ND	ug/kg	U			
Hexachloro-1,3-Butadiene	87-68-3	1	10.1	ND	ug/kg	U			
Naphthalene	91-20-3	1	10.1	ND	ug/kg	U			
1,2,3-Trichlorobenzene	87-61-6	1	10.1	ND	ug/kg	U			
Dichlorodifluoromethane	75-71-8	1	2.03	ND	ug/kg	U			
Methyl tert-butyl Ether	1634-04-4	1	2.03	ND	ug/kg	U			

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

98.7 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3

6

0

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-GSP-01(2) 17E0281-14 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 13:05

 Instrument: NT5
 Analyzed: 19-May-2017 17:01

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	97.6	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	92.2	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	97.1	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 201 of 241

5

7

8

9

12

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-WSP-01(2) 17E0281-15 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 15:55

 Instrument: NT5
 Analyzed: 19-May-2017 17:23

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 8.06 g (wet) Dry Weight: 0.85 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 10.50

Analyte CAS Number Dilution Reporting Result Unit Chloromethane 74-87-3 1 5.91 ND ug/k Vinyl Chloride 75-01-4 1 5.91 ND ug/k Bromomethane 74-83-9 1 5.91 ND ug/k Chlorothane 75-60-3 1 5.91 ND ug/k Acrolein 107-02-8 1 2.95 ND ug/k Acrolein 76-13-1 1 1.18 ND ug/k Acrolein 76-13-1 1 1.18 ND ug/k Acrolein 76-13-1 1 1.18 ND ug/k 1,1-15chlorocthane 76-13-1 1 1.18 ND ug/k Acrolein 74-84-4 1 5.91 ND ug/k I,1-15chlorocthane 74-88-4 1 5.91 ND ug/k Methylene Chloride 75-02-2 1 1.18 ND ug/k <th></th>	
Chloromethane	
Vinyl Chloride 75-01-4 1 5.91 ND ug/k Bromomethane 74-83-9 1 5.91 ND ug/k Chloroethane 75-00-3 1 5.91 ND ug/k Trichlorofluoromethane 75-60-4 1 5.91 ND ug/k Acrolin 107-02-8 1 29.5 ND ug/k Al,12-Trichloro-1,22-Trifluoroethane 76-13-1 1 11.8 ND ug/k Actone 67-64-1 1 29.5 ND ug/k Actone 75-35-4 1 5.91 ND ug/k Bromoethane 74-96-4 1 11.8 ND ug/k Methylene Chloride 75-09-2 1 11.8 ND ug/k Methylene Chloride 75-13-0 1 5.91 ND ug/k Carbon Disulfide 75-13-0 1 5.91 ND ug/k Vinyl Acetate 18-60-5 1 5.91 ND	Notes
Bromomethane	U
Chloroethane 75-00-3 1 5-91 ND ug/k Trichlorofluoromethane 75-60-4 1 5-91 ND ug/k Acrolein 107-02-8 1 29.5 ND ug/k 1,1-2-Trichloro-1,2,2-Trifluoroethane 76-13-1 1 19.8 ND ug/k Acetone 67-64-1 1 29.5 ND ug/k Acetone 75-35-4 1 5-91 ND ug/k I-l-Dichloroethene 75-35-4 1 5-91 ND ug/k Bromoethane 74-96-4 1 11.8 ND ug/k Methylene Chloride 75-09-2 1 11.8 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfde 75-15-0 1 5-91 ND ug/k tams-1,2-Dichloroethene 156-60-5 1 5-91 ND ug/k Vinyl Acetate 18-60-5 1 5-91	U
Trichlorofluoromethane Acrolein 107-02-8 1 29.5 ND ug/k Acrolein 107-02-8 1 11.2-Trichloro-1,2,2-Trifluoroethane 76-13-1 1 11.8 ND ug/k Acrolem 76-13-1 1 11.8 ND ug/k 1,1-Dichloroethene 75-35-4 1 1 29.5 ND ug/k 1,1-Dichloroethene 75-35-4 1 1 11.8 ND ug/k Bromoethane 74-96-4 1 1 11.8 ND ug/k Rethylene Chloride 75-35-4 1 1 19.1 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfide 15-6-0-5 1 1 29.5 ND ug/k 1,1-Dichloroethene 15-6-0-5 1 29.5 ND ug/k 1,1-Dichloroethene 15-6-0-5 1 39.1 ND ug/k 2-Butanone 2-Butanone 3-8-3-3 1 29.5 ND ug/k 2-Butanone 3-8-3-3 1 39.1 ND ug/k Chloroform 6-6-6-3 1 39.1 ND ug/k Chloroformethane 11-1-Dichloroethane 11-1-Dichlo	U
Acrolein 107-02-8 1 29.5 ND ug/k 1,1,2-Trichloro-1,2,2-Trifluorethane 76-13-1 1 11.8 ND ug/k Acetone 67-64-1 1 29.5 ND ug/k 1,1-Dichlorothene 75-35-4 1 5.91 ND ug/k I,1-Dichlorothane 74-96-4 1 5.91 ND ug/k Iodomethane 74-88-4 1 5.91 ND ug/k Methylene Chloride 75-09-2 1 11.8 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Vinyl Acetate 156-60-5 1 5.91 ND ug/k Vinyl Acetate 156-60-5 1 5.91 ND ug/k Vinyl Acetate 178-34-3 1 5.91 ND ug/k Vinyl Acetate 178-34-3 1 5.91 ND ug/k Vinyl Acetate 178-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 5.91 ND ug/k Calbiorothene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Dinochloromethane 74-97-5	U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 1 11.8 ND ug/k Acetone 67-64-1 1 29.5 ND ug/k 1,1-Dichloroethene 75-35-4 1 5.91 ND ug/k Bromoethane 74-96-4 1 11.8 ND ug/k Iodomethane 74-96-4 1 11.8 ND ug/k Methylene Chloride 75-09-2 1 11.8 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfide 75-15-0 1 5.91 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 29.5 ND ug/k 2,2-Dichloroptopane 594-20-7 1 5.91 ND ug/k 2,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.9	U
Acetone 67-64-1 1 29.5 ND ug/k 1,1-Dichloroethene 75-35-4 1 5.91 ND ug/k Bromoethane 74-96-4 1 11.8 ND ug/k Iodomethane 74-96-4 1 11.8 ND ug/k Methylene Chloride 75-99-2 1 11.8 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfide 75-15-0 1 5.91 ND ug/k Vinyl Acetate 156-60-5 1 5.91 ND ug/k Vinyl Acetate 75-34-3 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethane 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND <td>U</td>	U
1,1-Dichloroethene	U
Bromeethane	U
Table Tabl	U
Methylene Chloride 75-09-2 1 11.8 ND ug/k Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfide 75-15-0 1 5.91 ND ug/k trans-1,2-Dichloroethene 156-60-5 1 5.91 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2,2-Dichloropropane 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k 1,1-Trichloroethane 74-97-5 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 <td>U</td>	U
Acrylonitrile 107-13-1 1 29.5 ND ug/k Carbon Disulfide 75-15-0 1 5.91 ND ug/k trans-1,2-Dichloroethene 156-60-5 1 5.91 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1-1-Tichloroethane 71-55-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 71-43-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Bromodichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 79-01-6 1 5.91 ND ug/k Bromodichloromethane 79-01-6 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Carbon Disulfide 75-15-0 1 5.91 ND ug/k trans-1,2-Dichloroethene 156-60-5 1 5.91 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethane 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k 1,1,1-Trichloroethane 74-97-5 1 5.91 ND ug/k 1,1-Dichloropropene 56-3-58-6 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k 1,2-Dichloropropane 56-23-5 1 5.91 ND ug/k 1,2-Dichloropropane 71-43-2 1 <td>U</td>	U
trans-1,2-Dichloroethene 156-60-5 1 5.91 ND ug/k Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 79-01-6 1 5.91 ND ug/k Bromodichloromethane 79-01-6 1 5.91 ND ug/k Bromodichloromethane 79-01-6 1 5.91 ND ug/k Bromodichloromethane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Vinyl Acetate 108-05-4 1 29.5 ND ug/k 1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k 1,1,1-Trichloroethane 74-97-5 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k 1,2-Dichloroethane 71-43-2 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1	U
1,1-Dichloroethane 75-34-3 1 5.91 ND ug/k 2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
2-Butanone 78-93-3 1 29.5 ND ug/k 2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
2,2-Dichloropropane 594-20-7 1 5.91 ND ug/k cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
cis-1,2-Dichloroethene 156-59-2 1 5.91 ND ug/k Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k 1,2-Dichloromethane 75-27-4 1 5.91 ND ug/k	U
Chloroform 67-66-3 1 5.91 ND ug/k Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k 1,2-Dichloromethane 75-27-4 1 5.91 ND ug/k	U
Bromochloromethane 74-97-5 1 5.91 ND ug/k 1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
1,1,1-Trichloroethane 71-55-6 1 5.91 ND ug/k 1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
1,1-Dichloropropene 563-58-6 1 5.91 ND ug/k Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Carbon tetrachloride 56-23-5 1 5.91 ND ug/k 1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
1,2-Dichloroethane 107-06-2 1 5.91 ND ug/k Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Benzene 71-43-2 1 5.91 ND ug/k Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Trichloroethene 79-01-6 1 5.91 ND ug/k 1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
1,2-Dichloropropane 78-87-5 1 5.91 ND ug/k Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
Bromodichloromethane 75-27-4 1 5.91 ND ug/k	U
	U
	U
Dibromomethane 74-95-3 1 5.91 ND ug/k	U
2-Chloroethyl vinyl ether 110-75-8 1 29.5 ND ug/k	U
4-Methyl-2-Pentanone 108-10-1 1 29.5 ND ug/k	U
cis-1,3-Dichloropropene 10061-01-5 1 5.91 ND ug/k	U
Toluene 108-88-3 1 5.91 ND ug/k	U
trans-1,3-Dichloropropene 10061-02-6 1 5.91 ND ug/k	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

3

Ę

0

Ö

9

11

12

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SL-WSP-01(2) 17E0281-15 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 15:55

 Instrument: NT5
 Analyzed: 19-May-2017 17:23

Instrument: NT5				Analyzed: 19-N		1ay-2017 17:2
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	29.5	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	5.91	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	5.91	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	5.91	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	5.91	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	5.91	ND	ug/kg	U
Chlorobenzene	108-90-7	1	5.91	ND	ug/kg	U
Ethylbenzene	100-41-4	1	5.91	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	5.91	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	5.91	ND	ug/kg	U
o-Xylene	95-47-6	1	5.91	ND	ug/kg	U
Xylenes, total	1330-20-7	1	11.8	ND	ug/kg	U
Styrene	100-42-5	1	5.91	ND	ug/kg	U
Bromoform	75-25-2	1	5.91	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	5.91	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	11.8	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	29.5	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	5.91	ND	ug/kg	U
Bromobenzene	108-86-1	1	5.91	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	5.91	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	5.91	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	5.91	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	5.91	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	5.91	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	5.91	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	5.91	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	5.91	ND	ug/kg	U
1,3-Dichlorobenzene	541-73-1	1	5.91	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	5.91	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	5.91	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	5.91	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	29.5	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	29.5	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	29.5	ND	ug/kg	U
Naphthalene	91-20-3	1	29.5	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	29.5	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	5.91	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	5.91	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

98.4 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2

4

_

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-WSP-01(2) 17E0281-15 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 15:55

 Instrument: NT5
 Analyzed: 19-May-2017 17:23

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	101	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	104	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	100	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-HMP-01(2) 17E0281-16 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 15:45

 Instrument: NT5
 Analyzed: 19-May-2017 17:46

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 6.133 g (wet) Dry Weight: 0.77 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 12.60

Prepared: 19-May-2017	Final Volume:	5 g	% S	Solids: 12.60)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units ug/kg	Notes
Chloromethane	74-87-3	1	6.47	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	6.47	ND	ug/kg	U
Bromomethane	74-83-9	1	6.47	ND	ug/kg	U
Chloroethane	75-00-3	1	6.47	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	6.47	ND	ug/kg	U
Acrolein	107-02-8	1	32.4	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	12.9	ND		U
Acetone	67-64-1	1	32.4	171	ug/kg	
1,1-Dichloroethene	75-35-4	1	6.47	ND	ug/kg	U
Bromoethane	74-96-4	1	12.9	ND	ug/kg	U
Iodomethane	74-88-4	1	6.47	ND	ug/kg	U
Methylene Chloride	75-09-2	1	12.9	ND	ug/kg	U
Acrylonitrile	107-13-1	1	32.4	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	6.47	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	6.47	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	32.4	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	6.47	ND	ug/kg	U
2-Butanone	78-93-3	1	32.4	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	6.47	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	6.47	ND	ug/kg	U
Chloroform	67-66-3	1	6.47	ND	ug/kg	U
Bromochloromethane	74-97-5	1	6.47	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	6.47	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	6.47	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	6.47	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	6.47	ND	ug/kg	U
Benzene	71-43-2	1	6.47	ND	ug/kg	U
Trichloroethene	79-01-6	1	6.47	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	6.47	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	6.47	ND	ug/kg	U
Dibromomethane	74-95-3	1	6.47	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	32.4	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	32.4	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	6.47	ND	ug/kg	U
Toluene	108-88-3	1	6.47	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	6.47	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

F

6

۹ Q

9

10

11

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-HMP-01(2) 17E0281-16 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 15:45

 Instrument: NT5
 Analyzed: 19-May-2017 17:46

Instrument: NT5			D (Allal	y 2.50. 17-1916	ıy-2017 17:
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	32.4	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	6.47	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	6.47	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	6.47	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	6.47	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	6.47	ND	ug/kg	U
Chlorobenzene	108-90-7	1	6.47	ND	ug/kg	U
Ethylbenzene	100-41-4	1	6.47	ND	ug/kg	U
1,1,1,2-Tetrachloroethane	630-20-6	1	6.47	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	6.47	ND	ug/kg	U
o-Xylene	95-47-6	1	6.47	ND	ug/kg	U
Xylenes, total	1330-20-7	1	12.9	ND	ug/kg	U
Styrene	100-42-5	1	6.47	ND	ug/kg	U
Bromoform	75-25-2	1	6.47	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	6.47	ND	ug/kg	U
,2,3-Trichloropropane	96-18-4	1	12.9	ND	ug/kg	U
rans-1,4-Dichloro 2-Butene	110-57-6	1	32.4	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	6.47	ND	ug/kg	U
Bromobenzene	108-86-1	1	6.47	ND	ug/kg	U
sopropyl Benzene	98-82-8	1	6.47	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	6.47	ND	ug/kg	U
1-Chlorotoluene	106-43-4	1	6.47	ND	ug/kg	U
-Butylbenzene	98-06-6	1	6.47	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	6.47	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	6.47	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	6.47	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	6.47	ND	ug/kg	U
,3-Dichlorobenzene	541-73-1	1	6.47	ND	ug/kg	U
,4-Dichlorobenzene	106-46-7	1	6.47	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	6.47	ND	ug/kg	U
,2-Dichlorobenzene	95-50-1	1	6.47	ND	ug/kg	U
,2-Dibromo-3-chloropropane	96-12-8	1	32.4	ND	ug/kg	U
,2,4-Trichlorobenzene	120-82-1	1	32.4	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	32.4	ND	ug/kg	U
Naphthalene	91-20-3	1	32.4	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	32.4	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	6.47	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	6.47	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

103 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7/6/2017

5

10

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-HMP-01(2) 17E0281-16 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 15:45

 Instrument: NT5
 Analyzed: 19-May-2017 17:46

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	99.2	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	104	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	101	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Page 207 of 241

-

6

Q

10

11

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SS-HMP-02(2.5) 17E0281-17 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 16:30

 Instrument: NT5
 Analyzed: 19-May-2017 18:09

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 7.826 g (wet) Dry Weight: 1.88 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 24.00

Prepared: 19-May-2017	Final Volume:	5 g	% S	Solids: 24.00)	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	2.66	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	2.66	ND	ug/kg	U
Bromomethane	74-83-9	1	2.66	ND	ug/kg	U
Chloroethane	75-00-3	1	2.66	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	2.66	ND	ug/kg	U
Acrolein	107-02-8	1	13.3	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	5.32	ND	ug/kg	U
Acetone	67-64-1	1	13.3	41.5	ug/kg	
1,1-Dichloroethene	75-35-4	1	2.66	ND	ug/kg	U
Bromoethane	74-96-4	1	5.32	ND	ug/kg	U
Iodomethane	74-88-4	1	2.66	ND	ug/kg	U
Methylene Chloride	75-09-2	1	5.32	ND	ug/kg	U
Acrylonitrile	107-13-1	1	13.3	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	2.66	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	2.66	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	13.3	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	2.66	ND	ug/kg	U
2-Butanone	78-93-3	1	13.3	ND	ug/kg	U
2,2-Dichloropropane	594-20-7	1	2.66	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	2.66	ND	ug/kg	U
Chloroform	67-66-3	1	2.66	ND	ug/kg	U
Bromochloromethane	74-97-5	1	2.66	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	2.66	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	2.66	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	2.66	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	2.66	ND	ug/kg	U
Benzene	71-43-2	1	2.66	ND	ug/kg	U
Trichloroethene	79-01-6	1	2.66	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	2.66	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	2.66	ND	ug/kg	U
Dibromomethane	74-95-3	1	2.66	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	13.3	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	13.3	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	2.66	ND	ug/kg	U
Toluene	108-88-3	1	2.66	ND	ug/kg	U
trans-1,3-Dichloropropene	10061-02-6	1	2.66	ND	ug/kg	U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

LPW17-SS-HMP-02(2.5) 17E0281-17 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 16:30

 Instrument: NT5
 Analyzed: 19-May-2017 18:09

Instrument: NT5			Reporting		yzed: 19-Ma	
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	13.3	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	2.66	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	2.66	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	2.66	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	2.66	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	2.66	ND	ug/kg	U
Chlorobenzene	108-90-7	1	2.66	ND	ug/kg	U
Ethylbenzene	100-41-4	1	2.66	ND	ug/kg	U
,1,1,2-Tetrachloroethane	630-20-6	1	2.66	ND	ug/kg	U
n,p-Xylene	179601-23-1	1	2.66	ND	ug/kg	U
o-Xylene	95-47-6	1	2.66	ND	ug/kg	U
Xylenes, total	1330-20-7	1	5.32	ND	ug/kg	U
Styrene	100-42-5	1	2.66	ND	ug/kg	U
Bromoform	75-25-2	1	2.66	ND	ug/kg	U
,1,2,2-Tetrachloroethane	79-34-5	1	2.66	ND	ug/kg	U
,2,3-Trichloropropane	96-18-4	1	5.32	ND	ug/kg	U
rans-1,4-Dichloro 2-Butene	110-57-6	1	13.3	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	2.66	ND	ug/kg	U
Bromobenzene	108-86-1	1	2.66	ND	ug/kg	U
sopropyl Benzene	98-82-8	1	2.66	ND	ug/kg	U
-Chlorotoluene	95-49-8	1	2.66	ND	ug/kg	U
1-Chlorotoluene	106-43-4	1	2.66	ND	ug/kg	U
Butylbenzene	98-06-6	1	2.66	ND	ug/kg	U
,3,5-Trimethylbenzene	108-67-8	1	2.66	ND	ug/kg	U
,2,4-Trimethylbenzene	95-63-6	1	2.66	ND	ug/kg	U
-Butylbenzene	135-98-8	1	2.66	ND	ug/kg	U
-Isopropyl Toluene	99-87-6	1	2.66	ND	ug/kg	U
,3-Dichlorobenzene	541-73-1	1	2.66	ND	ug/kg	U
,4-Dichlorobenzene	106-46-7	1	2.66	ND	ug/kg	U
a-Butylbenzene	104-51-8	1	2.66	ND	ug/kg	U
,2-Dichlorobenzene	95-50-1	1	2.66	ND	ug/kg	U
,2-Dibromo-3-chloropropane	96-12-8	1	13.3	ND	ug/kg	U
,2,4-Trichlorobenzene	120-82-1	1	13.3	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	13.3	ND	ug/kg	U
Naphthalene	91-20-3	1	13.3	ND	ug/kg	U
,2,3-Trichlorobenzene	87-61-6	1	13.3	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	2.66	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	2.66	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

99.7 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7/6/2017

6

8

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SS-HMP-02(2.5) 17E0281-17 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 16:30

 Instrument: NT5
 Analyzed: 19-May-2017 18:09

	Recovery						
Analyte	CAS Number	Limits	Recovery	Units	Notes		
Surrogate: Toluene-d8		77-120 %	95.9	%			
Surrogate: 4-Bromofluorobenzene		80-120 %	91.8	%			
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	97.0	%			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

LPW17-SL-OBP-01(1.5) 17E0281-18 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 16:35

 Instrument: NT5
 Analyzed: 19-May-2017 18:31

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFE0507 Sample Size: 6.598 g (wet) Dry Weight: 2.07 g
Prepared: 19-May-2017 Final Volume: 5 g % Solids: 31.30

Prepared: 19-May-2017	rinai voiume:	o g	70 S	onas: 31.30	<u>'</u>	
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	2.42	ND	ug/kg	U
Vinyl Chloride	75-01-4	1	2.42	ND	ug/kg	U
Bromomethane	74-83-9	1	2.42	ND	ug/kg	U
Chloroethane	75-00-3	1	2.42	ND	ug/kg	U
Trichlorofluoromethane	75-69-4	1	2.42	ND	ug/kg	U
Acrolein	107-02-8	1	12.1	ND	ug/kg	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	4.84	ND	ug/kg	U
Acetone	67-64-1	1	12.1	1070	ug/kg	
1,1-Dichloroethene	75-35-4	1	2.42	ND	ug/kg	U
Bromoethane	74-96-4	1	4.84	ND	ug/kg	U
Iodomethane	74-88-4	1	2.42	ND	ug/kg	U
Methylene Chloride	75-09-2	1	4.84	ND	ug/kg	U
Acrylonitrile	107-13-1	1	12.1	ND	ug/kg	U
Carbon Disulfide	75-15-0	1	2.42	ND	ug/kg	U
trans-1,2-Dichloroethene	156-60-5	1	2.42	ND	ug/kg	U
Vinyl Acetate	108-05-4	1	12.1	ND	ug/kg	U
1,1-Dichloroethane	75-34-3	1	2.42	ND	ug/kg	U
2-Butanone	78-93-3	1	12.1	22.8	ug/kg	
2,2-Dichloropropane	594-20-7	1	2.42	ND	ug/kg	U
cis-1,2-Dichloroethene	156-59-2	1	2.42	ND	ug/kg	U
Chloroform	67-66-3	1	2.42	ND	ug/kg	U
Bromochloromethane	74-97-5	1	2.42	ND	ug/kg	U
1,1,1-Trichloroethane	71-55-6	1	2.42	ND	ug/kg	U
1,1-Dichloropropene	563-58-6	1	2.42	ND	ug/kg	U
Carbon tetrachloride	56-23-5	1	2.42	ND	ug/kg	U
1,2-Dichloroethane	107-06-2	1	2.42	ND	ug/kg	U
Benzene	71-43-2	1	2.42	ND	ug/kg	U
Trichloroethene	79-01-6	1	2.42	ND	ug/kg	U
1,2-Dichloropropane	78-87-5	1	2.42	ND	ug/kg	U
Bromodichloromethane	75-27-4	1	2.42	ND	ug/kg	U
Dibromomethane	74-95-3	1	2.42	ND	ug/kg	U
2-Chloroethyl vinyl ether	110-75-8	1	12.1	ND	ug/kg	U
4-Methyl-2-Pentanone	108-10-1	1	12.1	ND	ug/kg	U
cis-1,3-Dichloropropene	10061-01-5	1	2.42	ND	ug/kg	U
Toluene	108-88-3	1	2.42	15.1	ug/kg	
trans-1,3-Dichloropropene	10061-02-6	1	2.42	ND	ug/kg	U
					2 2	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

5

7

a

10

12

L

Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-OBP-01(1.5) 17E0281-18 (Solid)

Volatile Organic Compounds

Test America-Tacoma

 Method: EPA 8260C
 Sampled: 05/07/2017 16:35

 Instrument: NT5
 Analyzed: 19-May-2017 18:31

Instrument: NT5				Anal	yzed: 19-M	ay-2017 18:3
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	12.1	ND	ug/kg	U
1,1,2-Trichloroethane	79-00-5	1	2.42	ND	ug/kg	U
1,3-Dichloropropane	142-28-9	1	2.42	ND	ug/kg	U
Tetrachloroethene	127-18-4	1	2.42	ND	ug/kg	U
Dibromochloromethane	124-48-1	1	2.42	ND	ug/kg	U
1,2-Dibromoethane	106-93-4	1	2.42	ND	ug/kg	U
Chlorobenzene	108-90-7	1	2.42	ND	ug/kg	U
Ethylbenzene	100-41-4	1	2.42	3.44	ug/kg	
1,1,1,2-Tetrachloroethane	630-20-6	1	2.42	ND	ug/kg	U
m,p-Xylene	179601-23-1	1	2.42	16.2	ug/kg	
o-Xylene	95-47-6	1	2.42	6.50	ug/kg	
Xylenes, total	1330-20-7	1	4.84	22.7	ug/kg	
Styrene	100-42-5	1	2.42	ND	ug/kg	U
Bromoform	75-25-2	1	2.42	ND	ug/kg	U
1,1,2,2-Tetrachloroethane	79-34-5	1	2.42	ND	ug/kg	U
1,2,3-Trichloropropane	96-18-4	1	4.84	ND	ug/kg	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	12.1	ND	ug/kg	U
n-Propylbenzene	103-65-1	1	2.42	ND	ug/kg	U
Bromobenzene	108-86-1	1	2.42	ND	ug/kg	U
Isopropyl Benzene	98-82-8	1	2.42	ND	ug/kg	U
2-Chlorotoluene	95-49-8	1	2.42	ND	ug/kg	U
4-Chlorotoluene	106-43-4	1	2.42	ND	ug/kg	U
t-Butylbenzene	98-06-6	1	2.42	ND	ug/kg	U
1,3,5-Trimethylbenzene	108-67-8	1	2.42	ND	ug/kg	U
1,2,4-Trimethylbenzene	95-63-6	1	2.42	ND	ug/kg	U
s-Butylbenzene	135-98-8	1	2.42	ND	ug/kg	U
4-Isopropyl Toluene	99-87-6	1	2.42	44.6	ug/kg	
1,3-Dichlorobenzene	541-73-1	1	2.42	ND	ug/kg	U
1,4-Dichlorobenzene	106-46-7	1	2.42	ND	ug/kg	U
n-Butylbenzene	104-51-8	1	2.42	ND	ug/kg	U
1,2-Dichlorobenzene	95-50-1	1	2.42	ND	ug/kg	U
1,2-Dibromo-3-chloropropane	96-12-8	1	12.1	ND	ug/kg	U
1,2,4-Trichlorobenzene	120-82-1	1	12.1	ND	ug/kg	U
Hexachloro-1,3-Butadiene	87-68-3	1	12.1	ND	ug/kg	U
Naphthalene	91-20-3	1	12.1	ND	ug/kg	U
1,2,3-Trichlorobenzene	87-61-6	1	12.1	ND	ug/kg	U
Dichlorodifluoromethane	75-71-8	1	2.42	ND	ug/kg	U
Methyl tert-butyl Ether	1634-04-4	1	2.42	ND	ug/kg	U

 $Surrogate: 1, 2\hbox{-}Dichloroethane-d4$

80-149 %

101 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 212 of 241

А

5

6

8

9

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

LPW17-SL-OBP-01(1.5) 17E0281-18 (Solid)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2017 16:35

 Instrument: NT5
 Analyzed: 19-May-2017 18:31

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: Toluene-d8		77-120 %	99.3	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	97.0	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	96.5	%	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Project: Little Port Walter AK

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

Test America-Tacoma

000 1/4 1	D. I.	Reporting	TT '-	Spike	Source	0/DEC	%REC	DDD	RPD	NT 4
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFE0507-BLK1)			Prepa	ared: 19-Ma	y-2017 An	alyzed: 19-	May-2017	10:39		
Chloromethane	ND	1.00	ug/kg							U
Vinyl Chloride	ND	1.00	ug/kg							U
Bromomethane	ND	1.00	ug/kg							U
Chloroethane	ND	1.00	ug/kg							U
Trichlorofluoromethane	ND	1.00	ug/kg							U
Acrolein	ND	5.00	ug/kg							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2.00	ug/kg							U
Acetone	ND	5.00	ug/kg							U
1,1-Dichloroethene	ND	1.00	ug/kg							U
Bromoethane	ND	2.00	ug/kg							U
Iodomethane	ND	1.00	ug/kg							U
Methylene Chloride	ND	2.00	ug/kg							U
Acrylonitrile	ND	5.00	ug/kg							U
Carbon Disulfide	ND	1.00	ug/kg							U
trans-1,2-Dichloroethene	ND	1.00	ug/kg							U
Vinyl Acetate	ND	5.00	ug/kg							U
1,1-Dichloroethane	ND	1.00	ug/kg							U
2-Butanone	ND	5.00	ug/kg							U
2,2-Dichloropropane	ND	1.00	ug/kg							U
cis-1,2-Dichloroethene	ND	1.00	ug/kg							U
Chloroform	ND	1.00	ug/kg							U
Bromochloromethane	ND	1.00	ug/kg							U
1,1,1-Trichloroethane	ND	1.00	ug/kg							U
1,1-Dichloropropene	ND	1.00	ug/kg							U
Carbon tetrachloride	ND	1.00	ug/kg							U
1,2-Dichloroethane	ND	1.00	ug/kg							U
Benzene	ND	1.00	ug/kg							U
Trichloroethene	ND	1.00	ug/kg							U
1,2-Dichloropropane	ND	1.00	ug/kg							U
Bromodichloromethane	ND	1.00	ug/kg							U
Dibromomethane	ND	1.00	ug/kg							U
2-Chloroethyl vinyl ether	ND	5.00	ug/kg							U
4-Methyl-2-Pentanone	ND	5.00	ug/kg							U
cis-1,3-Dichloropropene	ND	1.00	ug/kg							U
Toluene	ND	1.00	ug/kg							U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

60 of 77

2

Δ

5

6

8

10

12

L

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

		Reporting	** .	Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFE0507-BLK1)			Prepa	ared: 19-Ma	y-2017 An	alyzed: 19-	May-2017	10:39		
trans-1,3-Dichloropropene	ND	1.00	ug/kg							U
2-Hexanone	ND	5.00	ug/kg							U
1,1,2-Trichloroethane	ND	1.00	ug/kg							U
1,3-Dichloropropane	ND	1.00	ug/kg							U
Tetrachloroethene	ND	1.00	ug/kg							U
Dibromochloromethane	ND	1.00	ug/kg							U
1,2-Dibromoethane	ND	1.00	ug/kg							U
Chlorobenzene	ND	1.00	ug/kg							U
Ethylbenzene	ND	1.00	ug/kg							U
1,1,1,2-Tetrachloroethane	ND	1.00	ug/kg							U
m,p-Xylene	ND	1.00	ug/kg							U
o-Xylene	ND	1.00	ug/kg							U
Xylenes, total	ND	2.00	ug/kg							U
Styrene	ND	1.00	ug/kg							U
Bromoform	ND	1.00	ug/kg							U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/kg							U
1,2,3-Trichloropropane	ND	2.00	ug/kg							U
trans-1,4-Dichloro 2-Butene	ND	5.00	ug/kg							U
n-Propylbenzene	ND	1.00	ug/kg							U
Bromobenzene	ND	1.00	ug/kg							U
Isopropyl Benzene	ND	1.00	ug/kg							U
2-Chlorotoluene	ND	1.00	ug/kg							U
4-Chlorotoluene	ND	1.00	ug/kg							U
t-Butylbenzene	ND	1.00	ug/kg							U
1,3,5-Trimethylbenzene	ND	1.00	ug/kg							U
1,2,4-Trimethylbenzene	ND	1.00	ug/kg							U
s-Butylbenzene	ND	1.00	ug/kg							U
4-Isopropyl Toluene	ND	1.00	ug/kg							U
1,3-Dichlorobenzene	ND	1.00	ug/kg							U
1,4-Dichlorobenzene	ND	1.00	ug/kg							U
n-Butylbenzene	ND	1.00	ug/kg							U
1,2-Dichlorobenzene	ND	1.00	ug/kg							U
1,2-Dibromo-3-chloropropane	ND	5.00	ug/kg							U
1,2,4-Trichlorobenzene	ND	5.00	ug/kg							U
Hexachloro-1,3-Butadiene	ND	5.00	ug/kg							U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

6

Q

3

11

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

Test America-Tacoma

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFE0507-BLK1)				ared: 19-Ma						
Naphthalene	ND	5.00	ug/kg	arcu. 19-wia	y-2017 A1	iaiyzeu. 19-	Wiay-2017	10.39		U
1,2,3-Trichlorobenzene	ND	5.00	ug/kg							U
Dichlorodifluoromethane	ND	1.00	ug/kg							U
Methyl tert-butyl Ether	ND	1.00	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4		50.0	ug/kg	50.0		100	80-149			
Surrogate: Toluene-d8		49.9	ug/kg	50.0		99.8	77-120			
Surrogate: 4-Bromofluorobenzene		49.7	ug/kg	50.0		99.4	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		51.3	ug/kg	50.0		103	80-120			
LCS (BFE0507-BS1)			Prepa	ared: 19-Ma	y-2017 Ar	nalyzed: 19-	May-2017	09:54		
Chloromethane	57.0		ug/kg	50.0	-	114	64-132			
Vinyl Chloride	54.2		ug/kg	50.0		108	74-135			
Bromomethane	79.9		ug/kg	50.0		160	53-144			*, Q
Chloroethane	62.3		ug/kg	50.0		125	55-149			Q
Trichlorofluoromethane	71.7		ug/kg	50.0		143	61-164			Q
Acrolein	301		ug/kg	250		121	59-140			Q
1,1,2-Trichloro-1,2,2-Trifluoroethane	51.6		ug/kg	50.0		103	74-143			
Acetone	246		ug/kg	250		98.4	48-137			
1,1-Dichloroethene	50.6		ug/kg	50.0		101	77-134			
Bromoethane	59.2		ug/kg	50.0		118	65-145			
Iodomethane	53.1		ug/kg	50.0		106	31-162			
Methylene Chloride	55.2		ug/kg	50.0		110	69-129			
Acrylonitrile	56.0		ug/kg	50.0		112	69-134			
Carbon Disulfide	46.8		ug/kg	50.0		93.7	71-137			
trans-1,2-Dichloroethene	60.0		ug/kg	50.0		120	79-130			
Vinyl Acetate	49.8		ug/kg	50.0		99.7	66-141			
1,1-Dichloroethane	55.2		ug/kg	50.0		110	80-126			
2-Butanone	285		ug/kg	250		114	70-132			
2,2-Dichloropropane	56.5		ug/kg	50.0		113	77-138			
cis-1,2-Dichloroethene	57.0		ug/kg	50.0		114	80-125			
Chloroform	56.9		ug/kg	50.0		114	80-126			
Bromochloromethane	54.0		ug/kg	50.0		108	80-129			
1,1,1-Trichloroethane	58.3		ug/kg	50.0		117	78-133			
1,1-Dichloropropene	56.8		ug/kg	50.0		114	79-120			
Carbon tetrachloride	59.1		ug/kg	50.0		118	71-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

000 1/4 1/	P 1	Reporting	Spike	Source	0/850	%REC	DPP	RPD	37 -
QC Sample/Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BFE0507-BS1)		Prep	ared: 19-Ma	y-2017 Ar	alyzed: 19-	May-2017 0	9:54		
1,2-Dichloroethane	51.4	ug/kg	50.0		103	76-120			
Benzene	55.0	ug/kg	50.0		110	80-120			
Trichloroethene	56.6	ug/kg	50.0		113	80-120			
,2-Dichloropropane	54.0	ug/kg	50.0		108	79-120			
Bromodichloromethane	54.6	ug/kg	50.0		109	80-122			
Dibromomethane	55.0	ug/kg	50.0		110	80-120			
2-Chloroethyl vinyl ether	51.0	ug/kg	50.0		102	51-129			
l-Methyl-2-Pentanone	270	ug/kg	250		108	73-121			
is-1,3-Dichloropropene	54.1	ug/kg	50.0		108	80-120			
Toluene	54.9	ug/kg	50.0		110	75-120			
rans-1,3-Dichloropropene	53.2	ug/kg	50.0		106	80-124			
-Hexanone	261	ug/kg	250		104	68-122			
,1,2-Trichloroethane	54.2	ug/kg	50.0		108	79-120			
,3-Dichloropropane	54.2	ug/kg	50.0		108	78-120			
Tetrachloroethene	57.6	ug/kg	50.0		115	74-124			
Dibromochloromethane	55.3	ug/kg	50.0		111	74-125			
,2-Dibromoethane	54.4	ug/kg	50.0		109	80-120			
Chlorobenzene	56.0	ug/kg	50.0		112	78-120			
Ethylbenzene	56.1	ug/kg	50.0		112	80-125			
,1,1,2-Tetrachloroethane	55.5	ug/kg	50.0		111	80-120			
n,p-Xylene	113	ug/kg	100		113	76-121			
-Xylene	55.5	ug/kg	50.0		111	67-132			
Kylenes, total	168	ug/kg	150		112	67-132			
Styrene	56.0	ug/kg	50.0		112	80-120			
Bromoform	55.9	ug/kg	50.0		112	64-128			
,1,2,2-Tetrachloroethane	53.8	ug/kg	50.0		108	74-120			
,2,3-Trichloropropane	55.5	ug/kg	50.0		111	73-120			
rans-1,4-Dichloro 2-Butene	51.9	ug/kg	50.0		104	65-125			
-Propylbenzene	56.7	ug/kg	50.0		113	72-124			
Bromobenzene	55.3	ug/kg	50.0		111	76-120			
sopropyl Benzene	56.1	ug/kg	50.0		112	74-121			
-Chlorotoluene	55.4	ug/kg	50.0		111	75-120			
-Chlorotoluene	55.1	ug/kg	50.0		110	69-124			
Butylbenzene	55.6	ug/kg	50.0		111	72-122			
,3,5-Trimethylbenzene	55.7	ug/kg	50.0		111	74-122			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

-

5

6

8

9

11

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

		Reporting		Spike	Source	a : =	%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BFE0507-BS1)			Prepa	ıred: 19-May	y-2017 An	alyzed: 19-	May-2017 ()9:54		
1,2,4-Trimethylbenzene	55.9		ug/kg	50.0		112	75-121			
s-Butylbenzene	56.7		ug/kg	50.0		113	70-128			
4-Isopropyl Toluene	57.6		ug/kg	50.0		115	75-125			
1,3-Dichlorobenzene	56.2		ug/kg	50.0		112	75-120			
1,4-Dichlorobenzene	56.2		ug/kg	50.0		112	73-120			
n-Butylbenzene	57.0		ug/kg	50.0		114	73-130			
1,2-Dichlorobenzene	55.0		ug/kg	50.0		110	76-120			
1,2-Dibromo-3-chloropropane	53.2		ug/kg	50.0		106	65-126			
1,2,4-Trichlorobenzene	55.5		ug/kg	50.0		111	66-140			
Hexachloro-1,3-Butadiene	57.6		ug/kg	50.0		115	67-133			
Naphthalene	54.6		ug/kg	50.0		109	69-125			
1,2,3-Trichlorobenzene	54.3		ug/kg	50.0		109	68-132			
Dichlorodifluoromethane	51.6		ug/kg	50.0		103	67-142			
Methyl tert-butyl Ether	54.2		ug/kg	50.0		108	79-127			
Surrogate: 1,2-Dichloroethane-d4		48.4	ug/kg	50.0		96.8	80-149			
Surrogate: Toluene-d8		50.0	ug/kg	50.0		100	77-120			
Surrogate: 4-Bromofluorobenzene		50.1	ug/kg	50.0		100	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		49.4	ug/kg	50.0		98.8	80-120			
LCS Dup (BFE0507-BSD1)			Prepa	red: 19-May	7-2017 An	alyzed: 19-	May-2017 1	0:17		
Chloromethane	57.9		ug/kg	50.0		116	64-132	1.52	30	
Vinyl Chloride	61.0		ug/kg	50.0		122	74-135	11.70	30	
Bromomethane	82.0		ug/kg	50.0		164	53-144	2.60	30	*, Q
Chloroethane	65.2		ug/kg	50.0		130	55-149	4.64	30	Q
Trichlorofluoromethane	72.5		ug/kg	50.0		145	61-164	1.10	30	Q
Acrolein	279		ug/kg	250		112	59-140	7.76	30	Q
1,1,2-Trichloro-1,2,2-Trifluoroethane	52.9		ug/kg	50.0		106	74-143	2.48	30	
Acetone	222		ug/kg	250		88.7	48-137	10.30	30	
1,1-Dichloroethene	51.7		ug/kg	50.0		103	77-134	2.20	30	
Bromoethane	62.3		ug/kg	50.0		125	65-145	5.20	30	
Iodomethane	59.2		ug/kg	50.0		118	31-162	10.70	30	
Methylene Chloride	61.9		ug/kg	50.0		124	69-129	11.40	30	
Acrylonitrile	50.9		ug/kg	50.0		102	69-134	9.59	30	
Carbon Disulfide	49.2		ug/kg	50.0		98.4	71-137	4.86	30	
trans-1,2-Dichloroethene	61.6		ug/kg	50.0		123	79-130	2.63	30	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2

4

5

8

11

Test America-Tacoma Project: Little Port Walter AK
5755 8th Street East Project Number: 58011097

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BFE0507-BSD1)			Prepa	red: 19-May	y-2017 An	alyzed: 19-	May-2017 1	0:17		
Vinyl Acetate	52.4		ug/kg	50.0		105	66-141	5.02	30	
1,1-Dichloroethane	58.2		ug/kg	50.0		116	80-126	5.23	30	
2-Butanone	265		ug/kg	250		106	70-132	7.38	30	
2,2-Dichloropropane	58.5		ug/kg	50.0		117	77-138	3.43	30	
cis-1,2-Dichloroethene	59.7		ug/kg	50.0		119	80-125	4.73	30	
Chloroform	54.1		ug/kg	50.0		108	80-126	4.95	30	
Bromochloromethane	58.8		ug/kg	50.0		118	80-129	8.49	30	
1,1,1-Trichloroethane	61.8		ug/kg	50.0		124	78-133	5.85	30	
1,1-Dichloropropene	56.5		ug/kg	50.0		113	79-120	0.51	30	
Carbon tetrachloride	58.5		ug/kg	50.0		117	71-129	0.95	30	
1,2-Dichloroethane	53.3		ug/kg	50.0		107	76-120	3.63	30	
Benzene	56.7		ug/kg	50.0		113	80-120	3.04	30	
Trichloroethene	56.1		ug/kg	50.0		112	80-120	1.01	30	
,2-Dichloropropane	56.1		ug/kg	50.0		112	79-120	3.68	30	
Bromodichloromethane	57.1		ug/kg	50.0		114	80-122	4.46	30	
Dibromomethane	55.5		ug/kg	50.0		111	80-120	0.86	30	
2-Chloroethyl vinyl ether	52.3		ug/kg	50.0		105	51-129	2.40	30	
1-Methyl-2-Pentanone	262		ug/kg	250		105	73-121	2.88	30	
cis-1,3-Dichloropropene	56.5		ug/kg	50.0		113	80-120	4.26	30	
Toluene	56.3		ug/kg	50.0		113	75-120	2.49	30	
rans-1,3-Dichloropropene	56.1		ug/kg	50.0		112	80-124	5.40	30	
2-Hexanone	236		ug/kg	250		94.5	68-122	9.82	30	
1,1,2-Trichloroethane	57.9		ug/kg	50.0		116	79-120	6.57	30	
1,3-Dichloropropane	54.8		ug/kg	50.0		110	78-120	1.11	30	
Tetrachloroethene	55.9		ug/kg	50.0		112	74-124	3.05	30	
Dibromochloromethane	56.0		ug/kg	50.0		112	74-125	1.32	30	
1,2-Dibromoethane	56.2		ug/kg	50.0		112	80-120	3.23	30	
Chlorobenzene	55.4		ug/kg	50.0		111	78-120	1.06	30	
Ethylbenzene	55.1		ug/kg	50.0		110	80-125	1.79	30	
,1,1,2-Tetrachloroethane	56.0		ug/kg	50.0		112	80-120	0.85	30	
n,p-Xylene	112		ug/kg	100		112	76-121	1.11	30	
o-Xylene	55.5		ug/kg	50.0		111	67-132	0.17	30	
Xylenes, total	167		ug/kg	150		111	67-132	0.80	30	
Styrene	56.1		ug/kg	50.0		112	80-120	0.18	30	
Bromoform	54.3		ug/kg	50.0		109	64-128	3.04	30	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

3

^

9

11

Project: Little Port Walter AK

5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFE0507 - No Prep - Volatiles

Instrument: NT5 Analyst: PKC

Test America-Tacoma

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
QC Sample/Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	notes
LCS Dup (BFE0507-BSD1)			Prepa	red: 19-Ma	y-2017 An	alyzed: 19-	May-2017 1	0:17		
1,1,2,2-Tetrachloroethane	52.3		ug/kg	50.0		105	74-120	2.90	30	
1,2,3-Trichloropropane	51.9		ug/kg	50.0		104	73-120	6.69	30	
rans-1,4-Dichloro 2-Butene	46.7		ug/kg	50.0		93.3	65-125	10.70	30	
n-Propylbenzene	54.1		ug/kg	50.0		108	72-124	4.75	30	
Bromobenzene	55.5		ug/kg	50.0		111	76-120	0.46	30	
Isopropyl Benzene	54.2		ug/kg	50.0		108	74-121	3.37	30	
2-Chlorotoluene	53.4		ug/kg	50.0		107	75-120	3.55	30	
4-Chlorotoluene	53.4		ug/kg	50.0		107	69-124	3.18	30	
-Butylbenzene	54.4		ug/kg	50.0		109	72-122	2.30	30	
1,3,5-Trimethylbenzene	54.2		ug/kg	50.0		108	74-122	2.78	30	
,2,4-Trimethylbenzene	54.8		ug/kg	50.0		110	75-121	2.01	30	
-Butylbenzene	54.6		ug/kg	50.0		109	70-128	3.83	30	
4-Isopropyl Toluene	54.9		ug/kg	50.0		110	75-125	4.85	30	
1,3-Dichlorobenzene	54.4		ug/kg	50.0		109	75-120	3.21	30	
,4-Dichlorobenzene	55.2		ug/kg	50.0		110	73-120	1.80	30	
n-Butylbenzene	54.2		ug/kg	50.0		108	73-130	5.07	30	
1,2-Dichlorobenzene	54.4		ug/kg	50.0		109	76-120	1.09	30	
1,2-Dibromo-3-chloropropane	49.1		ug/kg	50.0		98.2	65-126	8.07	30	
1,2,4-Trichlorobenzene	54.8		ug/kg	50.0		110	66-140	1.17	30	
Hexachloro-1,3-Butadiene	55.0		ug/kg	50.0		110	67-133	4.71	30	
Naphthalene	53.6		ug/kg	50.0		107	69-125	1.92	30	
,2,3-Trichlorobenzene	54.5		ug/kg	50.0		109	68-132	0.49	30	
Dichlorodifluoromethane	58.6		ug/kg	50.0		117	67-142	12.70	30	
Methyl tert-butyl Ether	59.6		ug/kg	50.0		119	79-127	9.51	30	
Surrogate: 1,2-Dichloroethane-d4		51.0	ug/kg	50.0		102	80-149			
Surrogate: Toluene-d8		50.4	ug/kg	50.0		101	77-120			
Surrogate: 4-Bromofluorobenzene		51.3	ug/kg	50.0		103	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.5	ug/kg	50.0		101	80-120			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 220 of 241

2

3

5

6

8

46

11

12

Test America-TacomaProject: Little Port Walter AK5755 8th Street EastProject Number: 58011097Reported:Tacoma WA, 98424Project Manager: Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

OC Servede / Ameliote	D - 1	Reporting	11	Spike	Source	0/BEC	%REC	DDD	RPD	NI
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFF0131-BLK1)			Prepa	red: 20-Ma	y-2017 An	alyzed: 20-	May-2017 1	17:37		
Chloromethane	ND	1.00	ug/kg							U
Vinyl Chloride	ND	1.00	ug/kg							U
Bromomethane	ND	1.00	ug/kg							U
Chloroethane	ND	1.00	ug/kg							U
Trichlorofluoromethane	ND	1.00	ug/kg							U
Acrolein	ND	5.00	ug/kg							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2.00	ug/kg							U
Acetone	ND	5.00	ug/kg							U
1,1-Dichloroethene	ND	1.00	ug/kg							U
Bromoethane	ND	2.00	ug/kg							U
Iodomethane	ND	1.00	ug/kg							U
Methylene Chloride	ND	2.00	ug/kg							U
Acrylonitrile	ND	5.00	ug/kg							U
Carbon Disulfide	ND	1.00	ug/kg							U
trans-1,2-Dichloroethene	ND	1.00	ug/kg							U
Vinyl Acetate	ND	5.00	ug/kg							U
1,1-Dichloroethane	ND	1.00	ug/kg							U
2-Butanone	ND	5.00	ug/kg							U
2,2-Dichloropropane	ND	1.00	ug/kg							U
cis-1,2-Dichloroethene	ND	1.00	ug/kg							U
Chloroform	ND	1.00	ug/kg							U
Bromochloromethane	ND	1.00	ug/kg							U
1,1,1-Trichloroethane	ND	1.00	ug/kg							U
1,1-Dichloropropene	ND	1.00	ug/kg							U
Carbon tetrachloride	ND	1.00	ug/kg							U
1,2-Dichloroethane	ND	1.00	ug/kg							U
Benzene	ND	1.00	ug/kg							U
Trichloroethene	ND	1.00	ug/kg							U
1,2-Dichloropropane	ND	1.00	ug/kg							U
Bromodichloromethane	ND	1.00	ug/kg							U
Dibromomethane	ND	1.00	ug/kg							U
2-Chloroethyl vinyl ether	ND	5.00	ug/kg							U
4-Methyl-2-Pentanone	ND	5.00	ug/kg							U
cis-1,3-Dichloropropene	ND	1.00	ug/kg							U
Toluene	ND	1.00	ug/kg							U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

5

6

8

46

11

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

OC C1-/A1	D L	Reporting	TT- '-	Spike	Source	0/PEC	%REC	DPD	RPD	NT /
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFF0131-BLK1)			Prepa	ared: 20-Ma	y-2017 An	alyzed: 20-	May-2017	17:37		
trans-1,3-Dichloropropene	ND	1.00	ug/kg							U
2-Hexanone	ND	5.00	ug/kg							U
1,1,2-Trichloroethane	ND	1.00	ug/kg							U
1,3-Dichloropropane	ND	1.00	ug/kg							U
Tetrachloroethene	ND	1.00	ug/kg							U
Dibromochloromethane	ND	1.00	ug/kg							U
1,2-Dibromoethane	ND	1.00	ug/kg							U
Chlorobenzene	ND	1.00	ug/kg							U
Ethylbenzene	ND	1.00	ug/kg							U
1,1,1,2-Tetrachloroethane	ND	1.00	ug/kg							U
m,p-Xylene	ND	1.00	ug/kg							U
o-Xylene	ND	1.00	ug/kg							U
Xylenes, total	ND	2.00	ug/kg							U
Styrene	ND	1.00	ug/kg							U
Bromoform	ND	1.00	ug/kg							U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/kg							U
1,2,3-Trichloropropane	ND	2.00	ug/kg							U
trans-1,4-Dichloro 2-Butene	ND	5.00	ug/kg							U
n-Propylbenzene	ND	1.00	ug/kg							U
Bromobenzene	ND	1.00	ug/kg							U
Isopropyl Benzene	ND	1.00	ug/kg							U
2-Chlorotoluene	ND	1.00	ug/kg							U
4-Chlorotoluene	ND	1.00	ug/kg							U
t-Butylbenzene	ND	1.00	ug/kg							U
1,3,5-Trimethylbenzene	ND	1.00	ug/kg							U
1,2,4-Trimethylbenzene	ND	1.00	ug/kg							U
s-Butylbenzene	ND	1.00	ug/kg							U
4-Isopropyl Toluene	ND	1.00	ug/kg							U
1,3-Dichlorobenzene	ND	1.00	ug/kg							U
1,4-Dichlorobenzene	ND	1.00	ug/kg							U
n-Butylbenzene	ND	1.00	ug/kg							U
1,2-Dichlorobenzene	ND	1.00	ug/kg							U
1,2-Dibromo-3-chloropropane	ND	5.00	ug/kg							U
1,2,4-Trichlorobenzene	ND	5.00	ug/kg							U
Hexachloro-1,3-Butadiene	ND	5.00	ug/kg							U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

7/6/2017

2

3

6

R

9

11

Project: Little Port Walter AK Project Number: 58011097 Reported: Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

Test America-Tacoma

5755 8th Street East

Tacoma WA, 98424

Prepared: 20-May-2017 Analyzed: 20-May-2017 17:37 U	QC Sample/Analyte	Result	Repor L	ting imit	Units	Spike Level	Source		%REC Limits	RPD	RPD Limit	Notes
Naphtallene												
1.2.3-Trichlorobenzene		ND		5.00		1100. 20-1VIA	y 2017	maryzeu. 20-	1v1ay-2017	11.31		U
Dichlorodifluoromethane ND 1.00 ug/kg	•											U
Methyl tert-butyl Ether ND	Dichlorodifluoromethane											
Surrogate: Toluene-d8	Methyl tert-butyl Ether	ND	1	1.00								U
Size	Surrogate: 1,2-Dichloroethane-d4		48.2		ug/kg	50.0		96.4	80-149			
Prepared: 20-May-2017 Analyzed: 20-May-2017 16:30	Surrogate: Toluene-d8		49.4		ug/kg	50.0		98.8	77-120			
Prepared: 20-May-2017 Analyzed: 20-May-2017 16:30	Surrogate: 4-Bromofluorobenzene		51.2		ug/kg	50.0		102	80-120			
Chloromethane 43.9 ug/kg 50.0 87.9 64-132 Vinyl Chloride 40.9 ug/kg 50.0 81.9 74-135 Bromomethane 64.5 ug/kg 50.0 129 53-144 Q Chlorotethane 48.7 ug/kg 50.0 97.5 55-149 Trichlorofluoromethane 50.5 ug/kg 50.0 101 61-164 Acrolein 226 ug/kg 50.0 101 61-164 Acrolein 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.3 74-143 Bromoethane 49.5 ug/kg 50.0 98.3 74-143 Bromoethane 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 98.9 77-134 Bromoethane 46.6 ug/kg 50.0 98.9 77-134 Bromoethane 46.6 ug/kg 50.0 99.2 31-162 Actylonitrile 39.4 ug/kg 50.0 92.5 69-129 Actylonitrile 39.4 ug/kg 50.0 92.5 69-129 Actylonitrile 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichlorotehne 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 87.6 80-124 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 41.4 ug/kg 50.0 87.1 77-138 cis-1,2-Dichlorotehne 46.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichlorotehne 44.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichlorotehne 44.0 ug/kg 50.0 87.8 80-126 Chloroform 41.4 ug/kg 50.0 87.8 80-126 Chloroform 41.4 ug/kg 50.0 87.8 80-126 Lil,1-Trichlorotehane 44.8 ug/kg 50.0 87.8 80-129 1,1,1-Trichlorotehane 44.9 ug/kg 50.0 87.8 87.8 30-120	Surrogate: 1,2-Dichlorobenzene-d4		49.7		ug/kg	50.0		99.5	80-120			
Vinyl Chloride 40.9 ug/kg 50.0 81.9 74-135 Bromomethane 64.5 ug/kg 50.0 129 53-144 Q Chlorocthane 48.7 ug/kg 50.0 97.5 55-149 Trichlorofluoromethane 50.5 ug/kg 50.0 101 61-164 Acrolcin 226 ug/kg 50.0 98.3 59-140 1,1,2-Trichloro-1,2,2-Trifluoroethane 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.3 77-134 Bromoethane 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 93.2 35-145 Idodomethane 46.6 ug/kg 50.0 93.2 35-145 Methylene Chloride 46.3 ug/kg 50.0 93.2 31-162 Methylene Chloride 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene </td <td>LCS (BFF0131-BS1)</td> <td></td> <td></td> <td></td> <td>Prepa</td> <td>red: 20-Ma</td> <td>y-2017</td> <td>Analyzed: 20-</td> <td>May-2017</td> <td>16:30</td> <td></td> <td></td>	LCS (BFF0131-BS1)				Prepa	red: 20-Ma	y-2017	Analyzed: 20-	May-2017	16:30		
Bromomethane 64.5 ug/kg 50.0 129 53.144 Q Chlorocthane 48.7 ug/kg 50.0 97.5 55.149 Chlorocthane 48.7 ug/kg 50.0 101 61.164 Chlorocthane 50.5 ug/kg 50.0 101 61.164 Chlorocthane 226 ug/kg 250 90.3 59.140 Chlorocthane 49.1 ug/kg 50.0 98.3 74.143 Chlorocthane 49.1 ug/kg 50.0 98.3 74.143 Chlorocthane 49.5 ug/kg 50.0 98.3 74.143 Chlorocthane 49.5 ug/kg 50.0 98.3 77.134 Chlorocthane 47.1 ug/kg 50.0 94.3 65.145 Chlorocthane 46.6 ug/kg 50.0 94.3 65.145 Chlorocthane 66.6 ug/kg 50.0 87.6 87.6 87.6 Chlorocthane 66.6 ug/kg 50.0 87.6 87.6 S0.125 Chlorocthane 66.6 ug/kg 50.0 87.6 S0.125 Chlorocthane 66.6 ug/kg 50.0 87.9 87.135 Chlorocthane 67.0 Ug/kg 50.0 87.9 87.135 Chlorocthane 67.0	Chloromethane	43.9					-					
Chloroethane 48.7 ug/kg 50.0 97.5 55.149 Trichlorofluoromethane 50.5 ug/kg 50.0 101 61-164 Acrolein 226 ug/kg 250 90.3 59.140 1,1,2-Trichloro-1,2,2-Trifluoroethane 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.9 77-134 Bromoethane 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 98.9 77-134 Bromoethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 92.5 69-129 Acrylonitrile 45.7 ug/kg 50.0 91.4 71-137 Trans-1,2-Dichloroethene 46.6 ug/kg 50.0 91.4 71-137 Trichloro-1,2,2-Trifluoroethane 46.6 ug/kg 50.0 91.4 71-137 Trichloroethane 41.0 ug/kg 50.0 91.4 71-137 Trichloroethane 43.8 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 44.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethane 44.0 ug/kg 50.0 87.9 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.8 79-120	Vinyl Chloride	40.9			ug/kg	50.0		81.9	74-135			
Trichlorofluoromethane 50.5 ug/kg 50.0 101 61-164 Acrolein 226 ug/kg 250 90.3 59-140 1,1,2-Trichloro-1,2,2-Trifluoroethane 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.9 74-143 Acetone 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 46.6 ug/kg 50.0 98.3 11-62 Methylene Chloride 46.3 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Dutanone 46.0 ug/kg 50.0 87.1 77-138 ciss-1,2-Dichloroethene 46.0 ug/kg 50.0 87.1 77-138 ciss-1,2-Dichloroethene 46.0 ug/kg 50.0 87.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropopene 44.9 ug/kg 50.0 89.5 78-133	Bromomethane	64.5			ug/kg	50.0		129	53-144			Q
Acrolein 226 ug/kg 250 90.3 59-140 1,1,2-Trichloro-1,2,2-Trifluoroethane 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 50.0 98.9 77-134 Bromochtane 49.5 ug/kg 50.0 98.9 77-134 Bromochtane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 93.2 31-162 Acrylonitrile 39.4 ug/kg 50.0 92.5 69-129 Acrylonitrile 45.7 ug/kg 50.0 93.1 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 43.6 ug/kg 50.0 87.1 77-138 ciss-1,2-Dichloropane 43.6 ug/kg 50.0 87.1 77-138 Ciss-1,2-Dichloroethene 46.0 ug/kg 50.0 87.1 77-138 Ciss-1,2-Dichloroethene 44.0 ug/kg 50.0 87.9 80-125 Chloroform 41.4 ug/kg 50.0 87.9 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-126 I,1,1-Trichloroethane 44.8 ug/kg 50.0 87.9 80-129 I,1,1-Trichloroethane 44.8 ug/kg 50.0 87.9 80-129 I,1,1-Trichloroethane 44.8 ug/kg 50.0 87.9 80-129 I,1,1-Trichloroethane 44.9 ug/kg 50.0 87.9 80-129	Chloroethane	48.7			ug/kg	50.0		97.5	55-149			
1,1,2-Trichloro-1,2,2-Trifluoroethane 49.1 ug/kg 50.0 98.3 74-143 Acetone 174 ug/kg 250 69.4 48-137 Q 1,1-Dichloroethene 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 98.9 77-134 Bromoethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 44.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 44.0 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Trichlorofluoromethane	50.5			ug/kg	50.0		101	61-164			
Actone 174 ug/kg 250 69.4 48-137 Q 1,1-Dichloroethene 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 94.3 65-145 Iodomethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 82.8 80-126 Chloroform <td>Acrolein</td> <td>226</td> <td></td> <td></td> <td>ug/kg</td> <td>250</td> <td></td> <td>90.3</td> <td>59-140</td> <td></td> <td></td> <td></td>	Acrolein	226			ug/kg	250		90.3	59-140			
1,1-Dichloroethene 49.5 ug/kg 50.0 98.9 77-134 Bromoethane 47.1 ug/kg 50.0 94.3 65-145 Iodomethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 82.8 80-126 Chloroform 41.4 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane <td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td> <td>49.1</td> <td></td> <td></td> <td>ug/kg</td> <td>50.0</td> <td></td> <td>98.3</td> <td>74-143</td> <td></td> <td></td> <td></td>	1,1,2-Trichloro-1,2,2-Trifluoroethane	49.1			ug/kg	50.0		98.3	74-143			
Bromoethane 47.1 ug/kg 50.0 94.3 65.145 lodomethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 44.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethane 44.0 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 82.8 80-126 Indicate 44.0 ug/kg 50.0 87.0 82.8 80-126 Indicate 44.0 ug/kg 50.0 87.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Acetone	174			ug/kg	250		69.4	48-137			Q
Iodomethane 46.6 ug/kg 50.0 93.2 31-162 Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 82.8 80-125 Chloroform 41.4 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	1,1-Dichloroethene	49.5			ug/kg	50.0		98.9	77-134			
Methylene Chloride 46.3 ug/kg 50.0 92.5 69-129 Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 82.8 80-126 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.9 ug/kg 50.0 89.8 79-120	Bromoethane	47.1			ug/kg	50.0		94.3	65-145			
Acrylonitrile 39.4 ug/kg 50.0 78.8 69-134 Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 82.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 82.8 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Iodomethane	46.6			ug/kg	50.0		93.2	31-162			
Carbon Disulfide 45.7 ug/kg 50.0 91.4 71-137 trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Methylene Chloride	46.3			ug/kg	50.0		92.5	69-129			
trans-1,2-Dichloroethene 46.6 ug/kg 50.0 93.1 79-130 Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Acrylonitrile	39.4			ug/kg	50.0		78.8	69-134			
Vinyl Acetate 41.0 ug/kg 50.0 82.0 66-141 1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Carbon Disulfide	45.7			ug/kg	50.0		91.4	71-137			
1,1-Dichloroethane 43.8 ug/kg 50.0 87.6 80-126 2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	trans-1,2-Dichloroethene	46.6			ug/kg	50.0		93.1	79-130			
2-Butanone 212 ug/kg 250 84.7 70-132 2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Vinyl Acetate	41.0			ug/kg	50.0		82.0	66-141			
2,2-Dichloropropane 43.6 ug/kg 50.0 87.1 77-138 cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	1,1-Dichloroethane	43.8			ug/kg	50.0		87.6	80-126			
cis-1,2-Dichloroethene 46.0 ug/kg 50.0 92.1 80-125 Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	2-Butanone	212			ug/kg	250		84.7	70-132			
Chloroform 41.4 ug/kg 50.0 82.8 80-126 Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	2,2-Dichloropropane	43.6			ug/kg	50.0		87.1	77-138			
Bromochloromethane 44.0 ug/kg 50.0 87.9 80-129 1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	cis-1,2-Dichloroethene	46.0			ug/kg	50.0		92.1	80-125			
1,1,1-Trichloroethane 44.8 ug/kg 50.0 89.5 78-133 1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Chloroform	41.4			ug/kg	50.0		82.8	80-126			
1,1-Dichloropropene 44.9 ug/kg 50.0 89.8 79-120	Bromochloromethane	44.0			ug/kg	50.0		87.9	80-129			
	1,1,1-Trichloroethane	44.8			ug/kg	50.0		89.5	78-133			
Carbon tetrachloride 44.8 ug/kg 50.0 89.5 71-129	1,1-Dichloropropene	44.9			ug/kg	50.0		89.8	79-120			
	Carbon tetrachloride	44.8			ug/kg	50.0		89.5	71-129			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 223 of 241

69 of 77

Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported:
Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

Test America-Tacoma

OC Samula/Amalista	D14	Reporting	Spike	Source	0/DEC	%REC	DPD	RPD	N T - 4 -
QC Sample/Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BFF0131-BS1)		Pre	pared: 20-Ma	y-2017 An	alyzed: 20-	May-2017 1	16:30		
1,2-Dichloroethane	44.4	ug/kg	50.0		88.8	76-120			
Benzene	45.4	ug/kg	50.0		90.7	80-120			
Trichloroethene	45.0	ug/kg	50.0		90.1	80-120			
1,2-Dichloropropane	45.9	ug/kg	50.0		91.9	79-120			
Bromodichloromethane	46.9	ug/kg	50.0		93.8	80-122			
Dibromomethane	47.7	ug/kg	50.0		95.3	80-120			
2-Chloroethyl vinyl ether	43.2	ug/kg	50.0		86.4	51-129			
4-Methyl-2-Pentanone	215	ug/kg	250		86.1	73-121			
cis-1,3-Dichloropropene	46.5	ug/kg	50.0		92.9	80-120			
Toluene	44.6	ug/kg	50.0		89.2	75-120			
trans-1,3-Dichloropropene	46.8	ug/kg	50.0		93.6	80-124			
2-Hexanone	198	ug/kg	250		79.1	68-122			
1,1,2-Trichloroethane	47.8	ug/kg	50.0		95.6	79-120			
,3-Dichloropropane	47.7	ug/kg	50.0		95.4	78-120			
Tetrachloroethene	46.1	ug/kg	50.0		92.3	74-124			
Dibromochloromethane	47.8	ug/kg	50.0		95.6	74-125			
1,2-Dibromoethane	46.8	ug/kg	50.0		93.6	80-120			
Chlorobenzene	46.4	ug/kg	50.0		92.8	78-120			
Ethylbenzene	45.7	ug/kg	50.0		91.4	80-125			
1,1,1,2-Tetrachloroethane	47.1	ug/kg	50.0		94.1	80-120			
n,p-Xylene	92.8	ug/kg	100		92.8	76-121			
o-Xylene	46.1	ug/kg	50.0		92.3	67-132			
Xylenes, total	139	ug/kg	150		92.6	67-132			
Styrene	47.3	ug/kg	50.0		94.6	80-120			
Bromoform	46.9	ug/kg	50.0		93.8	64-128			
1,1,2,2-Tetrachloroethane	44.5	ug/kg	50.0		88.9	74-120			
1,2,3-Trichloropropane	44.4	ug/kg	50.0		88.8	73-120			
rans-1,4-Dichloro 2-Butene	40.0	ug/kg	50.0		80.1	65-125			Q
n-Propylbenzene	45.1	ug/kg	50.0		90.2	72-124			
Bromobenzene	46.4	ug/kg	50.0		92.8	76-120			
sopropyl Benzene	45.0	ug/kg	50.0		90.0	74-121			
2-Chlorotoluene	44.5	ug/kg	50.0		89.0	75-120			
l-Chlorotoluene	45.0	ug/kg	50.0		90.0	69-124			
-Butylbenzene	45.1	ug/kg	50.0		90.2	72-122			
1,3,5-Trimethylbenzene	45.2	ug/kg	50.0		90.5	74-122			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

2

3

_

7

_

10

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
.CS (BFF0131-BS1)			Prepa	red: 20-May	y-2017 An	alyzed: 20-	May-2017	16:30		
,2,4-Trimethylbenzene	45.7		ug/kg	50.0		91.5	75-121			
s-Butylbenzene	45.1		ug/kg	50.0		90.2	70-128			
1-Isopropyl Toluene	46.3		ug/kg	50.0		92.6	75-125			
,3-Dichlorobenzene	46.5		ug/kg	50.0		92.9	75-120			
,4-Dichlorobenzene	47.9		ug/kg	50.0		95.8	73-120			
n-Butylbenzene	45.7		ug/kg	50.0		91.4	73-130			
,2-Dichlorobenzene	47.2		ug/kg	50.0		94.5	76-120			
,2-Dibromo-3-chloropropane	40.9		ug/kg	50.0		81.8	65-126			
1,2,4-Trichlorobenzene	48.7		ug/kg	50.0		97.5	66-140			
Hexachloro-1,3-Butadiene	47.0		ug/kg	50.0		94.0	67-133			
Naphthalene	46.3		ug/kg	50.0		92.6	69-125			
,2,3-Trichlorobenzene	47.7		ug/kg	50.0		95.4	68-132			
Dichlorodifluoromethane	38.0		ug/kg	50.0		76.1	67-142			Q
Methyl tert-butyl Ether	47.2		ug/kg	50.0		94.3	79-127			
Surrogate: 1,2-Dichloroethane-d4		46.9	ug/kg	50.0		93.8	80-149			
Surrogate: Toluene-d8		49.3	ug/kg	50.0		98.6	77-120			
Surrogate: 4-Bromofluorobenzene		51.3	ug/kg	50.0		103	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.0	ug/kg	50.0		100	80-120			
LCS Dup (BFF0131-BSD1)			Prepa	red: 20-May	y-2017 An	nalyzed: 20-	May-2017 1	16:52		
Chloromethane	44.2		ug/kg	50.0	,	88.4	64-132	0.62	30	
Vinyl Chloride	44.7		ug/kg	50.0		89.4	74-135	8.75	30	
Bromomethane	66.7		ug/kg	50.0		133	53-144	3.21	30	Q
Chloroethane	52.0		ug/kg	50.0		104	55-149	6.48	30	
Trichlorofluoromethane	55.7		ug/kg	50.0		111	61-164	9.76	30	
Acrolein	238		ug/kg	250		95.1	59-140	5.18	30	
,1,2-Trichloro-1,2,2-Trifluoroethane	49.3		ug/kg	50.0		98.6	74-143	0.35	30	
Acetone	183		ug/kg	250		73.0	48-137	5.05	30	Q
,1-Dichloroethene	43.9		ug/kg	50.0		87.9	77-134	11.80	30	
Bromoethane	49.8		ug/kg	50.0		99.5	65-145	5.39	30	
odomethane	51.0		ug/kg	50.0		102	31-162	9.02	30	
Methylene Chloride	49.1		ug/kg	50.0		98.2	69-129	5.98	30	
Acrylonitrile	43.9		ug/kg	50.0		87.9	69-134	10.80	30	
Carbon Disulfide	42.8		ug/kg	50.0		85.7	71-137	6.44	30	
rans-1,2-Dichloroethene	49.3		ug/kg	50.0		98.6	79-130	5.67	30	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

	P. 1	Reporting	Spike	Source	N/PEG	%REC	DDD	RPD	NT .
QC Sample/Analyte	Result	Limit Unit	s Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BFF0131-BSD1)		I	repared: 20-Ma	y-2017 An	alyzed: 20-	May-2017	16:52		
Vinyl Acetate	44.5	ug/k	g 50.0		89.0	66-141	8.18	30	
1,1-Dichloroethane	46.8	ug/k	g 50.0		93.6	80-126	6.66	30	
2-Butanone	225	ug/k	g 250		89.9	70-132	5.95	30	
2,2-Dichloropropane	44.8	ug/k	g 50.0		89.7	77-138	2.91	30	
cis-1,2-Dichloroethene	48.9	ug/k	g 50.0		97.8	80-125	6.07	30	
Chloroform	44.3	ug/k	g 50.0		88.7	80-126	6.89	30	
Bromochloromethane	47.6	ug/k	g 50.0		95.2	80-129	7.91	30	
1,1,1-Trichloroethane	47.5	ug/k	g 50.0		95.0	78-133	5.88	30	
1,1-Dichloropropene	47.7	ug/k	50.0		95.4	79-120	6.04	30	
Carbon tetrachloride	44.1	ug/k	50.0		88.2	71-129	1.49	30	
1,2-Dichloroethane	47.2	ug/k	g 50.0		94.4	76-120	6.08	30	
Benzene	48.2	ug/k	50.0		96.4	80-120	6.13	30	
Trichloroethene	47.1	ug/k	g 50.0		94.2	80-120	4.53	30	
1,2-Dichloropropane	49.4	ug/k	50.0		98.8	79-120	7.28	30	
Bromodichloromethane	50.5	ug/k	g 50.0		101	80-122	7.43	30	
Dibromomethane	50.4	ug/k	g 50.0		101	80-120	5.57	30	
2-Chloroethyl vinyl ether	46.9	ug/k	g 50.0		93.8	51-129	8.29	30	
4-Methyl-2-Pentanone	234	ug/k	g 250		93.6	73-121	8.37	30	
cis-1,3-Dichloropropene	49.1	ug/k	g 50.0		98.2	80-120	5.54	30	
Toluene	47.4	ug/k	g 50.0		94.8	75-120	6.08	30	
trans-1,3-Dichloropropene	49.3	ug/k	g 50.0		98.6	80-124	5.19	30	
2-Hexanone	216	ug/k	g 250		86.3	68-122	8.63	30	
1,1,2-Trichloroethane	52.5	ug/k	g 50.0		105	79-120	9.42	30	
1,3-Dichloropropane	50.4	ug/k	g 50.0		101	78-120	5.51	30	
Tetrachloroethene	47.9	ug/k	g 50.0		95.8	74-124	3.79	30	
Dibromochloromethane	51.3	ug/k	g 50.0		103	74-125	7.11	30	
1,2-Dibromoethane	50.9	ug/k	50.0		102	80-120	8.41	30	
Chlorobenzene	49.4	ug/k	g 50.0		98.8	78-120	6.26	30	
Ethylbenzene	48.5	ug/k	g 50.0		97.0	80-125	6.04	30	
1,1,2-Tetrachloroethane	50.8	ug/k	g 50.0		102	80-120	7.64	30	
m,p-Xylene	97.7	ug/k	g 100		97.7	76-121	5.12	30	
o-Xylene	49.2	ug/k			98.4	67-132	6.36	30	
Xylenes, total	147	ug/k			97.9	67-132	5.53	30	
Styrene	50.1	ug/k			100	80-120	5.82	30	
Bromoform	49.4	ug/k	•		98.7	64-128	5.11	30	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America-TacomaProject:Little Port Walter AK5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

Volatile Organic Compounds - Quality Control

Batch BFF0131 - No Prep - Volatiles

Instrument: NT5 Analyst: PB

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BFF0131-BSD1)			Prepa	red: 20-Ma	y-2017 An	alyzed: 20-	May-2017 1	6:52		
1,1,2,2-Tetrachloroethane	47.2		ug/kg	50.0		94.4	74-120	5.94	30	
1,2,3-Trichloropropane	48.3		ug/kg	50.0		96.6	73-120	8.44	30	
trans-1,4-Dichloro 2-Butene	40.6		ug/kg	50.0		81.2	65-125	1.34	30	Q
n-Propylbenzene	46.5		ug/kg	50.0		93.0	72-124	3.01	30	
Bromobenzene	48.8		ug/kg	50.0		97.6	76-120	5.05	30	
Isopropyl Benzene	47.4		ug/kg	50.0		94.9	74-121	5.29	30	
2-Chlorotoluene	46.9		ug/kg	50.0		93.9	75-120	5.37	30	
4-Chlorotoluene	46.8		ug/kg	50.0		93.7	69-124	3.99	30	
t-Butylbenzene	47.4		ug/kg	50.0		94.7	72-122	4.96	30	
1,3,5-Trimethylbenzene	47.2		ug/kg	50.0		94.4	74-122	4.28	30	
,2,4-Trimethylbenzene	47.3		ug/kg	50.0		94.6	75-121	3.33	30	
-Butylbenzene	47.2		ug/kg	50.0		94.5	70-128	4.64	30	
I-Isopropyl Toluene	47.6		ug/kg	50.0		95.3	75-125	2.80	30	
,3-Dichlorobenzene	47.9		ug/kg	50.0		95.9	75-120	3.10	30	
,4-Dichlorobenzene	48.8		ug/kg	50.0		97.5	73-120	1.76	30	
n-Butylbenzene	46.4		ug/kg	50.0		92.8	73-130	1.47	30	
,2-Dichlorobenzene	48.6		ug/kg	50.0		97.3	76-120	2.90	30	
,2-Dibromo-3-chloropropane	43.5		ug/kg	50.0		86.9	65-126	6.10	30	
,2,4-Trichlorobenzene	47.1		ug/kg	50.0		94.1	66-140	3.48	30	
Hexachloro-1,3-Butadiene	48.4		ug/kg	50.0		96.7	67-133	2.83	30	
Naphthalene	49.1		ug/kg	50.0		98.2	69-125	5.83	30	
,2,3-Trichlorobenzene	48.4		ug/kg	50.0		96.8	68-132	1.50	30	
Dichlorodifluoromethane	37.4		ug/kg	50.0		74.9	67-142	1.64	30	Q
Methyl tert-butyl Ether	50.1		ug/kg	50.0		100	79-127	6.08	30	
Surrogate: 1,2-Dichloroethane-d4		47.5	ug/kg	50.0		95.1	80-149			
Surrogate: Toluene-d8		48.8	ug/kg	50.0		97.7	77-120			
Surrogate: 4-Bromofluorobenzene		51.1	ug/kg	50.0		102	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.1	ug/kg	50.0		100	80-120			

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2

3

6

8

10

11

Test America-Tacoma Project: Little Port Walter AK

5755 8th Street EastProject Number:58011097Reported:Tacoma WA, 98424Project Manager:Elaine Walker07-Jun-2017 06:00

Certified Analyses included in this Report

Analyte	Certifications

FΡΔ	92	SOC	in	CA	ıiم

EPA 8260C in Solid	
Chloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Vinyl Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Trichlorofluoromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrolein	WADOE,DoD-ELAP,NELAP,CALAP
1,1,2-Trichloro-1,2,2-Trifluoroethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Acetone	WADOE,DoD-ELAP,NELAP,CALAP
1,1-Dichloroethene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Bromoethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
lodomethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Methylene Chloride	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Acrylonitrile	WADOE,DoD-ELAP,NELAP,CALAP
Carbon Disulfide	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
trans-1,2-Dichloroethene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Vinyl Acetate	WADOE, DoD-ELAP, NELAP, CALAP
1,1-Dichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Butanone	WADOE,DoD-ELAP,NELAP,CALAP
2,2-Dichloropropane	WADOE, DoD-ELAP, NELAP, CALAP
cis-1,2-Dichloroethene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Chloroform	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Bromochloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,1,1-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Carbon tetrachloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1.2-Dichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Trichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromodichloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chloroethyl vinyl ether WADOE, DoD-ELAP, NELAP 4-Methyl-2-Pentanone WADOE, DoD-ELAP, NELAP, CALAP cis-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Analytical Resources, Inc.

Toluene

1,1-Dichloropropene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

WADOE, DoD-ELAP, NELAP, CALAP, ADEC

7/6/2017

Ę

6

8

9

11

12

l	Test America-Tacoma	Project: Little Port Walter AK	
l	5755 8th Street East	Project Number: 58011097	Reported:
l	Tacoma WA, 98424	Project Manager: Elaine Walker	07-Jun-2017 06:00

trans-1,3-Dichloropropene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Hexanone	WADOE,DoD-ELAP,NELAP,CALAP
1,1,2-Trichloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,3-Dichloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Tetrachloroethene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dibromochloromethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2-Dibromoethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Chlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Ethylbenzene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,1,1,2-Tetrachloroethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
m,p-Xylene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
o-Xylene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Xylenes, total	WADOE
Styrene	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Bromoform	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
1,1,2,2-Tetrachloroethane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2,3-Trichloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
trans-1,4-Dichloro 2-Butene	WADOE,DoD-ELAP,NELAP
n-Propylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
Bromobenzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Isopropyl Benzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
2-Chlorotoluene	WADOE,DoD-ELAP,NELAP,CALAP
4-Chlorotoluene	WADOE,DoD-ELAP,NELAP,CALAP
t-Butylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,3,5-Trimethylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,2,4-Trimethylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
s-Butylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
4-Isopropyl Toluene	WADOE,DoD-ELAP,NELAP,CALAP
1,3-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,4-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
n-Butylbenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,2-Dichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP
1,2-Dibromo-3-chloropropane	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
1,2,4-Trichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Hexachloro-1,3-Butadiene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Naphthalene	WADOE,DoD-ELAP,NELAP,CALAP
1,2,3-Trichlorobenzene	WADOE,DoD-ELAP,NELAP,CALAP,ADEC
Dichlorodifluoromethane	WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Methyl tert-butyl Ether	WADOE,DoD-ELAP,NELAP,CALAP
n-Hexane	WADOE

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America-Tacoma Project: Little Port Walter AK 5755 8th Street East Project Number: 58011097 Reported: Tacoma WA, 98424 Project Manager: Elaine Walker 07-Jun-2017 06:00

2-Pentanone **WADOE** Dibromofluoromethane **WADOE** 4-Bromofluorobenzene WADOE

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017
WA-DW	Ecology - Drinking Water	C558	06/30/2017

Test America-Tacoma Project: Little Port Walter AK 5755 8th Street East Project Number: 58011097 Reported: 07-Jun-2017 06:00 Tacoma WA, 98424 Project Manager: Elaine Walker

	Notes and Definitions
U	This analyte is not detected above the applicable reporting or detection limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
*	Flagged value is not within established control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

TestAmerica 5

Tacoma, WA 98424 Phone (253) 922-231

Chain of Custody Record

TestAmerica

Client Information	1 1-60	b PM alker	alker, Elaine M 4 la str											10(5): Lv		ť		COC No: 580-24314-8019	3.1				
Client Contact Kathryn Cleveland	Phone:				Mail; aine.	walk	er@	testa	meric	ainc.	com									F	Page: Page 1 of 13		
Company: Ahtna Engineering Services LLC				•	T						naly	tis i	Regi		•		17.		\v i =	05150.01			
Address 19540 International Bivd. Suite 201	Due Date Request	ted:									14.,	<u></u>	7,5-4	1		Ŧ		Т	Š.		reservation Cod		
City Seatac	TAT Requested (d	lays):			4			İ											١		A - HCL B - NaOH	M - Hexane N - None	,
State, Zip:	Sha	dord			20 20 20 20 20 20 20 20 20 20 20 20 20 2														SGCReanup	. [C - Zn Acetate D - Nitric Acad	O - AsNaO: P - Na2O49	S
WA, 98188	PO#.				4														799	្សារ	E - NaHSQ4 F - MeOH	Q - Na2SO: R - Na2S2C	03
Phone: 952-393-2743 Email:	Purchase Order	r Requested		_[\$									İ	¥				without	Ð	G - Amehlor H - Ascorbic Acid		decahydrate	
kcieveland@ahtna.net				2	100	ļ						€	ı		standard list AK					i - Ice J - Di Water K - EDTA	U - Apetone V - MCAA W - pH 4-5		
Project Name: Little Port Walter AK	Project #: 58011097		چٌ				tije?			İ	Сртоти		E P	<u> </u>]		G C		EDIA	Z - other (sp			
Site.	SSOW#:		I dime	Ž		02_10	al Vet	3	#		Ę		üles, s			(S, 642	DAKE S	ŀ	Mher:				
		Sample	Sample Type (C≖ceme,	Matrix (W-water, 5=solid, D=waste/cit	Id Filtered S	form MS/MI	8260C, AK101	82700_SIM, AK102_103	8260C - Low Level Volatiles	6920A - (AS,Cr,Cu)	7196A - Hex Chrom	7471A - Mercury	7196A - Hexavalent	602DA - As,Cr	8260C_LL · Volatiles	SZGCC - Volatiles,	5260C, AK101	92/UU_SIM - PARIS, Standard (193)	AKIUK_103 - DKOMKO with and				
Sample Identification	Sample Date	Time	G≖grab) er Preservatio	FeTissue, AeAl	1 Plets															1	Special Ins	structions	/Note:
LPW17 - LBP - WEY-01	5/6/17	1820	4	Solid		H	F	N.	18	N:š	N P	V 2 7	N) [201	W.J) A	N	A	* /			1.000,000,000,000,000,000,000,000,000,00	
LIWIT- LBT - Way-OL		1	····	Solid	+-	1					+	+	\dashv	+		-	+	+	36 172		Paint Chip -	lead and	<u>alestr</u>
	5/6/17	1825	4	Solid	+				\dashv	\dashv		+	+	+	+	+	+		33		it		
LPW17-LBP-West-03	5/6/17	1830	9	Solid	+		V	X		┵		-	-+		-	+	+		. 8	4	11	5/1	: == 1 12
LPW17-SL-Weirf-01(2)	5/7/17	0930	4		+	1		2			+	-		4		4	_		1000	۷	LVC(freez		/ ¿6cc
LAW 17-56-WEXT -02(2)	5/7/17	0940	4	Solid	+	Н	Х		X			_	_	4	1	XL.	+	۲×	200				
LPW17-SL-WENT-020(2)	5/7/17	0940	4	Solid			×		×		\perp	1	_	_		4	_∤>	_	(() 			
LPW17-55-WEIRP-03(25)	5/7/17	1000	4	Solid	1		X		×		_	4	1			<u> </u>	×	<u> </u>	(1) 		- lta
LPWI7-SL-CCP-01(2)	5/7/17	1050	q	Solid	Ш	Щ	X		Х					_	7		>	×			100c-fr24		
-PW17-SL-CCP-02(2)	5/7/17	1100	Ğ	Solid	Ц		χ		X					\perp	;	<u> </u>)	ر ک	(L	Lucc - fra	\$/‡ ≟₹€, jj≟j	/59 1 / Occos
LPW 17-5L - 45F -01 (2)	5/7/17	1305	4	Solid	Ш		×		X							X	;	4)	۱	L	L VOC The	5/7 c t ec 13/	1519 14 / 56cm
LBW17-56- GSP-03 (1-5)	5/7/17	1530	9	Solid			Х		Х						L	<u> </u>	۲		4	4	L VOC. Free	20 5/7	N / 0667
Possible Hazard Identification → Non-Hazard Flammable Skin Irritant Poisc	_ 					Sam □					ee m	ay bo	9.55	#\$\$	d if : I By L	amj	iles .	re r	etain	eď	longer than 1 n	nonth)	
Deliverable Requested: I, II, III, IV, Other (specify)	n B Unkno	wn K	заююдка	-	ㅓ	Spec		e <i>tum</i> Instru			Req				I By I	.ab			Arch	ive	For	Months	
Empty Kit Relinquished by:	<u></u>	Date:			Tin	ne:	_							M	ethod (o! Shej	pment	-					
Relinguished by Clevelland	Date/Time:	i 2 ~		mpany		F	Recei	ved by سرد الحمية سرد الحمية	٠					Щ.		Da	te/Tim	0				Company TA-51	£ 1.
Relinquished by	5/9/17 Date/Time:	1370		4E) mpany		F	Recei	ved by		· · ·							te/Tim		7	w.w.	1400	//+⁻>/ Company	<u>:</u>
Retinquished by:	Date/Time	<u></u> -	Cor	mpany		F	Recei	ved by			·					Da	te/Tim	e :				Сопрану	
Custody Seals Intact: Custody Seal No.:	· · · · · · · · · · · · · · · · · · ·		P	age 23	32 (Cooler Temperature(s) °C and Other Remarks:												·····				7/6/201	

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

ToolAm	
TestAm	ierica
SECTION OF THE PROPERTY.	
THE LEADER IN ENVIRO	INMENTAL TESTING

A CONTRACTOR OF THE PROPERTY O

Phone (253) 922-2310 Fax (253) 922-5047																			THE LEADER IN E	NVIRONMENTALT	ESTING		
Client Information	Sampler:			i.ab F Wal		, Elair	ine N	м				*******		Carr	rier Tra	acking	No(s)	j:			COC No: 580-24314-8019.3		
Client Contact: Kathryn Cleveland	Phone			E-Ma	ad:			lestan	meric	ainc	.com			1_							Page: Page 3 of 13		
Company: Ahtna Engineering Services LLC					Τ					A	naly	sis	Re	aue	stec	 1			_		Job#	**************************************	
Address 19540 International Blvd. Suite 201	Due Date Request	ted:											Ϊ	1	Ť	\Box	Г	Г	<u> </u>	\$000 \$000 \$000	Preservation Co	des:	
City: Seatac	TAT Requested (d	Jays):			- Constant														9		A - HCL B - NaOH C - Zn Acetate	M - Hexana N - None O - AsNaO2	
State, Zip. WA, 98188	1						,					, 1				,	'		without SGCleanup		D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SQ3	
Phone:	PO#:	- Gundar							i J			,					'	'	SS to		F - MeOH G - Amenior	R - Na2S2O3 S - H2SO4	
čmali: kclevełand@ahtna.net	Purchase Order wo#	r Requested	1	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	No.										#st AK	ΑK		# I	of #IB		H - Ascorbic Acid I - Ice	T - TSP Dodecah U - Acetone	ydrata
Project Name:	Project#				博	8	,		#				THE THE		dard	3	'	and iii	the fig.	mers	J - DI Water K - EDTA L - EDA	V - MCAA W - pH 4-5 Z - other (specify)	1
Little Port Walter AK Sile:	58011097 S\$OW#:		*		Sample (Yes	₩N OS	.	ξ. ξ.	Solate				Chromken		s, star	standard		Stand	080	Omte	Other:	Z - outer (appeary)	1
	<u> </u>	ī	1	Matrix	d Sar	? =₹		× 10	evel	90	hrom	È			華星		!	¥ }	ROK	rof			
Sample Identification	Sample Date					Perform MS/										8260C · Volatiles,	5260C, AK101	82700_SRM - PAHs, standard list	AK102_103 - DRO/RRO with and	Total Numbe	Other: Special In	structions/Note	e:
		——————————————————————————————————————									N I				A	j		15-Y (V	Ā	X	(VI) (VI) (VI) (VI)	2000 C	
LAWIT-SL-WSF-01 (2)	5/7/17	1555	4	Solid			X		×							*		X	X		LL voc free	7/7 / S	5/% i 60
4W17 -56- HMP-01 (2)		1545		Solid		,,	X	\prod	X							*			х		1		<u> </u>
LPW17-55-HM-02(25)		1630		Solid			X		Х							Х		Х	×		11 Vac-fre		15/4
LPW17 -SL-UBP-01 (1.5)		1635		Solid	\prod	\prod	Χ		Х							X		X	X			i(
LPW17-SL-UBP-07 (Z)		1645		Solid			X		Х		\Box		\prod	\Box		X	\Box	X	X			•	
LAWIT-SL-WH8-01(2)		1750		Solid		\prod	Х		X							X		X	X		LL VIC- Free	5/7 Eer 1835/	15/9 1860:
LPWIZ-SL-WHF-BID(Z)		1750		Solid		\prod	X		X							Х		X	Х			1	
LIW17-56-WHP-02(1)		1810		Solid		1	$\times \mathbb{I}$		X			\Box			\Box	X		X	X		i	ţ	
LPW17-SL-WHP-03(1)		1815		Salid		Ţ,	Х		Х							X		X	×		1		
LPW17-\$L-WHP-04(1)		15 20		Solid	\prod	7	X		X							X			X			· t	
[ANI7-Bryd-Weir-01 (1.5)		2000		Solid	\prod	I	I		I	I	\Box		\Box						X		TOC analys	5,3	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison	on B Unkno		24.4 25.4		5	Samj						ay b	ye as	ises!	sed i	f san	nple:	s are	reta	ainec	d longer than 1 i	month)	
7 Non-Hazard Flammable Skin Irritant Poiso. Deliverable Requested: I, II, III, IV, Other (specify)	л В — Опкпо	wn Re	Radiological		+	Spec		nstruc			Requ	uire.	<i>™Di</i> r men	spos ts:	sal By	Lab	······	_	⊸' Aı	rchiv	e For	Months	
Empty Kit Relinquished by:		Date:			Time					-			—		Metho	of al S	hiome	ent:		_		······	
Relinquished by:	Date/Time:		7	Company			eceiv	ved by:			—			Ł			Dale/T	Tarrae.		—		Company	
or aller / lelleller	5/9/17 Date/Time:	1320	A-C1 Company	—	R	eceive						—			-	S/ Date/T	/	17		1400	TASE A		
Relinquished by.	Date/Time:	Company		R	eceive	ved by:	·								Date/Ti		-			Сотрапу			
Custody Seals Intact: Custody Seal No.:														<u> </u>			, , , , , , , , , , , , , , , , , , ,	111.44.				Curpany	
Δ Yes Δ No				Page 233	3 o	Cooler Temperature(s) °C and Other Remarks: 3 of 241										7/6	5/201						

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

Phone (253) 922-2310 Fax (253) 922-5047 Sampler Carner Tracking No(s): Client Information Walker, Elaine M 580-24314-8019.5 Client Contact: Kathryn Cleveland elaine.walker@testamericainc.com Page 5 of 13 Antna Engineering Services LLC Analysis Requested Due Date Requested: Preservation Codes: 19540 International Blvd. Suite 201 TAT Requested (days): B - NaOH N - None Seatac C - Zn Acetate O - AsNaO2 State, Zip. D - Nitric Add P - Na2O4S WA, 98168 E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2\$203 Phone: G - Amehior \$ - H2SO4 Purchase Order Requested 8280C_LL - Voistlies, standard list AK H - Ascorbic Acid T - TSP Dodecahydrate Email: U - Acetone 8250C - Volatiles, standard list AK J - Ide J - DI Wa K - EDTA L - EDA Other: kcleveland@ahtna.net J - DI Water V - MCAA 8270D_S!M · PAHs, standard list 71964 - Hexavalent Chromium W - pH 4-5 Project Name: K - EDTA Project # AK102_103 - DRO/RRO with 8260C - Low Level Volatiles Z - other (specify) Little Port Walter AK 58011097 SOW# 6020A - (As,Cr,Cu) 7471A - Mercury Matrix Sample {W=watter, Type 5+solid, Sample (C≠comp, Sample Identification Sample Date Time G=grab) B7-Theus, A-A Special Instructions/Note: Preservation Code: LIWIT-BROD-WH-UZED TOC analysis

Load (16) analysis 5/7/17 Solid 2010 LAWIT-12 -WERL-01(05) 5/8/17 Solid 0905 LAWIZ-SL-WENL-DID (OS) Solid 0905 LAW17-Sh-Wark-02 (0.5) Solid 0708 11 UWIZ - SL - Weirl - 03 (0,5) 0415 Solid PARSICI ANALYSIS LAW17-51 - WENT - D4(0.5) Satid 0918 LPWIZ -SL -WEIGT -OI (0.5) Solid Run 7196A if Co hith 0911 LAWIT - 56 - WEITT -02 (ast) Solid 09 70 LPWIZ-SL- WEIT-03 (0.5) Solid 0922 4W17-SL-WENT -OZDLOS) Solid X 0922 UW 17 - SL - WENT - 04 (0.5) 09 26 Possible Hazard Identification

→ Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological

Defiverable Requested. I, II, III, IV, Other (specify) Run 7196A if Co Lit Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month Return To Client Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment Date/Time: 3/4//7 Relinguished by:

Melinguished by:

Melinguished by: Company Company THSE大 1320 Aci 1460 Relinquished by: Company Received by: Page 234 of 241 Custody Seals Intact: Custody Seal No.: 7/6/201 A Yes A No

2

3

5

8

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

Phone (253) 922-2310 Fax (253) 922-5047 Sampler: arrier Tracking No(s); Client Information Walker, Elaine M. 580-24314-8019.7 Client Contact Phone: E-Mail. ₽age. Kathryn Claveland elaine.waiker@testamericainc.com Page 7 of 13 Company: Ahtna Engineering Services LLC Analysis Requested Due Date Requested: Preservation Codes: 19540 International Blvd. Suite 201 A - HCL M - Hexane TAT Requested (days): B - NaOH N - None Seatac C - Zn Acetate O - AsNaO2 State, Zip: D - Nanc Acid P - Na2O4S WA. 98188 E - NaMSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 Phone: G - Amohlor S - H2SO4 Purchase Order Requested 8280C_LL - Volatiles, standard Est AK T - TSP Codecahydrate H - Ascorbic Acid Field Filtered Sample (Yes or No.

Perform MS/MSD (Yes or No)

The description of the control of U - Acetone 8280C - Volatiles, standard list AK 62700_SRR - PAHs, standard list AR102_103 - DRORRO with and w Total Number of containers kcleveland@ahtna.net J - DI Water V - MCAA Project Name. K-EDTA W - pH 4-5 8280C - Low Level Volatiles L - EDA ittle Port Walter AK 2 - other (specify) 58011097 Other: 7196A - Hex Chrom 7186A - Hexavatent 6020A - (As.Cr,Cu) 7471A - Mercury Matrix 6020A - As,Cr 8260C, AK101 Sample (W-4014) Type S=solid, Sample (С≕солир, Sample Identification Sample Date Time G=grab) | 87+Tusue, A-A Special Instructions/Note: Preservation Code. N N N 10, A3, C --LAWI7-SL-PASL-OL (O.S) 5/8/17 Solid 0945 4W17-SL-PAST-01 (0.5) Solid 0938 Run 71964 if Cr hil LAWIT-SL-PAST-02 (0,5) Solid 0942 LAWIT-SL PAST-03 (0.5) 1002 Solid × ŧ/ LAW 17-SL- PAST-BKAD (05) Solid 0956 1 [X LAWIZ-SL-FBT-01 (as) Solid 1016 11 LPW17-SL-FBT-02(0.5) Solid 1019 х t ¿ 4W17-5L-MBT-01 10,5) Solid 024 N.E. LAW 17-56-MBT-02 (0.5) × Solid 1031 ٦, LAW 17-56- PACT- 01 (0.5) × Solid ١, 1039 LfW17-3L-PACT-01D (0:5 1034

Possible Hazard Identification
Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological

Deliverable Requested: I, II, III, IV, Other (specify) Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment: Сопрапу Date/Time: Company T/4-515/f Clercle 1 5/9/17 1320 AE1 14110 Relinquished by: Relinquished by: Company Received by: Date/Time: Company Page 235 of 24 Temperature(s) °C and Other Remarks: Custody Seals Intact: Custody Seal No.: 7/6/201 ∆ Yes ∆ No

2

3

5

8

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

Phone (253) 922-2310 Fax (253) 922-5047 Carrier Tracking No(s): Client Information Walker, Efaine M. 580-24314-8019.9 Client Contact: Phone: E-Mail Kathryn Cleveland elaine.walker@testamericainc.com Page 9 of 13 Company: Ahtna Engineering Services LLC Analysis Requested Due Date Requested: Preservation Codes: 19540 International Blvd. Suite 201 M - Hexane Olty: TAT Requested (days): B - NaOH N - None Seatac C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S WA, 98188 E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 Phone: G - Amehior 5 - H2SQ4 Purchase Order Requested 8260C_LL - Volatiles, standard list AK H - Ascorbic Acid T - TSP Dodecahydrate U - Acetone 5280C - Volatiles, standard list AK kcleveland@ahtna.net J - Of Water V - MCAA 82700_SIM - PAHs, standard list 7196A - Hexavaleni Chromeum W-pH4-5 Project Name: K - EOTA AK 102_103 - DROJERO with 8260C - Low Level Volatiles Z - other (specify) ittle Port Walter AK 58011097 Other: Matrix Sample (WHEREE. Type S=settd, Sample (C≃comp. Sample Identification Sample Date Time G=grab) STOTISSUE, APAI Special Instructions/Note: Preservation Code: NNNNDA LAWI7-SL-PACT-02(0,5) 1044 5/8/17 X Run 7486A If Chit LAWI7-SK-CCBT-01 (05) Solid У 1055 X LAND-SL-CCBT -0265) Run 7196A if G hit Solid 1100 LANIT -SI - CEL - 01 (0.5) Lead (fb) analysis Solid 1108 LAWIT-56- CCT -02 (0.5) Solid Run 7196A if Grait 1110 LAW17-SL- CCT-02(65) 1140 Solid LAW17-SL- CCT-07 (0.5) X Solid Roy 7196A if Cr hit Land Asylver and years 1145 LAW17-SL-GSL-01 (05) Solid 1203 LAW17-51-656-02 (0.5) 1206 Solid LAWIT-SL-INT-OF (0.5) Solid Run 7191A if Co hit 1212 UW17-SL-INT-02 (0.5) Solid Kun 7196A if G hit 1216 Possible Hazard Identification

Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological

Deliverable Requested: I, II, III, IV, Other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Leb Archive For Month Return To Client Archive For Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment. Relinguished by Resignation Resignation Detertime: Company Company TA--5Eル 5/4/17 1320 1400 AGA Relinquished by Date/Time: Company Received by: Date/Time. Page 236 of 241 Custody Seals Intact: Custody Seal No.: 7/6/201 A Yes A No

2

3

5

[

5755 8th Street East Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

Chain of Custody Record

THE LEADER IN COMMUNICATION OF THE PROPERTY.

Phone (253) 922-2310 Pax (253) 922-5047																				THE LEMMEN OF E		iesiaid.	
Client Information	Sampler:				ab PM. Va lkei		ine M						Cami	er Tra	cking) No(s):			COC No. 580-24314-8019,11			
Clent Contact: Kathryn Cleveland	Phone:				Mail. elaine.	waike	er@tes	tameri	icaino	c.com										Page: Page 11 of 13			
Company: Ahtna Engineering Services LLC						*******			A	naly	sis	Rea	ues	ted						Job #.			
Address: 19540 International Blvd. Suite 201	Due Date Reques	ited:			Ų.				<u> </u>	T									250	Preservation Co	des:	*****	
City: Seatac	TAT Requested (days):	······································		 													⊾		A - HCL B - NaOH	M - Hexane N - None		
State, Zip: A/A, 98188								İ										Keanny		C - Zn Acetale D - Nifric Acid	O - AsNaO2 P - Na2O4S		
thone:	PO#:									l l								# SGC/e		E - NaHSQ4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3 S - H2SO4		
Email:	Purchase Orde WO#	er Requested		\$						ĺ			Ž	Ų			With or		H - Ascorbic Acid	T - TSP Dodecat U - Acetone	hydrate		
kcleveiand@ahina net Pojeci Name:	Project#				_ \$	2				•		E		ard II	let Al		ğ.	with and	2	J - Di Water K - EDTA	V - MCAA W - pH 4-5		
ittle Port Walter AK	58011097			···	 	Me en		le ti				homi		ata pe ata	day		standard Hat	- F	containers	L-EDA	Z - other (specify	y)	
SIE.	SSOW#.				Samp	203	2	1 8	Ŕ	ş		eur Cl	i	lies,	s, star		H3, 8t	ORR	oj jo	Other:			
Sample Identification	Sample Date	Sample Time		(W-water S-solid, O-wasteloi BT-Tissue, Ar	Field Filte		8250C, AK101 8270D SW AK102 103		6920A - (As,Cr,Cu)	7196A - Hex Chrom	7471A - Mercury		*******	7	8260C - Volatiles, standard list AK	8260C, AK101	8270D_SM. PAHs,	AK102_103 - DRO/RRO	Total Mumber	Special In	structions/Not	te:	
1017-51 10-51	5/8/17	7/9/17 1218 G					F N	J	1	N)	N A	N	D 🖟	A .	J aire	A	N	A	Х	.0			
ifwi7-54-WAT-01 (0.5)	3/8/14	1218	<u> </u>	Solid	+	╂┤		+-	X		\dashv	_						<u> </u>		Run 71961			
19W17-31-WAT-02 (0.5)		1220						┿	Х	┝╼┿		\dashv	\dashv						- 1805 1805	Run 7196 A	it Co A.	}	
LANI7-51-WSL-01 (US)	 	1232		Solid	-			+					_	4	_					Lead (It)	may 51) 7°	, Pec	
UW17-52-WS1-02 (05)	 	1242		Solid			_				_		-	4	4					Thi Asy Co		ــــــــــــــــــــــــــــــــــــــ	
LAW17-5L-WSL- 03 (0.5)		1245		Solid				lacksquare			_		4	_						Lood (ft)	प्रमद्भार ।	, KC	
LRU17-SL-WHBT-01 (0.5)		1250		Solid	Щ	<u> </u>	_	$oxed{igspace}$	X		_	_	_	_	_ ļ					Run 7/96/	1 15 C L	<u>#</u>	
AW17-SL-WH6T-02 (05)		1253		Solid	Щ				X		╧				\Box						ų		
LAWI7-SI-WHOT-01(05)		1300		Solid	Щ	Ш			X											1	I		
LAW17-SL-WHDT-02 (O15)		1304		Solid	Ш	Ш		<u> </u>	X]				ı	ı		
-fW17-SK-WHOT-020 (0.5)		1304		Solid				R	X											Run 7196A	if G hil	,	
CPW17 -SL - WHL -01 (0.5)	ļ	1312	ļ	Solid																R	1. 470 YS	isuc	
ossible Hazard Identification Non-Hazard Flammable Skin Irritant Poiso	n B Unkn	, D	adiological			\$a <i>m</i> ,		pose n To (ay b	e as: Si _{Dis}	sess	ed if	san	nple	s are	\neg	aine	d longer than 1	month)		
eliverable Requested: I, II, III, IV, Other (specify)	, O OMAIN		Spec	tal Inst	-			uirer	nents) 3:	ır sy	LaD			A	reniy	e For	Months					
mpty Kit Relinquished by:		Tin	ne:							N	elhod	of S	hipme	ent									
Lather Clevelant	0ate/Time. 5/4/17	<u> </u>	R	eceived	Dy:	_			: 1.	100	,		Ďále/í	ime			1115	Company T#-515/f					
alinquished by	Date/Time.	AC Company	:/	R	ecewed	by:				1 2	, O W		- [Date/1	/ (C	//		1400	Company				
elinquished by:	Date/Time:	Company		R	eceived	by:							-	Date/1	ime				Сотралу				
Custody Seals Intact: Custody Seal No.:			C	ooler Te	mperali	ine(s)	°C and	Other	Rema	arks:					••••••								
Δ Yes Δ No				Page 2	237 (7 of 241										7/6	6/2017						

2

4

<u>TestAmerica</u>

Chain of Custody Record

TestAmerica Seattle

5755 8th Street East

coma, WA 98424 ione (253) 922-2310 Fax (253) 922-5047																					THE LEADER IN ENVERONMENTAL TESTING				
Client Information	Sampler:			·		Lab PM Walke		aine l	M					Ce	mier Tr	racking	No(s):	:			COC No: 580-24314-8019.1	13			
Client Contact: Kathryn Cleveland	Phone:					E-Mail: elaine	wali	ഷന്തി	testa	oinem	ainc	com		_							Page: Page 13 of 13				
Company. Ahtna Engineering Services LLC						Cicinic	47 2017	101 (05)	1200	ire i		nalys	is R	eoue	eter						Job#				
Address:	Due Date	Request	ed:					1	-			1	Ť		T	Ť			<u> </u>	/Aj. :	Preservation Codes:				
19540 International Blvd. Suite 201 City:	TAT Requ	ested fd	aval:																			M - Hexane			
Seatac			-,0,.			- 1							1						효		C - Zn Acetate	N - None O - AsNeO2			
State, 23p: WA, 98188																			SGCleanup		E - NaHSO4	P - Na2O4S Q - Na2SO3	ļ		
Phone:	PO#. Purchase	e Order	Requested											¥				without S		G - Amohior	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate				
Email: kdeveland@ahtna.net	WQ#:					ON 10			ĺ			1.	_	H	I A		ţ <u>.</u>	nd will		t - fice J - Dł Water	U - Acetone V - MCAA				
Project Name:	Project #:														1	÷		Pre	ith a	ise		W - pH 4-5 Z - other (specify)			
Little Port Walter AK Sita:	5801109 SSOW#								5	Votatí	_	١	1		es, sta	stends		, standard list	RRO w		Other:	,,			
	Sample Type Sample (C=comp,				(Wewst	ier, 2	Perform MSHNSD (788 or Ho	8260C, AK101	8270D_SIM, AK102_103	8280C - Low Level Volatiles	6020A - (As,Cr,Cu)	7196A - Hex Chrom	747 EA - INSPEDITY	6020A - As,Cr	8280C_LL - Volutiles, standard list AK	8260C - Votables, standard list AK	8260C, AK101	8270D_SIM - PAHS	AK102_103 - DRO/RRD with and	Total Number of					
Sample Identification	Sample	Sample Date Time G=grab)						828).Z8	828C	8020	196	, 1,	6020	828	8260	8280	8270	AK1	इ	Special Inst	tructions/Note:	1		
		vation Cod	ie.	$ abla\!$	F	N.	J.	N.	N N	N	D	A	J	A	N	A	\boxtimes								
LAWIT-SL-WHL-02 (0.5)	5/8/	17	1314	<u>ز</u>	Solid	đ	L						1			<u> </u>					Land (1)	analysis			
LAWA-SL-WHL-03(0.5)			1316		Solid	1	╙						丄	\perp	<u> </u>	<u> </u>				X	\$1				
LAW 17-51-WHL-030 (05)			1316		Solid	1	L	Ĺ							<u> </u>						<u> </u>		╛		
Llw17-56-WHL-04 (0:5)			1318		Solle	1	L				\Box									ű.	To As Gr				
4PW17-56-45P-W-01			1540		Solid	1	X	Ŷ	X									X	X		LLVIX - Frey 7	e = 18 / 5/9	٥		
LPWIZ-SI-GSF-LECKOI			1555		Solid	,	L	V.						<u> </u>				\times	X		j1				
LfW17-5L-GSF-LOKOZ			162016	05	Solid	1	L											X	\times		ł i]		
LPW17-56-GSP-lease 03			1620	. ↓.	Solid	1												X	X		11				
LPW17-LBF-WH-01	5/9/1	(}	0930		Solid																Paint CWI	lead analysis			
LPW17 - LBF - WH -02		.	c935		Solid	<u> </u>	<u> </u>								_								╝		
LIWIT-LEP-WH-03	لما		0940	حاد	Solid	1									<u></u>				[li				
Possible Hazard Identification		 1	l1				Sar	nple	Disp	osal	(A 1	ee ma	y be	asse.	ssed	lf sa	mples	are	reta	inec	d longer than 1 m	onth)	٦		
Non-Hazerd Flammable Skin Irritant Poiso Deliverable Requested: I, II, III, IV, Other (specify)	n B	Unkno	wn R	adiologica	el .		Spe	Recial I	eturn Instru	To C	lient stOC	Requ	رېمز irema	Dispo	sal B	y Lai	<u> </u>		Ar	chiv	e For	Months	\dashv		
Empty Kit Relinquished by:			Date:]⊤i	me:								Math	od of 3	Shipmei	ot					4			
Retinquisted by	Date/Time:		Date.	Company	1''	IIHE.	8ecei	ved by	ď							. '				17	,012/3/aux	4			
Reinquished by	5/4/ Date/Time:	17	Company	9		ســــــــــــــــــــــــــــــــــــ		7	4						Date/∏ S / : Date/∏i	61	17			ompany TA-SEA	4				
				Received by.						~~~~	<u></u>								ompany						
	Date/Time:		Company			Recei	,								Date/Ti	inne:				ompany					
Custody Seals Intact: Custody Seal No.: A Yes A No	·				Page	238 of 241 Conject Temperature(s) °C and Other Remarks.														7/6/20	17				

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

Phone (253) 922-2310 Fax (253) 922-5047 Sampler Camer Tracking No(s): Client Information Walker, Elaine M 580-24314-8019,15 Client Contact: Phone E-Mail Kathryn Cleveland elaine.walker@testamericainc.com Page 15 of 13 Соптралу: Ahtna Engineering Services LLC **Analysis Requested** Due Date Requested: Preservation Codes: 19540 International Blvd. Suite 201 TAT Requested (days): B - NaOH N - None without SGCleanup Seatac C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S E - NaHSÖ4 Q - Na2503 WA, 98188 F - MeOH R - Na2S2O3 Phone G - Amchlar S - H2SO4 Purchase Order Requested 8280C_LL - Volatikes, standard Hst AK H - Ascerbic Acid T - TSP Dodecahydrate U - Acetone AK102_103 - DRO/RRO with and V - MCAA kcleveland@ahtna.net 747fA - Mescury 7196A - Hexavalení Chrostium 8270D_SAM - PANS, standard #st K-EDTA W - pH 4-5 Project Name: Toxact # 8259C - Low Level Volatiles L-EDA Z - other (specify) Little Port Walter AK 58011097 8270D_SIM, AK102_103 Other: 7196A - Hex Chrom 6028A - (As,Cr,Cu) 8260C, AK101 6020A - AS, Cr 8260C, AK101 Matrix Sample W=water, Туре S#salid, C=wasteloit, Sample (C≊comp, Sample Date Time G≕grab) | menssue, A≠Air Sample Identification Special Instructions/Note: Preservation Code: N N D N LPWIT-LBF-WH-04 0945 Solid 5/9/17 Paint Chie lead analysis LPWIZ -LBP - WH-05 5/9/17 0950 Solid LPW17-LBP-WEIYDY 5/6/17 Solid 1835 Solid Solid Solid Solid Solid Solid Solid Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month Archive For Return To Client Months Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Method of Shipment Lethya Clevelan Company Company 下昇うE州 5/9/17 Date/Time: 1320 AGI 1400 Relinquished by: Сопрапу Received by: Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) °C and Other Remarks Page 239 of **2**41 7/6/201 a Yes A No

SOUTH CONTRACT OF THE PARTY OF

and desire desired and

Anni adda a titi.

12

;

TB A L Cooler Cor 1.0" Unc i. L.
Cooler Dsc Ly Sheeky a Lab
Wet/Packs Packing Rubh s

57/12

TB HT Cooler Cor 0.5 Unc 0.7 Cooler Dsc 1. Electrical and Cooler Dsc 1. Electrical and Collection Wet/Packs Packing Stablic

50/

TB #2 Cooler Cor0.5 Unc0.7 Cooler Dscl.4 Stueper Black
Wet/Packs Packing Subble

Page 240 of 241

Login Sample Receipt Checklist

Client: Ahtna Engineering Services LLC Job Number: 580-68287-1

Login Number: 68287 List Source: TestAmerica Seattle

List Number: 1

Creator: Bean, Dennis L

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

3

Λ

6

9

10

(This Page Intentionally Left Blank)

May 18, 2017

Bernie Wong Ahtna Engineering Services, LLC 19540 International Blvd. Suite 201 Seatac, WA 98188 L A B S

INDUSTRIAL
H Y G I E N E
S E R V I C E S

Laboratory | Management | Training

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1708569.00

Client Project: 05150.01

Location: Little Port Walter, AK

Dear Mr. Wong,

Enclosed please find test results for the 11 sample(s) submitted to our laboratory for analysis on 5/12/2017.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

Lab Code: 102063-0

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Ahtna Engineering Services, LLC

Address: 19540 International Blvd. Suite 201

Seatac, WA 98188

Batch #: 1708569.00

Client Project #: 05150.01 Date Received: 5/12/2017

Samples Received: 11

Samples Analyzed: 11

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Attention: Mr. Bernie Wong
Project Location: Little Port Walter, AK

Lab ID: 17046279 Client Sample #: LPW17-AS-WH-01

Location: Little Port Walter, AK

Layer 1 of 1 Description: Brown rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder None Detected ND None Detected ND

Lab ID: 17046280 Client Sample #: LPW17-AS-WH-02

Location: Little Port Walter, AK

Layer 1 of 1 Description: White rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder None Detected ND None Detected ND

Lab ID: 17046281 Client Sample #: LPW17-AS-WH-03

Location: Little Port Walter, AK

Layer 1 of 2 Description: Black rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder None Detected ND

Layer 2 of 2 Description: Brown soft mastic with fibrous mesh

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Mastic/Binder Synthetic fibers 5% None Detected ND

Cellulose 3%

Lab ID: 17046282 Client Sample #: LPW17-AS-WH-04

Location: Little Port Walter, AK

Layer 1 of 1 Description: Gray fibrous material with paint

Binder/Filler, Paint, Perlite Cellulose 56% None Detected ND

Sampled by: Client

Analyzed by: Lori Tseng

Date: 05/18/2017

Reviewed by: Nick Ly

Date: 05/18/2017

Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Ahtna Engineering Services, LLC Address: 19540 International Blvd. Suite 201

Seatac, WA 98188

Batch #: 1708569.00 Client Project #: 05150.01

Date Received: 5/12/2017

Samples Received: 11
Samples Analyzed: 11

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Mr. Bernie Wong
Project Location: Little Port Walter, AK

Glass fibers 5%

Lab ID: 17046283 Client Sample #: LPW17-AS-WH-05

Location: Little Port Walter, AK

Layer 1 of 1 Description: White chalky material with paper

....

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Gypsum/Binder, Mica

ous Materials:% Asbestos Type: %

None Detected ND

None Detected ND

Glass fibers 5%

Cellulose 25%

Lab ID: 17046284 Client Sample #: LPW17-AS-WH-06

Location: Little Port Walter, AK

Layer 1 of 3 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous particles, Paint, Binder/Filler Cellulose 2% None Detected ND

Layer 2 of 3 Description: White compacted powdery material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous particles, Binder/Filler Cellulose 23%

Layer 3 of 3 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Gypsum/Binder, Mica Cellulose 24% None Detected ND

Glass fibers 4%

Lab ID: 17046285 Client Sample #: LPW17-AS-WH-07

Location: Little Port Walter, AK

Layer 1 of 1 Description: White chalky material with paper and paint

Binder/Filler, Gypsum/Binder, Paint Cellulose 23% None Detected ND

Sampled by: Client

Analyzed by: Lori Tseng

Date: 05/18/2017

Reviewed by: Nick Ly

Date: 05/18/2017

7 Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Ahtna Engineering Services, LLC Address: 19540 International Blvd. Suite 201

Seatac, WA 98188

Batch #: 1708569.00

Client Project #: 05150.01 Date Received: 5/12/2017

> Samples Received: 11 Samples Analyzed: 11

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Mr. Bernie Wong Project Location: Little Port Walter, AK

> 4% Wood fibers Wood flakes

Client Sample #: LPW17-AS-WH-08 Lab ID: 17046286

Location: Little Port Walter, AK

Layer 1 of 1 **Description:** White chalky material

> Non-Fibrous Materials: Other Fibrous Materials:%

Cellulose 10% Gypsum/Binder, Binder/Filler

Asbestos Type: % None Detected ND

None Detected ND

Asbestos Type: %

None Detected ND

Glass fibers 9%

Lab ID: 17046287 Client Sample #: LPW17-AS-WH-09

Location: Little Port Walter, AK

Layer 1 of 2 Description: Gray sheet vinyl with multi-colored dotted pattern

> Asbestos Type: % Other Fibrous Materials:% Non-Fibrous Materials:

None Detected Vinyl/Binder, Binder/Filler ND

Layer 2 of 2 **Description:** Gray fibrous backing with mastic

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Cellulose 65% Binder/Filler, Mastic/Binder

> Synthetic fibers 4%

Lab ID: 17046288 Client Sample #: LPW17-AS-WH-10

Location: Little Port Walter, AK

Layer 1 of 2 **Description:** Orange/brown sheet vinyl

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Vinvl/Binder, Binder/Filler None Detected ND

Description: Gray fibrous backing with mastic and debris Layer 2 of 2

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Mastic/Binder, Wood flakes Cellulose 61%

Sampled by: Client

Analyzed by: Lori Tseng Date: 05/18/2017

Reviewed by: Nick Ly Date: 05/18/2017 Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

NVL Laboratories, Inc.

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Attention: Mr. Bernie Wong

Project Location: Little Port Walter, AK

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Ahtna Engineering Services, LLC Address: 19540 International Blvd. Suite 201

Seatac, WA 98188

Batch #: 1708569.00

Client Project #: 05150.01 Date Received: 5/12/2017

Samples Received: 11

Samples Analyzed: 11 Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Synthetic fibers 5%

Wood fibers 3%

Lab ID: 17046289 Client Sample #: LPW17-AS-Weir-01

Location: Little Port Walter, AK

Layer 1 of 1 Description: Gray putty material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Paint, Binder/Filler Cellulose 2% None Detected ND

Sampled by: Client

Analyzed by: Lori Tseng

Reviewed by: Nick Ly

Date: 05/18/2017

Date: 05/18/2017

Antino)

Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

N

470

p 20

Company Ahtna Engineering Services, LLC

VL Laboratories, Inc.	ASBESTOS LABORATORY SERVICES	NVID.
8 Aurora Ave N, Seattle, WA 98103		Th.
06.547.0100 f 206.634.1936 v	www.nvllabs.com	L A B S

NVL Batch Number

1708569.00

Projec		,	. Suite 201	Rush TAT		
i iojo	•	(206) 299-0601				
//				_		
Proj	ect Name/N	lumber: 05150.01	Project Lo	ocation: Little Port Walter, AK		
Subca	ategory PL	M Bulk				
Ite	m Code AS	B-02 EPA 6	300/R-93-116 Asb	estos by PLM <bulk></bulk>		
То	tal Numb	er of Samples11			Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	17046279	LPW17-AS-WH-01				Α
2	17046280	LPW17-AS-WH-02				Α
3	17046281	LPW17-AS-WH-03				Α
4	17046282	LPW17-AS-WH-04				Α
5	17046283	LPW17-AS-WH-05				Α
6	17046284	LPW17-AS-WH-06				Α
7	17046285	LPW17-AS-WH-07				Α
8	17046286	LPW17-AS-WH-08				Α
9	17046287	LPW17-AS-WH-09				Α
10	17046288	LPW17-AS-WH-10				Α
11	17046289	LPW17-AS-Weir-01				Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Mohammed Jamal		NVL	5/12/17	1140
Analyzed by	Lori Tseng		NVL	5/18/17	
Results Called by					
Faxed Emailed					
Special		1	·		

Date: 5/12/2017 Time: 3:23 PM

Entered By: Mohammed Jamal

NVL Laboratories, Inc.

4708 Aurora Ave N, Seattle, WA 98103

Tel: 206.547.0100 Emerg.Cell: 206.914.4646

CHAIN of CUSTODY SAMPLE LOG

1708569

Fax: 206.634.1936 1.888.NVL.LABS (685.5227) NVL Batch Number Client Ahtna Engineering Services, LLC 05/50.01 Street 19540 International Blvd. Suite 201 Client Job Number ... Seatac, WA 98188 н **Total Samples** ☐ 1 Hr 6 Hrs 3 Days 10 Days Turn Around Time ☐ 2 Hrs ☐ 1 Day 4 Days Project Manager Mr. Bernie Wong ☐ 4 Hrs ☐ 2 Days ☑ 5 Days **Project Location** Please call for TAT less than 24 Hrs Little Port Walter, AK Email address bwong@ahtna.net Cell (425) 864-1695 Phone: (206) 299-0601 Fax: Asbestos Air PCM (NIOSH 7400) TEM (NIOSH 7402) TEM (AHERA) TEM (EPA Level II) □ Asbestos Bulk 🗹 PLM (EPA/600/R-93/116) □ PLM (EPA Point Count) □ PLM (EPA Gravimetry) □ TEM BULK ☐ Mold/Fungus Mold Air Mold Bulk Rotometer Calibration Other Metals Matrix **RCRA Metals** ☐ All 8 **METALS** Det. Limit ☐ All 3 ☐ FAA (ppm) ☐ Air Filter ☐ Paint Chips in % ☐ Total Metals Arsenic (As) Lead (Pb) Copper (Cu) ICP (ppm) Drinking water Paint Chips in cm Rarium (Ba) TCLP Mercury (Hg) GFAA (ppl Dust/wipe (Area) Waste Water ☐ Nickel (Ni) ☐ Cadmium (Cd) ☐ Selenium (Se) ☐ Cr 6 Zinc (Zn) Soil ☐ Other ☐ Chromium (Cr) ☐ Silver (Ag) Other Types ☐ Fiberglass ☐ Nuisance Dust Other (Specify) of Analysis ☐ Silica Respirable Dust Condition of Package: ☐ Good ☐ Damaged (no spillage) ☐ Severe damage (spillage) A/R Seq.# Client Sample Number Comments (e.g Sample are, Sample Volume, etc) LPWH -AS-WH-OI 1 LPW17-AS-WH-02 2 3 LPW17 - AS- WH-03 4 LPW17 - AS-WH-04 5 LPWIT-AS-WH-OS SINTA LAW17-AS-WH-06 6 7 LPWIT-AS-WH-07 8 LAWIZ-AS-WH-OB LAW17 - AS-WH-09 9 10 LAW17 - AS-WH-10 11 LAWIT-AS-INDEY-DI 12 13 14 15 Company Date Time Sign Below **Print Below** (Pevels.1 Ahma 5/9/17 Sampled by r Muela Aletra 5/12/13 1140 Relinguished by NVL 5/12/17/11:40 Received by Analyzed by Results Called by Results Faxed by Special Instructions: Unless requested in writing, all samples will be disposed of two (2) weeks after analysis.

(This Page Intentionally Left Blank)

APPENDIX D

DATA QUALITY REVIEW AND ADEC CHECKLISTS

DATA QUALITY REVIEW

Date: June 22, 2017

Project: NOAA Little Port Walter Laboratory: TestAmerica Tacoma Work Orders: 580-68287 (TestAmerica)

1708569 (NVL)

Analysis: Polycyclic Aromatic Hydrocarbons (PAH) by United States Environmental

Protection Agency (EPA) Method 8270D;

Volatile Organic Compounds (VOC) by EPA Method 8260; Gasoline Range Organics (GRO) by EPA Method AK101;

Diesel and Residual Range Organics (DRO/RRO) by Method AK 102/103;

Metals (As, Cr, Cu) by EPA Method 6020; Bulk Asbestos by Polarized Light Microscopy.

Reviewer Name: Emily Freitas, Ahtna Reviewer Title: Project Chemist

INTRODUCTION

Table 1 lists the laboratory sample delivery group number, number of samples submitted and identifies quality control (QC) samples.

TABLE 1: FIELD SAMPLE PLAN OVERVIEW

Lab Sample Delivery Group	Number of Submitted Samples	Quality Control
580-68287	82	8 duplicates, 1 trip blank
1708569	11	NA

DATA QUALIFIER DEFINITIONS

For the purpose of this Data Quality Review (DQR) the following code letters and associated definitions are provided for use by the project chemist to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- Q The associated numerical value is an estimated quantity because QC criteria were not met, may be biased high (QH) or low (QL).
- UJ The reported quantitation limit is estimated because QC criteria were not met and the element or compound was not detected.

DATA REVIEW

This DQR includes a review, where appropriate, of the following parameters:

- Data completeness
- Chain of Custody (COC) and Cooler Receipt Forms
- Holding times and preservation
- Analytical reporting limits (limits of quantitation [LOQ] and method detection limits [DL])
- Blank analysis results
- Surrogate recoveries (organics only)
- Field duplicates
- Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) results
- Matrix spike (MS) and matrix spike duplicate (MSD) results

Each analysis that was performed is evaluated in the following subsections of this report, and only the criteria exceedances that impact data qualification or require assessment beyond laboratory documentation are discussed.

Validation was conducted in accordance with the USEPA document "Test Methods for Evaluating Solid Wastes, SW-846, revision 6" (February, 2007 and updates), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic (August, 2014) and Organic (August, 2014) Review, where and when applicable.

Sample Receipt Conditions

Samples were submitted to TestAmerica in Tacoma, Washington and NVL laboratories, Inc. in Seattle, Washington. Eighty two soil samples, including one trip blank, were submitted in four coolers under an intact custody seals to Test America. Low level VOC analyses were subcontracted from TestAmerica to Analytical Resources Incorporated. Data was reported in sample delivery group (SDG) 580-68287. Eight asbestos samples were submitted in one cooler to NVL Laboratories. Data was reported under batch number 1708569.

All samples were received with proper preservation and in good condition, within the Alaska Department of Environmental Conservation (ADEC) temperature preservation requirements (< 6°C).

There were sample name discrepancies noted upon receipt in SDG 580-68287. Samples were logged in per the CoC. Additionally, standard level VOC analyses were canceled due to sample handling errors. Low level VOC results were available so data quality is not impacted.

Holding Times and Preservatives

Preservation criteria were met. All holding times were met however, one sample, LPW17-SL-GSP-Leak01, in SDG 580-68287, required reanalysis due to failed quality control criteria. This re-

analyses occurred outside of the hold time therefore, the results are qualified "H" and should be estimated, biased low.

PRECISION

Field Duplicates

Eight duplicate sets were submitted for analysis which meets the 10% duplicate rate required by the project. RPDs were calculated using the following equation for the primary and duplicate field samples when both analytes were detected above the Reporting Limit (RL). All RPDs were within the 50 percent RPD recommendation for soil.

No results were qualified due to duplicate precision.

Laboratory Control Samples/Duplicates and Matrix Spike/Duplicates

RPDs were within control limits, with the following exceptions:

SDG 580-68287

- The RPD calculated for RRO between the MS and MSD in analytical batch 580-246593 was outside control limits.
- The RPD for bromomethane, chloroethane, trichlorofluoromethane, acrolein, bromomethane, acetone, trans-1,4-dichloro-2-butene, and dichlorodifluoromethane in the ICV standards were above the control limits.

No qualifications were made since additional quality control criteria were available and within recommended limits.

ACCURACY

Laboratory Control Samples/Duplicates, Matrix Spike/Matrix Spike Duplicates, and Internal Standards

%R were within control limits with the exceptions listed below:

SDG 580-68287

- The %R for Lead and Chromium was outside control limits for the MS, MSD, or laboratory dulices in batches 580-246576 and 580-24300.
- The %R for various PAH analytes was outside control limits for the MS and MSD in analytical batches 580-247152 and 580-246475.
- The %R for bromomethane was outside control limits for the LCS/LCSD

• The %R for various 2-Butanone was outside control limits for the LCS in analytical batch 580-246075.

No qualifications were made since additional quality control criteria were available and within recommended limits.

Surrogate Percent Recoveries

All surrogate percent recoveries were within quality control criteria with the following exceptions:

SDG 580-68287

- AK102/103 surrogate o-Terphenyl was slightly below quality control limits for sample LPW17-SL-WHP-01(2) and sample LPW17-SL-WHP-01D(2).
- An 8270D surrogate was slightly outside of quality control limits for sample LPW17-SL-HMP-01(2), sample LPW17-SL-GSP-Leak01, and associated MSD.
- An 8260 surrogate, d4-1,2-dichloroethane was outside quality control limits for sample LPW17-SL-GSP-03(1.5).

No qualifications were made since additional surrogates were available to verify laboratory methods.

REPRESENTATIVENESS

All samples were collected in accordance with the work plan. Samples collected are considered representative of conditions and meet data quality objectives discussed in the work plan.

COMPARABILITY

Three laboratories and two SDGs were produced for this project. The results, methods, procedures, quantitation units, and format of the work order are comparable in quality and data validity to all applicable regulations.

COMPLETENESS

All data necessary to complete a level II data validation on this SDG was provided. No data were rejected, so 100% of the results are usable. This exceeds the 85% minimum project completeness goal.

SENSITIVITY

All results were evaluated to the RL. No qualifications were made based on RLs.

Trip Blanks

One trip blank was submitted for this project. All results were not detected.

Method Blanks

Laboratory method blanks were not detected at the method reporting limit with the following exceptions:

SDG 580-68287

- Hexachlorobutadiene was detected above the MDL in analytical batches 580-246075 and 580-246158.
- Benzo[a]anthracene was detected above the MDL in analytical batches 580-246433 and 580-247152.
- Benzo[a]anthracene, Fluoranthene, Phenanthrene, and Pyrene were detected above the MDL in analytical batch 580-246750.
- The percent differences for bromomethane, chloroethane, trichlorofluoromethane and acrolein

The method blank detections were less than half of the reporting limit therefore no sample results were deemed affected.

OVERALL ASSESSMENT

Based on the data review completed, no data were rejected. Samples were qualified due to incorrect sample handling (additional labels on VOC jars). One sample was qualified as "H" for hold time error.

All analytical data is considered usable for the purpose of evaluating the presence or absence and magnitude of the suspected site contaminants.

Laboratory Data Review Checklist

Completed by:	Emily Freitas
Title:	Chemist Date: 06/20/2017
CS Report Name	: NOAA Little Port Walter Report Date: May 2017
Consultant Firm:	Ahtna Environmental Inc.
Laboratory Name	e: TestAmerica Tacoma Laboratory Report Number: 580-68287
ADEC File Num	ber: ADEC RecKey Number:
	n ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes \[\subseteq No \[\subseteq NA (Please explain.) \] Comments:
labora	samples were transferred to another "network" laboratory or sub-contracted to an alternate atory, was the laboratory performing the analyses ADEC CS approved? Yes No NA (Please explain.) Comments: three samples were transferred to Analytical Resources, Incorporated for low level volatile
	tody (COC) information completed, signed, and dated (including released/received by)? Yes \[\sum No \[\sum NA (Please explain.) \] Comments:
	ct analyses requested? Yes No NA (Please explain.) Comments:
a. Samp	ample Receipt Documentation le/cooler temperature documented and within range at receipt (4° ± 2° C)? Yes No No NA (Please explain.) Comments:
Sample	s were within the limits of less than 6 degrees celsius.
-	le preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ile Chlorinated Solvents, etc.)?
Sample	was correctly preserved according to analyses requested.

			∑Yes ☐ No ☐NA (Please explain.)	Comments:
		c.	Sample condition documented – broken, leaking (Metha ☐ Yes ☐ No ☐ NA (Please explain.)	anol), zero headspace (VOC vials)? Comments:
		Th	nere were no discrepancies in sample condition upon rec	ceipt.
			If there were any discrepancies, were they documented a containers/preservation, sample temperature outside of a samples, etc.?	-
				Comments:
		Ad Th	nere were sample name discrepancies noted upon receip ditionally, various methods were requested on the CoC ese analyses have been canceled since the samples were ted.	but were not run by the laboratory.
		e.	Data quality or usability affected? (Please explain.)	Comments:
		Da	ata usability or quality is not affected by the sample rece	eipt conditions.
4.	Cas		arrative Present and understandable? No NA (Please explain.)	Comments:
		b	Discrepancies, errors or QC failures identified by the la \times Yes \sum No \times NA (Please explain.)	b? Comments:
		c.	Were all corrective actions documented? ⊠Yes □ No □NA (Please explain.)	Comments:
		d.	What is the effect on data quality/usability according to	the case narrative? Comments:
		D	ata usability was not affected by the case narrative.	
5.	Sar		s Results Correct analyses performed/reported as requested on CO Yes No NA (Please explain.)	OC? Comments:

b	. All applicable holding times met? ∑Yes ☐ No ☐NA (Please explain.)	Comments:		
	All holiding times were met however, one sample, LPW1 due to failed quality control criteria. This reanalyses occur the results are qualified "H" and should be estimated, bias	arred outside of the hold time therefore,		
c.	. All soils reported on a dry weight basis? No NA (Please explain.)	Comments:		
d	. Are the reported PQLs less than the Cleanup Level or to project? \[\sum Yes \sum No \sum NA (Please explain.) \]	the minimum required detection level for t Comments:		
e.	. Data quality or usability affected?	Comments:		
]	Data quality and usability is not affected with respect to LPW17-SL-GSP-Leak01 was qualified, biased low, but to usable.			
	Samples Method Blank i. One method blank reported per matrix, analysis	s and 20 samples? Comments:		
	ii. All method blank results less than PQL? ☐Yes ☑ No ☐NA (Please explain.)	Comments:		
	Hexachlorobutadiene was detected above the MDL in an 246158. Benzo[a]anthracene was detected above the MD 580-247152. Benzo[a]anthracene, Fluoranthene, Phenant the MDL in analytical batch 580-246750.	L in analytical batches 580-246433 and		
	iii. If above PQL, what samples are affected? Comments:			
	No samples were affected. The method blank detections therefore no sample results were deemed affected.	were less than half of the reporting limit		
_	iv. Do the affected sample(s) have data flags and is	f so, are the data flags clearly defined?		
Г	No. Data flags were not required			

∐Yes _	J No ⊠NA (Please explain.)	Comments:
v. Data o	quality or usability affected? (Please 6	explain.) Comments:
Data quality an	d usability was not affected with respon	ect to the reported method blank results.
b. Laboratory C	ontrol Sample/Duplicate (LCS/LCSD)
requir	ics – One LCS/LCSD reported per material per AK methods, LCS required per No NA (Please explain.)	atrix, analysis and 20 samples? (LCS/LCSD r SW846) Comments:
sampl		ole duplicate reported per matrix, analysis and 20 Comments:
And p AK10	project specified DQOs, if applicable.	oorted and within method or laboratory limits? (AK Petroleum methods: AK101 60%-120%, other analyses see the laboratory QC pages) Comments:
The %R for Leadulices in batche The %R for var batches 580-247 The %R for bro	es 580-246576 and 580-24300. Frious PAH analytes was outside control 152 and 580-246475. The omomethane was outside control limits	l limits for the MS, MSD, or laboratory of limits for the MS and MSD in analytical s for the LCS/LCSD limits for the LCS in analytical batch 580-
labora LCS/I other	tory limits? And project specified DQ	(RPD) reported and less than method or QOs, if applicable. RPD reported from ble duplicate. (AK Petroleum methods 20%; all Comments:
The RPD for bracetone, trans-1 above the control	,4-dichloro-2-butene, and dichlorodiflol limits. lated for RRO between the MS and M	fluoromethane, acrolein, bromomethane, uoromethane in the ICV standards were ISD in analytical batch 580-246593 was

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Additional quality control samples provided sufficient precision or accuracy information for all instances.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No No NA (Please explain.) Comments:
No sample results were affected since additional quality control samples were provided.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality or usability is not affected with respect to the reported results.
c. Surrogates – Organics Only
 i. Are surrogate recoveries reported for organic analyses − field, QC and laboratory samples? ✓ Yes ☐ No ☐NA (Please explain.) Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
AK102/103 surrogate o-Terphenyl was slightly below quality control limits for sample LPW17-SL-WHP-01(2) and sample LPW17-SL-WHP-01D(2). 8270D surrogate, , was slightly outside of quality control limits for sample LPW17-SL-HMP-01(2), sample LPW17-SL-GSP-Leak01, and associated MSD. An 8260 surrogate, d4-1,2-dichloroethane was outside quality control limits for sample LPW17-SL-GSP-03(1.5).
 iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? ☐ Yes ☒ No ☐NA (Please explain.) Comments:
The additional method surrogates were within limits therefore no qualifications were made.
iv. Data quality or usability affected? (Use the comment box to explain.) Comments:
Data quality or usability is not affected with regards to the surrogate results.

i. One trip blank reported per matrix, analysis and for each cooler containing volatile sample (If not, enter explanation below.)
Yes No NA (Please explain.) Comments:
One trip blank was submitted.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the CO (If not, a comment explaining why must be entered below)
Yes No NA (Please explain.) Comments:
All I POLO
iii. All results less than PQL? ∑Yes ☐ No ☐NA (Please explain.) Comments:
iv. If above PQL, what samples are affected?
Comments:
NA. All results were below PQL.
v. Data quality or usability affected? (Please explain.)
Comments:
Data quality and usability is not affected with respect to the reported trip blank results.
e. Field Duplicate
 i. One field duplicate submitted per matrix, analysis and 10 project samples? ∑Yes ☐ No ☐NA (Please explain.) Comments:
8 field duplciates were submitted within this sample delivery group.
ii. Submitted blind to lab?

⊠Yes ☐ No ☐NA (Please explain.)	Comments:
iii. Precision – All relative percent differences (Recommended: 30% water, 50% soil)	RPD) less than specified DQOs?
RPD (%) = Absolute value of: (R_1-R_2)	
$((R_1+R_2)/2)$	x 100
Where $R_1 = Sample$ Concentration $R_2 = Field$ Duplicate Concentration $Yes \square No \square NA$ (Please explain.)	on Comments:
iv. Data quality or usability affected? (Use the co	omment box to explain why or why not.) Comments:
Data usability was not affected by the field duplicate p	precision.
	1 ' 1)
f. Decontamination or Equipment Blank (If not used ex	•
Yes No NA (Please explain.)	Comments:
No equipment blank was collected. Disposable equipme	ent was used.
i. All results less than PQL?	
☐Yes ☐ No ☐NA (Please explain.)	Comments:
ii. If above PQL, what samples are affected?	Comments:
iii. Data quality or usability affected? (Please ex	<u>-</u>
	Comments:
Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific,a. Defined and appropriate?	etc.)
Yes No No NA (Please explain.)	Comments:
No additional data qualifiers were used. Laboratory sp but not transferred to the project report or tables.	ecific qualifiers were used in the lab report

(This Page Intentionally Left Blank)

APPENDIX E

VAPOR INTRUSION BUILDING SURVEY

This form should be prepared by a person familiar with indoor air assessments with assistance from a person knowledgeable about the building. Complete this form for each building where interior samples (e.g., indoor air, crawl space, or subslab soil gas samples) will be collected. Section I of this form should be used to assist in choosing an investigative strategy during work plan development. Section II should be used to assist in identification of complicating factors during a pre-sampling building walk-through.

Preparer's Name: Richard Koster, CIH Date/Time Prepared: May 8 through June 19, 2017

Preparer's Affiliation: NOAA National Marine Fisheries Services / Alaska Fisheries Science Center

Phone No: (206) 526 - 4165

Purpose of Investigation: Site characterization to identify environmental liabilities for the Alaska

Fisheries Science Center Auke Bay Laboratories at the Little Port Walter Campus.

OWNER or LANDLORD:

Name: NOAA/NMFS/AFSC/ Auke Bay Laboratories

Address: <u>17109 Point Lena Loop Road</u>

City: Juneau AK 99801 Phone No.: (907) 789-6000

SECTION I: STRUCTURE INVENTORY

1	White House	Building
2	White House fuel tank	Sheltered Pad
3	Walk in Freezer / Hot tub shed	Unoccupied Building
4	White House bridge	Wood Structure
5	Outboard motor storage shed	Unoccupied Building
6	Wood/Metal shop	Building
7	Hazmat storage	Unoccupied Building
8	Fuel tank shed	Unoccupied Building
9	Generator shed	Unoccupied Building
10	Warehouse complex	Building
11	Dock (Tag & Feed) sheds	Building
12	Incinerator shed	Unoccupied Building
13	Cove cabin fuel tank	Sheltered Pad
14	Cove Cabin	Building
15	Cove cabin bridge	Wood Structure
16	Pan Abode bridge	Wood Structure
17	Pan Abode fuel tank	Sheltered Pad
18	Pan Abode cabin	Building
19	Weir bridge	Wood Structure
20	Weir Pan Abode shack	Building
21	Weir storage area	Wood Structure
22	Weir cabin.	Building

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: White House

City; <u>Little Port Walter AK</u> Phone No.: (907) 789-6000

Number of Occupants at this location: Varies 2 – 12 Age of Occupants Varies from 6 months to 75 years

Average: (@survey) ~ 38

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use

Industrial Church Other

The building is a residence with common areas for gathering the personnel at the campus for meetings and dining.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other_

If multiple units, how many? 2 residences 8 rooms for housing guest scientists and research teams.

If the property is commercial, what type?

Business types(s) Barracks to support scientific research teams.

Does it include residences (i.e., multi-use)? Y N If yes, how many? 2 - Specifics are above.

Other characteristics:

Number of floors: 3 Building age: 77 years

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

YN

If yes, please describe:

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow between the floors is natural convection currents. There are no ventilation systems in the building. Heat is baseboard electric and hot water radiators. Smoke rose slowly (<0.5 feet per second) in the stairwell between floors with the warm air from the first floor.

Airflow in building near suspected source

There is no evidence of intrusion at this time. The only penetration of the slab is the toilet discharge on the first floor in the northwest corner. That bathroom is about 6' by 8' It contains a commode and pantry shelves. It also has a window for ventilation. The room door is left open when unoccupied and window ventilated when in use.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION

BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE odors from food and people living in a communal area. Infiltration into air ducts There are no air ducts present. 3. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.) a. Above-grade construction: wood frame log concrete brick constructed on pilings with constructed on pilings open air space with enclosed air space b. Basement type: full crawlspace slab-on-grade other c. Basement floor: concrete dirt stone other_ d. Basement floor: sealed sealed with unsealed e. Foundation walls: poured block stone other f. Foundation walls: unsealed sealed sealed with g. The basement is: damp wet dry h. The basement is: finished partially finished unfinished i. Sump present? j. Water in sump? Y / N (not applicable **Basement or lowest level depth below grade:** No below grade structures – slab foundation. ____(feet). Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, and drains). The only identified breach in the slab is the 21/4 inch opening for the toilet effluent. All other entry points are above ground. 4. **HEATING, VENTING, and AIR CONDITIONING** (Circle all that apply.) Type of heating system(s) used in this building: (Circle all that apply – not just primary.) Hot air circulation Heat pump Hot water baseboard Space heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler Other The primary type of fuel used is: Fuel oil Natural gas Kerosene Electric Propane Solar Wood Coal Domestic hot water tank is fueled by: #2Diesel fuel Boiler/furnace is located in:

Main floor

Other

Basement

Outdoors

Type of air conditioning or ventilation used in this building:

Central air Window units Open windows None

Commercial HVAC Heat-recovery system Passive air system

Are there air distribution ducts present?

Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan.

There is no ventilation system in this structure.

Is there a radon mitigation system for the building/structure? Y (N)

Date of Installation

Is the system active or passive? Active/Passive

5. OCCUPANCY

Is basement/lowest level occupied? Occasionally Full-time Seldom Almost never

General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, or storage).

Basement There is no basement

1st Floor Communal kitchen dining area, office space with computers, laundry, pantries and storage areas.

2nd Floor Two communal rooms and a residence with kitchen.

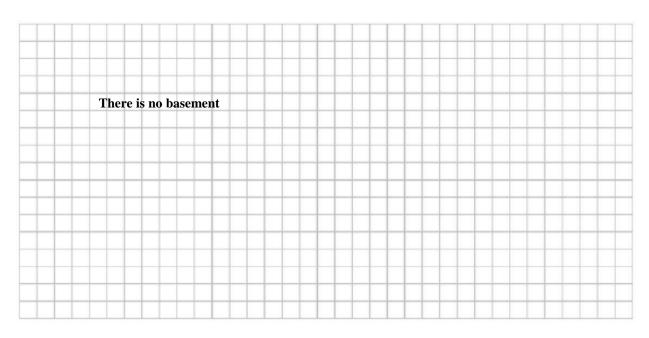
3rd Floor Sleeping quarters.

6. WATER AND SEWAGE

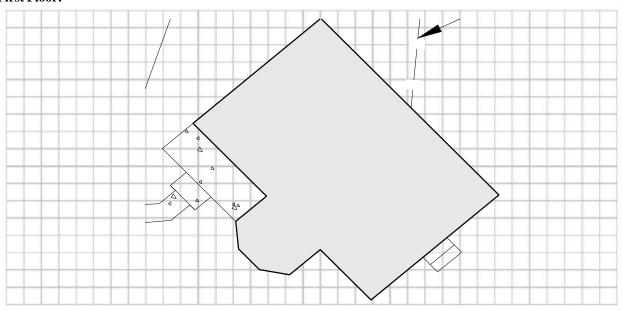
Water supply:

Level

Public water Drilled well Driven well Dug well Other Sashin Creek

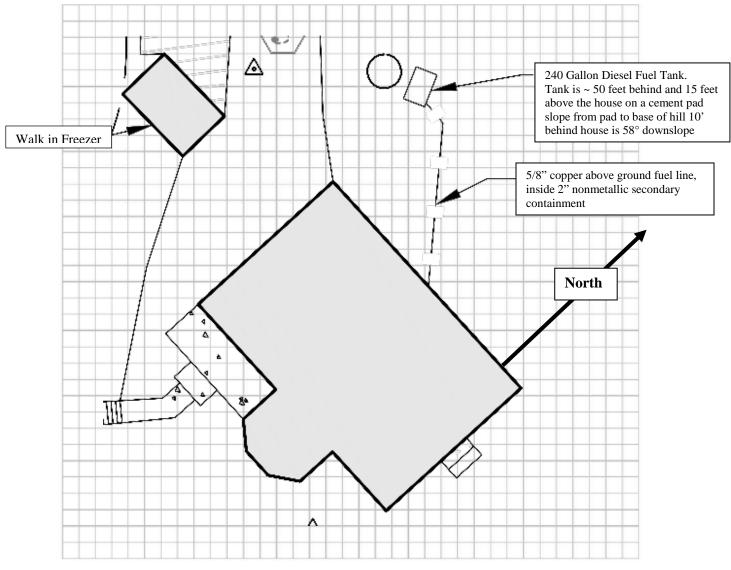

Sewage disposal:

Public sewer Septic tank Leach field Dry well Other Little Port Walter Bay


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y /N	
Does the garage have a separate heating	Y/N/NA	
unit?	Y / N / NA	
Are petroleum-powered machines or		
vehicles stored in the garage (e.g.,	Y/N(NA)	
lawnmower, ATV, or car)		
Please specify		
Has the building ever had a fire?	Y /(N)	
When?		
Is a kerosene or unvented gas space heater present?	Y/N	
Where?		
Is there a workshop or hobby/craft area?	Y /(N)	
Where and type)	
Is there smoking in the building?	Y /(N)	
How frequently?		
Has painting/staining been done in the last six months?	Y/N	
Where and when?		
Is there new carpet, drapes or other textiles?	Y /(N)	
Where and when?		
Is there a kitchen exhaust fan?	(Y)N	
If yes, where is it vented?		ough the South face of the building
Is there a bathroom exhaust fan?	Y)N	2
If yes, where is it vented		the west wall one at the roofline one lower
Is there a clothes dryer?	(Y)/ N	
If yes, is it vented outside?	(Y) N	
Are cleaning products, cosmetic products, or		
pesticides used that could interfere with	Y/N	
indoor air sampling?		
If yes, please describe		

Do any of the building occupants use solvents at work?	1/6	N
--	-----	---

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? All solvents contained in the chemical inventory can migrate into the communal residence Maintenance mechanics are in contact with the petroleum solvents and scientists are in contact with the alcohols and formalin solutions.

If yes, are his/her/their clothes washed at work? Y /(N)

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response) (No)

Yes, use dry cleaning regularly (weekly)

Unknown Yes, use dry cleaning infrequently (monthly or less)

Yes, work at a dry cleaning services

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Kitchen Bathrooms	Consumer Products in Consumer Use.		Used			
Bedrooms	Consumer Products in Consumer Osc.		Osca			

Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Wood / Metal Shop
City; Little Port Walter AK
Phone No.: (907) 789-6000

Number of people at this location: $\underline{\text{Varies } 1-4}$ Age of Occupants $\underline{\text{Varies from } 20 \text{ to } 75 \text{ years}}$

Average: (@survey) ~ 38

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use

Industrial Church Other

The building houses the tools used for working with wood and metals to maintain the campus and assist the scientists by building unique rigging to support the experiments.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other____

If multiple units, how many?

If the property is commercial, what type?

Business types(s) Construction shops to support scientific research teams.

Does it include residences (i.e., multi-use)? Y N If yes, how many?

Other characteristics:

Number of floors: 1 Building age: 77 years

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

Y (N

If yes, please describe:

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

One Story

Airflow in building near suspected source

There is no evidence of intrusion at this time. There are no apparent cracks in the slab floor.

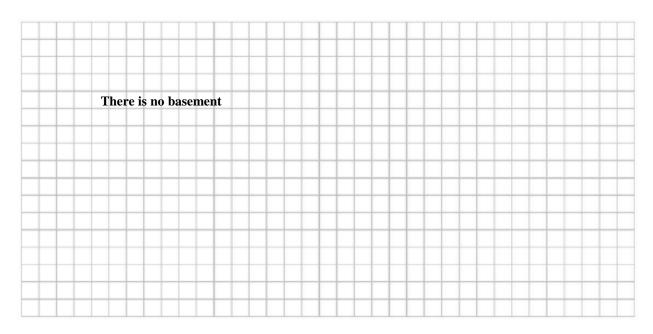
Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting dust and fume when construction is being performed in the shop.

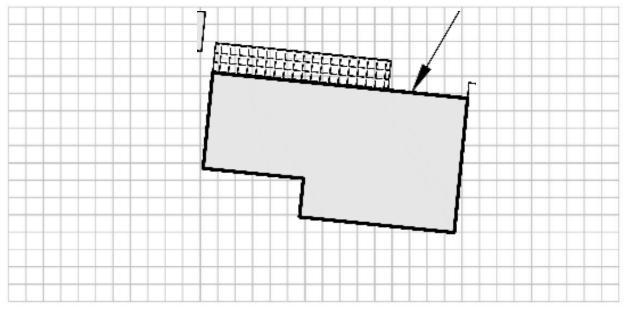
Infiltration into air ducts

There are no air ducts present.

3.	BASEMENT A	INT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.)						
a.	Above-grade co		1.0		1			
			wood frame concrete		log brick			
			cted on pilings v pen air space		cted on pilings losed air space			
	b. Basement typ	e:	full	crawlspace	slab-on-grade	other		
	c. Basement floo	or:	concrete	dirt	stone	other		
	d. Basement flo	or:	unsealed	sealed	sealed with			
	e. Foundation w	valls:	poured	block	stone	other		
	f. Foundation walls:		unsealed	sealed	sealed with _			
	g. The basemen	t is:	wet	damp	dry			
	h. The basemen	at is:	finished	unfinished	partially finish	ed		
	i. Sump present?		YN					
	j. Water in sum	p?	Y / N (not app	licable				
Bas	sement or lowest	level depth belo	w grade: No b	elow grade stru	ıctures – slab fou	ndation(feet).		
Ide None		il vapor entry p	oints and appr	oximate size (6	e.g., cracks, utili	ty ports, and drains).		
4.	HEATING, VE	NTING, and Al	R CONDITIO	NING (Circle	all that apply.)			
Туре	e of heating syster	m(s) used in this	building: (Circle	e all that apply	– not just primar	y.)		
Hot a	air circulation	Heat pump	Hot	water baseboar	d			
	e heaters tric baseboard	Stream radiatio Wood stove		Radiant floor Outdoor wood boiler Other Electric Space Heaters elevated.				
	The primary type of fuel used is:							
	Natural gas Electric Wood	P	uel oil ropane Coal	Kero Sola	osene r			
	Domestic hot w	ater tank is fuel	ed by: None					
	Boiler/furnace i	s located in:						
В	asement Outo	doors Main f	loor Othe	r None		<u> </u>		
Do a	ny of the heating	appliances have	cold-air intakes	? Y/N				

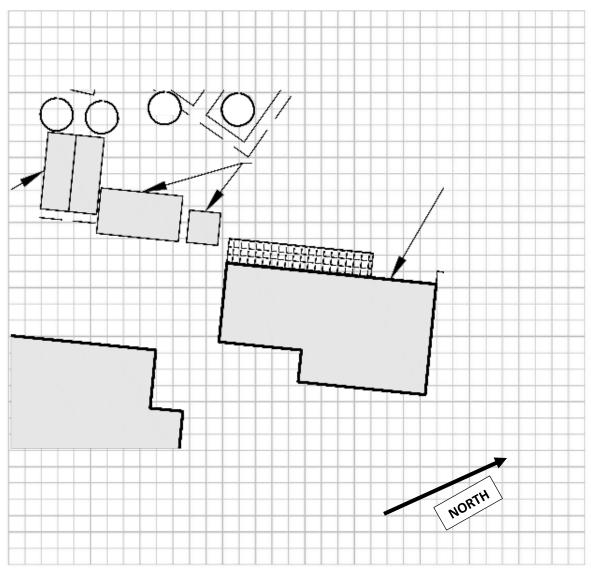

Type of air conditioning or ventilation used in this building:

Central air Window units Open windows None Commercial HVAC Heat-recovery system Passive air system Are there air distribution ducts present? Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan. There is no ventilation system in this structure. Is there a radon mitigation system for the building/structure? Y (N) Date of Installation Is the system active or passive? Active/Passive 5. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Seldom Almost never Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, or storage). **Basement** There is no basement 1st Floor Wood and metal fabrication shops. 2nd Floor 3rd Floor WATER AND SEWAGE Water supply: Public water Drilled well Driven well Dug well Other None Sewage disposal: Public sewer Other Septic tank Leach field Dry well None


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y/N
Does the garage have a separate heating unit?	Y / N NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y/NNA
Please specify	
Has the building ever had a fire?	Y /(N)
When?	
Is a kerosene or unvented gas space heater present?	Y /N
Where?	
Is there a workshop or hobby/craft area?	(Y) N
Where and type	Wood and Metal shops
Is there smoking in the building?	Y /(N)
How frequently?	
Has painting/staining been done in the last six months?	YN
Where and when?	
Is there new carpet, drapes or other textiles?	Y/N
Where and when?	
Is there a kitchen exhaust fan?	YN
If yes, where is it vented?	
Is there a bathroom exhaust fan?	Y(N)
If yes, where is it vented	
Is there a clothes dryer?	Y(N)
If yes, is it vented outside?	YN
Are cleaning products, cosmetic products, or	
pesticides used that could interfere with	Ŷ / N
indoor air sampling?	
If yes, please describe	Solvents, paints, welding fume

Do any of the building occupants use solvents at work?

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? <u>All solvents contained in the chemical inventory can migrate into the communal residence Maintenance mechanics are in contact with the petroleum solvents and scientists are in contact with the alcohols and formalin solutions.</u>

If yes, are his/her/their clothes washed at work?

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

Yes, use dry cleaning infrequently (monthly or less)

Yes, work at a dry cleaning services

Unknown

(No)

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Warehouse: Stored Shop area: used	569 THREAD SEALANT HIGH STRENGTH HYDRAULIC SEALANT		Used	See SDS		N
Warehouse: Stored Shop area: used	WELD-ON P-70 Low VOC Primer for PVC and CPVC Plastic Pipe		Used	See SDS		N
Warehouse: Stored Shop area: used	KRYLON Matte Finish Spray Coating		Used	See SDS		N
Warehouse: Stored Shop area: used	RectorSeal Tru-Blu		Used	See SDS		N
Warehouse: Stored Shop area: used	WELD-ON 705 Low VOC Cements for PVC Plastic Pipe		Used	See SDS		N
Warehouse: Stored Shop area: used	X-PANDO PIPE JOINT COMPOUND		Used	See SDS		N
Warehouse: Stored Shop area: used	KRYLON Industrial QUIK- MARK Solvent-Based Inverted Marking Paint (Fluorescent), Orange		Used	See SDS		N
Warehouse: Stored Shop area: used	WD-40 Multi-Use Product Aerosol		Used	See SDS		N
Warehouse: Stored Shop area: used	Delo 400 SAE 30, 40, 50		Used	See SDS		N
Warehouse: Stored Shop area: used	Instant Cold Galvanize		Used	See SDS		N
Warehouse: Stored Shop area: used	GA-12 12oz GEL GLOSS AEROSOL		Used	See SDS		N
Warehouse: Stored Shop area: used	Drislide Multi-Purpose Lubricant- Aerosol Can		Used	See SDS		N
Warehouse: Stored Shop area: used	WELD-ON 711 Low VOC PVC Plastic Pipe Cements		Used	See SDS		N
Warehouse: Stored Shop area:	KRYLON ColorMaster with Covermax Technology Paint + Primer, Gloss White		Used	See SDS		N

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
warehouse: Stored Shop area: used	Famowood Wood Filler - Original Formula		Used	See SDS		N
Warehouse: Stored Shop area: used	Rust Stain Remover		Used	See SDS		N
Warehouse: Stored Shop area: used	Goof Off Super Glue Remover		Used	See SDS		N
Warehouse: Stored Shop area: used	PTOUCH 2X +SSPR 6PK FLAT MATTE CLEAR		Used	See SDS		N
Warehouse: Stored Shop area: used	KRYLON Industrial IRON GUARD DTM Water-Based Anti-Rust Acrylic Coating, Flat Black		Used	See SDS		N
Warehouse: Stored Shop area: used	SCOFIELD Formula One Liquid Dye Concentrate		Used	See SDS		N
Warehouse: Stored Shop area: used	THRUST QUICK STARTING FLUID		Used	See SDS		N
Warehouse: Stored Shop area: used	KRYLON ColorMaster with Covermax Technology Primer, Gray		Used	See SDS		N
Warehouse: Stored Shop area: used	ACE Premium Enamel, Almond		Used	See SDS		N
Warehouse: Stored Shop area: used	Weld-On 700 Low VOC Cement for PVC Plastic Pipe		Used	See SDS		N
Warehouse: Stored Shop area: used	CORROSION BLOCK NON- FLAMMABLE AEROSOL		Used	See SDS		N
Warehouse: Stored Shop area: used	Foam-It Part B		Used	See SDS		N
Warehouse: Stored Shop area: used	BENJAMIN MOORE ARBORCOAT EXTERIOR OIL STAIN SEMI SOLID-TINT BASE		Used	See SDS		N
Warehouse: Stored Shop area: used	Gasoila Soft Set		Used	See SDS		N
Warehouse: Stored	KRYLON High Heat, White		Used	See SDS		N

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Shop area:						
warehouse: Stored Shop area: used	MITEE DARK THREAD CUTTING OIL		Used	See SDS		N
Warehouse: Stored Shop area: used	NAPA/CRC Battery Cleaner with Indicator		Used	See SDS		N
Warehouse: Stored Shop area: used	765-1674 NAPA ANTI-SEIZE LUBRICANT (PTX80078) 8 OZ.		Used	See SDS		N
Warehouse: Stored Shop area: used	Mac's Premium Starting Fluid		Used	See SDS		N
Warehouse: Stored Shop area: used	765-1151 NAPA ANTI-SEIZE LUBRICANT (PTX80208) 16 OZ		Used	See SDS		N
Warehouse: Stored Shop area: used	NAPA Mac's Battery Terminal Protector		Used	See SDS		N
Warehouse: Stored Shop area: used	Roberts 3000 Carpet and Felt-Back Vinyl Adhesive		Used	See SDS		N
Warehouse: Stored Shop area: used	22001 - Fogging Oil - Gold Eagle Fogging Oil		Used	See SDS		N
Warehouse: Stored Shop area: used	TYTAN Cleaner		Used	See SDS		N
Warehouse: Stored Shop area: used	Ace Contact Cement		Used	See SDS		N
Warehouse: Stored Shop area: used	3M Marine Fiberglass Cleaner and Wax, P.N. 09009, 09010, 09010E, 09011		Used	See SDS		N
Warehouse: Stored Shop area: used	BRITE ZINC		Used	See SDS		N
Warehouse: Stored Shop area: used	LEAK LOCK		Used	See SDS		N
Warehouse: Stored Shop area: used	Touch N Foam Pro Quick Cure Sealant Foam		Used	See SDS		N

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Warehouse: Stored Shop area: used	BRUSHING LIQUID 333 CLEAR		Used	See SDS		N
Warehouse: Stored Shop area: used	STARBRITE LIQUID ELECTRICAL TAPE		Used	See SDS		N
Warehouse: Stored Shop area: used	Silicone Spray		Used	See SDS		N
Warehouse: Stored Shop area: used	PB Penetrating Catalyst (Aerosol)		Used	See SDS		N
Warehouse: Stored Shop area: used	OATEY PVC REGULAR CLEAR – LO-VOC FORMULA		Used	See SDS		N
Warehouse: Stored Shop area: used	OATEY PURPLE OR CLEAR PRIMER NSF LISTED		Used	See SDS		N
Warehouse: Stored Shop area: used	RectorSeal No. 5		Used	See SDS		N
Warehouse: Stored Shop area: used	RectorSeal No. 5 Special		Used	See SDS		N
Warehouse: Stored Shop area: used	3M Marine Premium Filler. PN: 46004 (pint); 46005 (quart); 46006 (gallon); 46003 (DMS); 46002 (6 fl. oz.) - KIT		Used	See SDS		N
Warehouse: Stored Shop area: used	3M High Power Brake Cleaner, P.N. 08880		Used	See SDS		N

Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Warehouse Complex
City; Little Port Walter AK
Phone No.: (907) 789-6000

Number of people at this location: $\underline{\text{Varies } 1-4}$ Age of Occupants $\underline{\text{Varies from } 20 \text{ to } 75 \text{ years}}$

Average: (@survey) ~ 38

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use

Industrial Church Other

The building houses the equipment and supplies used to conduct missions and maintain infrastructure. The complex also contains two fish rearing facilities as well as a central electrical power junction room.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other_

If multiple units, how many?

If the property is commercial, what type?

Business types(s): Larval fish rearing, administration and logistics support. .

Does it include residences (i.e., multi-use)? Y (N)

If yes, how many?

Other characteristics:

Number of floors: 2 Building age: 37 years

Is the building insulated? (Y)/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

(Y)N

If yes, please describe: Chemicals and solvents are used in this building.

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

The complex is two stories with four rooms on the first floor and six rooms on the second. There is one room on the second level accessible from the warehouse that is open to the first floor. Thermal circulation is the method of air circulation to the "pool" room. The other rooms upstairs are a completely different envelope and there is no circulation between floors. Entrance to the second floor envelope is through an exterior wall in inside a storage area that is uninsulated.

Airflow in building near suspected source

There is no evidence of intrusion at this time. There are no apparent cracks in the slab floor. Potential contaminant locations are > 20 feet from entrances and the nearest slab contact point.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat.

Infiltration into air ducts

There is an electric furnace inside a mechanical closet adjacent to the minor electronics repair area on the second floor, which is accessed from the exterior equipment storage area. All ductwork is galvanized round pipe at the furnace. Accessible ducts and joints show no evidence of leaking into or out of the ductwork. All grates have airflow reaching them.

3.	BASEMENT A	ND CONSTRU	CTION CHAR	ACTERISTIC	S (Circle all that	t apply.)
a.	Above-grade co	nstruction:				
			wood frame concrete Metal / steel		log brick	
			ted on pilings w pen air space		ed on pilings osed air space	
	b. Basement typ	e:	full	crawlspace (slab-on-grade	other
	c. Basement floo	or:	concrete	dirt	stone	other
	d. Basement floo	or:	unsealed	sealed	sealed with	
	e. Foundation w	alls:	poured	block	stone	other
	f. Foundation w	alls:	unsealed	sealed	sealed with _	
	g. The basement is:		wet	damp	dry	
	h. The basement is:		finished	unfinished	partially finish	ed
	i. Sump present?		YN			
	j. Water in sum	p?	Y / N (not app	licable		
Bas	sement or lowest	level depth belo	w grade: No b	elow grade struc	ctures – slab fou	ndation(feet).
Ide None		il vapor entry p	oints and appr	oximate size (e.	g., cracks, utili	ty ports, and drains).
4.	HEATING, VE	NTING, and AI	R CONDITIO	NING (Circle al	ll that apply.)	
Туре	e of heating systen	n(s) used in this l	ouilding: (Circle	e all that apply –	- not just primar	y.)
Hot air circulation Heat pump		Hot v	water baseboard			
	e heaters tric baseboard	Stream radiation Wood stove		ant floor oor wood boiler	r Other	

Kerosene Solar

Domestic hot water tank is fueled by: None

Fuel oil

Propane

Coal

The primary type of fuel used is:

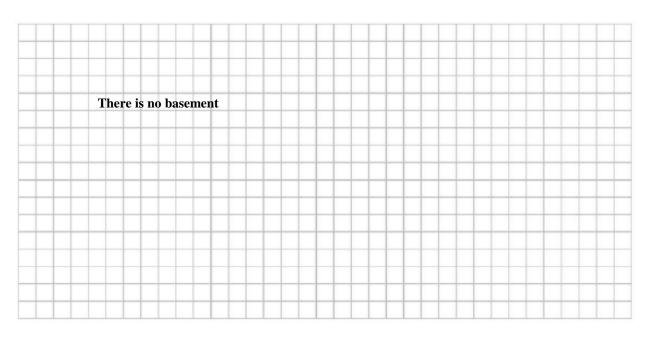
Natural gas

Electric

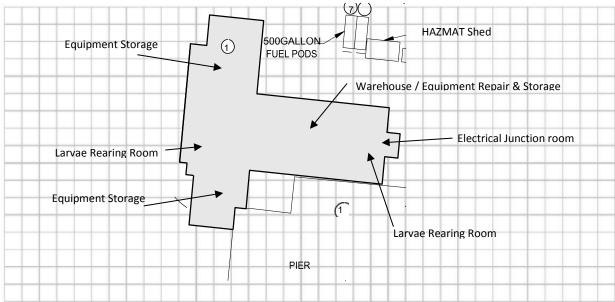
Wood

Boiler/furnace is located in: Basement Outdoors Main floor Other Second Floor furnace room Do any of the heating appliances have cold-air intakes? Y(N) Type of air conditioning or ventilation used in this building: Central air Window units Open windows None Commercial HVAC Heat-recovery system Passive air system Are there air distribution ducts present? Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan. There is no ventilation system in this structure. Is there a radon mitigation system for the building/structure? Y (N) Date of Installation Is the system active or passive? Active/Passive 5. OCCUPANCY Is basement/lowest level occupied? Occasionally Full-time Seldom Almost never Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, or storage). There is no basement **Basement** 1st Floor Fish rearing experiments, Warehouse storage, Large mechanical repair area, and Electrical room 2nd Floor Conference room, latrine, office space, minor (electronics) repair workspace. Recreation space (pool table) 3rd Floor

6. WATER AND SEWAGE

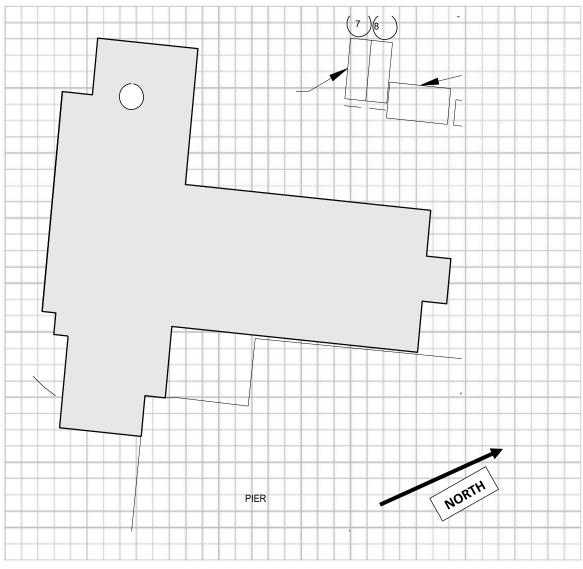

Sewage disposal:

Public sewer Septic tank Leach field Dry well Other Little Port Walter Bay


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	(Y) N	
Does the garage have a separate heating unit?	Y N/NA	
Are petroleum-powered machines or vehicles stored in the garage (e.g.,	Q / N /NA	
lawnmower, ATV, or car)	Gator avenu	ator small boats and snow blowers
Please specify	Y/N	ator smarr boats and snow browers
Has the building ever had a fire? When?	Y /(N)	
Is a kerosene or unvented gas space heater		
present?	Y/N	
Where?		
Is there a workshop or hobby/craft area?	(Y) N	
Where and type	Maintenance	in the large warehouse bay and electronics in the
	second repair	r area.
Is there smoking in the building?	Y (N)	
How frequently?		
Has painting/staining been done in the last six months?	YN	
Where and when?		
Is there new carpet, drapes or other textiles?	Y /(N)	
Where and when?		
Is there a kitchen exhaust fan?	Y/N	
If yes, where is it vented?		
Is there a bathroom exhaust fan?	Y(N)	
If yes, where is it vented		
Is there a clothes dryer?	YVN	
If yes, is it vented outside?	Y (N)	
Are cleaning products, cosmetic products,	(Y)/ N	
or pesticides used that could interfere with	Y/ N	
indoor air sampling?	All golyomta	in the inventory ere used in the shore
If yes, please describe	All solvents i	in the inventory are used in the shops

Do any of the building occupants use solvents at work?	Y	/	N
		,,	

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? Maintenance mechanics are in contact with the petroleum solvents and scientists are in contact with the alcohols and formalin solutions.

If yes, are his/her/their clothes washed at work?

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

Yes, use dry cleaning infrequently (monthly or less)

Unknown

(No)

Yes, work at a dry cleaning services

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
HAZMAT Shed	569 THREAD SEALANT HIGH STRENGTH HYDRAULIC SEALANT		Used	See SDS sheets.	N/A	N
HAZMAT Shed	WELD-ON P-70 Low VOC Primer for PVC and CPVC Plastic Pipe		Used	See SDS sheets.	N/A	N
HAZMAT Shed	KRYLON Matte Finish Spray Coating		Used	See SDS sheets.	N/A	N
HAZMAT Shed	RectorSeal Tru-Blu		Used	See SDS sheets.	N/A	N
HAZMAT Shed	UNBRANDED CONVENTIONAL GASOLINE		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Molecular Biology Grade Ethanol		Used	See SDS sheets.	N/A	N
HAZMAT Shed	WELD-ON 705 Low VOC Cements for PVC Plastic Pipe		Used	See SDS sheets.	N/A	N
HAZMAT Shed	X-PANDO PIPE JOINT COMPOUND		Used	See SDS sheets.	N/A	N
HAZMAT Shed	KRYLON Industrial QUIK-MARK Solvent-Based Inverted Marking Paint (Fluorescent), Orange		Used	See SDS sheets.	N/A	N
HAZMAT Shed	WD-40 Multi-Use Product Aerosol		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Delo 400 SAE 30, 40, 50		Used	See SDS sheets.	N/A	N
HAZMAT Shed	DIESEL FUEL		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Instant Cold Galvanize		Used	See SDS sheets.	N/A	N
HAZMAT Shed	GA-12 12oz GEL GLOSS AEROSOL		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Drislide Multi-Purpose Lubricant- Aerosol Can		Used	See SDS sheets.	N/A	N
HAZMAT Shed	WELD-ON 711 Low VOC PVC Plastic Pipe Cements		Used	See SDS sheets.	N/A	N
HAZMAT Shed	KRYLON ColorMaster with Covermax Technology Paint + Primer, Gloss White		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Famowood Wood Filler - Original Formula		Used	See SDS sheets.	N/A	N
HAZMAT Shed	22206 - STABIL Fuel Stabilizer		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Rust Stain Remover		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Goof Off Super Glue Remover		Used	See SDS sheets.	N/A	N
HAZMAT Shed	PTOUCH 2X +SSPR 6PK FLAT MATTE CLEAR		Used	See SDS sheets.	N/A	N
HAZMAT Shed	KRYLON Industrial IRON GUARD DTM Water-Based Anti-Rust Acrylic Coating, Flat Black		Used	See SDS sheets.	N/A	N
HAZMAT Shed	SCOFIELD Formula One Liquid Dye Concentrate		Used	See SDS sheets.	N/A	N
HAZMAT Shed	THRUST QUICK STARTING FLUID		Used	See SDS sheets.	N/A	N

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
HAZMAT	KRYLON ColorMaster with	(tillts)		See SDS		
Shed	Covermax Technology Primer, Gray		Used	sheets.	N/A	N
HAZMAT Shed	ACE Premium Enamel, Almond		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Weld-On 700 Low VOC Cement for PVC Plastic Pipe		Used	See SDS sheets.	N/A	N
HAZMAT Shed	CORROSION BLOCK NON- FLAMMABLE AEROSOL		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Foam-It Part B		Used	See SDS sheets.	N/A	N
HAZMAT Shed	BENJAMIN MOORE ARBORCOAT EXTERIOR OIL STAIN SEMI SOLID-TINT BASE		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Gasoila Soft Set		Used	See SDS sheets.	N/A	N
HAZMAT Shed	KRYLON High Heat, White		Used	See SDS sheets.	N/A	N
HAZMAT Shed	MITEE DARK THREAD CUTTING OIL		Used	See SDS sheets.	N/A	N
HAZMAT Shed	NAPA/CRC Battery Cleaner with Indicator		Used	See SDS sheets.	N/A	N
HAZMAT Shed	765-1674 NAPA ANTI-SEIZE LUBRICANT (PTX80078) 8 OZ.		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Air Tool Lubricant		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Mac's Premium Starting Fluid		Used	See SDS sheets.	N/A	N
HAZMAT Shed	765-1151 NAPA ANTI-SEIZE LUBRICANT (PTX80208) 16 OZ		Used	See SDS sheets.	N/A	N
HAZMAT Shed	NAPA Mac's Battery Terminal Protector		Used	See SDS sheets.	N/A	N
HAZMAT Shed	RONSONOL LIGHTER FUEL		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Roberts 3000 Carpet and Felt-Back Vinyl Adhesive		Used	See SDS sheets.	N/A	N
HAZMAT Shed	22001 - Fogging Oil - Gold Eagle Fogging Oil		Used	See SDS sheets.	N/A	N
HAZMAT Shed	TYTAN Cleaner		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Ace Contact Cement		Used	See SDS sheets.	N/A	N
HAZMAT Shed	3M Marine Fiberglass Cleaner and Wax, P.N. 09009, 09010, 09010E, 09011		Used	See SDS sheets.	N/A	N
HAZMAT Shed	BRITE ZINC		Used	See SDS sheets.	N/A	N
HAZMAT Shed	LEAK LOCK		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Touch N Foam Pro Quick Cure Sealant Foam		Used	See SDS sheets.	N/A	N
HAZMAT Shed	BRUSHING LIQUID 333 CLEAR		Used	See SDS sheets.	N/A	N
HAZMAT Shed	STARBRITE LIQUID ELECTRICAL TAPE		Used	See SDS sheets.	N/A	N
HAZMAT Shed	Silicone Spray		Used	See SDS sheets.	N/A	N
HAZMAT Shed	PB Penetrating Catalyst (Aerosol)		Used	See SDS sheets.	N/A	N

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
HAZMAT Shed	OATEY PVC REGULAR CLEAR – LO-VOC FORMULA		Used	See SDS sheets.	N/A	N
HAZMAT Shed	OATEY PURPLE OR CLEAR PRIMER NSF LISTED		Used	See SDS sheets.	N/A	N
HAZMAT Shed	RectorSeal No. 5		Used	See SDS sheets.	N/A	N
HAZMAT Shed	RectorSeal No. 5 Special		Used	See SDS sheets.	N/A	N
HAZMAT Shed	3M Marine Premium Filler. PN: 46004 (pint); 46005 (quart); 46006 (gallon); 46003 (DMS); 46002 (6 fl. oz.) - KIT		Used	See SDS sheets.	N/A	N
HAZMAT Shed	3M High Power Brake Cleaner, P.N. 08880		Used	See SDS sheets.	N/A	N

Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Dock (Tag & Feed) sheds
City; Little Port Walter AK
Phone No.: (907) 789-6000

Number of Occupants at this location: <u>Varies 2 – 12</u> Age of Occupants <u>Varies from 24 to 75 years</u>

Average: (@survey) ~ 38

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use
Industrial Church Other: Science Research

The buildings are laboratory shops where feed for maturing fish living in the fish pens outside the shops is prepared and stored. The shops also serve as a staging area for coordination the tagging of fish before they are released.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other_

If multiple units, how many? NA

If the property is commercial, what type?

Business types(s) Fisheries Aquaculture research

Does it include residences (i.e., multi-use)? Y/N If yes, how many? N/A.

Other characteristics:

Number of floors: 1 Building age: 27 years

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

If yes, please describe: Decay odors from fish, solvent (CLP) odors when solvents are in use

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Single floor

Airflow in building near suspected source

There is no evidence of intrusion at this time. These sheds are built on floating docks.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting odors from working with fish.

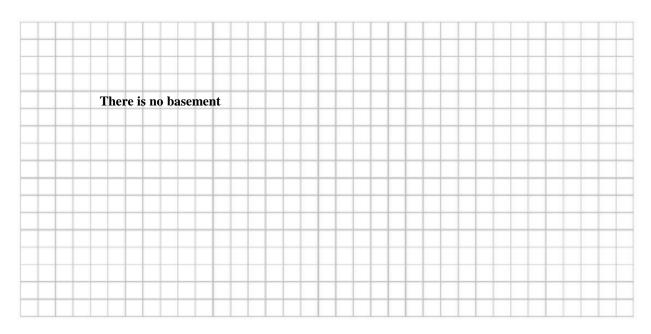
Infiltration into air ducts

There are no air ducts present.

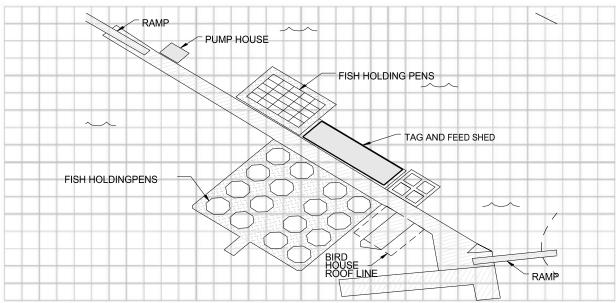
a. Above-grade constr	uction:	HARACTERISTIC	S (Cheie an ui	at appry.)
	wood fram concrete Steel / Meta		log brick	
	constructed on pili open air spa		ted on pilings losed air space	
b. Basement type:	full	crawlspace	slab-on-grade	other Water
c. Basement floor:	concrete	dirt	stone	other_
d. Basement floor:	unsealed	sealed	sealed with_	
e. Foundation walls	poured	block	stone	other_
f. Foundation walls:	unsealed	sealed	sealed with _	
g. The basement is:	wet	damp	dry	
h. The basement is:	finished	unfinished	partially finis	hed
i. Sump present?	YN			
j. Water in sump?	Y/N(no	t applicable		
Basement or lowest leve	l depth below grade:	No below grade stru	ctures – floatin	g foundation(feet).
Identify potential soil va The only entrance point is				
4. HEATING, VENTI	NG, and AIR COND	TIONING (Circle a	all that apply.)	
Type of heating system(s)	used in this building: (Circle all that apply	– not just prima	ry.)
Hot air circulation He	at pump	Hot water baseboard	i	
	eam radiation ood stove	Radiant floor Outdoor wood boile	er Other	·
The primary type of	f fuel used is:			
Natural gas Electric Wood	Fuel oil Propane Coal	Kero Solar		
Domestic hot water	tank is fueled by: $N/2$	<u>A</u>		
Boiler/furnace is loc				
Basement Outdoors	Main floor	Other		

28

Do any of the heating appliances have cold-air intakes? $\ Y/N$

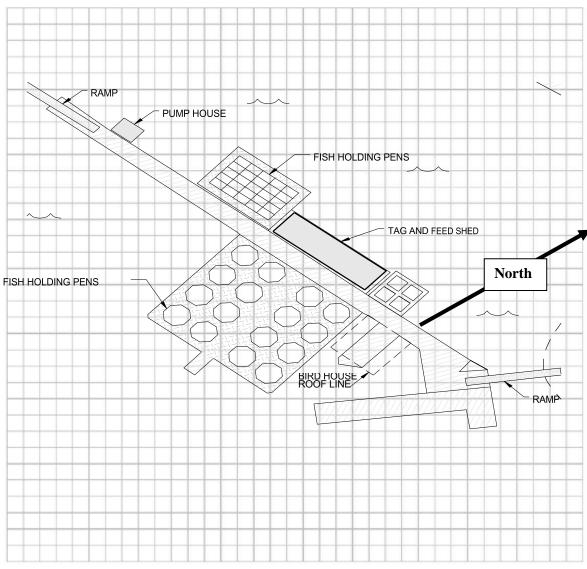

Type of air conditioning or ventilation used in this building:

Centr	al air	Window units	Op	en windows		None			
Comi	Commercial HVAC Heat-recovery system		stem Pa	ssive air syste	m				
Are there	Are there air distribution ducts present?								
joints. In	•	stem in the building on of air supply and this structure.	,		*	ne tightness of duct			
Is there a	radon mitigation	system for the buil	ding/structu		nstallation	1			
Is the sys	tem active or pass	ive? Active/I	Passive						
5. OCCUPA Is basemo	ANCY ent/lowest level oc	cupied? Full-time	e Oc	ecasionally	Seldom	Almost never			
Level	General Use of	f Each Floor (e.g., fa	amily room,	bedroom, lat	ındry, wo	rkshop, or storage).			
Basement	There is no basem	ent							
1 st Floor	Laboratory and m	aintenance spaces							
2 nd Floor									
3 rd Floor									
6. WATER AND SEWAGE									
Water supply:									
Public water Sewage disposa	Drilled well	Driven well D	ug well	Other	None				
Public sewer	Septic tank	Leach field D	ry well	Other	None				


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING QUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y/N
Does the garage have a separate heating unit?	Y/N/NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y/NNA
Please specify	
Has the building ever had a fire?	Y /(N)
When?	
Is a kerosene or unvented gas space heater present?	Y/N
Where?	
Is there a workshop or hobby/craft area?	Y /(N)
Where and type	
Is there smoking in the building?	Y /(N)
How frequently?	
Has painting/staining been done in the last six months?	Y/N
Where and when?	
Is there new carpet, drapes or other textiles?	Y /(N)
Where and when?	
Is there a kitchen exhaust fan?	Y (N)
If yes, where is it vented?	
Is there a bathroom exhaust fan?	YN
If yes, where is it vented	
Is there a clothes dryer?	Y /(N)
If yes, is it vented outside?	Y/N
Are cleaning products, cosmetic products, or	(Y) N
pesticides used that could interfere with	
indoor air sampling?	
If yes, please describe	Alcohol, formalin solutions, lubricants.

Do any of the building occupants use solvents at work? Y/N

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? Scientists are in contact with the alcohols and formalin solutions.

If yes, are his/her/their clothes washed at work?

Y/N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

No

Yes, use dry cleaning infrequently (monthly or less)

Unknown

Yes, work at a dry cleaning services

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Lab	Molecular Biology Grade Ethanol		Used	See SDS		
Lab	Formaldehyde, 37 wt% solution, stabilized with methanol		Used	See SDS		
Mech Space	Drislide Multi-Purpose Lubricant-Aerosol Can		Used	See SDS		
Lab	Reagent Alcohol		Used	See SDS		
Lab	10% Neutral buffered formalin		Used	See SDS		
Lab	Tricaine Methanesulfonate		Used	See SDS		
Mech Space	Silicone Spray		Used	See SDS		
Mech Space	PB Penetrating Catalyst (Aerosol)		Used	See SDS		
Lab	Ethyl Alcohol 190 - 200 Proof USP/ACS/Grain/Synthetic/Kosher/Organic/ Cane/Wood		Used	See SDS		

Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Cove Cabin

City; <u>Little Port Walter AK</u> Phone No.: (907) 789-6000

Number of people at this location: Varies 1 – 4 Age of Occupants Varies from 12 Months to 75 years

Average: (@survey) ~ 30

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use

Industrial Church Other

The building houses the tools used for working with wood and metals to maintain the campus and assist the scientists by building unique rigging to support the experiments.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other____

If multiple units, how many?

If the property is commercial, what type?

Business types(s) Residence for caretaker and family.

Does it include residences (i.e., multi-use)? Y N If yes, how many? 1

Other characteristics:

Number of floors: 1 Building age: 57 years

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

If yes, please describe:

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

One Story

Airflow in building near suspected source

There is no evidence of intrusion at this time. The nearest source is about 18 feet from the front door. The subfloor is at least two feet above the bedrock and loam.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting dust and odor from the house.

3. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.)

					`	
a.	Above-grade co	nstruction:	wood frame		log brick	
			ucted on pilir open air spac		ucted on pilings sclosed air space	
	b. Basement typ	e:	full	crawlspace	slab-on-grad	de other <u>Structure elevated on pilings</u>
	c. Basement floo	or:	concrete	dirt	stone	other Water
	d. Basement floo	or:	unsealed	sealed	sealed with_	
	e. Foundation w	alls:	poured	block	stone	other
	f. Foundation w	alls:	unsealed	sealed	sealed with	-
	g. The basemen	t is:	wet	damp	dry	
	h. The basemen	t is:	finished	unfinished	partially fini	shed
	i. Sump present	?	YN			
	j. Water in sum	p?	Y / N not	t applicable		
Bas	ement or lowest	level depth be	low grade:]	No below grade st	ructures(fee	t).
Ide None		il vapor entry	points and a	npproximate size	(e.g., cracks, ut	ility ports, and drains).
4.	HEATING, VE	NTING, and A	AIR CONDI	TIONING (Circle	e all that apply.)	
Type	of heating systen	n(s) used in this	s building: (C	Circle all that appl	y – not just prim	nary.)
Hot a	ir circulation	Heat pump]	Hot water baseboa	ard	
	e heaters ric baseboard	Stream radiati Wood stove		Radiant floor Outdoor wood boi	der Other	Fuel stove
	The primary ty	pe of fuel used	is:			
	Natural gas Electric Wood		Fuel oil Propane Coal	Ke Sol	rosene ar	

Do any of the heating appliances have cold-air intakes? Y/N

Main floor

Other

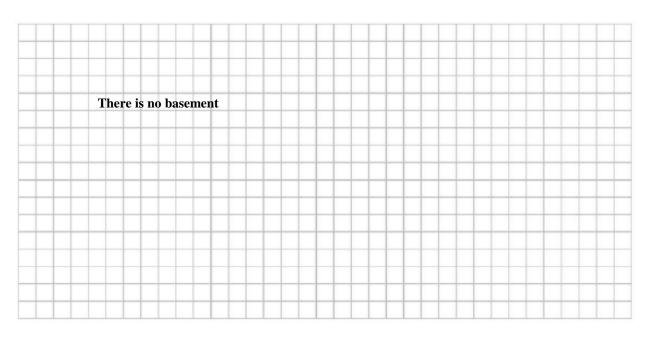
None

Domestic hot water tank is fueled by: Fuel Oil

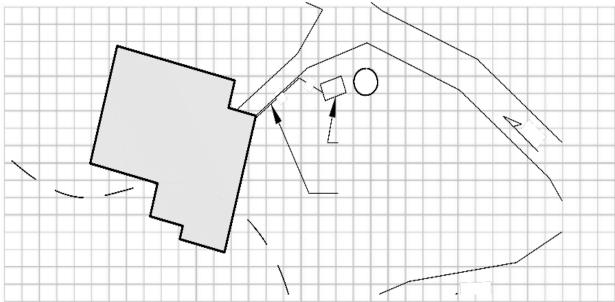
Boiler/furnace is located in:

Outdoors

Basement

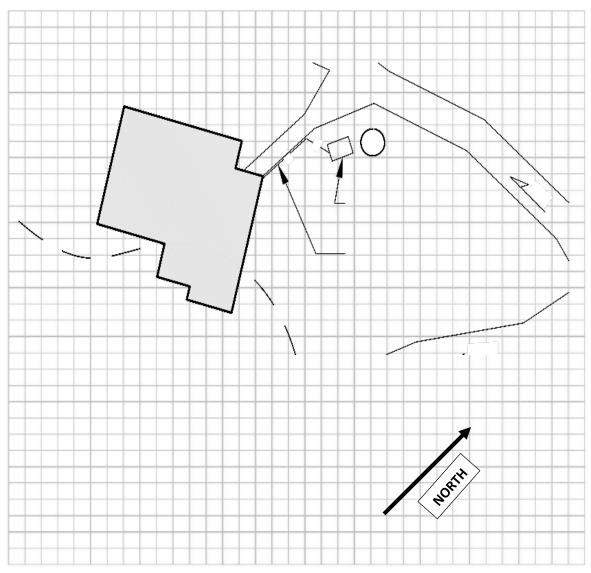

Type of air conditioning or ventilation used in this building:

Centr	al air	Window unit	s	Open windows	None				
Comr	nercial HVAC	Heat-recover	y system I	Passive air system					
Are there	Are there air distribution ducts present?								
Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan. There is no ventilation system in this structure.									
Is there a	radon mitigation	system for the	building/struc	ture? Y N Date of Ins	tallation				
Is the syst	em active or pass	ive? Act	ive/Passive						
5. OCCUPA Is baseme	NCY nt/lowest level oc	cupied? Full	-time (Occasionally S	Seldom	Almost never			
Level	General Use of	Each Floor (e.	g., family roon	ı, bedroom, laund	lry, workshop	, or storage).			
Basement	There is no basem	ent							
1st Floor	Living quarters fo	r the caretaker a	nd family.						
2 nd Floor									
3 rd Floor									
6. WATER	AND SEWAGE								
Water supply:									
Public water Sewage disposal	Drilled well	Driven well	Dug well	Other Sash	in Creek				
Public sewer	Septic tank	Leach field	Dry well	Other Little	e Port Walter B	Say			


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y/N	
Does the garage have a separate heating unit?	Y/N/NA	
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y / N NA	
Please specify		
Has the building ever had a fire?	Y /(N)	
When?)	
Is a kerosene or unvented gas space heater present?	Y/N	
Where?		
Is there a workshop or hobby/craft area?	Y /(N)	
Where and type		
Is there smoking in the building?	Y /(N)	
How frequently?		
Has painting/staining been done in the last six months?	Y/N	
Where and when?	(
Is there new carpet, drapes or other textiles?	Y /(N)	
Where and when?		
Is there a kitchen exhaust fan?	Y/N)	
If yes, where is it vented?		
Is there a bathroom exhaust fan?	Y(N)	
If yes, where is it vented		
Is there a clothes dryer?	Y(N)	
If yes, is it vented outside?	YN	
Are cleaning products, cosmetic products, or pesticides used that could interfere with indoor air sampling?	Y /N	
If yes, please describe	Consumer cle	eaning products used throughout the building

Do any of the building occupants use solvents at work?

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? All solvents contained in the chemical inventory can migrate into the residence. Maintenance mechanics are in contact with the petroleum solvents and assist with the Alcohol and formalin solutions. Residents also use household cleaners to maintain their living space.

If yes, are his/her/their clothes washed at work?

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

(No) Unknown

Yes, use dry cleaning infrequently (monthly or less)

Yes, work at a dry cleaning services

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

					Field	
					Instrument	
		Site		Chemical	Reading	Photo
Location	Product Description	(units)	Condition	Ingredients	(units)	Y/N
	Consumer Products as consumer use.					

Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Pan Abode Cabin City; Little Port Walter AK Phone No.: (907) 789-6000

Number of people at this location: Varies 1-4Age of Occupants Varies from 6 months to 75 years

Average: (@survey) Unoccupied

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use

Industrial Church Other

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family Raised Ranch Split Level Colonial Cape Cod Contemporary Mobile Home Duplex Apartment House Townhouse/Condo

Modular Log Home Other_

If multiple units, how many?

If the property is commercial, what type?

Business types(s): Residence for caretaker and family.

Does it include residences (i.e., multi-use)? Y N If yes, how many?

Other characteristics:

Number of floors: 1 Building age: 37 years

Is the building insulated?(Y)/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

If yes, please describe: burned fuel odors from stove operation.

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Single floor dwelling

2. AIRFLOW

Airflow in building near suspected source

Suspect source is about 30 feet from the front door with limited migration due to soil composition and position of fuel relative to the bedrock layer.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat.

Infiltration into air ducts

No air ducts

3.	Above grade construction	RUCTION	HAK	ACTERISTICS	S (Circle all the	nat apply.)
a.	Above-grade construction:	wood fran	ne		log rick	
	con	structed on pil open air spa	_		ed on pilings sed air space	
	b. Basement type:	full		crawlspace	slab-on-grad	de other
	c. Basement floor:	concrete		dirt	stone	other
	d. Basement floor:	unsealed	>	sealed	sealed with_	
	e. Foundation walls:	poured		block	stone	other <u>Plywood</u>
	f. Foundation walls:	unsealed	>	sealed	sealed with _	
	g. The basement is:	wet		damp	dry	
	h. The basement is:	finished	<	unfinished	partially fini	shed
	i. Sump present?	YN				
	j. Water in sump?	Y/N(n	ot app	licable		
to g enc		ff the ground. For supplies and The points and	Subsolid pers	equent residents onal equipment. Oximate size (e.	enclosed son Approximat	ne of the space under the cabin tely half of the cabin footprint is
4.	HEATING, VENTING, and					
	of heating system(s) used in t					ary)
• •	air circulation Heat pump	ins building.		vater baseboard	not just prim	ary.)
Spac	e heaters Stream radii tric baseboard Wood stove		Radia	ant floor oor wood boiler	Other	Fuel Oil Stove
	The primary type of fuel us	ed is:				
	Natural gas Electric Wood	Fuel oil Propane Coal		Kerose Solar	ene	
	Domestic hot water tank is	fueled by: Fu	ıel Oil			
	Boiler/furnace is located in:					
Ва	asement Outdoors Ma	ain floor	Other	·		
Do a	ny of the heating appliances ha	ave cold-air in	takes?	YN		

Type of air conditioning or ventilation used in this building: Central air Window units Open windows None Commercial HVAC Passive air system Heat-recovery system N Are there air distribution ducts present? Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan. There is no ventilation system in this structure. Is there a radon mitigation system for the building/structure? Y (N) Date of Installation Is the system active or passive? Active/Passive 5. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Seldom Almost never General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, or storage). Level Basement There is no basement – Enclosed space around onshore pilings. 1st Floor Living quarters of the caretaker and family 2nd Floor 3rd Floor WATER AND SEWAGE Water supply:

Dug well

Dry well

Other

Other

Sashin Creek

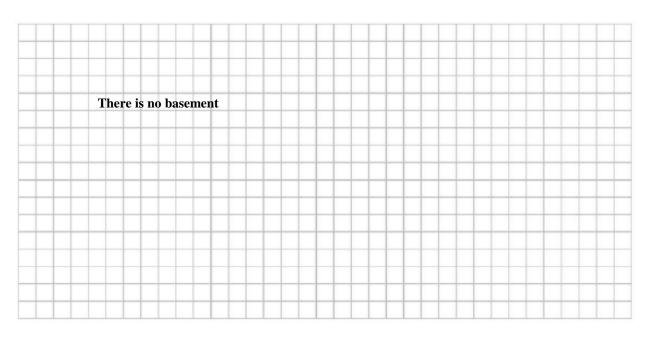
Little Port Walter Bay

Drilled well

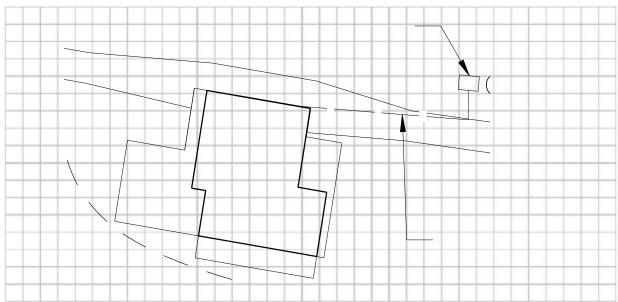
Septic tank

Driven well

Leach field

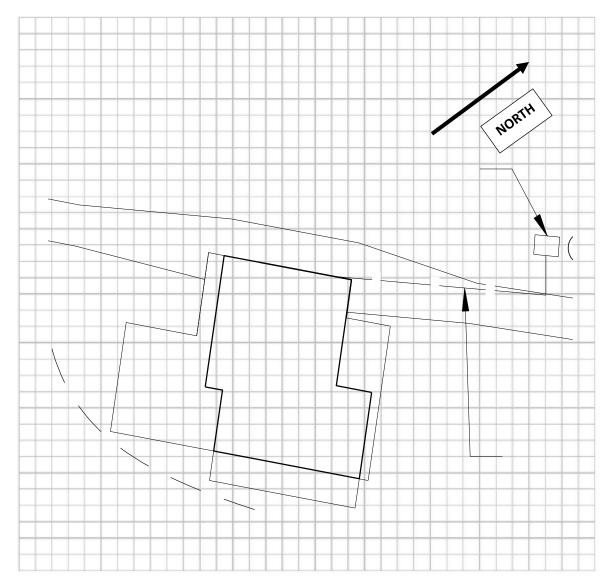

Public water

Sewage disposal: Public sewer


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y/N
Does the garage have a separate heating unit?	Y / N NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y/NNA
Please specify	
Has the building ever had a fire?	Y /(N)
When?	
Is a kerosene or unvented gas space heater present?	Y/N
Where?	
Is there a workshop or hobby/craft area?	Y (N)
Where and type	
Is there smoking in the building?	Y /(N)
How frequently?	
Has painting/staining been done in the last six months?	YN
Where and when?	
Is there new carpet, drapes or other textiles?	Y /(N)
Where and when?	
Is there a kitchen exhaust fan?	Y/N
If yes, where is it vented?	
Is there a bathroom exhaust fan?	Y(N)
If yes, where is it vented	
Is there a clothes dryer?	(Y) N
If yes, is it vented outside?	(Y) N
Are cleaning products, cosmetic products, or pesticides used that could interfere with indoor air sampling?	Y/N
If yes, please describe	

Do any of the building occupants use solvents at work?

(Y)/ N

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? <u>All solvents contained in the chemical inventory can migrate into the communal residence Maintenance mechanics are in contact with the petroleum solvents and scientists are in contact with the alcohols and formalin solutions.</u>

If yes, are his/her/their clothes washed at work?

Y /N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

Yes, use dry cleaning infrequently (monthly or less)

Yes, work at a dry cleaning services

Unknown

(No)

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

		Site		Chemical	Field Instrument Reading	Photo
Location	Product Description	(units)	Condition	Ingredients	(units)	Y/N
Location	r roduct Description	(umis)	Condition	ingredients	(units)	1/1
	Consumer Products as Consumer use		Used	See SDS	N/A	N
	Consumer Froducts as Consumer use		Cisca	sheets.	14/11	'`

- Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.
- Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Weir Pan Abode Shop
City; Little Port Walter AK
Phone No.: (907) 789-6000

Number of Occupants at this location: <u>Varies 2 – 12</u> Age of Occupants <u>Varies from 24 to 75 years</u>

Average: (@survey) ~ 38

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use
Industrial Church Other: Science Research

The buildings are laboratory shops where feed for maturing fish living in the fish pens outside the shops is prepared and stored. The shops also serve as a staging area for coordination the tagging of fish before they are released.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other_

If multiple units, how many? NA

If the property is commercial, what type?

Business types(s) Fisheries Aquaculture research

Does it include residences (i.e., multi-use)? Y/N If yes, how many? N/A.

Other characteristics:

Number of floors: 1 Building age: 32 years

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

If yes, please describe: Decay odors from fish, solvent (CLP) odors when solvents are in use

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Single floor

Airflow in building near suspected source

There is no evidence of intrusion at this time. This structure is built on pilings near the fish weir.

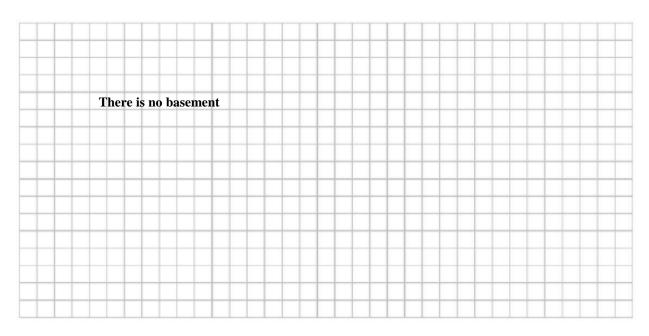
Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting odors from working with fish.

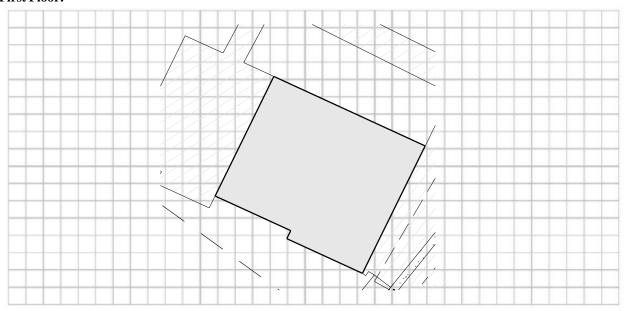
Infiltration into air ducts

There are no air ducts present.

a. Above-grade const	4.				
u nove gradeous	wood fram concrete Steel / Meta		log brick		
	constructed on pil open air spa		structed on pil		
b. Basement type:	full	crawlspac	ce slab-on-	-grade other_	
c. Basement floor:	concrete	dirt	stone	other_	
d. Basement floor:	unsealed	sealed	sealed v	with_	
e. Foundation walls	s: poured	block	stone	other_	
f. Foundation walls	: unsealed	sealed	sealed v	with _	
g. The basement is:	wet	damp	dry		
h. The basement is	finished	unfinishe	ed partially	y finished	
i. Sump present?	YN				
j. Water in sump?	Y/N no	ot applicable			
j. Water in sump? Basement or lowest leve			e structures – F	Pier foundation.	_(feet).
Basement or lowest level Identify potential soil v	el depth below grade: apor entry points and	No below grade	ize (e.g., crack	s, utility ports	
Basement or lowest lever Identify potential soil variation of the only entrance point is	el depth below grade: apor entry points and	No below grade approximate sind are at least 3 f	ize (e.g., crack eet off the gro	ss, utility ports und	
Basement or lowest lever Identify potential soil ver The only entrance point is 4. HEATING, VENT	el depth below grade: apor entry points and a gaps in the floor whic	No below grade approximate si h are at least 3 f	ize (e.g., crack eet off the gro	as, utility ports und ply.)	
Basement or lowest lever Identify potential soil ver The only entrance point is 4. HEATING, VENT Type of heating system(s)	el depth below grade: apor entry points and a gaps in the floor whic	No below grade approximate si h are at least 3 f	ize (e.g., crack eet off the gro rcle all that app pply – not just	as, utility ports und ply.)	
Basement or lowest level Identify potential soil vor the only entrance point is 4. HEATING, VENT Type of heating system(s) Hot air circulation Hot pace heaters St	el depth below grade: apor entry points and gaps in the floor whice ING, and AIR COND used in this building: (No below grade approximate single are at least 3 for a lea	ize (e.g., crack eet off the gro rcle all that app pply – not just board	as, utility ports und ply.)	
Basement or lowest lever Identify potential soil vor The only entrance point is 4. HEATING, VENT Type of heating system(s) Hot air circulation Hot Space heaters St.	el depth below grade: apor entry points and a gaps in the floor whice ING, and AIR COND used in this building: (eat pump ream radiation ood stove	No below grade approximate si h are at least 3 f ITIONING (Ci Circle all that ap Hot water basel Radiant floor	ize (e.g., crack eet off the gro rcle all that app pply – not just board	as, utility ports und ply.) primary.)	
Basement or lowest level Identify potential soil vor the only entrance point is 4. HEATING, VENT Type of heating system(s) Hot air circulation Hot air circulation Hot air circulation Space heaters Stelectric baseboard W	el depth below grade: apor entry points and a gaps in the floor whice ING, and AIR COND used in this building: (eat pump ream radiation ood stove	No below grade approximate si h are at least 3 f ITIONING (Ci Circle all that ap Hot water basel Radiant floor Outdoor wood	ize (e.g., crack eet off the gro rcle all that app pply – not just board	as, utility ports und ply.) primary.)	
Basement or lowest level Identify potential soil v. The only entrance point is 4. HEATING, VENT Type of heating system(s) Hot air circulation Heating system State State State State Heaters State St	el depth below grade: apor entry points and a gaps in the floor whice ING, and AIR COND used in this building: (eat pump ream radiation ood stove of fuel used is: Fuel oil Propane	No below grade approximate si h are at least 3 f ITIONING (Ci Circle all that ap Hot water basel Radiant floor Outdoor wood	ize (e.g., crack eet off the gro rcle all that app pply – not just board boiler	as, utility ports und ply.) primary.)	
Basement or lowest leverage le	apor entry points and a gaps in the floor whice ING, and AIR COND used in this building: (seat pump ream radiation cood stove) of fuel used is: Fuel oil Propane Coal r tank is fueled by: No	No below grade approximate si h are at least 3 f ITIONING (Ci Circle all that ap Hot water basel Radiant floor Outdoor wood	ize (e.g., crack eet off the gro rcle all that app pply – not just board boiler	as, utility ports und ply.) primary.)	

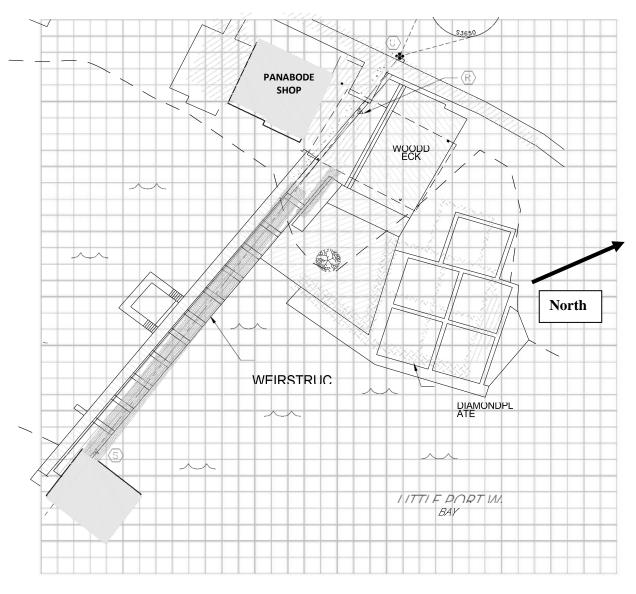

Type of air conditioning or ventilation used in this building:

Centr	al air	Window units	O	pen windows		None		
Comr	Commercial HVAC Heat-recovery		ystem Pa	assive air syste	em			
Are there	air distribution o	lucts present?	Y	N				
joints. Inc	•	on of air supply an	O,			he tightness of duct		
Is there a	radon mitigation	system for the bui	lding/structu		Installatio	n		
Is the syst	tem active or pass	sive? Active/	Passive					
5. OCCUPA Is baseme	ANCY ent/lowest level oc	cupied? Full-tin	ne Oo	ccasionally	Seldom	Almost never		
Level	General Use of	f Each Floor (e.g., i	family room,	bedroom, la	undry, wo	orkshop, or storage).		
Basement	There is no basen	nent						
_	Laboratory and m	aintenance spaces						
2 nd Floor								
3 rd Floor								
6. WATER AND SEWAGE								
Water supply:								
Public water Sewage disposal	Drilled well	Driven well I	Oug well	Other	None			
Public sewer	Septic tank	Leach field I	Ory well	Other	None			


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:


First Floor:

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y /N
Does the garage have a separate heating	Y/N/NA
unit?	
Are petroleum-powered machines or	Y/N/NA
vehicles stored in the garage (e.g.,	I / IN (INA)
lawnmower, ATV, or car)	
Please specify	
Has the building ever had a fire?	Y /(N)
When?	
Is a kerosene or unvented gas space heater present?	Y/N
Where?	
Is there a workshop or hobby/craft area?	Y /(N)
Where and type	
Is there smoking in the building?	Y /(N)
How frequently?	
Has painting/staining been done in the last six months?	Y/N
Where and when?	
Is there new carpet, drapes or other textiles?	Y /(N)
Where and when?	
Is there a kitchen exhaust fan?	Y (N)
If yes, where is it vented?	
Is there a bathroom exhaust fan?	Y (N)
If yes, where is it vented	
Is there a clothes dryer?	Y /N
If yes, is it vented outside?	Y/N
Are cleaning products, cosmetic products, or	0
pesticides used that could interfere with	Y (N)
indoor air sampling?	
If yes, please describe	

Do any of the building	occupants use solvents at work?	Y

Do any of the building occupants use solvents at work? (Y)/N (For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? Scientists are in contact with the alcohols and formalin solutions.

If yes, are his/her/their clothes washed at work?

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

No

Yes, use dry cleaning infrequently (monthly or less)

Unknown

Yes, work at a dry cleaning services

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
	Molecular Biology Grade Ethanol					
	Formaldehyde, 37 wt% solution, stabilized					
	with methanol					
	Reagent Alcohol					
	10% Neutral buffered formalin					
	Tricaine Methanesulfonate					
	Ethyl Alcohol 190 - 200 Proof					
	USP/ACS/Grain/Synthetic/Kosher/Organic/ Cane/Wood					

- Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**.
- Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OCCUPANT OR BUILDING PERSONNEL INTERVIEWED

Last Name: Weinlaeder First Name: Brad

1. BUILDING CHARACTERISTICS

Address: Weir Cabin

City; <u>Little Port Walter AK</u> Phone No.: (907) 789-6000

Number of people at this location: Varies 1 – 4 Age of Occupants Varies from 24 to 75 years

Average: (@survey) unoccupied

Type of Building: (Circle appropriate response.)

Residential School Commercial/Multi-use
Industrial Church Other Science Research

This building was the first structure on the Little Port Walter site. It is a small cabin that is not used as a residence unless all other space is exhausted. It does not have a bathroom but it does have running water and drains. It is often used to supplement the counter space at the Weir Pan Abode shop next-door.

If the property is residential, what type? (Circle appropriate response.)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouse/Condo

Modular Log Home Other____

If multiple units, how many?

If the property is commercial, what type?

Business types(s) Temporary residence used as temporary research space.

Does it include residences (i.e., multi-use)? Y N If yes, how many? 1

Other characteristics:

Number of floors: <u>2</u> Building age: <u>79 years</u>

Is the building insulated? Y/N How airtight? Tight Average / Not Tight

Have occupants noticed chemical odors in the building?

Y (N

If yes, please describe:

2. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Air flow between floors is convection flow. The airflow is turbulent and driven by the heat from the fuel stove.

Airflow in building near suspected source

There is no evidence of intrusion at this time. The subfloor is at least two feet above the bedrock and loam.

Outdoor air infiltration

Outdoor air enters through opened windows and doors. The envelope is tight to preserve heat while exhausting odor from the house.

3. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.)

a. A	Above-grade co		wood frame concrete		log brick			
			cted on pilir pen air spac		tructed on pi enclosed air			
b	. Basement typ	e:	full	crawlspace	e slab-or	n-grade ot	her <u>Structure of</u> <u>pilings</u>	elevated on
c	. Basement floo	or:	concrete	dirt	stone	O	ther <u>Water</u>	
d	l. Basement floo	or:	unsealed	sealed	sealed	with		
e	. Foundation w	alls:	poured	block	stone	O	ther	
f	. Foundation wa	alls:	unsealed	sealed	sealed	with _		
g	. The basement	t is:	wet	damp	dry			
h	. The basement	t is:	finished	unfinished	partiall	ly finished		
i	. Sump present	?	YN					
j	. Water in sum	p?	Y / N not	applicable				
Baser	ment or lowest	level depth belo	ow grade: 1	No below grade	structures.	_(feet).		
Ident None	ify potential so	il vapor entry p	oints and a	pproximate siz	e (e.g., crac	ks, utility _l	ports, and dra	ains).
4. I	HEATING, VE	NTING, and A	IR CONDI	TIONING (Circ	cle all that ap	pply.)		
Type o	f heating system	n(s) used in this	building: (C	Circle all that ap	ply – not just	t primary.)		
Hot air	circulation	Heat pump]	Hot water baseb	oard			
Space l Electric	heaters c baseboard	Stream radiation Wood stove		Radiant floor Outdoor wood b	oiler Oth	er Fuel	stove	
1	The primary typ	pe of fuel used i	s:					
	Natural gas Electric Wood	F	Fuel oil Propane Coal		Kerosene olar			
Ι	Domestic hot wa	ater tank is fuel	ed by: Fue	l Oil				

Do any of the heating appliances have cold-air intakes? Y/N

Main floor

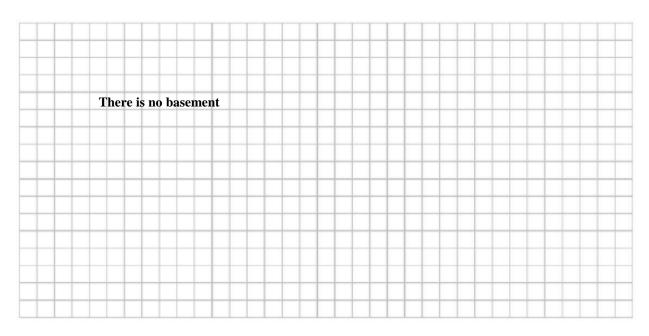
Other

None

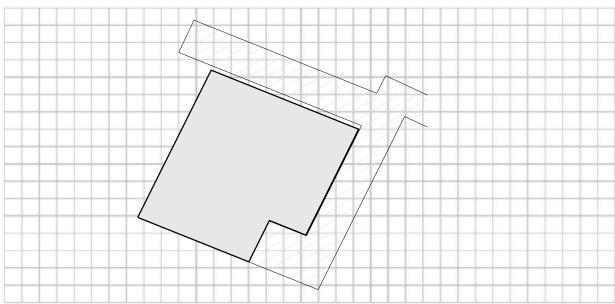
Boiler/furnace is located in:

Outdoors

Basement


Type of air conditioning or ventilation used in this building:

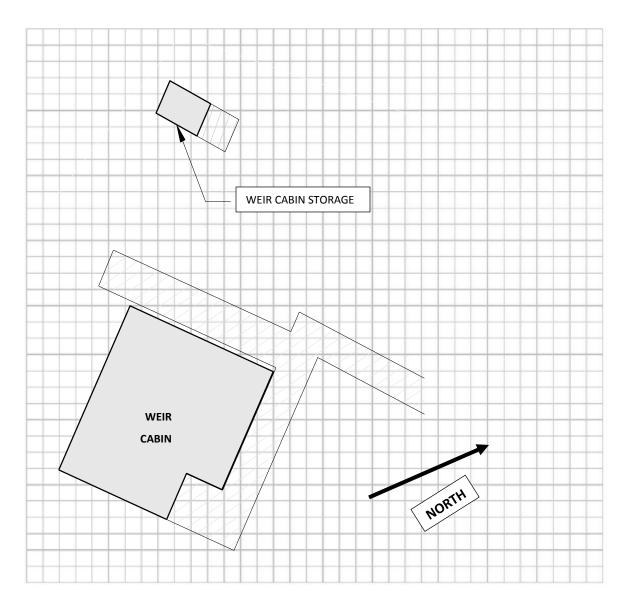
Centr	al air	Window unit	es 🤇	Open windows		None				
Comr	mercial HVAC	Heat-recover	y system l	Passive air syste	em					
Are there	air distribution o	lucts present?	•	YN						
Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan. There is no ventilation system in this structure.										
Is there a	Is there a radon mitigation system for the building/structure? Y N Date of Installation									
Is the syst	tem active or pass	ive? Act	ive/Passive							
5. OCCUPA Is baseme	ANCY ent/lowest level oc	cupied? Full	-time (Occasionally	Seldom		Almost never			
Level _		Each Floor (e.	g., family roon	n, bedroom, la	undry, wo	rkshop,	or storage).			
Basement	There is no basem	ent								
1st Floor	Living quarters ar	d extra laborato	ry space.							
2 nd Floor										
3 rd Floor										
6. WATER AND SEWAGE										
Water supply:										
Public water Sewage disposa	Drilled well l:	Driven well	Dug well	Other S	ashin Cree	ek				
Public sewer	Septic tank	Leach field	Dry well	Other S	ashin cree	k				


7. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:

First Floor:



ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE

8. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING OUESTIONNAIRE

This section should be completed during a pre-sampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	Y/N
Does the garage have a separate heating unit?	Y / N NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y/NNA
Please specify	
Has the building ever had a fire?	Y /(N)
When?	<u> </u>
Is a kerosene or unvented gas space heater present?	Y/N
Where?	
Is there a workshop or hobby/craft area?	Y (N)
Where and type	
Is there smoking in the building?	Y /(N)
How frequently?	
Has painting/staining been done in the last six months?	Y/N
Where and when?	
Is there new carpet, drapes or other textiles?	Y /(N)
Where and when?	
Is there a kitchen exhaust fan?	Y/N
If yes, where is it vented?	
Is there a bathroom exhaust fan?	Y(N)
If yes, where is it vented	
Is there a clothes dryer?	Y(N)
If yes, is it vented outside?	Y /(N)
Are cleaning products, cosmetic products, or pesticides used that could interfere with indoor air sampling?	Y/N
If yes, please describe	

Do any of the building occupants use solvents at work?

(For example, is the building used for chemical manufacturing or a laboratory, auto mechanic or auto body shop, painting shop, fuel oil delivery area, or do any of the occupants work as a boiler mechanic, pesticide applicator, or cosmetologist?)

If yes, what types of solvents are used? All solvents contained in the chemical inventory can migrate into the residence. Maintenance mechanics are in contact with the petroleum solvents and assist with the Alcohol and formalin solutions. Residents also use household cleaners to maintain their living space.

If yes, are his/her/their clothes washed at work?

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry cleaning regularly (weekly)

Yes, use dry cleaning infrequently (monthly or less)

Yes, work at a dry cleaning services

Unknown

(No)

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE (Chemical Inventory)

2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
	Consumer Products as consumer use.					
	Molecular Biology Grade Ethanol					
	Formaldehyde, 37 wt% solution, stabilized with methanol					
	Reagent Alcohol					
	10% Neutral buffered formalin					
	Tricaine Methanesulfonate					
	Ethyl Alcohol 190 - 200 Proof USP/ACS/Grain/Synthetic/Kosher/Or ganic/Cane/Wood					

Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)**.

Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE (Chemical Inventory)

Name	Manufacturer
569 THREAD SEALANT HIGH STRENGTH	
HYDRAULIC SEALANT	Henkel Corporation
WELD-ON P-70 Low VOC Primer for PVC and CPVC	TDG G
Plastic Pipe	IPS Corporation
KRYLON Matte Finish Spray Coating	KRYLON PRODUCTS
RectorSeal Tru-Blu	The RectorSeal Corporation
UNBRANDED CONVENTIONAL GASOLINE	Conoco Phillips
Molecular Biology Grade Ethanol	Thermo Fisher Scientific
Used Oil	Safety-Kleen Systems, Inc.
WELD-ON 705 Low VOC Cements for PVC Plastic	·
Pipe	IPS Corporation
X-PANDO PIPE JOINT COMPOUND	X-PANDO PRODUCTS COMPANY
KRYLON Industrial QUIK-MARK Solvent-Based	KRYLON PRODUCTS
Inverted Marking Paint (Fluorescent), Orange	RR I LON PRODUCTS
WD-40 Multi-Use Product Aerosol	WD-40 Company
Formaldehyde, 37 wt% solution, stabilized with	Thermo Fisher Scientific
methanol	
Delo 400 SAE 30, 40, 50	Chevron Canada Limited
DIESEL FUEL	Petro-Canada
Instant Cold Galvanize	CRC Industries, Inc.
GA-12 12oz GEL GLOSS AEROSOL	T.R. INDUSTRIES
Drislide Multi-Purpose Lubricant-Aerosol Can	CORTEC CORPORATION
WELD-ON 711 Low VOC PVC Plastic Pipe Cements	IPS Corporation
KRYLON ColorMaster with Covermax Technology	KRYLON PRODUCTS
Paint + Primer, Gloss White	
Famowood Wood Filler - Original Formula	Eclectic Products, Inc.
22206 - STABIL Fuel Stabilizer	GOLD EAGLE COMPANY
Rust Stain Remover	Whink Products Company
Goof Off Super Glue Remover	W. M. Barr
PTOUCH 2X +SSPR 6PK FLAT MATTE CLEAR	Rust-Oleum Corporation
KRYLON Industrial IRON GUARD DTM Water-	KRYLON PRODUCTS
Based Anti-Rust Acrylic Coating, Flat Black	
SCOFIELD Formula One Liquid Dye Concentrate	L M SCOFIELD CO
Reagent Alcohol	MCC
THRUST QUICK STARTING FLUID	Radiator Specialty Company
KRYLON ColorMaster with Covermax Technology	KRYLON PRODUCTS
Primer, Gray	
ACE Premium Enamel, Almond	ACE HARDWARE CORPORATION
Weld-On 700 Low VOC Cement for PVC Plastic Pipe	IPS Corporation
CORROSION BLOCK NON-FLAMMABLE	LEAR CHEMICAL RESEARCH CORP.
AEROSOL	
10% Neutral buffered formalin	Thermo Fisher Scientific
Foam-It Part B	ITW Professional Brands
BENJAMIN MOORE ARBORCOAT EXTERIOR	BENJAMIN MOORE & COMPANY
OIL STAIN SEMI SOLID-TINT BASE	
Gasoila Soft Set	Federal Process Corporation
KRYLON High Heat, White	KRYLON PRODUCTS
MITEE DARK THREAD CUTTING OIL	DAP Products Inc.
NAPA/CRC Battery Cleaner with Indicator	CRC Industries, Inc.
765-1674 NAPA ANTI-SEIZE LUBRICANT	ITW Professional Brands
(PTX80078) 8 OZ.	
Air Tool Lubricant	The Blaster Corporation
Mac's Premium Starting Fluid	ASHLAND INC.
765-1151 NAPA ANTI-SEIZE LUBRICANT	ITW Professional Brands
(PTX80208) 16 OZ	

Name	Manufacturer
NAPA Mac's Battery Terminal Protector	THE SHERWIN-WILLIAMS COMPANY
RONSONOL LIGHTER FUEL	SOPUS Products
Roberts 3000 Carpet and Felt-Back Vinyl Adhesive	ROBERTS CONSOLIDATED INDUSTRIES INC
22001 - Fogging Oil - Gold Eagle Fogging Oil	GOLD EAGLE COMPANY
TYTAN Cleaner	Selena USA, Inc.
Tricaine Methanesulfonate	Western Chemical, Inc.
Ace Contact Cement	DAP Products Inc.
3M Marine Fiberglass Cleaner and Wax, P.N. 09009, 09010, 09010E, 09011	3M Corporation
ULTRATANE BUTANE FUEL	Master Appliance Corporation
BRITE ZINC	Weld-Aid Products
LEAK LOCK	Highside Chemicals
Touch N Foam Pro Quick Cure Sealant Foam	Convenience Products, Division of Clayton Corp.
BRUSHING LIQUID 333 CLEAR	Akzo Nobel
STARBRITE LIQUID ELECTRICAL TAPE	Star brite, Inc.
Silicone Spray	MCNETT CORPORATION
PB Penetrating Catalyst (Aerosol)	The Blaster Corporation
OATEY PVC REGULAR CLEAR – LO-VOC FORMULA	Oatey Company
OATEY PURPLE OR CLEAR PRIMER NSF LISTED	Oatey Company
RectorSeal No. 5	The RectorSeal Corporation
Ethyl Alcohol 190 - 200 Proof USP/ACS/Grain/Synthetic/Kosher/Organic/Cane/Wood	PHARMCO-AAPER
RectorSeal No. 5 Special	The RectorSeal Corporation
3M Marine Premium Filler. PN:	
46004 (pint);	
46005 (quart);	3M Corporation
46006 (gallon);	
46003 (DMS);	
46002 (6 fl. oz.) - KIT	
3M High Power Brake Cleaner, P.N. 08880	3M Corporation

(This Page Intentionally Left Blank)

APPENDIX F

FUEL LINE SNAG REPORT

Ahtna Environmental, Inc.

110 W. 38th Avenue. Suite 200B Anchorage, AK 99503

> <u>www.aeiak.com</u> Phone: (907) 644-0760 Fax: (907) 272-6356

Design-Build • Construction • Environmental • Government Services

June 22, 2017

Louis Howard ADEC-Division of Spill Prevention and Response 555 Cordova Street 2nd Floor Anchorage, AK 99501-2617

Subject: Little Port Walter - Fuel Line Snag Report

Dear Mr. Howard:

Ahtna Environmental, Inc. (Ahtna) was onsite at Little Port Walter from Saturday, May 6, 2017 until Tuesday, May 9, 2017 to conduct an Environmental Liabilities Evaluation. On Sunday, May 7, 2017 while investigating a potential past fuel line spill near the generator shed and bulk fuel tanks, Ahtna snagged the current fuel line with the NOAA supplied CASE excavator. Immediately after the event, Ahtna worked with NOAA to shut off the valve and prevent additional fuel loss, and use absorbent pads to capture as much fuel as possible. It is estimated that less than 1/10 of a gallon of diesel was released. Ahtna then excavated approximately 7-cubic feet of material beneath the leak down to bedrock to remove any contaminated soil. The material is secured in a fish box wrapped in plastic and is currently stored onsite for future offsite disposal. The fuel line was repaired and the area backfilled. Onsite NOAA personnel were notified of the incident and inspected the repair. Additional details are presented in the remainder of this project.

Geology/Hydrology

The weather conditions on Sunday, May 7, 2017 were overcast with a continual moderate to heavy rainfall throughout the day. In support of the construction of the generator shed, the hill in the immediate vicinity was excavated after blasting to bedrock and the gravel used to level the area for the generator shed and bulk fuel tank storage area (Attachment 1, Figure 1). There is no soil between the bedrock and the gravel layer. Groundwater flows just below the gravel, 12-24-inches, along the surface of the bedrock from uphill (north) to downhill (south).

Utility Locate Procedure

Figures provided by NOAA were reviewed for potential locations of soil contamination and to support utility locate information. After arriving onsite via charter plane, Ahtna walked the entire site with NOAA field/maintenance staff locating all known utilities. The approximate locations of electrical, telecommunication, and fuel lines were noted by Ahtna before any field work commenced. The majority of utility lines are running within or alongside the gravel trails/paths throughout the site. The electrical panels were located within each structure and fuel line entrance/exist points were also noted (Attachment 1, Figure 2).

During the petroleum soil investigation, each structure's fuel tank and the entrance of the fuel line into the structures were located and inspected. The electrical panels within the structure were also located along with the approximate utility line locations provided by the onsite NOAA staff. The "snag" of the fuel line happened at the third structure of the day (area between workshops and generator shed), and the eighth (8th) overall excavated area (Attachment 1, Figure 5).

Fuel Line Snag

Ahtna and NOAA's representatives conducted a tailgate health and safety meeting each morning prior to starting work activities. Topics discussed on Sunday included heavy equipment inspection checklist, safely working around heavy equipment, locating utilities and fuel lines, slip/trips/falls, potentially contaminated soil and water, and adverse weather conditions.

While excavating at the edge of the gravel roadway near the bulk fuel tanks, the tooth of the excavator caught the 1-inch interior diameter double walled diesel fuel line running to the generator shed. This took place approximately 22-feet north of the fuel tank outlets (Attachment 1, Figure 4). The spotter was able to signal the operator to stop prior to fully severing the line. The spotter inspected the kinked fuel line and determined it did not breach. The operator immediately followed the fuel line to the bulk fuel tanks and noticed a small leak (1-cm) in the flex fitting attaching the fuel line to the structure. The spotter was unable to see the leak because they were on the opposite side of the excavator bucket. The operator used his glove to reduce the flow of the leak. The kink of the fuel line occurred at 40-48-inches from the concrete pad (bulk fuel tank area). The fuel line was believed to run in the more direct path to the far NE corner of the generator shed.

Ahtna used a nearby snow shovel and placed it below the leak to collect any leaking fuel. Ahtna notified NOAA staff immediately and Ahtna used the spill kit (75 yards away) to absorb as much escaped fuel as possible while the NOAA staff shut off the inside valve from the fuel tank. Later the generator valve on the fuel line was closed creating a vacuum to trap the existing fuel inside the line.

After the release of additional fuel loss was eliminated, Ahtna used an empty wheelbarrow, two 5 gallon buckets, and shovels of varying blade widths to excavate the material and groundwater directly below the small leak. The material (gravel) was excavated straight down to bedrock, north (direction of groundwater flow) to bedrock, and south (direction towards generator shed, upstream) 2-feet. All excavated material was collected in the buckets and then placed in a wheel barrow. This excavated material was subsequently mixed/aired out to help release any volatiles.

The following day (Monday, May 8, 2017), the excavated material stored in the wheelbarrow was moved into a sealed fish box and secured with plastic. Both areas of the fuel line (kink and dripping flexible coupler) were re-inspected. The flexible coupler was removed and fuel was noticed inside the pipe within two inches of its top. This pipe was disconnected and drained an additional 3-feet back into the line with a rubber transfer hose, a snug metal plug was double hose clamped to the open end, and the entire array was suspended several feet higher than its previous location. A cap was also installed on the fuel take side. No diesel was observed in either of these procedures. The as-left conditions/repairs were shown to NOAA onsite maintenance staff (Attachment 1, Figures 9-12).

Ahtna offered to uncover the fuel line for future repairs before departure; this was declined due to potential safety trip hazards and weather considerations. Ahtna has staged the excavated material onsite and will incorporate it into future remediation work for eventual proper disposal. There were no replacement parts on hand and due to the remote location of the site, Ahtna is working with NOAA to purchase and ship replacement fuel line and parts associated with the leak to the site.

Due to the circumstances and potential hazards associated with the snag of the double walled fuel line, Ahtna implemented immediate measures to stop the leak, excavate contaminated material, and repair the impacted fuel supply system without direction by NOAA. The repair was inspected by NOAA who also provided a secure location for storing the impacted material for future disposal. Requesting parts in remote Alaska was not believed to be uncustomary. All actions were performed by Ahtna with the intent of doing the right and professional thing.

Attachment 1 shows additional detail photos associated with the snag and its repair.

Fuel Loss/Removed Material

The exterior pipe along the bulk fuel tank structure has a 1.5-inch exterior diameter pipe with a 1-inch interior diameter. There was up to 10 seconds of unobstructed fuel leak before a gloved hand was placed over the leak to reduce flow. Approximately 3-feet of vertical pipe lost fuel, it is anticipated that no more than 1/10 gallon of diesel fuel was released. Most of this fuel was contained. Approximately 7-cubic feet of material was removed.

Sample Collection

On Sunday, May 7, 2017, after the fuel line had been secured and excavated material safely stored, Ahtna's Environmental Sampler collected one sample from the excavated western sidewall [LPW17-SL-GSP-W-01]. This sample will be used to support the disposition of the contaminated soil removed from the area of the leak. The results are listed in the table below and indicate the following;

Analyte	Analytical Results (mg/kg)
Benzo[a]pyrene	.0029
Benzo[a]anthracene	.007
Benzo[b]fluoranthene	.013
Benzo[k]fluoranthene	.0047
Chrysene	.019
Dibenzo[a,h]anthracene	.0012
Indeno[1,2,3cd]pyrene	.004
DRO (Diesel Range Organics)	9,000
RRO (Residual Range Organics)	200

The following day, Monday, May 8, 2017, Ahtna's Environmental Sampler collected an additional 3 samples from the limits of excavation in locations shown in Attachment 2.

- LPW17-SL-GSP-leak01 was collected 2-feet west of the excavated material;
- LPW17-SL-GSP-leak02 was collected 3-feet north (upstream) of the excavated material;
 and

• LPW17-SL-GSP-leak03 was collected 2 feet south (downstream) of the excavated material.

One additional sample, LPW17-SL-GSP-leak04 was collected from outside of the impacted area, on the south side of the bulk fuel structure.

Analytical results are listed in the table below and the excerpt from the lab report is included as Attachment 3.

Sample ID						
	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylene
LPW17-SL-GSP-leak01	750H	47H	ND	.025	.093	.610
LPW17-SL-GSP-leak02	47	50	ND	ND	ND	ND
LPW17-SL-GSP-leak03	9.9	19	ND	ND	ND	ND
LPW17-SL-GSP-leak04	42	110	NA	NA	NA	NA
Cleanup Criteria	260	9,700	0.022	6.7	0.13	1.5

Notes:

DRO – Diesel Range Organics mg/kg – milligram/kilogram

NA – Not Analyzed

ND-Non-Detect

RRO – Residual Range Organics

H- data qualifier for analysis out of hold time

Conclusions

The generator shed and bulk fuel tanks are built on approximately 1-2 feet of imported gravel placed directly on top of bedrock. The depth of gravel is dependent upon leveling of the bedrock in order to construct the structures. The utilities do not go in a straight line, instead they follow the curvature/depth of bedrock. Ahtna made every effort to clean up the unfortunate situation prior to leaving the site, and is still in communication with onsite NOAA staff to rectify the situation. The excavated soil is currently planned for transport and disposal in Juneau, pending finalization of logistics. Ahtna will submit the ADEC contaminated soil transport form for approval prior to moving the soil.

Sincerely,

Ahtna Environmental, Inc.

Vivian Tokar Project Manager

Kathryn Cleveland Assistant Project Manager/Field Team Lead

Attachments:

- Photographic Log
 Sample Locations
- 3. Analytical Results (pages 114-117, 126)

ATTACHMENT 1

PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG

Figure 1. Workshop and generator shed area: Blasted bedrock to build structures.

Figure 2. Workshop and generator shed area: Utility locations.

Figure 3. Workshop and generator shed area: Ahtna operator and spotter.

Figure 4. Workshop and generator shed area: Location of kink and leak.

Figure 5. Workshop and generator shed area: Kinked fuel line.

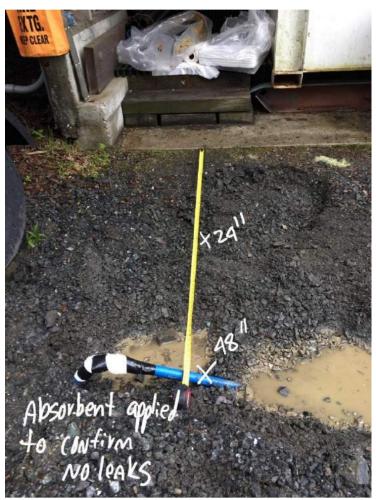


Figure 6. Workshop and generator shed area: Location of kinked fuel line.

Figure 7. Workshop and generator shed area: Location of leak.

Figure 8. Workshop and generator shed area: Flex fitting leak.

Figure 9. Workshop and generator shed area: Removed material.

Figure 9. Workshop and generator shed area: Ahtna repairs.

Figure 10. Workshop and generator shed area: Ahtna repairs.

Figure 11. Workshop and generator shed area: Ahtna repairs.

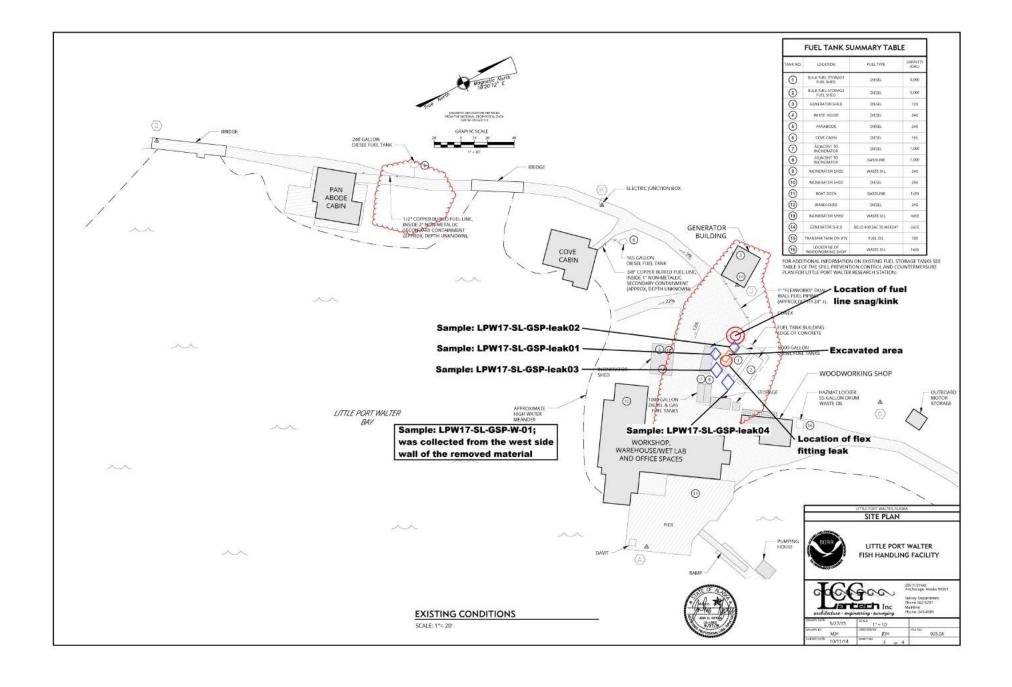

Figure 12. Workshop and generator shed area: Ahtna repairs to both locations.

Figure 13. Workshop and generator shed area: Backfilled areas.

ATTACHMENT 2

NOAA FIGURE

ATTACHMENT 3

ANALYTICAL RESULTS (PAGES 114-117, 126)

Client Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Terphenyl-d14

TestAmerica Job ID: 580-68287-1

05/22/17 09:33 05/30/17 13:35

2

Client Sample ID: LPW17-SL-GSP-W-01 Lab Sample ID: 580-68287-71

 Date Collected: 05/08/17 15:40
 Matrix: Solid

 Date Received: 05/10/17 14:00
 Percent Solids: 58.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	870		8.3	1.0	ug/Kg	<u></u>	05/22/17 09:33	05/30/17 13:35	1
2-Methylnaphthalene	1200	F1	8.3	0.75	ug/Kg	≎	05/22/17 09:33	05/30/17 13:35	1
Acenaphthene	58		8.3	1.0	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Acenaphthylene	ND		8.3	0.83	ug/Kg	\$	05/22/17 09:33	05/30/17 13:35	1
Anthracene	20		8.3	1.0	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Benzo[a]anthracene	7.0	JB	8.3	1.3	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Benzo[a]pyrene	2.9	J	8.3	0.66	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Benzo[b]fluoranthene	13		8.3	0.98	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Benzo[g,h,i]perylene	3.7	J	8.3	0.83	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Benzo[k]fluoranthene	4.7	J	8.3	1.0	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Chrysene	19		8.3	2.5	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Dibenz(a,h)anthracene	1.2	J	8.3	1.2	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Fluoranthene	43		8.3	2.3	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Fluorene	120		8.3	0.83	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Indeno[1,2,3-cd]pyrene	4.0	J	8.3	1.0	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Naphthalene	630		8.3	1.3	ug/Kg	₽	05/22/17 09:33	05/30/17 13:35	1
Phenanthrene	98		8.3	1.1	ug/Kg	☼	05/22/17 09:33	05/30/17 13:35	1
Pyrene	74		8.3	1.6	ug/Kg	₩	05/22/17 09:33	05/30/17 13:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>9000</th><th>F2</th><th>32</th><th>9.9</th><th>mg/Kg</th><th>₩</th><th>05/20/17 12:17</th><th>05/23/17 14:15</th><th>1</th></nc25)<>	9000	F2	32	9.9	mg/Kg	₩	05/20/17 12:17	05/23/17 14:15	1
RRO (nC25-nC36)	200	F2	81	18	mg/Kg	₩	05/20/17 12:17	05/23/17 14:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	106		50 - 150				05/20/17 12:17	05/23/17 14:15	1
n-Triacontane-d62	89		50 - 150				05/20/17 12:17	05/23/17 14:15	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58.4		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	41.6		0.1	0.1	%			05/23/17 15:47	1

68 - 138

TestAmerica Seattle

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-72

Client Sample ID: LPW17-SL-GSP-Leak01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		11	4.7	ug/Kg	<u> </u>	05/17/17 14:40	05/18/17 00:47	1
Toluene	25	J	83	17	ug/Kg	₽	05/17/17 14:40	05/18/17 00:47	1
Ethylbenzene	93		22	5.0	ug/Kg	₩	05/17/17 14:40	05/18/17 00:47	1
m-Xylene & p-Xylene	370		110	18	ug/Kg	₽	05/17/17 14:40	05/18/17 00:47	1
o-Xylene	240		22	7.4	ug/Kg	☼	05/17/17 14:40	05/18/17 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	91		52 - 152				05/17/17 14:40	05/18/17 00:47	1
Toluene-d8 (Surr)	97		79 - 119				05/17/17 14:40	05/18/17 00:47	1
1,2-Dichloroethane-d4 (Surr)	102		81 - 121				05/17/17 14:40	05/18/17 00:47	1
4-Bromofluorobenzene (Surr)	97		79 - 120				05/17/17 14:40	05/18/17 00:47	1
Dibromofluoromethane (Surr)	98		78 - 118				05/17/17 14:40	05/18/17 00:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	75		5.8	0.73	ug/Kg	<u></u>	05/22/17 09:33	05/30/17 15:04	1
2-Methylnaphthalene	77		5.8	0.52	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Acenaphthene	18		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Acenaphthylene	13		5.8	0.58	ug/Kg	φ.	05/22/17 09:33	05/30/17 15:04	1
Anthracene	11		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Benzo[a]anthracene	15	В	5.8	0.89	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[a]pyrene	43		5.8	0.47	ug/Kg	φ.	05/22/17 09:33	05/30/17 15:04	1
Benzo[b]fluoranthene	60		5.8	0.69	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[g,h,i]perylene	71		5.8	0.58	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Benzo[k]fluoranthene	18		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Chrysene	22		5.8	1.7	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Dibenz(a,h)anthracene	8.3		5.8	0.84	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Fluoranthene	45		5.8	1.6	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Fluorene	20		5.8	0.58	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Indeno[1,2,3-cd]pyrene	80		5.8	0.70	ug/Kg	₽	05/22/17 09:33	05/30/17 15:04	1
Naphthalene	45		5.8	0.93	ug/Kg	\$	05/22/17 09:33	05/30/17 15:04	1
Phenanthrene	26		5.8	0.80	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Pyrene	74		5.8	1.1	ug/Kg	☼	05/22/17 09:33	05/30/17 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	76		68 - 138				05/22/17 09:33	05/30/17 15:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>750</th><th></th><th>22</th><th>6.7</th><th>mg/Kg</th><th>₩</th><th>05/20/17 12:17</th><th>05/23/17 15:23</th><th>1</th></nc25)<>	750		22	6.7	mg/Kg	₩	05/20/17 12:17	05/23/17 15:23	1
RRO (nC25-nC36)	47	J	55	12	mg/Kg	₩	05/20/17 12:17	05/23/17 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				05/20/17 12:17	05/23/17 15:23	1
n-Triacontane-d62	87		50 - 150				05/20/17 12:17	05/23/17 15:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	84.2		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	15.8		0.1	0.1	%			05/23/17 15:47	1

TestAmerica Seattle

TestAmerica Job ID: 580-68287-1

Lab Sample ID: 580-68287-73

Client: Ahtna Engineering Services LLC

Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-GSP-Leak02

Date Collected: 05/08/17 16:05 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 84.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		12	5.4	ug/Kg	<u> </u>	05/17/17 14:40	05/18/17 01:13	1
Toluene	ND		94	20	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
Ethylbenzene	ND		25	5.7	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
m-Xylene & p-Xylene	ND		120	20	ug/Kg		05/17/17 14:40	05/18/17 01:13	1
o-Xylene	ND		25	8.4	ug/Kg	₩	05/17/17 14:40	05/18/17 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	109		52 - 152				05/17/17 14:40	05/18/17 01:13	1
Toluene-d8 (Surr)	98		79 - 119				05/17/17 14:40	05/18/17 01:13	1
1,2-Dichloroethane-d4 (Surr)	101		81 - 121				05/17/17 14:40	05/18/17 01:13	1
4-Bromofluorobenzene (Surr)	98		79 - 120				05/17/17 14:40	05/18/17 01:13	1
Dibromofluoromethane (Surr)	96		78 ₋ 118				05/17/17 14:40	05/18/17 01:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene			5.4	0.68	ug/Kg	<u> </u>	05/22/17 09:33	05/30/17 14:42	1
2-Methylnaphthalene	11		5.4	0.49	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Acenaphthene	3.9	J	5.4	0.65	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Acenaphthylene	3.9	J	5.4	0.54	ug/Kg		05/22/17 09:33	05/30/17 14:42	1
Anthracene	6.9		5.4	0.65	ug/Kg	☼	05/22/17 09:33	05/30/17 14:42	1
Benzo[a]anthracene	14	В	5.4	0.82	ug/Kg	☼	05/22/17 09:33	05/30/17 14:42	1
Benzo[a]pyrene	65		5.4	0.43	ug/Kg		05/22/17 09:33	05/30/17 14:42	1
Benzo[b]fluoranthene	73		5.4	0.64	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Benzo[g,h,i]perylene	71		5.4	0.54	ug/Kg	☼	05/22/17 09:33	05/30/17 14:42	1
Benzo[k]fluoranthene	27		5.4	0.65	ug/Kg		05/22/17 09:33	05/30/17 14:42	1
Chrysene	35		5.4	1.6	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Dibenz(a,h)anthracene	11		5.4	0.78	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Fluoranthene	32		5.4	1.5	ug/Kg	ф.	05/22/17 09:33	05/30/17 14:42	1
Fluorene	4.0	J	5.4	0.54	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Indeno[1,2,3-cd]pyrene	82		5.4	0.65	ug/Kg	☼	05/22/17 09:33	05/30/17 14:42	1
Naphthalene	9.8		5.4	0.87	ug/Kg	Ф	05/22/17 09:33	05/30/17 14:42	1
Phenanthrene	15		5.4	0.75	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Pyrene	32		5.4	1.1	ug/Kg	₩	05/22/17 09:33	05/30/17 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	74	-	68 - 138				05/22/17 09:33	05/30/17 14:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>47</th><th></th><th>22</th><th>6.8</th><th>mg/Kg</th><th>☆</th><th>05/20/17 12:17</th><th>05/23/17 15:46</th><th></th></nc25)<>	47		22	6.8	mg/Kg	☆	05/20/17 12:17	05/23/17 15:46	
RRO (nC25-nC36)	50	J	56	12	mg/Kg	₩	05/20/17 12:17	05/23/17 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				05/20/17 12:17	05/23/17 15:46	
n-Triacontane-d62	83		50 - 150				05/20/17 12:17	05/23/17 15:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	84.6	-	0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	15.4		0.1	0.1	%			05/23/17 15:47	1

TestAmerica Seattle

6/7/2017

Page 116 of 292

TestAmerica Job ID: 580-68287-1

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

Client Sample ID: LPW17-SL-GSP-Leak03

Lab Sample ID: 580-68287-74 Date Collected: 05/08/17 16:20 **Matrix: Solid**

Date Received: 05/10/17 14:00 Percent Solids: 85.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		10	4.5	ug/Kg	<u></u>	05/17/17 14:40	05/18/17 01:40	1
Toluene	ND		78	16	ug/Kg	☼	05/17/17 14:40	05/18/17 01:40	1
Ethylbenzene	ND		21	4.7	ug/Kg	☼	05/17/17 14:40	05/18/17 01:40	1
m-Xylene & p-Xylene	ND		100	17	ug/Kg	₽	05/17/17 14:40	05/18/17 01:40	1
o-Xylene	ND		21	7.0	ug/Kg	₩	05/17/17 14:40	05/18/17 01:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	98		52 - 152				05/17/17 14:40	05/18/17 01:40	1
Toluene-d8 (Surr)	98		79 - 119				05/17/17 14:40	05/18/17 01:40	1
1,2-Dichloroethane-d4 (Surr)	100		81 - 121				05/17/17 14:40	05/18/17 01:40	1
4-Bromofluorobenzene (Surr)	98		79 - 120				05/17/17 14:40	05/18/17 01:40	1
Dibromofluoromethane (Surr)	106		78 - 118				05/17/17 14:40	05/18/17 01:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	5.2	J	5.6	0.71	ug/Kg	<u> </u>	05/22/17 09:33	05/30/17 15:27	1
2-Methylnaphthalene	7.1		5.6	0.51	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Acenaphthene	1.3	J	5.6	0.68	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Acenaphthylene	2.0	J	5.6	0.56	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Anthracene	2.8	J	5.6	0.68	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[a]anthracene	5.6	В	5.6	0.86	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[a]pyrene	19		5.6	0.45	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Benzo[b]fluoranthene	18		5.6	0.67	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[g,h,i]perylene	21		5.6	0.56	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Benzo[k]fluoranthene	5.8		5.6	0.68	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Chrysene	10		5.6	1.7	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Dibenz(a,h)anthracene	3.0	J	5.6	0.81	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Fluoranthene	8.3		5.6	1.6	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Fluorene	1.5	J	5.6	0.56	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Indeno[1,2,3-cd]pyrene	23		5.6	0.68	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Naphthalene	4.4	J	5.6	0.90	ug/Kg	₽	05/22/17 09:33	05/30/17 15:27	1
Phenanthrene	4.9	J	5.6	0.78	ug/Kg	☼	05/22/17 09:33	05/30/17 15:27	1
Pyrene	9.4		5.6	1.1	ug/Kg	₩	05/22/17 09:33	05/30/17 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78		68 - 138				05/22/17 09:33	05/30/17 15:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>9.9</th><th>J</th><th>22</th><th>6.7</th><th>mg/Kg</th><th>₩</th><th>05/20/17 12:17</th><th>05/23/17 16:09</th><th>1</th></nc25)<>	9.9	J	22	6.7	mg/Kg	₩	05/20/17 12:17	05/23/17 16:09	1
RRO (nC25-nC36)	19	J	55	12	mg/Kg	₩	05/20/17 12:17	05/23/17 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150				05/20/17 12:17	05/23/17 16:09	1
n-Triacontane-d62	78		50 - 150				05/20/17 12:17	05/23/17 16:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85.4		0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	14.6		0.1	0.1	%			05/23/17 15:47	1

TestAmerica Seattle

Page 117 of 292

6/7/2017

Client Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Little Port Walter AK

TestAmerica Job ID: 580-68287-1

Client Sample ID: LPW17-SL-GSP-Leak04

Lab Sample ID: 580-68287-82 Date Collected: 05/08/17 16:20 **Matrix: Solid** Date Received: 05/10/17 14:00 Percent Solids: 58.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		8.2	1.0	ug/Kg	<u> </u>	05/22/17 09:33	05/30/17 15:49	1
2-Methylnaphthalene	ND		8.2	0.73	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Acenaphthene	ND		8.2	0.98	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Acenaphthylene	ND		8.2	0.82	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Anthracene	1.1	J	8.2	0.98	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Benzo[a]anthracene	4.3	JB	8.2	1.2	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Benzo[a]pyrene	7.3	J	8.2	0.65	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Benzo[b]fluoranthene	9.0		8.2	0.96	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Benzo[g,h,i]perylene	6.1	J	8.2	0.82	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Benzo[k]fluoranthene	3.0	J	8.2	0.98	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Chrysene	3.3	J	8.2	2.4	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Dibenz(a,h)anthracene	ND		8.2	1.2	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Fluoranthene	5.4	J	8.2	2.3	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Fluorene	ND		8.2	0.82	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Indeno[1,2,3-cd]pyrene	6.4	J	8.2	0.98	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Naphthalene	ND		8.2	1.3	ug/Kg	₩	05/22/17 09:33	05/30/17 15:49	1
Phenanthrene	4.3	J	8.2	1.1	ug/Kg	☼	05/22/17 09:33	05/30/17 15:49	1
Pyrene	4.5	J	8.2	1.6	ug/Kg	₽	05/22/17 09:33	05/30/17 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ternhenyl-d1/			68 138				05/22/17 00:33	05/30/17 15:40	1

Terphenyl-d14	82	68 - 138		05/22/17 09:33	05/30/17 15:49	1
– Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>42</th><th>33</th><th>10 ma/Ka</th><th></th><th>05/23/17 16:55</th><th></th></nc25)<>	42	33	10 ma/Ka		05/23/17 16:55	

DRO (nC10- <nc25)< th=""><th>42</th><th>33</th><th>10 mg/Kg</th><th></th><th>05/23/17 16:55</th><th>1</th></nc25)<>	42	33	10 mg/Kg		05/23/17 16:55	1
RRO (nC25-nC36)	110	82	18 mg/Kg	□ 05/20/17 12:17	05/23/17 16:55	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
o-Terphenvl	83	50 - 150		05/20/17 12:17	05/23/17 16:55	

Ourrogate	701 CCCC CCT y	Quantici	Liiiii	Trepared	Analyzea	Dir r uc	
o-Terphenyl	83		50 - 150	05/20/17 12:17 05/	/23/17 16:55	1	
n-Triacontane-d62	80		50 - 150	05/20/17 12:17 05/	/23/17 16:55	1	
_							

General	Chemistry
Analyte	_

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58.0	0.1	0.1	%			05/23/17 15:47	1
Percent Moisture	42.0	0.1	0.1	%			05/23/17 15:47	1

(This Page Intentionally Left Blank)

APPENDIX G

ADEC COMMENTS

(This Page Intentionally Left Blank)