Shell Oil Products US

Groundwater Monitoring Report Semi-Annual Second Quarter 2019

Shell Branded Wholesale Facility SAP #: 121262 Planet ID #: 10071287 Agency #: 2100.38.542 4409 Lake Otis Parkway Anchorage, Alaska

May 24, 2019

Version 1.0

Groundwater Monitoring Report -

Second Quarter 2019 Shell Branded Wholesale Facility

4409 Lake Otis Parkway

Anchorage, Alaska 99508

Prepared for: Shell Oil Products US

200 South Wilcox, No. 131

Castle Rock, CO 80104

Prepared by: Groundwater & Environmental Services, Inc.

5046 Commercial Circle, Suite F

Concord, CA 94520

TEL: 888-270-1636

www.gesonline.com

GES Project: 3016007

May 20, 2019

Date:

Muhcht

Mark C. Peterson, PG , CEG Principal Hydrogeologist

Anthony Ferrelk

Associate Geologist

Table of Contents

	ACRON	IYMS AND ABBREVIATIONS	ļ
1	INTE	RODUCTION 1	
	1.1	SITE DESCRIPTION AND BACKGROUND	
	1.2	Site Hydrogeology1	
2	GRO	DUNDWATER MONITORING AND SAMPLING 1	
	2.1	GROUNDWATER ANALYTICAL METHODS	
	2.2	GROUNDWATER ANALYTICAL RESULTS	
3	DAT	A QUALITY 2	
4	CON	ICLUSIONS	ļ

Figures

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Groundwater Analytical Concentrations Map

Tables

Table 1: Current and Historical Groundwater Monitoring Data Summary

Appendices

- Appendix A Field Sheets
- Appendix B Standard Field Procedures for Groundwater Monitoring
- Appendix C Laboratory Reports
- Appendix D DEC Laboratory Data Review Checklist

ACRONYMS AND ABBREVIATIONS

µg/L	Micrograms per Liter
Bgs	Below ground surface
CRA	Conestoga-Rovers & Associates
DEC	Alaska Department of Environmental Conservation
DRO	Diesel Range Organics
EPA	United States Environmental Protection Agency
ESC	ESC Lab Sciences
GAC	Granular Activated Carbon
GES	Groundwater & Environmental Services, Inc.
GRO	Gasoline Range Organics
LCS	Laboratory Control Spike
LCSD	Laboratory Control Spike Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PAH	Polycyclic Aromatic Hydrocarbon(s)
PQL	Practical Quantitation Limit
RL	Laboratory Reporting Limit
RPD	Relative Percent Difference
RRO	Residual Range Organics
SOPs	Standard Operating Procedures
SOPUS	Shell Oil Products US
TOC	Top of Casing
ТРН	Total Petroleum Hydrocarbons
VOC	Volatile Organic Compounds

1 Introduction

Groundwater & Environmental Services, Inc. (GES) is pleased to present this Second Quarter 2019 Semi-Annual Groundwater Monitoring Report to the Alaska Department of Environmental Conservation (DEC) on behalf of Shell Oil Products US (SOPUS) summarizing the April 2019 groundwater monitoring and sampling event related to the former service station at 4409 Lake Otis Parkway, Anchorage, Alaska (**Figure 1**). The site description and background, groundwater monitoring and sampling details, results and findings, data quality, and conclusions are presented below.

1.1 Site Description and Background

Based on previous subsurface investigations, the site is limited to off-property impacts in the eastern right-of-way of Lake Otis Parkway and beneath Lake Otis Parkway. The former service station property at 4409 Lake Otis Parkway, Anchorage, Alaska, is not included in the new site definition. The 4409 Lake Otis Parkway property has been redeveloped as a Walgreens pharmacy.

In June 2014, Conestoga-Rovers & Associates (CRA) conducted a site investigation that included the installation of three monitoring wells. One monitoring well (MW-1A) was installed on the offsite parcel to the west of Lake Otis Parkway to define the lateral extent of impacts to the west. A second monitoring well (MW-2A) was installed to define the extent of groundwater impacts to the north. Groundwater impacts above the DEC's Table C groundwater cleanup levels were only identified at monitoring well MW-3A, which was installed in the center of Lake Otis Parkway near the source area identified during a subsurface investigation in October 2012.

Currently MW-1A is the only remaining groundwater monitoring well related to the site. MW-1A is located in the parking lot of a retail shopping center across Lake Otis Parkway from the former Shell station property. MW-1A is scheduled to be sampled on a semi-annual basis using low flow bladder pump techniques. The locations of the present and former site monitoring wells are depicted on **Figure 2**.

1.2 Site Hydrogeology

Historical groundwater flow direction has been reported to the north-northeast. Historical static groundwater depths at the site have ranged from approximately 15 to 24 feet below ground surface (bgs). Static groundwater depth was measured at 16.90 feet below top of casing (TOC) in MW-1A on April 5, 2019. Given that MW-1A is the last monitoring well at the site, no groundwater flow direction or gradient has been calculated.

2 Groundwater Monitoring and Sampling

GES gauged and sampled monitoring well MW-1A on April 5, 2019. The monitoring well was sampled using a bladder pump and low flow methodologies consistent with DEC guidance and GES standard operating procedures (SOPs) included in **Appendix B**. The pump intake was set

within the upper foot of the water column for collection of the groundwater samples in well MW-1A.

Sample was collected for analysis of total petroleum hydrocarbons (TPH) as gasoline range organics (GRO), diesel range organics (DRO), and residual range organics (RRO). The groundwater sample was submitted under chain of custody to Pace Analytical (Pace) laboratory. GES's gauging and well sampling forms are presented as **Appendix A**.

Purge water was transported under a ADEC permit (approved March 26, 2019) to 810 W. Tudor Road. All waste purge water was filtered through a portable granular activated carbon (GAC) filter and discharged in an approved designated location offsite (810 W. Tudor Road). The volume of water treated by the GAC filter during the event was recorded on both the groundwater monitoring and sampling field notes and the Portable GAC Volume Tracking Log, which is kept with the portable GAC bucket at all times. This method of purge water treatment was approved by Robert Weimer on September 29, 2016 via email.

2.1 Groundwater Analytical Methods

Collected groundwater sample was analyzed for GRO via Alaska Series Method AK 101, and DRO and RRO via Alaska Series Method AK 102/103.

2.2 Groundwater Analytical Results

The following is a summary of the analytical results from April 2019:

All analytical concentrations in the well were below the DEC Table C cleanup level and/or laboratory reporting limits (RL). Current and historical groundwater analytical results are summarized in **Table 1** and current analytical data is shown on **Figure 4**. A copy of the laboratory analytical report is presented as **Appendix C**.

3 Data Quality

Groundwater & Environmental Services, Inc. (GES) reviewed the analytical data from the Shell-4409 Lake Otis, Anchorage, AK (site) April 5, 2019 sampling event in order to determine accuracy and precision for each analysis as well as to determine overall data usability. Organic data were reviewed for holding times, method and field blank results, surrogate or system monitoring compound recoveries, Matrix Spike/Matrix Spike Duplicate (MS/MSD) and LCS recoveries. All data necessary to complete the data review were provided by the laboratory.

The collection of aqueous samples from one location, an original and a duplicate sample, occurred on April 5, 2019.

The samples were sent to Pace Analytical Laboratories and analyzed by the following methodologies as requested on the Chain of Custody:

• Volatile Organic Compounds (GC) by Method AK101

• Semi-Volatile Organic Compounds (GC) by Method AK102/103

The analytical results were reviewed using laboratory acceptance criteria and procedures and guidelines contained in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, revised January 2017.

Data was overall of good quality and usable.

Holding Times

Analytical holding times were met.

Blank Results

There were no analytes reported above the reporting detection limit (RDL).

Laboratory Control Spike

All laboratory control spike recoveries were within laboratory-specified criteria.

Preservation

Samples were collected and subsequently stored in amber sample bottles and stored at $1.2^{\circ}C \pm 2^{\circ}C$ until prepared and analyzed. The temperature of the samples upon receipt by the laboratory were recorded. Samples were stored in appropriate bottleware.

Surrogates Recoveries and Accuracy

The surrogate recoveries were all within laboratory-specified ranges.

Duplicate Analyses and Precision

A field duplicate (DUP-1) from the MW-1A sampling location was collected and submitted blind to the laboratory for analysis. All detections in the sample and the duplicate were below reporting limits, and precision could not be accurately calculated.

Precision is the distribution of a set of reported values about the mean, or the closeness of agreement between individual test results obtained under prescribed and similar conditions. Precision is best expressed in terms of RPD.

Analysis of the laboratory precision employed evaluation of laboratory spike/laboratory spike duplicate (LCS/LCSD) and matrix spike/matrix spike duplicates (MS/MSD) relative percent difference (RPD) precision calculations. The overall precision within compliance was 100%.

<u>Accuracy</u>

Accuracy is a measure of the closeness of an observed value to the "true" value, e.g., theoretical or reference value, or population mean. Accuracy includes a combination of random error and systematic error (bias) that result from sampling and analytical operations. Analytical batch accuracy is measured through the analyses of recoveries in LCSs and MS/MSDs. Sample specific accuracy is measured with surrogate recovery. All surrogate recoveries and all

recoveries reported in the LCS, and site associated MS/MSD pair were within laboratoryspecified criteria with the exceptions noted above. Accuracy for this sampling event and report is 95%.

<u>Sensitivity</u>

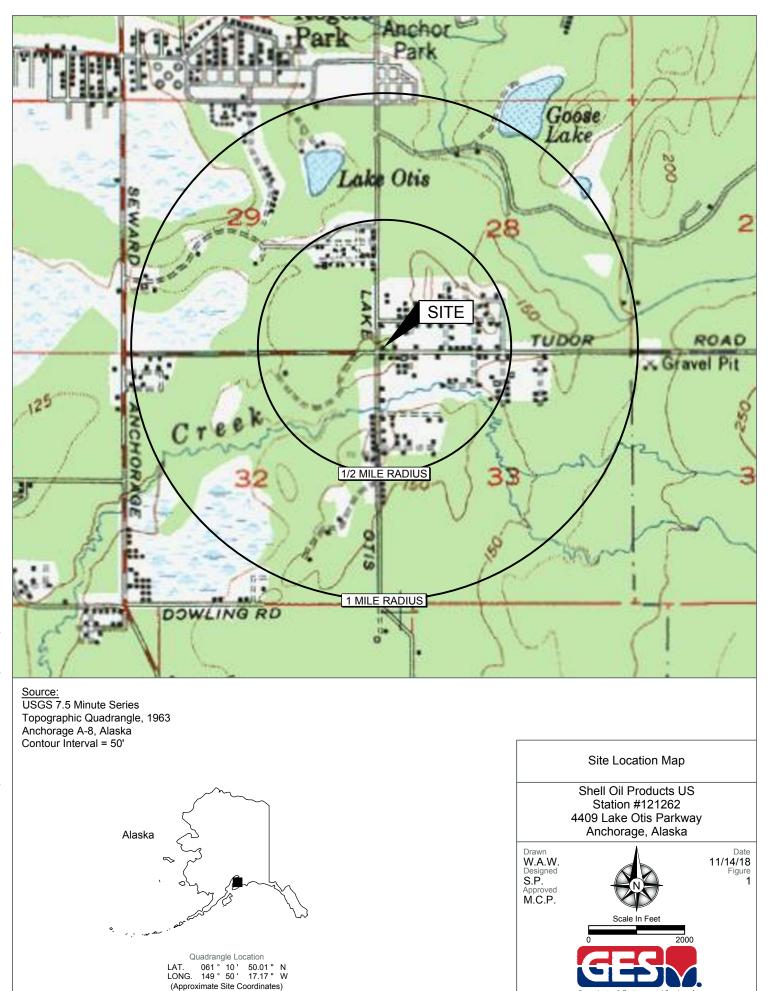
Sensitivity is the measure of how low a concentration can be detected/reported. Sensitivity is measured using practical quantitation limits (PQLs) or reporting limits (RLs).

All limits reported are below the DEC clean-up levels for groundwater.

<u>Summary</u>

Groundwater analytical data are usable and considered definitive data and suitable for comparison to regulatory standards. The DEC Laboratory Data Review Checklist and Memorandum are presented as Appendix D.

4 CONCLUSIONS


During the April 2019 groundwater monitoring event, GRO concentrations in MW-1A have remained below the laboratory reporting limits and the DEC's Table C cleanup levels. DRO concentration has decreased to levels below the laboratory reporting limits and well below the DEC's Table C cleanup levels since the April 2018 sampling event. RRO concentrations in MW-1A and DUP-1 decreased to levels below DEC's Table C cleanup levels.

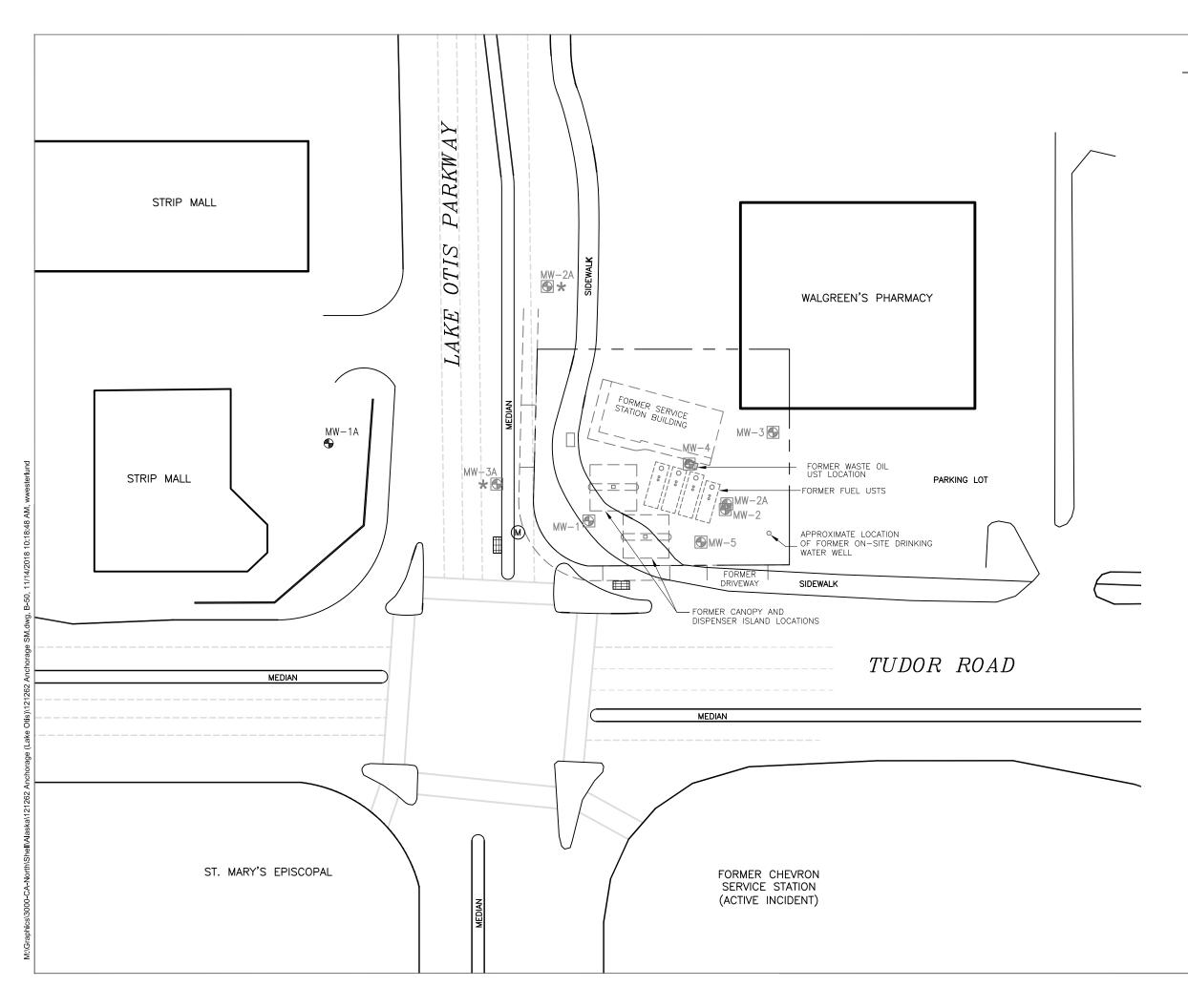
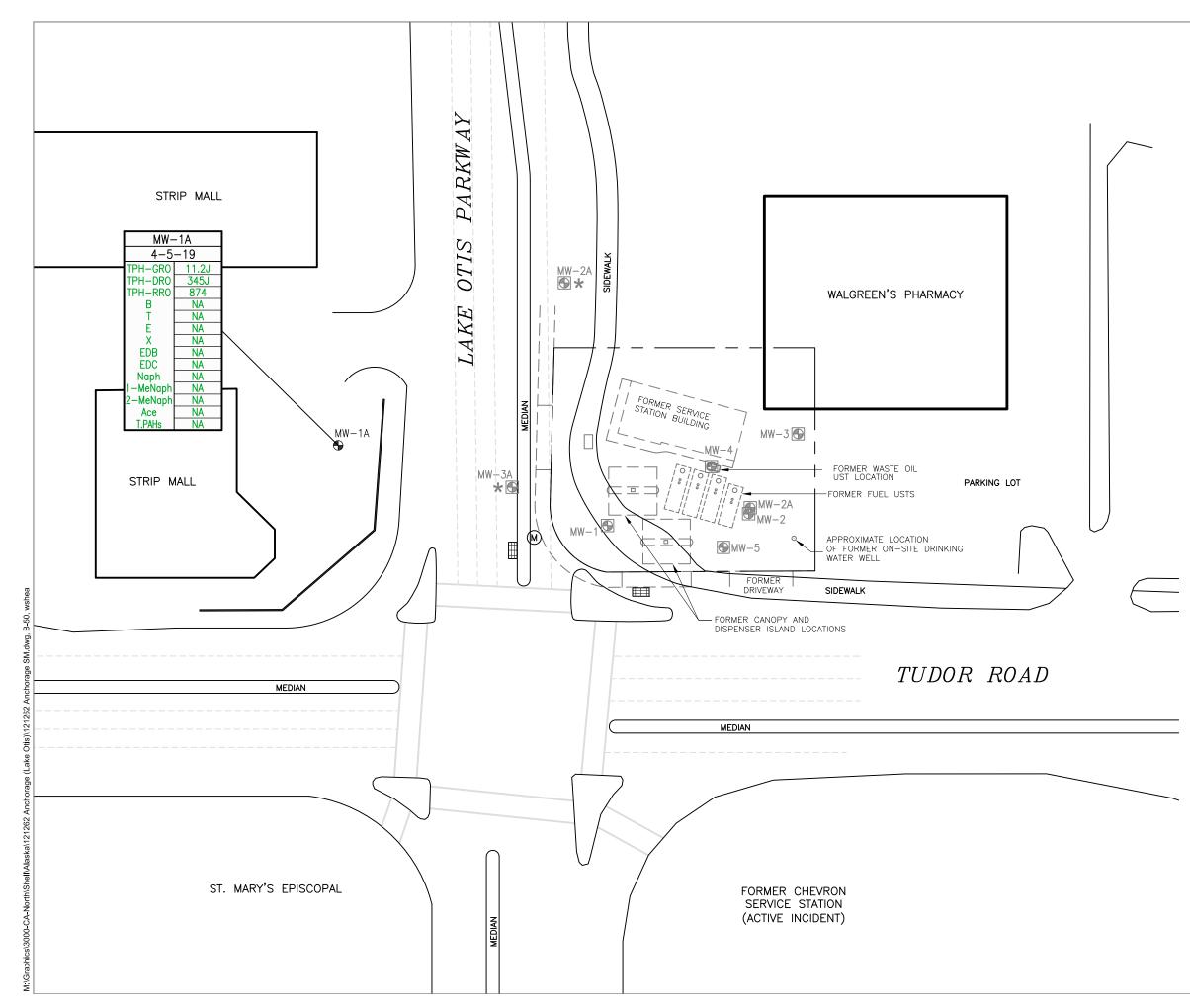
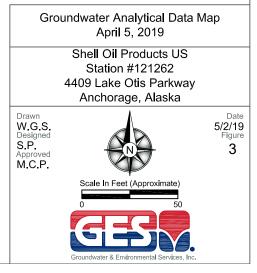

GES' opinion is that the RRO and possibly the DRO range constituents have been the result of surface water runoff from the parking lot entering the well vault and impacting the groundwater in MW-1A. Following the repair of the casing and cap, previously damaged from frost heave, the concentrations have continued to decline. As such, GES plans to sample MW-1A in the 4th quarter of 2019 to observe trends for DRO and RRO. If both constituents are still below the ADEC Table C cleanup levels, GES plans to request closure of this environmental case.

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Groundwater Analytical Concentrations Map



<u>LEGEND</u>

- ---- FORMER SHELL STATION PROPERTY BOUNDARY
 - (M) UTILITY MANHOLE
 - CATCH BASIN
 - MONITORING WELL
 - DESTROYED/ABANDONED MONITORING WELL
 - * ABANDONED APRIL 2018



<u>LEGEND</u>	
	FORMER SHELL STATION PROPERTY BOUNDARY
M	UTILITY MANHOLE
	CATCH BASIN
•	MONITORING WELL
	DESTROYED/ABANDONED MONITORING WELL
*	ABANDONED APRIL 2018
MW-1A	SAMPLE DATE
4-5-19	SAMPLE DATE
TPH-GR0 11.2J TPH-DR0 345J	TPH-GRO CONCENTRATION (ug/L) TPH-DRO CONCENTRATION (ug/L)
TPH-RRO 874	TPH-RRO CONCENTRATION (ug/L)
B NA T NA	BENZENE CONCENTRATION (ug/L) TOLUENE CONCENTRATION (ug/L)
E NA X NA	ETHYLBENZENE CONCENTRATIÓN (ug/L) TOTAL XYLENES CONCENTRATION (ug/L)
EDB NA	EDB CONCENTRATION (ug/L)
EDC NA Naph NA	EDC CONCENTRATION (ug/L) NAPHTHALENE CONCENTRATION (ug/L)
1—MeNaph NA	1-MeNaph CONCENTRATION (ug/L)
2-MeNaph NA Ace NA	2-MeNaph CONCENTRATION (ug/L) ACENAPHTHENE CONCENTRATION (ug/L)
T.PAHs NA	TOTAL PAHs CONCENTRATION (ug/L)
ug/L	MICROGRAMS PER LITER
TPH	TOTAL PETROLEUM HYDROCARBONS
GRO	GASOLINE RANGE ORGANICS
DRO	DIESEL RANGE ORGANICS
RRO	RESIDUAL RANGE ORGANICS
EDB	1,2 DIBROMOETHANE
	1,2 DICHLOROETHANE
1—MeNaph	1-METHYLNAPHTHALENE
2-MeNaph	2-METHYLNAPHTHALENE
T.PAHs	SUM OF NON-NAPHTHALENE POLYCYTCLIC AROMATIC HYDROCARBONS
NA	NOT ANALYZED
J	ESTIMATED VALUE, BETWEEN LABORATORY REPORTING LIMIT AND METHOD DETECTION LIMIT

NOTE:

BOLD VALUE INDICATES RESULT ABOVE DEC TABLE C CLEANUP LEVELS.

Tables

Table 1: Current and Historical Groundwater Monitoring Data Summary

Table 1

Summary of Historical Groundwater Analytical Data

Lake Otis Parkway Right-Of-Way, Anchorage, Alaska

						НУГ	ROCARE	BONS				NOC	e				OXYGE	NATES									Met	ale						
Sample ID	Date	тос	SPH	DTW	GWE					r			3			T T	UNIGE						Γ						T		_		I	
			Thickness			TPH-GRC	TPH-DRO	TPH-RRC	в	т	Е	x	EDB	EDC	МТВЕ	DIPE	Ethanol	ETBE	тва	ТАМЕ	Dissolved Arsenic	Total Aresnic	Dissolved Barium	Total Barium	Dissolved Cadmium	Total Cadmium	Dissolved Chromium		Dissolved Lead	Total Lead	Dissolved Nickel	Total Nickel	Dissolved Vanadium	Total Vanadium
I			DEC Cle	eanup Leve	els (µg/L)) 2,200	1,500	1,100	4.6	1,100	15	190	0.075	1.7	140	NE	NE	NE	NE	NE	0.52	0.52	3,770	3,770	9.21	9.21	22,500	22,500	15	15	392	392	86.4	86.4
MW-1A	08/06/1						<792	61.3 J	<1.00		<1.00	<2.00									2.98		70.2		<1.00		2.99		1.57 J		6.49		7.39 B	
MW-1A	10/23/1			15.83	147.83	<100	<769	56.7 JB	<1.00	<1.00	<1.00	<2.00	< 0.0197		<1.00							1.70 J		69.8		<1.00		2.74		0.860 J		4.93		4.94 B
MW-1A	06/27/1			16.13	147.53		173	379	<1.0	<1.0	<1.0	<2.0	<0.020		<1.0						2.4		63.5		<1.0		<2.0		<1.0		2.7		<4.0	
MW-1A MW-1A	1 08/30/1 1 10/24/1			15.96 15.64	147.70 148.02	<50 <50	2,720 536	3,050 1,310	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<0.020 <0.019	<1.0 <1.0	<1.0 <1.0						2.8 1.8		29.6 24.6		<1.0 <1.0		2.0		1.0		5.0 5.4		<8.0 <4.0	
MW-1A	04/01/1			Unable to																														
MW-1A	10/05/1			16.08	147.58	<100	1,490	1,100	<1.0	2.1	<1.0	<3.0		<1.0	<1.0	<1.0	<200	<2.0	<20	<2.0														
MW-1A	10/02/1	7 163.66		16.03	147.63	<100	884	2,470	<0.500	0.784 J		<1.50	<1.00	<1.00	<5.00	<1.00																		
MW-1A DUP	10/02/1			16.03	147.63	<100	814	2,010	<0.500	0.787 J		<1.50	<1.00	<1.00	<5.00	<1.00																		
MW-1A	04/26/1			15.70	147.96		1,800	4,150	< 0.500	18.3	< 0.500	<1.50	<1.00			<1.00																		
MW-1A-DUP MW-1A	04/26/1			15.70 16.06	147.96 147.60		1,740 564 J	3,260 1,460	<0.500	18.3	<0.500	<1.50	<1.00	<1.00	<5.00	<1.00																		
MW-1A-DUP	10/03/1			16.06	147.60		589 J	1,460																										
MW-1A	04/05/1			16.90	146.76		345 J	874																										
MW-1A-DUP	04/05/1			16.90	146.76	<100	379 J	1,060																										
MW-2A	08/06/1			23.89	138.39		164 J	113 J	<1.00	<1.00		<2.00	<1.00		<1.00						3.57		60.0		<1.00		11.5		7.74		11.3		11.1 B	
MW-2A	10/23/1			23.79	138.49		<766	51.6 JB	<1.00	<1.00		<2.00	< 0.0198									1.19 J		25.8		<1.00		5.62		0.0453 J		3.05		3.03 B
MW-2A MW-2A	a 06/27/1 a 08/30/1			23.83 23.73	138.45 138.55		70 J 175	132 J 205 J	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<0.019 <0.020	<1.0 <1.0	<1.0 <1.0						1.5 1.0		22.1 20.6		<1.0 <1.0		<2.0 <2.0		<1.0 <1.0		<2.0 2.1		<4.0 <8.0	
MW-2A	10/18/1			22.25	140.03	<50	84.7 J	129 J	<1.0	<1.0	<1.0	<2.0	<0.020		<1.0						<1.0		20.0		<1.0		2.0		1.1		<2.0		5.3	
MW-2A	04/01/1			23.56	138.72		42.9 J	67.0 J	<1.0	<1.0	<1.0	<2.0	< 0.0097		<1.0																			
MW-2A	10/05/1	6 162.28		23.10	139.18	<100	<190	445	<1.0	<1.0	<1.0	<3.0		<1.0	<1.0	<1.0	<200	<2.0	<20	<2.0														
MW-2A	04/23/1			23.10	139.18																													
MW-2A	10/03/1	8 Well dec	ommissioned o	on April 23	3, 2018																													
MW-3A	08/06/1	4 165.86		18.91	146.95	2,840	332 J	58.2 J	72.2	176	98.0	497	<1.00	<1.00	<1.00						50.2		117		<1.00		14.7		5.5		16.6		11.6 B	
MW-3A DUP	08/06/1			18.91	146.95		368 J	57.3 J	74.8	189	107	523	<1.00	<1.00	<1.00						47.8		115		<1.00		7.65		5.6		17.3		14.1 B	
MW-3A	10/23/1			18.74	147.12	4,810	395 J	49.7 JB	92.9	51.3	180	619	0.115	48.5	<1.00							46		110		<1.00		2.79		1.04 J		4.81		3.30 B
MW-3A DUP	10/23/1	4 165.86		18.74	147.12	4,600	391 J	66.8 JB	93.5	57.4	187	602	0.123	48.9	<1.00							47.5		111		<1.00		1.93 J		1.02 J		4.84		3.36 B
MW-3A	06/27/1			19.25	146.61	892	268	<200	51.8	1.1	99.1	98.3	0.029	80.9	<1.0						14.5		80.7		<1.0		<2.0		<1.0		<2.0		<4.0	
MW-3A DUP	06/27/1			19.25	146.61	1,140	253	<190	52.9	1.2	70.1	101	0.028	83.0	<1.0						18.1		88.5		<1.0		<2.0		<1.0		<2.0		<4.0	
MW-3A MW-3A DUP	a 08/30/1 a 08/30/1			18.80 18.80	147.06 147.06		410 459	62.6 J 58.0 J	80.3 80.7	38.2 34.4	131 130	286 278	0.065	55.4 54.9	<1.0 <1.0						44.3 44.6		136 137		<1.0 <1.0		<2.0 <2.0		<1.0 <1.0		4.4 4.6		<8.0 <8.0	
MW-3A	10/18/1			18.48	147.38		451	<190	75.1	13.8	174	314	0.063	75.2	<2.0						9.4		98.5		<1.0		<2.0		<1.0		3.4		4.0	
MW-3A DUP	10/18/1			18.48	147.38	1,820	512	<190	72.8	14.9	174	342	0.071	72.7	<2.0						11.4		104		<1.0		<2.0		<1.0		3.2		<4.0	
MW-3A	04/01/1	6 165.86		19.60	146.26	8,040	1,270	104	225	560	543	1,930	0.44	24.0	<2.5																			
MW-3A DUP	04/01/1			19.60	146.26	7,120	1,520	107	211	584	605	2,230	0.42	23.3	<2.5																			
MW-3A	10/05/1			19.32	146.54		535	<380	64.7	3.3	96.8	122	<2.0	43.0	<1.0	<1.0	<200	<2.0	<20	<2.0									<2.0					
MW-3A DUP MW-3A	10/05/1 04/23/1			19.32 20.03	146.54	786 8,580	521 2,270	<380 <800	65.1 336	3.3 1240	88.0 602	112 2,520	<2.0 <1.0	44.4 20.7	<1.0 <1.0	<1.0 <1.0	<200	<2.0	<20	<2.0									<2.0					
MW-3A	10/03/1		ommissioned o		145.83 3. 2018	0,500	2,270	~000		1240		2,520	~1.0	20.7	~1.0	~1.0																		
					., _010																													
Trip blank	08/06/1	4				<100			<1.00	<1.00	<1.00	<3.00		1																				
Trip blank	1 06/27/1					<50			<1.0	<1.0	<1.0	<2.0		<1.0																				
Trip Blank	08/30/1					<50			<1.0	<1.0	<1.0	<2.0		<1.0	<1.0																			
Trip Blank Trip Blank	d 10/18/1 04/01/1					<50			<1.0	<1.0 <1.0	<1.0 <1.0	<2.0		<1.0	<1.0 <1.0																			
Trip Blank	04/01/1	-				<50			<1.0 <1.0	<1.0	<1.0 <1.0	<2.0 <3.0	<2.0	<1.0 <1.0	<1.0	 <1.0	<200	<2.0	<20	<2.0														
Trip Blank	10/03/1	-				<100			< 0.500	-	<0.500	<1.50	<1.00	<1.00	<5.00	<1.00	~200	-2.0	-20	~2.0														
Trip Blank	04/23/1					33.5J			<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<1.0																		
Trip Blank	10/03/1	8				<100																												
																																		<u> </u>

Notes:

Groundwater results given in μ g/L = micrograms per liter

-- = Not analyzed.

NA = Not Applicable

NE = Not Established

< = Constituent was not detected above the indicated laboratory reporting limit.</p>

Concentrations in bold type following third quarter 2016 indicate the analyte was detected above DEC 18AAC75 Table C Cleanup levels (effective November 6, 2016)

DEC = Alaska Department of Environmental Conservation

Dissolved Arsenic, Barium, Cadmium, Chromium, Lead, Nickel, and Vanadium analyzed per EPA Method 6010B.

BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes; analyzed per AK101 Method.

TPH-GRO = Total Petroleum Hydrocrabons (TPH) as Gasoline range orgaincs; analyzed per AK101 Method.

DRO = TPH as Diesel Range Organic, per AK102 Method.

RRO = TPH as Residual Range Organics, per AK102 Method. MTBE = Methyl tert-butyl ether, per EPA Method 8260B.

DIPE = Di-isopropyl ether, per EPA Method 8260B.

ETBE = Ethyl tert-butyl ether, per EPA Method 8260B.

TBA = tert-Butyl alcohol, per EPA Method 8260B.

TAME = tert-Amyl Methyl Ether, per EPA Method 8260B.

VOCs = Volatile Organic Compounds (BTEX, MTBE, DIPE, Ethanol, ETBE, TBA, and TAME)

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

B = Compound was found in the blank and sample.

c = Total chromium (as trivalent chromium) used as comparison cleanup level. Chromium was speciated in soil at MW-2A and trivalent chromium was present but hexavalent chromium was not. Total chromium in groundwater has not been speciated.

d = Sample also analyzed for tetrachloroethene (PCE). All results were less than the laboratory reporting limits.

J = Analyte detected above the Method detection limit (MDL) but below the laboratory reporting limit.

a = Sample also analyzed for VOCs per EPA Method 8260B. All other analyte concentrations in groundwater sampled were less than the DEC Table C cleanup levels or laboratory reporting limits.

Groundwater Monitoring Report - Second Quarter 2019 Shell Branded Wholesale Facility, Agency ID #2100.38.542 4409 Lake Otis Parkway, Anchorage, Alaska

Appendix A – Field Sheets

GEGG Groundwater & Environmental Services, Inc.

		GROU	NDWATE	R MONIT	ORING W	ELL DATA			
Client: SOPUS						T	15/19		
Project No.: 3010	Project No.: 3016007 Site No.: 121262								
Site Location/Ad	dress: 4409	Lake Otis	Field Staff:						
		nije na sloven do sloven do sloven do sloven slo	Amy	2466	ock				
Well Number	Depth to Water (BTOC in feet)	Depth to Product (BTOC in feet)	Product Thickness (feet)	Product Removed (Gallons)	Measured Depth to Bottom of Well (BTOC)	Well Completion Depth (BGS)	Casing Diameter (inches)	Screen Interval	
MW-1A	16.90	e			30.96	33	2	18-33	

						•			

SAMPLING EVENT DATASHEETProject Name:4409 Lake Otis Pkwy.Well No: $MW - 2A$ Date: $4/5/1/9$ Project No:3016007Personnel: $Amy 2abbouk.$ GAUGING DATA Water Level Measuring Method: WIN I IPMeasuring Point Description: TOCWELL PURGE VOLUME CALCULATIONTotal Depth (feet)Depth to Water (feet)Water Column (feet)Multiplier for Casing DiameterCasing Volume (gal)Total Purge Volume (gal)90.96 $-/6.90 \equiv 1/4.0b$ χ_1^1 2462.252.259URGING DATA Purge Method: $MAULERRA/BAILER/SUB$ Purge Depth: 7.75 7.75 Purge Rate: 0.04 2.045 2.050 700 2.025 2.030 2.355 2040 2.045 2050 9Urge Method:WATERRA/BAILER/SUB 2.025 Purge Depth: 7.75 7.94 7.34 7.34 7 7.34 7.34 7.33 7.34 7.34 7.34 9H 7.34 7.34 7.34 7.34 7.34 7.34 9H 7.34 7.34 7.34 7.34 7.34 9H 7.34 7.3	
Project No:3016007Personnel: $Amy 2ablock$ GAUGING DATA Water Level Measuring Method: $SV # 091013$ WLMMeasuring Point Description:TOCWELL PURGE VOLUME CALCULATIONTotal Depth (feet)Depth to Water (feet)Water Column (feet)Multiplier for Casing DiameterCasing Volume (gal)Total Purge Volume (gal)PURGING DATA VOLUME CALCULATIONTotal Depth (feet)Depth to Water (feet)Water Column (feet)Multiplier for Casing DiameterCasing Volume (gal)Total Purge Volume (gal)PURGING DATA Purge Method:DIAMUM VATERRA / BAILER / SUBPurge Depth: 0.447.75Purge Rate: 0.042.252.252.255PURGING DATA Purge Method:DIAMUM VATERRA / BAILER / SUBPurge Depth: 0.457.75Purge Rate: 0.042.0422.050Time 20 04 Volume Purge (gal)0.250.50.4551.01.41.625Temperature (c)5.926.096.036.226.246.24PH7.347.347.347.347.34	
Water Level Measuring Method:(WLM) / IPMeasuring Point Description: TOCWELL PURGE VOLUME CALCULATIONTotal Depth (feet)Depth to Water (feet)Water Column (feet)Multiplier for Casing DiameterCasing Volume (gal)Total Purge Volume (gal)30.96-/6.90=/4.061246 0.042.25=2.25PURGING DATA Purge Method:Multiplier / SUBPurge Depth: Purge Depth: 7.757.75Purge Rate: 0.040.04/2 (gpm)Time 20.04 2000200520302035204020452050Volume Purge (gal)0.250.50.451.01.41.625Temperature (C)5.926.096.036.226.246.24pH7.347.347.337.347.347.34	
WELL PURGE VOLUME CALCULATIONTotal Depth (feet)Depth to Water (feet)Water Column (feet)Multiplier for Casing DiameterCasing Volume (gal)Total Purge Volume (gal)30.96 $-/6.90$ $=$ $/4.0b$ $\times 1$ 2 4 6 2.25 $=$ 2.25 PURGING DATA Purge Method:Multiplier for 30.96 OluMUM Purge Depth: 7.75 Purge Rate: 0.04 Purge Rate: 0.04 OluMUM 160.64 Time 20.04 2025 2030 2035 2045 2050 Volume Purge Method:WATERRA / BAILER / SUBPurge Depth: 7.75 7.46 2004 2025 2030 2035 2045 2040 2004 2045 Volume Purge (gal) 0.25 0.5 0.75 0.75 0.25 0.5 0.75 0.75 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24	
WELL PURGE (feet) (feet) (feet) Casing Diameter (gal) Volume (gal) VOLUME 30.96 $/6.90$ $=$ $/4.0b$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{6}{6}$ 2.25 $=$ 2.25 PURGING DATA Purge Method: WATERRA / BAILER / SUB Purge Depth: 7.75 Purge Rate: 0.04^{+2} (gpm) Time 20.04 2.025 2030 2035 2040 2.045 2050 Volume Purge (gal) 0.25 0.5 0.75 1.0 1.44 $/.625^{-1}$ Temperature (c) 5.92 6.09 6.03 6.222 6.24 6.27 pH 7.34 7.34 7.34 7.34 7.34 7.34 7.34	
30.96 (6.90) $(4.0b)$ $(1-2)$ $(4-6)$ (2.25) (2.25) <th colsp<="" td=""></th>	
Purge Method: WATERRA / BAILER / SUB Purge Depth: 7.75 Purge Rate: 0.042 (gpm) Time 2004 2025 2030 2035 2040 2045 2050 Volume Purge (gal) 0.25 0.5 0.75 1.0 1.4 1.625 Temperature (c) 5.92 6.09 6.03 6.22 6.24 6.27 pH 7.34 7.34 7.33 7.34 7.34 7.34	
Volume Purge (gal) 0.25 0.5 0.75 1.0 1.4 1.625 Temperature (C) 5.92 6.09 6.03 6.22 6.24 6.27 pH 7.34 7.34 7.33 7.34 7.34 7.34	
Temperature (C) 5.92 6.09 6.03 6.22 6.24 6.27 pH 7.34 7.34 7.34 7.34 7.34 7.34 7.34	
PH 7.34 7.34 7.33 7.34 7.34 7.34	
(MS/CM) 457 460 462 465 464 465	
Turbidity/Color Oloudey/ >> >>	
Odor (Y/N) N N N N N	
Dewatered (Y/N)	
Comments/Observations: 0.0 ppin PID increase plung pressure at 2040	
SAMPLING DATA	
Time Sampled: 2110 Approximate Depth to Water During Sampling: 199 (feet) Comments: parameters Stabilized: Sumple (oldcted via pump	
Set at 17,75 ft brie	
Sample Number of Containers Container Type Preservative Volume Filled (mL or L) Turbidity/ Color Analysis Method	
MW-1A 5 VOA And HCL 40ML /10 Dr SEE COC	
the Dup-1 5 "IT I' your "	
Total Purge Volume: 2,5 (gallons) Disposal: Carbon bucket	
Weather Conditions: 40° / overcast BOLTS (V / N	
Condition of Well Box and Casing at Time of Sampling: OK CAP & LOCK (Y) / N	
Well Head Conditions Requiring Correction: When the GROUT (Y) / N	
Problems Encountered During Purging and Sampling: Slow recovery (pumping) WELL BOX (X / N Comments: LiProjects/Shell/Shell/Bundle/Alaska/4409 Lake Otis Prkwy/GWM(4409 Lake Otis SED.xls]Sheet1	

	Υ	SAMPLI			AT 84	SUE	c r		1	" l	12	-
Project Name:	4409 Lake Ot	is Pkwy.				No:) - 10	A Date	a: 4	ik	-/19
Project No:	3016007				Pers	onnel	A	(00)	n+) 2a50	be	K	, , , , , , , , , , , , , , , , , , ,
GAUGING DAT	A asuring Method:	WLM / IP			Meas	suring	Poin	t Desc	ription: TOC			
WELL PURGE VOLUME	Total Depth (feet)	Depth to Water (feet)		r Column feet)			er for iamet		asing Volume (gal)	COLUMN TWO IS NOT		al Purge me (gal)
Sel P.	1-6			(0.04	2	4	6	(Ð		
PURGING DAT	Ą											
Purge Method:	WATERRA / BA	ILER / SUB	Purge	Depth:			P	Purge I	Rate:	(g	pm)	
Time	2055	2105								Τ		
Volume Purge (gal)	2.0	2.5								1		
Temperature (C)	6.29	6.30								\top		****
рH	7.35	7.36							an a	+	Beläfterber Staffpättege	***
Spec.Cond.(umhos)	465	466								╋		
Turbidity/Color	Cwdu/	\rightarrow								\uparrow		
Odor (Y/N)	N	N							lend om at hand staden min bekan met og symmetrien	+		
Dewatered (Y/N)	N	N								+		
Comments/Obser	vations:	A						!				
	00	p.1										
SAMPLING DAT	`A			• • • • • • • • • • • • • • • • • • •								
Time Sampled:	\square		Approxi	mate Depth	to Wa	ater Di	uring \$	Sampli	ng:	(fe	et)	
Comments:	/					1						
	Number	AA		5	/	1						
Sample Number	Number of Containers	Container Type	Prese	ervative ?		ume I mL or		Tu	rbidity/ Color			alysis ethod
	\checkmark	VOA	H,	¢L		40M	L			5	SEE	COC
Tatal Duran Malu												
Total Purge Volu Weather Condition	and the second state in the second	(gallons)			Dispo	sal: C	arbo	n buc				
Condition of Well		ot Time of Para							LTS	Y	1	N
Well Head Condi			ing:						P & LOCK	Y	1	N
Problems Encour	· · · · · · · · · · · · · · · · · · ·									Y	1	N
Comments:				1					CURED	Y Y	$\frac{1}{1}$	<u>N</u>
L:\Projects\Shell\Shell Bundle\A	laska\4409 Lake Otis Prkwy\G	WM [4409 Lake Otis_SED.xls]	Sheet 1	1							,	

Appendix B – Standard Field Procedures for Groundwater Monitoring

STANDARD OPERATING PROCEDURES

Section: <u>FM-8.5</u> Revision #: Date: <u>01-Aug-05</u>

TITLE: LOW FLOW GROUNDWATER SAMPLING

PURPOSE / SCOPE

This SOP describes procedures for sampling groundwater using low-flow purging and sampling techniques. The purpose is to obtain samples that are representative of existing groundwater conditions, or samples that retain the physical and chemical properties of the groundwater within an aquifer. Improper sampling and transport procedures may cause compounds of interest to be removed from or added to the sample prior to analysis.

Note: The importance of proper and consistent field sampling methods, as well as proper documentation, CANNOT BE OVER-EMPHASIZED.

This SOP shall be used in conjunction with an approved Health and Safety Plan (HASP). Also, consult the HASP for information on the selection and use of PPE.

REFERENCE

- ASTM D5903: Guide for Planning and Preparing for a Groundwater Sampling Event
- ASTM D4448: Standard Guide for Sampling Groundwater Wells
- ASTM D5979: Guide for Conceptualization and Characterization of Groundwater Systems

EPA, *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*, (ORD/ OSWER, Washington D.C., 1996) (EPA-540/S-95/504).

EPA Region III, *Recommended Procedure For Low-Flow Purging and Sampling of Groundwater Monitoring Wells*. (Waste and Chemicals Management Division, 1997.)

RESPONSIBILITIES

4.1 **Project Manager**

П	

Section: <u>FM-8.5</u> Revision #: Date: <u>01-Aug-05</u>

Standard Operating Procedures

The responsibility of the Project Manager (PM) is to ensure that all activities performed by site personnel are performed: safely; in compliance with all pertinent regulations and procedures; and with the necessary equipment and resources to accomplish the tasks described in the Work Plan.

4.2 Local Health and Safety Officer (LHSO)

The Local Health and Safety Officer (LHSO), in consultation with the Corporate HSO and State project representatives, will designate the appropriate level of personnel protective equipment (PPE) for field personnel to safely accomplish their work.

4.3 Case Manager

The Case Manager (CM) is responsible for providing Field Personnel with a sampling or work plan/schedule. In addition, the PM or CM will provide field personnel with enough information to perform the work safely and correctly. This information should include the operational and safety procedures that are applicable to the work being performed.

4.4 Field Personnel

Field personnel are responsible for the safe completion of assigned tasks as described in the SOPs, Health and Safety Plan (HASP) and appropriate site-specific work plans and procedures. They are required to document the work performed and to alert their immediate supervisors of any variances from procedures established in the above documents.

EQUIPMENT / MATERIALS

A basic checklist of suggested equipment and supplies needed to implement this SOP include, but is not limited to:

- Personnel protective equipment as outlined in the site-specific HASP
- Adjustable rate, positive displacement pump (low flow-rate stainless steel submersible pump recommended) or pre-cleaned stainless steel bladder pump
- Electronic, audible (or visual identification) water level meter (0.01 feet accuracy), or interface probe if needed
- Teflon or Teflon-lined polyethylene tubing (3/8 to 1/2 inch, inside diameter)
- Flow measurement supplies (graduated cylinder and stop watch).
- Properly sized generator to operate pump

Section: <u>FM-8.5</u> Revision #: Date: <u>01-Aug-05</u>

- In-line flow-through cell capable of measuring pH, specific conductance, and temperature
- Nylon cable-ties
- Decontamination supplies
- Distilled water
- Polyethylene sheeting/cloth/paper towels/garbage bags
- Transportable, purged water storage container
- Well construction log details and historical groundwater gauging data
- Photoionization detector (PID)
- Secondary containment for the flow-through cell
- Field book
- Well Purging Record Form
- *Note:* Gas powered equipment at sampling sites require special care to ensure that GES staff handling these units do not contaminate down-hole equipment. Frequent disposable glove changes are required, as well as strict separation of sampling crew tasks (e.g., those handling pumps and hoses do not conduct fueling activities).

PREPARATION

Note: Pre-plan the schedule of sampling activities so that sample collection progresses from "clean" to "dirty" areas to minimize the potential for cross contamination.

PROCEDURE

Prior to low-flow purging and sampling activities, all measuring devices must be calibrated daily in accordance with equipment vendor recommendations and recorded on a calibration log sheet. Purging and sampling activities should occur in a progression from the "cleanest" to the "dirtiest" well.

7.1 Well Set-Up Activities

The following steps are required to properly set up for sampling:

- 1. Properly identify and inspect each well.
- 2. Wear appropriate PPE during set-up activities.

STANDARD OPERATING PROCEDURES

 Section:
 FM-8.5

 Revision #:
 001

 Date:
 01-Aug-05

- 3. Place a sheet of polyethylene adjacent to the well to keep sampling and monitoring equipment from touching the ground.
- 4. Remove the well cap slowly (positive pressure inside may blow cap off).
- 5. Measure the VOC concentration at the top of the casing and in the breathing zone using a PID—record reading in field book.
- 6. Measure and record the depth to water (to within 0.01 feet) using a water level meter or interface probe, if applicable (the water level measurement should be taken from a permanent reference point scribed on top of the well casing).
- 7. To minimize turbidity in the well, use total well depth information obtained from the well construction logs to calculate one casing volume.¹
- 8. Attach and secure Teflon or Teflon-lined polyethylene tubing to low-flow (0.10 to 0.50 L/min) stainless steel submersible pump.
- 9. Lower the submersible pump slowly and gently into the monitoring well to minimize aquifer agitation and mixing of the stagnant well casing water, and then secure the safety drop cable or nylon rope and tubing together with nylon cable-ties.
- 10. Place the intake of the submersible pump within the upper 12 inches of the water column. The intake of the pump should be placed at an elevation above dense non-aqueous phase liquid (DNAPL), if applicable.
- 11. Plumb the in-line flow-through cell to the discharge tubing from the well.
- 12. Plumb a discharge line from the effluent of the flow-through cell to a transportable, purged water storage container.
- 13. Position a power source (e.g., a generator) for operation of the submersible pump down gradient of the well to be purged.

1 Multiply the total water column thickness (ft) by the cross-sectional area of the well (ft²) and record in field book and on Well Purging Record form. One cubic foot (ft³) is equivalent to 7.48 gallons.

7.2 Low Flow Purging and Sampling

Once you have completed the well set up activities above, follow these steps to purge and sample using low-flow techniques:

- 1. Put on new nitrile gloves. Change nitrile gloves any time the integrity of the glove is compromised during the purging and sampling activities.
- 2. Activate the low-flow submersible pump and begin extracting groundwater at a rate between 0.10 and 0.50 L/min.

 Section:
 FM-8.5

 Revision #:
 001

 Date:
 01-Aug-05

- 3. Measure the water level approximately every 10 seconds and adjust extraction rate to obtain minimal drawdown in the well of 0.2 feet, but no more than 0.3 feet maximum.
- 4. Once drawdown is stabilized, begin monitoring water quality indicators (pH, specific conductance, and temperature) using the in-line flow-through cell. Record observations in field book and on the attached Well Purging Record form. *Note: while purging, the pumping rate and groundwater level are measured and recorded every 10 minutes (or as appropriate).*
- 5. Monitor the water level and extraction rate, in addition to monitoring water quality indicators, and make periodic adjustments to flow rates to ensure steady flow and minimal drawdown.
- 6. Water quality readings will be monitored every five minutes (or as appropriate) until stabilization criteria are achieved.
- 7. Stabilization is achieved when a minimum of three (minimum of four if using temperature as an indicator) successive readings for each parameter, collected 3-5 minutes apart, are within the following criteria:

Water Quality Indicator Parameter	Stabilization Criteria
pH	±0.1 s.u.
Specific Conductance	±3%
Temperature	$\pm 3\%$ (minimum of $\pm 0.2^{\circ}$ C)
Oxidation-reaction potential (ORP)	$\pm 10 \text{ mV}$
Turbidity	±10%
Dissolved Oxygen	±10%

Note: Stabilization criteria is achieved when the average value of three readings are within each parameter criteria limits.

- 8. Collect the necessary samples once purging activities are complete and the groundwater stabilization/clarity is acceptable according to applicable protocol described above.
- 9. If a well is low yield and purged dry, do not collect a sample until it has recharged to approximately 80% of its pre-purge volume, when practical.
- 10. Collect samples directly from the pump or bailer into the appropriate sample container under typical circumstances. Take care to avoid handling the interior of the bottle or cap. **Do not** place the bottle cap on the ground or in a pocket to avoid contamination.
- 11. Fill all sampling containers for each well in a manner that minimizes aeration and turbulence. Put on a new pair of nitrile gloves before filling each container.

 Section:
 FM-8.5

 Revision #:
 001

 Date:
 01-Aug-05

- 12. Disconnect or bypass the flow-through cell prior to obtaining each sample. The first volume of groundwater in the tubing is to be discarded and treated according to the waste management section described below. Place the discharge line in position at the base of the sample bottle. Fill the sample bottle from the bottom to the top, allowing it to overflow before sealing. *Note: do not overflow if the sample bottles contain preservatives.*
- 13. Place samples immediately on ice and store at 4° C.
- 14. Obtain final water level and flow rate measurements and enter in field book and on the Well Purging Record form.

7.3 Decontamination Procedures

Clean all equipment that will enter the well or come into contact with groundwater prior to each low-flow purging and sampling activity with a stiff brush and a solution of water and laboratory-grade detergent. All decontamination fluids will be disposed of in accordance with the site's waste management plan.

7.4 Documentation

Document all the events, equipment used, and measurements collected during the sampling activities in the field notes. Make all entries in black indelible ink and strike out any corrections with a single line. Initial and date corrections.

Record all manually-measured data and procedural descriptions in a field notebook and on well purging forms (Attachment 1). Maintain detailed notes regarding field calibration events, purging or PID anomalies, and volumes of extracted groundwater.

7.5 Waste Management

Transfer all purged water to the hazardous waste accumulation area were it will be pumped through a 20 and 50 micron filter prior to transfer into 6,000-gallon wastewater storage tank. A record of the total gallons will be maintained in the field book.

Porous materials (PPE, rags, etc.) contaminated with groundwater and non-porous materials that cannot be decontaminated will be managed as hazardous waste. Porous and non-porous materials not contaminated with groundwater will be disposed of as residual waste.

RECORDS

STANDARD OPERATING PROCEDURES

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

1.0 TITLE: FLUID LEVEL GAUGING

2.0 PURPOSE / SCOPE

The purpose of this SOP is to provide general instructions to all GES personnel concerning fluid level gauging activities. The measurement of fluid levels (groundwater or phase-separated compounds) in monitor wells, piezometers, extraction wells, and/or boreholes is required in geotechnical, hydrogeologic, and waste management investigations to determine the presence and condition of the groundwater, or the presence and thickness of phase-separated compounds. Water level measurements (hydraulic head) are used to determine: hydraulic gradients and the direction of groundwater flow; the effectiveness of groundwater extraction systems; and the volume of water required for well purging prior to groundwater sampling. The measurement of the thickness of phase-separated compounds provides a qualitative (not quantitative) monitoring of this form of contamination.

In order to provide reliable data, water levels must be determined over the shortest period of time possible. Barometric pressure can affect groundwater levels and, therefore, observation of significant weather changes during the period of water level measurements must be noted. Tidal fluctuations, navigation controls on rivers, rainfall events and groundwater pumping can also affect groundwater level measurements. Personnel collecting water level data must note if any of these controls are in effect during the groundwater level collection period. Due to possible changes during the groundwater level determination period, it is imperative that the time of data collection at each station be accurately recorded.

In conjunction with groundwater level measurements, surface water (e.g., ponds, lakes, rivers, and lagoons) must be monitored as well. This information is critical in understanding the hydrogeologic setting of the site and, most importantly, how contaminants may move beneath the site.

Note: The importance of proper and consistent field methods, as well as proper documentation, *CANNOT BE OVER-EMPHASIZED*.

This SOP shall be used in conjunction with an approved Health and Safety Plan (HASP). Also, consult the HASP for information on the selection and use of PPE.

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

3.0 REFERENCE

ASTM 4750 —Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)

ASTM D6000 —Guide for Presentation of Water-Level Information from Ground-Water Sites

U.S. EPA (1986), RCRA Ground water Monitoring Technical Enforcement Guidance Document, Washington, D.C.

U.S. EPA (1992), RCRA Ground water Monitoring: Draft Technical Guidance, Washington, D.C. (EPA/530-R-93-001).

4.0 **RESPONSIBILITIES**

4.1 Project Manager

The Project Manger (PM) is responsible to ensure that all activities performed by site personnel are performed safely, in compliance with all pertinent regulations and procedures, and provide the necessary equipment and resources to accomplish the tasks described in this procedure.

4.2 Local Health and Safety Officer (LHSO)

The Local Health and Safety Officer (LHSO), in consultation with the Corporate HSO and State project representatives, will designate the appropriate level of personnel protective equipment (PPE) for field personnel to safely accomplish their work.

4.3 Case Manager

The Case Manager (CM) is responsible for providing field personnel with a comprehensive fluid level gauging work plan/schedule. In addition, the PM or CM will provide field personnel with enough information to perform the work safely and correctly. This information should include the operational and safety procedures that are applicable to the work being performed.

4.4 Field Personnel

Field personnel are responsible for the safe completion of assigned tasks as described in the SOPs, Health and Safety Plan (HASP) and appropriate site-specific work plans and procedures. They are required to document the work

 Section:
 FM-8.1

 Revision #:
 001

 Date:
 01-Aug-05

performed and to alert their immediate supervisors of any variances from procedures established in the above documents.

5.0 EQUIPMENT / MATERIALS

A number of devices are used by GES to collect water level measurements. Typical devices used are:

- Calibrated electronic water level indicators (e.g., solinst or slope indicator)
- Tape/ploppers
- Pressure transducers and dataloggers (generally for pumping tests and long-term monitoring)
- Stevens recorders for long-term monitoring

Devices typically used by GES to measure phase-separated compounds are:

- Electronic audible interface probe
- Clear bottom-loading bailers
- Weighted cotton string or cord

The pressure transducers, Stevens recorders, and oil/water interface probes have manuals which describe their use. This procedure will focus on an overview of this equipment and other methods which have more widespread use in fluid level measurement.

Note: Since many decisions concerning the distribution, transport, and remediation of groundwater contamination will be made on the basis of fluid level monitoring, the accuracy of the measurements made at an appropriate level of precision is very important.

Typically, the precision required is +/-0.01 foot (+/-1 mm); the majority of GES' measuring devices are graduated to this precision level. To ensure accuracy, double check all fluid level readings; it is very easy to misread a tape or transpose figures when recording the data.

6.0 **PREPARATION**

Review and perform preparation activities per SOP FM 1.5, *General Instructions for Field Personnel*.

STANDARD OPERATING PROCEDURES

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

If the water-level data are being collected for the entire site, the Water-Level Measurement Field Sheet, obtained from the PM/CM, should be used (Attachment A). If the data are being collected during low flow ground water sampling, SOP FM 8.5, *Low Flow Groundwater Sampling Procedures* should be followed. If gauging activities are associated with other Site investigation activities the appropriate SOP will be reference accordingly.

Obtain a copy of previous water levels from the PM or CM.

The device used to measure water levels should attain an accuracy of 0.01 ft. A steel tape or an electric sounder can be used to measure water levels, but this SOP only concerns the use of an electric sounder.

When practical, the same portable water-level measurement device should be used for all measurements. However, in order to prevent cross contamination between monitor wells, the water-level indicators must be decontaminated according to SOP FM 14.1, *Decontamination of Dedicated Sampling Equipment*. If an indicator is dedicated to a particular section of the site, or a particular well, it should be marked accordingly.

Obtain and complete the Equipment Checklist (SOP FM 1.5, Attachment A) to confirm that all the necessary materials are available before proceeding.

Make sure water-level measuring equipment is in good operating condition.

Whenever possible, start at those wells that are the least contaminated and work towards more contaminated areas as indicated by the PM or CM.

Clean all equipment per SOP FM 14.1 before the initial and between each use.

7.0 **PROCEDURE**

Water-Level Measurement Procedure

Once the prior planning and preparation activities are completed, fluid level measurements can proceed. The typical series of events which will take place are:

- Well identification/inspection
- Air monitoring
- Reference point determination
- Level measurements
- Equipment decontamination

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

- Field note completion, review, and checking
- Equipment return
- Documentation submitted to appropriate staff and files
- *Note:* Similar to sampling sequence, fluid level measurements should follow a logical order from the least known or suspected level of contamination to the greatest. This will minimize the potential for cross-contamination between wells/monitoring locations.

Well Identification/Inspection

Once at the site and prior to fluid level measurements, confirm that the well to be measured has been correctly identified and located. Frequently sites under evaluation have numerous wells, or wells located in clusters such that identification errors can easily occur. The monitoring personnel should be alert to potential cap switching, mislabeled locations or unlabeled wells.

Proper well locations can be determined by comparison of the well log details to measured well details (i.e., total well depth, casing diameter, casing stick-up or stick-down distances), field ties and site plans.

Once the correct monitor well is identified, a thorough inspection shall be completed, and recorded in the field book. Determine if the cap and lock are secure or if they have been tampered with. If the well is unlocked, replace the lock. Any cracks in the protective casing and/or surface seal should be noted, as well as any subsidence or surface water ponding in the vicinity of the well.

Note the results of the well inspection (even if the well is in perfect condition) and inform the Project Coordinator of any well repairs required. Arrange to have any unmarked wells permanently stamped for proper identification. (A temporary marking at the time of monitoring should also be performed.)

Air Monitoring

Unlock and open the protective casing. Remove the well casing cap and monitor the breathing zone directly above the open cap with an organic vapor meter (SOP FM 16.4). Record vapor readings on the Water Level Measurement Field Sheet (Attachment A). Refer to the site-specific HASP if vapor readings are detected above 1.0 parts per million for more than a five minute period. Recording of extended air monitoring activities shall be conducted with the Air Monitoring Record, Real-Time Monitoring sheet (SOP FM 16.4).

Reference Point Determination

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

Use the top of the reference point as imprinted on the top of the well casing as the measuring reference point. If a reference point is not present, the north side of the well casing will be used as the reference point and marked on the well casing in a manner that can be referred to during future monitoring events (e.g., notch piping or write with permanent marker). This will be the point of measure (POM) to be used when obtaining water-level measurements. Any deviation from this measuring point must be documented on the Water-Level Measurement Field Sheet (Attachment A) and reported to PM or CM.

Level measurements

Measure the distance from the water surface to the POM by placing a steel indicator reference bar (or something comparatively straight and rigid) over the top of the well casing, then lower an electronic water-level indicator or equivalent (i.e., steel tape) into the sounding port as marked. When water is encountered, a light (usually red) will shine on the reel of the water-level indicator, and an intermittent beeping sound will be heard. Slowly move the line up and down along the side of the reference bar until the exact point at which the buzz is heard is located. A continuous beeping sound indicates a phase layer is confirmed. Using the bottom of the reference bar as the measuring point, obtain the depth-towater measurement and phase layer measurement, if encountered, by referencing the markings on the water-level indicator line to the buzzing tone, red indicator light, or audible beeping sound. Note the reading. Compare the new measurement to previously measured water levels.

Note: Beware of watertight caps which provide an airtight seal on the casing end and the water level is positioned within the casing area (i.e., not within the screened interval). Often if this condition exists, a vacuum or pressurized zone is created within the casing section which supports or depresses the water column within the well casing, creating an artificially high or low water column. This effect can cause a few inches or feet of error in the static water level. Two or three water level measurements will confirm water level stability or changing conditions. Once the water level has stabilized (i.e., static) the proper measurement may be taken.

Equipment decontamination

The water level indicator may then be removed and decontaminated in accordance to the Work Plan requirements.

Field note completion, review, and checking

Record measurement, date, and any notes next to the previous month's water level on the Water-Level Measurement Field Sheet (Attachment A). If the water-

Section: FM-8.1 Revision #: 001 Date: 01-Aug-05

level measurement seems suspect or if there is a 0.5 ft difference from the last reading, then re-check water-level measurement. Place a check mark next to the well ID on the Water-Level Measurement Field Sheet to indicate that the measurement was verified.

Report any measurement anomalies to the PM or CM. Secure well cap and lock the protective casing or cap.

Equipment return

After all equipment has been thoroughly cleaned and decontaminated, return to proper location and complete any necessary equipment forms.

Store water-level indicator in a clean, protected area during transport to the next well and after work is completed.

Documentation submitted to appropriate staff and files

Forward original Water-Level Measurement Field Sheet to PM or CM.

8.0 **RECORDS**

Field Notes

The field notes must document all the events, equipment used, and measurements collected during the sampling activities. The field notes must be legible and concise so that the entire sample event can be reconstructed later for future reference.

Record field notes in a standard bound survey-type field book issued for general note taking/field records and available from all GES equipment administrators. Make all field book entries black ink and make any changes/corrections with a single strikethrough line. Initial and date to indicate who made the change/ correction and when it was made.

Complete and submit a Water-Level Measurement Field Sheet.

9.0 FOLLOW-UP ACTIVITIES

Perform the following once field activities are complete.

Appendix C – Laboratory Reports

ANALYTICAL REPORT

GES, Inc. - Concord, CA

Sample Delivery Group:	L1086723
Samples Received:	04/08/2019
Project Number:	3016007-800013-206
Description:	4409 Lake Otis Pkwy
Site:	4409 LAKE OTIS
Report To:	Mark Peterson
	5046 Commercial Circle, Ste. F
	Concord, CA 94520

Ss Cn Sr *Q*c Gl ΆI Sc

Тс

Entire Report Reviewed By:

Jared Starkey Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: GES, Inc. - Concord, CA PROJECT: 3016007-800013-206

SDG: L1086723 DATE/TIME: 05/22/19 10:22

PAGE: 1 of 11

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ca

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1A L1086723-01	5
DUP-1 L1086723-02	6
Qc: Quality Control Summary	7
Volatile Organic Compounds (GC) by Method AK101	7
Semi-Volatile Organic Compounds (GC) by Method AK102/103	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

		Collected by	Collected date/time	Received date/time	
		Amy Zablocki	04/05/19 21:10	04/08/19 09:	00
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1263653	1	04/10/19 18:11	04/10/19 18:11	BMB	Mt. Juliet, TN
WG1266280	1	04/16/19 06:11	04/16/19 16:25	FM	Mt. Juliet, TN
		Collected by	Collected date/time	Received date/time	
		Amy Zablocki	04/05/19 21:10	04/08/19 09:	00
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1263653	1	04/10/19 18:35	04/10/19 18:35	BMB	Mt. Juliet, TN
W01203033		0 1/10/10 10:00	0 1/10/10 10:00		inte o'dirot, int
-	WG1263653 WG1266280 Batch	WG1263653 1 WG1266280 1 Batch Dilution	Amy Zablocki Batch Dilution WG1263653 1 WG1266280 1 O4/10/19 18:11 WG1266280 WG1266280 MWG1266280 MWG1266280 MWG1266280 Batch Dilution Preparation date/time	Amy Zablocki04/05/19 21:10BatchDilutionPreparation date/timeAnalysis date/timeWG1263653104/10/19 18:11 04/16/19 06:1104/10/19 18:11 04/16/19 16:25WG1266280104/16/19 06:1104/16/19 16:25Collected by Amy ZablockiCollected date/time 04/05/19 21:10BatchDilutionPreparationAnalysis	Amy Zablocki 04/05/19 21:10 04/08/19 09: Batch Dilution Preparation date/time Analysis Analysis WG1263653 1 04/10/19 18:11 04/10/19 18:11 BMB WG1266280 1 04/16/19 06:11 04/16/19 16:25 FM Collected by Amy Zablocki Collected date/time 04/05/19 21:10 Received data 04/08/19 09: Batch Dilution Preparation date/time Analysis

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jared Starkey Project Manager

SAMPLE RESULTS - 01 L1086723

GI

Â

Sc

Volatile Organic Compounds (GC) by Method AK101

Analyte ug/l		ug/l	ug/l				
		ag,	ug/l		date / time		
TPHGAK C6 to C10 11.2	J	10.0	100	1	04/10/2019 18:11	WG1263653	
(S) a,a,a-Trifluorotoluene(FID) 99.0			50.0-150		04/10/2019 18:11	WG1263653	

Semi-Volatile Organic Compounds (GC)[] by Method AK102/103

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cn
Analyte	ug/l		ug/l	ug/l		date / time		
AK102 DRO C10-C25	345	J	170	800	1	04/16/2019 16:25	WG1266280	⁵Sr
AK103 RRO C25-C36	874		460	800	1	04/16/2019 16:25	<u>WG1266280</u>	
(S) o-Terphenyl	76.8			50.0-150		04/16/2019 16:25	<u>WG1266280</u>	6
(S) n-Triacontane d62	92.1			50.0-150		04/16/2019 16:25	<u>WG1266280</u>	Qc

SAMPLE RESULTS - 02 L1086723

GI

Â

Sc

Volatile Organic Compounds (GC) by Method AK101

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
FPHGAK C6 to C10	U		10.0	100	1	04/10/2019 18:35	WG1263653	
(S) a,a,a-Trifluorotoluene(FID)	100			50.0-150		04/10/2019 18:35	WG1263653	

Semi-Volatile Organic Compounds (GC)[] by Method AK102/103

Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Cn	
ug/l		ug/l	ug/l		date / time				
379	J	170	800	1	04/16/2019 16:47	WG1266280		⁵Sr	
1060		460	800	1	04/16/2019 16:47	WG1266280			
78.1			50.0-150		04/16/2019 16:47	WG1266280		6	
89.9			50.0-150		04/16/2019 16:47	WG1266280		Qc	
	Result ug/l 379 1060 <i>78.1</i>	Result Qualifier ug/l 379 J 1060 78.1 1060	Result Qualifier MDL ug/l ug/l ug/l 379 J 170 1060 460 78.1 1	Result Qualifier MDL RDL ug/l ug/l ug/l ug/l ug/l 379 J 170 800 1060 460 800 78.1 50.0-150	Result Qualifier MDL RDL Dilution ug/l ug/l ug/l 1000 1 1000 1 78.1 50.0-150 50.0-150 50.0-150 1 1000 1	Result Qualifier MDL RDL Dilution Analysis ug/l ug/l ug/l date / time 379 J 170 800 1 04/16/2019 16:47 1060 460 800 1 04/16/2019 16:47 78.1 50.0-150 04/16/2019 16:47	Result Qualifier MDL RDL Dilution Analysis Batch ug/l ug/l ug/l date / time date / time MG1266280 379 J 170 800 1 04/16/2019 16:47 WG1266280 1060 460 800 1 04/16/2019 16:47 WG1266280 78.1 50.0-150 04/16/2019 16:47 WG1266280	Result Qualifier MDL RDL Dilution Analysis Batch ug/l ug/l ug/l date / time date / time date / time 379 J 170 800 1 04/16/2019 16:47 WG1266280 1060 460 800 1 04/16/2019 16:47 WG1266280 78.1 50.0-150 04/16/2019 16:47 WG1266280	

WG1263653

Volatile Organic Compounds (GC) by Method AK101

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3400905-2 04/10	/19 11:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
TPHGAK C6 to C10	U		10.0	100
(S) a,a,a-Trifluorotoluene(FID)	100			50.0-150

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3400905-1 04/10/19 10:26 • (LCSD) R3400905-3 04/10/19 22:05											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
TPHGAK C6 to C10	400	374	375	93.4	93.8	60.0-120			0.436	20	
(S) a,a,a-Trifluorotoluene(FID)				101	98.4	50.0-150					

ACCOUNT:
GES, Inc Concord, CA

Semi-Volatile Organic Compounds $\,$ (GC)[] by Method AK102/103 $\,$

QUALITY CONTROL SUMMARY

L1086723-01,02

Method Blank (MB)

(MB) R3402334-1 04/16	/19 13:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
AK102 DRO C10-C25	U		170	800	
AK103 RRO C25-C36	U		460	800	
(S) n-Triacontane d62	78.1			50.0-150	
(S) o-Terphenyl	67.0			50.0-150	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402334-2 04/16/19 14:13 • (LCSD) R3402334-3 04/16/19 14:35										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
AK102 DRO C10-C25	3000	2670	2670	89.0	89.0	75.0-125			0.000	20
(S) n-Triacontane d62				72.1	62.0	50.0-150				
(S) o-Terphenyl				76.3	75.8	50.0-150				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402334-4 04/16/	/19 14:57 • (LCSE	D) R3402334-	5 04/16/19 15:19	Э							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4K103 RRO C25-C36	3000	2900	2890	96.7	96.3	60.0-120			0.345	20	
(S) n-Triacontane d62				96.1	101	50.0-150					
(S) o-Terphenyl				70.0	74.3	50.0-150					

PROJECT: 3016007-800013-206

SDG: L1086723

DATE/TIME: 05/22/19 10:22 PAGE: 8 of 11

Sc

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
Qualifier	Description

SDG: L1086723

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebrask
Alaska	17-026	Nevada
Arizona	AZ0612	New Ha
Arkansas	88-0469	New Jer
California	2932	New Me
Colorado	TN00003	New Yo
Connecticut	PH-0197	North Ca
Florida	E87487	North Ca
Georgia	NELAP	North Ca
Georgia ¹	923	North Da
Idaho	TN00003	Ohio-V
Illinois	200008	Oklahon
Indiana	C-TN-01	Oregon
lowa	364	Pennsyl
Kansas	E-10277	Rhode Is
Kentucky ¹⁶	90010	South C
Kentucky ²	16	South D
Louisiana	AI30792	Tenness
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermon
Michigan	9958	Virginia
Minnesota	047-999-395	Washing
Mississippi	TN00003	West Vir
Missouri	340	Wiscons
Montana	CERT0086	Wyomin

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

GES, Inc. - Concord, CA

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

3016007-800013-206

L1086723

PAGE: 10 of 11

05/22/19 10:22

Τс Ss Cn Sr Qc Gl AI Sc

			Billing Infor	rmation:	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	T	1		A	Analysis	/ Contai	iner / Pre	eservative		Chain of Custody	/ Page of			
GES, Inc Concord, C		GES Accounts Payable 440 Creamery Way Ste. 500 Exton, PA 19341		440 Creamery Way		440 Creamery Way)le	Pres Chk				3					Pace	Analytical *
Concord, CA 94520														l					
Report to: Mark Peterson	AZablocki@ge		Email To: mpeterson@gesonline.com; AZablocki@gesonline.com;			Pres	res							12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-58	7122				
Project Description: 44091 Lafe	Oths P.K.	^N Y		City/State Collected:			Amb-NoPres					¥			Phone: 800-767-58 Fax: 615-758-5859	回外经济			
Phone: 866-507-1411 Fax: 925-825-2021	Client Project 3016006-8 301600	# 1 00012-200			I NCHORAGE				H-	HCI	D-HCI	o-HCI-B			L#	086723 115			
Amy Zablocki	Site/Facility II 919 E. DIM	HY409	LAKE -OTIS	P.O. #	- Maria	×j	PAHs 100ml	HCI	HCI BII	dmb lr	mlAmt	mlAml			Acctnum: GE				
Collected by (signature):	Rush? (I	y5 Day y10 Da		Quote #	Results Needed	No.	8270PAHSIMD P	AK101 40mlAmb HCI	40mlAmb	AK102/103 100ml Amb HCI	VOCs V8260C 40mlAmb-HCI	V8260C 40mlAmb-HCI-Blk			Prelogin: P70 TSR: 546 - Jaro	00277			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	lof Entrs	8270P	AK101	AK101	AK102	VOCs /	VOCs \			and a second	edEX 2nd Day Sample # (lab only)			
FRIP-BLANK		G₩				2			*			×	-2	-					
MW-1A	6 -	GW	17.75	WSIE	92110			X	×	×						۶/			
DUP-1	G	GW	17.75	4/57/1	9 2110			X	×		1					n			
						1													
	-					1				1									
an a																			
Matrix: 5 - Soil AIR - Air F - Filter	Remarks:				1	I and		L		рН		Tem	p	COC Seal	ample Receipt (Present/Intact	hecklist t: _NP _Y _N			
W - Groundwater B - Bioassay /W - WasteWater W - Drinking Water T - Other	Samples retur UPS Fe	ned via: dEx Cou	rier		Tracking #		ana. A			Flov	N	Oth	er	Correct	arrive intact: bottles used: nt volume sent If Applica				
elinquished by : (Signature)		Date:		ime: 1215	Received by: (Signa	iture)				Trip Bla	ink Rece	eived: N	res / No HCL / MeoH TBR		Headspace: tion Correct/Cl	X N			
elinquished by : (Signature)		Date:	Ť	ime:	Received by: (Signa	iture)				Temp: 1.2 +0		C	tles Received:	If preserva	ation required by Lo	ogin: Date/Time			
elinquished by : (Signature)		Date:	Ti	ime:	Received for lab by	: (bignat	ture)			Date:	II L	Tin	ne:	Hold:		Condition: NCF / OR			

Appendix D – DEC Laboratory Data Review Checklist

NORTHERN CALIFORNIA OFFICE

MEMORANDUM

TO: Mark C. Peterson, Project Manager

- FROM: Bonnie Janowiak, Ph.D.
- RE: Data Evaluation Narrative Project: Shell-4409 Lake Otis, Anchorage, AK Groundwater and Environmental Services Matrix: Groundwater –Sampled April 5, 2019 Pace Analytical SDG Number: L1086723

Review completed May 1, 2019

1. Data Review Criteria

Groundwater & Environmental Services, Inc. (GES) reviewed the analytical data from the **Shell-4409 Lake Otis**, **Anchorage**, **AK** (site) April 5, 2019 sampling event in order to determine accuracy and precision for each analysis as well as to determine overall data usability. Organic data were reviewed for holding times, method and field blank results, surrogate or system monitoring compound recoveries, Matrix Spike/Matrix Spike Duplicate (MS/MSD) and LCS recoveries. All data necessary to complete the data review were provided by the laboratory.

The collection of aqueous samples from one location, an original and a duplicate sample, occurred on April 5, 2019.

The samples were sent to Pace Analytical laboratories and analyzed for the following methodologies as requested on the Chain of Custody:

- Volatile Organic Compounds (GC) by Method 8021/AK101,
- Semi-Volatile Organic Compounds (GC) by Method AK102/103,

The analytical results were reviewed using laboratory acceptance criteria and procedures and the guidelines contained in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, revised January 2017.

2. Data Qualifiers Assigned

Data was overall of good quality and usable. No data was qualified pursuant to this validation effort.

2.1. Holding Times

Analytical holding times were met.

2.2. Blank Results

There were no analytes reported above the practical quantitation limit (PQL).

2.3. Laboratory Control Spike (LCS)

All LCS recoveries were within laboratory-specified criteria.

2.4. **Preservation**

Samples were collected and subsequently stored in amber sample bottles and stored 4°C \pm 2°C until prepared and analyzed. The temperature of the samples upon receipt by the laboratory were recorded. The initial cooler was received below the acceptable range at 1.2°C. The cooler samples were unfrozen, so the below optimal temperature does not affect the data results. Samples were stored in appropriate and properly preserved.

2.5. Surrogates Recoveries and Accuracy

The surrogate recoveries were all within laboratory-specified ranges.

2.6. Duplicate Analyses and Precision

A field duplicate (DUP-1) from the MW-1A sampling location was collected and submitted blind to the laboratory for analysis. By EPA guidance, only analytes with concentrations >5X the PQL should be used to determine precision. The RPDs for all detections are presented in **Table 2**.

Table 2. Field Duplicate Precision

Field Identification	Analyte	Sample Result	Duplicate Result	RPD ⁽¹⁾	Qualified
	TPHGAK	11.2	ND at 10	NC	А
MW-1A DUP-1	AK102 DRO C10-C25	345J	379J	NC	А
DUP-1	AK103 RRO C25-C36	874	1060	19	А

⁽¹⁾ Relative percent difference = |((SR-DR)*200)/(SR+DR)|

RPD = relative percent difference (RPD $\leq 30\%$ is considered acceptable)

A - Acceptable data

mg/L = milligrams per liter

J = below PQL above MDL

Precision is the distribution of a set of reported values about the mean, or the closeness of agreement between individual test results obtained under prescribed and similar conditions. Precision is best expressed in terms of RPD.

Analysis of the laboratory precision employed evaluation of laboratory spike/laboratory spike duplicate (LCS/LCSD) and matrix spike/matrix spike duplicates (MS/MSD) relative percent difference (RPD) precision calculations. The overall precision within compliance was 100%.

2.7. Accuracy

Accuracy is a measure of the closeness of an observed value to the "true" value, e.g., theoretical or reference value, or population mean. Accuracy includes a combination of random error and systematic error (bias) that result from sampling and analytical operations. Analytical batch accuracy is measured through the analyses of recoveries in LCSs and MS/MSDs. Sample specific accuracy is measured with surrogate recovery. All surrogate recoveries and all recoveries reported in the LCS, and site associated MS/MSD pair were within laboratory-specified criteria. Accuracy for this sampling event and report is 100%.

2.8. Sensitivity

Sensitivity is the measure of how low a concentration can be detected/reported. Sensitivity is measured using practical quantitation limits (PQLs) or reporting limits (RLs).

All reported compounds had PQLs below the DEC clean-up standard and were reliable data.

2.9. Summary

Groundwater analytical data are usable and considered definitive data and suitable for comparison to regulatory standards.

Please do not hesitate to contact me if you have comments or questions.

Sincerely,

BSJanowick

Bonnie Janowiak, Ph.D. Senior Chemist 708 North Main, Suite 201 Blacksburg, VA 24060

Laboratory Data Review Checklist

Comp	leted by:	Bonnie Janowiak					
Title:		Project Chemist			Date:	May 1, 2019	
CS Re	eport Name:	Groundwater Monitoring Report Semi-Annual 2nd Quarter 2019		i-Annual 2nd Quarter 2019	Report Date:	Apr 17, 2019	
Const	ıltant Firm:	Groundwater & Environmental Services			-		
Labor	atory Name:	Pace Analytical Laboratory Report 1		Number: L1086723			
ADEC	File Number:	2100.38.542 ADEC RecKey Nur		ADEC RecKey Num	ber: N/A		
1. <u>L</u>	aboratory						
	a. Did an A	ADEC CS appro	oved laboratory r	eceive and <u>perform</u> all o	f the submitted	sample analyses?	
	• Yes	⊖ No	○ NA (Plea	se explain.)	Comments:		
		-		r "network" laboratory og the analyses ADEC CS		d to an alternate	
	⊖ Yes	\bigcirc No	• NA (Pleas	e explain)	Comments:		
	No samples we	e transferred or	subcontracted.				
2. <u>Cł</u>	nain of Custody	<u>(COC)</u>					
	a. COC infor	mation complet	ed, signed, and d	ated (including released	/received by)?		
г	• Yes	⊖ No	○NA (Pleas	e explain)	Comments:		
	b. Correct an	alyses requested					
г	• Yes	⊖ No	○NA (Plea	ase explain)	Comments:		
3. <u>La</u>	boratory Sampl	e Receipt Docu	mentation				
	a. Sample/co	oler temperature	e documented an	d within range at receipt	$(4^\circ \pm 2^\circ C)?$		
	• Yes	No	○NA (Ple	ase explain)	Comments:		
[1.2 Degrees Cel	sius. Sample wa	as unfrozen. Data	a was not impacted.			

b. Sample preservation acceptable -	· acidified waters,	Methanol preserve	d VOC soil (GRO	, BTEX,
Volatile Chlorinated Solvents, et	c.)?			

• Yes	⊖ No	○NA (Please explain)	Comments:
c. Sample cond	lition docume	nted - broken, leaking (Methanol), ONA (Please explain)	zero headspace (VOC vials)? Comments:
	• 1	•	or example, incorrect sample containe insufficient or missing samples, etc.?
⊖ Yes	• No	ONA (Please explain)	Comments:
statement indicatin	g that all data	ample specific case narrative. The has been reviewed and all issues h	• •
e. Data quality	or usability at	ffected? (Please explain)	Comments:
No. ase Narrative			
	understandable	e? ○NA (Please explain)	Comments:
ase Narrative a. Present and u Yes	○ No		Comments:
ase Narrative a. Present and u Yes	○ No	○NA (Please explain)	Comments: Comments:
ase Narrative a. Present and u Yes b. Discrepancie Yes The laboratory do	 No es, errors or Q No es not have a 	ONA (Please explain)	Comments: e laboratory provides a liability
ase Narrative a. Present and u Yes b. Discrepancie Yes The laboratory do	 No es, errors or Q No es not have a ng that all data 	 ○ NA (Please explain) ○ C failures identified by the lab? ○ NA (Please explain) sample specific case narrative. The a has been reviewed and all issues 	Comments: e laboratory provides a liability have been identified.
ase Narrative a. Present and u Yes b. Discrepancie Yes The laboratory do statement indication	 No es, errors or Q No es not have a ng that all data 	 ○ NA (Please explain) ○ C failures identified by the lab? ○ NA (Please explain) sample specific case narrative. The a has been reviewed and all issues 	Comments: e laboratory provides a liability
ase Narrative a. Present and u Yes b. Discrepancie Yes The laboratory do statement indication C. Were all conto Yes The laboratory do	 No es, errors or Q No es not have a ang that all data rective actions No no 	 NA (Please explain) C failures identified by the lab? NA (Please explain) sample specific case narrative. The a has been reviewed and all issues s documented? 	Comments: e laboratory provides a liability have been identified. Comments: e laboratory provides a liability

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes	⊖ No	○NA (Please explain)	Comments:
b. All applicat	ole holding time	es met?	
• Yes	⊖ No	○NA (Please explain)	Comments:
c. All soils rep	ported on a dry	weight basis?	
⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
Aqueous samples	s only.		
d. Are the repo project?	orted PQLs less	than the Cleanup Level or the min	imum required detection level for the
• Yes	○ No	○NA (Please explain)	Comments:
e. Data quality	or usability af	fected? (Please explain)	Comments:
e. Data quality	/ or usability af	fected? (Please explain)	Comments:
OC Samples		fected? (Please explain)	Comments:
<u>PC Samples</u> a. Method Blar	ık	fected? (Please explain)	
<u>PC Samples</u> a. Method Blar	ık ethod blank repo		
<u>C Samples</u> a. Method Blan i. One me • Ye	ik ethod blank repo s \bigcirc No	orted per matrix, analysis and 20 sa ONA (Please explain)	umples?
<u>C Samples</u> a. Method Blan i. One me • Ye	hod blank resul	orted per matrix, analysis and 20 sa	umples?

iv. Do the affected sam	ple(s) have data	flags? If so, are the	data flags clearly defined?

⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:	
No blank impac	t on data.			
v. Data qu	uality or usabi	Comments:		

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

● Yes ○ No ○ NA (Please explain) Comments:

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \bigcirc Yes \bigcirc No \bigcirc NA (Please explain) Comments:

No metals or inorganics reported

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

● Yes ○ No ○ NA (Please explain) Comments:

All data associated with the site is reported within method or laboratory limits.

iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/DMSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes	\bigcirc No	○NA (Please explain)	Comments:

All data associated with the site is reported within method or laboratory limits.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

vi. Do the affected samples	s) have data flags? If so,	are the data flags clearly defined?
-----------------------------	----------------------------	-------------------------------------

	🔿 No	• NA (Please explain)	Comments:
lo impacted sat	mples.		
vii. Data c	luality or usab	ility affected? (Please explain)	Comments:
c. Surrogates	- Organics On	ly	
i. Are surre	ogate recoveri	es reported for organic analyses - fie	ld, QC and laboratory samples?
• Yes	⊖ No	ONA (Please explain)	Comments:
project sp	ecified DQOs, tory report pag	if applicable. (AK Petroleum metho ges)	in method or laboratory limits? And ods 50-150 %R; all other analyses see
• Yes	⊖ No	○NA (Please explain)	Comments:
iii. Do the clearly de O Yes	-	s with failed surrogate recoveries hav • NA (Please explain)	ve data flags? If so, are the data flags Comments:
clearly de: ○ Yes	fined?	Ŭ	Comments:
clearly de O Yes iv. Data q d. Trip Blank <u>Soil</u> i. One trip	fined? No uality or usabi - Volatile ana	 NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each c 	Comments: to explain.). Comments:
clearly de O Yes iv. Data q d. Trip Blank <u>Soil</u> i. One trip	fined? No uality or usabi - Volatile ana blank reporte	 NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each c 	Comments: to explain.). Comments:
clearly de: Yes iv. Data qu iv. Data qu d. Trip Blank <u>Soil</u> i. One trip (If not, en Yes trip blank was nk to be analyz ii. Is the co	Fined? No No uality or usabi - Volatile ana blank reporte ter explanation No noted on the or zed. ooler used to t	 NA (Please explain) lity affected? (Use the comment box lyses only (GRO, BTEX, Volatile Cl d per matrix, analysis and for each con n below.) NA (Please explain.) 	Comments: to explain.). Comments: hlorinated Solvents, etc.): <u>Water and</u> ooler containing volatile samples? <u>Comments:</u> . Data requested does not require a trip nples clearly indicated on the COC?

iii. All resu	ilts less than I	PQL?	
⊖ Yes	\bigcirc No	• NA (Please explain.)	Comments:
iv. If abov	ve PQL, what	samples are affected?	
		-	Comments:
	olity on weahil	lity offected? (Diagon evaluin)	
v. Data qu	anty of usabi	lity affected? (Please explain.)	Comments:
e. Field Duplica	ate		
-		bmitted per matrix, analysis and 10 j	project samples?
	-		Communitie
• Yes	⊖ No	○NA (Please explain)	Comments:
ii. Submit	ted blind to la	b?	
• Yes	\bigcirc No	○ NA (Please explain.)	Comments:
		ve percent differences (RPD) less th 6 water, 50% soil)	an specified DQOs?
× ×		RPD (%) = Absolute Value of: (R_{1-})	P ₂) 100
	1	$((R_{1+}R_{2}))$	
	$_1 =$ Sample Co		
R_2	$_2 = Field Dupl$	licate Concentration	
• Yes	\bigcirc No	○NA (Please explain)	Comments:
All RPDs where	the concentra	tions are $> 2x$ the PQL were within	DQO.
iv. Data qu	uality or usabi	ility affected? (Use the comment box	x to explain why or why not.)
⊖ Yes	No	○NA (Please explain)	Comments:

O Yes No O NA (Please explain) Comments: i. All results less than PQL? O Yes No NA (Please explain) Comments: No equipment blank in the analytical batch. ii. If above PQL, what samples are affected? Comments: iii. Data quality or usability affected? (Please explain.) Comments: 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) Comments:		f. Decontamination or Equipment Blank (if applicable)						
O Yes O No NA (Please explain) Comments: No equipment blank in the analytical batch.		⊖ Yes	• No	○ NA (Please explain)	Comments:			
O Yes O No NA (Please explain) Comments: No equipment blank in the analytical batch.								
No equipment blank in the analytical batch. ii. If above PQL, what samples are affected? Comments: iii. Data quality or usability affected? (Please explain.) Comments:		i. All results less than PQL?						
ii. If above PQL, what samples are affected? Comments: iii. Data quality or usability affected? (Please explain.) Comments:		⊖ Yes	⊖ No	• NA (Please explain)	Comments:			
iii. Data quality or usability affected? (Please explain.) Comments:		No equipment blank in the analytical batch.						
iii. Data quality or usability affected? (Please explain.) Comments:		ii. If above PQL, what samples are affected?						
Comments:								
Comments:								
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)					Comments:			
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)								
a. Defined and appropriate?								
● Yes ○ No ○NA (Please explain) Comments:		• Yes	○ No	○NA (Please explain)	Comments:			

Reset Form