

dnaenvironmental, llc

111 West 9th Avenue | Anchorage, AK 99501 (907) 350-4897 phone | (866) 350-3569 fax dnaenviro.com

April 8, 2020

Mr. Prathap Kodial Crowley Fuels, LLC 201 Arctic Slope Ave. Anchorage, AK 99518

Subject: Report for September 2019 Groundwater Monitoring Event; Former Newhalen Tank

Farm, Newhalen, Alaska; ADEC File Number 2619.38.

Dear Mr. Kodial:

This letter report summarizes the results of groundwater monitoring conducted in September 2019 by DNA Environmental Consultants, LLC (DNA) at the Former Newhalen Tank Farm site located in Newhalen, Alaska. Newhalen is located on the north shore of Lake Iliamna at the mouth of the Newhalen River. Newhalen is accessed by air via an airfield at Iliamna, Alaska. Newhalen is located in the Iliamna Recording District, 5 miles south of Iliamna and 320 miles southwest of Anchorage (see Attachment 1, Figure 1). The former tank farm site is located at approximately 59°43'10.73" north latitude and 154°53'29.92" west longitude. The site land is owned by the City of Newhalen. The site is located within Bureau of Land Management Public Land Survey Section 28, Township 5 South, Range 33 West, Seward Meridian.

PROJECT OBJECTIVE

The objective of groundwater monitoring in 2019 was to collect additional data to determine if the dissolved-phase groundwater contaminant plume is either in a steady state, shrinking, or expanding.

SITE BACKGROUND

The site is owned by the City of Newhalan, with conveyance completed under Alaska Native Claims Settlement Act in 1988.

Operations

Aerial photographs from 1981, 1982, 1983, 1987, and 1997 were reviewed to evaluate site use. The 1982 photographs show initial activities at the site included pad grading and staging two connex boxes at the northwest corner of the site. The 1983 photographs indicate a tank with similar dimension as Tank No. 471, with no secondary containment. This same tank is present in the 1987 photograph, but with a liner under it, and repositioned southward, near its current location. By 1997, it appears the northern half of the lined tank farm had been constructed (OASIS 2010). At completion, the former Newhalen Tank Farm consisted of eight aboveground fuel storage tanks located inside a secondary containment constructed of metal walls and a polymer liner.

In 1982 or 1983, the Kijik Corporation (doing business as the Nondalton Native Fuel Services, Inc. [NNFS]) began using the site for fuel storage. In 1990, NNFS sold the tank farm to Moody's Fuel, later known as Yukon Fuel.

In 1999, the City of Newhalen reported to the Alaska Department of Environmental Conservation (ADEC) that 50,000 gallons of fuel were released in 1983 due to vandalism (Clay 1999). Site characterization work in 2009 discovered additional details of the 1983 release. A 37,000-gallon fuel tank (identified as Tank No. 471) containing either heating oil or diesel fuel released its entire contents onto the ground surface. At the time of the release, the tank and property lease were maintained by the Kijik Corporation. A response was conducted with oversight by ADEC and the United States Coast Guard, and remediation activities recovered between 10,000 and 32,000 gallons of fuel (R&M Engineering, Inc., no date).

Crowley acquired the property in 2005, when it purchased Yukon Fuel.

2008 Release

On October 30, 2008, Tank No. 471 failed along a weld, resulting in the release of an estimated 13,630 gallons of Jet-A fuel into the secondary containment. A breach in the secondary containment resulted in an estimated loss of 2,836 gallons of fuel on the eastern side of the secondary containment. Delineation of the spill area was conducted in November 2008, and June and September 2009.

The Tank Farm was decommissioned in August 2009 by removing fuel from all tanks and lines, and subsequently removing all tanks, containment liner, and distribution lines. At this time, ADEC's Prevention and Emergency Response Program transferred oversight of characterization activities to the Contaminated Sites Program.

2009 Site Characterizations

In June 2009, field screening samples were collected from 48 test pits and 132 locations within the tank farm footprint. Laboratory analysis was performed on samples from 21 test pits and 12 footprint locations. Six temporary wells were advanced and sampled (OASIS 2009).

Field screening indicated an area of petroleum hydrocarbon impact along the northeast and southeast sides of the tank farm footprint, indicating failure of the secondary containment, causing impact to surface soil below the tank farm liner. Soil results exceeded ADEC Method Two Soil Cleanup Levels.

Groundwater sample results documented gasoline-range organics (GRO), diesel-range organics (DRO), benzene and ethylene benzene concentrations exceeding the ADEC Table C Groundwater Cleanup Levels.

Additional site characterization in September 2009 included advancing 21 test pits and installing six additional well points. Soil samples from nine of the test pits were used to define the boundaries of impact. All 12 temporary well points were sampled and indicate a dissolved-phase hydrocarbon plume located predominantly within the southern end of the pad, and in the area immediately downgradient of the site (OASIS 2010).

2010 Groundwater Monitoring Well Installation

In the fall of 2010, eight soil borings were advanced using a direct-push drill rig, and continuous soil cores were retrieved from the surface to 10 feet below ground surface (bgs). Soil cores were screened using a

photoionization detector (PID). At each of the eight locations, one discrete soil sample was collected for laboratory analysis. At two of the boring locations, a second soil sample was collected for analysis. Each boring location was then converted into a permanent groundwater monitoring well and identified as MW-1 through MW-8.

Field observations of soil borings indicated hydrocarbon impacts at the following locations:

- MW-1 at 9 feet bgs in gravel soils;
- MW-3 had an increasing PID response below 5 feet bgs;
- MW-4 at 7.5 feet bgs;
- MW-5 at 2 to 5 feet bgs;
- MW-7 below 5 feet bgs; and
- MW-8 from 5 to 6 feet bgs.

Field screening did not indicate hydrocarbon impacts at MW-2 or MW-6. Laboratory soil results confirmed impact at MW-5 only. However, soil samples were not necessarily collected from depths where impact was noted (OASIS 2011b).

Groundwater results matched the 2009 temporary well point sample results, with a dissolved-phase hydrocarbon plume defined by wells MW-2, MW-3, and MW-5. MW-5 is located in the center of the pad and impacted area, MW-3 is located east of the impacted area adjacent to a sewage lagoon, and MW-2 is located downgradient of MW-3 and MW-5 (OASIS 2011a).

2011 Removal and Landfarm Construction

Excavation and landfarming of contaminated soil were completed in September of 2011, after Crowley decommissioned and removed the tank farm. The 2011 remediation goal was removal of impacted soil exceeding the ADEC Method Two Soil Cleanup Level Maximum Allowable Concentrations (MACs) for DRO (12,500 milligrams per kilogram [mg/kg]), GRO (1,400 mg/kg) and total xylenes (63 mg/kg). Excavated soil would be treated by landfarming until concentrations were reduced below the MACs.

A total of 2,800 bank cubic yards of soil were excavated from below the former tank farm and moved to a landfarm onsite. Two-hundred gallons of fuel were recovered from groundwater that entered the excavation. The area around MW-5 was left intact. Imported clean fill was used to backfill the excavation and underlay the landfarm (OASIS 2011b).

Sidewall confirmation samples indicated soils exceeding MACs had been successfully removed. The highest reported sidewall concentrations were 220 mg/kg GRO and 5,800 mg/kg DRO.

MAC concentrations were achieved for land-farmed soil with an average GRO concentration of 288 mg/kg and an average DRO concentration of 1,804 mg/kg (Weston 2012).

On-going Groundwater Monitoring

In the fall of 2010, the current network of eight groundwater monitoring wells (MW-1 through MW-8) was installed. The locations of monitoring wells were based on results from temporary well points installed in

2009 (OASIS 2010). Groundwater sampling was conducted in 2010, three times in 2011, twice in 2012, and once annually since 2013. However, since 2013 only wells MW-2, MW-3, and MW-5 have been sampled. In 2018, polycyclic aromatic hydrocarbons (PAH) and volatile organic compounds (VOC) were added to laboratory analysis, with results indicating the presence of a dissolved-phase naphthalene plume at all three wells sampled as well as 1,2,4-Trimethylbenzene at MW-2. Based on the PAH and VOC results, ADEC requested that wells MW-7 and MW-8 be included in the 2019 sampling event to determine the extent of VOC and PAH contamination downgradient of the site.

GEOLOGY/HYDROLOGY

The site is located on an alluvial plain along the north shore of Iliamna Lake. The near-surface soils on-pad generally consist of gravel with sand. In some areas off the pad, the surface soil (top 0.5 to 1.5 feet) consists of a finer grained, highly organic soil horizon. Groundwater at the site is encountered at approximately 1.5—2.5 feet bgs. Groundwater is estimated to flow from northwest to southeast at the site. The nearest major water body is Lake Iliamna, about 1,000 feet downgradient of the property. The estimated elevation difference between the site and Lake Iliamna is 20 to 30 feet.

FIELD ACTIVITIES

DNA performed groundwater monitoring activities on September 17, 2019. Fieldwork was performed by DNA in accordance with the most recent ADEC-approved work plan (Weston 2018). Field activities were documented in a bound logbook, with well purge and sampling information recorded on separate well sampling sheets. Sample collection time, date, and location are summarized in Attachment 2, Table 1. All field documents are provided in Attachment 3. A photographic log is provided as Attachment 4.

All eight monitoring wells (MW-1 through MW-8) at the site were gauged for depth to groundwater. Each well scheduled for sampling (all wells except MW-4 and MW-6) was then purged following the United States Environmental Protection Agency (EPA) low-flow (minimal drawdown) sampling technique, and then a sample was collected.

All field work was conducted by Daniel Frank; Mr. Frank meets the ADEC's requirements of a qualified environmental professional per 18 AAC 75.333 and 18 AAC 78.088. There were no deviations from the work plan.

Field Observations

Water Table

Static water level measurements and calculated elevations are presented in Attachment 2, Table 2. Attachment 1, Figure 2 depicts the calculated water elevation at each well and inferred isocontours using Surfer® software version 17. The well casing at MW-8 was frost-jacked, therefore the elevation is not considered usable for evaluating gradient.

Groundwater elevations were within the screening interval for each monitoring well except MW-2, where the static water level was 1.81 feet above the top of the well screen. Groundwater flow direction, as found during previous monitoring events, is interpreted as south-southeast (Attachment 1, Figure 2).

Water Quality

Water quality parameters recorded during the sample purge included temperature, conductivity, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Final parameter values recorded at the end of purging and prior to sample collection are summarized in Attachment 2, Table 3.

Water from all wells generally appeared non-turbid at the completion of the purge, with most values for turbidity less than 10 Nephelometric Turbidity Units (NTU), and the highest recorded value at 60.4 NTUs. The color of purge water was clear, with a hydrocarbon odor noted at MW-2 but no sheening. The average temperature across the site was 10.47 degrees Celsius (°C), ranging from 8.88 to 12.40 °C. Values for pH ranged from 5.64 to 6.19. Conductivity was between 0.0343 and 0.121 milli-siemens per centimeter (mS/cm). Values for DO were between 0.59 and 4.44 milligrams per liter (mg/L), indicating anaerobic conditions at MW-2, MW-3, MW-5, and MW-8. Values for ORP ranged from 95 to 210 millivolts (mV), indicating nitrification.

Analytical Methods

All groundwater samples were submitted to SGS North America, Inc. (SGS), an ADEC-approved laboratory for the following analyses:

- DRO by Alaska method AK102;
- VOCs by United States EPA Solid Waste (SW) method 8260C; and,
- PAHs by EPA method SW8270D-SIM.

Analytical Results

Laboratory analytical results are presented in Attachment 2, Table 4, with historical values presented in Table 5 for all past sampling events. The SGS laboratory report is included as Attachment 5 to this letter, and the ADEC Checklist and associated data quality assessment is included as Attachment 6.

Analytical results are compared to Alaska Administrative Code, Title 18, Chapter 75, Article 3 (18 AAC 75.345): Oil and Other Hazardous Substances Pollution Control (ADEC 2018), Table C, Groundwater Cleanup Levels (GCLs).

DRO remains the main contaminant of concern with detections greater than the GCL of 1.5 mg/L at the same three monitoring wells as found in the past: MW-2 (2.27 mg/L), MW-3 (2.06 mg/L), and MW5 (4.02 mg/L).

VOCs detected at a concentration greater than a GCL include petroleum hydrocarbon co-constituents 1,2,4-Trimethylbenzene at MW-2 (83.8 micrograms per liter [μ g/L]); and Naphthalene at MW-2 (38.0 μ g/L), MW-3 (2.8 μ g/L), MW-5 (3.25 μ g/L), and at down gradient wells MW-7 (1.77 μ g/L) and MW-8 (2.35 μ g/L). No other VOCs were reported at a concentration greater than an associated GCL.

The PAH petroleum hydrocarbon co-constituent 1-Methylnaphthalene was detected at a concentration greater than the GCL of 11 at MW-2 (23.3 μ g/L). Naphthalene as a PAH was reported at a concentration greater than the GCL of 1.7 μ g/L at MW-2 (23.8 μ g/L). No other PAHs were reported at a concentration greater than an associated GCL.

Trend Analysis

DNA conducted a trend analysis of DRO concentrations over time at monitoring wells MW-2, MW-3, and MW-5 using the Mann-Kendall trend test. The trend test was conducted using the GSI Mann-Kendall Toolkit. Input data is summarized in Attachment 2, Table 6, and output data is provided as Attachment 7.

The trend test indicates a spatially stable plume, with a decreasing concentration trend at in-plume well MW-5. No concentration trend is evident using the Mann-Kendall test at in-plume wells MW-2 and MW-3, and a visual assessment of the data indicates a stable to declining concentration trend.

CONCLUSIONS AND RECOMMENDATIONS

When historical groundwater data is evaluated, the more volatile compounds previously found at the site have dissipated, likely as a result of the 2010 removal effort.

A dissolved-phase DRO plume remains present and the trend analysis for DRO indicates a spatially stable dissolved-phase plume in steady state with a declining concentration trend at one in-plume well.

A dissolved-phase naphthalene plume is present at the same wells as those defining the DRO plume, with the exception that the naphthalene plume appears to extend beyond downgradient wells MW-7 and MW-8. Insufficient data exists to determine a concentration tend for naphthalene; however, naphthalene is a common fuel constituent and a remedial effort has been conducted to address the source of the impact to groundwater at the site, and therefore the naphthalene plume is expected to mirror the steady state of the dissolved-phase DRO plume.

DNA recommends resampling the wells at a three- to five-year interval, as annual sampling appears too frequent given the current plume equilibrium. DNA recommends future analysis of groundwater include naphthalene by EPA Method 8260 and DRO at all wells except MW-4 and MW-6.

Sincerely,

DNA Environmental Consultants, LLC

Daniel Frank Principal

Attachments

- 1. Figures
- 2. Tables
- 3. Field Forms and Notes
- 4. Photograph Log
- 5. Laboratory Report
- 6. ADEC Checklist and Data Quality Report
- 7. Mann-Kendall Output

REFERENCES

31.

- Alaska Department of Environmental Conservation (ADEC), 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, October 27.
- Clay. 1999. Letter from John Clay, Newhalen City Administrator to David Pikul, Environmental Specialist with Alaska Department of Environmental Conservation. October 6.
- OASIS Environmental, Inc., 2011a. Former Newhalen Tank Farm Groundwater Characterization Report Newhalen, Alaska; ADEC File Number 2619.38.002; ADEC Hazard ID Number 25452. January 21.
 ________, 2011b. Soil Excavation Completion; Former Newhalen Tank Farm, Newhalen, Alaska; ADEC File Number 2619.38.002; ADEC Hazard ID Number 25452 (letter format). December 22.
 _______, 2010. Additional Site Characterization Report. Newhalen Tank Farm, Newhalen, Alaska. January 14.
 ______, 2009 Newhalen Site Characterization Report. Newhalen Tank Farm, Newhalen, Alaska. July
- R&M Engineering, Inc., no date. City of Newhalen (Kijik) Fuel Facility, Newhalen, Alaska Phase I Environmental Site Assessment.
- Weston Solutions, Inc. (Weston), 2018. 2018 Groundwater Monitoring Work Plan; Former Newhalen Tank Farm; Newhalen, Alaska; ADEC File No. 269.38.001 (letter format). December 11.
- _____, 2012. 2012 Newhalen Landfarm Sampling and Maintenance; Former Newhalen Tank Farm; Newhalen, Alaska; ADEC File No. 269.38.002 (letter format). August 27.

ATTACHMENT 1

Figures

ATTACHMENT 2

Tables

TABLE 1: SAMPLE COLLECTION SUMMARY

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

		te	٥			L	aboratory Analyse	s
Sample Location	Sample Number	Duplicate	GSW/SW	Sample Date	Sample Time	DRO (AK 102)	PAHs (EPA 8270D SIM)	VOCs (EPA 8260C)
Groundwa	ter							
MW-1	19-NHTF-103-GW			9/17/19	1240	✓	✓	✓
MW-2	19-NHTF-104-GW			9/17/19	1335	✓	✓	✓
MW-3	19-NHTF-105-GW			9/17/19	1430	✓	✓	✓
MW-4					Guag	e Only		
MW-5	19-NHTF-106-GW	'		9/17/19	1520	✓	✓	✓
10100-5	19-NHTF-107-GW	✓		9/1//19	1620	✓	✓	✓
MW-6					Guag	e Only		
MW-7	19-NHTF-101-GW		✓	9/17/19	1100	✓	✓	✓
MW-8	19-NHTF-102-GW	19-NHTF-102-GW 9/17/1		9/17/19	1200	✓	✓	✓
Quality Co	ntrol							
	Trip Blank		9/17/19	1100	✓	✓	✓	
	19-NHTF-101-RB			9/17/19	1845	✓	✓	_

Key:

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

DRO = Diesel-range organics

EPA = United States Environmental Protection Agency

GW = Groundwater

ID = Identification

MW = Monitoring well

NHTF = Newhalen Tank Farm

PAHs = Polycyclic aromatic hydrocarbons

RB = Rinsate Blank

SIM = Selective ion monitoring

VOCs = Volatile Organic Compounds

Page 1 of 1 2/27/20

TABLE 2: GROUNDWATER ELEVATION DATA

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

			Land Surv	ey Details			Well Design			Field	d Measurem	ents			Groundwater
Well ID	Installation Date	0.00	TOC Elevation (2,3)	Northing ⁽¹⁾	Easting ⁽¹⁾	Screen Length (feet)	Top of Screen (BTOC)	Bottom of Screen (BTOC)	Gauge Date	Depth to LNAPL (BTOC)	Depth to Water (BTOC)	TD (BTOC)	Depth to Water (BGS)	Water Elevation (feet AMSL)	Interface within Screen Interval?
MW-1	8/26/10	50.40	52.92	2090279.19	1475936.04	5.00	6.31	11.31	9/17/19		6.51	11.32	3.99	46.41	Yes
MW-2	8/26/10	48.40	51.01	2090330.81	1476038.02	5.00	6.38	11.38	9/17/19		4.57	11.35	1.96	46.44	No
MW-3	8/26/10	50.00	52.71	2090467.00	1476026.87	5.00	5.32	10.32	9/17/19		6.21	9.90	3.50	46.50	Yes
MW-4	8/26/10	51.20	53.76	2090329.53	1475722.57	5.00	6.14	11.14	9/17/19		7.20	10.93	4.64	46.56	Yes
MW-5	8/26/10	49.00	51.24	2090460.98	1475844.91	5.00	4.10	9.10	9/17/19		4.61	9.12	2.37	46.63	Yes
MW-6	8/26/10	49.50	51.87	2090558.15	1475699.01	5.00	4.49	9.49	9/17/19		5.18	9.47	2.81	46.69	Yes
MW-7	8/27/10	50.40	52.87	2090183.38	1476019.91	5.00	6.45	11.45	9/17/19		6.62	11.47	4.15	46.25	Yes
MW-8 ⁽⁴⁾	8/27/10	48.00	51.02	2090254.33	1476190.18	5.00	3.55	8.55	9/17/19		6.10	8.52	3.08	44.92	Yes

Notes: All measurements are in units of feet. Mammoth Consulting, August 2012.

Key:

-- = Not present

AMSL = Above Mean Sea Level

BTOC = Below top of casing, a.k.a. below measuring point

LNAPL = Light non-aqueous phase liquid

NA = Not available

NR = not recorded

TD = Total Depth

TOC = top of casing (PVC) meeasuring poin

BGS = below ground surface

Page 1 of 1 2/27/20

⁽¹⁾ NAD83 Alaska State Plane Zone 5; US Feet

⁽²⁾ NAVD88; US Feet

 $^{^{(3)}}$ Top of (PVC) pipe elev's are at black mark; From trig levels - accuracy is +/- 0.01'.

⁽⁴⁾ This well has frost-heaved and is not reliable for vertical measurement to water.

TABLE 3: FIELD-COLLECTED WATER QUALITY DATA

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

Well ID	Purge/ Sample Date	Sample Method	Color	Odor	Temperature (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)
MW-1	9/17/19		clear	none	8.88	5.64	0.034	14.5	4.44	210.0
MW-2	9/17/19		clear	hydrocarbon	9.84	6.19	0.060	1.4	0.60	95.0
MW-3	9/17/19	Positive Pressure	clear	none	10.04	6.09	0.121	3.8	0.60	146.0
MW-5	9/17/19	Pump ⁽¹⁾	clear	none	12.40	5.97	0.081	3.2	0.59	123.0
MW-7	9/17/19		clear	none	10.89	5.85	0.043	60.4	2.21	185.0
MW-8	9/17/19		clear	none	10.76	5.99	0.056	7.3	1.41	176.0

Notes: Above data is final reading after purge and before sampling.

Key:

°C = Degrees Celsius MW = Monitoring well

DO = Dissolved oxygen NTU = Nephelometric Turbidity Units mg/L = Milligrams per liter ORP = Oxidation-reduction potential

mS/cm = milli-siemens per centimeter SS = Stainless Steel

mV = Millivolts

Page 1 of 1 2/27/20

 $^{^{(1)}}$ Proactive $^{\!\!@}\!$ Mega-Monsoon $^{\,\mbox{\tiny TM}}$ (stainless steel pump); low-flow method.

TABLE 4: LABORATORY RESULTS SUMMARY

Ground Water Monitoring Report – September 2019 Former Newhalen Tank Farm Crowley Fuels, LLC

Newhalen, Alaska

Well ID:		MW-1		MW-2		MW-3		MW-5		MW-5 DUF)	MW-7		MW-8		Rinsate		Trip Blaı	nk
Project Sample ID:	ADEC	19-NHTF-103-	-GW	19-NHTF-104-	GW	19-NHTF-105-	GW	19-NHTF-106-	GW	19-NHTF-107-	-GW	19-NHTF-101-GW	V	19-NHTF-102-	GW	19-NHTF-101	I-RB	Trip Blaı	nk
Lab Sample ID:	Cleanup Levels	1195455003	3	1195455004	ļ	1195455005	5	1195455006	3	119545500	7	1195455001		1195455002	2	119545500	8	11954550	09
Collection Date/Time:		9/17/19 12:4	-0	9/17/2019 1:35	PM	9/17/2019 2:30	PM	9/17/2019 3:20	PM	9/17/2019 4:20	PM	9/17/2019 11:00 AM	VI S	9/17/2019 12:00	PM	9/17/2019 6:45	5 PM	9/17/2019 11:0	00 AM
Alaska DEC Fuels (AK102; m	g/L)																		
DRO C10-C25	1.5	0.575	J	<u>2.27</u>		<u>2.06</u>		<u>4.02</u>		<u>3.28</u>		0.417 J	J	0.194	J	0.294	U		
PAHs (EPA 8270D-SIM LV; μ	g/L)																		
1-Methylnaphthalene	11	0.197		<u>23.3</u>		1.49		5.41		4.05		0.249		0.916		0.0232	U		
2-Methylnaphthalene	36	0.0250	U	25.2		0.377		2.98		2.26		0.0240 L	J	0.497		0.0232	U		
Acenaphthene	530	0.0250	U	0.362		0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0588		0.0232	U		
Acenaphthylene	260	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Anthracene	43	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Benzo(a)Anthracene	0.3	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Benzo[a]pyrene	0.25	0.0100	U	0.00980	U	0.00980	U	0.00980	U	0.00945	U	0.00960 L	J	0.00980	U	0.00925	U		
Benzo[b]Fluoranthene	2.5	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Benzo[g,h,i]perylene	0.26	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Benzo[k]fluoranthene	0.8	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Chrysene	2	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Dibenzo[a,h]anthracene	0.25	0.0100	U	0.00980	U	0.00980	U	0.00980	U	0.00945	U	0.00960 L	J	0.00980	U	0.00925	U		
Fluoranthene	260	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Fluorene	290	0.0250	U	0.444		0.0245	U	0.350		0.253		0.0620		0.0691		0.0232	U		
Indeno[1,2,3-c,d] pyrene	0.19	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Naphthalene	1.7	0.529		<u>23.8</u>		0.806		1.32		0.967		1.04		1.45		0.0463	U		
Phenanthrene	170	0.0250	U	0.0684		0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
Pyrene	120	0.0250	U	0.0245	U	0.0245	U	0.0245	U	0.0236	U	0.0240 L	J	0.0245	U	0.0232	U		
VOCs (EPA 8260C; μg/L; BTE	X First)																		
Benzene	4.6	0.200	U	0.200	U	0.200	U	0.200	U	0.200	U	0.200 L	J	0.200	U	0.200	U	0.200	U
Toluene	1100	0.500	U	0.340	J	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
Ethylbenzene	15	0.500	U	10.0		0.470	J	0.500	U	0.500	U	0.330 J	J	0.570	J	0.500	U	0.500	U
Xylenes (total)	190	1.50	U	44.3		2.74	J	1.00	J	1.03	J	1.50 L	J	1.50	U	1.50	U	1.50	U
1,1,1,2-Tetrachloroethane	5.7	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250 L	J	0.250	U	0.250	U	0.250	U
1,1,1-Trichloroethane	8000	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,1,2,2-Tetrachloroethane	0.76	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250 L	J	0.250	U	0.250	U	0.250	U
1,1,2-Trichloroethane	0.41	0.200	U	0.200	U	0.200	U	0.200	U	0.200	U	0.200 L	J	0.200	U	0.200	U	0.200	U
1,1-Dichloroethane	28	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,1-Dichloroethene	280	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,1-Dichloropropene		0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,2,3-Trichlorobenzene	7	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,2,3-Trichloropropane**	0.0075*	0.500*	U	0.500*	U	0.500*	U	0.500*	U	0.500*	U	0.500* L	J	0.500*	U	0.500*	U	0.500*	U
1,2,4-Trichlorobenzene	4	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500 L	J	0.500	U	0.500	U	0.500	U
1,2,4-Trimethylbenzene	56	2.05		<u>83.8</u>		6.12		4.02		4.09		0.340 J	J	0.660	J	0.500	U	0.500	U
1,2-Dibromo-3-chloropropane		5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00 L	J	5.00	U	5.00	U	5.00	U

Page 1 of 3 4/8/20

TABLE 4: LABORATORY RESULTS SUMMARY

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

Well ID:		MW-1		MW-2		MW-3		MW-5		MW-5 DUI	P	MW-7		MW-8		Rinsate		Trip Blan	ık
Project Sample ID:	ADEC	19-NHTF-103	-GW	19-NHTF-104	-GW	19-NHTF-10	5-GW	19-NHTF-106	-GW	19-NHTF-107-	-GW	19-NHTF-101-0	GW.	19-NHTF-102	-GW	19-NHTF-101	-RB	Trip Blan	ık
Lab Sample ID:	- Cleanup Levels	119545500	3	119545500	4	11954550	05	119545500	6	119545500	7	1195455001		119545500	2	119545500	8	119545500	09
Collection Date/Time:	1	9/17/19 12:4	10	9/17/2019 1:35	5 PM	9/17/2019 2:3	0 PM	9/17/2019 3:20	PM	9/17/2019 4:20	PM	9/17/2019 11:00	AM	9/17/2019 12:00) PM	9/17/2019 6:45	PM	9/17/2019 11:0	00 AM
1,2-Dibromoethane	0.075	0.0375	U	0.0375	U	0.0375	U	0.0375	U	0.0375	U	0.0375	U	0.0375	U	0.0375	U	0.0375	U
1,2-Dichlorobenzene	300	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
1,2-Dichloroethane	1.7	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
1,2-Dichloropropane	8.2	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
1,3,5-Trimethylbenzene	60	0.500	U	20.4		3.09		8.46		8.63		0.500	U	0.500	U	0.500	U	0.500	U
1,3-Dichlorobenzene	300	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
1,3-Dichloropropane		0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
1,4-Dichlorobenzene	4.8	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
2,2-Dichloropropane		0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
2-Butanone (MEK)	5600	5.00	U	5.00	U	5.00	U	6.49	J	6.16	J	5.00	U	5.00	U	5.00	U	5.00	U
2-Chlorotoluene		0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
2-Hexanone	38	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
4-Chlorotoluene		0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
4-Isopropyltoluene		0.660	J	23.1		2.79		6.53		6.68		1.34		2.31		0.500	U	0.500	U
4-Methyl-2-pentanone	6300	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Bromobenzene	62	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Bromochloromethane		0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Bromodichloromethane	1.3	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Bromoform	33	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Bromomethane	7.5	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U
Carbon disulfide	810	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Carbon tetrachloride	4.6	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Chlorobenzene	78	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Chloroethane	21000	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Chloroform	2.2	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Chloromethane	190	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.440	J	0.500	U	0.410	J
Dibromochloromethane	8.7	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Dibromomethane	8.3	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Dichlorodifluoromethane	200	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Freon-113	10000	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Hexachlorobutadiene	1.4	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Isopropylbenzene	450	0.370	J	11.9		0.540	J	1.07		1.04		0.810	J	1.26		0.500	U	0.500	U
Methyl-t-butyl ether	140	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Methylene chloride	110	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U	2.50	U
Naphthalene	1.7	0.830	J	38.0		2.80		3.25		<u>3.25</u>		<u>1.77</u>		2.35		0.500	U	0.500	U
P & M -Xylene		1.00	U	19.1		1.05	J	1.00	U	1.00	U	1.00	U	0.620	J	1.00	U	1.00	U
Styrene	1200	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U

Page 2 of 3 4/8/20

TABLE 4: LABORATORY RESULTS SUMMARY

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

Well ID:		MW-1		MW-2		MW-3		MW-5		MW-5 DUF	•	MW-7		MW-8		Rinsate		Trip Blan	ĸ
Project Sample ID:	ADEC Cleanup	19-NHTF-103-	-GW	19-NHTF-104	-GW	19-NHTF-105	-GW	19-NHTF-106-	-GW	19-NHTF-107-	-GW	19-NHTF-101-0	GW	19-NHTF-102-	GW	19-NHTF-101	-RB	Trip Blan	K
Lab Sample ID:	Levels	1195455003	3	119545500	4	119545500	5	1195455000	6	1195455007	7	1195455001		1195455002	2	119545500	8	119545500	9
Collection Date/Time:		9/17/19 12:4	0	9/17/2019 1:35	PM	9/17/2019 2:30) PM	9/17/2019 3:20	PM	9/17/2019 4:20	РМ	9/17/2019 11:00	AM	9/17/2019 12:00	PM	9/17/2019 6:45	PM	9/17/2019 11:0	MA C
Tetrachloroethene	41	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Trichloroethene	2.8	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Trichlorofluoromethane	5200	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
Vinyl acetate	410	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Vinyl chloride	0.19	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U
cis-1,2-Dichloroethene	36	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
cis-1,3-Dichloropropene	4.7	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
n-Butylbenzene	1000	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
n-Propylbenzene	660	0.390	J	19.9		1.14		2.10		2.10		0.710	J	1.51		0.500	U	0.500	U
o-Xylene		0.500	U	25.2		1.69		1.00		1.03		0.500	U	0.500	U	0.500	U	0.500	U
sec-Butylbenzene	2000	0.500	U	6.82		0.910	J	1.81		1.84		0.520	J	1.35		0.500	U	0.500	U
tert-Butylbenzene	690	0.500	U	0.500	U	0.500	U	0.370	J	0.380	J	0.500	U	0.500	U	0.500	U	0.500	U
trans-1,2-Dichloroethene	360	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
trans-1,3-Dichloropropene	4.7	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U

Notes: Results greater than ADEC cleanup values are underlined & bolded. ADEC Cleanup Levels from: 18 AAC 75.345, Table C, October 27, 2018. **Laboratory unable to detect at cleanup level for 1,2,3-Trichloropropane.

Key:

-- not applicable

ADEC = Alaska Department of Environmental Conservation

AK = Alaska

DRO = Diesel-range organics

EPA = United States Environmental Protection Agency

GW = Groundwater

ID = Identification

LV = low volume

MW = Monitoring well

NHTF = Newhalen Tank Farm

PAHs = Polycyclic aromatic hydrocarbons

RB = Rinsate Blank

SIM = Selective ion monitoring

VOCs = Volatile Organic Compounds

mg/L = milligrams per liter

ug/L = micrograms per liter

Data Flags

J = Estimated concentration; analyte was detected between the method detection limit and the practical quantitation limit.

U - Not detected.

Page 3 of 3 4/8/20

TABLE 5: HISTORICAL DATA

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

		A		newnalen,			BTEX	(ua/L)	
Sample ID	Sample Date	Duplicate	GRO (mg/L)	DRO (mg/L)	RRO (mg/L)	Benzene	Toluene	Ethyl- benzene	Total Xylenes
ADEC Groundwater	Cleanup Leve	el ⁽¹⁾ :	2.2	1.5	1.1	4.6	1100	15	190
MW-1									
10-NHTF-MW1-01-GW	8/28/10		0.354 JS	0.675	ND (0.435)	0.00113 JS	ND (0.001) R	0.0314 JS	0.0686 JS
11-NWH-101-GW 11-NWH-102-GW	3/31/11 3/31/11	√	0.11 0.1	ND (0.800) 0.92	ND (0.200) 0.09	0.0037 0.0036	ND (0.005) ND (0.005)	ND (0.001) ND (0.001)	ND (0.003) ND (0.003)
11-NHTF-207-GW	6/21/11		ND (0.100)	0.92 0.18 J	ND (0.200)	ND (0.001)	0.0021 J	0.00088 J	0.0081
11-NHTF-306-GW	9/19/11		0.48	0.83	ND (0.200)	0.071 J	0.003 J	0.056	0.14
12-NEW-105-GW	7/9/12		0.857	1.2	ND (1.1)	ND (0.001)	0.0752	ND (0.001)	0.252
12-NEW-206-GW	10/25/12		0.373	ND (1.3)	ND (1.1)	ND (0.001)	0.0279	ND (0.001)	0.0593
19-NHTF-103-GW MW-2	9/17/19			0.575 J		ND (0.200)	ND (0.500)	ND (0.500)	ND (0.150)
10-NHTF-MW2-01-GW	8/28/10		2.96	1.5	ND (0.427)	0.0255	0.158	0.0989	0.841
11-NWH-103-GW	3/31/11		2.3	1.2	ND (0.200)	0.0233	0.136	0.0989	1.1
11-NHTF-208-GW	6/21/11		2.3	2.0	ND (0.240)	0.0025	0.12	0.14	0.81
11-NHTF-308-GW	9/19/11		2.7	2.2	ND (0.200)	0.0067	0.28	0.17	1.1
12-NEW-102-GW 12-NEW-208-GW	7/9/12 10/26/12		1.97 2.99	1.8 2.0	ND (1.1) 1.4	ND (0.001) ND (0.001)	0.0991 0.116	0.049 0.069	0.61 0.676
13-NHTF-102-GW	5/22/13		2.3	1.2	0.20	0.01	0.067	0.11	0.68
MW-2	6/11/14		1.88	1.22	ND (0.272)	ND (0.0002)	0.0257	0.0826	0.5610
GW-062715-MW2-01	6/27/15		1.19	<u>3.61</u>	<u>1.50</u>	ND (0.0002)	0.0034	0.0604	0.3010
GW-080716-MW2-03	8/7/16		0.721	1.43	0.394 J				
GW-080716-MW4-04 GW-NHTF-MW4-080117-03	8/7/16 8/1/17	✓	0.823 0.506	1.36 1.71	0.286 J 0.199 J				
GW-NHTF-MW4-080117-03	8/1/17	✓	0.506	1.64	0.199 J 0.179 J				
GW-NHTF-09212018-MW2-4	9/21/18			0.960		ND (0.200)	0.310 J	10.8	45.6
19-NHTF-104-GW	9/17/19			2.27		ND (0.200)	0.340 J	10.0	44.3
MW-3									
10-NHTF-MW3-01-GW	8/28/10		1.34 JS	2.43	0.92	0.0255		0.0989	0.841
No Sample	3/31/11		2.42		1	olume due to slu			2.244
11-NHTF-206-GW 11-NHTF-303-GW	6/19/11 9/18/11		0.42 0.28	<u>1.6</u> 1.5	0.24 0.24	ND (0.001) ND (0.001)	0.031 0.021	0.0067 0.0043	0.044
12-NEW-103-GW	7/9/12		0.146	1.3	ND (1.1)	ND (0.001)	0.021	0.0109	0.03
12-NEW-201-GW	10/25/12		0.379	ND (1.1)	ND (1.1)	ND (0.001)	0.0096	0.0092	0.0639
13-NHTF-103-GW	5/22/13		0.51	1.8	0.56	ND (0.001)	0.051	0.003	0.028
MW-3 GW-062715-MW3-03	6/11/14 6/27/15		0.283 0.358	0.846 1.42	ND (0.267) ND (0.266)	ND (0.0002) ND (0.0002)	0.00191 0.000570 J	0.00686 0.0111	0.0494 0.301
GW-080716-MW3-02	8/7/16		0.336	7.4 7.4	0.514 J			U.U111	0.301
GW-NHTF-MW3-080117-02	8/1/17		0.355	2.08	0.205 J				
GW-NHTF-09212018-MW3-3	9/21/18			0.555 J		0.200 U	0.350 J	ND (0.500)	ND (0.150)
19-NHTF-105-GW	9/17/19			2.06		ND (0.200)	ND (0.500)	0.470	2.74
MW-4	1		•	•	1	•		•	
10-NHTF-MW4-01-GW	8/28/10		0.0546 JS	ND (0.400)		ND (0.0005) JS olume due to slu			0.00395 JS
No Sample 11-NHTF-209-GW	3/31/11 6/21/11		ND (0.100)	0.068 J	ND (0.200)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
11-NHTF-305-GW	9/19/11		ND (0.100)	0.039 J	ND (0.200)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
12-NEW-106-GW	7/9/12		ND (0.100)	ND (0.57)	ND (1.1)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.003)
12-NEW-204-GW	10/25/12		ND (0.100)	ND (1.1)	ND (1.1)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.003)
MW-5			1.00.10	0.40	ND (0.405)		0.440.40	0.400.40	2.24
10-NHTF-MW5-01-GW 10-NHTF-MW9-01-GW	8/28/10	√	4.29 JS 4.44 JS	2.48 3.04	ND (0.435) ND (0.424)	0.00341 JS 0.00339 JS	0.146 JS 0.147 JS	0.188 JS 0.176 JS	2.91 2.73 JS
No Sample	3/31/11		1.11 00	<u>5.04</u>	145 (0.424)	Frozen	0.147 30	0.17030	2.75 50
11-NHTF-204-GW	6/19/11		<u>8.0</u>	4.5 JD	ND (0.200)	0.00076 J	0.13	0.3	3.0
11-NHTF-205-GW	0/19/11	✓	<u>8.2</u>	<u>13 JD</u>	ND (0.200)	0.00065 J	0.12	0.3	3.0
11-NHTF-301-GW	9/18/11	√	<u>8.9</u>	<u>4.5</u>	ND (0.200)	ND (0.010)	0.066	0.21	3.1
11-NHTF-302-GW 12-NEW-107-GW		·	<u>7.0</u> 3.93	4.2 2.9	ND (0.200) ND (1.1)	ND (0.010) ND (0.001)	0.064 0.0862	0.2 0.0263	2.8 1.23
12-NEW-107-GW	7//2012	✓	4.25	2.5	ND (1.1)	ND (0.001)	0.0882	0.0258	1.23
12-NEW-202-GW	10/25/12		4.08	2.5	ND (1.1)	ND (0.001)	0.0778	0.0123	1.17
12-NEW-203-GW	10/23/12	✓	<u>4.3</u>	<u>2.4</u>	ND (1.0)	ND (0.001)	0.0768	0.0121	1.18
13-NHTF-104-GW	5/22/13	√	<u>4.0</u>	<u>4.6</u>	0.37	0.00042	0.0085	0.046	0.97
13-NHTF-105-GW MW-5		v	<u>4.0</u> 0.8350	<u>4.1</u> 1.710	0.37 ND (0.272)	ND (0.001) ND (0.0002)	0.021 0.00047 J	0.052 0.0031	0.88 0.0889
MW-5X	6/11/14		0.8330	1.710 1.790	ND (0.272) ND (0.284)	ND (0.0002)	0.00047 J 0.00051 J	0.0031	0.8880
GW-062615-MW5-01	6/27/15		1.0600	2.890	0.409	ND (0.002)	ND (0.0005)	0.00489	0.0935
GW-062615-MW9-04		✓	1.1000	2.0900	0.258 J	ND (0.0002)	ND (0.0005)	0.00489	0.0889
GW-080716-MW5-01 GW-NHTF-080117-MW5-01	8/7/16 8/1/17		0.444 0.310	1.46 2.03	0.344 J 0.187 J				
GW-NHTF-09212018-MW5-1			U.J IU 	1.30	0.101 J	ND (0.200)	1.11	ND (0.500)	2.58 J
GW-NHTF-09212018-MW11-2	9/21/18	✓		1.28		ND (0.200)	1.86	ND (0.500)	2.61 J
19-NHTF-106-GW	9/17/19			4.02		ND (0.200)	ND (0.500)	ND (0.500)	1.00 J
19-NHTF-107-GW	,	✓		<u>3.38</u>		ND (0.200)	ND (0.500)	ND (0.500)	1.03 J
MW-6	0/00/40		0.446 10	ND (0.447)	ND (0.417)	ND (0.000E) 10	0.00425 10	ND (0.004), 10	0.0420 10
10-NHTF-MW6-01-GW 	8/28/10 3/31/11		0.116 JS	ND (0.417) Insi		ND (0.0005) JS olume due to slu		ND (0.001) JS r.	0.0139 JS
11-NHTF-203-GW	6/19/11		ND (0.100)	0.16 J	ND (0.200)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
11-NHTF-304-GW	9/18/11	•	ND (0.100)	0.16 J	ND (0.200)	ND (0.001)	ND (0.005)	ND (0.001)	ND (0.003)
12-NEW-109-GW	7/9/12		ND (0.100)	ND (0.57)	ND (1.1)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.003)
12-NEW-205-GW	10/25/12		ND (0.100)	ND (1.0)	ND (1.0)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.003)
MW-7 10-NHTF-MW7-01-GW	8/28/10		0.0564 JS	ND (0.427)	ND (0.427)	ND (0.0005) R	ND (0.001) R	ND (0.001) R	ND (0.003) R
11-NWH-105-GW	3/31/11		0.0564 35	0.49 J	ND (0.427) ND (0.200)	ND (0.0005) R	ND (0.001) R ND (0.005)	ND (0.001) R ND (0.001)	ND (0.003) R ND (0.003)
11-NHTF-202-GW	6/18/11		ND (0.100)	0.440	ND (0.200)	ND (0.001)	ND (0.005)	0.001	0.002
11-NHTF-307-GW	9/19/11		0.061 J	0.130 J	ND (0.200)	ND (0.001)	ND (0.005)	0.00044 J	ND (0.003)
12-NEW-104-GW 12-NEW-207-GW	7/9/12 10/25/12		ND (0.100) ND (0.100)	ND (0.54) ND (1.3)	ND (1.1) ND (1.3)	ND (0.001) ND (0.001)	0.001 0.0013	ND (0.001) ND (0.001)	ND (0.003) ND (0.003)
19-NHTF-101-GW	9/17/19		(U. 100)	0.417 J	ND (1.3)	ND (0.001) ND (0.200)	ND (0.500)	0.330 J	ND (0.003) ND (0.150)
				• • • • •			,		, ,

Page 1 of 2 2/27/20

TABLE 5: HISTORICAL DATA

Ground Water Monitoring Report – September 2019 Former Newhalen Tank Farm Crowley Fuels, LLC Newhalen, Alaska

		ā					BTEX	(µg/L)	
Sample ID	Sample Date	Duplicate	GRO (mg/L)	DRO (mg/L)	RRO (mg/L)	Benzene	Toluene	Ethyl- benzene	Total Xylenes
ADEC Groundwater	Cleanup Lev	rel ⁽¹⁾ :	2.2	1.5	1.1	4.6	1100	15	190
MW-8									
10-NHTF-MW8-01-GW	8/28/10		0.145 JS	0.445	ND (0.431)	0.00295 JS	ND (0.001) JS	0.0136 JS	0.0152 JS
11-NWH-104-GW	3/31/11		0.086 J	0.51 J	ND (0.200)	ND (0.001)	ND (0.005)	0.0012	ND (0.003)
11-NHTF-201-GW	6/18/11		0.3	0.82	ND (0.200)	0.012	0.001	0.036	0.14
11-NHTF-309-GW	9/19/11		0.12	0.46 J	ND (0.200)	ND (0.001)	ND (0.005)	0.014	0.019
12-NEW-101-GW	7/9/12		0.336	0.85	ND (1.1)	ND (0.001)	0.0258	ND (0.001)	0.1
12-NEW-209-GW	10/26/12		0.299	ND (1.0)	ND (1.0)	ND (0.001)	0.0263	ND (0.001)	0.036
13-NHTF-101-GW	5/22/13		0.18	0.15	0.077	ND (0.001)	ND (0.005)	0.016	0.048
19-NHTF-102-GW	9/17/19	-		0.19 4J		ND (0.200)	ND (0.500)	0.570 J	ND (0.150)

Notes:

 $^{\left(1\right)}$ ADEC Cleanup Levels from: 18 AAC 75.345, Table C , October 27, 2018.

Key:

-- - Not analyzed or not applicable

AAC - Alaska Administrative Code

ADEC - Alaska Department of Environmental Conservation

B - Blank contamination, the analyte was detected within 5 times of blank sample. BTEX - Benzene, toluene, ethylbenzene, and total xylenes

DDO Dissel reason arranias

DRO - Diesel-range organics GRO - Gasoline-range organics JS - Estimated value. Surrogate recoveries outside of method acceptance limits.

mg/L - Milligrams per liter MDL - Method Detection Limit

 $\ensuremath{\mathsf{ND}}$ - $\ensuremath{\mathsf{Not}}$ detected; analyte not detected above the RDL.

U - Analyte was analyzed for, but not detected

R - Reject due to surrogate recovery < 10%. Data is usable for screening purposes.

RDL - Reported detection limit

J - Estimated Value. Analyte detected at less than the RDL and greater than or equal to the MDIRRO - Residual-range organics

Page 2 of 2 2/27/20

TABLE 6: MANN-KENDALL INPUT DATA

Ground Water Monitoring Report – September 2019
Former Newhalen Tank Farm
Crowley Fuels, LLC
Newhalen, Alaska

MW-2

8/28/2010	1.50
3/31/2011	1.20
6/21/2011	2.00
9/19/2011	2.20
7/9/2012	1.80
10/26/2012	2.00
5/22/2013	1.20
6/11/2014	1.22
6/27/2015	3.61
8/7/2016	1.43
8/1/2017	1.71
9/21/2018	0.96
9/17/2019	2.27

MW-3

8/28/2010	2.43
6/21/2011	1.60
9/19/2011	1.50
7/9/2012	1.30
10/26/2012*	0.55
5/22/2013	1.80
6/11/2014	0.85
6/27/2015	1.42
8/7/2016	7.40
8/1/2017	2.08
9/21/2018	0.56
9/17/2019	0.56

MW-5

3.04
13.00
4.50
2.90
2.50
4.60
1.79
2.89
2.03
1.28
4.02

Page 1 of 1 2/27/20

^{*}For ND values, used 1/2 of laboratory RL.

ATTACHMENT 3

Field Forms and Notes

Neuhalen

2019 NHTE

	DATE	717							18		
2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	REFERENCE	well lock = 1099 (w-/ lodge = Marka 571-822) Higman Ric = 571-1245	T.								
	PAGE	المرا			4				37		

dn	a EN'	VIROI	NMEN	ITAL		Ground	dwate	er Sa	ampl	ing	Works	heet
Proie	ect Name:	Newhal	en Tank	Farm		Sample	Location (ie	. MW1):	MI	W-	i	
			Fuels, LLC					Date:		17-1	9	
			, nois, EE			_	Purge Sta	7,000	12			
Month	Sampler:		11	1 1	1005/		Pulye Siz	art rune.	- 16	63		
weatr	er Conditi	ons:	Clar	yr	347	win			_	_		
Sample ID:		19-1	HIF	402 -	(rec)	Time: 1245	(primary)	dup	split	ms/msd		
Sample ID:			1111	100		Time:	primary	dup	split	ms/msd		
Sample ID:		-				Time:	primary	dup	split	ms/msd		
Sample ID:						Time.	printary	oup		_		_
1			r/type of	Comme	4.5	Anna James			Number		Comments/	
Analyses	1		ttles	preserva	ation:	Analyses			Bot	ties	preservation	
VOCs	· /		IL VOA	HCI	171						-	
DRO	- V		L amber	ice i-	10				-	_		
PAHs		2x250m	L amber	ice				-	-	_		_
Well Inf					culation		£01.31			. 2		
	Produc	t Present? Product (meter (in): (w/n/sheen ft BTOC): ft BTOC):	_			Depth to	Water (f Water C	ft BTOC): ft BTOC): folumn (ft) me (gal):	4.5	(depth to bottom)
(BTOC = belo							purge calclus	tion formula	a un back			
Sensory	Ohsen	vations										-
	Odor(Turbidity	None Lo	w, Mediur w, Mediur	n, High, 1	Grey, Milky Wh Very Strong, H2 Very Turbid, He	S, Fuel Like, Chen	nical ?, Unk	nown				
Instrum	ent Ubs	ervatio	ns	_				-				
Round	Time	Volume (gal)	Temp	pH	Conductivity	Turbidity (NTUs)	DO (mg/L)	ORP (mV)	Color	Odor	Water Level (ft BTOC)	Draw- down (ft
1	1237	(311)	8.88	5.65	0.033	3.29	3,24	211	claw	nore		0.09
2	1240		3.98	Civil	0-034	4.50	4.10	210	II.	11	(0.100	0.09
3	1249		3.88	FIN		444	4.44	710	10	11	(0.60	0.09
4	1011		0.00) "	0.00	1011						
5			-							-		
6												
7												
8												1
9												
10								J				
- 11 -	-											
12												
D.	ena Data /	and Bands	0.40	(forta	See back for	or additional entry lines il Purged: 〜7っしり:	needed	Mos	sured Draw	down (ft):	0.09	
												_
Notes: Drav						hall be achieved and me						
						lote that site's hyrogeolo	gy may make	t difficult to	achieve this	specificatio	g-	-
		. 7				rsible pump etc.):						_
						ersible pump, etc.):	-	_	_	_		
Well Integrity	(condition	of casing, f	lush mount s	sealing prop	perly, cement seal	intact, etc.): good	1					
Remarks (w	ell recovery,	unusual co	onditions/obs	servations):		N N ON						
	_	-	1	^	our gro	w west						
Signed:			2	2	_			Date:	4/1	2/10		
Jigileu.		-1	7					Duty.	-10	011-		
Signed/Rev	iewer.					_		Date:				
Instrume	ent Obs	ervation	is (conti	nued)						-		

dr	ia EN	VIRO	NMEN	ITAL		Ground	dwate			200	Works	heet
Proje			len Tank			Sample	Location (i		MW.			
	Client:	Crowley	Fuels, LLC						9/1			
ACT	Sampler:				1	1 1 .	Purge St	art Time:	1310	-		-
Weath	ner Conditi	ons:	000	car	A Scar	- lyutran						
Sample ID		19-	NHTF	-104	-64	Time: 1335	primary	dup dup	split split	ms/msd ms/msd		
Sample ID	5					Time:	primary	dup	split	ms/msd		
Analyses		Во	er/type of	Commer		Analyses			Number Bot	type of	Comments/ preservation	
VOCs	V,		nL VOA	HCI	15.3							
DRO	V		nL amber	iee }-	101				_	_		
PAHs		2x250n	nL amber	ice								
Well Inf	ormatio	n / Pur	ge Volu	me Cal	culation							
			ameter (in):				Total We	Depth (ft BTOC):	11.35	(depth to bottom)
			? (y/n/sheen)						(BTOC):			
Dept			fi BTOC):	_					olumn (ft)			
			ft BTOC):				One Pr		me (gal):			
(BTOC = belo							purge calcius					
Sensory	Obsen	vations							-			
			mber Tan	Brown	Grey, Milky Wh	ite Other						
						S, Fuel Like, Chen	nical ?, Uni	nown				
					/ery Turbid. He							
Instrum												
7700000000		-								7 1		
	"	Volume	Temp		Conductivity		DO	ORP	7.1	1.0	Water Level	Draw-
Round	Time	(gal)	*C	pH	(milt)	Turbidity (NTUs)	(mg/L)	(mV)	Color	Odor	(ft BTOC)	down (ft
1	1315		9.65	6.09	0073	4.00	120	136	deur	HC.	457	0.0
2	1318		4.71	6.14	0.060	2.04	094	1-1-1	Clear	HC	457	0,0
3	1322		9.82	620		1.02	1F.0	101	dear	HC	- 11	- (1)
4	1323		9.87		0.058	1.76	0.64	95.6	Cleur	TIC	11	11
5	1335		4.84	6.14	0000	1.5)	0.60	42.0	(lear	110-	-	- ' '
7												
8	-											
9												
10												
11							1					
12					200 5000 6	and Was I note: Visas I	enedad					
Pu	roe Rate (low flow):	0.375	1/min	Total Volume F	or additional entry lines in Purged: 12-5	chil	Mea	asured Drav	down (ft)	0.0	
						hall be achieved and me	-					
rection. Liter						lote that site's hyrogeolo						
						rsible pump etc.):						
						ersible pump etc.):						
Well Integrit	y (condition	of casing, i	flush mount s	sealing prop	erty, cement seal							
Remarks (w	ell recovery	unusual c	onditions/obs	servations):		05.	_	-				
				>	overgro	ul						
Cimeral		,	11	OX)			Date	c	liali	2	
Signed:		-	-					Date:		11711	1	
Signed/Rev	iewee		_					Date				
orgineu/ne/	newer.							Date:				100
	nt Oha	mention	s (conti	nundi								_
nerringe												

Proj	ect Name:	Newhal	en Tank	Farm		Sample	e Location (i	e. MW1):	M			
	Client:	Crowley	Fuels, LLC					Date:	9	-17+	-19	
	Sampler.			-			Purge Sta	art Time:	141	0		2
Weat	her Conditi	ons:	DUL	reant	T no.	poline						-
Sample ID		1a-1	HITE	104	-6-00	Time: 1430	primary	dup	split	ms/msd		
Sample ID		47-47			C VEA I	Time:	primary	dup	split	ms/msd		
Sample ID						Time;	primary	dup	split	ms/msd		
		7.7	r/type of	Commer	3,550				Number		the filter and the first of the second of	
Analyses	-		ttles L VOA	preserva HCI	ation:	Analyses			Bot	ties	preservation	:
VOCs DRO	1		L amber	toe P	101							
PAHs	V		L amber	ice	28						-	
Well Inf	ormatio	n / Pur	ge Volu	me Cal	culation							
			meter (in):	2"					t BTOC):		(depth to bottom	1)
	Produc	t Present	? (y/n/sheen)	10)		Depth to		BTOC):		_	
			ft BTOC):						olumn (ft)	_	-	
	Oil/Water		ft BTOC):		_			-	me (gal):	0-59	-	
	w top of cash						purgle calclus	than tormula	a on Dack			
Sensor	/ UDSHO											
_		-										
	Color:	Clear, A			Grey, Milky Wh		niest? Uni	nown				
	Color:	Clear, A	w, Mediun	n. High, \	Very Strong, H2	S, Fuel Like, Chen	nical ?, Uni	nown				
	Color:	Clear, A None, Lo None, Lo	w, Mediun	n. High, \		S, Fuel Like, Chen	nical ?, Unk	nown				
	Color: Odor: Turbidity:	Clear, A None, Lo None, Lo	w, Mediun	n. High, \	Very Strong, H2	S, Fuel Like, Chen	nical ?, Uni	nown				
Instrum	Color: Odor: Turbidity: ent Obs	Clear, A None, Lo None, Lo None, Lo ervation Volume	ow, Medium ns, Medium ns	n, High, \	Very Strong, H2 Very Turbid, He Conductivity	S, Fuel Like, Chen eavy Silts	DO	ORP			Water Level	Draw-
	Color: Odor: Turbidity: ent Obs	Clear, A None, Lo None, Lo None, Lo ervation	w, Medium ns, Medium ns Temp	n. High, \ n. High, \ pH	Very Strong, H2 Very Turbid, He Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs)	DO (mg/L)	ORP (mV)	Color	Odor	(ft BTOC)	down (fi
Round 1	Color: Odor: Turbidity: ent Obs	Clear, A None, Lo None, Lo None, Lo ervation Volume	Temp	n. High, \ n, High, \ pH なづ	Very Strong, H2 Very Turbid, He Conductivity (M)	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L)	ORP (mV)	Clew	10	(ft BTOC)	down (fi
Instrum	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Very Strong, H2 Very Turbid, He Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs)	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)		20	(ft BTOC)	down (fi
Round 1 2 3 4	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5 6	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5 6 7 8 9	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5 6 7 8 9 10	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11	Color: Odor: Turbidity: ent Obs	Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Cher eavy Silts Turbidity (NTUs) 4.36	DO (mg/L) り, ぐ(O じ, ばん	ORP (mV)	Cleur	20	(ft BTOC)	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 143 1421 142	Volume (gal)	Temp C 1004 1004	pH (a c)4	Conductivity (M) (D-112) See back fi	Turbidity (NTUs) 4.36 3.43 3.89	DO (mg/L) U, AO U - GO	ORP (mV) 144 144	(lew (lew	V0	(fi BTOC) (a.2) (a.2) (a.2) (a.2)	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 14/3 1421 142	Volume (gal)	Temp C C C C C C C C C C C C C	pH GOG GOG GOG GOG GOG GOG GOG GOG GOG GO	Conductivity (AA) (b. 12) See back fi	Turbidity (NTUs) 3. 43 3. 89 or additional entry lines in purged: ~ 2. 1 1	DO (mg/L) O GO O GO Reeded	ORP (mV) 144 144 146	(\eur	AD AU	(fi BTOC) (p.21 (p.21 (p.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 14/3 1421 142 I 42 I 44 I	Volume (gal) ow flow):	Temp "C 1004 1004 1004 1004	pH GOG GOG GOG GOG GOG GOG GOG GOG GOG GO	Conductivity (AA) (b. 112) C 12) See back fi Total Volume F	Turbidity (NTUs) 4.36 3.43 3.89 or additional entry lines in purged: ~2.10 shall be achieved and me	DO (mg/L) Ø, (40 Ø - 144 Ø - 145	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 14/3 14/21 142 142 1442 1442 1442 1442 1442	Volume (gal) Ow flow): be less than inute) and ox	Temp "C 1004 1004 1004 1004 1004 1004 1004 100	pH (29) (20) (20) (20) (20) (20) (20) (20) (20	Conductivity (AA) (b. 1.2) See back fi Total Volume Fi	Turbidity (NTUs) 1.36 3.73 2.89 or additional entry lines in the achieved and me lote that site's hyrogeolo	DO (mg/L) Ø, (40 Ø - 144 Ø - 145	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 14/3 14/21 142 142 wdown should to 0.5 liter/m	Volume (gal) ow flow): be less than inute) and co	Temp "C 100 Y 100	pH (29) (20) (20) (20) (20) (20) (20) (20) (20	Conductivity (AA) (b. 12) See back for Total Volume Fillon bailer (Subme	Turbidity (NTUs) 4.36 3.43 3.89 or additional entry lines in purged: ~2.10 shall be achieved and me	DO (mg/L) Ø, (40 Ø - 144 Ø - 145	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pt Notes: Draw	Color: Odor: Turbidity: ent Obs Time 14/3 14/21 142 142 wdown should to 0.5 liter/m	Volume (gal) Ow flow): be less than inute) and co	Temp C 1904 10-94 10-94 10-94 10-94 10-94	pH Lacq Lacq Lacq Lacq Lacq Lacq Lacq Lacq	Conductivity (AA) (b. 12) See back for Total Volume Fillon bailer (Subme	Turbidity (NTUs) 1.36 3.43 3.89 or additional entry lines in the achieved and me of the sible pump, etc.): ersible pump, etc.): intact, etc.):	DO (mg/L) Ø, (40 Ø - 144 Ø - 145	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drei	Color: Odor: Turbidity: ent Obs Time 1913 1921 192 192 193 wdown should to 0.5 literim for Sylvandition	Volume (gal) ow flow): be less that inute) and correct Method ample Method ample Method casing, f	Temp C 1904 10-94 10-94 10-94 10-94 10-94	pH pH pH pG pG pG pH pG pG pG	Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (c) 12 Conductivity (C)	Turbidity (NTUs) 1.36 3.43 3.89 Durged: ~2.1 Shall be achieved and melote that site's hyrogeolographe etc.): intact, etc.):	DO (mg/L) Ø . GO Ø . GH Ø - GO	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drei	Color: Odor: Turbidity: ent Obs Time 1913 1921 192 192 193 wdown should to 0.5 literim for Sylvandition	Volume (gal) ow flow): be less that inute) and correct Method ample Method ample Method casing, f	Temp C 1904 1009 1009 1009 1009 1009 1009 1009	pH pH pH pG pG pG pH pG pG pG	Conductivity (M) (b) 12 (c) 12 (c) 12 (d) 12 (d) 12 (d) 12 (e) 12 (e) 12 (f)	Turbidity (NTUs) 1.36 3.43 3.89 Durged: ~2.1 Shall be achieved and melote that site's hyrogeolographe etc.): intact, etc.):	DO (mg/L) Ø . GO Ø . GH Ø - GO	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fi
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drei	Color: Odor: Turbidity: ent Obs Time 1913 1921 192 192 193 wdown should to 0.5 literim for Sylvandition	Volume (gal) ow flow): be less that inute) and correct Method ample Method ample Method casing, f	Temp C 1904 1009 1009 1009 1009 1009 1009 1009	pH pH pH pG pG pG pH pG pG pG	Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (c) 12 Conductivity (C)	Turbidity (NTUs) 1.36 3.43 3.89 Durged: ~2.1 Shall be achieved and melote that site's hyrogeolographe etc.): intact, etc.):	DO (mg/L) Ø . GO Ø . GH Ø - GO	ORP (mV) 191 194 196 Mea	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fit
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Dre	Color: Odor: Turbidity: ent Obs Time 14/3 14/2 14/2 14/2 Virge Rate (Invitation of the Color: Solution of the Color: Solution of the Color: Invited the Color: Invi	Volume (gal) ow flow): be less that inute) and correct Method ample Method ample Method casing, f	Temp C 1904 1009 1009 1009 1009 1009 1009 1009	pH pH pH pG pG pG pH pG pG pG	Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (b) 12 Conductivity (M) (c) 12 Conductivity (C)	Turbidity (NTUs) 1.36 3.43 3.89 Durged: ~2.1 Shall be achieved and melote that site's hyrogeolographe etc.): intact, etc.):	DO (mg/L) Ø . GO Ø . GH Ø - GO	ORP (mV) 1917 194 194 194 In the second of	(Leur (Leur (Leur (Leur) sured Draw	ACO ACO (ft):	(fi BTOC) (a.21 (a.21 (a.21 (a.21	down (fit

dn	aEN'	VIROI	VMEN	ITAL		Ground	dwate	r S	ampl	ing	Works	heet
Proje	ect Name:	Newhal	en Tank	Farm		Sample	e Location (ie	MW1):	mw-	-5		-
	Client:	Crowley	Fuels, LLC	3					9-1			2
	Sampler:	D. Frank					Purge Sta	rt Time:	- C	140		-
Weath	her Conditi	ons:	000	reast	~55					-		-
Sample ID:		14-	WHTE	- 106	- Gu	Time:	primary	dup	split	ms/msd		
Sample ID:			- NHT			Time:	primary	(dub)	split.	ms/msd		
Sample ID:			70.11.1		0 -0	Time:	primary	dup	split	ms/msd		
Analyses	-	1 DAGE 7-30-	r/type of	Commer		Analyses			Number		Comments/ preservation	G .
VOCs	/		L VOA	HCI		Time.your						
DRO	V	2x250m	L amber	100 V	C							
PAHs	V	2x250m	L amber	ice	-							
Well Inf		n / Pur	no Volu	ma Cal	aulation							
Dept Depth to	Well Products to Top of Oil/Water	Casing Dia of Present? f Product (I Interface (meter (in): (y/n/sheen ft BTOC): ft BTOC):	2° 100			Depth to One Pu	Water (I Water C rge Volu	ft BTOC); column (ft) me (gal);	4.5	<u>l</u>	0
Sensory			_	_			purge calclus	on tormul	a on back			
Instrum	ent Obs	Volume			Conductivity	Turbidity (NTUs)	DO (mg/L)	ORP (mV)	Color	Odor	Water Level (ft BTOC)	Draw- down (ft
Round	Time	(gal)		(pH	(M)	4.46	0.60	124	(leur	HC	4-61	0.0
2	15/10		12-40	5.93	0.081	3.50	0-53	123	clear	HC	4.61	0.0
3	1515		12.40	5.97		3-20	0.59	123	CLAN	HC	4.61	UNU
4	- A							-	-			
6	-			-								
7												
8												
9												
10							_	-			-	
11	-											
	rge Rate (low flow):	0,44	DL/min	see back t Total Volume i	or additional entry lines in Purged: ~ Yu	Tur	Мея	asured Draw	down (ft):	0.0	
Notes: Drav	to 0.5 liter/n	ninute) and co	ontinually mea	asuring water	levels in the well. I	shall be achieved and me Vote that site's hyrogeolo						
	5	ample Meth	nod (disposa	ible bailer, t	eflon bailet subm	ersible pump, etc.): ersible pump, etc.):						
	*S246	100			erly, cement sea	intact, etc.): (-co	1					
Remarks (w	ell recovery	, unusual co	onditions/ob	servations):	Good							
Signed:		7	Do					Date:	_91	17/10	1	
Signed/Rev	viewer:					_		Date:	_			
Instrum	ent Obs	ervation	is (cont	inued)								

	naEN					Ground		Y A	-X45.	_	vvorks	neet
Proj	ect Name:		en Tank Fuels, LLC			Sample	Location (ie	Date:		17-19		
	Sampler:		rueis, LLC			_	Pirme Sta					1
Weat	her Condition		Ca	(2)	54-F (surcet	ruige Ole	11110		051		
Sample ID		14				Time: 1100	frimani	dup	split	ms/msd		
Sample ID		1-1	NHI	10	11-6W	Time:	primary	dup	split	ms/msd		
Sample ID						Time:	primary	dup	split	ms/msd		
Continue to		Numbe	r/type of	Commen	its/		· ·		Number	type of	Comments/	+ -
Analyses	5	Bo	ttles	preserva	tion:	Analyses			Bot		preservation	:
VOCs	-		L VOA	HCI	6.0							
DRO PAHs	11		L amber	ice H	CI							
7015		EXECUTION	E dillaci	100								
Well Ind	formatio	n / Due	no Volu	ma Cal	outstion		_		_	-		
well thi							Total Wol	Donth /	# BTOCI-	11 47	depth to bottom	i.
	Produ	t Present?	meter (in):	0.0					BTOC):			,
Dept	th to Top of	Product ((y/n/sheen)	- 1					olumn (ft)			
	Oil/Water								me (gal):			
	ow top of casir		C-7.7				purge calclua				,	
Sensor	y Observ	ations										
					Grey, Milky Whi							
						S, Fuel Like, Chem	ical ?, Unk	nown				
	ent Obs			D High, V	ery Turbid, He	avy Sits		-			1	
IIISU UIII	ent Obs	ervation	15									
1.		Volume	Temp		Conductivity		DO	ORP			Water Level	Draw-
Round	Time	-(gat) L	°C	рН	()	Turbidity (NTUs)	1000	(mV)	Color	Odor	(ft BTOC)	down (ft)
1	1041	125	11.2	5.64	0.047		2.70	170	milk	Mel	6,69	0.06
3	1018	23	10.89	5.84	12.1.7	99.89	2.26	169	Clear	~	(0.66	-04
4	1059	6.9	10.89		0.043	60.40	221	18/2	clear	~~	6.60	.04
5		- X1	15.62.1	3,00	- 12.12					*		
6												
7			-	-								
8												
9												
10												
10	-											L
10					see back fo	or additional entry lines if	needed					
10 11 12	urge Rate (I	ow flow):	0.30	L/min		or additional entry lines if Purged: ~~~	DUAS	Mea	sured Draw	down (ft):	0.04	
10 11 12 Pu	wdown should	be less than	0.3 feet while	sampling. N	Total Volume P	hall be achieved and me	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	-
10 11 12 Pu	wdown should to 0.5 liter/m	be less than	0,3 feet while	e sampling. A suring water	Total Volume P Minimal drawdown s levels in the well, N	hall be achieved and me one that site's hyrogeolog	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu	to 0.5 liter/m	be less than inute) and co urge Metho	0,3 feet while ontinually mea od (disposab	e sampling. A suring water lie bailer, tel	Total Volume P Minimal drawdown s levels in the well, N flon beliet, subme	hall be achieved and me tote that site's hyrogeolog raible pump etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Dra	wdown should to 0.5 liter/m P S	t be less than inute) and co ourge Metho ample Meth	n 0,3 feet while ontinually mea od (disposab nod (disposal	e sampling. A suring water lie bailer, tel ble bailer, te	Total Volume P Minimal drawdown s levels in the well, N flon beliet, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Dre	to 0.5 liter/m F S ty (condition	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Dre	wdown should to 0.5 liter/m P S	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Dre	to 0.5 liter/m F S ty (condition	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Draw Well Integrit	to 0.5 liter/m F S ty (condition	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a l	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Draw Well Integrit Remarks (w	to 0.5 liter/m F S ty (condition vell recovery	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a t	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Draw Well Integrit	to 0.5 liter/m F S ty (condition vell recovery	t be less than inute) and co Purge Metho ample Meth of casing, fi	n 0.3 feet while entinually mea od (disposab nod (disposal lush mount s	e sampling. A suring water ble bailer, tel ble bailer, te sealing prop	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a t	ow rate (appr	oximately 0	.1	
10 11 12 Pu Notes: Dra Well Integrit Remarks (w Signed: Signed/Re	to 0.5 liter/m F S ty (condition vell recovery	be less than inute) and co Purge Metho ample Meth of casing, fi unusual co	n 0,3 feet while ontinually mea od (disposab nod (disposab lush mount s	e sampling. A suring water ile bailer, tel ble bailer, te sealing prop- servations):	Total Volume P Minimal drawdown s leves in the well. N flon bailer, subme afton bailer, subme	hall be achieved and ma tote that site's hyrogeolog raible pump, etc.):	Bured by pur	nping at a t t difficult to Date:	ow rate (appr	oximately 0	.1	

Proje	ect Name:	Newhal	en Tank	Farm		Sample	Location (in	. MW1):	M	u-8		
Ciol			Fuels, LLC			Campic	Lucabon (n	Date:		-17-10	a	5-
	Sampler		dels, LLC	_		_	Purge Sta		1130			
Weath	her Conditi		75	uva	1ct 95	9.1=	ruige ou	111116.	-11.70			
	200,000		ra neicz				2	due		malmad.		
Sample ID		19-	NHTE-	101-	GW	Time: 1200	riman	dup	split	ms/msd		
Sample ID						_Time:	primary	dup	split	ms/msd		
Sample ID:		_				Time:	primary	dup	split	ms/msd		-
		0.400-7.300	r/type of	Commer	Section 1	* matrices				tles	Comments/ preservation	
Analyses VOCs	1/		ttles L VOA	preserva	ition:	Analyses			BOI	Ties	preservation	
DRO	V		L amber	ice H	161							
PAHs	V		L amber	ice	1-1							
		200										-
Well Inf	ormatio	n / Purg	ge Volu	me Cal	culation							
	Well	Casing Dia	meter (in):	2"			Total Wel	Depth (f	BTOC):	8-52	(depth to bottom)
	Produc	t Present?	(y/n/sheen)	10	1		Depth to	Water (f	BTOC):	610		
Dept	h to Top of	Product (fi BTOC):					Water Co	olumn (ft)	2-42	112	D
Depth to	Oil/Water	Interface (ft BTOC):				One Pu	irge Volu	me (gal):	0.38		
(BTOC = belo	w top of casin	land.		~			and the second second					
	ar year	9)					purge calcius	tion formula	on back			
Sensory		-					purge calcius	tion formula	on back			
Sensory	Obsen	ations	mber. Tan	. Brown.	Grev. Milky Wh	ite. Other:	purge calcius	tion formula	on back			
Sensory	Obsen Color:	/ations Clear, A			Grey, Milky Wh				on back			
	Color:	/ations Clear, A None, Lo	w, Mediur	n. High, \		S, Fuel Like, Chem			on back			
	Color: Odor: Turbidity:	/ations Clear, A None, Lo None, Lo	w, Mediur w, Mediur	n. High, \	Very Strong, H2	S, Fuel Like, Chem			on back			
	Color: Odor: Turbidity:	/ations Clear, A None, Lo None, Lo	w, Mediur w, Mediur	n. High, \	Very Strong, H2	S, Fuel Like, Chem			OULDACK			
	Color: Odor: Turbidity:	/ations Clear, A None, Lo None, Lo	w, Mediur w, Mediur	n. High, \	Very Strong, H2	S, Fuel Like, Chem			ON DACK		Water Level	Draw-
	Color: Odor: Turbidity: ent Obs	Clear, A None, Lo None, Lo ervation	w, Mediur m, Mediur ns Temp °C	n. High, \	Very Strong, H2 Very Turbid, He	S, Fuel Like, Chemeavy Silts Turbidity (NTUs)	nical ?, Unk	ORP (mV)	Color	Odor	(ft BTOC)	T-25 4 5 7 7
Instrum Round	Color: Odor: Turbidity: ent Obs	Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	n. High, \\ n, High, \\ pH	Very Strong, H2 Very Turbid, He Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs)	nical ?, Unk	ORP (mV)		nem	(ft BTOC)	down (ft
Round 1 2	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs)	DO (mg/L)	ORP (mV)	Color	nem	(ft BTOC)	down (ft
Round 1 2 3 4	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7 8	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7 8 9	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59	DO (mg/L)	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7 8 9 10	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal)	Temp	pH	Conductivity	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59 10-42 3-32	DO (mg/L) 2-3-2-1-6-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ORP (mV)	Color	· n	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time	Vations Clear, A None, Lo None, Lo ervation Volume (gal) 1 2-2 7-71	Temp °C 10.74	pH (6.00 6.00 5.99	Conductivity () 0.053 0.056	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59 10-42 3-32	DO (mg/L) 2-3-2-1-6-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ORP (mV)	Color	12	(ft BTOC)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 1130 1150	vations Clear, A None, Lo None, Lo ervation Volume (gal) 1 2 2 7 7 ow flow):	Temp °C 10.79 10.91	pH (e.co	Conductivity () 0.053 0.056 0.056 Total Volume F	S, Fuel Like, Chemeavy Silts Turbidity (NTUs) 40-59 10-42 3-32	DO (mg/L) 2-32 1-66	ORP (mV) 136 136	Color	vdown (ft):	(ft BTOC) (p-10) (p-10) (p-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 1130 1150 rige Rate (vations Clear, A None, Lo None, Lo ervation Volume (gal) 1 2.2 7.7 ow flow):	Temp °C 10.79(10.79)	pH (e.cc b.LP SepH	Conductivity () () -053 () -056 ()	Turbidity (NTUs) 40-09 10-42 3-32 or additional entry lines if Purged:	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (g-10) (g-10) (g-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 1130 1150 Inge Rate (Index should to 0.5 liter/m	vations Clear, A None, Lo None, Lo Volume (gal) 2.2 7.7 ow flow): be less than inute) and co	Temp °C 10.79(10.79)	pH (a.cc b.D)	Conductivity () () -0 \$3 () -0 \$6	Turbidity (NTUs) 40-09 10-42 3-32 or additional entry lines if Purged: shall be achieved and me	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (g-10) (g-10) (g-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12	Color: Odor: Turbidity: ent Obs Time 1130 1150 Irge Rate (I	vations Clear, A None, Lo None, Lo Volume (gal) 1 2 2 7 7 7 1 be less than inute) and co	Temp °C 10-39 (1	pH (a.cc b.LP S-C(4) L/min e sampling, issuring water, te	Conductivity () () -053 () -056 ()	Turbidity (NTUs) 40-09 10-42 3-32 or additional entry lines if Purged:	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (g-10) (g-10) (g-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Draw	Color: Odor: Turbidity: ent Obs Time 1130 1150 1150 wdown should to 0.5 liter/m	vations Clear, A None, Lo None, Lo Volume (gal) 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temp °C 10.74 10.31 10.35 10.3	pH (6.00 6.00 5.00 L/min e sampling, issuring water to be bailer, te	Conductivity () () -053 () -056 ()	Turbidity (NTUs)	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (g-10) (g-10) (g-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Draw	Color: Odor: Turbidity: ent Obs Time 1130 1150 1150 wdown should to 0.5 liter/m	vations Clear, A None, Lo None, Lo Volume (gal) 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temp °C 10.74 10.31 10.35 10.3	pH (a.co b.LP Source suring water ble bailer, te sealing prop	Conductivity () O - O S 3 O - O S 6 O - O S 6 Total Volume F Minimal drawdown selection bailer, submered	Turbidity (NTUs)	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (g-10) (g-10) (g-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Draw	Color: Odor: Turbidity: ent Obs Time 1130 1150 ITSU 1150 ITSU 1150 ITSU ITSU ITSU ITSU ITSU ITSU ITSU ITS	vations Clear, A None, Lo None, Lo Volume (gal) 1 2-2 7-71 ow flow): be less than inute) and co purge Metho ample Meth of casing, f	Temp °C 10.79(10.31c	pH (a.cc b.LP Sampling, issuring water tole bailer, te seanyations) percentage of the control o	Conductivity () () -0.53 () -0.56	Turbidity (NTUs) Au-09 III. 42 Au-19 III. 42 III. 42	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (p-10) (p-10) (p-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drev	Color: Odor: Turbidity: ent Obs Time 1130 1150 ITSU 1150 ITSU 1150 ITSU ITSU ITSU ITSU ITSU ITSU ITSU ITS	vations Clear, A None, Lo None, Lo Volume (gal) 1 2-2 7-71 ow flow): be less than inute) and co purge Metho ample Meth of casing, f	Temp °C 10.79(10.31c	pH (a.cc b.LP Sampling, issuring water tole bailer, te seanyations) percentage of the control o	Conductivity Co	Turbidity (NTUs) Au-09 III. 42 Au-19 III. 42 III. 42	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (p-10) (p-10) (p-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drev	Color: Odor: Turbidity: ent Obs Time 1130 1150 ITSU 1150 ITSU 1150 ITSU ITSU ITSU ITSU ITSU ITSU ITSU ITS	vations Clear, A None, Lo None, Lo Volume (gal) 1 2-2 7-71 ow flow): be less than inute) and co purge Metho ample Meth of casing, f	Temp °C 10.79(10.31c	pH (a.cc b.LP Sampling, issuring water tole bailer, te seanyations) percentage of the control o	Conductivity () () -0.53 () -0.56	Turbidity (NTUs) Au-09 III. 42 Au-19 III. 42 III. 42	DO (mg/L) 2-32 1-66 1:41	Mea	Color	wdown (ft):	(ft BTOC) (p-10) (p-10) (p-10)	down (ft
Round 1 2 3 4 5 6 7 8 9 10 11 12 Pu Notes: Drev	Color: Odor: Turbidity: ent Obs Time 1130 1150 ITSU 1150 ITSU 1150 ITSU ITSU ITSU ITSU ITSU ITSU ITSU ITS	vations Clear, A None, Lo None, Lo Volume (gal) 1 2-2 7-71 ow flow): be less than inute) and co purge Metho ample Meth of casing, f	Temp °C 10.79(10.31c	pH (a.cc b.LP Sampling, issuring water tole bailer, te seanyations) percentage of the control o	Conductivity () () -0.53 () -0.56	Turbidity (NTUs) Au-09 III. 42 Au-19 III. 42 III. 42	DO (mg/L) 2-32 1-66 1:41	ORP (mV) 136 136	Color	wdown (ft):	(ft BTOC) (p-10) (p-10) (p-10)	down (ft

- Page Intentionally Left Blank -

ATTACHMENT 4

Photograph Log

- Page Intentionally Left Blank -

Attachment 4

Photo: 1 Time: 1058 Date: 9/17/2019 Direction: East Subject: MW-6, overgrown.

Photo: 2 Time: 1058 Date: 9/17/2019 Direction: East Subject: MW-6, overgrown.

Page 1 of 8

Attachment 4

Photo: 3 Time: 1115 Date: 9/17/2019 Direction: East Subject: MW-4.

Report: September 2019 Newhalen Tank Farm Groundwater Monitoring

Photo: 4 Time: 1118 Date: 9/17/2019 Direction: Northeast Subject: MW-7.

Attachment 4

Photo: 5 Time: 1218 Date: 9/17/2019 Direction: East Subject: MW-8, note jacking.

Photo: 6 Time: 1306 Date: 9/17/2019 Direction: Southeast Subject: MWV-8, sampling.

Page 3 of 8

Attachment 4

Photo: 7 Time: 1314 Date: 9/17/2019 Direction: North Subject: MW-1.

Photo: 8 Time: 1400 Date: 9/17/2019 Direction: Southeast Subject: MW-2, overgrown.

Attachment 4

Photo: 10 Time: 1455 Date: 9/17/2019 Direction: East Subject: MW-3, overgrown.

Photo: 9 Time: 1455 Date: 9/17/2019 Direction: East Subject: MW-3.

Attachment 4

Photo: 9 Time: 1554 Date: 9/17/2019 Direction: East Subject: Sampling at MW-5.

Date: 9/17/2019 Direction: Northwest Photo: 10 Time: 1642 Date: 9/17/2019 Directic Subject: MW-5, surrounded by tilled landfarm.

Photo: 11 Time: 1045 Date: 9/17/2019 Direction: South Subject: Site in relation to Lake Iliamna.

Photo: 12 Time: 1046 Date: 9/17/2019 Direction: Down Subject: Landfarm conditions.

Photo: 11 Time: 1050 Date: 9/17/2019 Direction: Northwest Subject: Site in relation to village of Newhalen.

Photo: 12 Time: 1054 Date: 9/17/2019 Direction: Southeast Subject: Landfarm conditions, lake Iliamna in background.

ATTACHMENT 5

Laboratory Report

- Page Intentionally Left Blank -

Laboratory Report of Analysis

To: DNA Environmental Consultants, LLC

111 W. 9th Ave Anchorage, AK 99501 (907)350-4897

Report Number: 1195455

Client Project: **NEWHALEN**

Dear Daniel Frank,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Chuck at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Chuck Homestead Date
Project Manager
Charles.Homestead@sgs.com

Print Date: 10/14/2019 4:01:44PM Results via Engage

Case Narrative

SGS Client: **DNA Environmental Consultants, LLC**SGS Project: **1195455**

Project Name/Site: **NEWHALEN**Project Contact: **Daniel Frank**

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification, and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
19-NHTF-101-GW	1195455001	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-102-GW	1195455002	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-103-GW	1195455003	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-104-GW	1195455004	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-105-GW	1195455005	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-106-GW	1195455006	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-107-GW	1195455007	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
19-NHTF-101-RB	1195455008	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)
Trip Blank	1195455009	09/17/2019	09/18/2019	Water (Surface, Eff., Ground)

Method

8270D SIM LV (PAH)

AK102

SW8260C

Method Description

8270 PAH SIM GC/MS Liq/Liq ext. LV

DRO Low Volume (W)

Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: 19-NHTF-101-GW			
Lab Sample ID: 1195455001	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.249	ug/L
	Fluorene	0.0620	ug/L
	Naphthalene	1.04	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.417J	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	0.340J	ug/L
	4-Isopropyltoluene	1.34	ug/L
	Ethylbenzene	0.330J	ug/L
	Isopropylbenzene (Cumene)	0.810J	ug/L
	Naphthalene	1.77	ug/L
	n-Propylbenzene	0.710J	ug/L
	sec-Butylbenzene	0.520J	ug/L
Client Sample ID: 19-NHTF-102-GW			
Lab Sample ID: 1195455002	Darameter	Docult	Linito
•	<u>Parameter</u> 1-Methylnaphthalene	<u>Result</u> 0.916	<u>Units</u> ug/L
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	0.497	ug/L
	Acenaphthene	0.0588	ug/L
	Fluorene	0.0691	ug/L
	Naphthalene	1.45	ug/L
Samiyalatila Organia Fyala	•	0.194J	mg/L
Semivolatile Organic Fuels Volatile GC/MS	Diesel Range Organics	0.1943 0.660J	J
Volatile GC/MS	1,2,4-Trimethylbenzene 4-Isopropyltoluene	2.31	ug/L
	Chloromethane	2.31 0.440J	ug/L
			ug/L
	Ethylbenzene	0.570J	ug/L
	Isopropylbenzene (Cumene)	1.26	ug/L
	Naphthalene	2.35	ug/L
	n-Propylbenzene	1.51	ug/L
	P & M -Xylene	0.620J	ug/L
	sec-Butylbenzene	1.35	ug/L
Client Sample ID: 19-NHTF-103-GW			
Lab Sample ID: 1195455003	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.197	ug/L
•	Naphthalene	0.529	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.575J	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	2.05	ug/L
	4-Isopropyltoluene	0.660J	ug/L
	Isopropylbenzene (Cumene)	0.370J	ug/L
	Naphthalene	0.830J	ug/L
	n-Propylbenzene	0.390J	ug/L
			- 3. –

Detectable Results Summary

Client Sample ID: 19-NHTF-104-GW			
Lab Sample ID: 1195455004	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	23.3	ug/L
	2-Methylnaphthalene	25.2	ug/L
	Acenaphthene	0.362	ug/L
	Fluorene	0.444	ug/L
	Naphthalene	23.8	ug/L
	Phenanthrene	0.0684	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.27	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	83.8	ug/L
	1,3,5-Trimethylbenzene	20.4	ug/L
	4-Isopropyltoluene	23.1	ug/L
	Ethylbenzene	10.0	ug/L
	Isopropylbenzene (Cumene)	11.9	ug/L
	Naphthalene	38.0	ug/L
	n-Propylbenzene	19.9	ug/L
	o-Xylene	25.2	ug/L
	P & M -Xylene	19.1	ug/L
	sec-Butylbenzene	6.82	ug/L
	Toluene	0.340J	ug/L
	Xylenes (total)	44.3	ug/L
Client Sample ID: 19-NHTF-105-GW			
Lab Sample ID: 1195455005	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	1.49	ug/L
-	2-Methylnaphthalene	0.377	ug/L
	Naphthalene	0.806	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.06	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	6.12	ug/L
	1,3,5-Trimethylbenzene	3.09	ug/L
	4-Isopropyltoluene	2.79	ug/L
	Ethylbenzene	0.470J	ug/L
	Isopropylbenzene (Cumene)	0.540J	ug/L
	Naphthalene	2.80	ug/L
	n-Propylbenzene	1.14	ug/L
	o-Xylene	1.69	ug/L
	P & M -Xylene	1.05J	ug/L
	sec-Butylbenzene	0.910J	ug/L
	Xylenes (total)	2.74J	ug/L

Detectable Results Summary

Client Sample ID: 19-NHTF-106-GW			
Lab Sample ID: 1195455006	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	5.41	ug/L
	2-Methylnaphthalene	2.98	ug/L
	Fluorene	0.350	ug/L
	Naphthalene	1.32	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	4.02	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	4.02	ug/L
	1,3,5-Trimethylbenzene	8.46	ug/L
	2-Butanone (MEK)	6.49J	ug/L
	4-Isopropyltoluene	6.53	ug/L
	Isopropylbenzene (Cumene)	1.07	ug/L
	Naphthalene	3.25	ug/L
	n-Propylbenzene	2.10	ug/L
	o-Xylene	1.00	ug/L
	sec-Butylbenzene	1.81	ug/L
	tert-Butylbenzene	0.370J	ug/L
	Xylenes (total)	1.00J	ug/L
Client Sample ID: 19-NHTF-107-GW			
Lab Sample ID: 1195455007	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	4.05	ug/L
	2-Methylnaphthalene	2.26	ug/L
	Fluorene	0.253	ug/L
	Naphthalene	0.967	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	3.28	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	4.09	ug/L
	1,3,5-Trimethylbenzene	8.63	ug/L
	2-Butanone (MEK)	6.16J	ug/L
	4-Isopropyltoluene	6.68	ug/L
	Isopropylbenzene (Cumene)	1.04	ug/L
	Naphthalene	3.25	ug/L
	n-Propylbenzene	2.10	ug/L
	o-Xylene	1.03	ug/L
	sec-Butylbenzene	1.84	ug/L
	tert-Butylbenzene	0.380J	ug/L
	Xylenes (total)	1.03J	ug/L
Client Comple ID: Trin Blank	- , ,		Ü
Client Sample ID: Trip Blank		5 "	
Lab Sample ID: 1195455009	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	Chloromethane	0.410J	ug/L

Client Sample ID: 19-NHTF-101-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455001 Lab Project ID: 1195455 Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.249	0.0481	0.0144	ug/L	1		09/19/19 18:22
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/19/19 18:22
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/19/19 18:22
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Fluorene	0.0620	0.0481	0.0144	ug/L	1		09/19/19 18:22
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Naphthalene	1.04	0.0962	0.0298	ug/L	1		09/19/19 18:22
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/19/19 18:22
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.2	47-106		%	1		09/19/19 18:22
Fluoranthene-d10 (surr)	75.5	24-116		%	1		09/19/19 18:22

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 18:22 Container ID: 1195455001-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 19-NHTF-101-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455001 Lab Project ID: 1195455 Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.417 J	0.600	0.180	mg/L	1	Limits	10/11/19 00:22
Surrogates 5a Androstane (surr)	84.9	50-150		%	1		10/11/19 00:22

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 00:22 Container ID: 1195455001-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM J flagging is activated

Client Sample ID: 19-NHTF-101-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455001 Lab Project ID: 1195455 Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:22
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,2,4-Trimethylbenzene	0.340 J	1.00	0.310	ug/L	1	09/22/19 16:22
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:22
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 16:22
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:22
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:22
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
4-Isopropyltoluene	1.34	1.00	0.310	ug/L	1	09/22/19 16:22
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:22
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:22
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 16:22
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:22
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:22
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:22

Print Date: 10/14/2019 4:01:50PM

J flagging is activated

Client Sample ID: 19-NHTF-101-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455001 Lab Project ID: 1195455 Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Ar</u>	alyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/22/1	9 16:22
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/1	9 16:22
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Ethylbenzene	0.330 J	1.00	0.310	ug/L	1	09/22/1	9 16:22
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/22/1	9 16:22
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Isopropylbenzene (Cumene)	0.810 J	1.00	0.310	ug/L	1	09/22/1	9 16:22
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/22/1	9 16:22
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/22/1	9 16:22
Naphthalene	1.77	1.00	0.310	ug/L	1	10/01/1	9 18:29
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
n-Propylbenzene	0.710 J	1.00	0.310	ug/L	1	09/22/1	9 16:22
o-Xylene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/22/1	9 16:22
sec-Butylbenzene	0.520 J	1.00	0.310	ug/L	1	09/22/1	9 16:22
Styrene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Toluene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/1	9 16:22
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/22/1	9 16:22
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/22/1	9 16:22
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/22/1	9 16:22
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1	09/22/1	9 16:22
4-Bromofluorobenzene (surr)	97.9	85-114		%	1	09/22/1	9 16:22
Toluene-d8 (surr)	99.5	89-112		%	1	09/22/1	9 16:22

Print Date: 10/14/2019 4:01:50PM

J flagging is activated

Client Sample ID: 19-NHTF-101-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455001 Lab Project ID: 1195455 Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 16:22 Container ID: 1195455001-E

Analytical Batch: VMS19512 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/01/19 18:29 Container ID: 1195455001-G Prep Batch: VXX34946
Prep Method: SW5030B
Prep Date/Time: 09/22/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX34990
Prep Method: SW5030B
Prep Date/Time: 10/01/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:50PM J flagging is activated

Client Sample ID: 19-NHTF-102-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455002
Lab Project ID: 1195455

Collection Date: 09/17/19 12:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

D	D 110 1	1.00/01	DI		D.F.	Allowable	5.4.4.4.4
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.916	0.0490	0.0147	ug/L	1		09/19/19 18:43
2-Methylnaphthalene	0.497	0.0490	0.0147	ug/L	1		09/19/19 18:43
Acenaphthene	0.0588	0.0490	0.0147	ug/L	1		09/19/19 18:43
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 18:43
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 18:43
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Fluorene	0.0691	0.0490	0.0147	ug/L	1		09/19/19 18:43
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Naphthalene	1.45	0.0980	0.0304	ug/L	1		09/19/19 18:43
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 18:43
Surrogates							
2-Methylnaphthalene-d10 (surr)	71	47-106		%	1		09/19/19 18:43
Fluoranthene-d10 (surr)	70.3	24-116		%	1		09/19/19 18:43

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 18:43 Container ID: 1195455002-C Prep Batch: XXX42300
Prep Method: SW3520C
Prep Date/Time: 09/19/19 09:40
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

J flagging is activated

Client Sample ID: 19-NHTF-102-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455002
Lab Project ID: 1195455

Collection Date: 09/17/19 12:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.194 J	0.600	0.180	mg/L	1	Limits	10/11/19 00:32
Surrogates 5a Androstane (surr)	86	50-150		%	1		10/11/19 00:32

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 00:32 Container ID: 1195455002-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM J flagging is activated

Client Sample ID: 19-NHTF-102-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455002 Lab Project ID: 1195455 Collection Date: 09/17/19 12:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:37
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,2,4-Trimethylbenzene	0.660 J	1.00	0.310	ug/L	1	09/22/19 16:37
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 16:37
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
4-Isopropyltoluene	2.31	1.00	0.310	ug/L	1	09/22/19 16:37
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:37
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 16:37
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37

Print Date: 10/14/2019 4:01:50PM

J flagging is activated

Client Sample ID: 19-NHTF-102-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455002 Lab Project ID: 1195455 Collection Date: 09/17/19 12:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Chloromethane	0.440 J	1.00	0.310	ug/L	1	09/22/19 16:37
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:37
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Ethylbenzene	0.570 J	1.00	0.310	ug/L	1	09/22/19 16:37
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Isopropylbenzene (Cumene)	1.26	1.00	0.310	ug/L	1	09/22/19 16:37
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/22/19 16:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
Naphthalene	2.35	1.00	0.310	ug/L	1	10/01/19 18:44
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
n-Propylbenzene	1.51	1.00	0.310	ug/L	1	09/22/19 16:37
o-Xylene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
P & M -Xylene	0.620 J	2.00	0.620	ug/L	1	09/22/19 16:37
sec-Butylbenzene	1.35	1.00	0.310	ug/L	1	09/22/19 16:37
Styrene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Toluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:37
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:37
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/22/19 16:37
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/22/19 16:37
urrogates						
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	09/22/19 16:37
4-Bromofluorobenzene (surr)	101	85-114		%	1	09/22/19 16:37
Toluene-d8 (surr)	98.8	89-112		%	1	09/22/19 16:37

Print Date: 10/14/2019 4:01:50PM

J flagging is activated

Client Sample ID: 19-NHTF-102-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455002 Lab Project ID: 1195455 Collection Date: 09/17/19 12:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 16:37 Container ID: 1195455002-E

Container ID: 1195455002-E

Analytical Batch: VMS19512 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 10/01/19 18:44 Container ID: 1195455002-G Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34990 Prep Method: SW5030B Prep Date/Time: 10/01/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-103-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455003
Lab Project ID: 1195455

Collection Date: 09/17/19 12:40 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Devenuetes	Deput Ovel	1.00/01	DI	Lluita	DE	Allowable	Data Analysis
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.197	0.0500	0.0150	ug/L	1		09/19/19 19:04
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		09/19/19 19:04
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		09/19/19 19:04
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Naphthalene	0.529	0.100	0.0310	ug/L	1		09/19/19 19:04
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		09/19/19 19:04
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.6	47-106		%	1		09/19/19 19:04
Fluoranthene-d10 (surr)	74.2	24-116		%	1		09/19/19 19:04

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 19:04 Container ID: 1195455003-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-103-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455003
Lab Project ID: 1195455

Collection Date: 09/17/19 12:40 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.575 J	0.610	0.183	mg/L	1	Limits	10/11/19 00:42
Surrogates 5a Androstane (surr)	85.5	50-150		%	1		10/11/19 00:42

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 00:42 Container ID: 1195455003-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 246 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-103-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455003 Lab Project ID: 1195455 Collection Date: 09/17/19 12:40 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,2,4-Trimethylbenzene	2.05	1.00	0.310	ug/L	1	09/22/19 16:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 16:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
4-Isopropyltoluene	0.660 J	1.00	0.310	ug/L	1	09/22/19 16:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:52
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 16:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 16:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 16:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 16:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 16:52

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-103-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455003 Lab Project ID: 1195455 Collection Date: 09/17/19 12:40 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/22/19 16:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 16:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/22/19 16:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Isopropylbenzene (Cumene)	0.370 J	1.00	0.310	ug/L	1		09/22/19 16:52
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/22/19 16:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/22/19 16:52
Naphthalene	0.830 J	1.00	0.310	ug/L	1		09/25/19 22:16
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
n-Propylbenzene	0.390 J	1.00	0.310	ug/L	1		09/22/19 16:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/22/19 16:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Styrene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Toluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 16:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/22/19 16:52
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/22/19 16:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/22/19 16:52
Surrogates							
1,2-Dichloroethane-D4 (surr)	112	81-118		%	1		09/22/19 16:52
4-Bromofluorobenzene (surr)	100	85-114		%	1		09/22/19 16:52
Toluene-d8 (surr)	98.3	89-112		%	1		09/22/19 16:52

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-103-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455003
Lab Project ID: 1195455

Collection Date: 09/17/19 12:40 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 16:52

Container ID: 1195455003-E

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 22:16 Container ID: 1195455003-G Prep Batch: VXX34946
Prep Method: SW5030B
Prep Date/Time: 09/22/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-104-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455004
Lab Project ID: 1195455

Collection Date: 09/17/19 13:35 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	23.3	0.245	0.0735	ug/L	5		09/21/19 18:58
2-Methylnaphthalene	25.2	0.245	0.0735	ug/L	5		09/21/19 18:58
Acenaphthene	0.362	0.0490	0.0147	ug/L	1		09/19/19 19:24
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 19:24
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 19:24
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Fluorene	0.444	0.0490	0.0147	ug/L	1		09/19/19 19:24
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Naphthalene	23.8	0.490	0.152	ug/L	5		09/21/19 18:58
Phenanthrene	0.0684	0.0490	0.0147	ug/L	1		09/19/19 19:24
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:24
Surrogates							
2-Methylnaphthalene-d10 (surr)	68.1	47-106		%	1		09/19/19 19:24
Fluoranthene-d10 (surr)	76	24-116		%	1		09/19/19 19:24

Batch Information

Analytical Batch: XMS11734

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/21/19 18:58

Container ID: 1195455004-C

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 19:24 Container ID: 1195455004-C Prep Batch: XXX42300 Prep Method: SW3520C

Prep Extract Vol: 1 mL

Prep Batch: XXX42300

Prep Method: SW3520C

Prep Date/Time: 09/19/19 09:40

Prep Initial Wt./Vol.: 255 mL

Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-104-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455004
Lab Project ID: 1195455

Collection Date: 09/17/19 13:35 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	2.27	0.595	0.179	mg/L	1	Limits	10/11/19 00:52
Surrogates 5a Androstane (surr)	95.2	50-150		%	1		10/11/19 00:52

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 00:52 Container ID: 1195455004-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 252 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-104-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455004 Lab Project ID: 1195455 Collection Date: 09/17/19 13:35 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:06
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,2,4-Trimethylbenzene	83.8	1.00	0.310	ug/L	1	09/22/19 17:06
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:06
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 17:06
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,3,5-Trimethylbenzene	20.4	1.00	0.310	ug/L	1	09/22/19 17:06
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:06
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:06
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
4-Isopropyltoluene	23.1	1.00	0.310	ug/L	1	09/22/19 17:06
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:06
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:06
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 17:06
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:06
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:06
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:06

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-104-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455004 Lab Project ID: 1195455 Collection Date: 09/17/19 13:35 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	Littie	09/22/19 17:06
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/22/19 17:06
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 17:06
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Ethylbenzene	10.0	1.00	0.310	ug/L	1		09/22/19 17:06
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:06
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Isopropylbenzene (Cumene)	11.9	1.00	0.310	ug/L	1		09/22/19 17:06
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/22/19 17:06
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:06
Naphthalene	38.0	1.00	0.310	ug/L	1		09/25/19 23:32
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
n-Propylbenzene	19.9	1.00	0.310	ug/L	1		09/22/19 17:06
o-Xylene	25.2	1.00	0.310	ug/L	1		09/22/19 17:06
P & M -Xylene	19.1	2.00	0.620	ug/L	1		09/22/19 17:06
sec-Butylbenzene	6.82	1.00	0.310	ug/L	1		09/22/19 17:06
Styrene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Toluene	0.340 J	1.00	0.310	ug/L	1		09/22/19 17:06
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:06
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:06
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/22/19 17:06
Xylenes (total)	44.3	3.00	1.00	ug/L	1		09/22/19 17:06
Gurrogates							
1,2-Dichloroethane-D4 (surr)	113	81-118		%	1		09/22/19 17:06
4-Bromofluorobenzene (surr)	103	85-114		%	1		09/22/19 17:06
Toluene-d8 (surr)	94.6	89-112		%	1		09/22/19 17:06

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-104-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455004
Lab Project ID: 1195455

Collection Date: 09/17/19 13:35 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 17:06 Container ID: 1195455004-E

Analytical Batch: VMS19490

Analytical Method: SW8260C Analyst: CMC

Analytical Date/Time: 09/25/19 23:32 Container ID: 1195455004-G

Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-105-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455005
Lab Project ID: 1195455

Collection Date: 09/17/19 14:30 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	1.49	0.0490	0.0147	ug/L	1		09/19/19 19:45
2-Methylnaphthalene	0.377	0.0490	0.0147	ug/L	1		09/19/19 19:45
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 19:45
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 19:45
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Naphthalene	0.806	0.0980	0.0304	ug/L	1		09/19/19 19:45
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 19:45
Surrogates							
2-Methylnaphthalene-d10 (surr)	72.9	47-106		%	1		09/19/19 19:45
Fluoranthene-d10 (surr)	68.5	24-116		%	1		09/19/19 19:45

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 19:45 Container ID: 1195455005-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-105-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455005
Lab Project ID: 1195455

Collection Date: 09/17/19 14:30 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	2.06	0.588	0.176	mg/L	1	Limits	10/11/19 01:02
Surrogates 5a Androstane (surr)	83.9	50-150		%	1		10/11/19 01:02

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 01:02 Container ID: 1195455005-A

Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-105-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455005 Lab Project ID: 1195455 Collection Date: 09/17/19 14:30 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:21
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,2,4-Trimethylbenzene	6.12	1.00	0.310	ug/L	1	09/22/19 17:21
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 17:21
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,3,5-Trimethylbenzene	3.09	1.00	0.310	ug/L	1	09/22/19 17:21
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
4-Isopropyltoluene	2.79	1.00	0.310	ug/L	1	09/22/19 17:21
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:21
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 17:21
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-105-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455005 Lab Project ID: 1195455 Collection Date: 09/17/19 14:30 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:21
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Ethylbenzene	0.470 J	1.00	0.310	ug/L	1	09/22/19 17:21
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Isopropylbenzene (Cumene)	0.540 J	1.00	0.310	ug/L	1	09/22/19 17:21
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/22/19 17:21
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
Naphthalene	2.80	1.00	0.310	ug/L	1	09/25/19 22:31
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
n-Propylbenzene	1.14	1.00	0.310	ug/L	1	09/22/19 17:21
o-Xylene	1.69	1.00	0.310	ug/L	1	09/22/19 17:21
P & M -Xylene	1.05 J	2.00	0.620	ug/L	1	09/22/19 17:21
sec-Butylbenzene	0.910 J	1.00	0.310	ug/L	1	09/22/19 17:21
Styrene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Toluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:21
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:21
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/22/19 17:21
Xylenes (total)	2.74 J	3.00	1.00	ug/L	1	09/22/19 17:21
urrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1	09/22/19 17:21
4-Bromofluorobenzene (surr)	101	85-114		%	1	09/22/19 17:21
Toluene-d8 (surr)	99.1	89-112		%	1	09/22/19 17:21

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-105-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455005
Lab Project ID: 1195455

Collection Date: 09/17/19 14:30 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 17:21 Container ID: 1195455005-E

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 22:31 Container ID: 1195455005-G Prep Batch: VXX34946
Prep Method: SW5030B
Prep Date/Time: 09/22/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-106-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455006 Lab Project ID: 1195455 Collection Date: 09/17/19 15:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	5.41	0.0490	0.0147	ug/L	1		09/19/19 20:05
2-Methylnaphthalene	2.98	0.0490	0.0147	ug/L	1		09/19/19 20:05
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 20:05
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/19/19 20:05
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Fluorene	0.350	0.0490	0.0147	ug/L	1		09/19/19 20:05
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Naphthalene	1.32	0.0980	0.0304	ug/L	1		09/19/19 20:05
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/19/19 20:05
Surrogates							
2-Methylnaphthalene-d10 (surr)	73.8	47-106		%	1		09/19/19 20:05
Fluoranthene-d10 (surr)	72	24-116		%	1		09/19/19 20:05

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 20:05 Container ID: 1195455006-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-106-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455006 Lab Project ID: 1195455 Collection Date: 09/17/19 15:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	4.02	0.600	0.180	mg/L	1	Limits	10/11/19 01:12
Surrogates 5a Androstane (surr)	91.9	50-150		%	1		10/11/19 01:12

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 01:12 Container ID: 1195455006-A

Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-106-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455006 Lab Project ID: 1195455 Collection Date: 09/17/19 15:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:36
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,2,4-Trimethylbenzene	4.02	1.00	0.310	ug/L	1	09/22/19 17:36
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 17:36
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,3,5-Trimethylbenzene	8.46	1.00	0.310	ug/L	1	09/22/19 17:36
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
2-Butanone (MEK)	6.49 J	10.0	3.10	ug/L	1	09/22/19 17:36
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
4-Isopropyltoluene	6.53	1.00	0.310	ug/L	1	09/22/19 17:36
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:36
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 17:36
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-106-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455006 Lab Project ID: 1195455 Collection Date: 09/17/19 15:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:36
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Isopropylbenzene (Cumene)	1.07	1.00	0.310	ug/L	1	09/22/19 17:36
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/22/19 17:36
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
Naphthalene	3.25	1.00	0.310	ug/L	1	09/25/19 22:46
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
n-Propylbenzene	2.10	1.00	0.310	ug/L	1	09/22/19 17:36
o-Xylene	1.00	1.00	0.310	ug/L	1	09/22/19 17:36
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/22/19 17:36
sec-Butylbenzene	1.81	1.00	0.310	ug/L	1	09/22/19 17:36
Styrene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
tert-Butylbenzene	0.370 J	1.00	0.310	ug/L	1	09/22/19 17:36
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Toluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:36
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:36
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/22/19 17:36
Xylenes (total)	1.00 J	3.00	1.00	ug/L	1	09/22/19 17:36
urrogates						
1,2-Dichloroethane-D4 (surr)	108	81-118		%	1	09/22/19 17:36
4-Bromofluorobenzene (surr)	104	85-114		%	1	09/22/19 17:36
Toluene-d8 (surr)	98.9	89-112		%	1	09/22/19 17:36

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-106-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455006 Lab Project ID: 1195455 Collection Date: 09/17/19 15:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 17:36 Container ID: 1195455006-E

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 22:46 Container ID: 1195455006-G Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-107-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455007
Lab Project ID: 1195455

Collection Date: 09/17/19 16:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	4.05	0.0472	0.0142	ug/L	1		09/19/19 20:26
2-Methylnaphthalene	2.26	0.0472	0.0142	ug/L	1		09/19/19 20:26
Acenaphthene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Acenaphthylene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Benzo(a)Anthracene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Benzo[a]pyrene	0.00945 U	0.0189	0.00585	ug/L	1		09/19/19 20:26
Benzo[b]Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Benzo[g,h,i]perylene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Benzo[k]fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Chrysene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Dibenzo[a,h]anthracene	0.00945 U	0.0189	0.00585	ug/L	1		09/19/19 20:26
Fluoranthene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Fluorene	0.253	0.0472	0.0142	ug/L	1		09/19/19 20:26
Indeno[1,2,3-c,d] pyrene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Naphthalene	0.967	0.0943	0.0292	ug/L	1		09/19/19 20:26
Phenanthrene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Pyrene	0.0236 U	0.0472	0.0142	ug/L	1		09/19/19 20:26
Surrogates							
2-Methylnaphthalene-d10 (surr)	51.3	47-106		%	1		09/19/19 20:26
Fluoranthene-d10 (surr)	48.3	24-116		%	1		09/19/19 20:26

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 20:26 Container ID: 1195455007-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-107-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455007
Lab Project ID: 1195455

Collection Date: 09/17/19 16:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	3.28	0.577	0.173	mg/L	1	Limits	10/11/19 03:04
Surrogates 5a Androstane (surr)	94	50-150		%	1		10/11/19 03:04

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 03:04 Container ID: 1195455007-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-107-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455007
Lab Project ID: 1195455

Collection Date: 09/17/19 16:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:51
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,2,4-Trimethylbenzene	4.09	1.00	0.310	ug/L	1	09/22/19 17:51
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:51
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 17:51
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,3,5-Trimethylbenzene	8.63	1.00	0.310	ug/L	1	09/22/19 17:51
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
2-Butanone (MEK)	6.16 J	10.0	3.10	ug/L	1	09/22/19 17:51
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:51
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
4-Isopropyltoluene	6.68	1.00	0.310	ug/L	1	09/22/19 17:51
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:51
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 17:51
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 17:51
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 17:51
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 17:51
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 17:51

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-107-GW
Client Project ID: NEWHALEN
Lab Sample ID: 1195455007
Lab Project ID: 1195455

Collection Date: 09/17/19 16:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/22/19 17:51
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 17:51
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:51
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Isopropylbenzene (Cumene)	1.04	1.00	0.310	ug/L	1		09/22/19 17:51
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/22/19 17:51
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:51
Naphthalene	3.25	1.00	0.310	ug/L	1		09/25/19 23:02
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
n-Propylbenzene	2.10	1.00	0.310	ug/L	1		09/22/19 17:51
o-Xylene	1.03	1.00	0.310	ug/L	1		09/22/19 17:51
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/22/19 17:51
sec-Butylbenzene	1.84	1.00	0.310	ug/L	1		09/22/19 17:51
Styrene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
tert-Butylbenzene	0.380 J	1.00	0.310	ug/L	1		09/22/19 17:51
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Toluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 17:51
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/22/19 17:51
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/22/19 17:51
Xylenes (total)	1.03 J	3.00	1.00	ug/L	1		09/22/19 17:51
urrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/22/19 17:51
4-Bromofluorobenzene (surr)	404	05 444		0/	4		00/00/40 47:54
	104	85-114		%	1		09/22/19 17:51

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-107-GW Client Project ID: NEWHALEN Lab Sample ID: 1195455007 Lab Project ID: 1195455 Collection Date: 09/17/19 16:20 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 17:51 Container ID: 1195455007-E

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 23:02 Container ID: 1195455007-G Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 19-NHTF-101-RB Client Project ID: NEWHALEN Lab Sample ID: 1195455008 Lab Project ID: 1195455 Collection Date: 09/17/19 18:45 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/19/19 20:46
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/19/19 20:46
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		09/19/19 20:46
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/19/19 20:46
Surrogates							
2-Methylnaphthalene-d10 (surr)	80.1	47-106		%	1		09/19/19 20:46
Fluoranthene-d10 (surr)	83.5	24-116		%	1		09/19/19 20:46

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/19/19 20:46 Container ID: 1195455008-C Prep Batch: XXX42300 Prep Method: SW3520C Prep Date/Time: 09/19/19 09:40 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-101-RB Client Project ID: NEWHALEN Lab Sample ID: 1195455008 Lab Project ID: 1195455 Collection Date: 09/17/19 18:45 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.294 U	0.588	0.176	mg/L	1	Limits	10/11/19 03:14
Surrogates 5a Androstane (surr)	87.1	50-150		%	1		10/11/19 03:14

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/11/19 03:14 Container ID: 1195455008-A Prep Batch: XXX42360 Prep Method: SW3520C Prep Date/Time: 09/28/19 09:14 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 19-NHTF-101-RB Client Project ID: NEWHALEN Lab Sample ID: 1195455008 Lab Project ID: 1195455 Collection Date: 09/17/19 18:45 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/22/19 18:05
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/22/19 18:05
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/22/19 18:05
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 18:05
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/22/19 18:05
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/22/19 18:05
Benzene	0.200 U	0.400	0.120	ug/L	1	09/22/19 18:05
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
Bromomethane	2.50 U	5.00	1.50	ug/L	1	09/22/19 18:05
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/22/19 18:05
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/22/19 18:05
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/22/19 18:05

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-101-RB Client Project ID: NEWHALEN Lab Sample ID: 1195455008 Lab Project ID: 1195455 Collection Date: 09/17/19 18:45 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	<u>5. </u>	Limito	09/22/19 18:05
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/22/19 18:05
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 18:05
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/22/19 18:05
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/22/19 18:05
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/22/19 18:05
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/25/19 23:17
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/22/19 18:05
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Styrene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Toluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 18:05
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/22/19 18:05
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/22/19 18:05
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/22/19 18:05
urrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		09/22/19 18:05
4-Bromofluorobenzene (surr)	98.7	85-114		%	1		09/22/19 18:05
Toluene-d8 (surr)	100	89-112		%	1		09/22/19 18:05

Print Date: 10/14/2019 4:01:50PM

Client Sample ID: 19-NHTF-101-RB Client Project ID: NEWHALEN Lab Sample ID: 1195455008 Lab Project ID: 1195455 Collection Date: 09/17/19 18:45 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 18:05

Container ID: 1195455008-E

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 23:17

Container ID: 1195455008-G

Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **NEWHALEN**Lab Sample ID: 1195455009
Lab Project ID: 1195455

Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/22/19 15:08
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/22/19 15:08
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
Benzene	0.200 U	0.400	0.120	ug/L	1		09/22/19 15:08
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Bromomethane	2.50 U	5.00	1.50	ug/L	1		09/25/19 19:13
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08

Print Date: 10/14/2019 4:01:50PM

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **NEWHALEN**Lab Sample ID: 1195455009
Lab Project ID: 1195455

Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Chloromethane	0.410 J	1.00	0.310	ug/L	1		09/22/19 15:08
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/22/19 15:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/22/19 15:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/25/19 19:13
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/22/19 15:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Styrene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Toluene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/22/19 15:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/22/19 15:08
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/22/19 15:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/22/19 15:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	81-118		%	1		09/22/19 15:08
4-Bromofluorobenzene (surr)	100	85-114		%	1		09/22/19 15:08
Toluene-d8 (surr)	98.4	89-112		%	1		09/22/19 15:08

Print Date: 10/14/2019 4:01:50PM

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **NEWHALEN**Lab Sample ID: 1195455009
Lab Project ID: 1195455

Collection Date: 09/17/19 11:00 Received Date: 09/18/19 11:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/22/19 15:08 Container ID: 1195455009-A

Analytical Batch: VMS19490 Analytical Method: SW8260C

Analyst: CMC

Analytical Date/Time: 09/25/19 19:13 Container ID: 1195455009-C Prep Batch: VXX34946 Prep Method: SW5030B Prep Date/Time: 09/22/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX34964
Prep Method: SW5030B
Prep Date/Time: 09/25/19 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1799882 [VXX/34946]

Blank Lab ID: 1533868

QC for Samples:

1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008, 1195455009

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 10/14/2019 4:01:53PM

Method Blank

Blank ID: MB for HBN 1799882 [VXX/34946]

Blank Lab ID: 1533868

QC for Samples:

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	99.3	89-112		%

Print Date: 10/14/2019 4:01:53PM

Method Blank

Blank ID: MB for HBN 1799882 [VXX/34946]

Blank Lab ID: 1533868

QC for Samples:

1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008, 1195455009

Results by SW8260C

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS19479 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS

Analyst: CMC

Analytical Date/Time: 9/22/2019 1:28:00PM

Prep Batch: VXX34946 Prep Method: SW5030B

Prep Date/Time: 9/22/2019 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:53PM

Blank Spike ID: LCS for HBN 1195455 [VXX34946]

Blank Spike Lab ID: 1533869 Date Analyzed: 09/22/2019 13:43 Spike Duplicate ID: LCSD for HBN 1195455

[VXX34946]

Spike Duplicate Lab ID: 1533870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007,

1195455008, 1195455009

Results by SW8260C

Parameter Spike Result Rec (%) Spike Result Rec (%) Spike Result Rec (%) Calt Calt		Blank Spike (ug/L) Spike Duplicate (ug/L)								
1,1,1-Trichloroethane	<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	30	32.1	107	30	31.7	106	(78-124)	1.30	(< 20)
1,1,2-Trichloroethane 30 31.1 104 30 30.4 101 (80-119) 2.40 (<20) 1,1-Dichloroethane 30 29.1 97 30 28.5 95 (77-125) 2.20 (<20) 1,1-Dichloroethene 30 30.3 101 30 29.3 98 (77-125) 3.20 (<20) 1,1-Dichloropropene 30 29.8 99 30 29.5 98 (79-125) 1.10 (<20) 1,2,3-Trichlorobenzene 30 26.5 88 30 28.1 94 (69-129) 5.70 (<20) 1,2,3-Trichloropenzene 30 27.8 93 30 27.9 93 (69-130) 0.40 (<20) 1,2,4-Trichlorobenzene 30 27.8 93 30 27.9 93 (69-130) 0.40 (<20) 1,2,4-Trimethylbenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 29.1 97 30 30.0 100 (62-128) 2.80 (<20) 1,2-Dibromoethane 30 28.4 95 30 28.0 93 (77-121) 1.40 (<20) 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119) 1.90 (<20) 1,2-Dichlorobenzene 30 28.3 94 30 27.8 93 (73-128) 1.70 (<20) 1,2-Dichloroppane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (<20) 1,3-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (<20) 1,3-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (<20) 1,4-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (<20) 1,4-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (<20) 2,2-Dichloropopane 30 29.2 94 30 29.2 97 (60-139) 2.50 (<20) 2,2-Dichlorobenzene 30 30.8 103 30.3 30.1 100 (79-118) 2.20 (<20) 2,2-Dichlorobenzene 30 30.8 103 30.2 30.1 30 (79-122) 3.10 (<20) 2,2-Dichlorobenzene 30 30.5 102 30 29.7 99 (78-122) 3.10 (<20) 2,2-Dich	1,1,1-Trichloroethane	30	30.5	102	30	29.6	99	(74-131)	2.90	(< 20)
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	30	30.1	100	30	30.1	100	(71-121)	0.00	(< 20)
1,1-Dichloroethene 30 30.3 101 30 29.3 98 (71-131) 3.20 (<20) 1,1-Dichloropropene 30 29.8 99 30 29.5 98 (79-125) 1.10 (<20) 1,2,3-Trichlorobenzene 30 26.5 88 30 28.1 94 (69-129) 5.70 (<20) 1,2,3-Trichlorobenzene 30 31.0 103 30 31.0 103 (73-122) 0.03 (<20) 1,2,4-Trichlorobenzene 30 27.8 93 30 27.9 93 (69-130) 0.40 (<20) 1,2,4-Trinchlorobenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 29.1 97 30 30.0 100 (62-128) 2.80 (<20) 1,2-Dibromethane 30 28.4 95 30 28.0 93 (77-121) 1.40 (<20) 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119) 1.90 (<20) 1,2-Dichloropthane 30 28.3 94 30 27.8 93 (73-128) 1.70 (<20) 1,2-Dichloropthane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,2-Dichloropthane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 30.1 100 (75-124) 3.20 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichlorobenzene 30 30.8 103 30.3 30.1 100 (79-118) 2.20 (<20) 1,4-Dichlorobenzene 30 30.8 103 30.3 30.1 100 (79-118) 2.20 (<20) 2,2-Dichloropropane 30 29.9 9100 30 29.7 92 (80-119) 1.80 (<20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (<20) 2,2-Dichloropropane 30 30.8 103 30.3 30.1 100 (79-118) 2.20 (<20) 2,2-Dichloropropane 30 30.8 103 30.9 92.8 103 (57-139) 0.02 (<20) 2,2-Dichloropropane 30 30.8 103 30.9 92.8 103 (57-139) 0.02 (<20) 2,2-Dichloropropane 30 30.8 103 30.9 92.8 103 (57-139) 0.02 (<20) 2,2-Dichloropropane 30 30.8 103 30.9 92.8 99	1,1,2-Trichloroethane	30	31.1	104	30	30.4	101	(80-119)	2.40	(< 20)
1,1-Dichloropropene 30 29.8 99 30 29.5 98 (79-125) 1,10 (<20) 1,2,3-Trichlorobenzene 30 26.5 88 30 28.1 94 (69-129) 5.70 (<20) 1,2,3-Trichloropropane 30 31.0 103 30 31.0 103 (73-122) 0.03 (<20) 1,2,4-Trimethylbenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (<20) 1,2,4-Trimethylbenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 29.1 97 30 30.0 100 (62-128) 2.80 (<20) 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119) 1.90 (<20) 1,2-Dichloropane 30 28.3 94 30 27.8 93 (73-128) 1.70 (<20) 1,2-Dichloropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,2-Dichloropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,3-Dichloropane 30 31.1 104 30 30.1 100 (75-124) 3.20 (<20) 1,3-Dichloropane 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichloropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (<20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (<20) 1,4-Dichloropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (<20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (<20) 2-Butanone (MEK) 90 89.8 103 90 92.8 103 (57-139) 0.02 (<20) 4-Chlorotoluene 30 30.8 103 90 92.8 103 (57-139) 0.02 (<20) 4-Chlorotoluene 30 30.8 103 30 29.1 97 (79-120) 1.80 (<20) Benzene 30 30.8 103 30 29.1 97 (79-120) 1.80 (<20) Bromochiromethane 30 30.8 103 30 32.7 109 (60-130) 1.00 (<20) Bromochiromethane 30 37.0 110 30 32.7 109 (66-130) 1.00 (<20) Bromochiromethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (<20)	1,1-Dichloroethane	30	29.1	97	30	28.5	95	(77-125)	2.20	(< 20)
1,2,3-Trichlorobenzene 30 26.5 88 30 28.1 94 (69-129 5.70 (<20 1,2,3-Trichloropropane 30 31.0 103 30 31.0 103 (73-122 0.03 (<20 1,2,4-Trichloropenzene 30 27.8 93 30 27.9 93 (69-130 0.40 (<20 1,2,4-Trichlorobenzene 30 31.6 105 30 31.0 103 (79-124 2.00 (<20 1,2,4-Trichloropenzene 30 31.6 105 30 31.0 103 (79-124 2.00 (<20 1,2,4-Trichloropenzene 30 28.1 97 30 30.0 100 (62-128 2.80 (<20 1,2-Dibromo-3-chloropropane 30 28.4 95 30 28.0 93 (77-121 1.40 (<20 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119 1.90 (<20 1,2-Dichloropropane 30 28.3 94 30 27.8 93 (73-128 1.70 (<20 1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122 0.72 (<20 1,3-5-Trimethylbenzene 30 31.1 104 30 30.1 100 (75-124 3.20 (<20 1,3-Dichloropropane 30 31.1 104 30 30.3 101 (80-119 2.60 (<20 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119 1.80 (<20 1,4-Dichloropropane 30 38.8 103 30 30.1 100 (79-118 2.20 (<20 1,4-Dichloropropane 30 30.8 103 30 30.1 100 (79-118 2.20 (<20 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122 2.30 (<20 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122 2.30 (<20 2,2-Dichlorobulene 30 30.6 102 30 29.7 99 (80-130 0.98 (<20 2,2-Dichlorobulene 30 30.6 102 30 29.7 99 (78-122 3.10 (<20 2,2-Dichlorobulene 30 30.5 105 30 30.4 101 (77-127 3.50 (<20 2,2-Dichlorobulene 30 30.6 102 30 29.7 99 (78-122 3.10 (<20 2,2-Dichlorobulene 30 30.8 103 30 30.4 101 (77-127 3.50 (<20 3,2-Dichlorobulene 30 30.8 103 30 29.1 97 (79-120 1.80 (<20 3,2-Dichlorobulene 30 30.8 103 30 30.4 101 (77-127 3.50 (<20 3,2-Dichlorobulene 30 30.8 30.8 30 30.8 30.8 30.8 30.8	1,1-Dichloroethene	30	30.3	101	30	29.3	98	(71-131)	3.20	(< 20)
1,2,3-Trichloropropane 30 31.0 103 30 31.0 103 (73-122) 0.03 (<20) 1,2,4-Trichlorobenzene 30 27.8 93 30 27.9 93 (69-130) 0.40 (<20) 1,2,4-Trimethylbenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 29.1 97 30 30.0 100 (62-128) 2.80 (<20) 1,2-Dibromo-brachane 30 28.4 95 30 28.0 93 (77-121) 1.40 (<20) 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119) 1.90 (<20) 1,2-Dichloropropane 30 28.3 94 30 27.8 93 (73-128) 1.70 (<20) 1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (<20) 1,3-Dichloropropane 30 31.1 104 30 30.1 100 (75-124) 3.20 (<20) 1,3-Dichloropropane 30 31.1 104 30 30.3 101 (80-119) 2.60 (<20) 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (<20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (<20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (<20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (80-139) 2.50 (<20) 2,2-Dichloropropane 30 30.2 101 30 29.2 97 (80-139) 2.50 (<20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (<20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (<20) 2-Hexanone 30 30.6 102 30 29.7 99 (78-122) 3.10 (<20) 2-Hexanone 30 30.5 105 30 30.4 101 (77-127) 3.50 (<20) 3-Borpopyltoluene 30 30.8 103 30 29.8 99 (78-122) 3.10 (<20) 3-Borpopyltoluene 30 30.8 103 30 29.8 99 (78-122) 3.10 (<20) 3-Borpopyltoluene 30 30.8 103 30 30.4 101 (77-127) 3.50 (<20) 3-Borpopyltoluene 30 30.8 103 30 30.4 101 (77-127) 3.50 (<20) 3-Borpopyltoluene 30 30.8 103 30 30.1 104 (79-125) 1.90 (<20) 3-Borpopyltoluene 30	1,1-Dichloropropene	30	29.8	99	30	29.5	98	(79-125)	1.10	(< 20)
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	30	26.5	88	30	28.1	94	(69-129)	5.70	(< 20)
1,2,4-Trimethylbenzene 30 31.6 105 30 31.0 103 (79-124) 2.00 (< 20)	1,2,3-Trichloropropane	30	31.0	103	30	31.0	103	(73-122)	0.03	(< 20)
1,2-Dibromo-3-chloropropane 30 29.1 97 30 30.0 100 (62-128) 2.80 (< 20 1,2-Dibromoethane 30 28.4 95 30 28.0 93 (77-121 1.40 (< 20 1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119 1.90 (< 20 1,2-Dichloropenzene 30 28.3 94 30 27.8 93 (73-128 1.70 (< 20 1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122 0.72 (< 20 1,3-Dichlorobenzene 30 31.1 104 30 30.1 100 (75-124 3.20 (< 20 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119 2.60 (< 20 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119 1.80 (< 20 1,3-Dichloropropane 30 30.8 103 30 30.1 100 (79-118 2.20 (< 20 1,3-Dichloropropane 30 30.8 103 30 30.1 100 (79-118 2.20 (< 20 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139 2.50 (< 20 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122 2.30 (< 20 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122 2.30 (< 20 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122 2.30 (< 20 2,2-Dichloropropane 30 30.6 102 30 29.7 99 (78-122 3.10 (< 20 2,2-Dichloropropane 30 30.6 102 30 29.7 99 (78-122 3.10 (< 20 2,2-Dichloropropane 30 30.6 102 30 29.7 99 (78-122 3.10 (< 20 2,2-Dichloropropane 30 30.8 103 30.4 101 (77-127 3.50 (< 20 2,2-Dichloropropane 30 30.8 103 30.4 101 (77-127 3.50 (< 20 2,2-Dichloropropane 30 30.8 103 30.4 30.4 30 30.4	1,2,4-Trichlorobenzene	30	27.8	93	30	27.9	93	(69-130)	0.40	(< 20)
1,2-Dibromoethane 30 28.4 95 30 28.0 93 (77-121) 1.40 (< 20)	1,2,4-Trimethylbenzene	30	31.6	105	30	31.0	103	(79-124)	2.00	(< 20)
1,2-Dichlorobenzene 30 30.5 102 30 29.9 100 (80-119) 1.90 (< 20) 1,2-Dichloroethane 30 28.3 94 30 27.8 93 (73-128) 1.70 (< 20) 1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (< 20) 1,3-Dichloropropane 30 31.1 104 30 30.3 101 (80-119) 2.60 (< 20) 1,3-Dichloropropane 30 31.1 104 30 30.3 101 (80-119) 1.80 (< 20) 1,3-Dichloropropane 30 31.1 104 30 30.3 101 (80-119) 1.80 (< 20) 1,4-Dichlorobropropane 30 30.8 103 30 30.1 100 (79-118) 2.20 (< 20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20)	1,2-Dibromo-3-chloropropane	30	29.1	97	30	30.0	100	(62-128)	2.80	(< 20)
1,2-Dichloroethane 30 28.3 94 30 27.8 93 (73-128) 1.70 (< 20) 1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (< 20) 1,3,5-Trimethylbenzene 30 31.1 104 30 30.1 100 (75-124) 3.20 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 1.80 (< 20) 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 30.8 103 30.1 100 (79-118) 2.20 (< 20) 1,4-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2,2-Dichloropropane 30 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122)	1,2-Dibromoethane	30	28.4	95	30	28.0	93	(77-121)	1.40	(< 20)
1,2-Dichloropropane 30 29.1 97 30 29.3 98 (78-122) 0.72 (< 20) 1,3,5-Trimethylbenzene 30 31.1 104 30 30.1 100 (75-124) 3.20 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (< 20) 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (< 20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2,2-Dichloropropane 30 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2,2-Dichloropropane 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2,2-Dichloropropane 30 30.2 101 30 29.5 98 <t< th=""><th>1,2-Dichlorobenzene</th><th>30</th><th>30.5</th><th>102</th><th>30</th><th>29.9</th><th>100</th><th>(80-119)</th><th>1.90</th><th>(< 20)</th></t<>	1,2-Dichlorobenzene	30	30.5	102	30	29.9	100	(80-119)	1.90	(< 20)
1,3,5-Trimethylbenzene 30 31.1 104 30 30.1 100 (75-124) 3.20 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (< 20) 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (< 20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) <th>1,2-Dichloroethane</th> <th>30</th> <th>28.3</th> <th>94</th> <th>30</th> <th>27.8</th> <th>93</th> <th>(73-128)</th> <th>1.70</th> <th>(< 20)</th>	1,2-Dichloroethane	30	28.3	94	30	27.8	93	(73-128)	1.70	(< 20)
1,3-Dichlorobenzene 30 31.1 104 30 30.3 101 (80-119) 2.60 (< 20) 1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (< 20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127)	1,2-Dichloropropane	30	29.1	97	30	29.3	98	(78-122)	0.72	(< 20)
1,3-Dichloropropane 30 28.2 94 30 27.7 92 (80-119) 1.80 (< 20) 1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (< 20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130)	1,3,5-Trimethylbenzene	30	31.1	104	30	30.1	100	(75-124)	3.20	(< 20)
1,4-Dichlorobenzene 30 30.8 103 30 30.1 100 (79-118) 2.20 (<20) 2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (<20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (<20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (<20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (<20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (<20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (<20) Bromobenzene 30 29.7 99 30 29.1 97 (79-120) 1.80<	1,3-Dichlorobenzene	30	31.1	104	30	30.3	101	(80-119)	2.60	(< 20)
2,2-Dichloropropane 30 29.9 100 30 29.2 97 (60-139) 2.50 (< 20) 2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (< 20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40	1,3-Dichloropropane	30	28.2	94	30	27.7	92	(80-119)	1.80	(< 20)
2-Butanone (MEK) 90 89.6 100 90 90.7 101 (56-143) 1.30 (<20) 2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (<20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (<20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (<20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (<20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (<20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (<20) Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (<20) Bromodichloromethane 30 31.7 106 30 31.1 104 (79-125) 1.90 (<20) Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 (<20) Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (<20)	1,4-Dichlorobenzene	30	30.8	103	30	30.1	100	(79-118)	2.20	(< 20)
2-Chlorotoluene 30 30.2 101 30 29.5 98 (79-122) 2.30 (< 20) 2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20) Bromochloromethane 30 31.7 106 30 31.1 104 (79-125) 1.90 (< 20) Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 <	2,2-Dichloropropane	30	29.9	100	30	29.2	97	(60-139)	2.50	(< 20)
2-Hexanone 90 92.8 103 90 92.8 103 (57-139) 0.02 (< 20) 4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20) Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (< 20) Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 (< 20) Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (2-Butanone (MEK)	90	89.6	100	90	90.7	101	(56-143)	1.30	(< 20)
4-Chlorotoluene 30 30.6 102 30 29.7 99 (78-122) 3.10 (< 20) 4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20) Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (< 20) Bromoform 30 31.7 106 30 31.1 104 (79-125) 1.90 (< 20) Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (< 20)	2-Chlorotoluene	30	30.2	101	30	29.5	98	(79-122)	2.30	(< 20)
4-Isopropyltoluene 30 31.5 105 30 30.4 101 (77-127) 3.50 (< 20) 4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20) Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (< 20) Bromodichloromethane 30 31.7 106 30 31.1 104 (79-125) 1.90 (< 20) Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 (< 20) Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (< 20)	2-Hexanone	90	92.8	103	90	92.8	103	(57-139)	0.02	(< 20)
4-Methyl-2-pentanone (MIBK) 90 89.3 99 90 88.4 98 (67-130) 0.98 (< 20) Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20) Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20) Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (< 20) Bromodichloromethane 30 31.7 106 30 31.1 104 (79-125) 1.90 (< 20) Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 (< 20) Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (< 20)	4-Chlorotoluene	30	30.6	102	30	29.7	99	(78-122)	3.10	
Benzene 30 29.7 99 30 29.1 97 (79-120) 1.80 (< 20)	4-Isopropyltoluene	30	31.5	105	30	30.4	101	(77-127)	3.50	(< 20)
Bromobenzene 30 30.8 103 30 29.8 99 (80-120) 3.40 (< 20)	4-Methyl-2-pentanone (MIBK)	90	89.3	99	90	88.4	98	(67-130)	0.98	(< 20)
Bromochloromethane 30 29.0 97 30 28.5 95 (78-123) 1.70 (< 20)	Benzene	30	29.7	99	30	29.1	97	(79-120)	1.80	(< 20)
Bromodichloromethane 30 31.7 106 30 31.1 104 (79-125) 1.90 (< 20)	Bromobenzene	30	30.8	103	30	29.8	99	(80-120)	3.40	(< 20)
Bromoform 30 33.0 110 30 32.7 109 (66-130) 1.00 (< 20)	Bromochloromethane	30	29.0	97	30	28.5	95	(78-123)	1.70	(< 20)
Bromomethane 30 37.0 123 30 36.8 123 (53-141) 0.65 (< 20)	Bromodichloromethane	30	31.7	106	30	31.1	104	(79-125)	1.90	
	Bromoform	30	33.0	110	30	32.7		(66-130)	1.00	
Carbon disulfide 45 45.6 101 45 44.1 98 (64-133) 3.50 (< 20)	Bromomethane	30	37.0	123	30	36.8	123	(53-141)	0.65	(< 20)
	Carbon disulfide	45	45.6	101	45	44.1	98	(64-133)	3.50	(< 20)

Print Date: 10/14/2019 4:01:54PM

Blank Spike ID: LCS for HBN 1195455 [VXX34946]

Blank Spike Lab ID: 1533869 Date Analyzed: 09/22/2019 13:43 Spike Duplicate ID: LCSD for HBN 1195455

[VXX34946]

Spike Duplicate Lab ID: 1533870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007,

1195455008, 1195455009

Results by SW8260C

	Blank Spike (ug/L) Spike Duplicate (ug/								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Carbon tetrachloride	30	31.2	104	30	30.6	102	(72-136)	2.00	(< 20)
Chlorobenzene	30	28.9	96	30	28.4	95	(82-118)	1.90	(< 20)
Chloroethane	30	30.9	103	30	28.8	96	(60-138)	7.10	(< 20)
Chloroform	30	29.5	98	30	28.8	96	(79-124)	2.40	(< 20)
Chloromethane	30	29.4	98	30	28.7	96	(50-139)	2.50	(< 20)
cis-1,2-Dichloroethene	30	29.3	98	30	28.9	96	(78-123)	1.30	(< 20)
cis-1,3-Dichloropropene	30	28.9	96	30	29.2	97	(75-124)	1.00	(< 20)
Dibromochloromethane	30	32.0	107	30	31.6	105	(74-126)	1.40	(< 20)
Dibromomethane	30	29.4	98	30	28.9	97	(79-123)	1.40	(< 20)
Dichlorodifluoromethane	30	30.3	101	30	29.1	97	(32-152)	4.10	(< 20)
Ethylbenzene	30	29.9	100	30	29.3	98	(79-121)	1.80	(< 20)
Freon-113	45	46.7	104	45	45.3	101	(70-136)	3.00	(< 20)
Hexachlorobutadiene	30	30.7	102	30	30.5	102	(66-134)	0.82	(< 20)
Isopropylbenzene (Cumene)	30	30.1	100	30	29.4	98	(72-131)	2.30	(< 20)
Methylene chloride	30	28.6	95	30	28.1	94	(74-124)	1.80	(< 20)
Methyl-t-butyl ether	45	45.1	100	45	44.7	99	(71-124)	1.00	(< 20)
n-Butylbenzene	30	29.6	99	30	28.9	96	(75-128)	2.60	(< 20)
n-Propylbenzene	30	30.5	102	30	30.0	100	(76-126)	1.50	(< 20)
o-Xylene	30	29.3	98	30	29.0	97	(78-122)	1.30	(< 20)
P & M -Xylene	60	58.4	97	60	58.3	97	(80-121)	0.10	(< 20)
sec-Butylbenzene	30	30.4	101	30	30.0	100	(77-126)	1.40	(< 20)
Styrene	30	30.3	101	30	29.7	99	(78-123)	2.20	(< 20)
tert-Butylbenzene	30	30.1	100	30	29.5	98	(78-124)	1.80	(< 20)
Tetrachloroethene	30	31.3	104	30	30.3	101	(74-129)	3.10	(< 20)
Toluene	30	29.2	97	30	28.4	95	(80-121)	2.60	(< 20)
trans-1,2-Dichloroethene	30	29.1	97	30	28.2	94	(75-124)	3.10	(< 20)
trans-1,3-Dichloropropene	30	28.7	96	30	28.9	96	(73-127)	0.73	(< 20)
Trichloroethene	30	30.1	100	30	29.3	98	(79-123)	2.50	(< 20)
Trichlorofluoromethane	30	33.0	110	30	30.8	103	(65-141)	6.80	(< 20)
Vinyl acetate	30	31.3	104	30	31.2	104	(54-146)	0.48	(< 20)
Vinyl chloride	30	29.5	98	30	28.5	95	(58-137)	3.50	(< 20)
Xylenes (total)	90	87.7	98	90	87.3	97	(79-121)	0.50	(< 20)

Surrogates

Print Date: 10/14/2019 4:01:54PM

Blank Spike ID: LCS for HBN 1195455 [VXX34946]

Blank Spike Lab ID: 1533869 Date Analyzed: 09/22/2019 13:43 Spike Duplicate ID: LCSD for HBN 1195455

[VXX34946]

Spike Duplicate Lab ID: 1533870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007,

1195455008, 1195455009

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2-Dichloroethane-D4 (surr)	30	97.4	97	30	97.9	98	(81-118)	0.48	
4-Bromofluorobenzene (surr)	30	98.8	99	30	98.7	99	(85-114)	0.10	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.40	

Batch Information

Analytical Batch: VMS19479
Analytical Method: SW8260C
Instrument: VPA 780/5975 GC/MS

Analyst: CMC

Prep Batch: VXX34946
Prep Method: SW5030B

Prep Date/Time: 09/22/2019 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:54PM

Method Blank

Blank ID: MB for HBN 1800006 [VXX/34964]

Blank Lab ID: 1534429

QC for Samples:

1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008, 1195455009

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Bromomethane	2.50U	5.00	1.50	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	108	81-118		%
4-Bromofluorobenzene (surr)	98.6	85-114		%
Toluene-d8 (surr)	97.1	89-112		%

Batch Information

Analytical Batch: VMS19490 Analytical Method: SW8260C

Instrument: Agilent 7890-75MS

Analyst: CMC

Analytical Date/Time: 9/25/2019 4:40:00PM

Prep Batch: VXX34964 Prep Method: SW5030B

Prep Date/Time: 9/25/2019 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:56PM

Blank Spike ID: LCS for HBN 1195455 [VXX34964]

Blank Spike Lab ID: 1534430 Date Analyzed: 09/25/2019 16:55 Spike Duplicate ID: LCSD for HBN 1195455

[VXX34964]

Spike Duplicate Lab ID: 1534431 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008, 1195455009

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Bromomethane	30	42.0	140	30	41.5	138	(53-141)	1.20	(< 20)
Naphthalene	30	32.8	109	30	36.1	120	(61-128)	9.70	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	104	104	30	102	102	(81-118)	2.00	
4-Bromofluorobenzene (surr)	30	98.1	98	30	97.4	97	(85-114)	0.72	
Toluene-d8 (surr)	30	97.9	98	30	97.9	98	(89-112)	0.03	

Batch Information

Analytical Batch: VMS19490
Analytical Method: SW8260C

Instrument: Agilent 7890-75MS

Analyst: CMC

Prep Batch: VXX34964
Prep Method: SW5030B

Prep Date/Time: 09/25/2019 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:57PM

Method Blank

Blank ID: MB for HBN 1800272 [VXX/34990]

Blank Lab ID: 1535709

QC for Samples:

1195455001, 1195455002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Naphthalene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	99.6	85-114		%
Toluene-d8 (surr)	99.3	89-112		%

Batch Information

Analytical Batch: VMS19512 Analytical Method: SW8260C

Instrument: Agilent 7890-75MS

Analyst: CMC

Analytical Date/Time: 10/1/2019 12:00:00PM

Prep Batch: VXX34990 Prep Method: SW5030B

Prep Date/Time: 10/1/2019 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:58PM

Blank Spike ID: LCS for HBN 1195455 [VXX34990]

Blank Spike Lab ID: 1535710 Date Analyzed: 10/01/2019 12:15

QC for Samples: 1195455001, 1195455002

Spike Duplicate ID: LCSD for HBN 1195455

[VXX34990]

Spike Duplicate Lab ID: 1535711 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Naphthalene	30	29.1	97	30	30.1	100	(61-128)	3.40	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98.6	99	30	96.4	96	(81-118)	2.30	
4-Bromofluorobenzene (surr)	30	98.2	98	30	101	101	(85-114)	2.90	
Toluene-d8 (surr)	30	97.1	97	30	99.5	100	(89-112)	2.40	

Batch Information

Analytical Batch: VMS19512
Analytical Method: SW8260C

Instrument: Agilent 7890-75MS

Analyst: CMC

Prep Batch: VXX34990
Prep Method: SW5030B

Prep Date/Time: 10/01/2019 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/14/2019 4:01:59PM

Method Blank

Blank ID: MB for HBN 1799654 [XXX/42300]

Blank Lab ID: 1532863

QC for Samples:

1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	65.8	47-106		%
Fluoranthene-d10 (surr)	76.4	24-116		%

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 9/19/2019 5:21:00PM

Prep Batch: XXX42300 Prep Method: SW3520C

Prep Date/Time: 9/19/2019 9:40:54AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:02:00PM

Blank Spike ID: LCS for HBN 1195455 [XXX42300]

Blank Spike Lab ID: 1532864 Date Analyzed: 09/19/2019 17:41 Spike Duplicate ID: LCSD for HBN 1195455

[XXX42300]

Spike Duplicate Lab ID: 1532865 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007,

1195455008

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.62	81	2	1.75	88	(41-115)	8.00	(< 20)
2-Methylnaphthalene	2	1.58	79	2	1.71	86	(39-114)	7.90	(< 20)
Acenaphthene	2	1.65	83	2	1.76	88	(48-114)	6.20	(< 20)
Acenaphthylene	2	1.76	88	2	1.87	93	(35-121)	6.10	(< 20)
Anthracene	2	1.66	83	2	1.71	86	(53-119)	2.90	(< 20)
Benzo(a)Anthracene	2	1.67	84	2	1.75	88	(59-120)	4.60	(< 20)
Benzo[a]pyrene	2	1.65	83	2	1.74	87	(53-120)	4.90	(< 20)
Benzo[b]Fluoranthene	2	1.79	90	2	1.86	93	(53-126)	3.80	(< 20)
Benzo[g,h,i]perylene	2	1.55	78	2	1.72	86	(44-128)	10.20	(< 20)
Benzo[k]fluoranthene	2	1.73	86	2	1.81	90	(54-125)	4.50	(< 20)
Chrysene	2	1.72	86	2	1.78	89	(57-120)	3.90	(< 20)
Dibenzo[a,h]anthracene	2	1.43	72	2	1.65	83	(44-131)	14.00	(< 20)
Fluoranthene	2	1.81	91	2	1.88	94	(58-120)	3.50	(< 20)
Fluorene	2	1.65	83	2	1.79	89	(50-118)	7.70	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.67	84	2	1.83	91	(48-130)	8.60	(< 20)
Naphthalene	2	1.71	85	2	1.85	92	(43-114)	7.90	(< 20)
Phenanthrene	2	1.58	79	2	1.68	84	(53-115)	5.90	(< 20)
Pyrene	2	1.88	94	2	1.96	98	(53-121)	4.10	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	71.4	71	2	77.6	78	(47-106)	8.40	
Fluoranthene-d10 (surr)	2	80.2	80	2	84.2	84	(24-116)	4.90	

Batch Information

Analytical Batch: XMS11727

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Prep Batch: XXX42300
Prep Method: SW3520C

Prep Date/Time: 09/19/2019 09:40

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 10/14/2019 4:02:01PM

Method Blank

Blank ID: MB for HBN 1800114 [XXX/42360]

Blank Lab ID: 1534910

QC for Samples:

1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007, 1195455008

Results by AK102

Results LOQ/CL <u>Units</u> **Parameter** DL Diesel Range Organics 0.186J 0.600 0.180 mg/L

Surrogates

5a Androstane (surr) 89.2 60-120 %

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CMS

Analytical Date/Time: 10/10/2019 8:09:00PM

Prep Batch: XXX42360

Prep Method: SW3520C

Prep Date/Time: 9/28/2019 9:14:55AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/14/2019 4:02:03PM

Blank Spike ID: LCS for HBN 1195455 [XXX42360]

Blank Spike Lab ID: 1534911

Date Analyzed: 10/10/2019 21:20

Spike Duplicate ID: LCSD for HBN 1195455

[XXX42360]

Spike Duplicate Lab ID: 1534912

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1195455001, 1195455002, 1195455003, 1195455004, 1195455005, 1195455006, 1195455007,

1195455008

Results by AK102

		Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	21.7	108	20	18.3	92	(75-125)	16.80	(< 20)
Surrogates									
5a Androstane (surr)	0.4	109	109	0.4	95.2	95	(60-120)	13.10	

Batch Information

Analytical Batch: XFC15391 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: CMS

Prep Batch: XXX42360
Prep Method: SW3520C

Prep Date/Time: 09/28/2019 09:14

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/14/2019 4:02:03PM

1195455

SGS North America Inc. CHAIN OF CUSTODY RECORD

The following analyses require specific method REMARKS/LOC ID Data Deliverable Requirements: and/or compound list: BTEX, Metals, PFAS Chain of Custody Seal: (Circle) 6 Delivery Method: Hand Delivery AT Commercal Delivery [.] Page BROKEN aboratory provided trip blank provided with VOCs NOTE www.us.sgs.com Requested Turnaround Time and/or Special Instructions: INTACT Instructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis. DOD Project? Yes No 4 ¢--Preservative 0 ₹\\ 0 ar Ambient [] Analysis emp. Blank °C: Section 4 Cooler ID: ou on ~ ~ 8 8 8 HA9 - MIS 00728 ~ 8 ~ 10₄ က က က က က 8560C - VOC က က က Ó, 8 8 ~ AK102 - DRO 7 ~ 8 ~ Comp Grab Multi-incre-mental) Received For Laboratory By Section 3 7 / / Received By: Received By: Received By: MATRIX/ MATRIX CODE daniel. frank@dnaenviro.com ≸ ≸ Š ≸ × × × Š ٨ 0711 TIME HH:MM 11:00 12:40 13:35 18:45 12:00 14:30 15:20 16:20 907-350-4897 358723 Time Time Time 9/17/19 9/17/19 9/17/19 9/17/19 9/17/19 9/17/19 9/17/19 ō 9/17/19 mm/dd/yy 9 | 9 DNA Environmental Consultants, LLC PHONE #: Profile #: QUOTE #: Date Date PROJECT/ PWSID/ PERMIT#: P.O.#: E-MAIL: SAMPLE IDENTIFICATION DNA Environmental Consultants, LLC 42-1419-NHTF-101-GW (2) 19-NHTF-102-GW 46 19-NHTF-103-GW (2) 19-NHTF-104-GW (2) 19-NHTF-105-GW [3] 19-NHTF-106-GW [2] 19-NHTF-107-GW 19-NHTF-101-RB NEWHALEN Dan Frank Dan Frank Relinquished By: (1) Relinduished By: (2) Relinquished By: (3) Relinquished By: (4) REPORTS TO: RESERVED for lab.use INVOICE TO: CONTACT PROJECT CLIENT: NAME: Section 1 Section 2 Section 5

の, アと () to http://www.sqs.com/tems-and-conditions (

40

e-Sample Receipt Form

SGS Workorder #:

1195455

D 1 0 1 1					1				<u> </u>
Review Criteria	Condition				•	Noted be		:	
Chain of Custody / Temperature Requi				Exemption po	ermitted if s	sampler han	d carries/	delive/	rs.
Were Custody Seals intact? Note # &		_	bsent						
COC accompanied sa									
DOD: Were samples received in COC corresponding of									
N/A **Exemption permitted if									
Temperature blank compliant* (i.e., 0-6 °C after	er CF)?	Yes	Cooler ID:	1	@		CTherm		
		Yes	Cooler ID:	2	@	0.7 °	CTherm	. ID: C)58
If samples received without a temperature blank, the "cooler temperature" will documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		(Cooler ID:		@		C Therm		
be noted if neither is available.		(Cooler ID:		@		°C Therm		
			Cooler ID:		@	C	CTherm	. ID:	
*If >6°C, were samples collected <8 hours	s ago?	N/A							
	_								
If <0°C, were sample containers ice	e free?			1A and B, 3 A					
		re	eceivea w	ith a thin layer	of ice. Pro	ceeding wi	in analys	iis.	
Note: Identify containers received at non-compliant tempe									
Use form FS-0029 if more space is n	needed.								
Holding Time / Documentation / Sample Condition Ro			ote: Refer to	o form F-083 "Sam	ple Guide" fo	r specific hold	ing times.		
Were samples received within holding	g ume?	res							
De complete motele COC** (i.e. complet IDe detections celle	t - d\0	Vaa							
Do samples match COC** (i.e.,sample IDs,dates/times colle	· ·	res							
**Note: If times differ <1hr, record details & login per C									
***Note: If sample information on containers differs from COC, SGS will default to 0									
Were analytical requests clear? (i.e., method is specified for ar with multiple option for analysis (Ex: BTEX, I		Yes							
with multiple option for analysis (Ex. DTEX, I	ivictais)								
			l N	/A ***Exemption	normittad	for motals (0 0 200 8	/6020	۸۱
Were proper containers (type/mass/volume/preservative***	t)usad?	No. C							
vvere proper containers (type/mass/volume/preservative)useu:	c	omplianc	e using 2mL HC	CI, LW09-0	463-15-14.	шо риссо		
Volatile / LL-Hg Req	uireme	nts							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sai									
Were all water VOA vials free of headspace (i.e., bubbles ≤									
Were all soil VOAs field extracted with MeOH	´								
Note to Client: Any "No", answer above indicates no			th standar	d procedures an	nd may imn	act data qua	ality		
•	•			•	ia may imp	asi dala yua	ty.		
Additiona	al notes ((if ap	olicable)	:					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	Container Condition
1195455001-A	HCL to pH < 2	OK	1195455008-B	HCL to pH < 2	PA
1195455001-B	HCL to pH < 2	OK	1195455008-C	No Preservative Required	OK
1195455001-C	No Preservative Required	OK	1195455008-D	No Preservative Required	OK
1195455001-D	No Preservative Required	OK	1195455008-E	HCL to pH < 2	OK
1195455001-E	HCL to pH < 2	OK	1195455008-F	HCL to pH < 2	OK
1195455001-F	HCL to pH < 2	OK	1195455008-G	HCL to pH < 2	OK
1195455001-G	HCL to pH < 2	OK	1195455009-A	HCL to pH < 2	OK
1195455002-A	HCL to pH < 2	OK	1195455009-B	HCL to pH < 2	OK
1195455002-B	HCL to pH < 2	OK	1195455009-C	HCL to pH < 2	OK
1195455002-C	No Preservative Required	OK			
1195455002-D	No Preservative Required	OK			
1195455002-E	HCL to pH < 2	OK			
1195455002-F	HCL to pH < 2	OK			
1195455002-G	HCL to pH < 2	OK			
1195455003-A	HCL to pH < 2	OK			
1195455003-B	HCL to pH < 2	OK			
1195455003-C	No Preservative Required	OK			
1195455003-D	No Preservative Required	OK			
1195455003-E	HCL to pH < 2	OK			
1195455003-F	HCL to pH < 2	OK			
1195455003-G	HCL to pH < 2	OK			
1195455004-A	HCL to pH < 2	OK			
1195455004-B	HCL to pH < 2	OK			
1195455004-C	No Preservative Required	OK			
1195455004-D	No Preservative Required	OK			
1195455004-E	HCL to pH < 2	ОК			
1195455004-F	HCL to pH < 2	OK			
1195455004-G	HCL to pH < 2	OK			
1195455005-A	HCL to pH < 2	OK			
1195455005-B	HCL to pH < 2	OK			
1195455005-C	No Preservative Required	OK			
1195455005-D	No Preservative Required	OK			
1195455005-E	HCL to pH < 2	OK			
1195455005-F	HCL to pH < 2	OK			
1195455005-G	HCL to pH < 2	OK			
1195455006-A	HCL to pH < 2	OK			
1195455006-B	HCL to pH < 2	OK			
1195455006-C	No Preservative Required	OK			
1195455006-D	No Preservative Required	OK			
1195455006-E	HCL to pH < 2	OK			
1195455006-F	HCL to pH < 2	OK			
1195455006-G	HCL to pH < 2	OK			
1195455007-A	HCL to pH < 2	OK			
1195455007-B	HCL to pH < 2	OK			
1195455007-C	No Preservative Required	OK			
1195455007-D	No Preservative Required	OK			
1195455007-E	HCL to pH < 2	OK			
1195455007-F	HCL to pH < 2	OK			
1195455007-G	HCL to pH < 2 HCL to pH < 2	OK			
1195455008-A	TICE to pit < 2	OK			

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

ATTACHMENT 6

ADEC Checklist and Data Quality Report

- Page Intentionally Left Blank -

302 Cushman St. #203 Fairbanks, AK 99701 907-457-3147

Date: 2/24/2020

Project name: Newhalen Groundwater Monitoring

Laboratory: SGS North America, Inc. – Anchorage, Alaska

Sample Delivery Groups: 1195455

Prepared By: Alexander Thompson

Title: Chemist
Approved by: Rodney Guritz
Title: Principal Chemist

To: Mr. Dan Frank

DNA Environmental, LLC 111 W. 9th Avenue Anchorage, AK 99501

Data Quality Assessment

This letter summarizes the findings of a data quality assessment (DQA) conducted by Arctic Data Services, LLC (ADS) on behalf of DNA Environmental, LLC (DNA) for the above-referenced project data. Precision, accuracy, sensitivity, representativeness, comparability, and completeness of the data were evaluated by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information as well as conducting independent QC checks on the data. A Stage 2A validation was conducted in general accordance with the US Environmental Protection Agency (USEPA) *National Functional Guidelines for Organic Superfund Methods Data Review* (2017). Stage 2A validation includes reviewing sample handling, custody, and sample-batch-level QC information, applying data qualifiers to sample results affected by anomalies and QC failures, and summarizing the impacts to data quality. This validation meets the requirements of the Alaska Department of Environmental Conservation (ADEC) *Technical Memorandum on Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (March 2017). In the absence of project-specific control limits or measurement quality objectives (MQOs), QC-sample recoveries and relative percent differences (RPDs) were compared to laboratory control limits. Field-duplicate RPDs were compared to the ADEC-recommended MQOs.

An ADEC laboratory data review checklist was completed for the single sample delivery group (SDG), and is attached to this DQA. Also attached is a tabular summary of data qualified in the course of this review (Table 1), and a tabular summary of results lacking analytical sensitivity (Table 2). All data qualifiers applied are defined in Table 1. The following sections provide a summary of the findings for each QA/QC element reviewed; anomalies that had no impact to data quality are discussed in the ADEC laboratory data review checklist and are not further described herein.

Newhalen Groundwater Monitoring Data Quality Assessment 2/24/2020 Page 2 of 6

Sample Analysis Summary

The following summarizes sample data reviewed in this DQA. Samples were submitted in a single SDG to SGS North America, Inc. in Anchorage, Alaska. Field duplicate samples were collected at the required frequency of at least one duplicate per ten project samples; field duplicates are included in the tally of total samples below.

A total of 8 groundwater samples were submitted for analysis of the following:

- Diesel range organics (DRO) by Alaska Method AK102;
- Volatile organic compounds (VOCs) by EPA Method 8260C; and
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM.

Sample Preservation, Handling, Custody, and Holding Times

Sample receipt forms were reviewed to check that samples were received in good condition, properly preserved, and within the required temperature range. Chain of custody forms were reviewed to confirm that custody was not breached during sample handling. Dates of sample collection, preparation, and analysis were compared to check that method holding times were not exceeded.

There were no sample handling, custody or preservation anomalies affecting project-sample data quality. Refer to the attached ADEC laboratory data review checklist for further discussion.

Method Blanks

The laboratory analyzed and reported a method blank (MB) for each preparatory batch, to check for laboratory-based sample contamination. Where analytes were detected in a MB, corresponding project sample results were compared to the MB concentration and qualified in accordance with the *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA, 2017). Corresponding detections below the limit of quantitation (LOQ) in project samples are qualified with a 'UB' flag at the LOQ. Using professional judgement, corresponding detections above the LOQ are flagged as follows. Associated sample results above the LOQ but within 5-times the MB concentration are qualified 'UB' at the detected concentration, as not detected due to laboratory-based sample contamination. Associated sample results above 5-times but within 10-times the MB concentration are qualified 'J+' as estimated, biased high, due to laboratory-based sample contamination. Refer to Table 1 (attached) for a full list of qualified results.

The following MB detections affected project-sample data quality:

• 1195455. DRO was detected below the LOQ in the MB associated with AK102 prep batch XXX42360. DRO was detected below the LOQ in samples 19-NHTF-101-GW, 19-NHTF-102-GW, and 19-NHTF-103-GW;

Newhalen Groundwater Monitoring Data Quality Assessment 2/24/2020 Page 3 of 6

these results are qualified 'UB' at the LOQ, indicating results should be considered "not detected" due to laboratory-based sample contamination. Remaining DRO results were not affected. The impact to data usability is minor, as the affected results were below the groundwater cleanup level (GCL).

Trip Blanks

At least one trip blank (TB) was submitted in each cooler containing groundwater samples for volatile analyses (VOCs), to check for cross-contamination of samples during sampling, shipment, or storage. Where analytes were detected in a TB, corresponding project sample results were compared to the TB concentration and qualified in accordance with the *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA, 2017), as described above (see *Method Blanks*).

The following TB detections affected project-sample data quality:

• 1195455. Chloromethane was detected below the LOQ in the trip blank sample (at 0.410 J μg/L). The chloromethane result for sample 19-NHTF-102-GW is considered affected, and is qualified 'UB' at the LOQ. The impact to data usability is minimal, as the affected result is multiple orders of magnitude below the cleanup level.

Equipment Blanks.

Sample 19-NHTF-101-RB was submitted as an equipment blank (EB) sample, to check for potential cross-contamination of samples from reusable sampling equipment.

There were no EB detections affecting project-sample data quality.

Laboratory Control Samples

The laboratory analyzed and reported a laboratory control sample (LCS) for each preparatory batch, to assess laboratory extraction efficiency and analytical accuracy. In some cases, LCS duplicates (LCSDs) were used to assess analytical precision. LCS and LCSD recovery information and LCS/LCSD RPD information (where available) were reviewed.

There were no LCS/LCSD recovery or RPD failures that affected project-sample data quality.

Surrogate Recovery

Samples submitted for analysis of organic compounds were spiked with analyte surrogates to evaluate extraction efficiency and to check for matrix interference. Surrogate recoveries were reviewed for each project sample and

Newhalen Groundwater Monitoring Data Quality Assessment 2/24/2020 Page 4 of 6

analysis. Project sample results are not considered affected by surrogate recovery failures if the samples were excessively diluted (a dilution factor of 10 or greater).

There were no surrogate recovery failures affecting project-sample data quality.

Field Duplicates

Field duplicate samples were collected for project samples. The field-duplicate collection frequency met the required minimum frequency of 10% for the groundwater sampling event. RPDs were calculated between field duplicate results. In the case where one result was quantitatively detected and the other result was not detected, an RPD was calculated using the LOD for the non-detect result.

The following field-duplicate RPD failures affected project-sample data quality:

• 1195455. RPDs for naphthalene and fluorene exceeded the 30% ADEC recommended measurement quality objective for the submitted water duplicate sample pair. Refer to the checklist and Table 1 (attached) for a full list of affected results. Detected results affected by RPD failures are qualified as estimated and flagged 'J', indicating an unknown direction of bias. Non-detect results are qualified 'UJ', indicating there is uncertainty in the presence or absence of the analyte. The higher of duplicate results should be used for decision making purposes.

Summary of Data Quality Indicators

The following sections summarize the findings of the above review with respect to the six data quality indicators: sensitivity, precision, accuracy, representativeness, comparability, and completeness. Please note that the evaluation of representativeness, comparability, and completeness is limited to consideration of the analytical data only. Assessment of overall data usability in the context of the project must be conducted by the project team as a whole, taking into account the data quality issues summarized herein and the broader project objectives.

Sensitivity

Sensitivity describes the ability of the sampling and analytical methodology to meet detection and/or quantitation limit objectives. Analytical sensitivity was evaluated by checking that LOQs and limits of detection (LODs) are below relevant cleanup levels where target analytes were not detected. Groundwater sample LOQs and LODs were compared to ADEC 18 AAC 75.345 (October 2018) Table C GCLs.

LODs for VOC analyte 1,2,3-trichloropropane exceeded the GCL for all groundwater samples (see Table 2). Non-detect results where the LOD exceeds the PAL cannot be used to conclusively rule out the potential presence of

Newhalen Groundwater Monitoring Data Quality Assessment 2/24/2020 Page 5 of 6

the analyte at concentrations above the cleanup levels. Overall analytical sensitivity is considered adequate for the purposes of this project, as all target analytes for this project had LODs below GCLs.

Precision

Precision is a measure of the reproducibility of repetitive measurements. Precision was evaluated based on laboratory QC-sample and field-duplicate sample RPDs. There were no QC-sample RPD failures affecting project-sample data quality; however, a number of results were qualified due to field duplicate RPD failures. These results are qualified as estimated, with an unknown direction of bias. Overall precision was deemed acceptable for purposes of this project, with the exceptions noted above.

Accuracy

Accuracy is a measure of the correctness, or the closeness, between the true value and the quantity detected. Accuracy was evaluated based on analyte recoveries for laboratory QC samples and recovery of surrogate spikes for project samples. There were no surrogate recovery failures or QC-sample recovery failures affecting project-sample data quality. Overall, accuracy was deemed acceptable for purposes of this project.

Representativeness

Representativeness is affected by factors such as sample frequency and matrix or contaminant heterogeneity, as well as analytical performance (including sensitivity, accuracy, precision) and sample cross-contamination. A small number of results were qualified due to a detection in a corresponding blank sample. These results are not wholly representative of site-conditions and have been qualified with 'UB' flags as "not detected" due to blank contamination. However, the impact to data usability is minor as the affected results are below relevant cleanup levels in each case. Samples were collected in accordance with an approved work plan, and overall representativeness was deemed acceptable for purposes of this project, with the above noted exceptions taken into account.

Comparability

Comparability describes whether two data sets can be considered equivalent with respect to project goals. Comparability is affected by factors such as sampling methodology and analytical performance (including sensitivity, accuracy, and precision). Comparability was evaluated by checking that standard analytical methods were employed, and analytical performance was acceptable. Overall, project-sample results are deemed generally comparable.

Arctic Data Services, LLC

Newhalen Groundwater Monitoring Data Quality Assessment 2/24/2020 Page 6 of 6

Completeness

Completeness describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. No results were rejected during the course of this review. The dataset is 100% complete, and all results are usable as qualified.

Conclusions

Overall, precision, accuracy, representativeness, comparability, and completeness were deemed acceptable, with the exceptions described above taken into account. Project sample results affected by the QC anomalies described above have been flagged accordingly (see Table 1). The data are usable for the purposes of this project, as qualified.

Limitations

This review was based solely on information provided by the analytical laboratory in the laboratory reports for the SDGs reviewed. ADS did not review instrument-level QC elements, such as calibration verification or internal standard response, except to the extent that the laboratory identified instrument-level anomalies in the case narratives. ADS did not conduct independent recalculations of the data (e.g. recalculating results based on instrument responses) or review any raw chemical data (e.g. chromatograms). ADS makes no warranty, express or implied, of the conclusions presented in this report, or the completeness, accuracy, or validity of third-party information. Further, data quality indicators such as representativeness and comparability are affected by factors beyond the scope of a single analytical dataset; these elements are also dependent on the sampling design and heterogeneity (spatial and temporal) of a given site. Evaluation of these indicators as well as overall completeness of the dataset in the context of project data quality objectives should be conducted by the broader project team. A data quality assessment helps reduce the risk of reliance on data of compromised quality; however, it does not eliminate that risk.

Attachments:

Table 1 - Summary of Qualified Data

Table 2 - Summary of Analytical Sensitivity

ADEC Laboratory Data Review Checklists: 1195455

Table 1 Summary of Qualified Data Newhalen Groundwater Monitoring Data Quality Assessment

															Final
												Lab	QC		Qualified
Lab	SDG	Client Sample ID	Matrix	Method	Analyte	CAS	Units	DL	LOD	LOQ	Result	flags	Flags	Note	Result
SGSA	1195455	19-NHTF-101-GW	Groundwater	AK102	Diesel Range Organics	68334-30-5	mg/L	0.18	0.3	0.6	0.417	J	UB	MB	0.417 UB
SGSA	1195455	19-NHTF-102-GW	Groundwater	8260C	Chloromethane	74-87-3	μg/L	0.31	0.5	1	0.44	J	UB	ТВ	0.44 UB
SGSA	1195455	19-NHTF-102-GW	Groundwater	AK102	Diesel Range Organics	68334-30-5	mg/L	0.18	0.3	0.6	0.194	J	UB	MB	0.194 UB
SGSA	1195455	19-NHTF-103-GW	Groundwater	AK102	Diesel Range Organics	68334-30-5	mg/L	0.183	0.305	0.61	0.575	J	UB	MB	0.575 UB
SGSA	1195455	19-NHTF-106-GW	Groundwater	8270DSIM	Fluorene	86-73-7	μg/L	0.0147	0.0245	0.049	0.35		J	FD_RPD	0.350 J
SGSA	1195455	19-NHTF-106-GW	Groundwater	8270DSIM	Naphthalene	91-20-3	μg/L	0.0304	0.049	0.098	1.32		J	FD_RPD	1.32 J
SGSA	1195455	19-NHTF-107-GW	Groundwater	8270DSIM	Fluorene	86-73-7	μg/L	0.0142	0.0236	0.0472	0.253		J	FD_RPD	0.253 J
SGSA	1195455	19-NHTF-107-GW	Groundwater	8270DSIM	Naphthalene	91-20-3	μg/L	0.0292	0.0471	0.0943	0.967		J	FD_RPD	0.967 J

Table 1 Summary of Qualified Data Newhalen Groundwater Monitoring Data Quality Assessment

Notes		QC	quality control
		RPD	relative percent difference
MB	Laboratory-based contamination (identified by a MB detection)	SDG	sample delivery group
ТВ	Sample cross-contamination (identified by a TB detection)	CAS	Chemical Abstract Service registry number
FD_RPD	Field duplicate RPD failure	DL	detection limit
		LOD	limit of detection
		LOQ	limit of quantitation
		SGSA	SGS North America, Inc Anchorage, AK
		MB	method blank
		ТВ	trip blank

Data Qualifiers

- J The result is considered estimated; the analyte was detected below the LOQ (*laboratory-applied*) or affected by a QC anomaly.
- UJ The analyte was not detected; however, there is uncertainty in the presence of the analyte due to a QC anomaly.
- UB The result is considered a false-positive detection due to contamination, and is qualified as not detected.

Table 2 Analytical Sensitivity Summary Newhalen Groundwater Monitoring Data Quality Assessment

SDG	Sample ID	Matrix	Method	Analyte	CAS	Units	DL	LO	D	LC	Q	Lab Flag	PAL
1195455	19-NHTF-101-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-101-RB	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-102-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-103-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-104-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-105-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-106-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075
1195455	19-NHTF-107-GW	Groundwater	8260C	1,2,3-Trichloropropane	96-18-4	μg/L	0.31 *	0.5	*	1	*	ND	0.0075

Table 2

Analytical Sensitivity Summary Newhalen Groundwater Monitoring Data Quality Assessment

Notes

SDG	sample delivery group
CAS	Chemical Abstract Service registry number
DL	detection limit
LOD	limit of detection
LOQ	limit of quantitation
ND	non-detect / not detected
PAL	project action limit
	PALs are the most stringent of the following:
	ADEC 18 AAC 75.345 Table C Groundwater cleanup levels (October 2018)
ug/L	micrograms per liter

Laboratory Data Review Checklist

Completed By:
Alex Thompson
Title:
Chemist
Date:
February 24, 2020
Consultant Firm:
Arctic Data Services, LLC for DNA Environmental, LLC
Laboratory Name:
SGS North America, Inc. – Anchorage, AK
Laboratory Report Number:
1195455
Laboratory Report Date:
October 2, 2019
CS Site Name:
Newhalen Bulk Fuel Storage
ADEC File Number:
2619.38.001
Hazard Identification Number:
1865

Note: Any N/A or No box checked must have an explanation in the comments box.

<u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
All samples were received and analyzed by SGS North America, Inc. in Anchorage, Alaska.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
No samples were transferred to another laboratory.
Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
Yes⊠ No□ N/A□ Comments:
b. Correct analyses requested?
Yes⊠ No□ N/A□ Comments:
However, the trip blank sample was not listed on the COC. The laboratory logged the sample as "Trip Blank" and analyzed the sample for VOCs.
Laboratory Sample Receipt Documentation
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes⊠ No□ N/A□ Comments:
Two coolers were hand delivered to the laboratory and received within the acceptable temperature range at 0.8 and 0.7 °C.
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes□ No⊠ N/A□ Comments:
Container 8B for sample 19-NHTF-101-RB was received unpreserved. The laboratory added the proper amount of HCl preservative when the sample was received. This container was not used for any of the performed analyses, so no data are considered affected.
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes \boxtimes No \square N/A \square Comments:
Samples were received in good condition, with the exception of the presence of a thin layer of ice in certain sample containers (see below).

	containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?	
	Yes \boxtimes No \square N/A \square Comments:	
	The laboratory noted that containers 1A & B, 3A & B, 4 B & D, 5B, and 7B had a thin layer of ice present. The laboratory performed the requested analysis using some of these containers. As the coolers were received within the acceptable temperature range, and only a small amount of ice was present, no sample results are considered affected.	
	e. Data quality or usability affected?	
	Comments:	
	Data quality and usability were not affected.	
4.	Case Narrative	
	a. Present and understandable?	
	Yes⊠ No□ N/A□ Comments:	
	b. Discrepancies, errors, or QC failures identified by the lab?	
	Yes \square No \square N/A \boxtimes Comments:	
	No batch-level or instrument-level QC failures were identified in the laboratory case narrative.	
	c. Were all corrective actions documented?	
	Yes \square No \square N/A \boxtimes Comments:	
	No corrective actions were performed.	
	d. What is the effect on data quality/usability according to the case narrative?	
	Comments:	
	Data quality and usability were not affected.	
Sa	mples Results	
	a. Correct analyses performed/reported as requested on COC?	
	Yes \boxtimes No \square N/A \square Comments:	
	b. All applicable holding times met?	
	 b. All applicable holding times met? Yes⊠ No□ N/A□ Comments: 	

November 2019 Page 3

5.

c. All soils reported on a dry weight basis?
Yes \square No \square N/A \boxtimes Comments:
No soil samples were submitted in this work order.
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
$Yes \square No \boxtimes N/A \square$ Comments:
LODs and LOQs were compared to the ADEC 18 AAC 75.345 Table C groundwater cleanup levels (October 2018). 1,2,3-trichloropropane had LODs and/or LOQs exceeding cleanup levels in various samples. Refer to table 2 of the DQA for a full list of affected results.
e. Data quality or usability affected?
Data quality is not affected. Results where the LOD exceeds cleanup levels cannot be used to conclusively rule out the potential presence of the analyte above cleanup levels.
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes \boxtimes No \square N/A \square Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
However, DRO was detected below the LOQ (at 0.186 J mg/L) in the method blank sample associated with AK102 prep batch XXX42360.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
Associated sample results below the LOQ are qualified 'UB' at the LOQ, as not detected due to laboratory-based sample contamination.
Associated sample results above the LOQ but within 5x the MB concentration are qualified 'UB' at
the detected concentration, as not detected due to laboratory-based sample contamination. Associated sample results above 5x but within 10x the MB concentration are qualified 'J+' as
estimated, biased high, due to laboratory-based sample contamination.
DRO was detected below the LOQ in samples 19-NHTF-101-GW, 19-NHTF-102-GW, and 19-
NHTF-103-GW; these results are qualified 'UB' at the LOQ, indicating results should be considered not detected due to laboratory-based sample contamination. Remaining DRO results were not
affected.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \boxtimes No \square N/A \square Comments:
See above.

v. Data quality or usability affected?

Comments:

Data quality is affected as describe	ed above. The impac	t to data usability	is minimal, as	the affected
results are below the cleanup level	l.			

results are below the cleanup level.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
An LCS and LCSD were analyzed for each preparatory batch for Alaska Methods.
An LCS and LCSD were analyzed for each preparatory batch for EPA SW846 Methods.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
No metals/inorganic analyses were performed in this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
All LCS/LCSD recoveries were within laboratory control limits.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
There were no LCS/LCSD RPD failures.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
No samples are considered affected, see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
NA; see above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
·

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes \square No \square N/A \square Comments: ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes \square No \square N/A \square Comments: iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes \square No \square N/A \square Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes \square No \square N/A \square Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \square Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes⊠ No	o⊔ N/A⊔	Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
Yes⊠ No□ N/A□ Comments:
All surrogate recoveries were within laboratory control limits.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \square Comments:
No samples are considered affected, see above.
iv. Data quality or usability affected? Comments:
Data quality and usability were not affected.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes⊠ No□ N/A□ Comments:
Sample Trip Blank was analyzed for VOCs by 8260C.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
Yes \square No \boxtimes N/A \square Comments:
There is no clear indication on the COC which cooler transported volatile samples. However, the COC notes that the trip blank was provided with volatile organic analysis sample containers.
iii. All results less than LOQ and project specified objectives?
Yes \boxtimes No \square N/A \square Comments:
However, chloromethane was detected below the LOQ in the trip blank sample (0.410 J μ g/L).
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
Associated sample results below the LOQ are qualified 'UB' at the LOQ, as not detected due to sample cross-contamination. Associated sample results above the LOQ but within 5x the TB concentration are qualified 'UB' at the detected concentration, as not detected due to sample cross-contamination.
A 1 1 1 1 7 1 11 10 1 TDD 1 11 11 11 11 11 11 11 11 11 11 11 11

Associated sample results above 5x but within 10x the TB concentration are qualified 'J+' as estimated, biased high, due to sample cross-contamination.

Chloromethane was detected below the LOQ in sample 19-NHTF-102-GW; this result is considered affected and qualified 'UB' at the LOQ, and should be considered not detected due to sample cross-contamination.

v. Data quality or usability affected?

\boldsymbol{C}	'n	m	m	161	nts	

Data quality is affected as described above. The impact to data usability is minimal, as	s the affected
result is multiple orders of magnitude below the cleanup level.	

f.	Field	Dup!	licate

i. One	field dup	olicate subm	nitted per matrix, analysis and 10 project samples?	
Yes	⊠ No□	N/A□	Comments:	
Sample 19-1	NHTF-10	7-GW was	submitted as a field duplicate of sample 19-NHTF-106-GW.	
ii. Sub	mitted bl	ind to lab?		
Yes	⊠ No□	$N/A\square$	Comments:	

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 = Sample Concentration$ $R_2 = Field Duplicate Concentration$

Yes \square No \boxtimes N/A \square Comments:

Where an analyte was quantitatively detected in one sample but not detected in the other, LODs were used for non-detect results in RPD calculations. RPDs for naphthalene and fluorene exceeded the 30% ADEC recommended measurement quality objective for water samples.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Detected results affected by RPD failures are qualified as estimated and flagged 'J', indicating an unknown direction of bias. Non-detect results are qualified 'UJ', indicating there is uncertainty in the presence or absence of the analyte. The higher of duplicate results should be used for decision making purposes.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

Sample 19-NHTF-101-RB was submitted as an equipment blank sample in this work order.

i. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

No analytes were detected in the equipment blank sample.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

No samples were affected, see above.

		iii. Data quanty or usabinty affected?
		Comments:
		Data quality and usability were not affected.
7.	<u>Ot</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
		a. Defined and appropriate?
		Yes \square No \square N/A \boxtimes Comments:

There were no additional qualifiers/flags applied by the laboratory.

- Page Intentionally Left Blank -

ATTACHMENT 7

Mann-Kendall Output

- Page Intentionally Left Blank -

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 28-Feb-20 Job ID: Facility Name: NHTF Constituent: Conducted By: DNA Environmental Concentration Units: mg/L Sampling Point ID: DRO CONCENTRATION (mg/L) 28-Aug-10 31-Mar-11 2.43 1.6 21-Jun-11 19-Sep-11 4.5 1.5 9-Jul-12 1.8 1.3 26-Oct-12 22-May-13 1.8 11-Jun-14 0.846 9 27-Jun-15 3.61 1.42 1.79 10 7-Aug-16 1.43 2.89 11 1-Aug-17 1.71 2.08 2.03 21-Sep-18 12 0.96 13 17-Sep-19 14 15 16 17 18 19

Decreasing

Notes:

Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor:

Concentration Trend:

52.4%

No Trend

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

No Trend

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com