

1835 SOUTH BRAGAW STREET ANCHORAGE, ALASKA 99512 TELEPHONE (907) 278-1611, FAX 265-8611, TELEX 265-8439

MAY 26 1995

DEPARTMENT OF ENVIRONMENTAL CONSERVATION

PWSDO

Letter No. 95-2963-G File No. 7.09.10

May 24, 1994

1995gk

Mr. Steve Provant
PWS District Office Manager
Alaska Department of Environmental Conservation
P.O. Box 1709
Valdez, AK 99686

RE:

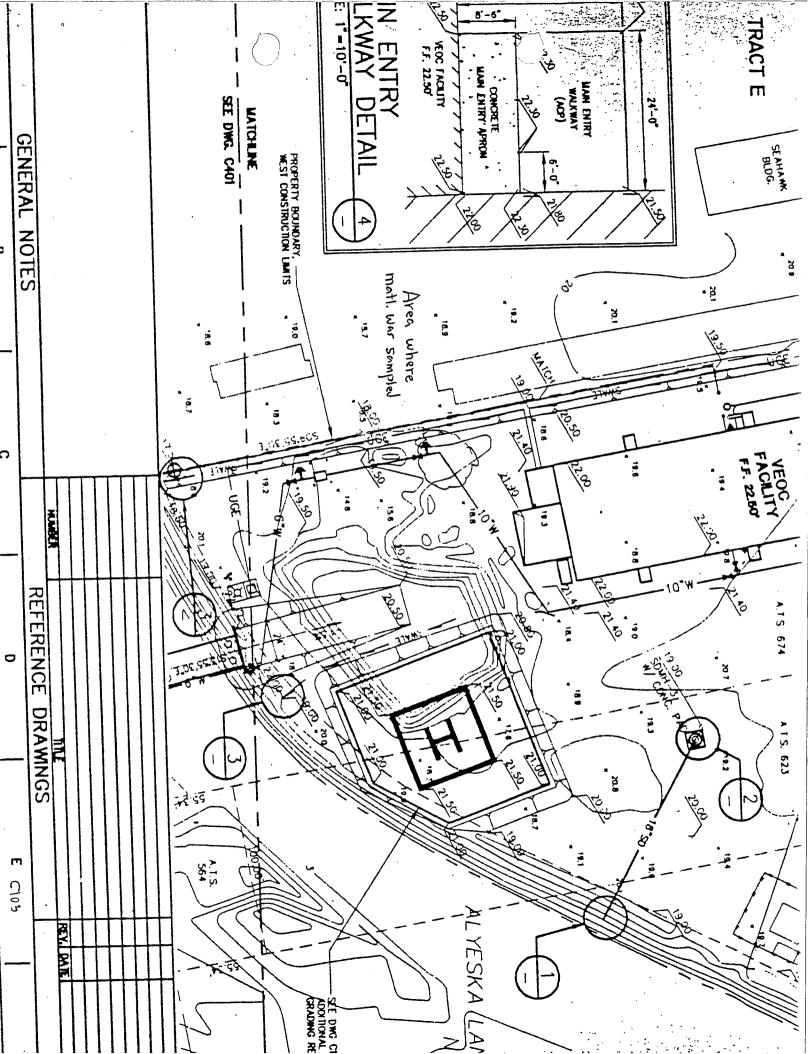
Soil Characterization During Construction SERVS VEOC Facility, Valdez, Alaska

Dear Mr. Provant:

During construction of the new SERVS Valdez Emergency Operations Center (VEOC) in August 1994, a trench was dug along the south side of the new VEOC building for installation of a water line (see attached drawing). A localized area of discolored soil was encountered along the sidewall of the trench at approximately two feet below ground surface. After conferring with your office, it was agreed that a sample of the discolored area should take place and the sample should be analyzed for metals, halogenated organics, and diesel-range organics.

A grab sample of the discolored area was obtained by Alyeska's Analytical Services Group on August 8, 1994. The analytical report is attached to this letter for reference. The report indicates that diesel-range organics and some metals are present in the sample. Halogenated organics were not detected. After review of the data from the grab sample, the only significant contaminant concentration appears to be diesel-range organics at 1,290 mg/kg.

In 1993, Alyeska contracted EMCON Alaska to conduct a Level II Property Assessment during selection of the VEOC property. The Level II Assessment included soil sampling and analysis from eight surface sample locations and two borings. Concentrations of diesel-range petroleum hydrocarbons did not exceed the calculated ADEC Target Cleanup Level of 1,000 mg/kg (Level C) at the site. In addition, no other significant concentrations of other contaminants of concern were identified during the Level II Assessment.


Considering that no other areas of discolored soil were encountered during the extensive earthwork in construction of the VEOC facility, and the observed area of discoloration was very discrete in the exposed excavation, it is assumed that the area of diesel contamination documented in the attached report is indicative of dredged material used for fill in this area of Valdez. Since the contamination is isolated, and the concentration is close to the applicable ADEC Level C Soil Cleanup Target Level, Alyeska proposes no further action at this site.

If you have any questions please contact myself at 265-8569.

Sincerely,

Erin Hanson

Field Environmental Generalist

ANALYTICAL SERVICES FIELD SCIENCE REPORT FS94-248 SERVS/VEOC CONTAMINATED SOIL

EPA Method 6010 - ICP Metals (Total)

	hod 6010 - ICP N	SAMPLE IDENTIFICATION
TEST PARAMETER	UNITS	FS94-248-01
Aluminum	mg/kg	12600
Antimony	mg/kg	<loq(6.0)< td=""></loq(6.0)<>
Arsenic	mg/kg	<loq(10.0)< td=""></loq(10.0)<>
Barium	mg/kg	31.6
Beryllium	mg/kg	<loq(0.20)< td=""></loq(0.20)<>
Boron	mg/kg	<loq(10.0)< td=""></loq(10.0)<>
Cadmum	mg/kg	<loq(0.50)< td=""></loq(0.50)<>
Calcium	mg/kg	2060
Chromium	mg/kg	31.4
Cobalt	mg/kg	4.0
Copper	mg/kg	17.4
lron	mg/kg	23200 B
Lead	mg/kg	7.0
Lithium	mg/kg	22. 6 \
Magnesium	mg/kg	8080
Manganese	mg/kg	354
Molybdenum	mg/kg	<loq(2.0)< td=""></loq(2.0)<>
Nickel	mg/kg	21.8
Potassium	mg/kg	1140
Selenium	mg/kg	<loq(20.0)< td=""></loq(20.0)<>
Silver	mg/kg	<loq(1.0)< td=""></loq(1.0)<>
Sodium	mg/kg	<loq(500)< td=""></loq(500)<>
Thallium	mg/kg	<loq(200)< td=""></loq(200)<>
Tin	mg/kg	11.6*
Titanium	mg/kg	704
Vanadium	mg/kg	25.5
Zinc	mg/kg	48.0

ADEC Method AK102 - Diesel Range Organics

TEST: PARAMETER	UNITS	SAMPLE IDENTIFICATION FS94-248-02
Diesel Range Organics	mg/kg	1290

LOQ = Limit of Quantitation

Note B: Compound is also detected in the blank

Data reported are the arithmetic means of duplicate analyses.

*This value was obtained in the sample analysis only, the compound was not detected above LOQ in the duplicate analysis.

ANALYTICAL SERVICES FIELD SCIENCE REPORT FS94-248 SERVS/VEOC CONTAMINATED SOIL

EPA Method 8010 - Halogenated Volatile Organics

EPA Method 8010 - Halogenated Volatile Organics				
		SAMPLE IDENTIFICATION		
TEST PARAMETER	UNITS	FS94-248-03		
		·		
Chloromethane	ug/kg	<loq(500)< td=""></loq(500)<>		
Bromomethane	ug/kg	<loq(500)< td=""></loq(500)<>		
Vinyl chloride	ug/kg	<loq(100)< td=""></loq(100)<>		
Chloroethane	ug/kg	<loq(500)< td=""></loq(500)<>		
Methylene chloride	ug/kg	<loq(500)< td=""></loq(500)<>		
Dichlorodifluoromethane	ug/kg	<loq(500)< td=""></loq(500)<>		
1,1-Dichloroethene	ug/kg	<loq(50)< td=""></loq(50)<>		
1,1-Dichloroethane	ug/kg	<loq(50)< td=""></loq(50)<>		
trans-1,2-Dichloroethene	ug/kg	<loq(50)< td=""></loq(50)<>		
Chloroform	ug/kg	<loq(50)< td=""></loq(50)<>		
1,1,2 Trichloro-1,2,2-trifluoroethane	ug/kg	<loq(100)< td=""></loq(100)<>		
1,2-Dichloroethane	ug/kg	<loq(100)< td=""></loq(100)<>		
1,1,1-Trichloroethane	ug/kg	<loq(50)< td=""></loq(50)<>		
Carbon tetrachloride	ug/kg	<loq(50)< td=""></loq(50)<>		
Bromodichloromethane	ug/kg	<loq(100)< td=""></loq(100)<>		
1,2-Dichloropropane	ug/kg	<loq(100)< td=""></loq(100)<>		
trans-1,3-Dichloropropene	ug/kg	<loq(100)< td=""></loq(100)<>		
Trichloroethene	ug/kg	<loq(50)< td=""></loq(50)<>		
Dibromochloromethane	ug/kg	<loq(100)< td=""></loq(100)<>		
cis-1,3-Dichloropropene	ug/kg	<loq(200)< td=""></loq(200)<>		
1,1,2-Trichloroethane	ug/kg	<loq(100)< td=""></loq(100)<>		
EDB (1,2-Dibromoethane)	ug/kg	<loq(200)< td=""></loq(200)<>		
Bromoform	ug/kg	<loq(500)< td=""></loq(500)<>		
1,1,2,2-Tetrachloroethane	ug/kg	<loq(100)< td=""></loq(100)<>		
Tetrachloroethene	ug/kg	<loq(50)< td=""></loq(50)<>		
Chlorobenzene	ug/kg	<loq(200)< td=""></loq(200)<>		
1,3-Dichlorobenzene	ug/kg	<loq(100)< td=""></loq(100)<>		
1,2-Dichlorobenzene	ug/kg	<loq(50)< td=""></loq(50)<>		
1,4-Dichlorobenzene	ug/kg	<loq(50)< td=""></loq(50)<>		
2-Chloroethyl vinyl ether	uġ/kg	<loq(550)< td=""></loq(550)<>		
		,		

LOQ = Limit of Quantitation

Data reported are the arithmetic means of duplicate analyses.