

2019 Drainage Pond Groundwater Monitoring Report ADEC File: 100.38.188 ADEC Hazard ID: 1923

Prepared for: Alaska Department of Transportation and Public Facilities Fairbanks International Airport 6450 Airport Way Fairbanks, Alaska 99709

> Prepared by: Jacobs Engineering Group Inc.

JACOBS

Responsible ADEC Qualified Environmental Professionals						
	Groundwater Samplers					
Jennifer Robinson						
Taylor Laiti						
	Data Analysis					
Guy Wade						
Jennifer Robinson						
Kari Hagen						
	Report Authors					
Guy Wade						
Jennifer Robinson						

TABLE OF CONTENTS

<u>SEC</u>	TION	<u>N</u>	PAGE
ACR	ONY	MS AND ABBREVIATIONS	iii
EXE	CUTI	IVE SUMMARY	1
1.0	INTI	RODUCTION	2
	1.1	PROJECT OBJECTIVES	2
	1.2	SITE DESCRIPTION	2
	1.3	SITE HISTORY	
	1.4	REDUCTIVE DECHLORINATION	4
2.0	FIEL	LD ACTIVITIES	6
	2.1	WORK PLAN DEVIATIONS	6
	2.2	MONITORING-WELL INTEGRITY AND GAUGING	6
	2.3	GROUNDWATER SAMPLING	7
	2.4	INVESTIGATION-DERIVED WASTE	8
3.0	PRO	POSED CLEANUP LEVELS	9
4.0	QUA	ALITY ASSURANCE ASSESSMENT	10
	4.1	QUALITY CONTROL AND SAMPLE PRESERVATION	10
	4.2	DATA QUALITY	10
5.0	RES	ULTS AND FINDINGS	11
	5.1	ANALYTICAL RESULTS	11
	5.2	REDUCTIVE DECHLORINATION	13
6.0	CON	JCLUSIONS	15
7.0	REC	COMMENDATIONS	17
8.0	REF	ERENCES	18

TABLES

Table 2-1	Status of Monitoring Wells and Depths from Wells Sampled In 20197
Table 2-2	Water Quality Parameters from Wells Sampled In 2019
Table 3-1	Project Groundwater Screening Levels9
Table 5-1	Groundwater Results from the 2019 Sampling Event 11
Table 5-2	Chloroethene Molar Fraction Trends for Wells Sampled In 2019 14

TABLE OF CONTENTS (Continued)

APPENDICES

Appendix A	Site Figures
------------	--------------

- Appendix B Groundwater Monitoring Results Table
- Appendix C Log Book
- Appendix D Groundwater Monitoring Forms
- Appendix E ADEC Laboratory Data Review Checklist
- Appendix F Lab Report

ACRONYMS AND ABBREVIATIONS

µg/L	micrograms per liter
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
bgs	below ground surface
DCE	1,2-dichloroethylene
DOT&PF	Alaska Department of Transportation & Public Facilities
FAI	Fairbank International Airport
GCL	groundwater cleanup level
Jacobs	Jacobs Engineering Group Inc.
LOD	limit of detection
ND	nondetect
Oasis	Oasis Environmental Inc.
PCE	tetrachloroethylene
QC	quality control
SLR	SLR International Corporation
TCE	trichloroethylene
	•

EXECUTIVE SUMMARY

The Alaska Department of Transportation & Public Facilities (DOT&PF) requested groundwater monitoring at the Alaska Department of Environmental Conservation Fairbanks International Airport (FAI) - Drainage Pond site (File No. 100.38.188, Hazard ID 1923) located at the FAI (Figures A-1 to A-3). At the request of DOT&PF, Jacobs Engineering Group Inc. (Jacobs) conducted groundwater monitoring on 11 and 12 December 2019. During the project, six wells were visited for groundwater sampling (MW-11R, MW-34, MW-38S [shallow], MW-38D [deep], MW-39, and MW-40). The investigation analyzed these contaminants of concern: benzene, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-1,2-dichloroethylene (DCE), trans-DCE, and vinyl chloride.

Similar to previous years, groundwater samples collected from MW-11R continued to have higher concentrations of chloroethenes than the other wells sampled. Those wells located within the know groundwater plume (MW-38S, MW-39, and MW-40) also showed higher levels of cis-DCE and vinyl chloride, while the well farthest downgradient was nondetect for all analytes.

1.0 INTRODUCTION

The Alaska Department of Transportation & Public Facilities (DOT&PF) contracted Jacobs Engineering Group Inc. (Jacobs) to perform groundwater monitoring activities at the Fairbanks International Airport (FAI) Drainage Pond contaminated site, Alaska Department of Conservation (ADEC) File No. 100.38.188 and Hazard ID 1923. The work was performed under the Alaska DOT&PF Term Agreement for FAI Environmental Services 2019, Notice-to-Proceed No. 1, Agreement No. 25-19-1-017.

1.1 PROJECT OBJECTIVES

The primary objectives of the 2019 groundwater monitoring project were as follows:

- Satisfy ADEC biennial monitoring requirements
- Assess groundwater contaminant of concern concentrations in relation to the 2019 ADEC groundwater cleanup levels (GCLs) (ADEC 2019a)
- Survey of monitoring wells
- Improve understanding of plume behavior and groundwater conditions at the Drainage Pond site

1.2 SITE DESCRIPTION

The DOT&PF is the owner and operator of FAI. The Drainage Pond site includes FAI property and those adjacent to it. The Drainage Pond site is located within the Fairbanks Meridian, Township 1 South, Range 2 West, Section 24. The site is located at 64.814693 degrees north and 147.876707 degrees west, World Geodetic Datum 1984. Monitoring wells MW-11R, MW-38S, MW-38D, MW-39, and MW-40 are within block 02, lot 07, and MW-34 is located within the Mail Trail Road DOT&PF right-of-way. The monitoring wells are northwest of the FAI runways in the vicinity of the Mail Trail Road and Airport Industrial Road intersection (Figure A-2); the proposed sampling at the site includes six monitoring wells closely grouped near the intersection. Monitoring wells MW-11R, MW-38S, MW-38D, MW-39, and MW-40 are installed in a low-lying area to the east of Airport Industrial Road and monitoring well MW-34 is located just west of the Airport Industrial Road. The groundwater aquifer in this area is believed to be perched on a thin silt lens in the vicinity of wells MW-39 and MW-40 and may taper toward MW-11R in the former drainage pond area (SLR International Corporation [SLR] 2018).

1.3 SITE HISTORY

A hydrant fuel system was used to fuel aircraft on the FAI south apron in the 1980s. In 1986, it was shut down due to operational and maintenance problems. FAI began site investigations in 1993, when free product associated with the past hydrant fuel system was discovered during a sewer line installation (ADEC 2019b). A preliminary soil and groundwater investigation and evaluation of the hydrant fuel system performed from 1997 to 1998 concluded the hydrant fuel system was the source of groundwater contamination. In 1999, an initial site investigation was conducted at the present Drainage Pond site, which included installation of monitoring wells near the hydrant fuel system pump building (MW-10), crossgradient from the hydrant fuel system pump building (MW-12), upgradient (MW-29 and MW-30), and within the present day groundwater plume (MW-11) (Oasis Environmental Inc. [Oasis] 2006a). Results from this study revealed chlorinated solvents in groundwater in and around MW-11. Annual groundwater sampling continued, and monitoring wells MW-34 and MW-35 were added in 2003 and 2005, respectively. Data obtained from these investigations produced results indicative of reductive dechlorination (i.e., sequential dechlorination from tetrachloroethylene [PCE] to trichloroethylene [TCE] to 1,2-dichloroethylene [DCE] to vinyl chloride to ethylene). In 2005 monitoring well MW-11 was replaced by MW-11R with installation deeper than the original well depth (16 feet), to a depth of 34.5 feet (Oasis 2006a). In 2005, ADEC changed the site name from FAI – Hydrant Fuel System to FAI – Drainage Pond with the objective to track solvents (ADEC 2019b).

In 2006, soil gas and groundwater monitoring studies were conducted at the Drainage Pond site (Oasis 2006b). The following monitoring wells were sampled for benzene, PCE, TCE, cis-1,2- DCE, trans-DCE, and vinyl chloride: MW-10, MW-11R, MW-12, MW 29R, MW-30R, MW-34, MW-35, MW-36, and MW-37. At the time of the investigation, MW-11R was the only monitoring well from which analytical groundwater sample results exceeded the 2006 GCLs

for PCE, TCE, cis-DCE, and vinyl chloride (Oasis 2006b). During the 2006 investigation, two temporary well points (TW-1 and TW-2) were installed downgradient of the study site to better delineate the plume and determine if the contamination had migrated below the water table. These wells had only trace concentrations of DCE and cis-DCE and showed no increased contamination with depth (Oasis 2006b).

Groundwater sampling continued through 2007, 2008, and 2010; groundwater sampling was not conducted during 2009 (Oasis 2011). During the 2010 investigation, four new monitoring wells (MW-38S, MW-38D, MW-39, and MW-40) and one temporary well point (TW-3) were installed adjacent to MW-11R to characterize the magnitude and extent of chloroethene contamination in the area. Monitoring wells MW-38S and MW-38D were installed immediately adjacent to one another at total well depths of 14.55 feet and 34.24 feet, respectively, to the assess the difference in contaminant concentrations at shallow versus deeper depths along the groundwater column. In 2010, samples collected from MW-11R continued to have results exceeding the GCLs for PCE, TCE, cis-DCE, and vinyl chloride.

Sampling at MW-11R, MW-34, MW-38S, MW-38D, MW-39, and MW-40 was conducted again in 2013 and in 2017 (Environmental Resources Management 2014; SLR 2018). Chloroethenes exceeded GCLs for PCE, TCE, and cis-DCE at MW-11R in both investigations. Concentrations of cis-DCE and vinyl chloride in groundwater at MW-38S and MW-40 also exceeded GCLs. Notably, the 2014 GCLs changed in 2017; the GCL for PCE was raised from 5 to 41 micrograms per liter (μ g/L), and the GCL for TCE was reduced from 5 to 2.8 μ g/L (SLR 2018).

1.4 REDUCTIVE DECHLORINATION

The reductive dechlorination process has been observed to occur at this site with the reduction of PCE concentrations and the subsequent daughter products. Reductive dechlorination of chloroethenes is important for bioremediation of polluted groundwater (Wiedemeier et al. 1996). One particularly important example for public health is the organochloride respiration of PCE and TCE by naturally occurring anaerobic bacteria. During reductive dechlorination, chlorine atoms are replaced by electrons coupled to hydrogen atoms, resulting in sequential dechlorination from PCE to TCE to DCE to vinyl chloride to ethylene. During reductive dechlorination, cis-DCE is the most commonly formed isomer of DCE (Wiedemeier et al. 1996).

2.0 FIELD ACTIVITIES

Field activities during the 2019 investigation included a well integrity survey, well gauging, groundwater sampling, and waste management. All field work was conducted by ADEC Qualified Environmental Professionals from the Jacobs Fairbanks office. Field work began on 10 December 2019 with a preliminary site visit to familiarize staff with the site, identify hazards, and locate the wells. Well integrity survey, gauging, and groundwater monitoring occurred on 11 December 2019 for MW-34, MW-38S, MW-38D, MW-39, and MW-40 and 12 December 2019 for MW-11R. All field activities were documented in the field log book and groundwater monitoring forms (Appendices C and D).

2.1 WORK PLAN DEVIATIONS

Monitoring well global positioning system and elevation survey was scheduled to occur concurrent to groundwater monitoring; however, due to the late field season and inclement weather, this has been postponed until spring 2020.

2.2 MONITORING WELL INTEGRITY AND GAUGING

While collecting groundwater samples, Jacobs field personnel inspected the monitoring well caps, cover bolts, casings, and plugs. All sampled monitoring wells were in good condition with no apparent frost jacking.

All sampled monitoring wells were gauged using a water level meter with interface probe to measure depth to product (if applicable), depth to groundwater, and total well depth. No free product was detected in the sampled monitoring wells. Monitoring well gauging information was used to calculate well volume and ultimately maximum purge volume required prior to collecting a groundwater sample from the monitoring well. A summary of monitoring well integrity, gauging, and groundwater depth data is included in Table 2-1.

Well ID	Integrity	Depth to Product	Depth to Groundwater (feet bgs)	Total Well Depth (feet bgs)
MW-11R	Good	No free product	9.2	33.94
MW-34	Good	No free product	8.40	13.30
MW-38S	Good	No free product	8.66	14.55
MW-38D	Good	No free product	8.66	34.24
MW-39	Good	No free product	7.04	16.19
MW-40	Good	No free product	8.27	15.87

 Table 2-1

 Status of Monitoring Wells and Depths from Wells Sampled In 2019

2.3 GROUNDWATER SAMPLING

Groundwater samples were collected at each of the six proposed monitoring wells on 11 and 12 December 2019. Sampling activities were conducted by Jacobs personnel Taylor Laiti (environmental engineer) and Jennifer Robinson (geologist). Both sampling personnel are ADEC-qualified samplers. Groundwater sampling was conducted in general accordance with 2019 Drainage Pond Groundwater Monitoring Work Plan (DOT&PF 2019), JE-SOP-4000 Low-Flow Groundwater Sampling (DOT&PF 2019), and the ADEC Field Sampling Guidance (ADEC 2019c).

For MW-11R, a down-hole bladder pump was used to sample groundwater per ADEC's recommendation. For the remaining five wells, a peristaltic pump was utilized to collect samples. Prior to sample collection, groundwater was purged from the monitoring wells. An in-line flow through cell and multi-parameter water quality meter (YSI 556) were used to measure the following water quality parameters at 3- to 5-minute increments during well purging: temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential. Turbidity and well drawdown height were also measured during purging using a turbidity meter and water level meter, respectively.

Analytical samples were collected once water quality parameters stabilized, or after three well volumes were purged from each monitoring well. Water quality parameters were considered

stable once three of the five parameters, excluding temperature, met the parameter-specific stability criteria for three successive readings, per the work plan (DOT&PF 2019). During the 2019 sampling event, water quality parameters reached stability prior to groundwater sample collection at each of the sampled wells. Final water quality parameters are presented in Table 2-2, and field sampling forms are presented in Appendix D.

Depth to **Oxidation-**Dissolved Groundwater/Sample Temperature Conductivity Reduction Turbidity Well ID Oxygen pН Depth (°C) (µS/cm) Potential (NTU) (mg/L)(feet bqs) (mV)**MW-11R** 9.20/10.20 3.46 1,047 1.86 7.08 -70.1 2.62 MW-34 8.40/9.40 4.11 1,157 1.43 6.97 35.5 4.08 **MW-38S** 1.259 8.66/9.66 4.37 0.77 6.86 7.5 6.31 **MW-38D** 8.66/9.66 3.68 185 0.37 6.93 -3.0 2.06 MW-39 7.04/8.04 2.17 1.358 1.43 7.15 -88.2 19.02

1,769

0.78

6.99

-69.1

24.75

3.50

Table 2-2Water Quality Parameters from Wells Sampled In 2019

Notes:

MW-40

Bgs = below ground surface °C = degrees Celsius µS/cm = micro-Siemens per centimeter mg/L = millingtrams per liter

8.27/9.27

mV = millivolts

NTU = nephelometric turbidity units

2.4 INVESTIGATION-DERIVED WASTE

Sampling was primarily conducted using disposable sampling equipment. Reusable equipment during the 2019 groundwater sampling event included the water level meter with interface probe, the YSI 556 water quality meter, and the turbidity meter. Reusable equipment was decontaminated between monitoring wells in accordance with JE-SOP-2000 *Decontamination* (DOT&PF 2019). Investigation-derived nonhazardous waste included purge and decontamination water that was containerized in 55-gallon drums and stored at the FAI waste storage facility. Disposable personal protective equipment and sampling materials were bagged and disposed of at Fairbanks North Star Borough landfill.

3.0 PROPOSED CLEANUP LEVELS

Analytical sample results were screened against 2019 ADEC GCLs specified in Table C of the Alaska Administrative Code (AAC) Title 18, Chapter 75 (18 AAC 75) (ADEC 2019a). Table 3-1 lists the contaminants of concern along with their respective analytical methods used, GCLs, and the specified the limit of detection (LOD).

Analyte	Method	Project GCL (μg/L)	LOD
Benzene	SW8260C	4.6	0.2.
PCE	SW8260C	41	0.5
TCE	SW8260C	2.8	0.5
cis-DCE	SW8260C	36	0.5
trans-DCE	SW8260C	360	0.5
Vinyl chloride	SW8260C	0.19	0.075

Table 3-1Project Groundwater Screening Levels

Note:

For definitions, refer to the Acronyms and Abbreviations section.

4.0 QUALITY ASSURANCE ASSESSMENT

This section details the quality control (QC) and sample preservation practices employed during groundwater sample collection to ensure data quality. Analytical data packets received by the laboratory were reviewed for data quality and usability by Kari Hagen, the Jacobs project chemist. Findings of the data review are presented in Section 5.2.

4.1 QUALITY CONTROL AND SAMPLE PRESERVATION

Samples were collected using the sample containers provided by SGS Environmental Services. Sample containers were labeled with the sample identification number, date and time of collection, sampler initials, and analyses requested. Sample temperature was maintained between 0 and 6 degrees Celsius while in storage. The samples were submitted to SGS Environmental Services at the Fairbanks, Alaska office for shipment to their laboratory in Anchorage, Alaska for analytical testing. For QC, one field duplicate was collected during the sampling event and one trip blank was prepared for each cooler. The field duplicate and trip blank were submitted to the laboratory for analysis of analytes listed in Table 3-1.

4.2 DATA QUALITY

Jacobs performed this data quality review and completed the ADEC laboratory data review checklist for records associated with the analytical data (Appendix E). The Jacobs project chemist performed a completeness check to verify that data packages included all the requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data (Appendix F). Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation, LODs, detection limits, laboratory control sample recoveries and precision. Other QC parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative (Appendix F). The overall quality of the data was acceptable. No QC issues were identified during the review.

5.0 **RESULTS AND FINDINGS**

This section presents analytical groundwater results and the results of the reductive dechlorination process.

5.1 ANALYTICAL RESULTS

Table 5-1 presents the 2019 groundwater analytical results; these are also depicted on Figure A-3 (Appendix A). Table B-1 (Appendix B) includes the historical and current results. Appendix E includes the ADEC Laboratory Data Review Checklist. Appendix F presents the analytical results supplied by the laboratory. The 2019 groundwater results are summarized below; comparison to historical data is also provided in the narrative. Similar to previous years, groundwater samples collected from MW-11R continued to have higher concentrations of chloroethenes than the other wells sampled. For historical comparison perspective, monitoring wells MW-38S, MW-38D, MW-39, and MW-40 are relatively new (established in 2010), whereas MW-11R data dates to 2005 and MW-34 to 2003.

	Analyte:	Benzene PCE TCE cis-DCE trans-DCE Vinyl Chlor				Vinyl Chloride	
2019 ADEC	2019 ADEC GCL ¹ (µg/L):		4.6 41 2.8 36 360 0.19				
Monitoring Well ID	Sample Date	Analytical Result (μg/L)					
MW-11R	12/12/2019	1.28	13.5	7.40	1,770	17.3	4.91
MW-34	12/11/2019	0.200 U	0.500 U	0.500 U	0.500 U	0.500 U	0.0750 U
MW-38S	12/11/2019	2.39	3.05	0.580 J	250	2.16	1.86
MW-38D	12/11/2019	0.200 U	0.500 U	0.312 J	11.6	0.500 U	0.0750 U
MW-39	12/11/2019	0.548	0.500 U	0.852 J	64.1	3.17	1.74
MW-40	12/11/2019	1.10	5.61	2.27	863	9.09	2.67
MW-40 ²	12/11/2019	1.02	6.08	2.45	797	8.42	2.50

Table 5-1Groundwater Results from the 2019 Sampling Event

Notes:

Bold value indicates value exceeds ADEC GCL.

¹18 AAC 75. Table C Groundwater Human Health Cleanup Levels

² Field duplicate sample collected from monitoring well MW-40.

U = Results is below the laboratory limit of detection.

J = The result is an estimated value because it is less than the limit of quantitation.

For definitions, refer to the Acronyms and Abbreviations section.

Benzene: In 2019, there were no exceedances of the GCL (4.6 μ g/L), although monitoring wells MW-38D and MW-34 were the only wells where benzene was nondetect (ND). Historically, benzene has exceeded the GCL at MW-11R, MW-38S, and MW-39 but has been below those concentrations during the last two sampling events.

PCE: Monitoring well MW-11R had the greatest detected concentration (13.5 μ g/L) of PCE in 2019; however, this concentration is below the current GCL. The GCL for PCE increased from 5 μ g/L to 41 μ g/L with the new 2017 ADEC regulations; as a result, concentrations of PCE in samples collected prior to 2017 from monitoring well MW-11R exceeded historical GCLs. Based on results of the 2019 sampling event, other wells with detectable concentrations of PCE are MW-38S and MW-40. Historically, PCE concentrations in samples collected from all other wells have been less than the 2014 threshold except at MW-40, where PCE concentrations in groundwater samples have ranged from 6.08 μ g/L in 2019 to 21.2 μ g/L in 2017.

TCE: The only groundwater sample result to exceed the GCL ($5.0 \mu g/L$) for TCE in 2019 was from monitoring well MW-11R, at a concentration of 7.4 $\mu g/L$. Even though the concentration of TCE in monitoring well MW-11R decreased from the 2017 to 2019, concentrations of TCE have exceeded the applicable GCL across all sample years. Other groundwater samples with low but detectable concentrations of TCE in 2019 were those collected from MW-38S and MW-40; detectable results below the GCLs at MW-38S and MW-40 are consistent with results of past sampling events, with the exception of samples collected from MW-40 in 2017, when concentrations were just above the GCL.

cis-DCE: Concentrations of cis-DCE in groundwater samples collected from four monitoring wells (MW-11R, MW-38S, MW-39, and MW-40) were in exceedance of the GCL (38 μ g/L), with MW-11R having the greatest concentration, at 1,770 μ g/L. Similar to results from previous years, the cis-DCE concentration in the samples collected from MW-34 was ND in 2019. Historically, analytical results of samples collected from MW-11R, MW-38S, MW-39, and MW-40 have exceeded GCLs, with the greatest historical concentration detected at MW-11R.

trans-DCE: In 2019, trans-DCE was detected in groundwater samples collected from monitoring wells MW-11R, MW-38S, MW-39, and MW-40, but no analytical sample results were in exceedance of the GCL ($360 \mu g/L$). This pattern is consistent with historical data.

Vinyl chloride: Concentrations of vinyl chloride exceeded the GCL in samples collected from monitoring wells MW-11R, MW-38S, MW-39, and MW-40, in 2019; concentrations in samples collected from the two remaining wells were ND. Although the greatest concentration was detected in the sample collected from MW-11R in 2019 and exceeded the GCL, results of vinyl chloride for this well in 2017 were ND.

5.2 **REDUCTIVE DECHLORINATION**

During the 2006 and 2010 Drainage Pond studies, the natural attenuation parameters were analyzed to assess the state of biodegradation of chlorinated compounds through reductive dechlorination in the groundwater plume. Based on those studies and subsequent investigations, there is evidence that reductive dechlorination of PCE is occurring in the groundwater plume (Oasis 2011). This process has likely converted a substantial fraction of dissolved TCE to cis-DCE and trans-DCE, but the follow-on conversion to vinyl chloride is generally less effective, as evidenced by the relatively static concentrations of vinyl chloride at the monitoring wells.

In order to better evaluate the reductive dechlorination process at this site, molar factions for each chloroethene were calculated; this allows direct comparison between years despite annual variability in total concentration (Table 5-2). Over the years, there is a slight downward trend in vinyl chloride concentrations and a slight increase in trans-DCE concentrations. Studies of reductive dechlorination have found that when necessary conditions for completed dechlorination of PCE or TCE to ethylene are not present, degradation stalls at DCE (Northwind Inc. 2003). Although the groundwater conditions appear favorable for reductive dichlorination based on the 2006 and 2010 studies, the stall at DCE implies the process may not reach complete dechlorination to ethylene in the near future, if ever.

Monitoring	Sample	Total Chloroethenes ²	Molar Fraction ³					
Well ID	Date ¹	μg/L	PCE (%)	TCE (%)	cis-DCE (%)	trans-DCE (%)	Vinyl Chloride (%)	
	09/27/05	680	2.40	1.50	94.40	0.60	1.10	
	11/02/06	737	0.80	0.70	96.80	1.10	0.50	
	10/17/07	688	2.20	0.60	96.10	0.70	0.50	
MW-11R	10/21/08	2,733	0.40	0.30	98.40	0.60	0.30	
	10/29/10	915	1.50	0.40	96.20	0.80	1.10	
	12/05/13	1,244	0.70		98.50	0.80		
	06/15/17	1,561	1.20	1.20	96.70	0.90		
	12/12/2019	1,813	0.44	0.30	97.92	0.96	0.38	
	8/27/2003	ND						
	8/27/2004	ND						
	9/27/2005	ND						
MW-34	11/2/2006	ND						
	10/7/2007	ND						
	6/15/2017	ND						
	12/11/2019	ND						
	10/29/2010	62	0.50		95.90	1.00	2.60	
MW-38S	12/5/2013	21			100			
10100-303	6/15/2017	173	1.50	0.20	96.50	0.60	1.20	
	12/11/2019	258	1.18	0.23	97.03	0.84	0.72	
	10/29/2010	ND						
MW-38D	12/5/2013	ND						
10100-200	6/15/2017	4	9.80	11.10	79.10			
	12/11/2019	12		2.62	97.38			
	10/29/2010	213	0.20	0.30	93.20	2.30	4.00	
MW-39	6/15/2017	7		6.00	89.10	4.90		
	12/11/2019	70		1.22	91.75	4.54	2.49	
	10/29/2010	1,102	0.10	0.10	97.60	0.70	1.60	
MW-40	12/5/2013	861			97.40	0.90	1.70	
10100-40	6/15/2017 ⁴	715	1.80	0.60	96.00	1.00	0.70	
	12/11/2019 ⁴	883	0.64	0.26	97.77	1.03	0.30	

Table 5-2Chloroethene Molar Fraction Trends for Wells Sampled In 2019

Notes:

-- = Molar fractions not calculated for NDs.

¹Sample data obtained from the 2017 Drainage Pond Groundwater Monitoring Report (SLR 2018)

³Molar fraction is calculated for individual detected chloroethene congeners as the fraction of the total molar concentration ⁴Total chloroethenes calculated using the higher of the parent/duplicate concentrations for each chloroethene

For definitions, refer to the Acronyms and Abbreviations section.

 $^{^2\}text{Total}$ chloroethenes (µg/L) calculated as the sum of individual analyte concentrations

6.0 CONCLUSIONS

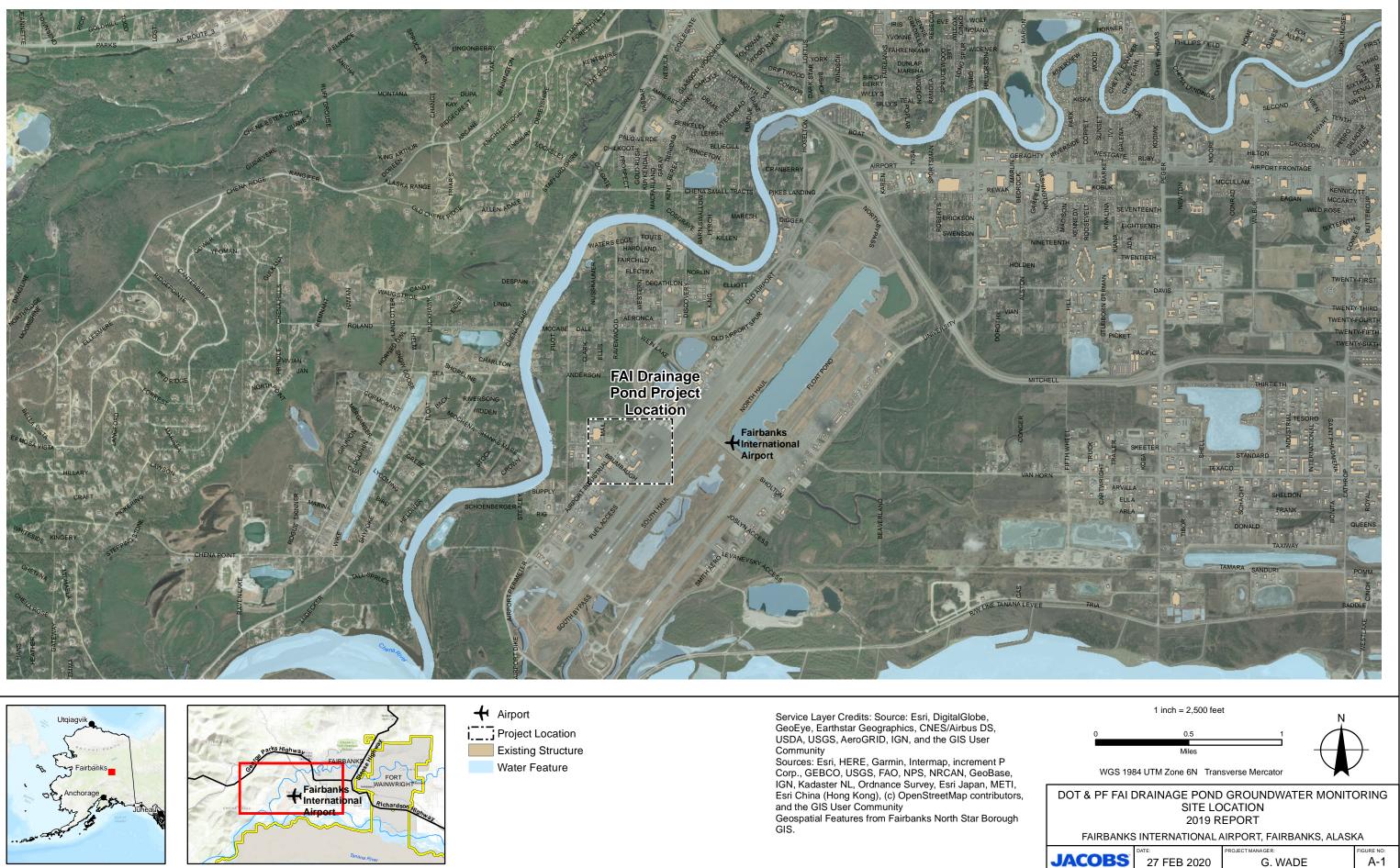
In 2006, the Gore-Sober soil gas survey identified an unknown PCE source area east of MW-11R. There is currently no evidence of a discreet point source of contamination. The site was historically a drainage pond where contaminants could have settled out or been transported by runoff.

The addition of monitoring wells MW-38S, MW-38D, MW-39, and MW-40 in 2010 helped to fill data gaps associated with the Drainage Pond site, increased knowledge of contaminant boundaries, and provided additional information on the natural attenuation that is occurring at the site. Results from the 2019 groundwater monitoring effort indicate that chloroethenes persist in the groundwater at similar concentrations to those detected in previous studies, and reductive dechlorination may have stalled at DCE. Benzene has decreased in concentration and was not found to be in exceedance of the GCL for the past two sample events.

The 2019 sampling event is the fourth in which chloroethene concentrations were less than GCLs or ND in samples collected from MW-38D, which has a total well depth of 34.24 feet. This comparatively deep well was installed to determine whether contaminants were present below the groundwater interface, as results from samples collected from MW-11R (34 feet bgs) might suggest. Unlike MW-11R, which has a screened interval of 5.0 to 34.0 feet bgs, MW-38D is only screened at the interval from 30 to 34 feet bgs. The 2019 groundwater sample results from MW-38D suggest that contaminants are not present at depth, while contaminant concentrations detected in MW-11R are likely the result of mixing. Soil data from the 2010 site investigation support the theory that contaminants are confined to the interval extending from the ground surface to 11 feet bgs.

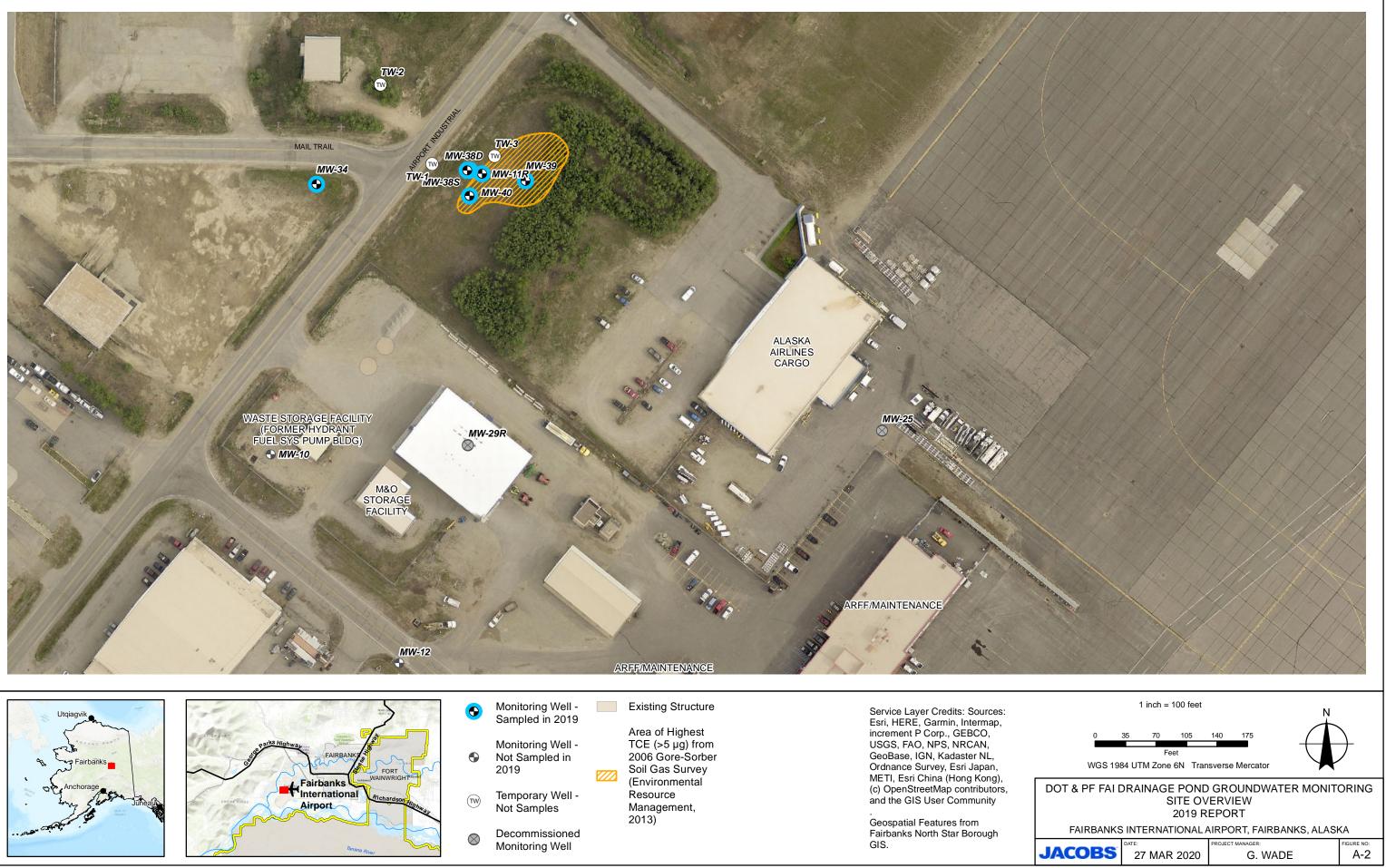
Although the 2019 groundwater monitoring effort provided recent data of the known chloroethene plume, it did not define plume boundaries or verify the plume is not migrating. According to hydrological assessments in 2013 and 2017, the prevailing groundwater flow direction is westerly, away from the 2006 Gore-Sober soil gas plume delineation. Based on data

7.0 **RECOMMENDATIONS**


Based on this report, the following actions are recommended for the Drainage Pond site:

- Continue biennial groundwater monitoring of wells MW-11R, MW-34, MW-38S [shallow], MW-38D [deep], MW-39, and MW-40.
- Continue the use of a down-hole bladder pump for sample collection at MW-11R.
- Reinstate the monitoring of natural attenuation parameters, including dissolved and total iron, dissolved and total manganese, total organic carbon, methane, sulfate, and nitrate-nitrite (Wiedemeier et al. 1996).
- Further delineate the contaminant plume by advancing soil borings, installation temporary groundwater well points, and installing additional groundwater monitoring wells downgradient of the 2006 Gore-Sober soil gas plume.

8.0 **REFERENCES**


- ADEC (Alaska Department of Environmental Conservation). 2014. *Oil and Other Hazardous Substances Pollution Control.* 18 AAC 75.
- ADEC (Alaska Department of Environmental Conservation). 2019a. *Oil and Other Hazardous Substances Pollution Control*. 18 AAC 75.
- ADEC. 2019b (October). ADEC Contaminated Site Program FAI Drainage Pond. https://dec.alaska.gov/Applications/SPAR/PublicMVC/CSP/SiteReport/1923. Accessed on October 2019.
- ADEC. 2019c. *Field Sampling Guidance*. Final. Division of Spill Prevention and Response, Contaminated Sites Program.
- DOT&PF (Alaska Department of Transportation & Public Facilities). 2019 (4 November). 2019 Drainage Pond Groundwater Monitoring Work Plan. Prepared by Jacobs.
- Environmental Resources Management. 2014. 2013 Drainage Pond Groundwater Monitoring Report. Submitted to DOT&PF 19 June 2014.
- Northwind Inc. 2003. DCE/VC Stall at Natural Attenuation Sites, Strategies for Mitigation during Natural Attenuation or Bioremediation of Chlorinated Ethenes. Remediation Innovative Technology Seminar. Naval Facilities Engineering Command.
- Oasis (Oasis Environmental Inc.). 2006a. Work Plan for Former Drainage Pond Area, Fairbanks International Airport, Fairbanks, Alaska. Submitted to DOT&PF 16 October 2006.
- Oasis. 2006b. Further VOC Characterization at Former Drainage Pond Area: Fairbanks International Airport. Submitted to DOT&PF 25 March 2007.
- Oasis. 2011. Additional Characterization and Groundwater Monitoring, Former Drainage Pond Site, Fairbanks International Airport. Submitted to DOT&PF on 23 May 2011.
- SLR (SLR International Incorporation). 2018. 2017 Groundwater Monitoring Work Plan. Submitted to DOT&PF 3 April 2017.
- Wiedemeier, Todd H., Matthew A. Swanson, David E. Moutoux, and E. Kinzie Gordon. 1996. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. Air Force Center for Environmental Excellence, Technology Division. Brooks Air Force Base, San Antonio, Texas.

APPENDIX A Site Figures

MILTRAL	М.W-38D (ну/L) Велгеле 0.200 РСЕ 0.500 ТСЕ 0.311 Vinyl chloride 0.075 СDСЕ 11. tDCE 0.500	0 U 0 U 2 J 60 U 6 U 0 U MW-11R (µg/L) Benzene 1.28 PCE 13.5 TCE 7.40 Vinyl chloride 4.91 cDCE 1770 tDCE 17.3	Approximate Approximate Biological Approximate Biological Approximate Biological Approximate Biological Approximate Biological Approximate
ADEC GCL ¹ Analyte (µg/L) Benzene 4.6 PCE 41 TCE 2.8 Vinyl chloride 0.19 cDCE 360	tDCE2.16MW-40 (µg/L)PrimaryBenzene1.1PCE5.6TCE2.3Vinyl chloride2.7cDCE863tDCE9.1Field DuplicateBenzeneBenzene1PCE6.1TCE2.5Vinyl chloride2.5Vinyl chloride2.5CDCE797tDCE8.4	MW-39 (µg/L) Benzene 0.548 PCE 0.500 U TCE 0.852 J Vinyl chloride 1.74 cDCE 64.1 tDCE 3.17	Notes: '2019 ADEC 18 A Bold value indica GCL = groundwar µg/L = microgram U = Results is be J = The result is a

- Groundwater Monitoring Well, Exceedance
 - Groundwater Monitoring Well, No Exceedance
- Existing Structure

•

Area of Highest TCE (>5 µg) from 2006 Gore-Sorber Soil Gas Survey (Environmental Resource Management, 2013)

Service Layer Credits: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Geospatial Features from Fairbanks North Star Borough GIS.

APPENDIX B Tables

Table B-1 Comparison of Historic Groundwater Monitoring Results to 2019 Results

	Analyte:	Benzene	PCE	TCE	cDCE	tDCE	Vinyl Chloride	
	2014 ADEC GCL ¹ (µg/L):	5	5	5	70	100	2	
2019 ADEC GCL ² (µg/L):		4.6	41	2.8	36	360	0.19	
Monitoring Well ID	Sample Date ³		Analytical Result (µg/L)					
	9/27/2005	9.5	27	14	630	3.8	5.3	
	11/2/2006	4.3	10.5	6.84	709	8.28	2.66	
	10/17/2007	5.1	25	5.5	650	4.6	2.4	
	10/21/2008	4.99	20.1	11.2	2,680	15.8	6.14	
MW-11R	10/29/2010	6.72	23.5	4.58	873	7.29	6.94	
	12/5/2013	6.12	14.7	ND (0.5)	1,220	9.4	ND (0.5)	
	6/15/2017	1.78	32.7	24.1	1,490	14	ND (0.075)	
	12/12/2019	1.28	13.5	7.4	1770	17.3	4.91	
	8/27/2003	ND (0.4)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	8/27/2004	ND (0.4)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	9/27/2005	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
NAVA/ DA	11/2/2006	ND (0.4)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
MW-34	10/7/2007	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	
	6/15/2017	ND (0.2)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.075)	
	12/11/2019	0.200 U	0.500 U	0.500 U	0.500 U	0.500 U	0.0750 Ú	
	10/29/2010	8.92	0.54J	ND (0.62)	59.7	0.6J	1.16	
MW-38S	12/5/2013	12	ND (0.5)	ND (0.5)	20.9	ND (0.5)	ND (0.5)	
	6/15/2017	3.65	4.33	0.397J	166	1.08	1.44	
	12/11/2019	2.39	3.05	0.580 J	250	2.16	1.86	
	10/00/0010		ND	ND	ND	ND	ND	
	10/29/2010	ND (0.62)	(0.62)	(0.62)	(0.62)	(0.62)	(0.62)	
	12/5/2013	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
MW-38D	6/15/2017	ND (0.2)	0.557J	ND (0.5)	2.63	ND (0.5)	ND (0.075)	
	12/11/2019	0.200 U	0.500 U	0.312 J	11.6	0.500 U	0.0750 U	
	10/29/2010	7.96	0.71	0.79	200	5.01	6.1	
MW-39	6/15/2017	ND (0.2)	ND (0.5)	0.593 J	6.54	0.36 J	ND (0.075)	
	12/11/2019	0.548	0.500 U	0.852 J	64.1	3.17	1.74	
	10/29/2010	2.7	1.14	0.88	1,080	7.38	12.9	
	12/5/2013	2.8	ND (5.0)	ND (5.0)	872	7.85	10.9	
	6/15/2017 (Primary)	1.02	20.9	5.38	648	7.1	3.33	
MW-40	6/15/2017 (Duplicate)	0.998	21.2	5.24	678	7.02	3.06	
	12/11/2019 (Primary)	1.1	5.61	2.27	863	9.09	2.67	
	12/11/2019 (Duplicate)	1.02	6.08	2.45	797	8.42	2.5	

Notes: Bold value indicates value exceeds ADEC GCL 12014 ADEC 18 AAC 75. Table C Groundwater Human Health Cleanup Levels

²2019 ADEC 18 AAC 75. Table C Groundwater Human Health Cleanup Levels ³Sample data obtained from the 2017 Drainage Pond Groundwater Monitoring Report (SLR 2018)

ND = Results is below the laboratory limit of detection.

U = Results is below the laboratory limit of detection.

J = The result is an estimated value because it is less than the limit of quantitation.

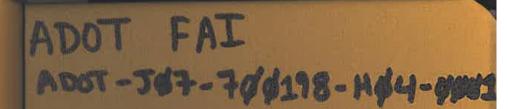
For additional definitions, refer to the Acronyms and Abbreviations section of the report.

Monitoring	Sample Total		Molar Fraction ³						
Well ID	Date ¹	Chloroethenes ² (µg/L)	PCE	TCE	cDCE	tDCE	Vinyl Chloride		
	9/27/2005	680	2.40%	1.50%	94.40%	0.60%	1.10%		
	11/2/2006	737	0.80%	0.70%	96.80%	1.10%	0.50%		
MW-11R	10/17/2007	688	2.20%	0.60%	96.10%	0.70%	0.50%		
	10/21/2008	2,733	0.40%	0.30%	98.40%	0.60%	0.30%		
	10/29/2010	915	1.50%	0.40%	96.20%	0.80%	1.10%		
	12/5/2013	1,244	0.70%		98.50%	0.80%			
	6/15/2017	1,561	1.20%	1.20%	96.70%	0.90%			
	12/12/2019	1,813	0.44%	0.30%	97.92%	0.96%	0.38%		
	8/27/2003	ND							
	8/27/2004	ND							
	9/27/2005	ND							
MW-34	11/2/2006	ND							
	10/7/2007	ND							
	6/15/2017	ND							
	12/11/2019	ND							
	10/29/2010	62	0.50%		95.90%	1.00%	2.60%		
MW-38S	12/5/2013	21			100%				
10100-303	6/15/2017	173	1.50%	0.20%	96.50%	0.60%	1.20%		
	12/11/2019	258	1.18%	0.23%	97.03%	0.84%	0.72%		
	10/29/2010	ND							
	12/5/2013	ND							
MW-38D	6/15/2017	4	9.80%	11.10%	79.10%				
	12/11/2019	12		2.62%	97.38%				
	10/29/2010	213	0.20%	0.30%	93.20%	2.30%	4.00%		
MW-39	6/15/2017	7		6.00%	89.10%	4.90%			
	12/11/2019	70		1.22%	91.75%	4.54%	2.49%		
	10/29/2010	1,102	0.10%	0.10%	97.60%	0.70%	1.60%		
	12/5/2013	861			97.40%	0.90%	1.70%		
MW-40	6/15/20174	715	1.80%	0.60%	96.00%	1.00%	0.70%		
	12/11/2019 ⁴	883	0.64%	0.26%	97.77%	1.03%	0.30%		

Table B-2 **Chloroethene Molar Fractions Trend Analysis**

 Notes:

 -- Molar fraction not calculated; results below laboratory limits of detection


 ¹Sample data obtained from the 2017 Drainage Pond Groundwater Monitoring Report (SLR 2018)

 ²Total chloroethenes (μg/L) calculated as the sum of individual analyte concentrations

 ³Molar fraction is calculated for individual detected chloroethene congeners as the fraction of the total molar concentration

⁴Total chloroethenes calculated using the higher of the parent/duplicate concentrations for each chloroethene

APPENDIX C Log Book

ALL-WEATHER ENVIRONMENTAL Nº 550F

No.550P-Environmental - Yellow - 4.75" x 7.5" TTT Environmental Instruments and Supplies (907) 770-9041 www.tttenviro.com ISBN 978-1-932149-50-0 J. Robinson G. Wade T. Laiti

	Rite in the Rain @	
	ALL-WEATHER ENVIRONMENTAL FIELD BOOK	
Name	Jacobs Engineering	
Address	949 E. Both AVR, #50 Anchorage, NK 99508	
Phone	907 - 762-1500	
Project _	ADOT FAI - Multiple	
	A A A A A A A A A A A A A A A A A A A	
	RiteintheRain.com	

JL DARLING LLC Tacoma, WA 98424-1017 USA

> US Pat No. 6,863,940 5-17

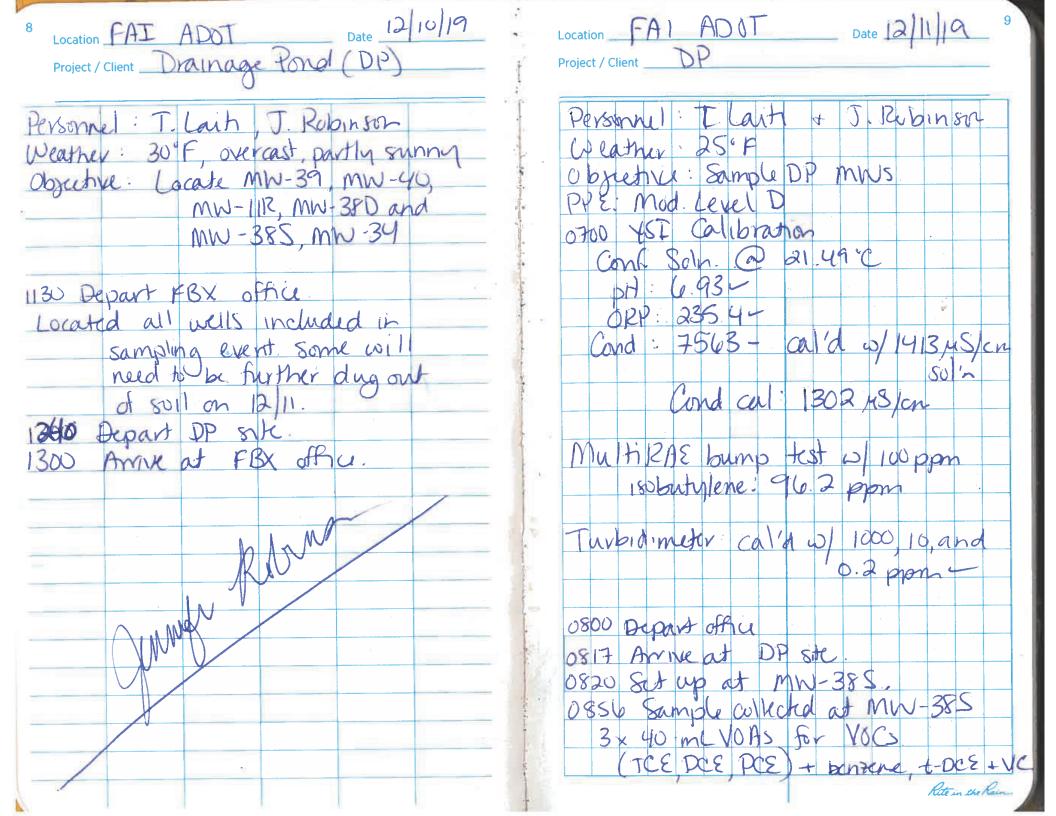
CONTENTS

PAGE REFERENCE DATE Hydrant Fuel System GW Monitor 12/4-12/6 Drainage Pond Site - GW sampling 12/10+12/12 **Reference Page Index** Error Codes, Hazardous Classifications, Container Types 147 148 Sampling Guidelines (Liquids) 149 Sampling Guidelines (Solids) Approximate Volume of Water in Casing or Hole, Ground Water Monitoring Well 150 151 PVC Pipe Casing Tables 152 Soil Classification 153

Soil Classification

154

155


156

Maximum Concentration of Contaminants for the Toxicity Characteristic

4

Conversions (Concentrations, Volume/Flow or Time, Velocity, Acceleration)

Conversions (Length, Weight, Volume, Temp, etc.,)

Location ADOT FAI Date 12/12/19 11 Location ADDI FAT Date 12/11/19 10 Project / Client _____ DP GW Mon_____ Project / Client DP GW Mon Personnel T. Lait, J. Robinson 0910 Set up at MW-38D. 0940 Collect samply 19DPS-31W38D-6W Weather Clear 10 F Opretnie Sample MW-112 w/ bladder 3 × 40 mL VOAs HCI; analyze for VOCs (PCS, TCE, DCE) + but the + t- DCE. PDE Mod. Level D 1000 Set up at MW-40. 1040 Collect sample 19DPS-MW40-GW: for (2) BX 40-ML VOAS, HCI VC, + DCE). 0700 VSI Ch. @ 21.44.C OKP pH 28.1- 7.2-Spec Cond OKP Also collected DUP 19DPS - MW38D-GNA 11820-Calibrate cond. 21 standard 1100 Set up at MW-39. solution - 1413MS/cm 1115 Collect sample 19775-MW39-6W @ 21.4°C · 1305 úS/cm 3×40-ml VOA, HC1 pres. Readout = 305 uS/cm Amalysis VOCS (DCE, PCE, TCE) 1235 Begin set up at MW-11R. Rev w confidence solution. Do not have external 12V battery For bladder pump. Moving to Final Gond. = 7692uS/cm peri-pump well Will sample Multi -RAE (battery changeout) MW-112 on 12/12. Bump test w/ 100 ppm isobutylen 1200 Set up at MW-34. Collect sample AND 19DPS - MW34-GW Readout 100 ppm 1216 for analysis of VOCS (DCS TCS PCE). Fero calibration performed Turbid meter NTU Cald w/ 1000, 10, and 0.2 Stundard Meet al Jason Griswald (Dot Mio)" 1240 > dup purge water. 1248 Offsik. Junit. Rite in the Rain

Location ADOT FAI DP Date 12/12/19 12 Location Date Project / Client 2019 GN Mon Project / Client 0945 Depart office for sike 1005 Arrive onsite Unload equip at MW-11/2 1030 Set up at MW-11R 1032 Bign purging. 1057 Sollected sampl 19DPS-MWIIR-GW. 3 × 40 ml VOAs; sampled for benzen, VC DCE TCE, PCE + trans-DCE 1130 net Mio (J. Gnowald) at durm storage to durmp purge water. offite 140 ANNOI

Rite in the Rein

APPENDIX D Groundwater Monitoring Forms

JACOBS Groundwater Sampling Data Sheet Well ID Project Number Site Name Event DP ADOT 4DO SFGAS20U GN Mon DP Date Weather Conditions PID Readings of Total VOCs (ppm) Sampler Initials Breathing Zone 0.0 In Well 0.0Ambient 0.0 25 ourcast Well Information Well Casing Material Casing Diameter(in) / Gallons per linear foot(gal/ft) Well Integrity TOC Stickup (ft ags) 1/0.04(1 2/0.163 /4/0.653 Fair PVC/ SS 6/1.469 Good Poor 0.0 Depth to GW (ft btoc) Total Depth of Casing (ft bloc) Product Thickness (ft) and Volume Recovered (mL) Depth to Product (ft) 4.55 (final) N 5.66 Max purge volume (3 well casing volumes) = [previous[†] total depth of casing (ft) - (depth to water[GW table well] or top of filter pack[submerged well] (ft)] * gallons per linear foot of casing * 3 2 gal/ft + 2 = 2.90 gal + 3.785 L/gal = 11.0 L Max Purge Volume = $(14.6 \pm ft - 8.66ft) + 290$ SHOW WORK Well Purging Information Depth of Tubing (ft btoc) Equipment Used for Purging Start Time Finish Time 856 9.66 Peristaltic Pump Submersible Pump Bailer 2 Sheen Meter Used During Purging Odor Purged Dry Color Clear Cloudy Brown Moderate Yes Yes None YSI Multi Meter/ Hach Turbidimeter Faint Strong No) (No) Other: TDW Purge water was created Stored Other Note: Purging reached: Stability Max Vol. Acceptable Range to Demonstrate Stability Volume ± 10% or 0.2 mg/L (Gallons of Liters) Drawdown < 0.3 Time ±0.2 °C ± 3% ± 0.1 ± 10 mV ± 10% or ±1 NTU (HH:mm) whichever is greater ft ORP Conductivity Turbidity Water Level Temperature DO pH Change Total (std units) (°C) (µS/cm) (mg/L) (mV) (NTU) (feet bloc) WWW 442 56 25 2 404 S 2 4.45 24 3 58 XO. 20.4-8 7 2 42 -15 2 .O 20 \mathcal{F} \cap дŰ 1.42 X 2. S 4.44 () ≤ 0 2 + 4. 3.0 38 9 GL 8 9.67 1) 50 Э n ンスコ 3.0 51 8 SO Û 22 ጋ L 9 7. 25 375 437 \leq S()3 72 (0. O. 0.2 00 0856 ne 7)& Y Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for	r Sampling
0856	0902 192/11	9 9.66	Peristaltic Pum Sub	mersible Pump
SAMPLE ID: 19DPS	-MW385-GW	QC: Dup MS/MSD	Ferrous Iron (Fe ^{2*}) (mg/L) =	N/A
Container/Pres	ervative Ar	alysis Requested	Notes	/
3x 40ml 10	A/HCI b	CHACKE, DCE, DCE,	$H_2 S$	SNU 1/
	·	TCE, trans DCE, VC		

Suggested Notation:

"----" = not measured "√"= stable "+" = rising "-" = falling "*" = all parameters stable

JACOBS

ADOT	<u>Site I</u>	Name			Event		We		Project Number
ADCT	FALT	26		20101 (SW Moni	ronnig	INW-2	385 ate	SF6A5200 Sampler Initials
						0	12-1	1-19	SF6A5200 Sampler Initials TL/JZ
-	Volu	ume	1 A			inge to Demons			
Time (HH:mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	± 10% or 0.2 mg/L (whichever is greater)	± 0.1	± 10 mV	± 10% or ±1	
	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet bloc)
		-							1 .
		1							
	2.00							1	
								1	
	-			_			-/		
							/	-	
			-			- /			-
		<u>^</u>				_/			-
						/			
								-	
	-	-			/				
								-	
	-			-/				-	
	1	-		/			2		
				/					
							-0.90.000		
	-		/						
		- /							
		/	-		+			-	
		1	2						-
	1				1				
		1					•		
/	1								
(
			5						

2

 \cap

Site Name			Event		Wel		roject Number			
ADAT CA)	1	DP GW	MIL	-380 5	FLAG DU				
Weather Condit	ions	PID R	eadings of Total V	Da	ate S	ampler Initials				
MURAN 20	°F	Ambient 0.0	IN							
thanks a	-		Model Model Model Model Model Well Information Well Model Model Model							
Well Integrity	TOC Stickup (1		Vell Casing Materi	to be seen of the second se	Diameter(in) / (Gallons per linea	r foot(gal/ft)			
Good Fair Poor	-0.45		eve ss	1/0	0.041 2/0.16	3 4 / 0.653	6 / 1.469			
Depth to Product (ft)	Depth to GW (f	t btoc) Tot	al Depth of Casing (ft t 34.24 (fi	nal)	t Thickness (ft)	and Volume Rec	overed (mL)			
Aax purge volume (3 well cas vell] (ft)] * gallons per linear f	sing volumes) = [pr foot of casing * 3 irge Volume = (<u>3</u> 6			3						
SHOW WORK Max PL		Las and the second s	urging Info			/ 65 L/gai/				
Start Time	Finish Tim		pth of Tubing (ft b		Equipment	Used for Purgin	g			
0919 0921	0940	-	9.66	Baile	The second secon	Pump Submer				
Color	Odor		heen Purgeo		Meter Use	d During Purging	1			
Clear Cloudy Brown Other:		ong (Yes Yes		/SI Multi Meter	Hach Turbi	dimeter			
Purging reached: Stability	Max Vol. Pur	ge water was:	Treated Stored	Other Note:						
Volume			and the strangent of the strangent but	ange to Demon	strate Stability		1			
Time (Gallons o Liter (HH:mm)	10.2 0	± 3%	± 10% or 0.2 mg/L (whichever is greater)		± 10 mV	± 10% or ±1 NTL				
Change Tota	al Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet btoc)			
0924 Start :	mar					C				
0927 1.0 1.0	2.68	212	4.20	7.15	39.3	269	8.78			
730 0.251.2	5 3.20	1940	1.97	7.04-	30.4.	3.24	18.78			
0933 050 1.7	5 3.52	1891	0.8)	6.98-	165	3.04	8.78			
036 0.50 2.	15 3.58	1830	0.47	6.94-	- 3.4	2.46-	8.78			
0939 0.50 37	\$ 3.68	1850	0.37	6.93.	- 3.0	2.06-	8.78			
			1			1				
CIII	Damanites	STAL	10							
Sampled. 1	araneter	stat	¥							
CIII	Parameter	stat	de							
CIII	Parameter	stat	λ γ .							
CIII	aranete	stat	λγ							
CIII	Paranete	stat								
CIII	Paranete	stat								

Sample Collection Information Start Time Finish Time / Date Depth of Tubing (ft btoc) Equipment Used for Sampling 0940 9.66 0947 12-11-19 Peristaltic Pump Submersible Pump SAMPLE ID: 9 DPS - MW38D-GW QC: Dup MS/MSD Ferrous Iron (Fe²⁺) (mg/L) = Analysis Requested Benene, VC, DCE, mans. DCE, Container/Preservative Notes 3x 40mL VOA/ HCI PCC, TCE

Suggested Notation:

	<u>Site I</u>	Name			Event		Well ID Project Numb		
AD	UT FA	TDE		2019 6	SW Moni	tonna	MW.	-38D 5	FGAS200
10		+ VF		Goild		()	Da	ate S	FGA5200 ampler Initials
						0	12-11-	19 17	-172
			L			and the second second		11 10	-101-
A Real Providence	Volu	ume	A REAL PROPERTY AND		Acceptable Ra		1	1	Drawdown < 0.3
Time (HH:mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	± 10% or 0.2 mg/L (whichever is greater)	± 0.1	± 10 mV	± 10% or ±1 NTU	ft
	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet btoc)
			10/	(noronny		(ote armer)			1
	-								4
								- /	-
								1	
								/	
							1		
	0 - E	-						+	1
							/		
							/		
						/	r		
								1	
	-							1	1
					· · · · · · · · · · · · · · · · · · ·				1
		· · · · ·				1			-
	1								
					-/	· · · · · · · · · · · · · · · · · · ·			
					1			-	+
		2			/				
	B			/					
	-			/					
	-	-	1	1					-
	-			/				-	-
			/	-				-	-
						4			
-	-	-	1				1	1	
			/					1 -	-
-		/	1					-	-
		/	0						
		/				·			
	1	r							
	/	1	1		-			1	
	1				-			+	
L	1			-	-			1	
/		-						-	

JACOBS **Groundwater Sampling Data Sheet** Well ID **Project Number** Site Name Event Monitoring 2019 MW -41 FAI FGAS20U ADOT DP GW PID Readings of Total VOCs (ppm) Weather Conditions Date Sampler Initials Ambient Q. O Breathing Zone Q. O In Well Q. O Glarcas. Well Information Well Casing Material TOC Stickup (ft ags) Casing Diameter(in) / Gallons per linear foot(gal/ft) Well Integrity PVC SS 1/0.041 (2/0.163) 4/0.653 6/1.469 Poor (Good) Fair 0.40 Product Thickness (ft) and Volume Recovered (mL) Depth to Product (ft) Depth to GW (ft btoc) Total Depth of Casing (ft btoc) 5 .8 1 (final) A 1 Max purge volume (3 well casing volumes) = [previous¹ total depth of casing (ft) - (depth to water[GW table well] or top of filter pack[submerged well] (ft)] * gallons per linear foot of casing * 3 Max Purge Volume = $(15.7)^{+} ft - (5.21)^{+} ft - (5.21)^{+} ft - (5.21)^{+} ft$ gal/ft + 8 = 3, 44 gal + 3.785 L/gai = 13.77 L SHOW WORK Well Purging Information Start Time Finish Time Depth of Tubing (ft btoc) Equipment Used for Purging 1540 9 Peristaltic Pump Submersible Pump Bailer 5 -1 101 Meter Used During Purging Odor Purged Dry Color <u>Sheen</u> Moderate Yes Clear Cloudy Brown None Yes **YSI Multi Meter** Hach Turbidimeter (No) No Faint Strong Other: Vellow hint Purging reached: Stability Max Vol. Treated Stored Other Note: Purge water was: Acceptable Range to Demonstrate Stability Volume (Gallons or Liters) ± 10% or 0.2 mg/L Drawdown < 0.3 Time ±0.2 °C ± 3% ±0.1 ± 10 mV ± 10% or ±1 NTU whichever is greater ft (HH:mm) pH (std units) Conductivity ORP Turbidity Water Level Temperature DO Change Total (°C) (µS/cm) (mg/L) (mV) (NTU) (feet btoc) 018 10 9.2 3.00 34 L C 42 U 4D 901 2 c \mathcal{O} 026 98 5 0 3 6 2 5 0 C0 C n 3 2 5 2 0 Э 3 3 C 0 2 9 0 Sample Collection Information

Start Time	1045 /12;11	-19 Depth of Tubing (ft btoc) 9.27	Peristaltic Pump Submersible Pum	P
SAMPLE ID: MDPS-	MW40 - GN/61	A QC: OUP MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = N/A	
Container/Press	ervative	Analysis Requested Benzene, DCE, trans- PCE, TCE, VC	Notes DCF,	

Suggested Notation:

"----" = not measured "1" = stable "+" = rising "-" = falling "*" = all parameters stable

	Δ	C	0	B	C
J	4	6	\mathbf{v}		\mathbf{c}

	Site	Name	1		<u>Event</u>	1.		<u>eli ID</u>	Project Nur	
ADOT	FAI	DP		2019	6W Mon	Johng	MN	- 40 ate	SF6AS Sampler In	520
						0			10 B 10 C	uals
-								-19	TL/JK	-
	Vol	ume	Sec. 1	(Conspillantifit)	Acceptable Ra	nge to Demons	trate Stability	10-1-0-0		1
Time (HH:mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	± 10% or 0.2 mg/L (whichever is greater)	± 0.1	± 10 mV	± 10% or ±		
(,	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbid (NTU	ity Water (feet t	Level
			10/	morenit	(ingres/	(dia arma)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ hour	1
<u>e 16-6</u>					1			1	- /	
_					-			1		
		-			+ +			+	1	
		-			+ +			1		
					+ +			1/		
_								/		
								1		
							/			
					1		/			
		-				/				
	-					- / -		-		
	-				+	-/		-		
	-	-			+ +	/		-		
	-							-		_
	1									
	1									
										5 - 5 h
100		S		/	1 1			1		Sile
				1	1			1		
	1			/	+ +			+	-	
		-		/	+					
		-	/		+ +			-	_	
			-/					-		
	1			L						
								1		
		/	1							
		1								
	1	/-								
	/									
	1							-		
	1	-	-					-		
_/	-		-					-		
1	-						· · · · ·	-		
1										

Ground	water Sam	pling Data S	Sheet	3 (S				JA	COBS
1000	Site Name				Event		Wel	22.0	oject Number
AD	OT FAT	DP	20	19 6	N Mo	MW-3	9 49	W39	
1	Weather Cond	tions	E	ID Readings	of Total VO	Da	Date Sampler Initials		
OVA	reast, ~	20°F	Ambient 🛴). O_Breathi	ng Zone 🥖 🌔	2 12/1	1/19 1	YK	
	, ,			Well In	formatio		· · · ·		
Well	Integrity	TOC Stickup	(ft ags)	Well Ca	sing Material	Casing	Diameter(in) / C	Gallons per linea	r foot(gal/ft)
Good	Fair Poor	-0.5	8	PV) SS	1/0	041 0.16	4 / 0.653	6 / 1.469
Depth to	Product (ft)	Depth to GW	(ft btoc)	Total Depth	of Casing (R bto	c) Product	Thickness (ft) a	and Volume Rec	overed (mL)
	-	7.04		01	9 (fina				
Max purge vo		ising volumes = foot of casing * 3							k[submerged
SHOW WC	RK Max P	foot of casing * 3 urge Volume = (16.50 + n	- 7.14	ft) +6	} gal/ft + =	1.62 gal + 3.	785 L/gal =	! <u>5</u> (_
			We	II Purgi	ng Inforr	nation			
Sta	rt Time	Finish T	ime		Fubing (ft bto			Used for Purgin	-
105	<u>4-1109</u>	Odo	<u>y</u>	Sheen	1 Purged I	Bailer		During Purging	
	<u>Color</u> udy Brown		L Ioderate	Yes	Yes			TPW	-
Other:	ady brown		Strong		No		SI Multi Meter	Heeh Turbi	timeter
Purging rea	ached: Stabilit	Max Vol. P	urge water v	vas Treate	nored C	ther Note:			
Carl State	Volume			Acc	eptable Rar	nge to Demons	trate Stability		11
Time (HH:mm)	(Gallons Lite	± 0.2 °C	± 35		% or 0.2 mg/L ever is greater)	±0.1	± 10 mV	± 10% or ±1 NTU	Drawdown < 0.3 ft
(" d hanny	Change To	tal Temperatur	e Conduc (µS/c	tivity	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet btoc)
1059	Start								
1107	1281	25 2 200	133	1 1	22	7161	- 81.21	24.33	841
	0 25 14	50 2110	126	8	25	115	- 85 10	lasi	817
1110	0.000	0 0.40	120	8	112	16	- 88 M	19.02	018
	shu a.	U d.I.F	1.	51-1	13	TIDE	-10, 2	11.00	-110
DA	npua.	Paran	utes	Sme	24				-
					<u> </u>				
				1.2				+	
					_				
					_				
					-				

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
115	1120 /12-11-1	9 10.10	Peristaltic Pump Submersible Pump
SAMPLE ID: 19005	MN39-6W	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) =
Container/Pres		alysis Requested	Notes
3x 40 m	IL VOA/HCI B	enzeru, VC, DCE, DONS-DCE, PCE, TCE	
C.		(())))))))	

Suggested Notation:

l

ļ

"-----" = not measured "*/"= stable "+" = rising "+" = falling "*" = all parameters stable

JACOBS

	Site	<u>Name</u>			Event		We		roject Number
FDO	T FA	I DH)	2019	SW Mon	itonina	mw.	-39 5	FGAS200
1100)	Da	ate S	F6A5200 ampler Initials
						\bigcirc	12/11		LIDE
-	1	-			Assessable Da	nge to Demons			100
Time	Volu (Gallops	or Liters)				1	and the second se		Drawdown < 0.3
(HH:mm)			± 0.2 °C	± 3%	± 10% or 0.2 mg/L (whichever is greater)	± 0.1	± 10 mV ORP	± 10% or ±1 NTU	ft Water Level
	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	(mV)	Turbidity (NTU)	(feet bloc)
-								1.	
-	1							1	
	·							<u> </u>	
							/		
							/		
							/		
		-					/		
	-				+ +			1	1
-									-
	-					- /			-
						/			
	1								
	1	-	-						1
-	-				- /				1
								100200 gr	
					/				
								1	
				/	1				
	-								
				-/-				1	1
	-			/		2			1
	-			/					+
			/	(
			1		1 1				1
	1	-	/		+ +		-	-	+
	-							-	1
		/	1					-	-
		/							
		/							
	1	[
-	1/	-	-						-
	/				-			-	
			-					-	
1	1			·					
1									

	Site I	Name				<u>Event</u>	We	IIID Pr	oject Number		
ADOT	FATT	DP		2019 OW Man			Mah	1-3451	-6A520		
	Weather	Conditions		PID Readings of Total VOCs (ppm)				Da	ate <u>Sa</u>	ampler Initials	
OVER	cast	~200	F I	Ambient 0	0 Breathi	ing Zone 🧕	In Well	0 12/11/19 TE/JK			
0.111	1				Well In	formati	on	- 1		· ·	
Well	Integrity		TOC Stickup (ft	ags)	Well Ca	sing Materia	Casing	Diameter(in) /	Gallons per linea	r foot(gal/ft)	
Good	Fair P	oor	-0.3	0	PV	c) ss	1/0	0.041 2/0.16	3 4 / 0.653	6 / 1.469	
Depth to	Product (I	<u>u</u> (1	Depth to GW (ft	btoc)		of Casing (ft bt	oc) Produc	t Thickness (ft)	and Volume Reco	overed (mL)	
1	V/P		8.40		13.30			Nļŀ	t		
ax purge v ell] (ft)] + q	allone nor l	inear foot	of casing + 3				_		or top of filter pac		
SHOW WO	NGK 1	Aav Purne	Volume = (13)	72.	8.40	m + 0.16	$3 \operatorname{cal/ft} + 1 = 3$.785 L/gal = <u>9</u> .5	85	
		nax i uige	Volume - (1-			ng Infor		gui o			
Sta	rt Time		Finish Time			Tubing (ft bto		Equipment	Used for Purging	1	
1203	3		1210		91	40	Baile		Pump Submer		
\sim	Color		Odor		<u>Sheen</u>	Purged	Dry	Meter Use	d During Purging	l	
Clear) Clo Other:	udy Brow	n	None Mod Faint Stre	erate	Yes	Yes	1	SI Multi Meter	Hack Turbic	limeter,	
	1.1.6			-						_	
Purging rea	ached: St	ability Ma	ax vol. Purg	e water wa		-	Other Note:	and the second			
		ume		a sha dhan		ceptable Ra % or 0.2 mo/L	nge to Demons	webs-participation		Drawdown < 0	
Time (HH:mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	(which	ever is greater)	± 0.1	± 10 mV ORP	± 10% or ±1 NTU	ft Water Level	
4		Tabal	Temperature	Conduct		DO	pH	URF	Turbidity		
	Change	Total	(°C)	(µS/cn	n)	(mg/L)	(std units)	(mV)	(NTU)	(feet bloc)	
1203	Change	art p	(°C)	(µS/cn	n)	(mg/L)		(mV)	(NTU)	(reet bloc)	
1203	Change 57 1.25	art p 1.25		(µS/cn	n) 7 - 2	(mg/L) 2, 23		(mV) 14.3	(NTU) 24.80	8.56	
1703 1206 1209	Change 57 1.25 0.50	art p 1.25 1.75		(µS/on	7-6	(mg/L) 2, 23 . 38 v		(mV) 14.3 22.3 r	(NTU) 24.80 12.01	8.56 8.55	
1703 1206 1206 1209	57 1.25 0.50	art p 1.25 1.75 2.25		(µS/on	n) 7- 6 8- 1 1- 1	2.23		14.3	(NTU) 24.80 12.01 6.83	8.56 8.55 8.56	
1203 1205 1209 1212	57 1.25 0.50 0.50	art p 1.25 1.75 2.25		(µS/on	n) 7- 2 8- 1 1- 1 7- 1	2.23	(std units) 7.04 7.00 6.98	14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.55 8.56 8.56	
1203 1206 1209 1212 1212	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4' 5' 5'	n) 7- 2 8- 1 1- 1 7- 1	2.23 .38~ .34~		14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.56 8.56 8.56	
1203 1205 1209 1212	57 1.25 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75		(µs/en 3 4 5 5 5	7-2 8-1 7-1 7-1 bla	2.23 .38~ .34~	(std units) 7.04 7.00 6.98	14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.55 8.56 8.56	
1203 1205 1209 1212 1212	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4' 5' 5' 5	n) 7- 2 8- 1 1- 1 7- 1 bla	2.23 .38~ .34~	(std units) 7.04 7.00 6.98	14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.56 8.56	
1203 1205 1209 1212 1212	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4 5 5 5	n) 7- 2 8- 1 7- 1 7- 1 bla	2.23 .38~ .34~	(std units) 7.04 7.00 - 6.98 - 6.97 -	14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.55 8.56 8.56	
1203 1206 1209 1212 1212	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4' 5' 5' 5	n) 7	2.23 .38~ .34~	(std units) 7.04 7.00 - 6.98 - 6.97 -	14.3	(NTU) 24.80 12.01 6.83 4.08	(rest Dicc) 8.56 8.56 8.56	
1203 1206 1209 1212 1212 1215	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4 5 5 5	n) 7 2 8- 1 1- 1 7- 1 bla	2.23 .38~ .34~	(std units) 7.04 7.00 - 6.98 - 6.97 -	14.3	(NTU) 24.80 12.01 6.83 4.08	8.56 8.56 8.56	
1203 1206 1209 1212 1212 1215	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en 3 4' 6' 6' 5	n) 7	2.23 .38~ .34~	(std units) 7.04 7.00 - 6.98 - 6.97 -	14.3	(NTU) 24.80 12.01 6.83 4.08	(rest Dicc) 8.56 8.56 8.56	
1203 1206 1209 1212 1212 1215	57 1.25 0.50 0.50 0.50	art p 1.25 1.75 2.25 2.25 2.75	urge 3.69 3.91 4.03 4.11	(µs/en	n) 7 2 8- 1 1- 1 7- 1 bla	2.23 .38~ .34~	(std units) 7.04 7.00 - 6.98 - 6.97 -	14.3	(NTU) 24.80 12.01 6.83 4.08	(rest Dicc) 8.56 8.56 8.56	

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1216	1219 112-11-19	9.40	Peristaltic Pump Submersible Pump
SAMPLE ID: 19 DPS	-MW34 6W	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = N/A
Container/Prese		alysis Requested	Notes
3x 40mLV	NA/HCI BU	nzene, NC, DCE,	
JA IOINCY	the	NS-DEE, PCE, TEE	
		- · · · · · · · · · · · · · · · · · · ·	

Suggested Notation:

F

JACOBS

ADOT FAT DP			Site Name DOT FAI DP 2019 GW Montannu					-34 SP	GAS200					
						U	12	$\frac{\text{ate}}{11} \frac{\text{Sa}}{7}$	$\frac{mpler nitials}{2}$					
	Volu	ma		Acceptable Range to Demonstrate Stability										
Time (HH:mm)	(Gallons	or Liters)	± 0.2 °C	± 3%	± 10% or 0.2 mg/L (whichever is greater)	± 0.1	± 10 mV	± 10% or ±1 NTU	Drawdown < 0.3 ft					
	Change	Total	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	Water Level (feet bloc)					
			-	_				1						
								-/-						
							U.	1						
							_/							
							/							
						/								
_					-	-/-								
				-		/	+							
					/									
		_			/			-						
				/	1									
				/										
				/										
	-													
		-	-/											
			/											
		/												
		1												
		/						-						
	-/-	2	-		-									
	1													
/	1													
/				D										
<		_												

2

JACOBS

Site Name Event Well ID Project Num							Project Number					
ADO	FAI	DP		2019	6	W	Mmi	toring	mh	MW-11R SFE		
		Conditions			D Rea	dings o	f Total VO	Cs (ppm)		Date	Sampler Initials	
clear,	dark;	-10°F	1	Ambient <u>0</u>	<u>.</u> В	reathing	Zone 🦪 . (In Well <u>(</u>	0 21	219	TL/JR	
		200 - 12-					ormatio					
	Integrity		TQC Stickup (ft		We	1	ng Material		ing Diameter(in)			
Good	Fair Po	oor	-0.41			PVC	SS	1	/ 0.041 2 / 0.1	63 4 / 0.653	6 / 1.469	
Depth to	Product (f	<u>υ</u> [Depth to GW (ft	btoc)	Total E	Depth of	Casing (ft bto		luct Thickness (f	t) and Volume I	Recovered (mL)	
IV	A			wievet tet	3-	90	(fin)	·		or top of filter	pack[submerged	
	llana nar li	inner fact .	of opping + 2					-				
SHOW WO	RK N	lax Purge	Volume = $(\frac{34}{34})$	<u>(15 m</u>	- 9.2	<mark>2</mark> ft)	0.16	3gal/ft + 8 =	12.20 gal .	3.785 L/gal = _	46.18 1	
							Infor					
1	rt Time		Finish Time				bing (ft bto	<u>ec)</u>		nt Used for Pur		
1032	2		1057	-	01	10.	L Durrant			c Pump Subi	mersible Pump	
	<u>Color</u> udv. Brow		<u>Odor</u> None Mod	erate	She Vi	en es	Purged Yes					
Clear Clo Other:	uuy brow	"		ong	-	es es	Ng	(YSI Multi Mete	r Hach ₹	urbidimeter	
Purging rea	ached; Sta	ability Ma	ax Vol. Purg	le water w	as: Tr	eated /	Stored C	ther Note:				
5.0.5		-			il.	-		1 M M A M A	onstrate Stabilit	y		
Time	Volu (Gallons		±0.2 °C	± 3%		± 10%	r 0.2 mg/L	±0.1	± 10 mV	± 10% or ±1	NTU Drawdown < 0.3	
(HH:mm)	Change	Total	Temperature	Conduc	tivity	1000	er is greater) DO vg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	ft Water Level (feet btoc)	
035	15	0.55	(°C)	(µS/ci	1-	2	0	10.97	- 10 C	322	922	
628	0.50	100	2.02	980	-	2.	15	6.98	-231	40.20	1974	
000	ASI	15	Dist	100	7.1	2.	17.1	700	-291	228	7 9.20	
	0.50	1.0	207	1/2)	2	22.	7.0	444	177	9922	
1044	0.30	3.0	3.0+	100	A.	1	22.1	101	1-68 10	12 7	1 9 21	
ICUT	0.75	2.13	3.36	104		1	IV	1.01	50.0	12.2	- 1.27	
1050	OS	3.23	2.44	105	44		00	1.05	10,0	40.50	0 7.22	
1053	0.75	4.0	349	105	20	-1.	84 1	1.00	1-68.1	6.10	1 1.25	
1056	0.5	45	3.46	100	Itu		864	+00	7-70.1	2.6	2 4.22	
Par	ame	trs	Stabl	2		_						
	-			-								
		110			le Co	ollec	tion In	formatio	on	24 - 24 - L		
Sta	art Time	T	Finish Time /	Date	Dep	th of Tu	ibing (ft bt		Equipme	nt Used for San	is in the d	
103	F			2-12-19		10	5	_			ible Pump	
SAMPLE			nWIIR - 1				MS/MSD	Ferro	us Iron (Fe ²⁺) (m		<i>A</i>	
	<u>Containe</u>	r/Preserva			alysis I			Tak	<u>I</u>	lotes		
~								LZ Black				
3	$\times 40$	mL-Vi	OA/IK!	K	nal	ne, v	C, PCE, N-DC	1CZ)				

Suggested Notation:

Site Name A DOT FAI DP				0.440	Event	V	We	Well ID Project Number W - 11 R 5F6A521 Date Sampler Initia -/12/19 TL/DR				
AD	07 F-A	IL DI		2019	Giv mo	nitorng		1-11- 5f	-6AJ200			
								2/19 7				
-					A				101-			
Time		ume or Liters)	±0.2 °C	Acceptable Range to Demonstrate Stability *C ± 10% or 0.2 mg/L ± 0.1 ± 10 mV ± 10% or ±1 NTU Drawd								
(HH:mm)				± 3% Conductivity	± 10% or 0.2 mg/L (whichever is greater) DO	Contract States of Contract Stat	ORP		ft Water Level			
1	Change	Total	Temperature (°C)	(µS/cm)	(mg/L)	pH (std units)	(mV)	Turbidity (NTU)	(feet,bloc)			
		-						-				
		-						- /				
	i contrata							-/				
								/				
							/	1				
							/					
							/					
						/						
								1				
-												
					/			+				
					K I			-				
	-											
			-			1		-	-			
				/								
			A									
			/					-				
		/	1						· · · ·			
		/										
		/										
	/											
	1											
	/											
1	1											
-/												
	-							-				
						· · · · · · · · · · · · · · · · · · ·			L			

2

APPENDIX E ADEC Checklist

Laboratory Data Review Checklist

Completed By:

Kari Hagen

Title:

Chemist

Date:

2/04/2019

Consultant Firm:

Jacobs

Laboratory Name:

SGS

Laboratory Report Number:

1199994

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

ADEC File Number:

100.38.188

Hazard Identification Number:

1923

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes No N/A Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes No N/A Comments:
	SGS of Anchorage, AK performed all of the analyses.
<u>C</u>	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	$ Yes \boxtimes $
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
L	aboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \boxtimes No \square N/A \square Comments:
	Fairbanks temperature was 1.0°C Anchorage temperature was 1.5°C
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

No discrepancies were noted on the cooler receipt form.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

No discrepancies were noted on the cooler receipt form.

e. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

QC failures are discussed in the relevant sections of this checklist.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

Corrective actions were not necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The data quality and usability were not affected.

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this project.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

The data quality and usability were not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

No results were affected.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No results were affected.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals/Inorganics were not requested.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \square Comments:

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \square Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \square No \boxtimes N/A \square Comments:

SW8260: Surrogate, 1,2-Dichloroethane-D4 was recovered high in sample 19DPS-MW34-GW.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \boxtimes N/A \square Comments:

The associated sample results were not qualified because they were nondetect.

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

iv. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Commer	its:
---	------

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

All TB results were nondetect.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

One field duplicate was submitted with 6 primary samples.

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The following field duplicate was submitted with this SDG: **Primary/Duplicate ID:** 19DPS-MW40-GW/19DPS-MW40-GWA

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

RPDs were only evaluated if at least one result in the duplicate pair was greater than the LOD. If one result was non-detect, the LOD value was used to calculate the RPD.

All RPDs were less than 30 percent.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Data quality and usability were not affected.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \boxtimes N/A \square Comments:

Only disposable sampling equipment or lab glassware were used for sample collection.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

N/A

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A

Laboratory Report Date:

12/19/2019

CS Site Name:

2019 Drainage Pond Groundwater Monitoring

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

APPENDIX F Lab Report

Laboratory Report of Analysis

To: Jacobs Technology Inc. 794 University Ave #201 Fairbanks, AK 99709

Report Number: **1199994**

Client Project: ADOT FAI Drainage Pond SiteGWM

Dear Kari Hagen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Justin Nelson

17:13:23 -09'00'

2019.12.19

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 12/19/2019 2:38:14PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Jacobs Technology Inc. SGS Project: 1199994 Project Name/Site: ADOT FAI Drainage Pond SiteGWM Project Contact: Kari Hagen

Refer to sample receipt form for information on sample condition.

19DPS-MW34-GW (1199994006) PS

8260C - Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria. The analytes associated with this surrogate were not reported above the LOQ.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 12/19/2019 2:38:16PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which ir All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. integrated per SOP.

Print Date: 12/19/2019 2:38:18PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary											
Client Sample ID	Lab Sample ID	Collected	Received	Matrix							
19DPS-MW38S-GW	1199994001	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW38D-GW	1199994002	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW40-GW	1199994003	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW40-GWA	1199994004	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW39-GW	1199994005	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW34-GW	1199994006	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-MW11R-GW	1199994007	12/12/2019	12/13/2019	Water (Surface, Eff., Ground)							
19DPS-TB01	1199994008	12/11/2019	12/13/2019	Water (Surface, Eff., Ground)							

Method SW8260C Method Description

Volatile Organic Compounds(W)Custom List

Print Date: 12/19/2019 2:38:19PM

Detectable Results Summary

Client Sample ID: 19DPS-MW38S-GW			
Lab Sample ID: 1199994001	<u>Parameter</u>	Result	Units
Volatile GC/MS	Benzene	2.39	ug/L
	cis-1,2-Dichloroethene	250	ug/L
	Tetrachloroethene	3.05	ug/L
	trans-1,2-Dichloroethene	2.16	ug/L
	Trichloroethene	0.580J	ug/L
	Vinyl chloride	1.86	ug/L
Client Sample ID: 19DPS-MW38D-GW			
Lab Sample ID: 1199994002	Parameter	Popult	Units
Volatile GC/MS	cis-1,2-Dichloroethene	<u>Result</u> 11.6	ug/L
volatile GC/WS	Trichloroethene	0.312J	ug/L
	manoroethene	0.0120	ug/L
Client Sample ID: 19DPS-MW40-GW			
Lab Sample ID: 1199994003	Parameter	<u>Result</u>	<u>Units</u>
Volatile GC/MS	Benzene	1.10	ug/L
	cis-1,2-Dichloroethene	863	ug/L
	Tetrachloroethene	5.61	ug/L
	trans-1,2-Dichloroethene	9.09	ug/L
	Trichloroethene	2.27	ug/L
	Vinyl chloride	2.67	ug/L
Client Sample ID: 19DPS-MW40-GWA			
Lab Sample ID: 1199994004	Deremeter	Deput	Linita
Volatile GC/MS	<u>Parameter</u> Benzene	<u>Result</u> 1.02	<u>Units</u> ug/L
volatile GC/MS	cis-1,2-Dichloroethene	797	ug/L
	Tetrachloroethene	6.08	•
	trans-1,2-Dichloroethene	8.42	ug/L
	Trichloroethene	2.45	ug/L
			ug/L
	Vinyl chloride	2.50	ug/L
Client Sample ID: 19DPS-MW39-GW			
Lab Sample ID: 1199994005	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	Benzene	0.548	ug/L
	cis-1,2-Dichloroethene	64.1	ug/L
	trans-1,2-Dichloroethene	3.17	ug/L
	Trichloroethene	0.852J	ug/L
	Vinyl chloride	1.74	ug/L
Client Sample ID: 10000 MW/440 CW			-
Client Sample ID: 19DPS-MW11R-GW Lab Sample ID: 1199994007	Devenueter	D 14	11
-	Parameter	Result	Units
Volatile GC/MS	Benzene	1.28	ug/L
	cis-1,2-Dichloroethene	1770	ug/L
	Tetrachloroethene	13.5	ug/L
	trans-1,2-Dichloroethene	17.3	ug/L
	Trichloroethene	7.40	ug/L
	Vinyl chloride	4.91	ug/L

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 19DPS-MW38S-GW

Client Sample ID: **19DPS-MW38S-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994001 Lab Project ID: 1199994 Collection Date: 12/11/19 08:56 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-38S

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	2.39	0.400	0.120	ug/L	1		12/18/19 18:07
cis-1,2-Dichloroethene	250	10.0	3.10	ug/L	10		12/18/19 19:52
Tetrachloroethene	3.05	1.00	0.310	ug/L	1		12/18/19 18:07
trans-1,2-Dichloroethene	2.16	1.00	0.310	ug/L	1		12/18/19 18:07
Trichloroethene	0.580 J	1.00	0.310	ug/L	1		12/18/19 18:07
Vinyl chloride	1.86	0.150	0.0500	ug/L	1		12/18/19 18:07
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		12/18/19 18:07
4-Bromofluorobenzene (surr)	98	85-114		%	1		12/18/19 18:07
Toluene-d8 (surr)	96	89-112		%	1		12/18/19 18:07

Batch Information

Analytical Batch: VMS19727 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/18/19 18:07 Container ID: 1199994001-B

Analytical Batch: VMS19727 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/18/19 19:52 Container ID: 1199994001-B Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 19DPS-MW38D-GW

Client Sample ID: **19DPS-MW38D-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994002 Lab Project ID: 1199994 Collection Date: 12/11/19 09:40 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-38D

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		12/16/19 19:47
cis-1,2-Dichloroethene	11.6	1.00	0.310	ug/L	1		12/16/19 19:47
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:47
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:47
Trichloroethene	0.312 J	1.00	0.310	ug/L	1		12/16/19 19:47
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/16/19 19:47
Surrogates							
1,2-Dichloroethane-D4 (surr)	116	81-118		%	1		12/16/19 19:47
4-Bromofluorobenzene (surr)	98.5	85-114		%	1		12/16/19 19:47
Toluene-d8 (surr)	97.8	89-112		%	1		12/16/19 19:47

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 19:47 Container ID: 1199994002-A Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

J flagging is activated

Results of 19DPS-MW40-GW

Client Sample ID: **19DPS-MW40-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994003 Lab Project ID: 1199994 Collection Date: 12/11/19 10:40 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-40

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	1.10	0.400	0.120	ug/L	1		12/16/19 20:02
cis-1,2-Dichloroethene	863	20.0	6.20	ug/L	20		12/18/19 20:07
Tetrachloroethene	5.61	1.00	0.310	ug/L	1		12/16/19 20:02
trans-1,2-Dichloroethene	9.09	1.00	0.310	ug/L	1		12/16/19 20:02
Trichloroethene	2.27	1.00	0.310	ug/L	1		12/16/19 20:02
Vinyl chloride	2.67	0.150	0.0500	ug/L	1		12/16/19 20:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	109	81-118		%	1		12/16/19 20:02
4-Bromofluorobenzene (surr)	97.6	85-114		%	1		12/16/19 20:02
Toluene-d8 (surr)	98.8	89-112		%	1		12/16/19 20:02

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 20:02 Container ID: 1199994003-A

Analytical Batch: VMS19727 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/18/19 20:07 Container ID: 1199994003-B Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

J flagging is activated

Results of 19DPS-MW40-GWA

Client Sample ID: **19DPS-MW40-GWA** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994004 Lab Project ID: 1199994 Collection Date: 12/11/19 10:40 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-40

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	1.02	0.400	0.120	ug/L	1		12/16/19 20:16
cis-1,2-Dichloroethene	797	20.0	6.20	ug/L	20		12/18/19 20:22
Tetrachloroethene	6.08	1.00	0.310	ug/L	1		12/16/19 20:16
trans-1,2-Dichloroethene	8.42	1.00	0.310	ug/L	1		12/16/19 20:16
Trichloroethene	2.45	1.00	0.310	ug/L	1		12/16/19 20:16
Vinyl chloride	2.50	0.150	0.0500	ug/L	1		12/16/19 20:16
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		12/16/19 20:16
4-Bromofluorobenzene (surr)	98.6	85-114		%	1		12/16/19 20:16
Toluene-d8 (surr)	98.8	89-112		%	1		12/16/19 20:16

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 20:16 Container ID: 1199994004-A

Analytical Batch: VMS19727 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/18/19 20:22 Container ID: 1199994004-B Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 19DPS-MW39-GW

Client Sample ID: **19DPS-MW39-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994005 Lab Project ID: 1199994 Collection Date: 12/11/19 11:15 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-39

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Limits	Date Analyzed
Benzene	0.548	0.400	0.120	ug/L	1		12/16/19 20:31
cis-1,2-Dichloroethene	64.1	1.00	0.310	ug/L	1		12/16/19 20:31
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 20:31
trans-1,2-Dichloroethene	3.17	1.00	0.310	ug/L	1		12/16/19 20:31
Trichloroethene	0.852 J	1.00	0.310	ug/L	1		12/16/19 20:31
Vinyl chloride	1.74	0.150	0.0500	ug/L	1		12/16/19 20:31
Surrogates							
1,2-Dichloroethane-D4 (surr)	95.7	81-118		%	1		12/16/19 20:31
4-Bromofluorobenzene (surr)	97.2	85-114		%	1		12/16/19 20:31
Toluene-d8 (surr)	102	89-112		%	1		12/16/19 20:31

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 20:31 Container ID: 1199994005-A Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

J flagging is activated

Results of 19DPS-MW34-GW

Client Sample ID: **19DPS-MW34-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994006 Lab Project ID: 1199994 Collection Date: 12/11/19 12:16 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-34

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		12/16/19 20:46
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 20:46
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 20:46
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 20:46
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 20:46
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/16/19 20:46
Surrogates							
1,2-Dichloroethane-D4 (surr)	119 *	81-118		%	1		12/16/19 20:46
4-Bromofluorobenzene (surr)	97	85-114		%	1		12/16/19 20:46
Toluene-d8 (surr)	98.5	89-112		%	1		12/16/19 20:46

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 20:46 Container ID: 1199994006-A Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

J flagging is activated

Results of 19DPS-MW11R-GW

Client Sample ID: **19DPS-MW11R-GW** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994007 Lab Project ID: 1199994 Collection Date: 12/12/19 10:57 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-11R

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Benzene	1.28	0.400	0.120	ug/L	1		12/16/19 21:01
cis-1,2-Dichloroethene	1770	20.0	6.20	ug/L	20		12/18/19 20:37
Tetrachloroethene	13.5	1.00	0.310	ug/L	1		12/16/19 21:01
trans-1,2-Dichloroethene	17.3	1.00	0.310	ug/L	1		12/16/19 21:01
Trichloroethene	7.40	1.00	0.310	ug/L	1		12/16/19 21:01
Vinyl chloride	4.91	0.150	0.0500	ug/L	1		12/16/19 21:01
Surrogates							
1,2-Dichloroethane-D4 (surr)	114	81-118		%	1		12/16/19 21:01
4-Bromofluorobenzene (surr)	97.6	85-114		%	1		12/16/19 21:01
Toluene-d8 (surr)	97.2	89-112		%	1		12/16/19 21:01

Batch Information

Analytical Batch: VMS19727 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/18/19 20:37 Container ID: 1199994007-B

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 21:01 Container ID: 1199994007-A Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

40 -600

Results of 19DPS-TB01

Client Sample ID: **19DPS-TB01** Client Project ID: **ADOT FAI Drainage Pond SiteGWM** Lab Sample ID: 1199994008 Lab Project ID: 1199994 Collection Date: 12/11/19 08:00 Received Date: 12/13/19 08:58 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: 19DPS-TB01

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		12/16/19 19:02
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:02
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:02
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:02
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/16/19 19:02
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/16/19 19:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	118	81-118		%	1		12/16/19 19:02
4-Bromofluorobenzene (surr)	97.4	85-114		%	1		12/16/19 19:02
Toluene-d8 (surr)	96.6	89-112		%	1		12/16/19 19:02

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Analyst: NRB Analytical Date/Time: 12/16/19 19:02 Container ID: 1199994008-A Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:22PM

J flagging is activated

Method Blank

Blank ID: MB for HBN 1803163 [VXX/35325] Blank Lab ID: 1547060 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1199994002, 1199994003, 1199994004, 1199994005, 1199994006, 1199994007, 1199994008

Results by SW8260C				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	99.5	85-114		%
Toluene-d8 (surr)	95.9	89-112		%

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 12/16/2019 3:58:00PM Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:24PM

Anti-Foam Blank

Blank ID: AFB for HBN 1803163 [VXX/35325 Blank Lab ID: 1547063 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1199994002, 1199994003, 1199994004, 1199994005, 1199994006, 1199994007, 1199994008

Results by SW8260C

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 12/16/2019 11:01:00PM Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:24PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199994 [VXX35325] Blank Spike Lab ID: 1547061 Date Analyzed: 12/16/2019 16:14 Spike Duplicate ID: LCSD for HBN 1199994 [VXX35325] Spike Duplicate Lab ID: 1547062 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199994002, 1199994003, 1199994004, 1199994005, 1199994006, 1199994007, 1199994008

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Duplicate (ug/L)				
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Benzene	30	28.1	94	30	28.4	95	(79-120)	0.80	(< 20)
cis-1,2-Dichloroethene	30	24.5	82	30	25.7	86	(78-123)	5.00	(< 20)
Tetrachloroethene	30	27.8	93	30	27.9	93	(74-129)	0.46	(< 20)
trans-1,2-Dichloroethene	30	25.5	85	30	25.6	86	(75-124)	0.56	(< 20)
Trichloroethene	30	28.8	96	30	28.8	96	(79-123)	0.03	(< 20)
Vinyl chloride	30	25.0	83	30	25.1	84	(58-137)	0.44	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	104	104	30	102	102	(81-118)	2.70	
4-Bromofluorobenzene (surr)	30	103	103	30	103	103	(85-114)	0.08	
Toluene-d8 (surr)	30	101	101	30	101	101	(89-112)	0.03	

Batch Information

Analytical Batch: VMS19724 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: NRB Prep Batch: VXX35325 Prep Method: SW5030B Prep Date/Time: 12/16/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:25PM

Method Blank

Blank ID: MB for HBN 1803221 [VXX/35329] Blank Lab ID: 1547296 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199994001, 1199994004, 1199994007

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	U
Benzene	0.200U	0.400	0.120	ug
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/
Tetrachloroethene	0.500U	1.00	0.310	ug/l
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	99.6	85-114		%
Toluene-d8 (surr)	94.4	89-112		%

Batch Information

Analytical Batch: VMS19727 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: NRB Analytical Date/Time: 12/18/2019 2:52:00PM Prep Batch: VXX35329 Prep Method: SW5030B Prep Date/Time: 12/18/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/19/2019 2:38:28PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199994 [VXX35329] Blank Spike Lab ID: 1547297 Da@ 6nalt Aey: 12z1dz2/ 19 15:/ 7 Spike Duplica@ ID: LCSD for HBN 1199994 [VXX35329] Spike Duplica@ Lab ID: 154729d Ma@rix: Wa@er (Surface, Eff., Grouny)

QC for Samples: 1199994//1, 1199994//3, 1199994//4, 1199994//7

ResulOs bt SW8260C

		Blank Spike (ugzL)			Spike Dupli	ca0e (ugzL)			
Parame@er	<u>Spike</u>	<u>Resul0</u>	<u>Rec (%)</u>	Spike	<u>Resul0</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
BenAene	3/	32./	1/7	3/	31.5	1/ 5	(79812/)	1.7/	(- 2/)
cis81,28Dic <loroe0<ene< th=""><th>3/</th><th>3/ .2</th><th>1/ 1</th><th>3/</th><th>29.5</th><th>9d</th><th>(7d8123)</th><th>2.4/</th><th>(- 2/)</th></loroe0<ene<>	3/	3/ .2	1/ 1	3/	29.5	9d	(7d8123)	2.4/	(- 2/)
he0rac <loroe0<ene< th=""><th>3/</th><th>3/.4</th><th>1/ 1</th><th>3/</th><th>29.5</th><th>9d</th><th>(748129)</th><th>2.9/</th><th>(- 2/)</th></loroe0<ene<>	3/	3/.4	1/ 1	3/	29.5	9d	(748129)	2.9/	(- 2/)
0rans81,28Dic <loroe0<ene< th=""><th>3/</th><th>3/ .d</th><th>1/ 3</th><th>3/</th><th>3/.3</th><th>1/ 1</th><th>(758124)</th><th>1.d/</th><th>(- 2/)</th></loroe0<ene<>	3/	3/ .d	1/ 3	3/	3/.3	1/ 1	(758124)	1.d/	(- 2/)
hric <loroe0<ene< th=""><th>3/</th><th>31.1</th><th>1/4</th><th>3/</th><th>3/ .5</th><th>1/ 2</th><th>(798123)</th><th>2.//</th><th>(- 2/)</th></loroe0<ene<>	3/	31.1	1/4	3/	3/ .5	1/ 2	(798123)	2.//	(- 2/)
Vint I c <loriye< th=""><th>3/</th><th>25.4</th><th>d5</th><th>3/</th><th>25./</th><th>d3</th><th>(5d8137)</th><th>1.7/</th><th>(- 2/)</th></loriye<>	3/	25.4	d5	3/	25./	d3	(5d8137)	1.7/	(- 2/)
Surrogates									
1,2æic <loroe&aneæ4 (surr)<="" th=""><th>3/</th><th>9d.2</th><th>9d</th><th>3/</th><th>9T</th><th>9T</th><th>(d1811d)</th><th>2.2/</th><th></th></loroe&aneæ4>	3/	9d.2	9d	3/	9T	9T	(d1811d)	2.2/	
4&BromofluorobenAene (surr)	3/	1/1	1/ 1	3/	1/3	1/3	(d58114)	1.d/	
holuene8yd (surr)	3/	1/1	1/ 1	3/	99.9	1//	(d98112)	/ .97	

Batch Information

6 nalt 0cal Ba0c<: VMS19727 6 nalt 0cal Me0<oy: SW8260C Ins0umen0 VPA 780/5975 GC/MS 6 nalt s0 NRB Prep Ba0c<: VXX35329 Prep Me0coy: SW5030B Prep Da0ezhime: 12/18/2019 06:00 Spike Ini0W02/ol.: 3/ ugzL Ex0ac0Vol: 5 mL Dupe Ini0W02/ol.: 3/ ugzL Ex0ac0Vol: 5 mL

Prin0Da0e: 12z19z2/19 2:3d:3/PM

Collection	Site GWM					Cooler ID: Bill To:	NPDL Number: NA Report To: Jacobs						
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
19DPS-MW38S-GW	MW-38S	12/11/2019	0856	TL/JR	3	VOA	40mL	4°C, HCl	WG	SW8260B	DAC		Benzene, PCE, T DCE, trans-DCE, Vinyl Chloride
19DPS-MW38D-GW	MW-38D	12/11/2019	0940	TL/JR	3	VOA	40mL	4°C, HCl	WG	SW8260B	DAC	14 Day	Benzene, PCE, T DCE, trans-DCE, Vinyl Chloride
19DPS-MW40-GW	MW-40	12/11/2019	1040	TL/JR	3	VOA	40mL	4°C, HC1	WG	SW8260B	3AC	14 Day	Benzene, PCE, T DCE, trans-DCE Vinyl Chloride
19DPS-MW40-GWA	MW-40	12/11/2019	1040	TL/JR	3	VOA	40mL	4°C, HCl	WG	SW8260B	ØAC	14 Day	Benzene, PCE, T DCE, trans-DCE Vinyl Chloride
19DPS-MW39-GW	MW-39	12/11/2019	1115	TL/JR	3	VOA	40mL	4°C, HCl	WG	SW8260B	(G)AC	14 Day	Benzene, PCE, T DCE, trans-DCE Vinyl Chloride
19DPS-MW34-GW	MW-34	12/11/2019	1216	TL/JR	3	VOA	40mL	4°C, HCI	WG	SW8260B	GAC	14 Day	Benzene, PCE, T DCE, trans-DCE, Vinyl Chloride
19DPS-MW11R-GW	MW-11R	12/12/2019	1057	TL/JR	3	VOA	40mL	4°C, HC1	WG	SW8260B	()AC	14 Day	Benzene, PCE, T DCE, trans-DCE, Vinyl Chloride
19DPS-TB01	19DPS-TB01	12/11/2019	0800	TL/JR	3	VOA	40mL	4℃, HC1	WG	SW8260B	8 Ас _{тв}	14 Day	Benzene, PCE, T DCE, trans-DCE Vinyl Chloride
an and an erect			*										. <u>.</u>
Special Instructions:									\square	- / []]			
Relinquish By:	Signature/Printel Name	Her S	21- Čes	/Kari Hagen	luzis 1	12/12/2019 Date/Time 2/12/19	1630	Relinquish By: 430 Received By:	$\frac{1}{5} \frac{1}{60} \frac{1}{2} 1$	mm-	llejak	1	12/13/19 09:
~	Signature/Printed Name	and the second s				Date/Time			Signature/Printed Nam	°IFID	1.500		Date/Time

19 of 22

e-Sample Receipt Fo	rm
---------------------	----

000	e-Sam <u>r</u>	ole Receip	t Form					
262	SGS Workorder #:		1999	199994		99999	94	
Rev	iew Criteria	Condition (Yes			•	ted below		
Chain of	Custody / Temperature Require			I/A Exemption per	mitted if sam	pler hand carries/del	ivers.	
	Were Custody Seals intact? Note # & I		1F 1B					
	COC accompanied sa							
DOD: Were sa	Imples received in COC corresponding c			ire age, or for com	alog whore o	ailling is not required		
Temperatu	re blank compliant* (i.e., 0-6 °C afte			-		1.5 °C Therm. IE		
remperatu		Cooler ID:		@	°C Therm. IE			
If samples received without a te	lbe	Cooler ID:		@	°C Therm. IE	_		
documented instead & "COOLER TE be not	nilled" will	Cooler ID:		@	°C Therm. IE	_		
		Cooler ID:		@	°C Therm. ID):		
* <i>lf</i> >6°(C, were samples collected <8 hours	ago? N/A					_	
								
	If <0°C, were sample containers ice	e free? N/A						
	rs received at non-compliant temper se form FS-0029 if more space is no							
0	se form FS-0029 If more space is h	eeded.						
Holding Time / Do	ocumentation / Sample Condition Re	equirements	Note: Refer t	to form F-083 "Sample	e Guide" for sp	ecific holding times.		
W	ere samples received within holding	g time? Yes						
			Ĩ					
	** (i.e.,sample IDs,dates/times colle	· · ·	4					
	er <1hr, record details & login per Co							
	ntainers differs from COC, SGS will default to C							
	ear? (i.e., method is specified for an tiple option for analysis (Ex: BTEX, N		4					
	···· · ·······························	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
			N	I/A ***Exemption p	ermitted for	metals (e.g,200.8/60	20A).	
Were proper containers	(type/mass/volume/preservative***)used?	1					
		· <u> </u>	Ĩ					
	<u> Volatile / LL-Hg Req</u>							
	i.e., VOAs, LL-Hg) in cooler with sar							
	s free of headspace (i.e., bubbles ≤ 0							
	oil VOAs field extracted with MeOH-							
Note to Clien	nt: Any "No", answer above indicates nor	n-compliance	with standa	rd procedures and	may impact	data quality.		
	Additiona	al notes (if a	applicable):				

-

000		e-Sampl <u>e Receipt Form FBK</u>							
SGS	-	SGS Workorder #:	1199994		94	1199994			
	Review Crite	ria	Condition (Ye	es, No, N/A	Exce	ptions	Noted belo	w	
<u>Chai</u>		/ Temperature Requi			Exemption per	mitted if	sampler hand	carries/deliv	vers.
	Were Cust	tody Seals intact? Note # &	location N/	A					
		COC accompanied sa							
DOD: We	ere samples recei	ived in COC corresponding of							
_		**Exemption permitted if						-	
Temp	erature blank co	ompliant* (i.e., 0-6 °C afte	er CF)?		Rolling In the D			Therm. ID:	D65
If complete received with		ank the "easier temperature" will		Cooler ID:		@		Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch be noted if neither is available.				Cooler ID:		@		Therm. ID:	
				Cooler ID:		@	-0	Therm. ID:	
*1	It >6°C were so	mples collected <8 hours	2002	_					
	r >0 0, were sa	imples collected <o mours<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></o>							
	If <0°C . ₩	ere sample containers ice	free?						
	ii 30 0, we			┥					
Note: Identify con	tainers received	at non-compliant tempe	rature .						
		S-0029 if more space is n							
		on / Sample Condition R		- 0	r to form F-083 "Sa	ample Gu	uide" for specif	ic holding ti	nes.
		nple IDs,dates/times colle		C					
		cord details & login per C							
		s from COC, SGS will default to (
were samples	s in good conditi	ion (no leaks/cracks/brea	kage)?	s					
Were analytical reques	sts clear? (i.e., ı	method is specified for ar	nalyses						
		for analysis (Ex: BTEX, I	Metals)						
Woro Trip Bla	nka (i.a. VOAa	, LL-Hg) in cooler with sa	Ye						
		adspace (i.e., bubbles ≤							
		ield extracted with MeOH							
		vas RUSH/Short HT emai							
		, answer above indicates no			rd procedures and	may imm	act data qualit	'V	
						indy inp		.y.	
		Additiona	al notes (if	applicable):				
SGS Pro	filo #	3651	05		365	510	5		
	$m \in \pi$	5051	00		000		9		
								-	

Sample Containers and Preservatives

<u>Container Id</u>	Preservative	Container Condition	<u>Container Id</u>	Preservative	<u>Container</u> Condition
1199994001-A	HCL to pH < 2	ОК			
1199994001-B	HCL to pH < 2	OK			
1199994001-C	HCL to $pH < 2$	ОК			
1199994002-A	HCL to $pH < 2$	ОК			
1199994002-B	HCL to $pH < 2$	OK			
1199994002-C	HCL to $pH < 2$	ОК			
1199994003-A	HCL to $pH < 2$	ОК			
1199994003-B	HCL to $pH < 2$	ОК			
1199994003-C	HCL to $pH < 2$	ОК			
1199994004-A	HCL to $pH < 2$	ОК			
1199994004-B	HCL to $pH < 2$	ОК			
1199994004-C	HCL to $pH < 2$	ОК			
1199994005-A	HCL to $pH < 2$	ОК			
1199994005-B	HCL to $pH < 2$	ОК			
1199994005-C	HCL to $pH < 2$	ОК			
1199994006-A	HCL to $pH < 2$	ОК			
1199994006-B	HCL to $pH < 2$	ОК			
1199994006-C	HCL to $pH < 2$	ОК			
1199994007-A	HCL to $pH < 2$	ОК			
1199994007-B	HCL to $pH < 2$	ОК			
1199994007-C	HCL to $pH < 2$	ОК			
1199994008-A	HCL to $pH < 2$	ОК			
1199994008-B	HCL to $pH < 2$	ОК			
1199994008-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.