

TABLE OF CONTENTS

ACRONYN	AS AND ABBREVIATIONSII
1.0 EXEC	CUTIVE SUMMARY1
2.0 SITE	BACKGROUND2
3.0 FIELI	O ACTIVITIES2
4.0 GROU	JNDWATER MONITORING RESULTS2
5.0 REMI	EDIATION SYSTEM OPERATION AND PERFORMANCE MONITORING
	6
6.0 CONO	CLUSIONS7
7.0 RECC	OMMENDATIONS AND PROPOSED ACTIVITIES8
8.0 LIMIT	TATIONS8
LIST OF	TABLES
	roundwater Elevations
	eld Tested Intrinsic Water Quality Parameters
	boratory Quality Control Objectives
LIST OF	FIGURES
Figure 1 Figure 2	Location and Vicinity Map Site Plan with Groundwater Elevations and Analytical Results
Figure 3	Remediation System Layout
Figure 4	On-site Groundwater Treatment System Layout
LIST OF	APPENDICES
Appendix A	_
Appendix C	
Appendix I	Tables of Historical Monitoring Data
Appendix F	Groundwater Analytical Results for Expanded List of VOCs and PAHs

ACRONYMS AND ABBREVIATIONS

ADEC Alaska Department of Environmental Conservation

AK Alaska Test Method DRO diesel range organics

EPA U.S. Environmental Protection Agency Method

GCL groundwater cleanup level
GRO gasoline range organics
ORP oxidation/reduction potential

PAH polynuclear aromatic hydrocarbons

PQL practical quantitation limit

QA quality assurance QC quality control

Stantec Stantec Consulting Services Inc.
VOC volatile organic compounds

1.0 EXECUTIVE SUMMARY

This 2019 annual monitoring event report was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Tesoro Refining and Marketing Company for the Tesoro 2 Go Mart #101/IFC, located at the northeast corner of the intersection of South Cushman Street and Van Horn Road at 3569 South Cushman Street, Fairbanks, Alaska (**Figure 1**). The methods that were used for this monitoring event were conducted in accordance with the 2019 Alaska Department of Environmental Conservation (ADEC)-approved Work Plan for this site.

This annual monitoring event was conducted on October 23, 2019 by John Marshall (Senior Environmental Scientist), Leslie Petre (Engineer-In-Training EIT)) and Bob Gilfilian (Senior Principal Engineer), all with Stantec. This monitoring event included: measuring the depth to groundwater; measuring water quality intrinsic parameters; collecting and analyzing groundwater samples from Monitoring Wells MW-3, MW-4, MW-8, MW-14, MW-17, and MW 19-1, as well as Remediation Well CRW-2 and the Drainfield (Aeration Tank effluent) (**Figure 2**). Monitoring Well MW 19-2 was not sampled due to the presence of 1.05-feet of NAPL found in the well.

During this monitoring event; an assessment and maintenance on the on-site remediation system, consisting of the free product recovery system and groundwater treatment and recirculation system (see **Figure 3**) was conducted.

Results of the analytical sampling showed the analytes detected above the ADEC groundwater cleanup levels (GCLs) were:

- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, gasoline range organics (GRO), diesel range organics (DRO), naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-8: DRO.
- Monitoring Well MW-14: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-17: benzene, ethylbenzene, and DRO.
- Monitoring Well MW 19-1: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Remediation Well CRW-2: benzene, ethylbenzene, xylenes, naphthalene, and 1,2,4-trimethylbenzene.
- Monitoring Well MW 19-2 was not sampled due to the presence of free product which had a total measured depth of 1.05-feet.

Several analytes for volatile organic compounds (VOCs) and polynuclear aromatic hydrocarbons (PAHs) were reported as undetected but had practical quantitation limits (PQLs) that exceeded their corresponding GCLs.

The free product recovery system consists of a free product skimmer in Remediation Well CRW-2. An aeration system is currently used for treating groundwater that is discharged from the groundwater drawdown pump in Remediation Well CRW-2. The aerated effluent from the Aeration Treatment Tank discharges to an on-site drainfield (Infiltrator System) that is located upgradient of the groundwater interceptor trench (see **Figure 4**).

2.0 SITE BACKGROUND

Background information is summarized in **Appendix A**.

3.0 FIELD ACTIVITIES

The following field activities were conducted during this monitoring event:

- Measured the depth to groundwater in Monitoring Wells MW-3, MW-4, MW-8, MW-14, MW-17, MW 19-1, and MW 19-2.
- Collected water samples from Monitoring Wells MW-3, MW-4, MW-8, MW-14, MW-17, and MW 19-1, as well as Remediation Well CRW-2 and the drainfield which receives effluent discharged from the treatment aeration tank. The samples were measured in the field for the following intrinsic water quality parameters: temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and conductivity.
- Collected groundwater samples from Monitoring Wells MW-3, MW-4, MW-8, MW-14, MW-17, and MW 19-1, as well as Remediation Well CRW-2 and the Drainfield (Aeration Tank effluent) for laboratory analysis of the following test parameters:
 - GRO by Alaska Test Method (AK)101.
 - DRO by AK102.
 - Alaska expanded list of VOCs by U.S. Environmental Protection Agency Method (EPA) 8260C.
 - PAHs by EPA Method 8270D Selective Ion Monitoring (SIM).
- Measured the free product thickness in all monitoring wells and Remediation Well CRW-2. Monitoring Well MW 19-2 was not sampled due to the presence of approximately 1.05-feet of free product in the well.
- Assessed the operation of the on-site remediation system.

4.0 GROUNDWATER MONITORING RESULTS

Groundwater Levels. Table 1 presents groundwater elevations at this site based on the depths to static water levels measured during this monitoring event on October 23, 2019. Based on a polynomial regression, fitted to the water level observations measured on October 23, 2019, the average hydraulic gradient was approximately 0.001 feet per foot with flow direction to the northwest at 307 degrees. The flow direction and gradient for this monitoring event were

consistent with the historical data for this site, as shown in the groundwater flow summary ("Rose Diagram") presented on **Figure 2**.

Table 1 Groundwater ElevationsMeasurements taken on October 23, 2019

Monitoring Well Identification	Top of Casing Elevation (feet) ¹	Depth to Groundwater (feet)	Groundwater Elevation (feet)		
MW-3	436.53	7.20	429.33		
MW-4	438.31	6.78	431.53		
MW-8	442.23	12.84	429.39		
MW-14	440.41	10.77	429.64		
MW-17	438.75	9.44	429.31		
MW 19-1	439.23	9.87	429.36		
MW 19-2	438.78	10.30 ²	428.48 ²		

Key:

NC - Not Calculated

NM - Not measured

Water Sample Intrinsic Field Parameters. The results of intrinsic water quality parameter testing of the water samples collected during this monitoring event are presented in **Table 2**. DO and ORP concentrations indicate little available oxygen at any of the monitoring points. Conductivity was comparable at all locations within expected natural ranges for groundwater.

Table 2 Field Tested Intrinsic Water Quality ParametersMeasured on October 23, 2019

Monitoring Well Identification	Temperature (°C)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	SC (µs/cm°C)
MW-3	6.3	6.27	0.07	74.5	407
MW-4	5.7	6.06	0.12	133.8	256
MW-8	5.7	5.89	0.03	94.4	363
MW-14	7.8	6.37	0.14	99.0	487
MW-17	6.4	6.25	0.17	122.3	175
MW 19-1	5.9	6.17	0.30	84.6	487

Key:

°C – degrees Celsius

 $\mu s/cm^{\circ}C$ – microSiemens per centimeter degrees Celsius

mg/L – milligrams per liter

mV – millivolt

ORP - oxidation-reduction potential

pH - -log [H⁺]

SC - conductivity at 25 °C

^{1 –} Based on a vertical control survey completed on July 31, 2019, based on a topographic datum of 441.09 feet.

^{2 -} Free product (1.05-feet) was detected at a depth of 9.25 feet.

Field methods and procedures are provided in **Appendix B**. Site visit field measurements, notes, and a hydraulic gradient plot are provided in **Appendix C**.

Water Sample Laboratory Analytical Results. Historical monitoring data for this site are presented in Appendix D. Laboratory analytical results for benzene, toluene, ethylbenzene, and xylenes (BTEX), GRO, and DRO detected in groundwater samples collected during this monitoring event are summarized in Table 3. The other VOC and PAH analytes with detections above GCLs or PQLs that exceeded their GCLs are provided in Table E-1, Appendix E, and the laboratory analytical report is provided in Appendix F. All monitoring wells and the effluent from the aeration tank (Drainfield sample) were sampled in accordance with the 2019 Corrective Action Work Plan.

The GRO result for Monitoring Well MW-17 was flagged by the laboratory with a note indicating the GRO concentration reported was due to the presence of discrete peaks. In addition, the GRO results for Monitoring Well MW-8 and Remediation Well CRW-2 were flagged by the laboratory with a note indicating detections for the samples were seen outside the AK101 range. The DRO results for Monitoring Wells MW-3, MW-4, MW-8, MW-14, MW-17, and MW 19-1 were flagged by the laboratory with a note indicating the samples contained a hydrocarbon pattern in the diesel range, but the elution pattern was later that the typical diesel fuel pattern used by the laboratory for quantitative purposes.

Table 3 Groundwater Analytical Results for BTEX, GRO, and DRO

Samples collected on October 23, 2019

Sample Identification	Benzene ¹ (mg/L)	Toluene ¹ (mg/L)	Ethylbenzene ¹ (mg/L)	Xylenes¹ (mg/L)	GRO (mg/L)	DRO ² (mg/L)
MW-3	0.0047	0.0071	0.071	1.23	3.1	210
MW-4	U (0.003)	0.022	U (0.003)	U (0.003)	U (0.25)	0.33 H
MW-8	U (0.003)	U (0.002)	0.0083	0.08	0.45	12
MW-14	0.054	0.012	0.7	4.3	12	15 H
MW-17	0.0077	U (0.002)	0.034	0.109	0.38	14
MW 19-1	0.085	0.12	0.56	3.6	8.6	42 H
Drainfield (Aeration Tank Effluent)	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	0.37
CRW-2	0.011	0.0041	0.061	0.275	0.99	1.4
2GM101DUP (duplicate of MW 19-1)	0.098	0.15	0.52	3	9.8	48 H
Trip Blank	U (0.003)	U (0.002)	U (0.003)	U (0.003)	U (0.25)	NT
GCLs	0.0046	1.1	0.015	0.19	2.2	1.5

Key:

AK - Alaska Test Method

BTEX - benzene, toluene, ethylbenzene, and xylenes

DRO - Diesel range organics, analyzed by AK102.

EPA - U.S. Environmental Protection Agency

GCLs – Groundwater cleanup levels, per Alaska Department of Environmental Conservation 18 Alaska Administrative Code 75.345, Table C, updated September 29, 2018.

GRO - Gasoline range organics, analyzed by AK101.

H – Sampled was prepped or analyzed beyond the specific holding time

mg/L - milligrams per liter

NT - Not tested

U – Undetected above practical quantitation limits shown in parentheses.

Bold indicates the concentration exceeds the GCL or, if not detected, the practical quantitation limit exceeds the GCL

Quality Assurance (QA)/Quality Control (QC) Review. Eurofins TestAmerica, Inc. did not meet all laboratory QA/QC criteria during the analysis of groundwater samples for this sampling event, as described in **Table 4**, which provides a summary of the laboratory QC objectives and outcomes for this monitoring event. Laboratory QC data and the ADEC Laboratory Data Review Checklist are included with the laboratory report in **Appendix F**.

Sample 2GM101DUP is a duplicate of Sample MW 19-1. The duplicate sample set was collected to determine the precision of the field collection and laboratory analysis for this monitoring event. Data presented in **Table 4** show that the precision for the duplicate sample set (analytes that were detected above the PQL and exceeded GCLs) was within the established QA criteria tolerances for BTEX, GRO, DRO, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene, but not

^{1 –} Analyzed by EPA Method 8260C.

^{2 –} Due to laboratory QC failure in the initial extraction, these samples were re-extracted out of holding time and re-analyzed. The re-extracted batch also contained laboratory QC failures. Both sets of data were reported by the laboratory. The higher of the two concentrations for each sample is listed in this table.

1-methylnaphthalene and 2-methylnaphthalene. The holding times for VOCs, PAHs, and GRO were within established criteria but holding time issues were observed for DRO. Due to laboratory QC failures in the initial extraction, all of the DRO samples were re-extracted out of holding time and re-analyzed. The re-extracted batch also contained laboratory QC failures. Both sets of data were reported by the laboratory. The higher of the two reported values for each sample is listed in this report.

Table 4 Laboratory Quality Control Objectives

Quality Control Designation	Tolerance	Results for This Event						
Holding Times								
DRO/Water/to analyze	40 days	14 to 23 days						
DRO/Water/to extract	14 days	14 to 20 days						
GRO/Water/to analyze	14 days	7 to 8 days						
VOCs/Water/to analyze	14 days	9 to 13 days						
PAHs/Water/to extract	7 days	7 days						
PAHs/Water/to analyze	40 days	15 to 22 days						
Field Duplicates - Precision								
Benzene/Water	± 30%	-14.21%						
Toluene/Water	± 30%	-22.22%						
Ethylbenzene/Water	± 30%	7.41%						
Xylenes/Water	± 30%	18.18%						
GRO/Water	± 30%	-13.04						
DRO/Water	± 30%	-13.33%						
1,2,4-Trimethylbenzene	± 30%	10.53%						
1,3,5-Trimethylbenzene	± 30%	0.00%						
Naphthalene	± 30%	-23.26%						
1-Methylnaphthalene	± 30%	-37.50%						
2-Methylnaphthalene	± 30%	-44.44%						

Key:

% – percent

 \pm – plus or minus

DRO - diesel range organics

GRO - gasoline range organics

PAH – polynuclear aromatic hydrocarbon

VOC - volatile organic compound

5.0 REMEDIATION SYSTEM OPERATION AND PERFORMANCE MONITORING

The free product recovery system for this site includes the operation of a new free product skimmer that was installed late 2017 in Remediation Well CRW-2. This skimmer consists of a "Sipper Pump and Skimmer" manufactured by Geotech and Xitech Instruments, Inc. The free product collected with the new skimmer pump in CRW-2 is temporarily stored on-site in a 55-gallon drum that is contained in an over-pack drum (secondary containment). Approximately 50 gallons of free

product has been recovered during this past year as Stantec identified several issues associated with the operation of the skimmer. Stantec field staff are currently in the process of correcting the operational problems that have primarily been caused by the fluctuating groundwater levels experienced at this site.

The 1.0-horsepower groundwater drawdown pump in CRW-2 is operating normally and pumps at a constant rate of 1.6 gallons per minute. The drawdown pump discharges in an insulated/heat traced water line to the 1,500-gallon, double compartment Aeration Treatment Tank. The aerated, treated effluent from the aeration treatment tank discharges by gravity to an on-site drainfield (Infiltrator System) that is located upgradient of the groundwater interceptor trench and the free product recovery well (see **Figure 4**). The water levels in the drainfield are checked on a quarterly to semi-annual basis to check the performance of the drainfield. As demonstrated by the sample results for the drainfield reported herein, the aeration system is discharging effluent that is significantly "cleaner" than the water entering the tank from the drawdown pump in CRW-2.

6.0 CONCLUSIONS

The analytical results for the monitoring wells sampled during the October 2019 monitoring event were relatively consistent with the last groundwater monitoring event (September 2018). The effluent from the remediation aeration tank was found to have no contaminants of concern that exceeded the GCLs, which is an indication that effective treatment is being provided by the aeration tank.

Results of the analytical sampling showed the analytes detected above the ADEC GCLs were:

- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-8: DRO.
- Monitoring Well MW-14: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-17: benzene, ethylbenzene, and DRO.
- Monitoring Well MW 19-1: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Remediation Well CRW-2: benzene, ethylbenzene, xylenes, naphthalene, and 1,2,4-trimethylbenzene.
- Monitoring Well MW 19-2 was not sampled due to the presence of free product which had a total measured depth of 1.05-feet.

Several VOCs and PAHs were reported as undetected but had PQLs that exceeded their corresponding GCLs. The laboratory results for these compounds are provided in **Table E-1**, **Appendix E**.

The free product skimmer and groundwater drawdown pump in CRW-2 are operating on a year-round basis. Stantec maintained the iMonnit telemetry equipment to monitor the operation of the following equipment: free product skimmer, drawdown pump discharge line, and the blower (compressor) that provides aeration to the aeration remediation tank.

7.0 RECOMMENDATIONS AND PROPOSED ACTIVITIES

No anomalies were found during the October 2019 monitoring event that would require additional corrective action or changes to the approved year 2019 Corrective Action Work Plan for this site.

8.0 LIMITATIONS

Stantec conducted this monitoring event in accordance with the Corrective Action Work Plan approved by ADEC, and in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. All sampling activities were completed in accordance with the ADEC *Underground Storage Tanks Procedures Manual – Standard Sampling Procedures* (August 18, 2014). No other warranty, expressed or implied, is made. Data and recommendations made herein were prepared for Tesoro 2 Go Mart #101/IFC and Tesoro Refining and Marketing Company. Information herein is for use at this site in accordance with the purpose of the report described.

FIGURES

Figure 1	Location and Vicinity Map
Figure 2	Site Plan with Groundwater
	Elevations and Analytical Results
Figure 3	Remediation System Layout
Figure 4	On-site Groundwater Treatment
	System Layout

NOT TO SCALE

APPROXIMATE 0 1000

TESORO COMPANY TESORO 2 GO MART #101 & IFC OCTOBER 2019 MONITORING EVENT REPORT

LOCATION AND VICINITY MAP

FIGURE

1

18575121

TESORO COMPANY TESORO 2 GO MART #101 & IFC

OCTOBER 2019 MONITORING EVENT REPORT ON-SITE GROUND WATER TREATMENT SYSTEM LAYOUT

FIGURE

4

185751218. 200.205

APPENDIX A – SITE BACKGROUND

Tesoro 2 Go Mart #101/ Interior Fuels Company ADEC Facility ID #2960; ADEC File #100.26.022

The Tesoro 2 Go Mart #101 is a retail gas service/convenience store and the former Interior Fuels Company (IFC) are located at the intersection of South Cushman Street and Van Horn Road in Fairbanks, Alaska. The site has a combined address of 170 East Van Horn Road and 3569 South Cushman Street.

The Tesoro 2 Go Mart #101 was formerly called the Tesoro Discount Truck Stop (DTS) Facility. The IFC was a former heating fuel distribution service company that was located on an adjacent lot next to the Tesoro 2 Go Mart #101 site. Due to their common history of ownership by Tesoro and their shared property lines, both sites are being managed as a single contaminated site. The legal description for these properties is Lot 3 and Lot 4, Block 26, Leisure Subdivision.

July 1991. A former underground storage tank (UST) system and a tanker truck loading rack was removed from the IFC site in July 1991. The UST system contained heating fuel oil and consisted of three 20,000-gallon tanks and a 15,000-gallon tank with a diesel fuel pump station connected the truck loading rack. A Site Assessment (SA) of the closure of the heating oil UST system and the loading rack was conducted by Dames & Moore. A significant amount of petroleum contamination was encountered. The excavation was lined with a reinforced polyethylene liner, and the excavated soil was placed within the liner subject to approval from the Alaska Department of Environmental Conservation (ADEC).

April 1992. Dames and Moore conducted a Release Investigation at IFC to assess the extent of contamination that was associated with the former heating oil USTs and truck loading rack facility. Seven soil borings were drilled and seven groundwater monitoring wells were installed on the IFC property. Extensive subsurface contamination was discovered and free phase petroleum product was found in three of the monitoring wells. The free product thickness ranged from 1.24 feet to 2.95 feet. A well search for domestic drinking water wells was completed around the IFC site.

August 1993. A release of petroleum contamination was discovered during the upgrade of the UST system serving the former DTS facility.

August 1994. Dames and Moore conducted a Release Assessment at the former DTS facility. The Release Assessment included installing three on-site groundwater monitoring wells. Contamination was detected in all three wells and the source of the contamination was assumed to be another off-site facility located upgradient (south of Van Horn Road) of the Tesoro site. A well search of domestic wells located within 0.5 miles of the site was completed.

April 1995. Gilfilian Engineering & Environmental Services, Inc. (GE2T) conducted a groundwater monitoring event of 10 monitoring wells associated with the combined IFC and DTS sites. Free product was found in three of the monitoring wells, with thickness that ranged from 2.68 feet to 5.97 feet. Delineation of the free phase contaminants and dissolved phase

contaminants in the groundwater table was estimated and noted to extend downgradient of the Tesoro site to surrounding private property.

July 1995. GE2T conducted a groundwater monitoring event and installed a new off-site, downgradient monitoring well (G-1). A total of 12 wells were surveyed and sampled. The new well was found to be free of contamination. The 6-inch diameter free product recovery well (MW-3) was found to be producing an average of 2.7 gallons of free product on a daily basis.

February 1998. GE2T completed a SA of the abandonment of two floor drain pits located inside the IFC garage. Contamination was discovered in the underlying soil and determined not to warrant clean up or removal. The floor drain system was upgraded by the installation of an aboveground oil/water separator.

March 1998. GE2T completed a well search of drinking water wells located within 0.25 miles of the IFC/DTS properties. A total of 24 wells were identified, of which the majority were located downgradient of the subject site.

June 1999. GE2T conducted a SA of the removal of a 1,000-gallon gasoline UST that served the IFC garage facility. No contamination was detected during the removal of the UST.

June 2001. The former UST system serving the DTS (renamed to Tesoro 2 Go Mart #101) was removed and replaced with a new UST fueling system. A SA for the UST System Closure was completed by GE2T. The former UST system consisted of two 20,000-gallon gasoline tanks and two 20,000-gallon diesel tanks. A 1,000-gallon heating oil tank was also removed during the upgrade of the convenience store. Approximately 1,500 tons of contaminated soil was excavated and shipped off-site for thermal remediation. The new UST system consisted of two 20,000-gallon USTs. An undetermined, small amount of contaminated soil was left in-place at the base of the new USTs and a soil vapor extraction (SVE) piping system was installed for future treatment of the in-situ contaminated soil.

September 2001. A fuel recovery system for the removal of floating fuel product from groundwater on the property of the Tesoro 2 Go Mart #101 and IFC was designed and installed under the direction of GE2T. The fuel recovery system consisted of a 12-foot deep by 350-foot long groundwater interceptor trench and three 12-inch diameter free product recovery wells. The recovery wells were equipped with SpillbusterTM pump systems that were connected to free product storage drums and underground piping to discharge dewatered groundwater to a 1,500-gallon treatment aeration and settling tank, with discharge to the upgradient groundwater via a subsurface infiltration (seepage) bed.

November 2001. GE2T drilled two soil borings and installed five new groundwater monitoring wells (MW-24, MW-25, MW-26, MW-27, and MW-28). Several of these wells were installed for the purpose of assessing the groundwater impact associated with the former seepage pits that served the IFC garage floors. The impact to the groundwater quality from the seepage pits was determined not to be contaminated above ADEC groundwater cleanup levels.

May 2002. GE2T conducted a SA during the removal of a log crib seepage pit that was previously used for the on-site disposal of floor drain waste collected in the IFC garage. A total of 23 tons of contaminated soil was excavated and taken off-site for thermal treatment. The underlying soil was found to have contamination concentration below the soil clean up levels.

August 2002. MWH Americas, Inc. (MWH) performed a SA at IFC for an excavation for the foundation of a new building (garage) located in the northwest corner of the IFC property. The building foundation covered an area that was 40 feet wide and 100 feet long and to a depth of 10 feet. The excavation area included former bulk fuel loading racks. A total of 3,999 tons of contaminated soil was excavated and transported for thermal remediation. A SVE system was installed at the base of the excavation to address the potential threat of hydrocarbon vapor migration into the new garage building.

October 2003. MWH conducted a Release Investigation (RI) that included replacing two downgradient monitoring wells and a seepage bed for the recirculation of groundwater that was pumped from the groundwater treatment recovery system. The purpose of the RI was to investigate the extent of soil contamination and to evaluate groundwater quality at the site. The RI involved drilling two soil borings downgradient and off-site of the Tesoro 2 Go Mart #101 property. These wells were completed as 2-inch diameter monitoring wells (MW-29 and MW-30). Petroleum hydrocarbon contamination was not detected in either soil or groundwater in the two, new off-site groundwater monitoring wells. The fuel recovery system was re-started on October 16, 2003, immediately following the installation of a replacement, expanded infiltration (seepage) bed that is used for the discharge of aerated and settled water pumped from the free product recovery wells. The free product recovery system recovered approximately 1,200 gallons of fuel, from November 2001 to 2003.

May 2007. The free product recovery system remains in operation, as does the dissolved phase groundwater treatment system. Free product is still present in several recovery wells and monitoring wells. Groundwater contaminant plume is stable. Twice yearly monitoring well sampling and quarterly treatment system operation and maintenance continue.

November 2011. MWH decommissioned eight groundwater monitoring wells (MW-2, MW-5, MW-9, MW-16, MW-18, MW-25, MW-27, and MW-28) and two observation wells (OWW and OWE).

July 2013. MWH conducted a SA for purpose of evaluating the characterization and extent of petroleum contamination in the shallow soil strata located on the Tesoro 2 Go Mart #101 and former IFC properties. Three shallow test pits were excavated on the #101 property and one soil test pit excavated on the former IFC property. All of the test holes were located in close proximity to the upgradient edge of the Interceptor Trench. Nearly all of the soil samples had a significant amount of petroleum contamination remaining in the soil strata. The extent of contamination was greatest at the groundwater table. Based on the relatively tight (fine grained) soil found in the test pits, it was recommended not to use chemical oxidation treatment methods, but to continue use of the existing Interceptor Trench. This trench has proven to be an effective means of controlling the flow of the contaminated groundwater and associated free product from moving downgradient (off-site) of the sites.

August 2013. Well CRW (Central Recovery Well) was added to the monitoring event sampling due to the recent findings during the excavation of test pits on July 23, 2013.

May 2015. MWH conducted a second quarter groundwater monitoring event on May 26, 2015. Monitoring Well MW-3 contained ice and could not be sampled. Monitoring Wells MW-8, MW-14, and MW-17 all exceeded the ADEC groundwater cleanup levels (GCLs) for GRO and DRO, with MW-14 also for benzene. The Aeration Tank exceeded the GCLs for both benzene and DRO. The product recovery system in Recovery Well WRW was not operational.

May 2016. MWH conducted a second quarter groundwater monitoring event on May 12, 2016. Free product was observed in Monitoring Well MW-3 (0.2124 feet thick) and CRW-2 (1.60185 feet thick). Monitoring Well MW-14 was not sampled because of the presence of an ice plug. The GCL was exceeded for DRO in Monitoring Well MW-8, GRO and DRO in MW-17, and benzene in the Aeration Tank. The product recovery system in Recovery Well WRW and CRW-2 were not operational, although the drawdown pump was operating as normal in CRW-2.

September 2017. Stantec conducted the annual groundwater monitoring event during the month of September 2017. Results of the analytical sampling found analytes detected above the ADEC GCLs in the following wells:

- Monitoring Well MW-3: benzene, xylene, ethylbenzene, GRO, DRO, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.
- Monitoring Well MW-8: benzene, ethylbenzene, and DRO.
- Monitoring Well MW-14: benzene, xylene, ethylbenzene, GRO, and DRO.
- Monitoring Well MW-17: benzene, xylene, ethylbenzene, GRO, DRO, naphthalene, 1,2,4-trimethylbenzene, and vinyl chloride.
- Remediation Well CRW-2: benzene, ethylbenzene, naphthalene, 1,2,4-trimethylbenzene, and vinyl chloride.

Analytes were detected above practical quantitation limits (PQLs), but below the GCLs, in all of the monitoring wells and effluent from the Aeration Treatment Tank. A new free product skimmer pump was installed in Recovery/Remediation Well CRW-2. Upgrades were also made to the aeration treatment tank including the water discharge line from the groundwater drawdown pump in CRW-2 and the aeration line from the blower to the treatment tank.

September 2018. The analytical results for the monitoring wells sampled during the September 2018 monitoring event were relatively consistent with the last groundwater monitoring event (September 2017). The effluent from the remediation aeration tank was found to have no contaminants of concern that exceeded the GCLs, which is an indication that effective treatment is being provided by the aeration tank.

Results of the analytical sampling showed the analytes detected above the ADEC GCLs were:

• Monitoring Well MW-3: ethylbenzene, xylenes, DRO, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4 trimethylbenzene, 1,3,5 trimethylbenzene, and naphthalene.

- Monitoring Well MW-8: DRO.
- Monitoring Well MW-14: benzene, ethylbenzene, xylenes, GRO, DRO, 1-methylnaphthalene, naphthalene, 2-methylnaphthalene, 1,2,4 trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-17: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, and 1,2,4-trimethylbenzene.
- Remediation Well CRW-2: benzene, ethylbenzene, xylenes, DRO, naphthalene, 1,2,4-trimethylbenzene, and 1-methylnaphthalene.

Several VOCs and PAHs were reported as undetected but had PQLs that equaled or exceeded their corresponding GCLs.

The free product skimmer and groundwater drawdown pump in CRW-2 are operating on a year-round basis. Stantec installed telemetry components to monitor the operation of the following equipment: free product skimmer, drawdown pump discharge line, and the blower aeration line to the aeration remediation tank.

October 2019. The analytical results for the monitoring wells sampled during the October 2019 monitoring event were relatively consistent with the last groundwater monitoring event (September 2018). The effluent from the remediation aeration tank was found to have no contaminants of concern that exceeded the GCLs, which is an indication that effective treatment is being provided by the aeration tank. In addition, the recently drilled monitoring well MW 19-2 was noted to have 1.05-feet of NAPL in the well during this monitoring event.

Results of the analytical sampling showed the analytes detected above the ADEC GCLs were:

- Monitoring Well MW-3: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-8: DRO.
- Monitoring Well MW-14: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Monitoring Well MW-17: benzene, ethylbenzene, and DRO.
- Monitoring Well MW 19-1: benzene, ethylbenzene, xylenes, GRO, DRO, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.
- Remediation Well CRW-2: benzene, ethylbenzene, xylenes, naphthalene, and 1,2,4-trimethylbenzene.

Several VOCs and PAHs were reported as undetected but had PQLs that exceeded their corresponding GCLs. The free product skimmer and groundwater drawdown pump in CRW-2 are operating on a year-round basis. Stantec installed telemetry components to monitor the operation of the following equipment: free product skimmer, drawdown pump discharge line, and the blower aeration line to the aeration remediation tank.

APPENDIX B – FIELD METHODS AND PROCEDURES

The following table presents the tasks for the Alaska Department of Environmental Conservation (ADEC)-approved 2019 Corrective Action Work Plan. The scope of these tasks is based on the results and findings of the monitoring and remediation completed to date at Tesoro 2 Go Mart #101/Interior Fuels Company (ADEC Facility ID #2960; ADEC File #100.26.022

2019 Work Plan Schedule

	Work Plan Task	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Task 1	Monitoring Wells: MW-3, MW-4, MW-8, MW-14, MW-17, and Aeration Treatment Tank (influent (CRW-2) and effluent discharged to the Drainfield			D, G, V, P, I	
Task 2	Remediation System Operation and Maintenance	✓	✓	✓	✓
Task 3	Clear On-site Brush & Vegetation		✓	✓	

Key:

AK - Alaska Test Method

D - Diesel range organics by AK102.

EPA – U.S. Environmental Protection Agency

G – Gasoline range organics by AK101.

I – Indicators, parameters tested include: dissolved oxygen, specific conductance, pH, and temperature.

P - Polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D Selective Ion Monitoring (SIM)

V-Alaska expanded list of volatile organic carbon (VOCs) by U.S. Environmental Protection Agency Method (EPA) 8260C

The Corrective Action Work Plan for the year 2019 will be implemented by Stantec on behalf of Tesoro. Groundwater monitoring will be conducted to track migration and trends of contaminants that are present at the site. All sampling activities will be completed in accordance with ADEC's *Underground Storage Tanks Procedures Manual—Standard Sampling Procedures* (August 18, 2014). The methods that will be used for conducting a monitoring event, unless otherwise noted in the monitoring report, will include:

- The static water levels in the monitoring wells will be measured with respect to the top of each well casing. The elevation of the static water level will be based on an arbitrary datum established on-site during a vertical control survey that will be completed by Stantec on an annual basis. The survey will be performed during the summer after the seasonal frost layer thaws.
- The monitoring wells will be purged of a minimum of three well bore volumes prior to collecting the water samples. A new, disposable, Teflon® bailer will be used to sample each well. The first bail of water removed from each well will be examined for petroleum odor, sheen, and any other unique physical features.
- Water and vapor samples will be collected in laboratory-supplied sample containers. The samples will be delivered an ADEC-approved laboratory in accordance with standard chainof-custody procedures.

•	Additional v purged, as parameters.	described	oles will above,	be co	ollected tested	d from in the	the mo	onitor for	ing wells chemical	after and	the well physical	has been intrinsic

APPENDIX C Field Measurements, Notes, and Hydraulic Gradient Plot **S**tantec

Appendix C Field Measurements and Notes

Project:	TNS #101/IFC	Date:	10/23/2019
Project number:	185751218	Samplers:	J Marshall & B Gilfilian

Well ID	Volume Purged (gallons)	Sheen/ Odor	Temp. (°C)	рН	Dissolved Oxygen (mg/l)	ORP (mV)	Conductivity (µs/cm)	Top of Casing ¹	Total Depth	Depth to Product	Depth to GW	GW Elevation
MW-3	NM	Y/Y	6.3	6.27	0.07	74.5	407	436.53	12.50	NA	7.20	429.33
MW-4	2.5	N/N	5.7	6.06	0.12	133.8	256	438.31	12.43	NA	6.78	431.53
MW-8	38	Y/Y	5.7	5.89	0.03	94.4	363	442.23	20.50	NA	12.84	429.39
MW-14	0.90	Y/Y	7.8	6.37	0.14	99.0	487	440.41	15.40	NA	10.77	429.64
MW-17	0.75	Y/Y	6.4	6.25	0.17	122.3	175	438.75	12.80	NA	9.44	429.31
MW 19-1	NM	Y/Y	5.9	6.17	0.30	84.6	487	NM	12.75	NA	9.87	NC
MW 19-2	NA; Not Sam	npled due to Fre	e Product					NM		9.25	10.30	NC
CRW-2	NA							442.43				
Drainfield (NE Obs Pipe)	NA							441.89				

^{1 –} Based on a vertical control survey completed on July 21, 2017, using a topographic datum of 441.09 feet located at the intersection of South Cushman Road and Van Horn Road, as provided by Design Alaska on December 14, 1995.

NA - Not Applicable

NC - Not Calculated

NM - Not Measured

Well ID	Notes	Well Dia.	Sample Time
MW-3	Translucent, dark grey	2"	1453
MW-4	Purged dry, translucent, brown, springtails	2"	1055
MW-8	Clear, some black floc	6"	1303
MW-14	Opaque, dark grey	1.25"	1205
MW-17	Purged dry, translucent, light brown	2"	1130
MW 19-1	Opaque, dark grey	2"	1420
MW 19-2	Not Sampled due to free product	2"	
CRW-2	Clear	6"	1534
Drainfield	Collected sample from drainfield NE observation pipe discharge from aeration tank outlet, dark orange with floc	4"	1510
TNS 101 Dup	Duplicate of MW 19-1		1422

Instruments / methods used	Model	
Static water level	Heron	H01L
рН	YSI	556
Conductivity	YSI	556
Dissolved Oxygen	YSI	556
Temperature	YSI	556
ORP	YSI	556

Tesoro 2 Go Mart #101 - October 2019 Groundwater Elevation Contours

^{*}Elevations based on a vertical control survey of completed on July 2019, using local datum of 441.09 feet.

wionitoring well wwv-1								
	_			Product	Measured GW			
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW		
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
04-Nov-91	0.016	NS	NS	431.01	430.91	430.99		
29-Jan-92	NS	NS	NS	432.03	430.34	431.69		
09-Mar-92	NS	NS	NS	431.45	429.52	431.06		
23-Apr-92	NS	NS	NS	431.65	427.8	430.88		
19-May-92	NS	NS	NS	433.06	426.94	431.84		
16-Jun-92	NS	NS	NS	433.68	429.84	432.91		
09-Jul-92	NS	NS	NS	434.18	431.27	433.60		
21-Jul-92	NS	NS	NS	436.78	433.57	436.14		
28-Jul-92	NS	NS	NS	433.63	432.42	433.39		
05-Aug-92	NS	NS	NS	433.55	432.5	433.34		
11-Aug-92	NS	NS	NS	433.41	432.52	433.23		
18-Aug-92	NS	NS	NS	433.22	431.29	432.83		
07-Sep-93	NS	NS	NS	433.29	432.06	433.04		
31-Mar-94	NS	NS	NS	430.60	429.76	430.43		
12-Dec-94	NS	NS	NS	430.27	429.46	430.11		
12-Mar-95	NS	NS	NS	430.72	429.43	430.46		
12-Apr-95	NS	NS	NS	432.17	426.20	430.98		
19-Jul-95	0.278	NS	NS	NA	432.84	NA		
22-May-96	NS	NS	NS	NA	NM	NA		
06-Nov-96	NS	NS	NS	NA	NM	NA		
29-Apr-98	NS	NS	NS	NA	NM	NA		
13-Oct-98	0.149	10	47.8	NA	431.47	NA		
28-Jan-00	NS	NS	NS	429.52	427.88	429.19		
10-Apr-00	NS	NS	NS	430.12	427.59	429.61		
27-Jul-00	NS	NS	NS	435.46	433.88	435.14		
08-Mar-01	NS	NS	NS	431.00	429.29	430.66		
04-Jun-01	NS	NS	NS	435.42	435.26	435.39		
30-Nov-01	NS	NS	NS	431.23	429.80	430.94		
24-Apr-02	NS	NS	NS	NA	NM	NA		
20-Aug-02				Well Destroyed				
GCL	0.0046	2.2	1.5	NA	NA	NA		

	Monitoring Well MW-2								
Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)			
04-Nov-91	U	NS	NS	NA	431.31	NA			
03-Jan-92	NS	NS	NS	NA	431.28	NA			
28-Jan-92	NS	NS	NS	NA	431.19	NA			
09-Mar-92	NS	NS	NS	NA	431.04	NA			
23-Apr-92	U	NS	NS	NA	430.86	NA			
16-Jul-92	U	NS	NS	NA	433.32	NA			
11-Aug-92	U	NS	NS	NA	433.17	NA			
07-Oct-92	U	NS	NS	NA	431.68	NA			
21-Dec-92	U	NS	NS	NA	430.64	NA			
09-Mar-93	U	NS	NS	NA	431.00	NA			
16-Jun-93	U	NS	NS	NA	432.59	NA			
07-Sep-93	U	NS	NS	NA	432.58	NA			
13-Dec-93	U	NS	NS	NA	431.79	NA			
31-Mar-94	Ü	NS	NS	NA	430.87	NA			
23-Sep-94	Ü	NS	NS	NA	432.13	NA.			
12-Dec-94	Ü	NS	NS	NA	431.11	NA			
12-Mar-95	U	NS	NS	NA	430.43	NA			
13-Apr-95	U	NS	NS	NA	430.84	NA			
19-Jul-95	U	NS	NS	NA	432.54	NA			
25-Oct-95	U	NS	U	NA	431.93	NA			
22-May-96	U	NS	NS	NA	431.10	NA			
06-Nov-96	U	NS	NS	NA	430.37	NA			
19-Mar-97	U	NS	NS	NA	429.65	NA			
17-Nov-97	U	U	NS	NA	431.01	NA			
29-Apr-98	U	U	0.203	NA	428.85	NA			
13-Oct-98	U	U	0.278	NA	431.18	NA			
27-Jul-00	U	U	0.314	NA	431.71	NA			
08-Mar-01	NS	NS	NS	NA	431.08	NA			
04-Jun-01	U	U	U	NA	431.32	NA			
30-Nov-01	NS	NS	NS	NA	NM	NA			
24-Apr-02	NS	NS	NS	NA	430.43	NA			
20-Aug-02	NS	NS	NS	NA	NM	NA			
06-Nov-02	NS	NS	NS	NA	NM	NA			
20-Mar-03	NS	NS	NS	NA	NM	NA			
16-May-03	NS	NS	NS	NA	NM	NA			
04-Aug-03	NS	NS	NS	NA	NM	NA			
24-Nov-03	NS	NS	NS	NA	NM	NA			
10-Feb-04	NS	NS	NS	NA	NM	NA			
03-May-04	NS	NS	NS	NA	NM	NA			
18-Aug-04	NS	NS	NS	NA	NM	NA			
08-Nov-04	NS	NS	NS	NA	NM	NA			
01-Apr-05	NS	NS	NS	NA	NM	NA			
27-Sep-05	NS	NS	NS	NA	NM	NA			
16-May-06	NS	NS	NS	NA	NM	NA			
14-Sep-06	NS	NS	NS	NA	NM	NA			
14-May-07	NS	NS	NS	NA	NM	NA			
04-Jun-08	NS	NS	NS	NA	NM	NA			
13-May-09	U (0.0005)	U (0.05	U (0.467)	NA	NM	NA			
15-Jun-10	NS	NS	NS	NA	NM	NA			
04-Oct-11				Decommissioned					
GCL	0.0046	2.2	1.5	NA	NA	NA			

Monitoring Well MW-3								
				Product	Measured GW			
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW		
Doto	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
Date				, ,	, ,	, ,		
6-Nov-91	NS	NS	NS	431.53	428.98	431.02		
3-Jan-92	NS	NS	NS	431.59	428.99	431.07		
28-Jan-92	NS	NS	NS	431.52	428.95	431.01		
9-Mar-92	NS	NS	NS	431.43	428.78	430.90		
23-Apr-92	NS	NS	NS	431.16	429.31	430.79		
19-May-92	NS	NS	NS	432.38	429.74	431.85		
16-Jun-92					430.20			
	NS	NS	NS	433.28		432.66		
09-Jul-92	NS	NS	NS	433.9	430.73	433.27		
21-Jul-92	NS	NS	NS	430.9	428.68	430.46		
28-Jul-92	NS	NS	NS	433.9	430.71	433.26		
05-Aug-92	NS	NS	NS	433.76	430.53	433.11		
11-Aug-92	NS	NS	NS	433.95	430.37	433.23		
18-Aug-92	NS	NS	NS	433.5	430.37	432.87		
	NS	NS	NS		429.80	432.20		
26-Aug-92				432.8				
04-Sep-92	NS	NS	NS	432.63	429.68	432.04		
30-Sep-92	NS	NS	NS	431.93	429.18	431.38		
07-Oct-92	NS	NS	NS	431.93	428.92	431.33		
03-Nov-92	NS	NS	NS	431.49	428.90	430.97		
01-Dec-92	NS	NS	NS	431.24	428.48	430.69		
				431.19	428.29	430.61		
21-Dec-92	NS NC	NS	NS					
09-Mar-93	NS	NS	NS	431.37	429.09	430.91		
12-Apr-93	NS	NS	NS	431.39	429.64	431.04		
16-Jun-93	NS	NS	NS	433.07	430.35	432.53		
12-Jul-93	NS	NS	NS	432.92	430.19	432.37		
13-Aug-93	NS	NS	NS	432.97	430.05	432.39		
07-Sep-93	NS NS	NS	NS	433.26	430.24	432.66		
31-Mar-94	NS	NS	NS	431.01	428.01	430.41		
12-Mar-95	NS	NS	NS	430.86	427.70	430.23		
13-Apr-95	0.090	NS	NS	432.05	429.12	431.46		
19-Jul-95	NS	NS	NS	432.76	430.53	432.31		
25-Oct-95	0.480	NS	200	432.11	430.18	431.72		
22-May-96	0.050	NS	NS	431.27	429.80	430.98		
06-Nov-96	NS	NS	NS	430.86	427.68	430.22		
19-Mar-97	0.095	NS	NS	430.22	426.72	429.52		
17-Nov-97	0.0421	2.2	NS	432.89	430.96	432.50		
29-Apr-98	0.0273	2.3	118	430.62	428.17	430.13		
13-Oct-98	NS	NS	NS	432.25	431.07	432.01		
28-Jan-00	NS	NS	NS	429.77	426.56	429.13		
10-Apr-00	NS	NS	NS	430.14	427.01	429.51		
27-Jul-00	NS	NS	NS	431.77	430.69	431.55		
08-Mar-01	NS NS	NS	NS		429.03			
				431.20		430.77		
04-Jun-01	NS	NS	NS	431.36	430.16	431.12		
30-Nov-01	NS	NS	NS	431.37	429.99	431.09		
24-Apr-02	NS	NS	NS	430.81	429.34	430.52		
20-Aug-02	NS	NS	NS	433.21	432.23	433.01		
06-Nov-02	NS	NS	NS	431.34	431.15	431.30		
20-Mar-03	NS	NS	NS	431.34	430.39	431.15		
	NS	NS	NS		430.75			
16-May-03				431.45		431.31		
04-Aug-03	NS	NS	NS	432.55	432.45	432.53		
24-Nov-03	NS	NS	NS	431.06	430.35	430.92		
10-Feb-04	NS	NS	NS	429.55	428.74	429.39		
03-May-04	NS	NS	NS	431.52	429.98	431.21		
18-Aug-04	NS	NS	NS	431.95	431.23	431.81		
08-Nov-04	NA NA	NA	NA	430.45	429.45	430.25		
	NS NS	NS	NS	NA	NM	NA		
01-Apr-05								
27-Sep-05	NS	NS	NS	432.46	431.08	432.18		
16-May-06	NS	NS	NS	0.5 feet thick	NM	NA		
14-Sep-06	NS	NS	NS	Several inches	NM	NA		
14-May-07	NS	NS	NS	430.10	429.70	430.02		
04-Jun-08	NS	NS	NS	NM	NM	NA		
13-May-09	NS	NS	NS	NA	NM	NA		
15-Jun-10	NS	NS	NS	NA NA	NM	NA NA		
26-May-11	NS NS	NS	NS	NA NA	NM	NA NA		
24-May-12	NS	NS	NS	NA	NM	NA		
12-Aug-13	NS	NS	NS	0.6 feet thick	NM	NA		
	11 (0 0005)	0.072	1.1	NA	NM	NA		
06-May-14	U (0.0005)		NS	NA	Frozen	NA		
06-May-14 26-May-15	U (0.0005) NS	NS	140					
26-May-15	NS							
26-May-15 12-May-16	NS NS	NS	NS	428.32	428.08	428.27		
26-May-15 12-May-16 07-Sep-17	NS NS 0.024	NS 3.7	NS 160	428.32 429.65	428.08 429.64	428.27 429.65		
26-May-15 12-May-16 07-Sep-17 07-Sep-18	NS NS 0.024 0.0033	NS 3.7 1.3	NS 160 60	428.32 429.65 NA	428.08 429.64 430.78	428.27 429.65 NA		
26-May-15 12-May-16 07-Sep-17	NS NS 0.024	NS 3.7	NS 160	428.32 429.65	428.08 429.64	428.27 429.65		

Monitoring Well MW-4								
Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)		
04-Nov-91	0.17	NS	NS	NA	430.94	NA		
03-Jan-92	NS	NS	NS	NA	430.70	NA		
28-Jan-92	0.16	NS	NS	NA	430.83	NA		
09-Mar-92	NS	NS	NS	NA	430.61	NA		
23-Apr-92	0.11	NS	NS	NA	431.00	NA		
16-Jul-92	U	NS	NS	NA	433.04	NA		
11-Aug-92	0.13	NS	NS	NA	432.88	NA		
10-Sep-92	0.15	NS	NS	NA	432.08	NA		
07-Oct-92	0.11	NS	NS	NA	431.43	NA		
21-Dec-92	0.11	NS	NS	NA	430.31	NA		
09-Mar-93	0.093	NS	NS	NA	430.36	NA		
23-Sep-94	U	NS	NS	NA	431.72	NA		
12-Mar-95	U	NS	NS	NA	429.98	NA		
13-Apr-95	U	NS	NS	NA	430.47	NA		
19-Jul-95	U	NS	NS	NA	432.15	NA		
25-Oct-95	U	NS	U	NA	431.53	NA		
22-May-96	U	NS NC	NS	NA	430.64	NA NA		
06-Nov-96 19-Mar-97	U	NS	NS	NA	430.93 429.15	NA NA		
19-Mar-97 17-Nov-97	U	NS U	NS NS	NA NA	429.15	NA NA		
29-Apr-98	U	U	0.405	NA NA	428.37	NA NA		
13-Oct-98	U	U	0.405	NA NA	430.78	NA NA		
05-Nov-99	U	U	0.688	NA NA	430.76	NA NA		
27-Jul-00	NS	NS	NS	NA NA	430.10 NM	NA NA		
08-Mar-01	NS	NS	NS	NA NA	430.58	NA NA		
04-Jun-01	U	U	0.915	NA NA	430.81	NA NA		
30-Nov-01	Ü	Ü	0.955	NA NA	430.56	NA NA		
24-Apr-02	NS	NS	NS	NA NA	430.28	NA.		
20-Aug-02	U	U	3.31	NA	432.83	NA		
06-Nov-02	NS	NS	NS	NA	431.14	NA		
20-Mar-03	NS	NS	NS	NA	430.84	NA		
16-May-03	NS	NS	NS	NA	431.02	NA		
04-Aug-03	U	U	U	NA	432.93	NA		
24-Nov-03	NS	NS	NS	NA	430.57	NA		
10-Feb-04	NS	NS	NS	NA	429.85	NA		
03-May-04	U	U	U	NA	431.52	NA		
18-Aug-04	NS	NS	NS	NA	431.41	NA		
08-Nov-04	NS	NS	NS	NA	NA	NA		
01-Apr-05	NS	NS	NS	NA	NM	NA		
27-Sep-05	NS	NS	NS	NA	NM	NA		
16-May-06	U (0.0005)	U (0.050)	0.616	NA	430.29	NA		
14-Sep-06	U (0.0005)	2.17	1.38	NA	431.37	NA		
14-May-07	U (0.0005)	U 0.000	U 0.504	NA	431.86	NA		
04-Jun-08	U (0.0005)	0.308	0.581	NA	430.46	NA		
13-May-09	U (0.0005)	U (0.05)	U (0.417)	NA	431.46	NA		
15-Jun-10	U (0.0005)	U (0.05)	U (0.455)	NA	429.00	NA		
26-May-11	U (0.0005)	U (0.05)	0.439	NA	430.81	NA		
24-May-12	U (0.0005)	U (0.05)	0.565	NA NA	428.69	NA NA		
12-Aug-13 06-May-14	U (0.0005) U (0.0005)	U (0.05)	U (0.400)	NA NA	428.95	NA NA		
,	,	U (0.05)	U (0.41)	NA NA	428.80 428.60	NA NA		
26-May-15 12-May-16	U (0.001)	U (0.05)	U (0.21)					
07-Sep-17	U (0.0020)	U (0.1)	0.78 0.59	NA NA	428.17 429.50	NA NA		
07-Sep-17 07-Sep-18	U (0.00040)	U (0.150)		NA NA		NA NA		
23-Oct-19	U (0.00040)	U (0.150) U (0.25)	U (0.28)	NA NA	430.61 431.53	NA NA		
	U (0.003)		0.33 H					
GCL	0.0046	2.2	1.5	NA	NA	NA		

Monitoring Well MW-5									
	_			Product	Measured GW				
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW			
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)			
04-Nov-91	U	NS	NS	NA	431.47	NA			
03-Jan-92	NS	NS	NS	NA	431.52	NA			
28-Jan-92	U	NS	NS	NA	431.41	NA			
09-Mar-92	NS	NS	NS	NA	431.30	NA			
23-Apr-92	U	NS	NS	NA	431.17	NA			
16-Jul-92	U	NS	NS	NA	433.63	NA			
11-Aug-92	U	NS	NS	NA	433.45	NA			
10-Sep-92	U	NS	NS	NA	432.68	NA			
07-Oct-92	U	NS	NS	NA	431.94	NA			
21-Dec-92	U	NS	NS	NA	431.0	NA			
09-Mar-93	U	NS	NS	NA	431.32	NA			
16-Jun-93	U	NS	NS	NA	432.94	NA			
07-Sep-93	U	NS	NS	NA	432.95	NA			
13-Dec-93	U	NS	NS	NA	431.48	NA			
31-Mar-94	Ü	NS	NS	NA	430.80	NA			
23-Sep-94	Ü	NS	NS	NA	432.31	NA			
12-Dec-94	Ü	NS	NS	NA	431.32	NA			
12-Mar-95	Ü	NS	NS	NA	430.66	NA			
13-Apr-95	Ü	NS	NS	NA	431.32	NA			
19-Jul-95	Ü	NS	NS	NA	433.08	NA			
25-Oct-95	Ü	NS	U	NA	432.43	NA			
22-May-96	Ü	NS	NS	NA	431.63	NA			
06-Nov-96	Ü	NS	NS	NA	430.95	NA			
19-Mar-97	Ü	NS	NS	NA NA	430.30	NA.			
17-Nov-97	Ü	U	NS	NA NA	431.22	NA NA			
29-Apr-98	U	U	0.106	NA NA	429.11	NA NA			
13-Oct-98	U	U	0.100	NA NA	431.41	NA NA			
04-Nov-99	U	U	U U	NA NA	430.95	NA NA			
27-Jul-00	NS	NS	NS	NA NA	NM	NA NA			
08-Mar-01	NS	NS	NS	NA NA	NM	NA NA			
04-Jun-01	NS	NS	NS	NA NA	NM	NA NA			
30-Nov-01	U	U	U	NA NA	NM	NA NA			
24-Apr-02	NS	NS	NS	NA NA	430.87	NA NA			
20-Aug-02	NS	NS	NS	NA NA	433.37	NA NA			
06-Nov-02	NS	NS NS	NS NS	NA NA	431.68	NA NA			
20-Mar-03	NS	NS NS	NS NS	NA NA		NA NA			
	NS NS				431.57				
16-May-03	U U	NS U	NS	NA NA	434.76	NA NA			
04-Aug-03		NS	U NS	NA NA	433.58	NA NA			
24-Nov-03	NS NS	NS NS	NS NS	NA NA	431.29	NA NA			
10-Feb-04					430.60				
03-May-04	NS	NS	NS NC	NA NA	430.98	NA NA			
18-Aug-04	NS	NS	NS	NA	431.24	NA			
08-Nov-04	NS	NS	NS	NA	430.61	NA			
01-Apr-05	NS	NS	NS	NA	NM	NA			
27-Sep-05	NS	NS	NS	NA	NM	NA			
16-May-06	NS	NS	NS	NA	NM	NA			
14-Sep-06	NS	NS	NS	NA	NM	NA			
14-May-07	NS	NS	NS	NA	NM	NA			
04-Jun-08	NS	NS	NS	NA	NM	NA			
13-May-09	NS	NS	NS	NA	NM	NA			
15-Jun-10	NS	NS	NS	NA	NM	NA			
26-May-11	NS	NS	NS	NA	NM	NA			
04-Oct-11			Well	Decommissione	d				
GCL	0.0046	2.2	1.5	NA	NA	NA			

Monitoring Well MW-6

			violitoring	Product	Measured GW	
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW
D-4-			_	(feet)	(feet)	Elevation (feet)
Date	(mg/L)	(mg/L)	(mg/L)	, ,	, ,	` '
28-Jan-92	U	NS	NS	NA	430.59	NA
09-Mar-92	NS	NS	NS	NA	430.49	NA
23-Apr-92	U	NS	NS	NA	430.85	NA
16-Jul-92	U	NS	NS	NA	432.83	NA
11-Aug-92	U	NS	NS	NA	432.60	NA
10-Sep-92	U	NS	NS	NA	431.86	NA
07-Oct-92	U	NS	NS	NA	431.23	NA
21-Dec-92	U	NS	NS	NA	430.19	NA
09-Mar-93	U	NS	NS	NA	430.19	NA
16-Jun-93	U	NS	NS	NA	432.06	NA
07-Sep-93	U	NS	NS	NA	432.08	NA
12-Dec-94	U	NS	NS	NA	436.61	NA
13-Apr-95	NS	NS	NS	NA	NM	NA
19-Jul-95	NS	NS	NS	NA	NM	NA
25-Oct-95	U	NS	U	NA	431.46	NA
22-May-96	U	NS	NS	NA	430.21	NA
06-Nov-96	U	NS	NS	NA	429.49	NA
19-Mar-97	U	NS	NS	NA	428.56	NA
17-Nov-97	U	U	NS	NA	430.37	NA
29-Apr-98	U	U	0.119	NA	427.95	NA
13-Oct-98	U	U	0.151	NA	430.33	NA
27-Jul-00	U	U	0.331	NA	431.15	NA
08-Mar-01	NS	NS	NS	NA	NM	NA
04-Jun-01	NS	NS	NS	NA	NM	NA
30-Nov-01	U	U	1.61	NA	430.13	NA
14-May-07				Well Destroyed	•	•
GCL	0.0046	2.2	1.5	NA	NA	NA

				Product	Measured GW	
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)
28-Jan-92	U	NS	NS	NA	430.59	NA
09-Mar-92	NS	NS	NS	NA	430.41	NA
23-Apr-92	U	NS	NS	NA	430.73	NA
16-Jul-92	U	NS	NS	NA	432.69	NA
11-Aug-92	U	NS	NS	NA	432.50	NA
10-Sep-92	U	NS	NS	NA	431.65	NA
07-Oct-92	U	NS	NS	NA	431.11	NA
21-Dec-92	U	NS	NS	NA	430.08	NA
09-Mar-93	U	NS	NS	NA	430.36	NA
16-Jun-93	U	NS	NS	NA	431.96	NA
07-Sep-93	U	NS	NS	NA	431.96	NA
13-Dec-93	U	NS	NS	NA	430.96	NA
31-Mar-94	U	NS	NS	NA	430.06	NA
23-Sep-94	U	NS	NS	NA	431.63	NA
12-Mar-95	U	NS	NS	NA	429.94	NA
13-Apr-95	U	NS	NS	NA	430.29	NA
19-Jul-95	U	NS	NS	NA	432.05	NA
25-Oct-95	U	NS	U	NA	431.54	NA
22-May-96	U	NS	NS	NA	430.54	NA
06-Nov-96	U	NS	NS	NA	429.81	NA
19-Mar-97	U	NS	NS	NA	429.05	NA
17-Nov-97	U	U	NS	NA	430.43	NA
29-Apr-98	0.00223	U	0.132	NA	428.18	NA
13-Oct-98	NS	NS	NS	NA	NM	NA
07-Jun-00			\	Well Destroyed		
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-8

	Monitoring Well MW-8								
				Product	Measured GW				
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW			
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)			
29-Jan-92	NS	NS	NS	431.54	428.79	430.99			
09-Mar-92	NS	NS	NS	431.43	428.28	430.80			
12-Mar-95	NS	NS	NS	430.84	427.56	430.18			
13-Apr-95	NS	NS	NS	431.44	428.76	430.90			
19-Jul-95	NS	NS	NS	432.66	432.63	432.65			
25-Oct-95	NS	NS	NS	432.32	430.70	432.00			
19-Mar-97	NS	NS	NS	432.99	429.80	432.35			
17-Nov-97	NS	NS	NS	433.33	431.02	432.87			
29-Apr-98	NS	NS	NS	430.56	428.23	430.09			
13-Oct-98	NS	NS	NS	433.00	431.01	432.60			
28-Jan-00	NS	NS	NS	429.61	426.66	429.02			
10-Apr-00	NS	NS	NS	430.05	427.14	429.47			
27-Jul-00	NS	NS	NS	431.48	431.45	431.47			
08-Mar-01	NS	NS	NS	431.43	429.13	430.97			
08-Jun-01	NS	NS	NS	431.33	430.24	431.11			
30-Nov-01	NS	NS	NS	NA	NM	NA			
24-Apr-02	NS	NS	NS	430.03	430.02	430.03			
20-Aug-02	NS	NS	NS	433.04	433.01	433.03			
06-Nov-02	NS	NS	NS	430.93	430.92	430.93			
20-Mar-03	NS	NS	NS	430.17	430.14	430.16			
16-May-03	NS	NS	NS	431.23	431.17	431.22			
04-Aug-03	NS	NS	NS	433.31	433.30	433.31			
24-Nov-03	NS	NS	NS	430.94	430.91	430.93			
10-Feb-04	NS	NS	NS	430.30	430.28	430.30			
03-May-04	NS	NS	NS	NA	430.68	NA			
18-Aug-04	NS	NS	NS	NA	431.86	NA			
30-Aug-04	0.00516	0.329	1.69	NA	NM	NA			
08-Nov-04	NS	NS	NS	NA	430.70	NA			
01-Apr-05	NS	NS	NS	NA	NM	NA			
27-Sep-05	U (0.0005)	U (0.05)	U (0.4)	NA	430.21	NA			
16-May-06	0.000695	0.0766	4.12	NA	430.59	NA			
14-Sep-06	0.00645	0.284	0.956	NA	431.52	NA			
14-May-07	NS	NS	NS	430.04	430.00	430.03			
04-Jun-08	0.00188	0.450	5.81	430.61	430.60	430.61			
13-May-09	0.00238	0.740	12.6	NA	430.98	NA			
15-Jun-10	0.00467	1.390	2.45	NA	428.96	NA.			
26-May-11	0.00188	1.10	13.1	NA	431.01	NA			
24-May-12	0.00134	0.524	1.88	NA	428.91	NA			
12-Aug-13	NS	NS	NS	428.42	428.40	428.42			
07-May-14	0.00067	2.2	43	NA	428.42	NA			
26-May-15	0.0025	2.8	65	NA	428.87	NA			
12-May-16	0.00087	0.86	12	NA	428.34	NA			
07-Sep-17	0.016	0.390	27	NA	429.69	NA			
07-Sep-18	0.00067	0.280	20	NA	430.79	NA			
23-Oct-19	U (0.003)	0.45	12	NA	429.39	NA			
GCL	0.0046	2.2	1.5	NA	NA	NA			

Monitoring Well MW-9

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
16-May-03	NS	NS	NS	431.36	431.16	431.32
04-Aug-03	NS	NS	NS	NA	NM	NA
24-Nov-03	NS	NS	NS	NA	NM	NA
10-Feb-04	NS	NS	NS	NA	NM	NA
03-May-04	NS	NS	NS	430.87	429.21	430.54
18-Aug-04	NS	NS	NS	432.19	430.59	431.87
08-Nov-04	NS	NS	NS	430.09	430.04	430.08
01-Apr-05	NS	NS	NS	NA	NM	NA
27-Sep-05	NS	NS	NS	NA	NM	NA
16-May-06	NS	NS	NS	NA	NM	NA
14-Sep-06	NS	NS	NS	NA	NM	NA
14-May-07	NS	NS	NS	NA	NM	NA
04-Jun-08	NS	NS	NS	NA	NM	NA
13-May-09	NS	NS	NS	NA	NM	NA
15-Jun-10	NS	NS	NS	NA	NM	NA
26-May-11	NS	NS	NS	NA	NM	NA
04-Oct-11			Well	Decommissione	d	•
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Wells MW-10, MW-11, and MW-12 consist of steel pipe casings, and are typically frozen. Monitoring Well MW-12 has been destroyed. Data for Monitoring Wells MW-10, MW-11, and MW-12 is not included.

Monitoring Well MW-13

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)	
04-Nov-99	0.00468	0.096	1.26	NA	NM	NA	
27-Jul-00	0.012	0.32	0.848	NA	NM	NA	
08-Mar-01	NS	NS	NS	NA	430.69	430.69	
04-Jun-01	0.00276	U	0.831	NA	430.93	430.93	
04-Oct-11	Well Decommissioned						
GCL	0.0046	2.2	1.5	NA	NA	NA	

Monitoring Well MW-14

Monitoring Well MW-14								
				Product	Measured GW			
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW		
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
10-Apr-00	NS	NS	NS	NA	428.72	NA		
28-Jan-00	NS	NS	NS	NA	429.65	NA		
27-Jul-00	NS	NS	NS	431.93	431.87	431.92		
08-Mar-01	NS	NS	NS	NA	430.71	NA		
04-Jun-01	NS	NS	NS	NA	Frozen	NA		
30-Nov-01	NS	NS	NS	429.12	429.11	429.12		
24-Apr-02	NS	NS	NS	NA	428.51	NA		
20-Aug-02	NS	NS	NS	NA	NM	NA		
06-Nov-02	NS	NS	NS	NA	429.37	NA		
20-Mar-03	NS	NS	NS	NA	Frozen	NA		
16-May-03	NS	NS	NS	NA	Frozen	NA		
04-Aug-03	NS	NS	NS	NA	433.36	NA		
24-Nov-03	NS	NS	NS	NA	429.01	NA		
10-Feb-04	NS	NS	NS	NA	428.31	NA		
03-May-04	NS	NS	NS	NA	Frozen	NA		
18-Aug-04	NS	NS	NS	NA	430.79	NA		
08-Nov-04	NS	NS	NS	NA	428.18	NA		
01-Apr-05	0.0162	2.16	22	NA	429.39	NA		
27-Sep-05	0.0194	1.07	4.34	NA	429.31	NA		
16-May-06	NS	NS	NS	NA	NM	NA		
14-Sep-06	0.00323	0.457	1.51	NA	NR	NA		
14-May-07	NS	NS	NS	NA	NM	NA		
04-Jun-08	0.0128	0.964	3.02	NA	430.57	NA		
13-May-09	0.0267	2.18	1.77	NA	430.88	NA		
15-Jun-10	0.0119	1.15	1.89	NA	429.05	NA		
26-May-11	0.0103	1.23	3.78	NA	430.92	NA		
24-May-12	0.00271	0.284	2.72	NA	428.79	NA		
12-Aug-13	0.0442	3.77	120	NA	429.18	NA		
06-May-14	0.027	12	67	NA	426.53	NA		
26-May-15	0.020	3.6	6.4	NA	426.47	NA		
Ice Plug				Ice Plug				
07-Sep-17	0.050	6.5	14	NA	429.60	NA		
07-Sep-18	0.074	U (7.5)	26	NA	430.73	NA		
23-Oct-19	0.054	12	15 H	NA	429.64	NA		
GCL	0.0046	2.2	1.5	NA	NA	NA		

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
04-Nov-99	0.106	12.0	8.51	NA	NM	NA
28-Jan-00	NS	NS	NS	NA	429.29	NA
27-Jul-00	NS	NS	NS	431.69	431.03	431.56
08-Mar-01	NS	NS	NS	431.04	430.44	430.88
04-Jun-01	NS	NS	NS	NA	Frozen	NA
30-Nov-01	Well Destroyed					
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-16

Monitoring Weil MW-10								
	_			Product	Measured GW			
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW		
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
04-Nov-99	U	2.4	1.83	NA	NS	NA		
10-Apr-00	NS	NS	NS	429.23	428.88	429.16		
27-Jul-00	NS	NS	NS	431.64	431.65	431.64		
08-Mar-01	NS	NS	NS	431.03	430.62	430.92		
04-Jun-01	U	U	1.61	NA	431.29	NA		
30-Nov-01	NS	NS	NS	NA	430.98	NA		
24-Apr-02	NS	NS	NS	NA	NM	NA		
20-Aug-02	0.0006	1.63	1.22	NA	433.03	NA		
06-Nov-02	NS	NS	NS	NA	431.36	NA		
20-Mar-03	NS	NS	NS	NA	431.27	NA		
16-May-03	NS	NS	NS	NA	Frozen	NA		
04-Aug-03	NS	NS	NS	NA	433.47	NA		
24-Nov-03	NS	NS	NS	NA	431.02	NA		
10-Feb-04	NS	NS	NS	NA	430.29	NA		
03-May-04	NS	NS	NS	NA	436.26	NA		
18-Aug-04	NS	NS	NS	NA	431.94	NA		
08-Nov-04	NS	NS	NS	NA	430.15	NA		
01-Apr-05	NS	NS	NS	NA	NM	NA		
27-Sep-05	NS	NS	NS	NA	NM	NA		
16-May-06	U (0.0005)	U (0.050)	1.06	NA	430.08	NA		
14-Sep-06	U (0.0005)	0.237	0.908	NA	431.63	NA		
14-May-07	U (0.0005)	U (0.050)	1.12	429.56	429.20	429.24		
04-Jun-08	U (0.0005)	U (0.050)	U (0.4)	NA	430.74	NA		
13-May-09	NS	NS	NS	NA	NM	NA		
15-Jun-10	NS	NS	NS	NA	NM	NA		
04-Oct-11			Well	Decommissione	d			
GCL	0.0046	2.2	1.5	NA	NA	NA		

				Product	Measured GW	
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)
04-Nov-99	NS	NS	NS	NA	NM	NA NA
28-Jan-00	NS	NS	NS	NA NA	429.08	NA NA
10-Apr-00	NS	NS	NS	429.97	427.06	429.39
27-Jul-00	0.07	6.8	57.6	431.45	431.44	431.45
08-Mar-01	NS	NS	NS	NA	430.41	NA
04-Jun-01	NS	NS	NS	430.64	430.39	430.57
30-Nov-01	NS	NS	NS	431.07	430.82	431.00
24-Apr-02	NS	NS	NS	NA	NM	NA
20-Aug-02	NS	NS	NS	NA NA	433.51	NA NA
06-Nov-02	NS	NS	NS	NA NA	431.81	NA NA
20-Mar-03	NS	NS	NS	NA NA	431.59	NA NA
16-May-03	NS	NS	NS	NA NA	431.76	NA NA
04-Aug-03	0.0016	0.535	4.5	NA NA	433.63	NA NA
24-Nov-03	NS	NS	NS	NA	431.29	NA NA
10-Feb-04	NS	NS	NS	NA NA	430.53	NA NA
03-May-04	0.0823	1.14	65.2	NA NA	431.26	NA NA
18-Aug-04	NS	NS	NS	NA	432.18	NA NA
08-Nov-04	NS	NS	NS	NA	430.40	NA
01-Apr-05	0.0148	5.37	118	NA	430.61	NA
27-Sep-05	0.00422	0.204	6.53	NA	432.54	NA
16-May-06	0.000652	0.633	51.2	NA	430.95	NA
14-Sep-06	0.00634	0.642	9.33	NA	431.46	NA
14-May-07	0.00182	0.467	74.1	NA	429.79	NA
04-Jun-08	0.00054	0.213	3.49	NA	430.54	NA
13-May-09	U (0.0005)	U (0.05)	1.11	NA	433.54	NA
15-Jun-10	0.00384	0.148	3.7	NA	428.82	NA
26-May-11	U (0.0005)	U (0.05)	0.963	NA	431.19	NA
24-May-12	U (0.0005)	0.122	1.05	NA	428.13	NA
12-Aug-13	U (0.0005)	1.68	114	NA	429.15	NA
06-May-14	U (0.0005)	1.2	28	NA	426.33	NA
26-May-15	U (0.0010)	3.9	32	NA	426.17	NA
12-May-16	U (0.00026)	3.3	74	NA	427.12	NA
07-Sep-17	0.0059	2.4	47	NA	429.61	NA
07-Sep-18	0.0064	2.9	24	NA	430.60	NA
23-Oct-19	0.0077	0.38	14	NA	429.31	NA
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-18

			Torritoring V	Product	Measured GW	
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)
04-Nov-99	U	3.4	24.6	NA	NM	NA NA
10-Apr-00	NS	NS	NS NS	429.21	429.12	429.19
27-Jul-00	U	U	6.06	NA	432.73	NA
08-Mar-01	NS	NS	NS	NA NA	430.95	NA NA
04-Jun-01	U	1.42	11.6	NA NA	431.29	NA NA
30-Nov-01	NS	NS	NS	NA NA	430.81	NA NA
24-Apr-02	NS	NS	NS	NA NA	NM	NA NA
20-Aug-02	NS NS	NS	NS	NA NA	NM	NA NA
06-Nov-02	NS	NS	NS	NA NA	NM	NA NA
20-Mar-03	NS	NS	NS	NA NA	NM	NA NA
16-May-03	NS NS	NS	NS	NA NA	NM	NA NA
04-Aug-03	NS	NS	NS	NA NA	NM	NA NA
24-Nov-03	NS	NS	NS	NA NA	NM	NA NA
10-Feb-04	NS	NS	NS	NA NA	NM	NA NA
03-May-04	NS	NS	NS	NA NA	430.60	NA NA
18-Aug-04	NS	NS	NS	NA NA	430.00	NA NA
08-Nov-04	NS	NS	NS	NA NA	430.07	NA NA
00-N0V-04 01-Apr-05	NS	NS NS	NS NS	NA NA	430.07 NM	NA NA
	NS	NS	NS	NA NA	NM	NA NA
27-Sep-05					NM	
16-May-06	NS	NS	NS	NA NA		NA
14-Sep-06	NS	NS	NS	NA NA	NM	NA
14-May-07	NS	NS	NS	NA NA	NM	NA NA
04-Jun-08	NS	NS	NS	NA	NM	NA
13-May-09	NS	NS	NS	NA	NM	NA
15-Jun-10	NS	NS	NS	NA	NM	NA
26-May-11	NS	NS	NS Male	NA D	NM	NA
04-Oct-11				Decommissione		
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-19

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
27-Jul-00	0.044	U	1.14	NA	NST	NA
08-Mar-01	NS	NS	NS	NA	430.57	NA
04-Jun-01	0.0037	0.271	1.05	NA	430.82	NA
30-Nov-01	Well Destroyed					
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW 19-1

Monitoring von Mv 15-1								
				Product	Measured GW			
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW		
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
23-Oct-19	0.085	8.6	42 H	NA	NC	NA		
GCL	0.0046	2.2	1.5	NA	NA	NA		

Monitoring Well MW 19-2

				Product	Measured GW	
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)
23-Oct-19	NS	NS	NS	N	428.48	NC
GCL	0.0046	2.2	1.5	ÑA	NA	NA

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)	
27-Jul-00	U	U	0.997	NA	NST	NA	
08-Mar-01	NS	NS	NS	NA	NM	NA	
04-Jun-01	NS	NS	NS	NA	NM	NA	
30-Nov-01	Well Destroyed						
GCL	0.0046	2.2	1.5	NA	NA	NA	

Monitoring Well MW-21

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
27-Jul-00	0.028	U	1.55	NA	NST	NA
08-Mar-01	NS	NS	NS	NA	NM	NA
04-Jun-01	NS	NS	NS	NA	NM	NA
30-Nov-01	Well Destroyed					
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-22

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
27-Jul-00	U	U	0.008	NA	NST	NA
08-Mar-01	NS	NS	NS	NA	NM	NA
04-Jun-01	NS	NS	NS	NA	NM	NA
30-Nov-01	Well Destroyed					
GCL	0.0046	2.2	1.5	NA	NA	NA

Monitoring Well MW-23

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)		
30-Nov-01	NS	NS	NS	NA	NM	NA		
24-Apr-02	NS	NS	NS	430.71	430.59	430.69		
20-Aug-02	NS	NS	NS	NA	433.01	NA		
06-Nov-02	NS	NS	NS	NA	431.59	NA		
20-Mar-03	NS	NS	NS	NA	432.00	NA		
16-May-03	NS	NS	NS	NA	432.06	NA		
04-Aug-03	NS NS		NS	NA	433.38	NA		
16-Oct-03		Wel	l damaged o	during site work a	nd removed.			
GCL	0.0046	2.2	1.5	NA	NA	NA		

Monitoring Well MW-24												
				Product	Measured GW							
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW						
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)						
30-Nov-01	0.0142	0.230	0.714	NA	NST	NA						
24-Apr-02	0.0144	0.213	0.686	NA	430.35	NA						
20-Aug-02	U	U	U	NA	433.01	NA						
06-Nov-02	NS	NS	431.34	NA								
20-Mar-03	NS	NS	NS	NA	430.92	NA						
16-May-03	NS	NS	NS	NA	431.11	NA						
04-Aug-03	0.0007	0.115	432.99	NA								
24-Nov-03	NS	NS	NS	NA	NM	NA						
10-Feb-04	NS	NS	NS	NA	429.75	NA						
03-May-04	0.0342	1.12	4.32	NA	430.11	NA						
18-Aug-04	NS	NS	NS	NA	431.74	NA						
08-Nov-04	NS	NS	NS	NA	429.94	NA						
01-Apr-05	0.0147	2.0	17.6	NA	429.87	NA						
27-Sep-05	U (0.0005)	U (0.05)	1.29	NA	431.88	NA						
16-May-06	NS	NS	NS	NA	NM	NA						
14-Sep-06	0.00270	0.0520	1.15	NA	431.46	NA						
14-May-07	NS	NS	NS	NA	NM	NA						
04-Jun-08	NS	NS	NS	NA	NA NM							
13-May-09	NS	NS	NS	NA	NM	NA						
15-Jun-10	NS	NS	NS	NA	NM	NA						
26-May-11	NS	NS	NS	NA	NM	NA						
24-May-12	NS	NS	NS	NA	NM	NA						
12-Aug-13	NS	NS	NS	NA	NM	NA						
06-May-14	NS	NS	NS	NA	NM	NA						
26-May-16	NS	NS	NS	NA	NM	NA						
07-Sep-17	NS	NS	NS	NA	NM	NA						
07-Sep-18	NS	NS	NS	NA	NM	NA						
23-Oct-19	NS	NS	NS	NA	NM	NA						
GCL	0.0046	2.2	1.5	NA	NA	NA						

Monitoring Well MW-25

				Veli IVIVV-25				
Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)		
30-Nov-01	U	U	U	NA	NST	NA		
24-Apr-02	NS	NS	NS	NA	Frozen	NA		
20-Aug-02	NS	NS	NS	NA	433.39	NA		
06-Nov-02	NS	NS	NS	NA	NM	NA		
20-Mar-03	NS	NS	NS	NA	NM	NA		
16-May-03	NS	NS	NS	NA	Frozen	NA		
04-Aug-03	NS	NS	NS	NA	433.18	NA		
24-Nov-03	NS	NS	NS NA		NM	NA		
10-Feb-04	NS	NS	NS	NA	NM	NA		
03-May-04	NS	NS	NS	NA	430.38	NA		
18-Aug-04	NS	NS	NS	NA	431.63	NA		
08-Nov-04	NS	NS	NS	429.79	NA			
01-Apr-05	NS	NS	NS	NA	NM	NA		
27-Sep-05	NS	NS	NS	NA	NM	NA		
16-May-06	NS	NS	NS	NA	NM	NA		
14-Sep-06	NS	NS	NS	NA	NM	NA		
14-May-07	NS	NS	NS	NA	NM	NA		
04-Jun-08	NS	NS	NS	NA	NM	NA		
13-May-09	NS	NS	NS	NA	NM	NA		
15-Jun-10	NS	NS	NS	NA	NM	NA		
26-May-11	NS	NS	NS	NA	NM	NA		
04-Oct-11		b						
GCL	0.0046	2.2	1.5	NA	NA	NA		

			ionitoring v				
	_	000	220	Product	Measured GW		
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW	
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)	
30-Nov-01	NS	NS	NS	NA	NST	NA	
24-Apr-02	0.0024	0.0909	1.42	NA	416.97	NA	
20-Aug-02	NS	NS	NS	NA	NM	NA	
06-Nov-02	NS	NS	NS	NA	432.06	NA	
20-Mar-03	NS	NS	NS	NA	Frozen	NA	
16-May-03	NS	NS	NS	Frozen	NA		
04-Aug-03	NS	NS	NS	NA	433.56	NA	
24-Nov-03	NS	NS	NS	NA	Frozen	NA	
10-Feb-04	NS	NS	NS	NA	Frozen	NA	
03-May-04	NS	NS	NS	NA	Frozen	NA	
18-Aug-04	NS	NS	NS	NA	Frozen	NA	
08-Nov-04	NS	NS	NS	NA	Frozen	NA	
01-Apr-05	NS	NS	NS	NA	NM	NA	
27-Sep-05	NS	NS	NS	NM	NA		
16-May-06	NS	NS	NS	NA	NM	NA	
14-Sep-06	NS	NS	NS	NA	NM	NA	
14-May-07	NS	NS	NS	NA	NM	NA	
04-Jun-08	NS	NS	NS	NA	NM	NA	
13-May-09	NS	NS	NS	NA	NM	NA	
15-Jun-10	NS	NS	NS	NA	NM	NA	
26-May-11	NS	NS	NS	NA	NM	NA	
24-May-12	NS	NS	NS	NA	NM	NA	
12-Aug-13	NS	NS	NS	NA	NM	NA	
06-May-14	NS	NS	NS	NA	NM	NA	
26-Jun-14	NS	NS	NS	NA	NM	NA	
07-Sep-17	NS	NS	NS	NA	NM	NA	
07-Sep-18	NS	NS	NS	NA	NM	NA	
23-Oct-19	NS	NS	NS	NA	NA		
GCL	0.0046	2.2	1.5	NA	NA	NA	

Monitoring Well MW-27

	<u> </u>		ionitoring v		Manager of City	1	
	_			Product	Measured GW		
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW	
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)	
30-Nov-01	U	U	U	NA	NST	NA	
24-Apr-02	U	U	U	NA	431.69	NA	
20-Aug-02	U	U	0.54	433.58	NA		
06-Nov-02	NS	NS	NS	NA	432.9	NA	
20-Mar-03	NS	NS	NS	NA	432.43	NA	
16-May-03	NS	NS	NS	NA	432.75	NA	
04-Aug-03	U	U	0.589	NA	434.62	NA	
24-Nov-03	NS	NS	NS	NA	432.28	NA	
10-Feb-04	NS	NS	NS	NA	431.33	NA	
03-May-04	NS	NS	NS	NA	431.74	NA	
18-Aug-04	NS	NS	NS	NA	433.29	NA	
08-Nov-04	NS	NS	NS	NA	Frozen	NA	
01-Apr-05	NS	NS	NS	NA	NM	NA	
27-Sep-05	NS	NS	NS	NA	NM	NA	
16-May-06	NS	NS	NS	NA	NM	NA	
14-Sep-06	NS	NS	NS	NA	NM	NA	
14-May-07	NS	NS	NS	NA	NM	NA	
04-Jun-08	NS	NS	NS	NA	NM	NA	
13-May-09	NS	NS	NS	NA	NM	NA	
15-Jun-10	NS	NS	NS	NA	NM	NA	
26-May-11	NS	NS	NS	NA	NM NA		
04-Oct-11			Well	Decommissione	d	•	
GCL	0.0046	2.2	1.5	NA	NA	NA	

				Product	Measured GW		
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW	
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)	
30-Nov-01	0.003	U	0.747	NA	NST	NA	
24-Apr-02	U	U	0.570	NA	430.89	NA	
20-Aug-02	0.004	U	0.878	433.31	NA		
06-Nov-02	NS	NS	NS	NA	431.64	NA	
20-Mar-03	NS	NS	NS	NA	431.47	NA	
16-May-03	NS	NS	NS	NA	431.68	NA	
04-Aug-03	NS	NS	NS	NA	433.5	NA	
24-Nov-03	NS	NS	NS	NA	431.12	NA	
10-Feb-04	NS	NS	NS	NA	430.32	NA	
03-May-04	NS	NS	NS	NA	430.72	NA	
18-Aug-04	NS	NS	NS	NA	431.99	NA	
08-Nov-04	NS	NS	NS	NA	430.35	NA	
01-Apr-05	NS	NS	NS	NA	NM	NA	
27-Sep-05	NS	NS	NS	NA	NM	NA	
16-May-06	NS	NS	NS	NA	NM	NA	
14-Sep-06	NS	NS	NS	NA	NM	NA	
14-May-07	NS	NS	NS	NA	NM	NA	
04-Jun-08	NS	NS	NS	NA	NM	NA	
13-May-09	NS	NS	NS	NA	NM	NA	
15-Jun-10	NS	NS	NS	NA	NM	NA	
26-May-11	NS	NS	NS	NA	NM	NA	
04-Oct-11			Well	Decommissione	d	•	
GCL	0.0046	2.2	1.5	NA	NA	NA	

Monitoring Well G-1

				Product	Measured GW		
	Benzene	GRO	DRO	Elevation	Elevation	Corrected GW	
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)	
Mar-01	NS	NS	NS	NA	NST	NA	
May-01	U	U	U	NA NA	NST	NA	
30-Nov-01	U	U	U	429.16	NA		
24-Apr-02	U	U	U	NA	430.30	NA	
04-Jun-02	NS	NS	NS	NA	430.30	NA	
20-Aug-02	U	U	U	432.87	NA		
06-Nov-02	NS	NS	NS	NA	431.12	NA	
20-Mar-03	NS	NS	NS	NA	431.06	NA	
16-May-03	NS	NS	NS	NA	431.26	NA	
04-Aug-03	U	U	U	NA	433.22	NA	
24-Nov-03	NS	NS	NS	NA	430.81	NA	
10-Feb-04	NS	NS	NS	NA	430.18	NA	
03-May-04	NS	NS	NS	NA	430.50	NA	
18-Aug-04	NS	NS	NS	431.73	NA		
08-Nov-04	NS	NS	NS	NM	NA		
01-Apr-05	NS	NS	NS	NA	NM	NA	
27-Sep-05	NS	NS	NS	NA	NM	NA	
16-May-06	NS	NS	NS	NA	NM	NA	
14-Sep-06	NS	NS	NS	NA	NM	NA	
14-May-07	NS	NS	NS	NA	NM	NA	
04-Jun-08	NS	NS	NS	NA	NM	NA	
13-May-09	NS	NS	NS	NA	NM	NA	
15-Jun-10	NS	NS	NS	NA	NM	NA	
26-May-11	NS	NS	NS	NA	NM	NA	
24-May-12	NS	NS	NS	NA	NM	NA	
12-Aug-13	NS	NS	NS	NA	NM	NA	
06-May-14	NS	NS	NS	NA	NM	NA	
26-May-14	NS	NS	NS	NA	NM	NA	
07-Sep-17	NS	NS	NS	NA	NM	NA	
07-Sep-18	NS	NS	NS	NA	NM	NA	
23-Oct-19	NS	NS	NS	NA	NM	NA	
GCL	0.0046	2.2	1.5	NA	NA	NA	

	Benzene	GRO	DRO	Product Elevation	Measured GW Elevation	Corrected GW		
. .								
Date	(mg/L)	(mg/L)	(mg/L)	(feet)	(feet)	Elevation (feet)		
16-Oct-03	U	U	U	NA	431.56	NA		
24-Nov-03	NS	NS	NS	NA	430.49	NA		
10-Feb-04	NS	NS	NS	NA	429.66	NA		
03-May-04	U	U	U	NA	430.01	NA		
18-Aug-04	NS	NS	NS	NA	NM	NA		
08-Nov-04	NS	NS	NS	NA	NM	NA		
01-Apr-05	NS	NS	NS	NA	NM	NA		
27-Sep-05	U (0.0005)	U (0.05)	U (0.403)	NA	NA 431.49			
16-May-06	NS	NS	NS	NA	NA			
14-Sep-06	NS	NS	NS	NA	NM	NA		
14-May-07	NS	NS	NS	NA	NM	NA		
04-Jun-08	NS	NS	NS	NA	NM	NA		
13-May-09	NS	NS	NS	NA	NM	NA		
15-Jun-10	NS	NS	NS	NA	NM	NA		
26-May-11	NS	NS	NS	NA	NM	NA		
24-May-12	NS	NS	NS	NA	NM	NA		
12-Aug-13	NS	NS	NS	NA	NM	NA		
06-May-14	NS	NS	NS	NA	NM	NA		
26-May-14	NS	NS	NS	NA	NM	NA		
17-Sep-17			NS	NA	NM	NA		
07-Sep-18	Sep-18 NS NS		NS NA		NM	NA		
23-Oct-19	23-Oct-19 NS NS		NS	NA	NM	NA		
GCL	0.0046	2.2	1.5	NA	NA	NA		

Monitoring Well MW-30

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)			
16-Oct-03	U	U	U	NA	431.98	NA			
24-Nov-03	NS	NS	NS	NA	430.74	NA			
10-Feb-04	NS	NS	NS	429.98	NA				
03-May-04	U	U	U	NA	430.31	NA			
18-Aug-04	NS	NS	NS	NA	NM	NA			
08-Nov-04	NS	NS	NS	NA	429.70	NA			
01-Apr-05	NS	NS	NS	NA	428.69	NA			
27-Sep-05	NS	NS	NS	NA	NM	NA			
16-May-06	NS	NS	NS	NA	NM	NA			
14-Sep-06	NS	NS	NS	NA	NM NA				
14-May-07	NS	NS	NS	NM	NA				
04-Jun-08	NS	NS	NS	NM	NA				
13-May-09	NS	NS	NS	NA	NM	NA			
15-Jun-10	NS	NS	NS	NA	NM	NA			
26-May-11	NS	NS	NS	NA	NM	NA			
24-May-12	NS	NS	NS	NA	NM	NA			
12-Aug-13	NS	NS	NS	NA	NM	NA			
06-May-14	NS	NS	NS	NA	NM	NA			
26-May-14	NS	NS	NS	NA	NM	NA			
07-Sep-17	NS	NS	NS	NA	NM	NA			
07-Sep-18	NS	NS	NS	NA	NM	NA			
23-Oct-19	NS	NS	NS	NA	NA NM				
GCL	0.0046	2.2	1.5	NA	NA	NA			

IFC Aeration Tank

Date	Benzene (mg/L)	GRO DRO (mg/L)		Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
24-May-12	0.00486	0.532	0.478	NA	NM	NA
12-Aug-13	NS	NS	NS	NA	NM	NA
06-May-14	NS	NS	NS	NA	NM	NA
26-May-15	0.0065	0.59 21		NA	NM	NA
12-May-16	0.005	0.21 U (0.43		NA	NM	NA
07-Sep-17	U (0.00040)	U (0.150)	0.74	NA	430.91	NA
07-Sep-18	U (0.00040)	U (0.150)	0.28	NA	NM	NA
23-Oct-19	U (0.003)	U (0.25) 0.37		NA	NM	NA
GCL	0.0046	2.2	1.5	NA	NA	NA

CRW-2

Date	Benzene (mg/L)	GRO (mg/L)	DRO (mg/L)	Product Elevation (feet)	Measured GW Elevation (feet)	Corrected GW Elevation (feet)
24-Sep-13	U (0.0005)	U (0.05)	U (0.439)	NA	NM	NA
07-May-14	0.0014	0.05	1.2	NA	NM	NA
26-May-15	NS	NS	NS	NA	NM	NA
12-May-16	NS	NS	NS	426.91	425.10	426.55
07-Sep-17	0.016	0.350	0.96	429.60	423.60	428.40
07-Sep-18	0.013	0.910	2.8	430.70	NM	NM
23-Oct-19	0.011 0.99		1.4	NA	NM	NA
GCL	0.0046	2.2	1.5	NA	NA	NA

Key:

DRO - diesel range organics

GCL - groundwater cleanup levels

GRO - gasoline range organics

GW - groundwater

H - Sampled was prepped or analyzed beyond the specific holding time

mg/L - milligrams per liter

NA - not applicable

NC - not calculated

NM - not measured

NS - not sampled

NST - Not surveyed at time of monitoring.

U - Undetected above practical quantitation limits (PQLs). Density of product assumed 800 kg/m³

Bold, shade indicates concentration exceeds the GCL or, if not detected, the PQL exceeds the GCL

italisized cells indicate a revision completed in January 2018

APPENDIX E Groundwater Analytical Results for Expanded List of VOCs and PAHs Stantec

Table E-1 Groundwater Analytical Results for Expanded List of VOCs and PAHs

Samples collected on October 23, 2019

Sample Identification	1,1,2,2- Tetrachloro ethane ¹ (mg/L)	1,1,2- Trichloro ethane ¹ (mg/L)	1,2- Dibromo ethane ¹ (mg/L)	1,2- Dichloro ethane ¹ (mg/L)	1,2,3- Trichloro propane ¹ (mg/L)	1,2,4- Trimethyl benzene ¹ (mg/L)	1,3,5- Trimethyl benzene ¹ (mg/L)	Bromo dichloro methane ¹ (mg/L)	Chloro form ¹ (mg/L)	Hexachlorob utadiene ¹ (mg/L)	Trichloro ethene ¹ (mg/L)	Vinyl Chloride ¹ (mg/L)	1-Methyl naphthalene ² (mg/L)	2-Methyl naphthalene ² (mg/L)	Benzo[a] anthracene ² (mg/L)	Benzo[a] pyrene ² (mg/L)	Benzo[g,h,i]p erylene ² (mg/L)	Benzo[k] fluoranthene ² (mg/L)	Chrysene ² (mg/L)	Dibenz(a,h) anthracene ² (mg/L)	Indeno[1,2,3- cd]pyrene ² (mg/L)	Naphthalene ² (mg/L)
MW-3	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.3	0.11	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	0.28	0.33	U (0.001)	U (0.0021)	U (0.001)	U (0.001)	U (0.0021)	U (0.0021)	U (0.001)	0.096
MW-4	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	U (0.00011)	U (0.00023)	U (0.000056)	U (0.00011)	U (0.000056)	U (0.000056)	U (0.00011)	U (0.00011)	U (0.000056)	U (0.00011)
MW-8	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.045	0.025	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	U (0.00011)	U (0.00022)	U (0.000054)	U (0.00011)	U (0.000054)	U (0.000054)	U (0.00011)	U (0.00011)	U (0.000054)	U (0.00011)
MW-14	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.67	0.21	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	0.074	0.076	U (0.00057)	U (0.0011)	U (0.00057)	U (0.00057)	U (0.0011)	U (0.0011)	U (0.00057)	0.19
MW-17	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.013	0.003	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	U (0.00052)	U (0.001)	U (0.00026)	U (0.00052)	U (0.00026)	U (0.00026)	U (0.00052)	U (0.00052)	U (0.00026)	U (0.00052)
MW-19-1	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.6	0.18	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	0.13	0.14	U (0.00053)	U (0.0011)	U (0.00053)	U (0.00053)	U (0.0011)	U (0.0011)	U (0.00053)	0.19
Drainfield (Aeration Tank Effluent)	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	U (0.00011)	U (0.00023)	U (0.000057)	U (0.00011)	U (0.000057)	U (0.000057)	U (0.00011)	U (0.00011)	U (0.000057)	U (0.00011)
CRW-2	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.1	0.025	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	0.0064	0.0044	U (0.000056)	U (0.00011)	U (0.000056)	U (0.000056)	U (0.00011)	U (0.00011)	U (0.000056)	0.012
2GM101DUP (duplicate of MW-19-1)	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	0.54	0.18	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	0.19	0.22	U (0.00055)	U (0.0011)	U (0.00055)	U (0.00055)	U (0.0011)	U (0.0011)	U (0.00055)	0.24
Trip Blank	U (0.003)	U (0.001)	U (0.002)	U (0.002)	U (0.002)	U (0.003)	U (0.003)	U (0.002)	U (0.005)	U (0.006)	U (0.003)	U (0.001)	NT	NT	NT	NT	NT	NT	NT	NT	NT	U (0.004) ¹
GCLs	0.00076	0.00041	0.000075	0.0017	0.0000075	0.056	0.06	0.0013	0.0022	0.0014	0.0028	0.00019	0.011	0.036	0.0003	0.00025	0.00026	0.0008	0.002	0.00025	0.00019	0.0017

Key:

1 – Analyzed by EPA Method 8260C.

2 – Analyzed by EPA method 8270D Selective Ion Monitoring (SIM).

EPA – U.S. Environmental Protection Agency

GCLs - Groundwater cleanup levels, per Alaska Department of Environmental Conservation 18 Alaska Administrative Code 75.345, Table C, updated September 29, 2018.

mg/L - milligrams per liter

NT - Not tested

PAH – polynuclear aromatic hydrocarbon

U – Undetected above practical quantitation limit shown in parentheses

VOC – volatile organic compound

Bold indicates the concentration exceeds the GCL or, if not detected, the practical quantitation limit exceeds the GCL

APPENDIX F Laboratory Analytical Report and ADEC Laboratory Data Review Checklist

Stantec

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-90396-1 Client Project/Site: IFC/101

For:

Stantec Consulting Services Inc 1835 S. Bragraw Suite 350 Anchorage, Alaska 99508

Attn: Robert Gilifilian

M. Elains Walker

Authorized for release by: 11/15/2019 4:50:59 PM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Laboratory Job ID: 580-90396-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	6
QC Sample Results	35
Chronicle	53
Certification Summary	57
Sample Summary	58
Chain of Custody	59
Receipt Checklists	60

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Job ID: 580-90396-1

Laboratory: Eurofins TestAmerica, Seattle

Narrative

Job Narrative 580-90396-1

Receipt

Ten samples were received on 10/28/2019 1:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

GC/MS VOA

Method 8260C: The following analyte(s) recovered outside control limits for the LCSD associated with analytical batch 580-315794: 1,1-Dichloropropene. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-3 (580-90396-1), MW-14 (580-90396-4), MW-19-1 (580-90396-6), CRW-2 (580-90396-7) and 2GM101DUP (580-90396-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D SIM: Terphenyl-d14 surrogate recovery for the method blank associated with preparation batch 580-315494 and analytical batch 580-316468 was below lower limits by 4%. The CCV %Drift is biased low to an extent that the method blank recovery is within control limits when accounting for the bias. All other associated QC and samples are within acceptance criteria for this surrogate. Therefore, the data is qualified and reported. (CCVIS 580-316468/3) and (MB 580-315494/1-A).

Method 8270D SIM: Surrogate recovery for the following samples were outside control limits: MW-4 (580-90396-2), MW-8 (580-90396-3), MW-17 (580-90396-5), CRW-2 (580-90396-7) and 2GM101DUP (580-90396-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8270D SIM: The following samples were diluted due to the nature of the sample matrix: MW-3 (580-90396-1), MW-14 (580-90396-4), MW-17 (580-90396-5) and MW-19-1 (580-90396-6). Elevated reporting limits (RLs) are provided.

Method 8270D SIM: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-3 (580-90396-1), MW-14 (580-90396-4), MW-19-1 (580-90396-6), CRW-2 (580-90396-7), and 2GM101DUP (580-90396-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method AK101: The Gasoline Range Organics (GRO) concentration reported for the following sample is due to the presence of discrete peaks: MW-17 (580-90396-5). Gasoline Range Organics (GRO)-C6-C10

Method AK101: Detections were seen outside the AK101 range for samples MW-8 (580-90396-3) and CRW-2 (580-90396-7).

Method AK101: The following sample required anti-foam: (MB 580-315586/9). Anti-foam was added to the associated MB.

Method AK101: Surrogate 4-Bromofluorobenzene (Surr) recovery for the following samples were outside control limits: MW-14 (580-90396-4), MW-19-1 (580-90396-6) and 2GM101DUP (580-90396-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method AK102 & 103: Reanalysis of the following samples were performed outside of the analytical holding time due to LCS recoveries outside control limits: MW-3 (580-90396-1), MW-4 (580-90396-2), MW-8 (580-90396-3), MW-14 (580-90396-4), MW-17 (580-90396-5), MW-19-1 (580-90396-6), CRW-2 (580-90396-7) and DRAIN FIELD (580-90396-8).

Eurofins TestAmerica, Seattle 11/15/2019

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Job ID: 580-90396-1 (Continued)

Laboratory: Eurofins TestAmerica, Seattle (Continued)

Method AK102 & 103: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-3 (580-90396-1). Elevated reporting limits (RLs) are provided.

Method AK102 & 103: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: MW-3 (580-90396-1), MW-4 (580-90396-2), MW-8 (580-90396-3), MW-14 (580-90396-4), MW-17 (580-90396-5) and MW-19-1 (580-90396-6).

Method AK102 & 103: Surrogate recovery for the following samples were outside control limits: MW-3 (580-90396-1), MW-19-1 (580-90396-6), CRW-2 (580-90396-7), and 2GM101DUP (580-90396-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method AK102 & 103: The laboratory control sample (LCS) for preparation batch 580-315972 and analytical batch 580-316161 recovered outside control limits for the following analytes: DRO (nC10-<nC25). The associated sample(s) was re-prepared and/or re-analyzed outside holding time. Both sets of data have been reported.

Method AK102 & 103: The following sample was diluted due to the nature of the sample matrix: 2GM101DUP (580-90396-9). Elevated reporting limits (RLs) are provided.

Method AK102 & 103: 2GM101DUP (580-90396-9) were extracted outside of holding time due to quality control failures in the initial analysis. Both sets of data are reported.

Method AK102 & 103: (LCS 580-316072/2-A) and (LCSD 580-316072/3-A) recover outside control limits, low-biased, for C10-C25 diesel range organics. Surrogate recovery and %RPD is also outside control limits. Samples in 580-316072 are either out-of-hold re-extracts or in-hold initial extractions. For affected samples, two sets of data are reported from other preparation batches.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

7

8

9

111

Definitions/Glossary

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Qualifiers

GC/MS VOA

* LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

X Surrogate is outside control limits

GC VOA

Qualifier Qualifier Description

X Surrogate is outside control limits

GC Semi VOA

* LCS or LCSD is outside acceptance limits.

H Sample was prepped or analyzed beyond the specified holding time

X Surrogate is outside control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

6

4

_

5

6

7

Ö

10

1-

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Lab Sample ID: 580-90396-1

Maria Maria

Matrix: Water

Job ID: 580-90396-1

Date Collected: 10/23/19 14:53 Date Received: 10/28/19 13:25

Client Sample ID: MW-3

Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane	ND ND ND	10 20	2.3	ug/L		11/01/19 21:31	
Vinyl chloride Bromomethane Chloroethane		20					
Bromomethane Chloroethane	ND		5.4	ug/L		11/01/19 21:31	
Chloroethane		1.0		ug/L		11/01/19 21:31	
	ND	6.0				11/01/19 21:31	
Trichlorofluoromethane	ND	5.0		ug/L		11/01/19 21:31	
	ND	3.0		ug/L		11/01/19 21:31	
1,1-Dichloroethene	ND	4.0		ug/L		11/01/19 21:31	
Carbon disulfide	ND	3.0		ug/L		11/01/19 21:31	
Acetone	ND	50		ug/L		11/01/19 21:31	
Methylene Chloride	ND	5.0		ug/L		11/01/19 21:31	
trans-1,2-Dichloroethene	ND	3.0		ug/L		11/01/19 21:31	
1,1-Dichloroethane	ND	2.0		ug/L		11/01/19 21:31	
2,2-Dichloropropane	ND	3.0		ug/L		11/01/19 21:31	
2-Butanone	ND	20		ug/L		11/01/19 21:31	
cis-1,2-Dichloroethene	ND	3.0		ug/L		11/01/19 21:31	
Bromochloromethane	ND	2.0		ug/L		11/01/19 21:31	
Chloroform	ND	5.0		ug/L		11/01/19 21:31	
1,1,1-Trichloroethane	ND	3.0		ug/L		11/01/19 21:31	
Carbon tetrachloride	ND	3.0		ug/L		11/01/19 21:31	
1,1-Dichloropropene	ND	3.0		ug/L		11/01/19 21:31	
Benzene	4.7	3.0		ug/L		11/01/19 21:31	
1,2-Dichloroethane	ND	2.0		ug/L		11/01/19 21:31	
Trichloroethene	ND	3.0		ug/L		11/01/19 21:31	
1,2-Dichloropropane	ND	1.0		ug/L		11/01/19 21:31	
Dibromomethane	ND	2.0		ug/L		11/01/19 21:31	
Bromodichloromethane	ND	2.0		ug/L		11/01/19 21:31	
cis-1,3-Dichloropropene	ND	1.0		ug/L		11/01/19 21:31	
4-Methyl-2-pentanone	ND	15		ug/L		11/01/19 21:31	
Toluene	7.1	2.0		ug/L		11/01/19 21:31	
trans-1,3-Dichloropropene	ND	1.0		ug/L		11/01/19 21:31	
1,1,2-Trichloroethane	ND	1.0		ug/L		11/01/19 21:31	
Tetrachloroethene	ND	3.0		ug/L		11/01/19 21:31	
1,3-Dichloropropane	ND ND	2.0		ug/L ug/L		11/01/19 21:31	
2-Hexanone	ND	20		ug/L		11/01/19 21:31	
Dibromochloromethane	ND ND	2.0		ug/L ug/L		11/01/19 21:31	
	ND	2.0					
1,2-Dibromoethane	ND			ug/L ug/L		11/01/19 21:31	
Chlorobenzene		2.0		ug/L ug/L		11/01/19 21:31	
Ethylbenzene	71	3.0		-		11/01/19 21:31 11/01/19 21:31	
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			
Styrene	ND	5.0		ug/L		11/01/19 21:31	
Bromoform	ND	3.0		ug/L		11/01/19 21:31	
Isopropylbenzene	18 ND	2.0		ug/L		11/01/19 21:31	
Bromobenzene	ND	2.0		ug/L		11/01/19 21:31	
N-Propylbenzene	24	3.0		ug/L		11/01/19 21:31	
1,1,2,2-Tetrachloroethane	ND	3.0		ug/L		11/01/19 21:31	
4-Chlorotoluene	ND	2.0		ug/L		11/01/19 21:31	
t-Butylbenzene	ND	3.0		ug/L		11/01/19 21:31	
sec-Butylbenzene 1,3-Dichlorobenzene	8.0 ND	3.0 2.0		ug/L ug/L		11/01/19 21:31 11/01/19 21:31	

Eurofins TestAmerica, Seattle

11/15/2019

Page 6 of 60

6

3

5

7

9

10

1

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-3

Lab Sample ID: 580-90396-1 Date Collected: 10/23/19 14:53 **Matrix: Water**

Date Received: 10/28/19 13:25

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	13		3.0	0.28	ug/L			11/01/19 21:31	1
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/01/19 21:31	1
n-Butylbenzene	15		3.0	0.44	ug/L			11/01/19 21:31	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/01/19 21:31	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/01/19 21:31	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/01/19 21:31	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/01/19 21:31	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/01/19 21:31	1
Naphthalene	110		4.0	0.93	ug/L			11/01/19 21:31	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/01/19 21:31	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/01/19 21:31	1
1,3,5-Trimethylbenzene	110		3.0	0.55	ug/L			11/01/19 21:31	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/01/19 21:31	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac

11/01/10 21:21	
11/01/19 21.31	1
11/01/19 21:31	1
11/01/19 21:31	1
11/01/19 21:31	1
11/01/19 21:31	1
	11/01/19 21:31 11/01/19 21:31

Method: 8260C - Volatile Organic Compounds by GC/MS - DL										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
m-Xylene & p-Xylene	790	30	7.5	ug/L			11/04/19 18:15	10		
o-Xylene	440	20	3.9	ug/L			11/04/19 18:15	10		
1,2,4-Trimethylbenzene	300	30	6.1	ug/L			11/04/19 18:15	10		

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	80 - 120		11/04/19 18:15	10
4-Bromofluorobenzene (Surr)	95	80 - 120		11/04/19 18:15	10
Dibromofluoromethane (Surr)	98	80 - 120		11/04/19 18:15	10
Trifluorotoluene (Surr)	90	80 - 120		11/04/19 18:15	10
1,2-Dichloroethane-d4 (Surr)	100	80 - 126		11/04/19 18:15	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	96		2.1	0.64	ug/L		10/30/19 09:13	11/07/19 21:43	20
Acenaphthylene	8.1		1.0	0.18	ug/L		10/30/19 09:13	11/07/19 21:43	20
Acenaphthene	14		2.1	0.29	ug/L		10/30/19 09:13	11/07/19 21:43	20
Fluorene	22		2.1	0.35	ug/L		10/30/19 09:13	11/07/19 21:43	20
Phenanthrene	16		2.1	0.64	ug/L		10/30/19 09:13	11/07/19 21:43	20
Anthracene	ND		2.1	0.45	ug/L		10/30/19 09:13	11/07/19 21:43	20
Fluoranthene	ND		4.1	1.0	ug/L		10/30/19 09:13	11/07/19 21:43	20
Pyrene	ND		2.1	0.68	ug/L		10/30/19 09:13	11/07/19 21:43	20
Benzo[a]anthracene	ND		1.0	0.29	ug/L		10/30/19 09:13	11/07/19 21:43	20
Chrysene	ND		2.1	0.33	ug/L		10/30/19 09:13	11/07/19 21:43	20
Benzo[b]fluoranthene	ND		1.0	0.23	ug/L		10/30/19 09:13	11/07/19 21:43	20
Benzo[k]fluoranthene	ND		1.0	0.25	ug/L		10/30/19 09:13	11/07/19 21:43	20
Benzo[a]pyrene	ND		2.1	0.23	ug/L		10/30/19 09:13	11/07/19 21:43	20
Indeno[1,2,3-cd]pyrene	ND		1.0	0.29	ug/L		10/30/19 09:13	11/07/19 21:43	20

Eurofins TestAmerica, Seattle

Project/Site: IFC/101

Client Sample ID: MW-3 Lab Sample ID: 580-90396-1 Date Collected: 10/23/19 14:53

Matrix: Water

Date Received: 10/28/19 13:25

Client: Stantec Consulting Services Inc

Date Received: 10/28/19 13:25										
Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Dibenz(a,h)anthracene	ND		2.1	0.53	ug/L		10/30/19 09:13	11/07/19 21:43	20	
Benzo[g,h,i]perylene	ND		1.0	0.25	ug/L		10/30/19 09:13	11/07/19 21:43	20	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	65	53 - 120	10/30/19 09:13	11/07/19 21:43	20

Method: 8270D SIM - Semivola	atile Organic	Compour	nds (GC/MS	S SIM) - D	L				
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	330		41	8.0	ug/L		10/30/19 09:13	11/11/19 15:50	200
1-Methylnaphthalene	280		21	3.9	ug/L		10/30/19 09:13	11/11/19 15:50	200
_									

Analyte Gasoline Range Organics (GRO) -C6-C10	Result 3.1	Qualifier	0.25	MDL 0.10	Unit mg/L	D	Prepared	Analyzed 10/31/19 16:59	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: AK102 & 103 - Alaska	a - Diesel Range Orga		Range Organics (GC)	Analyzad	Dil Ess
4-Bromofluorobenzene (Surr)	140	50 - 150			10/31/19 16:59	1
Trifluorotoluene (Surr)	87	50 - 150			10/31/19 16:59	1

Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orgai	nics & Residu	ıaı Ranç	ge Orgai	nics (C	iC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>210</th><th>*</th><th>1.0</th><th>0.71</th><th>mg/L</th><th></th><th>11/06/19 08:57</th><th>11/07/19 21:39</th><th>9</th></nc25)<>	210	*	1.0	0.71	mg/L		11/06/19 08:57	11/07/19 21:39	9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150				11/06/19 08:57	11/07/19 21:39	9

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) - RE											
Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac		
DRO (nC10- <nc25)< th=""><th>120</th><th>Н</th><th>0.59</th><th>0.40</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/13/19 18:29</th><th>5</th></nc25)<>	120	Н	0.59	0.40	mg/L		11/12/19 09:20	11/13/19 18:29	5		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
o-Terphenyl	232	X	50 - 150				11/12/19 09:20	11/13/19 18:29	5		

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

1,1,2,2-Tetrachloroethane

4-Chlorotoluene

t-Butylbenzene

ND

ND

ND

Client Sample ID: MW-4 Lab Sample ID: 580-90396-2

Date Collected: 10/23/19 10:55

Date Received: 10/28/19 13:25

Matrix: Water

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND -	10	2.3	ug/L			11/01/19 21:56	1
Chloromethane	ND	20		ug/L			11/01/19 21:56	1
Vinyl chloride	ND	1.0	0.22	ug/L			11/01/19 21:56	1
Bromomethane	ND	6.0	1.1	ug/L			11/01/19 21:56	1
Chloroethane	ND	5.0	1.1	ug/L			11/01/19 21:56	1
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/01/19 21:56	1
1,1-Dichloroethene	ND	4.0	0.78	ug/L			11/01/19 21:56	1
Carbon disulfide	ND	3.0	0.53	ug/L			11/01/19 21:56	1
Acetone	ND	50	7.8	ug/L			11/01/19 21:56	1
Methylene Chloride	ND	5.0	1.4	ug/L			11/01/19 21:56	1
trans-1,2-Dichloroethene	ND	3.0	0.39	ug/L			11/01/19 21:56	1
1,1-Dichloroethane	ND	2.0	0.22	ug/L			11/01/19 21:56	1
2,2-Dichloropropane	ND	3.0	0.32	ug/L			11/01/19 21:56	1
2-Butanone	ND	20	4.7	ug/L			11/01/19 21:56	1
cis-1,2-Dichloroethene	ND	3.0	0.69	ug/L			11/01/19 21:56	1
Bromochloromethane	ND	2.0	0.29	ug/L			11/01/19 21:56	1
Chloroform	ND	5.0		ug/L			11/01/19 21:56	1
1,1,1-Trichloroethane	ND	3.0		ug/L			11/01/19 21:56	1
Carbon tetrachloride	ND	3.0	0.30	ug/L			11/01/19 21:56	1
1,1-Dichloropropene	ND	3.0		ug/L			11/01/19 21:56	1
Benzene	ND	3.0		ug/L			11/01/19 21:56	1
1,2-Dichloroethane	ND	2.0		ug/L			11/01/19 21:56	1
Trichloroethene	ND	3.0		ug/L			11/01/19 21:56	1
1,2-Dichloropropane	ND	1.0		ug/L			11/01/19 21:56	1
Dibromomethane	ND	2.0		ug/L			11/01/19 21:56	1
Bromodichloromethane	ND	2.0		ug/L			11/01/19 21:56	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/01/19 21:56	1
4-Methyl-2-pentanone	ND	15		ug/L			11/01/19 21:56	1
Toluene	22	2.0		ug/L			11/01/19 21:56	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/01/19 21:56	1
1,1,2-Trichloroethane	ND	1.0		ug/L			11/01/19 21:56	1
Tetrachloroethene	ND	3.0		ug/L			11/01/19 21:56	1
1,3-Dichloropropane	ND	2.0		ug/L			11/01/19 21:56	1
2-Hexanone	ND	20		ug/L			11/01/19 21:56	1
Dibromochloromethane	ND	2.0		ug/L			11/01/19 21:56	1
1,2-Dibromoethane	ND	2.0		ug/L			11/01/19 21:56	1
Chlorobenzene	ND	2.0		ug/L			11/01/19 21:56	 1
Ethylbenzene	ND	3.0		ug/L			11/01/19 21:56	1
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			11/01/19 21:56	1
m-Xylene & p-Xylene	ND	3.0		ug/L			11/01/19 21:56	
o-Xylene	ND	2.0		ug/L			11/01/19 21:56	1
Styrene	ND ND	5.0		ug/L ug/L			11/01/19 21:56	1
Bromoform	ND	3.0		ug/L			11/01/19 21:56	' 1
Isopropylbenzene	ND ND	2.0		ug/L ug/L			11/01/19 21:56	1
Bromobenzene	ND ND	2.0		ug/L ug/L			11/01/19 21:56	1
N-Propylbenzene	ND	3.0		ug/L			11/01/19 21:56	
in-i iopyibelizelle	ND	3.0	0.50	ug/L			11/01/18 21.30	

3.0

2.0

3.0

0.52 ug/L

0.51 ug/L

0.58 ug/L

Eurofins TestAmerica, Seattle

11/01/19 21:56

11/01/19 21:56

11/01/19 21:56

Job ID: 580-90396-1

Page 9 of 60 11/15/2019

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-4

Date Collected: 10/23/19 10:55 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90396-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0	0.61	ug/L			11/01/19 21:56	1
sec-Butylbenzene	ND		3.0	0.49	ug/L			11/01/19 21:56	1
1,3-Dichlorobenzene	ND		2.0	0.18	ug/L			11/01/19 21:56	1
4-Isopropyltoluene	ND		3.0	0.28	ug/L			11/01/19 21:56	1
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/01/19 21:56	1
n-Butylbenzene	ND		3.0	0.44	ug/L			11/01/19 21:56	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/01/19 21:56	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/01/19 21:56	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/01/19 21:56	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/01/19 21:56	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/01/19 21:56	1
Naphthalene	ND		4.0	0.93	ug/L			11/01/19 21:56	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/01/19 21:56	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/01/19 21:56	1
1,3,5-Trimethylbenzene	ND		3.0	0.55	ug/L			11/01/19 21:56	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/01/19 21:56	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared Analyze	ed Dil Fac
Toluene-d8 (Surr)	100	80 - 120	11/01/19 2	1:56
4-Bromofluorobenzene (Surr)	98	80 - 120	11/01/19 2	1:56 1
Dibromofluoromethane (Surr)	96	80 - 120	11/01/19 2	1:56 1
Trifluorotoluene (Surr)	101	80 - 120	11/01/19 2	1:56 1
1,2-Dichloroethane-d4 (Surr)	96	80 - 126	11/01/19 2	1:56 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.11	0.035	ug/L		10/30/19 09:13	11/07/19 22:09	1
2-Methylnaphthalene	ND		0.23	0.044	ug/L		10/30/19 09:13	11/07/19 22:09	1
1-Methylnaphthalene	ND		0.11	0.021	ug/L		10/30/19 09:13	11/07/19 22:09	1
Acenaphthylene	ND		0.056	0.010	ug/L		10/30/19 09:13	11/07/19 22:09	1
Acenaphthene	ND		0.11	0.016	ug/L		10/30/19 09:13	11/07/19 22:09	1
Fluorene	ND		0.11	0.019	ug/L		10/30/19 09:13	11/07/19 22:09	1
Phenanthrene	ND		0.11	0.035	ug/L		10/30/19 09:13	11/07/19 22:09	1
Anthracene	ND		0.11	0.025	ug/L		10/30/19 09:13	11/07/19 22:09	1
Fluoranthene	ND		0.23	0.056	ug/L		10/30/19 09:13	11/07/19 22:09	1
Pyrene	ND		0.11	0.037	ug/L		10/30/19 09:13	11/07/19 22:09	1
Benzo[a]anthracene	ND		0.056	0.016	ug/L		10/30/19 09:13	11/07/19 22:09	1
Chrysene	ND		0.11	0.018	ug/L		10/30/19 09:13	11/07/19 22:09	1
Benzo[b]fluoranthene	ND		0.056	0.012	ug/L		10/30/19 09:13	11/07/19 22:09	1
Benzo[k]fluoranthene	ND		0.056	0.014	ug/L		10/30/19 09:13	11/07/19 22:09	1
Benzo[a]pyrene	ND		0.11	0.012	ug/L		10/30/19 09:13	11/07/19 22:09	1
Indeno[1,2,3-cd]pyrene	ND		0.056	0.016	ug/L		10/30/19 09:13	11/07/19 22:09	1
Dibenz(a,h)anthracene	ND		0.11	0.029	ug/L		10/30/19 09:13	11/07/19 22:09	1
Benzo[g,h,i]perylene	ND		0.056	0.014	ug/L		10/30/19 09:13	11/07/19 22:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	47	X	53 - 120				10/30/19 09:13	11/07/19 22:09	1

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Client Sample ID: MW-4 Lab Sample ID: 580-90396-2

Date Collected: 10/23/19 10:55

Matrix: Water

Date Received: 10/28/19 13:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND		0.25	0.10	mg/L			10/30/19 19:30	1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	104		50 - 150			-		10/30/19 19:30	1
4-Bromofluorobenzene (Surr)	105		50 - 150					10/30/19 19:30	1

Method: AK102 & 103 - Alas	ka - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orga	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.18</th><th>*</th><th>0.12</th><th>0.080</th><th>mg/L</th><th></th><th>11/06/19 08:57</th><th>11/07/19 21:59</th><th>1</th></nc25)<>	0.18	*	0.12	0.080	mg/L		11/06/19 08:57	11/07/19 21:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	67		50 - 150				11/06/19 08:57	11/07/19 21:59	1

Method: AK102 & 103 - Alask	a - Diesel R	ange Orga	nics & Resid	ual Ran	ge Orga	nics (C	GC) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.33</th><th>Н</th><th>0.12</th><th>0.080</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/13/19 18:51</th><th>1</th></nc25)<>	0.33	Н	0.12	0.080	mg/L		11/12/19 09:20	11/13/19 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		50 - 150				11/12/19 09:20	11/13/19 18:51	1

6

3

5

6

8

3

10

11/15/2019

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Client Sample ID: MW-8 Lab Sample ID: 580-90396-3

Date Collected: 10/23/19 13:03 Matrix: Water

Date Received: 10/28/19 13:25

Method: 8260C - Volatile Or Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		10	2.3	ug/L		•	11/01/19 22:20	
Chloromethane	ND	20		ug/L			11/01/19 22:20	
Vinyl chloride	ND	1.0		ug/L			11/01/19 22:20	
Bromomethane	ND	6.0		ug/L			11/01/19 22:20	
Chloroethane	ND	5.0		ug/L			11/01/19 22:20	
Trichlorofluoromethane	ND	3.0		ug/L			11/01/19 22:20	
1,1-Dichloroethene	ND	4.0		ug/L			11/01/19 22:20	
Carbon disulfide	ND	3.0		ug/L			11/01/19 22:20	
Acetone	ND	50		ug/L			11/01/19 22:20	
Methylene Chloride	ND	5.0		ug/L			11/01/19 22:20	
trans-1,2-Dichloroethene	ND	3.0		ug/L			11/01/19 22:20	
1,1-Dichloroethane	ND	2.0		ug/L			11/01/19 22:20	
2,2-Dichloropropane	ND	3.0		ug/L			11/01/19 22:20	
2-Butanone	20	20		ug/L			11/01/19 22:20	
cis-1,2-Dichloroethene	ND	3.0		ug/L			11/01/19 22:20	
Bromochloromethane	ND	2.0		ug/L			11/01/19 22:20	
Chloroform	ND	5.0		ug/L			11/01/19 22:20	
1,1,1-Trichloroethane	ND	3.0		ug/L			11/01/19 22:20	
Carbon tetrachloride	ND	3.0		ug/L			11/01/19 22:20	
1,1-Dichloropropene	ND	3.0		ug/L			11/01/19 22:20	
Benzene	ND	3.0		ug/L			11/01/19 22:20	
1.2-Dichloroethane	ND	2.0		ug/L			11/01/19 22:20	
Trichloroethene	ND	3.0		ug/L			11/01/19 22:20	
1,2-Dichloropropane	ND	1.0		ug/L ug/L			11/01/19 22:20	
Dibromomethane	ND	2.0		ug/L ug/L			11/01/19 22:20	
Bromodichloromethane	ND ND	2.0		ug/L ug/L			11/01/19 22:20	
	ND ND	1.0		_			11/01/19 22:20	
cis-1,3-Dichloropropene	ND ND			ug/L			11/01/19 22:20	
4-Methyl-2-pentanone	ND ND	15 2.0		ug/L				
Toluene				ug/L			11/01/19 22:20	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/01/19 22:20	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/01/19 22:20	
Tetrachloroethene	ND	3.0		ug/L			11/01/19 22:20	
1,3-Dichloropropane	ND	2.0		ug/L			11/01/19 22:20	
2-Hexanone	ND	20		ug/L			11/01/19 22:20	
Dibromochloromethane	ND	2.0		ug/L			11/01/19 22:20	
1,2-Dibromoethane	ND	2.0		ug/L			11/01/19 22:20	
Chlorobenzene	ND	2.0		ug/L			11/01/19 22:20	
Ethylbenzene	8.3	3.0		ug/L			11/01/19 22:20	
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			11/01/19 22:20	
m-Xylene & p-Xylene	48	3.0		ug/L			11/01/19 22:20	
o-Xylene	32	2.0		ug/L			11/01/19 22:20	
Styrene	ND	5.0		ug/L			11/01/19 22:20	
Bromoform	ND	3.0		ug/L			11/01/19 22:20	
Isopropylbenzene	3.9	2.0		ug/L			11/01/19 22:20	
Bromobenzene	ND	2.0		ug/L			11/01/19 22:20	
N-Propylbenzene	6.1	3.0	0.50	ug/L			11/01/19 22:20	
1,1,2,2-Tetrachloroethane	ND	3.0	0.52	ug/L			11/01/19 22:20	
4-Chlorotoluene	ND	2.0	0.51	ug/L			11/01/19 22:20	
t-Butylbenzene	ND	3.0	0.58	ug/L			11/01/19 22:20	

Eurofins TestAmerica, Seattle

11/15/2019

3

5

7

9

10

1

Lab Sample ID: 580-90396-3

Matrix: Water

Client Sample ID: MW-8 Date Collected: 10/23/19 13:03

Date Received: 10/28/19 13:25

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	45	3.0	0.61	ug/L			11/01/19 22:20	1
sec-Butylbenzene	ND	3.0	0.49	ug/L			11/01/19 22:20	1
1,3-Dichlorobenzene	ND	2.0	0.18	ug/L			11/01/19 22:20	1
4-Isopropyltoluene	3.2	3.0	0.28	ug/L			11/01/19 22:20	1
1,4-Dichlorobenzene	ND	4.0	0.98	ug/L			11/01/19 22:20	1
n-Butylbenzene	4.4	3.0	0.44	ug/L			11/01/19 22:20	1
1,2-Dichlorobenzene	ND	2.0	0.46	ug/L			11/01/19 22:20	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8	ug/L			11/01/19 22:20	1
1,2,4-Trichlorobenzene	ND	2.0	0.33	ug/L			11/01/19 22:20	1
1,2,3-Trichlorobenzene	ND	5.0	1.1	ug/L			11/01/19 22:20	1
Hexachlorobutadiene	ND	6.0	0.79	ug/L			11/01/19 22:20	1
Naphthalene	21	4.0	0.93	ug/L			11/01/19 22:20	1
Methyl tert-butyl ether	ND	2.0	0.44	ug/L			11/01/19 22:20	1
1,2,3-Trichloropropane	ND	2.0	0.41	ug/L			11/01/19 22:20	1
1,3,5-Trimethylbenzene	25	3.0	0.55	ug/L			11/01/19 22:20	1
2-Chlorotoluene	ND	3.0	0.51	ug/L			11/01/19 22:20	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120	11/01/19 22:2	0 1
4-Bromofluorobenzene (Surr)	95	80 - 120	11/01/19 22:2	0 1
Dibromofluoromethane (Surr)	98	80 - 120	11/01/19 22:2	0 1
Trifluorotoluene (Surr)	101	80 - 120	11/01/19 22:2	0 1
1,2-Dichloroethane-d4 (Surr)	97	80 - 126	11/01/19 22:2	0 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.11	0.033	ug/L		10/30/19 09:13	11/07/19 22:35	1
2-Methylnaphthalene	ND		0.22	0.042	ug/L		10/30/19 09:13	11/07/19 22:35	1
1-Methylnaphthalene	ND		0.11	0.021	ug/L		10/30/19 09:13	11/07/19 22:35	1
Acenaphthylene	ND		0.054	0.0097	ug/L		10/30/19 09:13	11/07/19 22:35	1
Acenaphthene	ND		0.11	0.015	ug/L		10/30/19 09:13	11/07/19 22:35	1
Fluorene	ND		0.11	0.018	ug/L		10/30/19 09:13	11/07/19 22:35	1
Phenanthrene	ND		0.11	0.033	ug/L		10/30/19 09:13	11/07/19 22:35	1
Anthracene	ND		0.11	0.024	ug/L		10/30/19 09:13	11/07/19 22:35	1
Fluoranthene	ND		0.22	0.054	ug/L		10/30/19 09:13	11/07/19 22:35	1
Pyrene	ND		0.11	0.036	ug/L		10/30/19 09:13	11/07/19 22:35	1
Benzo[a]anthracene	ND		0.054	0.015	ug/L		10/30/19 09:13	11/07/19 22:35	1
Chrysene	ND		0.11	0.017	ug/L		10/30/19 09:13	11/07/19 22:35	1
Benzo[b]fluoranthene	ND		0.054	0.012	ug/L		10/30/19 09:13	11/07/19 22:35	1
Benzo[k]fluoranthene	ND		0.054	0.013	ug/L		10/30/19 09:13	11/07/19 22:35	1
Benzo[a]pyrene	ND		0.11	0.012	ug/L		10/30/19 09:13	11/07/19 22:35	1
Indeno[1,2,3-cd]pyrene	ND		0.054	0.015	ug/L		10/30/19 09:13	11/07/19 22:35	1
Dibenz(a,h)anthracene	ND		0.11	0.028	ug/L		10/30/19 09:13	11/07/19 22:35	1
Benzo[g,h,i]perylene	ND		0.054	0.013	ug/L		10/30/19 09:13	11/07/19 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	43	X	53 - 120				10/30/19 09:13	11/07/19 22:35	1

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Client Sample ID: MW-8 Lab Sample ID: 580-90396-3

Date Collected: 10/23/19 13:03
Date Received: 10/28/19 13:25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.45		0.25	0.10	mg/L			10/30/19 20:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	98		50 - 150			:		10/30/19 20:42	1
4-Bromofluorobenzene (Surr)	116		50 - 150					10/30/19 20:42	1

– Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orga	nics (C	SC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>12</th><th>*</th><th>0.12</th><th>0.079</th><th>mg/L</th><th></th><th>11/06/19 08:57</th><th>11/07/19 22:19</th><th>1</th></nc25)<>	12	*	0.12	0.079	mg/L		11/06/19 08:57	11/07/19 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				11/06/19 08:57	11/07/19 22:19	1

Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	lual Ran	ge Orga	nics (C	3C) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>11</th><th>H</th><th>0.12</th><th>0.083</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/13/19 19:13</th><th>1</th></nc25)<>	11	H	0.12	0.083	mg/L		11/12/19 09:20	11/13/19 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	106		50 - 150				11/12/19 09:20	11/13/19 19:13	1

1

5

7

9

10

4 4

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-14 Lab Sample ID: 580-90396-4

Date Collected: 10/23/19 12:05 **Matrix: Water** Date Received: 10/28/19 13:25

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	10	2.3	ug/L			11/01/19 22:45	1
ND	20	5.4	ug/L			11/01/19 22:45	1
ND	1.0	0.22	ug/L			11/01/19 22:45	1
ND	6.0	1.1	ug/L			11/01/19 22:45	1
ND	5.0	1.1	ug/L			11/01/19 22:45	1
ND	3.0	0.63	ug/L			11/01/19 22:45	1
ND	4.0	0.78	ug/L			11/01/19 22:45	1
ND	3.0	0.53	ug/L			11/01/19 22:45	1
ND	50	7.8	ug/L			11/01/19 22:45	•
ND	5.0	1.4	ug/L			11/01/19 22:45	1
ND	3.0	0.39	ug/L			11/01/19 22:45	1
ND	2.0	0.22	ug/L			11/01/19 22:45	1
ND	3.0	0.32	ug/L			11/01/19 22:45	1
ND	20		-			11/01/19 22:45	1
ND	3.0		-			11/01/19 22:45	
ND	2.0					11/01/19 22:45	
ND	5.0		-			11/01/19 22:45	
ND	3.0		-			11/01/19 22:45	
			-			11/01/19 22:45	· · · · · · .
			-			11/01/19 22:45	
			-				
			-				
			-				
			-				
			-				
			-				
			-				
							,
			-				
			-				
			-				,
			-				
			-				,
			-				
			-				•
			-				
							•
			-				•
			-				1
							1
			-				1
			-				1
							1
			•			11/01/19 22:45	1
ND						11/01/19 22:45	1
ND						11/01/19 22:45	1
19	3.0	0.49	ug/L			11/01/19 22:45	1
ND	2.0	0.10	ua/l			11/01/10 22:45	1
	ND N	ND 10 ND 20 ND 1.0 ND 6.0 ND 5.0 ND 3.0 ND 3.0 ND 50 ND 5.0 ND 3.0 ND 3.0 ND 2.0 ND 3.0 ND 1.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND	ND 10 2.3 ND 20 5.4 ND 1.0 0.22 ND 6.0 1.1 ND 5.0 1.1 ND 3.0 0.63 ND 4.0 0.78 ND 3.0 0.53 ND 50 7.8 ND 50 7.8 ND 50 1.4 ND 3.0 0.39 ND 2.0 0.22 ND 3.0 0.32 ND 20 4.7 ND 3.0 0.69 ND 2.0 0.29 ND 3.0 0.39 ND 2.0 0.29 ND 3.0 0.39 ND 2.0 0.29 ND 3.0 0.69 ND 2.0 0.29 ND 3.0 0.50 ND 3.0 0.30 ND 2.0 0.50 ND 3.0 0.30 ND 3.0 0.53 ND 3.0 0.53 ND 3.0 0.53 ND 3.0 0.53 ND 3.0 0.85 ND 1.0 0.16 ND 1.0 0.16 ND 1.0 0.24 ND 3.0 0.30 ND 3.0 0.41 ND 2.0 0.35 ND 3.0 0.41 ND 2.0 0.50 ND 3.0 0.41 ND 2.0 0.50 ND 3.0 0.41 ND 2.0 0.50 ND 2.0 0.50 ND 3.0 0.69 ND 3.0 0.69 ND 2.0 0.40 ND 2.0 0.50 ND 2.0 0.40 ND 2.0 0.55 ND 2.0 0.44 ND 2.0 0.55 ND 3.0 0.56 97 2.0 0.51 ND 3.0 0.56 97 2.0 0.51 ND 3.0 0.56 97 2.0 0.51 ND 3.0 0.50 ND 3.0 0.50	ND	ND	ND	ND

Eurofins TestAmerica, Seattle

11/15/2019

Job ID: 580-90396-1

Project/Site: IFC/101

Client Sample ID: MW-14

Client: Stantec Consulting Services Inc

Lab Sample ID: 580-90396-4

Matrix: Water

Date Collected: 10/23/19 12:05 Date Received: 10/28/19 13:25

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Trifluorotoluene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/01/19 22:45	1
n-Butylbenzene	23		3.0	0.44	ug/L			11/01/19 22:45	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/01/19 22:45	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/01/19 22:45	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/01/19 22:45	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/01/19 22:45	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/01/19 22:45	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/01/19 22:45	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/01/19 22:45	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/01/19 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120			=		11/01/19 22:45	1
4-Bromofluorobenzene (Surr)	101		80 - 120					11/01/19 22:45	1
Dibromofluoromethane (Surr)	97		80 - 120					11/01/19 22:45	1
Trifluorotoluene (Surr)	102		80 - 120					11/01/19 22:45	1
1,2-Dichloroethane-d4 (Surr)	97		80 - 126					11/01/19 22:45	1

Method: 8260C - Volatile O Analyte	•	unds by G Qualifier	C/MS - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	700	<u> </u>	150	25	ug/L		•	11/04/19 17:25	50
m-Xylene & p-Xylene	2900		150	38	ug/L			11/04/19 17:25	50
o-Xylene	1400		100	20	ug/L			11/04/19 17:25	50
1,2,4-Trimethylbenzene	670		150	31	ug/L			11/04/19 17:25	50
Naphthalene	400		200	47	ug/L			11/04/19 17:25	50
1,3,5-Trimethylbenzene	210		150	28	ug/L			11/04/19 17:25	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120			-		11/04/19 17:25	50
4-Bromofluorobenzene (Surr)	92		80 - 120					11/04/19 17:25	50

80 - 120

80 - 120

80 - 126

94

91

99

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	76		2.3	0.44	ug/L		10/30/19 09:13	11/07/19 23:01	10
1-Methylnaphthalene	74		1.1	0.21	ug/L		10/30/19 09:13	11/07/19 23:01	10
Acenaphthylene	1.1		0.57	0.10	ug/L		10/30/19 09:13	11/07/19 23:01	10
Acenaphthene	2.1		1.1	0.16	ug/L		10/30/19 09:13	11/07/19 23:01	10
Fluorene	2.4		1.1	0.19	ug/L		10/30/19 09:13	11/07/19 23:01	10
Phenanthrene	1.4		1.1	0.35	ug/L		10/30/19 09:13	11/07/19 23:01	10
Anthracene	ND		1.1	0.25	ug/L		10/30/19 09:13	11/07/19 23:01	10
Fluoranthene	ND		2.3	0.57	ug/L		10/30/19 09:13	11/07/19 23:01	10
Pyrene	ND		1.1	0.37	ug/L		10/30/19 09:13	11/07/19 23:01	10
Benzo[a]anthracene	ND		0.57	0.16	ug/L		10/30/19 09:13	11/07/19 23:01	10
Chrysene	ND		1.1	0.18	ug/L		10/30/19 09:13	11/07/19 23:01	10
Benzo[b]fluoranthene	ND		0.57	0.12	ug/L		10/30/19 09:13	11/07/19 23:01	10
Benzo[k]fluoranthene	ND		0.57	0.14	ug/L		10/30/19 09:13	11/07/19 23:01	10
Benzo[a]pyrene	ND		1.1	0.12	ug/L		10/30/19 09:13	11/07/19 23:01	10

Eurofins TestAmerica, Seattle

11/04/19 17:25

11/04/19 17:25

11/04/19 17:25

50

50

50

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

o-Terphenyl

Client Sample ID: MW-14 Lab Sample ID: 580-90396-4

Date Collected: 10/23/19 12:05 Date Received: 10/28/19 13:25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Indeno[1,2,3-cd]pyrene	ND		0.57	0.16	ug/L		10/30/19 09:13	11/07/19 23:01	1
Dibenz(a,h)anthracene	ND		1.1	0.29	ug/L		10/30/19 09:13	11/07/19 23:01	10
Benzo[g,h,i]perylene	ND		0.57	0.14	ug/L		10/30/19 09:13	11/07/19 23:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	61		53 - 120				10/30/19 09:13	11/07/19 23:01	1
Method: 8270D SIM - Semivol	latile Organi	c Compou	nds (GC/MS	SIM) - D	L				
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Naphthalene	190		11	3.5	ug/L		10/30/19 09:13	11/11/19 16:17	100
Method: AK101 - Alaska - Gas	soline Rang	e Organics	s (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C6-C10	12		0.25	0.10	mg/L			10/31/19 17:23	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	82		50 - 150					10/31/19 17:23	
4-Bromofluorobenzene (Surr)	228	X	50 - 150					10/31/19 17:23	
Method: AK102 & 103 - Alask	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	EC)		
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Analyte		-,							
<u> </u>	8.3		0.12	0.080	mg/L		11/06/19 08:57	11/07/19 22:39	•
Analyte DRO (nC10- <nc25) surrogate<="" td=""><td>8.3 %Recovery</td><td>*</td><td></td><td></td><td>mg/L</td><td></td><td>11/06/19 08:57 Prepared</td><td>11/07/19 22:39 Analyzed</td><td></td></nc25)>	8.3 %Recovery	*			mg/L		11/06/19 08:57 Prepared	11/07/19 22:39 Analyzed	
DRO (nC10- <nc25)< td=""><td></td><td>*</td><td>0.12</td><td></td><td>mg/L</td><td></td><td></td><td></td><td>Dil Fa</td></nc25)<>		*	0.12		mg/L				Dil Fa
DRO (nC10- <nc25) o-terphenyl<="" surrogate="" td=""><td>%Recovery</td><td>* Qualifier</td><td>0.12 Limits 50 - 150</td><td>0.080</td><td></td><td></td><td>Prepared 11/06/19 08:57</td><td>Analyzed</td><td>Dil Fa</td></nc25)>	%Recovery	* Qualifier	0.12 Limits 50 - 150	0.080			Prepared 11/06/19 08:57	Analyzed	Dil Fa
DRO (nC10- <nc25) &="" -="" 103="" ak102="" alask<="" method:="" o-terphenyl="" surrogate="" td=""><td>%Recovery 62 a - Diesel Ra</td><td>* Qualifier</td><td>0.12 Limits 50 - 150</td><td>0.080</td><td>ge Orgai</td><td>nics (C</td><td>Prepared 11/06/19 08:57</td><td>Analyzed</td><td>Dil Fa</td></nc25)>	%Recovery 62 a - Diesel Ra	* Qualifier	0.12 Limits 50 - 150	0.080	ge Orgai	nics (C	Prepared 11/06/19 08:57	Analyzed	Dil Fa
DRO (nC10- <nc25) surrogate<="" td=""><td>%Recovery 62 a - Diesel Ra</td><td>Qualifier ange Orga Qualifier</td><td>0.12 Limits 50 - 150 nics & Resid</td><td>0.080 ual Ran</td><td>ge Orgai Unit</td><td>•</td><td>Prepared 11/06/19 08:57 GC) - RE</td><td>Analyzed 11/07/19 22:39</td><td>Dil Fac</td></nc25)>	%Recovery 62 a - Diesel Ra	Qualifier ange Orga Qualifier	0.12 Limits 50 - 150 nics & Resid	0.080 ual Ran	ge Orgai Unit	•	Prepared 11/06/19 08:57 GC) - RE	Analyzed 11/07/19 22:39	Dil Fac

50 - 150

97

11/12/19 09:20 11/13/19 19:35

Client: Stantec Consulting Services Inc

Date Received: 10/28/19 13:25

Project/Site: IFC/101

Client Sample ID: MW-17 Lab Sample ID: 580-90396-5 Date Collected: 10/23/19 11:30

Matrix: Water

Job ID: 580-90396-1

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		10	2.3	ug/L			11/01/19 23:10	
Chloromethane	ND	20	5.4	ug/L			11/01/19 23:10	
Vinyl chloride	ND	1.0	0.22	ug/L			11/01/19 23:10	
Bromomethane	ND	6.0	1.1	ug/L			11/01/19 23:10	
Chloroethane	ND	5.0	1.1	ug/L			11/01/19 23:10	
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/01/19 23:10	
1,1-Dichloroethene	ND	4.0		ug/L			11/01/19 23:10	
Carbon disulfide	ND	3.0		ug/L			11/01/19 23:10	
Acetone	ND	50		ug/L			11/01/19 23:10	
Methylene Chloride	ND	5.0		ug/L			11/01/19 23:10	
trans-1,2-Dichloroethene	ND	3.0	0.39	ug/L			11/01/19 23:10	
1,1-Dichloroethane	ND	2.0		ug/L			11/01/19 23:10	
2,2-Dichloropropane	ND	3.0		ug/L			11/01/19 23:10	
2-Butanone	ND	20		ug/L			11/01/19 23:10	
cis-1,2-Dichloroethene	ND	3.0		ug/L			11/01/19 23:10	
Bromochloromethane	ND	2.0		ug/L			11/01/19 23:10	
Chloroform	ND	5.0		ug/L			11/01/19 23:10	
1,1,1-Trichloroethane	ND	3.0		ug/L			11/01/19 23:10	
Carbon tetrachloride	ND	3.0		ug/L			11/01/19 23:10	
1,1-Dichloropropene	ND	3.0		ug/L			11/01/19 23:10	
Benzene	7.7	3.0		ug/L			11/01/19 23:10	
1,2-Dichloroethane	ND	2.0		ug/L			11/01/19 23:10	
Trichloroethene	ND	3.0		•			11/01/19 23:10	
1,2-Dichloropropane	ND ND	3.0 1.0		ug/L			11/01/19 23:10	
Dibromomethane	ND	2.0		ug/L ug/L			11/01/19 23:10	
	ND ND			-				
Bromodichloromethane	ND ND	2.0		ug/L			11/01/19 23:10	
cis-1,3-Dichloropropene		1.0		ug/L			11/01/19 23:10	
4-Methyl-2-pentanone	ND ND	15		ug/L			11/01/19 23:10	
Toluene	ND	2.0		ug/L			11/01/19 23:10	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/01/19 23:10	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/01/19 23:10	
Tetrachloroethene	ND	3.0		ug/L			11/01/19 23:10	
1,3-Dichloropropane	ND	2.0		ug/L			11/01/19 23:10	
2-Hexanone	ND	20		ug/L			11/01/19 23:10	
Dibromochloromethane	ND	2.0		ug/L			11/01/19 23:10	
1,2-Dibromoethane	ND	2.0		ug/L			11/01/19 23:10	
Chlorobenzene	ND	2.0		ug/L			11/01/19 23:10	
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			11/01/19 23:10	
Styrene	ND	5.0		ug/L			11/01/19 23:10	
Bromoform	ND	3.0	0.56	ug/L			11/01/19 23:10	
Isopropylbenzene	2.7	2.0	0.51	ug/L			11/01/19 23:10	
Bromobenzene	ND	2.0	0.43	ug/L			11/01/19 23:10	
N-Propylbenzene	3.4	3.0	0.50	ug/L			11/01/19 23:10	
1,1,2,2-Tetrachloroethane	ND	3.0	0.52	ug/L			11/01/19 23:10	
4-Chlorotoluene	ND	2.0	0.51	ug/L			11/01/19 23:10	
t-Butylbenzene	ND	3.0		ug/L			11/01/19 23:10	
sec-Butylbenzene	ND	3.0		ug/L			11/01/19 23:10	
1,3-Dichlorobenzene	ND	2.0		ug/L			11/01/19 23:10	
4-Isopropyltoluene	ND	3.0		ug/L			11/01/19 23:10	

Eurofins TestAmerica, Seattle

11/15/2019

Page 18 of 60

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-17

Date Collected: 10/23/19 11:30 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-5

Matrix: Water

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND -	4.0	0.98	ug/L			11/01/19 23:10	1
ND	3.0	0.44	ug/L			11/01/19 23:10	1
ND	2.0	0.46	ug/L			11/01/19 23:10	1
ND	10	1.8	ug/L			11/01/19 23:10	1
ND	2.0	0.33	ug/L			11/01/19 23:10	1
ND	5.0	1.1	ug/L			11/01/19 23:10	1
ND	6.0	0.79	ug/L			11/01/19 23:10	1
ND	2.0	0.44	ug/L			11/01/19 23:10	1
ND	2.0	0.41	ug/L			11/01/19 23:10	1
ND	3.0	0.51	ug/L			11/01/19 23:10	1
	ND	ND 4.0 ND 3.0 ND 2.0 ND 10 ND 2.0 ND 5.0 ND 6.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0	ND 4.0 0.98 ND 3.0 0.44 ND 2.0 0.46 ND 10 1.8 ND 2.0 0.33 ND 5.0 1.1 ND 6.0 0.79 ND 2.0 0.44 ND 2.0 0.41	ND 4.0 0.98 ug/L ND 3.0 0.44 ug/L ND 2.0 0.46 ug/L ND 10 1.8 ug/L ND 2.0 0.33 ug/L ND 5.0 1.1 ug/L ND 6.0 0.79 ug/L ND 2.0 0.44 ug/L ND 2.0 0.41 ug/L	ND 4.0 0.98 ug/L ND 3.0 0.44 ug/L ND 2.0 0.46 ug/L ND 10 1.8 ug/L ND 2.0 0.33 ug/L ND 5.0 1.1 ug/L ND 6.0 0.79 ug/L ND 2.0 0.44 ug/L ND 2.0 0.41 ug/L	ND 4.0 0.98 ug/L ND 3.0 0.44 ug/L ND 2.0 0.46 ug/L ND 10 1.8 ug/L ND 2.0 0.33 ug/L ND 5.0 1.1 ug/L ND 6.0 0.79 ug/L ND 2.0 0.44 ug/L ND 2.0 0.41 ug/L	ND 4.0 0.98 ug/L 11/01/19 23:10 ND 3.0 0.44 ug/L 11/01/19 23:10 ND 2.0 0.46 ug/L 11/01/19 23:10 ND 10 1.8 ug/L 11/01/19 23:10 ND 2.0 0.33 ug/L 11/01/19 23:10 ND 5.0 1.1 ug/L 11/01/19 23:10 ND 6.0 0.79 ug/L 11/01/19 23:10 ND 2.0 0.44 ug/L 11/01/19 23:10 ND 2.0 0.41 ug/L 11/01/19 23:10

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120	11/01/19 23:10	1
4-Bromofluorobenzene (Surr)	97		80 - 120	11/01/19 23:10	1
Dibromofluoromethane (Surr)	97		80 - 120	11/01/19 23:10	1
Trifluorotoluene (Surr)	101		80 - 120	11/01/19 23:10	1
1,2-Dichloroethane-d4 (Surr)	97		80 - 126	11/01/19 23:10	1

Method: 8260C - Volatile Organic Compounds by GC/MS - RA

Wethou. 02000 - Volatile Oi	gaine compounds by Go	MO - IVA						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	34	3.0	0.50	ug/L			11/04/19 15:45	1
m-Xylene & p-Xylene	92	3.0	0.75	ug/L			11/04/19 15:45	1
o-Xylene	17	2.0	0.39	ug/L			11/04/19 15:45	1
1,2,4-Trimethylbenzene	13	3.0	0.61	ug/L			11/04/19 15:45	1
Naphthalene	4.1	4.0	0.93	ug/L			11/04/19 15:45	1
1,3,5-Trimethylbenzene	3.0	3.0	0.55	ug/L			11/04/19 15:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120	11/04/19 15:45	1
4-Bromofluorobenzene (Surr)	96		80 - 120	11/04/19 15:45	1
Dibromofluoromethane (Surr)	99		80 - 120	11/04/19 15:45	1
Trifluorotoluene (Surr)	92		80 - 120	11/04/19 15:45	1
1.2-Dichloroethane-d4 (Surr)	97		80 - 126	11/04/19 15:45	1

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.52	0.16	ug/L		10/30/19 09:13	11/07/19 23:27	5
2-Methylnaphthalene	ND	1.0	0.20	ug/L		10/30/19 09:13	11/07/19 23:27	5
1-Methylnaphthalene	ND	0.52	0.098	ug/L		10/30/19 09:13	11/07/19 23:27	5
Acenaphthylene	ND	0.26	0.047	ug/L		10/30/19 09:13	11/07/19 23:27	5
Acenaphthene	ND	0.52	0.073	ug/L		10/30/19 09:13	11/07/19 23:27	5
Fluorene	ND	0.52	0.088	ug/L		10/30/19 09:13	11/07/19 23:27	5
Phenanthrene	ND	0.52	0.16	ug/L		10/30/19 09:13	11/07/19 23:27	5
Anthracene	ND	0.52	0.11	ug/L		10/30/19 09:13	11/07/19 23:27	5
Fluoranthene	ND	1.0	0.26	ug/L		10/30/19 09:13	11/07/19 23:27	5
Pyrene	ND	0.52	0.17	ug/L		10/30/19 09:13	11/07/19 23:27	5
Benzo[a]anthracene	ND	0.26	0.073	ug/L		10/30/19 09:13	11/07/19 23:27	5
Chrysene	ND	0.52	0.083	ug/L		10/30/19 09:13	11/07/19 23:27	5
Benzo[b]fluoranthene	ND	0.26	0.057	ug/L		10/30/19 09:13	11/07/19 23:27	5
Benzo[k]fluoranthene	ND	0.26	0.062	ug/L		10/30/19 09:13	11/07/19 23:27	5

Eurofins TestAmerica, Seattle

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Surrogate

o-Terphenyl

Client Sample ID: MW-17

Lab Sample ID: 580-90396-5 Date Collected: 10/23/19 11:30

Matrix: Water

Prepared

Analyzed

<u>11/06/19 08:57</u> <u>11/07/19 23:00</u>

Date Received: 10/28/19 13:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		0.52	0.057	ug/L		10/30/19 09:13	11/07/19 23:27	5
Indeno[1,2,3-cd]pyrene	ND		0.26	0.073	ug/L		10/30/19 09:13	11/07/19 23:27	5
Dibenz(a,h)anthracene	ND		0.52	0.13	ug/L		10/30/19 09:13	11/07/19 23:27	5
Benzo[g,h,i]perylene	ND		0.26	0.062	ug/L		10/30/19 09:13	11/07/19 23:27	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	52	X	53 - 120				10/30/19 09:13	11/07/19 23:27	5
Method: AK101 - Alaska - Gas Analyte	Result	e Organics Qualifier	RL _		Unit ma/l	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10	Result 0.38	Qualifier	0.25			<u>D</u>	<u> </u>	10/30/19 23:07	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result 0.38	Qualifier	RL 0.25			<u>D</u>	Prepared Prepared	10/30/19 23:07 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr)	Result 0.38 %Recovery 101	Qualifier	RL 0.25 <i>Limits</i> 50 - 150			<u>D</u>	<u> </u>	10/30/19 23:07 Analyzed 10/30/19 23:07	1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	Result 0.38	Qualifier	RL 0.25			<u>D</u>	<u> </u>	10/30/19 23:07 Analyzed	1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alaska	Result 0.38 %Recovery 101 103 a - Diesel Ra	Qualifier Qualifier ange Organ	RL 0.25 Limits 50 - 150 50 - 150 nics & Resid	0.10	mg/L ge Organ		Prepared GC)	Analyzed 10/30/19 23:07 Analyzed 10/30/19 23:07 10/30/19 23:07	Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	Result 0.38 %Recovery 101 103 a - Diesel Ra	Qualifier Qualifier	RL 0.25 Limits 50 - 150 50 - 150	0.10	mg/L		Prepared	10/30/19 23:07 Analyzed 10/30/19 23:07	1

Method: AK102 & 103 - Alasi	ca - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orga	nics (C	GC) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>6.9</th><th>Н</th><th>0.12</th><th>0.080</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/13/19 19:58</th><th>1</th></nc25)<>	6.9	Н	0.12	0.080	mg/L		11/12/19 09:20	11/13/19 19:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87		50 - 150				11/12/19 09:20	11/13/19 19:58	1

Limits

50 - 150

%Recovery Qualifier

56

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-19-1 Lab Sample ID: 580-90396-6

Matrix: Water

Job ID: 580-90396-1

Date Collected: 10/23/19 14:20 Date Received: 10/28/19 13:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		10	2.3	ug/L		•	11/01/19 23:35	
Chloromethane	ND		20		ug/L			11/01/19 23:35	
Vinyl chloride	ND		1.0	0.22	-			11/01/19 23:35	
Bromomethane	ND		6.0		ug/L			11/01/19 23:35	
Chloroethane	ND		5.0		ug/L			11/01/19 23:35	
Trichlorofluoromethane	ND		3.0	0.63	_			11/01/19 23:35	
1,1-Dichloroethene	ND		4.0		ug/L			11/01/19 23:35	
Carbon disulfide	ND		3.0	0.53	-			11/01/19 23:35	
Acetone	ND		50		ug/L			11/01/19 23:35	
Methylene Chloride	ND		5.0		ug/L			11/01/19 23:35	
trans-1,2-Dichloroethene	ND		3.0	0.39	-			11/01/19 23:35	
1,1-Dichloroethane	ND		2.0	0.22	-			11/01/19 23:35	
2,2-Dichloropropane	ND		3.0	0.32	-			11/01/19 23:35	
2-Butanone	ND		20		ug/L			11/01/19 23:35	
cis-1,2-Dichloroethene	ND ND		3.0		ug/L ug/L			11/01/19 23:35	
Bromochloromethane	ND		2.0		ug/L			11/01/19 23:35	
Chloroform	ND ND		5.0	0.29	-			11/01/19 23:35	
	ND ND				-				
1,1,1-Trichloroethane	ND ND		3.0	0.39	-			11/01/19 23:35	
Carbon tetrachloride	ND ND		3.0	0.30	-			11/01/19 23:35	
1,1-Dichloropropene			3.0	0.29	_			11/01/19 23:35	
Benzene	85		3.0	0.53	-			11/01/19 23:35	
1,2-Dichloroethane	ND		2.0		ug/L			11/01/19 23:35	
Trichloroethene	ND		3.0	0.85	-			11/01/19 23:35	
1,2-Dichloropropane	ND		1.0	0.18	-			11/01/19 23:35	
Dibromomethane	ND		2.0	0.34	-			11/01/19 23:35	
Bromodichloromethane	ND		2.0	0.14	-			11/01/19 23:35	
cis-1,3-Dichloropropene	ND		1.0	0.20	-			11/01/19 23:35	
4-Methyl-2-pentanone	ND		15		ug/L			11/01/19 23:35	
Toluene	120		2.0		ug/L			11/01/19 23:35	
trans-1,3-Dichloropropene	ND		1.0	0.16	-			11/01/19 23:35	
1,1,2-Trichloroethane	ND		1.0		ug/L			11/01/19 23:35	
Tetrachloroethene	ND		3.0	0.41	-			11/01/19 23:35	
1,3-Dichloropropane	ND		2.0	0.35	-			11/01/19 23:35	
2-Hexanone	ND		20	4.0	ug/L			11/01/19 23:35	
Dibromochloromethane	ND		2.0	0.50	ug/L			11/01/19 23:35	
1,2-Dibromoethane	ND		2.0		ug/L			11/01/19 23:35	
Chlorobenzene	ND		2.0	0.44	ug/L			11/01/19 23:35	
1,1,1,2-Tetrachloroethane	ND		2.0	0.18	ug/L			11/01/19 23:35	
Styrene	ND		5.0	1.0	ug/L			11/01/19 23:35	
Bromoform	ND		3.0	0.56	ug/L			11/01/19 23:35	
sopropylbenzene	78		2.0	0.51	ug/L			11/01/19 23:35	
Bromobenzene	ND		2.0	0.43	ug/L			11/01/19 23:35	
N-Propylbenzene	100		3.0		ug/L			11/01/19 23:35	
1,1,2,2-Tetrachloroethane	ND		3.0		ug/L			11/01/19 23:35	
1-Chlorotoluene	ND		2.0		ug/L			11/01/19 23:35	
-Butylbenzene	ND		3.0		ug/L			11/01/19 23:35	
sec-Butylbenzene	19		3.0		ug/L			11/01/19 23:35	
1,3-Dichlorobenzene	ND		2.0		ug/L			11/01/19 23:35	
4-Isopropyltoluene	21		3.0		ug/L			11/01/19 23:35	

Eurofins TestAmerica, Seattle

11/15/2019

Client Sample ID: MW-19-1

Date Collected: 10/23/19 14:20 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/01/19 23:35	1
n-Butylbenzene	26		3.0	0.44	ug/L			11/01/19 23:35	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/01/19 23:35	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/01/19 23:35	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/01/19 23:35	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/01/19 23:35	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/01/19 23:35	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/01/19 23:35	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/01/19 23:35	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/01/19 23:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			-		11/01/19 23:35	1
4-Bromofluorobenzene (Surr)	101		80 - 120					11/01/19 23:35	1
Dibromofluoromethane (Surr)	95		80 - 120					11/01/19 23:35	1
Trifluorotoluene (Surr)	100		80 - 120					11/01/19 23:35	1
1,2-Dichloroethane-d4 (Surr)	97		80 - 126					11/01/19 23:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	560		150	25	ug/L			11/04/19 17:50	50
m-Xylene & p-Xylene	2400		150	38	ug/L			11/04/19 17:50	50
o-Xylene	1200		100	20	ug/L			11/04/19 17:50	50
1,2,4-Trimethylbenzene	600		150	31	ug/L			11/04/19 17:50	50
Naphthalene	380		200	47	ug/L			11/04/19 17:50	50
1,3,5-Trimethylbenzene	180		150	28	ug/L			11/04/19 17:50	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120					11/04/19 17:50	50
1 Duama fluara harrana (Our	00		00 400					44/04/40 47:50	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120		11/04/19 17:50	50
4-Bromofluorobenzene (Surr)	93		80 - 120		11/04/19 17:50	50
Dibromofluoromethane (Surr)	97		80 - 120		11/04/19 17:50	50
Trifluorotoluene (Surr)	91		80 - 120		11/04/19 17:50	50
1,2-Dichloroethane-d4 (Surr)	98		80 - 126		11/04/19 17:50	50

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	2.5		0.53	0.095	ug/L		10/30/19 09:13	11/07/19 23:53	10
Acenaphthene	5.5		1.1	0.15	ug/L		10/30/19 09:13	11/07/19 23:53	10
Fluorene	6.8		1.1	0.18	ug/L		10/30/19 09:13	11/07/19 23:53	10
Phenanthrene	4.5		1.1	0.33	ug/L		10/30/19 09:13	11/07/19 23:53	10
Anthracene	ND		1.1	0.23	ug/L		10/30/19 09:13	11/07/19 23:53	10
Fluoranthene	ND		2.1	0.53	ug/L		10/30/19 09:13	11/07/19 23:53	10
Pyrene	ND		1.1	0.35	ug/L		10/30/19 09:13	11/07/19 23:53	10
Benzo[a]anthracene	ND		0.53	0.15	ug/L		10/30/19 09:13	11/07/19 23:53	10
Chrysene	ND		1.1	0.17	ug/L		10/30/19 09:13	11/07/19 23:53	10
Benzo[b]fluoranthene	ND		0.53	0.12	ug/L		10/30/19 09:13	11/07/19 23:53	10
Benzo[k]fluoranthene	ND		0.53	0.13	ug/L		10/30/19 09:13	11/07/19 23:53	10
Benzo[a]pyrene	ND		1.1	0.12	ug/L		10/30/19 09:13	11/07/19 23:53	10
Indeno[1,2,3-cd]pyrene	ND		0.53	0.15	ug/L		10/30/19 09:13	11/07/19 23:53	10
Dibenz(a,h)anthracene	ND		1.1	0.27	ug/L		10/30/19 09:13	11/07/19 23:53	10

Eurofins TestAmerica, Seattle

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-19-1 Lab Sample ID: 580-90396-6

Date Collected: 10/23/19 14:20
Date Received: 10/28/19 13:25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND		0.53	0.13	ug/L		10/30/19 09:13	11/07/19 23:53	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	92		53 - 120				10/30/19 09:13	11/07/19 23:53	10
Method: 8270D SIM - Semivol	atile Organi	c Compou	nds (GC/MS	SIM) - D	L				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	190		11	3.3	ug/L		10/30/19 09:13	11/11/19 16:43	100
2-Methylnaphthalene	140		21	4.1	ug/L		10/30/19 09:13	11/11/19 16:43	100
1-Methylnaphthalene	130		11	2.0	ug/L		10/30/19 09:13	11/11/19 16:43	100
Analyte Gasoline Range Organics (GRO)	8.6	Qualifier	0.25	MDL 0.10	mg/L	D	Prepared	Analyzed 10/31/19 17:47	Dil Fac
-C6-C10									
-C6-C10 Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Limits 50 - 150				Prepared	Analyzed 10/31/19 17:47	Dil Fac
							Prepared		Dil Fac
Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr)	90	X	50 - 150 50 - 150	ual Ran	ge Orgai	nics (C	· ·	10/31/19 17:47	1
Surrogate Trifluorotoluene (Surr)	90 199 a - Diesel R a	X	50 - 150 50 - 150	ual Ran MDL		nics (C	· ·	10/31/19 17:47	1
Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask	90 199 a - Diesel R a	X ange Orga Qualifier	50 - 150 50 - 150 nics & Resid		Unit	•		10/31/19 17:47 10/31/19 17:47	
Surrogate Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) Method: AK102 & 103 - Alask Analyte	90 199 a - Diesel Ra Result	X ange Orga Qualifier	50 - 150 50 - 150 nics & Resident	MDL	Unit	•	GC) Prepared	10/31/19 17:47 10/31/19 17:47 Analyzed	1

Method: AK102 & 103 - Alaska		•	nics & Resid	ual Rang	ge Orga	nics (C	3C) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>42</th><th>H</th><th>0.12</th><th>0.081</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/13/19 20:20</th><th>1</th></nc25)<>	42	H	0.12	0.081	mg/L		11/12/19 09:20	11/13/19 20:20	1
Surrogate o-Terphenyl	%Recovery 159		Limits 50 - 150				Prepared 11/12/19 09:20	Analyzed 11/13/19 20:20	Dil Fac

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: CRW-2 Lab Sample ID: 580-90396-7

Date Collected: 10/23/19 15:34 Matrix: Water

Date Received: 10/28/19 13:25

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Dichlorodifluoromethane	ND	10		ug/L			11/02/19 02:07	
Chloromethane	ND	20		ug/L			11/02/19 02:07	
Vinyl chloride	ND	1.0	0.22	ug/L			11/02/19 02:07	
Bromomethane	ND	6.0	1.1	ug/L			11/02/19 02:07	
Chloroethane	ND	5.0	1.1	ug/L			11/02/19 02:07	
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/02/19 02:07	
1,1-Dichloroethene	ND	4.0	0.78	ug/L			11/02/19 02:07	
Carbon disulfide	ND	3.0	0.53	ug/L			11/02/19 02:07	
Acetone	ND	50	7.8	ug/L			11/02/19 02:07	
Methylene Chloride	ND	5.0	1.4	ug/L			11/02/19 02:07	
trans-1,2-Dichloroethene	ND	3.0		ug/L			11/02/19 02:07	
1,1-Dichloroethane	ND	2.0		ug/L			11/02/19 02:07	
2,2-Dichloropropane	ND	3.0		ug/L			11/02/19 02:07	
2-Butanone	ND	20		ug/L			11/02/19 02:07	
cis-1,2-Dichloroethene	ND	3.0		ug/L			11/02/19 02:07	
3romochloromethane	ND	2.0		ug/L			11/02/19 02:07	
Chloroform	ND	5.0		ug/L			11/02/19 02:07	
1,1,1-Trichloroethane	ND	3.0		ug/L			11/02/19 02:07	
Carbon tetrachloride	ND	3.0		ug/L			11/02/19 02:07	
1,1-Dichloropropene	ND *	3.0		ug/L			11/02/19 02:07	
Benzene	11	3.0		ug/L			11/02/19 02:07	
1,2-Dichloroethane	ND	2.0		ug/L			11/02/19 02:07	
Frichloroethene	ND	3.0		ug/L			11/02/19 02:07	
1,2-Dichloropropane	ND ND	1.0		-			11/02/19 02:07	
				ug/L				
Dibromomethane	ND	2.0		ug/L			11/02/19 02:07	
Bromodichloromethane	ND	2.0		ug/L			11/02/19 02:07	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/02/19 02:07	
4-Methyl-2-pentanone	ND	15		ug/L			11/02/19 02:07	
Toluene	4.1	2.0		ug/L			11/02/19 02:07	
rans-1,3-Dichloropropene	ND	1.0	0.16	-			11/02/19 02:07	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/02/19 02:07	
Tetrachloroethene	ND	3.0		ug/L			11/02/19 02:07	
1,3-Dichloropropane	ND	2.0	0.35	ug/L			11/02/19 02:07	
2-Hexanone	ND	20		ug/L			11/02/19 02:07	
Dibromochloromethane	ND	2.0		ug/L			11/02/19 02:07	
1,2-Dibromoethane	ND	2.0	0.40	ug/L			11/02/19 02:07	
Chlorobenzene	ND	2.0	0.44	ug/L			11/02/19 02:07	
Ethylbenzene	61	3.0	0.50	ug/L			11/02/19 02:07	
1,1,1,2-Tetrachloroethane	ND	2.0	0.18	ug/L			11/02/19 02:07	
o-Xylene	75	2.0	0.39	ug/L			11/02/19 02:07	
Styrene	ND	5.0	1.0	ug/L			11/02/19 02:07	
Bromoform	ND	3.0	0.56	ug/L			11/02/19 02:07	
sopropylbenzene	24	2.0		ug/L			11/02/19 02:07	
Bromobenzene	ND	2.0		ug/L			11/02/19 02:07	
N-Propylbenzene	20	3.0		ug/L			11/02/19 02:07	
I,1,2,2-Tetrachloroethane	ND	3.0		ug/L			11/02/19 02:07	
4-Chlorotoluene	ND	2.0		ug/L			11/02/19 02:07	
:-Butylbenzene	ND	3.0		ug/L			11/02/19 02:07	
1,2,4-Trimethylbenzene	100	3.0		ug/L			11/02/19 02:07	

Eurofins TestAmerica, Seattle

11/15/2019

Page 24 of 60

6

Job ID: 580-90396-1

3

5

7

9

10

11

Project/Site: IFC/101

Methyl tert-butyl ether

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: CRW-2

Date Collected: 10/23/19 15:34 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90396-7

11/02/19 02:07

11/02/19 02:07

11/02/19 02:07

11/02/19 02:07

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit				
sec-Butylbenzene	4.7		3.0	0.49	ug/L				
1,3-Dichlorobenzene	ND		2.0	0.18	ug/L				

ND

ND

25

99

Allalyte	Result Qualifier	KL	IVIDL	Ullit	U	Prepareu	Allalyzeu	DII Fa
sec-Butylbenzene	4.7	3.0	0.49	ug/L			11/02/19 02:07	
1,3-Dichlorobenzene	ND	2.0	0.18	ug/L			11/02/19 02:07	
4-Isopropyltoluene	4.2	3.0	0.28	ug/L			11/02/19 02:07	
1,4-Dichlorobenzene	ND	4.0	0.98	ug/L			11/02/19 02:07	
n-Butylbenzene	ND	3.0	0.44	ug/L			11/02/19 02:07	
1,2-Dichlorobenzene	ND	2.0	0.46	ug/L			11/02/19 02:07	
1,2-Dibromo-3-Chloropropane	ND	10	1.8	ug/L			11/02/19 02:07	
1,2,4-Trichlorobenzene	ND	2.0	0.33	ug/L			11/02/19 02:07	
1,2,3-Trichlorobenzene	ND	5.0	1.1	ug/L			11/02/19 02:07	
Hexachlorobutadiene	ND	6.0	0.79	ug/L			11/02/19 02:07	
Naphthalene	41	4.0	0.93	ug/L			11/02/19 02:07	

2-Chlorotoluene	ND	3.0	0.51 ug/L		11/02/19 02:07	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120			11/02/19 02:07	1
4-Bromofluorobenzene (Surr)	100	80 - 120			11/02/19 02:07	1
Dibromofluoromethane (Surr)	98	80 - 120			11/02/19 02:07	1
Trifluorotoluene (Surr)	91	80 - 120			11/02/19 02:07	1

80 - 126

2.0

2.0

3.0

0.44 ug/L

0.41 ug/L

0.55 ug/L

Method: 8260C - Volatile Of Analyte m-Xylene & p-Xylene	Result Qualifier 200		MDL Unit 3.8 ug/L	D	Prepared	Analyzed 11/04/19 19:54	Dil Fac
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107	80 - 120				11/04/19 19:54	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	i Anaiyzea	DII Fac
Toluene-d8 (Surr)	107		80 - 120		11/04/19 19:54	5
4-Bromofluorobenzene (Surr)	92		80 - 120		11/04/19 19:54	5
Dibromofluoromethane (Surr)	99		80 - 120		11/04/19 19:54	5
Trifluorotoluene (Surr)	91		80 - 120		11/04/19 19:54	5
1,2-Dichloroethane-d4 (Surr)	99		80 - 126		11/04/19 19:54	5
-						

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	4.4	0.22	0.043	ug/L		10/30/19 09:13	11/08/19 00:19	1
1-Methylnaphthalene	6.4	0.11	0.021	ug/L		10/30/19 09:13	11/08/19 00:19	1
Acenaphthylene	ND	0.056	0.010	ug/L		10/30/19 09:13	11/08/19 00:19	1
Acenaphthene	0.12	0.11	0.016	ug/L		10/30/19 09:13	11/08/19 00:19	1
Fluorene	0.24	0.11	0.019	ug/L		10/30/19 09:13	11/08/19 00:19	1
Phenanthrene	0.13	0.11	0.034	ug/L		10/30/19 09:13	11/08/19 00:19	1
Anthracene	ND	0.11	0.024	ug/L		10/30/19 09:13	11/08/19 00:19	1
Fluoranthene	ND	0.22	0.056	ug/L		10/30/19 09:13	11/08/19 00:19	1
Pyrene	ND	0.11	0.037	ug/L		10/30/19 09:13	11/08/19 00:19	1
Benzo[a]anthracene	ND	0.056	0.016	ug/L		10/30/19 09:13	11/08/19 00:19	1
Chrysene	ND	0.11	0.018	ug/L		10/30/19 09:13	11/08/19 00:19	1
Benzo[b]fluoranthene	ND	0.056	0.012	ug/L		10/30/19 09:13	11/08/19 00:19	1
Benzo[k]fluoranthene	ND	0.056	0.013	ug/L		10/30/19 09:13	11/08/19 00:19	1
Benzo[a]pyrene	ND	0.11	0.012	ug/L		10/30/19 09:13	11/08/19 00:19	1

Eurofins TestAmerica, Seattle

Client Sample ID: CRW-2 Lab Sample ID: 580-90396-7

Date Collected: 10/23/19 15:34 **Matrix: Water**

Date Received: 10/28/19 13:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		0.056	0.016	ug/L		10/30/19 09:13	11/08/19 00:19	1
Dibenz(a,h)anthracene	ND		0.11	0.029	ug/L		10/30/19 09:13	11/08/19 00:19	1
Benzo[g,h,i]perylene	ND		0.056	0.013	ug/L		10/30/19 09:13	11/08/19 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	39	X	53 - 120				10/30/19 09:13	11/08/19 00:19	
Method: 8270D SIM - Semivol	atile Organi	c Compou	inds (GC/MS	SIM) - D) I				
Analyte	_	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	12		1.1	0.34	ug/L		10/30/19 09:13	11/11/19 17:09	10
-C6-C10 Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Trifluorotoluene (Surr)	102		50 - 150					10/30/19 23:56	
4-Bromofluorobenzene (Surr)	128		50 - 150					10/30/19 23:56	1
Method: AK102 & 103 - Alask	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	GC)		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< td=""><td>1.0</td><td>*</td><td>0.12</td><td>0.085</td><td>mg/L</td><td></td><td>11/05/19 09:25</td><td>11/06/19 19:57</td><td></td></nc25)<>	1.0	*	0.12	0.085	mg/L		11/05/19 09:25	11/06/19 19:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	62		50 - 150				11/05/19 09:25	11/06/19 19:57	
Method: AK102 & 103 - Alask	a - Diesel Ra	ange Orga	nics & Resid	ual Ran	ge Orgai	nics (C	GC) - RE		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa

DRO (nC10- <nc25)< th=""><th>1.4</th><th>*</th><th>0.13</th><th>0.088</th><th> _</th><th>11/06/19 08:57</th><th>11/08/19 00:00</th><th>1</th></nc25)<>	1.4	*	0.13	0.088	 _	11/06/19 08:57	11/08/19 00:00	1
Surrogate o-Terphenyl	%Recovery	Qualifier	Limits 50 - 150			Prepared 11/06/19 08:57	Analyzed 11/08/19 00:00	Dil Fac

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: DRAIN FIELD

Date Collected: 10/23/19 15:10 Date Received: 10/28/19 13:25

Job ID: 580-90396-1

Lab Sample ID: 580-90396-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		10	2.3	ug/L			11/02/19 02:32	
Chloromethane	ND		20	5.4	ug/L			11/02/19 02:32	•
Vinyl chloride	ND		1.0	0.22	ug/L			11/02/19 02:32	
Bromomethane	ND		6.0	1.1	ug/L			11/02/19 02:32	• • • • • • • • • • • • • • • • • • • •
Chloroethane	ND		5.0	1.1	ug/L			11/02/19 02:32	
Trichlorofluoromethane	ND		3.0	0.63	ug/L			11/02/19 02:32	
1,1-Dichloroethene	ND		4.0	0.78				11/02/19 02:32	
Carbon disulfide	ND		3.0	0.53	ug/L			11/02/19 02:32	
Acetone	ND		50		ug/L			11/02/19 02:32	
Methylene Chloride	ND		5.0		ug/L			11/02/19 02:32	
trans-1,2-Dichloroethene	ND		3.0	0.39	ug/L			11/02/19 02:32	
1,1-Dichloroethane	ND		2.0	0.22	ug/L			11/02/19 02:32	
2,2-Dichloropropane	ND		3.0		ug/L			11/02/19 02:32	
2-Butanone	ND		20		ug/L			11/02/19 02:32	
cis-1,2-Dichloroethene	ND		3.0	0.69	-			11/02/19 02:32	
Bromochloromethane	ND		2.0	0.29	ug/L			11/02/19 02:32	
Chloroform	ND		5.0	0.50	-			11/02/19 02:32	
1,1,1-Trichloroethane	ND		3.0		ug/L			11/02/19 02:32	
Carbon tetrachloride	ND		3.0		ug/L ug/L			11/02/19 02:32	,
	ND ND	*	3.0	0.30	-			11/02/19 02:32	
1,1-Dichloropropene	ND ND				J				
Benzene 1.2-Dichloroethane			3.0		ug/L			11/02/19 02:32	
,	ND		2.0		ug/L			11/02/19 02:32	•
Trichloroethene	ND		3.0		ug/L			11/02/19 02:32	•
1,2-Dichloropropane	ND		1.0		ug/L			11/02/19 02:32	
Dibromomethane	ND		2.0		ug/L			11/02/19 02:32	,
Bromodichloromethane	ND		2.0		ug/L			11/02/19 02:32	•
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/02/19 02:32	
4-Methyl-2-pentanone	ND		15		ug/L			11/02/19 02:32	•
Toluene	ND		2.0	0.39	Ū			11/02/19 02:32	•
trans-1,3-Dichloropropene	ND		1.0		ug/L			11/02/19 02:32	
1,1,2-Trichloroethane	ND		1.0		ug/L			11/02/19 02:32	•
Tetrachloroethene	ND		3.0	0.41	ug/L			11/02/19 02:32	•
1,3-Dichloropropane	ND		2.0		ug/L			11/02/19 02:32	
2-Hexanone	ND		20		ug/L			11/02/19 02:32	•
Dibromochloromethane	ND		2.0	0.50	ug/L			11/02/19 02:32	•
1,2-Dibromoethane	ND		2.0		ug/L			11/02/19 02:32	•
Chlorobenzene	ND		2.0	0.44	ug/L			11/02/19 02:32	
Ethylbenzene	ND		3.0	0.50	ug/L			11/02/19 02:32	•
1,1,1,2-Tetrachloroethane	ND		2.0	0.18	ug/L			11/02/19 02:32	
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			11/02/19 02:32	•
o-Xylene	ND		2.0	0.39	ug/L			11/02/19 02:32	•
Styrene	ND		5.0	1.0	ug/L			11/02/19 02:32	•
Bromoform	ND		3.0	0.56	ug/L			11/02/19 02:32	
Isopropylbenzene	ND		2.0	0.51	ug/L			11/02/19 02:32	
Bromobenzene	ND		2.0		ug/L			11/02/19 02:32	
N-Propylbenzene	ND		3.0		ug/L			11/02/19 02:32	• • • • • • • •
1,1,2,2-Tetrachloroethane	ND		3.0		ug/L			11/02/19 02:32	
4-Chlorotoluene	ND		2.0		ug/L			11/02/19 02:32	
t-Butylbenzene	ND		3.0		ug/L			11/02/19 02:32	,

Eurofins TestAmerica, Seattle

Lab Sample ID: 580-90396-8

Matrix: Water

Client Sample ID: DRAIN FIELD

Date Collected: 10/23/19 15:10 Date Received: 10/28/19 13:25

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND ND	3.0	0.61	ug/L			11/02/19 02:32	1
sec-Butylbenzene	ND	3.0	0.49	ug/L			11/02/19 02:32	1
1,3-Dichlorobenzene	ND	2.0	0.18	ug/L			11/02/19 02:32	1
4-Isopropyltoluene	ND	3.0	0.28	ug/L			11/02/19 02:32	1
1,4-Dichlorobenzene	ND	4.0	0.98	ug/L			11/02/19 02:32	1
n-Butylbenzene	ND	3.0	0.44	ug/L			11/02/19 02:32	1
1,2-Dichlorobenzene	ND	2.0	0.46	ug/L			11/02/19 02:32	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8	ug/L			11/02/19 02:32	1
1,2,4-Trichlorobenzene	ND	2.0	0.33	ug/L			11/02/19 02:32	1
1,2,3-Trichlorobenzene	ND	5.0	1.1	ug/L			11/02/19 02:32	1
Hexachlorobutadiene	ND	6.0	0.79	ug/L			11/02/19 02:32	1
Naphthalene	ND	4.0	0.93	ug/L			11/02/19 02:32	1
Methyl tert-butyl ether	ND	2.0	0.44	ug/L			11/02/19 02:32	1
1,2,3-Trichloropropane	ND	2.0	0.41	ug/L			11/02/19 02:32	1
1,3,5-Trimethylbenzene	ND	3.0	0.55	ug/L			11/02/19 02:32	1
2-Chlorotoluene	ND	3.0	0.51	ug/L			11/02/19 02:32	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	Dil Fac
Toluene-d8 (Surr)	106		80 - 120	11/02/19 02	:32 1
4-Bromofluorobenzene (Surr)	88		80 - 120	11/02/19 02	:32 1
Dibromofluoromethane (Surr)	95		80 - 120	11/02/19 02	:32 1
Trifluorotoluene (Surr)	92		80 - 120	11/02/19 02	:32 1
1,2-Dichloroethane-d4 (Surr)	98		80 - 126	11/02/19 02	:32 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.11	0.035	ug/L		10/30/19 09:13	11/08/19 00:45	1
2-Methylnaphthalene	ND		0.23	0.045	ug/L		10/30/19 09:13	11/08/19 00:45	1
1-Methylnaphthalene	ND		0.11	0.022	ug/L		10/30/19 09:13	11/08/19 00:45	1
Acenaphthylene	ND		0.057	0.010	ug/L		10/30/19 09:13	11/08/19 00:45	1
Acenaphthene	ND		0.11	0.016	ug/L		10/30/19 09:13	11/08/19 00:45	1
Fluorene	ND		0.11	0.019	ug/L		10/30/19 09:13	11/08/19 00:45	1
Phenanthrene	ND		0.11	0.035	ug/L		10/30/19 09:13	11/08/19 00:45	1
Anthracene	ND		0.11	0.025	ug/L		10/30/19 09:13	11/08/19 00:45	1
Fluoranthene	ND		0.23	0.057	ug/L		10/30/19 09:13	11/08/19 00:45	1
Pyrene	ND		0.11	0.038	ug/L		10/30/19 09:13	11/08/19 00:45	1
Benzo[a]anthracene	ND		0.057	0.016	ug/L		10/30/19 09:13	11/08/19 00:45	1
Chrysene	ND		0.11	0.018	ug/L		10/30/19 09:13	11/08/19 00:45	1
Benzo[b]fluoranthene	ND		0.057	0.013	ug/L		10/30/19 09:13	11/08/19 00:45	1
Benzo[k]fluoranthene	ND		0.057	0.014	ug/L		10/30/19 09:13	11/08/19 00:45	1
Benzo[a]pyrene	ND		0.11	0.013	ug/L		10/30/19 09:13	11/08/19 00:45	1
Indeno[1,2,3-cd]pyrene	ND		0.057	0.016	ug/L		10/30/19 09:13	11/08/19 00:45	1
Dibenz(a,h)anthracene	ND		0.11	0.030	ug/L		10/30/19 09:13	11/08/19 00:45	1
Benzo[g,h,i]perylene	ND		0.057	0.014	ug/L		10/30/19 09:13	11/08/19 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	54		53 - 120				10/30/19 09:13	11/08/19 00:45	1

Client Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Client Sample ID: DRAIN FIELD Lab Sample ID: 580-90396-8

Date Collected: 10/23/19 15:10 **Matrix: Water**

Date Received: 10/28/19 13:25

Method: AK101 - Alaska - Ga Analyte Gasoline Range Organics (GRO) -C6-C10	_	e Organics Qualifier	(GC) RL 0.25	MDL 0.10	Unit mg/L	<u>D</u>	Prepared	Analyzed 10/31/19 00:20	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	95		50 - 150			-		10/31/19 00:20	1
4-Bromofluorobenzene (Surr)	103		50 - 150					10/31/19 00:20	1

– Method: AK102 & 103 - Alaska	- Diesel Ra	ange Orgai	nics & Resid	ual Ran	ge Orga	nics (C	GC)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.37</th><th>*</th><th>0.13</th><th>0.091</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 20:18</th><th>1</th></nc25)<>	0.37	*	0.13	0.091	mg/L		11/05/19 09:25	11/06/19 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150				11/05/19 09:25	11/06/19 20:18	1

Method: AK102 & 103 - Alaska	a - Diesel Ra	ange Orga	nics & Resid	lual Ran	ge Orga	nics (C	GC) - RE		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>0.22</th><th>*</th><th>0.13</th><th>0.086</th><th>mg/L</th><th></th><th>11/06/19 08:57</th><th>11/08/19 00:20</th><th>1</th></nc25)<>	0.22	*	0.13	0.086	mg/L		11/06/19 08:57	11/08/19 00:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	75		50 - 150				11/06/19 08:57	11/08/19 00:20	1

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: 2GM101DUP

Date Collected: 10/23/19 14:22 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-9

Matrix: Water

Job ID: 580-90396-1

Method: 8260C - Volatile O	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	10		ū			11/02/19 02:56	
Chloromethane	ND	20		ug/L			11/02/19 02:56	
Vinyl chloride	ND	1.0	0.22	ug/L			11/02/19 02:56	
Bromomethane	ND	6.0	1.1	ug/L			11/02/19 02:56	
Chloroethane	ND	5.0	1.1	ug/L			11/02/19 02:56	
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/02/19 02:56	
1,1-Dichloroethene	ND	4.0	0.78	ug/L			11/02/19 02:56	
Carbon disulfide	ND	3.0	0.53	ug/L			11/02/19 02:56	
Acetone	ND	50	7.8	ug/L			11/02/19 02:56	
Methylene Chloride	ND	5.0	1.4	ug/L			11/02/19 02:56	
trans-1,2-Dichloroethene	ND	3.0	0.39	ug/L			11/02/19 02:56	
1,1-Dichloroethane	ND	2.0	0.22	ug/L			11/02/19 02:56	
2,2-Dichloropropane	ND	3.0	0.32	ug/L			11/02/19 02:56	
2-Butanone	ND	20	4.7	ug/L			11/02/19 02:56	
cis-1,2-Dichloroethene	ND	3.0		ug/L			11/02/19 02:56	
Bromochloromethane	ND	2.0		ug/L			11/02/19 02:56	
Chloroform	ND	5.0		ug/L			11/02/19 02:56	
1,1,1-Trichloroethane	ND	3.0		ug/L			11/02/19 02:56	
Carbon tetrachloride	ND	3.0		ug/L			11/02/19 02:56	
1,1-Dichloropropene	ND *	3.0		ug/L			11/02/19 02:56	
Benzene	98	3.0		ug/L			11/02/19 02:56	
1.2-Dichloroethane	ND	2.0		ug/L			11/02/19 02:56	
Trichloroethene	ND	3.0		ug/L			11/02/19 02:56	
1,2-Dichloropropane	ND	1.0		ug/L			11/02/19 02:56	
Dibromomethane	ND	2.0		ug/L			11/02/19 02:56	
Bromodichloromethane	ND	2.0		ug/L			11/02/19 02:56	
cis-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L			11/02/19 02:56	
	ND			ug/L ug/L			11/02/19 02:56	
4-Methyl-2-pentanone trans-1,3-Dichloropropene	ND ND	15 1.0		_			11/02/19 02:56	
				ug/L				
1,1,2-Trichloroethane	ND	1.0		ug/L			11/02/19 02:56	
Tetrachloroethene	ND	3.0		ug/L			11/02/19 02:56	
1,3-Dichloropropane	ND	2.0		ug/L			11/02/19 02:56	
2-Hexanone	ND	20		ug/L			11/02/19 02:56	
Dibromochloromethane	ND	2.0		ug/L			11/02/19 02:56	
1,2-Dibromoethane	ND	2.0		ug/L			11/02/19 02:56	
Chlorobenzene	ND	2.0		ug/L			11/02/19 02:56	
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			11/02/19 02:56	
Styrene	ND	5.0	1.0	ug/L			11/02/19 02:56	
Bromoform	ND	3.0		ug/L			11/02/19 02:56	
Isopropylbenzene	100	2.0	0.51	ug/L			11/02/19 02:56	
Bromobenzene	ND	2.0	0.43	ug/L			11/02/19 02:56	
N-Propylbenzene	120	3.0	0.50	ug/L			11/02/19 02:56	
1,1,2,2-Tetrachloroethane	ND	3.0	0.52	ug/L			11/02/19 02:56	
4-Chlorotoluene	ND	2.0	0.51	ug/L			11/02/19 02:56	
t-Butylbenzene	ND	3.0	0.58	ug/L			11/02/19 02:56	
sec-Butylbenzene	20	3.0	0.49	ug/L			11/02/19 02:56	
1,3-Dichlorobenzene	ND	2.0		ug/L			11/02/19 02:56	
4-Isopropyltoluene	21	3.0		ug/L			11/02/19 02:56	
1,4-Dichlorobenzene	ND	4.0		ug/L			11/02/19 02:56	

Eurofins TestAmerica, Seattle

11/15/2019

3

0

8

40

1

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Client Sample ID: 2GM101DUP

Date Collected: 10/23/19 14:22 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-9

Matrix: Water

Method: 8260C - Volatile O Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND	3.0	0.44	ug/L		-	11/02/19 02:56	1
1,2-Dichlorobenzene	ND	2.0	0.46	ug/L			11/02/19 02:56	1
1,2-Dibromo-3-Chloropropane	ND	10	1.8	ug/L			11/02/19 02:56	1
1,2,4-Trichlorobenzene	ND	2.0	0.33	ug/L			11/02/19 02:56	1
1,2,3-Trichlorobenzene	ND	5.0	1.1	ug/L			11/02/19 02:56	1
Hexachlorobutadiene	ND	6.0	0.79	ug/L			11/02/19 02:56	1
Methyl tert-butyl ether	ND	2.0	0.44	ug/L			11/02/19 02:56	1
1,2,3-Trichloropropane	ND	2.0	0.41	ug/L			11/02/19 02:56	1
2-Chlorotoluene	ND	3.0	0.51	ug/L			11/02/19 02:56	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120		11/02/19 02:56	1
4-Bromofluorobenzene (Surr)	108		80 - 120		11/02/19 02:56	1
Dibromofluoromethane (Surr)	95		80 - 120		11/02/19 02:56	1
Trifluorotoluene (Surr)	92		80 - 120		11/02/19 02:56	1
1,2-Dichloroethane-d4 (Surr)	99		80 - 126		11/02/19 02:56	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	150	20	3.9	ug/L			11/04/19 18:39	10
Ethylbenzene	520	30	5.0	ug/L			11/04/19 18:39	10
o-Xylene	1100	20	3.9	ug/L			11/04/19 18:39	10
1,2,4-Trimethylbenzene	540	30	6.1	ug/L			11/04/19 18:39	10
Naphthalene	360	40	9.3	ug/L			11/04/19 18:39	10
1,3,5-Trimethylbenzene	180	30	5.5	ug/L			11/04/19 18:39	10

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120		11/04/19 18:39	10
4-Bromofluorobenzene (Surr)	95	80 - 120		11/04/19 18:39	10
Dibromofluoromethane (Surr)	98	80 - 120		11/04/19 18:39	10
Trifluorotoluene (Surr)	90	80 - 120		11/04/19 18:39	10
1,2-Dichloroethane-d4 (Surr)	98	80 - 126		11/04/19 18:39	10

Method: 8260C - Volatile O	•	•	C/MS - DL2					
Analyte		Qualifier	RL	MDL Uni		Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	1900		150	38 ug/	L		11/05/19 20:05	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120				11/05/19 20:05	50
4-Bromofluorobenzene (Surr)	100		80 - 120				11/05/19 20:05	50

Method: 8270D SIM - Semivola	atile Organic Com	pounds (GC/MS SIM)		
1,2-Dichloroethane-d4 (Surr)	104	80 - 126	11/05/19 20:05	50
Trifluorotoluene (Surr)	110	80 - 120	11/05/19 20:05	50
Dibromofluoromethane (Surr)	102	80 - 120	11/05/19 20:05	50
4-Bromofluorobenzene (Surr)	100	80 - 120	11/05/19 20:05	50
Toluene-do (Sult)	102	00 - 120	11/05/19 20.05	50

wethod: 6270D Siw - Semivo	name Organic	Compound	18 (GC/IVIS	SIIVI)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	2.9		0.55	0.099	ug/L		10/30/19 09:13	11/08/19 01:11	10
Acenaphthene	5.3		1.1	0.15	ug/L		10/30/19 09:13	11/08/19 01:11	10
Fluorene	7.2		1.1	0.19	ug/L		10/30/19 09:13	11/08/19 01:11	10
Phenanthrene	5.0		1.1	0.34	ug/L		10/30/19 09:13	11/08/19 01:11	10
Anthracene	ND		1.1	0.24	ug/L		10/30/19 09:13	11/08/19 01:11	10
Fluorene Phenanthrene	7.2 5.0		1.1 1.1	0.19 0.34	ug/L ug/L		10/30/19 09:13 10/30/19 09:13	11/08/19 01:11 11/08/19 01:11	10 10

Eurofins TestAmerica, Seattle

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: 2GM101DUP

Date Collected: 10/23/19 14:22 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		2.2	0.55	ug/L		10/30/19 09:13	11/08/19 01:11	10
Pyrene	ND		1.1	0.36	ug/L		10/30/19 09:13	11/08/19 01:11	10
Benzo[a]anthracene	ND		0.55	0.15	ug/L		10/30/19 09:13	11/08/19 01:11	10
Chrysene	ND		1.1	0.18	ug/L		10/30/19 09:13	11/08/19 01:11	10
Benzo[b]fluoranthene	ND		0.55	0.12	ug/L		10/30/19 09:13	11/08/19 01:11	10
Benzo[k]fluoranthene	ND		0.55	0.13	ug/L		10/30/19 09:13	11/08/19 01:11	10
Benzo[a]pyrene	ND		1.1	0.12	ug/L		10/30/19 09:13	11/08/19 01:11	10
Indeno[1,2,3-cd]pyrene	ND		0.55	0.15	ug/L		10/30/19 09:13	11/08/19 01:11	10
Dibenz(a,h)anthracene	ND		1.1	0.29	ug/L		10/30/19 09:13	11/08/19 01:11	10
Benzo[g,h,i]perylene	ND		0.55	0.13	ug/L		10/30/19 09:13	11/08/19 01:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Juliogate									
Terphenyl-d14	60		53 - 120	01111			10/30/19 09:13	11/08/19 01:11	10
Terphenyl-d14 Method: 8270D SIM - Semivol	60 atile Organi	c Compou Qualifier		SIM) - D MDL		D	10/30/19 09:13 Prepared	11/08/19 01:11 Analyzed	10
•	60 atile Organi		nds (GC/MS	MDL		<u>D</u>			
Terphenyl-d14 Method: 8270D SIM - Semivol Analyte	atile Organi Result		nds (GC/MS	MDL	Unit ug/L	D_	Prepared	Analyzed	Dil Fac
Terphenyl-d14 Method: 8270D SIM - Semivol Analyte Naphthalene	atile Organi Result		nds (GC/MS RL 28	MDL 8.5 11	Unit ug/L	<u>D</u>	Prepared 10/30/19 09:13 10/30/19 09:13	Analyzed 11/14/19 15:14	Dil Fac
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	60 atile Organi Result 240 220 190	Qualifier	nds (GC/MS RL 28 55 28	MDL 8.5 11	Unit ug/L ug/L	<u>D</u>	Prepared 10/30/19 09:13 10/30/19 09:13	Analyzed 11/14/19 15:14 11/14/19 15:14	Dil Fac 250 250
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene	atile Organi Result 240 220 190 soline Range	Qualifier	nds (GC/MS RL 28 55 28	MDL 8.5 11	ug/L ug/L ug/L ug/L	D D	Prepared 10/30/19 09:13 10/30/19 09:13	Analyzed 11/14/19 15:14 11/14/19 15:14	Dil Fac 250 250
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Method: AK101 - Alaska - Gas	atile Organi Result 240 220 190 soline Range	Qualifier Organics	nds (GC/MS RL 28 55 28	8.5 11 5.2 MDL	ug/L ug/L ug/L ug/L		Prepared 10/30/19 09:13 10/30/19 09:13 10/30/19 09:13	Analyzed 11/14/19 15:14 11/14/19 15:14 11/14/19 15:14	250 250 250
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO)	atile Organi Result 240 220 190 soline Range Result	Qualifier Organics Qualifier	nds (GC/MS RL 28 55 28 6 (GC) RL	8.5 11 5.2 MDL	Unit ug/L ug/L ug/L		Prepared 10/30/19 09:13 10/30/19 09:13 10/30/19 09:13	Analyzed 11/14/19 15:14 11/14/19 15:14 11/14/19 15:14 Analyzed	250 250 250
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10	atile Organi Result 240 220 190 soline Range Result 9.8	Qualifier Organics Qualifier	nds (GC/MS RL 28 55 28 6 (GC) RL 0.25	8.5 11 5.2 MDL	Unit ug/L ug/L ug/L		Prepared 10/30/19 09:13 10/30/19 09:13 10/30/19 09:13 Prepared	Analyzed 11/14/19 15:14 11/14/19 15:14 11/14/19 15:14 Analyzed 10/31/19 18:11	250 250 250 250 250
Method: 8270D SIM - Semivol Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Method: AK101 - Alaska - Gas Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	atile Organi Result 240 220 190 soline Range Result 9.8	Qualifier Organics Qualifier Qualifier	nds (GC/MS RL 28 55 28 6 (GC) RL 0.25	8.5 11 5.2 MDL	Unit ug/L ug/L ug/L		Prepared 10/30/19 09:13 10/30/19 09:13 10/30/19 09:13 Prepared	Analyzed 11/14/19 15:14 11/14/19 15:14 11/14/19 15:14 Analyzed 10/31/19 18:11 Analyzed	250 250 250 Dil Fac

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>34</th><th>*</th><th>0.13</th><th>0.089</th><th>mg/L</th><th></th><th>11/05/19 09:25</th><th>11/06/19 20:38</th><th>1</th></nc25)<>	34	*	0.13	0.089	mg/L		11/05/19 09:25	11/06/19 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82		50 - 150				11/05/19 09:25	11/06/19 20:38	1

Analyte	Result	Qualifier	RL	ual Ran MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
DRO (nC10- <nc25)< th=""><th>48</th><th>Н</th><th>2.9</th><th>2.0</th><th>mg/L</th><th></th><th>11/12/19 09:20</th><th>11/15/19 02:28</th><th>25</th></nc25)<>	48	Н	2.9	2.0	mg/L		11/12/19 09:20	11/15/19 02:28	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	61		50 - 150				11/12/19 09:20	11/15/19 02:28	25

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: TRIP BLANK

Date Collected: 10/23/19 12:00 Date Received: 10/28/19 13:25 Job ID: 580-90396-1

Lab Sample ID: 580-90396-10

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	10	2.3	ug/L			11/02/19 00:51	
Chloromethane	ND	20	5.4	ug/L			11/02/19 00:51	
Vinyl chloride	ND	1.0	0.22	ug/L			11/02/19 00:51	
Bromomethane	ND	6.0	1.1	ug/L			11/02/19 00:51	
Chloroethane	ND	5.0	1.1	ug/L			11/02/19 00:51	
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/02/19 00:51	
1,1-Dichloroethene	ND	4.0	0.78	ug/L			11/02/19 00:51	
Carbon disulfide	ND	3.0	0.53	ug/L			11/02/19 00:51	
Acetone	ND	50	7.8	ug/L			11/02/19 00:51	
Methylene Chloride	ND	5.0	1.4	ug/L			11/02/19 00:51	
trans-1,2-Dichloroethene	ND	3.0	0.39	ug/L			11/02/19 00:51	
1,1-Dichloroethane	ND	2.0	0.22	ug/L			11/02/19 00:51	
2,2-Dichloropropane	ND	3.0		ug/L			11/02/19 00:51	
2-Butanone	ND	20		ug/L			11/02/19 00:51	
cis-1,2-Dichloroethene	ND	3.0		ug/L			11/02/19 00:51	
Bromochloromethane	ND	2.0		ug/L			11/02/19 00:51	
Chloroform	ND	5.0		ug/L			11/02/19 00:51	
1,1,1-Trichloroethane	ND	3.0		ug/L			11/02/19 00:51	
Carbon tetrachloride	ND	3.0		ug/L			11/02/19 00:51	
1,1-Dichloropropene	ND *	3.0		ug/L			11/02/19 00:51	
Benzene	ND	3.0		ug/L			11/02/19 00:51	
1.2-Dichloroethane	ND	2.0		ug/L			11/02/19 00:51	
Trichloroethene	ND	3.0		ug/L			11/02/19 00:51	
1,2-Dichloropropane	ND	1.0		ug/L			11/02/19 00:51	
Dibromomethane	ND	2.0		ug/L			11/02/19 00:51	
Bromodichloromethane	ND	2.0		ug/L			11/02/19 00:51	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/02/19 00:51	
4-Methyl-2-pentanone	ND	15		ug/L			11/02/19 00:51	
Toluene	ND	2.0		ug/L			11/02/19 00:51	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/02/19 00:51	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/02/19 00:51	
Tetrachloroethene	ND	3.0		ug/L			11/02/19 00:51	
	ND	2.0		ug/L			11/02/19 00:51	
1,3-Dichloropropane 2-Hexanone	ND	2.0		ug/L ug/L			11/02/19 00:51	
Dibromochloromethane	ND ND	2.0		_			11/02/19 00:51	
				ug/L				
1,2-Dibromoethane	ND ND	2.0		ug/L			11/02/19 00:51 11/02/19 00:51	
Chlorobenzene	ND	2.0		ug/L				
Ethylbenzene	ND	3.0		ug/L			11/02/19 00:51	
1,1,1,2-Tetrachloroethane	ND	2.0		ug/L			11/02/19 00:51	
m-Xylene & p-Xylene	ND	3.0		ug/L			11/02/19 00:51	
o-Xylene	ND	2.0		ug/L			11/02/19 00:51	
Styrene	ND	5.0		ug/L			11/02/19 00:51	
Bromoform	ND NB	3.0		ug/L			11/02/19 00:51	
Isopropylbenzene	ND	2.0		ug/L			11/02/19 00:51	
Bromobenzene	ND	2.0		ug/L			11/02/19 00:51	
N-Propylbenzene	ND	3.0		ug/L			11/02/19 00:51	
1,1,2,2-Tetrachloroethane	ND	3.0		ug/L			11/02/19 00:51	
4-Chlorotoluene t-Butylbenzene	ND	2.0	0.51	ug/L			11/02/19 00:51	

Eurofins TestAmerica, Seattle

11/15/2019

1

6

8

10

1

Project/Site: IFC/101

Client Sample ID: TRIP BLANK

Client: Stantec Consulting Services Inc

Date Collected: 10/23/19 12:00 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	ND		3.0	0.61	ug/L			11/02/19 00:51	1
sec-Butylbenzene	ND		3.0	0.49	ug/L			11/02/19 00:51	1
1,3-Dichlorobenzene	ND		2.0	0.18	ug/L			11/02/19 00:51	1
4-Isopropyltoluene	ND		3.0	0.28	ug/L			11/02/19 00:51	1
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/02/19 00:51	1
n-Butylbenzene	ND		3.0	0.44	ug/L			11/02/19 00:51	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/02/19 00:51	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/02/19 00:51	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/02/19 00:51	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/02/19 00:51	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/02/19 00:51	1
Naphthalene	ND		4.0	0.93	ug/L			11/02/19 00:51	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/02/19 00:51	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/02/19 00:51	1
1,3,5-Trimethylbenzene	ND		3.0	0.55	ug/L			11/02/19 00:51	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/02/19 00:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		80 - 120					11/02/19 00:51	1
4-Bromofluorobenzene (Surr)	91		80 - 120					11/02/19 00:51	1
Dibromofluoromethane (Surr)	97		80 - 120					11/02/19 00:51	1
Trifluorotoluene (Surr)	93		80 - 120					11/02/19 00:51	1
1,2-Dichloroethane-d4 (Surr)	99		80 - 126					11/02/19 00:51	1
Method: AK101 - Alaska - Ga	asoline Rang	e Organics	s (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND		0.25	0.10	mg/L			10/30/19 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Trifluorotoluene (Surr)	107		50 - 150					10/30/19 20:18	1
4-Bromofluorobenzene (Surr)	101		50 ₋ 150					10/30/19 20:18	1

QC Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-315784/6

Matrix: Water

Analysis Batch: 315784

Client Sam	ole ID: Method Blank	
	Prep Type: Total/NA	

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	— —	10		ug/L		Trepared	11/01/19 17:25	1
Chloromethane	ND		20		ug/L			11/01/19 17:25	1
Vinyl chloride	ND		1.0		ug/L			11/01/19 17:25	1
Bromomethane	ND		6.0		ug/L			11/01/19 17:25	
Chloroethane	ND		5.0		ug/L ug/L			11/01/19 17:25	1
Trichlorofluoromethane	ND ND		3.0		ug/L ug/L			11/01/19 17:25	
	ND		4.0		ug/L ug/L			11/01/19 17:25	
1,1-Dichloroethene					-				1
Carbon disulfide	ND		3.0		ug/L			11/01/19 17:25	1
Acetone	ND		50		ug/L			11/01/19 17:25	1
Methylene Chloride	ND		5.0		ug/L			11/01/19 17:25	1
trans-1,2-Dichloroethene	ND		3.0		ug/L			11/01/19 17:25	1
1,1-Dichloroethane	ND		2.0		ug/L			11/01/19 17:25	
2,2-Dichloropropane	ND		3.0		ug/L			11/01/19 17:25	1
2-Butanone	ND		20		ug/L			11/01/19 17:25	1
cis-1,2-Dichloroethene	ND		3.0		ug/L			11/01/19 17:25	1
Bromochloromethane	ND		2.0		ug/L			11/01/19 17:25	1
Chloroform	ND		5.0		ug/L			11/01/19 17:25	1
1,1,1-Trichloroethane	ND		3.0		ug/L			11/01/19 17:25	1
Carbon tetrachloride	ND		3.0		ug/L			11/01/19 17:25	1
1,1-Dichloropropene	ND		3.0	0.29	ug/L			11/01/19 17:25	1
Benzene	ND		3.0	0.53	ug/L			11/01/19 17:25	1
1,2-Dichloroethane	ND		2.0	0.53	ug/L			11/01/19 17:25	1
Trichloroethene	ND		3.0	0.85	ug/L			11/01/19 17:25	1
1,2-Dichloropropane	ND		1.0	0.18	ug/L			11/01/19 17:25	1
Dibromomethane	ND		2.0	0.34	ug/L			11/01/19 17:25	1
Bromodichloromethane	ND		2.0	0.14	ug/L			11/01/19 17:25	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/01/19 17:25	1
4-Methyl-2-pentanone	ND		15	2.5	ug/L			11/01/19 17:25	1
Toluene	ND		2.0	0.39	ug/L			11/01/19 17:25	1
trans-1,3-Dichloropropene	ND		1.0	0.16	ug/L			11/01/19 17:25	1
1,1,2-Trichloroethane	ND		1.0	0.24	ug/L			11/01/19 17:25	1
Tetrachloroethene	ND		3.0	0.41	ug/L			11/01/19 17:25	1
1,3-Dichloropropane	ND		2.0		ug/L			11/01/19 17:25	1
2-Hexanone	ND		20		ug/L			11/01/19 17:25	1
Dibromochloromethane	ND		2.0		ug/L			11/01/19 17:25	1
1.2-Dibromoethane	ND		2.0	0.40	-			11/01/19 17:25	1
Chlorobenzene	ND		2.0	0.44	ug/L			11/01/19 17:25	1
Ethylbenzene	ND		3.0		ug/L			11/01/19 17:25	1
1,1,1,2-Tetrachloroethane	ND		2.0		ug/L			11/01/19 17:25	1
m-Xylene & p-Xylene	ND		3.0		ug/L			11/01/19 17:25	· · · · · · · · 1
o-Xylene	ND		2.0		ug/L			11/01/19 17:25	1
Styrene	ND		5.0		ug/L			11/01/19 17:25	1
Bromoform	ND		3.0		ug/L			11/01/19 17:25	
Isopropylbenzene	ND		2.0		ug/L			11/01/19 17:25	1
Bromobenzene	ND		2.0		ug/L			11/01/19 17:25	1
N-Propylbenzene	ND				ug/L ug/L			11/01/19 17:25	
1,1,2,2-Tetrachloroethane	ND ND		3.0 3.0		ug/L ug/L			11/01/19 17:25	1
4-Chlorotoluene	ND ND		2.0		ug/L ug/L			11/01/19 17:25	1

Eurofins TestAmerica, Seattle

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-315784/6

Matrix: Water

Analysis Batch: 315784

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butylbenzene	ND		3.0	0.58	ug/L			11/01/19 17:25	1
1,2,4-Trimethylbenzene	ND		3.0	0.61	ug/L			11/01/19 17:25	1
sec-Butylbenzene	ND		3.0	0.49	ug/L			11/01/19 17:25	1
1,3-Dichlorobenzene	ND		2.0	0.18	ug/L			11/01/19 17:25	1
4-Isopropyltoluene	ND		3.0	0.28	ug/L			11/01/19 17:25	1
1,4-Dichlorobenzene	ND		4.0	0.98	ug/L			11/01/19 17:25	1
n-Butylbenzene	ND		3.0	0.44	ug/L			11/01/19 17:25	1
1,2-Dichlorobenzene	ND		2.0	0.46	ug/L			11/01/19 17:25	1
1,2-Dibromo-3-Chloropropane	ND		10	1.8	ug/L			11/01/19 17:25	1
1,2,4-Trichlorobenzene	ND		2.0	0.33	ug/L			11/01/19 17:25	1
1,2,3-Trichlorobenzene	ND		5.0	1.1	ug/L			11/01/19 17:25	1
Hexachlorobutadiene	ND		6.0	0.79	ug/L			11/01/19 17:25	1
Naphthalene	ND		4.0	0.93	ug/L			11/01/19 17:25	1
Methyl tert-butyl ether	ND		2.0	0.44	ug/L			11/01/19 17:25	1
1,2,3-Trichloropropane	ND		2.0	0.41	ug/L			11/01/19 17:25	1
1,3,5-Trimethylbenzene	ND		3.0	0.55	ug/L			11/01/19 17:25	1
2-Chlorotoluene	ND		3.0	0.51	ug/L			11/01/19 17:25	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 100 80 - 120 11/01/19 17:25 4-Bromofluorobenzene (Surr) 99 80 - 120 11/01/19 17:25 Dibromofluoromethane (Surr) 101 80 - 120 11/01/19 17:25 80 - 120 Trifluorotoluene (Surr) 108 11/01/19 17:25 1,2-Dichloroethane-d4 (Surr) 100 80 - 126 11/01/19 17:25

Lab Sample ID: LCS 580-315784/3

Matrix: Water

Analysis Batch: 315784

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	6.37	J	ug/L		64	20 - 150
Chloromethane	10.0	7.96	J	ug/L		80	52 - 135
Vinyl chloride	10.0	7.71		ug/L		77	65 ₋ 130
Bromomethane	10.0	8.74		ug/L		87	66 - 125
Chloroethane	10.0	8.33		ug/L		83	65 - 132
Trichlorofluoromethane	10.0	7.49		ug/L		75	64 - 136
1,1-Dichloroethene	10.0	7.73		ug/L		77	70 - 129
Carbon disulfide	10.0	7.64		ug/L		76	69 - 122
Acetone	50.0	56.9		ug/L		114	43 - 150
Methylene Chloride	10.0	9.31		ug/L		93	77 - 125
trans-1,2-Dichloroethene	10.0	9.18		ug/L		92	77 - 124
1,1-Dichloroethane	10.0	9.12		ug/L		91	70 - 129
2,2-Dichloropropane	10.0	9.92		ug/L		99	62 - 140
2-Butanone	50.0	50.4		ug/L		101	65 - 127
cis-1,2-Dichloroethene	10.0	9.50		ug/L		95	76 - 129
Bromochloromethane	10.0	10.5		ug/L		105	78 - 120
Chloroform	10.0	9.75		ug/L		97	73 - 127
1,1,1-Trichloroethane	10.0	9.02		ug/L		90	74 ₋ 130

Eurofins TestAmerica, Seattle

Page 36 of 60

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-315784/3

Matrix: Wat

Analysis

Client Sample ID: Lab Control Sample

Water			Prep Type: Total/NA
s Batch: 315784			
	Spike	LCS LCS	%Rec.

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
Carbon tetrachloride		8.74	Qualifier	ug/L		87	72 ₋ 129	— –
1,1-Dichloropropene	10.0	8.60		ug/L		86	80 - 120	
Benzene	10.0	9.32		ug/L ug/L		93	75 ₋ 121	
1,2-Dichloroethane	10.0	10.5		ug/L		105	76 - 131	
Trichloroethene	10.0	9.55		ug/L ug/L		96	70 - 131	
1,2-Dichloropropane	10.0	9.43		ug/L ug/L		94	70 - 120 72 - 126	
Dibromomethane	10.0	10.2		ug/L		102	80 - 120	
Bromodichloromethane	10.0	10.2		ug/L ug/L		100	75 ₋ 124	
cis-1,3-Dichloropropene	10.0	9.48		ug/L ug/L		95	77 ₋ 120	
4-Methyl-2-pentanone	50.0	43.8		ug/L		88	69 - 124	
Toluene	10.0	9.47		ug/L ug/L		95	80 - 120	
trans-1,3-Dichloropropene	10.0	10.0		ug/L ug/L		100	80 - 122	
1,1,2-Trichloroethane	10.0	9.97				100	80 - 122	
Tetrachloroethene	10.0	9.97		ug/L		99	76 ₋ 121	
	10.0	9.86		ug/L				
1,3-Dichloropropane 2-Hexanone	50.0	9.86 47.9		ug/L		99	79 ₋ 120 65 ₋ 125	
				ug/L			71 - 120	
Dibromochloromethane	10.0	10.4		ug/L		104		
1,2-Dibromoethane	10.0	9.97		ug/L		100	79 - 120	
Chlorobenzene	10.0	10.4		ug/L		104	80 - 120	
Ethylbenzene	10.0	9.99		ug/L		100	80 - 120	
1,1,1,2-Tetrachloroethane	10.0	10.4		ug/L		104	79 - 120	
m-Xylene & p-Xylene	10.0	9.78		ug/L		98	80 - 120	
o-Xylene	10.0	10.3		ug/L		103	80 - 120	
Styrene	10.0	10.5		ug/L		105	76 - 121	
Bromoform	10.0	9.97		ug/L		100	61 - 132	
Isopropylbenzene	10.0	9.71		ug/L		97	75 - 120	
Bromobenzene	10.0	10.2		ug/L		102	80 - 120	
N-Propylbenzene	10.0	9.52		ug/L		95	80 - 120	
1,1,2,2-Tetrachloroethane	10.0	8.99		ug/L		90	74 - 124	
4-Chlorotoluene	10.0	9.55		ug/L		96	80 - 120	
t-Butylbenzene	10.0	9.51		ug/L		95	80 - 121	
1,2,4-Trimethylbenzene	10.0	9.79		ug/L		98	80 - 120	
sec-Butylbenzene	10.0	9.22		ug/L		92	78 - 120	
1,3-Dichlorobenzene	10.0	10.7		ug/L		107	80 - 120	
4-Isopropyltoluene	10.0	9.62		ug/L		96	77 - 120	
1,4-Dichlorobenzene	10.0	9.60		ug/L		96	80 - 120	
n-Butylbenzene	10.0	9.06		ug/L		91	78 - 120	
1,2-Dichlorobenzene	10.0	10.0		ug/L		100	80 - 120	
1,2-Dibromo-3-Chloropropane	10.0	9.47	J	ug/L		95	65 - 125	
1,2,4-Trichlorobenzene	10.0	10.2		ug/L		102	57 ₋ 140	
1,2,3-Trichlorobenzene	10.0	9.95		ug/L		99	23 - 150	
Hexachlorobutadiene	10.0	9.31		ug/L		93	74 - 125	
Naphthalene	10.0	9.43		ug/L		94	44 - 144	
Methyl tert-butyl ether	10.0	10.3		ug/L		103	72 - 130	
1,2,3-Trichloropropane	10.0	8.99		ug/L		90	76 - 124	
1,3,5-Trimethylbenzene	10.0	9.61		ug/L		96	80 - 120	
2-Chlorotoluene	10.0	10.1		ug/L		101	80 - 120	

Eurofins TestAmerica, Seattle

QC Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-315784/3

Matrix: Water

Analysis Batch: 315784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 80 - 120 100 4-Bromofluorobenzene (Surr) 99 80 - 120 Dibromofluoromethane (Surr) 101 80 - 120 80 - 120 Trifluorotoluene (Surr) 110 100 80 - 126 1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: LCSD 580-315784/4

Matrix: Water

Analysis Batch: 315784

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Datcii. 313704	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.0	5.84	J	ug/L		58	20 - 150	9	35
Chloromethane	10.0	7.13	J	ug/L		71	52 ₋ 135	11	23
Vinyl chloride	10.0	7.12		ug/L		71	65 - 130	8	28
Bromomethane	10.0	8.29		ug/L		83	66 - 125	5	27
Chloroethane	10.0	7.55		ug/L		75	65 - 132	10	35
Trichlorofluoromethane	10.0	7.05		ug/L		70	64 - 136	6	27
1,1-Dichloroethene	10.0	7.86		ug/L		79	70 - 129	2	27
Carbon disulfide	10.0	7.33		ug/L		73	69 - 122	4	20
Acetone	50.0	50.2		ug/L		100	43 - 150	12	35
Methylene Chloride	10.0	8.97		ug/L		90	77 - 125	4	18
trans-1,2-Dichloroethene	10.0	8.64		ug/L		86	77 - 124	6	21
1,1-Dichloroethane	10.0	8.68		ug/L		87	70 - 129	5	26
2,2-Dichloropropane	10.0	8.86		ug/L		89	62 - 140	11	23
2-Butanone	50.0	45.3		ug/L		91	65 - 127	11	29
cis-1,2-Dichloroethene	10.0	9.40		ug/L		94	76 - 129	1	15
Bromochloromethane	10.0	9.91		ug/L		99	78 - 120	6	20
Chloroform	10.0	9.40		ug/L		94	73 - 127	4	22
1,1,1-Trichloroethane	10.0	8.35		ug/L		83	74 - 130	8	18
Carbon tetrachloride	10.0	7.95		ug/L		79	72 - 129	10	19
1,1-Dichloropropene	10.0	7.97		ug/L		80	80 - 120	8	14
Benzene	10.0	8.80		ug/L		88	75 - 121	6	14
1,2-Dichloroethane	10.0	9.67		ug/L		97	76 - 131	8	18
Trichloroethene	10.0	9.38		ug/L		94	70 - 120	2	21
1,2-Dichloropropane	10.0	8.90		ug/L		89	72 - 126	6	26
Dibromomethane	10.0	9.44		ug/L		94	80 - 120	8	22
Bromodichloromethane	10.0	9.62		ug/L		96	75 - 124	4	22
cis-1,3-Dichloropropene	10.0	9.09		ug/L		91	77 - 120	4	20
4-Methyl-2-pentanone	50.0	41.2		ug/L		82	69 - 124	6	22
Toluene	10.0	8.89		ug/L		89	80 - 120	6	19
trans-1,3-Dichloropropene	10.0	9.47		ug/L		95	80 - 122	6	25
1,1,2-Trichloroethane	10.0	9.48		ug/L		95	80 - 121	5	21
Tetrachloroethene	10.0	9.00		ug/L		90	76 - 120	9	20
1,3-Dichloropropane	10.0	9.34		ug/L		93	79 - 120	5	26
2-Hexanone	50.0	45.1		ug/L		90	65 - 125	6	30
Dibromochloromethane	10.0	9.66		ug/L		97	71 - 120	7	24
1,2-Dibromoethane	10.0	9.16		ug/L		92	79 - 120	8	20
Chlorobenzene	10.0	9.81		ug/L		98	80 - 120	6	15

Eurofins TestAmerica, Seattle

Page 38 of 60

1 CCD 1 CCD

Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-315784/4

Client: Stantec Consulting Services Inc

Matrix: Water

Analysis Batch: 315784

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	10.0	9.30		ug/L		93	80 - 120	7	14
1,1,1,2-Tetrachloroethane	10.0	9.67		ug/L		97	79 - 120	7	20
m-Xylene & p-Xylene	10.0	9.27		ug/L		93	80 - 120	5	14
o-Xylene	10.0	9.71		ug/L		97	80 - 120	6	16
Styrene	10.0	9.69		ug/L		97	76 - 121	8	16
Bromoform	10.0	9.35		ug/L		94	61 - 132	6	20
Isopropylbenzene	10.0	9.03		ug/L		90	75 - 120	7	20
Bromobenzene	10.0	9.79		ug/L		98	80 - 120	4	13
N-Propylbenzene	10.0	8.91		ug/L		89	80 - 120	7	13
1,1,2,2-Tetrachloroethane	10.0	8.38		ug/L		84	74 - 124	7	18
4-Chlorotoluene	10.0	8.99		ug/L		90	80 - 120	6	14
t-Butylbenzene	10.0	8.69		ug/L		87	80 - 121	9	14
1,2,4-Trimethylbenzene	10.0	9.11		ug/L		91	80 - 120	7	16
sec-Butylbenzene	10.0	8.51		ug/L		85	78 - 120	8	15
1,3-Dichlorobenzene	10.0	9.60		ug/L		96	80 - 120	11	14
4-Isopropyltoluene	10.0	8.84		ug/L		88	77 - 120	8	13
1,4-Dichlorobenzene	10.0	9.06		ug/L		91	80 - 120	6	17
n-Butylbenzene	10.0	8.22		ug/L		82	78 - 120	10	14
1,2-Dichlorobenzene	10.0	9.38		ug/L		94	80 - 120	7	15
1,2-Dibromo-3-Chloropropane	10.0	8.64	J	ug/L		86	65 - 125	9	27
1,2,4-Trichlorobenzene	10.0	9.15		ug/L		92	57 - 140	11	27
1,2,3-Trichlorobenzene	10.0	9.30		ug/L		93	23 - 150	7	35
Hexachlorobutadiene	10.0	8.95		ug/L		89	74 - 125	4	22
Naphthalene	10.0	8.81		ug/L		88	44 - 144	7	31
Methyl tert-butyl ether	10.0	9.28		ug/L		93	72 - 130	11	18
1,2,3-Trichloropropane	10.0	8.47		ug/L		85	76 - 124	6	30
1,3,5-Trimethylbenzene	10.0	8.90		ug/L		89	80 - 120	8	14
2-Chlorotoluene	10.0	9.16		ug/L		92	80 - 120	10	15
I and the second									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	102		80 - 120
Trifluorotoluene (Surr)	108		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		80 - 126

Lab Sample ID: MB 580-315794/7

Matrix: Water

Analysis Batch: 315794

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	10	2.3	ug/L			11/02/19 00:26	1
Chloromethane	ND	20	5.4	ug/L			11/02/19 00:26	1
Vinyl chloride	ND	1.0	0.22	ug/L			11/02/19 00:26	1
Bromomethane	ND	6.0	1.1	ug/L			11/02/19 00:26	1
Chloroethane	ND	5.0	1.1	ug/L			11/02/19 00:26	1
Trichlorofluoromethane	ND	3.0	0.63	ug/L			11/02/19 00:26	1
1,1-Dichloroethene	ND	4.0	0.78	ug/L			11/02/19 00:26	1

Eurofins TestAmerica, Seattle

Page 39 of 60

QC Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

RL

3.0

MDL Unit

0.53 ug/L

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: MB 580-315794/7

Matrix: Water

Carbon disulfide

1,2,4-Trimethylbenzene

sec-Butylbenzene

4-Isopropyltoluene

n-Butylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Analysis Batch: 315794

Client Sample ID: Method Blank

Prepared

Prep Type: Total/NA

Analyzed

11/02/19 00:26

			•	
Acetone	ND	50	7.8 ug/L	11/02/19 00:26 1
Methylene Chloride	ND	5.0	1.4 ug/L	11/02/19 00:26 1
trans-1,2-Dichloroethene	ND	3.0	0.39 ug/L	11/02/19 00:26 1
1,1-Dichloroethane	ND	2.0	0.22 ug/L	11/02/19 00:26 1
2,2-Dichloropropane	ND	3.0	0.32 ug/L	11/02/19 00:26 1
2-Butanone	ND	20	4.7 ug/L	11/02/19 00:26 1
cis-1,2-Dichloroethene	ND	3.0	0.69 ug/L	11/02/19 00:26 1
Bromochloromethane	ND	2.0	0.29 ug/L	11/02/19 00:26 1
Chloroform	ND	5.0	0.50 ug/L	11/02/19 00:26 1
1,1,1-Trichloroethane	ND	3.0	0.39 ug/L	11/02/19 00:26 1
Carbon tetrachloride	ND	3.0	0.30 ug/L	11/02/19 00:26 1
1,1-Dichloropropene	ND	3.0	0.29 ug/L	11/02/19 00:26 1
Benzene	ND	3.0	0.53 ug/L	11/02/19 00:26 1
1,2-Dichloroethane	ND	2.0	0.53 ug/L	11/02/19 00:26 1
Trichloroethene	ND	3.0	0.85 ug/L	11/02/19 00:26 1
1,2-Dichloropropane	ND	1.0	0.18 ug/L	11/02/19 00:26 1
Dibromomethane	ND	2.0	0.34 ug/L	11/02/19 00:26 1
Bromodichloromethane	ND	2.0	0.14 ug/L	11/02/19 00:26 1
cis-1,3-Dichloropropene	ND	1.0	0.20 ug/L	11/02/19 00:26 1
4-Methyl-2-pentanone	ND	15	2.5 ug/L	11/02/19 00:26 1
Toluene	ND	2.0	0.39 ug/L	11/02/19 00:26 1
trans-1,3-Dichloropropene	ND	1.0	0.16 ug/L	11/02/19 00:26 1
1,1,2-Trichloroethane	ND	1.0	0.24 ug/L	11/02/19 00:26 1
Tetrachloroethene	ND	3.0	0.41 ug/L	11/02/19 00:26 1
1,3-Dichloropropane	ND	2.0	0.35 ug/L	11/02/19 00:26 1
2-Hexanone	ND	20	4.0 ug/L	11/02/19 00:26 1
Dibromochloromethane	ND	2.0	0.50 ug/L	11/02/19 00:26 1
1,2-Dibromoethane	ND	2.0	0.40 ug/L	11/02/19 00:26 1
Chlorobenzene	ND	2.0	0.44 ug/L	11/02/19 00:26 1
Ethylbenzene	ND	3.0	0.50 ug/L	11/02/19 00:26 1
1,1,1,2-Tetrachloroethane	ND	2.0	0.18 ug/L	11/02/19 00:26 1
m-Xylene & p-Xylene	ND	3.0	0.75 ug/L	11/02/19 00:26 1
o-Xylene	ND	2.0	0.39 ug/L	11/02/19 00:26 1
Styrene	ND	5.0	1.0 ug/L	11/02/19 00:26 1
Bromoform	ND	3.0	0.56 ug/L	11/02/19 00:26 1
Isopropylbenzene	ND	2.0	0.51 ug/L	11/02/19 00:26 1
Bromobenzene	ND	2.0	0.43 ug/L	11/02/19 00:26 1
N-Propylbenzene	ND	3.0	0.50 ug/L	11/02/19 00:26 1
1,1,2,2-Tetrachloroethane	ND	3.0	0.52 ug/L	11/02/19 00:26 1
4-Chlorotoluene	ND	2.0	0.51 ug/L	11/02/19 00:26 1
t-Butylbenzene	ND	3.0	0.58 ug/L	11/02/19 00:26 1

Eurofins TestAmerica, Seattle

11/15/2019

11/02/19 00:26

11/02/19 00:26

11/02/19 00:26

11/02/19 00:26

11/02/19 00:26

11/02/19 00:26

11/02/19 00:26

Page 40 of 60

3.0

3.0

2.0

3.0

4.0

3.0

2.0

0.61 ug/L

0.49 ug/L

0.18 ug/L

0.28 ug/L

0.98 ug/L

0.44 ug/L

0.46 ug/L

6

Dil Fac

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 580-315794/7

Matrix: Water

Analysis Batch: 315794

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac 6

Result Qualifier RL MDL Unit Prepared Analyzed 1,2-Dibromo-3-Chloropropane ND 10 11/02/19 00:26 1.8 ug/L 1,2,4-Trichlorobenzene ND 2.0 11/02/19 00:26 0.33 ug/L 1,2,3-Trichlorobenzene ND 5.0 1.1 ug/L 11/02/19 00:26 ND Hexachlorobutadiene 6.0 0.79 ug/L 11/02/19 00:26 Naphthalene ND 4.0 0.93 ug/L 11/02/19 00:26 ND 2.0 0.44 ug/L Methyl tert-butyl ether 11/02/19 00:26 1,2,3-Trichloropropane 2.0 0.41 ug/L 11/02/19 00:26 ND ND 3.0 1,3,5-Trimethylbenzene 0.55 ug/L 11/02/19 00:26 2-Chlorotoluene ND 3.0 0.51 ug/L

11/02/19 00:26

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 107 80 - 120 11/02/19 00:26 4-Bromofluorobenzene (Surr) 91 80 - 120 11/02/19 00:26 Dibromofluoromethane (Surr) 97 80 - 120 11/02/19 00:26 Trifluorotoluene (Surr) 91 80 - 120 11/02/19 00:26 1,2-Dichloroethane-d4 (Surr) 80 - 126 11/02/19 00:26 99

Lab Sample ID: LCS 580-315794/4

Matrix: Water

Analysis Batch: 315794

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7, C.	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	10.0	8.68	J	ug/L		87	20 - 150	
Chloromethane	10.0	10.7	J	ug/L		107	52 - 135	
Vinyl chloride	10.0	10.3		ug/L		103	65 - 130	
Bromomethane	10.0	9.36		ug/L		94	66 - 125	
Chloroethane	10.0	8.91		ug/L		89	65 - 132	
Trichlorofluoromethane	10.0	8.26		ug/L		83	64 - 136	
1,1-Dichloroethene	10.0	8.63		ug/L		86	70 - 129	
Carbon disulfide	10.0	8.69		ug/L		87	69 - 122	
Acetone	50.0	34.5	J	ug/L		69	43 - 150	
Methylene Chloride	10.0	8.72		ug/L		87	77 - 125	
trans-1,2-Dichloroethene	10.0	8.70		ug/L		87	77 - 124	
1,1-Dichloroethane	10.0	9.11		ug/L		91	70 - 129	
2,2-Dichloropropane	10.0	9.12		ug/L		91	62 - 140	
2-Butanone	50.0	38.2		ug/L		76	65 - 127	
cis-1,2-Dichloroethene	10.0	8.58		ug/L		86	76 - 129	
Bromochloromethane	10.0	8.03		ug/L		80	78 - 120	
Chloroform	10.0	9.02		ug/L		90	73 - 127	
1,1,1-Trichloroethane	10.0	8.43		ug/L		84	74 - 130	
Carbon tetrachloride	10.0	7.82		ug/L		78	72 - 129	
1,1-Dichloropropene	10.0	8.04		ug/L		80	80 - 120	
Benzene	10.0	9.02		ug/L		90	75 - 121	
1,2-Dichloroethane	10.0	8.47		ug/L		85	76 - 131	
Trichloroethene	10.0	7.90		ug/L		79	70 - 120	
1,2-Dichloropropane	10.0	9.29		ug/L		93	72 - 126	
Dibromomethane	10.0	8.25		ug/L		82	80 - 120	
Bromodichloromethane	10.0	8.39		ug/L		84	75 - 124	

Eurofins TestAmerica, Seattle

QC Sample Results

Spike

LCS LCS

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-315794/4

Matrix: Water

Analysis Batch: 315794

Client Sample ID: Lab Control Sample

Prep Type: Total/NA %Rec.

Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
cis-1,3-Dichloropropene	10.0	9.28	ug/L	$\frac{2}{93}$	77 ₋ 120	
4-Methyl-2-pentanone	50.0	48.0	ug/L	96	69 - 124	
Toluene	10.0	10.2	ug/L	102	80 - 120	
trans-1,3-Dichloropropene	10.0	8.72	ug/L	87	80 - 122	
1,1,2-Trichloroethane	10.0	9.98	ug/L	100	80 - 121	
Tetrachloroethene	10.0	9.12	ug/L	91	76 ₋ 120	
1,3-Dichloropropane	10.0	10.0	ug/L	100	79 - 120	
2-Hexanone	50.0	43.9	ug/L	88	65 ₋ 125	
Dibromochloromethane	10.0	8.23	ug/L	82	71 ₋ 120	
1,2-Dibromoethane	10.0	9.26	ug/L	93	79 - 120	
Chlorobenzene	10.0	9.73	ug/L	97	80 - 120	
Ethylbenzene	10.0	10.0	ug/L	100	80 - 120	
1,1,1,2-Tetrachloroethane	10.0	9.28	ug/L	93	79 ₋ 120	
m-Xylene & p-Xylene	10.0	9.51	ug/L	95	80 - 120	
o-Xylene	10.0	9.60	ug/L	96	80 - 120	
Styrene	10.0	9.00	ug/L	90	76 ₋ 121	
Bromoform	10.0	7.59	ug/L	76	61 - 132	
Isopropylbenzene	10.0	9.49	ug/L	95	75 ₋ 120	
Bromobenzene	10.0	9.19	ug/L	92	80 - 120	
N-Propylbenzene	10.0	10.1	ug/L	101	80 - 120	
1,1,2,2-Tetrachloroethane	10.0	11.6	ug/L	116	74 - 124	
4-Chlorotoluene	10.0	9.48	ug/L	95	80 - 120	
t-Butylbenzene	10.0	9.36	ug/L	94	80 - 121	
1,2,4-Trimethylbenzene	10.0	9.79	ug/L	98	80 - 120	
sec-Butylbenzene	10.0	9.50	ug/L	95	78 - 120	
1,3-Dichlorobenzene	10.0	9.74	ug/L	97	80 - 120	
4-Isopropyltoluene	10.0	9.21	ug/L	92	77 - 120	
1,4-Dichlorobenzene	10.0	9.60	ug/L	96	80 - 120	
n-Butylbenzene	10.0	8.71	ug/L	87	78 - 120	
1,2-Dichlorobenzene	10.0	9.81	ug/L	98	80 - 120	
1,2-Dibromo-3-Chloropropane	10.0	8.50	J ug/L	85	65 - 125	
1,2,4-Trichlorobenzene	10.0	9.70	ug/L	97	57 - 140	
1,2,3-Trichlorobenzene	10.0	9.68	ug/L	97	23 - 150	
Hexachlorobutadiene	10.0	8.39	ug/L	84	74 - 125	
Naphthalene	10.0	9.75	ug/L	97	44 - 144	
Methyl tert-butyl ether	10.0	8.72	ug/L	87	72 - 130	
1,2,3-Trichloropropane	10.0	9.12	ug/L	91	76 - 124	
1,3,5-Trimethylbenzene	10.0	9.88	ug/L	99	80 - 120	
2-Chlorotoluene	10.0	9.45	ug/L	95	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	93		80 - 120
Trifluorotoluene (Surr)	91		80 - 120
1,2-Dichloroethane-d4 (Surr)	96		80 - 126

Eurofins TestAmerica, Seattle

QC Sample Results

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-315794/5

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 315794	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.0	8.33		ug/L	— <u> </u>	83	20 - 150	4	35
Chloromethane	10.0	9.81		ug/L		98	52 ₋ 135	9	23
Vinyl chloride	10.0	10.3		ug/L		103	65 ₋ 130	1	28
Bromomethane	10.0	9.17		ug/L		92	66 - 125	2	27
Chloroethane	10.0	9.53		ug/L		95	65 - 132	7	35
Trichlorofluoromethane	10.0	7.81		ug/L		78	64 - 136	6	27
1.1-Dichloroethene	10.0	8.17		ug/L		82	70 - 129	5	27
Carbon disulfide	10.0	8.80		ug/L		88	69 - 122	1	20
Acetone	50.0	35.8	J	ug/L		72	43 - 150	4	35
Methylene Chloride	10.0	8.97		ug/L		90	77 - 125	3	18
trans-1,2-Dichloroethene	10.0	8.69		ug/L		87	77 - 124	0	21
1,1-Dichloroethane	10.0	8.69		ug/L		87	70 - 129	5	26
2,2-Dichloropropane	10.0	9.09		ug/L		91	62 - 140	0	23
2-Butanone	50.0	35.5		ug/L		71	65 - 127	7	29
cis-1,2-Dichloroethene	10.0	8.55		ug/L		85	76 - 129	0	15
Bromochloromethane	10.0	8.17		ug/L		82	78 - 120	2	20
Chloroform	10.0	8.77		ug/L		88	73 - 127	3	22
1,1,1-Trichloroethane	10.0	8.22		ug/L		82	74 - 130	3	18
Carbon tetrachloride	10.0	7.62		ug/L		76	72 - 129	3	19
1,1-Dichloropropene	10.0	7.89	*	ug/L		79	80 - 120	2	14
Benzene	10.0	8.81		ug/L		88	75 - 121	2	14
1,2-Dichloroethane	10.0	8.51		ug/L		85	76 - 131	· · · · · · · · · · · · · · · · · · ·	18
Trichloroethene	10.0	7.78		ug/L		78	70 - 120	2	21
1,2-Dichloropropane	10.0	9.05		ug/L		90	72 - 126	3	26
Dibromomethane	10.0	8.31		ug/L		83	80 - 120	1	22
Bromodichloromethane	10.0	8.19		ug/L		82	75 - 124	2	22
cis-1,3-Dichloropropene	10.0	9.03		ug/L		90	77 ₋ 120	3	20
4-Methyl-2-pentanone	50.0	48.1		ug/L		96	69 - 124		22
Toluene	10.0	9.87		ug/L		99	80 - 120	4	19
trans-1,3-Dichloropropene	10.0	8.67		ug/L		87	80 - 122	1	25
1,1,2-Trichloroethane	10.0	10.2		ug/L		102	80 - 121	2	21
Tetrachloroethene	10.0	8.95		ug/L		90	76 - 120	2	20
1,3-Dichloropropane	10.0	9.66		ug/L		97	79 - 120	4	26
2-Hexanone	50.0	42.2		ug/L		84	65 - 125	4	30
Dibromochloromethane	10.0	8.56		ug/L		86	71 - 120	4	24
1,2-Dibromoethane	10.0	8.87		ug/L		89	79 - 120	4	20
Chlorobenzene	10.0	9.15		ug/L		92	80 - 120	6	15
Ethylbenzene	10.0	9.86		ug/L		99	80 - 120	2	14
1,1,1,2-Tetrachloroethane	10.0	8.80		ug/L		88	79 ₋ 120	5	20
m-Xylene & p-Xylene	10.0	9.40		ug/L		94	80 - 120	1	14
o-Xylene	10.0	9.54		ug/L		95	80 - 120	1	16
Styrene	10.0	8.84		ug/L		88	76 - 121	2	16
Bromoform	10.0	7.44		ug/L		74	61 - 132	2	20
Isopropylbenzene	10.0	9.21		ug/L ug/L		92	75 ₋ 120	3	20
Bromobenzene	10.0	9.12		ug/L ug/L		91	80 ₋ 120	1	13
N-Propylbenzene	10.0	9.89		ug/L		99	80 - 120		13
1,1,2,2-Tetrachloroethane	10.0	11.4		ug/L ug/L		114	74 ₋ 124	2	18
4-Chlorotoluene	10.0	9.17		ug/L ug/L		92	80 - 120	3	14

Eurofins TestAmerica, Seattle

Page 43 of 60

2

3

4

6

8

10

11

Project/Site: IFC/101

Client: Stantec Consulting Services Inc

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-315794/5

Matrix: Water

Analysis Batch: 315794

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier RPD Limit **Analyte** Unit D %Rec Limits 10.0 8.86 89 80 - 121 t-Butylbenzene ug/L 5 14 1,2,4-Trimethylbenzene 10.0 9.71 97 80 - 120 16 ug/L 1 sec-Butylbenzene 10.0 9.21 ug/L 92 78 - 120 3 15 1,3-Dichlorobenzene 96 80 - 120 10.0 9.56 ug/L 2 14 4-Isopropyltoluene 10.0 89 77 - 120 13 8.92 ug/L 1,4-Dichlorobenzene 80 - 120 10.0 96 17 9.64 ug/L 0 n-Butylbenzene 10.0 8.09 78 - 120 14 ug/L 1,2-Dichlorobenzene 10.0 9.64 ug/L 96 80 - 120 2 15 1,2-Dibromo-3-Chloropropane 10.0 8.70 J ug/L 87 65 - 125 2 27 1,2,4-Trichlorobenzene 10.0 9.05 90 57 - 140 27 ug/L 1,2,3-Trichlorobenzene 10.0 9.05 ug/L 91 23 - 150 35 Hexachlorobutadiene 10.0 7.96 ug/L 80 74 - 125 5 22 Naphthalene 10.0 9.45 ug/L 94 44 - 144 3 31 87 72 - 130 Methyl tert-butyl ether 10.0 8.71 ug/L 18 1,2,3-Trichloropropane 10.0 8.65 ug/L 86 76 - 124 5 30 1,3,5-Trimethylbenzene 10.0 9.48 ug/L 95 80 - 120 14

8.94

ug/L

10.0

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	94		80 - 120
Trifluorotoluene (Surr)	91		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		80 - 126

Lab Sample ID: MB 580-315865/13

Matrix: Water

2-Chlorotoluene

Analysis Batch: 315865

Client Sample ID: Method Blank

80 - 120

89

Prep Type: Total/NA

	MB N	ИВ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND ND		2.0	0.39	ug/L			11/04/19 14:29	1
Ethylbenzene	ND		3.0	0.50	ug/L			11/04/19 14:29	1
m-Xylene & p-Xylene	ND		3.0	0.75	ug/L			11/04/19 14:29	1
o-Xylene	ND		2.0	0.39	ug/L			11/04/19 14:29	1
1,2,4-Trimethylbenzene	ND		3.0	0.61	ug/L			11/04/19 14:29	1
Naphthalene	ND		4.0	0.93	ug/L			11/04/19 14:29	1
1,3,5-Trimethylbenzene	ND		3.0	0.55	ug/L			11/04/19 14:29	1

MB MB

Surrogate	%Recovery Qualit	ier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120	11/04/19 14:29	9 1
4-Bromofluorobenzene (Surr)	90	80 - 120	11/04/19 14:29	9 1
Dibromofluoromethane (Surr)	96	80 - 120	11/04/19 14:29	9 1
Trifluorotoluene (Surr)	91	80 - 120	11/04/19 14:29	9 1
1,2-Dichloroethane-d4 (Surr)	99	80 - 126	11/04/19 14:29	9 1

Eurofins TestAmerica, Seattle

Page 44 of 60

6

15

Job ID: 580-90396-1

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-315865/14

Matrix: Water

Analysis Batch: 315865

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	10.0	10.8		ug/L		108	80 - 120	
Ethylbenzene	10.0	10.7		ug/L		107	80 - 120	
m-Xylene & p-Xylene	10.0	10.3		ug/L		103	80 - 120	
o-Xylene	10.0	10.2		ug/L		102	80 - 120	
1,2,4-Trimethylbenzene	10.0	10.3		ug/L		103	80 - 120	
Naphthalene	10.0	9.81		ug/L		98	44 - 144	
1,3,5-Trimethylbenzene	10.0	10.2		ug/L		102	80 - 120	

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 126

10.9

10.5

9.86

10.1

10.7

9.93

10.6

ug/L

LCS LCS

%Recovery	Qualifier	Limits
105		80 - 120
96		80 - 120
94		80 - 120
90		80 - 120
96		80 - 126
	105 96 94 90	96 94 90

Lab Sample ID: LCSD 580-315865/15

Matrix: Water

Analyte

Toluene

o-Xylene

Naphthalene

Ethylbenzene

m-Xylene & p-Xylene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Analysis Batch: 315865

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD %Rec. **RPD** Result Qualifier Unit D %Rec Limits RPD Limit ug/L 109 80 - 120 19 ug/L 105 80 - 120 2 14 ug/L 99 80 - 120 14 ug/L 101 80 - 120 2 16 ug/L 107 80 - 120 16 ug/L 99 44 - 144 31

106

LCSD LCSD %Recovery Qualifier Surrogate Toluene-d8 (Surr) 107 4-Bromofluorobenzene (Surr) 91 93 Dibromofluoromethane (Surr)

90

95

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: MB 580-315991/6

Matrix: Water

Trifluorotoluene (Surr)

Analysis Batch: 315991

Client Sample ID: Method Blank

80 - 120

Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac m-Xylene & p-Xylene ND 3.0 0.75 ug/L 11/05/19 14:17

	MB ME	В						
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac			
Toluene-d8 (Surr)	101	80 - 120		11/05/19 14:17	1			
4-Bromofluorobenzene (Surr)	100	80 - 120		11/05/19 14:17	1			
Dibromofluoromethane (Surr)	102	80 - 120		11/05/19 14:17	1			
Trifluorotoluene (Surr)	112	80 - 120		11/05/19 14:17	1			

Eurofins TestAmerica, Seattle

Page 45 of 60

14

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 580-315991/6

Matrix: Water

Surrogate

Analyte

Analysis Batch: 315991

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

Limits %Recovery Qualifier Prepared Analyzed 101 80 - 126 11/05/19 14:17

Lab Sample ID: LCS 580-315991/3

Matrix: Water

m-Xylene & p-Xylene

Analysis Batch: 315991

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits D 10 0 10.4 104 80 - 120

ug/L

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 4-Bromofluorobenzene (Surr) 101 80 - 120 Dibromofluoromethane (Surr) 104 80 - 120 Trifluorotoluene (Surr) 111 80 - 120 80 - 126 1,2-Dichloroethane-d4 (Surr) 101

Lab Sample ID: LCSD 580-315991/4

Matrix: Water

Analysis Batch: 315991

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. **RPD** Added Analyte Result Qualifier Unit D %Rec Limits **RPD** Limit 10.0 11.0 m-Xylene & p-Xylene ua/L 110 LCSD LCSD

%Recovery Qualifier Surrogate I imits Toluene-d8 (Surr) 103 80 - 120 4-Bromofluorobenzene (Surr) 102 80 - 120 Dibromofluoromethane (Surr) 106 80 - 120 Trifluorotoluene (Surr) 110 80 - 120 1,2-Dichloroethane-d4 (Surr) 104 80 - 126

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-315494/1-A Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 316468

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Naphthalene $\overline{\mathsf{ND}}$ 0.10 0.031 ug/L 10/30/19 09:13 11/11/19 14:32 ND 0.20 0.039 ug/L 10/30/19 09:13 11/11/19 14:32 2-Methylnaphthalene 1-Methylnaphthalene ND 0.10 0.019 ug/L 10/30/19 09:13 11/11/19 14:32 Acenaphthylene ND 0.050 0.0090 ug/L 10/30/19 09:13 11/11/19 14:32 Acenaphthene ND 0.014 ug/L 10/30/19 09:13 11/11/19 14:32 0.10 Fluorene ND 0.10 0.017 ug/L 10/30/19 09:13 11/11/19 14:32 ND Phenanthrene 0.10 0.031 ug/L 10/30/19 09:13 11/11/19 14:32 Anthracene ND 0.10 0.022 ug/L 10/30/19 09:13 11/11/19 14:32 Fluoranthene ND 0.20 0.050 ug/L 10/30/19 09:13 11/11/19 14:32 Pyrene ND 0.10 0.033 ug/L 10/30/19 09:13 11/11/19 14:32 Benzo[a]anthracene ND 0.050 0.014 ug/L 10/30/19 09:13 11/11/19 14:32

Eurofins TestAmerica, Seattle

11/15/2019

Page 46 of 60

Prep Type: Total/NA **Prep Batch: 315494**

Job ID: 580-90396-1

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-315494/1-A

Matrix: Water

Analysis Batch: 316468

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 315494

7 man, 610 Zatom 610 100	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.10	0.016	ug/L		10/30/19 09:13	11/11/19 14:32	1
Benzo[b]fluoranthene	ND		0.050	0.011	ug/L		10/30/19 09:13	11/11/19 14:32	1
Benzo[k]fluoranthene	ND		0.050	0.012	ug/L		10/30/19 09:13	11/11/19 14:32	1
Benzo[a]pyrene	ND		0.10	0.011	ug/L		10/30/19 09:13	11/11/19 14:32	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.014	ug/L		10/30/19 09:13	11/11/19 14:32	1
Dibenz(a,h)anthracene	ND		0.10	0.026	ug/L		10/30/19 09:13	11/11/19 14:32	1
Benzo[g,h,i]perylene	ND		0.050	0.012	ug/L		10/30/19 09:13	11/11/19 14:32	1
	MB	MB							

%Recovery Qualifier Surrogate Limits Analyzed Prepared Dil Fac Terphenyl-d14 49 X 53 - 120 10/30/19 09:13 11/11/19 14:32

Lab Sample ID: LCS 580-315494/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 316468	Spike	LCS	LCS				Prep Batch: 315494 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	4.00	2.28		ug/L		57	36 - 120
2-Methylnaphthalene	4.00	3.27		ug/L		82	33 - 120
1-Methylnaphthalene	4.00	2.31		ug/L		58	35 - 120
Acenaphthylene	4.00	2.70		ug/L		67	42 - 120
Acenaphthene	4.00	2.44		ug/L		61	42 - 120
Fluorene	4.00	2.63		ug/L		66	49 - 120
Phenanthrene	4.00	2.54		ug/L		63	54 - 120
Anthracene	4.00	2.77		ug/L		69	56 - 120
Fluoranthene	4.00	2.77		ug/L		69	52 - 129
Pyrene	4.00	2.68		ug/L		67	50 - 127
Benzo[a]anthracene	4.00	3.49		ug/L		87	61 - 129
Chrysene	4.00	2.89		ug/L		72	47 - 126
Benzo[b]fluoranthene	4.00	2.74		ug/L		68	53 - 133
Benzo[k]fluoranthene	4.00	2.98		ug/L		75	51 - 132
Benzo[a]pyrene	4.00	2.93		ug/L		73	56 - 130
Indeno[1,2,3-cd]pyrene	4.00	3.70		ug/L		93	56 - 135
Dibenz(a,h)anthracene	4.00	3.12		ug/L		78	60 - 133
Benzo[g,h,i]perylene	4.00	3.02		ug/L		76	55 - 127

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 55 53 - 120

Lab Sample ID: LCSD 580-315494/3-A

Matrix: Water

Client Sample	ID: Lab	Control	Sample	Dup
----------------------	---------	---------	--------	-----

Prep Type: Total/NA

						Prep Ba	itch: 3′	15494
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4.00	2.32		ug/L		58	36 - 120	2	27
4.00	3.25		ug/L		81	33 - 120	1	30
4.00	2.30		ug/L		58	35 - 120	1	34
4.00	2.68		ug/L		67	42 - 120	1	26
4.00	2.41		ug/L		60	42 - 120	1	24
	Added 4.00 4.00 4.00 4.00	Added Result 4.00 2.32 4.00 3.25 4.00 2.30 4.00 2.68	Added Result Qualifier 4.00 2.32 4.00 3.25 4.00 2.30 4.00 2.68	Added Result Qualifier Unit 4.00 2.32 ug/L 4.00 3.25 ug/L 4.00 2.30 ug/L 4.00 2.68 ug/L	Added Result Qualifier Unit D 4.00 2.32 ug/L 4.00 3.25 ug/L 4.00 2.30 ug/L 4.00 2.68 ug/L	Added Result Qualifier Unit D %Rec 4.00 2.32 ug/L 58 4.00 3.25 ug/L 81 4.00 2.30 ug/L 58 4.00 2.68 ug/L 67	Spike LCSD Kec. Added Result Qualifier Unit D %Rec. Limits 4.00 2.32 ug/L 58 36 - 120 4.00 3.25 ug/L 81 33 - 120 4.00 2.30 ug/L 58 35 - 120 4.00 2.68 ug/L 67 42 - 120	Added Result Qualifier Unit D %Rec Limits RPD 4.00 2.32 ug/L 58 36 - 120 2 4.00 3.25 ug/L 81 33 - 120 1 4.00 2.30 ug/L 58 35 - 120 1 4.00 2.68 ug/L 67 42 - 120 1

Eurofins TestAmerica, Seattle

Page 47 of 60

Job ID: 580-90396-1

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 580-315494/3-A

Matrix: Water

Analysis Batch: 316468

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 315494

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluorene	4.00	2.57		ug/L		64	49 - 120	2	21
Phenanthrene	4.00	2.50		ug/L		63	54 - 120	1	21
Anthracene	4.00	2.74		ug/L		68	56 - 120	1	29
Fluoranthene	4.00	2.76		ug/L		69	52 - 129	0	32
Pyrene	4.00	2.84		ug/L		71	50 - 127	6	35
Benzo[a]anthracene	4.00	3.57		ug/L		89	61 - 129	2	31
Chrysene	4.00	2.90		ug/L		72	47 - 126	0	23
Benzo[b]fluoranthene	4.00	2.83		ug/L		71	53 - 133	3	25
Benzo[k]fluoranthene	4.00	3.09		ug/L		77	51 - 132	3	25
Benzo[a]pyrene	4.00	3.09		ug/L		77	56 - 130	5	27
Indeno[1,2,3-cd]pyrene	4.00	3.90		ug/L		98	56 - 135	5	24
Dibenz(a,h)anthracene	4.00	3.29		ug/L		82	60 - 133	5	25
Benzo[g,h,i]perylene	4.00	3.24		ug/L		81	55 - 127	7	27

LCSD LCSD

MB MB

MB MB

ND

Result Qualifier

Surrogate %Recovery Qualifier Limits Terphenyl-d14 55 53 - 120

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Lab Sample ID: MB 580-315497/33

Matrix: Water

Analysis Batch: 315497

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

10/30/19 21:55

Client Sample ID: Method Blank

Analyte Gasoline Range Organics (GRO) -C6-C10

MR MR

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 88 10/30/19 21:55 Trifluorotoluene (Surr) 50 - 150 4-Bromofluorobenzene (Surr) 100 50 - 150 10/30/19 21:55

RL

0.25

MDL Unit

0.10 mg/L

Lab Sample ID: MB 580-315497/7

Matrix: Water

Analysis Batch: 315497

Prep Type: Total/NA

D

Prepared

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac $\overline{\sf ND}$ 0.25 0.10 mg/L 10/30/19 11:17 Gasoline Range Organics (GRO)

-C6-C10

MB MB %Recovery Qualifier Analyzed Dil Fac Limits Prepared Surrogate Trifluorotoluene (Surr) 59 50 - 150 10/30/19 11:17 4-Bromofluorobenzene (Surr) 100 50 - 150 10/30/19 11:17

Project/Site: IFC/101

Client: Stantec Consulting Services Inc

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCS 580-315497/34

Matrix: Water

Analysis Batch: 315497

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Unit 1.00 89 77 - 123 0.893 mg/L

mg/L

-C6-C10

Analyte

LCS LCS Surrogate %Recovery Qualifier Limits Trifluorotoluene (Surr) 90 50 - 150 50 - 150 4-Bromofluorobenzene (Surr) 105

Lab Sample ID: LCS 580-315497/8

Matrix: Water

Analysis Batch: 315497

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 580-90396-1

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics (GRO) 1.00 0.999 mg/L 100 77 - 123 -C6-C10

LCS LCS %Recovery Qualifier Surrogate I imite Trifluorotoluene (Surr) 94 50 - 150 4-Bromofluorobenzene (Surr) 109 50 - 150

Lab Sample ID: LCSD 580-315497/35

Matrix: Water

Analysis Batch: 315497

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.00 0.874 87 77 - 123 20

-C6-C10

LCSD LCSD %Recovery Qualifier Surrogate Limits Trifluorotoluene (Surr) 50 - 150 89 4-Bromofluorobenzene (Surr) 105 50 - 150

Lab Sample ID: LCSD 580-315497/9

Matrix: Water

Analysis Batch: 315497

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

RPD %Rec.

LCSD LCSD Spike Result Qualifier **Analyte** Added Unit %Rec Limits **RPD** Limit 1.00 1.01 101 77 - 123 Gasoline Range Organics (GRO) mg/L

-C6-C10

LCSD LCSD Surrogate %Recovery Qualifier Limits 50 - 150 Trifluorotoluene (Surr) 92 4-Bromofluorobenzene (Surr) 109 50 - 150

Eurofins TestAmerica, Seattle

Prep Type: Total/NA

Project/Site: IFC/101

Client: Stantec Consulting Services Inc

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: MB 580-315586/9 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 315586

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.10 mg/L 0.25 10/31/19 12:10 Gasoline Range Organics (GRO) \overline{ND}

-C6-C10

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Trifluorotoluene (Surr) 86 50 - 150 10/31/19 12:10 50 - 150 10/31/19 12:10 4-Bromofluorobenzene (Surr) 104 1

Lab Sample ID: LCS 580-315586/10 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 315586

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit D %Rec Limits 1.00 1.00 mg/L 100 77 - 123 Gasoline Range Organics (GRO)

-C6-C10

LCS LCS %Recovery Qualifier Surrogate I imite Trifluorotoluene (Surr) 95 50 - 150 4-Bromofluorobenzene (Surr) 108 50 - 150

Lab Sample ID: LCSD 580-315586/11 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 315586

%Rec. Spike LCSD LCSD **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.00 1.02 102 77 - 123 20 mg/L Gasoline Range Organics (GRO)

-C6-C10

LCSD LCSD

Surrogate %Recovery Qualifier Limits 99 50 - 150 Trifluorotoluene (Surr) 4-Bromofluorobenzene (Surr) 103 50 - 150

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 580-315972/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 316161

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 11/05/19 09:25 11/06/19 15:35 DRO (nC10-<nC25) ND 0.11 0.075 mg/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 11/05/19 09:25 11/06/19 15:35 50 - 150 o-Terphenyl 83

Eurofins TestAmerica, Seattle

11/15/2019

Prep Batch: 315972

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: LCS 580-315972/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 316161 Prep Batch: 315972 LCS LCS %Rec. Spike

Added Result Qualifier Limits Analyte Unit D %Rec DRO (nC10-<nC25) 2.00 1.41 mg/L 70 75 - 125

LCS LCS

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 68

Lab Sample ID: LCSD 580-315972/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 316161 Prep Batch: 315972 LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit Limits **RPD** Limit D %Rec

2.00 1.28 DRO (nC10-<nC25) mg/L 64 75 - 125 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 65 50 - 150

Lab Sample ID: MB 580-316072/1-A

Matrix: Water

Analysis Batch: 316296

Prep Type: Total/NA

Prep Batch: 316072

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac DRO (nC10-<nC25) $\overline{\mathsf{ND}}$ 0.11 0.075 mg/L 11/06/19 08:57 11/07/19 16:36

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 65 50 - 150 11/06/19 08:57 11/07/19 16:36

LCS LCS

Lab Sample ID: LCS 580-316072/2-A

Matrix: Water

Analysis Batch: 316296

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 316072**

%Rec.

Added Result Qualifier Unit %Rec Limits 1.08 DRO (nC10-<nC25) 2.00 mg/L 75 - 125

Spike

LCS LCS

Limits Surrogate %Recovery Qualifier 50 - 150 o-Terphenyl 49 X

Lab Sample ID: LCSD 580-316072/3-A

Matrix: Water

Analysis Batch: 316296

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Prep Batch: 316072**

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit DRO (nC10-<nC25) 2.00 1.29 65 mg/L

LCSD LCSD

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 59

Eurofins TestAmerica, Seattle

G

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Job ID: 580-90396-1

Prep Type: Total/NA

Prep Batch: 316551

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Lab Sample ID: MB 580-316551/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 316740 **Prep Batch: 316551** MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed DRO (nC10-<nC25) $\overline{\mathsf{ND}}$ 0.11 0.075 mg/L 11/12/19 09:20 11/13/19 17:00 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

o-Terphenyl 82 50 - 150 11/12/19 09:20 11/13/19 17:00 1

Lab Sample ID: MB 580-316551/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 316859

 MB MB

 Surrogate
 %Recovery or Terphenyl
 Qualifier or Terphenyl
 Limits or Terphenyl
 Prepared or Terphenyl
 Analyzed or Terphenyl
 Dil Factor or Terphenyl

Lab Sample ID: LCS 580-316551/2-A Matrix: Water

Analysis Batch: 316740

Prep Type: Total/NA
Prep Batch: 316551
Spike LCS LCS %Rec.
Added Result Qualifier Unit D %Rec Limits

 $\frac{\text{Analyte}}{\text{DRO (nC10-<nC25)}} \qquad \frac{\text{Added}}{2.00} \qquad \frac{\text{Result}}{1.82} \qquad \frac{\text{Qualifier}}{\text{mg/L}} \qquad \frac{\text{Unit}}{\text{pg}} \qquad \frac{\text{NRec}}{91} \qquad \frac{\text{Limits}}{75-125}$

Lab Sample ID: LCSD 580-316551/3-A

Matrix: Water

Analysis Batch: 316740

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 316551 %Rec. RPD

Client Sample ID: Lab Control Sample

Spike LCSD LCSD Added Result Qualifier Unit %Rec Limits **RPD** Limit DRO (nC10-<nC25) 2.00 1.86 mg/L 93 75 - 125 20

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 o-Terphenyl
 95
 50 - 150

3

6

8

9

10

1-

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: MW-3

Date Collected: 10/23/19 14:53 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315784	11/01/19 21:31	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	10	315865	11/04/19 18:15	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		20	316289	11/07/19 21:43	E1L	TAL SEA
Total/NA	Prep	3510C	DL		315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM	DL	200	316468	11/11/19 15:50	W1T	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 16:59	DCV	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	5	316740	11/13/19 18:29	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		9	316296	11/07/19 21:39	W1T	TAL SEA

Client Sample ID: MW-4 Lab Sample ID: 580-90396-2

Date Collected: 10/23/19 10:55

Date Received: 10/28/19 13:25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315784	11/01/19 21:56	W1T	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		1	316289	11/07/19 22:09	E1L	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/30/19 19:30	EML	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316740	11/13/19 18:51	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316296	11/07/19 21:59	W1T	TAL SEA

Client Sample ID: MW-8

Date Collected: 10/23/19 13:03

Lab Sample ID: 580-90396-3

Matrix: Water

Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315784	11/01/19 22:20	W1T	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		1	316289	11/07/19 22:35	E1L	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/30/19 20:42	EML	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316740	11/13/19 19:13	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316296	11/07/19 22:19	W1T	TAL SEA

Project/Site: IFC/101

Client Sample ID: MW-14

Client: Stantec Consulting Services Inc

Date Collected: 10/23/19 12:05 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90396-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315784	11/01/19 22:45	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	50	315865	11/04/19 17:25	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		10	316289	11/07/19 23:01	E1L	TAL SEA
Total/NA	Prep	3510C	DL		315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM	DL	100	316468	11/11/19 16:17	W1T	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 17:23	DCV	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316740	11/13/19 19:35	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316296	11/07/19 22:39	W1T	TAL SEA

Lab Sample ID: 580-90396-5

Matrix: Water

Client Sample ID: MW-17 Date Collected: 10/23/19 11:30

Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315784	11/01/19 23:10	W1T	TAL SEA
Total/NA	Analysis	8260C	RA	1	315865	11/04/19 15:45	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		5	316289	11/07/19 23:27	E1L	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/30/19 23:07	EML	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316740	11/13/19 19:58	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SE
Total/NA	Analysis	AK102 & 103		1	316296	11/07/19 23:00	W1T	TAL SE

Client Sample ID: MW-19-1 Lab Sample ID: 580-90396-6 Date Collected: 10/23/19 14:20 **Matrix: Water**

Date Received: 10/28/19 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315784	11/01/19 23:35	W1T	TAL SEA
Total/NA	Analysis	8260C	DL	50	315865	11/04/19 17:50	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		10	316289	11/07/19 23:53	E1L	TAL SEA
Total/NA	Prep	3510C	DL		315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM	DL	100	316468	11/11/19 16:43	W1T	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 17:47	DCV	TAL SEA
Total/NA	Prep	3510C	RE		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316740	11/13/19 20:20	TL1	TAL SEA
Total/NA	Prep	3510C			316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316296	11/07/19 23:20	W1T	TAL SEA

Eurofins TestAmerica, Seattle

Page 54 of 60

Client: Stantec Consulting Services Inc

Project/Site: IFC/101

Client Sample ID: CRW-2

Date Collected: 10/23/19 15:34 Date Received: 10/28/19 13:25 Lab Sample ID: 580-90396-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315794	11/02/19 02:07	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	5	315865	11/04/19 19:54	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		1	316289	11/08/19 00:19	E1L	TAL SEA
Total/NA	Prep	3510C	DL		315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM	DL	10	316468	11/11/19 17:09	W1T	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/30/19 23:56	EML	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 19:57	T1W	TAL SEA
Total/NA	Prep	3510C	RE		316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316296	11/08/19 00:00	W1T	TAL SEA

Client Sample ID: DRAIN FIELD

Date Collected: 10/23/19 15:10 Date Received: 10/28/19 13:25

Lab Sample ID: 580-90396-8

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			315794	11/02/19 02:32	TL1	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		1	316289	11/08/19 00:45	E1L	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/31/19 00:20	EML	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 20:18	T1W	TAL SEA
Total/NA	Prep	3510C	RE		316072	11/06/19 08:57	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	RE	1	316296	11/08/19 00:20	W1T	TAL SEA

Client Sample ID: 2GM101DUP

Date Collected: 10/23/19 14:22

Date Received: 10/28/19 13:25

			Matrix: Water
red			
yzed	Analyst	Lab	
20:05	W1T	TAL SEA	
02:56	TL1	TAL SEA	
18:39	APR	TAL SEA	
09:13	NRF	TAL SEA	

Lab Sample ID: 580-90396-9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	DL2	50	315991	11/05/19 20:05	W1T	TAL SEA
Total/NA	Analysis	8260C		1	315794	11/02/19 02:56	TL1	TAL SEA
Total/NA	Analysis	8260C	DL	10	315865	11/04/19 18:39	APR	TAL SEA
Total/NA	Prep	3510C			315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM		10	316289	11/08/19 01:11	E1L	TAL SEA
Total/NA	Prep	3510C	DL		315494	10/30/19 09:13	NRF	TAL SEA
Total/NA	Analysis	8270D SIM	DL	250	316789	11/14/19 15:14	W1T	TAL SEA
Total/NA	Analysis	AK101		1	315586	10/31/19 18:11	DCV	TAL SEA
Total/NA	Prep	3510C	REDL		316551	11/12/19 09:20	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103	REDL	25	316859	11/15/19 02:28	JCM	TAL SEA
Total/NA	Prep	3510C			315972	11/05/19 09:25	NRF	TAL SEA
Total/NA	Analysis	AK102 & 103		1	316161	11/06/19 20:38	T1W	TAL SEA

Lab Chronicle

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Date Received: 10/28/19 13:25

Client Sample ID: TRIP BLANK

Lab Sample ID: 580-90396-10 Date Collected: 10/23/19 12:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	315794	11/02/19 00:51	TL1	TAL SEA
Total/NA	Analysis	AK101		1	315497	10/30/19 20:18	EML	TAL SEA

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Job ID: 580-90396-1

Project/Site: IFC/101

Laboratory: Eurofins TestAmerica, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-024	01-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
Montana (UST)	State	NA	04-13-21
Oregon	NELAP	WA100007	11-06-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-17-00039	02-10-20
Washington	State	C553	02-17-20

3

4

6

_

9

10

10

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: IFC/101

Job ID: 580-90396-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-90396-1	MW-3	Water	10/23/19 14:53	10/28/19 13:25
580-90396-2	MW-4	Water	10/23/19 10:55	10/28/19 13:25
580-90396-3	MW-8	Water	10/23/19 13:03	10/28/19 13:25
580-90396-4	MW-14	Water	10/23/19 12:05	10/28/19 13:25
580-90396-5	MW-17	Water	10/23/19 11:30	10/28/19 13:25
580-90396-6	MW-19-1	Water	10/23/19 14:20	10/28/19 13:25
580-90396-7	CRW-2	Water	10/23/19 15:34	10/28/19 13:25
580-90396-8	DRAIN FIELD	Water	10/23/19 15:10	10/28/19 13:25
580-90396-9	2GM101DUP	Water	10/23/19 14:22	10/28/19 13:25
580-90396-10	TRIP BLANK	Water	10/23/19 12:00	10/28/19 13:25

TestAmerica Anchorage 2000 U. International Airport Road Suite A10

Chain of Custody Record

249749

TestAmerica

THE LEADER IN ENVIRO	NMENTAL	TESTING
TestAmerica Lah	oratorie	e inc

Anchorage, AK 5950Z Phone: 907.563.9200 Fax: 907.563.9210	Pogu	latoni Dro	saram: [·	·		¬		٦							ENVIRONMENTAL TESTIN Laboratories, Inc
Client Contact			ogram: [! NPDES		RCRA		Other:		In.	ate: 10	1501 1:	a	COC No:	TAL-8210 (0713
Company Name: Stantes	Tel/Fax:	anagen. //s	NKC Z	CCIL			Conta					arrier:	194/1	7	0 of	/ COCs
Address: 725 E Fleeherd LN Suit do		Analysis T	urnaround	Time		Ť	Т	1	ТТ			1 1			Sampler: "3	
City/State/Zip: Anchoruse AK 94503		DAR DAYS	☐ wo	RKING DAY	rS		Ŋ	İ							For Lab Use O	
Phone: 967-366-4108	TA	T if different fr	om Below			Ê) 	SAJO PAU							Walk-in Client:	
ax:		2	weeks		1	9 >	13								Lab Sampling:	
Project Name:	78		week			۽ اح	िं	-	7							
			days			ple (8	PAUL	.						Job / SDG No.:	
"O# Sen) to Anna Dunta @ Spectury	L	1	day Sample	· · · · ·		am MS		5 0								
			Type			Pa	일.	$\nabla \mathcal{Q} $								
Sample Identification	Sample Date	Sample Time	(C=Comp, G≈Grab)	Matrix	# of Cont.	iter	7	20								
				O CONTRACTOR OF THE PROPERTY O	COIR.	4	17	7.7	++				_	D-0-0450 (05W-050) (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Sample	Specific Notes:
MW-3	10/33/19	1453	G	W	lo	_	X .	XX			4					
MW-4	10/2/19	1055			10	\perp	X	$\chi \chi$								
NW - 8	6/23/19	1363			10	$oldsymbol{\perp}$	X	$\mathbf{x} \mathbf{x}$,							
MW-14	10/23/19	1205			10		χ	$\chi \chi$								
Ab-17	10/22/19	1130			10		X	KX					·			
MW 49-1	10/23/19	- 1			10		χ̈́	Cχ					_			
CRW-2	16/23/19	1			10	\top	X,	CX			11		-			
Drain Fleld	10/20/19				10	1	1 1	ΚX			†			30-90396 C	hain of Custody	
2 EMIOI DUP	10/25/19		1-		10	\top	·	(X				1	_	1 1		
Trip Blank	142/19		\forall	\mathbf{A}	6		ŃΥ	~ ~		++	 			Therm. II	D: #1 Cor: 1	-3 ° Unc: 1.4
LITP BIANK	1925/17	raco		<u> </u>		+	^			+		╁╼╌┼	+	Cooler Ds Packing:_	sc: In Blue	FedEx:
																TPS:
															l: Yes <u></u> No Wet, Dry, None	Lab Cour:
reservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6	= Other_					3 7	2 -						Blue Ice,	wet, Dry, None	Other: 65.
ossible Hazard Identification:		DA 187							sal (A	fee ma	y be as	sessed if	sample	s are retain	ed longer than 1 m	iontn)
re any samples from a listed EPA Hazardous Waste? Pleas comments Section if the lab is to dispose of the sample.	e List any E	PA Waste	Codes for t	ne samp	le in the											
Non-Hazard Flammable Skin Irritant	Poison	В	Unkno	wn		1	Ret	urn to (llient		Dispos	al by Lab		Archive for_	Months	
pecial Instructions/QC Requirements & Comments:	_											*****				Marie de la constante de la co
Please Report Full Fuel list	for a	₹466														
	Custody Se							Coc	ler Te	mp. (°C):	Obsid:		_Corr'd		Therm ID No.:	· · · · · · · · · · · · · · · · · · ·
elinquished by:	Company:	<u> </u>		Date/Tin			ceived	d by:				Com	pany:		Date/Time:	
John Marshill and Nobel	Stan	tec		10/14/1	1 3100	\perp										
elinquished by:	Company:			Date/Tim	ne:	Re	ceived	d by:				Com	pany:	· · · · · · · · · · · · · · · · · · ·	Date/Time:	
elinquished by:	Company:			Date/Tim	Je.	Re	reiver	in#0°	horate	ne hu		Com	nany"		Date/Time:	
	puiij.							10		Loy		5	pany:	TA	10-28-19	1325

Client: Stantec Consulting Services Inc

Job Number: 580-90396-1

Login Number: 90396 List Source: Eurofins TestAmerica, Seattle

List Number: 1

Creator: Vallelunga, Diana L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Co	pleted By:	
	Erin O'Malley	
Tit	:	
	Environmental Engineer	
Da	:	
	December 10, 2019	
Co	sultant Firm:	
	Stantec Consulting Services Inc.	
Lal	oratory Name:	
	Eurofins TestAmerica, Seattle	
Lal	oratory Report Number:	
	80-90396-1	
Lal	oratory Report Date:	
	November 15, 2019	
CS	ite Name:	
	Go Mart 101/IFC	
AΓ	CC File Number:	
	00.26.022	
Ha	ard Identification Number:	
	26295	

Laboratory Report Date: November 15, 2019 CS Site Name: 2Go Mart 101/IFC Note: Any N/A or No box checked must have an explanation in the comments box. 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes⊠ No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments:	580)-90396-1
CS Site Name: 2Go Mart 101/IFC Note: Any N/A or No box checked must have an explanation in the comments box. 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes No N/A Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes No N/A Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes No N/A Comments: b. Correct analyses requested? Yes No N/A Comments:	Labora	tory Report Date:
Note: Any N/A or No box checked must have an explanation in the comments box. 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes⊠ No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments:	No	vember 15, 2019
Note: Any N/A or No box checked must have an explanation in the comments box. 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes⊠ No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments:	CS Site	e Name:
1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes No□ N/A□ Comments: 2. Chain of Custody (CoC)	2G	o Mart 101/IFC
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes⊠ No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	No	te: Any N/A or No box checked must have an explanation in the comments box.
No□ N/A□ Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes☒ No□ N/A□ Comments:	1. <u>Lal</u>	<u>boratory</u>
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes⊠ No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	;	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
laboratory, was the laboratory performing the analyses ADEC CS approved? Yes No□ N/A□ Comments: 2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes No□ N/A□ Comments: b. Correct analyses requested? Yes No□ N/A□ Comments: 1. Laboratory Sample Receipt Documentation		$Yes \boxtimes No \square N/A \square$ Comments:
2. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	1	•
a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	_	$Yes \boxtimes No \square N/A \square$ Comments:
a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation		
Yes⊠ No□ N/A□ Comments: b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	2. <u>Ch</u>	ain of Custody (CoC)
b. Correct analyses requested? Yes⊠ No□ N/A□ Comments: 3. Laboratory Sample Receipt Documentation	ŧ	a. CoC information completed, signed, and dated (including released/received by)?
Yes⊠ No□ N/A□ Comments: 3. <u>Laboratory Sample Receipt Documentation</u>		$Yes \boxtimes No \square N/A \square$ Comments:
Yes⊠ No□ N/A□ Comments: 3. <u>Laboratory Sample Receipt Documentation</u>		
3. <u>Laboratory Sample Receipt Documentation</u>	1	
	Г	Yes \boxtimes No \sqcup N/A \sqcup Comments:
a Sample/cooler temperature documented and within range at receipt (0° to 6° C)?	3. <u>Lal</u>	boratory Sample Receipt Documentation
	:	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes⊠ No□ N/A□ Comments:		
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	1	
Yes⊠ No□ N/A□ Comments:	<u>,</u>	$Yes \boxtimes No \square N/A \square$ Comments:

	580-90396-1	
Lab	oratory Report Date:	
	November 15, 2019	
CS	Site Name:	
	2Go Mart 101/IFC	
	c. Sample condition documented	l – broken, leaking (Methanol), zero headspace (VOC vials)?
	Yes⊠ No□ N/A□	Comments:
		es, were they documented? For example, incorrect sample le temperature outside of acceptable range, insufficient or missing
	Yes⊠ No□ N/A□	Comments:
	e. Data quality or usability affect	ted? Comments:
	No.	
	4. <u>Case Narrative</u>	
	a. Present and understandable?	
	$Yes \boxtimes No \square N/A \square$	Comments
		Comments:
	b. Discrepancies, errors, or QC	
	b. Discrepancies, errors, or QC	failures identified by the lab? Comments:
	b. Discrepancies, errors, or QC : Yes⊠ No□ N/A□	failures identified by the lab? Comments:
	b. Discrepancies, errors, or QC : Yes⊠ No□ N/A□ c. Were all corrective actions do Yes⊠ No□ N/A□	failures identified by the lab? Comments: ocumented?
	b. Discrepancies, errors, or QC : Yes⊠ No□ N/A□ c. Were all corrective actions do Yes⊠ No□ N/A□	failures identified by the lab? Comments: ocumented? Comments:

580-90396-1	
Laboratory Report Date:	
November 15, 2019	
CS Site Name:	
2Go Mart 101/IFC	
5. <u>Samples Results</u>	
a. Correct analyses performed/reported as requested on COC?	
Yes⊠ No□ N/A□ Comments:	
b. All applicable holding times met?	
Yes□ No⊠ N/A□ Comments:	
Method AK102 & 103: The following samples were re-extracted outside of holding time and reanalyzed due to QC failure in the initial extraction or analysis: MW-3 (580-90396-1), MW-4 (590396-2), MW-8 (580-90396-3), MW-14 (580-90396-4), MW-17 (580-90396-5), MW-19-1 (58090396-6), CRW-2 (580-90396-7), DRAIN FIELD (580-90396-8), and 2GM101DUP (580-90396-6) QC failure in the re-extraction and re-analysis were reported. Both sets of data for these sample reported.	580- 80- 96-9).
Quality control issues further described below.	
c. All soils reported on a dry weight basis?	
$Yes \square No \square N/A \boxtimes Comments:$	
No soil samples.	
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level the project?	l for
Yes□ No⊠ N/A□ Comments:	
There are a number of LOQs that exceed the GCLs for all samples. See Appendix E.	
e. Data quality or usability affected?	

All non-detect results where the LOQ exceeds the GCL are affected.

The DRO results where the samples were extracted outside of analytical holding time are affected. However, both sets of DRO data were reported and the highest concentration for each sample was used in the project report. These concentrations are consistent with historical DRO data for each individual location.

580-90396-1	
Laboratory Report Date:	
November 15, 2019	
CS Site Name:	
2Go Mart 101/IFC	
5. QC Samples	
a. Method Blank	
i. One method blank rep	ported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□	Comments:
ii. All method blank resu	alts less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□	Comments:
iii. If above LOQ or proje	ect specified objectives, what samples are affected? Comments:
iv. Do the affected sampl	e(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠	Comments:
No samples affected.	
v. Data quality or usabili	ity affected? Comments:
No.	
b. Laboratory Control Sample	e/Duplicate (LCS/LCSD)
	LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD ods, LCS required per SW846)
Yes⊠ No□ N/A□	Comments:
ii. Metals/Inorganics – or samples?	ne LCS and one sample duplicate reported per matrix, analysis and 20
Yes□ No□ N/A⊠	Comments:
No metal/inorganics analyzed.	

580-90396-1	
Laboratory Report Date:	
November 15, 2019	
CS Site Name:	
2Go Mart 101/IFC	
project specified objectives, if applic	6R) reported and within method or laboratory limits and able? (AK Petroleum methods: AK101 60%-120%, 0%; all other analyses see the laboratory QC pages) ts:
	ered outside control limits for the LCSD associated with
analyzed due to QC failure in the initial extra 90396-2), MW-8 (580-90396-3), MW-14 (58 90396-6), CRW-2 (580-90396-7), DRAIN F	es were re-extracted outside of holding time and rection or analysis: MW-3 (580-90396-1), MW-4 (580-0-90396-4), MW-17 (580-90396-5), MW-19-1 (580-ELD (580-90396-8), and 2GM101DUP (580-90396-9). s were reported. Both sets of data for these samples are
limits and project specified objective	rences (RPD) reported and less than method or laboratory s, if applicable? RPD reported from LCS/LCSD, and or eum methods 20%; all other analyses see the laboratory
Yes□ No⊠ N/A□ Commen	ts:
analyzed due to QC failure in the initial extra 90396-2), MW-8 (580-90396-3), MW-14 (58 90396-6), CRW-2 (580-90396-7), DRAIN F	es were re-extracted outside of holding time and rection or analysis: MW-3 (580-90396-1), MW-4 (580-0-90396-4), MW-17 (580-90396-5), MW-19-1 (580-ELD (580-90396-8), and 2GM101DUP (580-90396-9). It is were reported. Both sets of data for these samples are
v. If %R or RPD is outside of acceptable Commer	
	, MW-8 (580-90396-3), MW-14 (580-90396-4), MW-17 (580-90396-7), DRAIN FIELD (580-90396-8), and
	flags? If so, are the data flags clearly defined?

580-9039	96-1		
Laboratory R	Report Date:		
Novembe	er 15, 2019		
CS Site Name	e:		
2Go Mar	t 101/IFC		
vi	i. Data quality or	usability af	fected? (Use comment box to explain.)
No.			Comments:
time e DRO Metho	extraction causes to is consistent with od 8260C: 1,1-Did	the data usa historical c	e as qualified based on the LCS/LCSD and RPD issues. Out of hold bility issues. However, the highest of the two sampling results for data for each individual location. ene LCSD recovery outside control limits in analytical batch 580-matic control problem because this was a random marginal
	edance. Data usabl		
	ote: Leave blank	if not requee MS/MSD	plicate (MS/MSD) nired for project reported per matrix, analysis and 20 samples? Comments:
ii	i. Metals/Inorgan Yes□ No□ :		IS and one MSD reported per matrix, analysis and 20 samples? Comments:
ii	project specifie	ed objective	coveries (%R) reported and within method or laboratory limits and s, if applicable? (AK Petroleum methods: AK101 60%-120%, 03 60%-120%; all other analyses see the laboratory QC pages)
	Yes□ No□	N/A□	Comments:
i	limits and proje	ect specified	rcent differences (RPD) reported and less than method or laboratory d objectives, if applicable? RPD reported from MS/MSD, and or (AK Petroleum methods 20%; all other analyses see the laboratory
	Yes□ No□	N/A□	Comments:
l			

580-90396-1	
aboratory Report Date:	
November 15, 2019	
S Site Name:	
2Go Mart 101/IFC	
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:	
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	
Yes□ No□ N/A□ Comments:	
vii. Data quality or usability affected? (Use comment box to explain.) Comments:	
d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods On	ly
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 	
Yes \boxtimes No \square N/A \square Comments:	

580-90396-1		
Laboratory Report Date:		
November 15, 2019		
CS Site Name:		
2Go Mart 101/IFC		
project specified object analyses see the labora	at recoveries (%R) reported and within method or laboratory limits and etives, if applicable? (AK Petroleum methods 50-150 %R; all other atory report pages)	
Yes□ No⊠ N/A□	Comments:	
	yl-d14 surrogate recovery for the method blank associated with and analytical batch 580-316468 was below lower limits by 4%.	
	e recovery for the following samples were outside control limits: MW-4 0396-3), MW-17 (580-90396-5), CRW-2 (580-90396-7) and	
	Bromofluorobenzene (Surr) recovery for the following samples were (580-90396-4), MW-19-1 (580-90396-6) and 2GM101DUP (580-	
Method AK102 & 103: The following samples were re-extracted outside of holding time and reanalyzed due to QC failure in the initial extraction or analysis: MW-3 (580-90396-1), MW-4 (580-90396-2), MW-8 (580-90396-3), MW-14 (580-90396-4), MW-17 (580-90396-5), MW-19-1 (580-90396-6), CRW-2 (580-90396-7), DRAIN FIELD (580-90396-8), and 2GM101DUP (580-90396-9). QC failure in the re-extraction and re-analysis were reported. Both sets of data for these samples are reported.		
iii. Do the sample results flags clearly defined?	with failed surrogate/IDA recoveries have data flags? If so, are the data	
Yes⊠ No□ N/A□	Comments:	

580-90396-1
Laboratory Report Date:
November 15, 2019
CS Site Name:
2Go Mart 101/IFC
iv. Data quality or usability affected? Comments:
No. Data usable as qualified.
Method 8270D SIM: Terphenyl-d14 surrogate recovery for the method blank was below lower limits by only 4%. The CCV %Drift is biased low to an extent that the method blank recovery is within control limits when accounting for the bias. All other associated QC and samples are within acceptance criteria for this surrogate. Therefore, the data is qualified and reported. (CCVIS 580-316468/3) and (MB 580-315494/1-A).
Method 8270D SIM and Method AK101: Evidence of matrix interference is present; therefore, reextraction and/or re-analysis was not performed.
Method AK102 & 103: Data usable as qualified based on the surrogate recovery issues. Out of hold time extraction causes the data usability issues. However, the highest of the two sampling results for DRO is consistent with historical data for each individual location.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes⊠ No□ N/A□ Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \boxtimes No \square N/A \square$ Comments:
iii. All results less than LOQ and project specified objectives?
Yes⊠ No□ N/A□ Comments:
iv. If above LOQ or project specified objectives, what samples are affected? Comments:

80-90396-1			
ratory Repor	t Date:		
ovember 15	evember 15, 2019		
ite Name:			
Go Mart 101	/IFC		
v. D	eata quality or usability affected? Comments:		
No.			
f. Field I	Duplicate		
i. Oı	ne field duplicate submitted per matrix, analysis and 10 project samples?		
Yes	$s \boxtimes No \square N/A \square$ Comments:		
ii. Su	abmitted blind to lab?		
Yes	$s \boxtimes No \square N/A \square$ Comments:		
2GM101D	OUP is a duplicate of MW 19-1.		
	recision – All relative percent differences (RPD) less than specified project objectives? RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$		
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration		
Yes	$s\square$ No \boxtimes N/A \square Comments:		
RPD met t Methylnap	the DQOs for all detected analytes above GCLs, except 1-Methylnaphthalene and 2- phthalene.		
iv. Da	ata quality or usability affected? (Use the comment box to explain why or why not.) Comments:		
	ted concentrations were consistently above the GCL for 1-Methylnaphthalene and 2- ohthalene in both primary and duplicate samples.		
g. Decont below)	tamination or Equipment Blank (If not applicable, a comment stating why must be entered?		
Yes			
	amination or equipment blanks were required for this project because no reusable (only equipment was used.		

580-90396-1	
Laboratory Report Date:	
November 15, 2019	
CS Site Name:	
2Go Mart 101/IFC	
i. All results less than LOC	Q and project specified objectives?
$Yes \square No \square N/A \boxtimes$	Comments:
No decontamination or equipmen	nt blanks submitted.
ii. If above LOQ or projec	t specified objectives, what samples are affected? Comments:
No decontamination or equipmen	nt blanks submitted.
iii. Data quality or usability	y affected? Comments:
No decontamination or equipmen	nt blanks submitted.
7. Other Data Flags/Qualifiers (ACOE	, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?	
Yes⊠ No□ N/A□	Comments: