

OLD HIGH SCHOOL TANK FARM SITE CHARACTERIZATION REPORT AKIAK, ALASKA

Prepared for:

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION CONTAMINATED SITES PROGRAM

Prepared by:

SLR International Corp 4601 Business Park Boulevard, Ste. K42 Anchorage, Alaska 99503

ADEC File Number: 2402.38.003 SLR Project Number: 005.0065.09017

February 2010

solutions for today's environment

OLD HIGH SCHOOL TANK FARM SITE CHARACTERIZATION REPORT AKIAK, ALASKA

Prepared for:

Alaska Department of Environmental Conservation Contaminated Sites Program c/o Grant Lidren 555 Cordova Street Anchorage, Alaska 99501

This document has been prepared by SLR International Corp (SLR). The material and data in this report was prepared under the supervision and direction of the undersigned.

Michelle Bethune Project Geologist

for Uni crow na

Christina Bentz Project Geologist

Mike Rieser Program Manager

CONTENTS

ACRO	ONYMS	Siii
1	INTRO	DDUCTION2
	1.1	Physical Setting2
		1.1.1 Regional and Local Geology2
		1.1.2 Regional and Local Climate2
	1.2	Purpose/Objective
2	BAC 2.1	GROUND AND REGULATORY CRITERIA4 Site Background4
	2.2	Regulatory Criteria4
3	SITE	CHARACTERIZATION ACTIVITIES
•	3.1	Interviews, Site Reconnaissance, and Utility Locates
	3.2	Subsurface Soil Investigation
		3.2.1 Soil Borings
		3.2.2 Test Pits
		3.2.3 Field Screening
		3.2.4 Analytical Sampling7
	3.3	Temporary Drive Point Well Installation8
	3.4	Drinking Water and Surface Water Sampling8
	3.5	Quality Assurance and Quality Control9
	3.6	Waste Management9
4	FIELD 4.1	SCREENING AND ANALYTICAL RESULTS10 Field Screening Results
	4.2	Laboratory Analytical Results
	4.3	Estimated Volume of Contaminated Soil
-	-	CEPTUAL SITE MODEL
5	5.1	Impacted Media
	0.1	5.1.1 Surface Soil
		5.1.2 Subsurface Soil
		5.1.3 Ground Water
		5.1.4 Surface Water
		5.1.5 Sediment
	5.2	Transport Mechanisms and Exposure Media
	5.3	Exposure Pathways

CONTENTS, CONTINUED

7	REFI	ERENCES	20
6	CON	CLUSIONS AND RECOMMENDATIONS	18
	5.4	Current and Future Receptors	17
		5.3.2 Incomplete Exposure Pathways	16
		5.3.1 Potentially Complete Exposure Pathways	16

FIGURES

Figure 1	Site Location Map
Figure 2	Site Vicinity Map
Figure 3	High School Tank Farm Detail

TABLES

- Table 1Geographic Coordinates
- Table 2
 Soil Heated Headspace Field Screening Results
- Table 3Soil Analytical Results

APPENDICES

- Appendix A 2009 SLR Initial Site Visit Report
- Appendix B Photograph Log
- Appendix C Field Notes
- Appendix D Quality Assurance Review, ADEC Checklist, and Laboratory Analytical Data Report
- Appendix E Human Health Conceptual Site Model Scoping Form and Diagram

ACRONYMS

ADEC	Alaska Department of Environmental Conservation
AST	aboveground storage tank
ASI	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
°C	degrees Celsius
COC	chain-of-custody
CSM	conceptual site model
DRO	diesel range organics
EPA	U.S. Environmental Protection Agency
GRO	gasoline range organics
mg/kg	milligrams per kilogram
PAH	polynuclear aromatic hydrocarbons
PID	photoionization detector
ppm	parts per million
QA	quality assurance
QAR	quality assurance review
QC	quality control
SLR	SLR International Corp

SLR International Corp (SLR) is pleased to submit this site characterization report to the Alaska Department of Environmental Conservation (ADEC) for the Old High School Tank Farm site in Akiak, Alaska. The Old High School Tank Farm (the Site) is located approximately 700 feet west of the Kuskokwim River.

The objective of the 2009 site characterization was to identify and delineate the extent of potential petroleum contamination at the Site and to determine whether contamination at this Site could be posing a risk to human receptors. To meet these objectives, SLR guided the advancement of one test pit and 15 hand auger borings in the vicinity of the Old High School Tank Farm.

Analytical results from 2009 indicate that petroleum hydrocarbon-contaminated soil is present at the Site with concentrations of gasoline range organics, diesel range organics, benzene, toluene, ethylbenzene, xylenes, 1-methylnaphthalene, and 2-methylnaphthalene, above ADEC Method Two soil cleanup levels. It is estimated that approximately 69 cubic yards of impacted soil is present at the Site. It appears that impacted soils are limited to the south side of the tank farm in the vicinity of SB-10 and SB-14 where the former dispenser was located. No further soil characterization is recommended at this time. Additional delineation under the existing tank farm or remediation of impacted soils near SB-10 and SB-14 should wait until the tanks are no longer in use and have been removed from the Site to allow access to the entire area.

The findings of the human health conceptual site model indicate that there are six complete exposure pathways to potential receptors, which include: residents, construction workers, site visitors, trespassers, recreational users, and subsistence harvesters and consumers. The six complete exposure pathways are: 1) incidental soil ingestion, 2) dermal absorption of contaminants from soil, 3) ingestion of ground water, 4) inhalation of outdoor air, 5) ingestion of surface water, and 6) ingestion of wild foods.

If ground water will be assessed, mobilization of a drill rig is recommended. The depth to ground water at the Site is greater than 12 feet below ground surface (bgs). However, SLR does not recommend ground water characterization at this time based on the presence of an existing community drinking water supply, which makes the risk of ingesting potentially impacted ground water originating from the Site low.

The greatest risk to human receptors at this time would be via exposure through incidental soil ingestion, dermal absorption of contaminants from soil, and the inhalation of outdoor air. Risks associated with these pathways could be reduced by excavating impacted soil between 0 and 2 feet bgs, where human receptors are more likely to come into contact. The estimated in-place volume of impacted soil between 0 and 2 feet bgs at the Site is 24 cubic yards.

The Alaska Department of Environmental Conservation (ADEC) contracted SLR International Corp (SLR) to perform site characterization activities at the Old High School Tank Farm (referred to as the Site) in Akiak, Alaska in 2009.

1.1 Physical Setting

Akiak lies on the north bank of the Kuskokwim River, approximately 42 miles northeast of Bethel, Alaska (Figure 1).

The Old High School Tank Farm is located in the central portion of Akiak, approximately 700 feet west of the Kuskokwim River. The location of the tank farm is shown on Figure 2.

1.1.1 Regional and Local Geology

Akiak is located in the Yukon-Kuskokwim Delta area, which is comprised largely of Quaternary alluvial deposits which have been built up through the slow accumulation of sand and silt deposited by the Yukon and Kuskokwim rivers. Most of the region is flat with a few feet of elevation marking the boundaries of major drainages and much of the surface is covered with water.

Two wells were drilled in the vicinity of the Water Treatment Plant in Akiak; Well No. 3 in 2001 and Well No. 5 in 2002. The wells were drilled to total depths of 170 feet below ground surface (bgs) and 211 feet bgs respectively, with screens installed from 145.1 to 155.52 feet bgs in Well No. 3, and 169.65 to 174.65 feet bgs and 194.65 to 199.65 feet bgs in Well No. 5. Based on the drilling logs, the lithology in this area consists of peat to approximately 3 feet bgs, underlain by silty sand (may be frozen at shallow depths depending on the time of year) to at least 140 feet bgs. Below 140 feet bgs, silty sand, gravel, and clay layers are all present. Wet and heaving sand was observed in Well No. 3 at 59 feet bgs. Wet silty sand was not observed until 83 feet bgs in Well No. 5. Water-bearing sands were first encountered at 140 feet in Well No. 3 and 170 feet in Well No. 5. The static water levels in the wells were measured at 16.5 feet and 22.3 feet bgs, respectively.

Soil observed in the vicinity of the Old High School Tank Farm in 2009 consisted primarily of silt and organics at the surface underlain by mostly fine grained sand. Organic material included significant wood debris (Appendix B, Photographs 9 and 10).

1.1.2 Regional and Local Climate

The nearest weather station is located at the Bethel Airport, approximately 42 miles from Akiak. The average annual precipitation is 17.28 inches and the average annual snowfall is 55.3 inches (WRCC, 2009).

1.2 Purpose/Objective

The purpose of this project was to identify and delineate the extent of potential petroleum contamination at the Old High School Tank Farm and to determine whether contamination at this property could be posing a risk through completed exposure pathways to human receptors.

In order to do this, SLR performed the following tasks:

- Advanced test pits and hand auger borings to determine the nature and extent of potential soil contaminated with petroleum hydrocarbons.
- Attempted to install temporary drive point wells to determine ground water quality.
- Assessed risk to human receptors through a conceptual site model (CSM).
- Documented the findings of this characterization in a report.

This section describes background information and applicable regulatory criteria for the Site.

2.1 Site Background

During a 2000 site visit by Ecology and Environment, Inc., stained and darkened soil and sand bags were noted within the bermed containment area at the tank farm. Soil was collected from nine locations and field screened using heated headspace with a photoionization detector (PID). PID readings ranged from 9.9 parts per million (ppm) to greater than 2,000 ppm with the highest field screening result at the gasoline fuel dispensing pump. One analytical soil sample was collected from 1 foot bgs adjacent to the gasoline fuel dispensing pump on the west side of the tank farm. Gasoline range organics (GRO); diesel range organics (DRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds were all detected at concentrations above ADEC Method Two soil cleanup levels. Maximum concentrations of GRO and DRO were 9,100 milligrams per kilogram (mg/kg) and 4,300 mg/kg, respectively. The extent of contamination was unknown at the conclusion of the 2000 site work (E&E., 2000).

In September 2009, the Old High School Tank Farm was observed in similar condition to the 2000 site visit as described by Ecology and Environment, Inc. (2000) with a few exceptions described below. The tank farm consists of eight vertical, welded steel, single wall tanks with removable tops. The tanks have a total capacity of 54,000 gallons with individual aboveground storage tank (AST) capacities ranging from 5,000 to 9,750 gallons. The ASTs are supported on 12-by-12-inch timbers with 2-by-14-inch planking inside a 2-foot high gravel dike with liner.

During the September 2009 initial site visit, eight tanks were observed in the Old High School Tank Farm; five were upright and three were toppled as a result of flooding of the Kuskokwim River in spring 2009. Of the eight tanks, two are currently in use, according to maintenance personnel associated with the Akiak schools, and another three were reportedly in operational condition (Figure 3). The tank farm is fenced, but not secure (i.e. no locks), and has a lined and bermed containment. The liner appeared in good condition where exposed and holds water. Sheen was noted on the water in the containment area in three locations. A summary of SLR's observations during this visit are provided in Appendix A.

2.2 Regulatory Criteria

ADEC soil cleanup levels specified in Title 18 of the Alaska Administrative Code, Chapter 75 of the *Oil and Other Hazardous Substances Pollution Control* in Tables B1 and B2, ADEC Method Two, for the under 40-inch zone (ADEC, 2008) are applicable for the Site. The most stringent of the soil cleanup levels will be used; the soil cleanup levels for the compounds of interest are listed below.

• GRO, 300 mg/kg (migration to ground water)

- DRO, 250 mg/kg (migration to ground water)
- Benzene, 0.025 mg/kg (migration to ground water)
- Toluene, 6.5 mg/kg (migration to ground water)
- Ethylbenzene, 6.9 mg/kg (migration to ground water)
- Xylenes (total), 63 mg/kg (outdoor inhalation, migration to ground water)

Cleanup levels for individual polynuclear aromatic hydrocarbons (PAHs) are not presented here due to the large number of compounds, but the same method was used to determine appropriate cleanup levels for compounds that were detected.

The 2009 site activities conducted by SLR are described in detail below. All work was performed in accordance with SLR's ADEC-approved work plan unless otherwise noted (SLR, 2009).

An initial site visit was completed on September 28 and September 29, 2009 and site characterization activities were performed between October 26, 2009 and October 30, 2009 in conjunction with work at the Old Elementary School Tank Farm.

Appendix B contains a photographic log showing selected photographs from the 2009 site activities. Field notes documenting site work are provided in Appendix C. A detailed drawing of the Old High School Tank Farm is provided as Figure 3.

3.1 Interviews, Site Reconnaissance, and Utility Locates

Prior to the initiation of subsurface work, the Alaska Dig Line was contacted and a representative from United Utilities conducted a site visit and determined that United Utilities and GCI had no underground utilities within the proposed site characterization area. SLR also interviewed other individuals familiar with the Site (maintenance personnel for the Akiak school and the City of Akiak utility representative) to determine the location of other infrastructure, such as the water line, leach fields, and fuel lines which would prohibit site characterization activities in those areas. In addition, drawings were reviewed with maintenance personnel for the Akiak school for the location and presence of possible underground lines near the Old High School Tank Farm. No subsurface work was conducted in the vicinity of the buried fuel line leading to the new high school because it was not satisfactorily located (approximate location shown on Figure 3 for reference only). In addition, as shown on Figure 3, other obstructions including aboveground fuel lines, boardwalks, water and sewage piping, and buildings prohibited the excavation of test pits on the north and east sides of the tank farm.

3.2 Subsurface Soil Investigation

Sampling, soil-logging, and all documentation during 2009 site characterization activities were performed by qualified field staff. Initial subsurface investigation areas were selected based upon previous investigation at the Site and the current configuration of the tank farm and associated piping (i.e., locations adjacent to probable sources of leaks). Additional locations were selected based on olfactory observations and field screening results at these locations. SLR field personnel were not fully able to delineate the extent of the contamination at the Old High School Tank Farm. Ground water was not encountered during subsurface soil investigation activities.

Test pit and hand auger boring locations were recorded in the World Geodetic System of 1984 using a global positioning system receiver. Geographic coordinates for these points are presented in Table 1.

3.2.1 Soil Borings

SLR conducted the majority of the site characterization of subsurface soils via hand auger because access restrictions (i.e., aboveground fuel lines, boardwalks, water and sewage piping, buildings and an underground fuel line) prohibited the advancement of test pits on three of the four sides of the tank farm (Figure 3). Fifteen soil borings (SB-1 through SB-15) were advanced at the Site in a methodical manner to delineate the extent and magnitude of petroleum hydrocarbon-impacted soil at the Site. Soil boring locations are presented on Figure 3.

Initial hand auguring locations across the Site were selected as described in Section 3.2. If field screening results or olfactory indicated soil samples were suspected to contain contaminants at concentrations above ADEC Method Two soil cleanup levels, additional borings were hand augured in the vicinity following a step-out procedure until soil containing contaminant concentrations below ADEC Method Two cleanup levels was indicated.

Soil samples were collected from the hand auger bucket at regular intervals (approximately every 2 feet). Field screening and soil analytical sampling are discussed in Sections 3.2.3 and 3.2.4 of this report.

3.2.2 Test Pits

SLR directed the advancement of a single test pit, using a John Deere 310A backhoe, in the vicinity of the Old High School Tank Farm, to delineate the extent of contamination vertically near SB-10 through SB-14. The test pit was advanced to a depth of 8 feet bgs instead of 15 feet bgs as stated in SLR's ADEC-approved work plan (2009), because this was the maximum digging depth of the John Deere 310A backhoe. The work plan assumed use of a John Deere 160C excavator capable of digging to approximately 15 feet bgs; however, this backhoe experienced a mechanical failure shortly after its arrival on site. SLR personnel spoke with the ADEC project manager and received approval to delineate impacted soil using equipment available in Akiak (John Deere 310A backhoe and a hand auger brought by SLR).

Soil descriptions were recorded for TP-1 and samples were collected from the excavator bucket at regular intervals (approximately every 2 feet); soil descriptions are noted in the field logbook, which provided as Appendix C. Field screening and soil analytical sampling are discussed in the following sections.

3.2.3 Field Screening

Heated headspace screening was performed by placing a representative sample of soil in a resealable plastic bag and placing it inside a house near a heater for a sufficient time to raise the soil temperature to at least 40 degrees Fahrenheit. After warming, the sealed soil sample was agitated (shaken) for 15 to 20 seconds, after which a PID probe was inserted into the bag and the highest reading recorded. Field screening results are discussed in Section 4.

3.2.4 Analytical Sampling

Thirty-nine soil analytical samples, plus four duplicates, were collected based on field screening results and sample location; analytical samples were not collected from the field screening

sample bags. Samples were collected in an appropriate manner to document contaminant concentrations at key locations and also provide vertical contaminant information; as such, no samples were analyzed from some locations while in others up to three analytical samples were collected from different depths within a location. Generally, shallower samples were collected to assess risk to human receptors in near surface soils while deeper samples were collected in an effort to verify if contamination was present at concentrations above soil cleanup levels at depth. Analytical samples were also collected from areas suspected of having the highest levels of petroleum hydrocarbon impact to document maximum contaminant concentrations. Analytical results are discussed in Section 4.2.

The analytical soil samples were selectively analyzed by the following methods:

- GRO using Alaska Method 101 (all samples);
- DRO using Alaska Method 102 (all samples);
- BTEX using U.S. Environmental Protection Agency (EPA) Method 8021B (all samples); and
- PAHs, for ADEC-priority compounds only, using EPA Method 8270C with selective ion monitoring (selected samples, two primary locations plus one duplicate).

Samples for PAH analysis were selected from locations exhibiting the highest field screening results and/or locations closest to potential human receptors.

The analytical soil samples were handled in accordance with the Quality Assurance (QA) and Quality Control (QC) procedures described in Section 3.5 of this report.

3.3 Temporary Drive Point Well Installation

According to the work plan (SLR, 2009), up to three temporary drive point wells were to be installed, if feasible. However, no drive points were installed in 2009. A pilot hole was drilled using a power auger to a depth of 12 feet bgs; further advancement with the power auger was not feasible without overexerting the drill. Once the pilot hole was drilled, SLR attempted to advance a temporary drive point well with a slide hammer. Refusal was encountered at 12 feet bgs with the drive point. No ground water was observed visually or measured using a handheld water level meter. One additional attempt at drive point installation was made at the Old Elementary School Tank Farm; refusal was encountered there at 14 feet bgs and no further attempts were made. No existing monitoring wells or supply wells are located on the property; consequently, no ground water samples were collected from the Site.

3.4 Drinking Water and Surface Water Sampling

During the initial site visit, SLR inquired about individual wells within the community of Akiak. Although 14 private wells may have been used historically, only two active private wells were identified. The nearest well is located in a household just over 500 feet from the Site (Figure 2). Because of the distance from the Site to the nearest well, no drinking water samples were collected as part of the 2009 site characterization activities.

SLR personnel traversed the bank of the Kuskokwim River downgradient of the Site and no indications of petroleum hydrocarbon contamination related to the Site were observed. Consequently, no surface water samples were collected.

3.5 Quality Assurance and Quality Control

QA and QC procedures were maintained throughout sampling activities. QA measures included adherence to the project work plan (when feasible), sampling protocols, and proper sample handling. Samples were placed in a cooler after collection, and sample and cooler temperatures were maintained at approximately 4 degrees Celsius (°C) (plus or minus 2°C) throughout transport to the laboratory. Samples were handled and transported in a manner that maintained sample integrity and did not exceed specified holding times. Each sample was documented on the chain of custody (COC), and the samples were hand delivered to SGS Environmental Services, Inc. in Anchorage, a DEC-approved laboratory, under COC procedures.

QC measures included collecting duplicate samples at a frequency of 10 percent for each analytical method, with a minimum of one duplicate sample collected for each method. Trip blanks accompanied like-sample bottles and were analyzed for volatile constituents (GRO and BTEX). All trip blanks were documented on the project COCs. SLR personnel completed a DEC laboratory data review checklist for each analytical report in accordance with ADEC guidance (ADEC, 2009) and performed a QA review (QAR) on the analytical data. The QAR, checklist, and the laboratory analytical report are included in Appendix D.

With the exception of benzene, the data were judged acceptable for use. Some of the benzene data can be used without qualification however, data from nine samples failed to meet project data quality objectives because of elevated laboratory method reporting limits above the ADEC Method Two soil cleanup level where it cannot be confirmed if these results are below the cleanup level for benzene. This issue is discussed in further detail in the QAR (Appendix D).

3.6 Waste Management

Investigation derived waste was kept to a minimum during site characterization activities.

Soil excavated during the site characterization was returned to the location from which it originated and disposable sampling equipment was disposed of at the local landfill.

The site characterization field screening and analytical results are described below. Field screening results are presented on Table 2 and analytical results and corresponding field screening results are presented on Table 3. SLR's QAR, ADEC laboratory data review checklist, and the laboratory analytical report are included as Appendix D.

4.1 Field Screening Results

Heated headspace results ranged from 0.0 ppm to 1,835 ppm. Elevated results (i.e., greater than 100 ppm) were observed in SB-10 (Table 2). Visual and olfactory observations were also noted throughout site characterization activities; these indicators of contamination generally coincided with elevated PID results.

Soil field screening results are summarized in Table 2. Soil screening results associated with samples submitted for laboratory analyses are also presented on Table 3.

4.2 Laboratory Analytical Results

Laboratory analytical results indicate that GRO, DRO, BTEX, 1-methylnaphthalene, and 2methylnaphthalene, were detected in soil at concentrations above ADEC Method Two soil cleanup levels. The only locations containing concentrations of contaminants above cleanup levels are SB-10 (GRO, DRO, BTEX, 1-methylnaphthalene, and 2-methylnaphthalene) and SB-14 (xylenes). The results for each of these analytes are discussed in detail below.

Two soil samples, including one duplicate, collected from SB-10 (HS-4 and HS-5 [duplicate] at 1.5 to 2.0 feet bgs) contained concentrations of GRO above the cleanup level of 300 mg/kg, with concentrations of 3,530 mg/kg and 3,870 mg/kg, respectively. These samples also had concentrations of DRO above the ADEC Method Two soil cleanup level with a maximum detected concentration of 2,690 mg/kg. Benzene was detected above the migration to ground water cleanup level of 0.025 mg/kg in these two soil samples from SB-10, at a maximum detected concentration of 0.501 mg/kg. The laboratory method reporting limits for nine samples were above the ADEC Method Two soil cleanup level of 0.025 mg/kg for benzene because of matrix interference (Appendix D). Consequently, it cannot be confirmed these results are below the cleanup level for benzene. Samples with elevated method reporting limits for benzene were collected from SB-2, SB-5, SB-8, SB-11, SB-14, SB-15, and TP-1 (Figure 3). With the exception of SB-14, no analytes from these locations were detected at concentrations above ADEC Method Two soil cleanup levels (Table 3).

Toluene was detected at a concentration above the cleanup level in the duplicate sample from 1.5 feet bgs from SB-10, at a concentration of 12.5 mg/kg. Ethylbenzene was also detected above the ADEC Method Two cleanup level in the duplicate sample from SB-10 at a concentration of 8.5 mg/kg. Xylenes were detected above ADEC Method Two soil cleanup level in three samples,

including one duplicate, at concentrations between 156.4 mg/kg (SB-14), and 1,388 mg/kg (SB-10).

Eleven PAH compounds were detected including 1-methylnaphthalene, 2-methylnaphthalene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. One soil sample and the duplicate from SB-10, collected from 1.5 to 2 feet bgs, contained concentrations of PAHs above their respective ADEC Method Two soil cleanup levels; 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations of 12.3 mg/kg and 18.3 mg/kg, respectively. No other PAHs were detected above cleanup levels.

Soil analytical results are presented in Table 3. Soil with confirmed contaminant concentrations above ADEC Method Two soil cleanup levels is limited to SB-10 and SB-14 (Figure 3).

4.3 Estimated Volume of Contaminated Soil

Using current field screening and analytical sample results, two locations were identified with soil contamination (GRO, DRO, BTEX, 1-methylnaphthalene, and 2-methylnaphthalene) at concentrations above ADEC Method Two soil cleanup levels. These locations are SB-10 and SB-14 (Figure 3); the only analyte above ADEC cleanup levels in SB-14 was total xylenes. At each of these locations, field screening and analytical results from different depths were compiled and used to estimate the vertical extent (thickness) of contaminated soil exceeding ADEC cleanup levels at the specific location. Estimated thicknesses at each location are as follows; depths below 5 feet bgs were extrapolated by assuming a linear decrease in contaminant concentrations with depth:

- SB-10: 0 to 6 feet (6 feet thick)
- SB-14: 0 to 3 feet (3 feet thick)

For estimating purposes, the locations with elevated benzene method reporting limits where no other analytes were detected above cleanup levels, are assumed to be not detected at or above ADEC Method Two soil cleanup levels.

To estimate the lateral impacted area, a point half way between a location with soil contamination above ADEC cleanup levels and a non-contaminated soil sample location was selected for borings or test pits closest to SB-10 and SB-14. For sides where contamination was not closely bounded, the lateral distance obtained from the nearest borings or test pits was assumed to be approximately equal. The estimated area of remaining contamination roughly corresponds to the old dispenser area (Figure 3). The overall impacted area was estimated at 317.6 square feet; 298 square feet near SB-10 and 19.6 square feet near SB-14. For estimating purposes, the larger area near SB-10 was assumed to have a contaminant thickness of 6 feet, and the smaller area near SB-14 was assumed to have a contaminant thickness of 3 feet. Taking into account the total area, the estimated in-place volume of contaminated soil on site is 69 cubic yards.

Soil most likely to come into contact with human receptors is located between 0 and 2 feet bgs. The estimated in-place volume of impacted soil in this zone is 24 cubic yards.

The estimated in-place volume of contaminated soil is based on available data and the assumptions described above, and it does not cover areas not investigated during the 2009 site characterization due to access restrictions as shown on Figure 3 and described in Sections 3.1 and 3.2 of this report.

This CSM was developed to qualitatively assess the risk of exposure to potential human receptors from contaminants in soil at the Site. This CSM is based on information from a 2000 site visit (E&E, 2000) and information gathered during SLR's site visits in 2009 and describes the potential exposure scenarios for current and potential future site receptors. This CSM was prepared in accordance with the ADEC *Draft Guidance on Developing Conceptual Site Models* (ADEC, 2005) using the ADEC Draft Human Health CSM Scoping Form, which is included in Appendix E. The ADEC Draft Human Health CSM Diagram was used to summarize the results of the scoping form, and is also included in Appendix E.

All soil cleanup levels referenced in this CSM are ADEC Method Two soil cleanup levels as described in Section 2.2 of this report.

5.1 Impacted Media

Impacted media at the Site are the environmental compartments into which a contaminant is directly released (ADEC, 2005). Field screening and analytical results from the 2009 site characterization report (described in the preceding sections), were compiled and reviewed in order to identify media that have been impacted as a result of site activities. Field screening and analytical data used to support this CSM are presented in Tables 2 and 3. Additionally, data from previous investigations (E&E, 2000) was used to support this CSM.

All media are discussed in the subsequent sections with respect to whether or not they are impacted.

5.1.1 Surface Soil

Surface soil is defined as the interval from 0 feet to 2 feet bgs (ADEC, 2005). A release or discharge associated with the ASTs and associated piping would directly affect surface soil and therefore, for this CSM, surface soil is considered an impacted medium.

In 2000, nine field screening samples were collected from the surface soil interval and analyzed via the heated headspace method using a PID. PID readings ranged from 9.9 ppm to greater than 2,000 ppm, with two results above 1,000 ppm. The maximum PID reading was taken from 1 foot bgs adjacent to the gasoline fuel dispensing pump on the west side of the tank farm. One analytical sample was also collected from this location and analyzed for GRO, DRO, and BTEX. Concentrations of GRO, DRO, and BTEX were all above ADEC Method Two soil cleanup levels. Maximum detected concentrations of GRO and DRO were 9,100 mg/kg and 4,300 mg/kg, respectively (E&E, 2000).

Sixteen field screening samples were collected from the surface soil interval in 2009 for heated headspace analysis using a PID. Field screening results ranged from 0.0 ppm to 1,835 ppm with

two results greater than 1,000 ppm (Table 2). Thirteen analytical samples (including two duplicates) were also collected from the surface soil interval in 2009 and analyzed for GRO, DRO, and BTEX. Three samples (including one duplicate) were also analyzed for PAHs. Analytical results indicated that GRO, DRO, and BTEX are all present at concentrations above ADEC Method Two soil cleanup levels. Maximum detected concentrations for these compounds are 3,870 mg/kg, 2,690 mg/kg, 0.0501 mg/kg, 12.5 mg/kg, 8.5 mg/kg, and 1,388 mg/kg, respectively. Benzene was not detected at concentrations above laboratory detection limits in 11 samples; however, the laboratory detection limits were above the ADEC Method Two soil cleanup level of 0.025 mg/kg in 8 of these samples. Eleven PAHs (1-methylnaphthalene, 2methylnaphthalene, anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were detected. Maximum detected concentrations of 1-methylnaphthalene (12.3 mg/kg) and 2-methylnaphthalene (18.3 mg/kg) were above their respective ADEC Method Two soil cleanup levels of 6.3 mg/kg and 6.1 mg/kg. All other detected PAHs were below cleanup levels (Table 3).

5.1.2 Subsurface Soil

Subsurface soil is defined as the interval from 2 feet to 15 feet bgs (ADEC, 2005); soil below 15 feet bgs is not considered in this CSM because it is below the depth interval considered for direct contact by human receptors. Subsurface soil contamination has been documented at this Site and thus, subsurface soil is considered an impacted medium for this CSM.

No samples were collected from the subsurface interval in 2000.

Twenty six field screening samples were collected from the subsurface soil interval in 2009 for heated headspace analysis using a PID. Field screening results ranged from 0.0 ppm to 68.4 ppm (Table 2). Five analytical samples were also collected from this interval in 2009 and analyzed for GRO, DRO, and BTEX. GRO was detected in four samples at concentrations up to 95.8 mg/kg, which is below the ADEC Method Two soil cleanup level of 300 mg/kg. DRO was detected in two samples at estimated concentrations between 7.29 mg/kg and 83.2 mg/kg, also below the ADEC Method Two soil cleanup level of 250 mg/kg. Benzene was the only BTEX compound present at concentrations above ADEC Method Two soil cleanup levels; the maximum detected concentration of benzene was 0.145 mg/kg. Benzene was also not detected at concentrations above laboratory detection limits in 15 samples, with 9 samples having laboratory detection limits above the ADEC Method Two soil cleanup level of 0.025 mg/kg.

5.1.3 Ground Water

Previous activity at the Site would likely have resulted in impact to the immediate vicinity of the ASTs and associated piping and thus soil, rather than ground water, would have been the receiving medium. As such, for this CSM, ground water is not considered an impacted medium, but will be considered as an exposure medium; exposure media are described in further detail in Section 5.2.

During the 2009 site characterization activities, SLR did not encounter ground water between 0 foot and 12 feet bgs at the Site. Attempts to auger holes and install temporary drive point wells encountered refusal at 12 feet bgs.

Ground water is utilized as a drinking water source within the community of Akiak. Two houses reportedly have their own wells (the closest is just over 500 feet from the Site) and the City of Akiak has up to five wells near the Water Plant (approximately 1,250 feet from the Site), which supply the community. Two supply wells are located in the vicinity of the Water Treatment Plant in Akiak, as described in Section 1.1.2 and shown on Figure 2. The most recent volatile organic compound sample collected on September 21, 2009 from the community drinking water supply did not contain any analytes at concentrations above laboratory method reporting limits.

5.1.4 Surface Water

Previous activity at the Site would likely have resulted in impact to the immediate vicinity of ASTs and associated piping and thus soil, rather than surface water, would have been the receiving medium. For this CSM, surface water is not considered an impacted medium. Surface water is, however, considered an exposure medium based on the potential for overland or subsurface migration of contaminants to surface water.

The nearest surface water body to the Site is the Kuskokwim River, which is located approximately 700 feet east of the Site. The Kuskokwim River is subject to flooding, with recorded events in 1920, 1964, 1971, 1982, 1984, 1987, and 1988 (USACE, 2009), increasing the risk of overland migration of contaminants from the Site. Flood information available from USACE (2009) is only updated through 1998; significant flooding occurred in spring 2009.

As discussed in Section 3.4, SLR personnel traversed the bank of the Kuskokwim River downgradient of the Site and did not observe any indications of petroleum hydrocarbon contamination related to the Site. No prior surface water samples from the Site have been identified.

5.1.5 Sediment

A release at the Site would not directly affect sediments associated with nearby surface water for the same reasons as discussed above. Therefore, for this CSM, sediment is not considered an impacted medium.

No sediment samples were collected during the current investigation, nor were previous sediment samples identified from a review of historical site information.

5.2 Transport Mechanisms and Exposure Media

Transport mechanisms are the pathways through which contaminants may move from impacted media to other exposure media. Exposure media are the media to which contaminants are released or transported that may result in exposure by human receptors to the contaminants. Six transport mechanisms were identified at the Site, all from soil, including direct release to surface soil, migration or leaching to subsurface soil, migration or leaching to ground water, volatilization, runoff or erosion, and uptake by plants and animals. Based on the impacted media and transport mechanisms, five exposure media (soil, ground water, air, surface water, and biota) are present. Possible transport mechanisms and exposure media are depicted on the ADEC Draft Human Health CSM Diagram (Appendix E).

5.3 Exposure Pathways

Each potential exposure pathway was evaluated using the ADEC Draft Human Health CSM Scoping Form (Appendix E). Based on this evaluation, six potentially complete exposure pathways were identified. These pathways include incidental soil ingestion, dermal absorption of contaminants from soil, ingestion of ground water, inhalation of outdoor air, ingestion of surface water, and ingestion of wild foods. A description of potentially complete and incomplete exposure pathways is provided in the following sections.

5.3.1 Potentially Complete Exposure Pathways

The direct contact exposure pathway via incidental soil ingestion is considered potentially complete because soil contamination exists between 0 feet and 15 feet bgs and the Site may be used by human receptors.

The dermal absorption of contaminants from soil exposure pathway is considered potentially complete because 11 PAHs, which can permeate the skin, have been detected at the Site. PAHs detected at the Site include 1-methylnaphthalene, 2-methylnaphthalene, anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene.

The ingestion of ground water exposure pathway is considered potentially complete because contaminants have the potential to migrate to ground water and the future use of ground water for drinking water at the Site has not been eliminated by ADEC per 18 AAC 75.350. However, the availability of a community drinking water source limits its potential usage.

The inhalation of outdoor air exposure pathway is considered complete because of the presence of volatile contaminants (GRO, DRO, BTEX, anthracene, fluorene, naphthalene, and pyrene) in soil between 0 feet and 15 feet bgs and the use of the property by human receptors.

The ingestion of surface water pathway is considered potentially complete. The Site has the potential to flood, resulting in overland migration of contaminants, and the Kuskokwim River is used for subsistence fishing and recreational activities which may result in incidental ingestion of surface water.

The ingestion of wild foods exposure pathway is considered potentially complete because of contamination present in the top 6 feet of soil, where it is available for uptake, and the proximity of the Site to potential subsistence hunting and gathering areas. In addition, four PAHs (benzo[b]fluoranthene, chrysene, fluoranthene, and pyrene) which have the potential to bioaccumulate have been detected at the Site.

5.3.2 Incomplete Exposure Pathways

The remaining exposure pathways were concluded to be incomplete based on site data, features, or other pertinent information in accordance with the ADEC Draft Human Health CSM Scoping Form (Appendix E). The incomplete pathways are discussed briefly here.

The inhalation of indoor air pathway is not considered complete because buildings in Akiak are located on pilings, which eliminates any preferential or direct pathways for soil contaminant vapors to migrate into indoor air. Any soil contaminant vapors would be released into outdoor air making the inhalation of indoor pathway incomplete.

The dermal exposure to contaminants in ground water and surface water pathways, and the inhalation of volatile compounds in household water pathway, do not require further evaluation (and are thus considered incomplete) because ADEC water quality standards are being applied as cleanup levels at the Site.

The inhalation of fugitive dust exposure pathway is not considered complete because ADEC soil ingestion cleanup levels, which are being applied at the Site, are protective of this pathway for all analytes except chromium. Based on historical site use information, chromium is not considered a potential contaminant of concern at the Site.

The direct contact with sediment pathway is not considered complete because ADEC soil ingestion cleanup levels are assumed to also be protective of this pathway. In addition, sediment is not considered an exposure medium.

5.4 Current and Future Receptors

As discussed in Section 2.1, the Site is an active tank farm, and access to the Site is not restricted. The planned future use of the Site is unknown. Based on the current usage, surrounding features, and potential future usage of the Site, the following human receptors are considered to be potentially exposed to site contaminants:

- Construction workers (future);
- Site visitors, trespassers, or recreational users (current and future); and,
- Subsistence harvesters and consumers (current and future).

In addition, since the future usage of the Site is unknown, residents are included as potential future receptors.

Analytical results from 2009 indicate that petroleum hydrocarbon-contaminated soil is present at the Old High School Tank Farm with concentrations of GRO, DRO, BTEX, 1-methylnaphthalene, and 2-methylnaphthalene above ADEC Method Two soil cleanup levels. Impacted soils are limited to the south side of the tank farm in the vicinity of SB-10 and SB-14 (Figure 3). The contamination is primarily from near surface to 4 feet bgs and shallow ground water was not found in a boring advanced to 12 feet bgs.

Based on an evaluation of field screening results and analytical results relative to location and depth, the estimated maximum volume of impacted soil was determined. The estimated in-place volume of impacted soil above ADEC Method Two soil cleanup levels is 69 cubic yards. However, in order to remove all contaminated soil, fencing, and berms, a portion of the tank farm may have to be removed. The full extent of impact north of SB-10 and SB-14 was not fully defined due to the presence of the tank farm containment. The full extent of impact south of SB-10 and SB-14 was not fully defined due to the presence of vegetation (i.e., trees) and a road. The estimated in-place volume of contaminated soil is based on available data, and it does not cover areas not investigated during the 2009 site characterization due to access restrictions, as shown on Figure 3 and described in Sections 3.1 and 3.2 of this report.

The findings of the human health CSM indicate that there are six complete exposure pathways to potential receptors, which include: potential future residents, construction workers, site visitors, trespassers, recreational users, and subsistence harvesters and consumers. The six complete exposure pathways are: 1) incidental soil ingestion, 2) dermal absorption of contaminants from soil, 3) ingestion of ground water, 4) inhalation of outdoor air, 5) ingestion of surface water, and 6) ingestion of wild foods.

No further action is recommended at this time. Additional assessment, once the tank farm has been decommissioned and the ASTs and associate piping have been removed, may aid in determining a more accurate volume of petroleum hydrocarbon-impacted soil prior to a removal action. Additionally, if ADEC would like to assess potential impact to ground water, mobilization of a drill rig is recommended. Based on the presence of a community drinking water supply, the distance to the nearest water well from the Site, and the shallow extent of contamination, the risk of ingesting potentially impacted ground water originating from the Site is considered to be low.

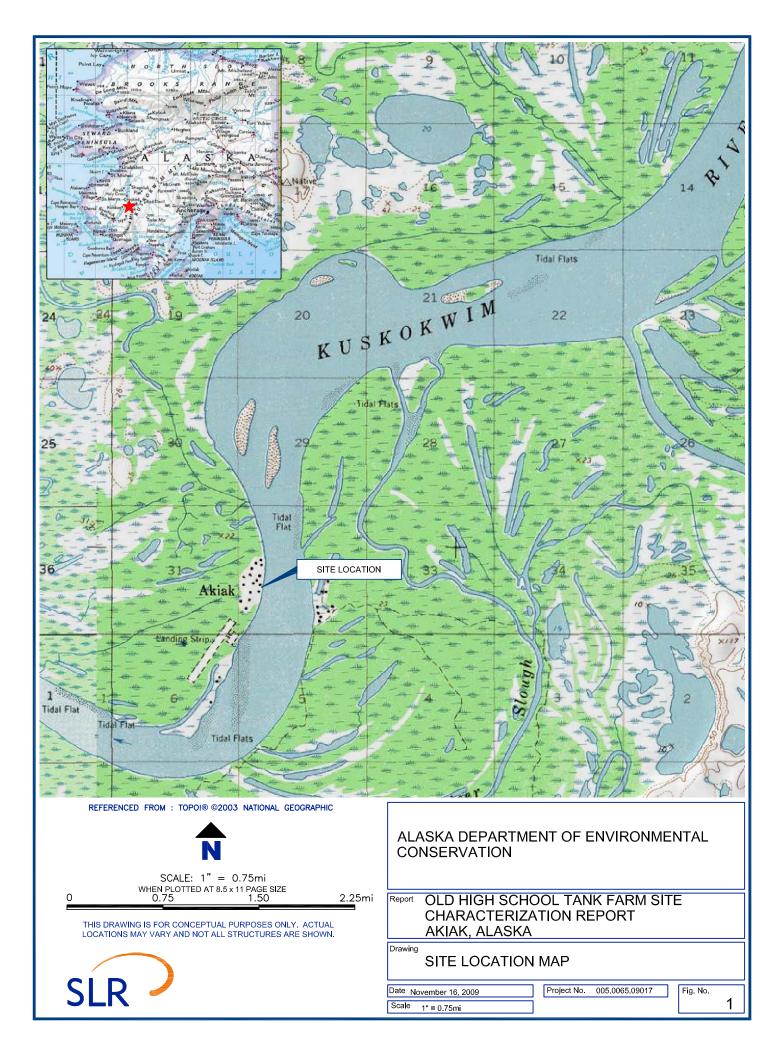
The greatest risk to human receptors at this time, as demonstrated by the CSM, would be via exposure through incidental soil ingestion, dermal absorption of contaminants from soil, and the inhalation of outdoor air. Risks associated with these pathways could be reduced by excavating impacted soil between 0 and 2 feet bgs where human receptors are more likely to come into contact. The estimated in-place volume of impacted soil between 0 and 2 feet bgs at the Site is 24 cubic yards.

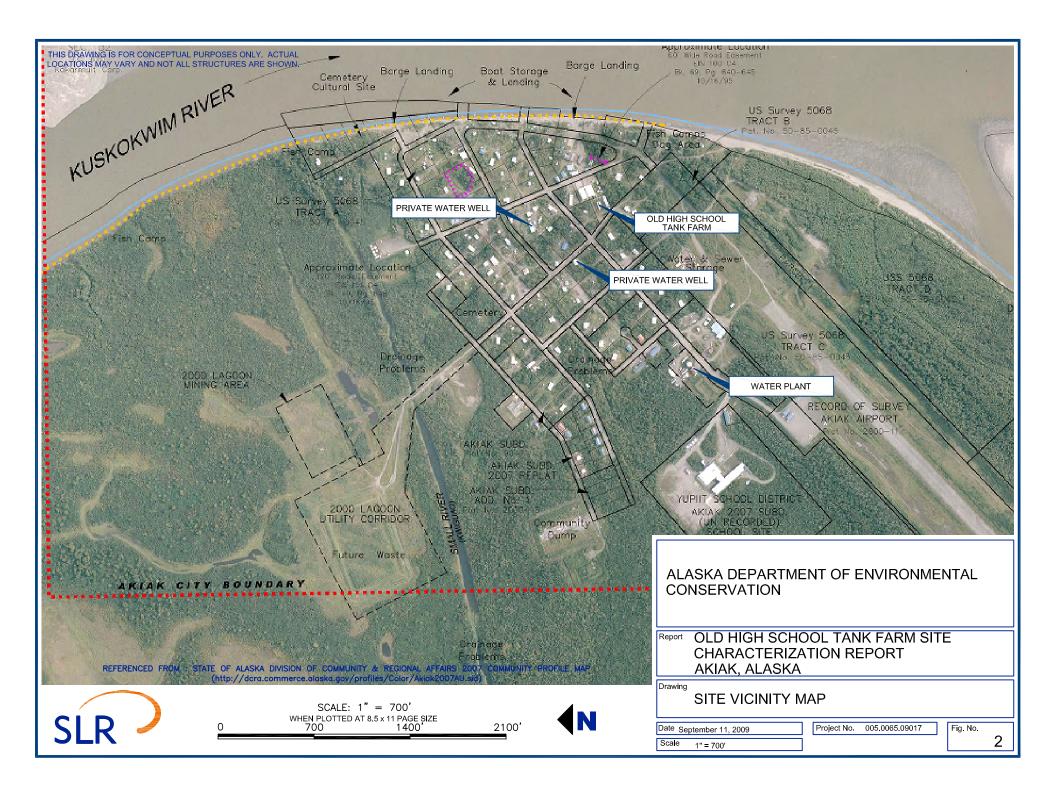
Exposure can be limited within the fenced area by locking the tank area to control access, as required by EPA's spill prevention, control, and countermeasure rule (40 CFR 112).

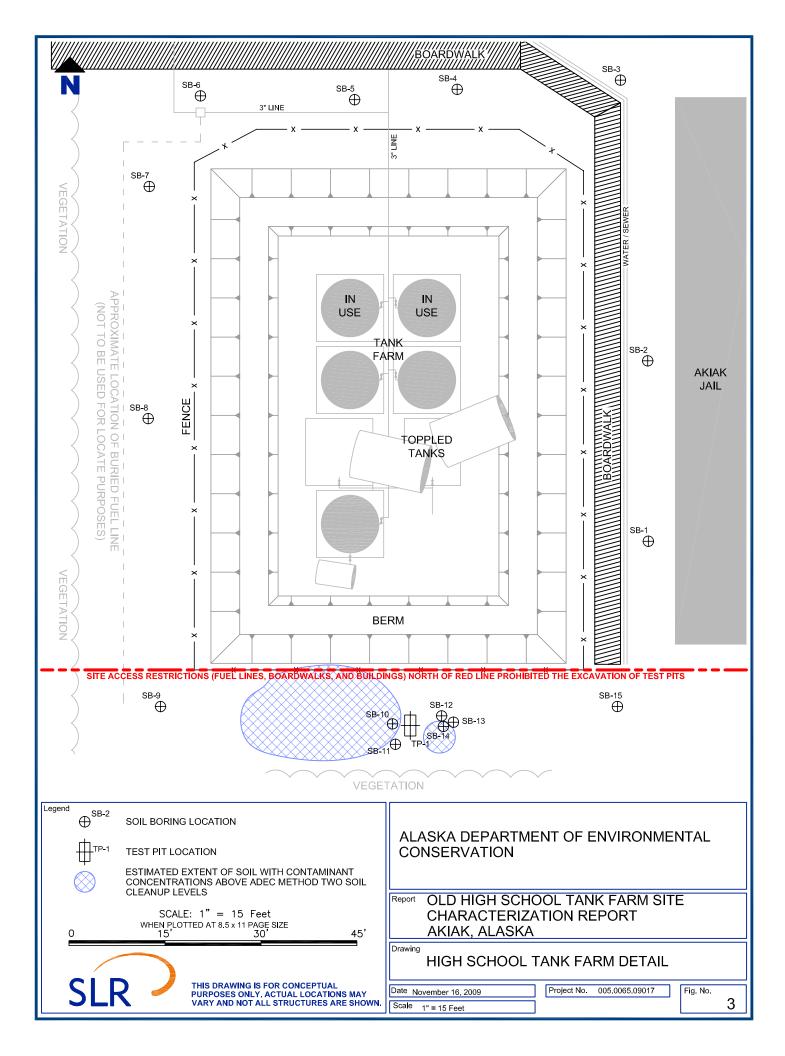
- Alaska Department of Environmental Conservation (ADEC), 2005. Draft Guidance on Developing Conceptual Site Models. Alaska Department of Environmental Conservation, Division of Spill Prevention and Response. November 30.
- ADEC, 2008. Alaska Administrative Code (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control*, as amended through October 9.
- ADEC, 2009. Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum. March.
- Ecology and Environment, Inc. (E&E), 2000. Akiak Aboveground Storage Tank Farm Site Reconnaissance, Akiak, Alaska. December.
- SLR International Corp (SLR), 2009. Draft Akiak Combined Tank Farm Site Characterization Work Plan. October 12.
- Western Regional Climate Center (WRCC), 2009. <u>http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ak6058</u>. September.
- U.S. Army Corps of Engineers (USACE), 2009. http://www.poa.usace.army.mil/en/cw/fld_haz/akiak.htm. November.

LIMITATIONS

This document was prepared upon request of the Alaska Department of Environmental Conservation (ADEC). No other party should rely on the information contained herein without prior written consent of SLR International Corp (SLR) and ADEC. This report is solely for the use and information of our client.


The services described in this report were performed consistent with generally accepted professional consulting principles and practices and with the terms of the agreement with our client. No other warranty, express or implied, is made.


Recommendations and opinions contained in this report are based on conditions existing when services were performed. These recommendations and opinions are intended only for our client's use. SLR is not responsible for the impacts of any changes in environmental standards, regulations, or practices that may have been implemented subsequent to performance of services.


SLR does not warrant the accuracy of conclusions, recommendations, and interpretations in this report that are based in part on information contained in other documents, as cited in the text. Therefore, this report is also subject to the limitations of the cited documents.

Environmental conditions may exist at a site that cannot be identified by visual observation. No investigation is thorough enough to exclude the presence of hazardous materials at a given site. Although every effort will be made to identify such materials, no guarantee of the absence of hazardous materials on the site should be made if hazardous conditions have not been identified during the investigation.

FIGURES

TABLES

TABLE 1

Geographic Coordinates Old High School Tank Farm Site Characterization Report Akiak, Alaska

Sample Type	Sample Location	Latitude ¹ (Degrees, Minutes, Seconds)	Longitude ¹ (Degrees, Minutes, Seconds)
	SB-1	N 60° 54' 34.2"	W 161° 13' 08.5"
	SB-2	N 60° 54' 34.3"	W 161° 13' 07.8"
	SB-3	N 60° 54' 34.4"	W 161° 13' 07.0"
	SB-4	N 60° 54' 34.8"	W 161° 13' 07.3"
	SB-5	N 60° 54' 34.8"	W 161° 13' 07.3"
	SB-6	N 60° 54' 35.1"	W 161° 13' 07.0"
Hand Auger	SB-7	N 60° 54' 35.1"	W 161° 13' 08.1"
Borings	SB-8	N 60° 54' 35.6"	W 161° 13' 06.3"
Dornigs	SB-9	N 60° 54' 34.8"	W 161° 13' 09.9"
	SB-10	N 60° 54' 34.4"	W 161° 13' 09.4"
	SB-11	N 60° 54' 34.4"	W 161° 13' 09.3"
	SB-12	N 60° 54' 34.4"	W 161° 13' 08.9"
	SB-13	N 60° 54' 34.4"	W 161° 13' 09.0"
	SB-14	N 60° 54' 34.3"	W 161° 13' 08.9"
	SB-15	N 60° 54' 34.1"	W 161° 13' 08.6"
Test Pit	TP-1	N 60° 54' 34.3"	W 161° 13' 09.2"

Notes:

¹Datum is WGS 84

TABLE 2 Soil Heated Headspace Field Screening Results Old High School Tank Farm Site Characterization Report Akiak, Alaska

Sample Location	Sample Depth (feet bgs)	PID Result (ppm)						
	0.5 - 1	0.0						
SB-1	2 - 2.5	0.0						
	4.5 - 5	0.0						
SB-2	1 - 1.5	0.0*						
5 D -2	2.5 - 3	0.0						
	1 - 1.5	0.0						
SB-3	2 -2.5	0.0						
	4.5 - 5	0.0						
	1 - 1.5	0.0						
SB-4	2.5 - 3	0.0						
	4.5 - 5	0.0						
	0.5 - 1	0.0*						
SB-5	2.5 - 3	0.0						
	4.5 - 5	0.0						
	1 - 1.5	0.0*						
SB-6	2.5 - 3	0.0						
	4.5 - 5	0.0						
	1 - 1.5	0.0						
SB-7	2.5 - 3	0.0						
	4.5 - 5	0.2*						
	0.5 - 1	0.5*						
SB-8	2.5 - 3	0.6						
	4.5 - 5	0.6						

Sample Location	Sample Depth (feet bgs)	PID Result (ppm)						
	0.5 - 1	4.5*						
SB-9	2 - 2.5	1.7						
	4.5 - 5	4.5						
	0 - 0.5	1,501						
SB-10	1.5 - 2	1,835*						
30-10	2.5 - 3	36.0						
	4.5 - 5	20.9*						
SB-11	0 - 0.5	1.0*						
	0 - 0.5	5.2*						
SB-13	2 - 2.5	1.2						
	4.5 - 5	0.6						
SB-14	0 - 0.5	13.9						
	1.5 - 2	0.9*						
SB-15	2.5 - 3	1.0						
	4.5 - 5	1.0						
	1	20.9*						
TP-1	3	68.4*						
11-1	5	13.5						
	7	3.1*						

Note:

Asterick (*) denotes an analytical sample was collected from the same interval

Abbreviations:

- bgs below ground surface
- PID photoionization detector

ppm - parts per million

TABLE 3 **Soil Anaytical Results Old High School Tank Farm** Site Characterization Report Akiak, Alaska

							I	BTEX - EPA I	Method 8021B		PAH-EPA Method 8270D						PAH-EPA Metho 8270D				
Sample Locatio n	Sample Identification	Date Sampled	(feet bgs)		AK 101	DRO AK 102	Benzene	Toluene	Ethylbenzene	Xylenes (total)	1-Methylnaphthalene	2-Methylnaphthalene	Anthracene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Chyrsene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
SB-2	HS-15	10/29/2009	DEC Cl 1 - 1.5	eanup Levels	300 4.59 J	250 17.4 J	0.025 ND [0.0338]	6.5	6.9	63 1.828	6.3	6.1	3,000	4.9	1,400	360	1,400	220	20	3,000	1,000
SB-2 SB-5	HS-15 HS-1	10/29/2009	0.5 - 1	0.0	4.59 J ND [5.11]	17.4 J 20.6 J	ND [0.0358] ND [0.0256]	ND [0.135] ND [0.102]	ND [0.135] ND [0.102]	0.1383 J											
SB-6	HS-2	10/29/2009	1.5 -1	0.0	ND [4.89]	10.8 J	ND [0.0244]	ND [0.0978]	ND [0.0978]	0.0474 J											
SB-7	HS-18	10/29/2009	4.5 - 5	0.2	8.38	ND [21.3]	ND [0.0194]	0.0249 J	ND [0.0777]	2.648											
SB-8	HS-19	10/29/2009	0.5 - 1	0.5	3.04 J	20.4 J	ND [0.0302]	ND [0.121]	ND [0.121]	1.157											
SB-9	HS-3	10/29/2009	0.5 - 1	4.5	ND [3.59]	ND [20.7]	ND [0.0179]	ND [0.0717]	ND [0.0717]	0.0968 J											
	HS-4	10/29/2009	1.5 - 2	1,835	3,530	2,530	0.269 J	6.3	5.82	1,281	8.75	12.4	ND [0.296]	ND [0.296]	ND [0.296]	ND [0.296]	ND [0.296]	0.468	11.3	0.815	ND [0.296]
SB-10	HS-5 (DUP)	10/29/2009	1.5 - 2	1,835	3,870	2,690	0.501	12.5	8.5	1,388	12.3	18.3	ND [0.315]	ND [0.315]	ND [0.315]	ND [0.315]	ND [0.315]	0.802	19.8	1.14	0.111 J
	HS-6	10/29/2009	4.5 - 5	20.9	6.26	7.29 J	0.145	0.534	0.095 J	1.584											
SB-11	HS-20	10/29/2009	0 - 0.5	1.0	3.09 J	8.38 J	ND [0.0216]	0.0388 J	ND [0.0863]	1.213											
SB-13	HS-7	10/29/2009	0 - 0.5	5.2	5.1 J	48.4	ND [0.0402]	ND [0.161]	ND [0.161]	1.198											
	HS-8	10/29/2009	4.5 - 5	0.6	2.24 J	ND [21.1]	ND [0.0212]	0.0374 J	ND [0.085]	0.388											
SB-14	HS-9	10/29/2009	0 - 0.5	13.9	159	163	ND [0.04]	0.527	0.251	156.4											
SB-15	HS-21	10/29/2009	0.5 - 1	0.9	4.9 J	63.4	ND [0.058]	ND [0.232]	ND [0.232]	1.637											
	HS-10	10/29/2009	1	20.9	5.69 J	91	ND [0.0312]	0.0991 J	ND [0.125]	0.6	0.00487 J	0.00805	0.00305 J	0.00536 J	0.00201 J	0.0036 J		ND [0.00607]	0.0106	0.00204 J	0.0133
TP-1	HS-11 (DUP)	10/29/2009	3	20.9	5.16 J	88.6	ND [0.0339]	0.0685 J	ND [0.136]	0.445											
	HS-13 HS-12	10/29/2009 10/29/2009	3	68.4 3.1	95.8 ND [4.62]	83.2 J	ND [0.0503] ND [0.0231]	2.93 0.0504 J	0.336 ND [0.0925]	32.2 0.1129 J											
	HS-12	10/29/2009	1	3.1	ND [4.62]	ND [21]	ND [0.0251]	0.0504 J	ND [0.0925]	0.1129 J											

Notes:

All results are presented in mg/kg, unless otherwise specified Bold text indicates results exceed DEC regulatory criteria PAHs not presented in this table are all not detected

Abbreviations:

-- - not analyzed DEC- Alaska Department of Environmental Conservation AK - Alaska Method bgs - below ground surface BTEX - benzene, toulene, ethylbenzene, and xylenes DRO - diesel range organics DUP- dupilcate of preceeding sample EPA - U.S. Environmental Protection Agency

J - estimated value GRO - gasoline range organics mg/kg - milligrams per kilogram MRL - method reporting limit ND - not detected at or above method reporting limit [MRL] PAH - polynuclear aromatic hydrocarbons PID - photoionization detector ppm - parts per million

APPENDIX A

2009 SLR INITIAL SITE VISIT REPORT

SLR Initial Site Visit Report

The initial site visit was completed on September 28 and September 29, 2009. All four sites (Old High School Tank Farm, Old Elementary School Tank Farm, Old Power Plant and Tank Farm, and the Old Corporation Tank Farm [not part of current scope but visited at minimal cost at the request of ADEC] were visited. A brief description and a few photos are included below.

During the initial visit the location of water supply wells near the three investigation sites was investigated. The only known private well in Akiak was at a residence located more than 500 feet from any of the tank farms. No permission forms were distributed and no drinking water sampling is anticipated based on this finding.

The backhoe excavator (a John Deere 160C) was observed to start and operate with no indication of leaks. Individuals with knowledge regarding fuel lines, electrical lines, and telephone lines were also contacted. Most fuel lines are above ground, but one at each of the old school tank farms will need to be located prior to test pitting. The majority of electrical lines in the community are also above ground, but some buried lines may exist around the old schools. The phone lines are reportedly not underground near the old school tank farms. The future usage of the old school tank farms is unknown to SLR. The utility locate service will be contacted for utility locates in addition to assistance from the community prior to the site investigation.

Old High School Tank Farm

Eight tanks were observed in the Old High School Tank Farm; five were upright and three were toppled. Of the eight tanks, two are currently in use (supply nearby teacher housing), and another three were reportedly in operational condition (two upright and one lying down). The tank farm is fenced, but not secure (i.e. no locks), and has a lined and bermed containment. The liner appeared in good condition where exposed and holds water. Sheen was noted on the water in the containment area in three locations. The tanks sit on wooden platforms inside the containment. Access for test pitting is limited on two sides of the tank farm due to wooden walkways, new sewer/water pipes, and nearby buildings. One buried fuel line exists in the area limiting access on a third side.

Limited access for test pitting near Old High School Tank Farm

Old Elementary School Tank Farm

Two tanks were observed in the Old Elementary School Tank Farm; both were upright. These tanks are both currently in use and supply a nearby house, the Hut (Boys and Girls Club), and teacher housing. The tank farm is inside a fence, but not secure (i.e. no locks), and has a lined and bermed containment. The liner appeared in good condition and holds water. The tanks sit on wooden platforms inside the containment. Access for test pitting around this area appears good, but we will need to confirm the location of one fuel line and that no other utilities in the area are buried.

Old Elementary School Tank Farm

Old Power Plant and Tank Farm

The Old Power Plant consists of a single building that was impacted by flooding in 2009. Outside the building a transformer, an old generator, and other debris were observed. Stressed vegetation was noted behind the building, but there was no sign of the drums reported in previous investigations. The building contained two generators, two transformers, at least four batteries, approximately 70 five-gallon buckets containing motor oil or like items. The floor of the building is heavily stained. The two tanks associated with the Old Power Plant were lying down outside their containment. The containment appeared to have been damaged in the flood. One of the tanks may contain a small amount of fuel. No visible soil staining was noted.

Inside Old Power Plant Building

Old City Tank Farm

Old Corporation Tank Farm

The Old Corporation Tank Farm was also visited as a courtesy. The tanks have been removed from the bermed area and are reportedly at the dump. The liner of this tank farm has been damaged and a small amount of water was present inside the lined and diked containment, although the water level was less than previously observed by the community (leaking?). Sheen was observed on the water within the diked area.

Liner damage at Old Corporation Tank Farm

Old Corporation Tank Farm with Kuskokwim River in background

APPENDIX B

PHOTOGRAPH LOG

AKIAK OLD HIGH SCHOOL TANK FARM PHOTOGRAPHIC LOG

Photograph 1:

Old High School Tank Farm as observed during the September 2009 Site Visit. Out of the eight tanks located in the tank farm, three were no longer standing.

Photograph 2: Above ground piping within the diked area; all threaded piping was reportedly replaced with welded piping approximately eight years ago.

Photograph 3:

Ponded water on the liner inside the diked area at the Old High School Tank Farm as observed in September 2009. Sheen was noted on the water in three locations during the Site Visit.

Photograph 4: Hand augering adjacent to the Old High School Tank Farm.

Photograph 5:

Limited access on this side of the tank farm prohibited use of the backhoe for site characterization activities. Soil boring SB-2 is visible in the middle of the frame and SB-1 is adjacent to the SLR field geologist seen here.

Photograph 6: Soil boring SB-5 was advanced adjacent to a pipe valve. No signs of contamination were observed in this boring.

Photograph 7:

Soil borings SB-6 and SB-7 (left to right) are visible here. SB-6 was advanced adjacent to the pipeline junctions and SB-7 was advanced on the side of the tank farm where a buried active fuel line exists (prohibiting the use of the backhoe). No signs of contamination were observed in either boring.

Photograph 8:

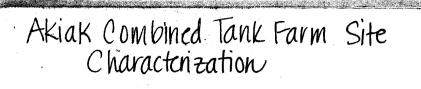
Soil borings SB-10 through SB-14 were advanced in the vicinity of the old dispenser. Refusal was hit multiple times in the area due to the presence of roots and wood debris. A strong (paint thinner like) odor was noted in this area.

Photograph 9:

Advancing Test Pit 1 in the old dispenser area; wood debris is visible in the soil pile in the bottom left corner of this photograph.

Photograph 10: Stump removed during advancement of Test Pit 1.

Photograph 11:


Attempting to advance auger for installing drive point wells at the site; maximum depth reached at this site with the power auger was 12 feet. A drive point was advanced to 14 feet before refusal. No water was indicated in the top 14 feet.

Photograph 12: Removing auger flights from pilot hole; the only way to remove the auger flights was to twist them out using a pipe wrench.

APPENDIX C

FIELD NOTES

Old Power Plant and Tank Farm 005.0065.09015

Elementary School Former Tank Farm 005.0065.09016 Farmer High Column Farmer

Former High School Tank Farm 005.0065.09017

"Rite in the Rain"				cc	DNTENTS		
ALL-WEATHER WRITING PAPER		PAGE		REFE	RENCE		DAT
				·	·		
4							
Name SLR International Corp							
			· · · · · · · · · · · · · · · · · · ·				
Address 4601 Business Park Blvd., Suite K42 Anchorage, Alaska 99503							
Michorage, Maska (1907							
Phone 907-222-1112	1					······································	
Phone 907-222-1112					· · · · · · · · · · · · · · · · · · ·		
	1						
Phone 907-222-1112 Project AKIAK TANK Farm Site Charactorization	1	•		2 ⁷			
	1	•	·				
	1	•					
	1						
	1						
	1						

.

. •

C. Bentz Sept. 28, 2009 C. Bentz 1528 At Old Generator Bldg. + Tank Sept. 28, 2009 C. Bentz 1512 At Old Elementary School Tank Farm Farm 100-0018 to 100-0033 Photos plattown cath New Tank Power wooden Farm + fence lined berm Tanks ğ CB 9/28/09 Photos 100-2000034 to 100-0044 piping + Valves Gate Old Tank Farm (City) tanks still in use; liner in good still liner present - one tank may still ? Contain fuel (small amount); no visible Condition; few holes; vegetation growing; liner appears to hold water -no room inside fenced area for test pits soil staining Photo 100-0045 old generator in brush drum next to old generator bidg. ~2/3 full stressed vegetation on back side near offices/housing C. Benty 9/28/09. Oil stained wood (backside of bldg.) Photos 100-0046 to 100-0070 @ old generative building (outside and inside) - C. Benty 9/28/09

Sept. 28,2009 C.Bentz Inside old generator bidg. -2 generators -2 transformers -2 tran	Sept. 28,2009 C.Bentz Photas 100-0071 to 100-0084 City of Akiak = power = above ground Phone = Unicom/GC1 Nater /Sewer = Akiak Native Community= Underground Fuel lines = mostly above ground 1650 Call M. Rieser about Schedule + update On findings SO far - possible dates = Neek of 10/12 or 10/26 Backhoe = John Deere 160C LC Was used for water / sewer project N2' bucket
Nocden planks The T	1717 backhoe starts and operates; no obvious leaks 1730 set-up to stay @ school (in library); end of day 9128/09 C. Beut
dike lined liner appears to hold Water; Sheen on Water Sammy indicated used to be more water - leaking, liner in poor Condition in places C. Beaks 9/28/09	C.Benth

C.Bentz Sept. 29, 2009 C. Bentz Šept. 29, 2009 0830 at school waiting for Sammy; review list of things to look at cluring site visit and background Old HS Tank information 0905 meet Sammy + Susan -> head to office; run into GCI guy - he M- water building Farm says there are some buried lines fuel line (buried) approx. location near old school (Franklin Lot) looking @ map - no buried cables (phone) near tank farms maybe new bulk tank to replace 1015 meet W/Adam with City of Akiak 1+ - talk to Tom Jacobs 695-5629 says there may be some buried CB 9/29/09 electrical near old school -> most fuel lines from old elementary electrical is above ground school to neighboring building are above ground - should be -barges - at least once/year - fuel line under road to new school Visible 120 meet W/Nathan Williams -CB 9/29/09 look @ maps/drawings of fuel fuel lines from old high school lines, then revisit sites (old areburied elementary and high school tank C. Benty 9/29/09farms) to look @ lines - one buried line by old high school tank farm - Nathan will review SKW drawing before we come back C. Benty 9/29/09

10 C.Bentz Sept. 29, 2009 C. Bentz Sept. 29, 2009 Revisit Old Elementary Tank Farm Wi Nathan Williams -> 100K @ fuellings Interviews-Samuel Jasper - Old Power Plant Tom Jacobs - School tank farm plans Others ?? 3" Sammy Jackson e-mail address: mkc. akiak @ live.com fence lineline gate CB 9/29/09 15" 1515 Arrive in Bethel; locate bag MANAM 5" 1116 that never made it; check in for in de Flight to Anchorage 1600 board flight for Anchorage - via Saint Marys and Aniak Revisit Old High School Tank Farm -run on far Side of Water/sewer 1848 anive in Anchorage 1915 have luggage and car; end of day. JUI from tank-tarm buned C. Benty 9/29/09 1.5" line. to new (beneath) building) high School route? 1321 Check on flight schedule - flight due @ 1400. 1405 depart Akjak C. Benty 9/29/09

12 October 1,2009 C.Bentz	Oct 20,2009 C, Bentz
	Tocate. He said it was okay for me
1050 Call Alaska Digline for Utility	to contact him directly at 543-7513
Locate Request - have until 10/16	She relayed that he is responsible
to comply-member utilities include:	for Alciak locates, Knows where
all and linited littlittes	the ste are, but was pretty sure
ticket # 400660 - Old HS Tank tarm	The Ste are, but was pread shie
ticket # 400662 - Old ES Tank Farm	Deate had not been done.
October 19,2009	0849 called Daniel Albright; no
1627 contact Alaska Dialine @1-800-	answer-left message
478-2121 to check status on locates	0854 recieve call from Daniel Albric
1712 message trom Michelle @	W/ United - he Knows there are bune
Alaska Diajine - direct line=334-14015	cables in the area + it will take
che left à message W/United TIS	AT PART DAL MAN TO MO THE TOUCH
trying to get contact into tor GCI	(Onsite). He indicated that the
in Bethel -> she will try again	locate would be complete before
tomorrow (10/20) morning.	The weekend is out. He also indian
October 20,2009	- it is windy + show is in the
may messive from Russ McDonala	Forecast. He provided his e-mail
Quinted Utilities - never act locate	address for me to send the locate
requested for AKIAK - Can Call him	request to (dalbrite euu)alaska.
0+ 543-2300 or Jay at 545-4840	COM)
OSHY VOCIENTE CALL From Michelle (C)	0906 e-mailed Daniel utility
ALACKA LARING, SHE IS STILLINGING	Deate request information
E to get a halp of G(1) ha banel	0914 leave message for Russ McDonald
roomating locate She talked with	letting him know we have coordinate
Drivel Alphont with United about	+ locate through Daniel Albrite.
C. Bento 16/20/09	

.

14	15
October 20, 2009 C. Bentz	October 25,2009
1927 recieved call from Dahlel	1915 Calibrate MiniRae Lite - C. Bentz
Albrite @ United Utiliess - he will	S/N 590-000209
Albrite @ United Utiliesz - he will have a crew go to site - asked a	Fresh air calibration = 0.0ppm
tew questions about locate	100 ppm isobutylene = 100.0 ppm
specifics, which I answered.	10++08-3557 exp. 3/15/10
1427 recieved message from Michelle	CB 8/25/ 10/25/09
at the Alaska Dighne saying she spoke	
with Robert who indicated that Danie]	0515 C. Bentz @ Diamond Airport
Should be able to help us with any	Parking - Dget on shuttle for termino
GCI lines that may be out there, but	0530 checked in @ AK Airlines for
he did not believe there were any.	flight to Bethel (scheduled departure
October 23, 2009	at 0700)
1043 recieve call from Daniel	0800 arrive in Bethel; get gear and
Albrite - clear to dig @ Old High	
School Tank Farm - no lines with	n. flight-scheduled departure = 1300
20'of fence in any direction	Stanley, Chris or John @
1050 recieve Second call from Danie	Frontier 543-3825 Freight
- Clear to dig @ Old Elementary	- call with freight + authorize
Schod Tank Farm - no lines within	- call with freight + authorize payment via credit card A
20' of fence in any direction; also	1044 C. Bentz departs Bethel for Akiak
indicated it was cold + there	procured seat on earlier flight; A.No
was a couple inches of snow or	2 in Bethel until scheduled departure
the avaind	@ 1300.
the ground. Utilities are clear - need to locate	. 1058 C. Bentz arrives in Akick; meet
Millines are acting - mean to rocard	Sheila @ airport
last two fuel lines 	SITTIN & MILLIN

	C. Bentz October 26,2009 A. Nash	October 27,2009 C.Bentz 17 A.Nash
	October 26,2009 A. Nash 1120 Stop at post office and pick up equipment	0830 Begin prep Work for test pittin at the old Elementary School; review
- -	HZ 1136 Unload gear @ VPSO housing	plans + discuss safety 0930 head to Old Elementary School
	1153 back @ VPSO housing; have ATV;	Tank Farm - NO excavator or operator 0957 @ VILlage office; Check in with
¢.	go through gear + prep. to work 1415 A. Nash arrives in Akiak; head to	Sheila - Sammy IS Still Sick (C.Bentz left message on cell phone @ 0905);
	Old High School Jank Farm + Old Elementary School Jank Farm to	she will try to find the heavy equipmer
•	16 19 Walk down to Kuskokwim River -	Operator; return to ES tank farm 1014 back @ES tank farm - look @3"
	no sign of contamination; unable to decipher edge of river - ice on	fuel line extending to the Kuskokwim- no threaded joints
	edge of river; return to VPSO having to continue prep. work for	1025 advance's B-1 (hand auger boring) 0-1 Sand-brown, well graded, with
	tommorow sampling 1738 end of day. Plan to start test	Silt + organics - fuel odor noted © 0.5'
	pitting on 10/27/09.	1-4 same as above except more fine grained sand (not well graded)
	£ 10/27101	fuel odor observed through out
	pitting on 10/27/09. 10/27/09 C. Benty	bottom @4'-no longer could advance
		\$ • 1 • \$ 2
а - -		Fuel lines

18	C.Bentz		C.Bentz 19
October 27,2009	A.Nash	October 27,2009	A.Nash
1040 start advancing 58-2	· · · · · · · · · · · · · · · · · · ·	redo ambientair reach	1q = 0.2;
SB-2 Sand W/ alt-Jbrown, Nr	Nostly fine	amblent air in cab = 0.2	2 ppm
Sand, silt; slight fuel oc	or @4.5'	1240 stop test pitting exi	cavator over
4.5-5'= silly sand		heating - leaking coolan	t - testpit1
bonne done @ 5' (extent of	hand auger)	@ 4' - did not get samp	<u>ie@2'</u>
1057 recieve call from Shei	a-excavator	1258 have applied sorbeit	pads; still
Will be here in about 30	45 minutes;	leaking - attempt to call N	likeRieser -
backfilled both borings; d	eude on test	Cannot reach - try Carl B	enson-talk-to
pit locations and continue t		11111 about situation - he	Will try Nike
Fuel lines while waiting to	excavator	On his cell even 1/2 /1014	
1156 read PID headspace f		1316 attempt to call DEC	PM GIZYTT
Samples collected this m		269-8685 - updated h	in on the
Sample Ambient	PID	situation - he stated	hat he understand
SB-10501 0.1 ppm	309.7 ppm	that things happen +1	Vants to be
SB-1-1.5	10/2-1/09	Kept in the loop - he will	1 De In the
SB-1 2-2.5 0.4 ppm	344.6ppm	office Until 1530-lea	ve message it
SB-1 3.5-4 0.4pm	Ille. Sppint	gone. At a minimum 1	le Wants To
SB-2 3-3-51-1.5 0.5ppm SB-2 4.5-5 0.4ppm	3.6ppm	get something out of 1	t. /no
SB-2 4.5-5 0.4 pm	0.6 ppm	- Continue to Work on ex	Cavator (longer Teaking
SB-2 3-3.5 0. 6 ppm	5. Oppm	- DUCRTIII TUST PIT DY MAR	<u>q</u>
1219 return back to site ((at LIEMEMARY	1408 Still Working onex	$\frac{cavalor}{cavalor} =$
School Tank Farm) - excav	and is making	spill was glycol - we out - ceased - excaverte	THE PUTTO IS
Its way down the read	NIPE salati		IS OUT OF
1230 excuvator chsite - go W/Norman Lott and sam	wur sanciy	HIB excavator left site C. Benty 1/27	20 1:00

•.

C.Bentz C. Bentz 21 A. Nash October 27,2009 A. Nash October 27, 2009 took used absorbents - bagged area around it until we can determine Impacted snow if there are any other alternatives 1430 amive @ Village office and check for advancing drive point or removing in with Sheik on what options we 1735 all gear cleaned up and returned May have: -another loader / backhoe in to house; handle samples town - can only go 6-8 feet Sample Logowned by city of Akiak - may 2-2,5 = ES-1@/03D SB-1 SB-1 3.5-4.0 = ES-2@1034 be available 1457 try to Call Mike - Update him SB-2 1-1.5 = ES-3@ 1042 duplicate of SB-1 2-2,5=ES-4@ on current situation 1521 11 ad PID 1047 ambient analyses ES-1 + ES-4 For GROL PLO Sample BTEX, DKO, and PAHS TPI 4 1.6ppm 0.0ppm ES-2 and ES-3 for GRO/BTEX + DRO 1523 Check on power source near Old Elementary School Tank Farm 1813 done for now - still need to talk to Mike + leave Msg. for Grant 1535 start trying to drill pilot / test 2000 Call Mike - give him update hole w/ fower auger @ Old Elementary on drive points + unknown city School Tank Earm backhoe Status - agrees with 1625 able to advance to 14.5' with leaving drive point attempted today power auger - hole did not really in the ground - D drive points are. Stay open - will attempt to install a drive point mostly likely out - need to touch 1708 drive point refusal at 11'; no base tomorrow morning once we Water - lemove top 5' section + flag C, Benty 10/27/09 Know status of city backhoe C. Barty 10/27/09

C.Bentz: 23 C.Bentz 22 October 28, 2009 A. Nash O830 recieve call from Mike about October 27,2009 A.Nash 2026 Call + leave message for Grant; end of day. Status- we update him on obsentations that city backhoe may not have windows - Still not 'sure if it is available or operable 08.35 start walking to village office 0840 recieve call from Mike - if no windows need to do air monitoring eveny 15 minutes at excavation if higher than action level stop work and leave area until air monitoring readings are acceptable 0850 at Village office - check in with Sheila - they will resume work on the excavator when day light - still don't Know about city backhoe; wait at Village office for Sammy Jackson 0905 Sammy in office - check in with him - they will need to work on Small backhoe before Could test co pit - Check in on buried lines Old High School Tank Farm -Set up appt. to meet w/ Sam Jasper tomorrow @ 9am. C. Beit, 10/28/09

C, Bentz C. Bentz 25 --24 A Nash A.Nash October 28, 2009 October 28, 2009 0919 head back to VPSO housing; learance on efficer side 1030 start hand augening SB-2 @ HS Call Mike on way back to house TANK Farm - conference in Grant 0-1" Mostly silt and organic soil (gray work with what we can while 1-15' " we were are out here - hand auger no odor 2-5' Sand, brown, mostly fine grained, and attempt to do another drive hodor Doint 1041 move to SB-3 0948 get gear + sampling equipment 0-2 Silt w/organics + Sand, no odor together to hand auger C high 2-5 sand, brown, Mostly fine grained SCHOOI tank farm 1000 recieve call from Eansier Ernie - he NO odor 1053 dine 10/58-3 4SB-3 will meet us a the old High School hus man pld the TANK Farm Ø. AVIAL 1009 Start hand augening SB-1 ambient PID = 0. 1ppm 1026 done hand allgering SB-1 <u>е</u> 10:3 0-1 Silt and organics, dark brown • |SB-> nodor 1-5 sand, mostly fine grained, brown no door 0 SB-1 - Meet w/Emie - all fuel lines are 1.5B-15 60 Welded joints - changed v8 years ago, Buned line runs clown boardwalk Center of road - 110+ 10 of _____ C.Beaty 10/28/09-C Benty 10/28/09

C. Bentzon C. Bentz 26 A. Nash October 28,2009 A Nash October 28,2009 1-5 sand, grayish brown, Mostly Begin hand augering SB-4 1102 Collect SB-4 1.0'-1.5 tine grained sandine oder 1105 1212 break for lunch silt up sand & organics 1242 resume working - read PIDs 1100 Collect SB-4 2.5=3.0' PID Sample ambient tine sand 4.5-5.0' 2.0 ppm ð. Ó ppat Collect SB-4 SB-1 0,5-1' 1115 0.0 ppm 0.0 ppm SB-1 2-2.5' tine sand 1120 begin hand augening SB-5 SB-14.5-5' O.O ppm 0.0 ppm 0-1 sitt with sand, trace - little SB-2 1-1,5' C.C ppill 2.0 ppm SB-22.5-3' Organics, hu oder -SB-2-4.5-5 CB 10/25/09-Continues to 2.5 SB-3 1-1.5 ' 8. Cppin O. CPONT 2.51-5' Sand, bruch, Mostly time C. Cppm SB-3 2-2.5' grained, no ador U.C. ppn1 -adjacent to valve 56-3 4.5-5' O. Com C. Oppm SB-4 1-1.5' O. Oppm 1128 Move to SB-6 near pipe C. Coppt C. Coom SB-4 25-3' junction C. O ppm SB-4 4.5-5' 0-1 Silt w/ sand + irganics, brown O. Oppin C. Oppm SB-5 0.5-1' O. Oppm 0,0 ppm 1-5 sand, brown, mostly time -<u>fpin</u> SB-5 25-3' 0.0' ppm grained, no odor D. O'ppn 0.0 ppm 0.0 ppm 1140 start at SB-7 SB-5 4,5-5' SB-6 1-1.5' 0-0,25 Organic PEIN 0.0% SB-6 2,5-3' 0.25-5 sand, brown, mostly time opm. ppn \$\$\$ 75B-6 4.5-5' O. Ocom grained with silt, no ador $2\rho pm$ 115 7 start at SB-8 1-1.5' SB-7 Com 6.6'2001 0-5-1 sand w/silt rorganics, no octor-0. Beats, 10/28704 SB-7 2.5-3' O.Crem C. Cprm ? Beit, 10/28/09

C.Bentz-29 C. Bentz A. Nash 28 October 28,2009 A. NEISH October 28,2009 SB-11 0-2 sand, brown, mostly PID ambient sample fine, no odor; refusal @ 2' due to 0.2 ppm SB-7 4,5-5' 0.0ppm tree root 0.5ppm 0.0 pm SB-8 0,5-1' move 2' from SB-10 towards Akiak O.6 ppm O. Oppm SB-8 2,5-3' juil -> frozen soil; more only O. Gpm SB-8 4.5-5' 0.0ppm from SB-10 in direction of AKink Sal 1255 Call Mike Wjupdate; still no -still smells (strong ador) word on excavator Move 6' from SB-10 Howard Akiak Weather = Overcast, 30s - Same as Jail larea in between is frozen) 10/27/09 advance SB-12 - refusar @ 6" 1323 done W/PID readings; talk still strong odor - no sample TU Sammy - stall no word on collected; move another 2' and equipment, ok to use power & Akak advance SB-13 Jail 0-5' sand and organic matter 1330 Start SB-9 (wood), no odor, dark brown 0,5-5' Sand, brown, mostly fine grained, 1423. begin advancing SB-14, 1' further noador from fence than SB-12 1337 done @SB-9; Move to SB-10 SB-14 retusal @ NO,5'; sand w/ 0-2' mostly fine grained sand w/ sitt + organics, strong non-fuel ador silt, trace, organics, strong odor 1430 Begin advancing SB-15 refusal @21; move over NG" -> refusal 0-2' sand w/silf and organics, @ 21; move over NI' -> odor much dark brown, no odor less than 1st two holes (slight 2-5' Sand, brown, mostly fine Odor) 1354 Step out N2' away from fince grained, no odor 1447 done w/soil borings @ Old C. Beaty 10/28/09 to advance SB-11 C. Baity 10/28/09-

³⁰ October 28,2009 A. Nelsa	October 28,2	2009	C.Bentz 3 A.Nash
High School Tank Farm; re-equip	Measurement	45	
to attempt installing drive points	Lucation	Location	Distance
1520 begin atkmpt to install drive	SB-15	Corner 1	7.8'
point by advancing power a uger	SB-14	<u> </u>	23,6
point by advancing power auger through boring SB-1 (A. Nash);	SB-13	η	21.9
C. Bentz photographs site + GPS +	SB-12	11	23.3
measures boring locations	SB-11	/	31.6
1533 advanced to 12' with power.	SB-10	11	31.0
auger - maximum extent - anything	SB-1	11	22,5
over would over exert drill and we	56-2	h	49.3
Would have to use a bent auger rod	SB-1	Corner 2A	58.6
1549 Curt Shows up w/backhoe -	SB-2	11	31.4
ask to meet him tomorow (10/25/07)	SB-3	Į/	15.3
(10/29/09) at 1000 am at CB 10/28/09	Corner 1	Corner 2A	78 ^r
Old Elementary School Tank Farm	Corner 2A	Corner 3B	
1600 refusal widne point @ N14';	56-3	Corner 2B	17.6
No Water	SB-4	11	/1.5
1625 update call w/Mike	SB5	11	26,1
1654 cleaned up site ; return to VPSO	Corner 2B	Corner 3B	A
housing to read final PIDs and do	Corner 3B	Corner 3A	
	SB-4	Corner 3E	
sample manage ment End of day, 128/09	SB-5	ii	16.0
L 10/2810.	SB-6	. 11	10.21
End of day, L. Benty	SB-7	<i>il</i> .	19.1'
		Corner 3A	1 ./
		C. Bent, 10/28/0	19

³² October 28,2	2009	C. Bentz A. Nash	Octuber 28, 20	09	CiBentz, 33 AiNash
Location	Location	Distance	Sample	ambient	PID
58-7	Corner 3A	8.0'	SB-13 2-2,5	0.2ppm	1.2ppm
SB-8	11	40.7'	SB13 4.5-5	C.Z ppm	0.6 ppm
Corner 3A	Corner 4	79.3'	SB-14 0-0,5	O. Ippm	13.9 ppm
SB-9	Corner 3A	85.21	SB-15 1,5-2	O.Ippm	0.9 ppm
SB-8	Comer 4	39.91	SB-15 2,5-3	Oil ppm	Tioppm
58-9	11	7.8	SB-15 4.5-5	0.1ppm	1.0ppm
SB-10	11	32.1	CB /	0/28/09	· · ·
SB-11	//	33,5'	Analytical So	mple Summ	nary
SB-12	11	39.31	SB-50.5-1 =	= HS-1@//2	22'
SB-13	/1	41.31	SB-6 1-1.5 =	= HS-2@11	31
SB-14	11	39.91	SB-90.5-1 =	HS-3@133	2
Corner 4	Corner 1	60.8'	SB-10 1.5-2	= HS-4@1	345
SB-15	Corner 4	66.31	SB-10 4.5-5 =	= HS-6@ 13	352
Read PID-	heated head	Ispace	SB-13 0-0,5=	= HS-7@14	10
sample	ambient	PID	SB-13 4.5-5 =	=1+5-8@141	18
SB-9 0.5-1	D.O.ppm	4.5 ppm	SB-14 0-0.5=	HS-9@ 14	25
SB-9 2-2,5	0.0 ppm	1.7 ppm	duplicate o	+ SB-101.5	5-2
SB-9 4.5-5	O.O ppm	4.5 ppm	= HS-5@	1349	
SB-10 0-0.5	0.0 ppm 0.7 ppm	1501 ppm	all comples	for GROIR	TEX + DRC
SB-10 1.5-2	0.7 ppm	1835ppm	HS-4 and F	ts-5 also	tor PAHC
SB-10 2.5-3	0,7ppm	36,0ppm	······································	1-2/19	7
SB-10 4,5-5	0.5ppm	20.9 ppm	·.	enter 10/28/09	
SB-11 05-1 SB-13 0-0.5	O, Zppm	1,0 ррт 5,2 ррт	n Bl	with .	•

C. Bentz C. Bentz 35 A. Nash October 29,2009 A.Nash October 28, 2009 0830 begin prep work for sampling Photo Loy-Old HS Tank Farm today & Oid Elementary School Tank Farm and preparations for demobe 100-0001 hand augening @ SB-2 100-0002 0847 head to Village office 100-0003 SB-1 location - Fax off figure 100-0004 hand augening @SB-4 100-0005 pipe joint near SB-5 - check in w/ sammy to coordinate Shipping equipment to Anchorage 100-0006 on afternoon flight 100-0007 SB-6 location near values 0929 call Mike Rieser + conference 100-0008 SB-9/0cation in Grant to update on site work 100-0009 SB-10 - SB-14 location - test pit @ Old High School Tank Farm in old dispenser 11 11 100-1010 100-DOII SB-9 Deation 100-0012 SB-8 / ocation area - indicated have not encountered 100-0013 SB-7 and SB-6 location water down to 14' 100-0014 Sce 10/28 SB-7 10 cation 0951 off phone - gather sampling 100-0015 SB-6 location equipment and Head to old 100-0016 SB-5 location Elementary Tank Farm 100-0017 SB-4 location 1020 no backlive - Veturn to VPSD 100-0018 SB-3 location housing to pack stuff for shipment 100-0019 SB-2 and SB-1 location Weather = Clear, 205 100-0020 power augening 100-0021 " " 1037 Jun into Cart - it will be about 1100 for the backhoe 100-0022 removing auger pipe w/ Wrench C. Benty 10/28/09 1040 recieve call from sampy - need to call troutier about freight

36	C, Bentz A, Nash	Detata	- 29,2009	C, Bentz-37 A.Nash
October 29,2009			,	111100051
to be shipped out 1059 should be able	TOALLY.	aw monitor	Veading	Actua
stuff on afternoon	Givet tran	<u>time</u> 1243	C: C ppm	none
Stuff on atternedity	- 11911 Toury -	1248	1.600	nene
Sammy will come g		1253	0.6 ppm	none
108 no backhoe -1	atime all DID	1257	0,4 wm	Mene
108 NO Dacking -	CIUPT an pull	1328	C. 4 pm	none
Soil to old High Sc	proteiner putt	1332	0.6 ppm	ACAR
Dut stakes 1125 still no backh	De CALL Mike	1335	C.Sppm	none
125 SITT NO DUCKIN	E CATTINE	1337	0,5ppm	NOR
with update	or bist meritar	1354	K. I DINN	None
1200 backhoe amu	alati plan	1357	C. Lippin	nave
On site health + So	itery plan	1402	0. 1 ppn	none
air monitoring, etc. 1205 Conduct air M	Anitana MIRIA	1423	0.20pm	nenc
1205 Carcial all m	and the Tact	1425	V. 200m	hone
ambient =0,0pp	- breathing	1427	0.20001	lithe
Pit 1 + in operat	a preating	1429	0.4 ppm	none
Zone	d. Danha	1442	0.3 ppm	ACAL
1211 airmonitoring =	o cutricande cont	1444	Ci2 ppm	None.
Soil in TP-1 is brown	a sing sund, suid	1447	O, Ippm	nane
1218 air monthing =		1512	CiZ ppm	nene
TP-1 26 - cond for	no at mod how		C.C. COM	none
TP-1 26' = sand, fr. TD = 8' & bittem san	ne as 1 1- no care	1522	C.9 ppm	none
Observect		1526	C. Thom	nare
Backfill TP-1.			C' Bost 10/29	1/29

C.BGITZ A. Nish C. Benti, A. Nash October 29,2007 actober 29,2009 1339 Start buckfilling TP-3 1353 Start TP-4 Old Elementary School Tank Farm 02' sand w/silt, brun, Mostly fine. TP-4 aft grained, no oder 2 IT-3 041-8' Sand, brown, Mostly fine grained, no care-1404 Start back filling TP-4 1421 Start TP-5 Naces 62' Sana W/Silt, brown, Mostly The grained no oder Q4'+6'+8' except no sitt Pt Ines) SBL M TPAL 1431 begin backfilling TP-5 \$32 @2' sand wisit, Indun, mistly fore TP-2 granked, no oder-@4 Sand except 110 silt @6/ 11 11 11 1238 bigin TP-2 1508 Dacklice arrives G.C.la High @ 1' Sand with silt, briwn, piostly SCACLI TANK Farm ©3' Same as above except strong ator ©5' same as 3' except gray (asi " " " " " " tine grained, 110 oner advilled between SB-10/SB-11 ani SB-12/SB-14 -Sand worganics, lots of wood 1st 4'; Res wood after 4'; sand 1259 hegin backfilling TP-2 1325 begin TP-3 15 fine grameet; strong paint Hunner - like oder hard digging 1523 begin backfilling TP-1 C2' Sand W/SIIt, brown, ne oder Same to 8'-TO C. But 10/24/09

C. Bentz A. Nash CiBeistz-41 AiNasis October 29,2009 October 29, 2009 1537 back hoe departs Coner 3B TP-6 Tehing to Ott Elementary School Tank Farm to attempt to hand 20' TP-5 TP-5 Corner 3A TF-6 auger + take measurements 9.5' 1624 return to Upso housing - made Comer 3A Carner 3B 51 multiple unsuccessful attempts b Corner 3A Corner Z hand auger @old Elementary 32 TP-4 School - ground trozen@surface 1626 call mike Rieser w/update TP-4 21 Corner 3A 91 Corner 2 TP.3 52' 1640 call Sammy - check in with Corner 1 58' TP-1 status of this + coordinate 50.6 TP-3 stuff for to morrow. 10% 1649 read PIDS + do sample TP-1 Cornerl Management + paperwork 1709 pid readings not consistent; re-calibrate PID + re-read 6.41 56-2 16.4' SB-1 11 11 32/ TP-2 11 Corner 4 headspace results for TPI 2' 62' Corner 4 37 through 6 TP-2 46,21 SB -1 zero cal. reading=0.0ppm 11 100 ppm isobuty/ene = 100.2ppm Continue paperwonc, sample, management and demobe prep. C. Builty 10/29/09 58.11 58-2 11 69.8' C. Bentis 10/29/09-11 TP-1

12		C. Bentz			C.Bentz 43
October	29,2009	A.Nash	October 2	9,2009	A.Nash
Heated H	ead space - Ele	mtentary School	Heated Hea	adspace - Elé	mentary School
Sample	ambient	PID	Sample	ambient	PID
TP-1'2'	0.4 ppm	21.1 ppm	TP-2'1'	0.2 ppm	12,2 ppm
<u> </u>	0.4 ppm	21. [ppm 7.7 ppm 14.7 Mislower	TP-2 31	0.4 ppm	1803 ppm
6	0.4 ppm	14 7 1 5100	TP-2 5'	1.4 ppm	1291 ppm
	- CB 10/29/09 -	~ 1	TP-2 8	1.7 ppm	1236 ppm
TP-12'	0.20.3 ppm	8.4 ppm		adspace - Hi	gh SCHOOT
TP-14'	O. O ppm	Filppm	Sample	ambient '	PID
TP-16'	0.0 ppm	8.6 ppm	TP-/ 1'	1,6 ppm	ZO,9 ppm
TP-18'	0.3ppm	12,2ppm	TP-1 3'	1.0 1.4 ppm 1.0 1.4 ppm	68,4 ppm
TP-3 2'	0,3ppm	26.7 ppm	TP-1 5'	1 J J V	13.5ppm
TP-3 4'	0.3ppm	5,5ppm	TP-17	L. Ippm	3.1 ppm
TP-3 6'	0.3ppm	10.2 ppm	Photo Log	TOLOGIOT	PIREC
TP-3 8'	0.1 ppm	25.3ppm	100-0029	Test Pitting T	10 ES
TP-4 2'	0.4 ppm	7.4ppm		Test Pit TP-	//
TP-4 4'	0.3ppm	8. Fppm	100-0031	Test Pit TP-L	IAES
TP-4 7' TP-4 8'	0.3ppm	9,6ppm 8.9ppm	100-0032	Sampling from	hURVELQES
TP-5 2	0,2ppm	6.7ppm	100 - 0034	Wood dug @ TP	-1 @HS
TP-5 4'	0.2 ppm	8.7 <i>ppm</i>	100-0035 7	P-1@HS	
TP-5 6'	0.2 ppm 0.3 ppm	6.5 ppm	100-2036	stump remove	ed from TP-1CHS
TP-5 8'	0.300m	5.3 ppm	100-0037 -	TP-1@ES,SB	-2 also visible
TP-6 2'	0.3 ppm	11.000m	100-0038 5	B-2 and SB-	1 @ES
TP-6 41	0-3 ppm	9.8 ррм	100-0039 T	P-2@ES	
TP-6 10'	0.3.ppm - C. Benton 10/2	6.5ppm	IDD-DD4D	11 11	
	- C. Benty 10/2	9/09		Benty 10/29/0	9

October 29,2009 A. Nash C, Bentz A, Nash October 29,2009 Analytical Sample Log - ES 10/29/09 TP-2@3' = ES-5 @ 1248 TP-2@8' = ES-56 2 1257 100-0041 TP-3 @ES 100-0042 " 11 100-0043 TP-4@ES TP-1@2' = ES-8@1211 100-0044 TP-4 and TP-5@ES TP-3@2' = ES-9@ 1328 100-0045 TP-5@ES TP-3@81 = ES-10@ 1337 100-0046 11 11 100-0047 TP-5 and TP-6 @ES TP-4@81 = ES-11@ 1402 TP-5@4'= ES-12@ 1425 100-0048 TP-6@ES TP-6@2' = ES-13@ 1442 12 12 12 10 9 SB-1 @ 0.5 16/29/09 ES-14@ CB 10/29/09 TP-2@ g = ES-14@ 1243 7 TPI @ 8' = ES-15@ 1221 $\overline{\Omega}$ TP-3@ 41 = ES-16@ 1332 TP-4@21= ES-17@ 1354 TP-5@8'= ES-18@ 1429 TP-6 @6' = ES-19@1447 Analytical Sample Log - HS 10/29/09 TP-1@2010/10/11 = HS-10@1512 P0/82/01= TP-1@7'=HS-12@1526 TP-1@ 3'= HS-13@ 1515 SB-1@0,5-1'=HS-14@ 1101 HOLD, 58 SB-2@1-1.5'=HS-15@ 1032 SB-3@ 4,5-5'=HS-16@ 1051 SB-4@ 2.5-3'=HS-17@ 1110 SB-7@4,5-5'= HS-18@ 1147 - C. Benty 10/29/09-

C. Bentz C. Bentz 47 October 29,2009 A. Nash A Nash October 30, 2009 Analytical sample Log 10/28/09 HS SB-8@ 0,5-1'= HS-19@ 1158 -0825 Call Mike Rieser - no one available forcall; head to SB-11@0.5-1'=HS-20@1356 Village office Not able to ship on this mornings flight - full w/passengers one option = SB-15 @ 1.5-2'= HS-21@ 1440 Duplicates = ES-6@ 1253; dup of ES-5 (TP-2@3') HS-11@ 1513; dup of HS-10 543-3652 Arctic Transportation Services easiest option to charter plane on Frontier - chartered @ (TP-1@1') 1230pm - Changed to 215pm AK ANIMES Hight 1024 Conference call w/mike 42/09 and Grant Unable to internew Sam Jasper or Sheita Williams today 1038 conference call W/Sonja Benson and Mike Rieser - backhaul options?? 1056 head out to do site walks W/video commentary 1156 done w/video site warks; get call from Fronther - will be here in 20 minutes travel to Bethel -> Anchorage

7 48 CM ALL-WEATHER WRITING PAPER "Rite in the Raine R ALL-WEATHER All-Weather opier Paper eal for any field note taking silua Sub 20 "Rile in the Rain" Bond. 280 Sheels & 1/2" x 11" www.RiteintheRain.com **Bound Books** Copier & Ink-Jet Paper 100000000000 <u>, a a a a a a a a a</u> a Rea the Real HALFFERST STATES TRANSIT Matta Harris ----. L. D. Memo Books Loose Leaf / Ring Binder Alternations Alternations JOURNAL No. 393 **All-Weather Pens** Notebooks www.RiteintheRain.com The second second second second second second second second second

۰.

APPENDIX D

QUALITY ASSURANCE REVIEW, ADEC CHECKLIST, AND LABORATORY ANALYTICAL DATA REPORT

LABORATORY DATA QUALITY ASSURANCE SUMMARY

ADEC AKIAK HIGH SCHOOL FORMER TANK FARM

ADEC Contaminated Site Number 2402.38.003 SLR Project Number 005.0065.09017

This report summarizes a review of analytical results for work order number 1096017 for samples collected on 10/28/09 and 10/29/09. Samples were collected by SLR International Corp (SLR), and submitted to SGS North America Inc. (SGS), Alaska. Samples were analyzed for the following parameters:

- Diesel Range Organics (DRO), using AK Method 102
- Gasoline Range Organics (GRO), using AK Method 101
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), using EPA Method 8021B
- Polynuclear Aromatics (PAHs), using EPA Method 8270D SIMS
- Percent Solids, using Standard Method (SM) 2540G

Quality Assurance Program

A quality assurance (QA) program was followed that addressed project administration, sampling protocols, data review, and data QA. Sample QA was provided by SLR through strict adherence to sampling protocols. Chain-of-custody (COC) procedures were followed as an integral part of the QA program.

Data validation consisted of the following:

- Verifying that quality control (QC) blanks were properly prepared, identified, and analyzed.
- Reviewing COC records for completeness, signatures, and dates.
- Verifying that surrogate analyses (when applicable) are within recovery acceptance limits.
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD) are within recovery acceptance limits.
- Reviewing the Continuing Calibration Verification (CCV) recoveries are within recovery acceptance levels.

- Evaluating the result RPD between original and duplicate (QC) samples.
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

The comments presented in this report refer to the field procedures and the laboratory's performance in meeting the QC specifications. The sample results were reviewed using the following documents:

- ADEC, 18 AAC 75 Oil and Other Hazardous Substances Pollution Control (ADEC, Revised as of October 9, 2008).
- ADEC, 18 AAC 70 Water Quality Standards (ADEC, as amended through September 19, 2009).
- ADEC, Underground Storage Tanks Procedure Manual Guidance for Treatment of Petroleum Contaminated Soil and Water and Standard Sampling Procedures (ADEC, November 2002).
- ADEC, Technical Memorandum 06-002, Environmental Laboratory Data and Quality Assurance Requirements (ADEC, March 2009).
- EPA Document 530/SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, fourth edition (EPA, November 1991).
- EPA Document 540//R-94/012, EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA, February 1994).

Data Validation

Data Package

The data package was checked for transcription errors, omissions, or other anomalies. The COC did not list the analytical methods to be used; however, the correct analytical methods were used by the laboratory as intended by SLR. There were no issues with regards to the data package for work order 1096017.

Holding Times and Preservation

Samples were appropriately preserved upon collection and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted in regard to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Three analytes were detected in method blanks at or above the method reporting limits (MRLs). The three analytes detected above the MRL are: Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene. The associated field samples are HS-4, HS-5 and HS-10. According to the laboratory, results for all associated field samples are valid because the sample results are 10 times higher than the method blank contamination, (per the SGS QAPP) and therefore the data is valid.

Trip Blanks

One trip blank was submitted to the laboratory for analysis. One cooler was used to transport all samples and therefore the samples collected for volatile analysis and the trip blank were contained in the same cooler. Three analytes were detected above the Method Detection Limit (MDL), and below the Practical Quantitation Limit (PQL) in the trip blank. Sample results are not affected because the results of the trip blank are considered estimates.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies, and the results were within EPA and SGS percent recovery acceptance limits except as noted below.

• The 4-Bromofluorobenzene surrogate recovery using AK Method 101 and EPA Method 8021B was outside of QC goals (biased high) due to hydrocarbon interference. Associated samples are HS-4, HS-5 and HS-9. GRO and BTEX were detected above the PQL in the associated samples (except for HS-9, GRO only); however, according to the laboratory since the QC failure was due to hydrocarbon interference, the sample results should be unaffected.

Continuing Calibration Verification

Continuing calibration verifications (CCV) were performed at the required frequencies, and percent recoveries were within EPA and SGS percent recovery acceptance limits.

Field Duplicates

Nineteen primary field samples were submitted for the project. Two duplicate soil samples were collected and submitted to the laboratory blind. The field duplicate samples are in compliance with regulatory requirements because a minimum of one per every ten field samples for each matrix, for each target analyte was achieved.

The following field duplicates were collected:

- HS-5 is the duplicate sample for primary field sample HS-4.
- HS-11 is the duplicate sample for primary field sample HS-10.

For analytes detected above the PQL, duplicate/parent relative percent differences (RPD) are summarized below. For analytes with one sample result as ND, the PQL was used for calculation purposes.

RELATIVE PERCENT DIFFERENCES					
Parent sample (Duplicate sample)	Parent sample (Duplicate sample) Analyte RPD (%)				
HS-4 (HS-5)	GRO	9.19			
HS-4 (HS-5)	DRO	6.13			
HS-4 (HS-5)	Naphthalene	54.66			
HS-4 (HS-5)	Benzene**	**60.26			
HS-4 (HS-5)	Toluene	65.96			
HS-4 (HS-5)	Ethybenzene	37.43			
HS-4 (HS-5)	Fluorene	52.60			
HS-4 (HS-5)	Phenanthrene	33.25			
HS-4 (HS-5)	1-Methylnaphthalene	33.73			
HS-4 (HS-5)	2-Methylnaphthalene	38.44			
HS-4 (HS-5)	Pyrene***	***90.91			
HS-4 (HS-5)	o-Xylene	9.055			
HS-4 (HS-5)	P & M Xylene	7.38			
HS-4 (HS-5)	Total Solids	7.53			
HS-10 (HS-11)	GRO*	*9.77			
HS-10 (HS-11)	DRO	2.67			
HS-10 (HS-11)	Toluene*	*36.52			
HS-10 (HS-11)	o-Xylene	26.39			
HS-10 (HS-11)	P & M Xylene	31.25			
HS-10 (HS-11)	Total Solids	1.34			

* Both sample results are estimates (below PQL)

** Analyte detected above the PQL in only one sample

*** One sample result is an estimate (below PQL), and the other is ND

Three analytes are not in compliance with the required 50% RPD for field duplicates and their parent samples. Naphthalene, Toluene and Fluorene did not meet field precision requirements of 50% RPD for parent sample ES-4 and duplicate sample HS-5. Analytes with both sample results of ND are not included in the table.

According to the ADEC UST Procedures Manual (ADEC, 2002), samples failing field precision is not a specified reason why samples would be considered invalid or unusable, therefore sample results not meeting field precision requirements are considered valid for the intended uses of these results. Data qualifiers may be added to the parent sample (HS-4) results for Naphthalene, Toluene and Fluorene if this is determined necessary by the ADEC project manager.

Laboratory Control Samples/Laboratory Control Duplicate Samples

Laboratory Control Samples (LCS) and Laboratory Control Duplicate Samples (LCSD) were analyzed at the appropriate frequencies and all LCS/LCSD results met percent recovery acceptance limits except as noted below.

• LCS recovery for Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene using EPA Method 8270D SIMS was outside of the acceptable QC criteria (biased high). The

samples were re-extracted outside of the holding time and results were confirmed. The original results are reported. Associated samples are HS-1, HS-2, HS-3, HS-7, HS-8, HS-9, HS-15, HS-19, HS-20 and HS-21. HS-1, HS-2, HS-3, HS-7, HS-9, HS-15, HS-19, HS-20 and HS-21sample results are ND for the three analytes in question and therefore the results are unaffected. HS-4, HS-5, HS-10 sample results may be biased high for the analytes in question because the analytes were detected above the PQL for these samples.

Laboratory Duplicate Samples

One laboratory duplicate was analyzed for Total Solids using SM 20 2540G. The laboratory duplicate results were within RPD limits.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) samples were analyzed at the appropriate frequencies and results exceeded percent recovery limits for all MS/MSD analytes using EPA Method 8270D. Results of this QC failure affected samples HS-4, HS-5 and HS-10. According to the laboratory, the MS/MSD recoveries did not meet QC criteria for multiple analytes due to sample dilution.

Reporting Limits

Method reporting limits (MRLs) were compared to applicable cleanup levels for the site. The analytes with results of ND had MRLs below applicable cleanup levels, with exceptions noted below.

• Samples HS-15, HS-1, HS-19, HS-7, HS-9, HS-21, HS-10, HS-11 and HS-13 were ND for Benzene using EPA Method 8021B. The Benzene PQLs for these samples were higher than the applicable cleanup level for the site, and are therefore considered above site cleanup levels. According to the laboratory, the reason for elevated PQLs is matrix interference.

Overall Assessment

According to the laboratory and SLR, this data is judged acceptable for use except for the Benzene results with PQLs elevated above the benzene cleanup level, as detailed in the Reporting Limits section.

Precision, Accuracy, and Completeness

- Precision: Precision goals were met except as noted in the Field Duplicates section.
- Accuracy: Accuracy goals were met except as noted in the LCS/LCSD, MS/MSD and Surrogate Recovery Section.
- Completeness: Completeness goals were met.
- Sensitivity: Sensitivity goals were met except as noted in the Reporting Limits and Method Blank section.

Laboratory Data Review Checklist

Completed by:	Kirsten Hoppe
Title:	Geologist
Date:	2/1/2010
CS Report Name:	ADEC Akiak High School Former Tank Farm
Report Date:	12/3/09 (revised)
Consultant Firm:	SLR International Corp.
Laboratory Name:	SGS North America Inc.
Laboratory Report Nu	mber: 1096017
ADEC File Number:	2402.38.003
ADEC RecKey Number	er: NA
 <u>Laboratory</u> a. Did an ADI Yes SGS North A 	EC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? No Comments: merica Inc.
1	les were transferred to another "network" laboratory or sub-contracted to an alternate was the laboratory performing the analyses ADEC CS approved?
C Yes	C No Comments:
NA	
2. Chain of Custody (<u>COC)</u>
a. COC inform	nation completed, signed, and dated (including released/received by)?
C Yes	No Comments:
	1 (10
b. Correct ana	lyses requested? No Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt $(4^{\circ} \pm 2^{\circ} C)$?

	105	🖸 No	Comments:
	ooler: 2.0 de emp blank: 2	egrees C 2.3 degrees C	
		servation acceptoriated Solve	ptable – acidified waters, Methanol preserved VOC soil (GRO, BTEZ ents, etc.)?
	🖸 Yes	C No	Comments:
c. \$	Sample con	dition docume	nted – broken, leaking (Methanol), zero headspace (VOC vials)?
	C Yes	🗖 No	Comments:
C		preservation, sa	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or missing
	🖸 Yes	🖸 No	Comments:
	105		comments.
No		ed to be noted.	
	othing neede	ed to be noted.	
e. 1	othing neede	ed to be noted.	ffected? Explain. Comments:
e. l Da	othing neede	ed to be noted. 7 or usability a	ffected? Explain. Comments:
e. 1 Da	Data quality ta quality warrative Present and	ed to be noted. 7 or usability a 7 vas not affecte 1 understandabl	ffected? Explain. Comments: d.
e. 1 Da	Data quality ta quality warrative	ed to be noted. 7 or usability a 7 vas not affected	ffected? Explain. Comments: d.
e.] Da ase Na a.]	Data quality Data quality ta quality w arrative Present and C Yes	ed to be noted. 7 or usability a 7 vas not affecter 1 understandabl 1 No	ffected? Explain. Comments: d. le? Comments:
e.] Da ase Na a.]	Data quality Data quality ta quality w arrative Present and C Yes	ed to be noted. 7 or usability a 7 vas not affecter 1 understandabl 1 No	ffected? Explain. Comments: d.
e.] Da ase Na a.] b.]	Data quality Data quality ata quality we arrative Present and C Yes Discrepanci C Yes	ed to be noted. v or usability a vas not affected understandabl No es, errors or Q No	ffected? Explain. Comments: d. le? Comments: Comments: Comments:
e.] Da ase Na a.] b.]	Data quality Data quality ata quality we arrative Present and C Yes Discrepanci C Yes	ed to be noted. v or usability a vas not affected understandabl No es, errors or Q No	ffected? Explain. Comments: d. e? Comments: Comments:

d. What is the effect on data quality/usability according to the case narrative? Comments:

Data quality and usability varied depending on the sample and the QC results. The detailed explanations are found within the Sample results section and the QC Samples sections below.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

🖸 Yes	🖸 No	Comments:
100	110	commenter.

b. All applicable holding times met?

Yes No Comments:

Some samples were re-analyzed outside of the holding time, however, the results were confirmed and the original results within the holding time were the ones that were reported.

c. All soils reported on a dry weight basis?

Yes No Comments:

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

Yes No Comments:

Samples HS-15, HS-1, HS-19, HS-7, HS-9, HS-21, HS-10, HS-11 and HS-13 were ND for Benzene using EPA Method 8021B. The Benzene PQLs for these samples were higher than the applicable cleanup level for the site, and are therefore considered above site cleanup levels. According to the laboratory, the reason for elevated PQLs is matrix interference.

e. Data quality or usability affected?

Comments:

Samples HS-15, HS-1, HS-19, HS-7, HS-9, HS-21, HS-10, HS-11 and HS-13 are considered above the site cleanup level for Benzene. The Benzene results for these samples are not acceptable for the intended use.

6. <u>QC Samples</u>

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes No Comments:

ii. All method blank results less than PQL?

Yes No Comments:

Laboratory method blanks were analyzed at the appropriate frequencies. Three analytes were detected in method blanks at or above the method reporting limits (MRLs). The three analytes detected above the MRL are: Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene. The associated field samples are HS-4, HS-5 and HS-10. According to the laboratory, results for all associated field samples are valid because the sample results are x10 higher than the method blank contamination, (per the SGS QAPP) and therefore the data is valid.

iii. If above PQL, what samples are affected?

Comments:

The associated field samples are HS-4, HS-5 and HS-10.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No Comments:

v. Data quality or usability affected? Explain. Comments:

According to the laboratory, results for all associated field samples are valid because the sample results are x10 higher than the method blank contamination, (per the SGS QAPP) and therefore the data is valid

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes No Comments:

NA

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
- Yes No Comments:

LCS recovery for Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene using EPA Method 8270D SIMS was outside of the acceptable QC criteria (biased high). The samples were reextracted outside of the holding time and results were confirmed. The original results are reported. Associated samples are HS-1, HS-2, HS-3, HS-7, HS-8, HS-9, HS-15, HS-19, HS-20 and HS-21. HS-1, HS-2, HS-3, HS-7, HS-9, HS-15, HS-19, HS-20 and HS-21sample results are ND for the three analytes in question and therefore the results are unaffected. HS-4, HS-5, HS-10 sample results may be biased high for the analytes in question because the analytes were detected above the PQL for these samples.

MS/MSD samples were analyzed at the appropriate frequencies and results exceeded percent recovery limits for all MS/MSD analytes using EPA Method 8270D. Results of this QC failure affected samples HS-4, HS-5 and HS-10. According to the laboratory, the MS/MSD recoveries did not meet QC criteria for multiple analytes due to sample dilution.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

LCS failure: Associated samples are HS-1, HS-2, HS-3, HS-7, HS-8, HS-9, HS-15, HS-19, HS-20 and HS-21. HS-1, HS-2, HS-3, HS-7, HS-9, HS-15, HS-19, HS-20 and HS-21sample results are ND for the three analytes in question and therefore the results are unaffected. HS-4, HS-5, HS-10 sample results may be biased high for the analytes in question because the analytes were detected above the PQL for these samples.

MS/MSD failure: Results of this QC failure affected samples HS-4, HS-5 and HS-10. According to the laboratory, the MS/MSD recoveries did not meet QC criteria for multiple analytes due to sample dilution.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?Yes No Comments:

vii. Data quality or usability affected? (Use comment box to explain) Comments:

HS-4, HS-5, HS-10 sample results may be biased high for the analytes in question because the analytes were detected above the PQL for these samples.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

🖸 Yes	🖸 No	Comments:
-------	------	-----------

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- Yes No Comments:

4-Bromofluorobenzene surrogate recovery using AK Method 101 and EPA Method 8021B was outside of QC goals (biased high) due to hydrocarbon interference. Associated samples are HS-4, HS-5 and HS-9. GRO and BTEX were detected above the PQL in the associated samples (except for HS-9, GRO only); however, according to the laboratory since the QC failure was due to hydrocarbon interference, the sample results should be unaffected.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No Comments:

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

Associated samples are HS-4, HS-5 and HS-9. GRO and BTEX were detected above the PQL in the associated samples (except for HS-9, GRO only); however, according to the laboratory since the QC failure was due to hydrocarbon interference, the sample results should be unaffected.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (if not, enter explanation below.)

🖸 Yes 🚺 No 🛛 🔾	Comments
----------------	----------

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes No Comments:

One trip blank was submitted to the laboratory for analysis. One cooler was used to transport all samples and therefore the samples collected for volatile analysis and the trip blank were contained in the same cooler.

iii. All results less than PQL?

Yes No Comments:

Three analytes were detected above the Method Detection Limit (MDL), and below the Practical Quantitation Limit (PQL) in the trip blank. Sample results are not affected because the results of the trip blank are considered estimates.

iv. If above PQL, what samples are affected?

Comments:

NA.

v. Data quality or usability affected? Explain.

Comments:

None.

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- Yes No Comments:

Nineteen primary field samples were submitted for the project. Two duplicate soil samples were collected and submitted to the laboratory blind. The field duplicate samples are in compliance with regulatory requirements because a minimum of one per every ten field samples for each matrix, for each target analyte was achieved.

ii. Submitted blind to lab?

Yes No Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes No Comments:

Three analytes are not in compliance with the required 50% RPD for field duplicates and their parent samples. Naphthalene, Toluene and Fluorene did not meet field precision requirements of 50% RPD for parent sample HS-4 and duplicate sample HS-5.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

According to the ADEC UST Procedures Manual (ADEC, 2002), samples failing field precision is not a specified reason why samples would be considered invalid or unusable, therefore sample results not meeting field precision requirements are considered valid for the intended uses of these results. Data qualifiers may be added to the parent sample (HS-4) results for Naphthalene, Toluene and Fluorene if this is determined necessary by the ADEC project manager.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)

C Yes 🖸 No Not Applicable

i. All results less than PQL?

🖸 No C Yes Comments:

NA-Disposable sampling equipment was used.

ii. If above PQL, what samples are affected?

Comments:

NA

iii. Data quality or usability affected? Explain.

Comments:

NA

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

🖸 Yes 🖸 No Comments:

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: Akiak Old High School Tank Far SLR Alaska-Anchorage 1096017

Released by:

Serna 2009.12.03 15:48:55 -09'00'

Jennifer

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

Case Narrative

Customer: SLRANCH Project: 1096017

SLR Alaska-Anchorage Akiak Old High School Tank Far

Refer to the sample receipt form for information on sample condition. Revised Report - Case Narrative revised per client's request.

1096017004 PS HS-4

AK102 - The pattern is consistent with a weathered gasoline.

AK101/8021B - BFB (surrogate) recovery does not meet QC criteria (biased high) due to hydrocarbon interference. 8270D SIM - Multiple analytes detected above the PQL in the MB. The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - Elevated PQLs due to matrix interference with internal standards.

1096017005 PS HS-5

AK102 - The pattern is consistent with a weathered gasoline.

AK101/8021B - BFB (surrogate) recovery does not meet QC criteria (biased high) due to hydrocarbon interference.

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - Multiple analytes detected above the PQL in the MB. The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - Elevated PQLs due to matrix interference with internal standards.

1096017007 PS HS-7

AK102 - Unknown hydrocarbon with several peaks is present.

1096017009 PS

AK101/8021B - BFB (surrogate) recovery does not meet QC criteria (biased high) due to hydrocarbon interference. AK102 - Unknown hydrocarbon with several peaks is present.

1096017010 PS HS-10

AK102 - Unknown hydrocarbon with several peaks is present.

HS-9

8270D SIM - Multiple analytes detected above the PQL in the MB. The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

1096017011 PS HS-11

AK102 - The pattern is consistent with a weathered middle distillate.

1096017013 PS HS-13

AK102 - Sample was diluted due to dark color of extract; therefore the PQL was elevated.

1096017018 PS HS-18

AK101/8021B - Sample was analyzed for benzene, toluene, and ethylbenzene out side of hold for confirmation. AK101/8021B - Sample was analyzed for p,m and o-xylene and GRO were analyzed outside of hold time due to carryover.

1096017021 PS HS-21

AK102 - Unknown hydrocarbon with several peaks is present.

SGS North America Inc.

Case Narrative

Customer: SLRANCHSLR Alaska-AnchorageProject:1096017Akiak Old High School Tank Far

938099 MS 1096016005MS

8270D SIM - Multiple analytes detected above the PQL in the MB.

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - Elevated PQLs due to matrix interference with internal standards.

8270D SIM - MS recovery does not meet QC criteria for multiple analytes due to sample dilution.

938100 MSD 1096016005MSD

8270D SIM - Multiple analytes detected above the PQL in the MB.

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

8270D SIM - Elevated PQLs due to matrix interference with internal standards.

8270D SIM - MS recovery does not meet QC criteria for multiple analytes due to sample dilution.

938097 MB XXX/21996]

8270D SIM - Multiple analytes detected above the PQL in the MB. The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

938162 MB VXX/20243]

8021B/AK101 - MB results for benzene and p,m-xylene are less than the PQL but greater than one half the PQL.

938098 LCS XXX/21996]

8270D SIM - LCS recovery is outside of QC criteria for multiple analytes (bias high). The associated samples were re-extracted outside of hold time, with qualifying QC and confirming results; therefore, original results within hold times were posted.

Report of Manual Integrations

Print Date: 12/3/2009 3:23 pm

Laboratory ID	Client Sample ID	Analytical Batch	Method	Analyte	<u>Reason</u>
1096016005	LABREFQC	XMS5198	8270D SIMS	Benzo[b]Fluoranthene	SP
1096016005	LABREFQC	XMS5198	8270D SIMS	Benzo[k]fluoranthene	SP
938099	ES-5(1096016005MS)	XMS5198	8270D SIMS	Benzo[k]fluoranthene	PNF
938100	ES-5(1096016005MSD)	XMS5198	8270D SIMS	Benzo[k]fluoranthene	PNF

Manual Integration Reason Code Descriptions

Code	Description
\cap	Original Chromot

- O Original ChromatogramM Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Laboratory Analytical Report

Client: SLR Alaska-Anchorage 4601 Business Park Blvd K42 Anchorage, AK 99503

> Attn: **Mike Rieser** T: (907)222-1112 F:(907)222-1113 MRIESER@SLRCORP.COM

Project: Akiak Old High School Tank Far

Workorder No.: 1096017

SG

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Heidi Geri

SGS North America Alaska Division Project Manage

Jennifer Serna 2009.12.03 15:48:44 -09'00'

Project Manager

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The Laboratory certification numbers are AK971-05 (DW), UTS-005 (CS) and AK00971 (Micro) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 6010B, 7470A, 7471A, 9040B, 9045C, 9056, 9060, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343. All work is being provided under SGS general terms and conditions (http://www.sgs.com/terms and conditions.htm)

The following descriptors may be found on your report which will serve to further qualify the data.

MDL	Method Detection Limit
PQL	Practical Quantitation Limit (reporting limit).
CL	Control Limit
U	Indicates the analyte was analyzed for but not detected.
F	Indicates value that is greater than or equal to the MDL.
J	The quantitation is an estimation.
ND	Indicates the analyte is not detected
В	Indicates the analyte is found in a blank associated with the sample.
*	The analyte has exceeded allowable regulatory or control limits.
D	The analyte concentration is the result of dilution.
GT	Greater Than
LT	Less Than
Q	QC parameter out of acceptance range.
M	A matrix effect was present.
E	The analyte result is above the calibrated range.
R	Rejected
DF	Analytical Dilution Factor
JL	The analyte was positively identified, but the quantitation is a low estimation.
<surr> <surr is=""></surr></surr>	Surrogate QC spiked standard
QC	Surrogate / Internal Standard QC spiked standard Quality Control
QC QA	Quality Assurance
MB	Method Blank
LCS (D)	Laboratory Control Sample (Duplicate)
MS(D)	Matrix Spike (Duplicate)
BMS(D)	Site Specific Matrix Spike (Duplicate)
RPD	Relative Percent Difference
ICV	Initial Calibration Verification
CCV	Continuous Calibration Verification
MSA	Method of Standard Addition
WIGA	

Notes: Soil samples are reported on a dry weight basis unless otherwise specified All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 12/3/2009 3:23 pm

Client Name: SLR Alaska-Anchorage Project Name: Akiak Old High School Tank Far Workorder No.: 1096017

Analytical Methods

Method Description	Analytical Method
8270 PAH SIM Semi-Volatiles GC/MS	8270D SIMS
AK101/8021 Combo. (S)	AK101
AK101/8021 Combo. (S)	AK101 8021B
AK101/8021 Combo. (S)	SW8021B
Diesel Range Organics (S)	AK102
Percent Solids SM2540G	SM20 2540G

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1096017001	HS-1
1096017002	HS-2
1096017003	HS-3
1096017004	HS-4
1096017005	HS-5
1096017006	HS-6
1096017007	HS-7
1096017008	HS-8
1096017009	HS-9
1096017010	HS-10
1096017011	HS-11
1096017012	HS-12
1096017013	HS-13
1096017014	HS-14
1096017015	HS-15
1096017016	HS-16
1096017017	HS-17
1096017018	HS-18
1096017019	HS-19
1096017020	HS-20
1096017021	HS-21
1096017022	HS-TB

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-1				
SGS Ref. #: 1096017001	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	o-Xylene	37.3 J	ug/Kg	
	P & M -Xylene	101 J	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
	Diesel Range Organics	20.6 J	mg/Kg	
	Dieser range organiss	20.00	ing/itg	
Client Sample ID: HS-2				
SGS Ref. #: 1096017002	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	P & M -Xylene	47.4 J	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
	Diesel Range Organics	10.8 J	mg/Kg	
Client Sample ID: HS-3				
SGS Ref. #: 1096017003	Parameter_	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	o-Xylene	25.8 J	ug/Kg	
	P & M -Xylene	71.0 J	ug/Kg	
Client Sample ID: HS-4				
SGS Ref. #: 1096017004	Parameter	Result	Units	
Volatile Fuels Department	ralameter	<u>Result</u>	onto	
	Gasoline Range Organics	3530	mg/Kg	
	Benzene	269 J	ug/Kg	
	Toluene	6300	ug/Kg	
	Ethylbenzene	5820	ug/Kg	
	o-Xylene	485000	ug/Kg	
	P & M -Xylene	796000	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
Centrolatile Organic i dels Depa	Diesel Range Organics	2530	ma/Ka	
	Dieser Range Organics	2000	mg/Kg	
Polynuclear Aromatics GC/MS				
	Fluorene	468	ug/Kg	
	Phenanthrene	815	ug/Kg	
	Naphthalene	11300	ug/Kg	
	1-Methylnaphthalene	8750	ug/Kg	
	2-Methylnaphthalene	12400	ug/Kg	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-5			
SGS Ref. #: 1096017005 Volatile Fuels Department	Parameter	<u>Result</u>	<u>Units</u>
	Gasoline Range Organics	3870	mg/Kg
	Benzene	501	ug/Kg
	Toluene	12500	ug/Kg
	Ethylbenzene	8500	ug/Kg
	o-Xylene	531000	ug/Kg
	P & M -Xylene	857000	ug/Kg
Semivolatile Organic Fuels Dep	artment		
	Diesel Range Organics	2690	mg/Kg
Polynuclear Aromatics GC/MS			
	Fluorene	802	ug/Kg
	Phenanthrene	1140	ug/Kg
	Pyrene	111 J	ug/Kg
	Naphthalene	19800	ug/Kg
	1-Methylnaphthalene	12300	ug/Kg
	2-Methylnaphthalene	18300	ug/Kg
Client Sample ID: HS-6			
SGS Ref. #: 1096017006	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department	<u></u>	<u></u>	<u></u>
	Gasoline Range Organics	6.26	mg/Kg
	Benzene	145	ug/Kg
	Toluene	534	ug/Kg
	Ethylbenzene	95.0 J	ug/Kg
	o-Xylene	514	ug/Kg
	P & M -Xylene	1070	ug/Kg
Semivolatile Organic Fuels Dep	artment		
	Diesel Range Organics	7.29 J	mg/Kg
Client Sample ID: HS-7			
SGS Ref. #: 1096017007	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels Department	<u></u>	<u></u>	<u></u>
	Gasoline Range Organics	5.10J	mg/Kg
	o-Xylene	380	ug/Kg
	P & M -Xylene	818	ug/Kg
Semivolatile Organic Fuels Dep			
	Diesel Range Organics	48.4	mg/Kg
	Dieser range organies	7.07	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-8			
SGS Ref. #: 1096017008	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department	Capalina Banga Organica	2.24J	ma/Ka
	Gasoline Range Organics Toluene	2.24J 37.4 J	mg/Kg ug/Kg
	o-Xylene	160	ug/Kg ug/Kg
	P & M -Xylene	228	ug/Kg ug/Kg
		220	ug/itg
Client Sample ID: HS-9			
SGS Ref. #: 1096017009	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department			
	Gasoline Range Organics	159	mg/Kg
	Toluene	527	ug/Kg
	Ethylbenzene	251	ug/Kg
	o-Xylene	139000	ug/Kg
	P & M -Xylene	17400	ug/Kg
Semivolatile Organic Fuels Depar	tment		
	Diesel Range Organics	163	mg/Kg
Client Sample ID: HS-10			
SGS Ref. #: 1096017010	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels Department			
	Gasoline Range Organics	5.69J	mg/Kg
	Toluene	99.1 J	ug/Kg
	o-Xylene	193	ug/Kg
	o-Xylene P & M -Xylene	193 407	ug/Kg ug/Kg
Semivolatile Organic Fuels Depar	P & M -Xylene		
Semivolatile Organic Fuels Depar	P & M -Xylene		
Semivolatile Organic Fuels Depar Polynuclear Aromatics GC/MS	P & M -Xylene tment	407	ug/Kg
	P & M -Xylene tment	407	ug/Kg
	P & M -Xylene tment Diesel Range Organics	407 91.0	ug/Kg mg/Kg
	P & M -Xylene Ttment Diesel Range Organics Phenanthrene	407 91.0 2.04 J	ug/Kg mg/Kg ug/Kg
	P & M -Xylene tment Diesel Range Organics Phenanthrene Anthracene	407 91.0 2.04 J 3.05 J	ug/Kg mg/Kg ug/Kg ug/Kg
	P & M -Xylene tment Diesel Range Organics Phenanthrene Anthracene Fluoranthene	407 91.0 2.04 J 3.05 J 2.16 J	ug/Kg mg/Kg ug/Kg ug/Kg ug/Kg
	P & M -Xylene Terment Diesel Range Organics Phenanthrene Anthracene Fluoranthene Pyrene	407 91.0 2.04 J 3.05 J 2.16 J 13.3	ug/Kg mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg
	P & M -Xylene Timent Diesel Range Organics Phenanthrene Anthracene Fluoranthene Pyrene Chrysene	407 91.0 2.04 J 3.05 J 2.16 J 13.3 3.60 J	ug/Kg mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
	P & M -Xylene Timent Diesel Range Organics Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo[b]Fluoranthene	407 91.0 2.04 J 3.05 J 2.16 J 13.3 3.60 J 5.36 J	ug/Kg mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
	P & M -Xylene Terment Diesel Range Organics Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo[b]Fluoranthene Benzo[g,h,i]perylene	407 91.0 2.04 J 3.05 J 2.16 J 13.3 3.60 J 5.36 J 2.01 J	ug/Kg mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-11				
SGS Ref. #: 1096017011	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	5.16J	mg/Kg	
	Toluene	68.5 J	ug/Kg	
	o-Xylene	148	ug/Kg	
	P & M -Xylene	297	ug/Kg	
Semivolatile Organic Fuels Depa	rtment			
	Diesel Range Organics	88.6	mg/Kg	
Client Sample ID: HS-12				
SGS Ref. #: 1096017012	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department	<u> </u>		<u></u>	
•	Toluene	50.4 J	ug/Kg	
	o-Xylene	39.8 J	ug/Kg	
	P & M -Xylene	73.1 J	ug/Kg	
			0 0	
Client Sample ID: HS-13				
SGS Ref. #: 1096017013	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	95.8	mg/Kg	
	Toluene	2930	ug/Kg	
	Ethylbenzene	336	ug/Kg	
	o-Xylene	10300	ug/Kg	
	P & M -Xylene	21900	ug/Kg	
Semivolatile Organic Fuels Depa	rtment			
	Diesel Range Organics	83.2 J	mg/Kg	
Client Sample ID: HS-15				
SGS Ref. #: 1096017015	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	4.59J	mg/Kg	
	o-Xylene	588	ug/Kg	
	P & M -Xylene	1240	ug/Kg	
Semivolatile Organic Fuels Depa	rtment			
	Diesel Range Organics	17.4 J	mg/Kg	
Client Sample ID: HS-18				
SGS Ref. #: 1096017018	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department	<u></u>	<u></u>	<u></u>	
-	Gasoline Range Organics	8.38	mg/Kg	
	Toluene	24.9 J	ug/Kg	
	o-Xylene	968	ug/Kg	
	P & M -Xylene	1680	ug/Kg	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-19				
SGS Ref. #: 1096017019	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	3.04J	mg/Kg	
	o-Xylene	284	ug/Kg	
	P & M -Xylene	873	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
	Diesel Range Organics	20.4 J	mg/Kg	
Client Sample ID: HS-20				
SGS Ref. #: 1096017020	Parameter	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	3.09J	mg/Kg	
	Toluene	38.8 J	ug/Kg	
	o-Xylene	330	ug/Kg	
	P & M -Xylene	883	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
	Diesel Range Organics	8.38 J	mg/Kg	
Client Sample ID: HS-21				
SGS Ref. #: 1096017021	Parameter_	<u>Result</u>	<u>Units</u>	
Volatile Fuels Department				
	Gasoline Range Organics	4.90J	mg/Kg	
	o-Xylene	417	ug/Kg	
	P & M -Xylene	1220	ug/Kg	
Semivolatile Organic Fuels Depa	artment			
	Diesel Range Organics	63.4	mg/Kg	
Client Sample ID: HS-TB				
SGS Ref. #: 1096017022	Parameter	Result	<u>Units</u>	
Volatile Fuels Department				
	Toluene	16.3 J	ug/Kg	
	o-Xylene	15.5 J	ug/Kg	
	P & M -Xylene	40.1 J	ug/Kg	

Analytical Prep

Client Sample ID: **HS-1** SGS Ref. #: 1096017001 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.2

SGS

Collection Date/Time: 10/28/09 11:22 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	ND	5.11	1.53	mg/Kg	1	VFC9751		
Benzene	ND	25.6	8.18	ug/Kg	1	VFC9751		
Toluene	ND	102	30.7		1	VFC9751 VFC9751		
Ethylbenzene	ND	102	30.7	ug/Kg	1	VFC9751 VFC9751		
•		102	30.7	ug/Kg	•			
o-Xylene	37.3 J			ug/Kg	1	VFC9751		
P & M -Xylene	101 J	102	30.7	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	77.1	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.2	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751 Analytical Method: AK101						Initial Prep	Wt./Vol.: 42	2.922 g
Analysis Date/Time: 11/06/09 20:34						Container II	D:1096017	001-A
Dilution Factor: 1						Analyst: KF	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 42	2.922 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 20:34						Container II	D:1096017	001-A
Dilution Factor: 1						Analyst: KF	W	

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-1** SGS Ref. #: 1096017001 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.2

Collection Date/Time: 10/28/09 11:22 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers		
Diesel Range Organics	20.6 J	25.4	7.88	mg/Kg	1	XFC9021	XXX21959		
5a Androstane <surr></surr>	98.6	50-150		%	1	XFC9021	XXX21959		
Batch Information									
Analytical Batch: XFC9021		Prep Batch:	XXX21959		Initial Prep Wt./Vol.: 30.154 g				
Analytical Method: AK102	Prep Method: SW3550C					Prep Extract Vol.: 1 mL			
Analysis Date/Time: 11/10/09 14:05	Prep Date/Time: 11/05/09 09:10				Container ID:1096017001-B				
Dilution Factor: 1						Analyst: HM	N		

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-1 SGS Ref. #: 1096017001 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.2				ate/Time: 10/28/ e/Time: 10/30/09		2		
Solids								
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.2			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep \	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container II Analyst: KA		01-B

Analytical Prep

Client Sample ID: **HS-2** SGS Ref. #: 1096017002 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 85.8

SGS

Collection Date/Time: 10/28/09 11:31 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	ND	4.89	1.47	mg/Kg	1	VFC9751		
Benzene	ND	24.4	7.82	ug/Kg	1	VFC9751		
Toluene	ND	97.8	29.3	ug/Kg	1	VFC9751		
Ethylbenzene	ND	97.8	29.3	ug/Kg	1	VFC9751		
o-Xylene	ND	97.8	29.3	ug/Kg	1	VFC9751		
P & M -Xylene	47.4 J	97.8	29.3	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	76.9	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.2	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 35	5.913 g
Analytical Method: AK101						Oratainan	D-4000047	
Analysis Date/Time: 11/06/09 20:53 Dilution Factor: 1						Analyst: Kl	D:1096017	JUZ-A
						,	Wt./Vol.: 35	013 g
Analytical Batch: VFC9751 Analytical Method: SW8021B						iniliai Fiep	vvt./v01 3t	5.913 g
Analysis Date/Time: 11/06/09 20:53						Container I	D:1096017	002-A
Dilution Factor: 1						Analyst: Kl		

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-2** SGS Ref. #: 1096017002 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 85.8

SGS

Collection Date/Time: 10/28/09 11:31 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department


Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Diesel Range Organics	10.8 J	23.1	7.17	mg/Kg	1	XFC9021	XXX21959	
5a Androstane <surr></surr>	97.3	50-150		%	1	XFC9021	XXX21959	
Batch Information								
Analytical Batch: XFC9021		Prep Batch	XXX21959		Initial Prep Wt./Vol.: 30.238 g			
Analytical Method: AK102	Prep Method: SW3550C					Prep Extract Vol.: 1 mL		
Analysis Date/Time: 11/10/09 14:25	Prep Date/Time: 11/05/09 09:10				Container ID:1096017002-B			
Dilution Factor: 1						Analyst: H	N	

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-2 SGS Ref. #: 1096017002 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 85.8	Collection Date/Time: 10/28/09 11:31 r Receipt Date/Time: 10/30/09 16:20							
Solids								
Parameter	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	85.8			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 ı	mL
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container I Analyst: KA		002-B

Analytical Prep

Client Sample ID: **HS-3** SGS Ref. #: 1096017003 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 95.7

SGS

Collection Date/Time: 10/28/09 13:32 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	ND	3.59	1.08	mg/Kg	1	VFC9751		
Benzene	ND	17.9	5.74	ug/Kg	1	VFC9751		
Toluene	ND	71.7	21.5	ug/Kg	1	VFC9751		
Ethylbenzene	ND	71.7	21.5	ug/Kg	1	VFC9751		
o-Xylene	25.8 J	71.7	21.5	ug/Kg	1	VFC9751		
P & M -Xylene	71.0 J	71.7	21.5	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	76.5	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.6	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 38	3.819 g
Analytical Method: AK101								
Analysis Date/Time: 11/06/09 21:13						Container I	D:1096017	003-A
Dilution Factor: 1						Analyst: Kl	⊃W	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 38	3.819 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 21:13						Container I	D:1096017	003-A
Dilution Factor: 1						Analyst: Kl	⊃W	

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-3** SGS Ref. #: 1096017003 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 95.7

Collection Date/Time: 10/28/09 13:32 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers		
Diesel Range Organics	ND	20.7	6.43	mg/Kg	1	XFC9021	XXX21959		
5a Androstane <surr></surr>	91.4	50-150		%	1	XFC9021	XXX21959		
Batch Information									
Analytical Batch: XFC9021		Prep Batch:	XXX21959		Initial Prep Wt./Vol.: 30.221 g				
Analytical Method: AK102	Prep Method: SW3550C					Prep Extract Vol.: 1 mL			
Analysis Date/Time: 11/10/09 14:46	Prep Date/Time: 11/05/09 09:10				Container ID:1096017003-B				
Dilution Factor: 1						Analyst: HM	N		

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-3 SGS Ref. #: 1096017003 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 95.7				Collection Date/Time: 10/28/09 13:32 Receipt Date/Time: 10/30/09 16:20					
Solids									
Parameter	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	95.7			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep Wt./Vol.: 1 mL			
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container ID:1096017003-B Analyst: KAN			

Client Sample ID: **HS-4** SGS Ref. #: 1096017004 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 84.1

SGS

Collection Date/Time: 10/28/09 13:45 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Gasoline Range Organics	3530	560	168	mg/Kg	100	VFC9756		
Benzene	269 J	280	89.6	ug/Kg	10	VFC9754		
Toluene	6300	1120	336	ug/Kg	10	VFC9754		
Ethylbenzene	5820	1120	336	ug/Kg	10	VFC9754		
o-Xylene	485000	11200	3360	ug/Kg	100	VFC9756		
P & M -Xylene	796000	11200	3360	ug/Kg	100	VFC9756		
4-Bromofluorobenzene <surr></surr>	2420	* 50-150		%	100	VFC9756		
1,4-Difluorobenzene <surr></surr>	99.5	80-120		%	10	VFC9754		
Batch Information								
Analytical Batch: VFC9754						Initial Prep	Wt./Vol.: 31	l.901 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/08/09 19:01						Container	ID:1096017	004-A
Dilution Factor: 10						Analyst: K	PW	
Analytical Batch: VFC9756						Initial Prep	Wt./Vol.: 31	l.901 g
Analytical Method: AK101								
Analysis Date/Time: 11/11/09 03:25						Container	ID:1096017	004-A
Dilution Factor: 100						Analyst: K	PW	
Analytical Batch: VFC9756						Initial Prep	Wt./Vol.: 31	l.901 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/11/09 03:25						Container	D:1096017	004-A
Dilution Factor: 100						Analyst: K	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-4** SGS Ref. #: 1096017004 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 84.1

Collection Date/Time: 10/28/09 13:45 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	2530	92.8	28.8	mg/Kg	4	XFC9021	XXX21959
5a Androstane <surr></surr>	94.3	50-150		%	4	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch:	XXX21959			Initial Prep	Wt./Vol.: 30.735 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 19:54		Prep Date/1	ime: 11/05/09 0	09:10		Container I	D:1096017004-B
Dilution Factor: 4						Analyst: HN	Л

Client Sample ID: **HS-4** SGS Ref. #: 1096017004 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 84.1

SGS

Collection Date/Time: 10/28/09 13:45 Receipt Date/Time: 10/30/09 16:20

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
A 1011		000					2000000000	
Acenaphthylene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Acenaphthene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Fluorene	468	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Phenanthrene	815	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Anthracene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Fluoranthene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Pyrene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Benzo(a)Anthracene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Chrysene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	
Benzo[b]Fluoranthene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Benzo[k]fluoranthene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Benzo[a]pyrene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Indeno[1,2,3-c,d] pyrene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Dibenzo[a,h]anthracene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Benzo[g,h,i]perylene	ND	296	88.9	ug/Kg	50	XMS5198	XXX21996	6
Naphthalene	11300	2960	889	ug/Kg	500	XMS5208	XXX21996	6
1-Methylnaphthalene	8750	2960	889	ug/Kg	500	XMS5208	XXX21996	6
2-Methylnaphthalene	12400	2960	889	ug/Kg	500	XMS5208	XXX21996	6
Terphenyl-d14 <surr></surr>	86.9	30-125		%	50	XMS5198	XXX21996	3
Batch Information								
Analytical Batch: XMS5198		Prep Batch	n: XXX21996			Initial Prep	Wt./Vol.: 22.	569 g
Analytical Method: 8270D SIMS		Prep Metho	od: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/15/09 06:03		Prep Date/	Time: 11/10/09	10:25		Container II	D:10960170	04-B
Dilution Factor: 50						Analyst: JD	Н	
Analytical Batch: XMS5208		Prep Batch	n: XXX21996			Initial Prep	Wt./Vol.: 22.	569 g
Analytical Method: 8270D SIMS		Prep Metho	od: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/21/09 10:43		Prep Date/	Time: 11/10/09	10:25		Container II	D:10960170	04-B
Dilution Factor: 500						Analyst: JD	Н	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-4 SGS Ref. #: 1096017004 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 84.1	ar							
Solids								
<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	84.1			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 10/30/09 22:00	Container ID:1096017004-B							
Dilution Factor: 1						Analyst: KA	۹N	

Client Sample ID: **HS-5** SGS Ref. #: 1096017005 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.0

SGS

Collection Date/Time: 10/28/09 13:49 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Gasoline Range Organics	3870	755	227	mg/Kg	100	VFC9756		
Benzene	501	378	121	ug/Kg	10	VFC9754		
Toluene	12500	1510	453	ug/Kg	10	VFC9754		
Ethylbenzene	8500	1510	453	ug/Kg	10	VFC9754		
o-Xylene	531000	15100	4530	ug/Kg	100	VFC9756		
P & M -Xylene	857000	15100	4530	ug/Kg	100	VFC9756		
4-Bromofluorobenzene <surr></surr>	1990	* 50-150		%	100	VFC9756		
1,4-Difluorobenzene <surr></surr>	104	80-120		%	10	VFC9754		
Batch Information								
Analytical Batch: VFC9754 Analytical Method: SW8021B						Initial Prep	Wt./Vol.: 26	5.087 g
Analysis Date/Time: 11/08/09 19:23						Container I	D:1096017	005-A
Dilution Factor: 10						Analyst: KF	PW	
Analytical Batch: VFC9756						Initial Prep	Wt./Vol.: 26	6.087 g
Analytical Method: AK101								
Analysis Date/Time: 11/11/09 03:44						Container I	D:1096017	005-A
Dilution Factor: 100						Analyst: KF	PW	
Analytical Batch: VFC9756						Initial Prep	Wt./Vol.: 26	6.087 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/11/09 03:44						Container I	D:1096017	005-A
Dilution Factor: 100						Analyst: KF	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-5** SGS Ref. #: 1096017005 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.0

Collection Date/Time: 10/28/09 13:49 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	2690	101	31.4	mg/Kg	4	XFC9021	XXX21959
5a Androstane <surr></surr>	90.2	50-150		%	4	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch:	XXX21959			Initial Prep	Wt./Vol.: 30.386 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 20:15		Prep Date/1	ime: 11/05/09 (09:10		Container I	D:1096017005-B
Dilution Factor: 4						Analyst: HN	Л

Client Sample ID: **HS-5** SGS Ref. #: 1096017005 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.0

SGS

Collection Date/Time: 10/28/09 13:49 Receipt Date/Time: 10/30/09 16:20

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
		045	04.5		-		XXXX04000	,
Acenaphthylene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Acenaphthene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Fluorene	802	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Phenanthrene	1140	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Anthracene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Fluoranthene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Pyrene	111 J	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Benzo(a)Anthracene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Chrysene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Benzo[b]Fluoranthene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Benzo[k]fluoranthene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	
Benzo[a]pyrene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	6
Indeno[1,2,3-c,d] pyrene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	6
Dibenzo[a,h]anthracene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	6
Benzo[g,h,i]perylene	ND	315	94.5	ug/Kg	50	XMS5198	XXX21996	6
Naphthalene	19800	1260	378	ug/Kg	200	XMS5208	XXX21996	6
1-Methylnaphthalene	12300	1260	378	ug/Kg	200	XMS5208	XXX21996	6
2-Methylnaphthalene	18300	1260	378	ug/Kg	200	XMS5208	XXX21996	6
Terphenyl-d14 <surr></surr>	91.4	30-125		%	50	XMS5198	XXX21996	6
Batch Information								
Analytical Batch: XMS5198		Prep Batch	: XXX21996			Initial Prep	Wt./Vol.: 22.8	894 g
Analytical Method: 8270D SIMS		Prep Metho	od: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/15/09 06:36		Prep Date/	Time: 11/10/09	10:25		Container II	D:10960170	05-B
Dilution Factor: 50						Analyst: JD	H	
Analytical Batch: XMS5208		Prep Batch	: XXX21996			Initial Prep	Wt./Vol.: 22.8	894 g
Analytical Method: 8270D SIMS		Prep Metho	od: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/21/09 11:16		Prep Date/	Time: 11/10/09	10:25		Container II	D:10960170	05-B
Dilution Factor: 200						Analyst: JD	H	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-5 SGS Ref. #: 1096017005 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 78.0	Collection Date/Time: 10/28/09 13:49 Far Receipt Date/Time: 10/30/09 16:20							
Solids								
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.0			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1	Container ID:1096017005-B Analyst: KAN							

Client Sample ID: HS-6 SGS Ref. #: 1096017006 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 92.4

SGS

Collection Date/Time: 10/28/09 13:52 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	6.26	5.16	1.55	mg/Kg	1	VFC9751		
Benzene	145	25.8	8.26	ug/Kg	1	VFC9751		
Toluene	534	103	31.0	ug/Kg	1	VFC9751		
Ethylbenzene	95.0 J	103	31.0	ug/Kg	1	VFC9751		
o-Xylene	514	103	31.0	ug/Kg	1	VFC9751		
P & M -Xylene	1070	103	31.0	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	81.1	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	92.3	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 28	3.45 g
Analytical Method: AK101								
Analysis Date/Time: 11/07/09 02:43						Container	D:1096017	006-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 28	3.45 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/07/09 02:43						Container	D:1096017	006-A
Dilution Factor: 1						Analyst: K	⊃W	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-6** SGS Ref. #: 1096017006 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 92.4

SGS

Collection Date/Time: 10/28/09 13:52 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	7.29 J	21.2	6.58	mg/Kg	1	XFC9021	XXX21959
5a Androstane <surr></surr>	96.2	50-150		%	1	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch:	XXX21959			Initial Prep	Wt./Vol.: 30.584 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 16:29		Prep Date/	Time: 11/05/09 (09:10		Container I	D:1096017006-B
Dilution Factor: 1						Analyst: HN	N

SLR Alaska-Anchorage

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-6 SGS Ref. #: 1096017006 Project ID: Akiak Old High School Tank Fai Matrix: Soil/Solid (dry weight) Percent Solids: 92.4	Collection Date/Time: 10/28/09 13:52 Receipt Date/Time: 10/30/09 16:20								
Solids									
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	92.4			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1	Container ID:1096017006-B Analyst: KAN								

Client Sample ID: **HS-7** SGS Ref. #: 1096017007 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.1

SGS

Collection Date/Time: 10/28/09 14:10 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
	5 40 1	0.04	0.44					
Gasoline Range Organics	5.10J	8.04	2.41	mg/Kg	1	VFC9751		
Benzene	ND	40.2	12.9	ug/Kg	1	VFC9751		
Toluene	ND	161	48.3	ug/Kg	1	VFC9751		
Ethylbenzene	ND	161	48.3	ug/Kg	1	VFC9751		
o-Xylene	380	161	48.3	ug/Kg	1	VFC9751		
P & M -Xylene	818	161	48.3	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	84.9	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.1	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 24	.73 g
Analytical Method: AK101								
Analysis Date/Time: 11/06/09 23:48						Container I	D:10960170	007-A
Dilution Factor: 1						Analyst: KF	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 24	.73 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 23:48						Container I	D:10960170	007-A
Dilution Factor: 1						Analyst: KF	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-7** SGS Ref. #: 1096017007 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.1

Collection Date/Time: 10/28/09 14:10 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Diesel Range Organics	48.4	25.3	7.85	mg/Kg	1	XFC9021	XXX21959	
5a Androstane <surr></surr>	93.3	50-150		%	1	XFC9021	XXX21959	
Batch Information								
Analytical Batch: XFC9021		Prep Batch: XXX21959					Wt./Vol.: 30.752 g	
Analytical Method: AK102		Prep Method: SW3550C				Prep Extract Vol.: 1 mL		
Analysis Date/Time: 11/10/09 16:49		Prep Date/Time: 11/05/09 09:10				Container I	D:1096017007-B	
Dilution Factor: 1						Analyst: HM		

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-7 SGS Ref. #: 1096017007 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.1		/28/09 14:1)/09 16:20	0					
Solids								
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	77.1			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1	Container ID:1096017007-B Analyst: KAN							

Client Sample ID: HS-8 SGS Ref. #: 1096017008 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 93.4

SGS

Collection Date/Time: 10/28/09 14:18 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch Batch	Qualifiers
Gasoline Range Organics	2.24J	4.25	1.27	mg/Kg	1	VFC9751	
Benzene	ND	21.2	6.80	ug/Kg	1	VFC9751	
Toluene	37.4 J	85.0	25.5	ug/Kg	1	VFC9751	
Ethylbenzene	ND	85.0	25.5	ug/Kg	1	VFC9751	
o-Xylene	160	85.0	25.5		1	VFC9751	
P & M -Xylene	228	85.0	25.5	ug/Kg	1	VFC9751	
4-Bromofluorobenzene <surr></surr>	82.6	50-150	25.5	ug/Kg %	1	VFC9751	
1.4-Difluorobenzene <surr></surr>	92.9	80-120		%	1	VFC9751 VFC9751	
	92.9	00-120		70	I	VFC9/51	
Batch Information							
Analytical Batch: VFC9751						Initial Prep Wt./Vol.:	34.339 g
Analytical Method: AK101							
Analysis Date/Time: 11/06/09 23:29						Container ID:109607	17008-A
Dilution Factor: 1						Analyst: KPW	
Analytical Batch: VFC9751						Initial Prep Wt./Vol.:	34.339 g
Analytical Method: SW8021B							
Analysis Date/Time: 11/06/09 23:29						Container ID:10960	17008-A
Dilution Factor: 1						Analyst: KPW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-8** SGS Ref. #: 1096017008 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 93.4

Collection Date/Time: 10/28/09 14:18 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers	
Diesel Range Organics	ND	21.1	6.55	mg/Kg	1	XFC9021	XXX21959	
5a Androstane <surr></surr>	95.9	50-150		%	1	XFC9021	XXX21959	
Batch Information								
Analytical Batch: XFC9021		Prep Batch: XXX21959					Wt./Vol.: 30.392 g	
Analytical Method: AK102		Prep Method: SW3550C				Prep Extract Vol.: 1 mL		
Analysis Date/Time: 11/10/09 17:10		Prep Date/Time: 11/05/09 09:10				Container I	D:1096017008-B	
Dilution Factor: 1						Analyst: HM		

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-8 SGS Ref. #: 1096017008 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 93.4	Collection Date/Time: 10/28/09 14:18 Receipt Date/Time: 10/30/09 16:20								
Solids									
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	93.4			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1	Container ID:1096017008-B Analyst: KAN								

Client Sample ID: **HS-9** SGS Ref. #: 1096017009 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.0

SGS

Collection Date/Time: 10/28/09 14:25 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
	159	8.00	2.40		4			
Gasoline Range Organics				mg/Kg	1	VFC9751		
Benzene	ND	40.0	12.8	ug/Kg	1	VFC9751		
Toluene	527	160	48.0	ug/Kg	1	VFC9751		
Ethylbenzene	251	160	48.0	ug/Kg	1	VFC9751		
o-Xylene	139000	1600	480	ug/Kg	10	VFC9754		
P & M -Xylene	17400	160	48.0	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	215	* 50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	90.9	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 24	1.971 g
Analytical Method: AK101								
Analysis Date/Time: 11/06/09 23:09						Container	D:1096017	009-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 24	1.971 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 23:09						Container	ID:1096017	009-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9754						Initial Prep	Wt./Vol.: 24	4.971 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/08/09 18:38						Container	ID:1096017	009-A
Dilution Factor: 10						Analyst: K	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-9** SGS Ref. #: 1096017009 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.0

Collection Date/Time: 10/28/09 14:25 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Diesel Range Organics	163	25.7	7.98	mg/Kg	1	XFC9021	XXX21959	
5a Androstane <surr></surr>	93.3	50-150		%	1	XFC9021	XXX21959	
Batch Information								
Analytical Batch: XFC9021		Prep Batch: XXX21959				Initial Prep	Wt./Vol.: 30.286 g	
Analytical Method: AK102		Prep Method: SW3550C				Prep Extract Vol.: 1 mL		
Analysis Date/Time: 11/10/09 17:30		Prep Date/Time: 11/05/09 09:10				Container I	D:1096017009-B	
Dilution Factor: 1						Analyst: HM		

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-9 SGS Ref. #: 1096017009 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 77.0			25					
Solids								
Parameter	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	77.0			%	1	SPT8049		
Batch Information								
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 ı	mL
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1	Container ID:1096017009-E Analyst: KAN							

Client Sample ID: **HS-10** SGS Ref. #: 1096017010 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 81.8

SGS

Collection Date/Time: 10/29/09 15:12 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	5.69J	6.23	1.87	mg/Kg	1	VFC9760		
Benzene	ND	31.2	9.97	ug/Kg	1	VFC9760		
Toluene	99.1 J	125	37.4	ug/Kg	1	VFC9760		
Ethylbenzene	ND	125	37.4	ug/Kg	1	VFC9760		
o-Xylene	193	125	37.4	ug/Kg	1	VFC9760		
P & M -Xylene	407	125	37.4	ug/Kg	1	VFC9760		
4-Bromofluorobenzene <surr></surr>	98.2	50-150		%	1	VFC9760		
1,4-Difluorobenzene <surr></surr>	92.5	80-120		%	1	VFC9760		
Batch Information								
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 29	9.887 g
Analytical Method: AK101								
Analysis Date/Time: 11/11/09 23:37						Container	D:1096017	010-A
Dilution Factor: 1						Analyst: H	M	
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 29	9.887 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/11/09 23:37						Container	D:1096017	010-A
Dilution Factor: 1						Analyst: H	М	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-10** SGS Ref. #: 1096017010 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 81.8

Collection Date/Time: 10/29/09 15:12 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Diesel Range Organics	91.0	24.2	7.52	mg/Kg	1	XFC9021	XXX21959	
5a Androstane <surr></surr>	90.2	50-150		%	1	XFC9021	XXX21959	
Batch Information								
Analytical Batch: XFC9021		Prep Batch: XXX21959				Initial Prep	Wt./Vol.: 30.267 g	
Analytical Method: AK102		Prep Method: SW3550C				Prep Extract Vol.: 1 mL		
Analysis Date/Time: 11/10/09 17:51		Prep Date/Time: 11/05/09 09:10				Container I	D:1096017010-B	
Dilution Factor: 1						Analyst: HM		

Client Sample ID: **HS-10** SGS Ref. #: 1096017010 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 81.8

SGS

Collection Date/Time: 10/29/09 15:12 Receipt Date/Time: 10/30/09 16:20


Polynuclear Aromatics GC/MS

Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Acenaphthylene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Acenaphthene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Fluorene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Phenanthrene	2.04 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Anthracene	3.05 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Fluoranthene	2.16 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Pyrene	13.3	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Benzo(a)Anthracene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Chrysene	3.60 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Benzo[b]Fluoranthene	5.36 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Benzo[k]fluoranthene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Benzo[a]pyrene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Indeno[1,2,3-c,d] pyrene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Dibenzo[a,h]anthracene	ND	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Benzo[g,h,i]perylene	2.01 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Naphthalene	10.6	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
1-Methylnaphthalene	4.87 J	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
2-Methylnaphthalene	8.05	6.07	1.82	ug/Kg	1	XMS5208	XXX21996	
Terphenyl-d14 <surr></surr>	89.4	30-125		%	1	XMS5208	XXX21996	
Batch Information								
Analytical Batch: XMS5208		Prep Batch	XXX21996			Initial Prep	Wt./Vol.: 22.653 g	
Analytical Method: 8270D SIMS		Prep Metho	d: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/21/09 11:48 Dilution Factor: 1		Prep Date/Time: 11/10/09 10:25				Container ID:1096017010-B Analyst: JDH		

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-10 SGS Ref. #: 1096017010 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 81.8			29/09 15:1 /09 16:20	2					
Solids									
Parameter	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	81.8			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 ı	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1			Container ID:1096017010-B Analyst: KAN						

Print Date: 12/3/2009 3:23 pm

Analytical Prep

Client Sample ID: **HS-11** SGS Ref. #: 1096017011 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 82.9

SGS

Collection Date/Time: 10/29/09 15:13 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	5.16J	6.79	2.04	mg/Kg	1	VFC9760		
Benzene	ND	33.9	10.9	ug/Kg	1	VFC9760		
Toluene	68.5 J	136	40.7	ug/Kg	1	VFC9760		
Ethylbenzene	ND	136	40.7	ug/Kg	1	VFC9760		
o-Xylene	148	136	40.7	ug/Kg	1	VFC9760		
P & M -Xylene	297	136	40.7	ug/Kg	1	VFC9760		
4-Bromofluorobenzene <surr></surr>	95.5	50-150		%	1	VFC9760		
1,4-Difluorobenzene <surr></surr>	92.6	80-120		%	1	VFC9760		
Batch Information								
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 26	6.22 g
Analytical Method: AK101								
Analysis Date/Time: 11/11/09 23:56						Container	ID:1096017	011-A
Dilution Factor: 1						Analyst: H	М	
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 26	6.22 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/11/09 23:56						Container	ID:1096017	011-A
Dilution Factor: 1						Analyst: H	M	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-11** SGS Ref. #: 1096017011 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 82.9

Collection Date/Time: 10/29/09 15:13 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	88.6	23.8	7.39	mg/Kg	1	XFC9021	XXX21959
5a Androstane <surr></surr>	101	50-150		%	1	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch	: XXX21959			Initial Prep	Wt./Vol.: 30.39 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 18:11		Prep Date/	Time: 11/05/09 (09:10		Container I	D:1096017011-B
Dilution Factor: 1						Analyst: H	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-11 SGS Ref. #: 1096017011 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 82.9				n Date/Time: 10/ Date/Time: 10/30		3			
Solids									
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	82.9			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container I Analyst: KA		011-B	

Print Date: 12/3/2009 3:23 pm

Analytical Prep

Client Sample ID: **HS-12** SGS Ref. #: 1096017012 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 94.6

SGS

Collection Date/Time: 10/29/09 15:26 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	ND	4.62	1.39	mg/Kg	1	VFC9760		
Benzene	ND	23.1	7.40	ug/Kg	1	VFC9760		
Toluene	50.4 J	92.5	27.7	ug/Kg	1	VFC9760		
Ethylbenzene	ND	92.5	27.7	ug/Kg	1	VFC9760		
o-Xylene	39.8 J	92.5	27.7	ug/Kg	1	VFC9760		
P & M -Xylene	73.1 J	92.5	27.7	ug/Kg	1	VFC9760		
4-Bromofluorobenzene <surr></surr>	89.8	50-150		%	1	VFC9760		
1,4-Difluorobenzene <surr></surr>	92.7	80-120		%	1	VFC9760		
Batch Information								
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 30).424 g
Analytical Method: AK101 Analysis Date/Time: 11/12/09 00:16						Container	D:1096017	012 4
Dilution Factor: 1						Analyst: H		012-A
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 30).424 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/12/09 00:16						Container I	D:1096017	012-A
Dilution Factor: 1						Analyst: H	М	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-12** SGS Ref. #: 1096017012 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 94.6

Collection Date/Time: 10/29/09 15:26 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	ND	21.0	6.50	mg/Kg	1	XFC9021	XXX21959
5a Androstane <surr></surr>	95.8	50-150		%	1	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch:	XXX21959			Initial Prep	Wt./Vol.: 30.242 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 18:32		Prep Date/	Time: 11/05/09 (09:10		Container I	D:1096017012-B
Dilution Factor: 1						Analyst: H	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-12 SGS Ref. #: 1096017012 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 94.6				n Date/Time: 10/ Date/Time: 10/30		26			
Solids									
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	94.6			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container I Analyst: KA		012-B	

Client Sample ID: HS-13 SGS Ref. #: 1096017013 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 68.1

SGS

Collection Date/Time: 10/29/09 15:15 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
	05.0	10.1	0.00					
Gasoline Range Organics	95.8	10.1	3.02	mg/Kg	1	VFC9760		
Benzene	ND	50.3	16.1	ug/Kg	1	VFC9760		
Toluene	2930	201	60.3	ug/Kg	1	VFC9760		
Ethylbenzene	336	201	60.3	ug/Kg	1	VFC9760		
o-Xylene	10300	201	60.3	ug/Kg	1	VFC9760		
P & M -Xylene	21900	201	60.3	ug/Kg	1	VFC9760		
4-Bromofluorobenzene <surr></surr>	105	50-150		%	1	VFC9760		
1,4-Difluorobenzene <surr></surr>	88.1	80-120		%	1	VFC9760		
Batch Information								
Analytical Batch: VFC9760 Analytical Method: AK101						Initial Prep	Wt./Vol.: 23	8.841 g
Analysis Date/Time: 11/12/09 00:35						Container	D:1096017	013-A
Dilution Factor: 1						Analyst: H		
Analytical Batch: VFC9760						Initial Prep	Wt./Vol.: 23	8.841 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/12/09 00:35						Container	ID:1096017	013-A
Dilution Factor: 1						Analyst: H	M	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-13** SGS Ref. #: 1096017013 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 68.1

Collection Date/Time: 10/29/09 15:15 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	83.2 J	116	36.1	mg/Kg	4	XFC9021	XXX21959
5a Androstane <surr></surr>	98.5	50-150		%	4	XFC9021	XXX21959
Batch Information							
Analytical Batch: XFC9021		Prep Batch:	XXX21959			Initial Prep	Wt./Vol.: 30.316 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/10/09 18:53		Prep Date/	Fime: 11/05/09 (09:10		Container I	D:1096017013-B
Dilution Factor: 4						Analyst: HN	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-13 SGS Ref. #: 1096017013 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 68.1				Date/Time: 10/29 ate/Time: 10/30/0		5			
Solids									
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	68.1			%	1	SPT8049			
Batch Information									
Analytical Batch: SPT8049 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL	
Analysis Date/Time: 10/30/09 22:00 Dilution Factor: 1						Container I Analyst: KA	D:10960170 AN)13-B	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-14 SGS Ref. #: 1096017014 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 75.2	ar			on Date/Time: 10 Date/Time: 10/30				
Solids								
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	75.2			%	1	SPT8050		
Batch Information								
Analytical Batch: SPT8050 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 11/02/09 18:15 Dilution Factor: 1						Container I Analyst: K		014-B

Client Sample ID: **HS-15** SGS Ref. #: 1096017015 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 72.0

SGS

Collection Date/Time: 10/28/09 10:32 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	4.59J	6.75	2.03	mg/Kg	1	VFC9751		
Benzene	ND	33.8	10.8	ug/Kg	1	VFC9751		
Toluene	ND	135	40.5	ug/Kg	1	VFC9751		
Ethylbenzene	ND	135	40.5	ug/Kg	1	VFC9751		
o-Xylene	588	135	40.5	ug/Kg	1	VFC9751		
P & M -Xylene	1240	135	40.5	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	83.5	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.3	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751 Analytical Method: AK101						Initial Prep	Wt./Vol.: 36	6.113 g
Analysis Date/Time: 11/06/09 22:30 Dilution Factor: 1						Container I Analyst: KF		015-A
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 36	6.113 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 22:30						Container I	D:1096017	015-A
Dilution Factor: 1						Analyst: KF	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-15** SGS Ref. #: 1096017015 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 72.0

Collection Date/Time: 10/28/09 10:32 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	17.4 J	27.7	8.57	mg/Kg	1	XFC9018	XXX21950
5a Androstane <surr></surr>	89.6	50-150		%	1	XFC9018	XXX21950
Batch Information							
Analytical Batch: XFC9018		Prep Batch	XXX21950			Initial Prep	Wt./Vol.: 30.131 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/05/09 14:47		Prep Date/	Fime: 11/04/09	09:30		Container I	D:1096017015-B
Dilution Factor: 1						Analyst: H	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-15 SGS Ref. #: 1096017015 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 72.0				n Date/Time: 10/ Date/Time: 10/30		32		
Solids						Analytical	Prep	
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Total Solids	72.0			%	1	SPT8051		
Batch Information								
Analytical Batch: SPT8051						Initial Prep	Wt./Vol.: 1	mL
Analytical Method: SM20 2540G Analysis Date/Time: 11/03/09 17:10						Container I	0.1006017	015-B
Dilution Factor: 1						Analyst: KA		010-0

Analytical Prep

Client Sample ID: **HS-18** SGS Ref. #: 1096017018 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 93.6

SGS

Collection Date/Time: 10/28/09 11:47 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	8.38	3.89	1.17	mg/Kg	1	VFC9776		
Benzene	ND	19.4	6.22	ug/Kg	1	100110		
Toluene	24.9 J	77.7	23.3	ug/Kg	1			
Ethylbenzene	ND	77.7	23.3	ug/Kg	1			
o-Xylene	968	77.7	23.3	ug/Kg	1	VFC9776		
P & M -Xylene	1680	77.7	23.3	ug/Kg	1	VFC9776		
4-Bromofluorobenzene <surr></surr>	105	50-150		%	1	VFC9776		
1,4-Difluorobenzene <surr></surr>	105	80-120		%	1	VFC9776		
.,				,,	•	100110		
Batch Information								
Analytical Batch:						Initial Prep	Wt./Vol.: 37	'.716 g
Analytical Method: AK101 8021B								
Analysis Date/Time: 11/08/09 20:07						Container I	D:1096017	018-A
Dilution Factor: 1						Analyst: Ki	⊃W	
Analytical Batch: VFC9776						Initial Prep	Wt./Vol.: 37	'.716 g
Analytical Method: AK101								
Analysis Date/Time: 11/16/09 20:12						Container I	D:1096017	018-A
Dilution Factor: 1						Analyst: Ki	⊃W	
Analytical Batch: VFC9776						Initial Prep	Wt./Vol.: 37	'.716 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/16/09 20:12						Container I	D:1096017	018-A
Dilution Factor: 1						Analyst: Kl	⊃W	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-18** SGS Ref. #: 1096017018 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 93.6

Collection Date/Time: 10/28/09 11:47 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	ND	21.3	6.61	mg/Kg	1	XFC9018	XXX21950
5a Androstane <surr></surr>	87.8	50-150		%	1	XFC9018	XXX21950
Batch Information							
Analytical Batch: XFC9018		Prep Batch:	XXX21950			Initial Prep	Wt./Vol.: 30.072 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/05/09 15:08		Prep Date/T	ime: 11/04/09 0)9:30		Container I	D:1096017018-B
Dilution Factor: 1						Analyst: HM	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-18 SGS Ref. #: 1096017018 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 93.6	ar			on Date/Time: 10/ Date/Time: 10/3(
Solids <u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	93.6			%	1	SPT8051		
Batch Information Analytical Batch: SPT8051 Analytical Method: SM20 2540G Analysis Date/Time: 11/03/09 17:10 Dilution Factor: 1						Initial Prep Container I Analyst: K4	D:1096017	

Analytical Prep

Client Sample ID: HS-19 SGS Ref. #: 1096017019 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.6

SGS

Collection Date/Time: 10/28/09 11:58 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	3.04J	6.04	1.81	mg/Kg	1	VFC9751		
Benzene	ND	30.2	9.66	ug/Kg	1	VFC9751		
Toluene	ND	121	36.2	ug/Kg	1	VFC9751		
Ethylbenzene	ND	121	36.2	ug/Kg	1	VFC9751		
o-Xylene	284	121	36.2	ug/Kg	1	VFC9751		
P & M -Xylene	873	121	36.2	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	83.4	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.4	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 33	3.982 g
Analytical Method: AK101								
Analysis Date/Time: 11/06/09 22:11						Container	D:1096017	019-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 33	3.982 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 22:11						Container	D:1096017	019-A
Dilution Factor: 1						Analyst: K	⊃W	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-19** SGS Ref. #: 1096017019 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 78.6

Collection Date/Time: 10/28/09 11:58 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	5
Diesel Range Organics	20.4 J	25.4	7.89	mg/Kg	1	XFC9018	XXX21950	
5a Androstane <surr></surr>	85.1	50-150		%	1	XFC9018	XXX21950	
Batch Information								
Analytical Batch: XFC9018		Prep Batch:	XXX21950			Initial Prep	Wt./Vol.: 30 g	
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 11/05/09 15:28		Prep Date/	Time: 11/04/09 (09:30		Container I	D:1096017019-B	
Dilution Factor: 1						Analyst: HM	Λ	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-19 SGS Ref. #: 1096017019 Project ID: Akiak Old High School Tank Fa Matrix: Soil/Solid (dry weight) Percent Solids: 78.6	ar			on Date/Time: 10/ Date/Time: 10/30				
Solids <u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.6			%	1	SPT8051		
Batch Information Analytical Batch: SPT8051 Analytical Method: SM20 2540G Analysis Date/Time: 11/03/09 17:10 Dilution Factor: 1						Initial Prep Container I Analyst: KA	D:1096017	

Analytical Prep

Client Sample ID: HS-20 SGS Ref. #: 1096017020 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 92.2

SGS

Collection Date/Time: 10/28/09 13:56 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
	2.001	4.24	1.29			1/500754		
Gasoline Range Organics	3.09J	4.31		mg/Kg	1	VFC9751		
Benzene	ND	21.6	6.90	ug/Kg	1	VFC9751		
Toluene	38.8 J	86.3	25.9	ug/Kg	1	VFC9751		
Ethylbenzene	ND	86.3	25.9	ug/Kg	1	VFC9751		
o-Xylene	330	86.3	25.9	ug/Kg	1	VFC9751		
P & M -Xylene	883	86.3	25.9	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	84.3	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 34	.859 g
Analytical Method: AK101								
Analysis Date/Time: 11/06/09 21:51						Container	ID:1096017	020-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 34	.859 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 21:51						Container	ID:1096017	020-A
Dilution Factor: 1						Analyst: K	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-20** SGS Ref. #: 1096017020 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 92.2

Collection Date/Time: 10/28/09 13:56 Receipt Date/Time: 10/30/09 16:20


Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	8.38 J	21.7	6.71	mg/Kg	1	XFC9018	XXX21950
5a Androstane <surr></surr>	82.7	50-150		%	1	XFC9018	XXX21950
Batch Information							
Analytical Batch: XFC9018		Prep Batch	: XXX21950			Initial Prep	Wt./Vol.: 30.053 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/05/09 15:49		Prep Date/	Time: 11/04/09	09:30		Container I	D:1096017020-B
Dilution Factor: 1						Analyst: H	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-20 SGS Ref. #: 1096017020 Project ID: Akiak Old High School Tank Fai Matrix: Soil/Solid (dry weight) Percent Solids: 92.2				on Date/Time: 10, Date/Time: 10/30					
Solids									
<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Total Solids	92.2			%	1	SPT8051			
Batch Information									
Analytical Batch: SPT8051 Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL	
Analysis Date/Time: 11/03/09 17:10 Dilution Factor: 1						Container I Analyst: K/		020-B	

Analytical Prep

Client Sample ID: **HS-21** SGS Ref. #: 1096017021 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 61.6

SGS

Collection Date/Time: 10/28/09 14:40 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	4.90J	11.6	3.48	mg/Kg	1	VFC9751		
Benzene	ND	58.0	18.6	ug/Kg	1	VFC9751		
Toluene	ND	232	69.6	ug/Kg	1	VFC9751		
Ethylbenzene	ND	232	69.6	ug/Kg	1	VFC9751		
o-Xylene	417	232	69.6	ug/Kg	1	VFC9751		
P & M -Xylene	1220	232	69.6	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	79.2	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	93.3	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751 Analytical Method: AK101						Initial Prep	Wt./Vol.: 23	9.914 g
Analysis Date/Time: 11/06/09 21:32						Container	D:1096017	021-A
Dilution Factor: 1						Analyst: K	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 23	8.914 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/06/09 21:32						Container	ID:1096017	021-A
Dilution Factor: 1						Analyst: K	PW	

Print Date: 12/3/2009 3:23 pm

Client Sample ID: **HS-21** SGS Ref. #: 1096017021 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 61.6

Collection Date/Time: 10/28/09 14:40 Receipt Date/Time: 10/30/09 16:20

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	63.4	32.5	10.1	mg/Kg	1	XFC9018	XXX21950
5a Androstane <surr></surr>	79.7	50-150		%	1	XFC9018	XXX21950
Batch Information							
Analytical Batch: XFC9018		Prep Batch	XXX21950			Initial Prep	Wt./Vol.: 30.007 g
Analytical Method: AK102		Prep Metho	d: SW3550C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 11/05/09 22:02		Prep Date/	Fime: 11/04/09 (09:30		Container I	D:1096017021-B
Dilution Factor: 1						Analyst: H	N

Print Date: 12/3/2009 3:23 pm

Client Sample ID: HS-21 SGS Ref. #: 1096017021 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight) Percent Solids: 61.6		otion Date/Time: 10/28/09 14:40 pt Date/Time: 10/30/09 16:20							
Solids						Analytical	<u>Prep</u>		
<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>	
Total Solids	61.6			%	1	SPT8051			
Batch Information									
Analytical Batch: SPT8051						Initial Prep	Wt./Vol.: 1 ı	mL	
Analytical Method: SM20 2540G Analysis Date/Time: 11/03/09 17:10						Container I	D·1096017(121-B	
Dilution Factor: 1						Analyst: KA			

Analytical Prep

Client Sample ID: **HS-TB** SGS Ref. #: 1096017022 Project ID: Akiak Old High School Tank Far Matrix: Soil/Solid (dry weight)

SGS

Collection Date/Time: 10/28/09 11:00 Receipt Date/Time: 10/30/09 16:20

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Gasoline Range Organics	ND	2.51	0.752	mg/Kg	1	VFC9751		
Benzene	ND	12.5	4.01	ug/Kg	1	VFC9751		
Toluene	16.3 J	50.1	15.0	ug/Kg	1	VFC9751		
Ethylbenzene	ND	50.1	15.0	ug/Kg	1	VFC9751		
o-Xylene	15.5 J	50.1	15.0	ug/Kg	1	VFC9751		
P & M -Xylene	40.1 J	50.1	15.0	ug/Kg	1	VFC9751		
4-Bromofluorobenzene <surr></surr>	82.2	50-150		%	1	VFC9751		
1,4-Difluorobenzene <surr></surr>	92.9	80-120		%	1	VFC9751		
Batch Information								
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 49).871 g
Analytical Method: AK101								
Analysis Date/Time: 11/07/09 05:58						Container I	D:1096017	022-A
Dilution Factor: 1						Analyst: Kl	PW	
Analytical Batch: VFC9751						Initial Prep	Wt./Vol.: 49).871 g
Analytical Method: SW8021B								
Analysis Date/Time: 11/07/09 05:58						Container I	D:1096017	022-A
Dilution Factor: 1						Analyst: Kl	PW	

SGS Ref.#	936118	Method Blank	Printed Date/Time		12/03/2009	15:23
Client Name	SLR Alaska-Anch	norage	Prep	Batch		
Project Name/#	Akiak Old High S	School Tank Far		Method		
Matrix	Soil/Solid (dry we	eight)		Date		

1096017001, 1096017002, 1096017003, 1096017004, 1096017005, 1096017006, 1096017007, 1096017008, 1096017009, 1096017010, 1096017011, 1096017012, 1096017013

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Solids						
Total Solids		100			%	10/30/09
Batch	SPT8049					
Method	SM20 2540G					
Instrument						

SGS Ref.# Client Name Project Name/# Matrix	936423 Method Blan SLR Alaska-Anchorage Akiak Old High School Tank F Soil/Solid (dry weight)			Printed Date/Ti Prep Batc Meti Date	hod
QC results affect the 1096017014	following production samples:				
Parameter	Results	Reporting/Control Limit	MDL	Units	Analysis Date
Solids					
Total Solids	100			%	11/02/09
Batch	SPT8050				
Method Instrument	SM20 2540G				

SGS Ref.#	936742	Method Blank	Printe	ed Date/Time	12/03/2009 15:23
Client Name	SLR Alaska-Aı	nchorage	Prep	Batch	XXX21950
Project Name/#	Akiak Old Higl	h School Tank Far		Method	SW3550C
Matrix	Soil/Solid (dry	weight)		Date	11/04/2009

1096017015, 1096017018, 1096017019, 1096017020, 1096017021

Parameter			Results	Reporting/Control Limit	MDL	Units	Analysis Date
Semivolatile	Organic Fu	els Depart	ment				
Diesel Range Org	ganics		ND	20.0	6.20	mg/Kg	11/05/09
Surrogates							
5a Androstane <s< td=""><td>surr></td><td></td><td>85.7</td><td>60-120</td><td></td><td>%</td><td>11/05/09</td></s<>	surr>		85.7	60-120		%	11/05/09
Batch	XFC9018						
Method	AK102						
Instrument	HP 7890A	FID SV E F					

SGS Ref.# Client Name Project Name/# Matrix	Akiak Old H	936778 Method Blank SLR Alaska-Anchorage Akiak Old High School Tank Far Soil/Solid (dry weight)		Date/Time Batch Method Date	12/03/2009	15:23
QC results affect the fol	• •	samples:				

1096017015, 1096017018, 1096017019, 1096017020, 1096017021

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Solids						
Total Solids		100			%	11/03/09
Batch	SPT8051					
Method S	SM20 2540G					
Instrument						

SGS Ref.#	937152 Method Blank	Printed Date/Time	12/03/2009 15:23
Client Name	SLR Alaska-Anchorage	Prep Batch	XXX21959
Project Name/#	Akiak Old High School Tank Far	Method	SW3550C
Matrix	Soil/Solid (dry weight)	Date	11/05/2009

1096017001, 1096017002, 1096017003, 1096017004, 1096017005, 1096017006, 1096017007, 1096017008, 1096017009, 1096017010, 1096017011, 1096017012, 1096017013

Parameter			Results	Reporting/Control Limit	MDL	Units	Analysis Date
Semivolatile	Organic Fu	els Depart	ment				
Diesel Range Org	ganics		ND	20.0	6.20	mg/Kg	11/10/09
Surrogates							
5a Androstane <s< th=""><th>urr></th><th></th><th>90.3</th><th>60-120</th><th></th><th>%</th><th>11/10/09</th></s<>	urr>		90.3	60-120		%	11/10/09
Batch	XFC9021						
Method	AK102						
Instrument	HP 7890A	FID SV E F					

SGS Ref.#	937694	Method Blank	F	Printed D	ate/Time	12/03/2009	15:23
Client Name	SLR Alaska-Ar	nchorage	F	Prep	Batch	VXX20234	
Project Name/#	Akiak Old High	n School Tank Far			Method	SW5035A	
Matrix	Soil/Solid (dry	weight)			Date	11/06/2009	

1096017001, 1096017002, 1096017003, 1096017007, 1096017008, 1096017009, 1096017015, 1096017019, 1096017020,

1096017021

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Gasoline Range C	Organics	ND	2.50	0.750	mg/Kg	11/06/09
Surrogates						
4-Bromofluorobe	nzene <surr></surr>	107	50-150		%	11/06/09
Batch	VFC9751					
Method	AK101					
Instrument	HP 5890 Series II PID	9+FID VCA				
Benzene		ND	12.5	4.00	ug/Kg	11/06/09
Toluene		ND	50.0	15.0	ug/Kg	11/06/09
Ethylbenzene		ND	50.0	15.0	ug/Kg	11/06/09
o-Xylene		ND	50.0	15.0	ug/Kg	11/06/09
P & M -Xylene		23.8 J	50.0	15.0	ug/Kg	11/06/09
Surrogates						
1,4-Difluorobenze	ene <surr></surr>	94.4	80-120		%	11/06/09
Batch	VFC9751					
Method	SW8021B					
Instrument	HP 5890 Series II PID	+FID VCA				

SGS Ref.#	937703	Method Blank	Print	ted Da	te/Time	12/03/2009	15:23
Client Name	SLR Alaska-A	nchorage	Prep)	Batch	VXX20235	
Project Name/#	Akiak Old Hig	h School Tank Far			Method	SW5035A	
Matrix	Soil/Solid (dry	weight)]	Date	11/06/2009	

1096017006, 1096017022

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Gasoline Range (Organics	ND	2.50	0.750	mg/Kg	11/07/09
Surrogates						
4-Bromofluorobe	enzene <surr></surr>	112	50-150		0⁄0	11/07/09
Batch	VFC9751					
Method	AK101					
Instrument	HP 5890 Series II PII	D+FID VCA				
Benzene		ND	12.5	4.00	ug/Kg	11/07/09
Toluene		ND	50.0	15.0	ug/Kg	11/07/09
Ethylbenzene		ND	50.0	15.0	ug/Kg	11/07/09
o-Xylene		ND	50.0	15.0	ug/Kg	11/07/09
P & M -Xylene		ND	50.0	15.0	ug/Kg	11/07/09
Surrogates						
1,4-Difluorobenz	ene <surr></surr>	91.5	80-120		0/0	11/07/09
Batch	VFC9751					
Method	SW8021B					
Instrument	HP 5890 Series II PII	D+FID VCA				

SGS Ref.# Client Name Project Name/# Matrix	938097 Me SLR Alaska-Anchora Akiak Old High Scho Soil/Solid (dry weigh	ool Tank Fa			Printed Prep	Date/Time Batch Method Date	12/03/2009 15:23 XXX21996 SW3550C 11/10/2009
	following production samples: 096017005, 1096017010						
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date
Polynuclear A	Aromatics GC/MS						
Acenaphthylene		ND	5.00	1.50	ug/Kg		11/14/09
Acenaphthene		ND	5.00	1.50	ug/Kg		11/14/09
Fluorene		ND	5.00	1.50	ug/Kg		11/14/09
Phenanthrene		ND	5.00	1.50	ug/Kg		11/14/09
Anthracene		ND	5.00	1.50	ug/Kg		11/14/09
Fluoranthene		ND	5.00	1.50	ug/Kg		11/14/09
Pyrene		ND	5.00	1.50	ug/Kg		11/14/09
Benzo(a)Anthrace	me	ND	5.00	1.50	ug/Kg		11/14/09
Chrysene		ND	5.00	1.50	ug/Kg		11/14/09
Benzo[b]Fluorantl	hene	ND	5.00	1.50	ug/Kg		11/14/09
Benzo[k]fluoranth		ND	5.00	1.50	ug/Kg		11/14/09
Benzo[a]pyrene		ND	5.00	1.50	ug/Kg		11/14/09
Indeno[1,2,3-c,d]	pyrene	ND	5.00	1.50	ug/Kg		11/14/09
Dibenzo[a,h]anthr		ND	5.00	1.50	ug/Kg		11/14/09
Benzo[g,h,i]peryle		ND	5.00	1.50	ug/Kg		11/14/09
Naphthalene		9.66	* 5.00	1.50	ug/Kg		11/14/09
1-Methylnaphthal	ene	7.69	* 5.00	1.50	ug/Kg		11/14/09
2-Methylnaphthal		9.91	* 5.00	1.50	ug/Kg		11/14/09
Surrogates							
Terphenyl-d14 <s< td=""><td>urr></td><td>91.8</td><td>30-125</td><td></td><td>%</td><td></td><td>11/14/09</td></s<>	urr>	91.8	30-125		%		11/14/09
Batch	XMS5197						
Method	8270D SIMS						
Instrument	HP 6890/5973 MS SVQA						

SGS Ref.#	938162	Method Blank	Printed	Date/Time	12/03/2009 15:23
Client Name	SLR Alaska-	Anchorage	Prep	Batch	VXX20243
Project Name/#	Akiak Old H	igh School Tank Far		Method	SW5035A
Matrix	Soil/Solid (d	ry weight)		Date	11/07/2009

1096017004, 1096017005, 1096017009, 1096017018

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Surrogates						
4-Bromofluorobe	nzene <surr></surr>	94.1	50-150		%	11/08/09
Batch	VFC9754					
Method	AK101					
Instrument	HP 5890 Series II PII	D+HECD VBA				
Benzene		9.18 J	12.5	4.00	ug/Kg	11/08/09
Гoluene		16.8 J	50.0	15.0	ug/Kg	11/08/09
Ethylbenzene		ND	50.0	15.0	ug/Kg	11/08/09
o-Xylene		18.8 J	50.0	15.0	ug/Kg	11/08/09
Surrogates						
l,4-Difluorobenz	ene <surr></surr>	109	80-120		%	11/08/09
Batch	VFC9754					
Method	SW8021B					
Instrument	HP 5890 Series II PII	D+HECD VBA				

SGS Ref.#	938398	Method Blank	Printe	d Date/Time	12/03/2009	15:23
Client Name	SLR Alaska-Ar	nchorage	Prep	Batch	VXX20250	
Project Name/#	Akiak Old Higł	n School Tank Far		Method	SW5035A	
Matrix	Soil/Solid (dry	weight)		Date	11/10/2009	

1096017004, 1096017005

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fuel	ls Department					
Gasoline Range C	Organics	ND	2.50	0.750	mg/Kg	11/10/09
Surrogates						
4-Bromofluorober Batch Method	nzene <surr> VFC9756 AK101</surr>	110	50-150		%	11/10/09
Instrument	HP 5890 Series II PID+F	FID VCA				
o-Xylene P & M -Xylene		ND 24.3 J	50.0 50.0	15.0 15.0	ug/Kg ug/Kg	11/10/09 11/10/09
Surrogates						
1,4-Difluorobenze Batch Method Instrument	ene <surr> VFC9756 SW8021B HP 5890 Series II PID+F</surr>	93.1 FID VCA	80-120		%	11/10/09

SGS Ref.#	938585	Method Blank	Printe	d Date/Time	12/03/2009	15:23
Client Name	SLR Alaska-Aı	nchorage	Prep	Batch	VXX20258	
Project Name/#	Akiak Old Higl	n School Tank Far		Method	SW5035A	
Matrix	Soil/Solid (dry	weight)		Date	11/11/2009	

1096017010, 1096017011, 1096017012, 1096017013

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Gasoline Range (Organics	ND	2.50	0.750	mg/Kg	11/11/09
Surrogates						
4-Bromofluorobe	enzene <surr></surr>	111	50-150		%	11/11/09
Batch	VFC9760					
Method	AK101					
Instrument	HP 5890 Series II PII	D+FID VCA				
Benzene		ND	12.5	4.00	ug/Kg	11/11/09
Toluene		ND	50.0	15.0	ug/Kg	11/11/09
Ethylbenzene		ND	50.0	15.0	ug/Kg	11/11/09
o-Xylene		ND	50.0	15.0	ug/Kg	11/11/09
P & M -Xylene		24.3 J	50.0	15.0	ug/Kg	11/11/09
Surrogates						
1,4-Difluorobenz	ene <surr></surr>	93.3	80-120		%	11/11/09
Batch	VFC9760					
Method	SW8021B					
Instrument	HP 5890 Series II PII	D+FID VCA				

SGS Ref.# Client Name Project Name/# Matrix	938874 Me SLR Alaska-Anchor Akiak Old High Sch Soil/Solid (dry weigl	ool Tank Far			Printed Prep	Date/Time Batch Method Date	12/03/2009 15:23 XXX22015 SW3550C 11/13/2009
C results affect the f 1096017004	ollowing production samples:						
		Results	Reporting/Control	MDL	Units		Analysis Date
Parameter		Results	Limit	MDL	Units		Date
olynuclear A	romatics GC/MS						
Acenaphthylene		ND	5.00	1.50	ug/Kg		11/15/09
Acenaphthene		ND	5.00	1.50	ug/Kg		11/15/09
Fluorene		ND	5.00	1.50	ug/Kg		11/15/09
Phenanthrene		ND	5.00	1.50	ug/Kg		11/15/09
Anthracene		ND	5.00	1.50	ug/Kg		11/15/09
Fluoranthene		ND	5.00	1.50	ug/Kg		11/15/09
Pyrene		ND	5.00	1.50	ug/Kg		11/15/09
Benzo(a)Anthracer	ne	ND	5.00	1.50	ug/Kg		11/15/09
Chrysene		ND	5.00	1.50	ug/Kg		11/15/09
Benzo[b]Fluoranth	ene	ND	5.00	1.50	ug/Kg		11/15/09
Benzo[k]fluoranthe	ene	ND	5.00	1.50	ug/Kg		11/15/09
Benzo[a]pyrene		ND	5.00	1.50	ug/Kg		11/15/09
ndeno[1,2,3-c,d] p	yrene	ND	5.00	1.50	ug/Kg		11/15/09
Dibenzo[a,h]anthra	-	ND	5.00	1.50	ug/Kg		11/15/09
Benzo[g,h,i]peryle	ne	ND	5.00	1.50	ug/Kg		11/15/09
Surrogates							
Γerphenyl-d14 ≤su	rr>	97.8	30-125		%		11/15/09
Batch	XMS5198						
Method	8270D SIMS						
Instrument	HP 6890/5973 MS SVQA						

SGS Ref.#	939337	Method Blank	Printe	ed Date/Tim	e 12/03/2009 15:23
Client Name	SLR Alaska-A	nchorage	Prep	Batch	VXX20278
Project Name/#	Akiak Old Hig	h School Tank Far		Meth	511505571
Matrix	Soil/Solid (dry	weight)		Date	11/16/2009

1096017018

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Gasoline Range C	Organics	ND	2.50	0.750	mg/Kg	11/16/09
Surrogates						
4-Bromofluorobe	nzene <surr></surr>	92.1	50-150		0⁄0	11/16/09
Batch	VFC9776					
Method	AK101					
Instrument	HP 5890 Series II PI	D+HECD VBA				
o-Xylene		ND	50.0	15.0	ug/Kg	11/16/09
P & M -Xylene		ND	50.0	15.0	ug/Kg	11/16/09
Surrogates						
1,4-Difluorobenze	ene <surr></surr>	103	80-120		%	11/16/09
Batch	VFC9776					
Method	SW8021B					

Instrument HP 5890 Series II PID+HECD VBA

SGS Ref.#	936119 Duplicate	Printed Date/Time 12/03/2009 15:23
Client Name	SLR Alaska-Anchorage	Prep Batch
Project Name/#	Akiak Old High School Tank Far	Method
Original	1096017001	Date
Matrix	Soil/Solid (dry weight)	

1096017001, 1096017002, 1096017003, 1096017004, 1096017005, 1096017006, 1096017007, 1096017008, 1096017009, 1096017010, 1096017011, 1096017012, 1096017013

Parameter		Original Result	QC Result	Units	RPD	RPD Limits	Analysis Date
Solids							
Total Solids		78.2	77.3	%	1	(< 15)	10/30/2009
Batch Method Instrument	SPT8049 SM20 2540G						

SGS Ref.# Client Name Project Name/# Original Matrix	936424 SLR Alaska-Anchora Akiak Old High Scho 1096909001 Soil/Solid (dry weigh	ol Tank Far			Printed I Prep	Date/Time Batch Method Date	12/03/2009	15:23
	following production samples:							
1096017014								
Parameter		Original Result	QC Result	Units	RPD	RPD Limits		Analysis Date
Solids								
Total Solids		89.6	89.9	%	0	(< 15)		11/02/2009
Batch	SPT8050							
Method Instrument	SM20 2540G							

SGS Ref.# Client Name Project Name/#	936779 Du SLR Alaska-Anchorage Akiak Old High School	plicate Tank Far			Printed I Prep	Date/Time Batch Method	12/03/2009	15:23
Original Matrix	1096045001 Soil/Solid (dry weight)					Date		
	llowing production samples: 017018, 1096017019, 109601	7020, 1096017021						
Parameter		Original Result	QC Result	Units	RPD	RPD Limits		Analysis Date
Solids								
Tatal Calida		00.4	00.6	0/	0	(< 15)		11/02/2000

Total Solids		90.4	90.6	%	0	(<15)	11/03/2009
Batch Method Instrument	SPT8051 SM20 2540G						

SGS Ref.# Client Name Project Name/# Matrix	936744 SLR Alaska	Lab Control S Lab Control S I-Anchorage High School T dry weight)	Sample Du	plicate		Printe Prep	d Date/Time Batch Method Date	12/03/2009 XXX21950 SW3550C 11/04/2009	15:23
QC results affect the fol 1096017015, 1096	01		17020 10	96017021					
Parameter	017010, 10900	,17019, 10900	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Ore	ganic Fuel	s Departme	ent						
Diesel Range Organica	5	LCS LCSD	176 190	105 114	(75-125)	8	(< 20)	167 mg/Kg 167 mg/Kg	11/05/2009 11/05/2009
Surrogates									
5a Androstane <surr></surr>		LCS LCSD		93 100	(60-120)	7			11/05/2009 11/05/2009
Batch X	FC9018								

MethodAK102InstrumentHP 7890AFID SV E F

SGS Ref.#	937153 Lab Control Sample	ab Control Sample Printed Date/Time	
	937154 Lab Control Sample Duplicate	Prep Bat	ch XXX21959
Client Name	SLR Alaska-Anchorage	Met	hod SW3550C
Project Name/#	Akiak Old High School Tank Far	Date	e 11/05/2009
Matrix	Soil/Solid (dry weight)		

1096017001, 1096017002, 1096017003, 1096017004, 1096017005, 1096017006, 1096017007, 1096017008, 1096017009, 1096017010, 1096017011, 1096017012, 1096017013

Parameter	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Organic Fue	els Department						
Diesel Range Organics	LCS 171	103	(75-125)			167 mg/Kg	11/10/2009
	LCSD 161	96		6	(<20)	167 mg/Kg	11/10/2009
Surrogates							
5a Androstane <surr></surr>	LCS	102	(60-120)				11/10/2009
	LCSD	98		4			11/10/2009

Method	AK102	
Instrument	HP 7890A	FID SV E F

SGS Ref.#	937695 Lab Control Sample	Printed Date/Time		12/03/2009	15:23
	937696 Lab Control Sample Duplicate	Prep	Batch	VXX20234	
Client Name	SLR Alaska-Anchorage		Method	SW5035A	
Project Name/#	Akiak Old High School Tank Far		Date	11/06/2009	
Matrix	Soil/Solid (dry weight)				

1096017001, 1096017002, 1096017003, 1096017007, 1096017008, 1096017009, 1096017015, 1096017019, 1096017020, 1096017021

Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Department								
Benzene	LCS	1430	114	(80-125)			1250 ug/Kg	11/06/2009
	LCSD	1360	109		5	(< 20)	1250 ug/Kg	11/06/2009
Toluene	LCS	1490	120	(85-120)			1250 ug/Kg	11/06/2009
	LCSD	1430	114		4	(< 20)	1250 ug/Kg	11/06/2009
Ethylbenzene	LCS	1550	124	(85-125)			1250 ug/Kg	11/06/2009
	LCSD	1480	119	(00 120)	4	(< 20)	1250 ug/Kg	11/06/2009
o-Xylene	LCS	1470	117	(85-125)			1250 ug/Kg	11/06/2009
0-Aytene	LCSD	1410	117	(85-125)	4	(< 20)	1250 ug/Kg 1250 ug/Kg	11/06/2009
P & M -Xylene	LCS	3040	122	(85-125)			2500 ug/Kg	11/06/2009
	LCSD	2930	117	(85-125)	4	(< 20)	2500 ug/Kg 2500 ug/Kg	11/06/2009
Surrogates								
1,4-Difluorobenzene <surr></surr>	LCS		99	(80-120)				11/06/2009
	LCSD		99		0			11/06/2009

Batch	VFC9751
Method	SW8021B
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.#	937697 Lab Control Sample	Printed I	Printed Date/Time 12/03/2009		
	937698 Lab Control Sample Duplicate	Prep	Batch	VXX20234	
Client Name	SLR Alaska-Anchorage		Method	SW5035A	
Project Name/#	Akiak Old High School Tank Far		Date	11/06/2009	
Matrix	Soil/Solid (dry weight)				

1096017001, 1096017002, 1096017003, 1096017007, 1096017008, 1096017009, 1096017015, 1096017019, 1096017020, 1096017021

	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
LCS	12.6	112	(60-120)			11.3 mg/Kg	11/06/2009
LCSD	12.6	112		0	(<20)	11.3 mg/Kg	11/06/2009
LCS		114	(50-150)				11/06/2009
LCSD		113		1			11/06/2009
	LCSD	Results LCS 12.6 LCSD 12.6 LCS	Results Recov LCS 12.6 112 LCSD 12.6 112 LCS 11.4 114	Results Recov Limits LCS 12.6 112 (60-120) LCSD 12.6 112 (50-150)	Results Recov Limits RPD LCS 12.6 112 (60-120) LCSD 12.6 112 0 LCS 114 (50-150)	Results Recov Limits RPD Limits LCS 12.6 112 (60-120) (<20)	Results Recov Limits RPD Limits Amount LCS 12.6 112 (60-120) 11.3 mg/Kg 11.3 mg/Kg LCSD 12.6 112 0 (<20)

Batch	VFC9751
Method	AK101
Instrument	HP 5890 Series II PID+FID VCA

GGS Ref.# 937704 Lab Control Sample 937705 Lab Control Sample Duplicate Client Name SLR Alaska-Anchorage Project Name/# Akiak Old High School Tank Far							ed Date/Time Batch Method Date	12/03/2009 VXX20235 SW5035A 11/06/2009	15:23
Matrix		(dry weight)	unix i ui					11,00,200,	
QC results affect the for 1096017006, 109		ion samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels	Department	2							
Benzene		LCS	1360	109	(80-125)			1250 ug/Kg	11/07/2009
		LCSD	1270	101		7	(< 20)	1250 ug/Kg	11/07/2009
Toluene		LCS	1430	115	(85-120)			1250 ug/Kg	11/07/2009
		LCSD	1340	107		7	(< 20)	1250 ug/Kg	11/07/2009
Ethylbenzene		LCS	1480	118	(85-125)			1250 ug/Kg	11/07/2009
		LCSD	1390	112		6	(< 20)	1250 ug/Kg	11/07/2009
o-Xylene		LCS	1410	112	(85-125)			1250 ug/Kg	11/07/2009
		LCSD	1320	106		6	(< 20)	1250 ug/Kg	11/07/2009
P & M -Xylene		LCS	2910	117	(85-125)			2500 ug/Kg	11/07/2009
		LCSD	2730	109		7	(< 20)	2500 ug/Kg	11/07/2009
Surrogates									
1,4-Difluorobenzene	<surr></surr>	LCS		97	(80-120)				11/07/2009
		LCSD		97	. ,	0			11/07/2009

Batch	VFC9751
Method	SW8021B
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name Project Name/# Matrix	937707 I SLR Alaska	ligh School T	ample Duj	plicate	Printe Prep	ed Date/Time Batch Method Date	12/03/2009 VXX20235 SW5035A 11/06/2009	15:23	
QC results affect the follo 1096017006, 10960		on samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels De	epartment								
Gasoline Range Organio	cs	LCS LCSD	12.6 12.3	112 110	(60-120)	2	(< 20)	11.3 mg/Kg 11.3 mg/Kg	11/07/2009 11/07/2009
Surrogates									
4-Bromofluorobenzene	<surr></surr>	LCS		116	(50-150)				11/07/2009
		LCSD		117		1			11/07/2009
Batch VI	FC9751								

Method AK101

Instrument HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name Project Name/# Matrix	938098 Lab Contr SLR Alaska-Anchora Akiak Old High Scho Soil/Solid (dry weigh	ol Tank Far	d Date/Time Batch Method Date	12/03/2009 XXX21996 SW3550C 11/10/2009	15:23			
	ollowing production samples: 06017005, 1096017010							
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

SGS Ref.#	938098	Lab Control	Sample			Printed Prep	Date/Time Batch	12/03/2009 XXX21996	15:23
Client Name Project Name/#		ka-Anchorage d High School	Tank Far				Method Date	SW3550C 11/10/2009	
Matrix	Soil/Solid	(dry weight)							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear Arom	atics GC	/MS							
Acenaphthylene		LCS	19.1	86	(45-102)			22.2 ug/Kg	11/14/2009
Acenaphthene		LCS	18.8	84	(45-99)			22.2 ug/Kg	11/14/2009
Fluorene		LCS	20.3	91	(50-107)			22.2 ug/Kg	11/14/2009
Phenanthrene		LCS	21.4	96	(50-110)			22.2 ug/Kg	11/14/2009
Anthracene		LCS	19.4	87	(28-103)			22.2 ug/Kg	11/14/2009
Fluoranthene		LCS	22.2	100	(55-115)			22.2 ug/Kg	11/14/2009
Pyrene		LCS	21.2	95	(45-120)			22.2 ug/Kg	11/14/2009
Benzo(a)Anthracene		LCS	20.9	94	(40-110)			22.2 ug/Kg	11/14/2009
Chrysene		LCS	21.6	97	(55-110)			22.2 ug/Kg	11/14/2009
Benzo[b]Fluoranthene		LCS	21.9	99	(45-115)			22.2 ug/Kg	11/14/2009
Benzo[k]fluoranthene		LCS	22.0	99	(45-120)			22.2 ug/Kg	11/14/2009
Benzo[a]pyrene		LCS	18.8	85	(10-102)			22.2 ug/Kg	11/14/2009
Indeno[1,2,3-c,d] pyrer	ne	LCS	22.8	103	(40-120)			22.2 ug/Kg	11/14/2009
Dibenzo[a,h]anthracen	e	LCS	22.8	103	(40-125)			22.2 ug/Kg	11/14/2009
Benzo[g,h,i]perylene		LCS	23.0	103	(40-118)			22.2 ug/Kg	11/14/2009
Naphthalene		LCS	29.1	131 *	(40-92)			22.2 ug/Kg	11/14/2009
1-Methylnaphthalene		LCS	27.6	124 *	(30-97)			22.2 ug/Kg	11/14/2009
2-Methylnaphthalene		LCS	29.8	134 *	(45-96)			22.2 ug/Kg	11/14/2009
Surrogates Terphenyl-d14 <surr></surr>		LCS		89	(30-125)				11/14/2009

SGS Ref.#	938098 Lab Control Sample			Printed Prep	Date/Time Batch	12/03/2009 XXX21996	15:23
Client Name Project Name/# Matrix	SLR Alaska-Anchorage Akiak Old High School Tank Far Soil/Solid (dry weight)				Method Date	SW3550C 11/10/2009	
Parameter	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

 Batch
 XMS5197

 Method
 8270D SIMS

 Instrument
 HP 6890/5973 MS SVQA

SGS Ref.#	938163 Lab	Control S	ample			Printe	d Date/Time	12/03/2009	15:23
	938164 Lab	Control S	ample Dup	olicate		Prep	Batch	VXX20243	
Client Name	SLR Alaska-And	chorage					Method	SW5035A	
Project Name/#	Akiak Old High	School T	`ank Far				Date	11/07/2009	
Matrix	Soil/Solid (dry w	veight)							
QC results affect the follow	wing production sar	nples:							
1096017004, 109601	7005, 109601700	9, 10960	017018						
D			QC	Pct	LCS/LCSD	DDD	RPD	Spiked	Analysis
Parameter			Results	Recov	Limits	RPD	Limits	Amount	Date
Volatile Fuels De	partment								
	<u>r</u>								
Benzene		LCS	1330	106	(80-125)			1250 ug/Kg	11/08/2009
		LCSD	1340	107		1	(< 20)	1250 ug/Kg	11/08/2009
Toluene		LCS	1390	111	(85-120)			1250 ug/Kg	11/08/2009
		LCSD	1390	111		0	(< 20)	1250 ug/Kg	11/08/2009
Ethylbenzene		LCS	1400	112	(85-125)			1250 ug/Kg	11/08/2009
		LCSD	1400	112		0	(< 20)	1250 ug/Kg	11/08/2009
o-Xylene		LCS	1400	112	(85-125)			1250 ug/Kg	11/08/2009
2		LCSD	1370	110	· · · ·	2	(< 20)	1250 ug/Kg	11/08/2009
a									
Surrogates									
l,4-Difluorobenzene <su< td=""><td>rr></td><td>LCS</td><td></td><td>105</td><td>(80-120)</td><td></td><td></td><td></td><td>11/08/2009</td></su<>	rr>	LCS		105	(80-120)				11/08/2009
		LCSD		105		0			11/08/2009

Batch	VFC9754
Method	SW8021B
Instrument	HP 5890 Series II PID+HECD VBA

SGS Ref.# Client Name Project Name/# Matrix	938400 I SLR Alaska	ligh School T	Sample Dup	olicate		Printeo Prep	l Date/Time Batch Method Date	12/03/2009 VXX20250 SW5035A 11/10/2009	15:23
QC results affect the fol 1096017004, 1096		on samples:							
Parameter	017005		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels I	Department								
o-Xylene		LCS	1440	115	(85-125)			1250 ug/Kg	11/10/2009
		LCSD	1360	109		6	(< 20)	1250 ug/Kg	11/10/2009
P & M -Xylene		LCS	2990	119	(85-125)			2500 ug/Kg	11/10/2009
		LCSD	2800	112		7	(< 20)	2500 ug/Kg	11/10/2009
Surrogates									
1,4-Difluorobenzene <	surr>	LCS		98	(80-120)				11/10/2009
		LCSD		99		0			11/10/2009

Batch	VFC9756
Method	SW8021B
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name Project Name/# Matrix	938402 SLR Alaska	Lab Control S Lab Control S I-Anchorage High School T dry weight)	ample Duj	plicate		Printe Prep	ed Date/Time Batch Method Date	12/03/2009 VXX20250 SW5035A 11/10/2009	15:23
QC results affect the follo 1096017004, 10960	• •	on samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartment								
Gasoline Range Organi	cs	LCS LCSD	12.5 12.7	111 113	(60-120)	2	(< 20)	11.3 mg/Kg 11.3 mg/Kg	11/10/2009 11/10/2009
Surrogates									
4-Bromofluorobenzene	<surr></surr>	LCS LCSD		115 115	(50-150)	0			11/10/2009 11/10/2009
Batch VI	FC9756								

Method AK101

Instrument HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name	938586 938587 SLP Alask	Lab Control S Lab Control S ca-Anchorage	-	olicate		Printe Prep	d Date/Time Batch Method	12/03/2009 VXX20258 SW5035A	15:23
Project Name/#		High School T	ank Far				Date	11/11/2009	
Matrix	Soil/Solid	(dry weight)							
QC results affect the follo	owing product	ion samples:							
1096017010, 10960	17011, 1096	017012, 10960	017013						
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartment	2							
Benzene		LCS	1110	89	(80-125)			1250 ug/Kg	11/11/2009
		LCSD	1110	89		0	(< 20)	1250 ug/Kg	11/11/2009
Toluene		LCS	1240	99	(85-120)			1250 ug/Kg	11/11/2009
		LCSD	1230	99		0	(< 20)	1250 ug/Kg	11/11/2009
Ethylbenzene		LCS	1290	103	(85-125)			1250 ug/Kg	11/11/2009
-		LCSD	1300	104		0	(< 20)	1250 ug/Kg	11/11/2009
o-Xylene		LCS	1240	100	(85-125)			1250 ug/Kg	11/11/2009
		LCSD	1250	100		1	(< 20)	1250 ug/Kg	11/11/2009
P & M -Xylene		LCS	2560	102	(85-125)			2500 ug/Kg	11/11/2009
		LCSD	2560	103		0	(< 20)	2500 ug/Kg	11/11/2009
Surrogates									
1,4-Difluorobenzene <s< td=""><td>urr></td><td>LCS</td><td></td><td>96</td><td>(80-120)</td><td></td><td></td><td></td><td>11/11/2009</td></s<>	urr>	LCS		96	(80-120)				11/11/2009
		LCSD		97	. ,	0			11/11/2009

Batch	VFC9760
Method	SW8021B
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name Project Name/# Matrix		gh School T	Sample Duj	olicate		Printe Prep	d Date/Time Batch Method Date	12/03/2009 VXX20258 SW5035A 11/11/2009	15:23
QC results affect the follo 1096017010, 109601			017013						
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels De	epartment								
Gasoline Range Organic	S	LCS LCSD	11.5 12.0	102 107	(60-120)	4	(< 20)	11.3 mg/Kg 11.3 mg/Kg	
Surrogates		LCDD	12.0	107		·	(20)	11.0	
4-Bromofluorobenzene «	<surr></surr>	LCS		116	(50-150)				11/11/2009
		LCSD		115		1			11/11/2009
Batch VF	C9760								

BatchVFC9760MethodAK101

Instrument HP 5890 Series II PID+FID VCA

SGS Ref.#	938875	Lab Control	Sample			Printed Prep	Date/Time Batch	12/03/2009 XXX22015	15:23
Project Name/# Aki	Akiak Ole	ka-Anchorage d High School l (dry weight)	Fank Far				Method Date	SW3550C 11/13/2009	
QC results affect the fol 1096017004	lowing produc	ction samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear Aron	matics GC	/MS							
Acenaphthylene		LCS	18.5	83	(45-102)			22.2 ug/Kg	11/15/2009
Acenaphthene		LCS	18.4	83	(45-99)			22.2 ug/Kg	11/15/2009
Fluorene		LCS	20.4	92	(50-107)			22.2 ug/Kg	11/15/2009
Phenanthrene		LCS	20.7	93	(50-110)			22.2 ug/Kg	11/15/2009
Anthracene		LCS	18.8	85	(28-103)			22.2 ug/Kg	11/15/2009
Fluoranthene		LCS	23.6	106	(55-115)			22.2 ug/Kg	11/15/2009
Pyrene		LCS	22.4	101	(45-120)			22.2 ug/Kg	11/15/2009
Benzo(a)Anthracene		LCS	20.8	94	(40-110)			22.2 ug/Kg	11/15/2009
Chrysene		LCS	20.4	92	(55-110)			22.2 ug/Kg	11/15/2009
Benzo[b]Fluoranthene		LCS	19.3	87	(45-115)			22.2 ug/Kg	11/15/2009
Benzo[k]fluoranthene		LCS	19.1	86	(45-120)			22.2 ug/Kg	11/15/2009
Benzo[a]pyrene		LCS	16.6	75	(10-102)			22.2 ug/Kg	11/15/2009
Indeno[1,2,3-c,d] pyre	ne	LCS	21.7	98	(40-120)			22.2 ug/Kg	11/15/2009
Dibenzo[a,h]anthracer	ie	LCS	22.6	102	(40-125)			22.2 ug/Kg	11/15/2009
Benzo[g,h,i]perylene		LCS	21.2	95	(40-118)			22.2 ug/Kg	11/15/2009
Surrogates									
[erphenyl-d14 <surr></surr>		LCS		100	(30-125)				11/15/2009

 Batch
 XMS5198

 Method
 8270D SIMS

 Instrument
 HP 6890/5973 MS SVQA

SGS Ref.# Client Name Project Name/# Matrix	939339 SLR Alaska	Lab Control S Lab Control S a-Anchorage High School T dry weight)	ample Duj	olicate		Printed Prep	l Date/Time Batch Method Date	12/03/2009 VXX20278 SW5035A 11/16/2009	15:23
QC results affect the follo	owing production	on samples:							
1096017018 Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartment								
o-Xylene		LCS	1320	106	(85-125)			1250 ug/Kg	11/16/2009
		LCSD	1330	107		1	(<20)	1250 ug/Kg	11/16/2009
P & M -Xylene		LCS	2690	108	(85-125)			2500 ug/Kg	11/16/2009
		LCSD	2710	109		1	(< 20)	2500 ug/Kg	11/16/2009
Surrogates									
1,4-Difluorobenzene <s< td=""><td>surr></td><td>LCS</td><td></td><td>100</td><td>(80-120)</td><td></td><td></td><td></td><td>11/16/2009</td></s<>	surr>	LCS		100	(80-120)				11/16/2009
		LCSD		100		0			11/16/2009

Batch	VFC9776
Method	SW8021B
Instrument	HP 5890 Series II PID+HECD VBA

Client Name S Project Name/#	Akiak Old	Lab Control S Lab Control S ka-Anchorage l High School T (dry weight)	ample Du	plicate		Printo Prep	ed Date/Time Batch Method Date	12/03/2009 VXX20278 SW5035A 11/16/2009	15:23
QC results affect the follow	ing produc	tion samples:							
1096017018 Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Dep	artmen	t							
Gasoline Range Organics		LCS	12.5	111	(60-120)			11.3 mg/Kg	11/16/2009
		LCSD	12.1	108		3	(< 20)	11.3 mg/Kg	11/16/2009
Surrogates									
4-Bromofluorobenzene <s< td=""><td>surr></td><td>LCS</td><td></td><td>94</td><td>(50-150)</td><td></td><td></td><td></td><td>11/16/2009</td></s<>	surr>	LCS		94	(50-150)				11/16/2009
		LCSD		95		0			11/16/2009
Potob VEC	0776								

BatchVFC9776MethodAK101

Instrument HP 5890 Series II PID+HECD VBA

SGS	

SGS Ref.#	938099 938100	Matrix S Matrix S	Spike Spike Duplicate			Prin Prep	ted Date/Time Batch Method Date	12/03/200 XXX2199 Sonicatior 11/10/200	6 Extraction Soil 8270
Original Matrix	1096016005 Soil/Solid (dry v	veight)							
QC results affect the follo 1096017004, 109601		-							
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear Aroma	atics GC/MS								
Acenaphthylene	MS	ND	0.00	0*	(45-102)			26.4 ug/l	Kg 11/23/2009
	MSD		0.00	0*		0	(< 30)		Kg 11/23/2009
Acenaphthene	MS	ND	0.00	0*	(45-99)			26.4 ug/l	Kg 11/23/2009
	MSD		0.00	0*		0	(< 30)		Kg 11/23/2009
Fluorene	MS	4090 J	0.00	0*	(50-107)			26.4 ug/l	Kg 11/23/2009
	MSD		4071	15,500*		0	(< 30)	26.3 ug/l	Kg 11/23/2009
Phenanthrene	MS	ND	0.00	0*	(50-110)			26.4 ug/l	Kg 11/23/2009
	MSD		0.00	0*		0	(< 30)	26.3 ug/l	Kg 11/23/2009
Anthracene	MS	ND	0.00	0*	(28-103)			26.4 ug/l	Kg 11/23/2009
	MSD		0.00	0*		0	(< 30)	26.3 ug/l	Kg 11/23/2009
Fluoranthene	MS	1380	1357	-75*	(55-115)			26.4 ug/l	Kg 11/15/2009
	MSD		1381	27*		2	(< 30)	26.3 ug/l	Kg 11/15/2009
Pyrene	MS	1220	1190	-81*	(45-120)			26.4 ug/l	Kg 11/15/2009
	MSD		1214	-7*		2	(< 30)		Kg 11/15/2009
Benzo(a)Anthracene	MS	232 J	246	936*	(40-110)			26.4 ug/l	Kg 11/15/2009
	MSD		261	990*		5	(< 30)		ζg 11/15/2009
Chrysene	MS	276 J	292	1,100*	(55-110)			-	Kg 11/15/2009
2	MSD		300	1,140*		3	(< 30)		ζg 11/15/2009
Benzo[b]Fluoranthene	MS	126 J	135	512*	(45-115)			-	Kg 11/15/2009
	MSD		144	550*		7	(< 30)		ζg 11/15/2009
Benzo[k]fluoranthene	MS	ND	0.00	0*	(45-120)			-	Kg 11/15/2009
	MSD		0.00	0*		0	(< 30)		ζg 11/15/2009
Benzo[a]pyrene	MS	ND	0.00	0*	(10-102)			-	Kg 11/15/2009
	MSD		0.00	0*		0	(< 30)	·· -	ζg 11/15/2009
Indeno[1,2,3-c,d] pyrene		ND	0.00	0*	(40-120)				Kg 11/15/2009
	MSD		0.00	0*		0	(< 30)		ζg 11/15/2009
Dibenzo[a,h]anthracene	MS	ND	0.00	0*	(40-125)			-	Kg 11/15/2009
	MSD		0.00	0*	. ,	0	(< 30)		Kg 11/15/2009
Benzo[g,h,i]perylene	MS	ND	0.00	0*	(40-118)		()	-	-8 Kg 11/15/2009
- LO, , Jr - J •	MSD		0.00	0*	. ,	0	(< 30)		ζg 11/15/2009
Naphthalene	MS	63000	58095		(40-92)		. /	e	Kg 11/23/2009
1	MSD		64643	6,260*	. /	11	(< 30)		ζg 11/23/2009
1-Methylnaphthalene	MS	82300	73810		(30-97)		× /	-	Kg 11/23/2009
·····)···p	MSD		82262	-130*		11	(< 30)		ζg 11/23/2009
2-Methylnaphthalene	MS	100000	89405		(45-96)		()	-	Kg 11/23/2009
2 mony maphinatone	MSD	100000	99405	-40,800	()	11	(< 30)		Cg 11/23/2009 Cg 11/23/2009

SGS Ref.# Original	938099 938100 10960160		Spike Spike Duplic	ate		Printee Prep	d Date/Time Batch Method Date	12/03/200 XXX2199 Sonicatior 11/10/200	6 n Extraction Soil 8270
Matrix	Soil/Solid	(dry weight)							
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear	Aromatics GC	/ms							
Terphenyl-d14 <s< td=""><td>surr></td><td>MS</td><td>27.5</td><td>104</td><td>(30-125)</td><td></td><td></td><td></td><td>11/15/2009</td></s<>	surr>	MS	27.5	104	(30-125)				11/15/2009
		MSD	30.5	116		10			11/15/2009
Batch Method Instrument	XMS5198 8270D SIMS HP 6890/5973	MS SVQA							

US CA		S	GS Er CHAI	SGS Environ CHAIN OF		al Se ODY	mental Services Inc. CUSTODY RECORD		• • • •	Locations - Alaska - New Jersey - North Carolina	Locations Nationwids A Maryland Jersey • New York Carolina • Ohio	and	
107							~			WWW	www.us.sgs.com		
	Internationa		8 1	с Г С	6	sgs Re	SGS Reference #: () () () () () ()	C H	har	20 20 20	Peer Onderhage	0	ы С
CUNIACI: UNISTI	UNISTING DENTE PHONE NO 40+		+++	UCHT - 8H4	2	1	Preservatives	TIVOVI		>			
PROJECT: ECHOOL TANK FAIR MITERPUSID#: 005, 0005, 09017	old High min	E/PWSID# : {	022,0	065. O	707		LE Used	5				_	
REPORTS TO CHINSTING BENTEMALL	ting Bentz	IAIL∶				voz	2						*****
INVOICE TO:		OUOTE #:				τ×·							
S	~ ~	P.O. # 005. 00105. 0901	0000	50	H	<u>ة</u> س z س	Multi Multi Incremental	SHI Os	57.		1/2	\d'	
LAB NO.	SAMPLE IDENTIFICATION	<u> </u>	DATE	TIME	MATRIX/ MATRIX CODE	******	Samples	Second Se			AAAA	F	REMARKS/ LOC ID
	11-St	0/2,0	0/29109 1	1513	SO	2	R X X				\$ }		
	+S-12	20	10/29/09 11:	1526	SO	2	Z X X						
	rtS-13	2/01	1 10/152/01	<u>ज</u> ज	Я	7	N N		ALX A	UN R	1		HS-13 thru
	1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	481	1918/101		R	ni.	XXV		CA A S		ブー		HS-21 hold
	HS-15	1N/2	10/28 09 1	032	R	2	X X J	R.	ALX V	Ш И	, ,Ū		Samples-
	112-11 ⁰				क्र	d.	X X L		CAN C	Ц Ц	9		Will contact
	<u>[]</u>		19840		\$	0	XX		L S O		1		on Monday
	HS-18	10 (2	0 (28 109 1	147	SO	0	E XX	2			- 18		Whether to
	HS-19	70	0 28/09 1	158	R	2	X X		N A V A V	アレビ	<u>کے</u> (م		I un or not
	HS-20	2/01	10/28/09 1	356	R	7	ل الم الم				~ 10	6	
Collected Relinquished By:(1)	The Date			Received By:	80 ⁻¹		DOD Project?	(? YES	Q	Spec	Special Deliverable Requirements:	Requirem	ents:
Christian by	Schtz Wa	2 2 2	Ş				Cooler ID		Tank-Fo	A B			•
Relinquished By; (2)	Date	T		Received By:	;		C Parter	Structure ound	Time and-	Sequested Turnaround Time and-or Special Instructions:		13 thru	M
Relinquished By: (3)	Date	Time		Received By:			3			-ST	71		*****
2							Samples Received Cold?	ceived Colo	1? YES	2	Chain of	Custody S	Chain of Custody Seat: (Circle)
Relinquished By: (4)	Date	<u>8</u>		Received For	· Laboratory By:	y By:		Cooler	er	p	INTACT	BROKEN	N ABSENT
							Temperature C	ç	:•				
ロ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 いちに Ruichese Drive Withminuter NC 28405 Tel: (910) 3561-4003 Fax: (910) 3561-4557	ge, AK 99518 Tel: (907) 56 ^n NC Эядля ты⊡а≀л) 20	12-2343 Fax: ((907) 561-53 (910) 350-15	01 157			http://www.sos.com/erms and conditions.htm	Vierms and o	onditions htr			- e	White - Retained by Lab Pink - Retained by Client

http://www.sos.com/terms and conditions htm

S'A			SGS I CH/	S Environ CHAIN OF	ment	al Serv ODY R	SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD	Locations I • Alaska • New Jersey • North Carolina • West Virdinia	Locations Nationwide a • Maryland Jersey • New York Carolina • Ohio	
108 0								www.	www.us.sgs.com	
GIENT: SLP	2 International	ional	Corp			SGS Reference #:	ance #			a, W
CONTACT: C MY	istina Bent	2 PHONE N	12-70Pio	18-792	0	<u> シ</u>	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nalo 1+ change une		
PROJECT: PX10	PROJECT PLIGK OLD HIGH SITE/PWSID#: COS, COS, OIS	SITE/PWS	1002 ,	VU65, C	9017	UJ				
REPORTS TO CV	Christing Bentzeman. Mike Rieser	BEMAIL:								
INVOICE TO:	SLP	QUOTE #	аиотеж P.O.#. ООБ, ООЬ 5, 09 01 7	5,0901	4	A – A Mi= Mutu Incremental	1910	/ / still	11/2-4/11	
LAB NO.	SAMPLE IDENTIFICATION	ATION	DATE	TIME	MATRIX/ MATRIX/ CODE		10/25/	- Ad	1949/	REMARKS/ LOC ID
	HS-21		10/25/04	0hHl	50	2 9	XX	ANIALYA	E-21	
	-ts-TB		10/28/191	1100	Sð	2 D	X			Irip Blank
										*
					•					
Collected/Relinquished/By:	lished By:(1)/	Date	Ľ	Received By:	- 54) - -	CA11			Special Deliverable Requirements;	tents;
	N CARA		1000		*		Cooler ID HS.	COOLER ID A STANK FORM		
Relinquished By: (2)	(2)	Date	Time	Received By:	ž		Requested Turnaround Tirr	Requested Turnaround Time and or Special Instructions: $\sum \mathcal{L}_{\mathcal{M}} \wedge \mathcal{A} \wedge \mathcal{L}_{\mathcal{M}}$	structions;	
Relinquished By: (3)	(3)	Date	Time	Received By:	y:			M M		
a - and an and a star and a star a							Samples Received Cold?	Cold? YES NO	Chain of Custody Seal: (Circle)	seal: (Circle)
Reinquished By: (4)	(4)	Date	e	Received For	or Laboratory By	y By:	Temperature C:	Cooler TB	INTACT BROKEN	EN ABSENT
D 200 W. Potter Drive A	0 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301	(907) 562-2343	Eax: (907) 561	1-5301 1-5301			http://www.sca.com/terms and conditions htm	ero coardilitoris. Hita		White - Retained by Lab Pink - Retained by Client

1096017	www.us.sgs	_	bage - ot					C C REMARKS/ LOC ID	All samples	15	hankin	one sind le	cooler	(HS Tank	Farm)				Special Deliverable Requirements:		structions:			Chain of Custody Seal: (Circle)	MARCO BROKEN ABSENT	White - Retained by Lab Pink - Retained by Client
es Inc. • New Jersey • North Carolina • West Virginia	MMM	#		Preservatives MeOH	ed		$\rightarrow O$			X									DOD Project? YES (NO)	S	Requested Turnaround Time and-or Special Instructions:	Standard		Samples Received Cold? YES NO	ん Cooler TB Temperatureで、 ス ・ パ	http://www.sgs.com/terms and conditions.htm
mental Services Inc. CUSTODY RECORD		SGS Reference #:		# SAMPLE	SOZ		T Z − Z Multi Incremental		2 G	Ĕ	2 G		Ť	_	2 G			Y							ory By:	- Htt
SGS Environmen CHAIN OF CUS	2.1		PHONE NO: OCH-744 & -7930	SITE/PWSID#: OQ5. ONL5, 0901			£1060 0	TIME MATRIX/ MATRIX CODE	1122 SO	1131 SO	1332 SQ	1345 SO	1349 SO	1352 SO	1410 SO	1418 SO	1425 SO	1512 SO	Received By:	Ĺ	Received By:		Received By:		Received For Laboratory By:	
SGS E CH/		COLD	H-FOP:ON	/sid# :002. (auote #: P.O. #: OO5 , OO65, O901	DATE	10/28/09	10/28/09	10/28/09	10/28/09	10/28/09		10/28/09	10/28/01	10/28/09	10/29/09		1000	Time				Time /62 o	13 Fax: (907) 561- 03 Fax: (910) 350-
		ional	HONE +				аиоте # P.O. #: О	FICATION												10/30/01	Date		Date		Date 200	el: (907) 562-234 el: (910) 350-19(
SGS	-	2 International	J		REPORTS TO: Christing Bentz	IIKE KIESEV	SLR	SAMPLE IDENTIFICATION	HS-1	HS-2	HS-3	HS-4	HS-5	HS-6	F-SH	HS-8	HS-9	HS-10	quished By:(1)	T Devit	y: (2)		y: (3)			□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 □ 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557
S	109	GIENT SLR	CONTACT: Christing	PROJECT: AK	REPORTS TO:	2		LAB NO.	@AB	(S)	A D	(4) A-C	J-4	© A8	6	8	€	50A-C	Collected/Relinquished By:(1)	Enistim	Relinquished By: (2)		Relinquished By: (3)		Relinquished By: (4)	□ 200 W. Potter Drive □ 550 Business Drive

N	SGS		SGS I CHJ	SGS Enviror CHAIN OF	imenta CUST	mental Services In CUSTODY RECORD	nmental Services Inc. custopy RECORD	Ö	1096017	•	Alter State Street
110											i set i
GENT: SL	R Internationa	onalc	Orp			SGS Reference #:	лсе #:	ć	Dade	2 2 0	
CONTACT:	CONTACT: Christing Bertz PHONE NO: 9/7-748-7930	TT PHONE N	E-ENP:0	of-24	- UC						
PROJECT:	PROJECT: ALIOL OLD HIGH , SITEPWSID#: 0 05, 0005, 09017	SITE/PWS	10#:0 O2.	OD65.C	FIOR	# SAMPLE					
REPORTS TO:	REPORTS TO: CHINS TIMA BENTE	LT EMAIL:					Re	/ /			
-	VIIKE KIESEL					0				_	
	SLR	аиоте # Р.О. #: <i>(</i>)	:# 005.0065.090	5- 0901	t,	A − MI= Multi E Incremental	02/8/02	544			
LAB NO.	SAMPLE IDENTIFICATION	CATION	DATE	TIME	MATRIX/ MATRIX CODE	-	1/2/1/			/ REMARKS/ LOC ID	
() AB	HS-II		10/29/09	1513	20	29	X				
(e)	HS-12		10/29/09	1526	Sð	2	X				
1	HS-13		60/62/01	1515	8	26	X			HS-13 thru	~
(Y)	HS-14		10/28/09	1011	SD	26	X			HS-21 hok	
6	HS-15		10/28/09	1032	8	2	X			Scumples-	1
(?)	HS-16	-	10/28/09	1051	R	2	X			will contact	1
(£)	+1-SH		10/22/01	0111	R	26	X			on Monday	1
3	HS-18		10/28/09	1147	S	26	X			whether to	1
	P1-2H		10/28/01	1158	R	7	X			rwn or not	<u> </u>
	HS-20		10/25/09	1356	R	7	XX				
Collected)Peli	Collected)Pelinquished By:(1)	Date	-	Received By:	<i>.</i> :		DOD Project?	YES NO	Special Deliverable Requirements:	equirements:	
Christin	OT LEANING MARKED	La lach	1000	/			Cooler ID HS	HS Tank Farm			
Relinquished By: (2)	By: (2)	Date	Time	Received By:	~		Requested Turnaro	Requested Turnaround Time and-or Special Instructions:	ial Instructions:		
			H.	Boothood Bur			- Standard	hd for	a HS-13 thru	thru	
Kelinquisned by: (3)	BY: (3)	Date							17-0		
					, I		Samples Received Cold?	Cold? YES NO		Chain of Custody Seal: (Circle)	
Relinquished By (4)	By.(4)	Date 1930/09	Aso Visao	Received	Received for Laboratory By	v By: 	Temperature °C:	Cooler TB	INTACT	BROKEN ABSENT	
□ 200 W. Potter Driv □ 550 Business Driv	□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5397 □ 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350/557	: (907) 562-2343 : (910) 350-190	8 Fax: (907) 561 3 Fax: (910) 350				http://www.sgs.com/terms and conditions.htm	nd conditions.htm		White - Retained by Lab Pink - Retained by Client	ab ab

1096017	page ${\mathcal N}$ of ${\mathcal N}$						Trip Blank	I .				Special Deliverable Requirements:	ctions:		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT	White - Retained by Lab Pink - Retained by Client
	rence #:	SAMPLE Preservatives WeOH TYPE Analysis		M= Multi Remental	V _	x 7	X					DOD Project? YES (10) Cooler ID HSTANK Farm	Requested Turnaround Time and or Special Instructions:	Standard	Samples Received Cold? YES NO	Cooler TB Temperature °C:	http://www.sgs.com/terms and conditions.htm
SGS Environmental Services Inc. CHAIN OF CUSTODY RECORD	COYO SGS Reference #:		ozh	A 05、ひの65、09な1子 E	ATRIX/ ATRIX S DDE S	1440 50 2						Time Received By:	Time Received By:	Time Received By:		Time Received For Laboratory By:	3 Fax: (907) 561-5307 3 Fax: (910) 350-1057
S S S S	GLIENT SLZ INTER	PROJECT: AVIAL OL HIGH SITE/PHONE N PROJECT: AVIAL OL HIGH SITE/PWS	REPORTS TO: CHRISTING BEATZEMAIL: MIKE RIESER	INVOICE TO: QUOTE #	LAB NO. SAMPLE IDENTIFICATIO	2 AS HS-21	and HS-TB				0	Collected Beinquished, Bu: (1) Date UNST Kith 10/30/09 Chinisthina Bentze	Relinquished By: (2) Date	Relinquished By: (3) Date		Relinquished By: (4) Date $10/50/69$	□ 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5307 □ 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350- <u>1</u> 457

1096017 SGS SAMPLE RECEIPT FORM SGS WO#: Yės No NA Are samples RUSH, priority or w/in 72 hrs of hold time? TAT (circle one): Standard -or- Rush _____ If yes, have you done e-mail ALERT notification? Received Date: 10/ 30/09 Are samples within 24 hrs. of hold time or due date? Received Time: 1620 If yes, have you also spoken with supervisor? Cooler ID Archiving bottles: Are lids marked w/ red "X"? Temperature Measured w/ ____ Were samples collected with proper preservative? (Therm #) 2,3 A °C _ Any problems (ID, cond'n, HT, etc)? Explain: °C °С °C Note: Temperature readings include thermometer correction factors If this is for PWS, provide PWSID:_ Delivery method (circle all that apply): Payment received: \$_____ by Check or Credit Card Client / Alert Courier / Lynden / SGS Will courier charges apply? UPS / FedEx / USPS / DHL / Carlile ____ Data package required? (Level: 1 / 2 / 3 / 4) AkAir Goldstreak / NAC / ERA / PenAir Notes: Other: Is this a DoD project? (USACE, Navy, AFCEE) Additional Sample Remarks: $(\sqrt{if applicable})$ Extra Sample Volume? This section must be filled out for DoD projects (USACE, Navy, AFCEE): Limited Sample Volume? Yes Is received temperature ≤6°C? No Multi-Incremental Samples? Lab-filtered for dissolved Were containers ice free? Notify PM immediately of any ice in san Ref Lab required for _Foreign Soil? This section must be completed if problems are noted. Accession of the second Was client notified of problems? Yes / No XXXXXX By (SGS PM): Was the COC filled out properly? Did labels correspond? Individual contacted: Did the COC indicate USACE / Navy / AFCEE project? Samples were packed to prevent breakage with (*circle one*): NANNA NANNA NANNA Via: Phone / Fax / E-mail (*circle one*) Date/Time:_____ Bubble Wrap Vermiculite Other (specify): Were all samples sealed in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved? Reason for contact: Were correct container / sample sizes submitted? Was the PM notified of arrival so they can send Sample Receipt Acknowledgement to client? Cooler Temp °C_____ Cooler ID_____ Cooler Temp °C_____ Cooler ID_____ Cooler Temp °C_____ Cooler ID_____ Cooler ID ooler ID Change Order Required? Yes / No Notes: Completed by (sign): (print): Joe R Self-check completed JJC Peer-reviewer's Initials Login proof:

103601 SAMPLE RECEIPT FORM - Both - Tracking Container Volume Optime: Tracking Container Volume Container Volume <th>tte: //30/69</th> <th>T</th> <th>Г</th> <th><u> </u></th> <th><u> </u></th> <th>T</th> <th>1</th> <th></th> <th></th> <th>}</th> <th></th> <th>Ľ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Τ</th> <th></th> <th>•</th> <th>*Notes</th> <th></th> <th>• •</th> <th>2</th>	tte: //30/69	T	Г	<u> </u>	<u> </u>	T	1			}		Ľ						Τ		•	*Notes		• •	2	
1096(1006() SAMPLE RECEIPT FORM - Bottle Tacking SAMPLE RECEIPT FO	6		1	1	<u>†</u>	1				1		1	N	1	1		\mathbf{N}				Other:			5	
SAMPLE RECEIPT FORM - Both Container Volume Container	2 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1	<u> </u>			<u> </u>			+-	1	1	+	1-	1			1		[IJ⁺HN	ð		ŏ	
SAMPLE RECEIPT FORM - Both NaOH NaOH SAMPLE RECEIPT FORM - Both H1003 H2S04 Container Volume Onber: NaOH Container Volume Container Volume NaOH Container Volume Container Volume NaOH Container Volume Container Volume Container Volume Container Volume<	30,				1				<u> </u>	+			1	1					1			ativ		ด	
SAMPLE RECEIPT FORM - Bottle H2SO4 B338 WG SAMPLE RECEIPT FORM - Bottle H1N03 H2SO4 B338 WG SAMPLE RECEIPT FORM - Bottle H1N03 H2SO4 B338 WG Container Type H2M Malgene H2M Marce Container Type Malgene Malgene Marce Container Type Container Type Container Type Malgene Malgene Malgene CCG Container Type Malgene Malgene Malgene Malgene Malgene Marce CCG CONE CCG CONE Malgene Malgene Malgene Malgene Malgene Malgene Malgene Malgene CCG CONE Malgene Malgene Malgene Malgene Malgene	101		1		1-		<u> </u>		\square	1	1					ļ	1			1	HOPN	e Ľ		Õ	
SAMPLE RECEIPT FORM - Bottle MINU3 MINU3 MINU3 SAMPLE RECEIPT FORM - Bottle MINU3 MINU3 MINU3 MINU3 SAMPLE RECEIPT FORM - Bottle MINU3 MINU3 MINU3 MINU3 MINU3 MINU2 MINU4 MINU4 MINU3 MINU4 MINU3 MINU4 MINU2 MINU4 MINU4 MINU4 MINU4 MINU4 MINU4 MINU4		g		-				 		1											¢OS7H	res		-	
SAMPLE RECEIPT FORM - Bottle Tracking Container Volume Container Volume <th colspan<="" td=""><td>Date:</td><td>#10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>EONH</td><td></td><td></td><td></td></th>	<td>Date:</td> <td>#10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EONH</td> <td></td> <td></td> <td></td>	Date:	#10								1				1							EONH			
SAMPLE RECEIPT FORM - Bottle Tracking SSAMPLE RECEIPT FORM - Bottle Tracking </td <td></td> <td>ЮР</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>HCI</td> <td></td> <td>#0</td> <td></td>		ЮР				<u> </u>															HCI		#0		
SAMPLE RECEIPT FORM - Bottle Tracking SAMPLE RECEIPT FORM - Bottle Tracking Container Volume Container Volume Container Volume		ē	1												7				\backslash		əuoN		s S		
SAMPLE RECEIPT FORM - Bottle Septembre SAMPLE RECEIPT FORM - Bottle Septembre Container Volume Container Volume Aboutle Container Volume Container Volume Aboutle Container Volume Container Volume		d pe														0					Other:	i	U S S		
SAMPLE RECEIPT FORM - Bottle SAMPLE RECEIPT FORM - Bottle Amage: Sample receipt for solution in the sol		ente				1						7	\uparrow			X	1				Septa	/pe			
SAMPLE RECEIPT FORM - Bottle SAMPLE RECEIPT FORM - Bottle Container SAMPLE RECEIPT FORM - Bottle Container Volume Container Volume Container Volume Container Volume Nallgene Container Volume Container Volume Container Volume Bottle Totals Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume Bottle Totals Container Volume Container Volume Container Volume Container Volume		m					 															r T)			
SAMPLE RECEIPT FORM - Bottle Tacking SAMPLE RECEIPT FORM - Bottle Inter Volume Container Volume 00fm Inter Volume 00fm Interverve 00fm Interverve 00fm Interverve 00fm		ğ			<u> </u>																Nalgene	ine			
SAMPLE RECEIPT FORM - Bottle Track SAMPLE RECEIPT FORM - Bottle Totals Bottle Totals Bottle Totals Bottle Totals	-	t be												5							HDFE	onta	ing		
SAMPLE RECEIPT FORM - Bottle T- Sample Receipt Container Volume 11 Container Volume 250mL or 8oz 250mL or 4oz 250mL or 10z 250mL or 4oz 250mL or 4oz 250mL or 4oz		uus																1				ŏ	acki		
SAMPLE FACE Package Source SAMPLE A <td></td> <td><u>p</u>t</td> <td>1</td> <td></td> <td></td> <td></td> <td>Ì</td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td> </td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>₽G</td> <td></td> <td>μ</td> <td></td>		<u>p</u> t	1				Ì					7				7					₽G		μ		
SAMPLE FRECEIPT FORM-Le SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE <	å	ece																			Other:		ottle		
SAMPLE Container Container Volu Sample - <td< td=""><td>P</td><td>٦_Б</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>· · · ·</td><td></td><td></td><td></td><td>Jm04</td><td>me</td><td>ğ</td><td></td></td<>	P	٦ _Б										-					· · · ·				Jm04	me	ğ		
SAMPLE RECEIPT FO SAMPLE RECEIPT FO Sample recent 000000000000000000000000000000000000		- Å						,													Jm09	olu	M		
SAMPLE SAMPLE RECEIPT Sample 200mL 200mL 11 Image: Sample 11 11 11 11 Image: Sample 11 11 11 11 11 Image: Sample 11 11 11 11 11 11 Image: Sample 11 1	by		6)ar			<u> </u>						-	-		M	3	3		00	\$	125mL of 402	er V	FOI		
SAMPLE RECE Somm Bottle Totals (additional) chemical president	Completed by:	- Š	¥																~			tain	ПРТ		
SAMPLE R Bottle Totals Bottle Total) chemical	mpl	- Dres				<u> </u>	,,									,					Jm002	Con	ECE		
SAMPL SAMPL Sadditional) chem	Ĉ	ical					c																ER		
SAM Bottle Tota		en en	s									X	1										APL		
Bottle 1			ota																				SAN		
		ona	tle T																				•••		
		dditi	Bot	1																					
		e (a										7			J										
		duire										્રે			Z										
Test GRo / B & Lax DRo / B & Lax DRo / PAH ORo / PAH ORo / PAH ev tra volume ev tra volume ev tra volume antich require (a		Lec										Ľ	13		l d'	H	7			Ęt	st				
Test GRo/BLey DRo/PAH Wrtha VRu ev Tra VRu ev Tra VRu		hich											8		Ņ	PA,	t a			6	Le Le				
ers with the DRo		N S										3			\$	0	16		Ro A						
6 6 0 1 6 6 0 1 6 6 0 1 6 6 0 1 1 6 6 0 1 1 6 0 0 0 0		iner										3	2		¥)R	Å		0	Š					
		nta							i			ໍ່	6		2	2	୦			\sim					
		ů																							
Active Matrix		Vote							ł		4	d	8		Þ		<i>r</i> 6		ø	よ	Matrix		<u></u>		
$\sum_{n} \nabla \nabla$		*										8	∢		J	8	A		8	A	Container ID				
																		9		5 -		ŀ	2		
**************************************													3				40'	6∛		1-3,	#				

APPENDIX E

HUMAN HEALTH CONCEPTUAL SITE MODEL SCOPING FORM AND DIAGRAM

Human Health Conceptual Site Model Scoping Form

Site Name:	Akiak Old High School Tank Farm
File Number:	2402.38.003
Completed by:	SLR International Corp

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, a CSM graphic and text must be submitted with the site characterization work plan.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	U Vehicles
✓ ASTs	Landfills
✓ Dispensers/fuel loading racks	Transformers
Drums	✓ Other: Fuel Lines
Release Mechanisms (check potential release mech	hanisms at the site)
Spills	✓ Direct discharge
✓ Leaks	Burning
	Other:
Impacted Media (check potentially-impacted medi	a at the site)
✓ Surface soil (0-2 feet bgs [*])	Groundwater
✓ Subsurface Soil (>2 feet bgs)	Surface water
Air	Other:
Receptors (check receptors that could be affected b	<i>by contamination at the site)</i>
Residents (adult or child)	✓ Site visitor
Commercial or industrial worker	✓ Trespasser
✓ Construction worker	✓ Recreational user
Subsistence harvester (i.e., gathers wild foods)	Farmer
Subsistence consumer (i.e., eats wild foods)	Other:

1

*	bgs –	below	ground	surface
	~ 0~		0	

2. Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)

a)	Direct Contact – 1 Incidental Soil Ingestion		
	Is soil contaminated anywhere between 0 and 15	feet bgs?	\checkmark
	Do people use the site or is there a chance they w future?	vill use the site in the	✓
	If both boxes are checked, label this pathway con	mplete: Complete	
	2 Dermal Absorption of Contaminants from	a Soil	
	Is soil contaminated anywhere between 0 and 15	feet bgs?	\checkmark
	Do people use the site or is there a chance they w future?	vill use the site in the	1
	Can the soil contaminants permeate the skin? (Co or within the groups listed below, should be eval absorption). Arsenic Line		✓
	2,4-dichlorophenoxyacetic acid PCI	tachlorophenol	
	If all of the boxes are checked, label this pathway	<i>y complete:</i> Complete	
b)	Ingestion – 1 Ingestion of Groundwater		
	Have contaminants been detected or are they exp groundwater, OR are contaminants expected to n the future?		√
	Could the potentially affected groundwater be us drinking water source? <i>Please note, only leave th</i> <i>has determined the groundwater is not a current</i> <i>future source of drinking water according to 18 A</i>	he box unchecked if ADEC ly or reasonably expected	
	If both the boxes are checked, label this pathway	<i>complete:</i> Complete	

2 Ingestion of Surface Water

	Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future?	\checkmark
	Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? <i>Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).</i>	\checkmark
	If both boxes are checked, label this pathway complete: Complete	
	3 Ingestion of Wild Foods	
	Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food?	✓
	Do the site contaminants have the potential to bioaccumulate (<i>see</i> Appendix A)?	✓
	Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that could be connected to surface water, etc.)	\checkmark
	If all of the boxes are checked, label this pathway complete: Complete	
c)	Inhalation 1 Inhalation of Outdoor Air	
	Is soil contaminated anywhere between 0 and 15 feet bgs?	\checkmark
	Do people use the site or is there a chance they will use the site in the future?	\checkmark
	Are the contaminants in soil volatile (See Appendix B)?	\checkmark
	If all of the boxes are checked, label this pathway complete: Complete	
	2 Inhalation of Indoor Air	
	Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, <u>or</u> subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures)	
	Are volatile compounds present in soil or groundwater (See Appendix C)?	\checkmark
	If both boxes are checked, label this pathway complete:	

3

3. Additional Exposure Pathways: (Although there are no definitive

questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- o Climate permits recreational use of waters for swimming,
- Climate permits exposure to groundwater during activities, such as construction, without protective clothing, or
- \circ Groundwater or surface water is used for household purposes.

Check the box if further evaluation of this pathway is needed:

Comments:

No further evaluation is necessary since DEC water-quality standards are being applied as cleanup levels.

Inhalation of Volatile Compounds in Household Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- The contaminated water is used for household purposes such as showering, laundering, and dish washing, and
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)

Check the box if further evaluation of this pathway is needed:

Comments:

No further evaluation is necessary since DEC water-quality standards are being applied as cleanup levels.

Inhalation of Fugitive Dust

Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete.

Check the box if further evaluation of this pathway is needed:

Comments:

No further evaluation is necessary because DEC soil ingestion cleanup levels, which are being applied at this Site, are assumed to be protective of this pathway and chromium is not considered a potential contaminant of concern at this Site.

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during recreational or some types of subsistence activities. People then incidentally **ingest** sediment from normal hand-to-mouth activities. In addition, **dermal absorption of contaminants** may be of concern if people come in contact with sediment and the contaminants are able to permeate the skin (see dermal exposure to soil section). This type of exposure is rare but it should be investigated if:

- Climate permits recreational activities around sediment, and/or
- Community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

ADEC soil ingestion cleanup levels are protective of direct contact with sediment. If they are determined to be over-protective for sediment exposure at a particular site, other screening levels could be adopted or developed.

Check the box if further evaluation of this pathway is needed:

Comments:

No further evaluation of this pathway is necessary as there is no known activities that would result in exposure to sediment, nor is sediment an exposure medium at this Site.

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

APPENDIX A

BIOACCUMULATIVE COMPOUNDS

Table A-1: List of Compounds of Potential Concern for Bioaccumulation

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table X of 18 AAC 75.345 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greater than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are

listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler

is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS

Table B-1: List of Volatile Compounds of Potential Concern

Common volatile contaminants of concern at contaminated sites. A chemical is defined as volatile if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater and the molecular weight less than 200 g/mole (g/mole; EPA 2004a). Those compounds in Table X of 18 AAC 75.345 that are volatile, based on the definition above, are listed below.

Acenaphthene	1,4-dichlorobenzene	Pyrene
Acetone	1,1-dichloroethane	Styrene
Anthracene	1,2-dichloroethane	1,1,2,2-tetrachloroethane
Benzene	1,1-dichloroethylene	Tetrachloroethylene
Bis(2-chlorethyl)ether	Cis-1,2-dichloroethylene	Toluene
Bromodichloromethane	Trans-1,2-dichloroethylene	1,2,4-trichlorobenzene
Carbon disulfide	1,2-dichloropropane	1,1,1-trichloroethane
Carbon tetrachloride	1,3-dichloropropane	1,1,2-trichloroethane
Chlorobenzene	Ethylbenzene	Trichloroethylene
Chlorodibromomethane	Fluorene	Vinyl acetate
Chloroform	Methyl bromide	Vinyl chloride
2-chlorophenol	Methylene chloride	Xylenes
Cyanide	Naphthalene	GRO
1,2-dichlorobenzene	Nitrobenzene	DRO

APPENDIX C

COMPOUNDS OF CONCERN FOR VAPOR MIGRATION

Table C-1: List of Compounds of Potential Concern for the Vapor Migration

A chemical is considered sufficiently toxic if the vapor concentration of the pure component poses an incremental lifetime cancer risk greater than 10-6 or a non-cancer hazard index greater than 1. A chemical is considered sufficiently volatile if it's Henry's Law constant is 1×10^{-5} atm-m³/mol or greater.

	e if it's Henry's Law constant is 1 x 1	
Acenaphthene	Dibenzofuran	Hexachlorobenzene
Acetaldehyde	1,2-Dibromo-3-chloropropane	Hexachlorocyclopentadiene
Acetone	1,2-Dibromoethane (EDB)	Hexachloroethane
Acetonitrile	1,3-Dichlorobenzene	Hexane
Acetophenone	1,2-Dichlorobenzene	Hydrogen cyanide
Acrolein	1,4-Dichlorobenzene	Isobutanol
Acrylonitrile	2-Nitropropane	Mercury (elemental)
Aldrin	N-Nitroso-di-n-butylamine	Methacrylonitrile
alpha-HCH (alpha-BHC)	n-Propylbenzene	Methoxychlor
Benzaldehyde	o-Nitrotoluene	Methyl acetate
Benzene	o-Xylene	Methyl acrylate
Benzo(b)fluoranthene	p-Xylene	Methyl bromide
Benzylchloride	Pyrene	Methyl chloride chloromethane)
beta-Chloronaphthalene	sec-Butylbenzene	Methylcyclohexane
Biphenyl	Styrene	Methylene bromide
Bis(2-chloroethyl)ether	tert-Butylbenzene	Methylene chloride
Bis(2-chloroisopropyl)ether	1,1,1,2-Tetrachloroethane	Methylethylketone (2-butanone)
Bis(chloromethyl)ether	1,1,2,2-Tetrachloroethane	Methylisobutylketone
Bromodichloromethane	Tetrachloroethylene	Methylmethacrylate
Bromoform	Dichlorodifluoromethane	2-Methylnaphthalene
1,3-Butadiene	1,1-Dichloroethane	MTBE
Carbon disulfide	1,2-Dichloroethane	m-Xylene
Carbon tetrachloride	1,1-Dichloroethylene	Naphthalene
Chlordane	1,2-Dichloropropane	n-Butylbenzene
2-Chloro-1,3-butadiene	1,3-Dichloropropene	Nitrobenzene
(chloroprene)		
Chlorobenzene	Dieldrin	Toluene
1-Chlorobutane	Endosulfan	trans-1,2-Dichloroethylene
Chlorodibromomethane	Epichlorohydrin	1,1,2-Trichloro-1,2,2-
		trifluoroethane
Chlorodifluoromethane	Ethyl ether	1,2,4-Trichlorobenzene
Chloroethane (ethyl	Ethylacetate	1,1,2-Trichloroethane
chloride)		
Chloroform	Ethylbenzene	1,1,1-Trichloroethane
2-Chlorophenol	Ethylene oxide	Trichloroethylene
2-Chloropropane	Ethylmethacrylate	Trichlorofluoromethane
Chrysene	Fluorene	1,2,3-Trichloropropane
cis-1,2-Dichloroethylene	Furan	1,2,4-Trimethylbenzene
Crotonaldehyde (2-butenal)	Gamma-HCH (Lindane)	1,3,5-Trimethylbenzene
Cumene	Heptachlor	Vinyl acetate
DDE	Hexachloro-1,3-butadiene	Vinyl chloride (chloroethene)

Source: EPA 2002.

HUMAN HEALTH CONCEPTUAL SITE MODEL

Site: Akiak Old High School Tank Farm Follow the directions below. Do not consider engineering Akiak, Alaska Akiak, Alaska or land use controls when describing pathways. Completed Bv: SLR International Corp	(2)	Identity the receptors potent each exposure pathway: En receptors, "F" for future rece the pathways Sections 2 and 3 Current & Future	tthways drein drein drein	Residents industrial wood commercial of findustrial wood soft recreations for recreations or recreations findustrial wood findustrial wood fin	gestion F C/F F C/F C/F	Dermal Absorption of Contaminants from Soil F C/F F C/F C/F	Indwater	Dermal Absorption of Contaminants in Groundwater	Inhalation of Volatile Compounds in Tap Water		door Air F C/F F C/F C/F	oor Air	litive Dust		ace Water F C/F C/F C/F	Dermal Absorption of Contaminants in Surface Water	Inhalation of Volatile Compounds in Tap Water	ith Sediment		
		(3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Exposure Media		Incidental Soil Ingestion	soll	Ingestion of Groundwater	groundwater	V Inhalation of Volatile		Inhalation of Outdoor Air	air Inhalation of Indoor Air	Inhalation of Fugitive Dust		✓ Ingestion of Surface Water	🗸 surface water	Inhalation of Volatile	sediment Direct Contact with Sediment		A
<i>Site:</i> Akiak Old High School Tank Farm Akiak, Alaska ADEC File Number: 2402.38.003	Completed By: SLR International Corp Date Completed: December 2009	(1) (2) (2) (2) Check the media that For each medium identified in (1), follow the Che could be directly affected top arrow <u>and</u> check possible transport iden by the release.	Ш	Image: Constraint of the section of	✓ Runoff or erosion	✓ Uptake by plants or animals <u>check biota</u>)	Direct release to subsurface soil Direct soil Direct soil Direct soil Direct soil Direct soil Direct soil	Volatilization	(2-15 ft bgs)	Direct release to groundwater check groundwater		water Flow to surface water body check surface water	or animals	Other (list):	Direct release to surface water check surface water	check air	Water Sedimentation check sediment		Direct release to sediment	Sadimant Create Variation, rution, or erosion check surface water

Revised 3/21/06