

September 21, 2020

Mr. Grant Lidren Alaska Department of Environmental Conservation-SPAR 555 Cordova St. Anchorage, AK 99501

RE: 2020 Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842)

Dear Mr. Lidren:

This report presents the results of groundwater monitoring conducted in 2020 at Municipal Light and Power's (ML&P) Transformer Shop Site at 1130 E. First Avenue (formerly 1201 E. Third Ave.), in Anchorage, Alaska. The Site is listed with the Alaska Department of Environmental Conservation (ADEC) as File # 2100.26.302, Record Key # 90210001102, and Hazard ID 23842. Past work conducted at this site has identified petroleum hydrocarbon concentrations in excess of Alaska Department of Environmental Conservation (ADEC) cleanup levels for groundwater. The petroleum hydrocarbon contamination in the groundwater is attributed to leaking underground storage tanks that were removed in 1989. Groundwater monitoring has been conducted at the Site since 2000 at least annually up to 2016 and then biannually starting in 20018. All of the groundwater monitoring wells are flush-mounted and located in an asphalt paved lot adjacent to the Transformer Shop Building (Figures 1 and 2).

In November 2018, a vapor intrusion assessment of the indoor air quality in the Transformer Shop Building was conducted in accordance with an ADEC approved Work Plan. The measured concentration of compounds in the indoor air in the building did not exceed the ADEC vapor intrusion target levels for commercial or residential use. Based on the air sample results, it was concluded the vapor intrusion pathway is incomplete and not a concern at the Site (SLR 2018c).

2020 Groundwater Sampling

The sampling activities were conducted by International Corporation (SLR) in accordance with the ADEC 2018 Work Plan Addendum (SLR, 2018a) which is an addendum to the 2002 Work Plan (ML&P, 2002). SLR personnel collected groundwater samples at four monitoring wells (MW-5, MW-6, MW-7, and MW-9) on June 10 and 12, 2020. The sampling effort was completed by Nick Wells and Francesca Risse, who meet the criteria of ADEC-qualified environmental professionals per 18 AAC 75.333. A photograph log is included documenting the site conditions during the sampling event (Appendix A). Groundwater sampling forms documenting the sampling of the wells are included in Appendix B of this report.

Prior to the collection of the groundwater samples, the water levels in all wells were measured using an electronic water level indicator. At MW-6 and MW-7, groundwater samples were collected using the low-flow sampling method using a peristaltic pump. The low-flow sampling method has been used for the annual monitoring at the site since 2011 and consists of purging at a low flow rate (between 0.05 and 0.5 liters per minute [L/min]), while maintaining a drawdown of less than 0.3 feet, if possible. While purging, up to six water quality parameters are measured (temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity) at three to five-minute intervals. Water quality parameters are considered stable when three consecutive readings of at least three parameters (or four if temperature is used) are within:

- ± 3% for temperature (minimum of ± 0.2 ° C),
- ± 0.1 for pH,
- ± 3% for conductivity,
- ± 10 mv for ORP,
- ± 10% for DO, and
- ± 10% for turbidity.

MW-6 and MW-7 sustained near constant water levels during purging, at flow rates of 0.2 to 0.3 L/min. MW-5 was sampled by the conventional sampling method using a peristaltic pump. MW-5 was intended to be sampled by low-flow sampling, but drawdown exceeded 0.3 feet, so three casing volumes, equaling 4.25 gallons, were purged prior to sampling. While purging MW-5, MW-6, and MW-7, water quality parameters were measured using a YSI 556 multi-parameter instrument. Turbidity was measured quantitatively using a turbidity meter. Stability criteria were met for all wells except MW-9. Water level data and final water quality parameters are presented in Table 1. Purge water generated during sampling activities was placed in labeled containers and disposed of by ML&P following the receipt of analytical results.

MW-9 has typically been a poor yielding well and has repeatedly gone dry when purging and attempting to achieve stable parameters, even at very low flow rates. Since 2015, the standard sampling protocol for MW-9 has been to purge the well dry and collect samples at least 24 hours later. On June 9, 2020, MW-9 was intentionally purged dry without attempting to achieve stable parameters, generating approximately 4.5 gallons of purge water. The water in the well was as allowed to recover for approximately 68 hours and analytical samples were collected on June 12 without additional purging. At that time, the water level well had recovered over 80%. Water quality parameters were measured on June 12 concurrent with sampling.

Laboratory Analyses

Groundwater samples were collected from the four monitoring wells, including a duplicate sample from well MW-9, and submitted to SGS North America in Anchorage using chain-of-custody procedures. Groundwater samples were analyzed for diesel range organics (DRO) by AK Method (AK) 102, GRO by AK101, and benzene, toluene, ethylbenzene, and xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method SW8260D. In addition, samples collected at MW-9 were analyzed for the full list of Volatile Organic Compounds (VOC) by USEPA SW8260D and polycyclic aromatic hydrocarbons (PAH) by USEPA 8270D LV. The full-list VOCs and PAHs were added to the analytical suite in 2018 at the request of ADEC and were approved in the subsequent Work Plan Addendum (SLR, 2018a).

Analytical data was reviewed for consistency with the *ADEC Technical Memorandum, Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling* (ADEC, 2017a). Appendices C, D, and E contain a Data Quality Assessment (DQA), ADEC Laboratory Data Review Checklist, and the laboratory analytical data package, respectively. Based on the DQA, the data were considered to be of good quality and acceptable for use with the noted qualifications. No data were rejected.

Analytical Results

The 2020 analytical results are provided in Table 2 and Figure 2. Table 3 provides a summary of current and historical analytical results for DRO, GRO, benzene, and total BTEX analytes. The results were screened against the current ADEC ground water cleanup levels defined in 18 AAC 75.345, Table C (ADEC, 2018). Of the four wells sampled, monitoring well MW-9 was the only well with detected concentrations of analytes above applicable groundwater cleanup levels.

Groundwater cleanup levels at MW-9 were exceeded for GRO, DRO, benzene, ethylbenzene, total xylenes, 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, 1,2-Dichloroethane and naphthalene, as shown on Table 2 and summarized below:

- GRO was detected at 11 milligrams per liter (mg/L) in the primary sample and 9.53 mg/L in the duplicate, exceeding the groundwater cleanup level of 2.2 mg/L;
- DRO was 3.03 mg/L in the primary sample and 2.71 mg/L in the duplicate, exceeding the groundwater cleanup level of 1.5 mg/L;
- Benzene was 4.31 mg/L in the primary sample and 3.25 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.0046 mg/L;
- Ethylbenzene was detected at 0.246 mg/L in the primary sample and 0.11 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.015 mg/L;
- Total xylenes were 1.01 mg/L in the primary sample and 0.89 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.19 mg/L.
- 1,2,4-Trimethylbenzene was 0.344 mg/L in the primary sample and 0.304 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.056 mg/L;
- 1,3,5-Trimethylbenzene was 0.0764 mg/L in the primary sample and 0.0819 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.06 mg/L;
- 1,2-Dichloroethane (1,2-DCA) was 0.0362 mg/L in the primary sample and 0.0298 mg/L in the duplicate, exceeding the groundwater cleanup level of 0.0017 mg/L;
- Naphthalene was 0.103 mg/L in the primary sample and 0.0958 mg/L in the duplicate when analyzed by SW8260D, and was 0.0177 mg/L in the primary sample and 0.00905 mg/L in the duplicate when analyzed by SW8270D, which were all greater than the groundwater cleanup level of 0.0017 mg/L.

In MW-9, all sample results for perchloroethylene (PCE) and related daughter products were below detection limits, except for 1,2-Dichloroethane as listed above. However, the detection limits for Trichloroethylene (TCE) and vinyl chloride were above their respective groundwater cleanup levels. PCE daughter products are considered to be TCE, 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-TCA, 1,1-dichloroethane (1,1-DCA), 1,2-DCA, 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride. 1,2-Dichloroethane also exceeded

groundwater cleanup levels in 2018, with a concentration of 0.00965 Q in the primary sample and 0.00663 mg/l in the duplicate (SLR, 2018b).

Samples from the down gradient monitoring wells MW-5, MW-6, and MW-7 had contaminant concentrations well below groundwater cleanup levels. Downgradient wells MW-6, and MW-7 contained low-level detections of DRO (concentrations were between the detection limit (DL) and limit of quantitation (LOQ)). This is consistent with the historical dataset (Table 3) and indicates that the plume of petroleum hydrocarbon-impacted groundwater is localized around MW-9. MW-9 is located where the former USTs were removed and is the presumed source area. MW-6 and MW-7 are located less than 150 feet down gradient from MW-9 and indicate essentially no petroleum hydrocarbon-impacted groundwater at these locations. MW-9 has historically contained the highest concentrations of BTEX, GRO and DRO, with the three down gradient wells consistently showing no detections or trace detections well below groundwater cleanup levels (Table 3).

A plot of historical data from monitoring well MW-9 shows the long-term trend of petroleum hydrocarbon concentrations (Figure 3). A primary and a duplicate sample have been collected at MW-9 beginning in 2011 and at each sampling event thereafter. The higher of the two results (primary or duplicate) are plotted on the figure giving is conservative (high) biased. As illustrated by the graph, between 2000 and 2020 the overall trend has been a decrease in petroleum hydrocarbon concentrations with time. In 2003, a large increase in DRO may have been the result of free product in the sample, which was occasionally observed in the well during that period. Since 2004 the groundwater concentrations have been relatively steady state, with relatively minor fluctuations between sample events.

The changes in sampling protocol may account for a portion of the fluctuations in the data set. In 2011 the sampling method was changed from purging three volumes with a bailer prior to sampling, to low-flow sampling with a peristaltic pump. In 2013 and 2014, samples were collected without prior purging of the well. As noted, since 2015 the sampling protocol for MW-9 has been to purge the well dry and collect the sample approximately 24 -72 hours later.

Groundwater data was also compared against ADEC's vapor intrusion target level for the vapor intrusion pathway for commercial site use as defined by *Vapor Intrusion Guidance for Contaminated Sites* (ADEC, 2017b).The target levels for benzene, ethylbenzene, and 1,2,4-Trimethylbenzene were exceeded in the water sample from MW-9, as shown on Table 2. However, the vapor intrusion assessment of the adjacent Transformer Shop Building concluded the vapor intrusion pathway is incomplete and not a concern at the site (SLR 2018c).

Conclusions

The results from groundwater monitoring at the Transformer Shop Site in 2020 indicate that petroleum hydrocarbons in the groundwater have decreased but still exceed ADEC groundwater cleanup levels at MW-9. The extent of petroleum hydrocarbon impacted groundwater is localized around MW-9, the presumed source area. The long-term trend based on the cumulative data set (2000 to 2020) indicates that the petroleum hydrocarbon concentrations initially decreased but have remained relatively steady state since 2004. A pronounced trend since 2004 is not evident. However, natural attenuation of the petroleum hydrocarbons is presumably occurring at a slow rate. There appears to be minimal groundwater movement in the immediate area of the plume,

as evidenced by the poor recharge in MW-9 and downgradient sample results (non-detected concentrations of GRO and BTEX, and trace detection of DRO).

In accordance with the January 10, 2019 letter from ADEC to ML&P (ADEC File: 2404.26.302) and related correspondence, the next monitoring event, scheduled for 2022, will include analysis of GRO by AK101, DRO by AK102, residual range organics (RRO) by AK103, and full suite VOCs by SW8260D for all four monitoring wells. PAHs by SW8270 are no longer required for any monitoring wells and will not be sampled.

If you have any questions or concerns, please contact Bret Berglund (SLR, 907-563-2128) or Yelena Saville (ML&P, 907-263-5273).

Sincerely,

un Un

Nicholas Wells Project Engineer

Brit Berglin

Bret Berglund Project Manager, C.P.G.

CC: Yelena Saville, ML&P

References

- Alaska Department of Environmental Conservation (ADEC), 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, as amended through October 27, 2018.
- ADEC, 2017a. ADEC Technical Memorandum, Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. March.
- ADEC, 2017b. Vapor Intrusion Guidance for Contaminated Sites. November.
- Municipal Light and Power (ML&P) 2002. Work Plan for Groundwater Monitoring at 1201 E. 3rd Ave. Anchorage; File #L69.07, Fac ID Fac ID #1420, Event ID #133, Reckey # 90210001102. August 26. Note: The site address is now referred to as 1130 E. First Avenue.
- SLR International Corporation (SLR). 2018a. Work Plan Addendum for Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842). July 9.
- SLR. 2018b. 2018 Groundwater Monitoring at the ML&P Transformer Shop; 1130 E. First Ave., Anchorage, Alaska (Hazard ID: 23842). October 8, 2018.
- SLR. 2018c. Vapor Intrusion Assessment Report. ML&P Transformer Shop; Anchorage, Alaska. December 27.

Figures

- Figure 1 Site Vicinity Map
- Figure 2 Site Map with 2020 Groundwater Sampling Results
- Figure 3 Historical Groundwater GRO, DRO, and BTEX Concentrations in MW-9

<u>Tables</u>

- Table 1 2020 Water Sampling Log
- Table 22020 Groundwater Sample Results
- Table 3
 Historical Groundwater Analytical Results

Appendices

- A Photograph Log
- B Groundwater Sampling Forms
- C Data Quality Assessment
- D ADEC Laboratory Data Review Checklist
- E SGS Laboratory Data Reports

TABLE 1 - 2020 WATER SAMPLING LOG ML&P TRANSFORMER SHOP

Well Number ^{1,2,3}	MW-5 TS	MW-6 TS	MW-7 TS	MW-9 TS
Water Level & Well Purging Data				
Date Water Level Measured	6/10/2020	6/10/2020	6/10/2020	6/9/2020
Time Water Level Measured	9:20	12:00	10:55	12:55
TOC Elevation, ft	Unknown	51.51	49.23	51.23
Depth to Water Below TOC, ft	4.96	15.34	19.40	4.22
Water Level Elevation, ft	NC	36.17	29.83	47.01
Depth of Well Below Top of Casing, ft	13.64	20.61	20.68	8.56
Water Column in Well, ft	8.68	5.27	1.28	4.34
Diameter of Well Casing, inch	2	2	2	2
Gallons per Foot	0.163	0.163 0.163 0.16		0.163
Gallons in Well	1.41	0.86 0.21		0.71
Total Gallons Purged (Low Flow)	4.3	2.0	2.5	4.0
Sampling/Water Parameters				
Date Sampled	6/10/2020	6/10/2020	6/10/2020	6/12/2020
Time Sampled	10:28	12:45	11:40	9:40
Temperature, C	6.82	7.90	8.21	10.64
Specific Conductance, µS/cm	647	706	1141	971
Turbidity (NTU)	4.96	9.06	6.59	4.11
рН	8.98	10.44	9.42	7.19
Dissolved Oxygen, mg/L	9.49	1.10	1.70	4.56
Sample Number	MW-5 TS	MW-6 TS	MW-7 TS	MW-9 TS, MW-99 TS (duplicate)

Abbreviations:

- C Celsius
- ft feet
- mg/L milligrams per liter

NC Not calculated (TOC elevation not known).

<u>Notes</u>

1 Sampled By SLR: Nick Wells and Francesca Risse

2 All wells were purged and sampled using a peristaltic pump. MW-5 was sampled by the conventional sampling method, while MW-6 and MW-7 were sampled by the low-flow method. MW-9 was purged dry on 6/9/2020, and was sampled just under 72 hours later on 6/12/2020 without additional purging. Water level recovered 80%.

µS/cm microsiemens per centimeter

TOC Top of casing

3 All wells are flush-mounted in paved areas surrounding the Transformer Shop. Top of casing well elevation has not been surveyed since 2005, or longer, and is considered approximate.

Table 2 - Groundwater Sampling Analytical Results

	Screeni	ng Criteria			Sample Location ³			Trip Blank
Compound in	18 AAC 75,	Vapor Intrusion	MW-5TS	MW-6TS	MW-7TS	Primary:	Duplicate:	Trin Blank
milligrams per Liter	Table C	Target Level for	10-lun-20	10-lun-20	10-lup-20	MW-9TS	MW-99TS	10-Jun-20
(mg/L)	Groundwater	Groundwater,	1202600001	1202600003	1202600002	12-Jun-20	12-Jun-20	1202600006
	Cleanup Level	Commercial Site Use ²	1202000001	1202000005	120200002	1202600004	1202600005	1202000000
	(mg/L) ¹	(mg/L)	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴
Fuels (AK101 and 102)								
Gasoline Range Organics	2.2		[0.05] U	[0.05] U	[0.05] U	11	9.53	[0.05] U
Diesel Range Organics	1.5		0.249 J	0.356 J	0.529 J	3.03	2.71	
VOCs (SW8260D)								-
1,1,1,2-Tetrachloroethane	0.0057	0.16				[0.0125] U	[0.0125] U	[0.00025] U
1,1,1-Trichloroethane	8	31				[0.025] U	[0.025] U	[0.0005] U
1,1,2,2-Tetrachloroethane	0.00076	0.14				[0.0125] U	[0.0125] U	[0.00025] U
1,1,2-Trichloroethane	0.00041	0.026				[0.01] U	[0.01] U	[0.0002] U
1,1-Dichloroethane	0.028	0.33				[0.025] U	[0.025] U	[0.0005] U
1,1-Dichloroethene	0.28	0.82				[0.025] U	[0.025] U	[0.0005] U
1,1-Dichloropropene						[0.025] U	[0.025] U	[0.0005] 0
1,2,3-Trichlorobenzene	0.007					[0.025] U	[0.025] U	[0.0005] U
1,2,3-Thchloropropane	0.000075	0.094				[0.025] U	[0.025] U	[0.0005] U
1,2,4-Themotopenzene	0.004	0.15				[0.025] 0	[0.025] 0	[0.0005] U
1,2,4-Timethyldenzene	0.050	0.12				[0.344 [0.35] U	[0.25] U	[0.0005] 0
1.2-Dibromoethane	0.000075	0.0077				[0.23] 0	[0.23] 0	[0.003] 0
1.2-Dichlorobenzene	0.000073	11				[0.00100] 0	[0.025] []	[0.000573] 0
1.2-Dichloroethane	0.017	0.098				0.0362	0.0298	[0.0005] 0
1 2-Dichloropropage	0.0082	0.11				[0.025] []	[0.025] []	[0.00023] 0
1.3.5-Trimethylbenzene ^b	0.06					0.0764	0.0819	[0.0005] U
1.3-Dichlorobenzene	0.3	8.1				[0.025] U	[0.025] U	[0.0005] U
1,3-Dichloropropane						[0.0125] U	[0.0125] U	[0.00025] U
1,4-Dichlorobenzene	0.0048	0.11				[0.0125] U	[0.0125] U	[0.00025] U
2,2-Dichloropropane						[0.025] U	[0.025] U	[0.0005] U
2-Butanone (MEK)	5.6	9400				[0.25] U	[0.25] U	[0.005] U
2-Chlorotoluene						[0.025] U	[0.025] U	[0.0005] U
2-Hexanone	0.038	34				[0.25] U	[0.25] U	[0.005] U
4-Chlorotoluene						[0.025] U	[0.025] U	[0.0005] U
4-Isopropyltoluene						[0.025] U	[0.025] U	[0.0005] U
4-Methyl-2-pentanone (MIBK)	6.3	2300				[0.25] U	[0.25] U	[0.005] U
Benzene⁵	0.0046	0.069	[0.0002] U	[0.0002] U	[0.0002] U	4.31	3.25	[0.0002] U
Bromobenzene	0.062	2.6				[0.025] U	[0.025] U	[0.0005] U
Bromochloromethane						[0.025] U	[0.025] U	[0.0005] U
Bromodichloromethane	0.0013	0.038				[0.0125] U	[0.0125] U	[0.00025] U
Bromoform	0.033	5.1				[0.025] U	[0.025] U	[0.0005] U
Bromomethane	0.0075	0.073				[0.125] U	[0.125] U	[0.0025] U
Carbon disulfide	0.81	5.2				[0.25] U	[0.25] U	[0.005] U
Carbon tetrachloride	0.0046	0.018				[0.025] U	[0.025] U	[0.0005] U
Chlorobenzene	0.078	1.7				[0.0125] U	[0.0125] U	[0.00025] U
Chloroethane	21.0	97.0				[0.025] U	[0.025] U	[0.0005] U
Chloromothana	0.0022	0.036				[0.025] U	[0.025] U	[0.0005] 0
cii 1.2 Dichloroothono	0.19	1.1				[0.025] U	[0.025] U	[0.0005] U
cis 1.2 Dichloropropopo	0.030					[0.025] 0	[0.025] 0	[0.0005] 0
Dibromochloromethane	0.0047					[0.0125] U	[0.0125] U	[0.00025] U
Dibromomethane	0.0083	0.52				[0.0125] U	[0.025] []	[0.00023] 0
Dichlorodifluoromethane	0.0085	0.031				[0.025] U	[0.025] U	[0.0005] U
Ethylbenzene	0.015	0.15	[0.0005] UI	[0.0005] UI	[0.0005] UI	0,246 0	0,11 0	[0.0005] U
Freon-113	10					[0.25] U	[0.25] U	[0.005] U
Hexachlorobutadiene	0.0014	0.013				[0.025] U	[0.025] U	[0.0005] U
Isopropylbenzene (Cumene)	0.45	3.7				[0.025] U	[0.025] U	[0.0005] U
Methylene chloride	0.11	20				[0.25] U	[0.25] U	[0.005] U
Methyl-t-butyl ether	0.14	20				[0.25] U	[0.25] U	[0.005] U
Naphthalene ^b	0.0017	0.2				0.103	0.0958	[0.0005] U
n-Butylbenzene ⁶	1.00					[0.025] U	[0.025] U	[0.0005] U
n-Propylbenzene ⁶	0.66	10				[0.025] U	[0.025] U	[0.0005] U
o-Xylene			[0.0005] U	[0.0005] U	[0.0005] U	0.0307 J	0.0321 J	[0.0005] U
P & M -Xylene			[0.001] U	[0.001] U	[0.001] U	0.982	0.858	[0.001] U
sec-Butylbenzene ⁶	2.00					[0.025] U	[0.025] U	[0.0005] U
Styrene	1.2	39				[0.025] U	[0.025] U	[0.0005] U
tert-Butylbenzene°	0.69					[0.025] U	[0.025] U	[0.0005] U
Tetrachloroethene	0.041	0.24				[0.025] U	[0.025] U	[0.0005] U
loluene	1.1	81	[0.0005] UJ	[0.0005] UJ	[0.0005] UJ	0.0936 Q	0.0689 Q	[0.0005] U
trans-1,2-Dichloroethene	0.36					[0.025] U	[0.025] U	[0.0005] U
trans-1,3-Dichloropropene	0.0047	0.21				[0.025] U	[0.025] U	[U.0005] U
Trichloroethene	0.0028	0.021				[0.025] U	[0.025] U	[0.0005] U
Vipul acotato	5.2					[0.025] U	[0.025] U	[0.005] U
Vinyl chlorido	0.41	42				[0.25] U	[0.25] U	[0.005] U
Xylenes (total) ^{5,6}	0.00019	1.025	[0 0015] []	[0 0015] []	[0 0015] []	1 01	0.0037530	[0.000075] 0

Table 2 - Groundwater Sampling Analytical Results

	Screeni	ng Criteria			Sample Location			Trip Blank
Compound in milligrams per Liter (mg/L)	18 AAC 75, Table C Groundwater Cleanup Level	Vapor Intrusion Target Level for Groundwater, Commercial Site Use ²	MW-5TS 10-Jun-20 1202600001	MW-6TS 10-Jun-20 1202600003	MW-7TS 10-Jun-20 1202600002	Primary: MW-9TS 12-Jun-20 1202600004	Duplicate: MW-99TS 12-Jun-20 1202600005	Trip Blank 10-Jun-20 1202600006
	(mg/L) ¹	(mg/L)	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴	Conc. ⁴
PAH SIM (SW8270D LV)								
1-Methylnaphthalene ^b	0.011					0.0057 Q	0.00302 Q	
2-Methylnaphthalene ^b	0.036					0.00126	0.00128	
Acenaphthene ^b	0.53					0.000224 Q	0.000132 Q	
Acenaphthylene	0.26					[0.0000252] U	[0.0000259] U	
Anthracene	0.043					[0.0000252] U	[0.0000259] U	
Benzo(a)Anthracene	0.0003					[0.0000252] U	[0.0000259] U	
Benzo[a]pyrene	0.00025					[0.0000101] U	[0.0000104] U	
Benzo[b]Fluoranthene	0.0025					[0.0000252] U	[0.0000259] U	
Benzo[g,h,i]perylene	0.00026					[0.0000252] U	[0.0000259] U	
Benzo[k]fluoranthene	0.0008					[0.0000252] U	[0.0000259] U	
Chrysene	0.002					[0.0000252] U	[0.0000259] U	
Dibenzo[a,h]anthracene	0.00025					[0.0000101] U	[0.0000104] U	
Fluoranthene	0.26					[0.0000252] UJ	0.000062 Q	
Fluorene ⁶	0.29					0.00033 Q	0.000152 Q	
Indeno[1,2,3-c,d] pyrene	0.00019					[0.0000252] U	[0.0000259] U	
Naphthalene ^b	0.0017	0.2				0.0177 Q	0.00905 Q	
Phenanthrene ⁶	0.17					[0.0000252] U	[0.0000259] U	
Pyrene	0.12					[0.0000252] U	[0.0000259] U	

Yellow and Bold Value exceeds Method Two cleanup level Shaded green

Un-detectable result with the LOD is above ADEC cleanup level. Shaded Blue

Groundwater result for this analyte exceeds the ADEC vapor intrusion target level for groundwater (commercial site use).

Notes:

1 - The cleanup level corresponds to those listed in 18 AAC 75.345, Method Two, Table C, Groundwater Cleanup Levels (ADEC, October 27, 2018).

2 - The level corresponds to the target level listed in ADEC Vapor Intrusion Guidance for Contaminated Sites (January 2017), Appendix G.

3 - The sample type, field sample identification number, date collected, and laboratory sample identification number are provided.

4 - For detected results, the sample result is listed in this column. For undetectable results, the Limit of Detection (LOD) is listed in brackets

in this column. Associated flag(s) are shown to the right.

5 - Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.
 6 - The ADEC Vapor Intrusion Guidance for Contaminated Sites (January 2017), Appendix F, states these chemicals should be investigated as chemicals of potential

concern for vapor intrusion when petroleum is present.

Data Flags			
J	Estimated concentration between the LOQ and DL.		
Q	The result is estimated, due to a laboratory quality control failure or a matrix effect. Where applicable, a "+" or "	" was append	ded
	to indicate a high or low bias.		
U	Nondetect, LOD is shown in brackets.		
UJ	The analyte was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise	e.	
Abbreviations			
	Not applicable or screening criteria does not exist for this compound	LOQ	limit of quantitation
AAC	Alaska Administrative Code	LV	low volume
ADEC	Alaska Department of Environmental Conservation	mg/L	milligrams per liter
AK	Alaska	PAH	polycyclic aromatic hydrocarbons
DL	detection limit	SIM	selective ion monitoring
LOD	limit of detection	VOCs	volatile organic compounds

TABLE 3 - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

Cor	npound			_	
()	mg/L)	DRO	GRO	Benzene	Total BTEX
October 201 (18 AAC 7)	8 Cleanup Level 5 345 Table C)	1.5	2.2	0.0046	
Monitoring Well	Date ¹				
	8/27/1998	0.206			
	12/31/1998	0.669			
	3/19/1999	ND [0 333]			
	6/23/1999	0 427			
	9/30/1999	4.42			
	2/2/2000	ND [0 395]	ND [0.0900]	ND [0.00050]	
	5/26/2000	0 700	ND [0 0900]	ND [0 00050]	
	8/25/2000	0.622	ND [0.0900]	ND [0.00050]	0.0194
	12/1/2000	ND [0.326]	ND [0.0900]	ND [0.00050]	0.00303
MW-3	6/24/2004	ND [0.300]	ND [0.0900]	ND [0.00050]	
	6/15/2005	ND [0.337]	ND [0.0000]	ND [0.00050]	ND
-	8/3/2006	0.465	ND [0.0000]	ND [0.00050]	ND
-	8/1/2007	0.405 ND [0 357]	ND [0.100]	ND [0.00050]	ND
-	7/10/2008	0.495 B	ND [0.100]		ND
-	7/20/2010	ND [0 574]	ND [0.100]		ND
-	6/23/2010	ND [0.374]	ND [0.002]		0.00020 1
-	6/22/2011	ND [0.200]			0.00029 J
-	7/12/2012	ND [0.362]	ND [0.0020]		
-	6/25/2013	ND [0.300]			ND
	7/16/2004	0 352			
-	6/15/2005	ND [0 333]	ND [0.0900]	ND [0.00050]	ND
	8/2/2006	ND [0.370]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.328]	ND [0.100]	ND [0.00050]	ND
	7/11/2008	0.276 J, B	ND [0.100]	ND [0.00050]	ND
M\A/ 5	7/29/2010	ND [0.526]	ND [0.062]	ND [0.0003]	ND
(ungradient	6/22/2011	ND [0.266]	ND [0.031]	ND [0.00015]	ND
(upgradient well)	6/22/2012	ND [0.392]	ND [0.0620]	0.00016 J	0.00016 J
Weny	7/11/2013	0.236 J	ND [0.0620]	ND [0.0003]	ND
-	6/25/2014	ND [0.308]	ND [0.0500]	ND [0.00025]	ND
-	6/15/2015	0.423 J	ND [0.05]		ND
-	7/31/2018	ND [0.294]	ND [0.05]		ND
-	6/10/2020	0.200 J	ND [0.05]	ND [0.0002]	ND
	8/27/1998	0.282			
	12/31/1998	0.759			
	3/19/1999	1.21			
	6/23/1999	2.17			
-	9/30/1999	1.43			
-	2/2/2000	0.419	ND [0.0900]	ND [0.00050]	ND
	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND
	8/25/2000	ND [0.323]	ND [0.0900]	ND [0.00050]	ND
	12/1/2000	1.29	ND [0.0900]	ND [0.00050]	ND
	6/24/2004	ND [0.366]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.333]	ND [0.0900]	ND [0.00050]	ND
MW-6	8/3/2006	ND [0.366]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	0.519	ND [0.100]	ND [0.00050]	ND
[7/11/2008	0.407 B	ND [0.100]	ND [0.00050]	ND
[7/29/2010	ND [0.544]	ND [0.062]	ND [0.0003]	ND
	6/22/2011	ND [0.260]	ND [0.031] QN	ND [0.00015]	ND
	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.0003]	ND
	7/12/2013	0.185 J	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	0.189 J	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.223 J	ND [0.05]	ND [0.00025]	ND
	6/15/2016	0.191 J	ND [0.05]	ND [0.0002]	ND
	7/31/2018	0.419 J	ND [0.05]	ND [0.0002]	ND
	6/10/2020	0.356 J	ND [0.05]	ND [0.0002]	ND

Cor (I	npound ma/L)	DRO	GRO	Benzene	Total BTEX
Oct 2018 ((18 AAC 7	Cleanup Level 5.345, Table C)	1.5	2.2	0.0046	
Monitoring Well	Date				
	8/27/1998	ND [0.104]			
	12/31/1998	0.158			
	3/19/1999	ND [0.309]			
	6/23/1999	ND [0.297]			
	9/30/1999	ND [0.319]			
	2/2/2000	ND [0.357]	ND [0.0900]	ND [0.00050]	ND
	5/26/2000	ND [0.674]	ND [0.0900]	ND [0.00050]	ND
8/25/2000		ND [0.333]	ND [0.0900]	ND [0.00050]	ND
	12/1/2000	ND [0.330]	ND [0.0900]	ND [0.00050]	ND
	6/24/2004	ND [0.361]	ND [0.0900]	ND [0.00050]	ND
	6/15/2005	ND [0.375]	ND [0.0900]	ND [0.00050]	ND
MW-7	8/3/2006	ND [0.368]	ND [0.100]	ND [0.00050]	ND
	8/1/2007	ND [0.321]	ND [0.100]	ND [0.00050]	ND
-	7/11/2008	ND [0.621] B	ND [0.100]	ND [0.00050]	ND
	7/29/2010	ND [0.538]	ND [0.062]	ND [0.0003]	ND
_	6/23/2011	ND [0.266]	ND [0.031]	0.00035 J	0.00035 J
	6/21/2012	ND [0.378]	ND [0.0620]	ND [0.0003]	ND
	7/11/2013	0.465 J	ND [0.0620]	ND [0.0003]	ND
	6/25/2014	0.211 J	ND [0.0500]	ND [0.00025]	ND
	6/25/2015	0.878	ND [0.05]	ND [0.00025]	ND
	6/15/2016	ND [0.3]	ND [0.05]	ND [0.0002]	0.00055 J
	7/31/2018	0.276 J	ND [0.05]	ND [0.0002]	ND
	6/10/2020	0.529 J	ND [0.05]	ND [0.0002]	ND
	6/23/1999	7.53	0.25	0.103	0.109
	9/30/1999	5.34	0.22	0.0599	0.0759
	2/2/2000	12	0.33	0.172	0.177
	5/26/2000	4.73	0.94	0.473	0.473
MW-8	9/13/2002 ²	3.06	0.464	0.0158	0.160
	12/4/2002	2.31	1.40	0.00677	0.449
	3/20/2003	3.02	1.04	0.00489	0.364
l F	6/26/2003	4.78	0.862	0.726	0.762
	9/23/2003	2.37	1.410	0.019	0.7762

TABLE 3, Continued - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

Co	mpound				
	(mg/L)	DRO	GRO	Benzene	Total BTEX
Oct 2018	Cleanup Level	1.5	2.2	0.0046	
(18 AAC 7	(5.345, Table C)	•			
Monitoring Well	Date		r	•	
	5/26/2000	18.8	31	7.97	19.8
	8/25/2000	36.1	47.6	3.42	21.4
	12/1/2000	11.92	44.9	3.3	6.55
	9/13/2002 ²	6.11	15.1	3.36	5.94
	12/4/2002	8.03	9.76	2.44	3.52
	3/20/2003	3.39	9.67	1.82	3.38
	6/26/2003	61.2	10.2	3.84	6.97
	9/23/2003	7.47	14.1	4.95	9.25
	6/24/2004	6.33	17.7	3.89	7.40
	6/15/2005	4.51	13.4	3.50	5.81
4	8/3/2006	2.23	5.53	2.01	3.20
MW-9 ⁴	8/1/2007	8.22	9.99	1.93	3.74
	7/11/2008	4.81	15.4	4.14	8.26
	7/30/2010	5.44	14.2	6.01 Q+	8.49
	6/23/2011	5.25/4.07	11.2/11.8	3.94/4.10	5.71/5.80
	6/21/2012	5.09/3.89	14.5/16.2	4.97/5.12	7.18 QN/7.99 QN
	7/11/2013 ³	0.871 QN / 1.75 QN	8.31 QN/15.9 QN	2.14 QN/5.62 QN	3.47 QN/7.94 QN
	7/12/2013	2.61			
	6/25/2014 ³	2.63/1.97	17.1 QN/2.87 QN	6.16 QN/0.996 QN	8.79 QN/1.45 QN
	6/25/2015	3.22/2.83	12.5/9.85	3.62 QH/2.79 QH	5.24 QH/4.24 QH
	6/15/2016	2.16/2.38	2.34/2.52	0.645/0.5	0.8609 MN/0.7033 MN
	8/3/2018	2.69/2.84	3.25/2.59 Q+	1.3/1.2	1.8419 Q/ 1.5237 Q
	6/12/2020	3.03/2.71	11/9.53	4.31/3.25	5.6596 Q/4.3189 Q

TABLE 3, Continued - HISTORICAL GROUNDWATER ANALYTICAL RESULTS ML&P TRANSFORMER SHOP

Notes:

1. Sampling method prior to 2011 was purging 3 casing volumes with a bailer, followed by sample collection with a bailer. Starting in 2011, the sampling method switched to a low-flow sampling technique with purging and sampling performed with a peristaltic pump and tubing.

2. Analytical results are suspected to have been mislabeled or switched for monitoring wells MW-8 and MW-9 during sampling handling of 9/13/2002 samples. Analytical results in this table have been placed in corrected locations.

3. Monitoring well MW-9 sample was collected without prior purging in 2013 and 2014.

4. MW-9 is a poor producer of groundwater and typically was purged dry when trying to achieve standard parameters using a low-flow sampling technique. Since 2015, the standard sampling protocol for MW-9 is to purge the well dry and collect the sample approximately 24 -72 hours later. Water level recovery has been on the order of 40 to 80% at the time of sampling.

Coding

0.377 / 0.364	Primary sample concentration followed by duplicate sample concentration
4.81	Bold and Shaded - Concentration exceeded the 18 AAC 75.345, Table C groundwater cleanup level (October, 2018).
ND [0.0900]	Analyte not detected above the practical quantitation limit (limit of quantitation, or LOQ). Data prior to 2012 analytes were not detect above the Detection Limit (DL).
Abbreviations:	
AAC	Alaska Administration Code
В	Compound was positively identified in the trip blank or method blank.

- BTEX benzene, toluene, ethylbenzene, and total xylenes
- DRO diesel range organics
- J Compound was positively identified, above the detection limit, but below the Limit of Quantitation.
- GRO gasoline range organics
- Q The quantitation is an estimate. An "H/+", "L/-", or "N" indicates a potential high, low, or unknown bias respectively.
- mg/L milligrams/liter
- M The quantitation is an estimate due to a sample matrix quality control failure. An "H", "L", or "N" indicates a potential high, low, or unknown bias respectively.
- ND not detected
- -- Sample not analyzed for parameter

Photo 2: Monitoring Well MW-5 TS, located under the stairs, being purged prior to sampling. Photo on 6/10/2020.

Transformer Shop Groundwater Sampling ML&P Anchorage, Alaska

Job No: 105.00528.18001

Photo 3: Monitoring Well MW-7 TS as it is being purged. Location is north of Transformer Shop. Photo on 6/10/2020.

Photo 4: MW-6 TS site prior to purging. Location is near top of ramp north of Transformer Shop. Photo on 6/10/2020.

Transformer Shop Groundwater Sampling ML&P Anchorage, Alaska

Job No: 105.00528.18001

Site/Client Nan	ne: ML+P	Transfor	mer Sh	08	Well I	D: MW-	9T5			
Project # : 1()5	,00528.1	8001 T	0351	1	Samp	e ID: ·	7			
Sampled By: A	licholac	Walls			Samp	e Time: 1	/	Samol	Date: C.K	1/2020
Weather Condit	ions: La.	50 (10.	1.		Dunlic	ate ID:	-	Campio	Date. 6	1 au du
Sampling Method		in and	F.II.	interes.	Dupic			T · DI · I		
Camping Method			Je i will b	Mall	1/15/1/1	SD [] Yes	S 🗌 NO	I rip Blank		Yes 🗌 No
Well Type: Per	manent 🗆 T	emporary	L V	Vell Diameter	a in	Screen Ir	terval:	# B(25 to	A DOS
Well Condition:	Good T Fa	air 🗌 Poor (if	fair or poor e	xolain in Notes)	<u></u>	Stickup			# abov	
4				Gauging/Pur	aina Inform	ation	I res par	0, il yes,	11 2000	e ground
Depth to Water (ft	BTOC): 4	33 NW	4.22	euugingri ui	Tubing	Pump Dep	th (ft. BTOC):		
Total Depth (ft B)	FOC): 8,3	4 cm/do	8.56		Purge	Start Time ((24-hr) 12:	59 (@ 250 .nl	/Minute
Depth to Product	(ft. BTOC)	NIA			Purge	End Time (2	24-hr) 13:	57		
Product Thickness	s (ft) N	1.A			Total P	urge Time	(min) 5 8	4 gallo	ns purged,	
LOW FLOW: M	lax Draw Dowr creen, then use	 = (Tubing D default value c 	epth – Top of S	Screen Depth)	X 0.25	=(ft);	if screen inte	rval is not know	wn or water tabl	e is below top of
Min. purge volume Well Diameter	if required: pu – gal/ft	rge volume (ga 1" - 0.0	al) = volume of 41 gal/ft	water/ft(gal 2" - 0	/ft) X Water co 163 gal/ft	lumn thickne	4" - 0.653	X # of casing gal/ft	volumes6" - 1,4	=gal 169 gal/ft
14.11				Water Qual	ity Paramet	ers				
(Achieve stal	ble parameters	tor 3 consecut	ve reading, 4 p	arameters if practic	cal [each read	ling taken aft	er pumping a	minimum of 1	flow through cell	volume])
(24-hr)	Flow	Purge Volume	Temp (°C)	Specific	DO (mg/L)	pH	ORP (mV)	Turbidity	DTW (ft BTOC)	Drawdown
	(liter/	(gal)		(µS/cm°)	(()	(± 10%, or	(11 11 100)	(1)
	minute)		(± 3 %)	(± 3%)	(± 10%)	(± 0, 1)	(± 10mV)	<5 NTU)		(Maxft)
	-									
						-				
		-								
				-						
		_								
						0				
			1							
Parameter Stab	le (Check app	olicable)								
Sample Color: (ear			Sample Odor:	light fuel	smell	Shee	n: Slight	hydroush	~ sheph
				Analytica	al Sampling	21. 1.	-	- 11.1	Jundan	in justi
	Analy	ses		Check	Applicable			Comme	ents	
						11/1				
						1				
Notes: U 34	ft uté	tor volu	M N.	3.47 ft	of sor	hurae	is 80°	7,,		
(,) (1 / WA		L.C.	J F C				1 Lr	complia	έ)
		V	alei lei	vel 01).	VI tt	DIOC	. need	-N 101	54171	<u>ר</u>
	- Post	altic - fr	Column H	1	-	TCI	liad		11 IA	
Equipment: Pump	(1R-4-)	Valle V	ACL	Tubing (Ty	pe/Length) _	125/01	Ind	_ Bailer Type	NA	
vvaler Level Meter	KO/SNIM A	IA	wi1,	_ Multi-Parame	ter Meter (M	ake/SN#)_			() iA	
	1KC/3N#)_/	111				-	Fil	ter Lot #		
Purge Water Hand	lling: 🗌 Disc	harged to su	rface Cont	ainerized 🗌 Tre	eated (how?)					
		-			101 B 11					

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable

Page 1 of

					1						
Site/Client Name	e:MLbp	Transf	ormer s	hop	Well ID: MW-9TS						
Project #: 105.	00528. in	,001 T	0351		Sample ID: MW-9TS						
Sampled By: N	che Wells	V Frank	acca R	icse	Sample	e Time: 00	1:40	Sample	Date: 6/1	2/2020	
Weather Conditio	nns CA. C.	An Parl	li flaul		Duplicate ID: MW-99TS @ 10:00						
Operating Mathada		Ming 1417	a hace a to	302	MS/MS		NO T	Trin Blank B	equired M	Yes 🗌 No	
Sampling Method:	LOW Flow	N Other T	ecrosje il	Moll Inf	Internetion		AIN	пр Банк н	Codunea: M		
		emporaty		Vell Diameter	in.	Screen Int	erval:	ft BG	S to	ft BGS	
Well Condition:			fair or poor	avolain in Notes)		Stickup		fves	ft above	e around	
Well Condition.			Tall of poor	Gauging/Purgi	ing Inform	ation	TICS PERC	, ii joo,		gioune	
Depth to Water (ft	BTOC) 4	92		Gaugingirurgi	Tubing/	Pump Dept	h (ft. BTOC)	:			
Total Depth (ft BT	OC): 8.5	6			Purge S	Start Time (2	24-hr) 10:0	00			
Depth to Product (ft_BTOC)	-			Purge End Time (24-hr) 10,10						
Product Thickness	; (ft) 🔶				Total P	urge Time (i	min) 10				
LOW FLOW: Ma	ax Draw Down reen, then use	= (Tubing D default value o	epth – Top of of 0.3 ft	Screen Depth)	X 0.25	=(ft);	if screen inter	val is not knov	vn or water table	e is below top of	
Min. purge volume i	if required: put	rge volume (ga	al) = volume of	water/ft(gal/ft) X Water co	olumn thickne:	ss(ft)	X # of casing v	olumes	= gal	
Well Diameter -	- gai/tt	1" - 0.0	u41 gai/it	2 - 0.1	os gai/π		4 - 0.003 (aginir	0 - 1.4	oo gam	
(Achieve stat	ole parameters	for 3 consecut	ive reading. 4	water Qualit parameters if practica	al feach read	ers ding taken afte	er pumping a	minimum of 1 f	flow through cell	volume])	
Time	Flow	Purce	Temp	Specific	DO	Ha	ORP	Turbidity	DTW	Drawdown	
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	F	(mV)	(NTU)	(ft BTOC)	(ft)	
	(liter/	(gal)	(+ 3 %)	(μS/cm°) (+ 3%)	(+ 10%)	(± 0, 1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)	
10:07			11.7	11.20	Q AT	708	1710	745			
10.03			10.17	11 50	5.07	7.00	1/410	119)			
0:06			10.93	1004	2.21	1.16	1310	4.10	-		
10;09			10.64	9/1	4.36	1.19	155.4	441			
		w									
									-		
	-										
	_		-								
	AC 1										
Parameter Stal	ble (Check ap	plicable)									
Sample Color:	11		-	Sample Odor:	Light .	Guel	Shee	n: Slight	hudrocar	bon sheen	
Comple Color:	None		-	Analytics	Samplin		-	J.			
	Anal	vses		Check	Applicable			Comm	ents		
116	1. 6.10)i.p			1						
000	LS SWA				/						
Gr Dr	O AV	101			/						
PAH	ST M	SW8270	Ň		1						
Notes:	SPA	500 00 70	ų		-						
10000											
		1.0		1.5		TO			A [1 A		
Equipment: Pur	np Type Per	istaltic	Granning	サム Tubing (Ty	pe/Length)	letlor	lined	Bailer Typ	e_////	·	
Water Level Mete	SUR #1	300ft y	ellow	Multi-Parame	eter Meter (Make/SN#)	YSI SSI	0582	462 AE		
Turbidity Meter (N	Aake/SN#)	ach 2100	Q Portub	le Turbidimete	r 1003	30 600 14	72 F	ilter Lot #	NIA		
						1.1.1					
Purge Water Har	ndling: 🗌 Dis	scharged to s	surface	ontainerized 🗌 Tr	eated (how	(?)					
BGS = Below Gr	ound Surface	BTOC= Below	v Top of Casi	ng, NA = Not Applic	able			Page 1 of			

Site/Client Na	me: MLI	P Tr	Insforme	1 Shan	Well I	D: MW -	S TS					
Project # : 10	500578	18001	T0351	- def	Samp	Sample ID: MIN-STS						
Sampled By:/	Vick Wel	15. France	11/1 8:	CSA	Samp	Sample Time: 0: 28 Sample Date: 6/10/2020						
Weather Cond	litions: 505	6.44.04	SCA N	5)0	Duplic	Dunlicate ID:						
Sampling Metho	d: N Low Flo	w 🗆 Other			MS/M							
	- Garager 110			Well In	formation	mation						
Well Type: P	ermanent	Temporary		Well Diameter	2 in	Screen In	terval:	ft BC	GS to	ft BGS		
Well Condition:	Good D F	air 🗌 Poor (if fair or poo	r explain in Notes)		Stickup TYes No; If yes,ft above ground						
				Gauging/Purg	ging Inform	ation						
Depth to Water ((ft BTOC): 4	96			Tubing	Pump Dept	h (ft. BTOC):	ł			
Depth to Produc	t (ft BTOC)	69			Purge	Purge Start Time (24-hr) 09: 38						
Product Thickne	ss (ft)				Total P	urae Time (2						
LOW FLOW:	Max Draw Dow screen, then use	n = (Tubing I e default value	Depth – Top o of 0,3 ft.;	f Screen Depth)	X 0 25	=(ft);	if screen inte	erval is not know	wn or water tab	le is below top of		
Min. purge volum	e if required: p	urge volume (g	gal) = volume o	of water/ft 0.163 (gal/	ft) X Water co	lumn thickne	ss 8,68 (ft) X # of casing	volumes	= 4.25 gal		
vveli Diamete	er – gai/π	1" - 0.	041 gal/ft	2"-0.	163 gal/ft		4" - 0.653	gal/ft	6" – 1.	469 gal/ft		
(Achieve st	table parameters	for 3 consecu	itive reading, 4	Water Quali parameters if practic	ity Paramet al [each read	ers ling taken afte	er pumping a	minimum of 1	flow through cel	l volume))		
Time	Flow	Purge	Temp	Specific	DO	pH	ORP	Turbidity	DTW	Drawdown		
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)		(mV)	(NTU)	(ft BTOC)	(ft)		
	minute)	(gai)	(± 3 %)	(± 3%)	(± 10%)	(± 0_1)	(± 10m V)	<5 NTU)		(Maxft)		
01:33	250	0	7.07	844	12.12	7,44	175.0	23.9	5.15	0.19		
09:38	250		3.86	692	10.56	7.82	158.2	17.4	5.19	1223		
09:43	250	1.1	6.86	662	9.94	796	150.5	10.02	5.28	0.39		
09:48	250		7.29	647	9.86	8 12	145.9	10 60	5.31	D 35		
09:53	250		7.29	644	10 01	9.78	143.1	7 11	5.34	038		
09:58	250		711	641	9 4	2 44	1012	10.19	528	0,50		
10:63	275		7.27	6.78	932	Qqu	1411	10.00	5.90	AUC		
10'08	175		757	636	a 20	9.11	124/	151	CUC	0,15		
10:02	275		6.88	(1)	951	0.94	131,0	LL NV	5.73	DEE		
10:18	275	115	(8)	610	1.51	0 40	124 7	TITI	5.31	0.55		
10.10	910	7.43	6.00	017	9.11	0.10	1567	9/16	212 4	0.36		
Parameter Sta	able (Check ap	plicable)		./			1					
Sample Color:	Deal			Sample Odor:	4.2		Shor					
campie colori	Creat			A palytica	None	-	Shee	m. N(A	_			
	Analy	/ses		Check	Applicable	1		Comme	ents			
GRO AK	(10)	-			1	-						
BTEX	508260				~	-						
DRO A	FKIDA	-			V							
							-					
Notes: 3 CO	ising volu	ines pi	nrged.	4.5		r (i i			A/ /A			
Equipment: Pun	np Type	a ric G	eo rump i	Tubing (Ty	pe/Length)	let lon L	ARA	Bailer Type	14/1			
Water Level Mete	TOLK HL	multi 10	line 1	Multi-Parame	ter Meter (N	lake/SN#)	121 22	6 05B	2462 AF			
i urbialty Meter (N	lake/SN#)_L4	rune 20	the Inth	amerel	17/20		Fi	Iter Lot #_/V	M.M.			
Purge Water Har	ndling: 🗌 Disc	charged to s	urface XCo	ntainerized 🗌 Tre	eated (how?)						
BGS = Below Gro	ound Surface, B'	TOC= Below	Top of Casin	g. NA = Not Applica	able		F	age 1 of 1				

Site/Client Nam	te/Client Name: MLBP Transformer Shop					Well ID: MW-7 TS					
Project # : 10.5.	00528	18001 -	T0351		Sample ID: MW-7T5						
Sampled By: Mi	devialis	+ FOAL	occa Ri	55e	Sample	e Time: []	:40	Sample	Date: 6/1	0/2020	
Weather Condition	ons: 11 . A.	SDe S.	A / M H		Duplicate ID:						
Sampling Method	MI LOW FLOW	C Other	J		MS/MSD Trip Blank Required: Yes No						
Sampling Method.	LOW TION			Well Inf	ormation	rmation					
Well Type: Perr	manent 🗌 Te	emporary	V	Vell Diameter	in.	in. Screen Interval: ft BGS toft BGS					
Well Condition:	Good G Fa	ir 🗌 Poor (if	fair or poor e	explain in Notes)		Stickup 🗌 Yes 🕅 No; If yes,ft above ground					
	NW G	110/20		Gauging/Purg	ing Informa	ation			3.53		
Depth to Water (ft	BTOC): +7	40 19.	40		Tubing/	Pump Dept	n (ft. BTOC)				
Total Depth (ft BT	00: 20,0	58			Purge S	Start Time (2	24-hr)	00			
Depth to Product (tt. BTOC)				Purge E	Ind Time (2-	4-nr) 11:3	6			
		= (Tubing De	epth - Top of	Screen Depth)	X 0.25 :	= (ft)	if screen inter	rval is not know	vn or water tabl	e is below top of	
SC	creen, then use	default value o	f 0.3 ft ;		X 0.20	(%)					
Min. purge volume i	if required: pu	rge volume (ga	I) = volume of	water/ft(gal/f	t) X Water co	lumn thicknes	ss(ft)	X # of casing v	volumes	= gal	
Well Diameter -	- gal/ft	1" - 0.0	41 gal/ft	2"-0,"	os gai/ft		4 - 0.653	yavit	0 - 1,4	+os gal/it	
(Achieve stat	ble parameters	for 3 consecuti	ve reading. 4 r	Water Qualit parameters if practic	ty Paramet	ers ling taken afte	er pumping a	minimum of 1 f	flow through cel	l volume])	
Time	Flow	Purae	Temp	Specific	DO	pH	ORP	Turbidity	DTW	Drawdown	
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)		(mV)	(NTU)	(ft BTOC)	(ft)	
	minute)	(gal)	(± 3 %)	(μS/cm°) (± 3%)	(± 10%)	(± 0_1)	(± 10mV)	(± 10%, 0/ <5 NTU)		(Maxft)	
11'05	200	0	119	1131	07.6	10.58	7.621	11.9	19.42	0.0)	
	200	Y	017	112)	2.30	457	1457	716	(9.4)	0.03	
11.10	450		7.01	1100	2 21	9 111	113.1	2410	19 44	0.00	
11:15	150		8:52	1124	2,51	0.41	1951	29.0	10.1170	(10)	
11:20	250		8.55	1124	2.91	3.13	1309	27./	19.92	0.02	
11:23	250		8.48	1128	2.03	8.57	15612	18.9	19.92	0.02	
11:26	250		8,43	1129	1.88	8.82	154.0	11.9	19.92	0.02	
11:39	250		8.28	1133	1.79	9.16	132.3	9.76	19.42	0.02	
(1:32	250		8.27	1140	1.74	9.78	129.1	4.99	19.43	0.03	
11:35	250	2.5	8.21	1141	1.70	9.42	127.0	6.51	19.43		
							-				
	-										
Parameter Stal	ble (Check ap	plįcable)	1	./	1		1				
Comple Color -	i i i i i i i i i i i i i i i i i i i		v	Samala Odari	Alast	1	Char	AI/A	-	1	
Sample Color: (lear			Sample Odor:	NONE		Snee	n: /v (/ 1	_		
1	Anal	292		Analytica	Applicable			Comm	ents		
	AV AN	303		Oneck		-					
6RC	MAK 10	0			/	-					
DIE	AV 103	U			1						
UKU	401 11.										
Notes:						-					
							1				
		1 10		4)		TCI	1. 1		2	1	
Equipment: Pur	np Type	staltic U	copurp	Tubing (Ty	/pe/Length)	UNI-101	lined	Bailer Typ	e_ N/-	<u>q</u>	
Water Level Mete	151 551	, SUR #J	300.Ft Y	Il ownulti-Parame	eter Meter (i	Make/SN#)_	NI SI	6 OSB	+467 M	5	
Turbidity Meter (N	lake/SN#)_L	a Motte	20402 Tur	hidimete	11733		F	ilter Lot #	N/N		
Duran Mart 1	alliaci 🗖 Pi	abaraat ta -	urface Ma	ptoinorized 🗖 T	onted (here	2)					
Purge water Har		scharged to s	unace ACO		ealed (now	1)					
BGS = Below Gro	aund Surface F	TOC = Relow	Ton of Casin	α NA = Not Applic	able			Page 1 of			

	LIN QU		- 0		1.000.000	Les A				
Site/Client Nam	iestr T	NL bP .	Transform	e Shep	Well II	D: MN	GTS			
Project #: (05,00528,1800) T0351 Sample ID: MW-CTS										
Sampled By: N. k Wells to Francesco River					Sampl	Sample Time: 12:45 Sample Date: (110/2020)				
Weather Conditi	ions SAC 6	n De	ATP		Dunlic	ate ID:			0/1	1.00
Oceasilies Mathada	AL SUS /3	Junny Dre			Dupilo		57.11	T: 01 1 0		
Sampling Method:	Low Flow	Other_			MS/MS	SD 🗌 Yes	No No	Trip Blank H	Required:	Yes 🗌 No
M				Well In	formation					
vveii Type: Peri		emporary		Well Diameter	in.	Screen In	terval:	ft BG	S to	ft BGS
Well Condition: M	Good L Fa	ir 📙 Poor (i	f fair or poor	explain in Notes)		Stickup	Yes XN	o; If yes,	ft abov	e ground
B	PT00) (5			Gauging/Purg	ging Inform	ation				
Depth to Water (ft	BIOC): 15	34			Tubing	Pump Dept	h (ft. BTOC):		
Dooth to Droduct (H PTOCA	6			Purge	Start Time (2	24-hr) 100	2		
Depth to Product (Purge	ind Time (2	4-nr) 123	1		
LOW ELOW:		- /Tubica D	anth Tan of		Total P		min)	and in and have		- to both stars - F
SC	creen, then use	default value	of 0.3 ft;	Screen Deptn)	X U 25 5	=(n);	ir screen inte	IVAL IS NOT KNOW	in or water table	e is below top of
Min. purge volume i Well Diameter -	if required: pui - gal/ft	rge volume (g 1" – 0.0	al) = volume o 041 gal/ft	f water/ft(gal/ 2" - 0	ft) X Water co 163 gal/ft	lumn thicknes	ss(ft) 4" – 0.653) X # of casing v gal/ft	olumes 6" – 1.4	_=gal 69 gal/ft
				Water Quali	ity Paramet	ers				
(Achieve stat	ole parameters f	for 3 consecut	tive reading, 4	parameters if practic	al [each read	ling taken afte	er pumping a	minimum of 1 fl	ow through cell	volume])
Time	Flow	Purge	Temp	Specific	DO	pН	ORP	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)		(mV)	(NTU)	(ft BTOC)	(ft)
	minute)	(gai)	(± 3 %)	(± 3%)	(± 10%)	(± 0_1)	(± 10mV)	<5 NTU)		(Maxft)
13.10	715	Ê.	4 14	718	2 41	11 4/2	QUE	47)	15 711	() ()
10.10	200	0	0,11	710	7,10	11.10	C174	110	15, 34	0
14.15	242	1	0.00	709	2.00	11,57	10,5	48.2	13.34	0
12:20	372	i	1.71	70.5	1.68	11.72	59.7	36.7	15.34	0
12:23	295		792	705	1.38	12.30	53.4	22.9	15.34	Õ
12:26	225		7.83	705	1.33	12.40	49.4	18.1	15,74	0
17.74	775		7 87	705	175	11 14	10.1	157	10 71	0
12:20	115		110)	705	1.0	10617	11.0	13,7	15, 37	() ()
10.20	442	-	1.15	705	1.10	11.56	10.9	ld./	13.39	0
12:35	992		7.10	707	1.13	10.93	39.0	8.55	15.34	0
12:38	372	5	7.90	706	1.10	0.44	35.8	9.06	15.34	0
Parameter Stab	le (Check and	licable)	1				~			
r arameter Stab	ne (Check app		~	- V			V			
Sample Color: (leal			Sample Odor:	None		Shee	en: Non	e	
				Analytica	al Sampling					
	Analy	ses		Check	Applicable			Comme	nts	
1.	en AK	101			1	-				
ß	TCX ch	19260			1	-				
D	RO AK	102	-		1					
Notos										
Equipment: Pump Water Level Meter Turbidity Meter (Ma	D Type Perist JUR#2 ake/SN#) La	altil (300++ y Motte	Teolump Ellow 2020e T.	H) Tubing (Ty Multi-Parame	pe/Length) ter Meter (N	Teflon nake/SN#)_ 8	Lined yst ss	Bailer Type	N/A 3462 AE 1A	1
Purge Water Hand	dling: 🗌 Disc	harged to s	urface 🔟 Co	ntainerized 🗌 Tr	eated (how?	')				
BGS = Below Grou	ind Surface BT	TOC= Below	Top of Casin	NA = Not Applic	able		F	Page 1 of		

<u>V1</u>	10/ 0000		Time: 00, 93		Calibration By:	Nick Wells		
Meter Man	ufacturer and	I Identification #	AST 220	MPS U	202462	AÉ		
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptanc Criteria
	7.00	7.01	66678634	6/6/20	6/28/21	7.906.19	7.01	± 0.10
рН	4.00	4.00	((643483	616/20	10/07/21	3.403.18	4,00	± 0,10
	10.00	10.06	((627098	616/20	6/19/21	10.08	10.07	± 0.10
Sp Cond (mS/cm)	1_413	1.413	CL 18930	616/20	8/29/20	2,430	1.413	± 10%
ORP (mV)	240	240	1600	9/4/17	05/2022	236,8	240.3	
DO*						130,6	14.5	± 2%
/leter Man	ufacturer and	– Identification #	<u>YSI 556</u>	Mrs	05B246	AE	Reading	Calibratio
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	After Calibration	Acceptanc Criteria
	7.00	7.0	CC6 78634	6/6/20	6/28/21	6.76	7.02	± 0,10
рН	4.00	4.00	LC645483	5/26/20	10/7/21	3.98	4.00	± 0_10
	10.00	10.06	((6)7098	6/6/20	6/19/21	10.24	10.08	± 0_10
Sp Cond (mS/cm)	1,413	1.413	CC18930	6/6/20	8/29/20	1.466	1,413	± 10%
ORP (mV)	240	240	3688	6/6/20	12/2023	241.3	240.1	*******
DO*						106.2	100.0	± 2%
ate:	parameter not i lote that the Tru	ncluded in sampling e Value for DO is d Identification #:	g event, fill in box with ependent on pressure Time:	NA (not applicabl and altitude; refe	e) 30, 19 Prence the DO Calit Calibration By:	bration Table		
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
-	7.00							± 0.10
pН	4.00							± 0.10
	10,00							± 0_10
Sp Cond (mS/cm)	1,413							± 10%
ORP (mV)	240							

If parameter not included in sampling event, fill in box with NA (not applicable)

Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Turbidimeter Calibration Log

Calibration Date 6/10/2020	Calibration Time 08:55	Calibration By	rancesca Riss	e
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
La Motte/2020e Turbidim	leter 14/68		NTU	Range?
Bump Check 🗆 or Calibration 🗷 Note	s:	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	ves
6/10/2020 0	08:55	10.02	0.00	no

	Calibration Date 6/12/2020	Calibration Time	Calibration By	rancesca Riss	e
Ro	Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
112-	ballite / Loice Turbidim.	ler 1720	<u>IC</u> NTU	NTU	Range?
6/10	Bump Check 🗆 or Calibration 🔎 Notes	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes	
			9.09	0.00	no

Calibration Date 6/12/2020	Calibration Time 09:23	Calibration By Fr	anceson Ris.	se
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
HACH / Turbidimeter	10030 (00 1472	800 NTU	100 NTU	Range?
Bump Check 🗆 or Calibration 🖄 Notes	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	(yes)	
		819	103	no

Calibration Date	Calibration Time	Calibration By				
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable		
		20 NTU	NTU	Range?		
Bump Check □ or Calibration □] Notes:	Bump check result or post- calibration reading: 20, 3	Bump check result or post- calibration reading:	ves no		

Calibration Date	Calibration Time	Calibration By				
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable		
		NTU	NTU	Range?		
Bump Check 🗆 or Calibration	Notes:	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes		
				no		

Calibration Date	Calibration Time	Calibration By				
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable		
		NTU	NTU	Range?		
Bump Check 🗆 or Calibration 🗆	Notes:	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes		
				no		

Note: A bump check can verify the instrument is in proper calibration if the instrument reads an accurate value for a calibration solution (without performing a full calibration). In the event a bump check does not indicate the instrument is properly calibrated, a calibration will be performed, per manufacturer instructions.

LABORATORY DATA QUALITY ASSURANCE REVIEW ML&P

2020 GROUNDWATER MONITORING AT THE ML&P TRANSFORMER SHOP (1130 EAST 1ST AVE., ANCHORAGE, AK)

July 2020

Prepared by: Francesca Risse Reviewed by: Jennifer McLean

SLR Project Number: 105.00528.18001 ADEC Number: 2100.26.302 ADEC Hazard ID: 23842

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code						
AK	Alaska						
ADEC	Alaska Department of Environmental Conservation						
BTEX	benzene, toluene, ethylbenzene, xylenes						
°C	degrees Celsius						
CCV	continuing calibration verification						
COC	chain of custody						
DL	detection limit						
DRO	diesel range organics						
EDD	electronic data deliverable						
GRO	gasoline range organics						
LCL	lower control limit						
LCS	laboratory control sample						
LCSD	laboratory control sample duplicate						
LOD	limit of detection						
LOQ	limit of quantitation						
LV	low volume						
mg/L	milligrams per liter						
MŠ	matrix spike						
MSD	matrix spike duplicate						
NA	not applicable						
NFG	National Functional Guidelines						
PAH	polynuclear aromatic hydrocarbons						
PARCCS	precision, accuracy, representativeness, comparability, completeness, and						
	sensitivity						
QA	quality assurance						
QAR	quality assurance review						
QC	quality control						
RPD	relative percent difference						
SDG	sample delivery group						
SIM	selective ion monitoring						
SLR	SLR International Corporation						
SGS	SGS North America, Inc.						
UCL	upper control limit						
USEPA	United States Environmental Protection Agency						
VOCs	volatile organic compounds						

This report summarizes a review of analytical data for samples collected on June 10, 2020 and June 12, 2020 in support of ML&P Transformer Shop Area groundwater monitoring activities. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1	Sample Summary
---------	----------------

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte	Trip Blank ¹
					SW8260D	VOCs	Required
	6/10/2020, 6/12/2020	6/12/2020	4.9°C	GW	SW8260D	BTEX	Required
1202600					AK101	GRO	Required
					AK102	DRO	NA
					SW8270D LV	PAH SIM	NA

Notes:

1 - This type of sample requires a trip blank to be included in the cooler, with the trip blank noted on the chain of custody.

Acronyms:

AK – Alaska

°C – degrees Celsius

BTEX – benzene, toluene, ethylbenzene, and total xylenes

DRO – diesel range organics

GRO – gasoline range organics

GW – groundwater LV – low volume

PAH – polynuclear aromatic hydrocarbons

SDG – sample delivery group

SIM - selective ion monitoring

VOCs – volatile organic compounds

The laboratory final report was presented as a Level II deliverable and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) was also provided. The PDF laboratory report is provided electronically as Appendix E.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The selected laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project-specific requirements in the Work Plan Addendum (SLR 2018), ADEC Technical Memorandum *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data* (ADEC, 2019), National Functional Guidelines (NFG, United States Environmental Protection Agency [USEPA] 2017), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG, and is included as Appendix D. A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals; Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify that any Calibration Verification (CCV) recoveries or other calibration related criteria were outside applicable acceptance limits;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD), and Matrix Spike (MS) and Matrix Spike Duplicate (MSD), were within recovery acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, MS/MSD, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

As part of this QAR, qualifiers were applied to datum as determined necessary based on specified criteria or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2}	Definition
U	U	U	The analyte was analyzed for, but was not detected above the limit of detection (LOD). This qualifier is appended by the laboratory.
J	NJ	J	The analyte has been "tentatively" or "presumptively" identified as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the Detection Limit (DL). This qualifier is appended by the laboratory.
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria failures (e.g., LCS recovery, surrogate spike recovery) or a matrix effect. Where applicable, a "+" or "-" was appended to indicate a high or low bias, respectively.
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection and the result is likely a false positive or both the blank detection and sample detection were below the LOD. The greater of the sample detection or LOD was reported in brackets.

Table 2 Data Qualifiers

Notes:

1 - Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.

2 - Only flags in **bold** were applicable and appended to data for this project.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

• The case narrative noted a surrogate recovery exceedance; however, the comment is not applicable to any project samples or associated QC. No data were impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples, except as noted below.

• A comment regarding trip blanks on the Sample Receipt Form noted that an extra set of trip blanks accompanied the samples with the label "Do not analyze this one". The laboratory proceeded to dispose of the extra trip blanks as indicated. No data were impacted.

Holding Times and Preservation

Samples were appropriately preserved and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted with regards to sample preservation.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the LOD in any method blanks, and one detection occurred between the DL and LOD.

 For GRO by Method AK101, one method blank in batch VXX 35778 had a detection of 0.0389 J milligrams per liter (mg/L), below the LOD of 0.05 mg/L. Samples associated with this blank detection were MW-5TS, MW-6TS, and MW-7TS, all of which had nondetectable results for GRO. Since a high bias was indicated and all associated results were nondetectable, no qualification was considered necessary. All data were usable without qualification.

Trip Blanks

One trip blank was analyzed for VOCs by Method SW8260D and GRO by Method AK101. All BTEX analytes are included in the VOC list, so an additional trip blank for BTEX by Method SW8260D was not required. Analytes were not detected at or above the LOD in the trip blank.

Reporting Limits

For non-detectable results, LODs were compared to applicable regulatory criteria for the site. LODs were compared to 18 Alaska Administrative Code (AAC) 75.345 Table C, *Groundwater Cleanup Levels* (ADEC, 2018). Except as noted below, all analytes with results of non-detect had LODs at or below applicable regulatory criteria.

The LODs for several VOC analytes (listed below) by Method SW8260D, for samples MW-9 TS and duplicate MW-99 TS, did not meet ADEC cleanup levels. This was due to a necessary 50-fold dilution due to high target analyte concentration. For these compounds, it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. The data for the impacted analytes are limited in usability for that purpose. For both

impacted samples, multiple target analytes exceeded applicable ADEC cleanup levels. Overall, data usability was considered not impacted, and all data were usable without qualification.

- 1,1,1,2-Tetrachloroethane
- 1,1,2,2-Tetrachloroethane
- 1,1,2-Trichloroethane
- 1,1-Dichloroethane
- 1,2,3-Trichlorobenzene
- 1,2,3-Trichloropropane (TB LOD also above limits)
- 1.2.4-Trichlorobenzene
- 1.2-Dibromoethane

- 1,2-Dichloropropane
- 1,4-Dichlorobenzene
- 2-Hexanone
- Bromodichloromethane
- Bromomethane
- Carbon tetrachloride
- Chloroform
- cis-1,3-Dichloropropene
- Dibromochloromethane

- Dibromomethane
- Hexachlorobutadiene
- Methylene chloride
- Methyl-t-butyl ether
- trans-1,3-Dichloropropene
- Trichloroethene
- Vinyl chloride

Calibration Verifications

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD.

Internal Standards

No internal standards were noted in the case narrative as being outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable. Internal standards criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits.

Laboratory Control Samples and Laboratory Control Duplicate Samples done

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within acceptable limits.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSDs were analyzed at the appropriate frequencies. All MS/MSD recoveries and RPDs were within acceptable limits.

Field Duplicates

The field duplicate sample frequency is presented in Table 3. Parent sample and field duplicates are presented in Table 4. For all methods and analytes, the duplicate frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. A duplicate was not submitted for BTEX by Method SW8260D, as a duplicate for the full VOCs by Method SW8260D was submitted, which includes the BTEX analytes. Field duplicates were submitted blind to the laboratory.

All parent sample/field duplicate RPDs were within the ADEC required 30% for waters, except as noted in Table 5 with chronologically associated samples listed in the table footnotes. Parent sample/duplicate results were qualified as shown in the table. To err on the conservative, impacted analytes for all chronologically associated field samples, listed in the Table 5 footnotes, were also qualified. Detected results were qualified "Q" and non-detect results were qualified "UJ." Associated trip blank data were not listed in the footnotes, nor qualified, as the trip blank, prepared in the laboratory, was considered unaffected by field precision.

In all cases, either both the parent sample and duplicate results were below, or both parent sample and duplicate results were above, the applicable ADEC cleanup level; therefore, data usability was not impacted.

Regarding field associated samples, in all instances laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. Associated field samples, MW-5 TS, MW-6 TS, and MW-7 TS were analyzed for BTEX by SW8260D, thus only ethylbenzene and toluene were affected by field precision exceedances. All associated samples had undetectable ethylbenzene and toluene results and were qualified "UJ" with LODs over 100-fold below the applicable cleanup level. All data were usable as qualified.

Parent sample/field duplicate pairs with both results below the LOQ were considered acceptable without qualification.

Number of Primary Samples	Number of Field Duplicates	Method	Analytes
4	1	AK101	GRO
4	1	AK 102	DRO
3	1	SW8260D	BTEX ¹
1	1	SW8260D	VOCs
1	1	SW8270D LV	PAH SIM

Table 3Field Duplicate Count

Notes:

1 – BTEX are included in the VOCs analyte list.

Table 4 Parent Samples and Field Duplicates

Matrix	Parent Sample	Field Duplicate	Method	Analytes
Groundwater	MW-9 TS	MW-99 TS	SW8260D AK101 AK102 SW8270D LV	BTEX/VOCs GRO DRO PAH SIM

Table 5 Field Duplicate RPD Exceedances

Method	Analyte	Primary: MW-9 TS	Duplicate: MW-99 TS	RPD (%)	Flag	ADEC Cleanup
		Result (mg/L)	Result (mg/L)			Level (mg/L) ¹
SW8260D	Ethylbenzene	0.246	0.11	76%	Q	0.015
	Toluene	0.0936	0.0689	30%	Q	1.1
SW8270D LV	1-Methylnaphthalene	0.0057	0.00302	61%	Q	0.011
	Acenaphthene	0.000224	0.000132	52%	Q	0.53
	Fluoranthene	[0.0000252] U	0.000062	84%	UJ/Q	0.26
	Fluorene	0.00033	0.000152	74%	Q	0.29
	Naphthalene	0.0177	0.00905	65%	Q	0.0017

Bold indicates an exceedance of ADEC criteria.

Notes:

1 – Limits shown are 18 AAC 75, Table C (ADEC, 2018).

2 – Samples chronologically associated with this parent sample field duplicate pair were MW-5 TS, MW-6 TS, and MW-7 TS.

Laboratory Duplicate Samples

No laboratory duplicates were analyzed in association with these samples.

Overall Assessment

This data were considered of good quality acceptable for use with the noted qualifications. No data were rejected.

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the Field Duplicates section.
- Accuracy: Accuracy goals were met.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations.
- Comparability: Comparability goals were met. The same laboratory and methods were used.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis.
- Sensitivity: Sensitivity goals were met, except as noted in the Method Blanks and Reporting Limits section.

References

ADEC. 2019. ADEC Technical Memorandum *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data.* October.

ADEC. 2018. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. October 27.

SLR International Corporation (SLR). 2018. Work Plan Addendum for Groundwater Monitoring at the ML&P Transformer Shop. July 9.

U.S. Environmental Protection Agency (USEPA). 2017. *National Functional Guidelines for Superfund Organic Methods Data Review.* January.

Laboratory Data Review Checklist

Completed By:

Francesca Risse

Title:

Staff Engineer

Date:

July 14, 2020

Consultant Firm:

SLR International Corporation

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1202600

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

ADEC File Number:

2100.26.302

Hazard Identification Number:

23842

1202600

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes \boxtimes No \square N/A \square Comments:
All ana certifica	lyses were conducted at SGS North America, Inc., Anchorage. SGS is ADEC CS approved, ate number 17-021.
b. If the labor	ne samples were transferred to another "network" laboratory or sub-contracted to an alternate oratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
All ana	lyses were conducted at SGS North America, Inc., Anchorage.
2. <u>Chain of C</u>	Custody (CoC)
a. CoC	C information completed, signed, and dated (including released/received by)?
	Yes \square No \square N/A \square Comments:
b. Cor	rect analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
3. <u>Laborator</u>	y Sample Receipt Documentation
a. Sam	pple/cooler temperature documented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})$?
	Yes \boxtimes No \square N/A \square Comments:
b. San Vol	nple preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, atile Chlorinated Solvents, etc.)?
	Yes \boxtimes No \square N/A \square Comments:
Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes⊠ No□ N/A□ Comme	nts:

One extra set of trip blanks accompanied the samples. These were not analyzed since one set of trip blanks was satisfactory.

e. Data quality or usability affected?

Comments:

- 4. <u>Case Narrative</u>
 - a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

c. Were all corrective actions documented?

No corrective actions.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

No impact.

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes⊠	No	$N/A\square$	Comments:
------	----	--------------	-----------

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Only water samples were analyzed.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

LODs for VOC analytes 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2,3-trichlorobenzene, 1,2,3-trichloropropane, 1,2,4-trichlorobenzene, 1,2-dibromoethane, 1,2-dichloropropane, 1,4-dichlorobenzene, 2-hexanone, bromodichloromethane, bromomethane, carbon tetrachloride, chloroform, cis-1,3-dichloropropene, dibromochloromethane, dibromomethane, hexachlorobutadiene, methylene chloride, methyl-t-butyl ether, trans-1,3-dichloropropene, trichloroethene, and vinyl chloride for samples MW-9 TS and duplicate MW-99 TS, did not meet ADEC cleanup levels.

e. Data quality or usability affected?

The high LODs were due to a 50-fold dilution due to high target analyte concentration. For these compounds, it is not possible to state with certainty the absence of target analyte below the laboratory LOD, but above the ADEC cleanup level. These data are limited in usability for the impacted analytes for that purpose. Both affected samples had multiple target analytes with detected values over ADEC cleanup levels. Overall, data usability was considered not impacted, and all data were usable without qualification.

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

For GRO by Method AK101 in batch VXX 35778, one method blank had a detection of 0.0389 J milligrams per liter (mg/L), below the LOD of 0.05 mg/L.

iii. If above LOQ or project specified objectives, what samples are affected?

Comments:

Samples associated with this blank detection were MW-5TS, MW-6TS, and MW-7TS, all of which had nondetectable results for GRO, and were therefore not affected.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

v. Data quality or usability affected?

Comments:

Since a high bias was indicated and all associated results were nondetectable, no qualification was considered necessary. All data were usable without qualification.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

No metals or inorganics were analyzed.

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

LCS/LCSD's met all criteria.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No impact.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

No metals or inorganics were analyzed.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/A \square Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

MS/MSD's met all criteria.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

No impact.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

All surrogates met criteria.

iv. Data quality or usability affected?

Comments:

No impact.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

v. Data quality or usability affected?

Comments:

No impact.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The duplicate of MW-9 TS was MW-99 TS.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2)

 $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \boxtimes N/A \square Comments:

RPDs for the parent sample/duplicate pair for ethylbenzene and toluene by Method SW8260D, and for 1-methylnaphthalene, acenaphthene, fluoranthene, fluorene, and naphthalene by Method SW8270D LV were greater than the 30% limit. RPD exceedances ranged from 30% to 84%.

Laboratory Report Date:

July 14, 2020

CS Site Name:

ML&P Transformer Shop, 1130 E. 1st

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Detected results were qualified "Q" and non-detect results were qualified "UJ." In all cases, either both the parent sample and duplicate results were below, or both parent sample and duplicate results were above, the applicable ADEC cleanup level; therefore, data usability was not impacted.

Regarding field associated samples, in all instances laboratory precision was established by either an LCS/LCSD or an MS/MSD pair with RPDs within acceptable limits, thus the impact to data was considered minimal. Associated field samples, MW-5 TS, MW-6 TS, and MW-7 TS were analyzed for BTEX by SW8260D, thus only ethylbenzene and toluene were affected by field precision exceedances. All associated samples had undetectable ethylbenzene and toluene results and were qualified "UJ" with LODs over 100-fold below the applicable cleanup level. All data were usable as qualified.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

No decontamination or equipment blanks were required or used.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

No decontamination or equipment blanks were required or used.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

iii. Data quality or usability affected?

Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell Street, Suite 200 Anchorage, AK 99503 907-222-1112

Report Number: 1202600

Client Project: ML&P Transformer Shop

Dear Bret Berglund,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,		Stephen C. Ede
SGS North America Inc.	Stophen C.	Ede 2020.07.14
	/	10:53:49 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 07/13/2020 3:16:37PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1202600 Project Name/Site: ML&P Transformer Shop Project Contact: Bret Berglund

Refer to sample receipt form for information on sample condition.

LCS for HBN 1807765 [VXX/35778 (1564123) LCS

AK101 - Surrogate recovery for 1,4-difluorobenzene does not meet QC criteria. Surrogate recovery is within QC criteria in the associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/13/2020 3:16:38PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. i integrated per SOP.

Print Date: 07/13/2020 3:16:40PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	S	Sample Summary		
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>
MW-5TS	1202600001	06/10/2020	06/12/2020	Water (Surface, Eff., Ground)
MW-7TS	1202600002	06/10/2020	06/12/2020	Water (Surface, Eff., Ground)
MW-6TS	1202600003	06/10/2020	06/12/2020	Water (Surface, Eff., Ground)
MW-9TS	1202600004	06/12/2020	06/12/2020	Water (Surface, Eff., Ground)
MW-99TS	1202600005	06/12/2020	06/12/2020	Water (Surface, Eff., Ground)
Trip Blank	1202600006	06/10/2020	06/12/2020	Water (Surface, Eff., Ground)
<u>Method</u>	Method Des	<u>cription</u>		

8270D SIM LV (PAH) AK102 AK101 SW8260D SW8260D

8270 PAH SIM GC/MS LV DRO Low Volume (W) Gasoline Range Organics (W) Volatile Organic Compounds (W) Volatile Organic Compounds (W) FULL

Print Date: 07/13/2020 3:16:41PM

Detectable Results Summary

Client Sample ID: MW-5TS Lab Sample ID: 1202600001 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.249J	<u>Units</u> mg/L
Client Sample ID: MW-7TS Lab Sample ID: 1202600002	Parameter_	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.529J	mg/L
Client Sample ID: MW-6TS Lab Sample ID: 1202600003 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.356J	<u>Units</u> mg/L
Client Sample ID: MW-9TS			
Lab Sample ID: 1202600004	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	5.70	ug/L
2	2-Methylnaphthalene	1.26	ug/L
	Acenaphthene	0.224	ug/L
	Fluorene	0.330	ug/L
	Naphthalene	17.7	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	3.03	mg/L
Volatile Fuels	Gasoline Range Organics	11.0	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	344	ug/L
	1,2-Dichloroethane	36.2	ug/L
	1,3,5-Trimethylbenzene	76.4	ug/L
	Benzene	4310	ug/L
	Ethylbenzene	246	ug/L
	Naphthalene	103	ug/L
	o-Xylene	30.7J	ug/L
	P & M -Xylene	982	ug/L
	Toluene	93.6	ug/L
	Xylenes (total)	1010	ug/L

Print Date: 07/13/2020 3:16:42PM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW-99TS			
Lab Sample ID: 1202600005	Parameter_	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	3.02	ug/L
	2-Methylnaphthalene	1.28	ug/L
	Acenaphthene	0.132	ug/L
	Fluoranthene	0.0620	ug/L
	Fluorene	0.152	ug/L
	Naphthalene	9.05	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.71	mg/L
Volatile Fuels	Gasoline Range Organics	9.53	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	304	ug/L
	1,2-Dichloroethane	29.8	ug/L
	1,3,5-Trimethylbenzene	81.9	ug/L
	Benzene	3250	ug/L
	Ethylbenzene	110	ug/L
	Naphthalene	95.8	ug/L
	o-Xylene	32.1J	ug/L
	P & M -Xylene	858	ug/L
	Toluene	68.9	ug/L
	Xylenes (total)	890	ug/L

Print Date: 07/13/2020 3:16:42PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-5TS Client Sample ID: MW-5TS Client Project ID: ML&P Transformer Shop Lab Sample ID: 1202600001 Lab Project ID: 1202600							
		Collection Date: 06/10/20 10:28 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Parameter	u els <u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics	0.249 J	0.600	0.180	mg/L	1		06/22/20 17:19
urrogates							
5a Androstane (surr)	92.4	50-150		%	1		06/22/20 17:19
Batch Information							
Analytical Batch: XFC15619 Analytical Method: AK102 Analyst: A.L Analytical Date/Time: 06/22/20 17:19 Container ID: 1202600001-A	9		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX43292 : SW35200 me: 06/19/2 /t./Vol.: 250 Vol: 1 mL) 20 15:36) mL		

J flagging is activated

Results of MW-5TS Client Sample ID: MW-5TS Client Project ID: ML&P Transformer Shop Lab Sample ID: 1202600001 Lab Project ID: 1202600							
		Collection Date: 06/10/20 10:28 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 06/16/20 19:3
ırrogates							
Analytical Batch: VFC15176 Analytical Method: AK101 Analyst: KAJ Analytical Date/Time: 06/16/20 19:32 Container ID: 1202600001-F			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	VXX35778 : SW5030B me: 06/16/2 /t./Vol.: 5 m Vol: 5 mL	20 06:00 L		

J flagging is activated

Results of MW-5TS

SG:

Client Sample ID: MW-5TS
Client Project ID: ML&P Transformer Shop
Lab Sample ID: 1202600001
Lab Project ID: 1202600

Collection Date: 06/10/20 10:28 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		06/16/20 19:10
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:10
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:10
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/16/20 19:10
Toluene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:10
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/16/20 19:10
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.4	81-118		%	1		06/16/20 19:10
4-Bromofluorobenzene (surr)	110	85-114		%	1		06/16/20 19:10
Toluene-d8 (surr)	98.1	89-112		%	1		06/16/20 19:10

Batch Information

Analytical Batch: VMS20017 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 06/16/20 19:10 Container ID: 1202600001-C Prep Batch: VXX35777 Prep Method: SW5030B Prep Date/Time: 06/16/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:43PM

J flagging is activated

Results of MW-71S Client Sample ID: MW-7TS Client Project ID: ML&P Transformer Lab Sample ID: 1202600002 Lab Project ID: 1202600	Shop		Collection Da Received Da Matrix: Wate Solids (%): Location:	ate: 06/10/ hte: 06/12/2 r (Surface,	20 11:40 20 11:03 Eff., Gro	und)	
Results by Semivolatile Organic Fuel <u>Parameter</u> Diesel Range Organics	s <u>Result Qual</u> 0.529 J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 06/22/20 17:29
S urrogates 5a Androstane (surr)	95.1	50-150		%	1		06/22/20 17:29
Batch Information Analytical Batch: XFC15619 Analytical Method: AK102 Analyst: A.L Analytical Date/Time: 06/22/20 17:29 Container ID: 1202600002-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX43292 I: SW3520C me: 06/19/2 /t./Vol.: 250 Vol: 1 mL	20 15:36) mL		

Print Date: 07/13/2020 3:16:43PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-7TS							
Client Sample ID: MW-7TS Client Project ID: ML&P Transformer ab Sample ID: 1202600002 ab Project ID: 1202600	[.] Shop	C R M S La					
Results by Volatile Fuels			_				
<u>Parameter</u> Basoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 06/16/20 19:5
rrogates							
Batch Information Analytical Batch: VFC15176 Analytical Method: AK101 Analyst: KAJ Analytical Date/Time: 06/16/20 19:50 Container ID: 1202600002-F		F	Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	VXX35778 : SW5030B ne: 06/16/2 (t./Vol.: 5 m Vol: 5 mL	3 20 06:00 L		

Print Date: 07/13/2020 3:16:43PM

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

5 4 NAVA/ 7TO

SG

Results of MW-715							
Client Sample ID: MW-7TS Client Project ID: ML&P Transform Lab Sample ID: 1202600002 Lab Project ID: 1202600	ner Shop	C R M S L	ollection Da eceived Da latrix: Wate olids (%): ocation:	ate: 06/10/ tte: 06/12/: r (Surface,	20 11:40 20 11:03 Eff., Gro) bund)	
						A.II	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		06/16/20 19:26
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:26
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:26
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/16/20 19:26
Toluene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:26
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/16/20 19:26
Surrogates							
1,2-Dichloroethane-D4 (surr)	96	81-118		%	1		06/16/20 19:26
4-Bromofluorobenzene (surr)	107	85-114		%	1		06/16/20 19:26
Toluene-d8 (surr)	98.7	89-112		%	1		06/16/20 19:26
Batch Information							
Analytical Batch: VMS20017 Analytical Method: SW8260D		l	Prep Batch: Prep Method	VXX35777 : SW5030E	}		

Analyst: NRB Analytical Date/Time: 06/16/20 19:26 Container ID: 1202600002-C

Prep Date/Time: 06/16/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:43PM

J flagging is activated

Results of MW-6TS							
Client Project ID: ML&P Transformer Shop Lab Sample ID: 1202600003 Lab Project ID: 1202600		(F N S					
Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u> 0.188	<u>Units</u> ma/l	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
	0.0000	0.020	0.100	ing/E			00/22/20 11:0
5a Androstane (surr)	89.4	50-150		%	1		06/22/20 17:3
Batch Information							
Analytical Batch: XFC15619 Analytical Method: AK102 Analyst: A.L Analytical Date/Time: 06/22/20 17:3 Container ID: 1202600003-A	39		Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX43292 I: SW3520C me: 06/19/2 Vt./Vol.: 240 Vol: 1 mL	; 20 15:36) mL		

-

J flagging is activated

esults of MW-6TS							
lient Sample ID: MW-6TS lient Project ID: ML&P Transforme ab Sample ID: 1202600003 ab Project ID: 1202600	r Shop	C R M S L	ollection Da eceived Dat latrix: Water olids (%): ocation:	te: 06/10/ te: 06/12/2 (Surface,	20 12:45 20 11:03 Eff., Gro	5 bund)	
esults by Volatile Fuels							
<u>arameter</u> asoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 06/16/20 20:0
rrogates							
Bromofluorobenzene (surr)	102	50-150		%	1		06/16/20 20:0
atch Information							
Analytical Batch: VFC15176 Analytical Method: AK101 Analyst: KAJ Analytical Date/Time: 06/16/20 20:08 Container ID: 1202600003-F			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	VXX35778 : SW5030B ne: 06/16/2 (t./Vol.: 5 m Vol: 5 mL	20 06:00 L		

-

J flagging is activated

Results of MW-6TS

SG

Results by Volatile GC/MS	Location:				
Lab Project ID: 1202600	Solids (%):				
Client Project ID: ML&P Transformer Shop	Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground)				
Client Sample ID: MW-6TS	Collection Date: 06/10/20 12:45				

Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed	
Benzene	0.200 U	0.400	0.120	ug/L	1		06/16/20 19:41	
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:41	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:41	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/16/20 19:41	
Toluene	0.500 U	1.00	0.310	ug/L	1		06/16/20 19:41	
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/16/20 19:41	
Surrogates								
1,2-Dichloroethane-D4 (surr)	96.4	81-118		%	1		06/16/20 19:41	
4-Bromofluorobenzene (surr)	109	85-114		%	1		06/16/20 19:41	
Toluene-d8 (surr)	99.1	89-112		%	1		06/16/20 19:41	

Batch Information

Analytical Batch: VMS20017 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 06/16/20 19:41 Container ID: 1202600003-C Prep Batch: VXX35777 Prep Method: SW5030B Prep Date/Time: 06/16/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL Allowable

Print Date: 07/13/2020 3:16:43PM

Results of MW-9TS

Client Sample ID: **MW-9TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600004 Lab Project ID: 1202600 Collection Date: 06/12/20 09:40 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	5.70	0.0504	0.0151	ug/L	1		07/06/20 17:45
2-Methylnaphthalene	1.26	0.0504	0.0151	ug/L	1		07/06/20 17:45
Acenaphthene	0.224	0.0504	0.0151	ug/L	1		07/06/20 17:45
Acenaphthylene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Benzo(a)Anthracene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Benzo[a]pyrene	0.0101 U	0.0202	0.00625	ug/L	1		07/06/20 17:45
Benzo[b]Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Benzo[g,h,i]perylene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Benzo[k]fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Chrysene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Dibenzo[a,h]anthracene	0.0101 U	0.0202	0.00625	ug/L	1		07/06/20 17:45
Fluoranthene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Fluorene	0.330	0.0504	0.0151	ug/L	1		07/06/20 17:45
Indeno[1,2,3-c,d] pyrene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Naphthalene	17.7	0.504	0.156	ug/L	5		07/08/20 20:16
Phenanthrene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Pyrene	0.0252 U	0.0504	0.0151	ug/L	1		07/06/20 17:45
Surrogates							
2-Methylnaphthalene-d10 (surr)	51.1	47-106		%	1		07/06/20 17:45
Fluoranthene-d10 (surr)	67.6	24-116		%	1		07/06/20 17:45

Batch Information

Analytical Batch: XMS12116 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 07/06/20 17:45 Container ID: 1202600004-A

Analytical Batch: XMS12120 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 07/08/20 20:16 Container ID: 1202600004-A Prep Batch: XXX43277 Prep Method: SW3535A Prep Date/Time: 06/18/20 09:25 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Prep Batch: XXX43277 Prep Method: SW3535A Prep Date/Time: 06/18/20 09:25 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 16 of 53

Results of MW-9TS							
Client Sample ID: MW-9TS Client Project ID: ML&P Transformer Lab Sample ID: 1202600004 Lab Project ID: 1202600	Collection Date: 06/12/20 09:40 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Semivolatile Organic Fuels	5					Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Diesel Range Organics	3.03	0.600	0.180	mg/L	1		06/22/20 17:4
burrogates							
5a Androstane (surr)	91.2	50-150		%	1		06/22/20 17:4
Batch Information							
Analytical Batch: XFC15619		I	Prep Batch:	XXX43292			
Analytical Method: AK102			Prep Method: SW3520C				
Analyst: A.L Analytical Date/Time: 06/22/20 17:49			Prep Date/11 Prep Initial M	me: 06/19/2 Vt /Vol · 250	20 15:36) ml		
Container ID: 1202600004_C		· · · · ·	rep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 ml				

Print Date: 07/13/2020 3:16:43PM

J flagging is activated

Results of MW-9TS							
Client Sample ID: MW-9TS Client Project ID: ML&P Transformer Lab Sample ID: 1202600004 Lab Project ID: 1202600	Shop	C R M S L					
Results by Volatile Fuels						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	11.0	1.00	0.310	mg/L	10		06/22/20 14:21
Surrogates							
4-Bromofluorobenzene (surr)	80.3	50-150		%	10		06/22/20 14:21
Batch Information							
Analytical Batch: VFC15189			Prep Batch:	VXX35819			
Analytical Method: AK101			Prep Method Prop Dato/Ti	I: SW5030E	30 06:00		
Analyst: ALS Analytical Date/Time: 06/22/20 14:21			Prep Date/11 Prep Initial W	vt./Vol.: 5 m	L 00.00		
Container ID: 1202600004 E			Prop Extract	Vol: 5 ml	_		

Print Date: 07/13/2020 3:16:43PM

000

SGS

Results of MW-9TS

Client Sample ID: **MW-9TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600004 Lab Project ID: 1202600

Collection Date: 06/12/20 09:40 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
1,1,1-Trichloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,1,2,2-Tetrachloroethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
1,1,2-Trichloroethane	10.0 U	20.0	6.00	ug/L	50		06/16/20 00:05
1,1-Dichloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,1-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,1-Dichloropropene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,2,3-Trichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,2,3-Trichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,2,4-Trichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,2,4-Trimethylbenzene	344	50.0	15.5	ug/L	50		06/16/20 00:05
1,2-Dibromo-3-chloropropane	250 U	500	155	ug/L	50		06/16/20 00:05
1,2-Dibromoethane	1.88 U	3.75	0.900	ug/L	50		06/16/20 00:05
1,2-Dichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,2-Dichloroethane	36.2	25.0	7.50	ug/L	50		06/16/20 00:05
1,2-Dichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,3,5-Trimethylbenzene	76.4	50.0	15.5	ug/L	50		06/16/20 00:05
1,3-Dichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
1,3-Dichloropropane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
1,4-Dichlorobenzene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
2,2-Dichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
2-Butanone (MEK)	250 U	500	155	ug/L	50		06/16/20 00:05
2-Chlorotoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
2-Hexanone	250 U	500	155	ug/L	50		06/16/20 00:05
4-Chlorotoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
4-Isopropyltoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
4-Methyl-2-pentanone (MIBK)	250 U	500	155	ug/L	50		06/16/20 00:05
Benzene	4310	20.0	6.00	ug/L	50		06/16/20 00:05
Bromobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Bromochloromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Bromodichloromethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
Bromoform	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Bromomethane	125 U	250	100	ug/L	50		06/16/20 00:05
Carbon disulfide	250 U	500	155	ug/L	50		06/16/20 00:05
Carbon tetrachloride	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Chlorobenzene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
Chloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 19 of 53

SGS

Results of MW-9TS

Client Sample ID: **MW-9TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600004 Lab Project ID: 1202600

Collection Date: 06/12/20 09:40 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Chloromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
cis-1,2-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
cis-1,3-Dichloropropene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
Dibromochloromethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:05
Dibromomethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Dichlorodifluoromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Ethylbenzene	246	50.0	15.5	ug/L	50		06/16/20 00:05
Freon-113	250 U	500	155	ug/L	50		06/16/20 00:05
Hexachlorobutadiene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Isopropylbenzene (Cumene)	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Methylene chloride	250 U	500	155	ug/L	50		06/16/20 00:05
Methyl-t-butyl ether	250 U	500	155	ug/L	50		06/16/20 00:05
Naphthalene	103	50.0	15.5	ug/L	50		06/16/20 00:05
n-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
n-Propylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
o-Xylene	30.7 J	50.0	15.5	ug/L	50		06/16/20 00:05
P & M -Xylene	982	100	31.0	ug/L	50		06/16/20 00:05
sec-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Styrene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
tert-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Tetrachloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Toluene	93.6	50.0	15.5	ug/L	50		06/16/20 00:05
trans-1,2-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
trans-1,3-Dichloropropene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Trichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Trichlorofluoromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:05
Vinyl acetate	250 U	500	155	ug/L	50		06/16/20 00:05
Vinyl chloride	3.75 U	7.50	2.50	ug/L	50		06/16/20 00:05
Xylenes (total)	1010	150	50.0	ug/L	50		06/16/20 00:05
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.2	81-118		%	50		06/16/20 00:05
4-Bromofluorobenzene (surr)	102	85-114		%	50		06/16/20 00:05
Toluene-d8 (surr)	96.2	89-112		%	50		06/16/20 00:05

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 20 of 53

Results of MW-9TS

Client Sample ID: **MW-9TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600004 Lab Project ID: 1202600 Collection Date: 06/12/20 09:40 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20014 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 06/16/20 00:05 Container ID: 1202600004-E Prep Batch: VXX35769 Prep Method: SW5030B Prep Date/Time: 06/15/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:43PM

J flagging is activated

Member of SGS Group

Page 21 of 53

Results of MW-99TS

Client Sample ID: **MW-99TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600005 Lab Project ID: 1202600 Collection Date: 06/12/20 10:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	3.02	0.0517	0.0155	ug/L	1		07/06/20 18:05
2-Methylnaphthalene	1.28	0.0517	0.0155	ug/L	1		07/06/20 18:05
Acenaphthene	0.132	0.0517	0.0155	ug/L	1		07/06/20 18:05
Acenaphthylene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Anthracene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Benzo(a)Anthracene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Benzo[a]pyrene	0.0104 U	0.0207	0.00640	ug/L	1		07/06/20 18:05
Benzo[b]Fluoranthene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Benzo[g,h,i]perylene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Benzo[k]fluoranthene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Chrysene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Dibenzo[a,h]anthracene	0.0104 U	0.0207	0.00640	ug/L	1		07/06/20 18:05
Fluoranthene	0.0620	0.0517	0.0155	ug/L	1		07/06/20 18:05
Fluorene	0.152	0.0517	0.0155	ug/L	1		07/06/20 18:05
Indeno[1,2,3-c,d] pyrene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Naphthalene	9.05	0.103	0.0320	ug/L	1		07/06/20 18:05
Phenanthrene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Pyrene	0.0259 U	0.0517	0.0155	ug/L	1		07/06/20 18:05
Surrogates							
2-Methylnaphthalene-d10 (surr)	47.6	47-106		%	1		07/06/20 18:05
Fluoranthene-d10 (surr)	66.3	24-116		%	1		07/06/20 18:05

Batch Information

Analytical Batch: XMS12116 Analytical Method: 8270D SIM LV (PAH) Analyst: DSD Analytical Date/Time: 07/06/20 18:05 Container ID: 1202600005-A Prep Batch: XXX43277 Prep Method: SW3535A Prep Date/Time: 06/18/20 09:25 Prep Initial Wt./Vol.: 242 mL Prep Extract Vol: 1 mL

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 22 of 53

- Results of MW-99TS							
Client Sample ID: MW-99TS Client Project ID: ML&P Transformer Lab Sample ID: 1202600005 Lab Project ID: 1202600	C R M S L	ollection Da eceived Da latrix: Wate olids (%): pocation:					
Results by Semivolatile Organic Fuels	S		_			Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyze
Diesel Range Organics	2.71	0.600	0.180	mg/L	1		06/22/20 17:5
Surrogates							
5a Androstane (surr)	93.9	50-150		%	1		06/22/20 17:5
Batch Information							
Analytical Batch: XFC15619	Prep Batch: XXX43292						
Analytical Method: AK102 Analyst: A I			Prep Method Pren Date/Ti	I: SW35200 me: 06/19/2	; 20.15:36		
Analytical Date/Time: 06/22/20 17:59			Prep Initial V	Vt./Vol.: 250) mL		
Container ID: 1202600005-C			Prep Extract	Vol: 1 mL			

-

J flagging is activated

Results of MW-99TS										
Client Sample ID: MW-99TS Client Project ID: ML&P Transformer Lab Sample ID: 1202600005 Lab Project ID: 1202600	ple ID: MW-99TS ect ID: ML&P Transformer Shop e ID: 1202600005 t ID: 1202600			Collection Date: 06/12/20 10:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by volatile fuels			_			Allowable				
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed			
Gasoline Range Organics	9.53	1.00	0.310	mg/L	10		06/22/20 14:39			
Surrogates										
4-Bromofluorobenzene (surr)	80.1	50-150		%	10		06/22/20 14:39			
Batch Information										
Analytical Batch: VFC15189			Prep Batch:	VXX35819						
Analytical Method: AK101			Prep Method: SW5030B							
Analytical Date/Time: 06/22/20 14:39			Prep Date/11 Prep Initial V	Vt./Vol.: 5 m	L 00.00					
Container ID: 1202600005-F			Pren Extract	Vol: 5 ml						

Print Date: 07/13/2020 3:16:43PM

000

J flagging is activated

SGS

Results of MW-99TS

Client Sample ID: **MW-99TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600005 Lab Project ID: 1202600

Collection Date: 06/12/20 10:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
1,1,1-Trichloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,1,2,2-Tetrachloroethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
1,1,2-Trichloroethane	10.0 U	20.0	6.00	ug/L	50		06/16/20 00:20
1,1-Dichloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,1-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,1-Dichloropropene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,2,3-Trichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,2,3-Trichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,2,4-Trichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,2,4-Trimethylbenzene	304	50.0	15.5	ug/L	50		06/16/20 00:20
1,2-Dibromo-3-chloropropane	250 U	500	155	ug/L	50		06/16/20 00:20
1,2-Dibromoethane	1.88 U	3.75	0.900	ug/L	50		06/16/20 00:20
1,2-Dichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,2-Dichloroethane	29.8	25.0	7.50	ug/L	50		06/16/20 00:20
1,2-Dichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,3,5-Trimethylbenzene	81.9	50.0	15.5	ug/L	50		06/16/20 00:20
1,3-Dichlorobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
1,3-Dichloropropane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
1,4-Dichlorobenzene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
2,2-Dichloropropane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
2-Butanone (MEK)	250 U	500	155	ug/L	50		06/16/20 00:20
2-Chlorotoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
2-Hexanone	250 U	500	155	ug/L	50		06/16/20 00:20
4-Chlorotoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
4-Isopropyltoluene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
4-Methyl-2-pentanone (MIBK)	250 U	500	155	ug/L	50		06/16/20 00:20
Benzene	3250	20.0	6.00	ug/L	50		06/16/20 00:20
Bromobenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Bromochloromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Bromodichloromethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
Bromoform	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Bromomethane	125 U	250	100	ug/L	50		06/16/20 00:20
Carbon disulfide	250 U	500	155	ug/L	50		06/16/20 00:20
Carbon tetrachloride	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Chlorobenzene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
Chloroethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 25 of 53

SGS

Results of MW-99TS

Client Sample ID: **MW-99TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600005 Lab Project ID: 1202600

Collection Date: 06/12/20 10:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Chloromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
cis-1,2-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
cis-1,3-Dichloropropene	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
Dibromochloromethane	12.5 U	25.0	7.50	ug/L	50		06/16/20 00:20
Dibromomethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Dichlorodifluoromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Ethylbenzene	110	50.0	15.5	ug/L	50		06/16/20 00:20
Freon-113	250 U	500	155	ug/L	50		06/16/20 00:20
Hexachlorobutadiene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Isopropylbenzene (Cumene)	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Methylene chloride	250 U	500	155	ug/L	50		06/16/20 00:20
Methyl-t-butyl ether	250 U	500	155	ug/L	50		06/16/20 00:20
Naphthalene	95.8	50.0	15.5	ug/L	50		06/16/20 00:20
n-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
n-Propylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
o-Xylene	32.1 J	50.0	15.5	ug/L	50		06/16/20 00:20
P & M -Xylene	858	100	31.0	ug/L	50		06/16/20 00:20
sec-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Styrene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
tert-Butylbenzene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Tetrachloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Toluene	68.9	50.0	15.5	ug/L	50		06/16/20 00:20
trans-1,2-Dichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
trans-1,3-Dichloropropene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Trichloroethene	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Trichlorofluoromethane	25.0 U	50.0	15.5	ug/L	50		06/16/20 00:20
Vinyl acetate	250 U	500	155	ug/L	50		06/16/20 00:20
Vinyl chloride	3.75 U	7.50	2.50	ug/L	50		06/16/20 00:20
Xylenes (total)	890	150	50.0	ug/L	50		06/16/20 00:20
Surrogates							
- 1,2-Dichloroethane-D4 (surr)	99	81-118		%	50		06/16/20 00:20
4-Bromofluorobenzene (surr)	103	85-114		%	50		06/16/20 00:20
Toluene-d8 (surr)	99.4	89-112		%	50		06/16/20 00:20

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-99TS

Client Sample ID: **MW-99TS** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600005 Lab Project ID: 1202600 Collection Date: 06/12/20 10:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20014 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 06/16/20 00:20 Container ID: 1202600005-E Prep Batch: VXX35769 Prep Method: SW5030B Prep Date/Time: 06/15/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:43PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 27 of 53

Client Sample ID: Trip Blank Client Project ID: ML&P Transformer Shop Lab Sample ID: 1202600006 Lab Project ID: 1202600		C R M S					
arameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 06/16/20 17:09
rrogates -Bromofluorobenzene (surr)	104	50-150		%	1		06/16/20 17:0
Analytical Batch: VFC15176 Analytical Method: AK101 Analyst: KAJ Analytical Date/Time: 06/16/20 17:09 Container ID: 1202600006-D)		Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	VXX35778 : SW5030E me: 06/16/2 /t./Vol.: 5 m Vol: 5 mL	3 20 06:00 NL		

Print Date: 07/13/2020 3:16:43PM

J flagging is activated
SGS

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600006 Lab Project ID: 1202600 Collection Date: 06/10/20 08:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		06/15/20 22:17
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/15/20 22:17
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Benzene	0.200 U	0.400	0.120	ug/L	1		06/15/20 22:17
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
Bromoform	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Bromomethane	2.50 U	5.00	2.00	ug/L	1		06/15/20 22:17
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
Chloroethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 29 of 53

Member of SGS Group

SGS

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600006 Lab Project ID: 1202600 Collection Date: 06/10/20 08:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Chloromethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		06/15/20 22:17
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Freon-113	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Naphthalene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/15/20 22:17
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Styrene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Toluene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		06/15/20 22:17
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		06/15/20 22:17
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		06/15/20 22:17
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		06/15/20 22:17
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		06/15/20 22:17
4-Bromofluorobenzene (surr)	105	85-114		%	1		06/15/20 22:17
Toluene-d8 (surr)	99	89-112		%	1		06/15/20 22:17

Print Date: 07/13/2020 3:16:43PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **ML&P Transformer Shop** Lab Sample ID: 1202600006 Lab Project ID: 1202600 Collection Date: 06/10/20 08:00 Received Date: 06/12/20 11:03 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20014 Analytical Method: SW8260D Analyst: NRB Analytical Date/Time: 06/15/20 22:17 Container ID: 1202600006-A Prep Batch: VXX35769 Prep Method: SW5030B Prep Date/Time: 06/15/20 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:43PM

J flagging is activated

Member of SGS Group

Page 31 of 53

Method Blank

Blank ID: MB for HBN 1807700 [VXX/35769] Blank Lab ID: 1563854 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005, 1202600006

Results by SW8260D

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 07/13/2020 3:16:46PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1807700 [VXX/35769] Blank Lab ID: 1563854 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1202600004, 1202600005, 1202600006

Results by SW8260D				
Parameter	Results		וח	l Inits
Chloromethane	0.500U	1 00	0.310	
cis-1 2-Dichloroethene	0.500U	1.00	0.310	ug/l
cis-1 3-Dichloropropene	0.250U	0.500	0 150	ug/l
Dibromochloromethane	0.250U	0.500	0 150	ug/l
Dibromomethane	0.500U	1.00	0.310	ug/l
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethvlbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	105	85-114		%
Toluene-d8 (surr)	100	89-112		%

Print Date: 07/13/2020 3:16:46PM

SGS North America Inc.

Method Blank Blank ID: MB for HBN 1807700 [VXX/35769] Blank Lab ID: 1563854 QC for Samples: 1202600004, 1202600005, 1202600006 Results by SW8260D Parameter Results LOQ/CL DL Units Batch Information

Prep Batch: VXX35769

Prep Method: SW5030B

Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Prep Date/Time: 6/15/2020 6:00:00AM

Analytical Batch: VMS20014 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Analytical Date/Time: 6/15/2020 8:14:00PM

Print Date: 07/13/2020 3:16:46PM

Blank Spike ID: LCS for HBN 1202600 [VXX35769] Blank Spike Lab ID: 1563855 Date Analyzed: 06/15/2020 20:30 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35769] Spike Duplicate Lab ID: 1563856 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005, 1202600006

Results by SW8260D

		Blank Spike	e (ug/L)	Ś	Spike Duplic	ate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.6	99	30	29.5	99	(78-124)	0.29	(< 20)
1,1,1-Trichloroethane	30	30.8	103	30	30.5	102	(74-131)	0.86	(< 20)
1,1,2,2-Tetrachloroethane	30	30.2	101	30	29.7	99	(71-121)	1.40	(< 20)
1,1,2-Trichloroethane	30	30.2	101	30	30.2	101	(80-119)	0.04	(< 20)
1,1-Dichloroethane	30	29.2	98	30	29.7	99	(77-125)	1.50	(< 20)
1,1-Dichloroethene	30	28.2	94	30	27.2	91	(71-131)	3.70	(< 20)
1,1-Dichloropropene	30	31.4	105	30	31.2	104	(79-125)	0.81	(< 20)
1,2,3-Trichlorobenzene	30	28.9	96	30	29.9	100	(69-129)	3.40	(< 20)
1,2,3-Trichloropropane	30	29.0	97	30	28.8	96	(73-122)	0.83	(< 20)
1,2,4-Trichlorobenzene	30	29.1	97	30	30.0	100	(69-130)	2.90	(< 20)
1,2,4-Trimethylbenzene	30	31.0	103	30	31.0	103	(79-124)	0.12	(< 20)
1,2-Dibromo-3-chloropropane	30	30.2	101	30	30.1	100	(62-128)	0.25	(< 20)
1,2-Dibromoethane	30	30.7	102	30	30.6	102	(77-121)	0.38	(< 20)
1,2-Dichlorobenzene	30	29.9	100	30	29.9	100	(80-119)	0.03	(< 20)
1,2-Dichloroethane	30	28.9	97	30	28.9	96	(73-128)	0.09	(< 20)
1,2-Dichloropropane	30	31.4	105	30	31.3	104	(78-122)	0.36	(< 20)
1,3,5-Trimethylbenzene	30	30.5	102	30	30.4	101	(75-124)	0.21	(< 20)
1,3-Dichlorobenzene	30	29.7	99	30	29.8	99	(80-119)	0.35	(< 20)
1,3-Dichloropropane	30	30.5	102	30	30.3	101	(80-119)	0.49	(< 20)
1,4-Dichlorobenzene	30	29.8	99	30	29.8	99	(79-118)	0.05	(< 20)
2,2-Dichloropropane	30	31.5	105	30	31.2	104	(60-139)	0.83	(< 20)
2-Butanone (MEK)	90	98.2	109	90	96.7	107	(56-143)	1.60	(< 20)
2-Chlorotoluene	30	30.1	100	30	30.4	101	(79-122)	0.91	(< 20)
2-Hexanone	90	98.7	110	90	98.0	109	(57-139)	0.64	(< 20)
4-Chlorotoluene	30	30.1	100	30	29.9	100	(78-122)	0.59	(< 20)
4-Isopropyltoluene	30	30.7	102	30	30.9	103	(77-127)	0.51	(< 20)
4-Methyl-2-pentanone (MIBK)	90	96.5	107	90	95.4	106	(67-130)	1.20	(< 20)
Benzene	30	30.2	101	30	30.3	101	(79-120)	0.30	(< 20)
Bromobenzene	30	29.5	98	30	29.1	97	(80-120)	1.30	(< 20)
Bromochloromethane	30	29.3	98	30	29.2	98	(78-123)	0.19	(< 20)
Bromodichloromethane	30	30.7	102	30	30.6	102	(79-125)	0.52	(< 20)
Bromoform	30	29.4	98	30	29.3	98	(66-130)	0.36	(< 20)
Bromomethane	30	33.5	112	30	34.4	115	(53-141)	2.90	(< 20)
Carbon disulfide	45	41.7	93	45	40.1	89	(64-133)	3.90	(< 20)

Print Date: 07/13/2020 3:16:48PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1202600 [VXX35769] Blank Spike Lab ID: 1563855 Date Analyzed: 06/15/2020 20:30 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35769] Spike Duplicate Lab ID: 1563856 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005, 1202600006

Results by SW8260D

		Blank Spike	e (ug/L)	5	Spike Duplie	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.6	102	30	30.3	101	(72-136)	0.82	(< 20)
Chlorobenzene	30	28.4	95	30	28.3	94	(82-118)	0.41	(< 20)
Chloroethane	30	28.7	96	30	26.6	89	(60-138)	7.50	(< 20)
Chloroform	30	29.7	99	30	29.6	99	(79-124)	0.15	(< 20)
Chloromethane	30	31.7	106	30	31.9	106	(50-139)	0.67	(< 20)
cis-1,2-Dichloroethene	30	29.8	100	30	30.1	100	(78-123)	0.97	(< 20)
cis-1,3-Dichloropropene	30	31.9	106	30	31.8	106	(75-124)	0.21	(< 20)
Dibromochloromethane	30	30.0	100	30	30.1	100	(74-126)	0.29	(< 20)
Dibromomethane	30	30.2	101	30	30.0	100	(79-123)	0.65	(< 20)
Dichlorodifluoromethane	30	28.7	96	30	27.4	92	(32-152)	4.60	(< 20)
Ethylbenzene	30	31.5	105	30	31.3	104	(79-121)	0.76	(< 20)
Freon-113	45	42.0	93	45	40.7	90	(70-136)	3.20	(< 20)
Hexachlorobutadiene	30	29.3	98	30	29.7	99	(66-134)	1.50	(< 20)
Isopropylbenzene (Cumene)	30	31.0	103	30	30.7	102	(72-131)	1.10	(< 20)
Methylene chloride	30	29.9	100	30	30.4	101	(74-124)	1.60	(< 20)
Methyl-t-butyl ether	45	45.9	102	45	46.7	104	(71-124)	1.80	(< 20)
Naphthalene	30	28.0	94	30	29.0	97	(61-128)	3.30	(< 20)
n-Butylbenzene	30	30.9	103	30	30.9	103	(75-128)	0.01	(< 20)
n-Propylbenzene	30	30.8	103	30	30.8	103	(76-126)	0.13	(< 20)
o-Xylene	30	30.6	102	30	30.7	102	(78-122)	0.45	(< 20)
P & M -Xylene	60	59.1	99	60	58.7	98	(80-121)	0.76	(< 20)
sec-Butylbenzene	30	30.7	102	30	30.7	102	(77-126)	0.15	(< 20)
Styrene	30	32.3	108	30	33.6	112	(78-123)	4.00	(< 20)
tert-Butylbenzene	30	30.2	101	30	30.3	101	(78-124)	0.32	(< 20)
Tetrachloroethene	30	29.8	99	30	29.6	99	(74-129)	0.57	(< 20)
Toluene	30	28.9	96	30	28.7	96	(80-121)	0.69	(< 20)
trans-1,2-Dichloroethene	30	30.5	102	30	30.7	102	(75-124)	0.47	(< 20)
trans-1,3-Dichloropropene	30	31.2	104	30	31.2	104	(73-127)	0.06	(< 20)
Trichloroethene	30	30.6	102	30	30.3	101	(79-123)	0.73	(< 20)
Trichlorofluoromethane	30	28.7	96	30	27.7	92	(65-141)	3.60	(< 20)
Vinyl acetate	30	32.2	107	30	32.6	109	(54-146)	1.20	(< 20)
Vinyl chloride	30	29.2	97	30	28.1	94	(58-137)	3.70	(< 20)
Xylenes (total)	90	89.7	100	90	89.4	99	(79-121)	0.35	(< 20)

Print Date: 07/13/2020 3:16:48PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1202600 [VXX35769] Blank Spike Lab ID: 1563855 Date Analyzed: 06/15/2020 20:30 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35769] Spike Duplicate Lab ID: 1563856 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005, 1202600006

Dooulto	by/	C/W0260D
results	Dy	3002000

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	97.4	97	30	97.3	97	(81-118)	0.12	
4-Bromofluorobenzene (surr)	30	101	101	30	102	102	(85-114)	0.77	
Toluene-d8 (surr)	30	99.4	99	30	99.6	100	(89-112)	0.15	

Batch Information

Analytical Batch: VMS20014 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX35769 Prep Method: SW5030B Prep Date/Time: 06/15/2020 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:48PM

Method Blank

Blank ID: MB for HBN 1807747 [VXX/35777] Blank Lab ID: 1564072 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600001, 1202600003

Results by SW8260D

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	99.5	81-118		%
4-Bromofluorobenzene (surr)	110	85-114		%
Toluene-d8 (surr)	98.1	89-112		%

Batch Information

Analytical Batch: VMS20017 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Analytical Date/Time: 6/16/2020 3:35:00PM Prep Batch: VXX35777 Prep Method: SW5030B Prep Date/Time: 6/16/2020 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:51PM

Blank Spike ID: LCS for HBN 1202600 [VXX35777] Blank Spike Lab ID: 1564073 Date Analyzed: 06/16/2020 16:21 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35777] Spike Duplicate Lab ID: 1564074 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600001, 1202600002, 1202600003

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	30	30.4	101	30	31.2	104	(79-120)	2.80	(< 20)
Ethylbenzene	30	31.4	105	30	31.4	105	(79-121)	0.12	(< 20)
o-Xylene	30	30.8	103	30	30.9	103	(78-122)	0.25	(< 20)
P & M -Xylene	60	57.3	96	60	57.2	95	(80-121)	0.19	(< 20)
Toluene	30	28.0	93	30	28.5	95	(80-121)	1.70	(< 20)
Xylenes (total)	90	88.1	98	90	88.1	98	(79-121)	0.04	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	92.5	93	30	93.2	93	(81-118)	0.69	
4-Bromofluorobenzene (surr)	30	107	107	30	106	106	(85-114)	1.40	
Toluene-d8 (surr)	30	97.6	98	30	97.2	97	(89-112)	0.43	

Batch Information

Analytical Batch: VMS20017 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: NRB Prep Batch: VXX35777 Prep Method: SW5030B Prep Date/Time: 06/16/2020 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/13/2020 3:16:53PM

SGS

Method Blank					
Blank ID: MB for HBN 18077 Blank Lab ID: 1564122	765 [VXX/35778]	Matrix	: Water (Surfa	ce, Eff., Ground)	
QC for Samples: 202600001, 1202600002, 120	02600003, 1202600006				
Results by AK101					
P <u>arameter</u> Gasoline Range Organics	<u>Results</u> 0.0389J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
urrogates I-Bromofluorobenzene (surr)	107	50-150		%	
atch Information					
Analytical Batch: VFC15176 Analytical Method: AK101 Instrument: Agilent 7890 PI Analyst: KAJ Analytical Date/Time: 6/16/2	6 D/FID 2020 1:21:00PM	Prep Ba Prep Me Prep Da Prep Init Prep Exi	tch: VXX35778 thod: SW5030B te/Time: 6/16/20 ial Wt./Vol.: 5 m tract Vol: 5 mL	20 6:00:00AM L	

Blank Spike ID: LCS for HBN 1202600 [VXX35778] Blank Spike Lab ID: 1564125 Date Analyzed: 06/16/2020 14:15 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35778] Spike Duplicate Lab ID: 1564126 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600001, 1202600002, 1202600003, 1202600006

E	Blank Spike (mg/L)			Spike Duplicate (mg/L)					
Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
1.00	1.07	107	1.00	1.02	102	(60-120)	4.90	(< 20)	
0.0500	115	115				(50-150)			
			Pre	o Batch: V	XX35778				
			Pre	o Method:	SW5030B				
/FID			Prep Date/Time: 06/16/2020 06:00						
			Spil	e Init Wt./\ e Init Wt./\	/ol.: 1.00 mg /ol.: 1.00 mg	g/L Extract v g/L Extract V	/ol: 5 mL ol: 5 mL		
	E <u>Spike</u> 1.00 0.0500	Blank Spike Spike Result 1.00 1.07 0.0500 115	Blank Spike (mg/L) Spike Result Rec (%) 1.00 1.07 107 0.0500 115 115	Blank Spike (mg/L) S Spike Result Rec (%) Spike 1.00 1.07 107 1.00 0.0500 115 115 Prep /FID Prep Prep Dup Dup Dup	Blank Spike (mg/L) Spike Duplic Spike Result Rec (%) Spike Result 1.00 1.07 107 1.00 1.02 0.0500 115 115 Prep Batch: V /FID Prep Date/Tim Spike Init Wt./ Prep Init Wt./	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) 1.00 1.07 107 1.00 1.02 102 0.0500 115 115 115 /FID Prep Batch: VXX35778 Prep Method: SW5030B Prep Date/Time: 06/16/202 Spike Init Wt./Vol.: 1.00 mg Dupe Init Wt./Vol.: 1.00 mg	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike 1.00 1.07 107 1.00 1.02 102 (60-120) 0.0500 115 115 (50-150) (50-150) Prep Batch: VXX35778 Prep Method: SW5030B Prep Date/Time: 06/16/2020 06:00 Spike Init Wt./Vol.: 1.00 mg/L Extract V	Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 1.00 1.07 107 1.00 1.02 102 (60-120) 4.90 0.0500 115 115 (50-150) (50-150)	

Print Date: 07/13/2020 3:16:57PM

SGS	

Method Blank]							
Blank ID: MB for HBN 18080 Blank Lab ID: 1565216	019 [VXX/35819]	Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1202600004, 1202600005								
Results by AK101]						
Parameter	Results	LOQ/CL	DL	<u>Units</u>				
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L				
Surrogates								
4-Bromofluorobenzene (surr)	80.3	50-150		%				
Batch Information								
Analytical Batch: VFC15189)	Prep Bat	ch: VXX35819					
Analytical Method: AK101		Prep Me	thod: SW5030E	3				
Instrument: Agilent 7890 PI	D/FID	Prep Dat	te/Time: 6/22/2	020 6:00:00AM				
Analysi' ALJ	Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 ml							

Blank Spike ID: LCS for HBN 1202600 [VXX35819] Blank Spike Lab ID: 1565217 Date Analyzed: 06/22/2020 10:23 Spike Duplicate ID: LCSD for HBN 1202600 [VXX35819] Spike Duplicate Lab ID: 1565218 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005

Results by AK101			_								
	Blank Spike (mg/L) Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL		
Gasoline Range Organics	1.00	0.906	91	1.00	0.990	99	(60-120)	8.80	(< 20)		
Surrogates											
4-Bromofluorobenzene (surr)	0.0500	78.5	79	0.0500	76.4	76	(50-150)	2.70			
Batch Information											
Analytical Batch: VFC15189				Prep	Batch: V	XX35819					
Analytical Method: AK101				Prep	Method:	SW5030B					
Instrument: Agilent 7890 PID/	FID			Prep	Date/Time	e: 06/22/202	0 06:00				
Analyst: ALJ				Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL							
				Dup	e Init Wt./V	′ol.: 1.00 mg	g/L Extract V	ol: 5 mL			

Print Date: 07/13/2020 3:17:01PM

Method Blank

Blank ID: MB for HBN 1807776 [XXX/43277] Blank Lab ID: 1564172

QC for Samples: 1202600004, 1202600005

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	50.7	47-106		%
Fluoranthene-d10 (surr)	69.6	24-116		%

Batch Information

Analytical Batch: XMS12116 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 7/6/2020 4:44:00PM Prep Batch: XXX43277 Prep Method: SW3535A Prep Date/Time: 6/18/2020 9:25:29AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/13/2020 3:17:04PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1202600 [XXX43277] Blank Spike Lab ID: 1564173 Date Analyzed: 07/06/2020 17:04

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600004, 1202600005

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
1-Methylnaphthalene	2	1.27	64	(41-115)
2-Methylnaphthalene	2	1.30	65	(39-114)
Acenaphthene	2	1.36	68	(48-114)
Acenaphthylene	2	1.33	66	(35-121)
Anthracene	2	1.60	80	(53-119)
Benzo(a)Anthracene	2	1.39	69	(59-120)
Benzo[a]pyrene	2	1.67	83	(53-120)
Benzo[b]Fluoranthene	2	1.76	88	(53-126)
Benzo[g,h,i]perylene	2	1.69	85	(44-128)
Benzo[k]fluoranthene	2	1.67	83	(54-125)
Chrysene	2	1.57	78	(57-120)
Dibenzo[a,h]anthracene	2	1.66	83	(44-131)
Fluoranthene	2	1.54	77	(58-120)
Fluorene	2	1.52	76	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.80	90	(48-130)
Naphthalene	2	1.27	63	(43-114)
Phenanthrene	2	1.58	79	(53-115)
Pyrene	2	1.52	76	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	56.3	56	(47-106)
Fluoranthene-d10 (surr)	2	68.9	69	(24-116)

Batch Information

Analytical Batch: XMS12116 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Prep Batch: XXX43277 Prep Method: SW3535A Prep Date/Time: 06/18/2020 09:25 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/13/2020 3:17:06PM

Matrix Spike Summary

Original Sample ID: 1202729004 MS Sample ID: 1564174 MS MSD Sample ID: 1564175 MSD

QC for Samples: 1202600004, 1202600005

Analysis Date: 07/06/2020 20:29 Analysis Date: 07/06/2020 20:49 Analysis Date: 07/06/2020 21:10 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (P	AH)									
		Ma	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Acenaphthene	0.0256U	2.05	1.39	68	2.05	1.40	68	48-114	0.79	(< 20)
Acenaphthylene	0.0256U	2.05	1.45	71	2.05	1.59	78	35-121	9.50	(< 20)
Anthracene	0.0256U	2.05	1.51	74	2.05	1.61	79	53-119	6.00	(< 20)
Benzo(a)Anthracene	0.0256U	2.05	1.23	60	2.05	1.33	65	59-120	7.50	(< 20)
Benzo[a]pyrene	0.0103U	2.05	1.47	72	2.05	1.57	77	53-120	6.70	(< 20)
Benzo[b]Fluoranthene	0.0256U	2.05	1.48	72	2.05	1.58	77	53-126	6.40	(< 20)
Benzo[g,h,i]perylene	0.0256U	2.05	1.41	69	2.05	1.51	74	44-128	6.70	(< 20)
Benzo[k]fluoranthene	0.0256U	2.05	1.42	69	2.05	1.51	74	54-125	5.90	(< 20)
Chrysene	0.0256U	2.05	1.4	69	2.05	1.47	72	57-120	4.40	(< 20)
Dibenzo[a,h]anthracene	0.0103U	2.05	1.35	66	2.05	1.54	75	44-131	13.30	(< 20)
Fluoranthene	0.0256U	2.05	1.43	70	2.05	1.49	73	58-120	4.60	(< 20)
Fluorene	0.0256U	2.05	1.52	74	2.05	1.60	78	50-118	5.20	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0256U	2.05	1.49	73	2.05	1.62	79	48-130	8.10	(< 20)
Naphthalene	0.0510U	2.05	1.37	67	2.05	1.34	65	43-114	2.30	(< 20)
Phenanthrene	0.0256U	2.05	1.49	73	2.05	1.58	77	53-115	6.00	(< 20)
Pyrene	0.0256U	2.05	1.41	69	2.05	1.46	71	53-121	3.70	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		2.05	1.18	58	2.05	1.23	60	47-106	4.40	
Fluoranthene-d10 (surr)		2.05	1.31	64	2.05	1.36	66	24-116	3.70	

Batch Information

Analytical Batch: XMS12116 Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: DSD Analytical Date/Time: 7/6/2020 8:49:00PM Prep Batch: XXX43277 Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV Prep Date/Time: 6/18/2020 9:25:29AM Prep Initial Wt./Vol.: 244.00mL Prep Extract Vol: 1.00mL

Print Date: 07/13/2020 3:17:07PM

SGS North America Inc.

SGS

Blank ID: MB for HBN 1807 Blank I ab ID: 1564501	7861 [XXX/43292]	Matrix: Water (Surface, Eff., Ground)				
C for Samples: 202600001, 1202600002, 12	202600003, 1202600004, 1202	2600005				
Results by AK102						
Parameter Diesel Range Organics	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L		
urrogates						
5a Androstane (surr)	98.4	60-120		%		
atch Information						
Analytical Batch: XFC156 Analytical Method: AK102 Instrument: Agilent 7890B Analyst: A.L	19 F	Prep Batch: XXX43292 Prep Method: SW3520C Prep Date/Time: 6/19/2020 3:36:54PM Prep Initial Wt./Vol.: 250 mL				

Print Date: 07/13/2020 3:17:08PM

Blank Spike ID: LCS for HBN 1202600 [XXX43292] Blank Spike Lab ID: 1564502 Date Analyzed: 06/22/2020 16:59 Spike Duplicate ID: LCSD for HBN 1202600 [XXX43292] Spike Duplicate Lab ID: 1564503 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1202600001, 1202600002, 1202600003, 1202600004, 1202600005

Results by AK102			_						
		Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	20.6	103	20	19.7	98	(75-125)	4.40	(< 20)
irrogates									
a Androstane (surr)	0.4	107	107	0.4	107	107	(60-120)	0.24	
Batch Information									
Analytical Batch: XFC15619				Pre	o Batch: X	XX43292			
Analytical Method: AK102				Pre	o Method:	SW3520C			
Instrument: Agilent 7890B F				Pre	Date/Tim	e: 06/19/202	0 15:36	L d mil	
Analyst: A.L				Spil	e Init Wt./\ Init Wt /\	/ol.: 20 mg/l /ol : 20 mg/l	 Extract Vol 	l: 1 mL · 1 ml	
				Dap	0 11110 1111, 1	01.1. 20 mg/1	Extraor vor		

Print Date: 07/13/2020 3:17:11PM

SGS North America Inc. CHAIN OF CUSTODY RECORD

										1166						www	.us.sgs	<u>s.com</u>	
	CLIENT:	SLR Alaska					Ins O	tructi missi	ons: ons n	Section nay d	ons i elay t	- эп he on	nust De set of	e tille analy	d out ysis.			1)
_	Bret Berglund 907-222-1112					Sec	Section 3 Preservative					Page _	_of _/						
ection	PROJECT NAME: MLH	PRO PTransformer Shop PWS PERI	JECT/ ID/ MIT#:			# C		Į.					er.		\square				
0	REPORTS TO: E-MAIL: borglunde stronswitting.com				Iting com	N	Comp		<u> </u>	·	£	Anal	ysis*						
	Bret Be	glund Pro	file #: 3580	ollo gn	0	Т	Grab											NOTE: *The following	analyses
	INVOICE TO:	QUO	OTE #:			I	м	6	00	_	_	\$ 2						require specific	c method
	SUR	P.0	.#:\D\$,065	528.18001		N	(Multi- incre-	× 98	89 (<u>(0</u>)	ြို	23						and/or compou BTEX. Metals.	IND list: PFAS
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R	mental)	BTE	VoC Sw	S-RC Al	AK	PAH Sw						REMARKS	S/LOC ID
	(TAH_	MW-5TS	6/10/20	10:28	Water	8	6	X		X	X								
	(ZAH)	MW-7TS	6/10/20	11:40	Water	8	6	X		X	X								
	CAH	MW-GTS	6/10/20	12:45	Water	8	6	X		X	X								
2 2	(YAP)	MW-9TS	6/12/20	09:40	Water	10	6		X	X	X	X							
ŠČĮ	(SAJ)	MW-99TS	6/12/20	10:00	Water	10	6		X	X	X	X							
ű	GAF	Trip Blank	6/10/20	08:00	Water	6	6		X	Х									
		1																	
			-																
	Relinquishe	d By: (1)	Date	Time	Received By	<i>'</i> :				Sect	ion 4		Project	? Yes	\bigcirc	Data	Delive	erable Requir	rements:
	m	Man	6/12/20	10:59	\sim].	evie	12+	M/
	Relinquished	i By: (2)	Date	Time	Received By	/:				Reque	er ID: ested T	urnarou		e and/c	 or Spec	ial Inst	tructio	ns:	00
n 5	-										C.	1	Ω		•				
<u>çi</u>	Belinguished	1 Bv: (3)	Date	Time	Beceived By						5	rann	an						
Š						-				Temp	Blank	<u>€</u> :H	9	D5:	7	Cha	in of C	Custody Seal:	(Circle)
	Relinquished	1 By: (4)	Date	Time	Received Fo	r Labor	ratory By	10	۰ ۲	1		or Aml	oient []		INT	ACT	BROKEN	ABSENT
			6/12/70	11:03	ran	4 (Nill	i K	JC	<u> </u>	Del	ivery M	- ethod: H	and D	<u>م</u> elivery	[`]_Cor	nmerio	al Delivery [

http://www.sgs.com/terms-and-conditions

SGS North America Inc. 200 W. Potter Dr., 3180 Peger Rd, Ste. Anchorage, AK 99518 (ph) 190, Fairbanks, AK 907-562-2343, (fax) 907-561- 99709 (ph) 907-474-5301 8656

SLR

nwells@strconsulting.com; bberglund@strconsulting.com

Does a Profile exist in LIMS? If not, please send a request for new profile build.

Nick Wells / Bret Berglund

ML&P Transformer Shop GW

00528.20001 T0351

kup	Date:	6/8/2020 Time:	
		In a second se	10000000000

08:00

ø

Be sure to ask if client will ship by ground (DOT) or air carrier (IATA)

Deliver to client:			
Ship by/Air Carrier:			
Airbill Number:			
Date to ship by:			
Notes:			
Kit request taken by:	JAN	Date:	June 4, 2020
Kit prepared by:	15	Date:	615120
d bottles) checked by:	Actor	Date:	615 120

Kit (including lid tightness for pres'd bottles) checked Kit packed & shipped by:

Date: NAC

Delivery Address:

Client Name:

Ordered By:

Project Name: Quote #:

Email:

65 Filename: SKIT_SLR_ML&P Transformer Shop GW_2020-06-04 *Required Items # QC No. Preservative Hold Total Lot # **Container Size & Type Pres Bottle Lot #** Time **Bottles Bottles** Samples Matrix Analysis Water AK101 - GRO 3 x 40 mL VOA HCI 14 d 0 15 5 4 Water 8260D - BTEX 3 x 40 mL VOA HCI 14 d 0 12 5 AK102 - DRO HCI 14 d 0 10 Water 2 x 250 mL Amber 0 9 3 Water 8260D - VOC 3 x 40 mL VOA HCI 14 d з 8270D SIM - PAH 7 d 0 6 Water 2 x 250 mL Amber None

Note: The first 10 Analysis and Preservative columns will auto-fill up to the capacity of the associated COC.

Additio	nal Information	Notes for Kit Prep	Attention Client/Sampler:
Pack for Shipment via:	N/A		1. Do not rinse container, be aware of any acid preservative.
Temperature Blank:	Yes - Small (125 mL)		2. Fill container, but do not overfill (except volatiles).
Trip Blank:	Yes - Water (8260, AK101, 8021, 624)	2 x Water Trip Blanks	3. Label the container with your sample ID and date/time of collection
Coolers:	Yes		4. Fill out the Chain of Custody.
Gel Ice:	Yes	FROZEN GEL ICE	5. Add frozen gel packs to your cooler and pack to prevent breakage.
Labels:	Yes		If you have any questions please contact your Project Manager.
Custody Seals:	Yes		
Paper Chain of Custody:	Yes - Standard COC		
Lot Number Tracking (Required for DOD):	No		

CCC	e-Sam	ple Receip	ole Receipt Form				
202	SGS Workorder #:		1202	2600			
Revi	ew Criteria	Condition (Yes	s, No, N/A	Exc	eptions Noted below		
Chain of Cha	Custody / Temperature Requi	irements		Yes Exemption pe	ermitted if sampler hand carries/delivers.		
	Were Custody Seals intact? Note # &	location N/A	Absent	t			
	COC accompanied sa	amples? Yes	<u> </u>				
DOD: Were sar	nples received in COC corresponding of	coolers? N/A					
Tomporatu		ected <	hours ago, or for sar	nples where chilling is not required			
Temperatur	e blank compliant (i.e., 0-0 C and	er CF)?	Cooler				
If samples received without a ter	mperature blank. the "cooler temperature" wi	ll be	Cooler				
ocumented instead & "COOLER TEN	MP" will be noted to the right. "ambient" or "ch	hilled" will	Cooler	· ID.	© C Therm. ID:		
		Cooler	ID:	@ °C Therm. ID:			
*lf >6°C	, were samples collected <8 hours	s ago? N/A					
			<u> </u>				
l	f <0°C, were sample containers ice	e free? N/A					
Note: Identify container	s received at non-compliant tempe	erature .					
Us	e form FS-0029 if more space is r	needed.					
Helding Time / Do		anuiromont	Nister De		L. O. Hall for an artific helding times		
Holding Time / Doc	ere samples received within holdin	a time? Yes		Fer to form F-000 Samp	ple Guide for specific holding limes.		
	no oumpioo recence and a						
Do samples match COC	** (i.e.,sample IDs,dates/times coll	ected)? Yes	5				
**Note: If times diffe	r <1hr, record details & login per C	COC.	1				
**Note: If sample information on conf	tainers differs from COC, SGS will default to	COC informatio	'n				
Were analytical requests cle	ar? (i.e., method is specified for a	nalyses Yes	\$				
with multi	ple option for analysis (Ex: BTEX,	Metals)	1				
				N/A ***Exemption	permitted for metals (e.g,200.8/6020A)		
Were proper containers	(type/mass/volume/preservative***	')used? Yes	5				
			-				
Woro Trip Blanks (i		<u>urements</u>	<u>}</u> An extr	re trip blank set rec	eivedwith samples labeled " Do not		
	free of headenace (i.e. hubbles <	6mm)? Yes	analyze	e this one".Proceed	I to dispose.		
Were all so	oil VOAs field extracted with MeOF	1+BEB2 N/					
Note to Clien	t: Any "No", answer above indicates no	on-compliance	with star	ndard procedures an	d may impact data quality		
		JII-compliance	With Star	luaru procedures un	u may impaol dala quanty.		
		al noton (if (- nnliagh	-1-).			

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u>	Container Id	<u>Preservative</u>	<u>Container</u>
		<u>Condition</u>			<u>Condition</u>
1202600001-A	HCL to $pH < 2$	ОК			
1202600001-B	HCL to pH < 2	OK			
1202600001-C	HCL to pH < 2	OK			
1202600001-D	HCL to pH < 2	OK			
1202600001-E	HCL to pH < 2	OK			
1202600001-F	HCL to pH < 2	OK			
1202600001-G	HCL to pH < 2	OK			
1202600001-H	HCL to pH < 2	ОК			
1202600002-A	HCL to pH < 2	ОК			
1202600002-В	HCL to pH < 2	ОК			
1202600002-C	HCL to pH < 2	ОК			
1202600002-D	HCL to pH < 2	ОК			
1202600002-E	HCL to pH < 2	ОК			
1202600002-F	HCL to pH < 2	ОК			
1202600002-G	HCL to pH < 2	ОК			
1202600002-H	HCL to pH < 2	ОК			
1202600003-A	HCL to pH < 2	ОК			
1202600003-B	HCL to pH < 2	OK			
1202600003-C	HCL to pH < 2	OK			
1202600003-D	HCL to pH < 2	OK			
1202600003-E	HCL to pH < 2	OK			
1202600003-F	HCL to $pH < 2$	OK			
1202600003-G	HCL to pH < 2	OK			
1202600003-H	HCL to pH < 2	OK			
1202600004-A	No Preservative Required	OK			
1202600004-B	No Preservative Required	OK			
1202600004-C	HCL to $pH < 2$	OK			
1202600004-D	HCL to pH < 2	OK			
1202600004-E	HCL to $pH < 2$	OK			
1202600004-F	HCL to $pH < 2$	ОК			
1202600004-G	HCL to $pH < 2$	ОК			
1202600004-H	HCL to $pH < 2$	ОК			
1202600004-I	HCL to $pH < 2$	OK			
1202600004-J	HCL to $pH < 2$	OK			
1202600005-A	No Preservative Required	OK			
1202600005-B	No Preservative Required	OK			
1202600005-C	HCL to $pH < 2$	OK			
1202600005-D	HCL to $pH < 2$	OK			
1202600005-E	HCL to $pH < 2$	OK			
1202600005-F	HCL to $pH < 2$	OK			
1202600005-G	HCL to $pH < 2$	OK			
1202600005-H	HCL to $pH < 2$	OK			
1202600005-I	HCL to $pH < 2$	OK			
1202600005-J	HCL to $pH < 2$	OK			
1202600006-A	HCL to $pH < 2$	ОК			
1202600006-B	HCL to $pH < 2$	ОК			
1202600006-C	HCL to $pH < 2$	ОК			
1202600006-D	HCL to $pH < 2$	ОК			
1202600006-E	HCL to $pH < 2$	ОК			
1202600006-F	HCL to $pH < 2$	ОК			Daga 52 of 52

6/12/2020

Container Id

<u>Preservative</u>

Container Condition Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.