
INTERIOR TEXACO (BUFFALO SERVICE CENTER) SITE CHARACTERIZATION REPORT DELTA JUNCTION, ALASKA

ADEC FILE NUMBER 120.26.001 UST FACILITY ID 0125

March 2018

Excellence. Innovation. Service. Value. Since 1954.

Submitted To: CEM Leasing PO BOX 70651 Fairbanks, Alaska 99707

By: Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709

31-1-11809-011

INTERIOR TEXACO (BUFFALO SERVICE CENTER) SITE CHARACTERIZATION REPORT DELTA JUNCTION, ALASKA

ADEC FILE NUMBER 120.26.001 UST FACILITY ID 0125

March 7, 2018	
Prepared by:	
SHANNON & WILS 2355 Hill Road Fairbanks, Alaska 99°	
Prepared by:	Valerie Webb, C.P.G. Senior Geologist
Reviewed by:	Chris Darrah, C.P.G., CPESC Vice President

Prepared for:

CEM Leasing PO BOX 70651

Fairbanks, Alaska 99707

TABLE OF CONTENTS

			Page
AC	RON	YMS AND ABBREVIATIONS	iii
1.0	Π	NTRODUCTION	4
	1.1	Project Objectives and Scope of Services	4
2.0	S	ITE DESCRIPTION AND BACKGROUND	
	2.1	Contaminants of Potential Concern and Cleanup Levels	6
3.0		IELD ACTIVITIES	
	3.1	Site Observations	
	3.2 3.3	Deviations from Work Plan Investigation-Derived Waste (IDW) Management	
	3.4	Sample Custody, Storage, and Transport	
4.0	A	NALYTICAL RESULTS	8
	4.1	Soil	
	4.2	Groundwater	
5 0	4.3	Vapor Intrusion	
5.0	`	UALITY ASSURANCE/QUALITY CONTROL	
6.0	D	DISCUSSION	10
7.0	R	ECOMMENDATIONS	12
8.0	L	IMITATIONS	13
9.0	R	EFERENCES	14
		TABLES	
	1	Analytical Results for Soil Samples	
	2	Analytical Results for Water Samples	
	3	Analytical Results for Indoor Air Samples	
	4	Analytical Results for Soil-gas Samples	
		FIGURES	
	1	Vicinity Map	
	2.	Characterization To-Date	

APPENDICES

- A Revised Conceptual Site Model (CSM)
- B Sample Collection Logs and Field Notes
- C Completed Boring Logs
- D Select Site Photographs
- E SGS Laboratory Reports (Work Orders No. 1178533 and 1178534) and Eurofins Laboratory Reports (Work Orders No. 1711116 and 1711121)
- F ADEC Data Review Checklists for Soil, Water, Indoor Air, and Soil-gas Analytical Results (Work Orders 1178533, 1178534, 1711116, and 1711121)
- G ADEC Building Inventory and Indoor Air Sampling Questionnaire
- H Important Information about your Environmental Site Assessment/Evaluation Report

ACRONYMS AND ABBREVIATIONS

°C degree Centigrade °F degree Fahrenheit

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Method

bgs below the ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CL cleanup level CoC chain of custody

COPC contaminant of potential concern

CSM conceptual site model DRO diesel range organics

EPA Environmental Protection Agency

GAC granular activated carbon
GRO gasoline range organics
IC institutional controls
LOD limit of detection
LOQ limit of quantitation
mg/kg milligram per kilogram
mg/L milligram per liter

MTG migration-to-groundwater

PAHs polynuclear aromatic hydrocarbons

PID photoionization detector

ppm parts per million QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control
RP Responsible Party
RRO residual range organics
SGS SGS North America, Inc.
VOC volatile organic compound

INTERIOR TEXACO (BUFFALO SERVICE CENTER) SITE CHARACTERIZATION REPORT DELTA JUNCTION, ALASKA

ADEC FILE NUMBER 120.26.001 UST FACILITY ID 0125

1.0 INTRODUCTION

This report summarizes field observations from our site characterization of the Interior Texaco (formerly known as Delta Texaco, Alaska Mechanical Fuel Services, and as the Buffalo Service Center) regulated contaminated site (Figure 1). The Alaska Department of Environmental Conservation (ADEC) File number for the site is 120.26.001. These site-characterization activities were undertaken in response to your desire to achieve site closure and ADEC's requirements for site closure. The goal of this assessment was to address data gaps in our understanding of the extent of soil and water contamination associated with the site and to perform a vapor intrusion assessment (VIA).

Our services are provided under our agreement with the former Property owner, CEM Leasing, Inc., from your August 25, 2017 signature on our August 23, 2017 proposal and your January 2018 authorization via email correspondence.

1.1 Project Objectives and Scope of Services

The objectives of our effort included project planning, collecting soil and groundwater samples for analysis, and performing a VIA. Our scope of services included:

- preparing our September 12, 2017 work plan for ADEC review;
- installing and sampling a series of soil borings in the former source areas;
- installing and sampling x groundwater monitoring wells;
- sampling the Kelly's Country Inn water-supply well;
- sampling indoor air and subslab soil gas; and
- preparing this summary report.

We performed the drilling and groundwater sampling between October 12 and 15, 2017, and the vapor intrusion assessment on November 1 and 2, 2017.

2.0 SITE DESCRIPTION AND BACKGROUND

The Property consists of a two-story building with an attached garage, tire shop, and fuel service islands south of the building. A thin, approximately 4-inch-thick layer of asphalt covers part of the site near the building. Prior to 1995, the fueling system consisted of three dispensing islands

(at the northwest corner of the lot, and along the west and south side of the building), a pipeloading rack (north of the building), and four 12,000-gallon underground storage tanks (USTs) (Figure 2). We understand the UST system was installed in 1971 and operated until 1995.

In 1995, four USTs, associated piping, and dispensing apparatus were taken out of service. UST removal was performed in accordance with the ADEC UST Regulations, 18 AAC 78, during the summer of 1995 by Inland Petro Services (formerly Soil Services, Inc.), of Fairbanks, Alaska. Shannon and Wilson personnel observed the UST removal and excavation, field-screened excavated soils, collected soil samples for analytical results, and prepared a final report. Approximately 150 cubic yards (cy) of contaminated soil were excavated.

CEM Leasing retained Shannon & Wilson to perform a series of targeted site characterization and remedial activities between 1997 and 2010. Details of the services can be found in the approved September 9, 2016 *Interior Texaco (Buffalo Service Center) Limited Site Characterization Work Plan.*

Our work at the site has included drilling and sampling soil borings in and around the UST site, installing soil-vapor extraction wells, monitoring emissions from the passive soil vapor extraction (SVE) system, sampling a contaminated-soil stockpile, and sampling the water-supply well at Kelly's Country Inn adjacent to the site. In June 2016, Shannon & Wilson prepared a draft work plan for ADEC review that described our proposed approach to site closure. ADEC representative John Carnahan determined the approach was too limited to provide sufficient. current site characterization information with which to make determinations on further corrective actions. Following ADEC's review of the work plan, we revised the work plan and initiated a 2016 site characterization. We conducted three days of drilling and sampling. We advanced eight borings to assess the lateral and vertical extent of hydrocarbon contamination both upgradient and downgradient of the former USTs and the western dispensing island. We also installed three temporary well points and collected water samples from the well points and from the Kelly's Country Inn well for laboratory analysis. Current infrastructure, including the current southern fuel-dispensing island, prevented investigation near the former southern pump island. No contaminants of potential concern (COPC) detections above ADEC cleanup levels were observed in the groundwater samples.

Following our 2016 work, we prepared and submitted a report to ADEC for review and comment on October 27, 2016. We recommended ADEC consider site closure with institutional controls. In September 14, 2016, ADEC published a guidance document based on the memorandum on site closure/cleanup complete determinations. On February 28, 2017, we received a letter from ADEC in response to the final report. In the letter, Mr. Carnahan requested additional work, "Closure will require defensible positions on the areas outlined in regulation and likely

incorporate the implementation of enforceable Institutional Controls (ICs) that remain applicable when the land is sold, and require concurrence with affected property owners."

On June 26, 2017, we met with Mr. John Carnahan and Mr. Eric Breitenberger to discuss the draft report and potential future work. On July 31, 2017, we submitted the *Interior Texaco* (*Buffalo Service Center*) *Site Characterization Final Report*. The report was approved by ADEC on August 1, 2017.

On September 12, 2017, we submitted to ADEC the *Interior Texaco (Buffalo Service Center) Limited Site Characterization FINAL Work Plan*. The work plan was approved by ADEC on September 19, 2017.

2.1 Contaminants of Potential Concern and Cleanup Levels

Contaminants of potential concern (COPCs) associated with the site are diesel range organics (DRO), gasoline range organics (GRO), residual range organics (RRO), benzene, ethylbenzene, toluene, and xylenes (BTEX), and polynuclear aromatic hydrocarbons (PAHs). COPCs for vapor intrusion are volatile organic compounds (VOCs).

To evaluate soil sample concentrations, we compared the analytical data to Tables B1 and B2 Method Two of 18 AAC 75.341 *Migration to Groundwater for the Under 40-Inch Zone*.

To evaluate groundwater sample concentrations, we compared the analytical data to Table C of 18 AAC 75.345 *Groundwater Cleanup Levels*.

To evaluate soil-gas and air-sample concentrations, we compared the analytical data to the commercial ADEC target level. We used Appendix F: DEC Shallow or Subslab Soil Gas Target Levels from ADEC's *Vapor Intrusion Guidance* (January 2017).

We have included an updated conceptual site model (CSM) in Appendix A.

3.0 FIELD ACTIVITIES

This section summarizes field activities performed between October 12 and October 17, 2017 and November 1 and 2, 2017. Shannon & Wilson's field geologists Fawn Glassburn and Seth Robinson arrived in Delta Junction on October 12 for the drilling and groundwater monitoring. Ms. Sheila Hinckley arrived on site on November 1 for the vapor intrusion assessment. Sample Collection Logs and Field Notes are included in Appendix B, completed borelogs are included in Appendix C, select site photographs are included in Appendix D, the laboratory reports are included in Appendix E, the laboratory data review checklists (LDRCs) are included in Appendix F, and the ADEC *Building Inventory and Indoor Ari Sampling Questionnaire* is included as Appendix G.

3.1 Site Observations

The groundwater gradient is generally to the northwest, sub-parallel to the Tanana River. Upon arrival on site in October, we observed the presence of groundwater in the preexisting monitoring wells *MW-1* (at 28.68 feet below ground surface [bgs]), *MW-2* (at 33.76 feet bgs), and *MW-8* (33.84 feet bgs). We measured the amount of groundwater and determined there was not sufficient water in the existing monitoring wells to collect a sample for laboratory analysis, see Appendix B for sample collection logs.

We advanced eleven borings to assess the lateral and vertical extent of hydrocarbon contamination both upgradient and downgradient of the former USTs and the western dispensing island. We also installed five groundwater monitoring wells and collected water samples from the wells and from the Kelly's Country Inn well for laboratory analysis. Current infrastructure, including the current southern fuel-dispensing island, prevented investigation near the former southern pump island (Figure 2).

Upon arrival on site in November, we installed and sampled three subslab soil gas ports and five indoor air Radiello[®] samples. Prior to sampling, we completed the ADEC *Building Inventory* and *Indoor Air Sampling Questionnaire*, included in Appendix G.

3.2 Deviations from Work Plan

We conducted our field services consistent with our approved Work Plan. The following are the deviations from our amended scope of services.

The Work Plan called for the water samples to be collected using a Whale Supersub 921 12-Volt submersible centrifugal pump. We opted instead to collect the water samples using a Waterra® actuator pump.

3.3 Investigation-Derived Waste (IDW) Management

GeoTek generated soil cuttings and excess soil not selected for laboratory analysis. These solids were used to backfill the boring from which they originated. Excess potentially contaminated soils not used for backfill were placed in 55-gallon drums, labeled, and stored on site for proper off-site disposal. Disposal of the drums is not within our scope of services.

GeoTek decontaminated their drilling tools using high-pressure steam and contained their decontamination fluids. Sampling equipment coming in contact with soil was decontaminated prior to use and reuse. We treated decontamination fluids using our granulated activated carbon (GAC) filter. The treated water was disposed on site. We transported the spent GAC to Fairbanks to be disposed with spent GAC from other Shannon & Wilson projects.

Other IDW consisted of disposable sampling equipment (nitrile gloves, plastic bags) which was disposed at the Fairbanks landfill.

3.4 Sample Custody, Storage, and Transport

After soil and water sample collection, we wrapped the sample bottles in bubble wrap and placed them in hard plastic coolers with adequate quantities of frozen ice-substitute to maintain sample temperatures between 0 degrees Centigrade (°C) and 6 °C until the samples reached the laboratory, using packing material as necessary to prevent bottle breakage and adhere to hazardous materials transportation regulations. A "temperature blank" was packed with the samples in each cooler. Shannon & Wilson maintained custody of the samples until submitting them to the laboratory for analysis.

Shannon & Wilson field staff departed Delta Junction on October 17. Sample coolers were closed using signed custody seals prior to departure from Delta Junction.

The water and soil samples were delivered to the SGS North America (SGS) receiving office in Fairbanks with a requested "standard turnaround" (14 calendar days, Work Orders No. 1178533 and 1178534). Water and soil samples were analyzed for GRO, BTEX, DRO, RRO, and PAHs.

The soil gas and indoor air samples were delivered to Eurofins in California (Work Orders 1711116 and 1711121). We completed a chain of custody (COC) form and placed it inside the box of the canisters for shipment. We maintained custody of the samples at all times until submitting them to Eurofins. We requested analysis of the samples for VOCs by EPA Method TO-15, Selective Ion Monitoring (SIM). Soil-gas samples were delivered to the analytical laboratory with sufficient time to allow the laboratory to extract the samples within the holding-time requirements of the test methods.

4.0 ANALYTICAL RESULTS

Summaries of the analytical results are presented in Tables 1, 2, 3, and 4. The analytical laboratory reports are included in Appendix E and the ADEC laboratory data-review checklists (LDRCs) are included in Appendix F.

4.1 Soil

Analytical results above the ADEC migration-to-groundwater CLs are shown on Figure 2 and Table 1.

Borings were completed at depths between 35 and 40 feet below ground surface. Two samples were collected from each boring: one to characterize the highest apparent contamination and one at the bottom of the boring to characterize the vertical extent.

With the exception of three samples, the samples collected at the bottom of the borings had analytical concentrations below cleanup levels. IT-B6-2 (at 40 feet bgs), IT-B7-2 (at 40 feet bgs) and IT-B10-2 (at 37 feet bgs) samples had concentrations above cleanup levels for one or more analytes. These three borings were completed in the former western fuel island.

With the exception of two samples (IT-B3-1 and IT-B8-1), the samples collected from the shallower depths had analytical concentrations above cleanup levels.

4.2 Groundwater

Analytical results for groundwater are shown on Figure 2 and Table 2.

With the exception of one sample, no analytes were detected above ADEC CLs in water samples collected from the newly-installed monitoring wells. In addition, no analytes were detected above ADEC CLs in the water samples collected from the Kelly's Country Inn well.

The sample collected from MW-13 had a GRO, DRO, and BTEX in concentrations above ADEC CLs.

Concentrations of the other analytes in the project groundwater samples were less than the laboratory's LOD (Table 2).

4.3 Vapor Intrusion

Analytical results for subslab soil-gas and indoor air Radiello samples are shown on Figure 2 and Tabled 3 and 4.

The five indoor-air analytical samples had concentrations above ADEC Target Level for tetrachloroethene (also known as PCE). None of the other analytes had concentrations above the ADEC Target Level.

Four of the subslab soil gas samples had concentrations below ADEC CL. SS-01 had concentrations above ADEC Target Levels for 1,2,4- trimethylbenzene, dichlorodifluoromethane, and PCE.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

We reviewed the analytical results provided by SGS for laboratory QC samples and also conducted our own QA assessment for this project. We reviewed COC records and laboratory sample-receipt forms to check that we followed proper custody procedures, met sample-holding times, and kept samples properly chilled (between 0 °C and 6 °C) during shipping. Our QA-

review procedures allow us to document accuracy and precision of the analytical data and check that the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards.

For this report, we reviewed the soil and water data reported in SGS Work Orders 1178533 and 1178534 and in Eurofins Work Orders 1711116 and 1711121. The laboratory reports contained the case narratives, sample-receipt forms, analytical results and a copy of the CoC. Details regarding the results of our QA analyses are presented in the ADEC LDRCs along with a copy of the original laboratory reports (Appendix E). Our review of the data reveals that some of the analytical samples experienced method and laboratory data-quality failures (surrogate recovery, a method blank detection, field duplicate relative percent difference (RPD) failures, etc.). None of the data-quality failures caused the data to be considered unusable. Analytical results that are considered affected by method and laboratory data-quality failures are flagged in Tables 1, 2, 3, and 4.

6.0 DISCUSSION

The goal of the assessment activities described in this report was to address data gaps in our understanding of the extent of soil and water contamination associated with the site and to perform a vapor intrusion assessment (VIA). While this goal was achieved, the data indicate contamination remains at the site in soil, groundwater, soil vapor, and indoor air at concentrations exceeding regulatory criteria.

6.1 Soil

Soil contamination is present at concentrations above CULs in the former UST area north of the service station, along the northern property boundary, and at the former fuel dispensing area west of the building.

We drilled four soil borings in the former UST area (B1, B2, B-4, and B-11). DRO was found to be present above its CUL in the shallower sample in each of these borings (ranging from approximately 5 feet to 12 feet bgs). In sample B11-1, collected at 5 feet to 7.5 feet bgs, DRO was reported at 12,100 mg/kg, which is near but just below the ADEC maximum allowable concentration (MAC) of 12,500 mg/kg. GRO, BTEX, and several PAHs were also reported in these samples at concentrations exceeding their respective CULs. Of these, GRO exceeded its MAC in sample B2-1.

In each of these four borings, the deeper sample, collected at depths ranging from 37 feet to 40 feet bgs, did not contain COPCs at concentrations above CULs.

We drilled two soil borings along the north property boundary (B-5 and B-8). In sample B5-1, collected from 4 feet to 5 feet bgs, DRO was reported at 12,000 mg/kg, which is near but just below its MAC of 12,500 mg/kg. The deeper sample collected from this boring, and both samples collected from B-8, were not reported to contain COPCs above CULs.

We drilled four soil borings in the former dispensing area west of the building (B-6, B-7, B-9, and B-10). DRO was reported above its CUL in shallow and deep samples from borings B-6, B-7, and B-10. GRO was reported above its CUL in the shallow samples from borings B-6 and B-7; the reported GRO concentration in sample B6-1 exceeded its MAC.

We drilled one soil boring on the east side of the building (B-3). No COPCs were detected at concentrations above their CULs in either sample collected from this boring.

18 AAC 75.340(j)(3) states that "the maximum allowable concentrations for petroleum hydrocarbons described in Table 2B of 18 AAC 75.341(d) must be attained in the surface soil and subsurface soil." The relevant footnote for Table 2B states that (MACs) are concentrations of petroleum hydrocarbons "in surface and subsurface soil that if exceeded, indicate an increased potential for hazardous substance migration or for risk to human health, safety, or welfare, or to the environment; the level of a petroleum hydrocarbon may not remain at a concentration above the maximum allowable concentration unless a responsible person demonstrates that the petroleum hydrocarbon will not migrate and will not pose a significant risk to human health, safety, or welfare, or to the environment"

6.2 Groundwater

We installed and sampled five groundwater monitoring wells as part of the 2017 site-characterization activities:

- MW-9, within the former UST area north of the building;
- MW-10, east of the building;
- MW-11, along the north property line;
- MW-12, in the former dispensing area west of the building; and
- MW-13, along the north property line near the northwest property corner.

We also collected a sample from the water-supply well for Kelly's Country Inn. While we observed water to be present in previously installed monitoring wells, it was not in sufficient quantities to sample.

Four of the five monitoring wells did not contain COPCs above CULs (MW-9, MW-10, MW-11, and MW-12). RRO and benzene were reported in one or more of these wells but at estimated (J-flagged) concentrations below their respective limits of quantitation.

MW-13 was reported to contain GRO, DRO, benzene, ethylbenzene, and xylenes at concentrations above their respective CULs.

The Kelly's Country Inn water-supply well sample did not contain COPCs above their respective limits of quantitation with the exception of benzene, which was reported with a J-flagged result.

6.3 Vapor Intrusion Assessment

We installed and sampled three subslab sampling ports in the service station and collected five indoor-air samples from the building for analysis for VOCs.

Three VOCs were reported at concentrations exceeding their ADEC target screening levels in subslab soil-gas sample, SS-01: 1,2,4-trimethylbenzene, dichlorodifluoromethane, and tetrachloroethane (PCE).

PCE was also reported at concentrations exceeding its ADEC target screening level for indoor air in each of the five indoor-air samples.

6.4 Discussion Summary

6.4.1 Soil

In our opinion, the former UST area north of the building has been sufficiently characterized to conclude that soil contamination is present but does not extend to the more dense layer historically observed at approximately 40 feet bgs.

Soil contamination is also present in the former dispensing area west of the building, with contamination extending to the more dense layer.

Shallow soil contamination was observed at the northern property line in Boring B-5 and may not be related to UST releases.

6.4.2 Groundwater

Results of monitoring-well sampling suggest groundwater quality east of the building, in the former dispensing area, and north of the former UST area are within ADEC criteria. The presence of GRO, DRO, and BTEX compounds above cleanup levels in MW-13, along the northern property line near the northwest property corner, suggests contaminated groundwater may extend off the property.

The drinking-water supply well for Kelly's Country Inn, the adjacent property north of the site, has been sampled repeatedly over the past 20 years and has been consistently found to meet ADEC water-quality criteria.

Groundwater in the shallow aquifer perched on the dense soil layer at approximately 40 feet bgs may be an exposure pathway, however we are not aware of water-supply wells on the property within this aquifer.

We compared groundwater data to historical results. In the area of the former western fuel island, we compared the 2000 results from MW-3 to the 2017 results from MW-12. In 2000, samples from the shallow aquifer contained DRO at 57.5 mg/l, GRO at 6.3 mg/L, and benzene at 0.0354 mg/L. In 2017, the sample from MW-12 contained DRO at <0.294 mg/L, GRO at <0.0500 mg/L and benzene at 0.000310 mg/L.

For the former northern UST excavation area, we compared the 2000 MW-8 results to the 2017 MW11 results. In 2000, a sample from the shallow aquifer contained DRO at 3.38 mg/L. In 2017, a sample from MW-11 contained DRO at <0.300 mg/L and RRO at 0.195 J mg/L.

With the exception of MW-13 data, the site-wide 2017 groundwater results indicate a decrease in the groundwater contaminant concentrations.

6.4.3 Vapor

The results of the VIA suggest PCE detected in soil gas beneath the building may be migrating to indoor air.

While exposure to contaminated soil through incidental soil ingestion is currently limited by the asphalt surface at the site, it remains a potentially complete future exposure pathway for commercial, industrial, or construction workers excavating soil at the site. PAHs, which can be absorbed dermally, may be present in areas of contaminated soil, representing another potentially complete future exposure pathway to the same receptors.

Vapor intrusion of PCE to indoor air is a current and potential future exposure pathway.

7.0 RECOMMENDATIONS

Contamination is present in various media at the property, including some at concentrations that require further action. Based on the information presented in this report, we offer the following recommendations:

- Develop a plan to address soil contamination exceeding ADEC CULs and MACs.
- Investigate whether groundwater contamination detected in the vicinity of MW-13 is migrating off the property.
- Develop a plan to address vapor intrusion into the building and mitigate indoor-air quality to reduce PCE concentrations to acceptable levels.

The responsible party recently purchased a soil-vapor extraction mobile unit. It is our understanding they will contract with us to execute a pilot test study on the existing passive SVE system to determine the feasibility of its use. Details of the study will be included in a work plan under separate cover.

8.0 LIMITATIONS

This report was prepared for the use of the CEM Leasing for evaluating remaining contamination at the Interior Texaco site in Delta Junction, Alaska. This work presents our professional judgment as to the conditions in the area. Conclusions and recommendations presented here are based on sampling and analyses we performed, along with a limited review of records and other data available to the public. They should not be construed as definite conclusions about spill-site or soil conditions in the area, and it is possible our tests may not represent the highest levels of contamination in the area. We have not performed an independent evaluation of the accuracy or completeness of third-party information, and shall not be responsible for errors or omissions contained in such information.

The results included in this report should be considered representative of the time and locations at which the sampling occurred. It was not the intent of our investigation to detect the presence of contaminants other than those for which laboratory analyses were performed. No conclusions can be drawn on the presence or absence of other contaminants. The observed levels of contamination may be dependent upon seasonal changes and the passage of time. Due to such changes, or others beyond our control, our observations and recommendations applicable to this site may need to be revised. If substantial time has elapsed between submission of this report and the start of activities or action based upon it, we recommend this report be reviewed to determine the applicability of the conclusions and recommendations considering the lapsed time or changed conditions.

This report was prepared for the exclusive use of CEM Leasing. All documents prepared by Shannon & Wilson are instruments of service with respect to the project for the sole use of CEM Leasing. Only CEM Leasing shall have the right to rely upon such documents. Such documents are not intended or represented to be suitable for reuse by CEM Leasing after the passage of time, on extensions of the project, or on any other project. Any such reuse without written verification or adaptation by Shannon & Wilson, as appropriate for the specific purpose intended, shall be at the user's sole risk.

Copies of documents that may be relied upon by the CEM Leasing are limited to the printed copies (also known as hard copies) signed or sealed by Shannon & Wilson. Text, data, or graphics files in electronic media format are furnished solely for the convenience of CEM Leasing. Any conclusion or information obtained or derived from such electronic files shall be at

the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, the hard copies govern.

Because data stored in electronic media can deteriorate or be modified inadvertently or otherwise without authorization of the data's creator, CEM Leasing should perform acceptance tests or procedures within 60 days after its receipt, after which, unless notice of any errors are given in writing to Shannon & Wilson, CEM Leasing shall be deemed to have accepted the data thus transferred. Any errors reported within the 60-day acceptance period shall be corrected by Shannon & Wilson. Shannon & Wilson shall not be responsible for maintaining documents stored in electronic media format after acceptance by CEM Leasing.

When transferring documents in electronic media format, Shannon & Wilson does not make any representations as to long-term compatibility, usability, or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used for the document's creation.

Shannon & Wilson, Inc. has prepared the attachment, "Important Information about your Environmental Site Assessment/Evaluation Report" in Appendix G to assist you and others in understanding the uses and limitations of our reports.

9.0 REFERENCES

- Alaska Department of Environmental Conservation, November 2017, *18 AAC 75: Oil and Other Hazardous Substances Pollution Control*: Juneau, Alaska, available: http://dec.alaska.gov/commish/regulations/.
- Alaska Department of Environmental Conservation, November 2016, 18 AAC 75.341 Tables B1 and B2, Method Two Soil Cleanup Level for Migration to Groundwater for the "Under 40 Inch Zone".
- Alaska Department of Environmental Conservation, 2002, Method AK101: Juneau, Alaska, available https://dec.alaska.gov/eh/docs/lab/CS/AK101.pdf
- Alaska Department of Environmental Conservation, August 2017, Field Sampling
 Guidance for Contaminated Sites and Leaking Underground Storage Tank Sites, available:
 https://dec.alaska.gov/spar/csp/guidance forms/docs/Field Sampling Guidance August 20
 17 Final.pdf
- Alaska Department of Environmental Conservation, March 2017, *Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites*: Juneau, Alaska, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, available: https://dec.alaska.gov/spar/csp/guidance_forms/docs/SiteCharacterizationWorkPlanReportingGuidance2017.pdf
- Alaska Department of Environmental Conservation, January 2017, *Guidance on Developing Conceptual Site Models*: Juneau, Alaska, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, available: https://dec.alaska.gov/spar/csp/guidence_forms/ADEC_CSM_Guidance_222017.pdf
- Alaska Department of Environmental Conservation (ADEC), 2014, *Underground Storage Tanks Procedures Manual*: Juneau, Alaska, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, available:

 http://dec.alaska.gov/spar/csp/guidence_forms/UST_Procedures_Manual_March_22_2017.pdf

TABLE 1 INTERIOR TEXACO 2017 SOIL RESULTS

Analytical Method	Analyte	ADEC Soil Cleanup Level	Units	IT-B1-1 Depth: 10.0-11.2 ft bgs	IT-B1-2 Depth: 39.0-40.0 ft bgs	IT-B2-1 Depth: 10.0-12.0 ft bgs	IT-B2-2 Depth: 37.5-40.0 ft bgs	IT-B2-3 Depth: 10.0-12.0 ft bgs	IT-B3-1 Depth: 5.0-6.6 ft bgs	IT-B3-2 Depth: 30.0-35.0 ft bgs	IT-B4-1 Depth: 7.5-10.0 ft bgs	IT-B4-2 Depth: 37.5-40.0 ft bgs	IT-B5-1 Depth: 4.0-5.0 ft bgs	IT-B5-2 Depth: 38.0-40.0 ft bgs	IT-B6-1 Depth: 2.5-5.0 ft bgs
AK101	Gasoline Range Organics	300	mg/kg	990 JH*	<2.36 B*	1,780 JH*	<2.48 B*	1,380 JH*	<3.38 B*	<2.82 B*	162 JH*	<3.70 B*	160 JH*	5.88 JH*	1,570 JH*
AK102	Diesel Range Organics	250	mg/kg	5,300	41.1	7,750	201	6,250	10.4 J	6.97 J	1,930	195	12,000	11.0 J	1,830
AK103	Residual Range Organics	11,000	mg/kg	170	12.8 J	235	41.3	219	47.4	10.8 J	274	21.3	430	20.9	46.0
	Benzene	0.022	mg/kg	0.439	0.0169	0.0155 J	<0.00620	0.00956 J	<0.00845	0.00847 J	0.0117 J	< 0.00525	<0.00910	0.00560 J	0.494
	Ethylbenzene	0.13	mg/kg	3.13	0.0123 J	0.865 J*	<0.0124	0.420 J*	<0.0169	<0.0141	0.292	0.00904 J	0.236	0.0101 J	37.4
SW8021B (BTEX)	o-Xylene	1.5 (total)	mg/kg	263	0.148	461	<0.0325 B*	395	0.106 JH*	0.105 JH*	0.896	<0.0458 B*	3.44	<0.0504 B*	221
	P & M -Xylene	1.5 (total)	mg/kg	314	0.217 JH*	226	<0.0495 B*	187	<0.0676 B*	<0.132 B*	11.0	<0.0740 B*	4.92	<0.0923 B*	525
	Toluene	6.7	mg/kg	14.7	0.242 JH*	0.210 JH*	<0.0248 B*	<0.130 B*	<0.0169	<0.125 B*	0.229 JH*	<0.0305 B*	<0.0365 B*	<0.0528 B*	74.7
	1-Methylnaphthalene	0.41	mg/kg			65.3		46.4				-		-	11.0
	2-Methylnaphthalene	1.3	mg/kg	<u> </u>	_	91.7	_	65.0	_	_	<u> </u>	_	_	_	16.1
	Acenaphthene	37	mg/kg	_	_	1.55	_	1.22	_	_	_	_	_	_	0.119
	Acenaphthylene	18	mg/kg	_	_	<0.284	_	<0.277	_	_	_	_	_	_	<0.0146 J*
	Anthracene	390	mg/kg	_	_	0.577	_	0.482 J	_	_	_	_	_	_	0.0551
	Benzo(a)anthracene	0.28	mg/kg			0.213 J		0.186 J							0.00919 J
	Benzo(a)pyrene	0.27	mg/kg	<u> </u>	_	<0.284	_	<0.277	_	_	<u> </u>	_	_	_	<0.0146
	Benzo(b)fluoranthene	2.7	mg/kg	-		<0.284	-	<0.277	_			_	-	-	<0.0146
8270D SIM (PAH)	Benzo(g,h,i)perylene	15,000	mg/kg	<u> </u>	_	<0.284	_	<0.277	_	_	<u> </u>	_	_	_	<0.0146
0270D SIIVI (FAIT)	Benzo(k)fluoranthene	27	mg/kg	_	_	<0.284	_	<0.277	_	_	-	_	_	_	< 0.0146
	Chrysene	82	mg/kg		-	0.222 J		0.198 J			-	-		-	<0.0146
	Dibenzo(a,h)anthracene	0.87	mg/kg			<0.284	<u>—</u>	<0.277	_				-	-	<0.0146
	Fluoranthene	590	mg/kg	_		0.992		0.872	_		_	_	_	-	0.0309
	Fluorene	36	mg/kg	_	_	2.67	-	2.12	_		-	_	-	-	0.309
	Indeno(1,2,3-cd)pyrene	8.8	mg/kg		_	<0.284		<0.277							<0.0146
	Naphthalene	0.038	mg/kg	_	_	91.4	_	63.3	_			_		-	17.8
	Phenanthrene	39	mg/kg	_	_	3.76		3.12	_	_	_	_		_	0.256
	Pyrene	87	mg/kg			0.839		0.731							0.0368

TABLE 1 **INTERIOR TEXACO 2017 SOIL RESULTS**

Analytical Method	Analyte	ADEC Soil Cleanup Level	Units	IT-B6-2 Depth: 37.5-40.0 ft bgs	IT-B6-3 Depth: 2.5-5.0 ft bgs	IT-B7-1 Depth: 12.5-15.0 ft bas	IT-B7-2 Depth: 37.5-40.0 ft bas	IT-B8-1 Depth: 35.0-37.5 ft bas	IT-B8-2 Depth: 37.5-40.0 ft bgs	IT-B9-1 Depth: 10.0-12.0 ft bas	IT-B9-2 Depth: 37.5-40.0 ft bas	IT-B10-1 Depth: 16.0-17.5 ft bas	IT-B10-2 Depth: 36.0-37.0 ft bas	IT-B11-1 Depth: 5.0-7.5 ft bgs	IT-B11-2 Depth: 37.5-40.0 ft bgs
							_	out of the transfer			one reconsige	l con the truge			January 1
AK101	Gasoline Range Organics	300	mg/kg	<5.46 B*	1,340 JH*	1,210 JH*	8.54 JH*	<1.21	<1.34	8.41 JH*	<1.45	158 JH*	32.8 JH*	143 JH*	<1.49
AK102	Diesel Range Organics	250	mg/kg	1,100	1,190	2,900	1,870	<10.2	<10.3	<44.6	<10.2	5,050	5,120	12,100	7.00 J
AK103	Residual Range Organics	11,000	mg/kg	<41.3	46.7	119	<41.9	8.34 J	<10.3	130	<10.2	179 J	83.7 J	281	<10.3
	Benzene	0.022	mg/kg	0.00721 J	0.647	0.185	0.0105	<0.00605	<0.00670	0.0167	<0.00720	0.0716 J	<0.00575	0.00931 J	<0.00745
	Ethylbenzene	0.13	mg/kg	0.00842 J	33.9	23.8	0.00639 J	<0.0121	<0.0134	0.217	<0.0144	0.689	0.0133 J	0.0588	<0.0149
SW8021B (BTEX)	o-Xylene	1.5 (total)	mg/kg	0.106 JH*	213	212	0.176	<0.0121	<0.0134	1.06	<0.0289 B*	12.6	0.410	0.549	<0.0297 B*
	P & M -Xylene	1.5 (total)	mg/kg	0.179 JH*	497	405	0.158 JH*	<0.0241	<0.0267	2.14	<0.0577 B*	5.30	0.173 JH*	11.0	<0.0595 B*
	Toluene	6.7	mg/kg	<0.120 B*	83.4	29.5	0.174 JH*	<0.0241 B*	<0.0268 B*	0.811	<0.0289 B*	0.186 JH*	<0.0115	<0.0871 B*	<0.0345 B*
	1-Methylnaphthalene	0.41	mg/kg		8.70										-
	2-Methylnaphthalene	1.3	mg/kg		12.9										
	Acenaphthene	37	mg/kg		0.0954										
	Acenaphthylene	18	mg/kg	-	0.0498 J*	-	-	<u> </u>	-	<u> </u>	-	-	_	_	<u> </u>
	Anthracene	390	mg/kg		0.0478				-	-					_
	Benzo(a)anthracene	0.28	mg/kg		<0.0141										
	Benzo(a)pyrene	0.27	mg/kg		<0.0141										
	Benzo(b)fluoranthene	2.7	mg/kg		<0.0141										
8270D SIM (PAH)	Benzo(g,h,i)perylene	15,000	mg/kg		<0.0141				-	-					
0270D 31W (1 A11)	Benzo(k)fluoranthene	27	mg/kg		<0.0141										
	Chrysene	82	mg/kg		<0.0141										
	Dibenzo(a,h)anthracene	0.87	mg/kg	-	<0.0141	-	-	<u> </u>	-	<u> </u>	-	-	-	_	<u> </u>
	Fluoranthene	590	mg/kg	<u> </u>	0.0263 J	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u>—</u>	_	_	_
	Fluorene	36	mg/kg		0.260					-					
	Indeno(1,2,3-cd)pyrene	8.8	mg/kg		<0.0141										
	Naphthalene	0.038	mg/kg		15.3					_					
	Phenanthrene	39	mg/kg		0.228										
	Pyrene	87	mg/kg	_	0.0301	_	_	_	_	_	_		_	_	_

Notes: ADEC Soil-Cleanup Levels from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater) and Table B2 Method Two - Petroleum Hydrocarbon Soil Cleanup Levels.

Sample IT-B2-3 is the field-duplicate sample of IT-B2-1. Sample IT-B6-3 is the field-duplicate sample of IT-B6-1.

ADEC Alaska Department of Environmental Conservation

mg/kg Milligrams per kilogram

BTEX benzene, toluene, ethylbenzene, and xylenes

PAH Polynuclear aromatic hydrocarbon

BOLD Reporting limit (LOQ) or detected concentration exceeds regulatory limit.

BOLD Detected concentration exceeds regulatory limit.

< Analyte not detected above the limit of quantitation (LOQ); reported as less than the LOQ. Flag applied by the laboratory.</p>

J Estimated concentration detected below the LOQ. Flag applied by the laboratory.

 J^\star Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

JH* Estimated concentration, biased high, due quality control failures. Flag applied by Shannon & Wilson, Inc.

B* Result is considered not detected due to quality control issues. Flag applied by Shannon & Wilson, Inc.

TABLE 2
INTERIOR TEXACO 2017 GROUNDWATER SAMPLE RESULTS

Analytical		ADEC Groundwater								
Method	Analyte	Cleanup level	Units	Kelly's DW	MW-9	MW-109	MW-10	MW-11	MW-12	MW-13
AK101	Gasoline Range Organics	2.2	mg/L	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	2.23 JH*
AK102	Diesel Range Organics	1.5	mg/L	<0.283	<0.313	< 0.302	< 0.302	< 0.300	<0.294	3.46
AK103	Residual Range Organics	1.1	mg/L	<0.472 B*	0.184 J	0.176 J	0.201 J	0.195 J	0.201 J	0.173 J
	Benzene	4.6	μg/L	0.260 J	<0.250	0.150 J	0.460 J	0.380 J	0.310 J	5.58
014/00045	Ethylbenzene	15	μg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	139
SW8021B	o-Xylene	400	μg/L	<0.500	<0.500	<0.500	0.320 J	<0.500	<0.500	172
(BTEX)	P & M -Xylene	190	μg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	444
	Toluene	1,100	μg/L	<1.00 B*	<1.00 B*	<1.00 B*	<1.00 B*	<1.00 B*	<1.00 B*	196
	1,1,1,2-Tetrachloroethane	5.7	μg/L	<0.250	_	_	_	_	_	_
	1,1,1-Trichloroethane	8,000	μg/L	<0.500						
	1,1,2,2-Tetrachloroethane	0.76	μg/L	<0.250			_			
	1,1,2-Trichloroethane	0.41	μg/L	<0.200		-	_	-	-	-
	1,1-Dichloroethane	28	μg/L	<0.500		-	_	-		-
	1,1-Dichloroethene	280	μg/L	<0.500		-	_	-	-	-
	1,1-Dichloropropene		μg/L	<0.500			_			
	1,2,3-Trichlorobenzene	7	μg/L	<0.500	-					
	1,2,3-Trichloropropane	0.0075	μg/L	<0.500		-	-		-	-
	1,2,4-Trichlorobenzene	4	μg/L	<0.500		-	_	-	-	-
	1,2,4-Trimethylbenzene	15	μg/L	<0.500		-	_	-		-
	1,2-Dibromo-3-chloropropane		μg/L	<5.00		-	_	-	-	-
	1,2-Dibromoethane	0.075	μg/L	<0.0375		_	_			_
	1,2-Dichlorobenzene	300	μg/L	<0.500	-					
	1,2-Dichloroethane	1.7	μg/L	<0.250			_			
SW8260C	1,2-Dichloropropane	4.4	μg/L	<0.500						
(VOC)	1,3,5-Trimethylbenzene	120	μg/L	<0.500			_	_		_
	1,3-Dichlorobenzene	300	μg/L	<0.500		_	_	_		_
	1,3-Dichloropropane		μg/L	<0.250					-	
	1,4-Dichlorobenzene	4.8	μg/L	<0.250	-					
	2,2-Dichloropropane		μg/L	<0.500		_				
	2-Butanone (MEK)	5,600	μg/L	<5.00						
	2-Chlorotoluene		μg/L	<0.500			_	_		_
	2-Hexanone	38	μg/L	<5.00		_	_	_		_
	4-Chlorotoluene		μg/L	<0.500					-	
	4-Methyl-2-pentanone (MIBK)	6,300	μg/L	<5.00						
	Benzene	4.6	μg/L	<0.200		-	-		_	-
	Bromobenzene	62	μg/L	<0.500						
	Bromochloromethane		μg/L	<0.500	_	_	_	-	-	_
	Bromodichloromethane	1.3	μg/L	<0.250	_	_	_	_	_	_
	Bromoform	33	μg/L	<0.500		-	-	-	-	_
	Bromomethane	7.5	μg/L	<2.50						

Analytical		ADEC Groundwater								
Method	Analyte	Cleanup level	Units	Kelly's DW	MW-9	MW-109	MW-10	MW-11	MW-12	MW-13
	Carbon disulfide	810	μg/L	<5.00	_	_	_	_	_	_
	Carbon tetrachloride	4.6	μg/L	<0.500	_	_	_	_	_	_
	Chlorobenzene	78	μg/L	<0.250						
	Chloroethane	21,000	μg/L	< 0.500						
	Chloroform	2.2	μg/L	<0.500						
	Chloromethane	190	μg/L	<0.500						
	cis-1,2-Dichloroethene	36	μg/L	<0.500		_	_	_	_	_
	cis-1,3-Dichloropropene	4.7	μg/L	<0.250	_	_	_	_	_	_
	Dibromochloromethane	8.7	μg/L	<0.250						
	Dibromomethane	8.3	μg/L	<0.500						
	Dichlorodifluoromethane	200	μg/L	<0.500 J*						
	Ethylbenzene	15	μg/L	<0.500						
	Hexachlorobutadiene	1.4	μg/L	<0.500		_	_	_	_	_
	Isopropylbenzene	450	μg/L	<0.500		_	_	_	_	_
	Methylene chloride	110	μg/L	<2.50		_	_		_	
	Methyl-t-butyl ether	140	μg/L	<5.00						
SW8260C	Naphthalene	1.7	μg/L	<0.500						
(VOC) -	n-Butylbenzene	1,000	μg/L	<0.500						
continued	n-Propylbenzene	660	μg/L	<0.500						
continucu	o-Xylene		μg/L	<0.500	_	_	_	_	_	_
	P & M -Xylene		μg/L	<1.00	_	_	_	_	_	
	p-Isopropyltoluene		μg/L	<0.500						
	sec-Butylbenzene	2,000	μg/L	<0.500						
	Styrene	1,200	μg/L	<0.500						<u>—</u>
	tert-Butylbenzene	690	μg/L	<0.500						
	Tetrachloroethene	41	μg/L	<0.500	_	_	_	_	_	_
	Toluene	1,100	μg/L	<0.500		_	_	_	_	
	Total Xylenes	190	μg/L	<1.50						
	trans-1,2-Dichloroethene	360	μg/L	<0.500						
	trans-1,3-Dichloropropene	4.7	μg/L	<0.500						
	Trichloroethene	2.8	μg/L	<0.500						
	Trichlorofluoromethane	5,200	μg/L	<0.500	_	_	_	_	_	_
	Trichlorotrifluoroethane	55,000	μg/L	<5.00		_	_		_	
	Vinyl acetate	410	μg/L	<5.00	_	_	_	_	_	_
	Vinyl chloride	0.19	μg/L	<0.0750						
	1-Methylnaphthalene	11	μg/L	_	<0.0254	<0.0265	_	_	_	_
	2-Methylnaphthalene	36	μg/L		<0.0254	<0.0265				
	Acenaphthene	530	μg/L	_	<0.0254	<0.0265	_	_	_	_
8270D SIM LV	Acenaphthylene	260	μg/L	_	<0.0254	<0.0265	_	_	_	_
(PAH)	Anthracene	43	μg/L	_	<0.0254	<0.0265	_	_		_
,	Benzo(a)anthracene	0.12	μg/L		<0.0254	<0.0265				
	Benzo(a)pyrene	0.034	μg/L		<0.0101	<0.0106				
	Benzo(b)fluoranthene	0.34	μg/L		<0.0254	<0.0265				

Analytical Method	Analyte	ADEC Groundwater Cleanup level	Units	Kelly's DW	MW-9	MW-109	MW-10	MW-11	MW-12	MW-13
	Benzo(g,h,i)perylene	0.26	μg/L	_	<0.0254	<0.0265	_	_	_	_
	Benzo(k)fluoranthene	0.8	μg/L	_	< 0.0254	< 0.0265	_	_	_	_
	Chrysene	2	μg/L		<0.0254	< 0.0265				
8270D SIM LV	Dibenzo(a,h)anthracene	0.034	μg/L		<0.0101	<0.0106		_	_	_
	Fluoranthene	260	μg/L		< 0.0254	< 0.0265				
(PAH) -	Fluorene	290	μg/L		< 0.0254	<0.0265	-		_	-
continued	Indeno(1,2,3-cd)pyrene	0.19	μg/L		< 0.0254	< 0.0265	_		_	_
	Naphthalene	1.7	μg/L		<0.0510	< 0.0530	_		_	_
	Phenanthrene	170	μg/L		<0.0254	<0.0265				
	Pyrene	120	μg/L		<0.0254	<0.0265			**************************************	

Notes: ADEC Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

Sample number MW-109 is a field-duplicate of sample MW-9.

 μ g/L micrograms per liter

mg/L milligrams per liter

DEC Alaska Department of Environmental Conservation

BTEX benzene, toluene, ethylbenzene, and xylenes

VOC volatile organic compounds

PAH polynuclear aromatic hydrocarbons

BOLD Reporting limit (LOQ) or detected concentration exceeds regulatory limit.

BOLD Detected concentration exceeds regulatory limit.

- -- Not applicable; the ADEC Cleanup Level is not established for this analyte
- < Analyte not detected above the limit of quantitation (LOQ); reported as less than the LOQ. Flag applied by the laboratory.
- J Estimated result reported at less than the limit of quantitation (LOQ). Flag applied by the laboratory.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.
- JH* Estimated concentration, biased high, due quality control failures. Flag applied by Shannon & Wilson, Inc.
- B* Result is considered not detected due to quality control issues. Flag applied by Shannon & Wilson, Inc.

TABLE 3
NOVEMBER 2017 INDOOR-AIR ANALYTICAL SUMMARY
INTERIOR TEXACO

Analytical		ADEC Target		IT-IA-01	IT-IA-02	IT-IA-03	IT-IA-04	IT-IA-05
Method	Analyte	Level†	Units	11/02/2017 13:00	11/02/2017 13:01	11/02/2017 13:06	11/02/2017 13:10	11/02/2017 13:13
	1,1,1-Trichloroethane	3,800	μg/m³	<1.2	<1.2	<1.2	<1.1	<1.1
	1,2-Dichloroethane	4.7	μg/m³	<0.95	<0.93	<0.93	<0.91	<0.91
	1,4-Dichlorobenzene	11	μg/m ³	<1.4	<1.4	<1.4	<1.4	<1.4
	2-Butanone	22,000	μg/m³	<0.92	<0.91	<0.90	<0.89	<0.89
	4-Methyl-2-pentanone	13,000	μg/m³	3.2	3.1	<2.1	<2.1	<2.1
	Acetone	31,000	μg/m³	21	23	41	24	25
	Benzene	16	μg/m ³	5.2	5.1	<3.6	4.2	4.8
	Carbon tetrachloride	20	μg/m³	<1.1	<1.1	<1.1	<1.0	<1.0
	Chlorobenzene	220	μg/m³	<1.1	<1.0	<1.0	<1.0	<1.0
	Chloroform	5.3	μg/m³	<0.97	<0.95	<0.95	0.97	<0.94
	Cyclohexane	26,000	μg/m³	4.9	4.7	3.0	4.8	4.4
	Ethanol	NA	μg/m³	58	54	130	360	240
Passive S.E.	Ethyl acetate	NA	μg/m ³	<3.7	<3.7	<3.7	<3.6	<3.6
	Ethylbenzene	49	μg/m³	6.8	6.6	3.6	6.4	7.5
	Heptane	NA	μg/m³	8.4	8.2	4.2	7.1	6.4
	Methyl-t-butyl ether	470	μg/m³	<1.1	<1.1	<1.1	<1.1	<1.1
	Naphthalene	3.6	μg/m³	<2.9	<2.9	<2.9	<2.8	<2.8
	n-Hexane	3,100	μg/m³	6.9	6.5	3.7	5.8	6.2
	n-Propylbenzene	4,400	μg/m³	2.2	2	1.6	2.2	2.2
	o-Xylene	440	μg/m³	6.9	6.8	3.6	5.9	5.8
	P & M -Xylene	440	μg/m³	18	17	8.6	15	15
	Styrene	4,400	μg/m ³	<1.2	<1.2	<1.2	<1.2	<1.2
	Tetrachloroethene	41	μg/m ³	800	870	130	270	360
	Toluene	7,500	μg/m ³	28	28	12	22	22
	Trichloroethene	2.2	μg/m³	1.2	1.2	<1.0	<1.0	<1.0

ADEC Alaska Department of Environmental Conservation

† The ADEC Target Levels were obtained from the November 2017 ADEC Vapor Intrusion Guidance for Contaminated Sites - Appendix D: Target Levels for Indoor Air - Commercial.

NA Not applicable; ADEC Target Level not established.

µg/m³ microgram per cubic meter

< Analyte not detected; listed as less than the reporting limit (RL).

Bold Detected concentration exceeds regulatory limit.

March 2018 31-1-11809-011

TABLE 4
NOVEMBER 2017 SUBSLAB ANALYTICAL SUMMARY
INTERIOR TEXACO

				SS-01	SS-02	SS-102	SS-03
Analytical Method	Analyte	ADEC Target Level†	Units	11/2/2017 10:28 AM	11/2/2017 11:54 AM	11/2/2017 11:44 AM	11/2/2017 1:37 PM
	1,1,1-Trichloroethane	220,000	μg/m³	<100	0.24 J*	0.32 J*	<1.9
	1,1,2,2-Tetrachloroethane	21	μg/m ³	<120	<0.24	<0.23	<2.4
	1,1,2-Trichloroethane	8.8	μg/m ³	<100	<0.19	<0.18	<1.9
	1,1-Dichloroethane	770	μg/m ³	<74	<0.14	<0.14	<1.4
	1,1-Dichloroethene	8,800	μg/m ³	<72	<0.070	<0.066	<0.69
	1,2,4-Trichlorobenzene	88	μg/m ³	<540	<6.6	<6.2	<65
	1,2,4-Trimethylbenzene	310	μg/m ³	1,200	2.3	2.1	<8.6
	1,2-Dibromoethane	2	μg/m ³	<140	<0.27	<0.26	<2.7
	1,2-Dichlorobenzene	8,800	μg/m ³	<110	<1.1	<1.0	<10
	1,2-Dichloroethane	47	μg/m ³	<74	0.58	<0.14	<1.4
	1,2-Dichloropropane	120	μg/m ³	<84	<0.82	<0.77	<8.1
	1,3,5-Trimethylbenzene	NA	μg/m ³	900	0.92	<0.82	<8.6
	1,3-Dichlorobenzene	NA	μg/m ³	<110	<1.1	<1.0	<10
	1,4-Dichlorobenzene	110	μg/m ³	<110	<0.21	<0.20	<2.1
	1,4-Dioxane	250	μg/m ³	<260	<0.64	<0.60	<6.3
	2,2,4-Trimethylpentane	NA	μg/m ³	<85	<4.2	<3.9	<41
	2-Butanone (MEK)	220,000	μg/m ³	<220	9.3 J*	14 J*	<26
	2-Hexanone	1,300	μg/m ³	<300	<3.6	<3.4	<36
	4-Ethyltoluene	NA	μg/m ³	1,000	2.0	2.0	<8.6
TO-15	4-Methyl-2-pentanone (MIBK)	130,000	μg/m ³	<75	<0.73	<0.68	<7.2
	Acetone	1,400,000	μg/m ³	<170	15	16	98
	Allyl chloride	NA	μg/m ³	<230	<2.8	<2.6	<27
	alpha-Chlorotoluene	NA	μg/m ³	<95	<0.92	<0.86	<9.0
	Benzene	160	μg/m ³	<58	1.3	1.1	2.9
	Bromodichloromethane	33	μg/m ³	<120	<1.2	<1.1	<12
	Bromoform	1,100	μg/m ³	<190	<1.8	<1.7	<18
	Bromomethane	220	μg/m ³	<280	<3.4	<3.2	<34
	1,3-Butadiene	41	μg/m ³	<40	<0.39	<0.37	<3.9
	Carbon disulfide	31,000	μg/m ³	<230	<2.8	<2.6	<27
	Carbon tetrachloride	200	μg/m ³	<120	0.36	0.33	<2.2
	Chlorobenzene	2,200	μg/m ³	110	<0.82	<0.77	<8.0
	Chloroethane	440,000	μg/m ³	<190	<0.23	<0.22	<2.3
	Chloroform	53	μg/m ³	<89	0.30	0.30	1.8
	Chloromethane	3,900	μg/m ³	<150	<1.8	<1.7	<18
	cis-1,2-Dichloroethene	NA	μg/m ³	<72	<0.14	<0.13	<1.4
	cis-1,3-Dichloropropene	310	μg/m ³	<83	<0.81	<0.76	<7.9
	Cyclohexane	260,000	μg/m ³	<63	1.0	<0.57	<6.0
	Dibromochloromethane	NA	μg/m ³	<160	<1.5	<1.4	<15

March 2018 31-1-11809-011

	Ethanol	NA	μg/m³	<140	33 J*	14 J*	42
	Ethylbenzene	490	μg/m ³	<79	2.3	2.3	5.5
	Freon 114	NA	μg/m³	<130	<0.25	<0.23	<2.4
	Heptane	NA	μg/m³	<75	1.4	1.2	<7.2
	Hexachlorobutadiene	56	μg/m³	<780	<9.5	<8.9	<93
	Isopropanol	8,800	μg/m³	<180	2.4	<2.0	<22
	Isopropylbenzene	18,000	μg/m³	100	<0.88	<0.82	<8.6
	Methylene chloride	26,000	μg/m³	<250	<1.2	<1.2	<12
	Methyl tert-butyl ether	4,700	μg/m³	<66	<0.64	<0.60	<6.3
	n-Hexane	31,000	μg/m³	<64	0.81	<0.59	<6.2
	n-Propylbenzene	44,000	μg/m³	190	<0.88	<0.82	<8.6
TO-15, continued	o-Xylene	4,400	μg/m³	320	3.0	3.2	7.9
	P & M -Xylene	4,400	μg/m³	490	9.2	9.8	21
	Styrene	44,000	μg/m³	<78	<0.76	<0.71	<7.4
	Tetrachloroethene	1,800	μg/m³	6,600	170	170	1,400
	Tetrahydrofuran	NA	μg/m³	<54	<2.6	<2.5	<26
	Toluene	220,000	μg/m³	<69	19	16	31
	trans-1,2-Dichloroethene	NA	μg/m³	<72	<0.70	<0.66	<6.9
	trans-1,3-Dichloropropene	310	μg/m³	<83	<0.81	<0.76	<7.9
	Trichloroethene	84	μg/m³	<98	<0.19	<0.18	<1.9
	Trichlorofluoromethane	NA	μg/m³	880	12 J*	16 J*	36
	Trichlorotrifluoroethane	1,300,000	μg/m³	<140	<1.4	<1.3	<13
	Vinyl chloride	280	μg/m³	<47	<0.046	<0.043	<0.45

Notes:

Sample SS-102 is a field-duplicate of sampleSS-02.

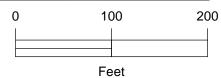
ADEC Alaska Department of Environmental Conservation

† The ADEC Target Levels were obtained from the November 2017 ADEC Vapor Intrusion Guidance for Contaminated Sites - Appendix E: Target Levels for Subslab Air - Commercial.

NA Not applicable; ADEC Target Level not established.

µg/m³ microgram per cubic meter

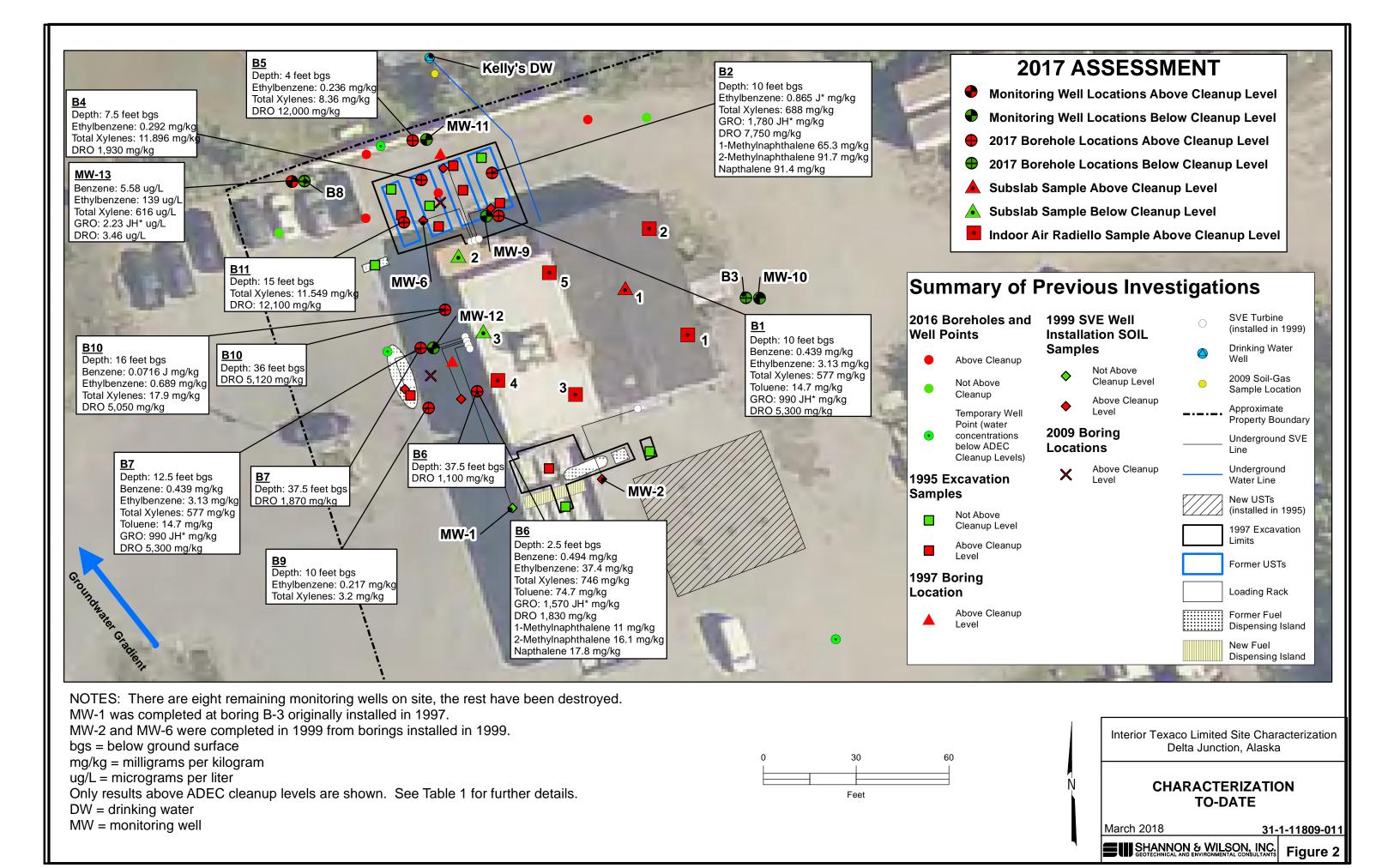
< Analyte not detected; listed as less than the reporting limit (RL).


J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

Bold RL exceeds regulatory limit.

Bold Detected concentration exceeds regulatory limit.

March 2018 31-1-11809-011


Interior Texaco Site Characterization Delta Junction, Alaska

VICINITY MAP

March 2018

31-1-11809-011

SHANNON & WILSON, INC. Figure 1

APPENDIX A

CONCEPTUAL SITE MODEL (CSM)

- Human Health CSM Graphic Form
- Human Health CSM Scoping Form

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Delta J	Texaco, ADEC File No. 120.26.001 unction, Alaska /: Valerie Webb, CPG	Instructions: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.										
	red: July 16, 2017		(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptor									
(1) Check the media the could be directly after the release.	(),	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	futui	re recep Surre	ent 8	or "I" fo	*C/F" for r insign ture	Rec	expos ept	sure.	
Media	Transport Mechanisms	Exposure Media	Exposure Pathway/Route	/	dren)	Kers	l use	Morke Ibsiste	One	Ine is		
Soil	Direct release to surface soil check soil Migration to subsurface check soil Migration to groundwater check groundwater Volatilization check air			Residents	Commercial or	Site visitors, or recreations, and	Construction	Farmers or subsistence	Subsistence cons	Other		
	Runoff or erosion check surface water		Incidental Soil Ingestion		F		F					
	Uptake by plants or animals check biota	✓ soil	Dermal Absorption of Contaminants from Soil		F		F					
	Other (list):		Inhalation of Fugitive Dust									
Subsurface Soil (2-15 ft bgs)	Direct release to subsurface soil check soil Migration to groundwater check groundwater Volatilization check air Uptake by plants or animals check biota Other (list):	☑ groundwater ☑	Ingestion of Groundwater Dermal Absorption of Contaminants in Groundwater Inhalation of Volatile Compounds in Tap Water		C/F	C/F	C/F					
Ground- water	Direct release to groundwater Volatilization check groundwater ✓ Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):		Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust		C/F	C/F						
Surface Water	Direct release to surface water Volatilization Sedimentation Uptake by plants or animals Other (list):	surface water	Ingestion of Surface Water Dermal Absorption of Contaminants in Surface Water Inhalation of Volatile Compounds in Tap Water									
Sediment	Direct release to sediment		Direct Contact with Sediment Ingestion of Wild or Farmed Foods									
	Other (list):						Revi	sed, 1	0/01	/201	0	

Human Health Conceptual Site Model Scoping Form

Site	e Name:	Interior Texaco, Delta Junction, Alaska								
File	e Number:	ADEC File No. 120.26.001								
Co	mpleted by:	Valerie Webb, CPG								
The Cor cha	nservation (DE	be used to reach agreement with the Ala C) about which exposure pathways sho From this information, a CSM graphic fork plan.	ould	be further investigated during site						
Gen	eral Instructio	ons: Follow the italicized instructions	s in e	each section below.						
		nformation:								
S 01	, -	potential sources at the site)		****						
	USTs			Vehicles						
Ш	ASTs		\Box	Landfills						
✓	Dispensers/f	uel loading racks		Transformers						
	Drums			Other:						
Rel	ease Mechar	nisms (check potential release mech	nanis	sms at the site)						
√	Spills			Direct discharge						
√	Leaks			Burning						
				Other:						
Im	pacted Media	a (check potentially-impacted medic	a at	the site)						
√	Surface soil (0	0-2 feet bgs*)	√	Groundwater						
√	Subsurface So	oil (>2 feet bgs)		Surface water						
√	Air			Other:						
Rec	ceptors (chec	k receptors that could be affected b	y co	ntamination at the site)						
	Residents (ac	dult or child)	✓	Site visitor						
√	Commercial	or industrial worker	\checkmark	Trespasser						
√	Construction	worker		Recreational user						
	Subsistence 1	harvester (i.e., gathers wild foods)		Farmer						
		consumer (i.e., eats wild foods)		Other:						

1 3/16/06

^{*} bgs – below ground surface

2.	con	Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)				
	a)	Direct Contact – 1 Incidental Soil Ingestion				
		Is soil contaminated anywhere between 0 an	contaminated anywhere between 0 and 15 feet bgs?			
		Do people use the site or is there a chance the future?	people use the site or is there a chance they will use the site in the re?			
		If both boxes are checked, label this pathway complete:complete				
		2 Dermal Absorption of Contaminants from Soil				
		Is soil contaminated anywhere between 0 and 15 feet bgs?		√		
		Do people use the site or is there a chance they will use the site in the future?		V		
			e soil contaminants permeate the skin? (Contaminants listed below, in the groups listed below, should be evaluated for dermal tion).			
		Arsenic Cadmium Chlordane 2,4-dichlorophenoxyacetic acid Dioxins DDT	Lindane PAHs Pentachlorophenol PCBs SVOCs			
		If all of the boxes are checked, label this pathway complete:				
	b)) Ingestion – 1 Ingestion of Groundwater				
		Have contaminants been detected or are they expected to be detected in the groundwater, OR are contaminants expected to migrate to groundwater in the future?		7		
		Could the potentially affected groundwater be used as a current or future drinking water source? <i>Please note, only leave the box unchecked if ADEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.</i>				
		If both the boxes are checked, label this pathway complete:				

2 3/16/06

Ingestion of Surface Water Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). If both boxes are checked, label this pathway complete: **Ingestion of Wild Foods** Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food? Do the site contaminants have the potential to bioaccumulate (see Appendix A)? Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that **could be** connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: c) Inhalation **Inhalation of Outdoor Air ✓** Is soil contaminated anywhere between 0 and 15 feet bgs? Do people use the site or is there a chance they will use the site in the **✓** future? **✓** Are the contaminants in soil volatile (See Appendix B)? *If all of the boxes are checked, label this pathway complete:* **Inhalation of Indoor Air ✓** Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, or subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures) $\overline{}$ Are volatile compounds present in soil or groundwater (See Appendix C)? complete *If both boxes are checked, label this pathway complete:*

3/16/06

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC water-quality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- o Climate permits recreational use of waters for swimming,
- o Climate permits exposure to groundwater during activities, such as construction, without protective clothing, or

 Groundwater or surface water is used for household purposes. 					
Check the box if further evaluation of this pathway is needed:					
Comments:					
Inhalation of Volatile Compounds in Household Water					
Exposure from this pathway may need to be assessed only in cases where DEC water-quality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include: O The contaminated water is used for household purposes such as showering, laundering, and dish washing, and O The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)					
Check the box if further evaluation of this pathway is needed:					
Comments:					
Inhalation of Fugitive Dust					
 Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include: Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles. Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete. 					
Check the box if further evaluation of this pathway is needed:					

4 3/16/06

Comments:	
Direct Contact with Sediment	
This pathway involves people's hands being exposed to sediment, such recreational or some types of subsistence activities. People then incide sediment from normal hand-to-mouth activities. In addition, dermal contaminants may be of concern if people come in contact with sediment contaminants are able to permeate the skin (see dermal exposure to so type of exposure is rare but it should be investigated if: Climate permits recreational activities around sediment, and/o Community has identified subsistence or recreational activities in exposure to the sediment, such as clam digging. 	lentally ingest absorption of ment and the oil section). This
ADEC soil ingestion cleanup levels are protective of direct contact withey are determined to be over-protective for sediment exposure at a pascreening levels could be adopted or developed.	
Check the box if further evaluation of this pathway is needed:	
Comments:	

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

The mobility of contamination from soil at the site is limited by a number of factors. The soils are very dense, and at some depths, fine-grained; these low-permeability soils reduce vapor migration both horizontally and vertically. Volatization to outdoor air is further limited by the presence of asphalt pavement over much of the source-area soils. However, volatization to outdoor and indoor air cannot be completely ruled out; air should be considered a potential exposure medium for the site.

Leaching or subsurface migration downward to the deep (80 feet to 100 feet bgs) groundwater aquifer is limited by a confining layer. Shallow, perched groundwater has been identified in previous site work, in the vapor extraction wells, and samples of the perched groundwater collected in 1999 and 2000 contained fuel contamination above ADEC Table C groundwater cleanup levels. However, we observed perched groundwater only intermittently, often in insufficient quantities to collect samples. There is no evidence that perched groundwater is in contact with the deeper groundwater aquifer; the nearby water-supply well at Kelly's Country Inn has been sampled eight times since 1997, with no fuel-related analytes (including EDB) detected above PQLs. Therefore, while migration or leaching to groundwater is considered a complete transport mechanism (due to perched, shallow groundwater), we do not consider groundwater to be an exposure medium for this site.

A number of exposure pathways to contaminated soil or air (the identified exposure media) remain potentially complete for the site. These exposure pathways are described below. Human receptors are primarily commercial or industrial workers (including fueling-station staff) and site visitors (including customers), trespassers, or recreational users. Potential future receptors include construction workers. There are currently no residences within 100 feet of the site, and the Inn and the fueling station do not have permanent occupants. Also, there is no farming or subsistence harvesting taking place within at least 500 feet of the site. While exposure to contaminated soil through incidental soil ingestion is currently limited by the asphalt surface at the site, it remains a potentially complete future exposure pathway for commercial, industrial, or construction workers excavating soil at the site (e.g. if the current USTs and pump island were removed or upgraded). PAHs, which can be absorbed dermally, may be present in areas of contaminated soil, representing another potentially complete future exposure pathway to the same receptors.

Potential exposure pathways are visually represented in the CSM graphic. We did not evaluate potential risks to ecological receptors.

5 3/16/06

APPENDIX A

BIOACCUMULATIVE COMPOUNDS

Table A-1: List of Compounds of Potential Concern for Bioaccumulation

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table X of 18 AAC 75.345 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greater than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler, DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS

Table B-1: List of Volatile Compounds of Potential Concern

Common volatile contaminants of concern at contaminated sites. A chemical is defined as volatile if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater and the molecular weight less than 200 g/mole (g/mole; EPA 2004a). Those compounds in Table X of 18 AAC 75.345 that are volatile, based on the definition above, are listed below.

Acenaphthene	1,4-dichlorobenzene	Pyrene
Acetone	1,1-dichloroethane	Styrene
Anthracene	1,2-dichloroethane	1,1,2,2-tetrachloroethane
Benzene	1,1-dichloroethylene	Tetrachloroethylene
Bis(2-chlorethyl)ether	Cis-1,2-dichloroethylene	Toluene
Bromodichloromethane	Trans-1,2-dichloroethylene	1,2,4-trichlorobenzene
Carbon disulfide	1,2-dichloropropane	1,1,1-trichloroethane
Carbon tetrachloride	1,3-dichloropropane	1,1,2-trichloroethane
Chlorobenzene	Ethylbenzene	Trichloroethylene
Chlorodibromomethane	Fluorene	Vinyl acetate
Chloroform	Methyl bromide	Vinyl chloride
2-chlorophenol	Methylene chloride	Xylenes
Cyanide	Naphthalene	GRO
1,2-dichlorobenzene	Nitrobenzene	DRO

APPENDIX C

COMPOUNDS OF CONCERN FOR VAPOR MIGRATION

Table C-1: List of Compounds of Potential Concern for the Vapor Migration

A chemical is considered sufficiently toxic if the vapor concentration of the pure component poses an incremental lifetime cancer risk greater than 10-6 or a non-cancer hazard index greater than 1. A chemical is considered sufficiently volatile if it's Henry's Law constant is 1×10^{-5} atm-m³/mol or greater.

	Dibenzofuran	Hexachlorobenzene
Acenaphthene		
Acetaldehyde	1,2-Dibromo-3-chloropropane	Hexachlorocyclopentadiene
Acetone	1,2-Dibromoethane (EDB)	Hexachloroethane
Acetonitrile	1,3-Dichlorobenzene	Hexane
Acetophenone	1,2-Dichlorobenzene	Hydrogen cyanide
Acrolein	1,4-Dichlorobenzene	Isobutanol
Acrylonitrile	2-Nitropropane	Mercury (elemental)
Aldrin	N-Nitroso-di-n-butylamine	Methacrylonitrile
alpha-HCH (alpha-BHC)	n-Propylbenzene	Methoxychlor
Benzaldehyde	o-Nitrotoluene	Methyl acetate
Benzene	o-Xylene	Methyl acrylate
Benzo(b)fluoranthene	p-Xylene	Methyl bromide
Benzylchloride	Pyrene	Methyl chloride chloromethane)
beta-Chloronaphthalene	sec-Butylbenzene	Methylcyclohexane
Biphenyl	Styrene	Methylene bromide
Bis(2-chloroethyl)ether	tert-Butylbenzene	Methylene chloride
Bis(2-chloroisopropyl)ether	1,1,1,2-Tetrachloroethane	Methylethylketone (2-butanone)
Bis(chloromethyl)ether	1,1,2,2-Tetrachloroethane	Methylisobutylketone
Bromodichloromethane	Tetrachloroethylene	Methylmethacrylate
Bromoform	Dichlorodifluoromethane	2-Methylnaphthalene
1,3-Butadiene	1,1-Dichloroethane	MTBE
Carbon disulfide	1,2-Dichloroethane	m-Xylene
Carbon tetrachloride	1,1-Dichloroethylene	Naphthalene
Chlordane	1,2-Dichloropropane	n-Butylbenzene
2-Chloro-1,3-butadiene	1,3-Dichloropropene	Nitrobenzene
(chloroprene)		
Chlorobenzene	Dieldrin	Toluene
1-Chlorobutane	Endosulfan	trans-1,2-Dichloroethylene
Chlorodibromomethane	Epichlorohydrin	1,1,2-Trichloro-1,2,2-
		trifluoroethane
Chlorodifluoromethane	Ethyl ether	1,2,4-Trichlorobenzene
Chloroethane (ethyl	Ethylacetate	1,1,2-Trichloroethane
chloride)		
Chloroform	Ethylbenzene	1,1,1-Trichloroethane
2-Chlorophenol	Ethylene oxide	Trichloroethylene
2-Chloropropane	Ethylmethacrylate	Trichlorofluoromethane
Chrysene	Fluorene	1,2,3-Trichloropropane
cis-1,2-Dichloroethylene	Furan	1,2,4-Trimethylbenzene
Crotonaldehyde (2-butenal)	Gamma-HCH (Lindane)	1,3,5-Trimethylbenzene
Cumene	Heptachlor	Vinyl acetate
DDE	Hexachloro-1,3-butadiene	Vinyl chloride (chloroethene)

Source: EPA 2002.

Guidance on Developing Conceptual Site Models

January 31, 2005

APPENDIX B

SAMPLE COLLECTION LOGS AND FIELD NOTES

Project Number 311190	9-Ch.Location: Interior Texas	o Detta	Alas	ka				Page \ of 9
ate: (0)12/17								. ago 1 01
ampler: piace	2 FLG ISVR							
	1	Sample	Depth	Interval (ft)	Matrix	Sampling	Sample	PID
ample Number	Location	Time	top	bottom	Туре		Туре	Reading Analyses
131	0.5 - 2.5	1058			SEDIG		FM	371.2 PID
BI	2.5-5.0	1659			58	06		389.1
BI	5.0 -7.5	1104			1	11		412.4
BI	7.5 -10.0	1105						2346
BI	10.0-11.2	3011						3118
BI	11,2-13:40	1109				1		1879
BI	15.0-17.5	1130						3505
BI	17.5 - 20.0	1131			(2	1		112.0
B)	2010 - 22.5	1142						355
B	22.5-25.0	1143				3/		5.7
BI	25:0-30,6 (act recon	to semple 1150				7		86.5
Bi	30.0 - 33.5	11240						19.5
BI	32.5 - 35.D	. 1241				1		8:01
BI	35.0 - 37.5	1300				1		9.1
Bi	37.5 -40.0	1301				1		30.1
BI	40.0 - 42.5	1425						365.5
Ri	42,5 - 45	1430				W W	14	629.9
T-BI-1	10:0-11,2	(255	10.0	11.2		186	ES	3118 GRO/BTEX/DROIRRO
T-B1-2	39.0-40.0		39.0	11.10	(8		ES	30:2 GRUBTEN DROIRRO
Ba	0,5 - 3,5	1702	31.0			206	FM	11.7
Ba	7.5 - 5.0	1703				pa	-	517-3
B1	5.0 - 7.5	1712						1955 (B5, 5 (FG)
B2	7,5 - 10.0	1713						1926
82	10.0 - 12.0	1726						1952
B2	12.0-14.5	1727						
B2	15.0 - 17.5	1809			1		W	953
		1.00	Ma	trix Type	-	g Method	Com-	1396
		O+	AR	Air	B	Bailer/Coliwas		le Type Environmental sample
			GW PR	Groundwater Product	D	Drill cuttings	ER	Equipment rinsate
			SB	Subsurf, soil	G H	Grab sampling Hand auger	FB	Field blank Field duplicate
			SE	Sediment	L	Tube liner	FM	Field measurement
¥.			SS	Sludge Surface soil	SS	Pump (liquid) Spllt spoon	FR MD	Field replicate Matrix splke duplicate
			SW	Surface water	T	Shelby tube	MS	Matrix splke duplicate
			WR	Water	W	Vacuum (gas) Wipe sampling		Trip blank

	-00% Location: Interior Texaco		_					Page 2 of 8
ate: 10/12/17								
ampler: FLG/5/R		Sample	Donth	Interval (ft)	Motrice	Camplina	Camala	I pip I
Samuela Municipa	Location			Interval (ft)	-	Sampling		
Sample Number		1808	top	bottom	Type	Method		Reading Analyses
B2	17.5 - 30.0	1816			5B	100	FM	74.5
83	かい 一大から	1818		-			1	11.4
83 83	32.5-35.0	1831						16.1
	35.0 - 37.5			-				16.0
B2	37.5 - 30.0	1833		-			_	5.0
Ba	30.0-32.5	1924		-			-	15.4
B2	325-35.0	1905						10.2
Ba	35.0-37.5	1937					1	17-8
B2	37.5 - 40.0	1938					Y	50.1
IT-B2-1	10.0-12.0 Ba	1755					ES	1956 GRO/BTEX DRO NORO/PR
IT-82-3	10.0-12.0 B2	1754					ES	1956 GROBTENDRO PRO PA
IT-B2-2	37,5-40,0 BZ	1958					ES	50,1 GROBTEX/PROJERD
:B3	0.5 - 2.5	900					FM	23.1
B3	2.5-5.0	901					1	7.2
B3	5.0-6.0	912						13.7
B3	6.0 - 8.5 (LOW receivery)	914						13.1
B3	10.0-12.5	926					1	9,6
B3	12,5 -15.0	934					1	10.0
B3	15:0-17.5	996	-				1	6.0
63	17.5-20.0	947						6.6
B3	20.0-22.5	958						9.4
B3	22,5-25,0	1000						9.8
B3	25.0 - 27.5	1038					-	44
B3	27.5 30.0	1040						5.2
B3	30-35A	1100						4.1
B3	30-3516	1100			V	-	V	/13,8
	33 (3)	1100	Ma	atrix Type	_	ng Method		lle Type
			AR	Air	В	Bailer/Coliwas		Environmental sample
			GW PR	Groundwater	D	Drill cuttings	ER	Equipment rinsate
			SB	Product Subsurf, soil	G H	Grab sampling Hand auger	FB	Field blank Field duplicate
			SE	Sediment	L	Tube liner	FM	Field measurement
			SG	Sludge Surface soil	P SS	Pump (liquid) Split spoon	FR MD	Field replicate Matrix spike duplicate
			SW	Surface water	T	Shelby tube	MS	Matrix spike duplicate Matrix spike duplicate
			WR	Water	v W	Vacuum (gas) Wipe sampling	TB	Trip blank

Project Number		31-1-	11809-006				Page 3of 8
Project Name:		Indivior Texaso	1 Interior	Texaces			1 490 501 8
Sampler:	SYR	FLG					
	Sample			Dep	th Sample	PID	
Date	Time	Sample ID	Location	(ft)		Reading	Analyses
10/13/1	7 1145		35-40'A		¥5		no recovery
		. 83	35-40' B			1	" "
STI 7	1215	B3	40-45' P			4.4	
W	1215		40-45' (3)		4	(A,5)	
	1239	IT-B3-1	5.0 - 6.0	5,0-6		13.7	GRO, BTEX, DRO, RED
	1222	IT-83-2	30-351 interal	31.0-32	4 ES.	13.78	N //
	1550	MW	- UWI		ES		no water
	1731	B4	0.5-2.5		FS	316.8	*
	1732	B4	2.5 -50		1	6883	· ·
	1739	B4	5.0 -7.5			629.1	
	1740	B4	7.5 - 10.6			1346.0	
	1749	BH	10.0 - 10.5			998,4	
	1745	BH	10.5 - 12.5 Lew re	covery		395.1	
	1752	84	15:0 - 17.5		12	172.7	
	1754	B4	17.5 - 20.0			21.8	
	1805	Bit	20.0 - 22.5	V .		50,5	
-	1806	B4	22.5-25.0		V	13.8	
V	1750	BIT-B4-18	7.5 - 10		ES	1346:0	GEO/BIESX/ESCO/PRO
10/14/17	902	B4	25.0-275		ES	389,8	, , , ,
	903	B4	37.5.30.0			673.3	7
	930	B4	30.0-32.5			56.5	*
	932	BH	32.5 - 35,0			132.3	
	958	B4	35,6-37,2			99.2	
	HO02	B4	37,1 - 40.0			3080	
	1130	B4 ·	40.0-42.5		*	64.5	
	1112	IT-B4-2	37.2-40.0		ES	208.0	GRO BTEX DIO/ PRO
	1210	35	0.5 - 2.5		F.5	307:1	1 1
	1212	B5	2.5 -5.0			798.4	
	1238	85	5.0 - 7.5			7601	
	1239	B5	75 -10.0			713.2	
	1347	B5	10.0 - 12.5		19	453.9	
	1248	85	125-15:0		V	48.8	

ate: 10/14/17	-00 Location: Interior Texaco								Page 4 of 8
ampler: FLC/5/R									
		Sample	Depth	Interval (ft)		Sampling			
ample Number	Location	Time	top	bottom	Туре	Method			Analyses
B5	15.0 - 17.5	1306			SB	896	SF	438.8	
85	17.5 -20.0	1307						47,0	
85	20.0 - 22.5	1327						13.8	
65	22,5-25.0	1328					1	7.1	
B5	2510-27,8	1464						16.0	
85	27.5 - 30.0	(405						10:0	
85	30.030.5	F1434	5					1009	
55	34.5-35.0	1936			-			11.9	
B5	35,0-37,6	1907						13:7	
B5	37.5 - 40.0	1908				1		31,2	
BS	40.0 - 45.0 poor recovery					7		11:7	
CT-B5-1	410 -50	1324						798.4	
T-85-2	38.0 - 40.0	1530			4	-	V	21.3	
	(18) monitorius well MW-9	1320			6w	6	ES	-	LEO, BTEX DRO, REO, P
	10/18) " " derlicate of mis.				GW	6	FD	_	Secretary of the secretary
Polo (012 - 2.5	7,59			5B	GP86	ES	499.9	· · ·
Ble	2,5 5,0	800			1	7		4033.0	2
86	5.0-7.5	830						3973.0	
RU	75-100	821	-	1				2867	
	120 100	840		1			1		
Blo	10:0 - 12:5		-		30		1	3120	
BLO	12.5-15.0 1000-05.	842		ell	-	cec		3168	
eobbell	I I DIE DIE BERGERO VERTINE		ee				_ V	CHO	
T-B6-1	2,5-5,0	917			3B				O GROBTEX DROPROP
T-B6-3	205-510	957				FU		4033	O CHROLBTER DROLPRED P
36	15.0-200 Sample stuck						FM		
B6	20.0 - 25.0 poor recovery	920			V	***	fm	31140	
		1		atrix Type		ng Method		le Type	
			AR GW	Air Groundwater	B	Bailer/Coliwas Drill cuttings	ES ER	Environmental Equipment rins	
			PR	Product	G	Grab sampling		Field blank	
			SB	Subsurf, soil	н	Hand auger	FD	Field duplicate	
			SE	Sediment Sludge	P	Tube liner Pump (liquid)	FM FR	Field measurer Field replicate	ment.
			SS	Surface soil	SS	Split spoon	MD	Matrix spike du	
			SW	Surface water	T	Shelby tube	MS	Matrix spike du	uplicate
			WR	Water	v	Vacuum (gas) Wipe sampling		Trip blank	

Project Number: 11809	-cochocation: Interior Texaco	0						Page 5 of 8
Date: [0/15/17								
campler: FLG/SYR								
Sample Niverber		Sample		Interval (ft)	1	Sampling		
ample Number	Location	Time	top	bottom	Туре	Method		Reading Analyses
B6	25.0-27.5	1003			5B	A	13	382.8
86 Bb	27.5-36.0	1003			1		1	679.2
	30.0 - 32.5	1043						649.1
Blo	32.5 - 35.0	1043						682.0
Blo	35.0 - 37.5	1200				1	10	259.0
Blo	27.5 40.0	1201					W	270,2
IT-BL		1127			- 1		ES	270. 2 GRO/BTEX/DRO/RRO
B7	0.5 - 2.5	1258)	240.0
B7	2.5 -5.0	1259					1	2941.0
87	5.0-10.0 Line Fustuce							4199.0
B7	10.0 - 12.5 poor recov							3240.0
B7 ·	12.5-15.011	1322						427110
B7	1300 22.5 15,0-17,5	. 1350						1817.0
87	22.5 25.5 17.5 - 2010							1618.0
BŦ	pla 25.5-30.0 20.0-22.5	1420						1507.0
B7	300 -315 22,5 - 25.0							638,12
B7	32.5 - 35.0 35.0 -30.0			TA	A	· O		104.8 mosty rock
B	Sample Strickin to	ube .		FG				
B7	30,0 - 32,5	1440			SB	6		511.8
Bit	32,5-35,0	1441			SB			393.2
87	35,0 - 37,5	1449			5B			429.7
Ca B7	37.5 - 40.0	1456		to		A	th	409.7
topools as cont	All the end of	of lit	4	en	er		-	
DO BYIT	-87-112.5-150	1345			SB	6	ES	4971.0 GROBTEX DROPRRO
TT-B7-7	37.5-40.0	1505			SB	6	Es	409.7 GRO BTEX DRUIRRE
		_						101.1010/03.07/10/00/10/0
			Ma	atrix Type	Samplin	ng Method	Samp	le Type
	,		AR GW	Air	В	Bailer/Coliwas	ES	Environmental sample
			PR	 Groundwater Product 	D G	Drill cuttings Grab sampling	ER FB	Equipment rinsate Field blank
			SB	Subsurf, soil	H	Hand auger	FD	Field duplicate
			SE	Sediment Sludge	L P	Tube liner Pump (liquid)	FM FR	Field measurement Field replicate
			SS	Surface soil	SS	Split spoon	MD	Matrix spike duplicate
			SW	Surface water Water	T V	Shelby tube Vacuum (gas)		Matrix spike duplicate Trip blank
	1.1				W	Wipe sampling		

Date: 10 16 17	Och Location: Interior Texa	20							Page 6 of 8
ampler: FLG/SYR		Ter .							
Sample Number	1 posterior	Sample		Interval (ft)	_	Sampling			
B8	Location 0.5 - 2.5	Time	top	bottom	Туре	1		Reading	Analyses
88		1012			58	4	FM	826	
B8	2.5-5.0	1016						8.7	
Be	5.0 - 7.5 7.5 - 10.0	1036	y-		++-			8.9	
BB	10.0 - 12.5				+			7.3	
Bg	12.5 - 15.0	1037						6.4	
Bg	15.0 - 17.5	1044						5,3	
B8	17.5 - 20.0	1046						7.1	
B&	20.0- 22.5	1047						3.6	
138	72.5 - 25.0	1107	-					7.7	
B8	25.0 - 30.0 Sample 5	Tuck 10 1124						4,3	
88	30:0 - 38.5				-			4.7	
AG AG	33.5 - 35.0	1124	_					7.9	
B8	35.0 - 37.5	1127						6.7	
B8	37.5 -40,D	1138			1			14.7	
ET-88-1		1139			SB			9.2	
IT-88-7	35.0-37.5	1140				+	100	14.7	
		1145	25	- E	3B		4	9,2	
MW-10	Mw-11	1515	-	45	1	KEP 6	ES	-	GIZO, BTEX DROPPE
0/17/16	MW-10	1720	35	45	bu	16	ES	-	Well '
39	A = 0 =	0/1	\sim						
69	0.5 - 2.5	807	_		SB	57	Fm	5.1	
89	2.5 ~ 5.0							5.3	
B9	7.5 - 10.0	810	-				- 2	11.9	
B9		811			-		. 1.3	133.8	
89	10:0-12.5	839			-	-		236.3	
DT.	12.5-15.6	830				4	-	164,7	
			Ma AR	trix Type		ng Method		le Type	
			GW	Groundwater	B D	Bailer/Coliwas Drill cuttings		Environmental Equipment rins	
			PR	Product	G	Grab sampling	FB	Field blank	
			SB	Subsurf, soil Sediment	H	Hand auger Tube liner	,FD FM	Field duplicate Field measure	
			SG	Sludge	P	Pump (liquid)		Field replicate	
			SS	Surface soil	SS	Split spoon	MD	Matrix spike de	uplicate
			SW	Surface water Water	V	Shelby tube Vacuum (gas)	MS TB	Matrix spike di Trip blank	uplicate
				-	w	Wipe sampling		riip bidrik	

roject Number: 1180	9-006Location: Interior Texac	0						Page 7 of
ate: 10/17/17	11/2	,	- 0					
ampler: ELG/SV	K	To .		1.1	1	I		
and to Month of	X	Sample		Interval (ft)	-	Sampling		
ample Number	Location	Time 842	top	bottom		Method		
B9	15.0 - 17.5	843			58	6	Fm	207,7
89	9010-3215				-			11.8
B9		850						12.3
B9	22.5 - 25.0	961						9.3
	25.0 - 27.5	810			-		_	600
B9	37.5 - 30.0	118						6.6
B1	30.0 - 32.5	818					1	3.6
89	32.5-35.0	919						27.8
89	35,0 -37.5	933						149
<u>B9</u>	37.5 - 40.0	934					V	6.3
IT-B9-1	10.0-12.0	945					ES.	3263 GAO/BTEX/DRO/RRO
IT-89-2	37.5 - 40.0 I	950					ES	6.3 GROBTEX DROPERD
B10	0-2.5	1030					FM	77.5
BIO	2.5-5.0	1031						9376
Bio	5.0-7.5	1040						1005
Bio	7.5-10.0	1041			111			1215
BIO	10.0-12.5	1052						1242
Bib	12.5-15.0	1053						946.3
810	15.0 - 17.5	1055						1385, O A
BIU	17.5- 20.0	1056						1255,0
Bio	20-22.5	110(798.7
BID	22.5-25.0	1131						648 3
BIO	25,0-27.5	1103						4173
BIO	47.5-30.0	1105						477,5
B10	300-32.5	1130						429,9
B10	325-35.0	1131			197	V	199	467.0
BII	35:0-37.5	1150	Ma	atrix Type	Sampli	ng Method	7	ole Type 470.6 A
BII			AR	Air		Bailer/Coliwas		Environmental sample 334.7
10	37.5-40.0	1151	GW PR	Groundwater Product	D	Drill cuttings	ER FB	Equipment rinsate 324 7 Field blank
			SB	Subsurf, soil	Н	Grab sampling Hand auger	FB	Field duplicate
			SE	Sediment	L	Tube liner	FM	Field measurement
			SG	Sludge Surface coil	P	Pump (liquid)	FR	
			SW	Surface soil Surface water	SS	Split spoon Shelby tube	MD	Matrix spike duplicate Matrix spike duplicate
			WR	Water	V	Vacuum (gas)	TB	Trip blank
					W	Wipe sampling		

Project Num	ber:	31-1	-11809-006					Page 8 of 8
Project Nam		Interio	Texaco					
Sampler:		Fawn Glassburn , 57	12					
	Sample				Depth	Sample	PID	
Date	Time	Sample ID	Location		(ft)	Туре	Reading	Analyses
		IT-1310-1	Buring B+O, sample interval	16.0-1	7.5	ES	12850	
10/17/17	1230	JT-B10-2	Barily BIO, Sample Interes	36.0-	37.0	5	470,6	~ "
10/17/17		MW-12	MW-12		_	E3	_	× 11
	1400	BII	0.5-2.5			F5	12.0	
	1402	BU	2,5-5,0				477,0	
	1407	BII	5.0 - 7.5				918.0	
-	1408	BII	7.5 - 10.0				839.0	
	1413	BIL	10,0-15.0 poor recovery				338.1	
	1445	BIL	15:0-20:0 Sample Stuck in liner				447.9	
	160(Bit	20:0-25.0 poor recovery				557,5	
	1602		35,0-34,5				24.0	
	1629	BIL	27.5 - 30,0				16.8	
	1652	BII	30.6 - 32.6				15.5	
	1653	Bil	32.5-35.0				15.6	
	1656	BIL	35.0-37.5				56,5	
	1657	Bil	37.5 - 40.0				5.5	
W	1700	IT-B11-1	5.0 - 7.5				918	
-		IT-811-2	31.5 - 40.0			T	5.5	
0118/14	1350	MW-13	Benny B8			ES		GROBIEX ORG PRE
-								
				-				
	-							
-								
	-							
	FC -	ield screening measure	ment only ES = Environmental sample FD = Field duplicate TB =					

Publib:\Admin\Forms10/26/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. Project Name Project Number 3-1-11709-000	Date Inst Logge	
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	Diameter; 2" Slot Size: 0.01	SS Other 4" Other 0.02 Other Down Type
II. MID SECTION (CASING)	V. BACKFILL	
Number of Blank Sections		Depth Below GS
Length of Section(s):	CEM (No	Pipe) HO.3 9 C
10-61		W_PB 1 0.39
10.01	*SLUF_PB/FI	
10.00		H_PB 3553 10 33,5
	*SLUF_PB/FI	LPS 411.134 36.59
Sum of Lengths:	30.02 *SLUF_PB/FI	
	*SLUF_PS/FI	
	*SLUF/FIL (No	
II. SCREENED SECTION(S)	*SLUF_PB/FI	
Joint Length: 0.14 [] 5.20 lea	Filter Pack Ty	dation 10/20 Silica Sound
Some Length.	+	Gal occide
	VI. MONUMENTS	-0.080
	Stuckup T Flus	hmount 🗹 🔾
Screened 4.72	TOM	0 GS 1105h
Length: Total Pipe	TOM to	
Length:	10,60	
	Lock	type
	VII. MOISTURE CONT	ENT
DOM/s	= Depth to Water Below	
Joint Length: 0.54	Sopii to Water Bolo	
End Cap Length: 0.20		Frozen Soil Below GS
Pointed Flat	41.15	Bottom Top
TOC to BOW:	46.66 Seaso	nal 1
	Seaso	nal 2
	Permafr	
PON - Postaria Obica (ANT code)	Permafr	ost 2
BCH = Bentonite Chips (gINT code) BGR = Bentonite Grout (gINT code)		
bgs = Below Ground Surface BOS = Bottom of Screen VIII. CALCUL	ATIONS BELOW GROUND SURF	ACE
BOW = Bottom of Well		
CEM = Cement (gINT code) FIL = Sand Pack (gINT code)		TOC to BOW 46.66
GS = Ground Surface	TOC to BOW 46.66	-TOC to GS (-0,391)
SLUF = Natural Collapse/ Pea Gravel (gINT code) SS = Stainless Steel	6 613	BOW bgs 47.051
TOC = Top of Casing	= TOC to BOS Y612	7/ 20
TOM = Top of Monument TOS = Top of Screen	- 100 to BUS	TOC to TOS 36, 20
PB = Blank Pipe (gINT code)	TOC to BOS 46.12	TOS bgs 36,59
PS = Slotted Pipe (gINT code) * Circle filter-pack type	- Screened Length 9,92	300
Flushmount = Negative Number	= TOC to TOS 36.20'	TOC to BOS 36,20
Stickup = Positive Number		- TOC to GS (-0.34)
S. L= (1,72)2+014+0134	BOS bgs 36. Sa
5	9.92	

Publib:\Admin\Forms11/2/2017ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. MW-10 / Project Name Interior To	Nacio	ate Installed 10/15/2017 Logged By Syz Driller Guotach
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total L	IV. WELL DAT Pipe Type Diameter Slot Size: Joint Pin	e: PVC
II. MID SECTION (CASING)	V. BACKFILL	David Dalay 00
Number of Blank Sections Length of Section(s):		Depth Below GS
Length of Section(s).		Bottom Top CEM (No Pipe) 0.30
10:00	+	CEM_PB 0.60 0.39
10.00		UF_PB/FIL_PB 30,73 0.60
10.01		BCH_PB 32.73 30.73
	*SLI	UF_PB/FIL_PE 34,73 39,45
0. 41	3001'	BGR_PB
Sum of Ler	iguis.	UF_PB/FIL_PB 34,43 39,45
		UF_PS/FIL_PS 414.65 31.43 F/FIL (No Pipe)
III. SCREENED SECTION(S)		JF_PB/FIL_PB 45,14 44,65
mi device destroit(e)		r Pack Type or
Joint Length:	1 1110	Gradation 10/20 WIN-AN Silica
THE I	4	- William Control
	VI. MONUMEN	TS
	Stuckup	☐ Flushmount ☐
		TOM to GS Flosh
Screened 4.72 Length:	tel March 18	TOM to TOC
	tal Pipe 10 60	*TOC to GS -D. 3a'
E Lei	ngth: 1000	Lock type
	VII. MOISTURE	CONTENT
BOW.	to = Depth to W	ater Below GS
Joint Length: 0 34 BOS:	to Ey = Depth to W	
End Cap Length:		Frozen Soil Below GS
Pointed Flat	5.5	Bottom Top
TOC to	BOW: 44.80	Seasonal 1
		Seasonal 2
		Permafrost 1
		Permafrost 2
BCH = Bentonite Chips (gINT code)		-
BGR = Bentonite Grout (gINT code)		
bgs = Below Ground Surface BOS = Bottom of Screen	CALCULATIONS BELOW GROUND	SURFACE
BOW = Bottom of Well		W. W. W. W.
CEM = Cement (gINT code)		TOC to BOW 44, 80
FIL = Sand Pack (gINT code)	1111 75	TOC 4- DC / D 30
GS = Ground Surface SLUF = Natural Collapse/ Pea Gravel (gINT co	de) TOC to BOW 44.80	BOW bas US119
SS = Stainless Steel	- BOW to BOS 0.54	
TOC = Top of Casing TOM = Top of Monument	= TOC to BOS 44.3	26. TOC to TOS 34.34
TOS = Top of Monument TOS = Top of Screen		- TOC to GS (- D. 34)
PB = Blank Pipe (gINT code)	TOC to BOS 44.2	6 TOS bgs 34,73
PS = Slotted Pipe (gINT code)	- Screened Length 4, a	2
 Circle filter-pack type Flushmount = Negative Number 	= TOC to TOS 34	34 TOC to BOS 44, 76
Stickup = Positive Number	110000 1000	-TOC to GS (-0,34)
		BOS bas 44 65

Publib: Winter Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. MW-11 Project Name 1 H H 10 T 1 1 8 0 9 - 0005 Project Number 31-1-11809-0005	Date Installed 10 14 7017 Logged By Syr, FLG Driller Logge, Gental
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length 3.56	IV. WELL DATA Pipe Type: PVC SS Other Diameter: 2" 4" Other Slot Size: 0.01 0.02 Other Joint Pin End: Up Down Type
II. MID SECTION (CASING) Number of Blank Sections Length of Section(s):	V. BACKFILL Depth Below GS Bottom Top
10.00 + 10.01 10.00	CEM (No Pipe) (), 33 () CEM_PB (), 60 (), 33 () *SLUF_PB/FIL_PB (20,0) (), 60 () *SLUF_PB/FIL_PB (33,98 (), 38,70 ())
Sum of Lengths: 30.0	*SLUF_PS/FIL_PS <u>48,40</u> 39,18 *SLUF/FIL (No Pipe)
Joint Length: 0.14 +	Filter Pack Type or Gradation LU / 20 Sicila Sand
2x Screened Length: Total Pipe Length:	VI. MONUMENTS Stuckup Flushmount TOM to GS Clush TOM to TOC ^TOC to GS - 0.33
Joint Length: O.3-4 BOW to 54	VII. MOISTURE CONTENT Depth to Water Below GS
Flat D TOC to BOW:	Frozen Soil Below GS Bottom Top Seasonal 1 Seasonal 2 Permafrost 1
BOS - Bottom of Screen	BELOW GROUND SURFACE
OLDI - Matarai Goliapaci i Ca Graver (gill i Godo)	TOC to BOW 44.11
TOC = Top of Casing TOM = Top of Monument TOS = Top of Screen PB = Blank Pipe (gINT code) PS = Slotted Pipe (gINT code) * Circle filter-pack type * Screen	to BOS 43.57 to BOS 43.57 to BOS 43.57 TOC to TOS 33.65 TOS bgs 33.98 TOC to TOS 33.98
Stickup = Positive Number	- TOC to GS BOS bgs - TOC to GS - TOC to G

Publib:\Admin\Forms10/26/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. Project Name Project Number MW-17		stalled julis z led By Syl FLG Driller Gentek	217 Lojan
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	2 7 Diameter: 2" Slot Size: 0.01	SS Other Other Of 0.02 Other Down Type	
II. MID SECTION (CASING)	V. BACKFILL	D0-5-1-	00
Number of Blank Sections Length of Section(s):		Depth Beld Bottom	Top
	CEM (N	o Pipe) 0.44	_ 0_
1000		EM_PB 0.00 FIL_PB 305	0.49
10,00	*SLUF_PB/	CH_PB 30.5	32,55
10.100	*SLUF_PB/I		34.55
Sum of Leng		GR_PB	34,55
Sum of Leng	*SLUF_PB// *SLUF_PS//		39.75
	*SLUF/FIL (N		
III. SCREENED SECTION(S)	*SLUF_PB/I		44:47
Joint Length:	Filter Pack	Type or adation to Zo Colo	ve lo SIllea
San Langua	+	101-0 2300	
	VI. MONUMENTS		
4.72		shmount 🗹	Cir.
Screened 5/0	TOM	to GS £ 105	
Total Leng	Pipe (1) (aT)	to GS -0.49	
Leng	Lo	ck type	
	VII. MOISTURE CON		
Joint Length: 0.34 BOW to BOS: _	6.54 = Depth to Water Bel	0w GS	
End Cap Length: 0120		Frozen Soil Be	elow GS
Pointed Flat	44,34	Bottom	Тор
TOC to Bo	OW;	sonal 1	
	Seas Perma	sonal 2	
		afrost 2	
BCH = Bentonite Chips (gINT code)	1 51115		
BGR = Bentonite Grout (gINT code) bgs = Below Ground Surface	N OU ATIONS BELOW SECURE AND		
BOS = Bottom of Screen BOW = Bottom of Well	ALCULATIONS BELOW GROUND SUR	FACE	
CEM = Cement (gINT code)		TOC to BOW	14.34
FIL = Sand Pack (gINT code) GS = Ground Surface	TOC 1 POW 44.34	- TOC to GS	- O. H.A)
SLUF = Natural Collapse/ Pea Gravel (gINT code) TOC to BOVV	BOW bgs	44.83
SS = Stainless Steel TOC = Top of Casing	= TOC to BOS 43.80	TOO IS TOO	33,88
TOM = Top of Monument TOS = Top of Screen			-0.49)
PB = Blank Pipe (gINT code)	TOC to BOS 43.80		34,47
PS = Slotted Pipe (gINT code) * Circle filter-pack type	- Screened Length 9.92	4 PANA W. C.	
^ Flushmount = Negative Number Stickup = Positive Number	= TOC to TOS 33,88	1217 (5)(2) 27 (5)(7)	13.80
Ottorup - i Ostave Mulliper		- TOC to GS	(-0.49)
		Log bys	2117

Publib:\Admin\Forms10/28/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. Project Name Project Number Number Numbe		te Installed 10/17/17 Logged By Syz Driller GcoTcz
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total L	IV. WELL DATA Pipe Type: Diameter: Slot Size: Joint Pin Er	PVC
II. MID SECTION (CASING) Number of Blank Sections	V. BACKFILL	Depth Below GS
Number of Blank Sections Length of Section(s):	_	Bottom Top
conguit of Goodon(o).	CI	EM (No Pipe) 0.39 6
10.00	*	CEM_PB 0.60 0:39
10.00	*SLUF	F_PB/FIL_PB 30.0 0.60 BCH_PB 37.0 30.0
10.00	*SLUE	BCH_PB 32.0 30.6 -PB/FIL_PB 34.91 39.63
	5 40 40 40	DOD DD
Sum of Le		PB/FIL_PB 40.11 39.63 \$ 34.6
		-PS/FIL PS U4,83 40.11 3x
III. SCREENED SECTION(S)		FIL (No Pipe)
AND		Pack Type or
Joint Length:		Gradation 10/20 Wlove do Silica Sam
	+	
	VI. MONUMENT	
*	Stuckup _	TOM to GS
Screened 4.72	1. Land	TOM to TOC
	ngth:	^TOC to GS - 0,39'
	ngin. ———	Lock type
	ala seesaalises	
	VII. MOISTURE	
Joint Length: 0.34 BOS	to 6.54 = Depth to Wat	er Below GS
End Cap Length: 0.20		Frozen Soil Below GS
Pointed Flat	1111 60	Bottom Top
TOC to	BOW: 44.48	Seasonal 1
	21.5 W 1.	Seasonal 2
	,	Permafrost 1
		Permafrost 2
BCH = Bentonite Chips (gINT code) BGR = Bentonite Grout (gINT code)		
has - Below County Systems	CALCULATIONS BELOW GROUND	SURFACE
BOW = Bottom of Well		
CEM = Cement (gINT code) FIL = Sand Pack (gINT code)		TOC to BOW 44.98
GS = Ground Surface	44.98	-TOC to GS (-0,3a)
SLUF = Natural Collapse/ Pea Gravel (gINT co SS = Stainless Steel	ode) TOC to BOW	BOW bgs 45,37
TOC = Top of Casing	= TOC to BOS 44.4	Y TOC to TOS 34.52
TOM = Top of Monument TOS = Top of Screen	2.400.000	- TOC to GS (-0, 34)
PB = Blank Pipe (gINT code)	TOC to BOS 44,44	TOS bgs 34.91
PS = Slotted Pipe (gINT code) * Circle filter-pack type	- Screened Length 9.97	2
 Flushmount = Negative Number 	= TOC to TOS	100 10 803 11.99
Stickup = Positive Number		-TOC to GS (-6.34)
		BOS bgs 44.83

WELL DEVELOPMENT LOG

Owner-Client		(aco	Well No.	MW		3 -000
Location	Delta Tet	30 -	Project No		11800	1-006
Weather	partly Cla	W5,305 +	Date	10/14	117	
Development	Personnel 5/	P, FLG				W
Diameter and	Type of Casing:		2" PVC			
Total Depth of	f Well Before Develo	opment (feet belo	w top of casing):		62'	
Depth to Wate	er Before Developme	ent (feet below to	pp of casing):	.39,	73'	
Depth to Scre	en Top and Bottom ((from Construction	n Log):	Top: 135	Bottom:	145
		Develop	ment Details			
eet of water	in well <u>4</u>	,89	Time pumpi	ing started _	1408	
allons per fo	ot	2.17	Flow rate (g	al/min)	~1.1	
Sallons in wel	0,8	3	Flow-rate m	easurement n	nethod:	
surge method	automated	l	50 501	luns (4	7 min.	= 1.19
ump used	watera		Time pumpi	ng ended _	1455	0
Tubing used (1			Gallons Pur		50 gull	
arata yasha y	7		Disposal:	GAL	dvum	
			ervations			
Time	Water Clarity (\	√isual)	Time	Wate	er Clarity (Vis	ual)
1408	Stightly Tur		2			
1422		Hy toward	1			
1430	" "	0	-			
1435	clear			-		
145	v 51 to 1-12	4				
1450	1100-	-	-	-		
1455	- 11					
1453						
						*
IOTES:	yes reid	purze blace	le vir and	dame H	work t	tur
SCI	recined Int	evel.	V V	4000	9	VV.
		WELL CA	ASING VOLUMES			
iameter of Well [11/4 / / 2	2 3	4	6	8
Sallons per lineal	foot	0.08 0.0	17 0.38	0.66	1.5	2.6

Well No. Ww-9

(S1A)

WELL DEVELOPMENT LOG

Owner-Client	Texaco	Well No.	MW-10	
ocation Delta	Jut AK	Project No	31-1-1180	9-006
Weather Lunda	2005 F	Date	10/16/2	17
Development Personnel	SYR, FLO			4
Diameter and Type of Casing	g:	z' pvc		
Total Depth of Well Before	Development (feet belo	ow top of casing):	38.77	
Depth to Water Before Deve			44.241	
Depth to Screen Top and Bo	ttom (from Construction	on Log):	Top: ~35 Bot	tom: ~45
A 5 5 10 11 11 11 11 11 11 11 11 11 11 11 11	Develo	oment Details		
Feet of water in well	5.47	Time pumpin	g started 1543	3
Gallons per foot	0.17	Flow rate (ga		(71min.)-1
46.000, J. Met 197 (2011)	.93		easurement method:	
the state of the s	iated		demc Purged) (elapsed +
Pump used Water		Time pumpin	/ 1	
Tubing used (ft)		Gallons Pum		70
rubing about (it)		Disposal:	GAC devi	-
otal Depth of Well After De		top of casing): ervations	43.96	44.24
Fotal Depth of Well After De			+3.96	44.24
+ 200			Water Clarity	255000000000000000000000000000000000000
Time Water Cla	Obs	ervations		255000000000000000000000000000000000000
Time Water Cla	arity (Visual)	ervations Time	Water Clarity	255000000000000000000000000000000000000
Time Water Cla	arity (Visual)	Time	Water Clarity	255000000000000000000000000000000000000
Time Water Classics 1546 torbic 1546 torbic	arity (Visual)	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Claudy 1546 Very 7 1546 torbic 1550 slighty 1604 Claudy	Observity (Visual)	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Claude 1544 Vary + 1546 torbic 1550 slightly 1604 Cloude 1617 slightly	arity (Visual)	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Claudy 1546 turbic 1546 turbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear	Observity (Visual)	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Classics 1546 torbic 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear	Obs arity (Visual) Probid Lurbid Cloudy	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Claudy 1544 Vary to 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly	Observity (Visual)	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Clary 1544 Very 1546 torbic 1550 slightly 1604 Clear 1617 slightly 1622 slightly 1632 slightly 1640 Clear	Obs arity (Visual) Probid Lurbid Cloudy	Time	Water Clarity Very Slightly Clear	255000000000000000000000000000000000000
Time Water Claudy 1544 Vary to 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly	Obs arity (Visual) Probid Lurbid Cloudy	Time	Water Clarity Very Slightly Clear	250000000000000000000000000000000000000
Time Water Claudy 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly 1643 Slightly 1643 Slightly	Obs arity (Visual) Probid Lurbid Cloudy	Time 1643 1652	Water Clarity Very Slightly Clear	25.00
Time Water Claudy 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly 1642 Slightly 1643 Slightly	Observity (Visual) Loudy Cloudy Cloudy	Time 1643 1652	Water Clarity Very Slightly Clear	250000000000000000000000000000000000000
Time Water Classics 1546 Very 1546 torbid 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly 1642 Slightly 1642 Slightly 1642 Slightly NOTES:	Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	Time 1643 1650 1652	Water Clarity Very Slightly Clear	250000000000000000000000000000000000000
1546 torbic 1546 torbic 1550 slightly 1604 Cloudy 1617 slightly 1620 Clear 1622 slightly 1632 slightly 1642 Slightly 1643 Slightly	Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	Time 1643 1652	Water Clarity Very Slightly Clear	25.00

Well No. MW-10

	WELL DEV				
Owner-Client	Interior Texaco	Well No.	mic-11		
Location	Deita Jet. , AK	Project No	31-1-11809-006		
Weather	wordy, 200 F	Date	10/16/18		
Development	Personnel Syz FLG				
Diameter and	Type of Casing:	2" PV			
	f Well Before Development (feet belo		43.98		
	er Before Development (feet below to		39.90		
Depth to Scre	een Top and Bottom (from Construction		op: ~40 Bottom: ~45		
		oment Details	ATTENDED		
Feet of water		Time pumping			
Gallons per fo		Flow rate (gal/n	0		
Gallons in we	0.69		surement method:		
Surge method	A founted	(Fotos Gal	coms project) (elapsed true		
Pump used	watera	Time pumping	ended 1437		
			Gallons Pumped 55		
Tubing used ((ft) 50	Gallons Pumpe	ed 55		
	(ft) 50	Gallons Pumpe Disposal:	64c drum		
Tubing used (er After Development (feet below top f Well After Development (feet below	Disposal:			
Tubing used (er After Development (feet below top f Well After Development (feet below	Disposal: of casing): top of casing):	39.92		
Tubing used (er After Development (feet below top f Well After Development (feet below	Disposal: of casing): top of casing):	39.92		
Tubing used (Depth to Wate	er After Development (feet below top f Well After Development (feet below Obs	Disposal: of casing): top of casing): ervations	39.92 43.96		
Tubing used (Depth to Wate Total Depth of	er After Development (feet below top f Well After Development (feet below Obse	Disposal: of casing): top of casing): ervations Time	34.92 43.96 Water Clarity (Visual)		
Tubing used (Depth to Wate Total Depth of	er After Development (feet below top f Well After Development (feet below Obse	Disposal: of casing): top of casing): ervations Time	34.92 43.96 Water Clarity (Visual)		
Time 1337 1340	er After Development (feet below top f Well After Development (feet below Obsetting Water Clarity (Visual)	Disposal: of casing): top of casing): ervations Time I4 20 I425	Water Clarity (Visual)		
Time	er After Development (feet below top f Well After Development (feet below Obse	Disposal: of casing): top of casing): ervations Time 14 20 1425 1430	Water Clarity (Visual)		
Time 1337 1340 1347	er After Development (feet below top f Well After Development (feet below Obse Water Clarity (Visual) Yery Slighty brokel Slighty brokel	Disposal: of casing): top of casing): ervations Time 14 20 14 3 5	Water Clarity (Visual)		
Time 1337 1340 1347 1352	er After Development (feet below top f Well After Development (feet below Obset Water Clarity (Visual) Yery Slighty brokel	Disposal: of casing): top of casing): ervations Time 14 20 14 3 5	Water Clarity (Visual)		
Time Time 1337 1340 1347 13 52 1355	er After Development (feet below top f Well After Development (feet below Obse Water Clarity (Visual) Yery Slighty brokel Slighty brokel	Disposal: of casing): top of casing): ervations Time 14 20 14 3 5	Water Clarity (Visual)		
Time 1337 1340 1347 1352 1355 1359	er After Development (feet below top f Well After Development (feet below Obse Water Clarity (Visual) Yery Slighty brokel Slighty brokel	Disposal: of casing): top of casing): ervations Time 14 20 14 3 5	Water Clarity (Visual)		

NOTES: We moved the surge block up and down through

VALLET	LOAC	ING VOI	LIMEC
VVI	LLAS	ING VOI	UNVIES

WEEL OF CHILD						
Diameter of Well [ID-inches]	11/4	/2)	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-11

WELL	DEVEL	OPMENT	LOG
VVL		-OF MILINI	

	35°	Date	10/17/11
evelopment P	ersonnel I-LG/SYR		
Diameter and T	ype of Casing:	" DVC	
Total Depth of V	Well Before Development (feet bel	ow top of casing):	43.89
Depth to Water	Before Development (feet below t	op of casing):	39,44
Depth to Screer	Top and Bottom (from Construction	on Log):	Top: 35 Bottom: 45
	Develo	pment Details	Company of the Company
Feet of water in	well <u>4.45'</u>	Time pumping	
Gallons per foot	0.17	Flow rate (gal	(90gas) (92min
Gallons in well	0.75	Flow-rate mea	asurement method:
Surge method _	Watera w/ surge bloc	K (Volume	Purged) (elapsed the
Pump used	Watera.	Time pumping	
Tubing used (ft)	50'	Gallons Pump	ngo gallan
		Disposal:	GAC
	After Development (feet below top Vell After Development (feet below Obs	o of casing):	39.46 43.89
	Vell After Development (feet below	o of casing): v top of casing):	
	Vell After Development (feet below	o of casing): v top of casing):	
Total Depth of V	Water Clarity (Visual)	o of casing): v top of casing): servations	43,89
Time	Vell After Development (feet below Obs Water Clarity (Visual)	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time	Water Clarity (Visual)	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time	Water Clarity (Visual)	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time	Water Clarity (Visual)	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time (0.38) 10.33	Water Clarity (Visual) The bid Slighty to bid	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time (0.28) 10.33 10.38 10.38 10.56 11.35	Water Clarity (Visual) The bid Slighty to bid	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time (0.38) 10.38 10.38 10.38 10.56 11.35	Water Clarity (Visual) Slighty furbit Cloudy Cloudy	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time (0.28) 10.33 10.38 10.38 10.56 11.35 11.45	Water Clarity (Visual) Slighty furbit Cloudy Cloudy	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)
Time (0.38) 10.33 10.38 10.43 10.56 11.35	Water Clarity (Visual) The bid Cloudy Cloudy Cloudy	o of casing): v top of casing): servations Time	43,89 Water Clarity (Visual)

Well No. Mw-12

Gallons per lineal foot

Diameter of Well [ID-inches]

11/4

0.08

0.17

0.38

0.66

	WELL DEVE	LOPMENT LOG	
Owner-Client _	Interior Texaco	Well No.	Mw-13
Location _	Delta John AK	Project No _	31-1-11809-006
Weather _	Snowing 20% F	Date _	10/18/2017
Development Per	rsonnel FLL, SYR		
Diameter and Ty	pe of Casing:	Z" YUC	
Total Depth of W	ell Before Development (feet belov	v top of casing):	44.46
	Before Development (feet below top		39.87
Depth to Screen	Top and Bottom (from Construction	Log):	Гор: ~35 Bottom: ~45
	Develop	ment Details	
Feet of water in v		Time pumping	~ (
Gallons per foot	0.17	Flow rate (gal/	min) (140gal) (138min)
Gallons in well _	0.78		surement method:
Surge method _	automated	(Tutal vol	uma Prvyd) (total elaysid)
Pump used	watera	Time pumping	ended
Tubing used (ft)_	~60'	Gallons Pump	ed
		Disposal: _	GAC
Depth to Water A	After Development (feet below top of	of casing):	39.73
Total Depth of W	ell After Development (feet below t	op of casing):	44.35
and the second second		· · · · · · · · · · · · · · · · · · ·	
	Obse	ervations	
Time	Water Clarity (Visual)	Time	Water Clarity (Visual)
1005	Yenry turbid	1130	slightly forbyd
1010	w O ii	1140	0 0 11
1015	~ 11	1158	w "
1020	ss //	1200	1/
1030	fundid	1210	char
1040	N 77	1220	~ ~

NOTES:	lan	moral	the sury	6	lock U	10	and towath	down
throw	mut 1	he too	- inunda	10)	3culi	m)	· lyly val	

WELL CASING VOLUMES

Diameter of Well [ID-inches]	11/4	/2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-13

1100 1110 1120

DRINKING WATER WELL SAMPLING LOG 31-1-11809-006 Project Number 31-1-11729-Owner/Occupant Sisie inducted Project Name DOT Class V IW Closure I Site Manager(s) Date 40/16/2017-10/17/1 Time (5)5 - (600) 907-895-4667 Telephone Sampling Personnel SYL, FLG Sample No. Lelly 3 DW Time | 530 Duplicate -Time / Pumping Start Time 1515 Diameter and Type of Casing Pumping End Time \\\$30 Total Depth of Well (ft.) Tubing (ft.) used kost-Depth to Water (ft.) Feet of Water in Well Gallons per foot Gallons in Well Purge Water Volume (gal.) Boring Log/Well Depth Details Laboratory SGS Analysis Sample Containers **Preservatives** 3 x 40-mL VOA VOCs HCI Total Coliform 1 x 120-mL filled to 100-mL Na2S2O3 BTEX, GRO, DRU Notes:

WELL CASING VOLUMES

	VVLLL OF	TOING VOL	CIVILO			
Diameter of Well [ID-inches]	11/4	/ 2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

SHANNON & WILSON, INC.

	er-Client	Interior	TUXACI	13		Project No.	31-1-1180	9-006
	Location		unchion,			Page		
	Weather -	licht		1-40°5 F		Date	10/13/17	L.
Sampling P	ersonnel	O SYP				Well No.	mw-1	
	market in the			[Diameter & 7	Type of Casing	Z" PUL	
Sample No.	m	w-1		Time -		Time Started	1500	
Duplicate				Time -	Ti	me Completed	16000	
-					-	and water contraction.		
Measuring P	oint [MP]	TOL				MP Elevation	-	
Height	of MP [Al	oove] [Below] l	and Surface	0.3	1		-	
Water Level B	Elevation_	22111		Tota	al Depth of V	Well Below MP	29.08	
	7				Depth to Wa	ater Below MP	28.68	
Purging	Method	-Barted &	ne		Feet of	Water in Well	0.40	
	ing Start				G	allons per foot	0.17	
	ping End	_		•		Gallons in Well	0.07	
1,000				0 1		allons Pumped	_	
Packer set at		feet below MP			0.	anono rampoa.		
Ice at		feet below MP			Purae Water	CALL	auta.	
ice at			LD PARAM		uige vvalei	6 0		
				METERS		1		
		Conductivity	Dissolved		EL TORRI			
Time To	mp [9C]	[µmhos per	Oxygen	nH.	Eh [ORP]	Water Clarity	[vieual]	
Time Te	mp [°C]	cm]	[mg per L]	pН	[mV]	Water Clarity	[visual]	
	100	-	SA	110	TY			
			SVI	in de	-61			
							- 1	
Sampling	Method	Balke	- 4/11	Samuel	d day	after zer	al Samp	6'jar
Sampling		Bailer		Sampl			sample	Ljar
Sampling	Method _ Notes _	Used be	ile ti	colle	et apos	underste	sample	Gille.
Sampling		Let vecl	ile ti		et apos	ondwarter sou	sample	Mus >
Sampling	Notes _	Used be	ile ti	were!	st your to	HACH TES	sample	Mus >
	Notes _ - Lab _	14 rece	ile ti	Dissol	yed Oxygen	HACH TES	sample	Mus >
Sampling Sampling Co	Notes _ - Lab _	Let vecl	icher ti	Dissol	ved Oxygen Ferrous Iron	HACH TES	sample	Mus >
	Notes _ - Lab _	14 rece	Lab Supplie	Dissol	ved Oxygen Ferrous Iron Total Iron	HACH TES	sample	Mus >
	Notes _ - Lab _	14 rece	icher ti	Dissol	ved Oxygen Ferrous Iron Total Iron Sulfate	HACH TES	sample	Mus >
	Notes _ - Lab _	SGS Trip Blank	Lab Supplie	Dissol	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate	HACH TES	sample	Mus >
	Notes _ - Lab _	14 rece	Lab Supplie	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide	HACH TES	sample	Mus >
Sampling Co	Notes_ Lab_ ntainers	SGS Trip Blank Analyses	Lab Supplie	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered)	HACH TES	sample	Mus >
Sampling Co	Notes_ Lab_ ntainers	SGS Trip Blank Analyses	Lab Supplie	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >
Sampling Co	Notes_ Lab_ ntainers	Analyses Analyses	Lab Supplier S&W Supplier	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered)	HACH TES	sample	Mus >
Sampling Co	Notes_ Lab_ ntainers	SGS Trip Blank Analyses	Lab Supplier S&W Supplier	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >
Sampling Co	Notes _ - Lab _	Analyses Analyses	Lab Supplier S&W Supplier	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >
Sampling Co	Notes_ Lab_ ntainers	Analyses Analyses	Lab Supplier S&W Supplier	Dissol d ed	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >
Sampling Co	Lab_ntainers	Analyses Analyses WEL	Lab Supplier S&W Supplier	Dissolution Dissol	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >
Sampling Co	Lab_ntainers	Analyses Analyses Apple	Lab Supplier	Dissolution Dissol	ved Oxygen Ferrous Iron Total Iron Sulfate Nitrate Sulfide ese (filtered) Manganese	HACH TES	sample	Mus >

Well No.

(SUP)

	Owner-Client	Interior	Texaco			Project No.	1809-006
	Location		t. AX			Page	7
	Weather	Golda.	3005			Date	10/13/17
Sampli	ng Personnel	542	FL6			Well No.	mw-z
					Diameter & 7	Type of Casing	ZIVVC
Sample No.				Time -		Time Started	1645
Duplicate				Time —	Ti	me Completed	1700
Measurii	ng Point [MP]	(3) D. 34	- 100			MP Elevation	
		bove] [Below] L	and Surface	0.13	41		rear and
	evel Elevation				tal Depth of V	Vell Below MP	33,76
	-				and the farm that will be a first over the	ater Below MP	33.7(
Pu	rging Method	_			the Wallact Policy of the section in the section in	Water in Well	0
	umping Start	_	-		G	allons per foot	12.17
	Pumping End					Sallons in Well	12
					Ga	allons Pumped	none
Packer set at	_	feet below MP				man Jana .	
Ice at		feet below MP		1	Purge Water	win	
			LD PARAM				
		Conductivity	Dissolved				
	1000	[µmhos per	Oxygen	100	Eh [ORP]	66 8 3 64	
Time	Temp [°C]	cm]	[mg per L]	pН	[mV]	Water Clarity	[visual]
11	int .	DAMIN	DIFY				
	0	21/10/1	-CA	2	1		
Com	unling Mathad	4.454	- 100 St 104	. 1			
Sam	pling Method_ Notes	Not	Saupl		ton form	vell to c	ollect
	Notes_	Sumple	ufficient &	t was		WELL TO C	DIGG
	-	Somyore)	Source	CV.	HACH TES	TS (mg/L)
	Lab	4/4		Disso	lved Oxygen		
Sampling	Containers	Trip Blank	V . A		Ferrous Iron		
	A		Lab Supplie		Total Iron	- /	
			S&W Suppli	ed	Sulfate		
		Contractor (Charles and		Nitrate		
		Analyses			Sulfide		
		pot			ese (filtered)		
		Samy	sub	Total	Manganese	/	
					Alkalinity		
				1	200		
				9/		Tubing	^
		-	WINDS TO	and a		rubing_	
		WEL	L CASING V	OLUMES	A market		
Diameter of Well		11/4	2	3	4	6	8
Gallons per lineal	foot	0.08	0.17	0.38	0.66	1.5	2.6

mw-Z Well No.

(Owner-Client	Interior	TEXALO			Project No.	31-1-11809-006
	Location		ct. Ala	ska		Page	A .
	Weather	light		SF		Date	10/13/17
Samplin	ng Personnel	SIE				Well No.	mu-8
					Diameter & T	Type of Casing	
Sample No.		mo pot	Sound led	Time =		Time Started	1330
Duplicate		-	,	Time 🕳	Ti	me Completed	1400
	g Point [MP]_					MP Elevation	
		bove] [Below] I	_and Surface_				44441
Water Lev	vel Elevation_			Tot	The second section is a second section of	Well Below MP	33,48
					The second second second	ater Below MP	33,84
	ging Method	whale Po	imp			Water in Well	0.14
	umping Start_	WIA				allons per foot	0.17
Р	umping End_	NA				Sallons in Well	
					Ga	allons Pumped	0
Packer set at		feet below MP				1	
Ice at_		feet below MP	D DA DAN		Purge Water	GALDI	· Lim
		7 7 7 - 1	LD PARAM	EIERS			
		Conductivity [µmhos per	Dissolved		EN TORRI		
Time	Temp [°C]	cm]	Oxygen [mg per L]	рН	Eh [ORP] [mV]	Water Clarity	[visual]
Time	temp[o]	Citij	[riig per L]	Pri	1 bust	vvater Clarity	[Visual]
		- 4	A . 5	_			
-	101	SAW	PLE				
1	501	0					
		- A	A. Carrie				
Samp	oling Method_	whale					a series
	Notes_	NOT SL	fricient	unter	in un	11 to san	npu-
	-					HACH TES	TS (mg/LX
	Lab	WIA		Dissol	ved Oxygen		TO (IIIA)
Sampling	Containers	Trip Blank			Ferrous Iron		
	7.0 (Lab Supplied		Total Iron		1
			S&W Supplie	d	Sulfate	/	NIA
-		Property.			Nitrate		
	-	Analyses			Sulfide		
		600			ese (filtered)		
		BTEX		Total	Manganese		
		DRO			Alkalinity	/	
						Tubing	\supset
						Tubing_	
		WEI	L CASING VO	OLUMES			
Diameter of Well [II	D-inches1	11/4	/2	3	4	6	8
Gallons per lineal f		0.08	0.17	0.38	0.66	1.5	2.6

ww−8 Well No.

	Owner-Client	Interio	u Tex	ace		Project No.	37-1-11	709-00
	Location	Re I to		+ IK		Page		
	Weather	Swow i		USF		Date	10/10/1	7
Sampl	ing Personnel	SYR.	ALG			Well No.	mu-	
	,	12-			Diameter & 7	Type of Casing	ZII PU	1 1 mm 100 EV
Sample No					20	Time Started	1000	1300
Duplicate	mu	-109		Time 1	330 Ti	me Completed	+300	1900
	ing Point [MP]_ leight of MP [Ab		and Surface	0.30		MP Elevation	-	(52)
	evel Elevation_			Tota	al Depth of V	Vell Below MP	39.66	
Pu	urging Method	whole	100mp			Water in Well	4.98	
	Pumping Start	1300			G	allons per foot	0.17	
	Pumping End	13101			(Sallons in Well	0.85	
	38.5				Ga	allons Pumped	-8	
Packer set a	t 38.0	eet below MP						
Ice a	tf	eet below MP		P	urge Water	GAL 9	vou	
		the second secon	LD PARAM	IETERS				
		Conductivity	Dissolved		- CYCLYYAY			7
2027	250000000	[µmhos per	Oxygen		Eh [ORP]	Van de Caraci	1	
Time	Temp [°C]	cm]	[mg per L]	pH'	[mV]	Water Clarity	[visual]	
13/0	6.7	213.3	11.3800	7.69	72.0	10 11		
1313	6.01	215,4	11-4138	7.74	69. t	35 11		10
1316	7.0	215.6	11.54	7.74	200	4		
1319	7.0	215.7	11.59	7.73	706			
- 1200		0	1000	1.14				
Sam	pling Method _ Notes		1000	-10 00				
	Notes_	way.						
	-					HACH TES	TS (mg/L)	
	Lab	565		Dissolv	ed Oxygen		/	
Sampling	g Containers	Trip Blank	NOTE / 1	F	errous Iron			
3000	20	3	Lab Supplied	d .	Total Iron			
			S&W Supplie	ed	Sulfate			
					Nitrate			
		Analyses		5.9.650	Sulfide			
		GRO			se (filtered)			
		BTE		Total	Manganese Alkalipity			
		Dei			Alkalibity			
		PA						
			.,			Tubing_	50	
		000001	ndrame.	المساور والم		_		
			L CASING V					
Diameter of Well		1¼	2	3	4	6	8	
Gallons per linea	100t	0.08	0.17	0.38	0.66	1,5	2.6	

Well No.

	Owner-Client	Interior	Texace	>		Project No.	31-1-11809-00
	Location		ict., AV			Page	HA 1
	Weather		200				10/16/17
Samp	ling Personnel	5x2	FLL			Well No.	mw-10
					Diameter & 7	Type of Casing	Z" PVC
Sample No	om	W-10		Time 177	20	Time Started	
Duplicat		-		Time -	Ti	me Completed	1740
					7		
	ring Point [MP]					MP Elevation	_
1	Height of MP [A	bove] [Below] [and Surface	0.3	9.		
	evel Elevation_		22,000	Tota	al Depth of V	Well Below MP	
					Depth to Wa	ater Below MP	3878
P	urging Method	Wantera	Pump		Feet of	Water in Well	5.49
	Pumping Start	15	712		G	allons per foot	0.17
	Pumping End	11	720		(Gallons in Well	0.93
				· .	Ga	allons Pumped	44
Packer set a	at ~42	feet below MP					
Ice a	at -	feet below MP		F	Purge Water	6AC du	um
1,000			LD PARAM				
		Conductivity	Dissolved		100000		
		[µmhos per	Oxygen		Eh [ORP]		
Time	Temp [°C]	cm]	[mg per L]	рН	[mV]	Water Clarity	[visual]
1713	7.9	222.3	10.71	7.61	88.7	Lleav	
1716	7.8	221.7	10.6A	7.64	887	15 0	
1719	7-8	221.4	10:61	7.69	87.7	1 11	
1.11			10/21	15.4.3			
	+				-		
-							
Sa	mpling Method	Line Vie	W				
Sai	Notes	Water	- Punp	is an amount of	1	ictily pr	- A A
	Notes_	Sound!	willche	ne well	Immed	istud by	10v to
		sampa	WILLE	281		HACH TES	STS (mg/L)
	Lab	565		Dissol	ved Oxygen		
Samplin	ng Containers	Trip Blank			Ferrous Iron		
2.00	7	3	Lab Supplied		Total Iron		
	- 0		S&W Suppli		Sulfate		
			log v ouppii	cu	Nitrate		/
		Analyses			Sulfide		
		BTEX		Mangano	ese (filtered)		
					Manganese		
		(V) ~			Manganese		
		6RO					
		DRO		·	Alkalinity		
						1	501
			V. 70021001				501
		Beo	L CASING V			Tubing	
Diameter of We Gallons per line		Beo	L CASING V			1	8 2.6

Well No.

0	wner-Client_	Interior	Texaces			Project No.	1809-001
	Location		Jet, A	rk		Page	\
	Weather_	clindy	20° F			Date	10/16/201
Sampling	g Personnel_	SYP 1	EL6			_ Well No.	mw-11
					Diameter &	Type of Casing	
Sample No	mu	-11		Time \5	515	Time Started	
Duplicate_				Time —	Ti	me Completed	1530
Measuring	Point IMPI	TOC				MP Elevation	~
		oove] [Below] L		0,	33	- WI Elevation	
	el Elevation					Well Below MP	43.96
					Depth to W	ater Below MP	39.92
Purg	ing Method	Water	Pump	1.02	Feet of	f Water in Well	4.04
Pu	mping Start	just 2	Punjo	1,1503	3 G	Sallons per foot	0117
Pu	imping End	1515			(Gallons in Well	0.69
		Not and the last			G	allons Pumped	~6
Packer set at _	35 f	eet below MP				4	
Ice at_	34, f	eet below MP		P	urge Water	O', see	notes
		FIE	LD PARAM	IETERS			
		Conductivity	Dissolved		HYDAOXIE		
Scott in	5.5552.1	[µmhos per	Oxygen		Eh [ORP]	1777-12.00	100000
	Temp [°C]	cm]	[mg per L]	pН	[mV]	Water Clarity	[visual]
1505	7.9	222,5	10.80	7.56	1834	clea-	
1507	7.8	222.2	9.95	7.60	168.2	1 1,	
1511	7.8	221.9	9.21	7.60	159.4	1	
1514	7.7	221.9	8.91	7.61	154.0	11 11	
Sampl	ing Method	lateria	0				
Sampi	Notes	water	Pump	Comments.	· Samuel A	intelly pr	-
		Samuel	V) GYOU	10 pra	1 Williams Co	and ha	100 10
	_	Sec- pir	00	The state of the s		HACH TES	TS (mg/L)
	Lab_	545		Dissolv	ved Oxygen		
Sampling (Containers	Trip Blank	Carlo Carlo Carlo	F	errous Iron		
	8	3	Lab Supplied	b	Total Iron		
		_	S&W Supplie	ed	Sulfate		
7.5					Nitrate		
		Analyses			Sulfide		
		6120		Mangane	se (filtered)		
		BTEX		Total I	Manganese		
		DRO			Alkalinity	_/_	
						/	
						Tubing	_
						Tubing _	
		MEL	L CARING V	OLUMES			
		VVEL	L CASING V	OLUMES			
iameter of Well [ID)-inches]	11/4	2	3	4	6	8

MW- ()

Well No.

	Owner-Client	Interio	VTexa	w		Project No.	1809-001
	Location	Delta	Tet. 1	AK		Page	
	Weather	Partly	Houde	2005	F		10/17/17
Samp	ling Personnel	5412	FLb "	,		Well No.	inw-12
						Type of Casing	
	mu	1-12		Time / 24		Time Started	
Duplicat	e	-		Time ^	_ Ti	me Completed	1315
	ing Point [MP]		TU			MP Elevation	-
		bove] [Below] L	_and Surface	6,4			10 06
Water L	evel Elevation	-		Tota		Well Below MP	43.89
						ater Below MP	39.46
	urging Method			4		Water in Well	4,43
	Pumping Start					allons per foot	0.17
	Pumping End	1246				Gallons in Well	0.75
Ababa Ala	9 100				G	allons Pumped_	~7
		feet below MP			\A/-t	100 1	V.A
ice a	nt	feet below MP	DDADAB	#ETEDC	rurge vvater	GAC du	· Um.
			LD PARAM	HEIERS			
		Conductivity [µmhos per	Dissolved Oxygen		Eh [ORP]	100	
Time	Temp [°C]	cm]	[mg per L]	pH [*]	[mV]	Water Clarity	[visual]
19433	7.1	216.1	10:30	7.74	75.7	Clear	[vioudi]
12:36	7.5	219.9	9154	7,76	76.7	Clear	
12134	7,6	226.8	993	7.83	74.1	Clear	
13142	7.5	220,6	9.94	7.84	74.8	Clear	
12145	7.5	20011	9,93	7.84	74.0	Clear	
			1173	TIOT	171.0	Cuci	
1346	npling Method	Timag					
Gail	Notes			Had I	211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	medicatel	LA
	110.00	Pring	to 5	mund !	collect	in	9
		100		1	coraco	HACH TES	TS (mg/L)
	Lab	569	>	Dissolv	ved Oxygen	and the same care	
Samplin	g Containers	Trip Blank	Swite Later	F	errous Iron		
	8		Lab Supplied		Total Iron		
	-	A	S&W Supplie	ed	Sulfate	/	
		A Disertation for			Nitrate		
		Analyses			Sulfide		
		- 6 km			se (filtered)		
		BIE	X.	Total	Manganese		
		DPO			Alkalinity		
						Tubing_	50
						Tabilig_	1-
		WEL	L CASING V	OLUMES			
Diameter of Well Gallons per linea		1¼ 0.08	2 0.17	3 0.38	4 0.66	6	8 2.6

MW-12 Well No.

	Owner-Client_	Interior	Texace)		Project No.	1804-006
	Location	Delta .	Tet., 1	AK		Page	1
	Weather	Snow	in, 200	SF		Date	10/18/17
Sampl	ing Personnel	SYR.	=06			Well No.	mw-13
				Tig a Ty	Diameter & T	Type of Casing	2" puc
Sample No	· mo	V-13		Time)	250	Time Started	1200
Duplicate	= =			Time	Ti	me Completed	1315
	D	~ /					
	ing Point [MP]_ leight of MP [At			0.	2.74	MP Elevation	
	evel Elevation		and Surface			- Well Below MP	44.35
vvaler Le	ever Lievation_	- /-		100	the state of the s	ater Below MP	30.73
Pu	rging Method	Ivw Clas	where	wa		Water in Well	4.62
	Pumping Start	1238	/			allons per foot	0.17
	Pumping End	1250		•		Gallons in Well	0.79
				•		allons Pumped	~ 8
Packer set at	t 41 f	eet below MP					
Ice at		eet below MP			ourge Water	GACd	hules -
			LD PARAM				
		Conductivity	Dissolved		Value and		
1.61	50.00	[µmhos per	Oxygen	Line.	Eh [ORP]	Source of the	7.45.5
Time	Temp [°C]	cm]	[mg per L]	pH'	[mV]	Water Clarity	[visual]
1240	7.6	2186	10.43	781	69.3	Sl. turb	id
1243	7.7	218.7	10.38	7.80	69.7	clear	
1246	7.7	2189	10.40	778	70.3	* 1	
1249	7.7	219.2	10.46	7.76	71.3	N. 19	
Sam	pling Method	low flo	ou, was	deag			
	Notes _	well	distor	ud in	me die	tell porice	in to
	7 2	Samp		action		01	-
	The State of					HACH TES	TS (mg/ <u>L</u>)
120002	Lab_				ved Oxygen		
Sampling	Containers	Trip Blank	Lab Committee		Ferrous Iron		
	0		Lab Supplied		Total Iron		/
			S&W Supplie	ea	Sulfate		
		Analyses			Nitrate Sulfide		
				Mangane	ese (filtered)		
		BTEX			Manganese	-	
		DRO	_	Total	Alkalinity	1	
		12121)		, uncalling	-	
							601
						Tubing _	30
		WEL	L CASING V	OLUMES			
Diameter of Well	[ID-inches]	11/4	2	3	4	6	8
Gallons per lineal	2 (2	0.08	0.17				

Well No.

mw-13

DAILY SAFETY MEETING LOG

JOB NAME: Tolerior Texaco	JOB NO	311180	9 -	006	BORING NO	BI	
LOCATION: Delta Ak Buttalo	Contex	- Bes	D	ATE: 10 /	12/17 TII	ME: 8 :3	30
SUBCONTRACTOR: George Alaska			S&W F	REP: FLC	SYR_S&WI	PM: VEV	V
WORK DESCRIPTION: So, 1 Bornes & M	enito	v vel	19		1		
CHECK APPLICABLE HAZARDS: Heavy Equipmer	nt 🖪 Veh	icles 🗓 (Overhe	ad 🗷, Too	ols 🛛 Tempe	rature 🔼	
Lifting 区 (Use Mechanical Means Instead), Site Hou	sekeeping	☑.(Clear	Walkw	avs to Prev	ent Slips, Trips	s, Falls),	
Awkward Work Area □, Public ☑, Security ☑, Plant		3.270					UV
exposure □, Repetitive Motion ☒, Suspected Conta							
	armitation	D, Onemi	icai Lx	Josuie Li, i	latimable/LX	piosive Li	
OTHER HAZARDS:							_
EQUIPMENT ON SITE: Doll Rig							_
1	+					+	
	Present					Present	
DOCUMENTATION: SSHSP On Site?		Pooto	Cofoty	PPE: Toe / Othe		Terror and	
Hospital Map On Site?		Safety C	1.000000		31		
Fall Protection Plan On Site?				/ Class III		Q Q	
Respiratory Protection Plan On Site?		Hard Ha		/ Class III		D.	
Confined Space Entry Plan On Site?				Muffs / Bot	th	\boxtimes	
Traffic Control Plan?		Gloves -	77-02-01				
Other Plan?	H	Face Sh	100	Lartho	y Nitrib	- 🗵	
Current Fit Test?		Respirat					
	Ш	respira		DDE0	12-4 D-4	Ш	
Cards/Certs Required? List Below			Ot	her PPE?	List Below		
A							
Hazards & Controls Discussed?		Nec	ed to LI	pdate SSH	SP2 🏻		
				Zanaca.			
My signature below confirms that the above hazards,	controls a	nd plans h	ave be	en discusse T	ed and that I ur		nem. PPE
PRINT NAME	SIGNATU	JRE		co	MPANY	HAS ALL CARDS	On?
Fann Glasiburn Sige	1	>		SEL			Ø
James Beckner 1/16				671	1		
BUBBY FRAST	nit.			GTI	9		×
Seturosusu 31	3			52	i h		D

DAILY SAFETY MEETING LOG

SUBCONTRACTOR: Gentech Alacko WORK DESCRIPTION: Soil bearings CHECK APPLICABLE HAZARDS: Heavy Equipment D. Vehicles D. Overhead D. Tools D. Temperature D. Lifting D. Use Manager D. Lifting D. Chemical Exposure D. Tools D. Temperature D. Awkward Work Area D. Public D. Security D. Plants D. Animals D. Noise D. Vibration D. Dust D. Radiation D. UV exposure D. Repetitive Motion D. Suspected Contamination D. Chemical Exposure D. Flammable/Explosive D OTHER HAZARDS: EQUIPMENT ON SITE: D. II Rig DOCUMENTATION: D. Boots Safety Too / Other D. Site? D. Safety Glasses Fall Protection Plan On Site? D. Safety Glasses Fall Protection Plan On Site? D. Safety Glasses Fall Protection Plan On Site? D. Safety Glasses Confined Space Entry Plan On Site? D. Safety Glasses Traffic Control Plan? D. Site? D. Safety Glasses Confined Space Entry Plan On Site? D. Safety Glasses Confined Space Entry Plan On Site? D. Safety Glasses Confined Space Entry Plan On Site? D. Safety Glasses West - Class II / Class III D. D. Safety Glasses West - Cla	JOB NAME: Interior Texaco	JOB N	10:31-1-11809-	BORING N	10: B3	
WORK DESCRIPTION: Soil portings CHECK APPLICABLE HAZARDS: Heavy Equipment (2), Vehicles (2), Overhead (3), Tools (2), Temperature (2), Lifting (2), (Use Mechanical Means Instead), Site Housekeeping (3) (Clear Walkways to Prevent Slips, Trips, Falls), Awkward Work Area (1), Public (3), Security (4), Plants (1), Animals (1), Noise (3), Vibration (4), Dust (3), Radiation (1), UV exposure (1), Repetitive Motion (3), Suspected Contamination (3), Chemical Exposure (1), Flammable/Explosive (1) OTHER HAZARDS: EQUIPMENT ON SITE: (1) Rig DOCUMENTATION: (2) Boots - Safety Toe / Other (3) Hospital Map On Site? (3) Boots - Safety Toe / Other (4) Hospital Map On Site? (4) Boots - Safety Toe / Other (4) Hospital Map On Site? (4) Boots - Safety Toe / Other (4) Respiratory Protection Plan On Site? (4) Hard Hat (4) Confined Space Entry Plan On Site? (4) Ear - Plugs / Muffs / Both (5) Traffic Control Plan? (5) Gloves - Type: (4) Hard Hat (4) Current Fit Test? (5) Respirator (7) Cards/Certs Required? (2) List Below (5) Other PPE? (6) Discussed (6) (6) Discusse		a	DAT	E:10 /13/17	TIME: 8: 0	00
CHECK APPLICABLE HAZARDS: Heavy Equipment D, Vehicles D, Overhead D, Tools D, Temperature D, Lifting D, (Use Mechanical Means Instead), Site Housekeeping D (Clear Walkways to Prevent Slips, Trips, Falls), Awkward Work Area D, Public D, Security D, Plants D, Animals D, Noise D, Vibration D, Dust DX, Radiation D, UV exposure D, Repetitive Motion D, Suspected Contamination D, Chemical Exposure D, Flammable/Explosive DOTHER HAZARDS: EQUIPMENT ON SITE: DOLL Rig DOCUMENTATION: D, Safety Glasses D, Safety G,	SUBCONTRACTOR: Gentech A	aska	S&W RE	P: FLG/SYR S&V	V PM: VEV	<u> </u>
Lifting, Ed. (Use Mechanical Means Instead), Site Housekeeping & (Clear Walkways to Prevent Slips, Trips, Falls), Awkward Work Area Public & Security & Plants Animals Noise & Vibration & Dust & Radiation UV exposure Repetitive Motion & Suspected Contamination & Chemical Exposure Flammable/Explosive OTHER HAZARDS: EQUIPMENT ON SITE: Politic Rig DOCUMENTATION: Boots - Safety Toe / Other Medical Protection Plan On Site? Politic Rig Fall Protection Plan On Site? Post Politic Respiratory Protection Plan On Site? Plant Hat Medical Respiratory Protection Plan On Site? Plant Hat Medical Respiratory Protection Plan? Gloves - Type: Control Plan? Pace Shield Current Fit Test? Respirator Respirator Other PPE? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Becknes Pess Politic Right PPE Politic Respirator PRINT NAME PPE PRINT NAME	WORK DESCRIPTION: Soil berin	93				
Awkward Work Area □, Public No. Security No. Plants □, Animals □, Noise No. Vibration No. Dust No. Radiation □, UV exposure □, Repetitive Motion No. Suspected Contamination No. Chemical Exposure □, Flammable/Explosive □ OTHER HAZARDS: EQUIPMENT ON SITE: □ Rig DOCUMENTATION:	CHECK APPLICABLE HAZARDS: He	avy Equipment 🖾, V	ehicles 🏹 Overhead	d 🗹, Tools 🖟 Tem	perature 🙋,	
exposure	Lifting (Use Mechanical Means Inster	ad), Site Housekeepi	ng 🗷 (Clear Walkway	s to Prevent Slips, Tr	ips, Falls),	
OTHER HAZARDS: EQUIPMENT ON SITE: Doll Rig DOCUMENTATION: Be a ppe: Be a p	Awkward Work Area □, Public Д, Sec	urity⊠, Plants □, Ar	nimals □, Noise 🛍, 🕻	Vibration █, Dust █Ҳ	Radiation □,	UV
DOCUMENTATION: SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Confined Space Entry Plan On Site? Fall Protection Plan On Site? God Space Entry Plan On Site? Traffic Control Plan? Other Plan? Current Fit Test? Current Fit Test? Cards/Certs Required? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? Fawn Glassburn Fawn Glassburn DOCUMENTATION: Below PPE: Below Other PDE: Below Other PDE: Below Other PPE? List Below Other PPE? Document Title CARDS On? Fawn Glassburn DOCUMENTATION: Below Nest to Update SSHSP? CARDS On? Fawn Glassburn DOCUMENTATION: Below Nest to Update SSHSP? DOCUMENTATION: Below Other PPE? List Below O	exposure Repetitive Motion Sur	spected Contaminatio	n 🖟 Chemical Expo	sure □, Flammable/f	Explosive 🗆	
DOCUMENTATION: SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Fall Protection Plan On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Traffic Control Plan? Other Plan? Other Plan? Current Fit Test? Cards/Certs Required? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY Faun Glassburn Faun Glassburn Faun Glassburn Stan Glassburn Faun Glassburn	OTHER HAZARDS:			100		
DOCUMENTATION: SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Fall Protection Plan On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Traffic Control Plan? Other Plan? Other Plan? Current Fit Test? Cards/Certs Required? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY Faun Glassburn Faun Glassburn Faun Glassburn Stan Glassburn Faun Glassburn	EQUIPMENT ON SITE:	39				
SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Confined Space Entry Plan On Site? Traffic Control Plan? Other Plan? Current Fit Test? Cards/Certs Required? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE Seth Robinson Seth Robinson Fawon Glossburn Boots - Safety Toe / Other Safety Glasses Vest - Class II / Class III Far Hard Hat Glosses - Type: Gloves - Type:)				
SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Confined Space Entry Plan On Site? Traffic Control Plan? Other Plan? Current Fit Test? Cards/Certs Required? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE Seth Robinson Seth Robinson Fawon Glossburn Boots - Safety Toe / Other Safety Glasses Vest - Class II / Class III Far Hard Hat Glosses - Type: Gloves - Type:		ent			ent	
SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Confined Space Entry Plan On Site? Traffic Control Plan? Other Plan? Current Fit Test? Cards/Certs Required? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE Seth Robinson Seth Robinson Fawon Glossburn Boots - Safety Toe / Other Safety Glasses Vest - Class II / Class III Far Hard Hat Glosses - Type: Gloves - Type:	DOCUMENTATION	r. Dress		PPE.	o Les	
Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Site? Respiratory Protection Plan On Site? Confined Space Entry Plan On Site? Confined Space Entry Plan On Site? Far - Plugs / Muffs / Both Gloves - Type: Other Plan? Current Fit Test? Cards/Certs Required? List Below Other PPE? List Below Other PPE? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? Seth Pohin Son Glossburn Seth Pohin Son Glossburn August Seck New Seth Pohin Son Glossburn Seth Pohin Son Glossburn Glossburn Seth Pohin Son Glossburn Glossburn Seth Pohin Son Glossburn			Boots - Safety T			
Respiratory Protection Plan On Site?	Hospital Map On Site?		Safety Glasses			
Traffic Control Plan? Other Plan? Other Plan? Current Fit Test? Cards/Certs Required? List Below Other PPE? List Below Other PPE? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Beckner Seth Robin son Fawn Glassburn Authorited SHSP? The Company The Com	Fall Protection Plan On Site?		Vest - Class II / 0	Class III	Q	
Traffic Control Plan? Other Plan? Other Plan? Current Fit Test? Cards/Certs Required? List Below Other PPE? List Below Other PPE? List Below My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Beckner Seth Robin son Fawn Glassburn Authorited SHSP? The Company The Com	Respiratory Protection Plan On S	ite?	Hard Hat		Z	
Other Plan? Current Fit Test? Cards/Certs Required? List Below Other PPE? List Below Other PPE? List Below Hazards & Controls Discussed? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Beckher GTA Seth Robin Son Fawn Glassburn All Sall	Confined Space Entry Plan On Si	te?	- II (HA) H. (H.) - II (H.) - III (H.) - II (H.) -	uffs / Both		
Current Fit Test?				Coather, nitrile		
Cards/Certs Required? List Below Other PPE? List Below Hazards & Controls Discussed? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? Seth Pobin Son Fawn Glassburn A Company Saw Company Saw Company Saw Company Saw Company						
Hazards & Controls Discussed? Need to Update SSHSP? My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? JAMES BECKNET SETUROSINA SON FAUND Glassburn AUDITATION OF THE SHAPE OF THE STAPE OF	Current Fit Test?					
My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Becknes R. Ent Seth Robinson Fawn Glassburn All PPE CARDS On? All All PPE CARDS O	Cards/Certs Required?	List Below	Othe	er PPE? List Below		
My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Becknes R. Ent Seth Robinson Fawn Glassburn All PPE CARDS On? All All PPE CARDS O			-	~		
My signature below confirms that the above hazards, controls and plans have been discussed and that I understand them. PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? James Becknes R. Ent Seth Robinson Fawn Glassburn All PPE CARDS On? All All PPE CARDS O	MONTH ATTACKS A TANAFATTA	restant to	741-107-60	A NEW COOK THE		
PRINT NAME SIGNATURE COMPANY HAS ALL PPE CARDS On? Signate Beckner BUSING Frank Seth Robinson Fawn Glassburn Daniel Saw Daniel S	Hazards & Controls Disc	ussed?	Need to Upo	date SSHSP?		
Dance Beckner A GTA CARDS On? Signature COMPANY CARDS On? Signature GTA CARDS On?	My signature below confirms that the ab	ove hazards, controls	and plans have been	discussed and that I		
James Beckner JA GTA GTA Seth Robinson But Saw GARAND SAW GO	PRINT NAME	SIGNA	TURE	COMPANY		
Fawn Glassburn Fawl SAW	James Beikher	16		OTA		N
Seth Robinson 300 Selv 0 7 Fawn Glassburn 300 Rarsol SAW 0 0	1/22 5 -	1 R. Low	1	674		X
	(6 -1 -2)	301	20	520		Z
	Fawn Glassburn	Fall	Parsul	3467		X

DAILY SAFETY MEETING LOG

JOB NAME: Interior Texaco		JOB NO	0:31111809	-OOL BORING NO	B4								
LOCATION: Delta Alas	ka		DAT	TE: 10 114117 TI	ME: 7 :0	0							
SUBCONTRACTOR: Geotek A)	aska		S&W RE	P: FLG/SYR S&W	PM: WVE	EW							
WORK DESCRIPTION: Soil Berings Monitor Wells													
CHECK APPLICABLE HAZARDS: Heav	y Equipmer	nt,⊠, Vel	nicles ☑, Overhea	d 🗖, Tools 🗹, Tempe	erature ⊈,								
Lifting 🗹 (Use Mechanical Means Instead), Site Housekeeping 🗹 (Clear Walkways to Prevent Slips, Trips, Falls),													
Awkward Work Area □, Public □, Securi						UV							
exposure □, Repetitive Motion □, Susp			The second secon	A TOTAL OF THE STATE OF THE STA									
			Z		12277								
OTHER HAZARDS: EXAMPLE OF THE PROPERTY OF THE	Lurk	ness				_							
EQUIPMENT ON SITE: Dell Rig						_							
					+	_							
		Present			Present								
DOCUMENTATION:				2									
			Boots - Safety Toe / Other										
Hospital Map On Site?			Safety Glasses										
Fall Protection Plan On Site?			Vest - Class II / Class III										
Respiratory Protection Plan On Site?			Hard Hat										
Confined Space Entry Plan On Site?			Ear - Plugs / Muffs / Both										
Traffic Control Plan?			Gloves - Type:	Leather, With									
Other Plan?			Face Shield										
Current Fit Test?			Respirator										
Cards/Certs Required? Li	st Below		Oth	er PPE? List Below									
		-											
·	7.77 - 40		- meet-ca	TOWNS VY		3 = 1							
Hazards & Controls Discus	sed?		Need to Up	date SSHSP?									
My signature below confirms that the above	e hazards,	controls a	and plans have beer	n discussed and that I u	nderstand th								
PRINT NAME SIGNATURE		UDE	COMPANY	HAS ALL	PPE On?								
PRINT IVAIVE	, ,	A CONTRACTOR OF THE PARTY OF TH	URE	COMPANY	CARDS	OIII							
James Berkner	pl	A	URE	GTA	CARDS	X							
~ 1	ph R.	5-1	t-	GTA GTA									
James Beckner	Je la	5-1	t-	GTA GTA		×							
James Beckner BOBBY ERNST	Jan Jan	E-1	t sale	GTA		X							
James Beckner POBBY ERNST Jeth Rominson	Jan Jan	£-1	t de la contraction de la cont	GTA		N N							
James Beckner BOBBY ERNST Seth Rominson	Jan Jan	£	t o	GTA									

Daily Safety Mooting

10/15/17

Interior Texaco

Awknard work positions.

Hearing protection

Name

Print Logan Hormanns Erry Harding FawnGhasburn Seth Robinson

Signature

Daily Safety Meeting

Interior Texaco

10/16/17 Fam

Todays Topics
Ground conditions, ice, uneven surfaces
Roods are frost covered a slippery
Hydration in the cold
Long working hours

Name
Print
Logan Hermanns
Fill Hardit
Seth Robinson
Fawn Glassburn

Signature Segum lycein 21/1/2-Zn Rici

DAILY MEETING LOG

Project: Interior Texaco S&W Project #: 31-11809-006					Date:					
Job Location: Delta	Alaska									
Job Description: Soll Bo	onings									
HAZARD IDENTIFICATION	PPE									
Has Safety Plan been reviewed and acknowledged by personnel? Has Work Plan/scope been reviewed by field person Have changed conditions been addressed and discurbance of the Safety Plan need to be updated? Is the Safety Plan on site? Are directions to nearest medical facility on site? Is Fall Protection Plan on site? Is Respiratory Protection Plan on site? Is Confined Entry Plan on site? Is Traffic Control Plan on site? Other Plans: Selected Task/Topic*	y field Yes onel? Yes ssed? Yes Yes Yes Yes Yes Yes Yes Yes	Yes			Safety Toe Boots					
Using hands	pinch points			be vigalent, wear gloves						
*For a full list of tasks and associated hazards anticipated for Equipment on site: My signature below confirms that the site specific to the site of the site o	ecific safety plan, proje	77	genera		have been discussed and t	that I unde	rstand the	em.		
Fix Holds	1/1/1/2		Judge		1617/17					
Lugan Hermanus Fausa Glaschum Sean Robinson	Super Hayesin Sale Past					10/10/10	17/1	7		

SUB-SLAB SOIL-GAS SAMPLING LOG

Owner/Occupant			Project number 1809 = 008
Location Buffal	o Service C	enter	Project name Interior Texaco
Del	ta Junction	AK	Date and time 11/03/17 @ 0900
Weather Cloud		7. 5	Sampling personnel Sheila
Sample NoS	3-01		Time (start) <u>Ø95Ø</u> Time (end) <u>IØ28</u>
Duplicate			Time (start)Time (end)
Soil-gas port type	eflon		Date installed 11/01/17
Installation depth	0.5	feet bgs	Time installed 1410
Canister ID	10781		Laboratory eurofine Air Texics
Canister volume (L)	6		Analysis EPA TO-15
Initial canister vacuum (in. Hg)		_	
Final canister vacuum (in. Hg)	- 8	_	Notes: Sample Port Location:
Leak Detection Tests:	Pass / Fail		garage /shap
Shut-in test:			- Gen raige / 3 heep
Vacuum applied to s	ample train - 26	in. Ha	
Drop in vacuum after		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7
Tracer test:			
Helium applied at prob	e interface 60 00	o ppm	
Probe and sampling line			
	train length 3		
	rain volume 12.67		
Time	Helium (ppm)		·
09.48.00	0	1	
09:48:05	0		
09:48:10	0		
09:48:15	0		
09:48.20	0		V
09:48:25	Ø		
0.5			
			\(\frac{1}{2} \)

SUB-SLAB SOIL-GAS SAMPLING LOG

Owner/Occupant			Project number 1809 - 208
Location Butta	lo Service (enter	Project name Interior Texaco
De.	ta Junation	Ak.	Date and time 11/02/17 @ 1030
Weather Clou	rdy, ~ 20°F		Sampling personnel Sheila
Sample NoS	3-02		Time (start) 1108 Time (end) 1154
Duplicate S	3-102		Time (start) 1258 Time (end) 1144
Soil-gas port type	Teflon		Date installed 11/01/17
Installation depth	0.5	_feet bgs	Time installed 1445
Canister ID 6 L 0 4 7		-	Analysis EPA TO-15
		-	Allaysis CPA 10 15
Initial canister vacuum (in. Hg)		_	2 1 2 1 . 1
Final canister vacuum (in. Hg)	-9/-7	9	Notes: Sample Port Location:
			Northwest corner of building.
	Pass / Fail		Customer area for time services
Shut-in test:		100	
	ample train <u>28</u>		
Drop in vacuum after o	one minute 0.5	_in. Hg	·
Tracer test:	- Interferen 20 ana	12.12.12	
Helium applied at probe			1
Probe and sampling line	train length 5.5	- 19 A. P. A. A. A.	-
23007.00	ain volume 33,23	-	
cample to	an volume 33,33	-1116	
Time	Helium (ppm)	7	
11:05:00	2	Ī	V
11:05:05	0		
11:05:10	Ø		
11.05:15	0		
11:05:20	0		
11:05:25	Ø		
11:05:70	0		
		1	Marian and the second s

SUB-SLAB SOIL-GAS SAMPLING LOG

Owner/Occupant			Project number 1809 - 008
Location By AP.	la Service (Center	Project name Interior Texaco
7 PO 77 1 TO 10 TO			Date and time 11/03/17 (a)
Weather Clone	dy, nac)°F	Sampling personnel Sheila
Sample NoSS	-03		Time (start) 1300 Time (end) 1337
Duplicate			Time (start)Time (end)
Soil-gas port type	tellon	<u> </u>	Date installed 11/0 i/17
Installation depth(0.66	feet bgs	Time installed 1530
Canister ID <u>Ø</u> <u>Ø</u> <u>Ø</u> Canister volume (L)			Laboratory eurofins Air Toxics Analysis EPA TO-15
Initial canister vacuum (in. Hg)	- 30		
Final canister vacuum (in. Hg)			Notes: Sample Port Location:
Leak Detection Tests: F	Pass / Fail		Near west side of gas statio
Shut-in test:	3.59 3.1 20		
Vacuum applied to sa	imple train -28	in. Hg	
Drop in vacuum after c	JIDY WAS BODY		
Tracer test:			
Helium applied at probe	interface 80,000	ppm	
Probe and sampling line			
	rain length 3	- 77 - 77 - 77	
	ain volume 12.6		6
Time	Helium (ppm)		
12:58:00	0		
12:58:05	D)		
12:58:10	Ď		
12:58:15	Ø		
12:58:20	0		
12:58:25	0		

Sub slab

Sub ple cations 90,81) 26! 14 25'

23.23 × 3 = 69.59 ×5 = 118.15 =>30 seconds = 100 mL

Address		Project Number	1809-008
Owner/Occupant	*	Project Name	Interior Texaco
Mailing address		Date	11/01/17
		Time	1240
Telephone		Geo/Eng	SMH
Relative Humidity		Barometric Pressure	
Sample Location	South east corn off ground sur	er of shop.	
	_ IA-01	Time	1/01/19 - 11/02/19 1245 - 1300
(L. Y//)//* YUV	TENTER AND	- Time	
	B735M	-	
	NA	1	eurofin Air Toxics
	TO-15	Lab_	Euroling Hirloxics
_			
Initial Vacuum			
Final Pressure			
Desired Flow Rate			
Actual Flow Rate		Padiello 13 passive so	imples
Notes: _	Temperature near	sampler: 60	0°F (11/01/17@1554)
<u>-</u>			

Address		Project Number 1809 - 008
Owner/Occupant		Project Name Interior Texaco
Mailing address		Date 11/01/17
		Time 1250
Telephone_		Geo/Eng Sm H
Relative Humidity		Barometric Pressure
Sample Location	00	of shop. Five feet
Sample Number	IA-02	11/01/17 - 11/02/17 Time 1254 - 1301
		Time
	B736M	
	N/A	COT
	(passive sampler)	Lab eurotins AirToxics
Analysis	TO-15	
rando de		
Initial Vacuum _		
Final Pressure_		
Desired Flow Rate _		10.00
Actual Flow Rate		Radiello 130 passive samples
Notes:	Temperature near sa	impler \$ 65° F (11/01/17 at 1555)

Address		Project Number 1809 - 208
Owner/Occupant		Project Name Interior Texaco
		Time 1255
Telephone		Geo/Eng Sm H
Relative Humidity		Barometric Pressure
	0 1 00	ground surface
	IA-03	
1 no 2 abr 2 hat 1 ha 7	0727 M	Time
	8737M	_
Purge Rate	(passive sample TO-15	Labeurofins Air Toxics
Initial Vacuum		
Final Pressure		
Desired Flow Rate		
Actual Flow Rate		Padrello 130 passive samples
Notes:	Temperature nea	r sampler: 65°F (11/01/17@ 1556)

Address	11	Project Number 1809-008
Owner/Occupant	1	Project Name Interior Texaco
Mailing address		Date 11/01/17
		Time 1257
Telephone		Geo/Eng_SmH
Relative Humidity		Barometric Pressure
Sample Location	A	ter. Six feet off
	IA-04	il/0:/17 - 11/03/17 Time 1258 - 1310 Time
Canister ID	B738M	
Flow Controller ID	N/A	
Purge Rate	(passive sampler)	Labouratins Air Toxics
Analysis	TO-15	
Initial Vacuum Final Pressure		
Desired Flow Rate		0 1-11 120
Actual Flow Rate		Radrello 130 passive samples
Notes:	Temperature near so	10 F (11/01/17 @ 1557) 705°F

Address		Project Number 1309 - 008
Owner/Occupant		Project Name Interior Texaco
		Date 11/01/17
		Time 1259
Telephone		Geo/Eng SmH
Relative Humidity		Barometric Pressure
Sample Location _		of gas station. Five
Sample Number	IA-05	11/0:/17 - 11/02/17 Time 1300 - 1313
Duplicate	_	Time
Canister ID	B739M	1
Flow Controller ID	N/A	
Purge Rate	(passive sampler)	Labourotins Air Toxics
	TO-15	
Initial Vacuum _		- 10
Final Pressure		
Desired Flow Rate		
Actual Flow Rate		Padiello 130 passive samples
Notes:	Temperature near so	impler: 70° F (11/01/17 @ 1600)
	en en franch en en en en en en	69

APPENDIX C SOIL BORING LOGS

				LOG (OF GEOPR									
Date	Started	10/12/17	Location	Southern extent of form	er USTs location									
	Complet	10/12/17				1	уріса	I Rur	Lengtl	า 5 feet				
Total	Depth (1	ft) <i>45.0</i>	Drilling (Company: GeoTek Alaska	, Inc.	ŀ	lole D	iame		2.5 inche	s			
Depth (ft)	Probe Run	and probing m approximate	ort text for a pethods. The boundaries b	oil Description oroper understanding of the si stratification lines indicated be etween soil types. Actual boil d inside sample tubes during	ubsurface materials elow represent the undaries may be	Depth, ft.	Symbol	PID, ppm	Well Construction	Descr	Number, iption, esults	Depth (ft)		
		\Dark brown, I	Poorly Grade	ed Gravel with Sand (GP);	moist; trace fines	0.4	ىپە	377.2				<u> </u>		
- - - - - - - - - - - - - - - - - - -				ed Sand with Gravel (SP); d Sand with Silt (SP-SM); r		- 5.0		389.1 412.4 2246	00000000000000000000000000000000000000			10		
F"		Red-brown, F	oorly Grade	d Sand with Gravel (SP);	moist.	10.8		3118	00000	IT-B1-1		"-		
		Gray, Silt with	Sand (ML)	; moist; trace gravel; petrol	eum odor.	12.5		1879	000			15		
20 25		gravel.		d Sand with Gravel (SP); I		- 15.4		2505 112 35.5 5.2 86.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			20		
25 SW Rev. 100: SW 100		Gray, Poorly fractured grav	Graded Gra	vel with Silt and Sand (GP	P- <i>GM)</i> ; wet;	- 40.0 - 45.0		9.1 30.2 365.5	Dung Drilling A	IT-B1-2 MW-9		35		
GPJ 12/11/17		В	ORING CO	MPLETED OCTOBER 12,	2017.									
20447.(1			<u>DTES</u>		1	1			II.		1		
2 C49.600.	may have Groundwa considere	slid down in the	tube prior to ated above, w	in the upper part of the run, tremoval from the ground. vas estimated during probing ation of symbols.	· _					or Texaco Junction, AK				
	sample; G	GE = geotechnica	l sample; AR <u>LEG</u>	nal resistivity sample; EN = e = archeological sample. SEND		LC	G (OF (GEO	PROBE	B1/MW-	9		
3 H		ic Tube - No So ic Tube with Soi	•	Piezometer Scree Bentonite-Cement						3	1-1-11809-0	09		
GEOPROBE WELL	- Run No Ground	Water Level AT)	Bentonite Chips/P Bentonite Grout	'ellets	SHA Geotec	NNO hnical a	N &	WILS	ON, INC.	Figure	ļ		

				LOG OF GEOPR	OB	BE						
Date S	tarted	10/17/17	L	ocation Northwest corner of main building		Gr	ound	Ele	evation:	NA		
Date C	omplet	ted 10/17/17				Ту	pical	Rui	n Lengtl	n 5 feet		
otal D	epth (1			rilling Company: GeoTek Alaska, Inc.		Но	le Di	ame	eter:	2.5 inche	ne .	
					\top				Б Б	2.0		Τ
Depth (ft)	Probe Run	and probing me approximate	etho bou	Soil Description ext for a proper understanding of the subsurface materials ds. The stratification lines indicated below represent the indaries between soil types. Actual boundaries may be soil shifted inside sample tubes during extraction.	Depth. ff.	Septin, in:	Symbol	PID, ppm	Well Construction	Desci	Number, ription, lesults	Depth (ft)
-		\Asphalt.			0.2	ŀ		77.5				_
		Gray, Poorly C	Gra	ded Sand with Gravel (SP); moist; trace fines.	1.5			937.6				-
	H	Red-brown to	oliv	e-brown to dark brown, Poorly Graded Sand with		:		937.0				5- 5- - - - 10-
5	H	Silt (SP-SM);	mo	st; petroleum odor.	5.4			4005				5-
	ш	0 0 ,		to red-brown, Poorly Graded Sand (SP); moist;		ŀ		1005				_
		• •		eum odor; interbedded with olive-brown, Silt with				1215				-
10			oisi	r; from 5.6 to 7.0 feet, 7.8 to 8.5 feet, and 11.5 to								10-
'	ш	11.8 feet.						1242				'-
	ш											-
		Red-brown. Po	Poor	ly Graded Sand with Gravel (SP); moist; trace fines;	13.	5		946.3				-
15	HL	petroleum odd		, c. aucu cu c. avc. (c. /,c.c., aucccc,	15.	5						15-
		1		ly Graded Sand (SP); moist; trace gravel; trace	16.			1285				_
	HI.	fines; petroleu		. ,				1255		IT-B10-1		-
				ay-brown, Poorly Graded Gravel with Sand (GP);		c	,07					20-
20			_	w 38.5 feet; fractured gravel; trace fines.		Г		798.7				20-
				3 · · · · · · · · · · · · · · · · · · ·				648.3				-
							009					-
25	ш					- 1	0.0					25-
	ш						- V 9	427.3				-
	HI.					- 1		477.5				_
						d	`ŏ₫					-
)							000	429 <u>9</u>				30-
	ш					c		467				-
	П						° 0°					-
35	ш											35-
	ш						$^{\circ}$ $^{\circ}$	470.6				-
	ш							334 7		IT-B10-2		_
						þ	7		ā Ā			-
ŀ0	4				40.	0	٠٠٠		Drilli Illi			40-
				NO COMPLETED COTOCED (5.55.5					During Drilling			-
		ВС	URI	NG COMPLETED OCTOBER 17, 2017.					ď			-
45												45-
٦٧												+ 5-
												-
												-
				NOTES						<u> </u>		Ц
1 In	some c	ases where recov	ver	NOTES was low in the upper part of the run, the soil sample								
m	ay have	slid down in the t	tube	e prior to removal from the ground.								
		ater level, if indica d approximate.	ated	above, was estimated during probing and should be						ior Texaco		
		• •	s an	d explanation of symbols.					Delta .	Junction, AK		
				R = thermal resistivity sample; EN = environmental								
				mple; AR = archeological sample.		ı	\bigcirc	3 ()F C	EOPROE	RF R10	
			–	<u>LEGEND</u>		_	-50	<i>-</i>	, GI		, L D 10	
. —		ic Tube - No Soil		,						2	1-1-11809-0	nα
_	2" Plast Run No	ic Tube with Soil	ı Ke	covery							1 1-11008-0	00
		Water Level ATD	D		SH	ΑN	INO	N_&	WILS	ON, INC.	Figure	<u> </u>
-					Geot	echn	ııcal ar	nd En	vironmenta	a Consultants	ı iyulc	•

		LOG OF GEO	<u> JPRO</u>							
Date Started	10/17/17	Location Western extent of former USTs		G	round	d Ele	vation:	NA		
Date Compl	eted 10/17/17			T	ypica	Rur	n Lengtl	n 5 feet		
Total Depth	(ft) 40.0	Drilling Company: GeoTek Alaska, Inc.		Н	ole D	iame	ter:	2.5 inche	es	
Depth (ft)	Refer to the repo and probing me approximate l	Soil Description ort text for a proper understanding of the subsurface mat sthods. The stratification lines indicated below represent boundaries between soil types. Actual boundaries may it if soil shifted inside sample tubes during extraction.	the	Depth, ft.	Symbol	PID, ppm	Well Construction	Sample Desci	Number, ription, Results	Depth (ft)
-5 10 =	Gray-brown, F	Poorly Graded Gravel with Sand (GP); moist; trace	/	<u>o</u>).2		12 477 918 839 338.1	>0	IT-B11-1		5
-15	petroleum odo	Poorly Graded Gravel with Sand (GP); moist to we	fines;	20.0		447.9 557.5 24 16.8				20
35 - 35				40.0		56.5 5.3	During brilling ∤∕	IT-B11-2		30 35
	BO	ORING COMPLETED OCTOBER 17, 2017					During			45
·		NOTES								<u> </u>
1. In some	cases where recov	very was low in the upper part of the run, the soil samplube prior to removal from the ground.	9							
2. Groundy		ted above, was estimated during probing and should be						ior Texaco		
 Refer to CT = co 	KEY for definitions	and explanation of symbols. ; TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample. LEGEND			LO	G (Junction, AK		
. ⊢	stic Tube - No Soil	Recovery						Q.	1-1-11809-0	nα
Run N	stic Tube with Soil lo.	Recovery	<u> </u>			N	\A.''' C			
	d Water Level ATD		S	HAI eotech	NNO inical ai	N &	wironmenta	ON, INC. al Consultants	Figure)

		LOG OF GEO	PRC	DBE						
Date Started	1 10/12/17	Location Eastern extent of former USTs location	on	G	round	d Ele	vation:	NA		
Date Compl	eted 10/12/17			Т	уріса	l Rur	n Lengtl	h 5 feet		
Total Depth		Drilling Company: GeoTek Alaska, Inc.		Н	ole D	iame	ter:	2.5 inche	es	
Depth (ft)	Refer to the repo and probing me approximate b	Soil Description of text for a proper understanding of the subsurface mate thods. The stratification lines indicated below represent tooundaries between soil types. Actual boundaries may be tif soil shifted inside sample tubes during extraction.	he	Depth, ft.	Symbol	PID, ppm	Well Construction	Sample Descr	Number, ription, results	Depth (ft)
	Dark brown, P gravel; trace fil Dark brown, P	coorly Graded Gravel with Sand (GP); moist; fracture		0.3		11.7 577.3 685.5 1226	>0			5
- - - -15 = - -	trace fines; wit moist; from 14 Olive-brown to	gray, Poorly Graded Sand with Gravel (SP); moist; tha bed of Poorly Graded Sand with Silt (SP-SM); .1 to 14.5 feet.	1	12.0 17.0		953 1356		IT-B2-1/IT-B2	-3	15
-20 = - 	with bed of dar	oist to wet below 36.5 feet; fractured gravel; trace firk brown, <i>Poorly Graded Sand with Gravel (SP)</i> ; more 27.5-28.0 feet.				16				20
-35 -35 40				40.0		15.4 10.2 17.8	During Drilling ∱	IT-B2-2		35
 45 	ВС	DRING COMPLETED OCTOBER 12, 2017.					Ō			45
		NOTES								
1. In some	cases where recov	rery was low in the upper part of the run, the soil sample ube prior to removal from the ground.								
2. Groundy		ted above, was estimated during probing and should be						ior Texaco		
 Refer to CT = co 	KEY for definitions rrosion test sample	and explanation of symbols. ; TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample. <u>LEGEND</u>			LO			EOPRO		
. ⊢	stic Tube - No Soil							3.	1-1-11809-0	ng
Run N		,	<u> </u>	CH V		NI O	WII C			
∑ Groun	d Water Level ATD			う 用A Geotech	ININO Inical a	IN & nd Env	vironmenta	ON, INC. al Consultants	Figure)

				LOG OF GEOF	ROE	1							
	Started	10/13/17	Location	East of main building					evation:	NA			
	Comple	10/13/17							n Lengtl	h 5 feet			
Total	Depth	(ft) 45.0	Drilling C	Company: GeoTek Alaska, Inc.		Н	ole D	iame	es				
Depth (ft)	Probe Run	and probing me approximate l	Soil Description sport text for a proper understanding of the subsurface materials methods. The stratification lines indicated below represent the te boundaries between soil types. Actual boundaries may be rent if soil shifted inside sample tubes during extraction.				Symbol	PID, ppm	Well Construction	Desci	Number, ription, Results	Depth (ft)	
10		Gravel (SP); n	noist; trace to om 5.0 to 5	to gray-brown, <i>Poorly Graded Sand with</i> fines; with bed of olive-brown, <i>Silty Sand</i> .4 feet; and dark brown, <i>Peat</i> ; moist; from 10.7 feet.				23.1 7.2 13.7 13.1 9.6	\$000 0000 0000 0000 0000 0000	IT-B3-1		10 15 20 1	
700 25 25 25 25 24 26 26 26 26 26 26 26 26 26 26 26 26 26				ray to olive-gray, <i>Poorly Graded Gravel wi</i> below 40.0 feet; trace fines.	24	0			Drilling I/C	IT-B3-2 MW-10		20	
31-1-11809-009.GPJ 21-20447.GPJ 12/11/17		ВС	DRING COM	MPLETED OCTOBER 13, 2017.	45	5.0			During			45	
20447.				OTES									
1. Tal.	may have	slid down in the t	ube prior to r	in the upper part of the run, the soil sample removal from the ground.					late:	ior Tays			
9. 600 2.	Groundwater level, if indicated above, was estimated during probing and should be considered approximate.									ior Texaco Junction, AK			
							G O	F		PROBE		10	
	2" Plas	tic Tube with Soil	•	Bentonite-Cement Grout	31-1-11809-009								
GEOPROBE WELL	– <i>Run N</i> e Ground	o. I Water Level ATD	Bentonite Chips/Pellets Bentonite Grout	SHANNON & W Geotechnical and Environn				k WILS	SON, INC. Figure)		

				LOG OF GEOPF	<u>₹(</u>								
Date S	Started	10/13/17	_ ∟	ocation Northern extent of former USTs				evation:	NA				
Date C	Complet	ted 10/14/17				Т	уріса	l Ru	ın Lengti	h 5 feet			
Total I	Depth (f	ft) 45.0	D	rilling Company: Geo <i>Tek Alaska, Inc.</i>		Н	lole D	iam	eter:	2.5 inche	2.5 inches		
\neg		1010	Soil Description						6	2.0			
Depth (ft)	Probe Run	and probing me approximate l	etho bou	ext for a proper understanding of the subsurface materials ds. The stratification lines indicated below represent the ndaries between soil types. Actual boundaries may be soil shifted inside sample tubes during extraction.		Depth, ft.	Symbol	PID, ppm	Well Construction	Desci	Number, ription, Results	Depth (ft)	
- - - - - - - - - - - - - - - - - - -		odor.		y-brown, Poorly Graded Sand with Gravel (SP);		9.0		316.8 688.3 629.1	3	IT-B4-1		5:	
-10 - - - -15 - - - -20		moist; trace fir	nes	; petroleum odor; with bed of dark brown, <i>Silty Sand</i> e gravel; from 15.0-16.3 feet.		24.2		998.4 395.1 172.7 21.8	7			10-	
- 25 - 25 - 30 - 30 - 35 - 35		(GP); moist to strong petroleu	we um	ht gray-brown, <i>Poorly Graded Gravel with Sand</i> It below 36.5 feet; fractured grave; trace fines; odor; with bed of olive-brown, <i>Poorly Graded Sand</i> It gravel; trace fines; from 27.0 to 30.0 feet.		39.0		389.8 373.3 56.5	<u>₹</u>	IT-B4-2		30-	
-40 - - - - - -45		Olive-brown, F	Poo	rly Graded Gravel with Silt and Sand (GP-GM); wet.		45.0		69.5	During			40 -	
- - - -		ВС	ORI	NG COMPLETED OCTOBER 14, 2017.								-	
				<u>NOTES</u>									
1. Ir m	n some ca nay have	ases where recoversity slid down in the t	very tube	was low in the upper part of the run, the soil sample prior to removal from the ground.									
		ater level, if indica d approximate.	ated	above, was estimated during probing and should be						ior Texaco Junction, AK			
BORING COMPLETED OCTOBER 14, 2017. NOTES 1. In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols. 4. CT = corrosion test sample; TR = thermal resistivity sample; EN = environmental sample; GE = geotechnical sample; AR = archeological sample. LEGEND 2" Plastic Tube - No Soil Recovery 2" Plastic Tube with Soil Recovery Run No. Ground Water Level ATD SHAN Geotechr							LO	G		EOPRO			
3		ic Tube - No Soil ic Tube with Soil		· ·	31-1-11809-009								
	Run No.					SHANNON & WILSON, INC.							
¥	☑ Ground Water Level ATD							SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure					

	LOG OF GEOPROBE													
Date	Date Started Location Property boundary, north of former USTs							Grou	nd Ele	evation:	NA NA			
Date	Comp	leted	10/14/17				Ī	Гуріс	al Ru	n Lengt	th 5 feet			
Total	Depth	(ft)	45.0	Drilling	Company: GeoTek Alas	ska, Inc.		Hole	Diam	eter:	2.5 inche	2.5 inches		
Depth (ft)	Probe Run	Re	nd probing me approximate b	ort text for a othods. The boundaries b	Soil Description proper understanding of the stratification lines indicate between soil types. Actual and inside sample tubes dur	e subsurface materials d below represent the boundaries may be	Depth, ft.	Symbol	PID, ppm	Well Construction	Desci	Number, ription, Results	Depth (ft)	
10 15 15 120 25 130 135		g fr CC R trr R G G fr G	SP-SM); mois ray-brown; Poom 1.2 to 2.2 blive-brown, Seed-brown to 1 ace fines; per led-brown, Poom 17.0 to 1 brown 17.0 to 1 brown to 1 brown to 1 brown, Poom 17.0 to 1 brown	st; trace orgony Grade 2 feet. Silty Sand (light red, P troleum od gray-brown noist; trace orly Grade 7.5 feet an	oorly Graded Sand (SP	ments; with bed of P); moist; trace fines; i); moist; trace gravel; aded Sand with interbedded with avel (SP-SM); moist;	= 6.8 7.2 - 10.0		7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	0.00 0.00			10	
45 	Ш		ВС	ORING CO	MPLETED OCTOBER	14, 2017.	45.0	0	٥				45	
					OTES									
1.	in some may ha	e case ve slic	s where recover the second down in the top	ery was low ube prior to	in the upper part of the rure removal from the ground.	ın, the soil sample								
	Groundwater level, if indicated above, was estimated during probing and should be considered approximate.										rior Texaco Junction, AK			
				•	ation of symbols.							•		
BORING COMPLETED OCTOBER 14, 2017. NOTES								B 5/MW -1	11					
3			ube - No Soilube with Soil	•	Bentonite-Cen	reen and Sand Filter nent Grout					3	1-1-11809-0	09	
Ā	Run No. Bentonite Chips/Pellets						SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure)	

			LO	G OF GEOPRO	BE	•						
Date Sta	rted	10/15/17	Location West of main build	ing	G	round	l Ele	vation:	NA			
Date Co	mplete	ed 10/15/17			Т	ypical	Run	Lengtl	n 5 feet			
Total De	pth (ft	40.0	Drilling Company: GeoTek A	laska. Inc.	Н	lole Di	ame	ter:	2.5 inche	2.5 inches		
Depth (ft)		Refer to the repo and probing me approximate b	Soil Description It text for a proper understanding of thods. The stratification lines indicate oundaries between soil types. Act if soil shifted inside sample tubes of	f the subsurface materials ated below represent the ual boundaries may be	Depth, ft.	Symbol	PID, ppm	Well Construction	Sample Descr	Number, iption, lesults	Depth (ft)	
		Asphalt. Gray-brown, P Gray-brown wi (SP-SM); mois Red-brown to I fines; petroleu with Silt (SP-S gray-brown, Si Red-brown, P odor. Gray-brown, P petroleum odor Gray-brown, P	th red-brown laminations, Poorly t; trace gravel; trace organics, resight red-brown, Poorly Graded Sm odor; with bed of red-brown, PM); moist; from 12.0 to 12.7 fee lit with Sand (ML); moist; from 1 corly Graded Sand with Silt (SP)	(SP); moist; trace fines y Graded Sand with Silt pots; petroleum odor. Sand (SP); moist; trace Poorly Graded Sand tt; and with bed of 2.7 to 13.0 feet. -SM); moist; petroleum (SP); moist; trace fines; (GP); moist to wet	7.5 7.5 20.0 22.5	00°0°	499.9 4033 3973 2867 3120 3168	50	IT-B6-1/IT-B6	-3	10	
-30 		ВС	RING COMPLETED OCTOBEI		40.0		259 270.2 ⁵	Dunng Dπiling ∱	IT-B6-2		30	
<u>-</u> -												
1 ln o	omo oo	aaa whara raaaw	NOTES ery was low in the upper part of the	orun the soil comple								
may	have s	slid down in the to	ube prior to removal from the grour	nd.				Intor	ior Texaco			
		er level, if indicate approximate.	ed above, was estimated during pr	robing and should be					Junction, AK			
4. CT	= corros	sion test sample	and explanation of symbols. TR = thermal resistivity sample; E sample; AR = archeological samp <u>LEGEND</u>	EN = environmental le.		LO			EOPRO			
•=		Tube - No Soil	•						3 -	1-1-11809-0	09	
L R	un No.	Tube with Soil	Recovery	<u> </u>	0111			\A/!! C				
NOTES 1. In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols. 4. CT = corrosion test sample; TR = thermal resistivity sample; EN = environmental sample; GE = geotechnical sample; AR = archeological sample. LEGEND 2" Plastic Tube - No Soil Recovery 2" Plastic Tube with Soil Recovery 2" Plastic Tube with Soil Recovery 31-1-11809-009 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure)						

	LOG OF GEOPROBE															
Date	ate Started Location West of main building							Ground Elevation: NA								
Date	Comp	letec	l 10/15/17				1	Гуріса	l Rui	n Lengti	h <i>5 f</i> eet					
Tota	I Depth	ı (ft)	45.0	Drilling	Company: GeoTek Alaska	a, Inc.	Hole Diameter: 2.5 inches									
Depth (ft)	Probe Run	R	and probing me approximate b	ort text for a pethods. The boundaries b	Soil Description text for a proper understanding of the subsurface materials lods. The stratification lines indicated below represent the undaries between soil types. Actual boundaries may be f soil shifted inside sample tubes during extraction.			Symbol	PID, ppm	Well Construction	Desci	Number, iption, lesults	Depth (ft)			
10 		F n	Red-brown to onoist; trace organist; trace organist; trace organist; trace organist; fractured organist; f	olive-gray, ganics, roc olive-gray, d gravel; tr	, Poorly Graded Sand with Poorly Graded Sand with ots; petroleum odor. Poorly Graded Sand with ace fines; petroleum odor.	Silt (SP-SM); Gravel (SP);	0.2 0.8		240 2941 4199 3240 4271 1618 1507 638 104.8 322.2 429.7				10			
1 40 26. 37K	In some	e case	es where recov	<u>No</u> ery was low	MPLETED OCTOBER 15, OTES r in the upper part of the run,		- 45.0			During Drilling (IT-B7-2 MW-12		40			
7 fd9 2.	may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols.									Inter	ior Texaco					
9-008.										Delta .	Junction, AK					
4. CT = corrosion test sample; TR = thermal resistivity sample; EN = environmental sample; GE = geotechnical sample; AR = archeological sample. LEGEND 2" Plastic Tube - No Soil Recovery								B7/MW -1	12							
	2" Pla	astic ⁻	Tube with Soil	,	Bentonite-Cemer	nt Grout	31-1-11809-009						09			
ž Ž	Run No. ☐ Run No. ☐ Ground Water Level ATD ☐ Bentonite Chips/Pellets ☐ Bentonite Grout					Pellets	SHA Geotec	NNO hnical a	N &	WILS vironment	ON, INC. al Consultants	Figure)			

						LOG (OF GEOPR	ROE	3E	1									
Date	Starte	d 10/17/	17			ty boundary, dow	vngradient of form	ner	Gı	round	d Ele	evatio	n:	NA					
Date	Comp	eted 10/17/	17		JSTs				Ту	/pica	l Ru	n Ler	ngth	า 5 feet					
Total	Depth	(ft) 40	.0	Drilling Co	ompa	ny: GeoTek Alaska	, Inc.		Hole Diameter:					2.5 inche	2.5 inches				
Depth (ft)	Probe Run	and probing approxim	g mei ate b	So rt text for a prothods. The st boundaries be	oil De roper ui tratifica etween	escription Inderstanding of the standing indicated by soil types. Actual bo sample tubes during	subsurface materials elow represent the undaries may be	# 4#400	Deptil, it.	Symbol	PID, ppm	Well	Construction	Descr	Number, ription, lesults	Depth (ft)			
10 		Olive-brown moist; trace Olive-brown moist. Red-brown fines. Red-brown interbeddee 6.7 to 7.2 fines fray-brown fray-bro	n to e fin n to n to n, Pod with feet, aded n to con to co	red-brown, a es. red-brown, a corly Graded th red-brown 7.8 to 8.7 fe Sand (SP); corly Graded Sand with Sand vith Sa	Poorly Poorly Sano Sano to oliveet, and moist d Sano Silt (SF Sandy S Poorly	Graded Sand with Graded Sand with (SP); moist; trace	m Gravel (SP); m Silt (SP-SM); gravel; trace moist; moist; moist; from moist; from moist; from moist; from moist; moist; from moist; from moist; from moist; from moist; moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; from moist; for ML); moist; for ML);	2.0 - 4.0 - 6.0 - 15. - 16. - 17.	0 3 8		8.6 8.7 8.9 7.3 6.4 5.3 7.1 3.6 7.7 4.3 4.7	During Drilling Irl	**************************************	IT-B8-1 IT-B8-2 MW-13		10			
1. 2. 4.			ВО			ED OCTOBER 17,	2017.												
1.					n the u	pper part of the run,	the soil sample												
2.	may have slid down in the tube prior to removal from the ground.2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate.3. Refer to KEY for definitions and explanation of symbols.						and should be							ior Texaco Junction, AK					
4. CT = corrosion test sample; TR = thermal resistivity sample; EN = environmental sample; GE = geotechnical sample; AR = archeological sample. <u>LEGEND</u>							L	00	G 0	F	GE	OF	PROBE I	38/ MW -	13				
2" Plastic Tube - No Soil Recovery 2" Plastic Tube with Soil Recovery 2" Plastic Tube with Soil Recovery 2" Plastic Tube with Soil Recovery						31-1-11809-009													
3 <u>▼</u>	Run No. Bentonite Chips/Pellets						Pellets	SH Geof	IAN	INO	N 8	wironm	LS(ON, INC.	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure				

		LOG OF GEOP	ROE	3E						
Date Started 1	0/17/17	Location West of main building		Ground Elevation: NA						
Date Completed 1	0/17/17			Ty	/pical	Rui	n Lengtl	า 5 feet		
Total Depth (ft)	40.0	Drilling Company: GeoTek Alaska, Inc.		Н	ole Di	ame	eter:	2.5 inche	s	
£ y and p	to the repo probing me proximate b	Soil Description In text for a proper understanding of the subsurface materials thods. The stratification lines indicated below represent the ooundaries between soil types. Actual boundaries may be tif soil shifted inside sample tubes during extraction.	;	Depth, ft.	Symbol	PID, ppm	Well Construction	Sample Descr	Number, iption, esults	Depth (ft)
Asph Red- Red- moist to 13 (SP); 1 15	alt. brown, Pobrown to It; interbed t; from 2.6 .8 feet; ar moist; fro brown to o ded Sand	porly Graded Sand with Gravel (SP); moist; trace fines ight gray, Poorly Graded Sand with Silt (SP-SM); ided with olive-brown to red-brown, Silt with Sand (ML) is to 3.2 feet, 6.8 to 8.8 feet, 13.2 to 13.4 feet, and 13.7 ind interbedded with red-brown, Poorly Graded Sand om 3.5 to 3.7 feet, 5.7 to 6.0 feet; petroleum odor. Dive-gray, Poorly Graded Sand (SP); moist; to Poorly with Gravel (SP); moist; fractured gravel.	0.2	1		5.1 5.1 11.9 122.8 226.3 164.7 11.8 12.3 9.3 6 6.6	\$0	IT-B9-1		10-
-30 -30 35 40 45 45	ВС	DRING COMPLETED OCTOBER 17, 2017.	40				During Drilling ∱	IT-B9-2		35-
-		NOTES								_
In some cases when the state of the sta	here recov	ery was low in the upper part of the run, the soil sample ube prior to removal from the ground.								
•	el, if indica	ted above, was estimated during probing and should be						or Texaco		
		and explanation of symbols.					Delta J	lunction, AK		
		; TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample. <u>LEGEND</u>			LO	G (OF G	EOPRO	BE B9	
2" Plastic Tube		Recovery						3.	1_1_11800_0	Na
2" Plastic Tube Run No.	with Soil	kecovery		31-1-11809-009						
		SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure						!		

APPENDIX D INTERIOR TEXACO 2017 PROJECT PHOTOS

Photo 1: Setting up the drill rig in front of the Buffalo Service Center at boring location *IT-B10*. (October 15, 2017)

Photo 2: Boring Location IT-B1 and monitoring well MW-9 located on the northern side of the Buffalo Service Center. (October 15, 2017)

Photo 3: Boring Location *IT-B2* located on the northern side of the Buffalo Service Center. (October 15, 2017)

Photo 4: Boring Location *IT-B3* and monitoring well *MW-10* located on the eastern side of the Buffalo Service Center. (October 15, 2017)

Photo 5: Boring Location *IT-B4* located on the northwestern side of the Buffalo Service Center. (October 15, 2017)

Photo 6: Boring Location *IT-B5* and monitoring well *MW-11* located on the northern side of the Buffalo Service Center. (October 15, 2017)

Photo 7: Boring locations *IT-B6*, *IT-B7*, *IT-B9*, and *IT-B10* marked by orange cones in front of the Buffalo Service Center. (October 18, 2017)

Photo 8: Developing monitoring well *MW-13* located on the northwestern side of the Buffalo Service Center at boring location *IT-B8*. (October 18, 2017)

Photo 9: Overview of the Buffalo Service Station garage and maintenance area. (November 2, 2017)

Photo 10: Overview of the Buffalo Service Center storefront. (November 3, 2017)

Photo 11: Preparing to install a sub-slab sampling port in the service station garage. (November 2, 2017)

Photo 12: Installing a sub-slab sampling port in the service station garage. (November 2, 2017)

Photo 13: Sub-slab sampling port *SS-03* installed inside the Buffalo Service Station storefront. (November 2, 2017)

Photo 14: Assembling the soil-gas sampling apparatus inside the service station garage. (November 2, 2017)



Photo 15: Performing leak testing on the soil-gas sampling apparatus at location SS-02 in the tire shop. (November 2, 2017)

Photo 16: An indoor passive air sampler installed in the northeast corner of the service station garage. (November 3, 2017)

APPENDIX E SGS LABORATORY REPORTS AND EUROFINS LABORATORY REPORTS WORK ORDERS NO. 1178533, 1178534, 1711116, 1711121

Laboratory Report of Analysis

To:

Shannon & Wilson-Fairbanks 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 907-479-0600

Report Number: 1178533

Client Project: Interior Texaco 31-1-11809-009

Dear Valerie Webb,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen Ede 2017.11.17

Alaska Division Technical Director

16:50:28 -09'00'

Jennifer Dawkins

Project Manager

Jennifer.Dawkins@sgs.com

Date

Print Date: 11/17/2017 2:55:17PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1178533

Project Name/Site: Interior Texaco 31-1-11809-009

Refer to sample receipt form for information on sample condition. Corrected Report: Report for 1178533007 corrected to include QC limits.

MW-13 1178533006 PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (158 %) does not meet QC criteria due to matrix interference.

XXX/38729] 1421821 MB

AK102/103 - DRO/RRO is detect in the MB greater than one half the LOQ, but less than the LOQ.

VXX/3163 1423400 LCSD

8260C - LCSD RPD for dichlorodifluoromethane (30) does not meet QC criteria. Results may be biased high.

VXX/3164 1423466 LCSD

8260C - LCSD RPD for vinyl acetate (24.6) does not meet QC criteria. This analyte was not detected in associated samples.

VMS/1739 1423468 CCV

8260C - CCV recovery for vinyl acetate (123%) does not meet QC criteria. This analyte was not detected in associated samples.

^{*} QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are **AK00971 DW Chemistry (Provisionally Certified as of 10/12/2017) & Microbiology (Provisionally Certified as of 9/21/2017) &** UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit
DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/17/2017 2:55:21PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-9	1178533001	10/18/2017	10/20/2017	Water (Surface, Eff., Ground)
MW-109	1178533002	10/18/2017	10/20/2017	Water (Surface, Eff., Ground)
MW-10	1178533003	10/16/2017	10/20/2017	Water (Surface, Eff., Ground)
MW-11	1178533004	10/16/2017	10/20/2017	Water (Surface, Eff., Ground)
MW-12	1178533005	10/17/2017	10/20/2017	Water (Surface, Eff., Ground)
MW-13	1178533006	10/18/2017	10/20/2017	Water (Surface, Eff., Ground)
Kelly's DW	1178533007	10/17/2017	10/20/2017	Drinking Water
Trip Blank	1178533008	10/19/2017	10/20/2017	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV

AK101 AK101/8021 Combo. SW8021B AK101/8021 Combo.

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water

SW8260C Volatile Organic Compounds (W) FULL

Print Date: 11/17/2017 2:55:22PM

Detectable Results Summary

Client Sample ID: MW-9			
Lab Sample ID: 1178533001	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	0.184J	mg/L
Volatile Fuels	Toluene	0.580J	ug/L
Client Comple ID: MIM 400			Ü
Client Sample ID: MW-109 Lab Sample ID: 1178533002	5 .	5 . "	
•	Parameter	<u>Result</u> 0.176J	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics Benzene	0.176J 0.150J	mg/L
Volatile Fuels	Toluene	0.130J 0.400J	ug/L
	rolderie	0.4003	ug/L
Client Sample ID: MW-10			
Lab Sample ID: 1178533003	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	0.201J	mg/L
Volatile Fuels	Benzene	0.460J	ug/L
	o-Xylene	0.320J	ug/L
	Toluene	0.630J	ug/L
Client Sample ID: MW-11			
Lab Sample ID: 1178533004	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	0.195J	mg/L
Volatile Fuels	Benzene	0.380J	ug/L
	Toluene	0.570J	ug/L
Client Sample ID: MW-12			
Lab Sample ID: 1178533005	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	0.201J	mg/L
Volatile Fuels	Benzene	0.310J	ug/L
Volumo I dolo	Toluene	0.450J	ug/L
Olient Console ID. MIN 40			-3. –
Client Sample ID: MW-13			
Lab Sample ID: 1178533006	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	3.46 0.173J	mg/L
Volotile Fuels	Residual Range Organics Benzene	5.58	mg/L
Volatile Fuels	Ethylbenzene	139	ug/L ug/L
	Gasoline Range Organics	2.23	mg/L
	o-Xylene	172	ug/L
	P & M -Xylene	444	ug/L ug/L
	Toluene	196	ug/L
	Toldono	100	ug/L
Client Sample ID: Kelly's DW			
Lab Sample ID: 1178533007	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	0.196J	mg/L
Volatile Fuels	Benzene	0.260J	ug/L
	Toluene	0.530J	ug/L

Print Date: 11/17/2017 2:55:23PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-9

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533001 Lab Project ID: 1178533 Collection Date: 10/18/17 13:20 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Development	De suit Ouel	1.00/01		11-4-	DE	Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
2-Methylnaphthalene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Acenaphthene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Acenaphthylene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Anthracene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Benzo(a)Anthracene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Benzo[a]pyrene	0.0101 U	0.0203	0.00630	ug/L	1	11/01/17 20:37
Benzo[b]Fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Benzo[g,h,i]perylene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Benzo[k]fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Chrysene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Dibenzo[a,h]anthracene	0.0101 U	0.0203	0.00630	ug/L	1	11/01/17 20:37
Fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Fluorene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Indeno[1,2,3-c,d] pyrene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Naphthalene	0.0510 U	0.102	0.0315	ug/L	1	11/01/17 20:37
Phenanthrene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Pyrene	0.0254 U	0.0508	0.0152	ug/L	1	11/01/17 20:37
Surrogates						
2-Methylnaphthalene-d10 (surr)	72.4	47-106		%	1	11/01/17 20:37
Fluoranthene-d10 (surr)	69.8	24-116		%	1	11/01/17 20:37

Batch Information

Analytical Batch: XMS10532

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 11/01/17 20:37

Container ID: 1178533001-I

Prep Batch: XXX38710 Prep Method: SW3520C

Prep Date/Time: 10/21/17 08:20 Prep Initial Wt./Vol.: 246 mL

Prep Extract Vol: 1 mL

Client Sample ID: MW-9

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533001 Lab Project ID: 1178533 Collection Date: 10/18/17 13:20 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.313 U	0.625	0.188	mg/L	1		10/27/17 15:28
Surrogates							
5a Androstane (surr)	83.8	50-150		%	1		10/27/17 15:28

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 15:28 Container ID: 1178533001-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Parameter Residual Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.184 J	0.521	0.156	mg/L	1	Limits	10/27/17 15:28
Surrogates n-Triacontane-d62 (surr)	82.3	50-150		%	1		10/27/17 15:28

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 15:28 Container ID: 1178533001-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 240 mL

Prep Extract Vol: 1 mL

Client Sample ID: MW-9

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533001 Lab Project ID: 1178533 Collection Date: 10/18/17 13:20 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/27/17 12:46
Surrogates							
4-Bromofluorobenzene (surr)	97.8	50-150		%	1		10/27/17 12:46

Batch Information

Analytical Batch: VFC13967 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/27/17 12:46 Container ID: 1178533001-D Prep Batch: VXX31613 Prep Method: SW5030B Prep Date/Time: 10/27/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/27/17 12:46
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/27/17 12:46
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/27/17 12:46
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/27/17 12:46
Toluene	0.580 J	1.00	0.310	ug/L	1		10/27/17 12:46
Surrogates							
1,4-Difluorobenzene (surr)	93.9	77-115		%	1		10/27/17 12:46

Batch Information

Analytical Batch: VFC13967 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/27/17 12:46 Container ID: 1178533001-D Prep Batch: VXX31613 Prep Method: SW5030B Prep Date/Time: 10/27/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-109

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533002 Lab Project ID: 1178533 Collection Date: 10/18/17 13:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
2-Methylnaphthalene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Acenaphthene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Acenaphthylene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Anthracene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Benzo(a)Anthracene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Benzo[a]pyrene	0.0106 U	0.0212	0.00657	ug/L	1		11/01/17 20:57
Benzo[b]Fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Benzo[g,h,i]perylene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Benzo[k]fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Chrysene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Dibenzo[a,h]anthracene	0.0106 U	0.0212	0.00657	ug/L	1		11/01/17 20:57
Fluoranthene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Fluorene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Indeno[1,2,3-c,d] pyrene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Naphthalene	0.0530 U	0.106	0.0328	ug/L	1		11/01/17 20:57
Phenanthrene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Pyrene	0.0265 U	0.0530	0.0159	ug/L	1		11/01/17 20:57
Surrogates							
2-Methylnaphthalene-d10 (surr)	56.3	47-106		%	1		11/01/17 20:57
Fluoranthene-d10 (surr)	55.7	24-116		%	1		11/01/17 20:57

Batch Information

Analytical Batch: XMS10532

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 11/01/17 20:57

Container ID: 1178533002-I

Prep Batch: XXX38710 Prep Method: SW3520C

Prep Date/Time: 10/21/17 08:20 Prep Initial Wt./Vol.: 236 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-109

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533002 Lab Project ID: 1178533 Collection Date: 10/18/17 13:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.302 U	LOQ/CL 0.605	<u>DL</u> 0.181	<u>Units</u> mg/L	<u>DF</u> 1	Allowable <u>Limits</u>	<u>Date Analyzed</u> 10/27/17 15:38
Surrogates	0.002 0	0.000	0.101	mg/L	•		10/21/17 10.00
5a Androstane (surr)	84.7	50-150		%	1		10/27/17 15:38

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 15:38 Container ID: 1178533002-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Residual Range Organics	0.176 J	0.504	0.151	mg/L	1		10/27/17 15:38
Surrogates							
n-Triacontane-d62 (surr)	82.3	50-150		%	1		10/27/17 15:38

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 15:38 Container ID: 1178533002-G Prep Batch: XXX38713
Prep Method: SW3520C
Prep Date/Time: 10/22/17 08:03
Prep Initial Wt./Vol.: 248 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-109

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533002 Lab Project ID: 1178533 Collection Date: 10/18/17 13:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/26/17 17:09
Surrogates							
4-Bromofluorobenzene (surr)	108	50-150		%	1		10/26/17 17:09

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/26/17 17:09 Container ID: 1178533002-A Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.150 J	0.500	0.150	ug/L	1		10/26/17 17:09
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/26/17 17:09
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/26/17 17:09
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/26/17 17:09
Toluene	0.400 J	1.00	0.310	ug/L	1		10/26/17 17:09
Surrogates							
1,4-Difluorobenzene (surr)	94.7	77-115		%	1		10/26/17 17:09

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 17:09 Container ID: 1178533002-A Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-10

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533003 Lab Project ID: 1178533 Collection Date: 10/16/17 17:20 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.302 U	0.605	0.181	mg/L	1		10/27/17 15:47
Surrogates							
5a Androstane (surr)	86.5	50-150		%	1		10/27/17 15:47

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 15:47 Container ID: 1178533003-G

Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.201 J	0.504	0.151	mg/L	1		10/27/17 15:47
Surrogates							
n-Triacontane-d62 (surr)	84.5	50-150		%	1		10/27/17 15:47

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 15:47 Container ID: 1178533003-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 248 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-10

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533003 Lab Project ID: 1178533 Collection Date: 10/16/17 17:20 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	10/26/17 14:56
Surrogates 4-Bromofluorobenzene (surr)	105	50-150		%	1		10/26/17 14:56

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/26/17 14:56 Container ID: 1178533003-B Prep Batch: VXX31607
Prep Method: SW5030B
Prep Date/Time: 10/26/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.460 J	0.500	0.150	ug/L	1		10/26/17 14:56
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/26/17 14:56
o-Xylene	0.320 J	1.00	0.310	ug/L	1		10/26/17 14:56
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/26/17 14:56
Toluene	0.630 J	1.00	0.310	ug/L	1		10/26/17 14:56
Surrogates							
1,4-Difluorobenzene (surr)	95.4	77-115		%	1		10/26/17 14:56

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 14:56 Container ID: 1178533003-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-11

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533004 Lab Project ID: 1178533 Collection Date: 10/16/17 15:15 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.300 U	0.600	0.180	mg/L	1		10/27/17 15:57
Surrogates							
5a Androstane (surr)	85	50-150		%	1		10/27/17 15:57

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 15:57 Container ID: 1178533004-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Residual Range Organics	0.195 J	0.500	0.150	mg/L	1		10/27/17 15:57
Surrogates							
n-Triacontane-d62 (surr)	84	50-150		%	1		10/27/17 15:57

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 15:57 Container ID: 1178533004-G Prep Batch: XXX38713
Prep Method: SW3520C
Prep Date/Time: 10/22/17 08:03
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-11

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533004 Lab Project ID: 1178533 Collection Date: 10/16/17 15:15 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/26/17 15:15
Surrogates							
4-Bromofluorobenzene (surr)	106	50-150		%	1		10/26/17 15:15

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/26/17 15:15 Container ID: 1178533004-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.380 J	0.500	0.150	ug/L	1		10/26/17 15:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/26/17 15:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/26/17 15:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/26/17 15:15
Toluene	0.570 J	1.00	0.310	ug/L	1		10/26/17 15:15
Surrogates							
1,4-Difluorobenzene (surr)	95.2	77-115		%	1		10/26/17 15:15

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 15:15 Container ID: 1178533004-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-12

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533005 Lab Project ID: 1178533 Collection Date: 10/17/17 12:46 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	0.294 U	0.588	0.176	mg/L	1		10/27/17 16:07
Surrogates							
5a Androstane (surr)	83.3	50-150		%	1		10/27/17 16:07

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 16:07 Container ID: 1178533005-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Parameter Residual Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.201 J	0.490	0.147	mg/L	1	Limits	10/27/17 16:07
Surrogates n-Triacontane-d62 (surr)	82.3	50-150		%	1		10/27/17 16:07

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 16:07 Container ID: 1178533005-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-12

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533005 Lab Project ID: 1178533 Collection Date: 10/17/17 12:46 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	10/26/17 15:34
Surrogates 4-Bromofluorobenzene (surr)	106	50-150		%	1		10/26/17 15:34

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/26/17 15:34 Container ID: 1178533005-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.310 J	0.500	0.150	ug/L	1		10/26/17 15:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/26/17 15:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/26/17 15:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/26/17 15:34
Toluene	0.450 J	1.00	0.310	ug/L	1		10/26/17 15:34
Surrogates							
1,4-Difluorobenzene (surr)	94.5	77-115		%	1		10/26/17 15:34

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 15:34 Container ID: 1178533005-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-13

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533006 Lab Project ID: 1178533 Collection Date: 10/18/17 12:50 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	3.46	0.556	0.167	mg/L	1		10/27/17 16:17
Surrogates							
5a Androstane (surr)	86.4	50-150		%	1		10/27/17 16:17

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 16:17 Container ID: 1178533006-G Prep Batch: XXX38713 Prep Method: SW3520C Prep Date/Time: 10/22/17 08:03 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.173 J	0.463	0.139	mg/L	1		10/27/17 16:17
Surrogates							
n-Triacontane-d62 (surr)	84.7	50-150		%	1		10/27/17 16:17

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 16:17 Container ID: 1178533006-G Prep Batch: XXX38713
Prep Method: SW3520C
Prep Date/Time: 10/22/17 08:03
Prep Initial Wt./Vol.: 270 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-13

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533006 Lab Project ID: 1178533 Collection Date: 10/18/17 12:50 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	2.23	0.100	0.0310	mg/L	1		10/25/17 19:48
Surrogates							
4-Bromofluorobenzene (surr)	158 *	50-150		%	1		10/25/17 19:48

Batch Information

Analytical Batch: VFC13965 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/17 19:48 Container ID: 1178533006-A Prep Batch: VXX31600
Prep Method: SW5030B
Prep Date/Time: 10/25/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	5.58	0.500	0.150	ug/L	1		10/25/17 19:48
Ethylbenzene	139	1.00	0.310	ug/L	1		10/25/17 19:48
o-Xylene	172	5.00	1.55	ug/L	5		10/26/17 15:53
P & M -Xylene	444	10.0	3.10	ug/L	5		10/26/17 15:53
Toluene	196	5.00	1.55	ug/L	5		10/26/17 15:53
Surrogates							
1,4-Difluorobenzene (surr)	102	77-115		%	1		10/25/17 19:48

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 15:53 Container ID: 1178533006-B

Analytical Batch: VFC13965 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/25/17 19:48 Container ID: 1178533006-A Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX31600 Prep Method: SW5030B Prep Date/Time: 10/25/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:25PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: Kelly's DW

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533007 Lab Project ID: 1178533 Collection Date: 10/17/17 15:30 Received Date: 10/20/17 10:15

Matrix: Drinking Water

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.283 U	0.566	0.170	mg/L	1		10/25/17 00:30
Surrogatos							
Surrogates							
5a Androstane (surr)	81.9	50-150		%	1		10/25/17 00:30

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/25/17 00:30 Container ID: 1178533007-G

Prep Batch: XXX38729
Prep Method: SW3520C
Prep Date/Time: 10/24/17 08:04
Prep Initial Wt./Vol.: 265 mL
Prep Extract Vol: 1 mL

Parameter Residual Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.196 J	0.472	0.142	mg/L	1	Limits	10/25/17 00:30
Surrogates n-Triacontane-d62 (surr)	90.2	50-150		%	1		10/25/17 00:30

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/25/17 00:30 Container ID: 1178533007-G

Prep Batch: XXX38729
Prep Method: SW3520C
Prep Date/Time: 10/24/17 08:04
Prep Initial Wt./Vol.: 265 mL

Prep Extract Vol: 1 mL

Client Sample ID: Kelly's DW

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533007 Lab Project ID: 1178533 Collection Date: 10/17/17 15:30 Received Date: 10/20/17 10:15

Matrix: Drinking Water

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0300	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/26/17 16:12
Surrogates	400	50.450		0/	4		40/00/47 40:40
4-Bromofluorobenzene (surr)	102	50-150		%	1		10/26/17 16:12

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/26/17 16:12 Container ID: 1178533007-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Allowable **Parameter** Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> **Limits** Date Analyzed Benzene 0.260 J 0.500 0.150 10/26/17 16:12 ug/L 1 Ethylbenzene 1.00 0.310 0.500 U ug/L 1 10/26/17 16:12 o-Xylene 0.500 U 1.00 0.310 1 10/26/17 16:12 ug/L P & M -Xylene 1.00 U 2.00 0.620 ug/L 1 10/26/17 16:12 0.530 J Toluene 1.00 0.310 ug/L 1 10/26/17 16:12 **Surrogates** 1,4-Difluorobenzene (surr) 93.5 77-115 % 10/26/17 16:12

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/26/17 16:12 Container ID: 1178533007-B Prep Batch: VXX31607 Prep Method: SW5030B Prep Date/Time: 10/26/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: Kelly's DW

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533007 Lab Project ID: 1178533 Collection Date: 10/17/17 15:30 Received Date: 10/20/17 10:15

Matrix: Drinking Water

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/30/17 20:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/31/17 21:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/30/17 20:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/30/17 20:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/31/17 21:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/30/17 20:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/30/17 20:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/30/17 20:25
Benzene	0.200 U	0.400	0.120	ug/L	1	10/31/17 21:08
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
Bromomethane	2.50 U	5.00	1.50	ug/L	1	10/30/17 20:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/30/17 20:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/30/17 20:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/30/17 20:25

Client Sample ID: Kelly's DW

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533007 Lab Project ID: 1178533 Collection Date: 10/17/17 15:30 Received Date: 10/20/17 10:15

Matrix: Drinking Water

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
<u>Parameter</u> Chloroform	0.500 U	1.00	<u>DL</u> 0.310	ug/L	<u>DF</u> 1	Limits	10/30/17 20:25
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		10/30/17 20:25
	0.500 U	1.00	0.310	ug/L ug/L			10/30/17 20:25
cis-1,2-Dichloroethene	0.500 U 0.250 U	0.500	0.310	ug/L ug/L	1		10/30/17 20:25
cis-1,3-Dichloropropene				•	1		
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/30/17 20:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/31/17 21:08
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/30/17 20:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		10/30/17 20:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/30/17 20:25
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/31/17 21:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		10/31/17 21:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/31/17 21:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/31/17 21:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Styrene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Toluene	0.500 U	1.00	0.310	ug/L	1		10/31/17 21:08
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/30/17 20:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/30/17 20:25
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/30/17 20:25
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		10/31/17 21:08
urrogates							
1,2-Dichloroethane-D4 (surr)	108	81-118		%	1		10/30/17 20:25
4-Bromofluorobenzene (surr)	107	85-114		%	1		10/30/17 20:25
Toluene-d8 (surr)	96.9	89-112		%	1		10/30/17 20:25

Print Date: 11/17/2017 2:55:25PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: Kelly's DW

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533007 Lab Project ID: 1178533 Collection Date: 10/17/17 15:30 Received Date: 10/20/17 10:15

Matrix: Drinking Water

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17389 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 10/30/17 20:25 Container ID: 1178533007-D

Analytical Batch: VMS17390 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 10/31/17 21:08 Container ID: 1178533007-D Prep Batch: VXX31639
Prep Method: SW5030B
Prep Date/Time: 10/30/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX31640
Prep Method: SW5030B
Prep Date/Time: 10/31/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533008 Lab Project ID: 1178533 Collection Date: 10/19/17 11:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics Surrogates	0.0500 U	0.100	0.0310	mg/L	1		10/25/17 15:40
4-Bromofluorobenzene (surr)	95	50-150		%	1		10/25/17 15:40

Batch Information

Analytical Batch: VFC13965 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/17 15:40 Container ID: 1178533008-A Prep Batch: VXX31600
Prep Method: SW5030B
Prep Date/Time: 10/25/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/25/17 15:40
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/25/17 15:40
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/25/17 15:40
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/25/17 15:40
Toluene	0.500 U	1.00	0.310	ug/L	1		10/25/17 15:40
Surrogates							
1,4-Difluorobenzene (surr)	93.9	77-115		%	1		10/25/17 15:40

Batch Information

Analytical Batch: VFC13965 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/25/17 15:40 Container ID: 1178533008-A

Prep Batch: VXX31600 Prep Method: SW5030B Prep Date/Time: 10/25/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533008 Lab Project ID: 1178533 Collection Date: 10/19/17 11:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	LIIIIIIS	11/01/17 00:05
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/01/17 00:05
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/01/17 00:05
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
Benzene	0.200 U	0.400	0.120	ug/L	1		11/01/17 00:05
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/01/17 00:05
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/01/17 00:05
	0.500 U	1.00	0.310		1		11/01/17 00:05

Client Sample ID: Trip Blank

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533008 Lab Project ID: 1178533 Collection Date: 10/19/17 11:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Deremeter	Result Qual	LOQ/CL	<u>DL</u>	Units	DE	Allowable	Data Analyzad
<u>Parameter</u> Chloroform	0.500 U	1.00	0.310	ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 11/01/17 00:05
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		11/01/17 00:05
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L ug/L	1		11/01/17 00:05
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		11/01/17 00:05
Dibromomethane	0.500 U	1.00	0.130	ug/L ug/L	1		11/01/17 00:05
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L ug/L	1		11/01/17 00:05
Ethylbenzene	0.500 U	1.00	0.310	ug/L ug/L	1		11/01/17 00:05
Freon-113	5.00 U	10.0	3.10	ug/L ug/L	1		11/01/17 00:05
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L ug/L	1		11/01/17 00:05
	0.500 U	1.00	0.310	_	1		11/01/17 00:05
Isopropylbenzene (Cumene)	2.50 U	5.00	1.00	ug/L	1		11/01/17 00:05
Methylene chloride				ug/L			
Methyl-t-butyl ether	5.00 U	10.0 1.00	3.10	ug/L	1 1		11/01/17 00:05
Naphthalene	0.500 U		0.310	ug/L			11/01/17 00:05
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
P & M -Xylene	1.00 U	2.00 1.00	0.620	ug/L	1		11/01/17 00:05
sec-Butylbenzene	0.500 U		0.310	ug/L	1		11/01/17 00:05
Styrene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Toluene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/01/17 00:05
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/01/17 00:05
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/01/17 00:05
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/01/17 00:05
Gurrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/01/17 00:05
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/01/17 00:05
Toluene-d8 (surr)	97.8	89-112		%	1		11/01/17 00:05

Print Date: 11/17/2017 2:55:25PM

J flagging is activated

Client Sample ID: Trip Blank

Client Project ID: Interior Texaco 31-1-11809-009

Lab Sample ID: 1178533008 Lab Project ID: 1178533 Collection Date: 10/19/17 11:30 Received Date: 10/20/17 10:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17390 Analytical Method: SW8260C

Analyst: FDR

Analytical Date/Time: 11/01/17 00:05 Container ID: 1178533008-A Prep Batch: VXX31640
Prep Method: SW5030B
Prep Date/Time: 10/31/17 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1770961 [VXX/31600]

Blank Lab ID: 1422451

QC for Samples:

1178533006, 1178533008

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 103 50-150 %

Batch Information

Analytical Batch: VFC13965
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/25/2017 1:45:00PM

Prep Batch: VXX31600 Prep Method: SW5030B

Prep Date/Time: 10/25/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:29PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31600]

Blank Spike Lab ID: 1422454 Date Analyzed: 10/25/2017 14:43

QC for Samples: 1178533006, 1178533008

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31600]

Spike Duplicate Lab ID: 1422455 Matrix: Water (Surface, Eff., Ground)

Results by AK101

	E	Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.06	106	1.00	1.01	101	(60-120)	4.50	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	101	101	0.0500	98.5	99	(50-150)	2.70	

Batch Information

Analytical Batch: VFC13965 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31600
Prep Method: SW5030B

Prep Date/Time: 10/25/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:31PM

Method Blank

Blank ID: MB for HBN 1770961 [VXX/31600]

Blank Lab ID: 1422451

QC for Samples:

1178533006, 1178533008

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	92.6	77-115		%

Batch Information

Analytical Batch: VFC13965 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/25/2017 1:45:00PM

Prep Batch: VXX31600 Prep Method: SW5030B

Prep Date/Time: 10/25/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:33PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31600]

Blank Spike Lab ID: 1422452 Date Analyzed: 10/25/2017 14:23

QC for Samples: 1178533006, 1178533008

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31600]

Spike Duplicate Lab ID: 1422453 Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	118	118	100	114	114	(80-120)	3.30	(< 20)
Ethylbenzene	100	115	115	100	110	110	(75-125)	4.50	(< 20)
o-Xylene	100	113	113	100	110	110	(80-120)	3.00	(< 20)
P & M -Xylene	200	230	115	200	221	111	(75-130)	4.10	(< 20)
Toluene	100	115	115	100	115	115	(75-120)	0.12	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	105	105	50	102	102	(77-115)	3.40	

Batch Information

Analytical Batch: VFC13965 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31600 Prep Method: SW5030B

Prep Date/Time: 10/25/2017 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:34PM

Method Blank

Blank ID: MB for HBN 1771009 [VXX/31607]

Blank Lab ID: 1422646

QC for Samples:

1178533002, 1178533003, 1178533004, 1178533005, 1178533006, 1178533007

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 104 50-150 %

Batch Information

Analytical Batch: VFC13966 Prep Batch: VXX31607
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890 PID/FID Prep Date/Time: 10/26/2017 8:00:00AM

Matrix: Water (Surface, Eff., Ground)

Analyst: ST Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 10/26/2017 11:45:00AM Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:37PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31607]

Blank Spike Lab ID: 1422649 Date Analyzed: 10/26/2017 12:43 Spike Duplicate ID: LCSD for HBN 1178533

[VXX31607]

Spike Duplicate Lab ID: 1422650 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178533002, 1178533003, 1178533004, 1178533005, 1178533006, 1178533007

Results by AK101

	E	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	1.03	103	(60-120)	1.70	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	106	106	0.0500	107	107	(50-150)	1.10	

Batch Information

Analytical Batch: VFC13966 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31607
Prep Method: SW5030B

Prep Date/Time: 10/26/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:39PM

Method Blank

Blank ID: MB for HBN 1771009 [VXX/31607]

Blank Lab ID: 1422646

QC for Samples:

 $1178533002,\,1178533003,\,1178533004,\,1178533005,\,1178533006,\,1178533007$

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.410J	1.00	0.310	ug/L
Surrogates				

1,4-Difluorobenzene (surr) 94.8 77-115

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/26/2017 11:45:00AM

Prep Batch: VXX31607 Prep Method: SW5030B

Prep Date/Time: 10/26/2017 8:00:00AM

%

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:42PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31607]

Blank Spike Lab ID: 1422647 Date Analyzed: 10/26/2017 12:24 Spike Duplicate ID: LCSD for HBN 1178533

[VXX31607]

Spike Duplicate Lab ID: 1422648 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178533002, 1178533003, 1178533004, 1178533005, 1178533006, 1178533007

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	102	102	100	112	112	(80-120)	8.80	(< 20)
Ethylbenzene	100	99.2	99	100	110	110	(75-125)	10.00	(< 20)
o-Xylene	100	101	101	100	110	110	(80-120)	8.40	(< 20)
P & M -Xylene	200	202	101	200	221	111	(75-130)	9.30	(< 20)
Toluene	100	98.4	98	100	108	108	(75-120)	9.70	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	103	103	50	103	103	(77-115)	0.60	

Batch Information

Analytical Batch: VFC13966 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31607 Prep Method: SW5030B

Prep Date/Time: 10/26/2017 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:45PM

Method Blank

Blank ID: MB for HBN 1771078 [VXX/31613]

Blank Lab ID: 1422751

QC for Samples: 1178533001

Matrix: Water (Surface, Eff., Ground)

Results by AK101

LOQ/CL Results <u>Units</u> **Parameter** <u>DL</u> 0.0500U Gasoline Range Organics 0.100 0.0310 mg/L

Surrogates

4-Bromofluorobenzene (surr) 99.8 50-150 %

Batch Information

Analytical Batch: VFC13967 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/27/2017 11:10:00AM

Prep Batch: VXX31613 Prep Method: SW5030B

Prep Date/Time: 10/27/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:49PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31613]

Blank Spike Lab ID: 1422754 Date Analyzed: 10/27/2017 12:08

QC for Samples: 1178533001

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31613]

Spike Duplicate Lab ID: 1422755 Matrix: Water (Surface, Eff., Ground)

Results by AK101

	E	Blank Spike	(mg/L)	S	pike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.924	92	(60-120)	8.70	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	103	103	0.0500	99.2	99	(50-150)	3.70	

Batch Information

Analytical Batch: VFC13967 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31613
Prep Method: SW5030B

Prep Date/Time: 10/27/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:51PM

Method Blank

Blank ID: MB for HBN 1771078 [VXX/31613]

Blank Lab ID: 1422751

QC for Samples: 1178533001

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.320J	1.00	0.310	ug/L
Surrogates				
1 4-Difluorobenzene (surr)	94.3	77-115		%

Batch Information

Analytical Batch: VFC13967 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/27/2017 11:10:00AM

Prep Batch: VXX31613 Prep Method: SW5030B

Prep Date/Time: 10/27/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:53PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178533 [VXX31613]

Blank Spike Lab ID: 1422752 Date Analyzed: 10/27/2017 11:49

QC for Samples: 1178533001

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31613]

Spike Duplicate Lab ID: 1422753 Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	106	106	100	107	107	(80-120)	0.21	(< 20)
Ethylbenzene	100	104	104	100	103	103	(75-125)	0.88	(< 20)
o-Xylene	100	104	104	100	101	101	(80-120)	2.40	(< 20)
P & M -Xylene	200	210	105	200	206	103	(75-130)	1.90	(< 20)
Toluene	100	104	104	100	104	104	(75-120)	0.02	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	103	103	50	100	100	(77-115)	2.10	

Batch Information

Analytical Batch: VFC13967 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31613
Prep Method: SW5030B

Prep Date/Time: 10/27/2017 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:55PM

Method Blank

Blank ID: MB for HBN 1771251 [VXX/31639]

Blank Lab ID: 1423398

QC for Samples: 1178533007

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	Units
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L

Print Date: 11/17/2017 2:55:57PM

Blank ID: MB for HBN 1771251 [VXX/31639]

Blank Lab ID: 1423398

QC for Samples: 1178533007

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	115	81-118		%
4-Bromofluorobenzene (surr)	104	85-114		%
Toluene-d8 (surr)	97.2	89-112		%

Batch Information

Analytical Batch: VMS17389 Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Analytical Date/Time: 10/30/2017 11:13:00AM

Prep Batch: VXX31639 Prep Method: SW5030B

Prep Date/Time: 10/30/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:57PM

Blank Spike ID: LCS for HBN 1178533 [VXX31639]

Blank Spike Lab ID: 1423399 Date Analyzed: 10/30/2017 11:38

QC for Samples: 1178533007

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31639]

Spike Duplicate Lab ID: 1423400 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Nesults by SW02000		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	29.3	98	30	26.3	88	(78-124)	10.70	(< 20)
1,1,1-Trichloroethane	30	29.0	97	30	30.4	101	(74-131)	4.70	(< 20)
1,1,2,2-Tetrachloroethane	30	29.1	97	30	27.4	91	(71-121)	6.30	(< 20)
1,1,2-Trichloroethane	30	30.2	101	30	30.2	101	(80-119)	0.17	(< 20)
1,1-Dichloroethane	30	27.3	91	30	27.8	93	(77-125)	1.70	(< 20)
1,1-Dichloroethene	30	31.6	105	30	30.4	101	(71-131)	3.90	(< 20)
1,1-Dichloropropene	30	30.2	101	30	31.1	104	(79-125)	2.70	(< 20)
1,2,3-Trichlorobenzene	30	30.1	100	30	28.4	95	(69-129)	6.00	(< 20)
1,2,3-Trichloropropane	30	28.7	96	30	26.5	89	(73-122)	7.80	(< 20)
1,2,4-Trichlorobenzene	30	29.6	99	30	28.3	94	(69-130)	4.50	(< 20)
1,2-Dibromo-3-chloropropane	30	28.7	96	30	28.6	95	(62-128)	0.24	(< 20)
1,2-Dibromoethane	30	30.1	100	30	29.8	99	(77-121)	0.97	(< 20)
1,2-Dichlorobenzene	30	28.2	94	30	28.6	95	(80-119)	1.40	(< 20)
1,2-Dichloroethane	30	28.1	94	30	28.6	95	(73-128)	1.80	(< 20)
1,2-Dichloropropane	30	29.6	99	30	30.9	103	(78-122)	4.20	(< 20)
1,3-Dichlorobenzene	30	28.6	95	30	29.4	98	(80-119)	2.50	(< 20)
1,3-Dichloropropane	30	31.2	104	30	30.8	103	(80-119)	1.10	(< 20)
1,4-Dichlorobenzene	30	28.6	95	30	29.3	98	(79-118)	2.40	(< 20)
2,2-Dichloropropane	30	31.0	103	30	31.8	106	(60-139)	2.40	(< 20)
2-Butanone (MEK)	90	90.9	101	90	96.7	107	(56-143)	6.20	(< 20)
2-Chlorotoluene	30	30.0	100	30	30.9	103	(79-122)	3.00	(< 20)
2-Hexanone	90	87.4	97	90	89.0	99	(57-139)	1.80	(< 20)
4-Chlorotoluene	30	29.7	99	30	30.6	102	(78-122)	2.90	(< 20)
4-Isopropyltoluene	30	28.3	94	30	28.3	94	(77-127)	0.07	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.0	97	90	85.3	95	(67-130)	2.00	(< 20)
Bromobenzene	30	27.9	93	30	28.8	96	(80-120)	3.10	(< 20)
Bromochloromethane	30	27.0	90	30	28.0	94	(78-123)	3.80	(< 20)
Bromodichloromethane	30	28.8	96	30	29.9	100	(79-125)	4.00	(< 20)
Bromoform	30	28.9	96	30	27.4	91	(66-130)	5.20	(< 20)
Bromomethane	30	32.6	109	30	31.2	104	(53-141)	4.30	(< 20)
Carbon disulfide	45	48.5	108	45	52.7	117	(64-133)	8.30	(< 20)
Carbon tetrachloride	30	29.7	99	30	30.6	102	(72-136)	3.00	(< 20)
Chlorobenzene	30	28.2	94	30	28.1	94	(82-118)	0.35	(< 20)
Chloroethane	30	33.4	111	30	34.5	115	(60-138)	3.20	(< 20)

Print Date: 11/17/2017 2:55:59PM

Blank Spike ID: LCS for HBN 1178533 [VXX31639]

Blank Spike Lab ID: 1423399 Date Analyzed: 10/30/2017 11:38

QC for Samples: 1178533007

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31639]

Spike Duplicate Lab ID: 1423400 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Chloroform	30	27.5	92	30	28.5	95	(79-124)	3.60	(< 20)
Chloromethane	30	27.3	91	30	32.3	108	(50-139)	17.00	(< 20)
cis-1,2-Dichloroethene	30	27.3	91	30	27.8	93	(78-123)	1.70	(< 20)
cis-1,3-Dichloropropene	30	29.9	100	30	28.4	95	(75-124)	5.00	(< 20)
Dibromochloromethane	30	28.1	94	30	28.4	95	(74-126)	1.10	(< 20)
Dibromomethane	30	27.5	92	30	27.8	93	(79-123)	1.20	(< 20)
Dichlorodifluoromethane	30	25.3	84	30	34.2	114	(32-152)	30.00	* (< 20)
Freon-113	45	49.8	111	45	54.0	120	(70-136)	8.10	(< 20)
Hexachlorobutadiene	30	28.2	94	30	27.8	93	(66-134)	1.50	(< 20)
Isopropylbenzene (Cumene)	30	29.4	98	30	32.2	107	(72-131)	9.20	(< 20)
Methylene chloride	30	29.1	97	30	30.2	101	(74-124)	3.80	(< 20)
Methyl-t-butyl ether	45	48.3	107	45	51.1	114	(71-124)	5.70	(< 20)
n-Butylbenzene	30	28.4	95	30	28.7	96	(75-128)	1.00	(< 20)
sec-Butylbenzene	30	29.7	99	30	29.9	100	(77-126)	0.64	(< 20)
Styrene	30	28.9	96	30	31.0	103	(78-123)	6.80	(< 20)
tert-Butylbenzene	30	29.8	100	30	30.7	102	(78-124)	3.00	(< 20)
Tetrachloroethene	30	29.2	97	30	27.4	91	(74-129)	6.30	(< 20)
trans-1,2-Dichloroethene	30	26.7	89	30	27.2	91	(75-124)	1.90	(< 20)
trans-1,3-Dichloropropene	30	27.3	91	30	27.2	91	(73-127)	0.37	(< 20)
Trichloroethene	30	29.3	98	30	29.4	98	(79-123)	0.38	(< 20)
Trichlorofluoromethane	30	34.2	114	30	37.0	123	(65-141)	7.60	(< 20)
Vinyl acetate	30	33.8	113	30	37.3	124	(54-146)	9.90	(< 20)
Vinyl chloride	30	29.6	99	30	32.6	109	(58-137)	9.60	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.7	100	30	101	101	(81-118)	1.70	
4-Bromofluorobenzene (surr)	30	96.2	96	30	101	101	(85-114)	4.70	
Toluene-d8 (surr)	30	104	104	30	98.3	98	(89-112)	5.60	

Print Date: 11/17/2017 2:55:59PM

Blank Spike ID: LCS for HBN 1178533 [VXX31639]

Blank Spike Lab ID: 1423399 Date Analyzed: 10/30/2017 11:38

1423399 [VXX31639] /30/2017 11:38 Spike Duplic

Spike Duplicate Lab ID: 1423400 Matrix: Water (Surface, Eff., Ground)

Spike Duplicate ID: LCSD for HBN 1178533

QC for Samples: 1178533007

Results by SW8260C

Blank Spike (%) Spike Duplicate (%)

Parameter Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

Batch Information

Analytical Batch: VMS17389
Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Prep Batch: VXX31639
Prep Method: SW5030B

Prep Date/Time: 10/30/2017 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:55:59PM

Blank ID: MB for HBN 1771304 [VXX/31640]

Blank Lab ID: 1423464

QC for Samples:

1178533007, 1178533008

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

	,				
<u>Para</u>	<u>meter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1	,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1	-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2	2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2	?-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-[Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-[Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-[Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3	-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3	-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4	-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4	-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-0	Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-0	Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-0	Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-0	Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-0	Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5	i-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-	Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-	Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-0	Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-[Dichloropropane	0.500U	1.00	0.310	ug/L
2-Bu	tanone (MEK)	5.00U	10.0	3.10	ug/L
2-Ch	lorotoluene	0.500U	1.00	0.310	ug/L
2-He	xanone	5.00U	10.0	3.10	ug/L
4-Ch	lorotoluene	0.500U	1.00	0.310	ug/L
4-Iso	propyltoluene	0.500U	1.00	0.310	ug/L
4-Me	ethyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benz	rene	0.200U	0.400	0.120	ug/L
Bron	nobenzene	0.500U	1.00	0.310	ug/L
Bron	nochloromethane	0.500U	1.00	0.310	ug/L
Bron	nodichloromethane	0.250U	0.500	0.150	ug/L
Bron	noform	0.500U	1.00	0.310	ug/L
Bron	nomethane	2.50U	5.00	1.50	ug/L
Carb	on disulfide	5.00U	10.0	3.10	ug/L
Carb	on tetrachloride	0.500U	1.00	0.310	ug/L
Chlo	robenzene	0.250U	0.500	0.150	ug/L
Chlo	roethane	0.500U	1.00	0.310	ug/L
Chlo	roform	0.500U	1.00	0.310	ug/L

Print Date: 11/17/2017 2:56:01PM

Blank ID: MB for HBN 1771304 [VXX/31640]

Blank Lab ID: 1423464

QC for Samples:

1178533007, 1178533008

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	97.6	89-112		%

Print Date: 11/17/2017 2:56:01PM

Blank ID: MB for HBN 1771304 [VXX/31640]

Blank Lab ID: 1423464

QC for Samples:

1178533007, 1178533008

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS17390 Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Analytical Date/Time: 10/31/2017 7:38:00PM

Prep Batch: VXX31640 Prep Method: SW5030B

Prep Date/Time: 10/31/2017 12:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/17/2017 2:56:01PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1178533 [VXX31640]

Blank Spike Lab ID: 1423465 Date Analyzed: 10/31/2017 20:00

QC for Samples: 1178533007, 1178533008

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31640]

Spike Duplicate Lab ID: 1423466 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	29.8	99	30	30.2	101	(78-124)	1.40	(< 20)
1,1,1-Trichloroethane	30	30.3	101	30	30.5	102	(74-131)	0.68	(< 20)
1,1,2,2-Tetrachloroethane	30	29.6	99	30	30.7	102	(71-121)	3.90	(< 20)
1,1,2-Trichloroethane	30	30.5	102	30	29.9	100	(80-119)	2.00	(< 20)
1,1-Dichloroethane	30	27.7	92	30	28.1	94	(77-125)	1.40	(< 20)
1,1-Dichloroethene	30	30.7	102	30	30.9	103	(71-131)	0.65	(< 20)
1,1-Dichloropropene	30	32.0	107	30	32.2	107	(79-125)	0.64	(< 20)
1,2,3-Trichlorobenzene	30	31.7	106	30	32.5	108	(69-129)	2.70	(< 20)
1,2,3-Trichloropropane	30	29.3	98	30	30.4	101	(73-122)	3.80	(< 20)
1,2,4-Trichlorobenzene	30	31.3	104	30	32.6	109	(69-130)	4.10	(< 20)
1,2,4-Trimethylbenzene	30	28.0	93	30	29.8	99	(79-124)	6.10	(< 20)
1,2-Dibromo-3-chloropropane	30	32.3	108	30	32.0	107	(62-128)	0.74	(< 20)
1,2-Dibromoethane	30	30.4	101	30	29.9	100	(77-121)	1.60	(< 20)
1,2-Dichlorobenzene	30	30.2	101	30	30.8	103	(80-119)	2.20	(< 20)
1,2-Dichloroethane	30	30.6	102	30	30.4	101	(73-128)	0.63	(< 20)
1,2-Dichloropropane	30	31.1	104	30	30.9	103	(78-122)	0.67	(< 20)
1,3,5-Trimethylbenzene	30	28.9	96	30	30.7	102	(75-124)	5.80	(< 20)
1,3-Dichlorobenzene	30	30.2	101	30	31.0	103	(80-119)	2.40	(< 20)
1,3-Dichloropropane	30	30.6	102	30	29.9	100	(80-119)	2.20	(< 20)
1,4-Dichlorobenzene	30	29.6	99	30	31.0	103	(79-118)	4.70	(< 20)
2,2-Dichloropropane	30	31.4	105	30	30.2	101	(60-139)	3.90	(< 20)
2-Butanone (MEK)	90	84.9	94	90	85.2	95	(56-143)	0.31	(< 20)
2-Chlorotoluene	30	31.1	104	30	31.8	106	(79-122)	2.10	(< 20)
2-Hexanone	90	84.6	94	90	94.8	105	(57-139)	11.40	(< 20)
4-Chlorotoluene	30	30.7	102	30	31.6	105	(78-122)	2.80	(< 20)
4-Isopropyltoluene	30	30.1	100	30	31.8	106	(77-127)	5.50	(< 20)
4-Methyl-2-pentanone (MIBK)	90	85.2	95	90	93.4	104	(67-130)	9.10	(< 20)
Benzene	30	30.3	101	30	31.0	103	(79-120)	2.20	(< 20)
Bromobenzene	30	29.5	98	30	30.2	101	(80-120)	2.20	(< 20)
Bromochloromethane	30	29.8	99	30	29.9	100	(78-123)	0.36	(< 20)
Bromodichloromethane	30	31.3	104	30	30.8	103	(79-125)	1.50	(< 20)
Bromoform	30	31.5	105	30	30.8	103	(66-130)	2.30	(< 20)
Bromomethane	30	35.5	118	30	34.8	116	(53-141)	1.90	(< 20)
Carbon disulfide	45	48.7	108	45	49.3	110	(64-133)	1.10	(< 20)

Print Date: 11/17/2017 2:56:03PM

Blank Spike ID: LCS for HBN 1178533 [VXX31640]

Blank Spike Lab ID: 1423465 Date Analyzed: 10/31/2017 20:00

QC for Samples: 1178533007, 1178533008

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31640]

Spike Duplicate Lab ID: 1423466 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

recalle by Circles		Blank Spike	e (ug/L)	,	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	32.1	107	30	32.2	107	(72-136)	0.21	(< 20)
Chlorobenzene	30	29.9	100	30	30.5	102	(82-118)	1.90	(< 20)
Chloroethane	30	28.0	93	30	32.4	108	(60-138)	14.60	(< 20)
Chloroform	30	27.8	93	30	27.9	93	(79-124)	0.19	(< 20)
Chloromethane	30	28.8	96	30	29.9	100	(50-139)	3.50	(< 20)
cis-1,2-Dichloroethene	30	27.8	93	30	28.3	94	(78-123)	1.70	(< 20)
cis-1,3-Dichloropropene	30	32.9	110	30	32.1	107	(75-124)	2.60	(< 20)
Dibromochloromethane	30	30.8	103	30	30.1	100	(74-126)	2.50	(< 20)
Dibromomethane	30	28.9	96	30	28.2	94	(79-123)	2.30	(< 20)
Dichlorodifluoromethane	30	28.2	94	30	28.9	97	(32-152)	2.70	(< 20)
Ethylbenzene	30	30.0	100	30	29.8	99	(79-121)	0.50	(< 20)
Freon-113	45	47.4	105	45	47.2	105	(70-136)	0.31	(< 20)
Hexachlorobutadiene	30	31.5	105	30	32.3	108	(66-134)	2.50	(< 20)
Isopropylbenzene (Cumene)	30	33.4	111	30	32.4	108	(72-131)	3.10	(< 20)
Methylene chloride	30	29.9	100	30	30.2	101	(74-124)	1.20	(< 20)
Methyl-t-butyl ether	45	48.3	107	45	46.7	104	(71-124)	3.50	(< 20)
Naphthalene	30	31.6	105	30	32.5	108	(61-128)	2.70	(< 20)
n-Butylbenzene	30	29.9	100	30	31.6	105	(75-128)	5.60	(< 20)
n-Propylbenzene	30	31.3	104	30	32.0	107	(76-126)	2.20	(< 20)
o-Xylene	30	30.7	102	30	29.6	99	(78-122)	3.80	(< 20)
P & M -Xylene	60	61.6	103	60	59.1	99	(80-121)	4.10	(< 20)
sec-Butylbenzene	30	31.4	105	30	32.3	108	(77-126)	2.80	(< 20)
Styrene	30	33.0	110	30	31.6	105	(78-123)	4.50	(< 20)
tert-Butylbenzene	30	31.5	105	30	32.2	107	(78-124)	2.10	(< 20)
Tetrachloroethene	30	32.5	108	30	32.9	110	(74-129)	1.10	(< 20)
Toluene	30	29.5	98	30	30.0	100	(80-121)	1.60	(< 20)
trans-1,2-Dichloroethene	30	30.6	102	30	30.8	103	(75-124)	0.82	(< 20)
trans-1,3-Dichloropropene	30	30.8	103	30	29.9	100	(73-127)	3.00	(< 20)
Trichloroethene	30	31.0	103	30	31.3	104	(79-123)	0.86	(< 20)
Trichlorofluoromethane	30	29.5	98	30	29.8	99	(65-141)	0.94	(< 20)
Vinyl acetate	30	36.8	123	30	29.0	97	(54-146)	23.80	* (< 20)
Vinyl chloride	30	29.8	99	30	31.8	106	(58-137)	6.50	(< 20)
Xylenes (total)	90	92.3	103	90	88.7	99	(79-121)	4.00	(< 20)

Print Date: 11/17/2017 2:56:03PM

Blank Spike ID: LCS for HBN 1178533 [VXX31640]

Blank Spike Lab ID: 1423465 Date Analyzed: 10/31/2017 20:00

QC for Samples: 1178533007, 1178533008

Spike Duplicate ID: LCSD for HBN 1178533

[VXX31640]

Spike Duplicate Lab ID: 1423466 Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	94	94	30	92.2	92	(81-118)	1.90	
4-Bromofluorobenzene (surr)	30	95.8	96	30	96.9	97	(85-114)	1.10	
Toluene-d8 (surr)	30	103	103	30	103	103	(89-112)	0.30	

Batch Information

Analytical Batch: VMS17390
Analytical Method: SW8260C

Instrument: VSA Agilent GC/MS 7890B/5977A

Analyst: FDR

Prep Batch: VXX31640
Prep Method: SW5030B

Prep Date/Time: 10/31/2017 00:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/17/2017 2:56:03PM

Blank ID: MB for HBN 1770637 [XXX/38710]

Blank Lab ID: 1421504

QC for Samples:

1178533001, 1178533002

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	74.8	47-106		%
Fluoranthene-d10 (surr)	75.6	24-116		%

Batch Information

Analytical Batch: XMS10523

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 11/1/2017 2:04:00AM

Prep Batch: XXX38710 Prep Method: SW3520C

Prep Date/Time: 10/21/2017 8:20:13AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:05PM

Blank Spike ID: LCS for HBN 1178533 [XXX38710]

Blank Spike Lab ID: 1421505 Date Analyzed: 11/01/2017 02:24

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178533001, 1178533002

Results by 8270D SIM LV (PAH)

,			_
		Blank Spike	e (ug/L)
<u>Parameter</u>	Spike	Result	Rec (%
1-Methylnaphthalene	2	1.25	63
2-Methylnaphthalene	2	1.14	57
Acenaphthene	2	1.30	65
Acenaphthylene	2	1.37	68
Anthracene	2	1.51	76
Benzo(a)Anthracene	2	1.49	74
Benzo[a]pyrene	2	1.38	69
Benzo[b]Fluoranthene	2	1.51	75
Benzo[g,h,i]perylene	2	1.26	63
Benzo[k]fluoranthene	2	1.42	71
Chrysene	2	1.42	71
Dibenzo[a,h]anthracene	2	1.17	58
Fluoranthene	2	1.27	63
Fluorene	2	1.39	69
Indeno[1,2,3-c,d] pyrene	2	1.37	68
Naphthalene	2	1.18	59
Phenanthrene	2	1.49	75
Pyrene	2	1.34	67
Surrogates			
2-Methylnaphthalene-d10 (surr)	2	59.5	60
Fluoranthene-d10 (surr)	2	62.5	63

Batch Information

Analytical Batch: XMS10523

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Prep Batch: XXX38710 Prep Method: SW3520C

Prep Date/Time: 10/21/2017 08:20

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/17/2017 2:56:07PM

Matrix Spike Summary

Original Sample ID: 1177465003 MS Sample ID: 1421506 MS MSD Sample ID: 1421507 MSD

QC for Samples: 1178533001, 1178533002

Analysis Date: 11/01/2017 3:26 Analysis Date: 11/01/2017 3:46 Analysis Date: 11/01/2017 4:06 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

	•	Ма	trix Spike (ug/L)	Spik	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0261U	2.02	1.45	72	2.14	1.49	70	41-115	2.70	(< 20)
2-Methylnaphthalene	0.0261U	2.02	1.33	66	2.14	1.39	65	39-114	4.80	(< 20)
Acenaphthene	0.0261U	2.02	1.5	74	2.14	1.52	71	48-114	1.40	(< 20)
Acenaphthylene	0.0261U	2.02	1.58	79	2.14	1.62	76	35-121	2.40	(< 20)
Anthracene	0.0261U	2.02	1.74	86	2.14	1.80	84	53-119	3.80	(< 20)
Benzo(a)Anthracene	0.0261U	2.02	1.61	80	2.14	1.69	79	59-120	4.70	(< 20)
Benzo[a]pyrene	0.0104U	2.02	1.55	77	2.14	1.59	74	53-120	2.20	(< 20)
Benzo[b]Fluoranthene	0.0261U	2.02	1.62	81	2.14	1.71	80	53-126	5.20	(< 20)
Benzo[g,h,i]perylene	0.0261U	2.02	1.47	73	2.14	1.55	72	44-128	5.30	(< 20)
Benzo[k]fluoranthene	0.0261U	2.02	1.59	79	2.14	1.68	79	54-125	5.80	(< 20)
Chrysene	0.0261U	2.02	1.61	80	2.14	1.67	78	57-120	3.40	(< 20)
Dibenzo[a,h]anthracene	0.0104U	2.02	1.37	68	2.14	1.43	67	44-131	4.60	(< 20)
Fluoranthene	0.0261U	2.02	1.43	71	2.14	1.47	69	58-120	2.90	(< 20)
Fluorene	0.0261U	2.02	1.58	78	2.14	1.64	77	50-118	3.70	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0261U	2.02	1.5	75	2.14	1.57	73	48-130	4.30	(< 20)
Naphthalene	0.0520U	2.02	1.37	68	2.14	1.41	66	43-114	2.90	(< 20)
Phenanthrene	0.0261U	2.02	1.72	85	2.14	1.78	84	53-115	3.60	(< 20)
Pyrene	0.0261U	2.02	1.49	74	2.14	1.56	73	53-121	4.60	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		2.02	1.36	67	2.14	1.41	66	47-106	3.80	
Fluoranthene-d10 (surr)		2.02	1.39	69	2.14	1.44	67	24-116	3.20	

Batch Information

Analytical Batch: XMS10523

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 11/1/2017 3:46:00AM

Prep Batch: XXX38710

Prep Method: 3520 Lig/Lig Ext for 8270 PAH SIM LV

Prep Date/Time: 10/21/2017 8:20:13AM

Prep Initial Wt./Vol.: 248.00mL Prep Extract Vol: 1.00mL

Print Date: 11/17/2017 2:56:09PM

Blank ID: MB for HBN 1770654 [XXX/38713]

Blank Lab ID: 1421577

QC for Samples:

1178533001, 1178533002, 1178533003, 1178533004, 1178533005, 1178533006

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 88.9 60-120 %

Batch Information

Analytical Batch: XFC13920 Prep Batch: XXX38713 Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 10/22/2017 8:03:42AM

Matrix: Water (Surface, Eff., Ground)

Analyst: JMG Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/27/2017 12:24:00PM Prep Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:10PM

Blank Spike ID: LCS for HBN 1178533 [XXX38713]

Blank Spike Lab ID: 1421578 Date Analyzed: 10/27/2017 12:33 Spike Duplicate ID: LCSD for HBN 1178533

[XXX38713]

Spike Duplicate Lab ID: 1421579 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178533001, 1178533002, 1178533003, 1178533004, 1178533005, 1178533006

Results by AK102

	E	Blank Spike	(mg/L)	S	Spike Duplic	ate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	19.1	96	20	18.8	94	(75-125)	1.70	(< 20)
Surrogates									
5a Androstane (surr)	0.4	93.2	93	0.4	92.5	93	(60-120)	0.73	

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38713
Prep Method: SW3520C

Prep Date/Time: 10/22/2017 08:03

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:12PM

Blank ID: MB for HBN 1770654 [XXX/38713]

Blank Lab ID: 1421577

QC for Samples:

1178533001, 1178533002, 1178533003, 1178533004, 1178533005, 1178533006

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 85 60-120 %

Batch Information

Analytical Batch: XFC13920 Prep Batch: XXX38713
Analytical Method: AK103 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 10/22/2017 8:03:42AM

Matrix: Water (Surface, Eff., Ground)

Analyst: JMG Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/27/2017 12:24:00PM Prep Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:17PM

Blank Spike ID: LCS for HBN 1178533 [XXX38713]

Blank Spike Lab ID: 1421578 Date Analyzed: 10/27/2017 12:33 Spike Duplicate ID: LCSD for HBN 1178533

[XXX38713]

Spike Duplicate Lab ID: 1421579 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178533001, 1178533002, 1178533003, 1178533004, 1178533005, 1178533006

Results by AK103

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	19.6	98	20	19.3	96	(60-120)	1.70	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	88.6	89	0.4	87.9	88	(60-120)	0.82	

Batch Information

Analytical Batch: XFC13920 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38713
Prep Method: SW3520C

Prep Date/Time: 10/22/2017 08:03

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:19PM

Blank ID: MB for HBN 1770772 [XXX/38729]

Blank Lab ID: 1421821

QC for Samples: 1178533007

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.453J
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 10/24/2017 8:45:00PM

Prep Batch: XXX38729 Prep Method: SW3520C

Prep Date/Time: 10/24/2017 8:04:39AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:22PM

Blank Spike ID: LCS for HBN 1178533 [XXX38729]

Blank Spike Lab ID: 1421822 Date Analyzed: 10/24/2017 20:55

QC for Samples: 1178533007

Spike Duplicate ID: LCSD for HBN 1178533

[XXX38729]

Spike Duplicate Lab ID: 1421823 Matrix: Water (Surface, Eff., Ground)

Results by AK102

	Е	lank Spike	(mg/L)	S	Spike Duplic	ate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.3	92	20	19.8	99	(75-125)	7.50	(< 20)
Surrogates									
5a Androstane (surr)	0.4	94.3	94	0.4	106	106	(60-120)	12.00	

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38729
Prep Method: SW3520C

Prep Date/Time: 10/24/2017 08:04

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:24PM

Blank ID: MB for HBN 1770772 [XXX/38729]

Blank Lab ID: 1421821

QC for Samples: 1178533007

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.411J0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 106 60-120 %

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 10/24/2017 8:45:00PM

Prep Batch: XXX38729 Prep Method: SW3520C

Prep Date/Time: 10/24/2017 8:04:39AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:26PM

Blank Spike ID: LCS for HBN 1178533 [XXX38729]

Blank Spike Lab ID: 1421822 Date Analyzed: 10/24/2017 20:55

QC for Samples: 1178533007

Spike Duplicate ID: LCSD for HBN 1178533

[XXX38729]

Spike Duplicate Lab ID: 1421823 Matrix: Water (Surface, Eff., Ground)

Results by AK103

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.6	103	20	21.9	109	(60-120)	5.90	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	91.3	91	0.4	102	102	(60-120)	11.30	

Batch Information

Analytical Batch: XFC13908 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38729
Prep Method: SW3520C

Prep Date/Time: 10/24/2017 08:04

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 11/17/2017 2:56:28PM

178533

ပ

Δ

Locations Nationwide

New York Maryland Indiana North Carolina New Jersey Alaska

Kentucky West Virgina

www.us.sgs.com

Preservative Pres	CLIENT	CLIENTShannon & Wibson	Viksa					Instr	Instructions: Omissions	s: Ser	Sections 1 -	1 - 5 / the	must	structions: Sections 1 - 5 must be filled out.	d out.		Page of M	
Comparison Com	ONTACT:	Val Webb	PHONE NO	354	3-318	53	Sect	tion 3				Pres	ervative					
	ROJECTÝ	Interior	÷ ;	1-1-1	18c3	b 000-	* 0				22.1							
Note 10 10 10 10 10 10 10 1	EPORTS $1 \ \sqrt{c\lambda}$	بر ا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	က် (၂)	Showie	wil.com		Type COMP	(101	(8102	50)	700						
PLE IDENTIFICATION DATE TIME WATRIX R Sole C C C C C C C	IVOICE TO		QUOTE#: P.O.#:				< - z	GEAB MI = Multi	JA)	3) X	14.T	7 5				- 4594		
N-9 10/10/11/11/12/12/12/12/12/12/12/12/12/12/12/	ESERVED for lab use				TIME 1H:MM	MATRIX/ MATRIX CODE	шко	Incre- mental Soils			• •	11 / 4				-	REMARKS/	
N-104 10 10 17 17 1330' 6\(\text{Colore} \) \(\text{Colore} \) \	14-J	MM-9	10/18	Ľ	330	6WA	016			+	,							
N-10	DA-0	-	10/19		330	0	0							-				
N-13	≖		31/0	_	J. J.	GN)	90											
N-13 10/19/17 1350 60 8 x x x x x x x x x x x x x x x x x x	<u> </u>	MW-11		+	515	6W	<i>0</i> 0											
Date Time Received By: Time Received For Laboratory By: Cooler ID: Time Received For Laboratory By: Cooler ID: Time Received For Laboratory By: Time Time Received For Laboratory By: Time	JA-H	OF MW	ija	正	<u> </u>	$G_{\mathcal{M}}$	∞											
Date	2)A-H	NW-13	4 - August -		350	6	∞											
Date Time Received By: 10 11; 5	JA-C		\Box	~ ~	130	,	3											
Date Time Received By: 11.51 Cooler ID: Requested Turnaround Time and/or Spection 4 DOD Project? Yes (No.) 10 10 10 10 10 10 10 1	M-H	•	-								-		1					
Date Time Received By: 11.51 Cooler ID: Date Time Received By: Coler ID: Requested Turnaround Time and/or Spectromagnet Time Received By: Date Time Received By: Temp Blank °C: ST Date Time Received For Laboratory By: or Ambient [1] [0 20 7 10.15 20 7 10.15 20 20 20 20 20 20 20 2																		
Date Time Received By: O 1 1 1 1 1 1 1 1 1				-			1.	1.04/10		(┨;	+	_ ;		\dashv			T
10 10 10 10 10 10 10 10	elinquishe	ed By: (1)	Date	<u>H</u>		Received By		ナミニ		ñ	ection .	_	D Proje	xr Yes (۸ ($\overline{}$	oata Deliv	erable Requirement	;;
Date Time Received By: Date Time Received By: Date Time Received By: Temp Blank °C: ST Temp Blank °C: ST	13) Ic/p	/17	151	May and the second	1 /	181		Ö	ooler ID)	\	Ler	()	
	elinquishe	(ABy: (2)	Date			Received By				Rec	quested	Turnar	und Tin	e and/or S	pecial I	nstruction	:8:	
Date Time Received By: Temp Blank °C: ST Temp Blank °C: ST To Ambient [] (See attached Sample Receipt Form)		m	181101		Ś	$\left \cdot \right $						1	1					
Dark C: S 7 Dark 10 10 10 10 10 10 10 1	elinquishe	td By: (3)	Date	Ë	\setminus	Received By						2	3		-			П
Date Time Received For Laboratory By: or Ambient [] 10 10 10 10 10 10 10					(Ten	np Blan	ا ن	5.7			Chain of C	ustody Seal: (Circle	
(See attached Sample Receipt Form)	elinquishe	id By: (4)	Darle 10 00			Received Fo	r Labora	itory By:				or Ar	nbient [_				
			201				3	3		<u>ت</u>	See atta	ched Sa	mple Re	ceipt Forn		e attache	d Sample Receipt Fo	Ē

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 $^{\circ}$ H $^{\circ}$ H $^{\circ}$ Http://www.sgs.com/terms-and-conditions [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 $^{\circ}$ A $^{\circ}$ A $^{\circ}$ H $^{\circ}$

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SGS

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	Co	nditio	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	-Yes	No	WA	Exemption permitted if sampler hand
COC accompanied samples?	(Yes)	No	· N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes	No	\sim	Exemption permitted if chilled &
If >6°C, were samples collected <8 hours ago?	Yes	No	AMA?	collected <8hrs ago
If $<0^{\circ}$ C, were all sample containers ice free? Cooler ID: @ 5.7w/Therm. ID: 0.3	Yes	No	N/A)	
Cooler ID:				
Cooler ID: w/Therm. ID:				
Cooler ID: w/Therm. ID:				
Cooler ID: @ w/Therm. ID:				
If samples are received without a temperature blank, the "cooler temperature" will be				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to				Note: Identify containers received at
the right. In cases where neither a temp blank nor cooler temp can be obtained, note ambient () or chilled (). Please check one.				non-compliant temperature. Use form
The second secon			1.7.11	FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:		king/A		
		ee atta		
Non-second second with resument rate amount (\$\phi\$) and with		Or N/A		cle one) was received.
→For samples received with payment, note amount (\$) and who Were samples in good condition (no leaks/cracks/breakage)?	Yes	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap'	163)	140	IVA	Anchorage without inspection by SGS
Separate plastic bags Vermiculite Other:				Fairbanks personnel.
Separate plastic bags verificante Gaier.				
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes	No	N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes	No	NVA	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	(N/A)	
Additional notes (if applicable):				<u> </u>
(1- upp-1-1-1-)				
Profile #:				
Note to Client: any "no" circled above indicates non-compliance	with standar	rd proce	dures and m	ay impact data quality.

1178533

Cooler Packing Form For Fairbanks

ı	ı	1	O,	J	

OUO		
	-0.1	D41
Cooler ID (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cooler Temperature U · 1	

Please list the WOs and associated samples packed in this Cooler

WO #	Samples	Special Notes
1178533	MW-9 MW-109 MW-11 MW-12 MW-13 TRIP BLANK	Special Notes

e-Sample Receipt Form

SGS Workorder #:

1178533

					_			3 2	2	3
Review Criteria	Condition (Ye	es, No, N/A			_		ted be			
Chain of Custody / Temperature Requi				Exemption pe	ermitted	l if sam	oler hand	d carries	/delive	ers.
Were Custody Seals intact? Note # &	location Ye	1 Front	1 Bac	k						
COC accompanied sa	amples? Ye	s								
N/A **Exemption permitted if	chilled & co	llected <8 I	hours	ago, or for sar	mples w	here ch	illing is	not requi	red	
	Ye	S Cooler	ID:	1		@	-0.1 °	CTherm	ı. ID: l	D41
		Cooler	ID:			@	٥	CTherm	ı. ID:	
Temperature blank compliant* (i.e., 0-6 °C after	er CF)?	Cooler	ID:			@	٥	CTherm	ı. ID:	
		Cooler	ID:			@	٥	CTherm	ı. ID:	
		Cooler	ID:			@	0	CTherm	ı. ID:	
*If >6°C, were samples collected <8 hours	s ago? N/	A								
If <0°C, were sample containers ice	e free?	es								
If samples received without a temperature blank, the	"cooler									
temperature" will be documented in lieu of the temperature bank, the										
"COOLER TEMP" will be noted to the right. In cases where no	either a									
temp blank nor cooler temp can be obtained, note "amb										
"C	chilled".									
Note: Identify containers received at non-compliant tempe Use form FS-0029 if more space is n										
Holding Time / Documentation / Sample Condition R	equirement	Note: R	efer to	form F-083 "5	Sample	Guide"	for spec	rific holdi	na tim	nes
Were samples received within holding			CICI to	71011111 -000	oampic	Oulde	тог эрсс	ine notal	ng un	103.
	J									
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)?	0								
**Note: If times differ <1hr, record details & login pe	er COC.									
Were analyses requested unambiguous? (i.e., method is speci analyses with >1 option for ar		es								
			N/A	***Exemption	permit	ted for r	netals (e	e.g,200.8	8/6020	A).
Were proper containers (type/mass/volume/preservative***	*)used?	s						J,		
Volatile / LL-Hg Reg										
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sai										
Were all water VOA vials free of headspace (i.e., bubbles ≤										
Were all soil VOAs field extracted with MeOH	′ 									
Note to Client: Any "No", answer above indicates no			dard r	orocedures an	d mav i	mpact o	lata dua	litv.		
						puot (.a.a qua			
	al notes (if									
"Kelly's DW" sampled 10/17/17 15:30 was not written on CO sample 7A-H for GRO/BTEX, DRO/RRO, and VOCs per clien request.										

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1178533001-A	HCL to pH < 2	ОК	1178533005-G	HCL to pH < 2	OK
1178533001-B	HCL to pH < 2	ОК	1178533005-H	HCL to pH < 2	ОК
1178533001-C	HCL to pH < 2	ОК	1178533006-A	HCL to pH < 2	OK
1178533001-D	HCL to pH < 2	ОК	1178533006-B	HCL to pH < 2	ОК
1178533001-E	HCL to pH < 2	ОК	1178533006-C	HCL to pH < 2	OK
1178533001-F	HCL to pH < 2	ОК	1178533006-D	HCL to pH < 2	ОК
1178533001-G	HCL to pH < 2	ОК	1178533006-E	HCL to pH < 2	ОК
1178533001-H	HCL to pH < 2	ОК	1178533006-F	HCL to pH < 2	OK
1178533001-I	No Preservative Required	ОК	1178533006-G	HCL to pH < 2	OK
1178533001-J	No Preservative Required	ОК	1178533006-H	HCL to pH < 2	OK
1178533002-A	HCL to pH < 2	ОК	1178533007-A	HCL to pH < 2	OK
1178533002-B	HCL to pH < 2	ОК	1178533007-B	HCL to pH < 2	OK
1178533002-C	HCL to pH < 2	ОК	1178533007-C	HCL to pH < 2	ОК
1178533002-D	HCL to pH < 2	ОК	1178533007-D	HCL to pH < 2	OK
1178533002-E	HCL to pH < 2	ОК	1178533007-E	HCL to pH < 2	ОК
1178533002-F	HCL to pH < 2	ОК	1178533007-F	HCL to pH < 2	OK
1178533002-G	HCL to pH < 2	ОК	1178533007-G	HCL to pH < 2	OK
1178533002-H	HCL to pH < 2	ОК	1178533007-H	HCL to pH < 2	OK
1178533002-I	No Preservative Required	ОК	1178533008-A	HCL to pH < 2	OK
1178533002-J	No Preservative Required	ОК	1178533008-B	HCL to pH < 2	OK
1178533003-A	HCL to pH < 2	ОК	1178533008-C	HCL to pH < 2	OK
1178533003-B	HCL to pH < 2	ОК			
1178533003-C	HCL to pH < 2	ОК			
1178533003-D	HCL to pH < 2	ОК			
1178533003-E	HCL to pH < 2	ОК			
1178533003-F	HCL to pH < 2	ОК			
1178533003-G	HCL to pH < 2	ОК			
1178533003-H	HCL to pH < 2	ОК			
1178533004-A	HCL to pH < 2	ОК			
1178533004-B	HCL to pH < 2	ОК			
1178533004-C	HCL to pH < 2	ОК			
1178533004-D	HCL to pH < 2	ОК			
1178533004-E	HCL to pH < 2	ОК			
1178533004-F	HCL to pH < 2	ОК			
1178533004-G	HCL to pH < 2	ОК			
1178533004-H	HCL to pH < 2	ОК			
1178533005-A	HCL to pH < 2	ОК			
1178533005-B	HCL to pH < 2	ОК			
1178533005-C	HCL to pH < 2	ОК			
1178533005-D	HCL to pH < 2	ОК			
1178533005-E	HCL to pH < 2	ОК			
1178533005-F	HCL to pH < 2	ОК			

10/20/2017 Page 67 of 68

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

10/20/2017 Page 68 of 68

Laboratory Report of Analysis

To:

Shannon & Wilson-Fairbanks 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 907-479-0600

Report Number: 1178534

Client Project:

31-1-11809-009 Interior Texaco

Dear Valerie Webb,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen Ede 2017.11.09

08:58:32 -09'00'

Jennifer Dawkins

Project Manager

Jennifer.Dawkins@sgs.com

Print Date: 11/08/2017 4:21:45PM

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1178534

Project Name/Site: 31-1-11809-009 Interior Texaco

Project Contact: Valerie Webb

Refer to sample receipt form for information on sample condition.

IT-B1-1 (1178534001) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (515%) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

IT-B2-1 (1178534003) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (1420 %) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).
- 8270D SIM PAH surrogate recovery for 2-methylnaphthalene-d10 (259%) does not meet QC criteria due to sample dilution (20X).

IT-B2-3 (1178534004) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (583 %) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).
- 8270D SIM PAH surrogate recovery for 2-methylnaphthalene-d10 (171%) does not meet QC criteria due to sample dilution (20X).

IT-B4-1 (1178534008) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (523 %) does not meet QC criteria due to matrix interference.

IT-B5-1 (1178534010) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (1230 %) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

IT-B6-1 (1178534012) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (2070 %) does not meet QC criteria due to matrix interference.

IT-B6-3 (1178534013) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene (1370 %) does not meet QC criteria due to matrix interference.

IT-B7-1 (1178534014) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (2280 %) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (20X).

IT-B7-2 (1178534015) PS

AK103 - The LOQ for RRO is elevated. The sample was diluted due to the dark color of the extract.

IT-B6-2 (1178534016) PS

AK103 - The LOQ for RRO is elevated. The sample was diluted due to the dark color of the extract.

IT-B9-1 (1178534019) PS

AK102 - The LOQ for DRO is elevated. The sample was diluted due to the dark color of the extract.

IT-B10-1 (1178534021) PS

- AK103 The LOQ for RRO is elevated. The sample was diluted due to the dark color of the extract.
- AK101 Surrogate recovery for 4-bromofluorobenzene (2430%) does not meet QC criteria due to matrix interference.

IT-B10-2 (1178534022) PS

Print Date: 11/08/2017 4:21:45PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks
SGS Project: 1178534
Project Name/Site: 31-1-11809-009 Interior Texaco
Project Contact: Valerie Webb

AK103 - The LOQ for RRO is elevated. The sample was diluted due to the dark color of the extract.

AK101 - Surrogate recovery for 4-bromofluorobenzene (224 %) does not meet QC criteria due to matrix interference.

IT-B11-1 (1178534023) PS

- AK101 Surrogate recovery for 4-bromofluorobenzene (268 %) does not meet QC criteria due to matrix interference.
- AK102 Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

1178534005(1421941MS) (1421942) MS

8021B - MS recoveries for P&M-Xylene and o-Xylene do not meet QC criteria due to matrix interference. Refer to LCS/LCSD for accuracy requirements.

1178534005(1421941MSD) (1421943) MSD

8021B - MSD recoveries for P&M-Xylene and o-Xylene do not meet QC criteria due to matrix interference. Refer to LCS/LCSD for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/08/2017 4:21:45PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are **AK00971 DW Chemistry (Provisionally Certified as of 10/12/2017) & Microbiology (Provisionally Certified as of 9/21/2017) &** UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit
DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/08/2017 4:21:47PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
IT-B1-1	1178534001	10/12/2017	10/20/2017	Soil/Solid (dry weight)
IT-B1-2	1178534002	10/12/2017	10/20/2017	Soil/Solid (dry weight)
IT-B2-1	1178534003	10/12/2017	10/20/2017	Soil/Solid (dry weight)
IT-B2-3	1178534004	10/12/2017	10/20/2017	Soil/Solid (dry weight)
IT-B2-2	1178534005	10/12/2017	10/20/2017	Soil/Solid (dry weight)
IT-B3-1	1178534006	10/13/2017	10/20/2017	Soil/Solid (dry weight)
IT-B3-2	1178534007	10/13/2017	10/20/2017	Soil/Solid (dry weight)
IT-B4-1	1178534008	10/13/2017	10/20/2017	Soil/Solid (dry weight)
IT-B4-2	1178534009	10/14/2017	10/20/2017	Soil/Solid (dry weight)
IT-B5-1	1178534010	10/14/2017	10/20/2017	Soil/Solid (dry weight)
IT-B5-2	1178534011	10/14/2017	10/20/2017	Soil/Solid (dry weight)
IT-B6-1	1178534012	10/15/2017	10/20/2017	Soil/Solid (dry weight)
IT-B6-3	1178534013	10/15/2017	10/20/2017	Soil/Solid (dry weight)
IT-B7-1	1178534014	10/16/2017	10/20/2017	Soil/Solid (dry weight)
IT-B7-2	1178534015	10/16/2017	10/20/2017	Soil/Solid (dry weight)
IT-B6-2	1178534016	10/15/2017	10/20/2017	Soil/Solid (dry weight)
IT-B8-1	1178534017	10/16/2017	10/20/2017	Soil/Solid (dry weight)
IT-B8-2	1178534018	10/16/2017	10/20/2017	Soil/Solid (dry weight)
IT-B9-1	1178534019	10/17/2017	10/20/2017	Soil/Solid (dry weight)
IT-B9-2	1178534020	10/17/2017	10/20/2017	Soil/Solid (dry weight)
IT-B10-1	1178534021	10/17/2017	10/20/2017	Soil/Solid (dry weight)
IT-B10-2	1178534022	10/17/2017	10/20/2017	Soil/Solid (dry weight)
IT-B11-1	1178534023	10/17/2017	10/20/2017	Soil/Solid (dry weight)
IT-B11-2	1178534024	10/17/2017	10/20/2017	Soil/Solid (dry weight)
Trip Blank	1178534025	10/19/2017	10/20/2017	Soil/Solid (dry weight)

Method Description

8270D SIM (PAH) 8270 PAH SIM Semi-Volatiles GC/MS

AK101 AK101/8021 Combo. (S) SW8021B AK101/8021 Combo. (S)

AK102 Diesel/Residual Range Organics
AK103 Diesel/Residual Range Organics

SM21 2540G Percent Solids SM2540G

Client Sample ID: IT-B1-1 Lab Sample ID: 1178534001	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	5300	mg/Kg
Commonante Crigamo i dolo	Residual Range Organics	170	mg/Kg
Volatile Fuels	Benzene	0.439	mg/Kg
70.00.00	Ethylbenzene	3.13	mg/Kg
	Gasoline Range Organics	990	mg/Kg
	o-Xylene	263	mg/Kg
	P & M -Xylene	314	mg/Kg
	Toluene	14.7	mg/Kg
Client Sample ID: IT-B1-2			
Lab Sample ID: 1178534002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	41.1	mg/Kg
	Residual Range Organics	12.8J	mg/Kg
Volatile Fuels	Benzene	0.0169	mg/Kg
	Ethylbenzene	0.0123J	mg/Kg
	Gasoline Range Organics	2.36	mg/Kg
	o-Xylene	0.148	mg/Kg
	P & M -Xylene	0.217	mg/Kg
	Toluene	0.242	mg/Kg
Client Sample ID: IT-B2-1			
Lab Sample ID: 1178534003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	65.3	mg/Kg
	2-Methylnaphthalene	91.7	mg/Kg
	Acenaphthene	1.55	mg/Kg
	Anthracene	0.577	mg/Kg
	Benzo(a)Anthracene	0.213J	mg/Kg
	Chrysene	0.222J	mg/Kg
	Fluoranthene	0.992	mg/Kg
	Fluorene	2.67	mg/Kg
	Naphthalene	91.4	mg/Kg
	Phenanthrene	3.76	mg/Kg
	Pyrene	0.839	mg/Kg
Semivolatile Organic Fuels	Diesel Range Organics	7750	mg/Kg
	Residual Range Organics	235	mg/Kg
Volatile Fuels	Benzene	0.0155J	mg/Kg
	Ethylbenzene	0.865	mg/Kg
	Gasoline Range Organics	1780	mg/Kg
	o-Xylene	461	mg/Kg
	P & M -Xylene	226	mg/Kg
	Toluene	0.210	mg/Kg

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc.

Client Sample ID: IT-B2-3			
Lab Sample ID: 1178534004	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	46.4	mg/Kg
	2-Methylnaphthalene	65.0	mg/Kg
	Acenaphthene	1.22	mg/Kg
	Anthracene	0.482J	mg/Kg
	Benzo(a)Anthracene	0.186J	mg/Kg
	Chrysene	0.198J	mg/Kg
	Fluoranthene	0.872	mg/Kg
	Fluorene	2.12	mg/Kg
	Naphthalene	63.3	mg/Kg
	Phenanthrene	3.12	mg/Kg
	Pyrene	0.731	mg/Kg
Semivolatile Organic Fuels	Diesel Range Organics	6250	mg/Kg
-	Residual Range Organics	219	mg/Kg
Volatile Fuels	Benzene	0.00956J	mg/Kg
	Ethylbenzene	0.420	mg/Kg
	Gasoline Range Organics	1380	mg/Kg
	o-Xylene	395	mg/Kg
	P & M -Xylene	187	mg/Kg
	Toluene	0.130	mg/Kg
Client Sample ID: IT P2 2			
Client Sample ID: 1179524005		5 "	
Lab Sample ID: 1178534005	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	201	mg/Kg
	Residual Range Organics	41.3	mg/Kg
Volatile Fuels	Gasoline Range Organics	1.28J	mg/Kg
	o-Xylene	0.0325	mg/Kg
	P & M -Xylene	0.0260J	mg/Kg
	Toluene	0.0156J	mg/Kg
Client Sample ID: IT-B3-1			
Lab Sample ID: 1178534006	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	10.4J	mg/Kg
	Residual Range Organics	47.4	mg/Kg
Volatile Fuels	Gasoline Range Organics	1.68J	mg/Kg
	o-Xylene	0.106	mg/Kg
	P & M -Xylene	0.0656J	mg/Kg
Client Sample ID: IT-B3-2			
Lab Sample ID: 1178534007	Darameter	Popult	Unito
Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 6.97J	<u>Units</u> mg/Kg
Semivolatile Organic Fuels	Residual Range Organics	10.8J	mg/Kg
Volatile Fuels	Benzene	0.00847J	mg/Kg
Volatile Fuels	Gasoline Range Organics	1.65J	mg/Kg
		0.105	
	o-Xylene P & M -Xylene	0.105	mg/Kg
			mg/Kg
	Toluene	0.125	mg/Kg

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B4-1			
Lab Sample ID: 1178534008	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1930	mg/Kg
	Residual Range Organics	274	mg/Kg
Volatile Fuels	Benzene	0.0117J	mg/Kg
	Ethylbenzene	0.292	mg/Kg
	Gasoline Range Organics	162	mg/Kg
	o-Xylene	0.896	mg/Kg
	P & M -Xylene	11.0	mg/Kg
	Toluene	0.229	mg/Kg
Client Sample ID: IT-B4-2			
Lab Sample ID: 1178534009	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	195	mg/Kg
Commodumo Organio i dolo	Residual Range Organics	21.3	mg/Kg
Volatile Fuels	Ethylbenzene	0.00904J	mg/Kg
volumo i dolo	Gasoline Range Organics	3.70	mg/Kg
	o-Xylene	0.0458	mg/Kg
	P & M -Xylene	0.0740	mg/Kg
	Toluene	0.0305	mg/Kg
011 10 1 10 1 10 1			33
Client Sample ID: IT-B5-1			
Lab Sample ID: 1178534010	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	12000	mg/Kg
	Residual Range Organics	430	mg/Kg
Volatile Fuels	Ethylbenzene	0.236	mg/Kg
	Gasoline Range Organics	160	mg/Kg
	o-Xylene	3.44	mg/Kg
	P & M -Xylene	4.92	mg/Kg
	Toluene	0.0332J	mg/Kg
Client Sample ID: IT-B5-2			
Lab Sample ID: 1178534011	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	11.0J	mg/Kg
3	Residual Range Organics	20.9	mg/Kg
Volatile Fuels	Benzene	0.00560J	mg/Kg
	Ethylbenzene	0.0101J	mg/Kg
	Gasoline Range Organics	5.88	mg/Kg
	o-Xylene	0.0504	mg/Kg
	P & M -Xylene	0.0923	mg/Kg
	Toluene	0.0528	mg/Kg
			5 5

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B6-1			
Lab Sample ID: 1178534012	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	11.0	mg/Kg
	2-Methylnaphthalene	16.1	mg/Kg
	Acenaphthene	0.119	mg/Kg
	Anthracene	0.0551	mg/Kg
	Benzo(a)Anthracene	0.00919J	mg/Kg
	Fluoranthene	0.0309	mg/Kg
	Fluorene	0.309	mg/Kg
	Naphthalene	17.8	mg/Kg
	Phenanthrene	0.256	mg/Kg
	Pyrene	0.0368	mg/Kg
Semivolatile Organic Fuels	Diesel Range Organics	1830	mg/Kg
	Residual Range Organics	46.0	mg/Kg
Volatile Fuels	Benzene	0.494	mg/Kg
	Ethylbenzene	37.4	mg/Kg
	Gasoline Range Organics	1570	mg/Kg
	o-Xylene	221	mg/Kg
	P & M -Xylene	525	mg/Kg
	Toluene	74.7	mg/Kg
Client Sample ID: IT-B6-3			
Lab Sample ID: 1178534013	Devemeter	Decult	Lleite
·	<u>Parameter</u> 1-Methylnaphthalene	<u>Result</u> 8.70	<u>Units</u> mg/Kg
Polynuclear Aromatics GC/MS		12.9	
	2-Methylnaphthalene	0.0954	mg/Kg
	Acenaphthylana		mg/Kg
	Acenaphthylene Anthracene	0.0498 0.0478	mg/Kg
			mg/Kg
	Fluoranthene	0.0263J	mg/Kg
	Fluorene	0.260	mg/Kg
	Naphthalene	15.3	mg/Kg
	Phenanthrene	0.228	mg/Kg
	Pyrene	0.0301	mg/Kg
Semivolatile Organic Fuels	Diesel Range Organics	1190	mg/Kg
	Residual Range Organics	46.7	mg/Kg
Volatile Fuels	Benzene	0.647	mg/Kg
	Ethylbenzene	33.9	mg/Kg
	Gasoline Range Organics	1340	mg/Kg
	o-Xylene	213	mg/Kg
	P & M -Xylene	497	mg/Kg
	Toluene	83.4	mg/Kg

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detecta	ble Result	ts Summary
---------	------------	------------

Client Sample ID: IT-B7-1			
Lab Sample ID: 1178534014	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	2900	mg/Kg
	Residual Range Organics	119	mg/Kg
Volatile Fuels	Benzene	0.185	mg/Kg
	Ethylbenzene	23.8	mg/Kg
	Gasoline Range Organics	1210	mg/Kg
	o-Xylene	212	mg/Kg
	P & M -Xylene	405	mg/Kg
	Toluene	29.5	mg/Kg
Client Comple ID: IT D7 2			
Client Sample ID: IT-B7-2			
Lab Sample ID: 1178534015	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1870	mg/Kg
Volatile Fuels	Benzene	0.0105	mg/Kg
	Ethylbenzene	0.00639J	mg/Kg
	Gasoline Range Organics	8.54	mg/Kg
	o-Xylene	0.176	mg/Kg
	P & M -Xylene	0.158	mg/Kg
	Toluene	0.174	mg/Kg
Client Sample ID: IT-B6-2			
Lab Sample ID: 1178534016	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1100	mg/Kg
Volatile Fuels	Benzene	0.00721J	mg/Kg
	Ethylbenzene	0.00842J	mg/Kg
	Gasoline Range Organics	5.46	mg/Kg
	o-Xylene	0.106	mg/Kg
	P & M -Xylene	0.179	mg/Kg
	Toluene	0.120	mg/Kg
Olicat Ocasale IDs IT DO 4			0 0
Client Sample ID: IT-B8-1	_		
Lab Sample ID: 1178534017	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	8.34J	mg/Kg
Volatile Fuels	Toluene	0.0101J	mg/Kg
Client Sample ID: IT-B8-2			
Lab Sample ID: 1178534018	Parameter	Result	Units
Volatile Fuels	Toluene	0.00937J	mg/Kg
Client Sample ID: IT-B9-1			
Lab Sample ID: 1178534019	Davamatav	Decult	l laita
	Parameter Pacidual Panga Organica	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics Benzene	130	mg/Kg
Volatile Fuels		0.0167	mg/Kg
	Ethylbenzene	0.217	mg/Kg
	Gasoline Range Organics	8.41	mg/Kg
	o-Xylene	1.06	mg/Kg
	P & M -Xylene	2.14	mg/Kg
	Toluene	0.811	mg/Kg

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Detectable Results Summary

Client Sample ID: IT-B9-2			
Lab Sample ID: 1178534020	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	o-Xylene	0.00923J	mg/Kg
	P & M -Xylene	0.0214J	mg/Kg
	Toluene	0.0196J	mg/Kg
Client Sample ID: IT-B10-1			
Lab Sample ID: 1178534021	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	5050	mg/Kg
	Residual Range Organics	179J	mg/Kg
Volatile Fuels	Benzene	0.0716J	mg/Kg
	Ethylbenzene	0.689	mg/Kg
	Gasoline Range Organics	158	mg/Kg
	o-Xylene	12.6	mg/Kg
	P & M -Xylene	5.30	mg/Kg
	Toluene	0.186J	mg/Kg
Client Sample ID: IT-B10-2			
Lab Sample ID: 1178534022	Darameter	Dogult	Linita
•	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 5120	<u>Units</u> mg/Kg
Semivolatile Organic Fuels	Residual Range Organics	83.7J	mg/Kg
Volatile Fuels	Ethylbenzene	0.0133J	mg/Kg
voiatile rueis	Gasoline Range Organics	32.8	mg/Kg
	o-Xylene	0.410	mg/Kg
	P & M -Xylene	0.173	mg/Kg
	T & W Aylone	0.170	mg/rtg
Client Sample ID: IT-B11-1			
Lab Sample ID: 1178534023	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	12100	mg/Kg
	Residual Range Organics	281	mg/Kg
Volatile Fuels	Benzene	0.00931J	mg/Kg
	Ethylbenzene	0.0588	mg/Kg
	Gasoline Range Organics	143	mg/Kg
	o-Xylene	0.549	mg/Kg
	P & M -Xylene	11.0	mg/Kg
	Toluene	0.0871	mg/Kg
Client Sample ID: IT-B11-2			
Lab Sample ID: 1178534024	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	7.00J	mg/Kg
Volatile Fuels	o-Xylene	0.0125J	mg/Kg
	P & M -Xylene	0.0277J	mg/Kg
	Toluene	0.0345	mg/Kg

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: **Trip Blank** Lab Sample ID: 1178534025

Volatile Fuels

<u>Parameter</u>	Result	<u>Units</u>
Gasoline Range Organics	0.877J	mg/Kg
o-Xylene	0.0112J	mg/Kg
P & M -Xylene	0.0270J	mg/Kg
Toluene	0.0286	mg/Kg

Print Date: 11/08/2017 4:21:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B1-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534001 Lab Project ID: 1178534 Collection Date: 10/12/17 12:55 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):83.1 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	5300	954	296	mg/Kg	40		10/28/17 20:19
Surrogates							
5a Androstane (surr)	0 *	50-150		%	40		10/28/17 20:19

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:19 Container ID: 1178534001-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.274 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	170	95.4	29.6	mg/Kg	4		10/27/17 01:00
Surrogates							
n-Triacontane-d62 (surr)	86.6	50-150		%	4		10/27/17 01:00

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:00 Container ID: 1178534001-A

Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.274 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B1-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534001 Lab Project ID: 1178534 Collection Date: 10/12/17 12:55 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):83.1 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	990	159	47.7	mg/Kg	50	Limits	10/24/17 14:22
Surrogates 4-Bromofluorobenzene (surr)	515 *	50-150		%	50		10/24/17 14:22

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 14:22 Container ID: 1178534001-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 12:55 Prep Initial Wt./Vol.: 69.69 g Prep Extract Vol: 36.7945 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.439	0.0794	0.0254	mg/Kg	5		10/23/17 15:46
Ethylbenzene	3.13	0.159	0.0496	mg/Kg	5		10/23/17 15:46
o-Xylene	263	1.59	0.496	mg/Kg	50		10/24/17 14:22
P & M -Xylene	314	3.18	0.953	mg/Kg	50		10/24/17 14:22
Toluene	14.7	0.159	0.0496	mg/Kg	5		10/23/17 15:46
Surrogates							
1,4-Difluorobenzene (surr)	99.1	72-119		%	5		10/23/17 15:46

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 14:22 Container ID: 1178534001-B

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 15:46 Container ID: 1178534001-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/12/17 12:55
Prep Initial Wt./Vol.: 69.69 g
Prep Extract Vol: 36.7945 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/12/17 12:55 Prep Initial Wt./Vol.: 69.69 g Prep Extract Vol: 36.7945 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B1-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534002 Lab Project ID: 1178534 Collection Date: 10/12/17 14:54 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.0 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	41.1	20.6	6.37	mg/Kg	1		10/26/17 22:54
Surrogates							
5a Androstane (surr)	84.4	50-150		%	1		10/26/17 22:54

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 22:54 Container ID: 1178534002-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.086 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	12.8 J	20.6	6.37	mg/Kg	1		10/26/17 22:54
Surrogates							
n-Triacontane-d62 (surr)	84.3	50-150		%	1		10/26/17 22:54

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 22:54 Container ID: 1178534002-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.086 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B1-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534002 Lab Project ID: 1178534 Collection Date: 10/12/17 14:54 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.0 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 2.36	LOQ/CL 2.20	<u>DL</u> 0.659	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/24/17 14:41
Surrogates							
4-Bromofluorobenzene (surr)	73.7	50-150		%	1		10/24/17 14:41

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 14:41 Container ID: 1178534002-B

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 14:54 Prep Initial Wt./Vol.: 63.135 g Prep Extract Vol: 26.8986 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0169	0.0110	0.00351	mg/Kg	1		10/24/17 14:41
Ethylbenzene	0.0123 J	0.0220	0.00685	mg/Kg	1		10/24/17 14:41
o-Xylene	0.148	0.0220	0.00685	mg/Kg	1		10/24/17 14:41
P & M -Xylene	0.217	0.0439	0.0132	mg/Kg	1		10/24/17 14:41
Toluene	0.242	0.0220	0.00685	mg/Kg	1		10/24/17 14:41
Surrogates							
1,4-Difluorobenzene (surr)	98.6	72-119		%	1		10/24/17 14:41

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 14:41 Container ID: 1178534002-B

Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/12/17 14:54
Prep Initial Wt./Vol.: 63.135 g
Prep Extract Vol: 26.8986 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B2-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534003 Lab Project ID: 1178534 Collection Date: 10/12/17 17:54 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.7 Location:

Results by Polynuclear Aromatics GC/MS

Description	De suit Ouel	1.00/01		11-24-	DE	Allowable	- A l l
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		e Analyzed
1-Methylnaphthalene	65.3	5.68	1.70	mg/Kg	200		06/17 02:48
2-Methylnaphthalene	91.7	5.68	1.70	mg/Kg	200	11/0	06/17 02:48
Acenaphthene	1.55	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Acenaphthylene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Anthracene	0.577	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Benzo(a)Anthracene	0.213 J	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Benzo[a]pyrene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Benzo[b]Fluoranthene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Benzo[g,h,i]perylene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Benzo[k]fluoranthene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Chrysene	0.222 J	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Dibenzo[a,h]anthracene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Fluoranthene	0.992	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Fluorene	2.67	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Indeno[1,2,3-c,d] pyrene	0.284 U	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Naphthalene	91.4	4.54	1.36	mg/Kg	200	11/0	06/17 02:48
Phenanthrene	3.76	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Pyrene	0.839	0.568	0.170	mg/Kg	20	11/0)2/17 22:57
Surrogates							
2-Methylnaphthalene-d10 (surr)	259 *	50-150		%	20	11/0)2/17 22:57
Fluoranthene-d10 (surr)	83.1	50-150		%	20	11/0)2/17 22:57

Batch Information

Analytical Batch: XMS10533 Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 11/06/17 02:48 Container ID: 1178534003-A

Analytical Batch: XMS10528

Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 11/02/17 22:57 Container ID: 1178534003-A Prep Batch: XXX38723 Prep Method: SW3550C Prep Date/Time: 10/23/17 07:27 Prep Initial Wt./Vol.: 22.584 g Prep Extract Vol: 5 mL

Prep Batch: XXX38723 Prep Method: SW3550C Prep Date/Time: 10/23/17 07:27 Prep Initial Wt./Vol.: 22.584 g Prep Extract Vol: 5 mL

Print Date: 11/08/2017 4:21:49PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B2-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534003 Lab Project ID: 1178534 Collection Date: 10/12/17 17:54 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.7 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	7750	900	279	mg/Kg	40		10/28/17 20:28
Surrogates							
5a Androstane (surr)	0 *	50-150		%	40		10/28/17 20:28

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:28 Container ID: 1178534003-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.401 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	235	90.0	27.9	mg/Kg	4		10/27/17 01:10
Surrogates							
n-Triacontane-d62 (surr)	82.3	50-150		%	4		10/27/17 01:10

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:10 Container ID: 1178534003-A

Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.401 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B2-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534003 Lab Project ID: 1178534 Collection Date: 10/12/17 17:54 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.7 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1780	168	50.4	mg/Kg	50		10/24/17 15:37
Surrogates							
4-Bromofluorobenzene (surr)	1420 *	50-150		%	50		10/24/17 15:37

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 15:37 Container ID: 1178534003-C

Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/12/17 17:54
Prep Initial Wt./Vol.: 53.636 g
Prep Extract Vol: 31.598 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0155 J	0.0168	0.00537	mg/Kg	1		10/23/17 16:24
Ethylbenzene	0.865	0.0336	0.0105	mg/Kg	1		10/23/17 16:24
o-Xylene	461	6.72	2.10	mg/Kg	200		10/25/17 13:52
P & M -Xylene	226	3.36	1.01	mg/Kg	50		10/24/17 15:37
Toluene	0.210	0.0336	0.0105	mg/Kg	1		10/23/17 16:24
Surrogates							
1,4-Difluorobenzene (surr)	94.7	72-119		%	1		10/23/17 16:24

Batch Information

Analytical Batch: VFC13964 Analytical Method: SW8021B

Analyst: NRB

Analytical Date/Time: 10/25/17 13:52 Container ID: 1178534003-C

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 15:37 Container ID: 1178534003-C

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 16:24 Container ID: 1178534003-C Prep Batch: VXX31598
Prep Method: SW5035A
Prep Date/Time: 10/12/17 17:54
Prep Initial Wt./Vol.: 53.636 g
Prep Extract Vol: 31.598 mL

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 17:54 Prep Initial Wt./Vol.: 53.636 g Prep Extract Vol: 31.598 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/12/17 17:54 Prep Initial Wt./Vol.: 53.636 g Prep Extract Vol: 31.598 mL

Print Date: 11/08/2017 4:21:49PM

J flagging is activated

SGS North America Inc. | 200 West Potter Drive Anchorage, AK 95518 | t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B2-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534004 Lab Project ID: 1178534

Collection Date: 10/12/17 17:44 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.0 Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	46.4	5.54	1.66	mg/Kg	200		11/06/17 03:08
2-Methylnaphthalene	65.0	5.54	1.66	mg/Kg	200		11/06/17 03:08
Acenaphthene	1.22	0.554	0.166	mg/Kg	20		11/02/17 23:17
Acenaphthylene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Anthracene	0.482 J	0.554	0.166	mg/Kg	20		11/02/17 23:17
Benzo(a)Anthracene	0.186 J	0.554	0.166	mg/Kg	20		11/02/17 23:17
Benzo[a]pyrene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Benzo[b]Fluoranthene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Benzo[g,h,i]perylene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Benzo[k]fluoranthene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Chrysene	0.198 J	0.554	0.166	mg/Kg	20		11/02/17 23:17
Dibenzo[a,h]anthracene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Fluoranthene	0.872	0.554	0.166	mg/Kg	20		11/02/17 23:17
Fluorene	2.12	0.554	0.166	mg/Kg	20		11/02/17 23:17
Indeno[1,2,3-c,d] pyrene	0.277 U	0.554	0.166	mg/Kg	20		11/02/17 23:17
Naphthalene	63.3	4.43	1.33	mg/Kg	200		11/06/17 03:08
Phenanthrene	3.12	0.554	0.166	mg/Kg	20		11/02/17 23:17
Pyrene	0.731	0.554	0.166	mg/Kg	20		11/02/17 23:17
Surrogates							
2-Methylnaphthalene-d10 (surr)	171 *	50-150		%	20		11/02/17 23:17
Fluoranthene-d10 (surr)	84.4	50-150		%	20		11/02/17 23:17

Batch Information

Analytical Batch: XMS10533 Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 11/06/17 03:08

Container ID: 1178534004-A

Analytical Batch: XMS10528

Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 11/02/17 23:17 Container ID: 1178534004-A

Prep Batch: XXX38723 Prep Method: SW3550C Prep Date/Time: 10/23/17 07:27 Prep Initial Wt./Vol.: 22.822 g Prep Extract Vol: 5 mL

Prep Batch: XXX38723 Prep Method: SW3550C Prep Date/Time: 10/23/17 07:27 Prep Initial Wt./Vol.: 22.822 g Prep Extract Vol: 5 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B2-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534004 Lab Project ID: 1178534 Collection Date: 10/12/17 17:44 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.0 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 6250	<u>LOQ/CL</u> 885	<u>DL</u> 274	<u>Units</u> mg/Kg	<u>DF</u> 40	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 10/28/17 20:38
Surrogates							
5a Androstane (surr)	0 *	50-150		%	40		10/28/17 20:38

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:38 Container ID: 1178534004-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.462 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	219	88.5	27.4	mg/Kg	4		10/27/17 01:20
Surrogates							
n-Triacontane-d62 (surr)	78.4	50-150		%	4		10/27/17 01:20

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:20 Container ID: 1178534004-A

Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.462 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B2-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534004 Lab Project ID: 1178534 Collection Date: 10/12/17 17:44 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.0 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 1380	<u>LOQ/CL</u> 149	<u>DL</u> 44.8	<u>Units</u> mg/Kg	<u>DF</u> 50	Allowable Limits	<u>Date Analyzed</u> 10/24/17 15:56
Surrogates							
4-Bromofluorobenzene (surr)	583 *	50-150		%	50		10/24/17 15:56

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 15:56 Container ID: 1178534004-C Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 17:44 Prep Initial Wt./Vol.: 59.284 g Prep Extract Vol: 31.5263 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00956 J	0.0149	0.00478	mg/Kg	1		10/23/17 16:43
Ethylbenzene	0.420	0.0299	0.00932	mg/Kg	1		10/23/17 16:43
o-Xylene	395	5.98	1.86	mg/Kg	200		10/25/17 14:48
P & M -Xylene	187	2.99	0.896	mg/Kg	50		10/24/17 15:56
Toluene	0.130	0.0299	0.00932	mg/Kg	1		10/23/17 16:43
Surrogates							
1,4-Difluorobenzene (surr)	94.4	72-119		%	1		10/23/17 16:43

Batch Information

Analytical Batch: VFC13964 Analytical Method: SW8021B

Analyst: NRB

Analytical Date/Time: 10/25/17 14:48 Container ID: 1178534004-C

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 15:56

Container ID: 1178534004-C

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 16:43 Container ID: 1178534004-C Prep Batch: VXX31598
Prep Method: SW5035A
Prep Date/Time: 10/12/17 17:44
Prep Initial Wt./Vol.: 59.284 g
Prep Extract Vol: 31.5263 mL

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 17:44 Prep Initial Wt./Vol.: 59.284 g Prep Extract Vol: 31.5263 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/12/17 17:44 Prep Initial Wt./Vol.: 59.284 g Prep Extract Vol: 31.5263 mL

Print Date: 11/08/2017 4:21:49PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B2-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534005 Lab Project ID: 1178534 Collection Date: 10/12/17 19:58 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):94.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	201	20.9	6.48	mg/Kg	1		10/26/17 23:04
Surrogates							
5a Androstane (surr)	78.1	50-150		%	1		10/26/17 23:04

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 23:04 Container ID: 1178534005-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.457 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	41.3	20.9	6.48	mg/Kg	1		10/26/17 23:04
Surrogates							
n-Triacontane-d62 (surr)	79.4	50-150		%	1		10/26/17 23:04

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:04 Container ID: 1178534005-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.457 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B2-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534005 Lab Project ID: 1178534 Collection Date: 10/12/17 19:58 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):94.2 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u> 2.48	<u>DL</u> 0.743	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/24/17 16:15
Surrogates 4-Bromofluorobenzene (surr)	79	50-150		%	1		10/24/17 16:15

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 16:15 Container ID: 1178534005-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/12/17 19:58
Prep Initial Wt./Vol.: 61.176 g
Prep Extract Vol: 28.55 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00620 U	0.0124	0.00396	mg/Kg	1		10/24/17 16:15
Ethylbenzene	0.0124 U	0.0248	0.00773	mg/Kg	1		10/24/17 16:15
o-Xylene	0.0325	0.0248	0.00773	mg/Kg	1		10/24/17 16:15
P & M -Xylene	0.0260 J	0.0495	0.0149	mg/Kg	1		10/24/17 16:15
Toluene	0.0156 J	0.0248	0.00773	mg/Kg	1		10/24/17 16:15
Surrogates							
1,4-Difluorobenzene (surr)	95.1	72-119		%	1		10/24/17 16:15

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 16:15 Container ID: 1178534005-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/12/17 19:58 Prep Initial Wt./Vol.: 61.176 g Prep Extract Vol: 28.55 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B3-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534006 Lab Project ID: 1178534 Collection Date: 10/13/17 12:39 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	10.4 J	22.4	6.93	mg/Kg	1		10/26/17 23:13
Surrogates							
5a Androstane (surr)	74.6	50-150		%	1		10/26/17 23:13

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 23:13 Container ID: 1178534006-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.087 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	47.4	22.4	6.93	mg/Kg	1		10/26/17 23:13
Surrogates							
n-Triacontane-d62 (surr)	75.3	50-150		%	1		10/26/17 23:13

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:13 Container ID: 1178534006-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.087 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B3-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534006 Lab Project ID: 1178534 Collection Date: 10/13/17 12:39 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.2 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.68 J	3.38	1.01	mg/Kg	1		10/23/17 17:59
Surrogates							
4-Bromofluorobenzene (surr)	82.1	50-150		%	1		10/23/17 17:59

Batch Information

Analytical Batch: VFC13962 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/23/17 17:59 Container ID: 1178534006-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/13/17 12:39 Prep Initial Wt./Vol.: 50.489 g Prep Extract Vol: 30.4477 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00845 U	0.0169	0.00541	mg/Kg	1		10/23/17 17:59
Ethylbenzene	0.0169 U	0.0338	0.0105	mg/Kg	1		10/23/17 17:59
o-Xylene	0.106	0.0338	0.0105	mg/Kg	1		10/23/17 17:59
P & M -Xylene	0.0656 J	0.0676	0.0203	mg/Kg	1		10/23/17 17:59
Toluene	0.0169 U	0.0338	0.0105	mg/Kg	1		10/23/17 17:59
Surrogates							
1,4-Difluorobenzene (surr)	91.9	72-119		%	1		10/23/17 17:59

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 17:59 Container ID: 1178534006-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/13/17 12:39 Prep Initial Wt./Vol.: 50.489 g Prep Extract Vol: 30.4477 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B3-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534007 Lab Project ID: 1178534 Collection Date: 10/13/17 12:22 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	6.97 J	20.3	6.28	mg/Kg	1	Limits	10/26/17 23:23
Surrogates 5a Androstane (surr)	74.7	50-150		%	1		10/26/17 23:23

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 23:23 Container ID: 1178534007-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.476 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	10.8 J	20.3	6.28	mg/Kg	1		10/26/17 23:23
Surrogates							
n-Triacontane-d62 (surr)	75.3	50-150		%	1		10/26/17 23:23

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:23 Container ID: 1178534007-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.476 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B3-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534007 Lab Project ID: 1178534 Collection Date: 10/13/17 12:22 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 1.65 J	LOQ/CL 2.82	<u>DL</u> 0.847	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/23/17 18:18
Surrogates							
4-Bromofluorobenzene (surr)	88.3	50-150		%	1		10/23/17 18:18

Batch Information

Analytical Batch: VFC13962 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/23/17 18:18 Container ID: 1178534007-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/13/17 12:22 Prep Initial Wt./Vol.: 48.073 g Prep Extract Vol: 26.3619 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00847 J	0.0141	0.00451	mg/Kg	1		10/23/17 18:18
Ethylbenzene	0.0141 U	0.0282	0.00880	mg/Kg	1		10/23/17 18:18
o-Xylene	0.105	0.0282	0.00880	mg/Kg	1		10/23/17 18:18
P & M -Xylene	0.132	0.0564	0.0169	mg/Kg	1		10/23/17 18:18
Toluene	0.125	0.0282	0.00880	mg/Kg	1		10/23/17 18:18
Surrogates							
1,4-Difluorobenzene (surr)	88.5	72-119		%	1		10/23/17 18:18

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 18:18 Container ID: 1178534007-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/13/17 12:22 Prep Initial Wt./Vol.: 48.073 g Prep Extract Vol: 26.3619 mL

Client Sample ID: IT-B4-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534008 Lab Project ID: 1178534 Collection Date: 10/13/17 17:50 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	1930	90.4	28.0	mg/Kg	4		10/27/17 01:29
Surrogates							
5a Androstane (surr)	72.1	50-150		%	4		10/27/17 01:29

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 01:29 Container ID: 1178534008-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.428 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	274	90.4	28.0	mg/Kg	4		10/27/17 01:29
Surrogates							
n-Triacontane-d62 (surr)	78.6	50-150		%	4		10/27/17 01:29

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:29 Container ID: 1178534008-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.428 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B4-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534008 Lab Project ID: 1178534 Collection Date: 10/13/17 17:50 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.2 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 162	<u>LOQ/CL</u> 16.8	<u>DL</u> 5.04	<u>Units</u> mg/Kg	<u>DF</u> 5	Allowable Limits	<u>Date Analyzed</u> 10/24/17 16:33
Surrogates							
4-Bromofluorobenzene (surr)	523 *	50-150		%	5		10/24/17 16:33

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 16:33 Container ID: 1178534008-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/13/17 17:50 Prep Initial Wt./Vol.: 54.645 g Prep Extract Vol: 31.9922 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0117 J	0.0168	0.00537	mg/Kg	1		10/23/17 19:34
Ethylbenzene	0.292	0.0336	0.0105	mg/Kg	1		10/23/17 19:34
o-Xylene	0.896	0.0336	0.0105	mg/Kg	1		10/23/17 19:34
P & M -Xylene	11.0	0.0671	0.0201	mg/Kg	1		10/23/17 19:34
Toluene	0.229	0.0336	0.0105	mg/Kg	1		10/23/17 19:34
Surrogates							
1,4-Difluorobenzene (surr)	96.1	72-119		%	1		10/23/17 19:34

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 19:34 Container ID: 1178534008-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/13/17 17:50 Prep Initial Wt./Vol.: 54.645 g Prep Extract Vol: 31.9922 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B4-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534009 Lab Project ID: 1178534 Collection Date: 10/14/17 11:12 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):94.5 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	195	20.9	6.48	mg/Kg	1		10/26/17 23:33
Surrogates							
5a Androstane (surr)	83.6	50-150		%	1		10/26/17 23:33

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 23:33 Container ID: 1178534009-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.376 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	21.3	20.9	6.48	mg/Kg	1		10/26/17 23:33
Surrogates							
n-Triacontane-d62 (surr)	86.2	50-150		%	1		10/26/17 23:33

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:33 Container ID: 1178534009-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.376 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B4-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534009 Lab Project ID: 1178534 Collection Date: 10/14/17 11:12 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):94.5 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 3.70	LOQ/CL 2.10	<u>DL</u> 0.631	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/23/17 19:53
Surrogates							
4-Bromofluorobenzene (surr)	115	50-150		%	1		10/23/17 19:53

Batch Information

Analytical Batch: VFC13962 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/23/17 19:53 Container ID: 1178534009-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/14/17 11:12 Prep Initial Wt./Vol.: 73.004 g Prep Extract Vol: 29.0152 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00525 U	0.0105	0.00336	mg/Kg	1		10/23/17 19:53
Ethylbenzene	0.00904 J	0.0210	0.00656	mg/Kg	1		10/23/17 19:53
o-Xylene	0.0458	0.0210	0.00656	mg/Kg	1		10/23/17 19:53
P & M -Xylene	0.0740	0.0421	0.0126	mg/Kg	1		10/23/17 19:53
Toluene	0.0305	0.0210	0.00656	mg/Kg	1		10/23/17 19:53
Surrogates							
1,4-Difluorobenzene (surr)	91.1	72-119		%	1		10/23/17 19:53

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 19:53 Container ID: 1178534009-B Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/14/17 11:12 Prep Initial Wt./Vol.: 73.004 g Prep Extract Vol: 29.0152 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B5-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534010 Lab Project ID: 1178534 Collection Date: 10/14/17 13:24 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	12000	939	291	mg/Kg	40	Limits	10/28/17 20:48
Surrogates 5a Androstane (surr)	0 *	50-150		%	40		10/28/17 20:48

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:48 Container ID: 1178534010-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.046 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	430	93.9	29.1	mg/Kg	4		10/27/17 01:39
Surrogates							
n-Triacontane-d62 (surr)	85	50-150		%	4		10/27/17 01:39

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:39 Container ID: 1178534010-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.046 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B5-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534010 Lab Project ID: 1178534 Collection Date: 10/14/17 13:24 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 160	<u>LOQ/CL</u> 18.2	<u>DL</u> 5.47	<u>Units</u> mg/Kg	<u>DF</u> 5	Allowable Limits	<u>Date Analyzed</u> 10/24/17 16:52
Surrogates							
4-Bromofluorobenzene (surr)	1230 *	50-150		%	5		10/24/17 16:52

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 16:52 Container ID: 1178534010-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/14/17 13:24
Prep Initial Wt./Vol.: 53.08 g
Prep Extract Vol: 32.9445 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00910 U	0.0182	0.00584	mg/Kg	1		10/23/17 20:12
Ethylbenzene	0.236	0.0365	0.0114	mg/Kg	1		10/23/17 20:12
o-Xylene	3.44	0.0365	0.0114	mg/Kg	1		10/23/17 20:12
P & M -Xylene	4.92	0.0730	0.0219	mg/Kg	1		10/23/17 20:12
Toluene	0.0332 J	0.0365	0.0114	mg/Kg	1		10/23/17 20:12
Surrogates							
1,4-Difluorobenzene (surr)	95	72-119		%	1		10/23/17 20:12

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 20:12 Container ID: 1178534010-B

Prep Batch: VXX31582
Prep Method: SW5035A
Prep Date/Time: 10/14/17 13:24
Prep Initial Wt./Vol.: 53.08 g
Prep Extract Vol: 32.9445 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B5-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534011 Lab Project ID: 1178534 Collection Date: 10/14/17 15:30 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 11.0 J	<u>LOQ/CL</u> 20.7	<u>DL</u> 6.42	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/26/17 23:43
Surrogates							
5a Androstane (surr)	81.5	50-150		%	1		10/26/17 23:43

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/26/17 23:43 Container ID: 1178534011-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.064 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	20.9	20.7	6.42	mg/Kg	1		10/26/17 23:43
Surrogates							
n-Triacontane-d62 (surr)	83.8	50-150		%	1		10/26/17 23:43

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:43 Container ID: 1178534011-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.064 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B5-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534011 Lab Project ID: 1178534 Collection Date: 10/14/17 15:30 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 5.88	<u>LOQ/CL</u> 2.67	<u>DL</u> 0.800	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/23/17 20:31
Surrogates							
4-Bromofluorobenzene (surr)	129	50-150		%	1		10/23/17 20:31

Batch Information

Analytical Batch: VFC13962 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/23/17 20:31 Container ID: 1178534011-B

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/14/17 15:30 Prep Initial Wt./Vol.: 52.253 g Prep Extract Vol: 26.8769 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00560 J	0.0133	0.00427	mg/Kg	1		10/23/17 20:31
Ethylbenzene	0.0101 J	0.0267	0.00832	mg/Kg	1		10/23/17 20:31
o-Xylene	0.0504	0.0267	0.00832	mg/Kg	1		10/23/17 20:31
P & M -Xylene	0.0923	0.0534	0.0160	mg/Kg	1		10/23/17 20:31
Toluene	0.0528	0.0267	0.00832	mg/Kg	1		10/23/17 20:31
Surrogates							
1,4-Difluorobenzene (surr)	91.9	72-119		%	1		10/23/17 20:31

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 20:31 Container ID: 1178534011-B

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/14/17 15:30 Prep Initial Wt./Vol.: 52.253 g Prep Extract Vol: 26.8769 mL

Client Sample ID: IT-B6-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534012 Lab Project ID: 1178534 Collection Date: 10/15/17 09:17 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):84.4 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	11.0	2.92	0.875	mg/Kg	100		10/25/17 23:20
2-Methylnaphthalene	16.1	2.92	0.875	mg/Kg	100		10/25/17 23:20
Acenaphthene	0.119	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Acenaphthylene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Anthracene	0.0551	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Benzo(a)Anthracene	0.00919 J	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Benzo[a]pyrene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Benzo[b]Fluoranthene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Benzo[g,h,i]perylene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Benzo[k]fluoranthene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Chrysene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Dibenzo[a,h]anthracene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Fluoranthene	0.0309	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Fluorene	0.309	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Indeno[1,2,3-c,d] pyrene	0.0146 U	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Naphthalene	17.8	2.33	0.700	mg/Kg	100		10/25/17 23:20
Phenanthrene	0.256	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Pyrene	0.0368	0.0292	0.00875	mg/Kg	1		10/24/17 19:57
Surrogates							
2-Methylnaphthalene-d10 (surr)	97.8	50-150		%	1		10/24/17 19:57
Fluoranthene-d10 (surr)	78.2	50-150		%	1		10/24/17 19:57

Batch Information

Analytical Batch: XMS10504 Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 10/24/17 19:57 Container ID: 1178534012-A

Analytical Batch: XMS10506

Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 10/25/17 23:20 Container ID: 1178534012-A

SIM (PAH) Prep Method: SW3550C Prep Date/Time: 10/24/1 5/17 23:20 Prep Initial Wt./Vol.: 22.8

Prep Date/Time: 10/24/17 09:17 Prep Initial Wt./Vol.: 22.854 g Prep Extract Vol: 5 mL

Prep Batch: XXX38731

Prep Extract Vol: 5 mL

Prep Batch: XXX38731

Prep Method: SW3550C

Prep Date/Time: 10/24/17 09:17

Prep Initial Wt./Vol.: 22.854 g

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B6-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534012 Lab Project ID: 1178534 Collection Date: 10/15/17 09:17 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):84.4 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	1830	236	73.2	mg/Kg	10		10/28/17 20:09
Surrogates							
5a Androstane (surr)	79.4	50-150		%	10		10/28/17 20:09

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:09 Container ID: 1178534012-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.088 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	46.0	23.6	7.32	mg/Kg	1		10/27/17 00:31
Surrogates							
n-Triacontane-d62 (surr)	87.5	50-150		%	1		10/27/17 00:31

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 00:31 Container ID: 1178534012-A

Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.088 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B6-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534012 Lab Project ID: 1178534 Collection Date: 10/15/17 09:17 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):84.4 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1570	198	59.5	mg/Kg	50		10/24/17 17:10
Surrogates							
4-Bromofluorobenzene (surr)	2070 *	50-150		%	50		10/24/17 17:10

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 17:10 Container ID: 1178534012-C

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/15/17 09:17 Prep Initial Wt./Vol.: 48.673 g Prep Extract Vol: 32.5819 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.494	0.0198	0.00634	mg/Kg	1		10/23/17 20:50
Ethylbenzene	37.4	1.98	0.618	mg/Kg	50		10/24/17 17:10
o-Xylene	221	1.98	0.618	mg/Kg	50		10/24/17 17:10
P & M -Xylene	525	3.96	1.19	mg/Kg	50		10/24/17 17:10
Toluene	74.7	1.98	0.618	mg/Kg	50		10/24/17 17:10
Surrogates							
1,4-Difluorobenzene (surr)	98.9	72-119		%	1		10/23/17 20:50

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 17:10 Container ID: 1178534012-C

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 20:50 Container ID: 1178534012-C Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/15/17 09:17
Prep Initial Wt./Vol.: 48.673 g
Prep Extract Vol: 32.5819 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/15/17 09:17 Prep Initial Wt./Vol.: 48.673 g Prep Extract Vol: 32.5819 mL

Print Date: 11/08/2017 4:21:49PM

J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B6-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534013 Lab Project ID: 1178534

Collection Date: 10/15/17 09:07 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.2 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	8.70	2.83	0.848	mg/Kg	100		10/25/17 23:40
2-Methylnaphthalene	12.9	2.83	0.848	mg/Kg	100		10/25/17 23:40
Acenaphthene	0.0954	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Acenaphthylene	0.0498	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Anthracene	0.0478	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Benzo(a)Anthracene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Benzo[a]pyrene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Benzo[b]Fluoranthene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Benzo[g,h,i]perylene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Benzo[k]fluoranthene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Chrysene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Dibenzo[a,h]anthracene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Fluoranthene	0.0263 J	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Fluorene	0.260	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Indeno[1,2,3-c,d] pyrene	0.0141 U	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Naphthalene	15.3	2.26	0.679	mg/Kg	100		10/25/17 23:40
Phenanthrene	0.228	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Pyrene	0.0301	0.0283	0.00848	mg/Kg	1		10/24/17 20:17
Surrogates							
2-Methylnaphthalene-d10 (surr)	84.7	50-150		%	1		10/24/17 20:17
Fluoranthene-d10 (surr)	75.4	50-150		%	1		10/24/17 20:17

Batch Information

Analytical Batch: XMS10504

Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 10/24/17 20:17

Container ID: 1178534013-A

Analytical Batch: XMS10506

Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 10/25/17 23:40 Container ID: 1178534013-A

Prep Batch: XXX38731 Prep Method: SW3550C Prep Date/Time: 10/24/17 09:17 Prep Initial Wt./Vol.: 22.821 g

Prep Extract Vol: 5 mL

Prep Batch: XXX38731 Prep Method: SW3550C Prep Date/Time: 10/24/17 09:17 Prep Initial Wt./Vol.: 22.821 g Prep Extract Vol: 5 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B6-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534013 Lab Project ID: 1178534 Collection Date: 10/15/17 09:07 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	1190	91.1	28.2	mg/Kg	4		10/28/17 19:59
Surrogates							
5a Androstane (surr)	88.1	50-150		%	4		10/28/17 19:59

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 19:59 Container ID: 1178534013-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.237 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	46.7	22.8	7.06	mg/Kg	1		10/26/17 23:52
Surrogates							
n-Triacontane-d62 (surr)	84.6	50-150		%	1		10/26/17 23:52

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/26/17 23:52 Container ID: 1178534013-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.237 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B6-3

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534013 Lab Project ID: 1178534 Collection Date: 10/15/17 09:07 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):87.2 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u> 164	<u>DL</u> 49.1	<u>Units</u> mg/Kg	<u>DF</u> 50	Allowable Limits	<u>Date Analyzed</u> 10/24/17 17:29
Surrogates 4-Bromofluorobenzene (surr)	1370 *	50-150		g \g	50		10/24/17 17:29

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 17:29 Container ID: 1178534013-C Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/15/17 09:07 Prep Initial Wt./Vol.: 56.557 g Prep Extract Vol: 32.2584 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.647	0.0164	0.00523	mg/Kg	1		10/23/17 21:09
Ethylbenzene	33.9	1.64	0.510	mg/Kg	50		10/24/17 17:29
o-Xylene	213	1.64	0.510	mg/Kg	50		10/24/17 17:29
P & M -Xylene	497	3.27	0.982	mg/Kg	50		10/24/17 17:29
Toluene	83.4	1.64	0.510	mg/Kg	50		10/24/17 17:29
Surrogates							
1,4-Difluorobenzene (surr)	102	72-119		%	1		10/23/17 21:09

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 17:29 Container ID: 1178534013-C

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 21:09 Container ID: 1178534013-C Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/15/17 09:07
Prep Initial Wt./Vol.: 56.557 g
Prep Extract Vol: 32.2584 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/15/17 09:07 Prep Initial Wt./Vol.: 56.557 g Prep Extract Vol: 32.2584 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B7-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534014 Lab Project ID: 1178534 Collection Date: 10/16/17 13:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 2900	<u>LOQ/CL</u> 456	<u>DL</u> 141	<u>Units</u> mg/Kg	<u>DF</u> 20	Allowable Limits	<u>Date Analyzed</u> 10/28/17 20:57
Surrogates							
5a Androstane (surr)	0 *	50-150		%	20		10/28/17 20:57

Batch Information

Analytical Batch: XFC13924 Analytical Method: AK102

Analyst: CMS

Analytical Date/Time: 10/28/17 20:57 Container ID: 1178534014-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.332 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	119	91.2	28.3	mg/Kg	4		10/27/17 01:49
Surrogates							
n-Triacontane-d62 (surr)	88.7	50-150		%	4		10/27/17 01:49

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:49 Container ID: 1178534014-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.332 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B7-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534014 Lab Project ID: 1178534 Collection Date: 10/16/17 13:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1210	175	52.5	mg/Kg	50		10/24/17 17:48
Surrogates							
4-Bromofluorobenzene (surr)	2280 *	50-150		%	50		10/24/17 17:48

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 17:48 Container ID: 1178534014-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 13:45 Prep Initial Wt./Vol.: 52.594 g Prep Extract Vol: 31.9533 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.185	0.0175	0.00560	mg/Kg	1		10/23/17 21:28
Ethylbenzene	23.8	1.75	0.546	mg/Kg	50		10/24/17 17:48
o-Xylene	212	1.75	0.546	mg/Kg	50		10/24/17 17:48
P & M -Xylene	405	3.50	1.05	mg/Kg	50		10/24/17 17:48
Toluene	29.5	1.75	0.546	mg/Kg	50		10/24/17 17:48
Surrogates							
1,4-Difluorobenzene (surr)	104	72-119		%	1		10/23/17 21:28

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 17:48 Container ID: 1178534014-B

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 21:28 Container ID: 1178534014-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 13:45 Prep Initial Wt./Vol.: 52.594 g Prep Extract Vol: 31.9533 mL

Prep Batch: VXX31582 Prep Method: SW5035A Prep Date/Time: 10/16/17 13:45 Prep Initial Wt./Vol.: 52.594 g Prep Extract Vol: 31.9533 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B7-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534015 Lab Project ID: 1178534 Collection Date: 10/16/17 15:05 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):95.1 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	1870	83.8	26.0	mg/Kg	4	Limits	10/27/17 01:59
Surrogates 5a Androstane (surr)	85.3	50-150		%	4		10/27/17 01:59

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 01:59 Container ID: 1178534015-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.113 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	41.9 U	83.8	26.0	mg/Kg	4		10/27/17 01:59
Surrogates							
n-Triacontane-d62 (surr)	86	50-150		%	4		10/27/17 01:59

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 01:59 Container ID: 1178534015-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.113 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B7-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534015 Lab Project ID: 1178534 Collection Date: 10/16/17 15:05 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):95.1 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 8.54	<u>LOQ/CL</u> 1.94	<u>DL</u> 0.581	<u>Units</u> mg/Kg	<u>DF</u>	Allowable Limits	Date Analyzed 10/24/17 18:44
Surrogates	0.54	1.94	0.561	mg/Kg	ı		10/24/17 10.44
4-Bromofluorobenzene (surr)	133	50-150		%	1		10/24/17 18:44

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 18:44 Container ID: 1178534015-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 15:05 Prep Initial Wt./Vol.: 78.327 g Prep Extract Vol: 28.8611 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0105	0.00969	0.00310	mg/Kg	1		10/24/17 18:44
Ethylbenzene	0.00639 J	0.0194	0.00605	mg/Kg	1		10/24/17 18:44
o-Xylene	0.176	0.0194	0.00605	mg/Kg	1		10/24/17 18:44
P & M -Xylene	0.158	0.0388	0.0116	mg/Kg	1		10/24/17 18:44
Toluene	0.174	0.0194	0.00605	mg/Kg	1		10/24/17 18:44
Surrogates							
1,4-Difluorobenzene (surr)	94.8	72-119		%	1		10/24/17 18:44

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 18:44 Container ID: 1178534015-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/16/17 15:05
Prep Initial Wt./Vol.: 78.327 g
Prep Extract Vol: 28.8611 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B6-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534016 Lab Project ID: 1178534 Collection Date: 10/15/17 11:27 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	1100	82.5	25.6	mg/Kg	4		10/27/17 02:08
Surrogates							
5a Androstane (surr)	86.7	50-150		%	4		10/27/17 02:08

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 02:08 Container ID: 1178534016-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.237 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	41.3 U	82.5	25.6	mg/Kg	4		10/27/17 02:08
Surrogates							
n-Triacontane-d62 (surr)	88.1	50-150		%	4		10/27/17 02:08

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 02:08 Container ID: 1178534016-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.237 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B6-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534016 Lab Project ID: 1178534 Collection Date: 10/15/17 11:27 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 5.46	LOQ/CL 2.00	<u>DL</u> 0.601	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/24/17 19:02
Surrogates							
4-Bromofluorobenzene (surr)	109	50-150		%	1		10/24/17 19:02

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 19:02 Container ID: 1178534016-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/15/17 11:27 Prep Initial Wt./Vol.: 71.806 g Prep Extract Vol: 27.6998 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00721 J	0.0100	0.00321	mg/Kg	1		10/24/17 19:02
Ethylbenzene	0.00842 J	0.0200	0.00625	mg/Kg	1		10/24/17 19:02
o-Xylene	0.106	0.0200	0.00625	mg/Kg	1		10/24/17 19:02
P & M -Xylene	0.179	0.0401	0.0120	mg/Kg	1		10/24/17 19:02
Toluene	0.120	0.0200	0.00625	mg/Kg	1		10/24/17 19:02
Surrogates							
1,4-Difluorobenzene (surr)	93.4	72-119		%	1		10/24/17 19:02

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 19:02 Container ID: 1178534016-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/15/17 11:27 Prep Initial Wt./Vol.: 71.806 g Prep Extract Vol: 27.6998 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B8-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534017 Lab Project ID: 1178534 Collection Date: 10/16/17 11:40 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.1 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	10.2 U	20.3	6.28	mg/Kg	1		10/27/17 00:02
Surrogates							
5a Androstane (surr)	77.6	50-150		%	1		10/27/17 00:02

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 00:02 Container ID: 1178534017-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.493 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	8.34 J	20.3	6.28	mg/Kg	1		10/27/17 00:02
Surrogates							
n-Triacontane-d62 (surr)	80.6	50-150		%	1		10/27/17 00:02

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 00:02 Container ID: 1178534017-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.493 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B8-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534017 Lab Project ID: 1178534 Collection Date: 10/16/17 11:40 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.1 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	1.21 U	2.41	0.723	mg/Kg	1	Limits	10/24/17 19:21
Surrogates 4-Bromofluorobenzene (surr)	73.9	50-150		%	1		10/24/17 19:21

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 19:21 Container ID: 1178534017-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 11:40 Prep Initial Wt./Vol.: 56.853 g Prep Extract Vol: 26.6254 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00605 U	0.0121	0.00386	mg/Kg	1		10/24/17 19:21
Ethylbenzene	0.0121 U	0.0241	0.00752	mg/Kg	1		10/24/17 19:21
o-Xylene	0.0121 U	0.0241	0.00752	mg/Kg	1		10/24/17 19:21
P & M -Xylene	0.0241 U	0.0482	0.0145	mg/Kg	1		10/24/17 19:21
Toluene	0.0101 J	0.0241	0.00752	mg/Kg	1		10/24/17 19:21
Surrogates							
1,4-Difluorobenzene (surr)	95	72-119		%	1		10/24/17 19:21

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 19:21 Container ID: 1178534017-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/16/17 11:40
Prep Initial Wt./Vol.: 56.853 g
Prep Extract Vol: 26.6254 mL

Client Sample ID: IT-B8-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534018 Lab Project ID: 1178534 Collection Date: 10/16/17 11:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.8 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	10.3 U	20.6	6.40	mg/Kg	1		10/27/17 00:12
Surrogates							
5a Androstane (surr)	70.8	50-150		%	1		10/27/17 00:12

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 00:12 Container ID: 1178534018-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.041 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	10.3 U	20.6	6.40	mg/Kg	1		10/27/17 00:12
Surrogates							
n-Triacontane-d62 (surr)	74.3	50-150		%	1		10/27/17 00:12

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 00:12 Container ID: 1178534018-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.041 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B8-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534018 Lab Project ID: 1178534 Collection Date: 10/16/17 11:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.8 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 1.34 U	<u>LOQ/CL</u> 2.68	<u>DL</u> 0.803	<u>Units</u> ma/Ka	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/24/17 19:40
Surrogates	1.54 0	2.00	0.000	mg/kg	'		10/24/17 13.40
4-Bromofluorobenzene (surr)	74.7	50-150		%	1		10/24/17 19:40

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 19:40 Container ID: 1178534018-B

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 11:45 Prep Initial Wt./Vol.: 51.419 g Prep Extract Vol: 26.6506 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00670 U	0.0134	0.00428	mg/Kg	1		10/24/17 19:40
Ethylbenzene	0.0134 U	0.0268	0.00835	mg/Kg	1		10/24/17 19:40
o-Xylene	0.0134 U	0.0268	0.00835	mg/Kg	1		10/24/17 19:40
P & M -Xylene	0.0267 U	0.0535	0.0161	mg/Kg	1		10/24/17 19:40
Toluene	0.00937 J	0.0268	0.00835	mg/Kg	1		10/24/17 19:40
Surrogates							
1,4-Difluorobenzene (surr)	95.5	72-119		%	1		10/24/17 19:40

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 19:40 Container ID: 1178534018-B

Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/16/17 11:45 Prep Initial Wt./Vol.: 51.419 g Prep Extract Vol: 26.6506 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B9-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534019 Lab Project ID: 1178534 Collection Date: 10/17/17 09:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.3 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	44.6 U	89.3	27.7	mg/Kg	4		10/27/17 02:18
Surrogates							
5a Androstane (surr)	73.2	50-150		%	4		10/27/17 02:18

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 02:18 Container ID: 1178534019-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.096 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	130	89.3	27.7	mg/Kg	4		10/27/17 02:18
Surrogates							
n-Triacontane-d62 (surr)	76	50-150		%	4		10/27/17 02:18

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 02:18 Container ID: 1178534019-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.096 g
Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: IT-B9-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534019 Lab Project ID: 1178534 Collection Date: 10/17/17 09:45 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):89.3 Location:

Results by Volatile Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	8.41	3.04	0.911	mg/Kg	1		10/24/17 19:58
Surrogates							
4-Bromofluorobenzene (surr)	84.8	50-150		%	1		10/24/17 19:58

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 19:58 Container ID: 1178534019-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 09:45 Prep Initial Wt./Vol.: 57.442 g Prep Extract Vol: 31.1421 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0167	0.0152	0.00486	mg/Kg	1		10/24/17 19:58
Ethylbenzene	0.217	0.0304	0.00947	mg/Kg	1		10/24/17 19:58
o-Xylene	1.06	0.0304	0.00947	mg/Kg	1		10/24/17 19:58
P & M -Xylene	2.14	0.0607	0.0182	mg/Kg	1		10/24/17 19:58
Toluene	0.811	0.0304	0.00947	mg/Kg	1		10/24/17 19:58
Surrogates							
1,4-Difluorobenzene (surr)	93.6	72-119		%	1		10/24/17 19:58

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 19:58 Container ID: 1178534019-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 09:45 Prep Initial Wt./Vol.: 57.442 g

Prep Extract Vol: 31.1421 mL

Client Sample ID: IT-B9-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534020 Lab Project ID: 1178534 Collection Date: 10/17/17 09:50 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.0 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	10.2 U	20.3	6.30	mg/Kg	1		10/27/17 00:21
Surrogates							
5a Androstane (surr)	72	50-150		%	1		10/27/17 00:21

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/27/17 00:21 Container ID: 1178534020-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.44 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	10.2 U	20.3	6.30	mg/Kg	1		10/27/17 00:21
Surrogates							
n-Triacontane-d62 (surr)	75.2	50-150		%	1		10/27/17 00:21

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/27/17 00:21 Container ID: 1178534020-A Prep Batch: XXX38718
Prep Method: SW3550C
Prep Date/Time: 10/22/17 09:17
Prep Initial Wt./Vol.: 30.44 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B9-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534020 Lab Project ID: 1178534 Collection Date: 10/17/17 09:50 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):97.0 Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	1.45 U	2.89	0.866	mg/Kg	1		10/24/17 20:17
Surrogates							
4-Bromofluorobenzene (surr)	73.7	50-150		%	1		10/24/17 20:17

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 20:17 Container ID: 1178534020-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 09:50 Prep Initial Wt./Vol.: 47.23 g Prep Extract Vol: 26.4331 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00720 U	0.0144	0.00462	mg/Kg	1		10/24/17 20:17
Ethylbenzene	0.0144 U	0.0289	0.00900	mg/Kg	1		10/24/17 20:17
o-Xylene	0.00923 J	0.0289	0.00900	mg/Kg	1		10/24/17 20:17
P & M -Xylene	0.0214 J	0.0577	0.0173	mg/Kg	1		10/24/17 20:17
Toluene	0.0196 J	0.0289	0.00900	mg/Kg	1		10/24/17 20:17
Surrogates							
1,4-Difluorobenzene (surr)	95.3	72-119		%	1		10/24/17 20:17

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 20:17 Container ID: 1178534020-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/17/17 09:50
Prep Initial Wt./Vol.: 47.23 g
Prep Extract Vol: 26.4331 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B10-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534021 Lab Project ID: 1178534 Collection Date: 10/17/17 12:23 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):95.5 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	5050	209	64.7	mg/Kg	10		10/24/17 19:47
Surrogates							
5a Androstane (surr)	94.9	50-150		%	10		10/24/17 19:47

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/24/17 19:47 Container ID: 1178534021-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.11 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	179 J	209	64.7	mg/Kg	10		10/24/17 19:47
Surrogates							
n-Triacontane-d62 (surr)	94.6	50-150		%	10		10/24/17 19:47

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/24/17 19:47 Container ID: 1178534021-A

Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.11 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B10-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534021 Lab Project ID: 1178534 Collection Date: 10/17/17 12:23 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):95.5 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	158	20.4	6.13	mg/Kg	10		10/24/17 20:35
Surrogates							
4-Bromofluorobenzene (surr)	2430 *	50-150		%	10		10/24/17 20:35

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 20:35 Container ID: 1178534021-C Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 12:23 Prep Initial Wt./Vol.: 72.413 g Prep Extract Vol: 28.2717 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0716 J	0.102	0.0327	mg/Kg	10		10/24/17 20:35
Ethylbenzene	0.689	0.204	0.0638	mg/Kg	10		10/24/17 20:35
o-Xylene	12.6	0.204	0.0638	mg/Kg	10		10/24/17 20:35
P & M -Xylene	5.30	0.409	0.123	mg/Kg	10		10/24/17 20:35
Toluene	0.186 J	0.204	0.0638	mg/Kg	10		10/24/17 20:35
Surrogates							
1,4-Difluorobenzene (surr)	98.7	72-119		%	10		10/24/17 20:35

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 20:35 Container ID: 1178534021-C Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 12:23 Prep Initial Wt./Vol.: 72.413 g Prep Extract Vol: 28.2717 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B10-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534022 Lab Project ID: 1178534 Collection Date: 10/17/17 12:30 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):92.7 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	5120	215	66.7	mg/Kg	10		10/24/17 19:57
Surrogates							
5a Androstane (surr)	95.5	50-150		%	10		10/24/17 19:57

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/24/17 19:57 Container ID: 1178534022-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.078 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	83.7 J	215	66.7	mg/Kg	10		10/24/17 19:57
Surrogates							
n-Triacontane-d62 (surr)	94.1	50-150		%	10		10/24/17 19:57

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/24/17 19:57 Container ID: 1178534022-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.078 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B10-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534022 Lab Project ID: 1178534 Collection Date: 10/17/17 12:30 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):92.7 Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits	Date Analyzed
					<u> </u>	LIIIIII	
Gasoline Range Organics	32.8	2.30	0.690	mg/Kg	1		10/24/17 20:54
Surrogates							
4-Bromofluorobenzene (surr)	224 *	50-150		%	1		10/24/17 20:54

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/24/17 20:54 Container ID: 1178534022-B Prep Batch: VXX31591 Prep Method: SW5035A Prep Date/Time: 10/17/17 12:30 Prep Initial Wt./Vol.: 70.757 g Prep Extract Vol: 30.1741 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00575 U	0.0115	0.00368	mg/Kg	1		10/24/17 20:54
Ethylbenzene	0.0133 J	0.0230	0.00718	mg/Kg	1		10/24/17 20:54
o-Xylene	0.410	0.0230	0.00718	mg/Kg	1		10/24/17 20:54
P & M -Xylene	0.173	0.0460	0.0138	mg/Kg	1		10/24/17 20:54
Toluene	0.0115 U	0.0230	0.00718	mg/Kg	1		10/24/17 20:54
Surrogates							
1,4-Difluorobenzene (surr)	94.2	72-119		%	1		10/24/17 20:54

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/24/17 20:54 Container ID: 1178534022-B Prep Batch: VXX31591
Prep Method: SW5035A
Prep Date/Time: 10/17/17 12:30
Prep Initial Wt./Vol.: 70.757 g
Prep Extract Vol: 30.1741 mL

Print Date: 11/08/2017 4:21:49PM

Client Sample ID: IT-B11-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534023 Lab Project ID: 1178534 Collection Date: 10/17/17 17:00 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):83.8 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 12100	<u>LOQ/CL</u> 942	<u>DL</u> 292	<u>Units</u> mg/Kg	<u>DF</u> 40	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 10/25/17 15:41
Surrogates							
5a Androstane (surr)	0 *	50-150		%	40		10/25/17 15:41

Batch Information

Analytical Batch: XFC13910 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/25/17 15:41 Container ID: 1178534023-A

Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.408 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	281	236	73.0	mg/Kg	10		10/24/17 20:07
Surrogates							
n-Triacontane-d62 (surr)	93.6	50-150		%	10		10/24/17 20:07

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/24/17 20:07 Container ID: 1178534023-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.408 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B11-1

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534023 Lab Project ID: 1178534 Collection Date: 10/17/17 17:00 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):83.8 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 143	LOQ/CL 3.72	<u>DL</u> 1.12	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/25/17 01:53
Surrogates							
4-Bromofluorobenzene (surr)	268 *	50-150		%	1		10/25/17 01:53

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/17 01:53 Container ID: 1178534023-B Prep Batch: VXX31593 Prep Method: SW5035A Prep Date/Time: 10/17/17 17:00 Prep Initial Wt./Vol.: 54.173 g Prep Extract Vol: 33.7977 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	0.00931 J	0.0186	0.00596	mg/Kg	1		10/25/17 01:53
Ethylbenzene	0.0588	0.0372	0.0116	mg/Kg	1		10/25/17 01:53
o-Xylene	0.549	0.0372	0.0116	mg/Kg	1		10/25/17 01:53
P & M -Xylene	11.0	0.0745	0.0223	mg/Kg	1		10/25/17 01:53
Toluene	0.0871	0.0372	0.0116	mg/Kg	1		10/25/17 01:53
Surrogates							
1,4-Difluorobenzene (surr)	96.5	72-119		%	1		10/25/17 01:53

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/25/17 01:53 Container ID: 1178534023-B Prep Batch: VXX31593
Prep Method: SW5035A
Prep Date/Time: 10/17/17 17:00
Prep Initial Wt./Vol.: 54.173 g
Prep Extract Vol: 33.7977 mL

Print Date: 11/08/2017 4:21:49PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Page 62 of 108

Client Sample ID: IT-B11-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534024 Lab Project ID: 1178534 Collection Date: 10/17/17 17:10 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	7.00 J	20.6	6.39	mg/Kg	1		10/24/17 18:20
Surrogates							
5a Androstane (surr)	89.8	50-150		%	1		10/24/17 18:20

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/24/17 18:20 Container ID: 1178534024-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.139 g
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	10.3 U	20.6	6.39	mg/Kg	1		10/24/17 18:20
Surrogates							
n-Triacontane-d62 (surr)	90.5	50-150		%	1		10/24/17 18:20

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/24/17 18:20 Container ID: 1178534024-A Prep Batch: XXX38728
Prep Method: SW3550C
Prep Date/Time: 10/23/17 14:49
Prep Initial Wt./Vol.: 30.139 g
Prep Extract Vol: 1 mL

Client Sample ID: IT-B11-2

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534024 Lab Project ID: 1178534 Collection Date: 10/17/17 17:10 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.49 U	2.97	0.892	mg/Kg	1		10/25/17 00:01
Surrogates							
4-Bromofluorobenzene (surr)	74.1	50-150		%	1		10/25/17 00:01

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/25/17 00:01 Container ID: 1178534024-B Prep Batch: VXX31593 Prep Method: SW5035A Prep Date/Time: 10/17/17 17:10 Prep Initial Wt./Vol.: 46.316 g Prep Extract Vol: 26.5963 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00745 U	0.0149	0.00476	mg/Kg	1		10/25/17 00:01
Ethylbenzene	0.0149 U	0.0297	0.00928	mg/Kg	1		10/25/17 00:01
o-Xylene	0.0125 J	0.0297	0.00928	mg/Kg	1		10/25/17 00:01
P & M -Xylene	0.0277 J	0.0595	0.0178	mg/Kg	1		10/25/17 00:01
Toluene	0.0345	0.0297	0.00928	mg/Kg	1		10/25/17 00:01
Surrogates							
1,4-Difluorobenzene (surr)	95.3	72-119		%	1		10/25/17 00:01

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/25/17 00:01 Container ID: 1178534024-B Prep Batch: VXX31593 Prep Method: SW5035A Prep Date/Time: 10/17/17 17:10 Prep Initial Wt./Vol.: 46.316 g Prep Extract Vol: 26.5963 mL

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 31-1-11809-009 Interior Texaco

Lab Sample ID: 1178534025 Lab Project ID: 1178534 Collection Date: 10/19/17 11:30 Received Date: 10/20/17 10:15 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.877 J	2.60	0.780	mg/Kg	1		10/23/17 14:30
Surrogates							
4-Bromofluorobenzene (surr)	90.3	50-150		%	1		10/23/17 14:30

Batch Information

Analytical Batch: VFC13962 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/23/17 14:30 Container ID: 1178534025-A Prep Batch: VXX31582
Prep Method: SW5035A
Prep Date/Time: 10/19/17 11:30
Prep Initial Wt./Vol.: 48.07 g
Prep Extract Vol: 25 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00650 U	0.0130	0.00416	mg/Kg	1		10/23/17 14:30
Ethylbenzene	0.0130 U	0.0260	0.00811	mg/Kg	1		10/23/17 14:30
o-Xylene	0.0112 J	0.0260	0.00811	mg/Kg	1		10/23/17 14:30
P & M -Xylene	0.0270 J	0.0520	0.0156	mg/Kg	1		10/23/17 14:30
Toluene	0.0286	0.0260	0.00811	mg/Kg	1		10/23/17 14:30
Surrogates							
1,4-Difluorobenzene (surr)	89.9	72-119		%	1		10/23/17 14:30

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/23/17 14:30 Container ID: 1178534025-A

Prep Batch: VXX31582
Prep Method: SW5035A
Prep Date/Time: 10/19/17 11:30
Prep Initial Wt./Vol.: 48.07 g
Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:21:49PM

Method Blank

Blank ID: MB for HBN 1770655 [SPT/10352]

Blank Lab ID: 1421580

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, 1178534011, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018,

Matrix: Soil/Solid (dry weight)

 $1178534019,\,1178534020,\,1178534021,\,1178534022,\,1178534023,\,1178534024$

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT10352 Analytical Method: SM21 2540G

Instrument: Analyst: MWJ

Analytical Date/Time: 10/21/2017 4:02:00PM

Print Date: 11/08/2017 4:21:53PM

Duplicate Sample Summary

Original Sample ID: 1178534002 Analysis Date: 10/21/2017 16:02

Duplicate Sample ID: 1421581 Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, 1178534008,

 $1178534009,\,1178534010,\,1178534011,\,1178534012,\,1178534013$

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	97.0	96.9	%	0.07	(< 15)

Batch Information

Analytical Batch: SPT10352 Analytical Method: SM21 2540G

Instrument: Analyst: MWJ

Print Date: 11/08/2017 4:21:54PM

Duplicate Sample Summary

Original Sample ID: 1178534013 Analysis Date: 10/21/2017 16:02

Duplicate Sample ID: 1421582 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1178534003, 1178534004, 1178534005, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, \\1178534011, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018, \\1178534011, 11$

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	87.2	87.2	%	0.08	(< 15)

Batch Information

Analytical Batch: SPT10352 Analytical Method: SM21 2540G

Instrument: Analyst: MWJ

Print Date: 11/08/2017 4:21:54PM

Method Blank

Blank ID: MB for HBN 1770799 [VXX/31582]

Blank Lab ID: 1421936

QC for Samples:

1178534001, 1178534003, 1178534004, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, 1178534011,

Matrix: Soil/Solid (dry weight)

1178534012, 1178534013, 1178534014, 1178534025

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics1.25U2.500.750mg/Kg

Surrogates

4-Bromofluorobenzene (surr) 76 50-150 %

Batch Information

Analytical Batch: VFC13962 Prep Batch: VXX31582
Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890 PID/FID Prep Date/Time: 10/23/2017 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 50 g Analytical Date/Time: 10/23/2017 2:11:00PM Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:21:55PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178534 [VXX31582]

Blank Spike Lab ID: 1421939

Date Analyzed: 10/23/2017 13:33

Spike Duplicate ID: LCSD for HBN 1178534

[VXX31582]

Spike Duplicate Lab ID: 1421940

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534001, 1178534003, 1178534004, 1178534006, 1178534007, 1178534008, 1178534009,

 $1178534010,\,1178534011,\,1178534012,\,1178534013,\,1178534014,\,1178534025$

Results by AK101

	Е	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	12.9	103	12.5	13.4	107	(60-120)	3.90	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	82.6	83	1.25	85.2	85	(50-150)	3.00	

Batch Information

Analytical Batch: VFC13962
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31582
Prep Method: SW5035A

Prep Date/Time: 10/23/2017 08:00

Spike Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:21:56PM

Method Blank

Blank ID: MB for HBN 1770799 [VXX/31582]

Blank Lab ID: 1421936

QC for Samples:

1178534001, 1178534003, 1178534004, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, 1178534011,

1178534012, 1178534013, 1178534014, 1178534025

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.00625U	0.0125	0.00400	mg/Kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
o-Xylene	0.0125U	0.0250	0.00780	mg/Kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/Kg
Toluene	0.0125U	0.0250	0.00780	mg/Kg

Surrogates

1,4-Difluorobenzene (surr) 88.7 72-119 %

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/23/2017 2:11:00PM

Prep Batch: VXX31582 Prep Method: SW5035A

Prep Date/Time: 10/23/2017 8:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:21:57PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178534 [VXX31582]

Blank Spike Lab ID: 1421937

Date Analyzed: 10/23/2017 12:55

Spike Duplicate ID: LCSD for HBN 1178534

[VXX31582]

Spike Duplicate Lab ID: 1421938

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534001, 1178534003, 1178534004, 1178534006, 1178534007, 1178534008, 1178534009,

 $1178534010,\,1178534011,\,1178534012,\,1178534013,\,1178534014,\,1178534025$

Results by SW8021B

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	1.25	1.10	88	1.25	1.17	94	(75-125)	6.00	(< 20)
Ethylbenzene	1.25	1.11	89	1.25	1.18	94	(75-125)	6.20	(< 20)
o-Xylene	1.25	1.08	86	1.25	1.16	93	(75-125)	7.90	(< 20)
P & M -Xylene	2.50	2.21	89	2.50	2.37	95	(80-125)	6.90	(< 20)
Toluene	1.25	1.14	91	1.25	1.17	93	(70-125)	2.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1.25	95.8	96	1.25	96.5	97	(72-119)	0.69	

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31582
Prep Method: SW5035A

Prep Date/Time: 10/23/2017 08:00

Spike Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:21:58PM

Matrix Spike Summary

 Original Sample ID: 1421941
 Analysis Date: 10/23/2017 17:02

 MS Sample ID: 1421942 MS
 Analysis Date: 10/23/2017 17:21

 MSD Sample ID: 1421943 MSD
 Analysis Date: 10/23/2017 17:40

 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1178534001, 1178534003, 1178534004, 1178534006, 1178534007, 1178534008, 1178534009,

1178534010, 1178534011, 1178534012, 1178534013, 1178534014, 1178534025

Results by SW8021B

		Matı	rix Spike (n	ng/Kg)		Spike	Duplicate	(mg/Kg))			`
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec ((%)	<u>Spike</u>	Result	Rec (%	<u>%)</u>	CL	RPD (%)	RPD CL
Benzene	0.00510U	1.02	1.00	98		1.02	1.03	101		75-125	2.40	(< 20)
Ethylbenzene	0.0114J	1.02	0.970	94		1.02	1.01	97		75-125	3.70	(< 20)
o-Xylene	1.26	1.02	1.05	-20	*	1.02	1.07	-19	*	75-125	1.50	(< 20)
P & M -Xylene	0.675	2.04	2.01	65	*	2.04	2.07	68	*	80-125	3.30	(< 20)
Toluene	0.0123J	1.02	1.00	97		1.02	1.03	100		70-125	2.80	(< 20)
Surrogates												
1,4-Difluorobenzene (surr)		1.02	0.990	97		1.02	0.974	95		72-119	1.60	

Batch Information

Analytical Batch: VFC13962 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/23/2017 5:21:00PM

Prep Batch: VXX31582

Prep Method: AK101 Extraction (S)
Prep Date/Time: 10/23/2017 8:00:00AM

Prep Initial Wt./Vol.: 61.18g Prep Extract Vol: 25.00mL

Print Date: 11/08/2017 4:22:00PM

Method Blank

Blank ID: MB for HBN 1770896 [VXX/31591]

Blank Lab ID: 1422159

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534008, 1178534010, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018, 1178534019, 1178534020, 1178534021, 1178534022

Matrix: Soil/Solid (dry weight)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics1.31J2.500.750mg/Kg

Surrogates

4-Bromofluorobenzene (surr) 80 50-150 %

Batch Information

Analytical Batch: VFC13963 Prep Batch: VXX31591
Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/24/2017 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 50 g Analytical Date/Time: 10/24/2017 1:27:00PM Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:00PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178534 [VXX31591]

Blank Spike Lab ID: 1422162

Date Analyzed: 10/24/2017 12:49

Spike Duplicate ID: LCSD for HBN 1178534

[VXX31591]

Spike Duplicate Lab ID: 1422163

Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534008, 1178534010, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018,

 $1178534019,\, 1178534020,\, 1178534021,\, 1178534022$

Results by AK101

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	11.1	89	12.5	10.4	84	(60-120)	6.60	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	85.6	86	1.25	82.6	83	(50-150)	3.50	

Batch Information

Analytical Batch: VFC13963 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31591
Prep Method: SW5035A

Prep Date/Time: 10/24/2017 08:00

Spike Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:01PM

Method Blank

Blank ID: MB for HBN 1770896 [VXX/31591]

Blank Lab ID: 1422159

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534008, 1178534010, 1178534012, 1178534013,

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.00625U	0.0125	0.00400	mg/Kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
o-Xylene	0.0125U	0.0250	0.00780	mg/Kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/Kg
Toluene	0.0125U	0.0250	0.00780	mg/Kg

Surrogates

1,4-Difluorobenzene (surr) 95.5 72-119 %

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 10/24/2017 1:27:00PM

Prep Batch: VXX31591 Prep Method: SW5035A

Prep Date/Time: 10/24/2017 8:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:02PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178534 [VXX31591]

Blank Spike Lab ID: 1422160 Date Analyzed: 10/24/2017 12:12 Spike Duplicate ID: LCSD for HBN 1178534

[VXX31591]

Spike Duplicate Lab ID: 1422161 Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534008, 1178534010,

1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018,

1178534019, 1178534020, 1178534021, 1178534022

Results by SW8021B

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	1.25	1.36	109	1.25	1.34	107	(75-125)	1.80	(< 20)
Ethylbenzene	1.25	1.34	107	1.25	1.32	105	(75-125)	1.90	(< 20)
o-Xylene	1.25	1.31	105	1.25	1.27	102	(75-125)	2.50	(< 20)
P & M -Xylene	2.50	2.66	107	2.50	2.61	104	(80-125)	2.10	(< 20)
Toluene	1.25	1.36	109	1.25	1.35	108	(70-125)	1.10	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1.25	99.7	100	1.25	98.2	98	(72-119)	1.60	

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31591
Prep Method: SW5035A

Prep Date/Time: 10/24/2017 08:00

Spike Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:09PM

Matrix Spike Summary

 Original Sample ID: 1178534002
 Analysis Date: 10/24/2017 14:41

 MS Sample ID: 1422164 MS
 Analysis Date: 10/24/2017 15:00

 MSD Sample ID: 1422165 MSD
 Analysis Date: 10/24/2017 15:18

 Matrix: Soil/Solid (dry weight)

 $QC \ for \ Samples: \qquad 1178534001, \ 1178534002, \ 1178534003, \ 1178534004, \ 1178534005, \ 1178534008, \ 1178534010, \ 1178534008, \ 1178534008, \ 1178534008, \ 1178534010, \ 1178534008, \ 117853$

 $1178534012,\,1178534013,\,1178534014,\,1178534015,\,1178534016,\,1178534017,\,1178534018,$

1178534019, 1178534020, 1178534021, 1178534022

Results by SW8021B

		Mat	rix Spike (r	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.0169	1.02	1.19	115	1.02	1.19	114	75-125	0.29	(< 20)
Ethylbenzene	0.0123J	1.02	1.15	112	1.02	1.14	111	75-125	0.52	(< 20)
o-Xylene	0.148	1.02	1.21	104	1.02	1.20	103	75-125	0.49	(< 20)
P & M -Xylene	0.217	2.04	2.42	108	2.04	2.41	107	80-125	0.53	(< 20)
Toluene	0.242	1.02	1.36	110	1.02	1.36	109	70-125	0.24	(< 20)
Surrogates										
1,4-Difluorobenzene (surr)		1.02	1.02	100	1.02	1.04	102	72-119	1.90	

Batch Information

Analytical Batch: VFC13963 Prep Batch: VXX31591

Analytical Method: SW8021B Prep Method: AK101 Extraction (S)
Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/24/2017 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 63.14g
Analytical Date/Time: 10/24/2017 3:00:00PM Prep Extract Vol.: 25.00mL

Print Date: 11/08/2017 4:22:10PM

Method Blank

Blank ID: MB for HBN 1770899 [VXX/31593]

Blank Lab ID: 1422172

QC for Samples:

1178534023, 1178534024

Matrix: Soil/Solid (dry weight)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics1.25U2.500.750mg/Kg

Surrogates

4-Bromofluorobenzene (surr) 79.1 50-150 %

Batch Information

Analytical Batch: VFC13963 Prep Batch: VXX31593
Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/24/2017 8:00:00AM

Analyst: ST Prep Initial Wt./Vol.: 50 g
Analytical Date/Time: 10/24/2017 10:46:00PM Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:12PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178534 [VXX31593]

Blank Spike Lab ID: 1422175 Date Analyzed: 10/24/2017 22:09 [VXX31593] Spike Duplicate Lab ID: 1422176 Matrix: Soil/Solid (dry weight)

Spike Duplicate ID: LCSD for HBN 1178534

QC for Samples: 117853402

1178534023, 1178534024

Results by AK101

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	10.8	87	12.5	10.5	84	(60-120)	3.10	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	82.1	82	1.25	83.8	84	(50-150)	2.00	

Batch Information

Analytical Batch: VFC13963
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31593
Prep Method: SW5035A

Prep Date/Time: 10/24/2017 08:00

Spike Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:13PM

Method Blank

Blank ID: MB for HBN 1770899 [VXX/31593]

Blank Lab ID: 1422172

QC for Samples:

1178534023, 1178534024

Matrix: Soil/Solid (dry weight)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.00625U	0.0125	0.00400	mg/Kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/Kg
o-Xylene	0.0125U	0.0250	0.00780	mg/Kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/Kg
Toluene	0.0125U	0.0250	0.00780	mg/Kg
Surrogates				

1,4-Difluorobenzene (surr) 96.7 72-119

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 10/24/2017 10:46:00PM

Prep Batch: VXX31593 Prep Method: SW5035A

Prep Date/Time: 10/24/2017 8:00:00AM

%

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:14PM

Blank Spike ID: LCS for HBN 1178534 [VXX31593]

Blank Spike Lab ID: 1422173 Date Analyzed: 10/24/2017 21:31

QC for Samples: 1178534023, 1178534024

Spike Duplicate ID: LCSD for HBN 1178534

[VXX31593]

Spike Duplicate Lab ID: 1422174 Matrix: Soil/Solid (dry weight)

Results by SW8021B

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	1.25	1.45	116	1.25	1.43	114	(75-125)	1.70	(< 20)
Ethylbenzene	1.25	1.41	113	1.25	1.39	112	(75-125)	1.30	(< 20)
o-Xylene	1.25	1.36	109	1.25	1.32	106	(75-125)	2.40	(< 20)
P & M -Xylene	2.50	2.77	111	2.50	2.72	109	(80-125)	1.90	(< 20)
Toluene	1.25	1.45	116	1.25	1.43	114	(70-125)	1.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1.25	102	102	1.25	101	101	(72-119)	1.60	

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX31593
Prep Method: SW5035A

Prep Date/Time: 10/24/2017 08:00

Spike Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:15PM

Matrix Spike Summary

Original Sample ID: 1178534024 MS Sample ID: 1422177 MS MSD Sample ID: 1422178 MSD

QC for Samples: 1178534023, 1178534024

Analysis Date: 10/25/2017 0:01 Analysis Date: 10/25/2017 0:19 Analysis Date: 10/25/2017 1:15

Matrix: Soil/Solid (dry weight)

Results by SW8021B

		Matı	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.00745U	1.40	1.52	109	1.40	1.57	113	75-125	3.10	(< 20)
Ethylbenzene	0.0149U	1.40	1.49	107	1.40	1.53	110	75-125	3.20	(< 20)
o-Xylene	0.0125J	1.40	1.43	101	1.40	1.47	104	75-125	2.50	(< 20)
P & M -Xylene	0.0277J	2.80	2.92	103	2.80	3.00	106	80-125	2.80	(< 20)
Toluene	0.0345	1.40	1.55	109	1.40	1.59	112	70-125	3.10	(< 20)
Surrogates										
1,4-Difluorobenzene (surr)		1.40	1.39	99	1.40	1.40	100	72-119	0.76	

Batch Information

Analytical Batch: VFC13963 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 10/25/2017 12:19:00AM

Prep Batch: VXX31593

Prep Method: AK101 Extraction (S)
Prep Date/Time: 10/24/2017 8:00:00AM

Prep Initial Wt./Vol.: 46.32g Prep Extract Vol: 25.00mL

Print Date: 11/08/2017 4:22:16PM

Method Blank

Blank ID: MB for HBN 1770952 [VXX/31598]

Blank Lab ID: 1422400

QC for Samples:

1178534003, 1178534004

Matrix: Soil/Solid (dry weight)

Results by SW8021B

 Parameter
 Results
 LOQ/CL
 DL
 Units

 o-Xylene
 0.0125U
 0.0250
 0.00780
 mg/Kg

Surrogates

1,4-Difluorobenzene (surr) 97.1 72-119 %

Batch Information

Analytical Batch: VFC13964 Prep Batch: VXX31598
Analytical Method: SW8021B Prep Method: SW5035A

Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/25/2017 10:00:00AM

Analyst: NRB Prep Initial Wt./Vol.: 50 g
Analytical Date/Time: 10/25/2017 1:15:00PM Prep Extract Vol: 25 mL

Print Date: 11/08/2017 4:22:17PM

Blank Spike ID: LCS for HBN 1178534 [VXX31598]

Blank Spike Lab ID: 1422401

[VXX31598] Date Analyzed: 10/25/2017 12:00 Spike Duplicate Lab ID: 1422402 Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534003, 1178534004

Results by SW8021B

	В	lank Spike	(mg/Kg)	s	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
o-Xylene	1.25	1.32	106	1.25	1.30	104	(75-125)	1.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1.25	101	101	1.25	101	101	(72-119)	0.18	

Batch Information

Analytical Batch: VFC13964 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: NRB

Prep Batch: VXX31598 Prep Method: SW5035A

Prep Date/Time: 10/25/2017 10:00

Spike Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/Kg Extract Vol: 25 mL

Spike Duplicate ID: LCSD for HBN 1178534

Print Date: 11/08/2017 4:22:18PM

Matrix Spike Summary

Original Sample ID: 1422405 MS Sample ID: 1422406 MS MSD Sample ID: 1422407 MSD

QC for Samples: 1178534003, 1178534004

Analysis Date: 10/25/2017 13:52 Analysis Date: 10/25/2017 14:11 Analysis Date: 10/25/2017 14:29 Matrix: Solid/Soil (Wet Weight)

Results by SW8021B

		Matı	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			,
Parameter o-Xylene	Sample 405	<u>Spike</u> 295	Result 736	Rec (%) 113	<u>Spike</u> 295	Result 678	Rec (%) 93	<u>CL</u> 75-125	RPD (%) 8.20	RPD CL (< 20)
Surrogates 1,4-Difluorobenzene (surr)		295	275	93	295	276	94	72-119	0.30	

Batch Information

Analytical Batch: VFC13964 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: NRB

Analytical Date/Time: 10/25/2017 2:11:00PM

Prep Batch: VXX31598

Prep Method: AK101 Extraction (S)
Prep Date/Time: 10/25/2017 10:00:00AM

Prep Initial Wt./Vol.: 53.64g Prep Extract Vol: 31.60mL

Print Date: 11/08/2017 4:22:19PM

Method Blank

Blank ID: MB for HBN 1770660 [XXX/38718]

Blank Lab ID: 1421596

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, 1178534011, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018,

Matrix: Soil/Solid (dry weight)

1178534019, 1178534020

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Surrogates

5a Androstane (surr) 80.6 60-120 %

Batch Information

Analytical Batch: XFC13921 Prep Batch: XXX38718
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B R Prep Date/Time: 10/22/2017 9:17:22AM

Analyst: JMG Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 10/26/2017 10:25:00PM Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:20PM

Blank Spike ID: LCS for HBN 1178534 [XXX38718]

Blank Spike Lab ID: 1421597

Date Analyzed: 10/26/2017 22:34

Spike Duplicate ID: LCSD for HBN 1178534

[XXX38718]

Spike Duplicate Lab ID: 1421598

Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, $1178534008,\,1178534009,\,1178534010,\,1178534011,\,1178534012,\,1178534013,\,1178534014,$

 $1178534015,\, 1178534016,\, 1178534017,\, 1178534018,\, 1178534019,\, 1178534020$

Results by AK102

	ВІ	ank Spike (ı	mg/Kg)	Sp	ike Duplica	te (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	167	134	80	167	146	88	(75-125)	8.80	(< 20)
Surrogates									
5a Androstane (surr)	3.33	82.6	83	3.33	83.9	84	(60-120)	1.50	

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: JMG

Prep Batch: XXX38718 Prep Method: SW3550C

Prep Date/Time: 10/22/2017 09:17

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:21PM

Method Blank

Blank ID: MB for HBN 1770660 [XXX/38718]

Blank Lab ID: 1421596

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, 1178534008, 1178534009, 1178534010, 1178534011, 1178534012, 1178534013, 1178534014, 1178534015, 1178534016, 1178534017, 1178534018,

Matrix: Soil/Solid (dry weight)

1178534019, 1178534020

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics10.0U20.06.20mg/Kg

Surrogates

n-Triacontane-d62 (surr) 86.5 60-120 %

Batch Information

Analytical Batch: XFC13921 Prep Batch: XXX38718
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B R Prep Date/Time: 10/22/2017 9:17:22AM

Analyst: JMG Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 10/26/2017 10:25:00PM Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:22PM

Blank Spike ID: LCS for HBN 1178534 [XXX38718]

Blank Spike Lab ID: 1421597

Date Analyzed: 10/26/2017 22:34

Spike Duplicate ID: LCSD for HBN 1178534

[XXX38718]

Spike Duplicate Lab ID: 1421598

Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534001, 1178534002, 1178534003, 1178534004, 1178534005, 1178534006, 1178534007, $1178534008,\,1178534009,\,1178534010,\,1178534011,\,1178534012,\,1178534013,\,1178534014,$

 $1178534015,\, 1178534016,\, 1178534017,\, 1178534018,\, 1178534019,\, 1178534020$

Results by AK103

	Е	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	167	133	80	167	143	86	(60-120)	7.20	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	3.33	77.9	78	3.33	83.8	84	(60-120)	7.30	

Batch Information

Analytical Batch: XFC13921 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: JMG

Prep Batch: XXX38718 Prep Method: SW3550C

Prep Date/Time: 10/22/2017 09:17

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:24PM

Method Blank

Blank ID: MB for HBN 1770675 [XXX/38723]

Blank Lab ID: 1421667

QC for Samples:

1178534003, 1178534004

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00750	mg/Kg
2-Methylnaphthalene	0.0125U	0.0250	0.00750	mg/Kg
Acenaphthene	0.0125U	0.0250	0.00750	mg/Kg
Acenaphthylene	0.0125U	0.0250	0.00750	mg/Kg
Anthracene	0.0125U	0.0250	0.00750	mg/Kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[a]pyrene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Chrysene	0.0125U	0.0250	0.00750	mg/Kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00750	mg/Kg
Fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Fluorene	0.0125U	0.0250	0.00750	mg/Kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00750	mg/Kg
Naphthalene	0.0100U	0.0200	0.00600	mg/Kg
Phenanthrene	0.0125U	0.0250	0.00750	mg/Kg
Pyrene	0.0125U	0.0250	0.00750	mg/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	84.6	50-150		%
Fluoranthene-d10 (surr)	82.3	50-150		%

Batch Information

Analytical Batch: XMS10528

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 11/2/2017 3:48:00PM

Prep Batch: XXX38723 Prep Method: SW3550C

Prep Date/Time: 10/23/2017 7:27:53AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/08/2017 4:22:25PM

Blank Spike ID: LCS for HBN 1178534 [XXX38723]

Blank Spike Lab ID: 1421668 Date Analyzed: 11/02/2017 16:08

Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534003, 1178534004

Results by 8270D SIM (PAH)

, ,			_	
	E	Blank Spike	(mg/Kg)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	0.111	0.101	91	(43-111)
2-Methylnaphthalene	0.111	0.0914	82	(39-114)
Acenaphthene	0.111	0.100	90	(44-111)
Acenaphthylene	0.111	0.0972	87	(39-116)
Anthracene	0.111	0.0961	87	(50-114)
Benzo(a)Anthracene	0.111	0.101	91	(54-122)
Benzo[a]pyrene	0.111	0.0904	81	(50-125)
Benzo[b]Fluoranthene	0.111	0.106	96	(53-128)
Benzo[g,h,i]perylene	0.111	0.108	97	(49-127)
Benzo[k]fluoranthene	0.111	0.106	95	(56-123)
Chrysene	0.111	0.108	97	(57-118)
Dibenzo[a,h]anthracene	0.111	0.106	95	(50-129)
Fluoranthene	0.111	0.103	93	(55-119)
Fluorene	0.111	0.100	90	(47-114)
Indeno[1,2,3-c,d] pyrene	0.111	0.108	98	(49-130)
Naphthalene	0.111	0.0945	85	(38-111)
Phenanthrene	0.111	0.103	93	(49-113)
Pyrene	0.111	0.106	95	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	0.111	80.9	81	(50-150)
Fluoranthene-d10 (surr)	0.111	79	79	(50-150)

Batch Information

Analytical Batch: XMS10528 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Prep Batch: XXX38723
Prep Method: SW3550C

Prep Date/Time: 10/23/2017 07:27

Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/08/2017 4:22:27PM

Matrix Spike Summary

Original Sample ID: 1178526001 MS Sample ID: 1421669 MS MSD Sample ID: 1421670 MSD

QC for Samples: 1178534003, 1178534004

Analysis Date: 11/02/2017 16:29 Analysis Date: 11/02/2017 16:49 Analysis Date: 11/02/2017 17:10 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Matı	ix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0157U	0.138	0.118	86	0.139	0.124	90	43-111	5.40	(< 20)
2-Methylnaphthalene	0.0157U	0.138	0.108	79	0.139	0.113	82	39-114	4.30	(< 20)
Acenaphthene	0.0157U	0.138	0.117	85	0.139	0.126	90	44-111	7.40	(< 20)
Acenaphthylene	0.0157U	0.138	0.118	85	0.139	0.125	90	39-116	5.90	(< 20)
Anthracene	0.0157U	0.138	0.116	84	0.139	0.121	87	50-114	4.00	(< 20)
Benzo(a)Anthracene	0.0157U	0.138	0.121	87	0.139	0.124	89	54-122	2.40	(< 20)
Benzo[a]pyrene	0.0157U	0.138	0.113	82	0.139	0.115	83	50-125	2.10	(< 20)
Benzo[b]Fluoranthene	0.0157U	0.138	0.124	90	0.139	0.125	90	53-128	0.81	(< 20)
Benzo[g,h,i]perylene	0.0157U	0.138	0.129	93	0.139	0.131	95	49-127	2.10	(< 20)
Benzo[k]fluoranthene	0.0157U	0.138	0.123	89	0.139	0.126	91	56-123	2.90	(< 20)
Chrysene	0.0157U	0.138	0.124	90	0.139	0.126	91	57-118	2.10	(< 20)
Dibenzo[a,h]anthracene	0.0157U	0.138	0.128	93	0.139	0.131	94	50-129	2.10	(< 20)
Fluoranthene	0.0157U	0.138	0.124	90	0.139	0.128	92	55-119	2.80	(< 20)
Fluorene	0.0157U	0.138	0.116	84	0.139	0.124	89	47-114	6.40	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0157U	0.138	0.129	94	0.139	0.131	95	49-130	2.10	(< 20)
Naphthalene	0.0126U	0.138	0.110	80	0.139	0.114	82	38-111	4.10	(< 20)
Phenanthrene	0.0157U	0.138	0.119	87	0.139	0.126	91	49-113	5.40	(< 20)
Pyrene	0.0157U	0.138	0.126	92	0.139	0.130	94	55-117	2.30	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		0.138	0.107	78	0.139	0.108	78	50-150	1.10	
Fluoranthene-d10 (surr)		0.138	0.108	78	0.139	0.108	78	50-150	0.42	

Batch Information

Analytical Batch: XMS10528 Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 11/2/2017 4:49:00PM

Prep Batch: XXX38723

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 10/23/2017 7:27:53AM

Prep Initial Wt./Vol.: 22.92g Prep Extract Vol: 5.00mL

Print Date: 11/08/2017 4:22:27PM

Method Blank

Blank ID: MB for HBN 1770694 [XXX/38728]

Blank Lab ID: 1421730

QC for Samples:

1178534021, 1178534022, 1178534023, 1178534024

Matrix: Soil/Solid (dry weight)

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Surrogates

5a Androstane (surr) 81.6 60-120 %

Batch Information

Analytical Batch: XFC13907 Prep Batch: XXX38728
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 10/23/2017 2:49:52PM

Analyst: JMG Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 10/24/2017 4:12:00PM Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:28PM

Blank Spike ID: LCS for HBN 1178534 [XXX38728]

Blank Spike Lab ID: 1421731 Date Analyzed: 10/24/2017 16:21 Spike Duplicate ID: LCSD for HBN 1178534

[XXX38728]

Spike Duplicate Lab ID: 1421732 Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534021, 1178534022, 1178534023, 1178534024

Results by AK102

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	167	156	94	167	165	99	(75-125)	5.50	(< 20)
Surrogates									
5a Androstane (surr)	3.33	91.2	91	3.33	95.1	95	(60-120)	4.20	

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38728 Prep Method: SW3550C

Prep Date/Time: 10/23/2017 14:49

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:29PM

Method Blank

Blank ID: MB for HBN 1770694 [XXX/38728]

Blank Lab ID: 1421730

QC for Samples:

1178534021, 1178534022, 1178534023, 1178534024

Matrix: Soil/Solid (dry weight)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics10.0U20.06.20mg/Kg

Surrogates

n-Triacontane-d62 (surr) 89.4 60-120 %

Batch Information

Analytical Batch: XFC13907 Prep Batch: XXX38728
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 10/23/2017 2:49:52PM

Analyst: JMG Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 10/24/2017 4:12:00PM Prep Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:31PM

Blank Spike ID: LCS for HBN 1178534 [XXX38728]

Blank Spike Lab ID: 1421731 Date Analyzed: 10/24/2017 16:21 Spike Duplicate ID: LCSD for HBN 1178534

[XXX38728]

Spike Duplicate Lab ID: 1421732

Matrix: Soil/Solid (dry weight)

QC for Samples:

1178534021, 1178534022, 1178534023, 1178534024

Results by AK103

	Е	lank Spike	(mg/Kg)	s	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	167	170	102	167	179	107	(60-120)	4.70	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	3.33	85.4	85	3.33	91.9	92	(60-120)	7.30	

Batch Information

Analytical Batch: XFC13907 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38728 Prep Method: SW3550C

Prep Date/Time: 10/23/2017 14:49

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 11/08/2017 4:22:32PM

Method Blank

Blank ID: MB for HBN 1770777 [XXX/38731]

Blank Lab ID: 1421841

QC for Samples:

1178534012, 1178534013

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00750	mg/Kg
2-Methylnaphthalene	0.0125U	0.0250	0.00750	mg/Kg
Acenaphthene	0.0125U	0.0250	0.00750	mg/Kg
Acenaphthylene	0.0125U	0.0250	0.00750	mg/Kg
Anthracene	0.0125U	0.0250	0.00750	mg/Kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[a]pyrene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00750	mg/Kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Chrysene	0.0125U	0.0250	0.00750	mg/Kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00750	mg/Kg
Fluoranthene	0.0125U	0.0250	0.00750	mg/Kg
Fluorene	0.0125U	0.0250	0.00750	mg/Kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00750	mg/Kg
Naphthalene	0.0100U	0.0200	0.00600	mg/Kg
Phenanthrene	0.0125U	0.0250	0.00750	mg/Kg
Pyrene	0.0125U	0.0250	0.00750	mg/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	78.7	50-150		%
Fluoranthene-d10 (surr)	76.7	50-150		%

Batch Information

Analytical Batch: XMS10504

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 10/24/2017 4:53:00PM

Prep Batch: XXX38731 Prep Method: SW3550C

Prep Date/Time: 10/24/2017 9:17:35AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/08/2017 4:22:34PM

Blank Spike ID: LCS for HBN 1178534 [XXX38731]

Blank Spike Lab ID: 1421842 Date Analyzed: 10/24/2017 17:13

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178534012, 1178534013

Results by 8270D SIM (PAH)

roome by cares our (crany	F	Blank Spike	(ma/Ka)	
Parameter	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	0.111	0.0975	88	(43-111)
2-Methylnaphthalene	0.111	0.0892	80	(39-114)
Acenaphthene	0.111	0.0947	85	(44-111)
Acenaphthylene	0.111	0.0934	84	(39-116)
Anthracene	0.111	0.0891	80	(50-114)
Benzo(a)Anthracene	0.111	0.0945	85	(54-122)
Benzo[a]pyrene	0.111	0.0865	78	(50-125)
Benzo[b]Fluoranthene	0.111	0.0974	88	(53-128)
Benzo[g,h,i]perylene	0.111	0.104	94	(49-127)
Benzo[k]fluoranthene	0.111	0.0994	90	(56-123)
Chrysene	0.111	0.0992	89	(57-118)
Dibenzo[a,h]anthracene	0.111	0.103	93	(50-129)
Fluoranthene	0.111	0.0973	88	(55-119)
Fluorene	0.111	0.0952	86	(47-114)
Indeno[1,2,3-c,d] pyrene	0.111	0.104	94	(49-130)
Naphthalene	0.111	0.0915	82	(38-111)
Phenanthrene	0.111	0.0943	85	(49-113)
Pyrene	0.111	0.101	91	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	0.111	82	82	(50-150)
Fluoranthene-d10 (surr)	0.111	79.3	79	(50-150)

Batch Information

Analytical Batch: XMS10504 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Prep Batch: XXX38731 Prep Method: SW3550C

Prep Date/Time: 10/24/2017 09:17

Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/08/2017 4:22:35PM

Matrix Spike Summary

Original Sample ID: 1177474028 MS Sample ID: 1421843 MS MSD Sample ID: 1421844 MSD

QC for Samples: 1178534012, 1178534013

Analysis Date: 10/24/2017 18:15 Analysis Date: 10/24/2017 18:35 Analysis Date: 10/24/2017 18:56 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Matı	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0140U	0.124	0.112	90	0.125	0.114	91	43-111	1.90	(< 20)
2-Methylnaphthalene	0.0140U	0.124	0.102	83	0.125	0.105	84	39-114	2.70	(< 20)
Acenaphthene	0.0140U	0.124	0.111	89	0.125	0.111	89	44-111	0.08	(< 20)
Acenaphthylene	0.0140U	0.124	0.109	88	0.125	0.111	89	39-116	1.90	(< 20)
Anthracene	0.0140U	0.124	0.106	86	0.125	0.109	87	50-114	2.40	(< 20)
Benzo(a)Anthracene	0.0140U	0.124	0.111	90	0.125	0.111	89	54-122	0.26	(< 20)
Benzo[a]pyrene	0.0140U	0.124	0.105	85	0.125	0.105	85	50-125	0.64	(< 20)
Benzo[b]Fluoranthene	0.0140U	0.124	0.112	91	0.125	0.114	91	53-128	1.30	(< 20)
Benzo[g,h,i]perylene	0.0140U	0.124	0.120	97	0.125	0.120	97	49-127	0.50	(< 20)
Benzo[k]fluoranthene	0.0140U	0.124	0.115	93	0.125	0.116	93	56-123	0.45	(< 20)
Chrysene	0.0140U	0.124	0.115	93	0.125	0.115	92	57-118	0.12	(< 20)
Dibenzo[a,h]anthracene	0.0140U	0.124	0.119	96	0.125	0.120	97	50-129	1.00	(< 20)
Fluoranthene	0.0140U	0.124	0.113	91	0.125	0.111	89	55-119	1.30	(< 20)
Fluorene	0.0140U	0.124	0.109	88	0.125	0.110	88	47-114	0.67	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0140U	0.124	0.120	97	0.125	0.120	97	49-130	0.39	(< 20)
Naphthalene	0.0112U	0.124	0.105	85	0.125	0.111	89	38-111	5.20	(< 20)
Phenanthrene	0.0140U	0.124	0.109	88	0.125	0.110	88	49-113	1.70	(< 20)
Pyrene	0.0140U	0.124	0.117	94	0.125	0.117	93	55-117	0.27	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		0.124	0.102	83	0.125	0.101	81	50-150	0.86	
Fluoranthene-d10 (surr)		0.124	0.101	81	0.125	0.101	81	50-150	0.66	

Batch Information

Analytical Batch: XMS10504 Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 10/24/2017 6:35:00PM

Prep Batch: XXX38731

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 10/24/2017 9:17:35AM

Prep Initial Wt./Vol.: 22.94g Prep Extract Vol: 5.00mL

Print Date: 11/08/2017 4:22:36PM

S CHAI

Locations Nationwide

New York Maryland New Jersey Alaska

Kentucky Indiana North Carolina West Virgina

www.us.sgs.com

	CLIENT: Shannon & Wilson	Ison				Instru	Instructions: Omissions	s: Se Is ma	ctions y dela	. 1 - 5 เ v the o	structions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	d out. sis.	7
<u> </u>	Val Webb	ë	458-315	ය ද	Section 3	on 3				Prese	Preservative		o age
aoitae	CACCO	L	31-1-11609-009	9-cc 9	# U		HO>M	Meo H					
<u> </u>	TO: Webb	E-MAIL: レeいん	vew@Shanwil	ilicom	0 z ⊢	C = C	(10	(8 h	501	(~1.0F			
	INVOICE TO: SHW P.O	QUOTE#: P.O.#:			∢ - z	G = GRAB	177Y)	ر (39)	1 60 Petel	P2) 1			
L	RESERVED SAMPLE IDENTIFICATION for lab use	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шко	Incre- mental Soils	GRO	91.8 91.8	y Wel.	4 M_1			REMARKS/ LOC ID
	104-B IT-Bi-1	tifeifoi	(355	[]\v	q		乂	<u>х</u>	メ				
	2A-B IT-B1-3	10/12/17	1454		K		X	イメ	.				
	134-CITT-B2-1	F1/6/19	1754		ω		X	Х	고 ×				
uo!	5 9 A-C IT-B3 -3	10/12/17	1744		73		*	メ	×	_			
,JO	SA-8 IT-BA-2	tilcilci	1958		çb		ィ	×	X				
<u> </u>	6A-8 IT-83-1	10/3/14	1939		B		×	レ	X		-		
	(1)4-16 ITT-B3-2	10/13/17	1332		4		X	<u>/</u>	*				
	@A-B II -BI-1	10/13/17	0541		ده		Х.	×	*				
	A-6 II	10/H/17	431		ى		×	~	*				
	(10) A-B IT - B5-1	ि/सि/(त	1324		3		メ	<u>x</u>	Х.				
	Relinquished By: (1)	Date T	Time	Received By	/	til by o		"	Section 4		DOD Project? Yes No		Data Deliverable Requirements:
	Jussel V	t1/61/01	11:51		\	(15)			Cooler ID:	ä		Level	
	Relinquished By: (2)		Time	Received By:				ă.	dnestec	Turnaro	nd Time and/or \$	Requested Turnaround Time and/or Special Instructions:	.;
uoit	, uon	9117	1606			\wedge			ر!	(A)			
Pag	Relinquished By: (3)	Date	Time	Received By:						[]	2		
) Je 101								Ĕ	Temp Blank °C:		39	Chain of C	Chain of Custody Seal: (Circle)
Of 108	Relinquished By: (4)	Date T	Time	×	Laborat	ory By:				or Am	or Ambient []	INTACT	BROKEN ABSENT
_		5101 1.100/01	\$101	+ SUMA		Mell	$\frac{1}{2}$	\dashv	(See atts	sched San	(See attached Sample Receipt Form)		(See attached Sample Receipt Form)

http://www.sqs.com/terms-and-conditions

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

Ses

SK

178534

Locations Nationwide

Maryland New Jersey Alaska

New York Indiana North Carolina

Kentucky West Virgina

www.us.sgs.com

CONTACT: VL		CLIENT: Shannon & Wilson	non & K	Jilson					Instr On	Instructions: Omissions	ıs: Sı ns ma	Sections nay delay	ay the	5 mu	structions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	lled or	 	, Vx	
Cooler 10: Coo		SONTACT: $V_{\mathcal{O}}$	Webb	PHONE NO:		3-31	50	Sect	tion 3			- -	P	eserva	ive			Page Cy of Cy	
A A A A A A A A A A		PROJECTINIER NAME: TEXOCC	10x7 0	PROJECT/ PWSID/ PERMIT#: 3	11-1-	.608	5 00	# U (HUSM	HOW	•							
A		REPORTS TO: $Val_{\mathcal{L}}$	99	E-MAIL: Vどい	ე@ <u><</u>	shanu			Type C= COMP				41		, , , , , , , , , , , , , , , , , , ,				
Cooler Date Time WATRIX E World F Sole F F F F F F F F F			3	QUOTE #: P.O. #:				< - z	GRAB MI=	(<u>'</u> X	730/	4						
14-B 11-B5-3			PLE IDENTIFICATI			TIME IH:MM	MATRIX/ MATRIX CODE	шсю	Incre- mental Soils	פעכ	318.	1 -	HAY					REMARKS/ LOCID	
2A - C TT-Bb-1 10/15/17 917 3 X			\	10/14	ŁIJ	530	Sa 1	Ø		×	×	×							
3.4 - C TT - 86 - 3 10/15/17 907 3 ×		ر 14	-B6-1	10/15	t	14		es)		メ		_	×						
4 A - B LT - BA - L IO ILO IT 1 SA 5 A X <th< td=""><td></td><td>13 A-C IT.</td><td>-86-3</td><td>10/15</td><td>t</td><td>107</td><td></td><td>3</td><td></td><td>K</td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		13 A-C IT.	-86-3	10/15	t	107		3		K			~						
\$\langle A \cdot B \tau \cdot B \cdot \frac{1}{17} - \therefore B \cdot \frac{1}{17} + \text{137} + \text{137} + \text{24} + \text{25} + \text{27} + \text{147} + \text{137} + \text{137} + \text{147} + \text{147} + \text{147} + \text{147} + \text{24} + \text{27} +		(y) A-B II.	1-18-	10/16		345		æ				' X							
A - 6		3.4-B IT-	-87-3	10/16	1	505		O			メ	×							
3.4.6 エエーB8-1 10 10 12 3 x x x x x x x x x	_	10 A-B IT-	-86-3	10/13/	-	197		rb		×	×	×							
8 4 - 8 エエー B - 1 10 14 5 3 x x x x x x x x x x x x x x x x x x		UA-6 IT	-88-i	10/16	. ~	140		Ġ		>	>	·×							
### A ** * * * * * * * * * * * * * * * *	_	18 4-8 IT		5		45		Ý		*	×	×							
Received By: (2) Date Time Received By: $(C)^{\dagger}$ $(C)^$		OA-BIT.	-B9-1	1		345		Q		×		×							
Lefinquished By: (1) Date Time Received By: D 9 1+ 1:5	_,	2014-13 IIT-	١,	HIJOI	_	SS	+	G		*		χ							
linquished By: (2) Date Time Received By: Requested Turnaround Time and/or Specifinquished By: $2 + 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10$		Relinquished By: (1		Date	Ē		Received By	Ü	ю У	4 hz		Section		DOD Pr	oject? Yes	ON	Data Deliv	rerable Requirement	;;
elinquished By: (2) Date Time Received By: Requested Turnaround Time and/or Specifinquished By: (3) Date Time Received For Laboratory By:		Je wy	$\left\langle \right\rangle$	10/1d,	11 +11	15:	11		3	5)		Cooler	ا <u>ت</u>				g	727	
elinquished By: (3) Date Time Received By: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Relinquished By: (2)		Date			Received By	·.			2	equest	ad Turn	around	Time and/c	or Specia	al Instructio	ns:	
elinquished By: (3) Date Time Received By: Temp Blank °C: 3 9 or Ambient [] ib 20 17 1015		1		10118($\overline{}$		<i>)</i> \	\bigcap					7						
elinquished By: (4) Date Time Received For Laboratory By: or Ambient [] (See attached Sample Receipt Form)		Relinquished By: (3)		Date	ĬŢ/		Received By)	2/2)					
elinquished By: (4) Date Time Received For Laboratory By: or Ambient [] ib 20 17 1015											<u> </u>	emp Bl	ank °C:		Į		Chain of		_
1012017 1015 HWW MM (See attached Sample Receipt Form)		Relinquished By: (4)	_	Date	<u>Ē</u> :		Received Fo	r Labora	tory By:	,			ō	Ambier	ıt []		INTACT	BROKEN (ABSEN	7
)	102/Qi	<u>'n 1C</u>	75/	+VVV	Q 1/6	(M	111		(See at	tached	Sample	Receipt Fo		See attache	d Sample Receipt Fo	Ê

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
[] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557
[] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SGS

S CHAI

1178534

Locations Nationwide

New York Maryland New Jersey Alaska

Kentucky Indiana North Carolina West Virgina

www.us.sgs.com

L				1						•				
	CLIENT: Shannon & Wilson	Vilson				Instructions: Omissions	tions:	structions: Sections 1 - 5 must be filled or Omissions may delay the onset of analysis.	ons 1 . elay th	e onse	5 must be filled out. onset of analysis.	lled ou alysis	+ .	(A)
<u> </u>	r:Val Webb	PHONE NO:	458-315	53	Section 3	n 3			ш.	Preservative	e A			
Section	PROJECT TO THE COLOR PROME TENDER TO COLOR PROPERTY TO:	FROJECTI PERMIT#: 31-1-11809-006 E-MAIL:	2001	2000-	# UOZ	Type C=	10°W 10°W	- (
		OCOUR QUOTE#: P.O.#:	Vew e shanwi	11 Corn	⊢ ∢ – z		<u>-</u> بر	אנינות בע						
	RESERVED SAMPLE IDENTIFICATION for lab use	N DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шко		BLE	DUT.						REMARKS/ LOC ID
	IT-BID	t/jt/fol	1933	C.MS	Q		×	X						
7	04-8 IT-RIC-3	10/17/17 10/17/17	(330 1700		ර ර	XX	х х х	* *						
, uo	3 X	ic/r.i/oi	1710	-	d	.0	X	×						
Sect	(8) A Thip Blank	1/6/6/	1130		40									
	Relinquished By: (1)	Date	Time	Received By:		t481/91		Section 4	on 4	DOD Pro	DOD Project? Yes No	s No	Data De	Data Deliverable Requirements:
11		19/17	121	1	1157	٦		Cooler ID:	ا ق				P	me II
<u> </u>	Relinquished By-(2)	Date 1	Time	Received By:	ſ			Rednes	ted Turi	around 7	Time and/	or Speci	Requested Turnaround Time and/or Special Instructions:	ons:
Paction Poction	Relinquished By: (3)		e suit	Received By:				V)	5-72	Le	7			
s je 103		\						Temp E	Slank °C	Temp Blank °C: 3 9			Chain o	Chain of Custody Seal: (Circle)
of 108	Relinquished By: (4)	Date Time $10/20[17]$	Time OIS	Received For Laboratory By:	For Laborato	IN By:	33	(See	or attacher	or Ambient []	or Ambient [] (See attached Sample Receipt Form)		INTACT See affach	INTACT BROKEN ABSENT (See attached Sample Receint Form)
J					4							1	200	ca cample receipt i cimi

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

SGS

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	C	onditi	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	N/A)	YExemption permitted if sampler hand
COC accompanied samples?	Yes	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes	No		□Exemption permitted if chilled &
If >6°C, were samples collected <8 hours ago?	Yes	No	AXE	collected <8hrs ago
If <0°C, were all sample containers ice free?	Yes	No	(N/A)	
Cooler ID:				
Cooler ID: w/Therm. ID:				
Cooler ID:w/Therm. ID:				
Cooler ID:@w/Therm. ID:				
Cooler ID:@w/Therm. ID:				
If samples are received without a temperature blank, the "cooler temperature" will be				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to the right. In cases where neither a temp blank nor cooler temp can be obtained, note				Note: Identify containers received at
ambient () or chilled (). Please check one.				non-compliant temperature. Use form
				FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:		king/A		
	Qr.s	ee atta	ched	
The state of the s		Or-N/2		<u></u>
				cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Yes	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap				Anchorage without inspection by SGS Fairbanks personnel.
Separate plastic bags Vermiculite Other:				1 anounts personner.
Ware Trin Planks (i.e. VOAs II IIs) in cooler with complete	Yes	NIo	NT/A	
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? For RUSH/SHORT Hold Time , were COC/Bottles flagged		No No	N/A N/A	
	Yes			
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	N/A	
Additional notes (if applicable):				
Profile #:				
Note to Client: any "no" circled above indicates non-compliance	with standar	rd proce	dures and ma	y impact data quality.

Cooler Packing Form For Fairbanks

	(a)	
Cooler ID	(2)	

Cooler Temperature 0.7±020

Please list the WOs and associated samples packed in this Cooler

WO#	Samples	Special Notes
1178529	HW17027	
1178534	IT-B1-1	
	IT-B1-2	
	IT-B2-1	
	IT-B2-3	
	IT-B2-2	
	IT-B3-1	
	<u>IT-B3-2</u>	
	IT-B4-1	
	IT-B4-2	
	IT-B5-1	
	IT-B5-2	·
	IT-B6-1	
	IT-B6-3	
	IT-B7-1	
	IT-B7-2	
	IT-B6-2	•
	IT-B8-1	
	IT-B8-2	
	IT-B9-1	
	IT-B9-2	
	IT-B10-1	
	IT-B10-2	
	IT-B11-1	
	IT-B11-2	
	TRIP BLANK	
	l	

e-Sample Receipt Form

SGS Workorder #:

1178534

			_	1 1 (8 5	<u> </u>	4
Review Criteria	Condition (Yes			eptions Noted			
Chain of Custody / Temperature Requi			/A Exemption pe	ermitted if sampler I	nand carries/	delive	ers.
Were Custody Seals intact? Note # &	location	1F 1B					
COC accompanied s	amples? Yes						
N/A **Exemption permitted if	f chilled & coll	ected <8 hou	rs ago, or for san	nples where chilling	j is not requii	red	
<u>—</u>	Yes	Cooler ID:	2	@ 0	.7 °C Therm	. ID: I	D20
	N/A	Cooler ID:		@	°C Therm	. ID:	
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)? N/A	Cooler ID:		@	°C Therm	. ID:	
	N/A	Cooler ID:		@	°C Therm	. ID:	
	N/A	Cooler ID:		@	°C Therm	. ID:	
*If >6°C, were samples collected <8 hours	s ago? N/A			Į O			
,	J						
If <0°C, were sample containers ice	e free? N/A						
ii o o, wore cample comamore les	0 1100						
If samples received without a temperature blank, the	"cooler	1					
temperature" will be documented in lieu of the temperature							
"COOLER TEMP" will be noted to the right. In cases where n	either a						
temp blank nor cooler temp can be obtained, note "amb							
"0	chilled".						
Note: Identify containers received at non-compliant tempe	erature						
Use form FS-0029 if more space is r							
Holding Time / Documentation / Sample Condition R		Noto: Dofo	r to form E 002 "C	Cample Cuide" for s	posifio boldi	na tin	200
Were samples received within holdin			1 10 101111 F-063	sample Guide Tol s	specific floidii	ig till	165.
Were samples received within holdin	ig time:						
De consider model 200# (i.e. conside ID- detections a sul	tl\0 \ V -	Cample 21	had an aytra ia	r marked "extra vo	I" that was	not u	ritton
Do samples match COC** (i.e.,sample IDs,dates/times coll		on COC.	ilau ali extia jai	illiaikeu extia vo	n that was	not w	millen
**Note: If times differ <1hr, record details & login pe							
Were analyses requested unambiguous? (i.e., method is spec							
analyses with >1 option for a	naiysis)						
		N	/A ***Exemption	permitted for meta	ls (e.g,200.8	/6020	A).
Were proper containers (type/mass/volume/preservative***	*)used?						
Volatile / LL-Hg Red							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa							
Were all water VOA vials free of headspace (i.e., bubbles ≤							
Were all soil VOAs field extracted with MeOH							
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd procedures and	d may impact data	quality.		
Additiona	al notes (if	applicable)):				
	,						

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1178534001-A	No Preservative Required	ОК	1178534020-A	No Preservative Required	ОК
1178534001-B	Methanol field pres. 4 C	OK	1178534020-B	Methanol field pres. 4 C	ОК
1178534002-A	No Preservative Required	OK	1178534021-A	No Preservative Required	ОК
1178534002-B	Methanol field pres. 4 C	ОК	1178534021-B	No Preservative Required	ОК
1178534003-A	No Preservative Required	ОК	1178534021-C	Methanol field pres. 4 C	ОК
1178534003-B	No Preservative Required	ОК	1178534022-A	No Preservative Required	ОК
1178534003-C	Methanol field pres. 4 C	ОК	1178534022-B	Methanol field pres. 4 C	OK
1178534004-A	No Preservative Required	ОК	1178534023-A	No Preservative Required	OK
1178534004-B	No Preservative Required	ОК	1178534023-B	Methanol field pres. 4 C	ОК
1178534004-C	Methanol field pres. 4 C	ОК	1178534024-A	No Preservative Required	ОК
1178534005-A	No Preservative Required	ОК	1178534024-B	Methanol field pres. 4 C	ОК
1178534005-B	Methanol field pres. 4 C	ОК	1178534025-A	Methanol field pres. 4 C	ОК
1178534006-A	No Preservative Required	ОК			
1178534006-B	Methanol field pres. 4 C	ОК			
1178534007-A	No Preservative Required	OK			
1178534007-B	Methanol field pres. 4 C	ОК			
1178534008-A	No Preservative Required	OK			
1178534008-B	Methanol field pres. 4 C	ОК			
1178534009-A	No Preservative Required	ОК			
1178534009-B	Methanol field pres. 4 C	OK			
1178534010-A	No Preservative Required	ОК			
1178534010-B	Methanol field pres. 4 C	ОК			
1178534011-A	No Preservative Required	ОК			
1178534011-B	Methanol field pres. 4 C	OK			
1178534012-A	No Preservative Required	ОК			
1178534012-B	No Preservative Required	OK			
1178534012-C	Methanol field pres. 4 C	OK			
1178534013-A	No Preservative Required	OK			
1178534013-B	No Preservative Required	OK			
1178534013-C	Methanol field pres. 4 C	OK			
1178534014-A	No Preservative Required	OK			
1178534014-B	Methanol field pres. 4 C	OK			
1178534015-A	No Preservative Required	OK			
1178534015-B	Methanol field pres. 4 C	OK			
1178534016-A	No Preservative Required	OK			
1178534016-B	Methanol field pres. 4 C	OK			
1178534017-A	No Preservative Required	OK			
1178534017-B	Methanol field pres. 4 C	OK			
1178534018-A	No Preservative Required	ОК			
1178534018-B	Methanol field pres. 4 C	ОК			
1178534019-A	No Preservative Required	ОК			
1178534019-B	Methanol field pres. 4 C	ОК			

10/20/2017 Page 107 of 108

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Container Id
 Preservative
 Container

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

10/20/2017 Page 108 of 108

11/20/2017 Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road

Fairbanks AK 99709

Project Name: Interior Texaco

Project #: 1809-008 Workorder #: 1711116

Dear Ms. Sheila Hinckley

The following report includes the data for the above referenced project for sample(s) received on 11/7/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Elly Butte

WORK ORDER #: 1711116

Work Order Summary

CLIENT: Ms. Sheila Hinckley BILL TO: Ms. Sheila Hinckley

Shannon & Wilson, Inc. Shannon & Wilson, Inc.

2355 Hill Road 2355 Hill Road

Fairbanks, AK 99709 Fairbanks, AK 99709

PHONE: 907-479-0600 P.O. #

FAX: 907-479-5691 **PROJECT** # 1809-008 Interior Texaco

DATE RECEIVED: 11/07/2017 **CONTACT:** Kelly Buettner 11/20/2017

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SS-01	Modified TO-15	8 "Hg	5.1 psi
02A	SS-02	Modified TO-15	1.2 "Hg	5.4 psi
02B	SS-02	Modified TO-15	1.2 "Hg	5.4 psi
03A	SS-03	Modified TO-15	6.7 "Hg	5.3 psi
03B	SS-03	Modified TO-15	6.7 "Hg	5.3 psi
04A	SS-102	Modified TO-15	5.7 "Hg	5.2 psi
04B	SS-102	Modified TO-15	5.7 "Hg	5.2 psi
05A	Lab Blank	Modified TO-15	NA	NA
05B	Lab Blank	Modified TO-15	NA	NA
05C	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
06B	CCV	Modified TO-15	NA	NA
06C	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07AA	LCSD	Modified TO-15	NA	NA
07B	LCS	Modified TO-15	NA	NA
07BB	LCSD	Modified TO-15	NA	NA
07C	LCS	Modified TO-15	NA	NA
07CC	LCSD	Modified TO-15	NA	NA

	fleide flages	
CERTIFIED BY:	0 00	DATE: $\frac{11/20/17}{}$

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Shannon & Wilson, Inc. Workorder# 1711116

Four 6 Liter Summa Canister (SIM Certified) samples were received on November 07, 2017. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There was a difference (greater than or equal to 5.0" Hg) between the measured canister receipt vacuum and that which was reported on the Chain of Custody (COC) for sample SS-02. A leak test indicated that the valve was functioning properly.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a

"sim" extension on the SIM data file.

Dilution was performed on samples SS-01 and SS-03 due to the presence of high level target species.

Sample SS-01 was transferred from SIM/Low Level analysis to full scan TO-15 due to high levels of target compounds.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - CN See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SS-01 Lab ID#: 1711116-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	18	1500	90	7600
Freon 11	18	160	100	880
Tetrachloroethene	18	980	120	6600
Chlorobenzene	18	25	84	110
m,p-Xylene	18	110	79	490
o-Xylene		75	79	320
Cumene	18	21	90	100
Propylbenzene	18	39	90	190
4-Ethyltoluene	18	210	90	1000
1,3,5-Trimethylbenzene	18	180	90	900
1,2,4-Trimethylbenzene		250	90	1200

Client Sample ID: SS-02 Lab ID#: 1711116-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.18	2.2	1.0	12
Ethanol	0.89	18	1.7	33
Acetone	0.89	6.3	2.1	15
2-Propanol	0.89	0.99	2.2	2.4
Hexane	0.18	0.23	0.63	0.81
2-Butanone (Methyl Ethyl Ketone)	0.89	3.2	2.6	9.3
Cyclohexane	0.18	0.29	0.61	1.0
Heptane	0.18	0.34	0.73	1.4
4-Ethyltoluene	0.18	0.41	0.88	2.0
1,3,5-Trimethylbenzene	0.18	0.19	0.88	0.92
1,2,4-Trimethylbenzene	0.18	0.46	0.88	2.3

Client Sample ID: SS-02 Lab ID#: 1711116-02B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.036	0.86	0.18	4.2

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SS-02

Lab ID#: 1711116-02B				
Chloroform	0.036	0.061	0.17	0.30
1,1,1-Trichloroethane	0.036	0.043	0.19	0.24
Carbon Tetrachloride	0.036	0.057	0.22	0.36
Benzene	0.089	0.41	0.28	1.3
1,2-Dichloroethane	0.036	0.14	0.14	0.58
Toluene	0.036	5.1	0.13	19
Tetrachloroethene	0.036	24	0.24	170
Ethyl Benzene	0.036	0.54	0.15	2.3
m,p-Xylene	0.071	2.1	0.31	9.2
o-Xylene	0.036	0.70	0.15	3.0

Client Sample ID: SS-03

Lab ID#: 1711116-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 11	1.8	6.5	9.8	36	
Ethanol	8.8	22	16	42	
Acetone	8.8	41	21	98	

Client Sample ID: SS-03

Lab ID#: 1711116-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.35	24	1.7	120
Chloroform	0.35	0.36	1.7	1.8
Benzene	0.88	0.90	2.8	2.9
Toluene	0.35	8.2	1.3	31
Tetrachloroethene	0.35	210	2.4	1400
Ethyl Benzene	0.35	1.3	1.5	5.5
m,p-Xylene	0.70	4.8	3.0	21
o-Xylene	0.35	1.8	1.5	7.9

Client Sample ID: SS-102 Lab ID#: 1711116-04A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SS-102 Lab ID#: 1711116-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.17	2.9	0.94	16
Ethanol	0.84	7.4	1.6	14
Acetone	0.84	6.7	2.0	16
2-Butanone (Methyl Ethyl Ketone)	0.84	4.6	2.5	14
Heptane	0.17	0.30	0.68	1.2
4-Ethyltoluene	0.17	0.41	0.82	2.0
1,2,4-Trimethylbenzene	0.17	0.43	0.82	2.1

Client Sample ID: SS-102 Lab ID#: 1711116-04B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.033	0.57	0.16	2.8
Chloroform	0.033	0.061	0.16	0.30
1,1,1-Trichloroethane	0.033	0.058	0.18	0.32
Carbon Tetrachloride	0.033	0.052	0.21	0.33
Benzene	0.084	0.34	0.27	1.1
Toluene	0.033	4.3	0.12	16
Tetrachloroethene	0.033	25	0.23	170
Ethyl Benzene	0.033	0.54	0.14	2.3
m,p-Xylene	0.067	2.2	0.29	9.8
o-Xylene	0.033	0.73	0.14	3.2

Client Sample ID: SS-01 Lab ID#: 1711116-01A EPA METHOD TO-15 GC/MS

File Name: 14111409 Date of Collection: 11/2/17 10:28:00 AM
Dil. Factor: 3.66 Date of Analysis: 11/14/17 01:07 PM

Dil. Factor:	3.66	Date of Analysis: 11/14/17 01:07 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	18	1500	90	7600
Freon 114	18	Not Detected	130	Not Detected
Chloromethane	73	Not Detected	150	Not Detected
Vinyl Chloride	18	Not Detected	47	Not Detected
1,3-Butadiene	18	Not Detected	40	Not Detected
Bromomethane	73	Not Detected	280	Not Detected
Chloroethane	73	Not Detected	190	Not Detected
Freon 11	18	160	100	880
Ethanol	73	Not Detected	140	Not Detected
Freon 113	18	Not Detected	140	Not Detected
1,1-Dichloroethene	18	Not Detected	72	Not Detected
Acetone	73	Not Detected	170	Not Detected
2-Propanol	73	Not Detected	180	Not Detected
Carbon Disulfide	73	Not Detected	230	Not Detected
3-Chloropropene	73	Not Detected	230	Not Detected
Methylene Chloride	73	Not Detected	250	Not Detected
Methyl tert-butyl ether	18	Not Detected	66	Not Detected
trans-1,2-Dichloroethene	18	Not Detected	72	Not Detected
Hexane	18	Not Detected	64	Not Detected
1,1-Dichloroethane	18	Not Detected	74	Not Detected
2-Butanone (Methyl Ethyl Ketone)	73	Not Detected	220	Not Detected
cis-1,2-Dichloroethene	18	Not Detected	72	Not Detected
Tetrahydrofuran	18	Not Detected	54	Not Detected
Chloroform	18	Not Detected	89	Not Detected
1,1,1-Trichloroethane	18	Not Detected	100	Not Detected
Cyclohexane	18	Not Detected	63	Not Detected
Carbon Tetrachloride	18	Not Detected	120	Not Detected
2,2,4-Trimethylpentane	18	Not Detected	85	Not Detected
Benzene	18	Not Detected	58	Not Detected
1,2-Dichloroethane	18	Not Detected	74	Not Detected
Heptane	18	Not Detected	75	Not Detected
Trichloroethene	18	Not Detected	98	Not Detected
1,2-Dichloropropane	18	Not Detected	84	Not Detected
1,4-Dioxane	73	Not Detected	260	Not Detected
Bromodichloromethane	18	Not Detected	120	Not Detected
cis-1,3-Dichloropropene	18	Not Detected	83	Not Detected
4-Methyl-2-pentanone	18	Not Detected	75	Not Detected
Toluene	18	Not Detected	69	Not Detected
trans-1,3-Dichloropropene	18	Not Detected	83	Not Detected
1,1,2-Trichloroethane	18	Not Detected	100	Not Detected
Tetrachloroethene	18	980	120	6600
2-Hexanone	73	Not Detected	300	Not Detected

Client Sample ID: SS-01 Lab ID#: 1711116-01A EPA METHOD TO-15 GC/MS

File Name: 14111409 Date of Collection: 11/2/17 10:28:00 AM
Dil. Factor: 3.66 Date of Analysis: 11/14/17 01:07 PM

Dili i dotoi:	3.00	Date of Affairysis: 11/14/17 01:07 11/		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	18	Not Detected	160	Not Detected
1,2-Dibromoethane (EDB)	18	Not Detected	140	Not Detected
Chlorobenzene	18	25	84	110
Ethyl Benzene	18	Not Detected	79	Not Detected
m,p-Xylene	18	110	79	490
o-Xylene	18	75	79	320
Styrene	18	Not Detected	78	Not Detected
Bromoform	18	Not Detected	190	Not Detected
Cumene	18	21	90	100
1,1,2,2-Tetrachloroethane	18	Not Detected	120	Not Detected
Propylbenzene	18	39	90	190
4-Ethyltoluene	18	210	90	1000
1,3,5-Trimethylbenzene	18	180	90	900
1,2,4-Trimethylbenzene	18	250	90	1200
1,3-Dichlorobenzene	18	Not Detected	110	Not Detected
1,4-Dichlorobenzene	18	Not Detected	110	Not Detected
alpha-Chlorotoluene	18	Not Detected	95	Not Detected
1,2-Dichlorobenzene	18	Not Detected	110	Not Detected
1,2,4-Trichlorobenzene	73	Not Detected	540	Not Detected
Hexachlorobutadiene	73	Not Detected	780	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SS-02 Lab ID#: 1711116-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110814 Date of Collection: 11/2/17 11:54:00 AM Dil. Factor: 1.78 Date of Analysis: 11/8/17 08:07 PM

Dii. i dotoi.	1.70	Date	Ol Allalysis. 11/0	717 00.07 FIVI
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	0.18	Not Detected	0.39	Not Detected
Bromomethane	0.89	Not Detected	3.4	Not Detected
Freon 11	0.18	2.2	1.0	12
Ethanol	0.89	18	1.7	33
Freon 113	0.18	Not Detected	1.4	Not Detected
Acetone	0.89	6.3	2.1	15
2-Propanol	0.89	0.99	2.2	2.4
Carbon Disulfide	0.89	Not Detected	2.8	Not Detected
3-Chloropropene	0.89	Not Detected	2.8	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
Hexane	0.18	0.23	0.63	0.81
2-Butanone (Methyl Ethyl Ketone)	0.89	3.2	2.6	9.3
Tetrahydrofuran	0.89	Not Detected	2.6	Not Detected
Cyclohexane	0.18	0.29	0.61	1.0
2,2,4-Trimethylpentane	0.89	Not Detected	4.2	Not Detected
Heptane	0.18	0.34	0.73	1.4
1,2-Dichloropropane	0.18	Not Detected	0.82	Not Detected
1,4-Dioxane	0.18	Not Detected	0.64	Not Detected
Bromodichloromethane	0.18	Not Detected	1.2	Not Detected
cis-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
4-Methyl-2-pentanone	0.18	Not Detected	0.73	Not Detected
trans-1,3-Dichloropropene	0.18	Not Detected	0.81	Not Detected
2-Hexanone	0.89	Not Detected	3.6	Not Detected
Dibromochloromethane	0.18	Not Detected	1.5	Not Detected
Chlorobenzene	0.18	Not Detected	0.82	Not Detected
Styrene	0.18	Not Detected	0.76	Not Detected
Bromoform	0.18	Not Detected	1.8	Not Detected
Cumene	0.18	Not Detected	0.88	Not Detected
Propylbenzene	0.18	Not Detected	0.88	Not Detected
4-Ethyltoluene	0.18	0.41	0.88	2.0
1,3,5-Trimethylbenzene	0.18	0.19	0.88	0.92
1,2,4-Trimethylbenzene	0.18	0.46	0.88	2.3
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.18	Not Detected	0.92	Not Detected
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.89	Not Detected	6.6	Not Detected
Hexachlorobutadiene	0.89	Not Detected	9.5	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Limits
1.2-Dichloroethane.d4	108	70-130

Method

Client Sample ID: SS-02 Lab ID#: 1711116-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110814 Date of Collection: 11/2/17 11:54:00 AM
Dil. Factor: 1.78 Date of Analysis: 11/8/17 08:07 PM

Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SS-02 Lab ID#: 1711116-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110814sim Date of Collection: 11/2/17 11:54:00 AM Dil. Factor: 1.78 Date of Analysis: 11/8/17 08:07 PM

Dil. i actor.	1.70	Date	OI Allalysis. 11/0/	17 00.07 1-141
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.036	0.86	0.18	4.2
Freon 114	0.036	Not Detected	0.25	Not Detected
Chloromethane	0.89	Not Detected	1.8	Not Detected
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
Chloroethane	0.089	Not Detected	0.23	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.070	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.70	Not Detected
Methyl tert-butyl ether	0.18	Not Detected	0.64	Not Detected
1,1-Dichloroethane	0.036	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
Chloroform	0.036	0.061	0.17	0.30
1,1,1-Trichloroethane	0.036	0.043	0.19	0.24
Carbon Tetrachloride	0.036	0.057	0.22	0.36
Benzene	0.089	0.41	0.28	1.3
1,2-Dichloroethane	0.036	0.14	0.14	0.58
Trichloroethene	0.036	Not Detected	0.19	Not Detected
Toluene	0.036	5.1	0.13	19
1,1,2-Trichloroethane	0.036	Not Detected	0.19	Not Detected
Tetrachloroethene	0.036	24	0.24	170
1,2-Dibromoethane (EDB)	0.036	Not Detected	0.27	Not Detected
Ethyl Benzene	0.036	0.54	0.15	2.3
m,p-Xylene	0.071	2.1	0.31	9.2
o-Xylene	0.036	0.70	0.15	3.0
1,1,2,2-Tetrachloroethane	0.036	Not Detected	0.24	Not Detected
1,4-Dichlorobenzene	0.036	Not Detected	0.21	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SS-03 Lab ID#: 1711116-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110815 Date of Collection: 11/2/17 1:37:00 PM
Dil. Factor: 17.5 Date of Analysis: 11/8/17 08:46 PM

DII. Factor:	17.5 Date of Analysis: 11/8/17 08:46 PM		/17 U8:46 PIVI	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	1.8	Not Detected	3.9	Not Detected
Bromomethane	8.8	Not Detected	34	Not Detected
Freon 11	1.8	6.5	9.8	36
Ethanol	8.8	22	16	42
Freon 113	1.8	Not Detected	13	Not Detected
Acetone	8.8	41	21	98
2-Propanol	8.8	Not Detected	22	Not Detected
Carbon Disulfide	8.8	Not Detected	27	Not Detected
3-Chloropropene	8.8	Not Detected	27	Not Detected
Methylene Chloride	3.5	Not Detected	12	Not Detected
Hexane	1.8	Not Detected	6.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	8.8	Not Detected	26	Not Detected
Tetrahydrofuran	8.8	Not Detected	26	Not Detected
Cyclohexane	1.8	Not Detected	6.0	Not Detected
2,2,4-Trimethylpentane	8.8	Not Detected	41	Not Detected
Heptane	1.8	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.8	Not Detected	8.1	Not Detected
1,4-Dioxane	1.8	Not Detected	6.3	Not Detected
Bromodichloromethane	1.8	Not Detected	12	Not Detected
cis-1,3-Dichloropropene	1.8	Not Detected	7.9	Not Detected
4-Methyl-2-pentanone	1.8	Not Detected	7.2	Not Detected
trans-1,3-Dichloropropene	1.8	Not Detected	7.9	Not Detected
2-Hexanone	8.8	Not Detected	36	Not Detected
Dibromochloromethane	1.8	Not Detected	15	Not Detected
Chlorobenzene	1.8	Not Detected	8.0	Not Detected
Styrene	1.8	Not Detected	7.4	Not Detected
Bromoform	1.8	Not Detected	18	Not Detected
Cumene	1.8	Not Detected	8.6	Not Detected
Propylbenzene	1.8	Not Detected	8.6	Not Detected
4-Ethyltoluene	1.8	Not Detected	8.6	Not Detected
1,3,5-Trimethylbenzene	1.8	Not Detected	8.6	Not Detected
1,2,4-Trimethylbenzene	1.8	Not Detected	8.6	Not Detected
1,3-Dichlorobenzene	1.8	Not Detected	10	Not Detected
alpha-Chlorotoluene	1.8	Not Detected	9.0	Not Detected
1,2-Dichlorobenzene	1.8	Not Detected	10	Not Detected
1,2,4-Trichlorobenzene	8.8	Not Detected	65	Not Detected
Hexachlorobutadiene	8.8	Not Detected	93	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Limits
1.2-Dichloroethane.d4	100	70-130

Method

Client Sample ID: SS-03 Lab ID#: 1711116-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110815 Date of Collection: 11/2/17 1:37:00 PM
Dil. Factor: 17.5 Date of Analysis: 11/8/17 08:46 PM

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SS-03 Lab ID#: 1711116-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110815sim Date of Collection: 11/2/17 1:37:00 PM
Dil. Factor: 17.5 Date of Analysis: 11/8/17 08:46 PM

DII. Factor.	17.5	Date	OI Alialysis. 11/0/	17 00.40 711
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.35	24	1.7	120
Freon 114	0.35	Not Detected	2.4	Not Detected
Chloromethane	8.8	Not Detected	18	Not Detected
Vinyl Chloride	0.18	Not Detected	0.45	Not Detected
Chloroethane	0.88	Not Detected	2.3	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.69	Not Detected
trans-1,2-Dichloroethene	1.8	Not Detected	6.9	Not Detected
Methyl tert-butyl ether	1.8	Not Detected	6.3	Not Detected
1,1-Dichloroethane	0.35	Not Detected	1.4	Not Detected
cis-1,2-Dichloroethene	0.35	Not Detected	1.4	Not Detected
Chloroform	0.35	0.36	1.7	1.8
1,1,1-Trichloroethane	0.35	Not Detected	1.9	Not Detected
Carbon Tetrachloride	0.35	Not Detected	2.2	Not Detected
Benzene	0.88	0.90	2.8	2.9
1,2-Dichloroethane	0.35	Not Detected	1.4	Not Detected
Trichloroethene	0.35	Not Detected	1.9	Not Detected
Toluene	0.35	8.2	1.3	31
1,1,2-Trichloroethane	0.35	Not Detected	1.9	Not Detected
Tetrachloroethene	0.35	210	2.4	1400
1,2-Dibromoethane (EDB)	0.35	Not Detected	2.7	Not Detected
Ethyl Benzene	0.35	1.3	1.5	5.5
m,p-Xylene	0.70	4.8	3.0	21
o-Xylene	0.35	1.8	1.5	7.9
1,1,2,2-Tetrachloroethane	0.35	Not Detected	2.4	Not Detected
1,4-Dichlorobenzene	0.35	Not Detected	2.1	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: SS-102 Lab ID#: 1711116-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110816 Date of Collection: 11/2/17 11:44:00 AM Dil. Factor: 1.67 Date of Analysis: 11/8/17 09:25 PM

Dii. i actor.	1.07	Date	OI Allalysis. 11/0/	117 03.23 F W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	0.17	Not Detected	0.37	Not Detected
Bromomethane	0.84	Not Detected	3.2	Not Detected
Freon 11	0.17	2.9	0.94	16
Ethanol	0.84	7.4	1.6	14
Freon 113	0.17	Not Detected	1.3	Not Detected
Acetone	0.84	6.7	2.0	16
2-Propanol	0.84	Not Detected	2.0	Not Detected
Carbon Disulfide	0.84	Not Detected	2.6	Not Detected
3-Chloropropene	0.84	Not Detected	2.6	Not Detected
Methylene Chloride	0.33	Not Detected	1.2	Not Detected
Hexane	0.17	Not Detected	0.59	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.84	4.6	2.5	14
Tetrahydrofuran	0.84	Not Detected	2.5	Not Detected
Cyclohexane	0.17	Not Detected	0.57	Not Detected
2,2,4-Trimethylpentane	0.84	Not Detected	3.9	Not Detected
Heptane	0.17	0.30	0.68	1.2
1,2-Dichloropropane	0.17	Not Detected	0.77	Not Detected
1,4-Dioxane	0.17	Not Detected	0.60	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.76	Not Detected
4-Methyl-2-pentanone	0.17	Not Detected	0.68	Not Detected
trans-1,3-Dichloropropene	0.17	Not Detected	0.76	Not Detected
2-Hexanone	0.84	Not Detected	3.4	Not Detected
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
Chlorobenzene	0.17	Not Detected	0.77	Not Detected
Styrene	0.17	Not Detected	0.71	Not Detected
Bromoform	0.17	Not Detected	1.7	Not Detected
Cumene	0.17	Not Detected	0.82	Not Detected
Propylbenzene	0.17	Not Detected	0.82	Not Detected
4-Ethyltoluene	0.17	0.41	0.82	2.0
1,3,5-Trimethylbenzene	0.17	Not Detected	0.82	Not Detected
1,2,4-Trimethylbenzene	0.17	0.43	0.82	2.1
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
alpha-Chlorotoluene	0.17	Not Detected	0.86	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.2	Not Detected
Hexachlorobutadiene	0.84	Not Detected	8.9	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Limits
1 2-Dichloroethane-d4	108	70-130

Method

Client Sample ID: SS-102 Lab ID#: 1711116-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110816 Date of Collection: 11/2/17 11:44:00 AM Dil. Factor: 1.67 Date of Analysis: 11/8/17 09:25 PM

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SS-102 Lab ID#: 1711116-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110816sim Date of Collection: 11/2/17 11:44:00 AM Dil. Factor: 1.67 Date of Analysis: 11/8/17 09:25 PM

			7 01 7 tiluly 0101 1 17 0	
•	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.033	0.57	0.16	2.8
Freon 114	0.033	Not Detected	0.23	Not Detected
Chloromethane	0.84	Not Detected	1.7	Not Detected
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
Chloroethane	0.084	Not Detected	0.22	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.066	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Methyl tert-butyl ether	0.17	Not Detected	0.60	Not Detected
1,1-Dichloroethane	0.033	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	0.061	0.16	0.30
1,1,1-Trichloroethane	0.033	0.058	0.18	0.32
Carbon Tetrachloride	0.033	0.052	0.21	0.33
Benzene	0.084	0.34	0.27	1.1
1,2-Dichloroethane	0.033	Not Detected	0.14	Not Detected
Trichloroethene	0.033	Not Detected	0.18	Not Detected
Toluene	0.033	4.3	0.12	16
1,1,2-Trichloroethane	0.033	Not Detected	0.18	Not Detected
Tetrachloroethene	0.033	25	0.23	170
1,2-Dibromoethane (EDB)	0.033	Not Detected	0.26	Not Detected
Ethyl Benzene	0.033	0.54	0.14	2.3
m,p-Xylene	0.067	2.2	0.29	9.8
o-Xylene	0.033	0.73	0.14	3.2
1,1,2,2-Tetrachloroethane	0.033	Not Detected	0.23	Not Detected
1,4-Dichlorobenzene	0.033	Not Detected	0.20	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 1711116-05A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14111407 1.00		of Collection: NA of Analysis: 11/1	4/17 10:33 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.0	Not Detected	25	Not Detected
Freon 114	5.0	Not Detected	35	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
1,3-Butadiene	5.0	Not Detected	11	Not Detected
Bromomethane	20	Not Detected	78	Not Detected
Chloroethane	20	Not Detected	53	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Ethanol	20	Not Detected	38	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	48	Not Detected
2-Propanol	20	Not Detected	49	Not Detected
Carbon Disulfide	20	Not Detected	62	Not Detected
3-Chloropropene	20	Not Detected	63	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Hexane	5.0	Not Detected	18	Not Detected
1,1-Dichloroethane	5.0	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	59	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Tetrahydrofuran	5.0	Not Detected	15	Not Detected
Chloroform	5.0	Not Detected	24	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Cyclohexane	5.0	Not Detected	17	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
2,2,4-Trimethylpentane	5.0	Not Detected	23	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
Heptane	5.0	Not Detected	20	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
1,2-Dichloropropane	5.0	Not Detected	23	Not Detected
1,4-Dioxane	20	Not Detected	72	Not Detected
Bromodichloromethane	5.0	Not Detected	34	Not Detected
cis-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
4-Methyl-2-pentanone	5.0	Not Detected	20	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
trans-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
1,1,2-Trichloroethane	5.0	Not Detected	27	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
2-Hexanone	20	Not Detected	82	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1711116-05A

EPA METHOD TO-15 GC/MS

File Name:	14111407	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/14/17 10:33 AM

Dili. i dotoi:	1.00	Date	Ol Allalysis. 11/1	7/1/ 10.33 AN
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.0	Not Detected	42	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
Hexachlorobutadiene	20	Not Detected	210	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: Lab Blank Lab ID#: 1711116-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	20110807 1.00		of Collection: NA of Analysis: 11/8	/17 01:02 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected

Acetone	0.50	NOT DETECTED	1.2	NOT DETECTED
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	0.50	Not Detected	1.6	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Hexane	0.10	Not Detected	0.35	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Cyclohexane	0.10	Not Detected	0.34	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Heptane	0.10	Not Detected	0.41	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
2-Hexanone	0.50	Not Detected	2.0	Not Detected
Dibromochloromethane	0.10	Not Detected	0.85	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Styrene	0.10	Not Detected	0.42	Not Detected
Bromoform	0.10	Not Detected	1.0	Not Detected
Cumene	0.10	Not Detected	0.49	Not Detected
Propylbenzene	0.10	Not Detected	0.49	Not Detected
4-Ethyltoluene	0.10	Not Detected	0.49	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected

Container Type: NA - Not Applicable

Hexachlorobutadiene

		Method
Surrogates	%Recovery	Limits
4.6.51.11	444	70.400

Not Detected

5.3

Not Detected

0.50

Client Sample ID: Lab Blank Lab ID#: 1711116-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110807 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 01:02 PM

		wethod
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: Lab Blank Lab ID#: 1711116-05C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	20110807sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/8/17 01:02 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.020	Not Detected	0.099	Not Detected
Freon 114	0.020	Not Detected	0.14	Not Detected
Chloromethane	0.50	Not Detected	1.0	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Chloroethane	0.050	Not Detected	0.13	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
1,2-Dibromoethane (EDB)	0.020	Not Detected	0.15	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
1,4-Dichlorobenzene	0.020	Not Detected	0.12	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: CCV Lab ID#: 1711116-06A

EPA METHOD TO-15 GC/MS

File Name: 14111402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 07:46 AM

Compound	%Recovery
Freon 12	97
Freon 114	97
Chloromethane	95
Vinyl Chloride	100
1,3-Butadiene	94
Bromomethane	111
Chloroethane	93
Freon 11	104
Ethanol	98
Freon 113	103
1,1-Dichloroethene	102
Acetone	107
2-Propanol	109
Carbon Disulfide	97
3-Chloropropene	102
Methylene Chloride	103
Methyl tert-butyl ether	104
trans-1,2-Dichloroethene	93
Hexane	102
1,1-Dichloroethane	103
2-Butanone (Methyl Ethyl Ketone)	101
cis-1,2-Dichloroethene	102
Tetrahydrofuran	99
Chloroform	102
1,1,1-Trichloroethane	101
Cyclohexane	102
Carbon Tetrachloride	103
2,2,4-Trimethylpentane	100
Benzene	98
1,2-Dichloroethane	96
Heptane	88
Trichloroethene	96
1,2-Dichloropropane	98
1,4-Dioxane	105
Bromodichloromethane	97
cis-1,3-Dichloropropene	97
4-Methyl-2-pentanone	88
Toluene	95
trans-1,3-Dichloropropene	99
1,1,2-Trichloroethane	96
Tetrachloroethene	100
2-Hexanone	101

Client Sample ID: CCV Lab ID#: 1711116-06A

EPA METHOD TO-15 GC/MS

File Name: 14111402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 07:46 AM

Compound	%Recovery	
Dibromochloromethane	102	
1,2-Dibromoethane (EDB)	102	
Chlorobenzene	97	
Ethyl Benzene	97	
m,p-Xylene	101	
o-Xylene	99	
Styrene	101	
Bromoform	103	
Cumene	99	
1,1,2,2-Tetrachloroethane	99	
Propylbenzene	101	
4-Ethyltoluene	102	
1,3,5-Trimethylbenzene	106	
1,2,4-Trimethylbenzene	102	
1,3-Dichlorobenzene	103	
1,4-Dichlorobenzene	104	
alpha-Chlorotoluene	110	
1,2-Dichlorobenzene	104	
1,2,4-Trichlorobenzene	118	
Hexachlorobutadiene	109	

Surrogates	%Recovery	Method Limits
Surrogates	/orecovery	Lillits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1711116-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 09:24 AM

Compound	%Recovery	
1,3-Butadiene	107	
Bromomethane	107	
Freon 11	100	
Ethanol	95	
Freon 113	97	
Acetone	85	
2-Propanol	108	
Carbon Disulfide	103	
3-Chloropropene	105	
Methylene Chloride	97	
Hexane	107	
2-Butanone (Methyl Ethyl Ketone)	103	
Tetrahydrofuran	102	
Cyclohexane	107	
2,2,4-Trimethylpentane	100	
Heptane	110	
1,2-Dichloropropane	103	
1,4-Dioxane	100	
Bromodichloromethane	105	
cis-1,3-Dichloropropene	105	
4-Methyl-2-pentanone	106	
trans-1,3-Dichloropropene	109	
2-Hexanone	107	
Dibromochloromethane	105	
Chlorobenzene	102	
Styrene	112	
Bromoform	108	
Cumene	110	
Propylbenzene	106	
4-Ethyltoluene	106	
1,3,5-Trimethylbenzene	104	
1,2,4-Trimethylbenzene	102	
1,3-Dichlorobenzene	102	
alpha-Chlorotoluene	108	
1,2-Dichlorobenzene	104	
1,2,4-Trichlorobenzene	97	
Hexachlorobutadiene	104	

		Method
Surrogates	%Recovery	Limits
1.2-Dichloroethane-d4	101	70-130

Client Sample ID: CCV Lab ID#: 1711116-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110802 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/8/17 09:24 AM

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: CCV Lab ID#: 1711116-06C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110802sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 09:24 AM

Compound	%Recovery	
Freon 12	100	
Freon 114	98	
Chloromethane	92	
Vinyl Chloride	101	
Chloroethane	101	
1,1-Dichloroethene	98	
trans-1,2-Dichloroethene	100	
Methyl tert-butyl ether	110	
1,1-Dichloroethane	102	
cis-1,2-Dichloroethene	101	
Chloroform	99	
1,1,1-Trichloroethane	100	
Carbon Tetrachloride	86	
Benzene	99	
1,2-Dichloroethane	102	
Trichloroethene	100	
Toluene	102	
1,1,2-Trichloroethane	105	
Tetrachloroethene	103	
1,2-Dibromoethane (EDB)	105	
Ethyl Benzene	109	
m,p-Xylene	111	
o-Xylene	111	
1,1,2,2-Tetrachloroethane	104	
1,4-Dichlorobenzene	101	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCS Lab ID#: 1711116-07A

EPA METHOD TO-15 GC/MS

File Name: 14111403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 08:19 AM

%Recovery	Limits
	LIIIIII
100	70-130
105	70-130
97	70-130
105	70-130
92	70-130
113	70-130
98	70-130
110	70-130
111	70-130
105	70-130
103	70-130
105	70-130
115	70-130
88	70-130
96	70-130
103	70-130
104	70-130
82	70-130
103	70-130
103	70-130
105	70-130
115	70-130
99	70-130
104	70-130
102	70-130
104	70-130
105	70-130
102	70-130
102	70-130
97	70-130
92	70-130
102	70-130
99	70-130
103	70-130
102	70-130
96	70-130
96	70-130
99	70-130
98	70-130
98	70-130
102	70-130
104	70-130
	105 97 105 92 113 98 110 111 105 103 105 115 88 96 103 104 82 103 104 82 103 105 115 99 104 102 104 105 105 115 99 104 102 104 105 105 115 99 104 102 104 105 105 115 99 104 105 105 115 99 104 105 105 115 99 104 105 105 105 115 99 104 105 105 105 105 106 99 107 99 108 109 99 109 99 100 90 90 90 90 90 90 90 90 90

Client Sample ID: LCS Lab ID#: 1711116-07A

EPA METHOD TO-15 GC/MS

File Name: 14111403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 08:19 AM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	105	70-130
1,2-Dibromoethane (EDB)	104	70-130
Chlorobenzene	98	70-130
Ethyl Benzene	101	70-130
m,p-Xylene	101	70-130
o-Xylene	104	70-130
Styrene	107	70-130
Bromoform	81	70-130
Cumene	100	70-130
1,1,2,2-Tetrachloroethane	102	70-130
Propylbenzene	105	70-130
4-Ethyltoluene	104	70-130
1,3,5-Trimethylbenzene	106	70-130
1,2,4-Trimethylbenzene	104	70-130
1,3-Dichlorobenzene	106	70-130
1,4-Dichlorobenzene	106	70-130
alpha-Chlorotoluene	114	70-130
1,2-Dichlorobenzene	106	70-130
1,2,4-Trichlorobenzene	124	70-130
Hexachlorobutadiene	110	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCSD Lab ID#: 1711116-07AA

EPA METHOD TO-15 GC/MS

File Name: 14111404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 08:50 AM

DII. Factor.	1.00 Date of Allalys	15. 11/14/17 UO.3U AIVI
Compound	%Recovery	Method Limits
Compound	•	
Freon 12	99	70-130
Freon 114	104	70-130
Chloromethane	94	70-130
Vinyl Chloride	103	70-130
1,3-Butadiene	95	70-130
Bromomethane	118	70-130
Chloroethane	101	70-130
Freon 11	109	70-130
Ethanol	108	70-130
Freon 113	105	70-130
1,1-Dichloroethene	104	70-130
Acetone	103	70-130
2-Propanol	113	70-130
Carbon Disulfide	86	70-130
3-Chloropropene	97	70-130
Methylene Chloride	106	70-130
Methyl tert-butyl ether	102	70-130
trans-1,2-Dichloroethene	84	70-130
Hexane	102	70-130
1,1-Dichloroethane	104	70-130
2-Butanone (Methyl Ethyl Ketone)	101	70-130
cis-1,2-Dichloroethene	115	70-130
Tetrahydrofuran	99	70-130
Chloroform	102	70-130
1,1,1-Trichloroethane	100	70-130
Cyclohexane	101	70-130
Carbon Tetrachloride	102	70-130
2,2,4-Trimethylpentane	103	70-130
Benzene	100	70-130
1,2-Dichloroethane	97	70-130
Heptane	90	70-130
Trichloroethene	99	70-130
1,2-Dichloropropane	99	70-130
1,4-Dioxane	107	70-130
Bromodichloromethane	99	70-130
cis-1,3-Dichloropropene	94	70-130
	94	70-130
4-Methyl-2-pentanone Toluene	98	70-130
	100	70-130
trans-1,3-Dichloropropene	98	70-130
1,1,2-Trichloroethane		
Tetrachloroethene	102	70-130
2-Hexanone	105	70-130

Client Sample ID: LCSD Lab ID#: 1711116-07AA

EPA METHOD TO-15 GC/MS

File Name: 14111404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/14/17 08:50 AM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	104	70-130
1,2-Dibromoethane (EDB)	103	70-130
Chlorobenzene	97	70-130
Ethyl Benzene	100	70-130
m,p-Xylene	100	70-130
o-Xylene	103	70-130
Styrene	106	70-130
Bromoform	80	70-130
Cumene	101	70-130
1,1,2,2-Tetrachloroethane	101	70-130
Propylbenzene	105	70-130
4-Ethyltoluene	102	70-130
1,3,5-Trimethylbenzene	108	70-130
1,2,4-Trimethylbenzene	104	70-130
1,3-Dichlorobenzene	106	70-130
1,4-Dichlorobenzene	107	70-130
alpha-Chlorotoluene	116	70-130
1,2-Dichlorobenzene	108	70-130
1,2,4-Trichlorobenzene	128	70-130
Hexachlorobutadiene	115	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 1711116-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:12 AM

Compound	%Recovery	Method Limits
1,3-Butadiene	107	70-130
Bromomethane	120	70-130
Freon 11	103	70-130
Ethanol	103	70-130
Freon 113	96	70-130
Acetone	85	70-130
2-Propanol	113	70-130
Carbon Disulfide	92	70-130
3-Chloropropene	97	70-130
Methylene Chloride	96	70-130
Hexane	106	70-130
2-Butanone (Methyl Ethyl Ketone)	103	70-130
Tetrahydrofuran	110	70-130
Cyclohexane	108	70-130
2,2,4-Trimethylpentane	104	70-130
Heptane	109	70-130
1,2-Dichloropropane	102	70-130
1,4-Dioxane	102	70-130
Bromodichloromethane	109	70-130
cis-1,3-Dichloropropene	99	70-130
4-Methyl-2-pentanone	108	70-130
trans-1,3-Dichloropropene	110	70-130
2-Hexanone	112	70-130
Dibromochloromethane	108	70-130
Chlorobenzene	100	70-130
Styrene	112	70-130
Bromoform	110	70-130
Cumene	110	70-130
Propylbenzene	108	70-130
4-Ethyltoluene	109	70-130
1,3,5-Trimethylbenzene	106	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3-Dichlorobenzene	104	70-130
alpha-Chlorotoluene	114	70-130
1,2-Dichlorobenzene	105	70-130
1,2,4-Trichlorobenzene	102	70-130
Hexachlorobutadiene	106	70-130

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130

Client Sample ID: LCS Lab ID#: 1711116-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110803 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:12 AM

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCSD Lab ID#: 1711116-07BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:51 AM

Compound	%Recovery	Method Limits
1,3-Butadiene	115	70-130
Bromomethane	130	70-130
Freon 11	111	70-130
Ethanol	113	70-130
Freon 113	104	70-130
Acetone	92	70-130
2-Propanol	124	70-130
Carbon Disulfide	100	70-130
3-Chloropropene	104	70-130
Methylene Chloride	105	70-130
Hexane	116	70-130
2-Butanone (Methyl Ethyl Ketone)	111	70-130
Tetrahydrofuran	112	70-130
Cyclohexane	115	70-130
2,2,4-Trimethylpentane	112	70-130
Heptane	112	70-130
1,2-Dichloropropane	108	70-130
1,4-Dioxane	105	70-130
Bromodichloromethane	115	70-130
cis-1,3-Dichloropropene	103	70-130
4-Methyl-2-pentanone	112	70-130
trans-1,3-Dichloropropene	114	70-130
2-Hexanone	117	70-130
Dibromochloromethane	113	70-130
Chlorobenzene	106	70-130
Styrene	117	70-130
Bromoform	117	70-130
Cumene	116	70-130
Propylbenzene	112	70-130
4-Ethyltoluene	112	70-130
1,3,5-Trimethylbenzene	106	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3-Dichlorobenzene	106	70-130
alpha-Chlorotoluene	118	70-130
1,2-Dichlorobenzene	109	70-130
1,2,4-Trichlorobenzene	104	70-130
Hexachlorobutadiene	111	70-130

		Method	
Surrogates	%Recovery	Limits	
1.2-Dichloroethane-d4	99	70-130	

Client Sample ID: LCSD Lab ID#: 1711116-07BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17

Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:51 AM Method

Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCS Lab ID#: 1711116-07C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110803sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:12 AM

Compound	%Recovery	Method Limits
Freon 12	104	70-130
Freon 114	105	70-130
Chloromethane	93	70-130
Vinyl Chloride	107	70-130
Chloroethane	107	70-130
1,1-Dichloroethene	101	70-130
trans-1,2-Dichloroethene	89	70-130
Methyl tert-butyl ether	110	70-130
1,1-Dichloroethane	104	70-130
cis-1,2-Dichloroethene	113	70-130
Chloroform	100	70-130
1,1,1-Trichloroethane	101	70-130
Carbon Tetrachloride	94	60-140
Benzene	100	70-130
1,2-Dichloroethane	103	70-130
Trichloroethene	101	70-130
Toluene	103	70-130
1,1,2-Trichloroethane	105	70-130
Tetrachloroethene	103	70-130
1,2-Dibromoethane (EDB)	106	70-130
Ethyl Benzene	110	70-130
m,p-Xylene	113	70-130
o-Xylene	116	70-130
1,1,2,2-Tetrachloroethane	105	70-130
1,4-Dichlorobenzene	104	70-130

,		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCSD Lab ID#: 1711116-07CC

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: 20110804sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/8/17 10:51 AM

Compound	%Recovery	Method Limits
Freon 12	108	70-130
Freon 114	109	70-130
Chloromethane	96	70-130
Vinyl Chloride	110	70-130
Chloroethane	112	70-130
1,1-Dichloroethene	105	70-130
trans-1,2-Dichloroethene	92	70-130
Methyl tert-butyl ether	114	70-130
1,1-Dichloroethane	108	70-130
cis-1,2-Dichloroethene	118	70-130
Chloroform	104	70-130
1,1,1-Trichloroethane	105	70-130
Carbon Tetrachloride	98	60-140
Benzene	103	70-130
1,2-Dichloroethane	106	70-130
Trichloroethene	104	70-130
Toluene	105	70-130
1,1,2-Trichloroethane	110	70-130
Tetrachloroethene	108	70-130
1,2-Dibromoethane (EDB)	111	70-130
Ethyl Benzene	114	70-130
m,p-Xylene	115	70-130
o-Xylene	118	70-130
1,1,2,2-Tetrachloroethane	109	70-130
1,4-Dichlorobenzene	106	70-130

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	102	70-130

11/20/2017 Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road

Fairbanks AK 99709

Project Name: Interior Texaco

Project #: 1809-008 Workorder #: 1711121

Dear Ms. Sheila Hinckley

The following report includes the data for the above referenced project for sample(s) received on 11/7/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1711121

Work Order Summary

CLIENT: Ms. Sheila Hinckley BILL TO: Ms. Sheila Hinckley

Shannon & Wilson, Inc. Shannon & Wilson, Inc.

2355 Hill Road 2355 Hill Road

Fairbanks, AK 99709 Fairbanks, AK 99709

PHONE: 907-479-0600 **P.O.** #

FAX: 907-479-5691 **PROJECT** # 1809-008 Interior Texaco

DATE RECEIVED: 11/07/2017 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 11/20/2017

FRACTION #	<u>NAME</u>	<u>TEST</u>
01A	IA-01	Passive S.E. RAD130/SKC
02A	IA-02	Passive S.E. RAD130/SKC
03A	IA-03	Passive S.E. RAD130/SKC
04A	IA-04	Passive S.E. RAD130/SKC
05A	IA-05	Passive S.E. RAD130/SKC
06A	Lab Blank	Passive S.E. RAD130/SKC
07A	LCS	Passive S.E. RAD130/SKC
07AA	LCSD	Passive S.E. RAD130/SKC

	Meide Rayer		
CERTIFIED BY:	0 00	DATE: 11/20/17	

Technical Director

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Shannon & Wilson, Inc. Workorder# 1711121

Five Radiello 130 (Solvent) samples were received on November 07, 2017. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank, a sampling duration of 1455 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated concentration due to calculated sampling rate
 - CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-01 Lab ID#: 1711121-01A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Ethanol	1.0	7.2	8.1	58
Acetone	0.20	1.9	2.2	21
Hexane	0.10	1.1	0.62	6.9
Cyclohexane	0.10	1.4	0.36	4.9
Benzene	0.40	3.6	0.56	5.2
Heptane	0.10	1.3	0.66	8.4
Trichloroethene	0.10	1.0	0.12	1.2
4-Methyl-2-pentanone	0.20	2.2	0.30	3.2
Toluene	0.10	0.99	2.9	28
Tetrachloroethene	0.10	1.2	65	800
Ethyl Benzene	0.10	1.1	0.63	6.8
m,p-Xylene	0.10	1.0	1.7	18
o-Xylene	0.10	1.1	0.62	6.9
Propylbenzene	0.10	1.3	0.17	2.2

Client Sample ID: IA-02 Lab ID#: 1711121-02A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Ethanol	1.0	7.0	7.7	54
Acetone	0.20	1.9	2.5	23
Hexane	0.10	1.1	0.60	6.5
Cyclohexane	0.10	1.3	0.36	4.7
Benzene	0.40	3.6	0.57	5.1
Heptane	0.10	1.2	0.66	8.2
Trichloroethene	0.10	1.0	0.12	1.2
4-Methyl-2-pentanone	0.20	2.1	0.29	3.1
Toluene	0.10	0.97	2.9	28
Tetrachloroethene	0.10	1.2	72	870
Ethyl Benzene	0.10	1.0	0.62	6.6
m,p-Xylene	0.10	1.0	1.7	17
o-Xylene	0.10	1.1	0.62	6.8
Propylbenzene	0.10	1.2	0.16	2.0

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-03 Lab ID#: 1711121-03A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Ethanol	1.0	7.0	18	130
Acetone	0.20	1.8	4.4	41
Hexane	0.10	1.1	0.34	3.7
Cyclohexane	0.10	1.3	0.22	3.0
Heptane	0.10	1.2	0.34	4.2
Toluene	0.10	0.97	1.3	12
Tetrachloroethene	0.10	1.2	10	130
Ethyl Benzene	0.10	1.0	0.34	3.6
m,p-Xylene	0.10	1.0	0.84	8.6
o-Xylene	0.10	1.1	0.33	3.6
Propylbenzene	0.10	1.2	0.13	1.6

Client Sample ID: IA-04 Lab ID#: 1711121-04A

6.9 1.8	53 2.7	360
	27	
		24
1.1	0.54	5.8
0.94	0.10	0.97
1.3	0.37	4.8
3.5	0.48	4.2
1.2	0.59	7.1
0.95	2.3	22
1.2	23	270
1.0	0.62	6.4
1.0	1.5	15
1.1	0.55	5.9
1.2	0.18	2.2
	1.3 3.5 1.2 0.95 1.2 1.0 1.0	0.94 0.10 1.3 0.37 3.5 0.48 1.2 0.59 0.95 2.3 1.2 23 1.0 0.62 1.1 0.55

Client Sample ID: IA-05 Lab ID#: 1711121-05A

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-05 Lab ID#: 1711121-05A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Ethanol	1.0	6.9	35	240
Acetone	0.20	1.8	2.7	25
Hexane	0.10	1.1	0.58	6.2
Cyclohexane	0.10	1.3	0.34	4.4
Benzene	0.40	3.5	0.55	4.8
Heptane	0.10	1.2	0.53	6.4
Toluene	0.10	0.95	2.3	22
Tetrachloroethene	0.10	1.2	30	360
Ethyl Benzene	0.10	1.0	0.73	7.5
m,p-Xylene	0.10	1.0	1.5	15
o-Xylene	0.10	1.1	0.54	5.8
Propylbenzene	0.10	1.2	0.18	2.2

Client Sample ID: IA-01 Lab ID#: 1711121-01A

VOCS BY PASSIVE SAMPLER - GC/MS

 File Name:
 10110917sim
 Date of Collection: 11/2/17 1:00:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 11/9/17 02:31 PM

 Date of Extraction: 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	7.2	8.1	58
Acetone	0.20	1.9	2.2	21
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	0.62	6.9
Ethyl Acetate	0.40	3.7	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.92	Not Detected	Not Detected
Chloroform	0.10	0.97	Not Detected	Not Detected
1,1,1-Trichloroethane	0.10	1.2	Not Detected	Not Detected
Cyclohexane	0.10	1.4	0.36	4.9
Carbon Tetrachloride	0.10	1.1	Not Detected	Not Detected
Benzene	0.40	3.6	0.56	5.2
1,2-Dichloroethane	0.10	0.95	Not Detected	Not Detected
Heptane	0.10	1.3	0.66	8.4
Trichloroethene	0.10	1.0	0.12	1.2
4-Methyl-2-pentanone	0.20	2.2	0.30	3.2
Toluene	0.10	0.99	2.9	28
Tetrachloroethene	0.10	1.2	65	800
Chlorobenzene	0.10	1.1	Not Detected	Not Detected
Ethyl Benzene	0.10	1.1	0.63	6.8
m,p-Xylene	0.10	1.0	1.7	18
o-Xylene	0.10	1.1	0.62	6.9
Styrene	0.10	1.2	Not Detected	Not Detected
Propylbenzene	0.10	1.3	0.17	2.2
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.9	Not Detected	Not Detected

Temperature = 55.0F, duration time = 1455 minutes.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	

Client Sample ID: IA-02 Lab ID#: 1711121-02A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110918sim Date of Collection: 11/2/17 1:01:00 PM
Dil. Factor: 1.00 Date of Analysis: 11/9/17 02:56 PM
Date of Extraction: 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	7.0	7.7	54
Acetone	0.20	1.9	2.5	23
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	0.60	6.5
Ethyl Acetate	0.40	3.7	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.91	Not Detected	Not Detected
Chloroform	0.10	0.95	Not Detected	Not Detected
1,1,1-Trichloroethane	0.10	1.2	Not Detected	Not Detected
Cyclohexane	0.10	1.3	0.36	4.7
Carbon Tetrachloride	0.10	1.1	Not Detected	Not Detected
Benzene	0.40	3.6	0.57	5.1
1,2-Dichloroethane	0.10	0.93	Not Detected	Not Detected
Heptane	0.10	1.2	0.66	8.2
Trichloroethene	0.10	1.0	0.12	1.2
4-Methyl-2-pentanone	0.20	2.1	0.29	3.1
Toluene	0.10	0.97	2.9	28
Tetrachloroethene	0.10	1.2	72	870
Chlorobenzene	0.10	1.0	Not Detected	Not Detected
Ethyl Benzene	0.10	1.0	0.62	6.6
m,p-Xylene	0.10	1.0	1.7	17
o-Xylene	0.10	1.1	0.62	6.8
Styrene	0.10	1.2	Not Detected	Not Detected
Propylbenzene	0.10	1.2	0.16	2.0
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.9	Not Detected	Not Detected

Temperature = 65.0F, duration time = 1447 minutes.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	

Client Sample ID: IA-03 Lab ID#: 1711121-03A

VOCS BY PASSIVE SAMPLER - GC/MS

 File Name:
 10110919sim
 Date of Collection: 11/2/17 1:06:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 11/9/17 03:21 PM

 Date of Extraction: 11/9/17
 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	7.0	18	130
Acetone	0.20	1.8	4.4	41
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	0.34	3.7
Ethyl Acetate	0.40	3.7	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.90	Not Detected	Not Detected
Chloroform	0.10	0.95	Not Detected	Not Detected
1,1,1-Trichloroethane	0.10	1.2	Not Detected	Not Detected
Cyclohexane	0.10	1.3	0.22	3.0
Carbon Tetrachloride	0.10	1.1	Not Detected	Not Detected
Benzene	0.40	3.6	Not Detected	Not Detected
1,2-Dichloroethane	0.10	0.93	Not Detected	Not Detected
Heptane	0.10	1.2	0.34	4.2
Trichloroethene	0.10	1.0	Not Detected	Not Detected
4-Methyl-2-pentanone	0.20	2.1	Not Detected	Not Detected
Toluene	0.10	0.97	1.3	12
Tetrachloroethene	0.10	1.2	10	130
Chlorobenzene	0.10	1.0	Not Detected	Not Detected
Ethyl Benzene	0.10	1.0	0.34	3.6
m,p-Xylene	0.10	1.0	0.84	8.6
o-Xylene	0.10	1.1	0.33	3.6
Styrene	0.10	1.2	Not Detected	Not Detected
Propylbenzene	0.10	1.2	0.13	1.6
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.9	Not Detected	Not Detected

Temperature = 65.0F, duration time = 1449 minutes.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	

Client Sample ID: IA-04 Lab ID#: 1711121-04A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110920sim Date of Collection: 11/2/17 1:10:00 PM
Dil. Factor: 1.00 Date of Analysis: 11/9/17 03:45 PM
Date of Extraction: 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	6.9	53	360
Acetone	0.20	1.8	2.7	24
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	0.54	5.8
Ethyl Acetate	0.40	3.6	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.89	Not Detected	Not Detected
Chloroform	0.10	0.94	0.10	0.97
1,1,1-Trichloroethane	0.10	1.1	Not Detected	Not Detected
Cyclohexane	0.10	1.3	0.37	4.8
Carbon Tetrachloride	0.10	1.0	Not Detected	Not Detected
Benzene	0.40	3.5	0.48	4.2
1,2-Dichloroethane	0.10	0.91	Not Detected	Not Detected
Heptane	0.10	1.2	0.59	7.1
Trichloroethene	0.10	1.0	Not Detected	Not Detected
4-Methyl-2-pentanone	0.20	2.1	Not Detected	Not Detected
Toluene	0.10	0.95	2.3	22
Tetrachloroethene	0.10	1.2	23	270
Chlorobenzene	0.10	1.0	Not Detected	Not Detected
Ethyl Benzene	0.10	1.0	0.62	6.4
m,p-Xylene	0.10	1.0	1.5	15
o-Xylene	0.10	1.1	0.55	5.9
Styrene	0.10	1.2	Not Detected	Not Detected
Propylbenzene	0.10	1.2	0.18	2.2
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.8	Not Detected	Not Detected

Temperature = 70.0F, duration time = 1452 minutes.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	

Client Sample ID: IA-05 Lab ID#: 1711121-05A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110921sim Date of Collection: 11/2/17 1:13:00 PM
Dil. Factor: 1.00 Date of Analysis: 11/9/17 04:10 PM
Date of Extraction: 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	6.9	35	240
Acetone	0.20	1.8	2.7	25
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	0.58	6.2
Ethyl Acetate	0.40	3.6	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.89	Not Detected	Not Detected
Chloroform	0.10	0.94	Not Detected	Not Detected
1,1,1-Trichloroethane	0.10	1.1	Not Detected	Not Detected
Cyclohexane	0.10	1.3	0.34	4.4
Carbon Tetrachloride	0.10	1.0	Not Detected	Not Detected
Benzene	0.40	3.5	0.55	4.8
1,2-Dichloroethane	0.10	0.91	Not Detected	Not Detected
Heptane	0.10	1.2	0.53	6.4
Trichloroethene	0.10	1.0	Not Detected	Not Detected
4-Methyl-2-pentanone	0.20	2.1	Not Detected	Not Detected
Toluene	0.10	0.95	2.3	22
Tetrachloroethene	0.10	1.2	30	360
Chlorobenzene	0.10	1.0	Not Detected	Not Detected
Ethyl Benzene	0.10	1.0	0.73	7.5
m,p-Xylene	0.10	1.0	1.5	15
o-Xylene	0.10	1.1	0.54	5.8
Styrene	0.10	1.2	Not Detected	Not Detected
Propylbenzene	0.10	1.2	0.18	2.2
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.8	Not Detected	Not Detected

Temperature = 70.0F, duration time = 1453 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1711121-06A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110905sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/9/17 09:26 AM

Date of Extraction: 11/9/17

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Ethanol	1.0	6.9	Not Detected	Not Detected
Acetone	0.20	1.8	Not Detected	Not Detected
Methyl tert-butyl ether	0.10	1.1	Not Detected	Not Detected
Hexane	0.10	1.1	Not Detected	Not Detected
Ethyl Acetate	0.40	3.6	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.89	Not Detected	Not Detected
Chloroform	0.10	0.94	Not Detected	Not Detected
1,1,1-Trichloroethane	0.10	1.1	Not Detected	Not Detected
Cyclohexane	0.10	1.3	Not Detected	Not Detected
Carbon Tetrachloride	0.10	1.0	Not Detected	Not Detected
Benzene	0.40	3.5	Not Detected	Not Detected
1,2-Dichloroethane	0.10	0.91	Not Detected	Not Detected
Heptane	0.10	1.2	Not Detected	Not Detected
Trichloroethene	0.10	1.0	Not Detected	Not Detected
4-Methyl-2-pentanone	0.20	2.1	Not Detected	Not Detected
Toluene	0.10	0.95	Not Detected	Not Detected
Tetrachloroethene	0.10	1.2	Not Detected	Not Detected
Chlorobenzene	0.10	1.0	Not Detected	Not Detected
Ethyl Benzene	0.10	1.0	Not Detected	Not Detected
m,p-Xylene	0.10	1.0	Not Detected	Not Detected
o-Xylene	0.10	1.1	Not Detected	Not Detected
Styrene	0.10	1.1	Not Detected	Not Detected
Propylbenzene	0.10	1.2	Not Detected	Not Detected
1,4-Dichlorobenzene	0.10	1.4	Not Detected	Not Detected
Naphthalene	0.10	2.8	Not Detected	Not Detected

Temperature = 70.0F, duration time = 1455 minutes.

Surrogates	%Recovery	Metnod Limits
Toluene-d8	102	70-130

Client Sample ID: LCS Lab ID#: 1711121-07A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110903sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/9/17 08:33 AM

Date of Extraction: 11/9/17

O a many a sound	0/ Do o o o o o o o	Method
Compound	%Recovery	Limits
Ethanol	51	50-130
Acetone	79	70-130
Methyl tert-butyl ether	91	70-130
Hexane	93	70-130
Ethyl Acetate	89	70-130
2-Butanone (Methyl Ethyl Ketone)	83	70-130
Chloroform	94	70-130
1,1,1-Trichloroethane	97	70-130
Cyclohexane	92	70-130
Carbon Tetrachloride	87	70-130
Benzene	76	70-130
1,2-Dichloroethane	79	70-130
Heptane	103	70-130
Trichloroethene	88	70-130
4-Methyl-2-pentanone	87	70-130
Toluene	87	70-130
Tetrachloroethene	85	70-130
Chlorobenzene	77	70-130
Ethyl Benzene	87	70-130
m,p-Xylene	82	70-130
o-Xylene	83	70-130
Styrene	53	20-100
Propylbenzene	92	70-130
1,4-Dichlorobenzene	66	50-110
Naphthalene	11	5-80

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130

Client Sample ID: LCSD Lab ID#: 1711121-07AA

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 10110904sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/9/17 08:59 AM

Date of Extraction: 11/9/17

		Method
Compound	%Recovery	Limits
Ethanol	50	50-130
Acetone	77	70-130
Methyl tert-butyl ether	89	70-130
Hexane	88	70-130
Ethyl Acetate	86	70-130
2-Butanone (Methyl Ethyl Ketone)	82	70-130
Chloroform	89	70-130
1,1,1-Trichloroethane	92	70-130
Cyclohexane	93	70-130
Carbon Tetrachloride	85	70-130
Benzene	81	70-130
1,2-Dichloroethane	78	70-130
Heptane	97	70-130
Trichloroethene	88	70-130
4-Methyl-2-pentanone	87	70-130
Toluene	86	70-130
Tetrachloroethene	84	70-130
Chlorobenzene	78	70-130
Ethyl Benzene	90	70-130
m,p-Xylene	83	70-130
o-Xylene	83	70-130
Styrene	54	20-100
Propylbenzene	89	70-130
1,4-Dichlorobenzene	66	50-110
Naphthalene	11	5-80

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130

APPENDIX F ADEC LABORATORY-DATA REVIEW CHECKLISTS WORK ORDERS NO. 1178533, 1178534, 1711116, 1711121

Laboratory Data Review Checklist

Completed By:
Adam Wyborny
Title:
Environmental Engineering Staff
Date:
November 17, 2017
CS Report Name:
31-1-11809-009 Interior Texaco
Report Date:
November 6, 2017
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
SGS North America Laboratories, Inc. (SGS)
Laboratory Report Number:
1178533
ADEC File Number:
120.26.001
Hazard Identification Number:

1. <u>l</u>	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	© Yes
	Analyses were performed by SGS in Anchorage, AK.
2. (Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	C Yes No Comments:
	The sample <i>Kelly's DW</i> was not included on the COC. The sample was logged in for GRO/BTEX, DRO/RRO, and VOC analyses per the Shannon & Wilson project manager. The samples were analyzed within the recognized hold time and are not affected by this omission.
	b. Correct Analyses requested?
	© Yes
	The COC did not list the requested analyses for the sample <i>MW-13</i> . The laboratory analyzed the sample <i>MW-13</i> for GRO/BTEX and DRO/RRO after corresponding with Shannon & Wilson personnel. The samples were analyzed within the recognized hold time and are not affected by this omission.
3. <u>1</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	© Yes
	The temperature blank was recorded at -0.1° C upon receipt at the laboratory in Anchorage. The laboratory notes that the samples were free of ice at the time they were checked in. The sample result are not considered to be affected by this discrepancy.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	• Yes • No Comments:
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	• Yes • No Comments:
	The laboratory notes that the samples were received in good condition.

1178533

1	1	7	Q	5	3	2
	- 1	- /	(1	,	,	

	ers/p	reservation, sa		they documented? For example, incorrect sample erature outside of acceptable range, insufficient or missing
•	Yes	O No		Comments:
The samp	e was Wil	logged-in and	d analyzed f mager. The	by's DW was received despite it not being listed on the COC. for GRO/BTEX, DRO/RRO, and VOCs at the request of the samples were analyzed within the recognized hold time and
e. Data q	uality	or usability at	ffected?	
				Comments:
No; see at	ove.			
I. Case Nar	rative			
a. Prese	nt and	understandab	le?	
<u> </u>	Yes	C No		Comments:
b. Discr	epanc	ies, errors, or 0	QC failures	identified by the lab?
•	Yes	O No		Comments:
				ene was recovered outside of laboratory limits (biased high) in outes this recovery failure to a matrix interference.
		O RPD associate dichlorodifl	-	C Batch VXX31639 was outside of the acceptable range for ne.
		O RPD associate vinyl acetat	-	C Batch VXX31640 was outside of the acceptable range for
DRO and			d in method	I blank 1421821 at estimated concentrations greater than one
c. Were	all co	rrective action	s document	ited?
C	Yes	No		Comments:
The case	narrat	ive does not s	pecify any o	corrective actions were taken.
d. What	is the	effect on data	quality/usa	ability according to the case narrative?
				Comments:
				odifluoromethane results of samples associated with QC ee section 6 for further assessment.

78533			
Samp	oles Results		
a.	Correct anal	lyses perform	ed/reported as requested on COC?
	© Yes	C No	Comments:
b.	. All applicat	ole holding tin	nes met?
	© Yes	C No	Comments:
c.	All soils rep	orted on a dr	y weight basis?
	C Yes	No	Comments:
Tl	here were no	soil samples i	ncluded with this sample batch.
d.	Are the report the project?	orted LOQs le	ss than the Cleanup Level or the minimum required detection level for
	• Yes	O No	Comments:
			on (LOD) were below the project-specific DQOs for the requested chloropropane in the sample <i>Kelly's DW</i> .
e.	Data quality	or usability a	affected?
	• Yes	O No	Comments:
			te 1,2,3-trichloropropane is present in the sample <i>Kelly's DW</i> at a e project-specific DQOs but less than the LOD.
QC S	amples		
a.	Method Bla	nk	

i. One method blank reported per matrix, analysis and 20 samples?

Yes O No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

Yes O No Comments:

However, the following MB samples had analyte detections at estimated concentrations less than the LOQ:

- MB 1422646 had a detection of 0.410J ug/L for toluene.
- MB 1422751 had a detection of 0.320J ug/L for toluene.
- MB 1421821 had detections of 0.453J mg/L for DRO and 0.411J mg/L for RRO.

Page 4 **July 2017**

iii. If above LOQ, what samples are affected?

Comments:

The project samples in the same preparatory batch with detections less than ten times the method blank detection are affected by the MB detections.

The following project samples had estimated detections for toluene that were less than ten times the MB detection: *MW-9*, *MW-109*, *MW-10*, *MW-11*, *MW-12*, and *Kelly's DW*. The sample results are considered non-detect and are flagged 'UB' in the analytical tables at the LOQ in the analytical tables.

considered non-detect and are flagged 'UB' in the analytical tables at the LOQ in the analytical tables				
The sample <i>Kelly's DW</i> had an estimated detection for RRO that was less than ten times the MB detection. The sample result is considered non-detect and flagged 'UB' at the LOQ in the analytical tables.				
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?				
• Yes • No Comments:				
The project samples affected by the method blank detections for toluene and RRO are considered non-detect and are flagged 'UB' in the analytical tables at the LOQ in the analytical tables.	-			
v. Data quality or usability affected?				
Comments:				
Yes; see above.				
b. Laboratory Control Sample/Duplicate (LCS/LCSD)				
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 				
© Yes © No Comments:				
LCS/LCSD samples were reported for GRO, BTEX, VOC, DRO and RRO analyses.				
LCS and MS/MSD samples were reported for PAH analyses.				
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?				
© Yes © No Comments:				
Metals/inorganics were not reported for this work order.				
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)				
• Yes • No Comments:				

laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
© Yes © No Comments:
The LCS/LCSD 1423399/400 had an RPD failure for dichlorodifluoromethane associated with preparatory batch VXX31639.
The LCS/LCSD 1423465/466 had an RPD failure for vinyl acetate associated with preparatory batch VXX31640.
v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments:
The project sample associated with the LCS/LCSD RPD failure for dichlorodifluoromethane was <i>Kelly's DW</i> .
The sample results for vinyl acetate were not reported form preparatory batch VXX31640. Sample results are not affected by the LCS/LCSD RPD failure for this analyte.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
© Yes © No Comments:
The dichlorodifluoromethane result for sample <i>Kelly's DW</i> is considered estimated, and the non-detect result is flagged 'UJ' in the analytical tables.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
Yes; see above.
c. Surrogates – Organics Only
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
© Yes © No Comments:
The GRO surrogate 4-bromofluorobenzene was recovered outside of laboratory limits in the sample <i>MW-13</i> .

1	1	7	Q	5	3	2
	- 1	- /	(1	,	,	

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
© Yes © No Comments:
The GRO result of the sample <i>MW-13</i> is considered estimated with a high analytical bias. This result is flagged 'JH' in the analytical tables.
iv. Data quality or usability affected?
Comments:
Yes; see above.
d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
• Yes • No Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
• Yes • No Comments:
iii. All results less than LOQ?
• Yes • No Comments:
iv. If above LOQ, what samples are affected?
Comments:
None; project analytes were not detected in the trip blank.
v. Data quality or usability affected?
Comments:
No; see above.

1	1	7	Q	5	3	3
		- /	()	.)		,

e. Field Duplica	ate	
i. One fi	ield duplicate submitted	per matrix, analysis and 10 project samples?
Yes	C No	Comments:
ii. Subm	itted blind to lab?	
• Yes	C No	Comments:
The sample MW-	-9 is a field-duplicate sa	mple of <i>MW-109</i> .
	ommended: 30% water, s RPD (%) = Absolute	
• Yes	C No	Comments:
The field-duplica	ate RPDs were within th	e project-specific DQO of 30%, where calculable.
iv. Data o	quality or usability affec	ted? (Use the comment box to explain why or why not.)
		Comments:
No; see above.		
below).	tion or Equipment Blan	k (If not applicable, a comment stating why must be entered le
Project samples withis work order.	were not collected with	reusable equipment; an equipment blank was not required for
i. All re	sults less than LOQ?	
© Yes	© No	Comments:
N/A; project sam required for this		with reusable equipment; an equipment blank was not
ii. If abo	ove LOQ, what samples	are affected?
		Comments:
N/A; project sam required for this	=	with reusable equipment; an equipment blank was not

1	1	75	25	3	2
- 1	- 1	70	٦. ١	, ,	

iii. Data quality or usability affected?

Comments:

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

○ Yes • No Con	nments:
----------------	---------

Additional data flags or qualifiers are not required.

Laboratory Data Review Checklist

Completed By:
Adam Wyborny
Title:
Environmental Engineering Staff
Date:
November 20, 2017
CS Report Name:
31-1-11809-009 Interior Texaco
Report Date:
November 9, 2017
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
SGS North America Laboratories, Inc. (SGS)
Laboratory Report Number:
1178534
ADEC File Number:
120.26.001
Hazard Identification Number:

11	78534				
1.	Labo	<u>oratory</u>			
	a.	Did an ADI	EC CS appro	ved laboratory receive and per	form all of the submitted sample analyses?
			© No	Comments:	
					k" laboratory or sub-contracted to an the analyses ADEC CS approved?
		O Yes	No	Comments:	
	Aı	nalyses were	performed by	y SGS in Anchorage, AK.	
2.	Chai	n of Custody	(CoC)		
	a.	CoC inform	nation comple	eted, signed, and dated (includ	ing released/received by)?
		© Yes	No	Comments:	
		-	•	e not clearly identified on the case omission does not affect the	COC. The laboratory analyzed the sample for
		Correct Ana	•		sumple results.
		• Yes	O No	Comments:	
3.	Labo	ratory Sampl	e Receipt Do	ocumentation	
٠.	2400	• •	*		(00 (0 . G) 0
	a.	•	•	are documented and within ran	age at receipt (0° to 6° C)?
		© Yes	O No	Comments:	
	b.		servation acc lorinated Sol	=	thanol preserved VOC soil (GRO, BTEX,
		Yes	C No	Comments:	
	c.	Sample con	dition docun	nented – broken, leaking (Metl	nanol), zero headspace (VOC vials)?

Comments:

The laboratory notes that the samples were received in good condition.

July 2017 Page 2

• Yes • No

	d.		reservation, samp	•	For example, incorrect sample acceptable range, insufficient or missing
		© Yes	No	Comments:	
		•	-	IT-B10-1 had an extra jar affect the sample results.	marked "extra vol" that wasn't listed on the
	e.	Data quality	or usability affec	eted?	
				Comments:	
	No	; see above.			
4.	<u>Ca</u>	ase Narrative			
	a.	Present and	understandable?		
		• Yes	C No	Comments:	
	b.	Discrepanci	ies, errors, or QC	failures identified by the l	ab?
		• Yes	O No	Comments:	
	in	the samples	IT-B1-1, IT-B2-1,	, IT-B2-3, IT-B4-1, IT-B5-	outside of laboratory limits (biased high) <i>I</i> , <i>IT-B6-1</i> , <i>IT-B6-3</i> , <i>IT-B7-1</i> , <i>IT-B10-1</i> , <i>IT</i> ery failures to a matrix interference.
	sa	mples <i>IT-B1-</i>		2-3, <i>IT-B5-1</i> , <i>IT-B7-1</i> , and	of laboratory limits (biased low) in the <i>IT-B11-1</i> . The laboratory attributes these
	in		2 1		ed outside of laboratory limits (biased high) tes these recovery failures to sample
		-		n the samples <i>IT-B6-2</i> , <i>IT-I</i> les were diluted due to the	37-2, IT-B10-1, and IT-B10-2. The dark color of the extract.
		-	ORO is elevated in the dark color of the		laboratory states that the sample was
	14	121942, nor tl	1 2	(MSD) 1421943. The labor	laboratory limits for the matrix spike (MS) ratory states that the LCS/LCSD should be
	c.	Were all co	rrective actions de	ocumented?	
		C Yes	© No	Comments:	
	Tł	ne case narrat	ive does not spec	ify any corrective actions	were taken.

1	1	7	Q	5	2	4
	- 1	- /	\sim	•	7	4

Comments: The case narrative does not specify an effect on data quality or usability. See section 6 for further assessment. 5. Samples Results a. Correct analyses performed/reported as requested on COC? Yes O No Comments: b. All applicable holding times met? Yes O No Comments: c. All soils reported on a dry weight basis? Yes O No Comments: d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? • Yes • No Comments: The reported limits of detection (LOD) were below the project-specific DQOs for the requested analytes with the exceptions of benzo(a)pyrene and dibenzo(a,h)anthracene in the field-duplicate samples IT-B2-1 and IT-B2-3. e. Data quality or usability affected? • Yes • No Comments: We cannot assess if the analytes benzo(a)pyrene and dibenzo(a,h)anthracene are present in the samples IT-B2-1 and IT-B2-3 at concentrations greater than the project-specific DOOs but less than the LOD. 6. QC Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes O No Comments:

d. What is the effect on data quality/usability according to the case narrative?

1178534

ii. All method blank results less than limit of quantitation (LOQ)?
• Yes • No Comments:
However, MB 1422159 associated with Prep Batch VXX31591 had an estimated detection of 1.31J ug/L for GRO.
iii. If above LOQ, what samples are affected?
Comments:
The project samples associated with Prep Batch VXX31591 containing GRO concentrations within 10 times the concentration detected in MB 1422159 include: <i>IT-B1-2</i> , <i>IT-B2-2</i> , <i>IT-B6-2</i> , <i>IT-B7-2</i> , and <i>IT-B9-1</i> .
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
• Yes • No Comments:
The GRO results of the samples <i>IT-B1-2</i> , <i>IT-B2-2</i> , and <i>IT-B6-2</i> are considered non-detect and are flagged 'UB' in the analytical tables at the detected results or the LOQ, whichever value is higher.
The GRO results of the samples <i>IT-B7-2</i> and <i>IT-B9-1</i> are considered estimated with a high analytical bias. These results are flagged 'JH' in the analytical tables.
v. Data quality or usability affected?
Comments:
Yes; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
© Yes © No Comments:
LCS/LCSD samples were reported for GRO, DRO and RRO analyses.
LCS/LCSD and MS/MSD samples were reported for BTEX and o-xylene analyses.
LCS and MS/MSD samples were reported for PAH analyses.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
© Yes
Metals/inorganics were not reported for this work order.

1	1	7	Q	5	2	1
	- 1	- /	\sim	,	7	4

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limit And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120 AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC page)%,
© Yes	
The recoveries of o-xylene and p&m-xylene were outside of laboratory accuracy requirements fo MS sample 1421942 and the associated MSD sample 1421943.	r the
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20% other analyses see the laboratory QC pages)	; all
• Yes • No Comments:	
v. If %R or RPD is outside of acceptable limits, what samples are affected?	
Comments:	
The parent sample associated with the MS/MSD samples is not included with this sample batch. project sample results are not affected.	The
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	
© Yes O No Comments:	
Qualification of the data was not required; see above.	
vii. Data quality or usability affected? (Use comment box to explain.)	
Comments:	
No; see above.	
c. Surrogates – Organics Only	
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samp	ples?
• Yes • No Comments:	

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
© Yes © No Comments:
The GRO surrogate 4-bromofluorobenzene was recovered outside of laboratory limits (biased high) in the samples <i>IT-B1-1</i> , <i>IT-B2-1</i> , <i>IT-B2-3</i> , <i>IT-B4-1</i> , <i>IT-B5-1</i> , <i>IT-B6-1</i> , <i>IT-B6-3</i> , <i>IT-B7-1</i> , <i>IT-B10-1</i> , <i>IT-B10-2</i> , and <i>IT-B11-1</i> .
The DRO surrogate 5a-androstane was recovered outside of laboratory limits (biased low) in the samples <i>IT-B1-1</i> , <i>IT-B2-1</i> , <i>IT-B2-3</i> , <i>IT-B5-1</i> , <i>IT-B7-1</i> , and <i>IT-B11-1</i> .
The PAH surrogate 2-methylnaphthalene-d10 was recovered outside of laboratory limits (biased high) in the samples <i>IT-B2-1</i> and <i>IT-B2-3</i> .
iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
© Yes © No Comments:
Surrogate recovery failures attributed to sample dilution do not affect the data quality or usability.
The GRO results of the samples <i>IT-B1-1</i> , <i>IT-B2-1</i> , <i>IT-B2-3</i> , <i>IT-B4-1</i> , <i>IT-B5-1</i> , <i>IT-B6-1</i> , <i>IT-B6-3</i> , <i>IT-B7-1</i> , <i>IT-B10-1</i> , <i>IT-B10-2</i> , and <i>IT-B11-1</i> are considered estimated with a high analytical bias. These results are flagged 'JH' in the analytical tables.
iv. Data quality or usability affected?
Comments:
Yes; see above.
d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?(If not, enter explanation below.)
• Yes • No Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
© Yes © No Comments:

iii. All results less than LOQ?

O Yes O No

Comments:

GRO was detected below the LOQ at an estimated concentration of 0.877J mg/kg.

o-Xylene was detected below the LOQ at an estimated concentration of 0.0112J mg/kg.

p&m-Xylene was detected below the LOQ at an estimated concentration of 0.0270J mg/kg.

Toluene was detected at a concentration of 0.0286 mg/kg.

iv. If above LOQ, what samples are affected?

Comments:

The GRO results of the samples *IT-B1-2*, *IT-B2-2*, *IT-B3-1*, *IT-B3-2*, and *IT-B4-2* are within five times the detection in the trip blank and are thus considered non-detect. These results are flagged 'UB' at the detected results or the LOQ, whichever value is higher. The GRO results of the samples *IT-B5-2*, *IT-B6-2*, *IT-B7-2*, and *IT-B9-1* are greater than five times but less than ten times the detection in the trip blank. The results are considered estimated, biased high, and are flagged 'JH' in the analytical tables, unless previously qualified.

The o-xylene results of the samples *IT-B2-2*, *IT-B4-2*, *IT-B5-2*, *IT-B9-2*, and *IT-B11-2* are within five times the detection in the trip blank and are thus considered non-detect. These results are flagged 'UB' at the detected results or the LOQ, whichever value is higher. The o-xylene results of the samples *IT-B3-1*, *IT-B3-2*, and *IT-B6-2* are greater than five times but less than ten times the detection in the trip blank. The results are considered estimated, biased high, and are flagged 'JH' in the analytical tables.

The p&m-xylene results of the samples *IT-B2-2*, *IT-B3-1*, *IT-B3-2*, IT-*B4-2*, *IT-B5-2*, *IT-B9-2*, and *IT-B11-2* are within five times the detection in the trip blank and are thus considered non-detect. These results are flagged 'UB' at the detected results or the LOQ, whichever value is higher. The p&m-xylene results of the samples *IT-B1-2*, *IT-B6-2*, *IT-B7-2*, and *IT-B10-2* are greater than five times but less than ten times the detection in the trip blank. The results are considered estimated, biased high, and are flagged 'JH' in the analytical tables.

The toluene results of the samples *IT-B2-2*, *IT-B2-3*, *IT-B3-2*, *IT-B4-2*, *IT-B5-1*, *IT-B5-2*, *IT-B6-2*, *IT-B8-1*, *IT-B8-2*, *IT-B9-2*, *IT-B11-1*, and *IT-B11-2* are within five times the detection in the trip blank and are thus considered non-detect. These results are flagged 'UB' at the detected results or the LOQ, whichever value is higher. The toluene results of the samples *IT-B1-2*, *IT-B2-1*, *IT-B4-1*, *IT-B7-2*, and *IT-B10-1* are greater than five times but less than ten times the detection in the trip blank. The results are considered estimated, biased high, and are flagged 'JH' in the analytical tables.

v. Data quality or usability affected?

Comments:

Yes;	see	abo	ove.

1	1	7853	4
	- 1	/(3.))	-

		_	
e.	Field	1)ıın	licate
•	1 1014	Dup	Houte

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes No

Comments:

ii. Submitted blind to lab?

• Yes • No

Comments:

The field duplicate pairs "IT-B2-1 / IT-B2-3" and "IT-B6-1 / IT-B6-3" were submitted with this sample batch.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

O Yes O No

Comments:

The field-duplicate RPDs for samples *IT-B2-1* and *IT-B2-3* were within the project-specific DQO of 50% for all analytes, where calculable, except ethylbenzene.

The field-duplicate RPDs for samples *IT-B6-1* and *IT-B6-3* were within the project-specific DQO of 50% for all analytes, where calculable. However, analyte acenaphthylene was detected in the field-duplicate sample *IT-B6-3* above the LOQ, but not detected in the sample *IT-B5-1*. These results are considered estimated.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The ethylbenzene results of the samples *IT-B2-1* and *IT-B2-3* are considered estimated, and are flagged 'J' in the analytical tables.

The acenaphthylene results of the samples *IT-B6-1* and *IT-B6-3* are considered estimated, and are flagged 'J' for detected results and 'UJ' for non-detect results.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

☐ Yes ☐ No ☐ Not Applicable

Project samples were collected with individual sampling spoons that were decontaminated prior to use in the field. Since only one spoon was used per sample, there is no practical potential for sample cross-contamination. For this reason, an equipment blank was not required.

	i. All results less than LOQ?
	C Yes No Comments:
	N/A; an equipment blank was not submitted with this work order.
	ii. If above LOQ, what samples are affected?
	Comments:
	None; an equipment blank was not submitted with this work order.
	iii. Data quality or usability affected?
	Comments:
	No; see above.
7. <u>Otl</u>	her Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	© Yes © No Comments:
	Additional data flags or qualifiers are not required.

Laboratory Data Review Checklist for Air Samples

Completed by:	Michael Jaram	illo			
Title:	Environmental	Chemist		Date:	Dec 4, 2017
CS Report Name:	Interior Texaco	1809-008		Report Date:	Nov 20, 2017
Consultant Firm:	Shannon & Wi	lson, Inc. (Shan	non & Wilson)		
Laboratory Name:	Eurofins Air To (Eurofins)	oxics, Inc	Laboratory Report Nu	ımber: 1711116	
ADEC File Number:	120.26.001		ADEC Haz ID:	22862	
1. <u>Laboratory</u>					
-	AP certified labo	oratory receive ar	nd <u>perform</u> all of the subm	itted sample ana	lyses?
• Yes	○ No	•	ase explain.)	Comments	
			network" laboratory or sub nalyses NELAP approved ase explain.)		
Samples	were analyzed by	y Eurofins of Fo	olsom, CA; a NELAP cer	tified laboratory	<i>7</i> .
2. Chain of Custody	(COC)				
,		l, signed, and dat	ed (including released/rec	eived by)?	
• Yes	○ No	O NA (Plea	se explain.)	Comments	:
b. Correct ana	lyses requested?				
• Yes	○ No	ONA (Pleas	e explain)	Comments	:
3. <u>Laboratory Samp</u>	le Receipt Docu	mentation			
•		-	ected in gas tight, opaque/ checked, recorded upon re-		
• Yes	○ No	ONA (Pleas	se explain)	Comments:	
			s not provided in a sample received in good condition		

Yes	○ No	ONA (Please explain)	Comments:
COC diff		cated that the measured receipt vacuulg or greater for sample SS-02. A leal	
. Data qualit	y or usability a	affected? (Please explain.)	
○ Yes	No	ONA (Please explain)	Comments:
The labora	atory did not s	specify any effect on the data quality of	or usability.
In addition detected in	n, there were s n the field-dup	SS-102 was collected for this location some detections near the reporting limblicate sample SS-102. The results are eld-duplicate information was compared	nit in sample SS-02 that were not e not considered affected by this
Narrative			
	l understandab	ole?	
	l understandab	ole? ○ NA (Please explain)	Comments:
Present and			Comments:
Present and • Yes	○ No		Comments:
Present and • Yes	○ No	ONA (Please explain)	Comments:
Present and Yes Discrepan Yes	O No cies, errors or O No was performe	ONA (Please explain) QC failures identified by the lab?	Comments:
Present and Yes Discrepan Yes Dilution analytes.	O No cies, errors or o No was performed SS-01 was tran	ONA (Please explain) QC failures identified by the lab? ONA (Please explain)	Comments: e to the presence of high levels of the presence of the p
Present and Yes Discrepan Yes Dilution analytes. Sample Starget an	O No cies, errors or o No was performed SS-01 was tranalytes.	ONA (Please explain) QC failures identified by the lab? ONA (Please explain) d on the samples SS-01 and SS-03 du	Comments: e to the presence of high levels of the presence of the p
Present and Yes Discrepan Yes Dilution analytes. Sample Starget an	O No cies, errors or o No was performed SS-01 was tranalytes.	ONA (Please explain) QC failures identified by the lab? ONA (Please explain) d on the samples SS-01 and SS-03 du nsferred from SIM/Low Level analysi	Comments: e to the presence of high levels of the presence of the p
Present and Yes Discrepant Yes Dilution analytes. Sample Starget and Were all Congress Yes	○ No cies, errors or o ○ No was performed SS-01 was translytes. corrective action ○ No	ONA (Please explain) QC failures identified by the lab? ONA (Please explain) d on the samples SS-01 and SS-03 du ensferred from SIM/Low Level analysic ons documented?	Comments: e to the presence of high levels of the state
Present and Yes Discrepant Yes Dilution analytes. Sample Starget and Were all of Yes Corrective	O No cies, errors or o No was performed SS-01 was tranalytes. corrective action No we actions wer	ONA (Please explain) QC failures identified by the lab? ONA (Please explain) d on the samples SS-01 and SS-03 du ensferred from SIM/Low Level analysis ons documented? ONA (Please explain)	Comments: e to the presence of high levels of the state

nples Results			
a. Correct and	-	reported as requested on COC?	
• Yes	○ No	ONA (Please explain)	Comments:
when usin		e analysis of vinyl chloride. Howevent samplers. The Shannon & Wilsonalytes.	
b. Samples a	nalyzed within 30	days of collection or within the time	required by the method?
• Yes	○ No	ONA (Please explain)	Comments:
c. Are the re	ported PQLs less t	than the Target Screening Level or the	e minimum required detection level for
project?	`		
○ Yes	No	○NA (Please explain)	Comments:
		t samples SS-01 and SS-03 had PQI et Screening Levels.	s that were greater than the ADEC
d. Data quali	ty or usability affe	ected?	Comments:
C Samples a. Method Bla i. One m		ted per analysis and 20 samples?	
© Ye	•	○ NA (Please explain)	Comments:
ii. All m	ethod blank result	ts less than PQL?	
• Ye	es O No	ONA (Please explain)	Comments:
Proje	ct analytes were i	not detected in the method blanks.	
iii. If ab	ove PQL, what s	amples are affected?	Comments:
None	e; project analytes	s were not detected in the method bla	anks.
iv. Do th	ne affected sample	e(s) have data flags and if so, are the c	lata flags clearly defined?
\bigcirc Y	es O No	NA (Please explain)	Comments:
Proje	ect analytes were	not detected in the method blanks.	
v. Data o	quality or usability	y affected? (Please explain.)	Comments:
No:	see above.		

• Yes	○ No	ONA (Please explain)	Comments:
-	- All percent QOs, if applica	recoveries (%R) reported and within able.	method or laboratory limits? And
• Yes	○ No	○ NA (Please explain)	Comments:
		percent differences (RPD) reported and DQOs, if applicable.	nd less than method or laboratory
• Yes	○ No	○ NA (Please explain)	Comments:
The RPI	Os were calcul	lated by Shannon & Wilson and were	
v. If %R or	RPD is outsid	e of acceptable limits, what samples a	re affected?
○ Yes	○ No	NA (Please explain)	Comments:
The perc	ent recoveries	and RPDs were within acceptance of	eriteria.
v. Do the af	fected sample((s) have data flags? If so, are the data	flags clearly defined?
v. Do the af	fected sample((s) have data flags? If so, are the data in NA (Please explain)	flags clearly defined? Comments:
○ Yes	○ No		Comments:
O Yes The perce	O No ent recoveries	NA (Please explain) and RPDs were within acceptance of	Comments:
O Yes The perce	O No ent recoveries	• NA (Please explain)	Comments:
○ Yes The perce	No ent recoveries lity or usability	NA (Please explain) and RPDs were within acceptance of	Comments:
O Yes The perce	No ent recoveries lity or usability	NA (Please explain) and RPDs were within acceptance of	Comments:
○ Yes The perce	No ent recoveries lity or usability	NA (Please explain) and RPDs were within acceptance of	Comments:
O Yes The percential Data quantity No; see a	O No ent recoveries lity or usability above.	NA (Please explain) and RPDs were within acceptance of	Comments: Comments:
O Yes The percential Data quantity No; see a	O No ent recoveries lity or usability above.	● NA (Please explain) and RPDs were within acceptance of the state o	Comments: Comments:
No; see a rogates	No No ent recoveries lity or usability above.	NA (Please explain) and RPDs were within acceptance of the second seco	Comments: Comments: Comments:
No; see a rogates i. Are surro	O No ent recoveries lity or usability above. gate recoverie	NA (Please explain) and RPDs were within acceptance of the state of th	Comments: Comments: Comments: Y samples? Comments:
No; see a rogates i. Are surro	No ent recoveries lity or usability above. gate recoverie No - All percent	NA (Please explain) and RPDs were within acceptance of the state of th	Comments: Comments: Comments: Y samples? Comments:
No; see a rogates i. Are surro Yes Yes Yes	No ent recoveries lity or usability above. gate recoverie No 7 - All percent sified DQOs, if	NA (Please explain) and RPDs were within acceptance of the state of t	Comments: Comments: Comments: y samples? Comments: method or laboratory limits? An
No; see a rogates i. Are surro Yes Yes Yes Yes Yes Yes	O No ent recoveries lity or usability above. gate recoverie O No 7 - All percent sified DQOs, in	NA (Please explain) and RPDs were within acceptance of the state of t	Comments: Comments: Comments: y samples? Comments: method or laboratory limits? An Comments:

iv.	Data quali	ty or usability a	affected? (Please explain.)	Comments:
	No; see a	bove.		
d. Field	Duplicate			
i.	One field	duplicate submi	tted per analysis and 10 type (soil g	gas, indoor air etc.) samples?
	• Yes	○ No	○ NA (Please explain)	Comments:
ii.	Submitted	blind to lab?		
	• Yes	○ No	ONA (Please explain)	Comments:
	Sample S	S-102 is a field	d-duplicate of sample SS-02.	
iii.	Precision	- All relative p	ercent differences (RPD) less than s	specified DQOs? (Recommended: 25 %
		חמס	$O(\%)$ = Absolute Value of: $(R_1 - R_2)$) 100
		KrL	$(R_1 + R_2)$	11 100
V	Where $R_1 =$	Sample Conce		,
	_		e Concentration	
	○ Yes	No	○ NA (Please explain)	Comments:
	except fo	r 1,1,1-trichlor luoromethane.	Os were within the recommended I oethane, 2-butanone, dichlorodifly. The sample results are considered lytical database and reporting table.	doromethane, ethanol, and destimated (no direction of bias) and
iv.	Data quali	ty or usability a	affected? (Please explain.)	Comments:
	Yes; see	above.		
. Field B	Blank (If no	t used explain v	why).	
○ Yes	s • 1	No O	NA (Please explain)	Comments:
A fiel	d blank saı	mple was not re	equired for this project.	
i.	All results	less than PQL?		
	○ Yes	○ No	NA (Please explain)	Comments:
	A field bl	ank sample wa	as not required for this project.	
ii.	If above P	QL, what samp	les are affected?	Comments:
	N/A; a fie	ld blank samnl	e was not required for this project.	

		Comments:
No; see above.		
7. Other Data Flags/Qualifiers a. Defined and appropriate?		
○ Yes ○ No	NA (Please explain)	Comments:
Additional data flags or	qualifiers are not required.	

iii. Data quality or usability affected? (Please explain.)

Reset Form

Updated: 2/2015

Laboratory Data Review Checklist for Air Samples

Completed by:	Michael Jaramil	lo			
Title:	Environmental (Chemist		Date:	Dec 4, 2017
CS Report Name:	Interior Texaco 1809-008			Report Date:	Nov 20, 2017
Consultant Firm:	Shannon & Wils	son, Inc. (Shan	non & Wilson)		
Laboratory Name:	Eurofins Air Tox (Eurofins)	xics, Inc	Laboratory Report Nu	mber: 1711121	
ADEC File Number:	120.26.001		ADEC Haz ID:	22862	
1. <u>Laboratory</u>			•		
•	AP certified labora	atory receive ar	nd perform all of the submi	tted sample ana	lyses?
• Yes	○ No	O NA (Plea	ase explain.)	Comments	:
*			network" laboratory or sub nalyses NELAP approved		
○ Yes	○ No	NA (Plea	se explain.)	Comments	-
Samples	were analyzed by	Eurofins of Fo	olsom, CA; a NELAP cert	ified laboratory	7.
2. Chain of Custody	(COC)				
a. COC inform	nation completed,	signed, and dat	ed (including released/rece	eived by)?	
• Yes	○ No	O NA (Plea	se explain.)	Comments	:
b. Correct ana	lyses requested?				
• Yes	○ No	ONA (Pleas	e explain)	Comments:	
3. Laboratory Sampl	le Receipt Docum	nentation			
a. Sample cond	dition documented	-Samples colle	ected in gas tight, opaque/o		
Yes	○ No	ONA (Pleas	se explain)	Comments:	
ı	•		s not provided in a sample eceived in good condition	-	

○ Yes	○ No	NA (Please explain)	Comments:				
1 *	A sample receipt form was not provided but the laboratory noted that the samples were received in good condition and in the appropriate containers.						
e. Data quali	ty or usability a	ffected? (Please explain.)					
○ Yes	No	ONA (Please explain)	Comments:				
See above	2.						
e Narrative							
. Present and	d understandab	le?					
• Yes	○ No	ONA (Please explain)	Comments:				
b. Discrepan	ncies, errors or C	OC failures identified by the lab?					
• Yes	O No	ONA (Please explain)	Comments:				
Sample	uptake rates we	ere corrected based on the average temp	peratures provided.				
c Were all	corrective action	ns documented?					
O Yes	O No	NA (Please explain)	Comments:				
Correcti	ve actions were	e not required.					
		ta quality/usability according to the ca	se narrative?				
a. What is	ine effect off da	a quanty assoring according to the ca	Comments:				
None; s	ee above.						
ples Results	S						
		ned/reported as requested on COC?					
• Yes	O No	ONA (Please explain)	Comments:				
h Samples	analyzed within	n 30 days of collection or within the time	e required by the method?				
• Yes		NA (Please explain)	Comments:				
	U NO	ONA (Ficase explain)					
c. Are the project?	reported PQLs l	ess than the Target Screening Level or the	he minimum required detection level				
-							

d. Data quality or	usability affec	eted'?	Comments:
No; see above			
Samples			
a. Method Blank			
i. One metho	d blank report	ed per analysis and 20 samples?	
• Yes	○ No	ONA (Please explain)	Comments:
ii. All metho	d blank results	s less than PQL?	
Yes	○ No	○ NA (Please explain)	Comments:
Project an	alytes were n	ot detected in the method blanks.	
iii. If above	PQL, what sa	mples are affected?	Comments:
None; pro	oject analytes	were not detected in the method blan	ks.
iv. Do the af	fected sample(s) have data flags and if so, are the dat	ta flags clearly defined?
○ Yes	○ No	NA (Please explain)	Comments:
Project a	nalytes were r	not detected in the method blanks.	
v. Data quali	ty or usability	affected? (Please explain.)	Comments:
No; see a	lbove.		
b Laboratory Con	trol Sample/D	uplicate (LCS/LCSD)	
•	-	LCS and a sample/sample duplicate pa	ir reported per analysis and 20 sam
• Yes	○ No	○NA (Please explain)	Comments:
•	- All percent QOs, if applica	recoveries (%R) reported and within able.	method or laboratory limits? And p
• Yes	○ No	○ NA (Please explain)	Comments:
		percent differences (RPD) reported are d DQOs, if applicable.	nd less than method or laboratory
• Yes	○ No	○ NA (Please explain)	Comments:
		lated by Shannon & Wilson and were ional Functional Guidelines.	

iv. If %R or	r RPD is outside	e of acceptable limits, what samples are	e affected?
○ Yes	○ No	• NA (Please explain)	Comments:
The per	cent recoveries	and RPDs were within acceptance cr	riteria.
v. Do the a	ffected sample(s) have data flags? If so, are the data fl	ags clearly defined?
○ Yes	\bigcirc No	NA (Please explain)	Comments:
The perc	cent recoveries	and RPDs were within acceptance cr	iteria.
vi. Data qu	ality or usability	affected? (Please explain.)	
			Comments:
No; see	above.		
. Surrogates			
_	ogate recoveries	s reported for field, QC and laboratory	samples?
• Yes	○ No	ONA (Please explain)	Comments:
• Yes		NA (Please explain)	Comments:
defined?	ampie results w	itii ianed surrogate recoveries nave da	ta mags: 11 so, are the data mags crear
○ Yes	○ No	NA (Please explain)	Comments:
The sur	rogate recoveri	es were within acceptance criteria.	
iv. Data qua	ality or usability	affected? (Please explain.)	Comments:
No; see	e above.		
. Field Duplicat	re		
i. One fiel	d duplicate subr	nitted per analysis and 10 type (soil ga	s, indoor air etc.) samples?
○ Yes	○ No	NA (Please explain)	Comments:
A field-	-duplicate for the	ne indoor air samples was not require	d for the project.
ii. Submitt	ed blind to lab?		
○ Yes	○ No	NA (Please explain)	Comments:
A field-	-duplicate for th	ne indoor air samples was not require	d for the project.

iii. Precision - All relative	percent differences	(RPD) less than s	pecified DQOs? (Recommended: 25 %
-------------------------------	---------------------	-------------------	------------------	-------------------

		-	(R_{l+1}) = Absolute value of. (R_{l+1})	
	Where R ₁	= Sample C	oncentration	-, ,
	R_2	= Field Dup	licate Concentration	
	○ Yes	○ No	NA (Please explain)	Comments:
	TA fiel	d-duplicate t	for the indoor air samples was not i	required for the project.
	iv. Data qu	ality or usabi	lity affected? (Please explain.)	Comments:
	No; see	e above.		
e. Fi	eld Blank (If	not used expl	ain why).	
<u>C</u>	Yes •) No	ONA (Please explain)	Comments:
A	A field blank s	sample was r	not required for this project.	
	i. All resul	ts less than P	QL?	
	○ Yes	○ No	NA (Please explain)	Comments:
	A field	blank sampl	e was not required for this project.	
	ii. If above	PQL, what s	samples are affected?	Comments:
	N/A; a f	ield blank sa	imple was not required for this pro	ject.
	iii. Data qua	ality or usabi	ity affected? (Please explain.)	
				Comments:
	No; see	e above.		
	Oata Flags/Qua			
a. I	Defined and ap	propriate?		
(O Yes (No	• NA (Please explain)	Comments:
_	Additional da	ta flags or q	ualifiers are not required.	

Reset Form

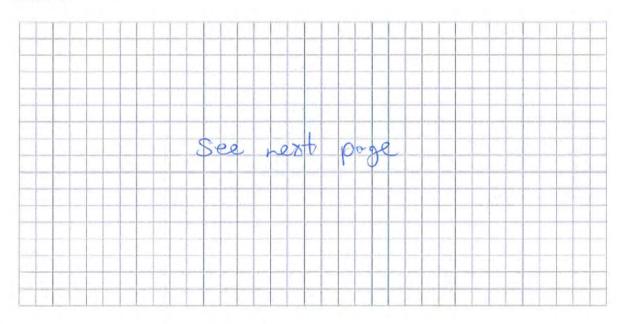
APPENDIX G ADEC BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE

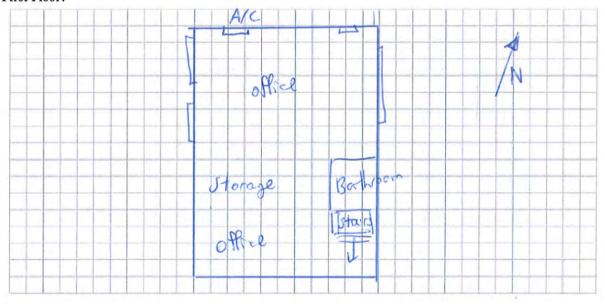
This form should be prepared by a person familiar with indoor air assessments with assistance from a person knowledgeable about the building. Complete this form for each building in which interior samples (e.g., indoor air, crawl space, or subslab soil gas samples) will be collected. Section I of this form should be used to assist in choosing an investigative strategy during workplan development. Section II should be used to assist in identification of complicating factors during a presampling building walkthrough.

Preparer's Name _	Sheila Hinckley	Date/Time Prepared 11/01/17 at 1300
Preparer's Affiliat	ion Shannon W	Silson, Inc. Phone No. 907.479.0600
Purpose of Investi		ntrusion
SECTION I: 1	BUILDING INVENTORY	
1. OCCUPANT	TOR BUILDING PERSONNEL	Lı:
Interviewed:	Y/N	
Last Name	Herman	First Name Wick
Address	ро вох за	7 DeHa Ju
County	7	
Phone No	909 590.14	-56
Number of O	ccupants/persons at this location_	Age of Occupants 18 - 35
2. OWNER or	LANDLORD: (Check if same as	occupant)
Interviewed:	Y) N	
Last Name	Sandy	First Name Susie
Address	PO BOX 1162	Delta Junction 99737
County	Delta	a that and the same
Phone No	925 - 348 -	4524
3. BUILDING	CHARACTERISTICS	
Type of Build	ding: (Circle appropriate response	e)
Residenti		Commercial/Multi-use

it the property is reside	muai, type: (Circle appropri	inite response)
Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other
If multiple units, how m	nany?	
If the property is comm	ercial, type?	A
Business Types(s)	Gas Stati	on and automotive service state
Does it include resid	ences (i.e., multi-use)? Y	If yes, how many?
Other characteristics:		
Number of floors	two	Building age ~ 1969 - 1980
Is the building insula	nted?YN	How air tight? Tight / Average / Not Tight
Have occupants noticed	chemical odors in the buil	ding? Y/N
If yes please describe:	petroleum p	readucte used duit
	1	
describe: Airflow between floors		s about the building to evaluate airflow patterns and qualitatively
Airflow in building near	A CONTRACTOR OF THE PROPERTY O	
	<u> </u>	
Outdoor air infiltration	age. Shop a	doors in garage are often open
Infiltration into air ducts		
NIA		


	a. Above grade construction.	wood frame	log	-concrete	brick
		constructed or with enclosed		constructed on with open air sp	
	b. Basement type:	full	crawlspace	slab-on-grade	other
	c. Basement floor:	concrete	dirt	stone	other
	d. Basement floor:	unsealed	sealed	sealed with	
	e. Foundation walls:	poured	block	stone	other
	f. Foundation walls:	unsealed	sealed	sealed with	
	g. The basement is:	wet	damp	dry	
	h. The basement is:	finished	unfinished	partially finishe	ed
	i. Sump present?	YN			
	j. Water in sump?	Y/N/not ap	plicable		
	ntify potential soil vapor entry	points and app	roximate size	J	
de	ntify potential soil vapor entry floor cracks HEATING, VENTING and A	points and app	SECVICE	e (e.g., cracks, utili Station	(garage/tire shop)
de	HEATING, VENTING and A	points and app	PNING (Circle all	e (e.g., cracks, utili station e all that apply) that apply – not pri	(garage/tire shop)
de	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters	points and app	ONING (Circle all	e (e.g., cracks, utili Station	(garage/tire shop)
de	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters	IR CONDITION In this building Heat pump Stream radiation Wood stove	ONING (Circle all	e (e.g., cracks, utili story e all that apply) that apply – not pri t water baseboard diant floor	(garage/tire shop)
de	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	IR CONDITION In this building Heat pump Stream radiation Wood stove	ONING (Circle all Ho	e (e.g., cracks, utilist state of the second	(garage/tire shop)
de	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	points and app	ONING (Circle all Ho	e (e.g., cracks, utilist state of the second	(garage/tire shop)
	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric Wood	points and app	NING (Circle all Ho	e (e.g., cracks, utilist state) e all that apply) that apply – not print water baseboard diant floor the thick wood boiler crosene ar	(garage/tire shop)
de	HEATING, VENTING and A Type of heating system(s) used Hot air circulation Space Heaters Selectric baseboard The primary type of fuel used Natural Gas Electric Mood Co	points and app IR CONDITIO I in this buildin Heat pump Stream radiation Wood stove is: Fuel Oil Propane Coal d by Baser ees have cold-ai	NING (Circle all Honor Ken Sol	e (e.g., cracks, utilist state) e all that apply that apply – not print water baseboard diant floor the door wood boiler cosene ar	(garage/tire shop) mary) Other

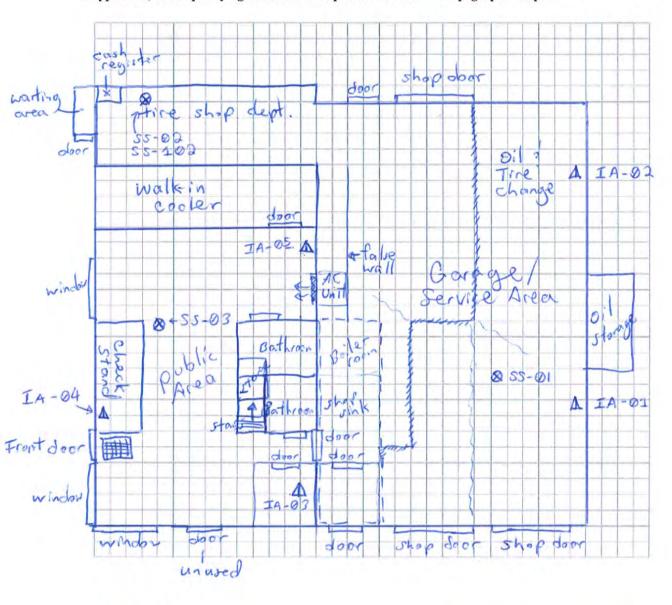
	rcial HVAC	Heat-recovery system	Passive air system	
Describe the			floor plan.	e tightness of duct joints. Indicate
	ndon mitigation n active or pass		tructure? Y / N Date of Instal	lation
7. OCCUPAN	CY :/lowest level oc	cupied? Full-time	Occasionally Seldom A	Almost Never
Basement 1st Floor 2nd Floor 3rd Floor	0	ation. Bathros	A 1 1	e service station.
8. WATER AN Water Supp Sewage Dist		Water Drilled Well Sewer Septic Tank	Driven Well Dug Well	


9. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:



see report figure for outdoor plot

10. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Notes:

8 = sub-slab sample part locations (with sample #)

A = Indoor-air passive sample locations (with sample #)

= floor grate

= second story storage area 1-6

= floor cracks

SECTION II: INDOOR AIR SAMPLING QUESTIONNAIRE

This section should be completed during a presampling walkthrough. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR A	IR QUALITY
Is there an attached garage?	(Y) N
Does the garage have a separate heating unit?	Y (N) NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, car)	Please specify Automobiles trucks
Has the building ever had a fire?	Y / N When?
Is a kerosene or unvented gas space heater present?	Y/W Where?
Is there a workshop or hobby/craft area?	Y/N Where & Type Service Station (Automo
Is there smoking in the building?	Y /N How frequently?
Has painting/staining been done in the last 6 months?	Y /N Where & When?
Is there new carpet, drapes or other textiles?	Y/N Where & When?
Is there a kitchen exhaust fan?	If yes, where vented?
Is there a bathroom exhaust fan?	(Y) N If yes, where vented? outside - roof
Is there a clothes dryer?	Y/N If yes, is it vented outside? Y/N
If yes, please describe	
Do any of the building occupants use solvents at work?	ŷ/n
(e.g., chemical manufacturing or laboratory, auto mechanic pesticide application, cosmetologist	or auto body shop, painting, fuel oil delivery, boiler mechanic,
If yes, what types of solvents are used? Auto me	chanic
If yes, are their clothes washed at work?	
Do any of the building occupants regularly use or work	at a dry-cleaning service? (Circle appropriate response)
Yes, use dry-cleaning regularly (weekly)	No
Yes, use dry-cleaning infrequently (monthly or less)	Unknown
Yes, work at a dry-cleaning services	

Locatio n	Product Description	Site (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo * Y/N
	See bu	ilding	operato	e for sos	1	
						-

PRODUCT INVENTORY FORM (For use during building walkthrough)

This form modified from:

ITRC (Interstate Technology & Regulatory Council). 2007. Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology & Regulatory Council, Vapor Intrusion Team. www.itrcweb.org.

The Alaska Department of Environmental Conservation's Contaminated Sites Program protects human health and the environment by managing the cleanup of contaminated soil and groundwater in Alaska. For more information, please contact our staff at the Contaminated Site program closest to you:

Juneau: 907-465-5390 / Anchorage: 907-269-7503

Fairbanks: 907-451-2153 / Kenai: 907-262-5210

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX H IMPORTANT INFORMATION ABOUT YOUR REPORT

Attachment to and part of Report: 31-1-11809-011

Date: March 7, 2018

To: CEM Leasing
Attn: Phil Tannehill

Re: Interior Texaco Limited Site Characterization

Report

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2016

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2016