

Ms. Tamara Cardona-Marek Alaska Department of Environmental Conservation 610 University Avenue Fairbanks, Alaska 99709

Subject:

First Semi-Annual 2008 Groundwater Monitoring Report Chevron 306443 (Former Unocal Bulk Plant 0207) Gate 28, West Ramp, Fairbanks International Airport Fairbanks, Alaska ADEC File No.: 100.26.040

Dear Ms. Cardona-Marek:

On behalf of Chevron Environmental Management Company (Chevron), ARCADIS U.S., Inc. (ARCADIS) has prepared this report to document the first semi-annual groundwater monitoring event for former Unocal Bulk Plant 0207 (the site) located at Gate 28, West Ramp at the Fairbanks International Airport in Fairbanks, Alaska. The site location and surrounding area are shown in **Figure 1**. This report summarizes the first semi-annual 2008 groundwater sampling event conducted at the site by Oasis Environmental, Inc. (Oasis) on March 29, 2008. This work was conducted under the direction of a "qualified person" [18 AAC 75. 990 (100), and 18 AAC 78.995 (118)].

Site Description

The site is a former Unocal Bulk Plant Facility (Unocal #0207, Chevron #306443), located at Fairbanks International Airport (FIA), Gate 28, West Ramp, Fairbanks, Alaska. The former Unocal lease included Parcel A and Parcel B of FIA Block 1, Lot 8, located at 5245 Airport Road. The site is currently owned by the Alaska Department of Transportation and Public Facilities (ADOT&PF) which is leasing Block 1, Lot 8 to Frontier Flying. Frontier Flying has been leasing Lot 8 since April 2003; previously Frontier Flying subleased Lot 8 from Falcon Properties. Nearby properties include the ADOT&PF airport maintenance and Alaska Rescue Fire Fighting (ARFF) facility across Brumbaugh Avenue to the northeast, and Northern Air Cargo (NAC) adjacent to the southwest. ARCADIS 2300 Eastlake Avenue East Suite 200 Seattle Washington 98102 Tel 206.325.5254 Fax 206.325.8218 www.arcadis-us.com

Environmental

Date: August 13, 2008

Contact: Greg Montgomery

Phone: 206.726.4742

Email: Gregory.Montgomery@ arcadis-us.com

Our ref: B0045507

G:\COMMON\Data\Projects\Chevron\306443 - Fairbanks Int Airport\GWM\1SA08\306443 1SA08 GWM Report.Doc

Unocal formerly subleased a portion (Parcels A and B) of Lot 8 from Trans-Arctic Airlines and operated a fuel distribution facility that provided aviation gasoline and Jet-A fuel to airplanes at FIA. Parcel A was a rectangular piece of land, 100 feet in length and 50 feet in width, running northwest to southeast approximately 20 feet inside the northeastern lot boundary. Parcel B was a circular parcel of land adjacent to the southeasterly property line of Lot 8 and having a diameter of 200 feet (**Figure 2**). The former Unocal lease portion is presently being used only for periodic vehicle storage, with the exception of the northwest corner of Parcel A. Frontier maintains a 12,000-gallon Jet-A fuel aboveground storage tank (AST) within the asphalt cutout near the northwest corner of Parcel A. It is unclear if the AST is within the limits of former Parcel A; however, the AST is on the gravel that was exposed during the removal of Unocal's fuel distribution system.

In October 1991, Dames & Moore observed and monitored the removal of four 10,000-gallon underground storage tanks (USTs), two pump islands and associated piping, as reported in "Site Assessment Report for Underground Storage Tank Closure, CEM Leasing, Inc., Fairbanks, Alaska," dated December 17, 1991. The USTs were seated in sandy gravel, covered with 3 feet of silty sand, and capped with asphalt/concrete. Excavation and removal of the underground piping included two 5-foot-deep by 4-foot-wide trenches.

The UST excavation was approximately 65 feet by 40 feet and averaged 10 feet in depth. The four USTs were "free of dents and holes and appeared to be in good condition," according to Dames & Moore. Groundwater was encountered in the excavation; no free product was observed. Concentrations of diesel-range organics (DRO), and benzene, toluene, ethylbenzene and total xylenes (BTEX) and gasoline-range organics (GRO) for several samples exceeded the Alaska Department of Environmental Conservation (ADEC) cleanup levels. Approximately 1,200 cubic yards of soil were excavated during UST and pipeline removal. The soil suspected of containing hydrocarbons exceeded soil cleanup levels was placed back into the excavations. A layer of visqueen was placed over the impacted soil, and clean imported fill was used to restore the excavation area to original grade. GeoEngineers installed nine groundwater monitoring wells in September 2003: GEI-1 through GEI-9.

Current site activities include semi-annual groundwater monitoring and semi-annual to monthly light non-aqueous phase liquid (LNAPL) gauging and removal.

Groundwater Monitoring

The first semi-annual groundwater sampling event was conducted on March 29, 2008, and included monitoring wells GEI-2 through GEI-9. Monitoring well GEI-1 was covered with a bank of snow and ice and therefore was unable to be sampled.

A decontaminated oil-water interface probe was used to gauge the water levels and depth to light non-aqueous phase liquid (LNAPL), if present. Monitoring wells were purged of at least three casing volumes of water using new disposable Teflon bailers. Water quality parameters including temperature, pH and electrical conductivity were measured for each well casing volume and are recorded on groundwater sample field data sheets presented in **Appendix A**. Groundwater samples collected from monitoring wells GEI-2 through GEI-9 were submitted to TestAmerica in Bothell, Washington for analysis of:

- Benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8021B;
- Gasoline-range organics (GRO) by Alaska Method AK 101;
- Diesel-range organics (DRO) by Alaska Method AK 102; and
- Residual-range organics (RRO) by Alaska Method AK 103

Due to low water production conditions in monitoring well GEI-2, samples for analysis of DRO and RRO were unable to be collected by the field staff. Samples collected from monitoring wells GEI-6 and GEI-9 were also analyzed for:

- Volatile organic compounds (VOCs) by EPA Method 8260B; and
- Total lead by EPA Method 6010

Samples were collected in clean laboratory supplied containers and submitted to the laboratory under proper chain-of-custody procedures.

Groundwater Flow

Depth to groundwater ranged from 10.08 feet below top of casing (btoc) in monitoring well GEI-4 to 10.77 feet btoc in monitoring well GEI-8. Monitoring wells GEI-5 through GEI-7 and GEI-9 contained measureable LNAPL ranging in thickness from 0.01 feet in GEI-6 to 0.22 feet in GEI-5. Due to the presence of LNAPL, groundwater elevations recorded in monitoring wells GEI-7 through GEI-9 were corrected using the following formula:

Corrected Groundwater Elevation = (Top of Casing – Depth to Water) + (LNAPL Thickness x 0.8)

Groundwater elevations ranged from 89.18 feet above sea level (asl) in monitoring well GEI-7 to 89.58 feet asl in monitoring wells GEI-3 and GEI-4. The groundwater flow direction was generally to the west and is consistent with historical data. Groundwater elevations and approximate contours based on the March 2008 gauging are included in **Table 1** and **Figure 2**.

Groundwater Analytical Results

Groundwater samples collected during the March 2008 groundwater monitoring event from monitoring wells GEI-3 through GEI-9 exceeded one or more applicable ADEC groundwater cleanup levels (GCLs). Analytical results are included in **Table 2** and **Table 3** and summarized in **Figure 3**. The sample collected from monitoring well GEI-2 did not exceed applicable ADEC GCLs; however, the sample was not analyzed for DRO and RRO due to low water production conditions.

Groundwater samples collected from monitoring wells GEI-7 and GEI-9 exceeded the GRO GCL (1,300 micrograms per liter [μ g/L]) with concentrations of 1,630 μ g/L and 1,690 μ g/L, respectively. Concentrations of DRO exceeded the GCL (1,500 μ g/L) in monitoring wells GEI-3 through GEI-9 ranging from 1,860 μ g/L in monitoring well GEI-5 to 334,000 μ g/L in monitoring well GEI-6. The sample collected from monitoring well GEI-7 exceeded the GCL for RRO (1,100 μ g/L) with a concentration of 1,470 μ g/L. Concentrations of benzene in monitoring wells GEI-6, GEI-7 and GEI-9 exceeded the GCL (5 μ g/L) with concentrations ranging from 7.23 μ g/L in monitoring well GEI-9, to 31.1 μ g/L in monitoring well GEI-7.

Ms. Tamara Cardona-Marek August 13, 2008

Total lead concentrations in samples collected from monitoring wells GEI-6 and GEI-9 both exceeded the GCL (15 μ g/L), with concentrations of 58.8 μ g/L and 89.4 μ g/L, respectively. Several VOCs were detected in the groundwater samples collected from monitoring wells GEI-6 and GEI-9; however, none of the detected concentrations exceeded the applicable GCLs, with the exception of the aforementioned benzene concentrations.

Laboratory Data Review Summary

As required by ADEC (Technical Memorandum 06-002, dated October 9, 2006), ARCADIS completed a laboratory data review checklist for the TestAmerica laboratory report from the first semi-annual groundwater monitoring event. The laboratory report and the data review checklist are included as **Appendix B**.

The following quality assurance (QA) summary describes six parameters, related to the quality and usability of the data presented in this report.

- Precision Based on the laboratory control sample (LCS), matrix spike percent recovery, and laboratory control sample duplicate (LCSD) relative percent differences (RPDs), the TestAmerica data meet precision objectives with the exception of several surrogate recoveries that were below or outside of the laboratory acceptance limits due to matrix effects. A groundwater field duplicate sample was collected from monitoring well GEI-7 and met the RPD limits for water (30%).
- Accuracy The TestAmerica data meet accuracy objectives as indicated by the laboratory quality control samples, which were within method/laboratory limits. A trip blank was also collected during groundwater monitoring; the trip blank results were less than the laboratory detection limits.
- 3. Representativeness The data appear to be representative of site conditions and are generally consistent with historical groundwater monitoring results.
- 4. Comparability Comparability is not applicable to these laboratory results.
- 5. Completeness The results appear to be valid and useable, and thus the laboratory results have 100% completeness. However, due to low water

production conditions in monitoring well GEI-2, samples were unable to be collected for DRO and RRO analyses this event.

 Sensitivity – The sensitivity of the analyses was adequate for the samples as the detection limits were less than the ADEC GCL with the exception of EDB analysis under EPA Method 8260B; the detection limit was greater than the ADEC GCL.

Conclusions and Recommendations

LNAPL was detected in four monitoring wells, GEI-5 through GEI-7 and GEI-9, during the first semi-annual 2008 groundwater monitoring event. LNAPL has been detected in monitoring wells GEI-5 and GEI-6 at least once previously. Historical data does not indicate previous detection or observation of LNAPL in monitoring wells GEI-7 or GEI-9. The LNAPL was identified in 2003 by GeoEngineers, Inc. as a lighter-weight diesel product (i.e. kerosene or jet fuel). DRO is the primary contaminant of concern at the site.

Concentrations of GRO, DRO, RRO, benzene and lead exceeded the applicable ADEC GCLs in the groundwater samples collected during the first semi-annual 2008 event. The current monitoring program also includes the full list of VOCs for monitoring wells GEI-6 and GEI-9 (EPA Method 8260B); however, with the exception of benzene none of the VOCs have been detected at concentrations greater than the cleanup level. Accordingly, ARCADIS recommends eliminating VOCs by EPA Method 8260 (analysis of BTEX by EPA Method 8021B will continue) from the groundwater monitoring program.

Further delineation of the extent of impacted soil and lateral extent of impacted groundwater is scheduled to be completed during the field season of 2008. The next groundwater sampling event is scheduled for fall 2008.

If you have any additional questions or would like to discuss this further, please contact ARCADIS at 206.726.4742.

Ms. Tamara Cardona-Marek August 13, 2008

Sincerely,

ARCADIS

Greg Montgomery

Project Scientist

Michael L. Strickler Geologist I

^{Copies:} Dan Carrier, Chevron EMC, Brea, California Rebekah Cadigan, Fairbanks International Airport, Fairbanks, Alaska

Attachments:

Table 1	Groundwater Elevation Data
Table 2	Summary of Groundwater Analytical Data – Petroleum
	Hydrocarbons and Lead
Table 3	Summary of Groundwater Analytical Data – Volatile Organic
	Compounds
Figure 1	Site Location Map
Figure 2	Groundwater Elevation Map – March 29, 2008
Figure 3	Groundwater Analytical Map – March 29, 2008
Appendix A	Groundwater Sampling Field Data Sheets
Appendix B	Laboratory Data Report & ADEC Data Review Checklist

Tables

Groundwater Elevation Data Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

	Top of		Depth to Water	Depth to		Groundwater
Monitoring	Casing	Date	(top of casing)		Thickness	Elevation
Well	Elevation	Date	(top of casing)	(foot)	(foot)	(foot)
	(feet)		(ieet)	(leet)	(leet)	(leet)
GEI-1	99.87	09/04/03	6.32			93.55
		04/24/04	V	Vell buried ur	nder snow/ice	
		09/16/04	8.56			91.31
		04/21/05	V	Vell buried ur	nder snow/ice	
		09/30/05	8.17			91.70
		04/19/06	V	Vell buried ur	nder snow/ice	
		09/21/06	9.04			90.83
		04/03/07	11.35	11.08	0.27	88.74
		09/29/07	8.60	8.54	0.06	91.32
		10/15/07	10.35	9.94	0.41	89.86
		11/19/07	10.91	10.78	0.13	89.07
		03/29/08	W	ell buried ur	nder snow/ice	
GEI-2	99.79	09/04/03	6.19			93.60
		04/24/04	V	Vell buried ur	nder snow/ice	
		09/16/04	8.47			91.32
		04/21/05	V	Vell buried ur	nder snow/ice	
		09/30/05	7.76			92.03
		04/19/06	V	Vell buried ur	nder snow/ice	
		09/21/06	9.01			90.78
		04/03/07		Well	Dry	
		09/29/07	8.57			91.22
		03/29/08	10.22			89.57
GEI-3	99.73	09/04/03	6.14			93.59
		04/24/04	9.49			90.24
		09/16/04	8.38			91.35
		04/21/05	9.84			89.89
		09/30/05	7.67			92.06
		04/19/06	11.28	10.75	0.53	88.88
		09/21/06	8.91			90.82
		04/03/07	10.80	10.78	0.02	88.95
		09/29/07	8.47			91.26
		03/29/08	10.15			89.58
GEI-4	99.66	09/04/03	6.12			93.54
		04/24/04	9.52			90.14
		09/16/04	8.41			91.25
		04/21/05	9.83			89.83
		09/30/05	7.69			91.97
		04/19/06	10.90			88.76
		09/21/06	8.91			90.75
		04/03/07	10.98			88.68
		09/29/07	8.44			91.22
		03/29/08	10.08			89.58

Groundwater Elevation Data Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

	Top of		Depth to Water	Depth to		Groundwater
Monitoring	Casing	Date	(top of casing)		Thickness	Elevation
Well	Elevation	Date	(top of casing)	LINAFL	(feet)	
	(feet)		(feet)	(feet)	(reet)	(feet)
GEI-5	99.88	09/04/03	8.28	5.97	2.31	93.49
		04/24/04	10.11	9.71	0.40	90.09
		09/16/04	10.40	8.21	2.19	91.28
		04/21/05	10.49	10.06	0.43	89.74
		09/30/05	7.95			91.97
		04/19/06	11.75	11.01	0.74	88.74
		09/21/06	10.09	9.01	1.08	90.68
		04/03/07	11.70	11.23	0.47	88.57
		09/29/07	9.22	8.72	0.50	91.07
		03/29/08	10.67	10.45	0.22	89.39
GEI-6	99.95	09/04/03	6.47			93.48
		04/24/04	9.95			90.00
		09/16/04	8.83			91.12
		04/21/05	10.28			89.67
		09/30/05	8.24			91.71
		04/19/06	V	Vell buried ur	nder snow/ice	
		09/21/06	9.30	9.30	<0.1	90.65
		04/03/07		Well	Dry	
		09/29/07	9.10	8.81	0.29	91.09
		10/15/07	10.70	10.26	0.44	89.61
		11/19/07	11.04	10.71	0.33	89.18
		03/29/08	10.61	10.60	0.01	89.35
GEI-7	99.44	09/04/03	5.92			93.52
		04/24/04	9.49			89.95
		09/16/04	8.36			91.08
		04/21/05	9.95			89.49
		09/30/05	7.74			91.70
		04/19/06	11.04			88.40
		09/21/06	9.06			90.38
		04/03/07	11.21			88.23
		09/29/07	8.59			90.85
		03/29/08	10.28	10.26	0.02	89.18
GEI-8	100.01	09/04/03	6.48			93.53
		04/24/04	9.94			90.07
		09/16/04	8.84			91.17
		04/21/05	10.31			89.70
		09/30/05	8.18			91.83
		04/19/06	11.47			88.54
		09/21/06	9.48			90.53
		04/03/07	11.63			88.38
		09/29/07	9.08			90.93
		03/29/08	10.77			89.24

Groundwater Elevation Data Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Water (top of casing) (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
GEI-9	100.02	09/04/03	6.42			93.60
		04/24/04	9.82			90.20
		09/16/04	8.21			91.81
		04/21/05	V	Vell buried ur	nder snow/ice	
		09/30/05	8.14			91.88
		04/19/06	V	Vell buried ur	nder snow/ice	
		09/21/06	9.31			90.71
		04/03/07	11.39			88.63
		09/29/07	8.91			91.11
		03/29/08	10.73	10.65	0.08	89.36

Notes:

LNAPL = Light non-aqeous phase liquid

Groundwater elevations were corrected due to the presence of LNAPL in well. Specific gravity of 0.82 was used for the LNAPL (Jet-A Fuel).

Bold text indicates most recent sampling event.

"--" = not applicable.

Summary of Groundwater Analytical Data Petroleum Hydrocarbons and Lead Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

Well Sampled GRO DRO RRO Benzene Toluene Ethylbenzene Total Xylenes L GCL: 1,300 1,500 1,100 5 1,000 700 10,000 6 GEI-1 04/24/04 09/16/04 ^D 7.05 1.83 47.9 251 09/16/04 ^D 5.40 2.02 42.2 233 04/21/05 Well buried by snow/ice Well buried by snow/ice 09/30/05 2,270 327,000 <3,970	nitoring D
GCL: 1,300 1,500 1,100 5 1,000 700 10,000 GEI-1 04/24/04 09/16/04 ^D 7.05 1.83 47.9 251 09/16/04 ^D 7.05 1.83 47.9 251 04/21/05 5.40 2.02 42.2 233 04/21/05 5.40 2.02 42.2 233 04/19/06	Well San
GEI-1 04/24/04 Well buried by snow/ice 09/16/04 1,760 151,000 7.05 1.83 47.9 251 09/16/04 5.40 2.02 42.2 233 04/21/05 Well buried by snow/ice 09/30/05 2,270 327,000 <3,970 5.52 0.945 36.6 208 04/19/06 1,300 690,000 <9,800 10.0 0.8 22 140 04/03/07 LNAPL Present - Well not sampled UNAPL Present - Well not sampled 09/29/07 UNAPL Present - Well not sampled Well buried by snow/ice 09/29/07 03/29/08 Well buried by snow/ice Well buried by snow/ice 1.81 04/21/05 Well buried by snow/ice 0.500 <0.500 <1.50 09/16/04 76.6 1,430 2.53 0.547 <0.500 <1.50 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/21/06 56.0 1,500 43	L:
09/16/04 09/16/04 ^D 1,760 151,000 7.05 1.83 47.9 251 04/21/05 5.40 2.02 42.2 233 04/21/05 5.40 2.02 42.2 233 04/21/05 5.52 0.945 36.6 208 04/19/06 Well buried by snow/ice 09/21/06 1,300 690,000 <9,800 10.0 0.8 22 140 04/03/07 LNAPL Present - Well not sampled LNAPL Present - Well not sampled 09/29/07 UA/24/04 2.53 0.547 <0.500 1.81 04/21/05 2.53 0.547 <0.500 <1.50 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/30/05 65.6 885 <391 <0.500 <0.500 <1.	-1 04/
09/16/04 ^D 5.40 2.02 42.2 233 04/21/05 Well buried by snow/ice Well buried by snow/ice 209 2.270 327,000 <3,970 5.52 0.945 36.6 208 04/19/06 Well buried by snow/ice Well buried by snow/ice 140 140 09/21/06 1,300 690,000 <9,800 10.0 0.8 22 140 04/03/07 LNAPL Present - Well not sampled UNAPL Present - Well not sampled 09/29/07 LNAPL Present - Well not sampled 140 09/29/07 Well buried by snow/ice Well buried by snow/ice 181 141 09/29/07 Well buried by snow/ice 09/16/04 76.6 1,430 2.53 0.547 <0.500 1.81 04/21/05 Well buried by snow/ice Well buried by snow/ice 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 <0.5 09	09/
O4/21/05 Well buried by snow/ice 09/30/05 2,270 327,000 <3,970 5.52 0.945 36.6 208 04/19/06 Well buried by snow/ice Well buried by snow/ice 140 140 09/21/06 1,300 690,000 <9,800 10.0 0.8 22 140 04/03/07 LNAPL Present - Well not sampled NAPL Present - Well not sampled 03/29/08 140 140 GEI-2 04/24/04 Well buried by snow/ice 1.81 141 04/21/05 Well buried by snow/ice 09/16/04 76.6 1,430 2.53 0.547 <0.500 1.81 141 04/21/05 Well buried by snow/ice Well buried by snow/ice 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 <0.5 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 <0.5 09/29/07	09/*
09/30/05 2,270 327,000 <3,970	04/
O4/19/06 Well buried by snow/ice 09/21/06 1,300 690,000 <9,800 10.0 0.8 22 140 04/03/07 LNAPL Present - Well not sampled UNAPL Present - Well not sampled 09/29/07 INAPL Present - Well not sampled 09/29/07 Well buried by snow/ice Well buried by snow/ice 09/16/04 76.6 1,430 2.53 0.547 <0.500 1.81 04/21/05 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 04/03/07 Well buried by snow/ice Well buried by snow/ice 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 09/29/07 30 <1 <1 <2 09/29/07 30 <1 <1 <2 09/29/07 30 <1 <1 <2 <0.0 </th <th>09/</th>	09/
09/21/06 1,300 690,000 <9,800	04/
04/03/07 09/29/07 03/29/08 LNAPL Present - Well not sampled LNAPL Present - Well not sampled Well buried by snow/ice GEI-2 04/24/04 09/16/04 04/21/05 09/30/05 09/30/05 09/30/05 09/21/06 09/21/06 09/21/06 09/21/06 09/21/06 56.0 Test of the test of test	09/
09/29/07 LNAPL Present - Well not sampled 03/29/08 UNAPL Present - Well not sampled GEI-2 04/24/04 Well buried by snow/ice 09/16/04 76.6 1,430 2.53 0.547 <0.500 1.81 04/21/05 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 09/29/07 30 <1 <1 <2 09/29/07 30 <1 <1 <2 09/29/07 30 <1 <1 <2 09/29/08 <50.0 ³ - ³ <0.500 <0.500 <0.500 <0.00	04/
03/29/08 Well buried by snow/ice GEI-2 04/24/04 T6.6 1,430 2.53 0.547 <0.500	09/
GEI-2 04/24/04 09/16/04 04/21/05 Well buried by snow/ice 04/21/05 76.6 1,430 2.53 0.547 <0.500 1.81 04/21/05 Well buried by snow/ice Well buried by snow/ice 0.500 <0.500 <1.50 09/30/05 65.6 885 <391 <0.500 <0.500 <0.500 <1.50 04/19/06 Well buried by snow/ice Well buried by snow/ice 09/21/06 56.0 1,500 430 <0.5 <0.5 <0.5 <1.5 04/03/07 Well dry - Not sampled 09/29/07 30 <1 <1 <1 <2 03/29/08 <50.0 ³ - ³ <0.500 <0.500 <0.500 <0.0	03/
09/16/04 76.6 1,430 2.53 0.547 <0.500	-2 04/
04/21/05 04/21/05 Well buried by snow/ice 09/30/05 65.6 885 <391 <0.500 <0.500 <1.50 04/19/06 Well buried by snow/ice Well buried by snow/ice 09/21/06 56.0 1,500 430 <0.5 <0.5 <1.5 04/03/07 Well dry - Not sampled 09/29/07 30 <1 <1 <2 03/29/08 <50.0 ³ - ³ <0.500 <0.500 <0.500 <1.00	09/
0 % 21/06 65.6 885 <391	04/
00/0000 00/01 00/01 00/01 00/01 Well buried by snow/ice 09/21/06 56.0 1,500 430 <0.5 <0.5 <0.5 <1.5 04/03/07 Well dry - Not sampled 09/29/07 30 <1 <1 <2 03/29/08 <50.0 ³ ³ <0.500 <0.500 <0.500 <1.00	09/
09/21/06 56.0 1,500 430 <0.5	04/
03/21/30 30.0 1,000 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 Well dry - Not sampled 400	09/
09/29/07 30 <1	04/
03/29/08 <50.0	09/
	03/
GEI-3 04/24/04 1,330 21,000 <5.00 <5.00 13.9 59.8	-3 04/
09/16/04 310 18,300 1.26 <0.500 8.27 14.9	09/
04/21/05 464 22,900 <0.500 <0.500 6.24 14.6	04/
09/30/05 450 33,300 625 <0.500 <0.500 3.45 10.6	09/
04/19/06 LNAPL Present - Well not sampled	04/
09/21/06 500 29,000 <480 <0.6 <0.5 7.7 25.0	09/
U4/03/07 LINAPL Present - Well not sampled	04/
09/29/07 700 $65,000$ <2,100 <5 <5 <5 <20	09/
03/29/08 492 47,100 863 <0.500 <0.500 5.01 16.0	03/
GEI-4 04/24/04 1,270 43,600 <5.00 <5.00 14.6 57.2	-4 04/
09/16/04 638 <mark>36,200</mark> <u>15.0</u> 0.675 21.8 35.7	09/
04/21/05 570 37,500 35.4 1.27 17.7 40.1	04/
09/30/05 1,030 122,000 <4,100 7.47 4.88 25.1 58.7	09/
04/19/06 879 <mark>17,800</mark> <391 <mark>7.58</mark> <0.500 21.8 27.9 <	04/
09/21/06 630 12,000 <480 24.0 0.5 25 43	09/
04/03/07 300 2,000 <40 5.0 <1.0 9 8	04/
09/29/07 <mark>1,400 43,000 <2,000 20</mark> 1 20 40	09/
03/29/08 255 ¹ 11,300 ² <735 2.17 <0.500 4.16 9.20	03/
GEI-5 04/24/04 LNAPL Present - Well not sampled	-5 04/
09/16/04 LNAPL Present - Well not sampled	09/
04/21/05 LNAPL Present - Well not sampled	04/
09/30/05 2,530 671,000 <8,700 12.4 <0.500 107 326	09/
04/19/06 LNAPL Present - Well not sampled	04/
09/21/06 LNAPL Present - Well not sampled	09/
04/03/07 LNAPL Present - Well not sampled	04/
09/29/07 LNAPL Present - Well not sampled	09/
03/29/08 68.1 1,860 ² <708 <0.500 <0.500 03/29/08 1.78	03/

Summary of Groundwater Analytical Data Petroleum Hydrocarbons and Lead Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

Monitoring	Date								
Well	Sampled	GRO	DRO	RRO	Benzene	Toluene	Ethvlbenzene	Total Xvlenes	Lead
GCL:		1,300	1,500	1,100	5	1,000	700	10,000	15
GEI-6	04/24/04	2.930	168.000		8.17	<5.00	59.6	145	
	09/16/04	1.880	39,600		7.80	1.57	23.8	75.0	
	04/21/05	1.290	25,300		15.7	< 0.500	57.1	134	
	09/30/05	2.220	120.000	<4.770	14.8	<0.500	20.8	107	
	04/19/06	,	,		Well	buried by sno	w/ice	•	
	09/21/06				LNAPL Pr	esent - Well r	ot sampled		
	04/03/07				Wel	l Dry - Not sar	npled		
	09/29/07				LNAPL Pr	esent - Well r	lot sampled		
	03/29/08	1,170 ¹	334,000 ²	904	8.41	<2.50	33.8	128	58.8
GEI-7	04/24/04	2,440	43,200		6.97	<5.00	7.58	20.0	
	09/16/04	363	5,660		<0.500	1.34	8.89	14.2	
	04/21/05	1,080	13,600		32.6	2.52	64.6	92.0	
	09/30/05	226	6,700	<397	<0.500	<0.500	3.68	4.72	
	04/19/06	934	25,200	<856	37.9	4.11	77.8	103	<1.00
	09/21/06	470	4,100	<98	1.2	<0.5	14	15	
	04/03/07	2,200	12,000	<980	50	4	90	200	
	04/03/07 ^D	2,200	12,000	<980	40	4	90	200	
	09/29/07	1,500	130,000	<2,000	<5	<5	<10	<20	27.9
	09/29/07 ^D	900	92,000	<2,000	<5	<5	<10	<20	
	03/29/08	1,630 ¹	44,200	1,320	31.1	<5.00	90.5	147	
	03/29/08 ^D	1,630	51,400	1,470	26.8	<5.00	85.2	131	
GEI-8	04/24/04	<500	7,390		<5.00	<5.00	11.7	30.4	
	09/16/04	82	8,690		<0.500	<0.500	0.520	1.12	
	04/21/05	54.3	1,460		<0.500	<0.500	<0.500	<1.50	
	04/21/05 ^D	<50			<0.500	<0.500	<0.500	<1.50	
	09/30/05	<50	4,970	<397	<0.500	<0.500	<0.500	<1.50	
	04/19/06	<50	1,480	<400	<0.500	<0.500	<0.500	<1.50	
	04/19/06 ^D	78.0			<0.500	<0.500	<0.500	<1.50	<1.00
	09/21/06	40.0	1,800	<160	<0.5	<0.5	<0.5	<1.5	
	04/03/07	60	910	360	<1.0	<1.0	<1.0	<2.0	
	09/29/07	80	4,400	<200	<1.0	<1.0	<1.0	<2.0	
	03/29/08	62.0 ¹	2,830 ²	<758	<0.500	<0.500	<0.500	1.94	
GEI-9	04/24/04	8,370	33,700		9.53	<5.00	113	321	
	09/16/04	1,350	77,400		17.3	<0.500	58.3	57.5	
	04/21/05			1	Well	buried by sno	ow/ice		
	09/30/05	838	50,900	<443	16.2	<0.500	55.4	82.3	
	04/19/06				Well	buried by sno	ow/ice		
	09/21/06	1,200	95,000	<1,900	23.0	<0.5	52	80	36.5
	09/21/06 ^D	1.300	43.000	<980	22.0	<0.5	50	75	
	04/03/07	1,600	9,700	<400	6	<1.0	40	80	0.62
	00/20/07	1,000	680.000	<20.000	10	~5	40	70	20.9
	09/29/07	1,000		<20,000	10	C>	40	70	29.0
	03/29/08	1,690	111,000 *	839	7.23	<5.00	25.1	85.5	89.4

Summary of Groundwater Analytical Data Petroleum Hydrocarbons and Lead Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

Monitoring	Date								
Well	Sampled	GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	Lead
GCL:		1,300	1,500	1,100	5	1,000	700	10,000	15
Trip Blank	09/21/06	<10			<0.5	<0.5	<0.5	<1.5	
	04/03/07	<10			<0.5	<0.5	<0.5	<0.5	
	09/29/07	<10			<1	<1	<1	<2	
	03/29/08	<50.0			<0.500	<0.500	<0.500	<1.00	

Notes:

All results are reported in micrograms per liter (ug/l)

GCL = ADEC 18 AAC 75 Groundwater Cleanup Level

^D - duplicate of preceding sample

¹Detected hydrocarbons in the gasoline range appear to be due to overlap of diesel range hydrocarbons.

²Hydrocarbon pattern most closely resembles kerosene.

³Insufficient water to collect sample.

Highlighted cell= exceeds GCL

Bold Type indicates most recent sampling event.

-- = sample was not analyzed for this compound

<25 = result did not exceed indicated method reporting limit; an elevated reporting limit indicates sample was diluted</p>

Summary of Groundwater Analytical Data Volatile Organic Compounds Former Chevron 306443 (Unocal 0207) Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

EPA M	lethod:	8011								826	60B								8021B
Well	Sample Date	1,2-dibromoethane	1,2-dibromoethane	1,1-dichloroethane	1,3,5-Trimethylbenzene	1,1,1-trichloroethane	1,2,4-Trimethylbenzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	p-Isopropyltoluene	lsopropylbenzene	n-Propylbenzene	tetrachloroethene	1,2-dichloroethane	trichloroethene	naphthalene	methyl tertiary butyl ether	methyl tertiary butyl ether
GC	CL:	0.05	0.05	3,650	1,850	200	1,850	NL	NL	NL	NL	3,650	NL	5	5	5	700	NL	NL
GEI-6	03/29/08		<1.00	<1.00	86.8	<1.00	187	6.37	5.08	1.80	13.6	6.04	5.83	<1.00	<1.00	<1.00	130	<2.00	
GEI-7	09/29/07		<0.5	<1	62	<0.8	170	28	27	2	22	22	41	<0.8	<0.5	<1	150	<0.5	
GEI-9	09/21/06	<0.0098	<0.5	<1	120	<0.8	540	36	17	1	17	25	59	<0.8	<0.5	<1		<0.5	<2.5
	04/03/07		<0.5	<1	100	<0.8	340	35	23	2	20	30	65	<0.8	<0.5	<1		<0.5	
	09/29/07		<0.5	<1	120	<0.8	630	31	16	1	18	21	47	<0.8	<0.5	<1	100	<0.5	
	03/29/08		<1.00	<1.00	69.9	<1.00	169	21.1	11.2	1.47	13.0	20.3	31.8	<1.00	<1.00	<1.00	95.1	<2.00	
Trip Blank	04/03/07		<0.5	<1	<1	<0.8	<1	<1	<1	<1	<1	<1	<1	<0.8	<0.5	<1		<0.5	
-	09/29/07		<0.5	<1	<1	<0.8	<1	<1	<1	<1	<1	<1	<1	<0.8	<0.5	<1	<1	<0.5	
Notes:																			
All results a	are reported	in microg	rams p	er liter (ug/l)														
GCL = ADE	GCL = ADEC 18 AAC 75 Groundwater Cleanup Level																		
NL = No GCL available																			
= not ana	- = not analyzed for this compound or data is not available																		
<25 = resu	It did not ex	ceed indic	ated m	ethod re	porting	limit; an	elevate	ed repoi	ting limi	t indica	tes sam	ple was	diluted						

Summary of Groundwater Analytical Data Polycyclic Aromatic Hydrocarbons Former Unocal Bulk Plant Gate 28, West Ramp Fairbanks International Airport Fairbanks, Alaska

Well	Sample Date	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene
GC	L:	700	2,200	2,200	1,460	11,000	11,000	1,460	1,100	1	100	1	10	0.2	1	0.1	1,100
GEI-9	09/19/06	180	<1	2.0	9.0	3.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trip Blank																	
Notes:																	

All results are reported in micrograms per liter (ug/l)

PAH = Polycyclic Aromatic Hydrocarbons; analyzed using EPA Method 8270

GCL = ADEC 18 AAC 75 Groundwater Cleanup Level

-- = sample was not analyzed for this compound

<1 = result did not exceed indicated method reporting limit; an elevated reporting limit indicates sample was diluted

Figures

BY: RICHARDS, PLOTTED: 5/29/2008 2:07 PM PAGESETUP: PDF.AP PLOTSTYLETABLE: PLTFULLCTB 17.0S (LMS TECH) TM (Opt) LYR (Opt)ON=*;OFF=*REF* SAVED: 5/7/2008 1.40 PM ACADVER: t) PM (Reqd) LAYOUT 1 SA PIC (Opt) dwg LA DB.JAR LD.(Opt) SAGMR0845507N01 DIV/GROUP 85 8\B0045507\0001\0000 CITY: TMAPA, FL

(fag

LEGEND

MONITORING WELL

(88.57) GROUNDWATER ELEVATIONS

89.50

WATER-TABLE ELEVATION CONTOUR DASHED WHERE INFERRED CONTOUR INTERVAL = 0.10 FEET

APPARENT DIRECTION OF GROUNDWATER FLOW

GROUNDWATER ELEVATION . CORRECTED FOR LIGHT NON-AQUEOUS PHASE LIQUID

WELL BURIED UNDER (S/I) SNOW/ICE

Notes: The locations of all features shown are approximate.

Elevations are relative to an arbitrary temporary benchmark.

SOURCE: BASE MAP PROVIDED BY GEOENGINEERS. MAP DATE 5/15/05, FULL SCALE.

CHEVRON #306443 (FORMER UNOCAL BULK PLANT) GATE 28, WEST RAMP, FAIRBANKS AIRPORT, FAIRBANKS, AK. **GROUNDWATER MONITORING REPORT**

GROUNDWATER ELEVATION MAP MARCH 29, 2008

FIGURE 2

Appendix A

Groundwater Sampling Field Data Sheets

			GROUNDWA	TER SAMPLE	DATA SHE	EET					
Project Number:	45507			Sample Locatio	on (ie. MW-1)	:	GEI-1				
Project Name:	FIA West Ra	mp/Gate 28		Sample ID (ie. I	MW-1-W-yyn	nmdd):					
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008				
Sampler:	Hannah, We	ller, Strickler		Time sampled:							
			W	ell Information							
Groundwater:	x		Casing	2		a) Well Depth (ft)·				
Groundwater.	<u></u>			2		b) Water Depth	i (ft):				
Other:						c) Water Colum	nn (ft):				
d) Calc. Purge Vol. (gal):											
Well Casing Diameter	Multiply c) by:		Calcul	ating Purge Vo	lume	Sand Pack Diameter	Multiply c) by:	-			
2 4	0.16					8 10	0.71	-			
6	1.47					12 Note: assuming sand	1.28 pack has 29% poros	ity			
Example 1- purging only 2-inch casing and 6-foot wa	well casing volume ater column					Example 2- purging w 2-inch casing, 8-inch s	vell casing and san and pack, and 6-foot	d pack volume water column			
One Purge Volume= 0.16 X	< 6 = 0.96 gallons wat	ter				One Purge Volume= (0	0.16 X 6) + (0.71 X 6) = 5.22 gallons water			
FIELD MEASUREMENTS											
Time	Volume (gallons)	рН	Conductivity (mS)	Temperature (C)	Color	Turbidity	Redox	Dissolved O ₂	Other		
	(9)	pri	((-)	00101	Tarbiany	riouox	Diocontou 02	outor		
Total Valuma Dur	and (Collopa)				Free Dredu	(y_{1})					
Odor:	ged (Gallons):				Sheen (v/n)	ct (y/n): :		_			
Purge Method (dis	sposable baile	r, teflon baile	er, submersible	pump, etc.)	C (j ,)						
Sample Method (c	disposable bai	ler, teflon ba	iler, submersibl	e pump, etc.)							
Well Integrity (con	dition of casin	ig, flush mou	int sealing prop	erly, cement sea	al intact, etc.)						
Remarks (well rec	overy, unusua	al conditions	observations):								
Did not try to locat	te well under r	nassive snov	w pile								
Duplicate Samp	le ID:				Analyses F	Requested:	GRO/BTEX	/DRO/RRO			
Split Sample ID:					1						
Signed:	Hannah, W	eller, Strick	ler		-	Date:	3/29/2008	3			
Signed/reviewer	:					Date:					

			GROUNDWA	TER SAMPLE	DATA SH	EET			
Project Number:	45507			Sample Locatio	on (ie. MW-1):	GEI-2		
Project Name:	FIA West Ra	mp/Gate 28	3	Sample ID (ie. I	MW-1-W-yyı	mmdd): G	EI-2-W-0803	29	
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008		
Sampler:	Hannah, We	ller, Strickle	r	Time sampled:			1630		
			W	lell Information					
			Casing				<i>c</i> .)		
Groundwater:	<u>X</u>		Diameter (in):	2		a) Well Depth (ft): 	10.6	
Other:						c) Water Colun	n (ii). nn (ft):	0.38	
				_		0.1			
			Calcul	ating Purge Vo	lume				
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by:	_	
4	0.65					10	1 1 29	_	
	1.47					Note: assuming sand	pack has 29% poros	ity	
Example 1- purging only 2-inch casing and 6-foot w	v well casing volume vater column					Example 2- purging v 2-inch casing, 8-inch s	vell casing and san and pack, and 6-foot	d pack volume water column	
One Purge Volume= 0.16	X 6 = 0.96 gallons wa	ter				One Purge Volume= (0	0.16 X 6) + (0.71 X 6) = 5.22 gallons water	
			FIELD	MEASUREME	NTS	-			
Timo	Volume (gallons)	۶U	Conductivity	Temperature	Color	Turbidity	Bodov	Dissolved O	Othor
Time	(galions)	рп	(113)	(0)	COIOI	Turbidity	Redux	Dissolved O ₂	Other
Total Volume Pur	rged (Gallons):				Free Produ	ict (y/n):			
Odor:					Sheen (y/n):			
Purge Method (di teflon bailer	isposable baile	r, teflon bail	er, submersible	pump, etc.)					
Sample Method (teflon bailer	disposable bai	ler, teflon ba	ailer, submersibl	e pump, etc.)					
Well Integrity (co	ndition of casin	a. flush moi	unt sealing prop	erlv. cement sea	al intact. etc.)			
vion mognly (ool		ig, naon mo	an ocanig prop)			
Remarks (well red PID 0.0 ppm, ver	covery, unusua y low water col	al conditions lumn, no me	/observations): easurements we	re taken, no DR	O/RRO sam	ples were taken			
Duplicate Samp	ole ID:				Analyses	Requested:	GRO/BTEX		
Split Sample ID	:				4				
Signed:	Hannah, Weller, Strickler Date: 3/29/2008								
Signed/reviewe	r:					Date:			

			GROUNDWA	TER SAMPLE	DATA SH	IEET			
Project Number:	45507			Sample Locatio	on (ie. MW-1):	GEI-3		
Project Name:	FIA West Ra	amp/Gate 28	1	Sample ID (ie.	MW-1-W-yy	mmdd): C	GEI-3-W-0803	329	
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008		
Sampler:	Hannah, We	eller, Strickle	r	Time sampled:			1700		
			W	ell Information	1				
			Casing	-					
Groundwater:	X		Diameter (in):	2		a) Well Depth ((ft): \(ft):	11.4	
Other:						c) Water Colum	nn (ft):	1.25	
						d) Calc. Purge	Vol. (gal):	0.2	
			Calcul	ating Purge Vo	lume				
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by: 0.71	_	
4	0.65					10	1	_	
						Note: assuming sand	pack has 29% poros	sity	
2-inch casing and 6-foot w	ater column	4			2-inch casing, 8-inch s	and pack, and 6-foo	t water column		
One Purge volume= 0.16	× 6 = 0.96 galions wa	ller				One Purge Volume= (i). 16 × 6) + (0.7 1 × 6	b) = 5.22 galloris water	
			FIELD	MEASUREME	NTS	-	I	1	
Time	volume (gallons)	рH	(mS)	Temperature (C)	Color	Turbidity	Redox	Dissolved O ₂	Other
1645	0.4	6.93	0.328	3.3	grey	Tarbiany	Подох		Guildi
1646	0.7	6.70	0.619	3.1	grey				
1647	1.1	6.66	0.601	3.2	grey				
1648	1.5	6.62	0.625	3.04	grey				
Total Volume Pur	ged (Gallons):		1.5		Free Produ	uct (y/n):		_	
Odor: Purge Method (di	snosahla haila	ar teflon hail	ar submarsible	numn etc.)	Sheen (y/n):			
teflon bailer				pump, etc.)					
Sample Method (teflon bailer	disposable bai	iler, teflon ba	ailer, submersibl	e pump, etc.)					
Well Integrity (cor	ndition of casin	na, flush mou	unt sealing prop	erly, cement sea	al intact. etc.	.)			
		.g,		,,	,	· /			
Remarks (well red PID 27.80 ppm	covery, unusua	al conditions	/observations):						
Duplicate Samp	ole ID:				Analyses	Requested:	GRO/BTEX	(/DRO/RRO	
Split Sample ID					-				
Signed:	Hannah, W	eller, Strick	kler			Date:	3/29/2008	8	
Signed/reviewe	r.				-	Date:			
orgined/reviewe						Date.			

			GROUNDWA	TER SAMPLE	DATA SHE	EET				
Project Number:	45507			Sample Locatio	n (ie. MW-1)	:	GEI-4			
Project Name:	FIA West Ra	mp/Gate 28		Sample ID (ie.	MW-1-W-yyn	nmdd): G	EI-4-W-0803	29		
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008			
Sampler:	Hannah, We	ller, Strickle		Time sampled:			1615			
			W	ell Information						
			Casing				(L)	40.55		
Groundwater:	X		Diameter (in):	2		a) Well Depth (ft): 	12.57	<u>57</u> 08	
Other:						c) Water Colum	nn (ft):	2.5	<u>8</u>	
•						d) Calc. Purge	Vol. (gal):	0.4		
			Calcul	ating Purge Vo	lume					
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by:	_		
4	0.65					10	1	_		
						Note: assuming sand	pack has 29% poros	sity		
Example 1- purging only 2-inch casing and 6-foot wa	well casing volume ater column					Example 2- purging w 2-inch casing, 8-inch sa	and pack, and 6-foo	d pack volume t water column		
One Purge Volume= 0.16 2	X 6 = 0.96 gallons wat	ter				One Purge Volume= (0	.16 X 6) + (0.71 X 6	i) = 5.22 gallons water		
	1		FIELD	MEASUREME	NTS	•	•			
Time	Volume (gallons)	nН	Conductivity (mS)	Temperature (C)	Color	Turbidity	Redox		Other	
1600	0.5	649	0.539	2.8	light grev	Turblatty	Redux		Other	
1600	1	6.50	0.537	2.8	light grey					
1605	1.5	6.52	0.528	2.8	light grey					
Total Volume Pur	ged (Gallons):		1.5		Free Produc	ct (y/n):		_		
Odor:					Sheen (y/n)	:				
Purge Method (dia teflon bailer	sposable baile	r, teflon bail	er, submersible	pump, etc.)						
Sample Method (teflon bailer	disposable bai	ler, teflon ba	iler, submersibl	e pump, etc.)						
Well Integrity (cor	ndition of casin	ıg, flush mou	int sealing prop	erly, cement sea	al intact, etc.)					
Remarks (well red PID 22.90 ppm	covery, unusua	al conditions.	/observations):							
Duplicate Samp	le ID:				Analyses F	Requested:	GRO/BTEX	(/DRO/RRO		
Split Sample ID:										
Signed:	Hannah, W	eller, Strick	ler		-	Date:	3/29/2008	3		
Signed/reviewer	r:					Date:				

			GROUNDWA	TER SAMPLE	DATA SH	EET			
Project Number:	45507			Sample Locatio	on (ie. MW-1)):	GEI-5		
Project Name:	FIA West Ra	mp/Gate 28		Sample ID (ie.	MW-1-W-yyr	mmdd):	GEI-5-W0803	29	
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008		
Sampler:	Hannah, We	ller, Stricklei		Time sampled:			1800		
			W	ell Information	1				
			Casing						
Groundwater:	X		Diameter (in):	2		a) Well Depth	(ft): b (ft):		
Other:	DTP 10.45'					c) Water Colur	mn (ft):	1.18	
•						d) Calc. Purge	Vol. (gal):	0.2	
			Calcul	ating Purge Vo	lume				
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by:	_	
4	0.65					10 12	1	_	
	1.47					Note: assuming sand	pack has 29% poros	sity	
Example 1- purging only 2-inch casing and 6-foot wa	well casing volume ater column					2-inch casing, 8-inch	well casing and san sand pack, and 6-foo	t water column	
One Purge Volume= 0.16 2	X 6 = 0.96 gallons wat	ter				One Purge Volume= (0.16 X 6) + (0.71 X 6	δ) = 5.22 gallons water	
	1		FIELD	MEASUREME	NTS			-	
Time	Volume (gallons)	nН	Conductivity (mS)	Temperature (C)	Color	Turbidity	Redox		Other
1750	(galions)	6.56	0.531	31	arev	Turbluity	Redux		Other
1750	1	6.53	0.52	2.9	arev				
1755	1.5	6.55	0.504	2.8	grey				
Total Volume Pur	ged (Gallons):		1.5		Free Produ	ct (y/n):			
Odor:					Sheen (y/n)):			
Purge Method (di teflon bailer	sposable baile	r, teflon baile	er, submersible	pump, etc.)					
Sample Mathed (dianaaahla hai	lar taflan ha	ilar aubmaraibl	o nump oto)					
teflon bailer		ier, tenori ba		e pump, etc.)					
Well Integrity (cor	ndition of casin	ıg, flush mou	int sealing prope	erly, cement sea	al intact, etc.))			
Remarks (well red	covery, unusua	al conditions	observations):						
PID 48 ppm, No v	visible product	while purgin	g						
Duplicate Samp	le ID:				Analyses I	Requested:	GRO/BTEX	(/DRO/RRO	
Split Sample ID:	: •				-				
Signed:	Hannah, W	eller, Strick	ler		1	Date:	3/29/2008	8	
Signod/rov/over					_	Data			
Signed/reviewel	l.					Dale.			

			GROUNDWA	TER SAMPLE	DATA SH	EET				
Project Number:	45507			Sample Locatio	on (ie. MW-1):	GEI-6			
Project Name:	FIA West Ra	mp/Gate 28		Sample ID (ie.	MW-1-W-yyr	mmdd): C	GEI-6-W-0803	29		
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008			
Sampler:	Hannah, We	ller, Strickle	r	Time sampled:			1715			
			W	ell Information	I					
One of the state	X		Casing	0			(61)	44.05		
Groundwater:	<u>×</u>		Diameter (in):	2		 a) Well Depth b) Water Depth 	(IT): n (ft):	10.61		
Other:	DTP 10.60'					c) Water Colur	nn (ft):	0.44		
						d) Calc. Purge	Vol. (gal):	0.1		
			Calcul	ating Purge Vo	lume	-		-		
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by:	_		
4	0.64					10	1	-		
						Note: assuming sand	pack has 29% poros	ity		
Example 1- purging only 2-inch casing and 6-foot wa	well casing volume ater column					Example 2- purging v 2-inch casing, 8-inch s	well casing and san and pack, and 6-foot	d pack volume t water column		
One Purge Volume= 0.16 2	X 6 = 0.96 gallons wat	ter				One Purge Volume= (0.16 X 6) + (0.71 X 6) = 5.22 gallons water		
	1		FIELD	MEASUREME	NTS	•	1			
Time	Volume (gallons)	nН	Conductivity (mS)	Temperature (C)	Color	Turbidity	Redox	Dissolved O	Other	
Time	(galions)	рп	(110)	(0)	COIOI	Turbluity	Redux		Other	
Total Volume Pur Odor:	ged (Gallons):				Free Produ Sheen (y/n)	ict (y/n):):	Yes	_		
Purge Method (di teflon bailer	sposable baile	r, teflon bail	er, submersible	pump, etc.)						
Sample Method (teflon bailer	disposable bai	ler, teflon ba	iler, submersibl	e pump, etc.)						
Well Integrity (cor	ndition of casin	ıg, flush mou	int sealing prop	erly, cement sea	al intact, etc.)				
Remarks (well red PID 88.6 ppm, lov	covery, unusua w water columr	al conditions. n, no field m	/observations): easurements							
Duplicate Samp	le ID:				Analyses I	Requested:	GRO/BTEX	(/DRO/RRO		
Split Sample ID:	:				4		lead/VOC's			
Signed:	Hannah, W	eller, Strick	ler			Date:	3/29/2008	3		
Signed/reviewe	r					Date:				
Signediferrevel										

	IEEI					
Project Number: 45507 Sample Location (ie. MW-1	1):	GEI-7		_		
Project Name: FIA West Ramp/Gate 28 Sample ID (ie. MW-1-W-yy	rmmdd):	GEI-7-W-0803	329	_		
Client: ARCADIS Date Sample Collected:		3/29/2008		_		
Sampler: Hannah, Weller, Strickler Time sampled:		1545		_		
Well Information						
Casing						
Groundwater: X Diameter (in): 2	a) Well Depth	(ft): th (ft):	13.22			
Other: DTP 10.26'	c) Water Colu	imn (ft):	2.94			
	d) Calc. Purg	e Vol. (gal):	0.5			
Calculating Purge Volume						
Well Casing Diameter Multiply c) by:	Sand Pack Diameter	Multiply c) by: 0.71	_			
	10	1	4			
	Note: assuming san	d pack has 29% poros	sity			
Example 1- purging only well casing volume 2-inch casing and 6-foot water column	2-inch casing, 8-inch	sand pack, and 6-foo	ot water column			
Une Purge Volume= 0. 10 X 0 = 0.90 galions water	One Purge volume=	(0.16 × 6) + (0.71 × 6	5) = 5.22 galloris water			
FIELD MEASUREMENTS			-			
Time (gallons) pH (mS) (C) Color	Turbidity	Redox		Other		
1518 0.5 6.56 0.660 3.0 light grey	, Turbiany	Подох		Othor		
1523 1.2 6.57 0.65 3.0 light grey	,					
1525 2 6.52 0.664 3.0 light grey	,					
	_	_				
Total Volume Purged (Gallons): 2 Free Produ	Free Product (y/n):					
Odor: Sheen (y/n	n):					
teflon bailer						
Sample Method (disposable bailer, teflon bailer, submersible pump, etc.)						
teflon bailer						
Well Integrity (condition of casing, flush mount sealing properly, cement seal intact, etc	.)					
	,					
Remarks (well recovery, unusual conditions/observations):						
PID 7.7 ppm						
Duplicate Sample ID: DLIP 1 W/ 080220	Poquested:					
Split Sample ID:	Requested.	GRO/DIE/	VDRO/RRO			
Signed: Hannah, Weller, Strickler	Date:	3/29/200	8			
Signed/reviewer:	Date:					

			GROUNDWA	TER SAMPLE	DATA SH	EET				
Project Number:	45507			Sample Locatio	on (ie. MW-1):	GEI-8			
Project Name:	FIA West Ra	mp/Gate 28	}	Sample ID (ie. I	MW-1-W-yyr	mmdd): G	EI-8-W-0803	29		
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008			
Sampler:	Hannah, We	ller, Strickle	r	Time sampled:			1515			
			W	ell Information						
			Casing	-						
Groundwater:	X		Diameter (in):	2		a) Well Depth (ft): 	12.9		
Other:						c) Water Colun	nn (ft):	2.13		
						d) Calc. Purge	Vol. (gal):	0.3		
			Calcul	ating Purge Vo	lume					
Well Casing Diameter	Multiply c) by:					Sand Pack Diameter	Multiply c) by:	_		
4	0.65					10	1	_		
						Note: assuming sand	pack has 29% poros	sity		
Example 1- purging only 2-inch casing and 6-foot w	ater column					2-inch casing, 8-inch s	and pack, and 6-foo	t water column		
One Purge volume= 0.16	X 6 = 0.96 gallons wa	ter				One Purge volume= (0	.16 X 6) + (0.71 X 6) = 5.22 gallons water		
			FIELD	MEASUREME	NTS		I	T T		
Time	(gallons)	рH	(mS)	(C)	Color	Turbidity	Redox	Dissolved O ₂	Other	
1455	0.5	6.96	0.551	2.8	00.01	. a. o.a.ty			0	
1500	1	6.81	0.547	2.8						
1501	1.5	6.79	0.541	2.8						
Total Volume Pur	ged (Gallons):		1.5	Free Product (y/n):						
Odor: Purge Method (di	snosahla haila	r toflon bail	ar submarsible	nump etc.)	Sheen (y/n)):				
teflon bailer		r, tenon ban		pump, etc.)						
Sample Method (teflon bailer	disposable bai	ler, teflon ba	ailer, submersibl	e pump, etc.)						
Well Integrity (cor	ndition of casin	ıg, flush mot	unt sealing prop	erly, cement sea	al intact, etc.)				
Remarks (well red PID 2.6 ppm	covery, unusua	al conditions	/observations):							
Duplicate Samp	le ID:				Analyses I	Requested:	GRO/BTEX	(/DRO/RRO		
Split Sample ID	:				-					
Signed:	Hannah, W	eller, Strick	kler		1	Date:	3/29/2008	3		
Signed/reviewer	r:				-	Date:				
						Duito.				

			GROUNDWA	TER SAMPLE	DATA SHE	EET			
Project Number:	45507			Sample Locatio	on (ie. MW-1)	:	GEI-9		
Project Name:	FIA West Ra	mp/Gate 28		Sample ID (ie.	MW-1-W-yyn	nmdd): G	EI-9-W-0803	29	
Client:	ARCADIS			Date Sample C	ollected:		3/29/2008		
Sampler:	Hannah, We	ller, Stricklei		Time sampled:			1430		
			W	ell Information					
			Casing	2			(I)	40.0	
Groundwater:	X		Diameter (in):	2		a) Well Depth () Water Depth (it): 10.73		
Other:	DTP 10.65'			c) Water Colu			nn (ft):	2.07	
						d) Calc. Purge	Vol. (gal):	0.3	
			Calcula	ating Purge Vo	lume				
Well Casing Diameter	Multiply c) by: 0.16					Sand Pack Diameter	Multiply c) by: 0.71		
4	0.65					10	1 1 28	4	
						Note: assuming sand	pack has 29% poros	ity	
2-inch casing and 6-foot wa	ater column					2-inch casing, 8-inch sa	and pack, and 6-foot	a pack volume	
One Purge Volume= 0.16 2	x 6 = 0.96 gallons wa	ter				One Purge Volume= (0	.16 X 6) + (0.71 X 6) = 5.22 gallons water	
	1		FIELD	MEASUREME	NTS	•			
Time	Volume (gallons)	nН	Conductivity (mS)	Temperature (C)	Color	Turbidity	Redox		Other
1410	(galions)	7 11	0.522	2.0	light grev	Turbluity	Redux		Other
1415	1.5	6.88	0.523	2.2	light grey				
1420	2	6.83	0.522	2.1	light grey				
Total Volume Pur	ged (Gallons):		2		Free Produc	ct (y/n):	_		
Odor:					Sheen (y/n)	:		_	
Purge Method (dia teflon bailer	sposable baile	r, teflon bail	er, submersible	pump, etc.)					
Sample Method (teflon bailer	disposable bai	ler, teflon ba	iler, submersibl	e pump, etc.)					
Well Integrity (cor	ndition of casin	ıg, flush mou	int sealing prope	erly, cement sea	al intact, etc.)				
Remarks (well rec PID 12.6 ppm	covery, unusua	al conditions,	/observations):						
Duplicate Samp	le ID:				Analyses F	Requested:	GRO/BTEX	/DRO/RRO	
Split Sample ID:	•				4		lead/VOC's		
Signed:	Hannah, W	eller, Strick	ler		-	Date:	3/29/2008	3	
Signed/reviewer	·:					Date:			

Appendix B

Laboratory Data Report & ADEC Data Review Checklist

April 16, 2008

Mike Strickler Arcadis, Geraghty, & Miller - Seattle 2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

RE: 306443 (Former Unocal 0207)

Enclosed are the results of analyses for samples received by the laboratory on 04/02/08 09:45. The following list is a summary of the Work Orders contained in this report, generated on 04/16/08 16:22.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
BRD0022	306443 (Former Unocal 0207)	Chevron Alaska Sampling

TestAmerica Seattle

Blake Mains

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GEI-2-W-080329	BRD0022-01	Water	03/29/08 16:30	04/02/08 09:45
GEI-3-W-080329	BRD0022-02	Water	03/29/08 17:00	04/02/08 09:45
GEI-4-W-080329	BRD0022-03	Water	03/29/08 16:15	04/02/08 09:45
GEI-5-W-080329	BRD0022-04	Water	03/29/08 18:00	04/02/08 09:45
GEI-6-W-080329	BRD0022-05	Water	03/29/08 17:15	04/02/08 09:45
GEI-7-W-080329	BRD0022-06	Water	03/29/08 15:45	04/02/08 09:45
GEI-8-W-080329	BRD0022-07	Water	03/29/08 15:15	04/02/08 09:45
GEI-9-W-080329	BRD0022-08	Water	03/29/08 14:30	04/02/08 09:45
DUP-1-W-080329	BRD0022-09	Water	03/29/08 06:00	04/02/08 09:45
QA-T-W-W-080329	BRD0022-10	Water	03/29/08 06:00	04/02/08 09:45
PW-W-080329	BRD0022-11	Water	03/29/08 18:10	04/02/08 09:45

TestAmerica Seattle

Blake Maint

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

Analytical Case Narrative

TestAmerica - Seattle, WA

BRD0022

CASE NARRATIVE:

SAMPLE RECEIPT

The samples were received 4/2/08 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 8.8 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

TestAmerica Seattle

Elake Mains

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

(Fasoline Rang	e Hydro	carboi Test	ns (n-H America	lexane a Seattle	to <n-< th=""><th>Decane) </th><th>by AK101</th><th></th><th></th><th></th></n-<>	Decane)	by AK101			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRD0022-01 (GEI-2-W-080329)		W	ater			Sampled: 03/29/08 16:30					
Gasoline Range Hydrocarbons	AK 101	ND		50.0	ug/l	1x	8D08023	04/08/08 10:17	04/08/08 20:21	KMT	
Surrogate(s): 4-BFB (FID)			88.7%		60 -	- 120 %	"			"	
BRD0022-02 (GEI-3-W-080329)		W	ater			Sample	d: 03/29/08 1	7:00			
Gasoline Range Hydrocarbons	AK 101	492		50.0	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 14:17	KMT	Q1
Surrogate(s): 4-BFB (FID)			132%		60 -	- 120 %	"			" ZX	(
BRD0022-03 (GEI-4-W-080329)		Water			Sampled: 03/29/08 16:15						
Gasoline Range Hydrocarbons	AK 101	255		50.0	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 14:50	KMT	Q8
Surrogate(s): 4-BFB (FID)			133%		60 -	- 120 %	"			" ZX	(
BRD0022-04 (GEI-5-W-080329)		W	ater			Sampled: 03/29/08 18:00					
Gasoline Range Hydrocarbons	AK 101	68.1		50.0	ug/l	lx	8D08023	04/08/08 10:17	04/09/08 00:42	KMT	
Surrogate(s): 4-BFB (FID)			92.6%		60 -	- 120 %	"			"	
BRD0022-05RE1 (GEI-6-W-080329)		W	ater			Sample	d: 03/29/08 1	7:15			
Gasoline Range Hydrocarbons	AK 101	1170		250	ug/l	5x	8D10017	04/10/08 09:32	04/11/08 23:22	КМТ	Q8
Surrogate(s): 4-BFB (FID)			99.5%		60 -	120 %	lx			"	
BRD0022-06RE1 (GEI-7-W-080329)		W	ater			Sample	d: 03/29/08 1	5:45			
Gasoline Range Hydrocarbons	AK 101	1630		500	ug/l	10x	8D10017	04/10/08 09:32	04/11/08 16:12	KMT	Q8
Surrogate(s): 4-BFB (FID)			106%		60 -	- 120 %	1x			"	
BRD0022-07 (GEI-8-W-080329)		W	ater			Sample	d: 03/29/08 1	5:15			
Gasoline Range Hydrocarbons	AK 101	62.0		50.0	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 13:44	KMT	Q8
Surrogate(s): 4-BFB (FID)			92.2%		60 -	120 %	"			"	
BRD0022-08RE1 (GEI-9-W-080329)		W	ater			Sample	d: 03/29/08 1	4:30			
Gasoline Range Hydrocarbons	AK 101	1690		500	ug/l	10x	8D10017	04/10/08 09:32	04/11/08 16:45	КМТ	Q8
Surrogate(s): 4-BFB (FID)			100%		60 -	120 %	lx			"	

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Gasoline Range Hydrocarbons (n-Hexane to <n-decane) ak101="" by="" seattle<="" testamerica="" th=""><th></th><th></th></n-decane)>										
Analyte	Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
BRD0022-09RE1 (DUP-1-W	/-080329)	Water		Sa	mpled: 0.	3/29/08 0	6:00			
Gasoline Range Hydrocarbons	AK 101	1630	500	ug/l	10x 8	8D10017	04/10/08 09:32	04/11/08 17:18	KMT	Q1
Surrogate(s): 4-BFB (FID)		111%		60 - 120	9% lx				"	
BRD0022-10 (QA-T-W-W	-080329)	Water		Sa	mpled: 0.	3/29/08 0	6:00			
Gasoline Range Hydrocarbons	AK 101	ND	50.0	ug/l	1x 8	3D08023	04/08/08 10:17	04/09/08 09:55	KMT	
Surrogate(s): 4-BFB (FID)		88.9%		60 - 120	9% "				"	
Surrogate(s): 4-BFB (FID) BRD0022-11 (PW-W-0803	(29)	88.9% Water		60 - 120 Sa	9% " mpled: 03	3/29/08 1	8:10		"	
Surrogate(s): 4-BFB (FID) BRD0022-11 (PW-W-0803 Gasoline Range Hydrocarbons	29) AK 101	88.9% Water 1020	500	60 - 120 Sa ug/l	9% " mpled: 03	3/29/08 1 8D08023	8:10 04/08/08 10:17	04/09/08 15:23	" KMT	Q8

TestAmerica Seattle

Blake Maint

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: 306443 (Former Unocal 0207) Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103 TestAmerica Seattle Analyte Method MRL Units Dil Batch Prepared Result MDL* Analyzed Analyst Notes BRD0022-02 Water Sampled: 03/29/08 17:00 (GEI-3-W-080329) 04/03/08 10:50 FKK **Residual Range Organics** AK102_103 0.863 0.735 mg/l 1x 8D03027 04/07/08 16:28 46.3% 50 - 150 % Ζ 2-FBP Surrogate(s): 95.5% 50 - 150 % Octacosane Sampled: 03/29/08 17:00 Water BRD0022-02RE1 (GEI-3-W-080329) 04/03/08 10:50 EKK **Diesel Range Hydrocarbons** AK102 103 47.1 0.490 8D03027 04/08/08 12:49 Q9 mg/l 5x ----122% 50 - 150 % ,, 2-FBP Surrogate(s): 99.6% 50 - 150 % Octacosane BRD0022-03 (GEI-4-W-080329) Water Sampled: 03/29/08 16:15 04/03/08 10:50 EKK 09 AK102_103 11.3 0.0980 mg/l 1x 8D03027 04/07/08 16:58 **Diesel Range Hydrocarbons** -----.. 0.735 .. ., FKK ND Residual Range Organics " 50 - 150 % Surrogate(s): 2-FBP 108% 94 1% 50 - 150 % Octacosane Water Sampled: 03/29/08 18:00 BRD0022-04 (GEI-5-W-080329) AK102_103 0.0943 8D03027 04/03/08 10:50 04/07/08 17:27 FKK Q9 **Diesel Range Hydrocarbons** 1.86 mg/l 1x ND 0.708 .. EKK **Residual Range Organics** -----" 2-FBP 83.7% 50 - 150 % Surrogate(s): 92.0% 50 - 150 % Octacosane Water Sampled: 03/29/08 17:15 BRD0022-05 (GEI-6-W-080329) AK102 103 0.714 8D03027 04/03/08 10:50 04/07/08 17:57 EKK 0.904 **Residual Range Organics** mg/l 1x -----343% 50 - 150 % ZXSurrogate(s): 2-FBP 81.1% 50 - 150 % Octacosane BRD0022-05RE1 (GEI-6-W-080329) Water Sampled: 03/29/08 17:15 04/03/08 10:50 EKK Q9 **Diesel Range Hydrocarbons** AK102_103 334 -----4.76 mg/l 50x 8D03027 04/08/08 13:17 318% 50 - 150 % ZXSurrogate(s): 2-FBP

TestAmerica Seattle

Blake Mains

Blake T. Meinert, Project Manager

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

99.7%

50 - 150 %

Page 6 of 31

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103 TestAmerica Seattle Analyte Method MRL Units Dil Batch Prepared Result MDL* Analyzed Analyst Notes BRD0022-06 Water Sampled: 03/29/08 15:45 (GEI-7-W-080329) 04/03/08 10:50 **Residual Range Organics** AK102_103 1.32 0.714 mg/l 1x 8D03027 04/07/08 19:53 FKK 117% 50 - 150 % 2-FBP Surrogate(s): 91.7% 50 - 150 % Octacosane Sampled: 03/29/08 15:45 Water BRD0022-06RE1 (GEI-7-W-080329) 04/03/08 10:50 EKK **Diesel Range Hydrocarbons** AK102 103 0.476 8D03027 04/08/08 13:46 Q1 44.2 mg/l 5x ----136% 50 - 150 % .. 2-FBP Surrogate(s): 90.1% 50 - 150 % Octacosane BRD0022-07 (GEI-8-W-080329) Water Sampled: 03/29/08 15:15 04/03/08 10:50 EKK 09 AK102_103 2.83 -----0.101 mg/l 1x 8D03027 04/07/08 20:22 **Diesel Range Hydrocarbons** .. 0.758 .. " FKK ND .. Residual Range Organics -----" 50 - 150 % Surrogate(s): 2-FBP 94 7% 50 - 150 % 102% Octacosane Water Sampled: 03/29/08 14:30 BRD0022-08 (GEI-9-W-080329) AK102_103 0.743 8D03027 04/03/08 10:50 04/07/08 20:51 FKK **Residual Range Organics** 0.839 ----mg/l 1x 129% 50 - 150 % 2-FBP Surrogate(s): Octacosane 94.6% 50 - 150 % BRD0022-08RE1 (GEI-9-W-080329) Water Sampled: 03/29/08 14:30 AK102 103 1.98 04/03/08 10:50 04/08/08 14:15 EKK Q9 **Diesel Range Hydrocarbons** 111 ----mg/l 20x 8D03027 121% Surrogate(s): 2-FBP 50 - 150 % 102% 50 - 150 % Octacosane Water Sampled: 03/29/08 06:00 BRD0022-09 (DUP-1-W-080329) 04/03/08 10:50 AK102_103 0.721 1x 8D03027 04/07/08 21:19 EKK 1.47 mg/l **Residual Range Organics** 131% 50 - 150 % Surrogate(s): 2-FBP 92.0% 50 - 150 % Octacosane

TestAmerica Seattle

Blake Macins

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207) Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103 TestAmerica Seattle

TestAmerica Seattle													
Analyte Method			Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
BRD0022-09RE1	(DUP-1-W-080329)		Water				Sampled	l: 03/29/08 06	:00				
Diesel Range Hydrocarbons AK102_103		AK102_103	51.4		0.962	mg/l	10x	8D03027	04/03/08 10:50	04/08/08 14:44	EKK	Q1	
Surrogate(s):	2-FBP		152%		50 - 150 % "		"			"	ZX		
	Octacosane			90.8%		50 - 1	50 %	"			"		

TestAmerica Seattle

Blake Macint

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Note								
BRD0022-01	(GEI-2-W-080329)		١	Vater		5	Sampleo	d: 03/29/08 1	6:30											
Benzene	× /	EPA 8021B	ND		0.500	ug/l	1x	8D08023	04/08/08 10:17	04/08/08 20:21	KMT									
Toluene			ND		0.500	"	"	"	"	"	KMT									
Ethylbenzene			ND		0.500	"	"	"	"	"	KMT									
Xylenes (total)		"	ND		1.00	"			"	"	KMT									
Surrogate(s):	4-BFB (PID)			101%	i	68 - 1	40 %	"			"									
BRD0022-02	(GEI-3-W-080329)		١	Vater		5	Sampleo	d: 03/29/08 1	7:00											
Benzene		EPA 8021B	ND		0.500	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 14:17	KMT									
Toluene		"	ND		0.500	"	"	"	"	"	KMT									
Ethylbenzene		"	5.01		0.500	"	"	"	"	"	KMT									
Xylenes (total)		"	16.0		1.00	"	"		"	"	KMT									
Surrogate(s):	4-BFB (PID)			117%	i	68 - 1	40 %	"			"									
BRD0022-03	(GEI-4-W-080329)	GEI-4-W-080329) Water Sampled: 03/29/08 16:15																		
Benzene		EPA 8021B 2.17 0.500 ug/l 1x 8D08023 04/08/08 10:17 04/09/08 14:50 KMT																		
Toluene		"	ND		0.500	"	"	"	"	"	KMT									
Ethylbenzene		"	4.16		0.500	"	"		"	"	KMT									
Kylenes (total)		"	9.20		1.00	"	"	"	"	"	KMT									
Surrogate(s):	4-BFB (PID)			124%		68 - 1	40 %	"			"									
BRD0022-04	(GEI-5-W-080329)		١	Vater		S	Sampleo	d: 03/29/08 1	8:00											
Benzene		EPA 8021B	ND		0.500	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 00:42	KMT									
Foluene		"	ND		0.500	"	"	"	"	"	KMT									
Ethylbenzene			ND		0.500	"	"	"	"	"	KMT									
Xylenes (total)		"	1.78		1.00	"	"		"	"	KMT									
Surrogate(s):	4-BFB (PID)			103%		68 - 1	40 %	"			"									
BRD0022-05RH	C1 (GEI-6-W-080329)	١	Vater		5	Sampleo	d: 03/29/08 1	7:15											
Benzene		EPA 8021B	8.41		2.50	ug/l	5x	8D10017	04/10/08 09:32	04/11/08 23:22	КМТ									
Foluene		"	ND		2.50	io " " " " H														
Ethylbenzene		"	33.8		2.50	"	"	"	"	"	KMT									
Xylenes (total)		"	128		5.00	"	"		"	"	KMT									
Surrogate(s)	4-RFR (PID)			108%		68 - 1	40 %	lr												

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name:
Project Number:
Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

BTEX by EPA Method 8021B TestAmerica Seattle														
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
BRD0022-06RE	C1 (GEI-7-W-080329)	I	V	Vater			Sampled	l: 03/29/08 1	5:45					
Benzene		EPA 8021B	31.1		5.00	ug/l	10x	8D10017	04/10/08 09:32	04/11/08 16:12	KMT			
Toluene			ND		5.00	"		"		"	KMT	RL1		
Ethylbenzene		"	90.5		5.00	"	"	"	"	"	KMT			
Xylenes (total)		"	147		10.0	"	"	"	"	"	KMT			
Surrogate(s):	4-BFB (PID)			111%		68 -	140 %	lx			"			
BRD0022-07	(GEI-8-W-080329)		v	Vater			Sampled	l: 03/29/08 1	5:15					
Benzene		EPA 8021B	ND		0.500	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 13:44	КМТ			
Toluene			ND		0.500	"		"	"	"	КМТ			
Ethylbenzene			ND		0.500	"		"	"	"	КМТ			
Xylenes (total)		"	1.94		1.00	"		"	"	"	KMT			
Surrogate(s): 4-BFB (PID) 103% 68 - 140 % "														
BRD0022-08RE	C1 (GEI-9-W-080329)		v	Vater			Sampled	l: 03/29/08 1	4:30					
Benzene		EPA 8021B	7.23 5.00 ug/l 10x 8D10017 04/10/08 09:32 04/11/08 16:45 KMT											
Toluene		"	ND		5.00	"		"	"	"	KMT	RL1		
Ethylbenzene		"	25.1		5.00	"		"	"	"	KMT			
Xylenes (total)		"	85.5		10.0	"	"	"	"	"	KMT			
Surrogate(s):	4-BFB (PID)			111%		68 -	140 %	lx			"			
BRD0022-09RE	C1 (DUP-1-W-080329))	V	Vater			Sampled	l: 03/29/08 0	6:00					
Benzene		EPA 8021B	26.8		5.00	ug/l	10x	8D10017	04/10/08 09:32	04/11/08 17:18	KMT			
Toluene			ND		5.00	"		"	"	"	KMT	RL1		
Ethylbenzene		"	85.2		5.00	"	"	"	"	"	KMT			
Xylenes (total)		"	131		10.0	"	"	"	"	"	KMT			
Surrogate(s):	4-BFB (PID)			113%		68 -	140 %	1x			"			
BRD0022-10	(QA-T-W-W-080329))	v	Vater			Sampled	l: 03/29/08 0	6:00					
Benzene		EPA 8021B	ND		0.500	ug/l	1x	8D08023	04/08/08 10:17	04/09/08 09:55	KMT			
Toluene		"	ND		0.500	"	"		"	"	KMT			
Ethylbenzene		"	ND		0.500	"	"		"	"	KMT			
Xylenes (total)		"	ND		1.00	"		"	"	"	KMT			
Surrogate(s):	4-BFB (PID)			98.9%		68 -	140 %	"			"			

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

BTEX by EPA Method 8021B TestAmerica Seattle Analyte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Analyst Notes Water Sampled: 03/29/08 18:10 BRD0022-11 (PW-W-080329) 04/08/08 10:17 KMT Benzene EPA 8021B 8.02 -----5.00 ug/l 10x 8D08023 04/09/08 15:23 " ., KMT Toluene .. 5.00 54.9 -----.. .. ., ., ., ., KMT 5.00 Ethylbenzene 27.6 -----" " .. " .. 10.0 " KMT Xylenes (total) 207 -----

Surrogate(s): 4-BFB (PID)

105%

68 - 140 %

1x

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

Total Metals by EPA 6000/7000 Series Methods TestAmerica Seattle														
Analyte	Analyte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Analyst Notes													
BRD0022-05	(GEI-6-W-080329)		Water Sampled: 03/29/08 17:15											
Lead		EPA 6010B	0.0588		0.0500	mg/l	1x	8D03048	04/03/08 14:48	04/04/08 14:14	WAS			
BRD0022-08	(GEI-9-W-080329)	Water Sampled: 03/29/08 14:30												
Lead		EPA 6010B 0.0894 0.0500 mg/l 1x 8D03048 04/03/08 14:48 04/04/08 14:17 WAS												

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B TestAmerica Seattle													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
BRD0022-05	(GEI-6-W-080329)		V	Water		,	Sampled	l: 03/29/08 1	7:15				
Acetone		EPA 8260B	ND		20.0	ug/l	1x	8D10055	04/10/08 17:26	04/11/08 00:15	EC		
Benzene		"	6.06		1.00	"	"	"		"	EC		
Bromobenzene			ND		1.00	"	"		"	"	EC		
Bromochlorometha	ine		ND		1.00	"	"			"	EC		
Bromodichloromet	hane		ND		1.00	"	"	"		"	EC		
Bromoform		"	ND		1.00	"				"	EC		
Bromomethane		"	ND		2.00	"				"	EC		
2-Butanone		"	ND		10.0	"		"	"	"	EC		
n-Butylbenzene		"	6.37		1.00	"	"	"		"	EC		
sec-Butylbenzene		"	5.08		1.00	"	"	"	"	"	EC		
tert-Butylbenzene		"	1.80		1.00	"	"	"	"	"	EC		
Carbon disulfide		"	ND		1.00	"	"			"	EC		
Carbon tetrachloric	le	"	ND		1.00	"	"		"	"	EC		
Chlorobenzene "		"	ND		1.00	"	"		"	"	EC		
Chloroethane		"	ND		1.00	"	"	"	"	"	EC		
1-Chlorohexane		"	ND		1.00	"	"	"	"	"	EC		
Chloroform			ND		1.00	"	"		"	"	EC		
Chloromethane			ND		5.00	"	"		"	"	EC		
2-Chlorotoluene			ND		1.00	"	"	"		"	EC		
4-Chlorotoluene			ND		1.00	"	"		"	"	EC		
Dibromochloromet	hane		ND		1.00	"	"	"		"	EC		
1,2-Dibromo-3-chl	oropropane		ND		5.00	"	"	"		"	EC		
1,2-Dibromoethane	2	"	ND		1.00	"				"	EC		
Dibromomethane		"	ND		1.00	"				"	EC		
1,2-Dichlorobenzer	ne	"	ND		1.00	"				"	EC		
1,3-Dichlorobenzer	ne	"	ND		1.00	"				"	EC		
1,4-Dichlorobenzer	ne	"	ND		1.00	"				"	EC		
Dichlorodifluorom	ethane	"	ND		1.00	"		"	"	"	EC		
1,1-Dichloroethane	•	"	ND		1.00	"		"	"	"	EC		
1,2-Dichloroethane	•	"	ND		1.00	"	"		"	"	EC		
1,1-Dichloroethene	•	"	ND		1.00	"	"		"	"	EC		
cis-1,2-Dichloroeth	nene	"	ND		1.00	"			"	"	EC		
trans-1,2-Dichloroe	ethene	"	ND		1.00	"			"	"	EC		
1,2-Dichloropropa	ne	"	ND		1.00	"			"	"	EC		
1,3-Dichloropropa	ne	"	ND		1.00	"			"	"	EC		
2,2-Dichloropropa	ne	"	ND		1.00	"			"	"	EC		

TestAmerica Seattle

1,1-Dichloropropene

Blake Macing

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

EC

Blake T. Meinert, Project Manager

1.00

ND

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B TestAmerica Seattle													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
BRD0022-05 (GEI-6-W-080329)		١	Vater		;	Sampled	l: 03/29/08 1	7:15					
cis-1,3-Dichloropropene	EPA 8260B	ND		1.00	ug/l	1x	8D10055	04/10/08 17:26	04/11/08 00:15	EC			
trans-1,3-Dichloropropene		ND		1.00		"	"		"	EC			
Ethylbenzene	"	20.2		1.00	"	"	"		"	EC			
Hexachlorobutadiene	"	ND		5.00			"			EC			
Methyl tert-butyl ether		ND		2.00		"			"	EC			
n-Hexane	"	ND		2.00			"			EC			
2-Hexanone	"	ND		10.0			"			EC			
Isopropylbenzene		6.04		1.00		"			"	EC			
p-Isopropyltoluene	"	13.6		1.00						EC			
4-Methyl-2-pentanone	"	ND		10.0			"			EC			
Methylene chloride		ND		5.00	"	"	"		"	EC			
n-Propylbenzene	"	5.83		1.00						EC			
Styrene	"	ND		1.00			"			EC			
1,2,3-Trichlorobenzene	"	ND		5.00	"	"	"		"	EC			
1,2,4-Trichlorobenzene	"	ND		5.00	"	"	"		"	EC			
1,1,1,2-Tetrachloroethane		ND		1.00		"	"		"	EC			
1,1,2,2-Tetrachloroethane	"	ND		1.00			"			EC			
Tetrachloroethene		ND		1.00						EC			
Toluene		ND		1.00		"	"			EC			
1.1.1-Trichloroethane	"	ND		1.00						EC			
1.1.2-Trichloroethane	"	ND		1.00						EC			
Trichloroethene		ND		1.00		"			"	EC			
Trichlorofluoromethane		ND		1.00		"			"	EC			
1.2.3-Trichloropropage		ND		1.00						EC			
1 3 5 Trimethylhenzene		86.8		1.00						EC			
Vinyl chloride		ND		1.00		"			"	EC			
o-Xvlene	"	15.2		1.00						EC			
m n-Xylene	"	88.4		2.00						EC			
Total Xylenes	"	104		3.00		"		"	"	EC			
Surrogate(s): 1.2-DCA-d4			107%		70	130 %	"			"			
Toluene-d8			101%		75	125 %	"			"			
4-BFB			101%		75	125 %	"			"			

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B TestAmerica Seattle													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
BRD0022-05RE	1 (GEI-6-W-08032	29)	,	Water		Ş	Sample	d: 03/29/08 1	7:15				
Naphthalene	`	EPA 8260B	130		25.0	ug/l	5x	8D11008	04/11/08 16:36	04/12/08 00:05	KPS		
1,2,4-Trimethylbe	nzene	"	187		5.00		"	"	"	"	KPS		
Surrogate(s):	1,2-DCA-d4			98.6%		70 - 1	130 %	lx			"		
	Toluene-d8			101%		75 - 1	125 %	"			"		
	4-BFB			100%		75 - 1	125 %	"			"		
BRD0022-08	(GEI-9-W-080329)		•	Water		1	Sample	d: 03/29/08 1	4:30				
Acetone	· · · · · · · · · · · · · · · · · · ·	EPA 8260B	ND		20.0	ug/l	1x	8D10055	04/10/08 17:26	04/11/08 00:40	EC		
Benzene		"	8.58		1.00		"	"		"	EC		
Bromobenzene		"	ND		1.00	"		"		"	EC		
Bromochlorometha	ine	"	ND		1.00			"		"	EC		
Bromodichloromet	hane	"	ND		1.00	"		"		"	EC		
Bromoform		"	ND		1.00	"		"		"	EC		
Bromomethane	Bromomethane "		ND		2.00	"				"	EC		
2-Butanone	-Butanone "		ND		10.0			"		"	EC		
i-Butylbenzene "		"	21.1		1.00	"	"	"		"	EC		
sec-Butylbenzene		"	11.2		1.00		"	"		"	EC		
tert-Butylbenzene		"	1.47		1.00	"	"	"		"	EC		
Carbon disulfide		"	ND		1.00	"	"	"		"	EC		
Carbon tetrachlorid	le	"	ND		1.00	"	"			"	EC		
Chlorobenzene		"	ND		1.00	"	"	"		"	EC		
Chloroethane		"	ND		1.00	"	"	"		"	EC		
1-Chlorohexane		"	ND		1.00	"	"	"		"	EC		
Chloroform		"	ND		1.00	"		"		"	EC		
Chloromethane		"	ND		5.00	"		"		"	EC		
2-Chlorotoluene		"	ND		1.00	"	"	"		"	EC		
4-Chlorotoluene		"	ND		1.00	"		"		"	EC		
Dibromochloromet	hane	"	ND		1.00	"		"		"	EC		
1,2-Dibromo-3-chl	oropropane	"	ND		5.00	"		"		"	EC		
1,2-Dibromoethane	2	"	ND		1.00	"	"	"		"	EC		
Dibromomethane		"	ND		1.00	"	"	"		"	EC		
1,2-Dichlorobenzer	ne	"	ND		1.00	"		"		"	EC		
1,3-Dichlorobenzer	ne	"	ND		1.00			"	"	"	EC		
1,4-Dichlorobenzer	ne	"	ND		1.00			"	"	"	EC		
Dichlorodifluorom	ethane	"	ND		1.00			"	"	"	EC		
1,1-Dichloroethane	;	"	ND		1.00	"		"	"	"	EC		
1,2-Dichloroethane	;	"	ND		1.00	"					EC		

TestAmerica Seattle

Blake Macunt

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B TestAmerica Seattle													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
BRD0022-08 (GEI-9-W-080329	9)	v	Water		5	Sampled	1: 03/29/08 1	4:30					
1,1-Dichloroethene	EPA 8260B	ND		1.00	ug/l	1x	8D10055	04/10/08 17:26	04/11/08 00:40	EC			
cis-1,2-Dichloroethene	"	ND		1.00	"		"	"	"	EC			
trans-1,2-Dichloroethene	"	ND		1.00			"		"	EC			
1,2-Dichloropropane	"	ND		1.00			"		"	EC			
1,3-Dichloropropane	"	ND		1.00			"		"	EC			
2,2-Dichloropropane	"	ND		1.00	"		"	"	"	EC			
1,1-Dichloropropene	"	ND		1.00			"		"	EC			
cis-1,3-Dichloropropene	"	ND		1.00	"	"	"	"	"	EC			
trans-1,3-Dichloropropene	"	ND		1.00	"		"	"	"	EC			
Ethylbenzene	"	32.1		1.00	"	"			"	EC			
Hexachlorobutadiene	"	ND		5.00	"		"	"	"	EC			
Methyl tert-butyl ether	"	ND		2.00			"		"	EC			
n-Hexane	"	ND		2.00			"		"	EC			
2-Hexanone	"	ND		10.0			"		"	EC			
Isopropylbenzene "		20.3		1.00	"	"	"	"	"	EC			
p-Isopropyltoluene	"	13.0		1.00	"	"	"	"	"	EC			
4-Methyl-2-pentanone	"	ND		10.0			"	"	"	EC			
Methylene chloride	"	ND		5.00			"	"	"	EC			
Naphthalene	"	95.1		5.00	"	"			"	EC			
n-Propylbenzene	"	31.8		1.00	"	"	"	"	"	EC			
Styrene	"	ND		1.00	"	"	"	"	"	EC			
1,2,3-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	EC			
1,2,4-Trichlorobenzene	"	ND		5.00	"	"	"	"	"	EC			
1,1,1,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	EC			
1,1,2,2-Tetrachloroethane	"	ND		1.00	"	"	"	"	"	EC			
Tetrachloroethene	"	ND		1.00	"	"	"		"	EC			
Toluene	"	ND		1.00	"	"	"		"	EC			
1,1,1-Trichloroethane	"	ND		1.00			"	"	"	EC			
1,1,2-Trichloroethane	"	ND		1.00			"	"	"	EC			
Trichloroethene	"	ND		1.00	"	"	"	"	"	EC			
Trichlorofluoromethane	"	ND		1.00	"	"	"	"	"	EC			
1,2,3-Trichloropropane	"	ND		1.00		"	"		"	EC			
1,3,5-Trimethylbenzene	"	69.9		1.00		"	"	"	"	EC			
Vinyl chloride	"	ND		1.00	"		"	"	"	EC			
o-Xylene	"	28.8		1.00		"		"	"	EC			
m,p-Xylene	"	70.0		2.00	"	"	"	"	"	EC			
Total Xylenes	"	98.8		3.00	"	"	"	"		EC			

TestAmerica Seattle

Blake Mains

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102

4-BFB

Project Name: Project Number: Project Manager: 306443 (Former Unocal 0207)

Chevron Alaska Sampling Mike Strickler Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B TestAmerica Seattle													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
BRD0022-08 (GEI-9-W-080329) Water							Sample	ed: 03/29/08 1	14:30				
Surrogate(s):	1,2-DCA-d4			i	70 -	130 %	lx		04/11	//08 00:40			
	Toluene-d8			97.8%			125 %	"			"		
	1 oluene-as 4-BFB			97.2%				"			"		
BRD0022-08RE	1 (GEI-9-W-080329)	I	•			Sample	ed: 03/29/08 1	14:30					
1,2,4-Trimethylber	nzene	EPA 8260B	169		5.00	ug/l	5x	8D11008	04/11/08 16:36	04/12/08 00:34	KPS		
Surrogate(s):	urrogate(s): 1,2-DCA-d4 96.0%			70 - 130 % 1x					"				
	Toluene-d8			102%		75 -	125 %	"			"		

75 - 125 %

103%

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207) Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Gasoline Range Hydrocarbons (n-Hexane to <n-Decane) by AK101 - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D08023 Water Preparation Method: EPA 5030B (P/T) [₩] (Limits) Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes RPD Result Amt Blank (8D08023-BLK1) Extracted: 04/08/08 10:17 AK 101 50.0 04/08/08 16:32 Gasoline Range Hydrocarbons ND 1x --------ug/l ------Limits: 60-120% " 04/08/08 16:32 Surrogate(s): 4-BFB (FID) Recovery: 87.6% LCS (8D08023-BS1) Extracted: 04/08/08 10:17 04/08/08 17:05 Gasoline Range Hydrocarbons AK 101 1060 50.0 1000 106% --ug/l 1x ---(60-120) ------Surrogate(s): 4-BFB (FID) Recovery: 93.7% Limits: 60-120% " 04/08/08 17:05 LCS Dup (8D08023-BSD1) Extracted: 04/08/08 10:17 Gasoline Range Hydrocarbons AK 101 921 50.0 1000 92.1% 13.7% (20) --ug/l 1x ---(60-120) 04/08/08 17:38 Surrogate(s): 4-BFB (FID) Recovery: 94.7% Limits: 60-120% " 04/08/08 17:38 Duplicate (8D08023-DUP1) QC Source: BRD0050-02 Extracted: 04/08/08 10:17 AK 101 Gasoline Range Hydrocarbons 61.2 ----50.0 ug/l 1x 65.1 ---------6.19% (20) 04/08/08 19:49 Surrogate(s): 4-BFB (FID) Recovery: 87.7% Limits: 60-120% " 04/08/08 19:49 Duplicate (8D08023-DUP2) QC Source: BRD0050-03 Extracted: 04/08/08 10:17 Gasoline Range Hydrocarbons AK 101 108 ---50.0 ug/l 1x 110 ___ ---2.46% (20) 04/09/08 00:09 Surrogate(s): 4-BFB (FID) Recovery: 92.7% Limits: 60-120% " 04/09/08 00:09 Matrix Spike (8D08023-MS1) QC Source: BRD0050-02 Extracted: 04/08/08 10:17 Gasoline Range Hydrocarbons AK 101 1120 50.0 ug/l 1x 65.1 1000 105% (60-120) 04/08/08 20:54 ---------Surrogate(s): 4-BFB (FID) Recovery: 94.9% Limits: 60-120% " 04/08/08 20:54 Matrix Spike Dup (8D08023-MSD1) QC Source: BRD0050-02 Extracted: 04/08/08 10:17 AK 101 Gasoline Range Hydrocarbons 1050 50.0 1x 65.1 1000 98.4% (60-120) 6.23% (20) 04/08/08 21:26 --ug/l Surrogate(s): 4-BFB (FID) Recovery: 95.5% Limits: 60-120% " 04/08/08 21:26

TestAmerica Seattle

Blake Macins

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207) Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Gasoline Range Hydrocarbons (n-Hexane to <n-Decane) by AK101 - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D10017 Water Preparation Method: EPA 5030B (P/T) [₩] (Limits) Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes RPD Result Amt Blank (8D10017-BLK1) Extracted: 04/10/08 09:32 AK 101 50.0 04/11/08 00:17 Gasoline Range Hydrocarbons ND 1x --------ug/l ------Limits: 60-120% " 04/11/08 00:17 Surrogate(s): 4-BFB (FID) Recovery: 90.4% LCS (8D10017-BS1) Extracted: 04/10/08 09:32 1000 92.7% (60-120) Gasoline Range Hydrocarbons AK 101 927 50.0 04/11/08 00:50 --ug/l 1x ---------Surrogate(s): 4-BFB (FID) Recovery: 100% Limits: 60-120% " 04/11/08 00:50 Extracted: 04/10/08 09:32 LCS Dup (8D10017-BSD1) (60-120) Gasoline Range Hydrocarbons AK 101 50.0 1000 87.0% 6.38% (20) 04/11/08 01:22 870 --ug/l 1x ---04/11/08 01:22 Surrogate(s): 4-BFB (FID) Recovery: 98.0% Limits: 60-120% " Duplicate (8D10017-DUP1) QC Source: BRD0117-01 Extracted: 04/10/08 09:32 AK 101 Gasoline Range Hydrocarbons 3070 ----50.0 ug/l 1x 3250 ---------5.81% (20) 04/11/08 03:34 Surrogate(s): 4-BFB (FID) Recovery: 128% Limits: 60-120% " 04/11/08 03:34 ZX Duplicate (8D10017-DUP2) QC Source: BRD0117-07 Extracted: 04/10/08 09:32 Gasoline Range Hydrocarbons AK 101 ND ---50.0 ug/l 1x ND ------34.6% (20) 04/11/08 22:49 R4 ---Surrogate(s): 4-BFB (FID) Recovery: 91.8% Limits: 60-120% " 04/11/08 22:49 Matrix Spike (8D10017-MS1) QC Source: BRD0117-01 Extracted: 04/10/08 09:32 Gasoline Range Hydrocarbons AK 101 4140 50.0 ug/l 1x 3250 1000 88.7% (60-120) 04/11/08 04:40 ---------Surrogate(s): 4-BFB (FID) Recovery: 139% Limits: 60-120% " 04/11/08 04:40 ZX

TestAmerica Seattle

Blake Macins

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207) Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Diesel Hydrocarbons (C10-C25) and Heavy Oil (C25-C36) by AK102 and AK103 - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8D03027	Water	Preparation	n Method: E	PA 35200	Ç									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8D03027-BLK1)								Ext	racted:	04/03/08 10	:50			
Diesel Range Hydrocarbons	AK102_103	ND		0.100	mg/l	1x							04/07/08 13:32	
Residual Range Organics	"	ND		0.750	"								"	
Surrogate(s): 2-FBP		Recovery:	75.7%	Lii	nits: 50-150%	"							04/07/08 13:32	
Octacosane			98.2%		50-150%	"							"	
LCS (8D03027-BS1)								Ext	racted:	04/03/08 10	:50			
Diesel Range Hydrocarbons	AK102_103	1.84		0.100	mg/l	1x		2.00	92.1%	(75-125)			04/07/08 14:02	
Residual Range Organics	"	1.87		0.750	"				93.7%	(60-120)			"	
Surrogate(s): 2-FBP Octacosane		Recovery:	91.5% 92.9%	Lii	mits: 50-150% 50-150%	"							04/07/08 14:02 "	
LCS Dup (8D03027-BSD1)								Ext	racted:	04/03/08 10	:50			
Diesel Range Hydrocarbons	AK102_103	1.87		0.100	mg/l	1x		2.00	93.5%	(75-125)	1.57%	6 (20)	04/07/08 14:31	
Residual Range Organics	"	1.89		0.750	"			"	94.5%	(60-120)	0.8839	% "	"	
Surrogate(s): 2-FBP		Recovery:	87.0%	Lii	nits: 50-150%	"							04/07/08 14:31	
Octacosane			95.5%		50-150%	"							"	

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

BTEX by EPA Method 8021B - Laboratory Quality Control Results TestAmerica Seattle														
QC Batch: 8D08023	Water	Preparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (8D08023-BLK1)								Extr	acted:	04/08/08 10):17			
Benzene	EPA 8021B	ND		0.500	ug/l	1x							04/08/08 16:32	
Toluene	"	ND		0.500	"									
Ethylbenzene	"	ND		0.500	"									
Xylenes (total)	"	ND		1.00	"									
Surrogate(s): 4-BFB (PID)		Recovery:	100%	Lin	nits: 68-140	% "							04/08/08 16:32	
LCS (8D08023-BS2)								Extr	acted:	04/08/08 10):17			
Benzene	EPA 8021B	30.1		0.500	ug/l	1x		30.0	100%	(80-120)			04/08/08 18:10	
Toluene	"	29.8		0.500				"	99.3%					
Ethylbenzene	"	29.8		0.500	"			"	99.3%					
Xylenes (total)	"	92.2		1.00	"			90.0	102%					
Surrogate(s): 4-BFB (PID)		Recovery:	99.4%	Lin	nits: 68-140	% "							04/08/08 18:10	
LCS Dup (8D08023-BSD2)								Extr	acted:	04/08/08 10	:17			
Benzene	EPA 8021B	29.1		0.500	ug/l	1x		30.0	97.1%	(80-120)	3.28%	(25)	04/08/08 18:43	
Toluene	"	28.8		0.500				"	96.0%		3.39%	, "		
Ethylbenzene	"	28.8		0.500	"			"	95.9%		3.47%	, "		
Xylenes (total)	"	89.4		1.00	"			90.0	99.3%		3.05%	, "		
Surrogate(s): 4-BFB (PID)		Recovery:	100%	Lin	nits: 68-140	% "							04/08/08 18:43	
Duplicate (8D08023-DUP1)				QC Source:	BRD0050-	-02		Extr	acted:	04/08/08 10	:17			
Benzene	EPA 8021B	1.11		0.500	ug/l	1x	1.18				6.46%	(25)	04/08/08 19:49	
Toluene	"	ND		0.500	"		ND				21.2%	, "		
Ethylbenzene	"	ND		0.500	"		ND				NR	"		
Xylenes (total)	"	ND		1.00	"		ND				19.3%	, "		
Surrogate(s): 4-BFB (PID)		Recovery:	99.8%	Lin	nits: 68-140	% "							04/08/08 19:49	
Duplicate (8D08023-DUP2)				QC Source: BRD0050-03 Extracted: 04/08/08 10:17										
Benzene	EPA 8021B	1.06		0.500	ug/l	1x	1.12				4.68%	(25)	04/09/08 00:09	
Toluene	"	8.13		0.500		"	8.25				1.44%	, "		
Ethylbenzene	"	2.46		0.500	"	"	2.52				2.09%	, "		
Xylenes (total)	"	23.2		1.00		"	23.8				2.36%	, "		
Surrogate(s): 4-BFB (PID)		Recovery:	103%	Lin	nits: 68-140	% "							04/09/08 00:09	

TestAmerica Seattle

Blake Macunt

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

BTEX by EPA Method 8021B - Laboratory Quality Control Results TestAmerica Seattle Water Preparation Method: QC Batch: 8D08023 EPA 5030B (P/T) Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD Result Amt REC Matrix Spike (8D08023-MS2) QC Source: BRD0050-03 Extracted: 04/08/08 10:17 EPA 8021B 34.1 Benzene 0 500 1.12 30.0 110% 04/09/08 03:57 --ug/l 1x (46 - 130)---Toluene .. 39.7 0.500 8.25 105% (60-124) ---------.. 0.500 2.52 Ethylbenzene 35.5 110% (56-141) -------.. 1.00 Xvlenes (total) 121 23.8 108% (66-132) 90.0 ---------Surrogate(s): 4-BFB (PID) Recoverv: 102% Limits: 68-140% 04/09/08 03:57 Matrix Spike Dup (8D08023-MSD2) QC Source: BRD0050-03 Extracted: 04/08/08 10:17 EPA 8021B Benzene 33.8 0.500 1.12 30.0 109% 04/09/08 04:29 1x (46 - 130)1.01% (40) --ug/l Toluene 39.2 0.500 8.25 103% (60-124)1.43% ---.. Ethylbenzene 34.6 0.500 2.52 107% 2.40% (56-141).. 1.00 Xylenes (total) 119 23.8 106% 1.56% ---90.0 (66-132) ,, 04/09/08 04:29 4-BFB (PID) Limits: 68-140% Surrogate(s): Recovery: 101% QC Batch: 8D10017 Water Preparation Method: EPA 5030B (P/T) Source Spike % MDL* Dil Method Result MRL Units (Limits) (Limits) Analyzed Analyte Notes RPD REC Result Amt (8D10017-BLK1) Extracted: 04/10/08 09:32 Blank EPA 8021B 04/11/08 00:17 Benzene ND 0.500 1x ug/l ---------ND 0.500 Toluene -------------------Ethylbenzene ND 0.500 ---------____ .. 1.00 Xylenes (total) ND ---04/11/08 00:17 Surrogate(s): 4-BFB (PID) Recovery. 101% Limits: 68-140% " Extracted: 04/10/08 09:32 LCS (8D10017-BS2) Benzene EPA 8021B 28.3 ---0.500 ug/l 1x ---30.0 94.4% (80-120) 04/11/08 01:55 ---... Toluene 30.6 0.500 ---102% --------Ethylbenzene 30.8 ----0.500 ---103% ------Xylenes (total) 93.4 ---1.00 ---90.0 104% ___ ___ Surrogate(s): 4-BFB (PID) 106% Limits: 68-140% " 04/11/08 01:55 Recovery: LCS Dup (8D10017-BSD2) Extracted: 04/10/08 09:32 EPA 8021B 27.7 0.500 92.5% (80-120) 2.04% (25) 04/11/08 02:28 Benzene ug/l 1x 30.0, Toluene 29.8 0.500 99.4% 2.43% ------.. 0.500 101% Ethylbenzene 30.2 ------1 95% ., Xylenes (total) 91.7 1.00 90.0 102% 1.74% ------4-BFB (PID) Limits: 68-140% 04/11/08 02:28 Surrogate(s): Recovery. 106% "

TestAmerica Seattle

Blake Macin

Blake T. Meinert, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

	BI	TEX by EF	A Method 8	021B - TestAmeri	Laborat ca Seattle	ory Qua	ulity Con	trol R	esults					
QC Batch: 8D10017	Water I	Preparation	Method: E	PA 5030B	6 (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Duplicate (8D10017-DUP1)				QC Source:	: BRD0117	-01		Ext	racted:	04/10/08 09	:32			
Benzene	EPA 8021B	6.44		0.500	ug/l	1x	6.76				4.85%	(25)	04/11/08 03:34	
Toluene	"	ND		0.500		"	0.652				38.0%	"		R
Ethylbenzene	"	2.06		0.500		"	2.30				11.0%	"	"	
Xylenes (total)	"	11.6		1.00		"	12.3				5.47%	"		
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lii	nits: 68-140	9% "							04/11/08 03:34	
Duplicate (8D10017-DUP2)				QC Source:	BRD0117	-07		Ext	racted:	04/10/08 09	:32			
Benzene	EPA 8021B	ND		0.500	ug/l	1x	ND				NR	(25)	04/11/08 22:49	
Toluene	"	ND		0.500		"	ND				NR	"	"	
Ethylbenzene	"	ND		0.500		"	ND				NR	"		
Xylenes (total)	"	ND		1.00		"	ND				NR	"		
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lir	nits: 68-140	9% "							04/11/08 22:49	
Matrix Spike (8D10017-MS2)				QC Source:	: BRD0117	-07		Ext	racted:	04/10/08 09	:32			
Benzene	EPA 8021B	32.9		0.500	ug/l	1x	0.117	30.0	109%	(46-130)			04/11/08 23:54	
Toluene	"	27.7		0.500		"	ND	"	92.3%	(60-124)			"	
Ethylbenzene	"	38.7		0.500		"	ND		129%	(56-141)			"	
Xylenes (total)	"	101		1.00	"	"	ND	90.0	113%	(66-132)			"	
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Liı	nits: 68-140	% "							04/11/08 23:54	

TestAmerica Seattle

Blake Maint

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100

Seattle, WA/USA 98102

Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

	Total Metal	s by EPA 60	000/7000 S	eries Me TestAmeri	thods - ca Seattle	Labora	itory Qu	ality C	ontro	l Result	5			
QC Batch: 8D03048	Water P	reparation M	lethod: E	PA 3010A	L									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8D03048-BLK1)								Ext	racted:	04/03/08 14	4:48			
Lead	EPA 6010B	ND		0.0500	mg/l	1x							04/04/08 13:14	
LCS (8D03048-BS1)								Ext	racted:	04/03/08 14	4:48			
Lead	EPA 6010B	5.34		0.0500	mg/l	1x		5.00	107%	(80-120)			04/04/08 13:18	
Duplicate (8D03048-DUP1)				QC Source:	BRC0530	-01RE1		Ext	racted:	04/03/08 14	4:48			
Lead	EPA 6010B	ND		0.0500	mg/l	1x	ND				4.44%	(20)	04/04/08 13:25	
Matrix Spike (8D03048-MS1)				QC Source:	BRC0530	-01RE1		Ext	racted:	04/03/08 14	4:48			
Lead	EPA 6010B	5.19		0.0500	mg/l	1x	0.00660	5.00	104%	(80-120)			04/04/08 13:21	
Post Spike (8D03048-PS1)				QC Source	BRC0530	-01RE1		Ext	racted:	04/03/08 14	4:48			
Lead	EPA 6010B	4.95			ug/ml	1x	0.00660	5.00	98.8%	(75-125)			04/04/08 13:28	

TestAmerica Seattle

Blake Maint

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D10055 Water Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD REC Result Amt Blank (8D10055-BLK1) Extracted: 04/10/08 17:26 EPA 8260B 04/10/08 23:24 Acetone ND ---20.0 ug/l 1x ------ND 1.00 Benzene ---... ND 1.00 Bromobenzen --------.. ... Bromochloromethane ND 1.00 -----------------Bromodichloromethane ND 1.00 ---------Bromoform ND 1.00 Bromomethane ND 2.00 --2-Butanone ND 10.0-----____ ------ND 1.00 n-Butylbenzene --sec-Butylbenzene ND 1.00 --tert-Butylbenzene ND 1.00 --------------Carbon disulfide ND 1.00 ------___ ---------Carbon tetrachloride ND 1.00 ___ ___ ---Chlorobenzene ND 1.00 ---Chloroethane ND 1.00 ---____ -----1-Chlorohexane ND 1.00 ---____ Chloroform ND 1.00 ---Chloromethane ND 5.00 ____ ---------------2-Chlorotoluene ND 1.00 ---------4-Chlorotoluene ND 1.00 Dibromochloromethane ND 1.00 ---1.2-Dibromo-3-chloropropane ND 5.00 ____ --------1,2-Dibromoethane ND 1.00 ---Dibromomethane ND 1.00 1,2-Dichlorobenzene ND 1.00 --------------1,3-Dichlorobenzene ND 1.00 ---------------1,4-Dichlorobenzene ND 1.00 ---Dichlorodifluoromethane ND 1.00 1.00 1,1-Dichloroethane ND -------------1,2-Dichloroethane ND ---1.00 --___ -----------1.1-Dichloroethene ND 1.00 cis-1.2-Dichloroethene ND 1.00 --------------trans-1.2-Dichloroethene ND ---1.00 ---------------1,2-Dichloropropane ND 1.00 ____ ------1,3-Dichloropropane ND 1.00 2.2-Dichloropropane ND 1.00 ---___ ------1,1-Dichloropropene ND 1.00 ___ ---___ ---ND 1.00 cis-1,3-Dichloropropene

TestAmerica Seattle

trans-1,3-Dichloropropene

Blake Macing

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Blake T. Meinert, Project Manager

1.00

ND

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D10055 Water Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) RPD REC Result Amt Blank (8D10055-BLK1) Extracted: 04/10/08 17:26 EPA 8260B 04/10/08 23.24 ND 1.00 Ethylbenzene --ug/l 1x ---_ ___ ---Hexachlorobutadiene ND 5.00 ---.. ... Methyl tert-butyl ether ND 2.00 ---------.. ... ND n-Hexane 2.00 -----------------.. 2-Hexanone ND 10.0 ------------.. Isopropylbenzene ND 1.00 ... p-Isopropyltoluene ND 1.00 ---------4-Methyl-2-pentanone ND 10.0----------------Methylene chloride ND 5.00 --------Naphthalene ND 5.00 --n-Propylbenzene ND 1.00 -----------Styrene ND 1.00 ------------------1,2,3-Trichlorobenzene ND 5.00 ___ ___ ___ ___ ---1,2,4-Trichlorobenzene ND 5.00 ---1112-Tetrachloroethane ND 1.00 -----------1,1,2,2-Tetrachloroethane ND 1.00 ------____ ---ND 1.00 Tetrachloroethene ---------ND .. Toluene 1.00 ---------------.. 1.1.1-Trichloroethane ND 1.00 ---------1,1,2-Trichloroethane ND 1.00 ------Trichloroethene ND 1.00 ---ND 1.00 Trichlorofluoromethane ____ --------------1,2,3-Trichloropropane ND 1.00 ---1,2,4-Trimethylbenzene ND 1.00 ---1,3,5-Trimethylbenzene 1.00 ND ---------------Vinyl chloride ND 1.00 ------------o-Xylene ND 1.00 ___ ---.. 2.00 m,p-Xylene ND ND ----3.00 ------------Total Xylenes ------1,2-DCA-d4 Limits: 70-130% ,, 04/10/08 23:24 Surrogate(s): Recovery: 105% Toluene-d8 95.0% 75-125% 4-BFB 100% 75-125%

TestAmerica Seattle

Blake Mainst

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D10055 Water Preparation Method: EPA 5030B Source Spike 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt LCS (8D10055-BS1) Extracted: 04/10/08 17:26 EPA 8260B 04/10/08 21:43 40.5 1.00 40.0 101% Benzene --ug/l 1x ---(80-120) ---Chlorobenzene .. 39.3 1.00 .. 98.2% ---.. 115% (75-125) ... 1,1-Dichloroethene 46.0 1.00 --------.. 104% ... Methyl tert-butyl ether 41.7 2.00 (75-126) ------.. 1.00 97.5% (75-125) Toluene 39.0 ---.. Trichloroethene 39.9 1.00 99.7% 3.00 Total Xylenes 120 120 100% ---Surrogate(s): 1,2-DCA-d4 Recovery: 99.1% Limits: 70-130% 04/10/08 21:43 Toluene-d8 97.8% 75-125% ,, 98.2% 75-125% 4-BFB LCS Dup (8D10055-BSD1) Extracted: 04/10/08 17:26 EPA 8260B 417 04/10/08 22:08 1.00 40.0 104% Benzene --ug/l 1x(80-120)2.87% (20)---Chlorobenzene .. 40.8 1.00 " 102% 3.62% ., ---.. 1.00 ., 116% 1,1-Dichloroethene 46.5 (75-125) 1.06% ------., ., ... Methyl tert-butyl ether 42.2 2.00 106% (75-126) -----1.31% " Toluene 40.7 1.00102% (75-125) 4.29% " --" 41.0 1.00 .. 102% " Trichloroethene 2.70% 3.00 ... 104% .. 125 ---120 3.90% Total Xylenes ---1,2-DCA-d4 04/10/08 22:08 99.0% Limits: 70-130% Surrogate(s): Recovery: Toluene-d8 99.4% 75-125% " 4-BFB 97.2% 75-125%

TestAmerica Seattle

Blake Mains

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D11008 Water Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD REC Result Amt Blank (8D11008-BLK1) Extracted: 04/11/08 16:36 EPA 8260B 04/11/08 23:37 Acetone ND ---20.0 ug/l 1x ------ND 1.00 Benzene ---.. ND 1.00 Bromobenzen --------.. ... Bromochloromethane ND 1.00 -----------------Bromodichloromethane ND 1.00 ---------Bromoform ND 1.00 Bromomethane ND 2.00 --2-Butanone ND 10.0-----____ ------ND 1.00 В n-Butylbenzene -----sec-Butylbenzene ND 1.00 --tert-Butylbenzene ND 1.00 --------------Carbon disulfide ND 1.00 ------___ ---------Carbon tetrachloride ND 1.00 ___ ___ ---Chlorobenzene ND 1.00 ---Chloroethane ND 1.00 ---____ -----1-Chlorohexane ND 1.00 ---____ Chloroform ND 1.00 ---Chloromethane ND 5.00 ____ ---------------2-Chlorotoluene ND 1.00 ---------4-Chlorotoluene ND 1.00 Dibromochloromethane ND 1.00 ---1.2-Dibromo-3-chloropropane ND 5.00 ____ -----------1,2-Dibromoethane ND 1.00 ---Dibromomethane ND 1.00 1,2-Dichlorobenzene ND 1.00 --------------В 1,3-Dichlorobenzene ND 1.00 ---------------1,4-Dichlorobenzene ND 1.00 ---Dichlorodifluoromethane ND 1.00 1.00 1,1-Dichloroethane ND --------------1,2-Dichloroethane ND ---1.00 --___ -----------1.1-Dichloroethene ND 1.00 cis-1.2-Dichloroethene ND 1.00 --------------trans-1.2-Dichloroethene ND ---1.00 ---------------1,2-Dichloropropane ND 1.00 ____ ------1,3-Dichloropropane ND 1.00 2.2-Dichloropropane ND 1.00 ---___ ------1,1-Dichloropropene ND 1.00 ___ ---___ ---ND 1.00 cis-1,3-Dichloropropene

TestAmerica Seattle

trans-1,3-Dichloropropene

Blake Macing

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

1.00

ND

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D11008 Water Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) RPD REC Result Amt Blank (8D11008-BLK1) Extracted: 04/11/08 16:36 EPA 8260B 04/11/08 23:37 ND 1.00 Ethylbenzene --ug/l 1x ---_ ---___ ---Hexachlorobutadiene ND 5.00 ---.. ... Methyl tert-butyl ether ND 2.00 ---------.. ... ND n-Hexane 2.00 -----------------... 2-Hexanone ND 10.0 в ------------Isopropylbenzene ND 1.00 p-Isopropyltoluene ND 1.00 ---------4-Methyl-2-pentanone ND 10.0----------------Methylene chloride ND 5.00 --------Naphthalene ND 5.00 --n-Propylbenzene ND 1.00 -----------Styrene ND 1.00 ------------------1,2,3-Trichlorobenzene ND 5.00 ___ ___ ___ ___ ---1,2,4-Trichlorobenzene ND 5.00 ---1112-Tetrachloroethane ND 1.00 -----------1,1,2,2-Tetrachloroethane ND 1.00 ------____ ---ND 1.00 Tetrachloroethene ---------ND .. Toluene 1.00 ---------------.. 1.1.1-Trichloroethane ND 1.00 ---------1,1,2-Trichloroethane ND 1.00 ------Trichloroethene ND 1.00 ---ND 1.00 Trichlorofluoromethane ____ --------------1,2,3-Trichloropropane ND 1.00 ---1,2,4-Trimethylbenzene ND 1.00 ---1,3,5-Trimethylbenzene 1.00 ND ---------------Vinyl chloride ND 1.00 ------------o-Xylene ND 1.00 ___ ---.. 2.00 m,p-Xylene ND ND ----3.00 ------------Total Xylenes ------1,2-DCA-d4 Limits: 70-130% ,, 04/11/08 23:37 Surrogate(s): Recovery: 99.9% Toluene-d8 104% 75-125% 4-BFB 106% 75-125%

TestAmerica Seattle

Blake Mainst

Blake T. Meinert, Project Manager

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager: **306443 (Former Unocal 0207)** Chevron Alaska Sampling Mike Strickler

Report Created: 04/16/08 16:22

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8D11008 Water Preparation Method: EPA 5030B Source Spike 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt LCS (8D11008-BS1) Extracted: 04/11/08 16:36 EPA 8260B 38.5 04/11/08 20:30 1.00 40.0 96.2% Benzene --ug/l 1x ---(80-120)---Chlorobenzene .. 37.8 1.00 .. 94.5% ---.. 98.6% (75-125) ... 1,1-Dichloroethene 39.5 1.00 -----.. ... Methyl tert-butyl ether 35.4 2.00 88.6% (75-126) ---------.. 1.00 (75-125) Toluene 38.2 95.4% ---.. Trichloroethene 36.9 1.00 92.4% 3.00 .. 103% Total Xylenes 124 120 Surrogate(s): 1,2-DCA-d4 Recovery: 89.8% Limits: 70-130% 04/11/08 20:30 Toluene-d8 104% 75-125% " 75-125% 4-BFB 101% LCS Dup (8D11008-BSD1) Extracted: 04/11/08 16:36 EPA 8260B 39.2 1.00 98.1% 1.90% (20) 04/11/08 20:59 Benzene --ug/l 1x40.0 (80-120) ---Chlorobenzene .. 37.9 1.00 " 94.8% 0.370% " .. ---.. 1.00 1,1-Dichloroethene 40.5 101% (75-125) 2.50% ------., ., ... (75-126) 8.25% Methyl tert-butyl ether 38.5 2.00 -----96.2% " " Toluene 37.9 1.0094.8% (75-125) 0.604% --" 37.3 1.00 ., 93.2% 0.916% " Trichloroethene 3.00 ... 103% 0.275% " 123 ---120 Total Xylenes ---1,2-DCA-d4 04/11/08 20:59 Limits: 70-130% Surrogate(s): Recovery: 94.6% Toluene-d8 101% 75-125% " 4-BFB 101% 75-125%

TestAmerica Seattle

Blake Mains

Blake T. Meinert, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 CS Approval Number: UST-067

Arcadis, Geraghty, & Miller - Seattle

2300 Eastlake Avenue East, Suite 100 Seattle, WA/USA 98102 Project Name: Project Number: Project Manager:

306443 (Former Unocal 0207) Chevron Alaska Sampling

Mike Strickler

Report Created: 04/16/08 16:22

Notes and Definitions

Report Specific Notes:

В	-	Analyte was detected in the associated Method Blank.
Q1	-	Does not match typical pattern
Q8	-	Detected hydrocarbons in the gasoline range appear to be due to overlap of diesel range hydrocarbons.
Q9	-	Hydrocarbon pattern most closely resembles kerosene.
R4	-	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
RL1	-	Reporting limit raised due to sample matrix effects.
Ζ	-	Due to sample matrix effects, the surrogate recovery was below the acceptance limits.
ZX	-	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
Laborator	y Ro	eporting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
Reporting	-	Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

- Limits percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Blake Macing

Blake T. Meinert, Project Manager

TestAmerica Seattle

11720 North Creek Parkway N Suite 400 Bothell, WA 98011

phone 425.420.9200 fax 425.420.9210

TestAmerica Laboratories, Inc. COC No: Date: March 30, 2008 Project Manager: Greg Montgomery Site Contact: Mike Strickler **Client Contact** COCs Carrier: Fed Ex of. Lab Contact: Blake Meinert Arcadis Job No. **Analysis Turnaround Time** 2300 Eastlake Ave East, Suite 200 Calendar (C) or Work Days (W) Seattle, WA 98102 (Full List) TAT if different from Below 206-726-4742 (Greg Montgomery) SDG No. V. FAX 2 weeks (xxx) xxxx-xxxx Total Lead by EPA 6010 Project Name: 306443 (Former Unocal 0207) 1 week 8260B BTEX by EPA 8021 Site: Gate 28, WEST RAMP, FIA 2 days DRO by AK102 RRO by AK103 GRO by AK101 BRDOODD EPA Project # ArcadiS # 45507 Tak 1 1 day à VOCs Sample Sample Sample # of Sample Specific Notes: Cont. Туре Matrix Date Time Sample Identification Insufficient Volume for DRO, RRO 01 w Ix. 1630 3 3/29/2008 GEI-2-W-080329 07 1700 5 x x x x w 3/29/2008 GEI-3-W-080329 03 5 1615 x x w x x 3/29/2008 GEI-4-W-080329 0 1800 5 x x x x W GEI-5-W-080329 3/29/2008 0\$ 10 1715 х x Ix. x x x w 3/29/2008 GEI-6-W-080329 1545 5 x x 01 w Y GEI-7-W-080329 3/29/2008 Et Sr. 1515 5 w x х x x 3/29/2008 GEI-8-W-080329 na 1430 10 xxx x x w x GEI-9-W-080329 3/29/2008 O 5 0600 х W х x x 3/29/2008 DUP-1-W-080329 TRIP BLANK 0600 **6**0 w х Iх 3/29/2008 QA-T-W-W-080329 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 2 2 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Archive For_ Unknown Return To Client Disposal By Lab Months Poison B 🗖 Flammable Skin Irritant Non-Hazard Special Instructions/QC Requirements & Comments: Volatile samples may require dilutions. Company: TA Sua Date/Time: Received by Date/Vim Thy Camble OASTS Relinquished by: 4/2/08 9:45 3-31-08 Date/Time: Company: Date/Time: Received by: Relinguished by: Company: Date/Time: Company: Date/Time: Received by: Relinquished by: Company:

Chain of Custody Record

TestAmer

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Seattle

11720 North Creek Parkway N

Suite 400

Relinguished by:

Bothell, WA 98011 TestAmerica Laboratories, Inc. phone 425.420.9200 ffax 425.420.9210 COC No: Date: March 30, 2008 Site Contact: Mike Strickler Project Manager: Greg Montgomery **Client Contact** COCs Carrier: Fed Ex of. Lab Contact: Blake Meinert Arcadis Job No. 2300 Eastlake Ave East, Suite 200 **Analysis Turnaround Time** Calendar (C) or Work Days (W) Seattle, WA 98102 (Full List) TAT if different from Below 206-726-4742 (Greg Montgomery) SDG No. V. FAX 2 weeks (xxx) xxx-xxxx **Fotal Lead by EPA 6010** Project Name: 306-443 (Former Unocal 0207) 1 week VOCs by EPA 8260B BTEX by EPA 8021 Site: Gate 28, WEST RAMP, FIA 2 days DRO by AK102 RRO by AK103 BRDOODD GRO by AK101 Filtered Sample Project # ArcadiS # 45507 Tak 1 1 day Sample Sample Sample # of Sample Specific Notes: Туре Matrix Cont. Date Time Sample Identification w x 8/29/2008 1810 PW-W-080329 2 2 Preservation Used: 1=Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Ideratification Archive For Unknown Poison B Disposal By Lab Months Return To Client Flammable Skin Irritant Non-Hazard Special Instructions/QC Requirements & Comments: Date/Time: Received by: Company: Date/Time: LCO Relinguished by Company: DASIS 271-0 Date/Time: Received by: Company: Сотралу: Date/Time: Relinguished by:

Date/Time:

Company:

Received by:

Company:

Date/Time:

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL TESTING CORPORATION

SAMPLE RECEIPT FORM

Date/Time:	4/2/2008	4:18:50	PM					
Client Code:	1416938							
DMA Project Number:	BRD002	2						
Received By:	Cathy Ga	mble			Logged By:	Deboral	h Brechler	
Sample Temperature:	8.8°C		·····					
Samples Received:	X On I	ce [X On Blue Ice		Unchilled			
Check All that Apply:	1							
Analysis]	N/A	pH Verified		Additional Pres Added	servative ?	Sample Numbers No	eeding Adjustment
500ml Amber w/HCL				Ľ] HCL			
1L Amber w/HCL				Ľ	HCL			
Poly w/HNO3				Ľ	HNO3			
Poly w/H2SO4				Ľ] H2SO4			
500ml Amber w/H2SO	4			Ľ	H2SO4		······	
1L Amber w/H2SO4				Ľ	H2SO4			
Poly w/NaOH					NaOH			
Poly w/ NaOH + Zinc A	Acetate				NaOH + Zi	nc Acetate		
Volatile Soil Samples F	Received in:	·	N/A	Brass S	leeves	Glass Jars	Encore	Field Methanol
			Other:					-
Date	Initials		Sample Number	r			Comments	
4/2/2008			BRD0022-01	·····			·····	
4/2/2008			BRD0022-02				*****	
4/2/2008			BRD0022-03					
4/2/2008			BRD0022-04					
4/2/2008			BRD0022-05					
4/2/2008			BRD0022-06				· · · · · · · · · · · · · · · · · · ·	
4/2/2008			BRD0022-07			<u></u>	· · ·	
4/2/2008			BRD0022-08					

4/2/2008	BRD0022-09	
4/2/2008	BRD0022-10	
4/2/2008	BRD0022-11	

	Paperwor	ik to FM - Date	Time. Non-Gorderman	มวยชา
 Constraints of the second secon	· 1		Circle(Y)	pr N
			(If Y, see other	side)
				155
	TEST AMERI	CA SAMPLE RECE	IPT CHECKLIST	330 344 M
Designed Des	Logged-in By:	Unnacked/Labele	d Bv: Cooler ID: (o	f
(applies to temp at receipt)	Logged-in Dy.	Chipdonoarman		301
Date: 1/1	Date: <u>412/08</u>	Date: 412/08	Work Order No BR DOO77-	
Time: 9:45	Initials: 🔊	Initials:	Client: <u>AZCADIN - SEAT</u>	LE
Initials:		mw	Project: <u>306443 (Former</u>	unocel.
<u> </u>			Pooking Material	ecer,
Container Type:		<u>)C Seals:</u>	Packing Material Styrofo	am
<u> </u>	Ship. Conta	ainer Sign By		GITI
Box	On Bottles			
None/Other		None		
Defrigerent			Received Via: Bill#	
Gel Ice Pack		None	Fed Ex Client	
Loose Ice			UPS TA Courier	
None/Other			DHL Mid Valley	
			Senvoy TDP	
			GS Other	
Cooler Temperature (IR): °C Plastic	Glass (Frozen filters,	Tedlars and aqueous Metals exempt)	
	(circle d	one) (¹ t	1/2 5 5	
Temperature Blank?		3.0, 3.3, Trip Blank?	Y or N or NA	
Somple Containers	ID		ID	
Sample Containers.	(Yar N	Metals Pres	erved? Yor N or NA	
Provided by TA?	(Vor N	Client QAPF	Preserved? Y or N or (NA)	
Correct Type?	(Y or N	Adequate V	olume? (Y) or N	
Conect Type:		(for tests reque	sted) Headspace? Y or N or NA	
#Containers match C	OC? YORN 22			
IDs/time/date match (COC? (Y) or N	Comments.		
Hold Times in hold?	Y or N	<u></u>		
PROJECT MANAGE	MENT			
is the Chain of Custo	dy complete?		\bigvee or N If N, circle the items that were inco	mplete
is the chain of custo	ay complete:		_	
Comments, Problems)			<u></u>
<u> </u>	<u></u>	······································		
		<u></u>		
			Y or N	
Total access set up? Has client been contacted	regarding non-conformanc	es?	Y or N If Y, /	
PM Initials	Date:	Time:		
· · · · · · · · · · · · · · · · · · ·	······································			

NOTIFICATION OF DISCREPANCY

D	ATE:	TIME:	PM:		_ SC INITIALS:	·····
R	ush/Short Hold?	□Yes □i	Vo			
	Project Not Set Analysis Reques	Up in ELM ted on COC – N	□ New Clie lot Listed for	nt 🗆 Project in EL	COC Received ON M	HOLD
	PM To Add Ana Clarification of A Hold Time Expir Turnaround Tin Did Not Receive	lysis: Analysis: red: (Analysis) ne Not Checked Sample(s) Liste	: d on COC:			
	Received Extra S	Sample(s) Not L	isted on COC	·	······································	
	Sample Descript	ion(s) or Date/I	ime Sampled	Do Not Mate	h COC:	
	Improper Preser Sample Received Insufficient Sam Sample preserve	vative For meth Broken: ple Volume: d upon receipt:	aod:			
	Temperature Ou Received on-i acceptable. Other:	tside recommen ce within 4 hou	ded range (4 rs of collection	°C±2°C): n, temperatur	e between ambient to	2°C
PR	OJECT MANAG	ER RESOLUT	[ON:	(Date &	Time when returned t	o SC)
Ap	proval By:]	Date:	Time:	

Laboratory Data Review Checklist

Complet	ted by:	Micl	nael L. Strickler						
Title:	Geologist	t I					Date:	Apr 2	9, 2008
CS Repo	ort Name:	Fir	st Semi-Annual 2008	8 Groundw	vater Monitoring Re	eport	Report	Date:	Aug 13, 2008
Consulta	ant Firm:	AR	CADIS						
Laborato	ory Name:	Tes	stAmerica		Laboratory Rep	ort Nu	mber:B	RD002	2
ADEC F	ile Numbe	er:	100.26.040	ADEC	RecKey Number:	19923	100035	01	
1. <u>Labo</u>	oratory								
	a. Did a • Yes	an A s	DEC CS approved l	aboratory 1	receive and <u>perform</u> Comments:	<u>n</u> all of	the subr	nitted s	sample analyses?
	b. If the labor O Y	e san rator Yes	nples were transferre ry, was the laborator O No	ed to anoth y performi	er "network" labora ng the analyses AD Comments:	atory of EC CS	r sub-co approv	ntracte ed?	d to an alternate
N/	'A								
2. <u>Chai</u>	n of Custo	ody	<u>(COC)</u>						
	a. COC ir	nfor	mation completed, si	gned, and	dated (including rel	leased/1	received	l by)?	
	• Yes	S	○ No		Comments:				
	b. Correc • Yes	st an	alyses requested? ○ No		Comments:				
3. <u>Labo</u>	oratory Sa	mpl	e Receipt Document	<u>ation</u>					
	a. Sample	e/co s	oler temperature doc • No	umented a	nd within range at r Comments:	eceipt	$(4^{\circ} \pm 2^{\circ})$	C)?	
8.8	8 Degrees	Cel	sius according to the	case narra	ttive.				

b. Sample pr Volatile C	reservation accepta	ble - acidified waters, Methanol preserved VOC soil (GRO, BTEX, ts, etc.)?
• Yes	○ No	Comments:
c. Sample co O Yes	ondition documento	ed - broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
N/A		
d. If there w preservation O Yes	ere any discrepanc , sample temperatu () No	ies, were they documented? - For example, incorrect sample containers/ ire ouside of acceptance range, insufficient or missing samples, etc.? Comments:
N/A		
e. Data qual	ity or usability affe	ceted? Explain.
		Comments:
Data quality or	usability does not	appear to be affected.
<u>Case Narrative</u> a. Present an	d understandable?	
• Yes	○ No	Comments:
b. Discrepan • Yes	cies, errors or QC ○ No	failures identified by the lab? Comments:
c. Were all c O Yes	corrective actions d	ocumented? Comments:
N/A		
d. What is th	ne effect on data qu	ality/usability according to the case narrative? Comments:
N/A		
Samples Results		
a. Correct an	alyses performed/1	eported as requested on COC?
• Yes	O No	Comments:

5.

4.

b.	All applica • Yes	ble holding times met? ○ No	Comments:
c.	All soils re ○ Yes	ported on a dry weight basi ○ No	s? Comments:
N/A			
d. pr	Are the rep oject?	ported PQLs less than the C	leanup Level or the minimum required detection level for the
	○ Yes	• No	Comments:
1,2-d	ibromoetha	ne method detection limits	are higher than the ADEC GCL.
е.	Data qualit	y or usability affected? Exp	olain. Comments:
Data	quality or u	sability does not appear to	be affected.
QC San	nples		
	Mathad Pla	nlr	
a	i One me	uik thad blank reported per ma	triv analysis and 20 samples?
	• Yes	O No	Comments:
	ii. All me • Yes	thod blank results less than ○ No	PQL? Comments:
L	iii. If abov	ve PQL, what samples are a	affected? Comments:
N/A			
	iv. Do the O Yes	e affected sample(s) have da O No	ata flags? If so, are the data flags clearly defined? Comments:
N/A			
	v. Data qu	ality or usability affected?	Explain.

N/A

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	• Yes	\bigcirc No	Comments:
	ii. Metals/l samples?	Inorganics - One	ELCS and one sample duplicate reported per matrix, analysis and 20
	• Yes	○ No	Comments:
	iii. Accura project spe 75%-125% • Yes	cy - All percent cified DQOs, if 6, AK103 60%-1 ○ No	recoveries (%R) reported and within method or laboratory limits? And applicable. (AK Petroleum methods: AK101 60%-120%, AK102 20%; all other analyses see the laboratory QC pages) Comments:
	iv. Precisio limits? An see the lab • Yes	on - All relative d project specifi oratory QC page O No	percent differences (RPD) reported and less than method or laboratory ed DQOs, if applicable. (AK Petroleum methods 20%; all other analyses es) Comments:
	v. If %R o	r RPD is outside	of acceptable limits, what samples are affected? Comments:
/A			
	vi. Do the O Yes	affected sample:	s(s) have data flags? If so, are the data flags clearly defined? Comments:
[/A			
	vii. Data q	uality or usabilit	y affected? Explain. Comments:
I/A			
c. §	Surrogates -	Organics Only	
5. 6	i. Are surro • Yes	ogate recoveries	reported for organic analyses - field, QC and laboratory samples? Comments:
ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

○ Yes ● No

Comments:

Several surrogate recoveries were below or outside of the acceptance limits due to matrix effects.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

• Yes O No

Comments:

iv. Data quality or usability affected? Explain.

Comments:

Data quality or usability does not appear to be affected.

d. Trip Blank - Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>

Comments:

i. One trip blank reported per matrix, analysis and cooler?

• Yes O No

ii. All results less than PQL? • Yes • No

Comments:

iii. If above PQL, what samples are affected?

Comments:

N/A

iv. Data quality or usability affected? Explain.

Comments:

N/A

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?
• Yes
• No
Comments:

ii. Submitted blind to lab? • Yes O No

Comments:

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute Value of: $(\underline{R_{1-} R_{2}})_{X \ 100}$ (($R_{1+} R_{2}$)/2)

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

• Yes O No

Comments:

iv. Data quality or usability affected? Explain.

 \bigcirc Yes \bigcirc No Comments:

N/A

f. Decontamination or Equipment Blank (if applicable)

 \bigcirc Yes \bigcirc No \bigcirc Not Applicable

N/A

ii. If above PQL, what samples are affected?

Comments:

N/A

iii. Data quality or usability affected? Explain.

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? • Yes • No

Comments:

N/A

Reset Form