SUBMITTED TO:
Municipality of Anchorage
Department of Property and
Facility Management
Facility Maintenance Division
3640 East Tudor Road,
Warehouse No. 1
Anchorage, Alaska 99507

Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518

(907)561-2120 dlo@shanwil.com

2020 GROUNDWATER MONITORING ACTIVITIES
Former Second Avenue Easement
Tanks

1021 EAST THIRD AVENUE, ANCHORAGE, ALASKA

February 2021

Shannon & Wilson No: 102104-003

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

102104-003 February 2021

Submitted To: Municipality of Anchorage Department of Property and Facility

Management

Facility Maintenance Division

3640 East Tudor Road, Warehouse No. 1

Anchorage, Alaska 99507 Attn: Travis O'Rourke

Subject: 2020 GROUNDWATER MONITORING ACTIVITIES, FORMER SECOND

AVENUE EASEMENT TANKS, 1021 EAST THIRD AVENUE, ANCHORAGE,

ALASKA

Shannon & Wilson prepared this 2020 groundwater monitoring report for the Former Second Avenue Easement Tanks site located at 1021 East Third Avenue in Anchorage, Alaska. The Property is an active Alaska Department of Environmental Conservation (ADEC) contaminated site (File No. 2100.26.326). Our scope of services was conducted per our proposal dated May 12, 2020. Our services were performed in accordance with the terms and conditions of our MOA Department of Maintenance & Operations Professional Services Contract No. 29M&0185. Authorization to proceed with the project was received on June 10, 2020, with Purchase Order 2020002253. This report presents the October and November 2020 groundwater monitoring results and was prepared by the undersigned.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON, INC.

Prepared by: Reviewed by:

Alec Rizzo LeeAnne Osgood, P.E.

Environmental Staff Associate

AJR:DLO:KLB

102104-003 February 2021 i

EXECUTIVE SUMMARY

The 2020 monitoring event for the former Second Avenue easement tanks was conducted in October and November 2020 and included groundwater sample collection from five monitoring wells. Two parameters (diesel range organics [DRO], and residual range organics [RRO]) were measured at concentrations greater than the applicable ADEC Table C cleanup levels in the samples collected from B4MW and B5MW. Historical data shows that these parameters are consistently detected at concentrations greater than the cleanup levels in these monitoring wells. The remaining analyte concentrations in B3MW, B4MW, B5MW, B11MW, and B17MW were either reported as non-detect or at concentrations less than the respective ADEC Table C cleanup levels.

CONTENTS

1	INTI	RODUCTION	1
2	SITE	AND PROJECT DESCRIPTION	1
	2.1	Site Location and Description	
	2.2	Background	1
	2.3	Project Purpose and Objectives	2
3	FIEL	D ACTIVITIES	2
	3.1	Site Access and Preparation	3
	3.2	Groundwater Sampling	3
4	LAB	ORATORY ANALYSIS	.4
5	DISC	CUSSION OF ANALYTICAL RESULTS	.4
	5.1	Monitoring Well Samples	.4
	5.2	Quality Assurance Summary	.5
6	INV	ESTIGATION DERIVED WASTE DISPOSAL	.5
7	SUM	IMARY	6
8	CLO	SURE/LIMITATIONS	6

Tables

Table 1: Well Sampling Log

Table 2: Groundwater Sample Analytical ResultsTable 3: Summary of Historical Groundwater Data

Figures

Figure 1: Vicinity Map

Figure 2: Site Plan

Appendices

Appendix A: Field Notes

Appendix B: Results of Analytical Testing

Appendix C: Disposal Receipts Appendix D: Important Information

ACRONYMS

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Method

CCIC Cleanup Complete with Institutional Controls

DQO Data Quality Objective DRO Diesel Range Organics

EPA Environmental Protection Agency IDW Investigation Derived Waste

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

LDRC Laboratory Data Review Checklist MAC Maximum Allowable Concentrations

MOA Municipality of Anchorage

mg/L Milligrams per liter
ML&P Municipal Light & Power

MS/MSD Matrix Spike/Matrix Spike Duplicate

mV Millivolts

NRC NRC Alaska, Inc.

NTU Nephelometric Turbidity Unit ORP Oxidation Reduction Potential

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference RRO Residual Range Organics

SGS North America Inc. of Anchorage, Alaska

UST Underground Storage Tank VOC Volatile Organic Compound

1 INTRODUCTION

This report presents the results of Shannon & Wilson's 2020 groundwater monitoring event for the former Second Avenue easement tanks located on the north side of the Brother Francis Shelter, at 1021 East Third Avenue, Anchorage, Alaska. The Alaska Department of Environmental Conservation's (ADEC) File Number is 2100.26.326.

2 SITE AND PROJECT DESCRIPTION

2.1 Site Location and Description

The project site is located near downtown Anchorage, Alaska. The legal description is Block 34B, Lot 1A, East Addition to Original Townsite. The property is located within the southwest quarter of Section 27, Township 13 North, Range 4 West of the Seward Meridian. A vicinity map showing the project site and surrounding area is included as Figure 1.

A site plan showing the project site features including approximate locations of former tanks, borings, test pits, and groundwater monitoring wells is included as Figure 2. The Second Avenue Easement transects the middle of an area that slopes steeply to the north. Except for Monitoring Wells B11MW and B17MW and Boring B15, the tanks, borings, test pits and wells are located within the Second Avenue Easement. Monitoring Wells B11MW and B17MW and Boring B15 are located at the bottom of the slope on the Municipal Light & Power's (ML&P) parcels identified as 1010 and 1040 East First Avenue, respectively.

2.2 Background

Three bulk storage tanks reportedly storing used engine oil for dust suppression were formerly located within the Second Avenue Easement as shown in Figure 2. Previous investigation and cleanup activities conducted by Shannon & Wilson at the project site have included underground storage tank (UST) closures and assessments, release investigations, and groundwater and storm water monitoring. A summary of the previous assessment and cleanup activities is presented in the *Additional Site Characterization, Former Second Avenue Easement Tanks*, 1021 East Third Avenue, Anchorage, Alaska report dated September 2019.

Based on the results of the 2019 Additional Site Characterization, petroleum hydrocarbon-impacted soil remains in the vicinity of the former tanks location. Concentrations of DRO and RRO remaining in the subsurface soil exceed the ADEC Maximum Allowable Cleanup (MAC) levels. Additionally, total lead concentrations in the soil exceed the ADEC cleanup

levels and the resource conservation and recovery act (RCRA) toxicity characteristic criterion for a characteristic hazardous waste.

DRO, RRO, and lead-impacted groundwater is also present on-site with the impacted groundwater plume extending off-site onto the adjacent ML&P parcels. The downgradient lateral extent of the groundwater contaminant plume has been delineated.

2.3 Project Purpose and Objectives

The project purpose is to progress towards a Cleanup Complete with Institutional Controls (CCIC) designation from the ADEC. The objective of this 2020 groundwater monitoring event is monitor contaminant concentrations in the groundwater at the site to qualitatively evaluate concentrations trends. Specific tasks of the 2020 groundwater monitoring event include:

- Collect groundwater samples from Wells B4MW, B5MW, and B11MW and analyze for volatile organic compounds (VOCs), DRO, RRO, and total lead.
- Collect a groundwater sample from Well B17MW and analyze for total lead.
- Manage investigative-derived waste (IDW).

Note Well B3MW was misidentified as Well B4MW and inadvertently sampled during the October 2020 groundwater sampling efforts. Well B4MW was therefore sampled in November 2020.

Soil excavation activities to remove soil impacted with DRO and RRO exceeding the MAC beneath and adjacent to the former tank excavation were not conducted during the 2020 field season. The excavation activities will be scheduled when the Municipality of Anchorage (MOA) secures the necessary funding.

3 FIELD ACTIVITIES

The field activities were conducted in material accordance with our May 17, 2019 Revised Work Plan for Soil Excavation and Additional Site Characterization, Former Second Avenue Easement Tanks, 1021 East Third Avenue, Anchorage, Alaska, approved by the ADEC in a letter dated May 22, 2019. This revised work plan detailed groundwater sampling activities to be conducted at the project site in spring and fall 2019. The approval to conduct the October 2020 groundwater sampling event under the May 17, 2019 revised work plan was provided by ADEC in an email dated October 5, 2020.

Field work was conducted by an ADEC-qualified environmental professional, as defined by 18 Alaska Administrative Code (AAC) 75.333. Analytical testing of the project samples was conducted by SGS North America Inc. (SGS) of Anchorage, Alaska. NRC Alaska, Inc. (NRC)

of Anchorage, Alaska disposed of the IDW. SGS and NRC were subcontracted to Shannon & Wilson. Field notes are provided in Appendix A.

3.1 Site Access and Preparation

Prior to initiating the 2020 groundwater monitoring event, permission to access and collect groundwater samples from the on-site and off-site monitoring wells was requested. Shannon & Wilson coordinated with the MOA to access Wells B3MW, B4MW, and B5MW located within the on-site fenced area within the 2nd Avenue easement and with ML&P representatives to request and arrange site access to Wells B11MW and B17MW located on ML&P parcels.

3.2 Groundwater Sampling

On October 15 to 17, 2020, analytical groundwater samples were collected from Wells B3MW, B5MW, B11MW, and B17MW. Monitoring Well B4MW was sampled on November 24, 2020. Sampling was initiated using a water level indicator to measure depth to water in the well casings. Low-flow purging was conducted to reduce the effects of stagnant well casing water on chemical concentrations, and to obtain a groundwater sample that was representative of the surrounding water-bearing formation. The wells were purged and sampled using a submersible pump and dedicated tubing. The submersible pump was placed within the top foot of the groundwater column. The pump rate was adjusted with a goal of limiting the sustained water drawdown to a maximum of 0.3 foot (typical pump rate of 0.3 to 0.5 liters per minute [L/min]). However, drawdown of less than 0.3 foot could not be sustained in the purging of Wells B5MW and B11MW; therefore, the pump was lowered as necessary while remaining within the top foot of the dynamic water column. If a monitoring well purged dry during sampling, the well was allowed to recover to 80 percent of its pre-purge volume prior to collecting a sample.

During the purging process, field personnel monitored water quality parameters (pH, temperature, turbidity, oxidation reduction potential [ORP], and specific conductance), drawdown, and purge volume. Purging was considered complete when at least one well volume was removed and four of the five water quality parameters stabilized. Water quality parameters were considered stabilized when three consecutive measurements collected 3 to 5 minutes apart indicated that parameters were within the following tolerance ranges: pH within 0.1 unit, temperature within 3 percent (minimum 0.2 degree Celsius), specific conductance within 3 percent, ORP within 10 millivolts (mV), and turbidity within 10 percent or less than 10 nephelometric turbidity units (NTU). The water quality parameters stabilized in Well B3MW, B4MW, B5MW, and B17MW during purging. Well B11MW purged dry before water quality parameters could stabilize. The well was allowed to recover overnight (but not greater than 24 hours) prior to being sampled. The final water quality parameters are listed in Table 1.

4 LABORATORY ANALYSIS

The groundwater samples were delivered to SGS using chain-of-custody procedures. The samples were tested on a standard 14-day turnaround time. Each project sample, including a field duplicate groundwater sample, was analyzed for DRO by Alaska Method (AK) 102, RRO by AK 103, VOCs by Environmental Protection Agency (EPA) Method 8260D, and total lead by EPA Method 6020A, except for Sample B17MW. Sample B17MW was only analyzed for total lead by EPA Method 6020A. One trip blank sample accompanied the analytical sample containers from and to the laboratory during each sampling event and was tested for VOCs by EPA Method 8260D. Analytical results are summarized in Table 2. Copies of the laboratory reports are provided in Appendix B. Note that Sample 102104-B4MW in SGS Laboratory Report Number 1205774 was collected from Well B3MW.

5 DISCUSSION OF ANALYTICAL RESULTS

The groundwater results were compared to applicable cleanup levels listed in the Oil and Other Hazardous Substances Pollution Control Regulations, 18 AAC 75 (November 7, 2020). Groundwater criteria are based on Table C, 18 AAC 75.345. The cleanup levels and analytical results for the groundwater samples are listed in Table 2. A summary of historical analytical results is listed in Table 3.

5.1 Monitoring Well Samples

Five groundwater samples (B3MW, B4MW, B5MW, B11MW, and B17MW) and one field duplicate sample (B14MW, collected from Well B3MW) were submitted for laboratory analysis. The DRO concentration reported in Sample B5MW (6.13 milligrams per liter [mg/L]) exceeds the ADEC Table C cleanup level of 1.5 mg/L. The RRO concentrations reported in Samples B4MW (1.33 mg/L) and B5MW (4.64 mg/L) exceed the ADEC Table C cleanup level of 1.1 mg/L.

VOC analytes were detected in Samples B4MW and B5MW at concentrations less than the ADEC Table C cleanup levels. Lead was measured in Samples B3MW, B14MW (collected from Well B3MW), B4MW, B5MW, and B11MW at concentrations less than the ADEC Table C cleanup level of 0.015 mg/L. The maximum lead concentration was reported in Sample B5MW (0.0110 mg/L).

As shown in Table 3, the current groundwater data are generally consistent with the ranges of historical data with the exception of lead. The reported concentrations of lead at Wells B4MW and B11MW have decreased to less than the ADEC Table C cleanup level. Further, the data indicate Well B11MW delineates the down-gradient boundary of the impacted groundwater plume.

5.2 Quality Assurance Summary

The project laboratory implements on-going quality assurance/quality control procedures to evaluate conformance to applicable ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, laboratory control sample/laboratory control sample duplicates (LCS/LCSD), and matrix spike/matrix spike duplicates (MS/MSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a report specific note identifying the problem in the Case Narrative section of the Laboratory Analysis Report (See Appendix B).

External quality controls include field records, a groundwater duplicate sample set, and trip blanks for the groundwater samples. The water trip blank did not contain detectable concentrations of volatile analytes.

Duplicate sample sets were collected to assess the sampling precision and calculate the relative percent difference (RPD). The RPD between the project sample and associated duplicate results is a measure of precision affected by matrix heterogeneity, sampling technique, and laboratory analyses. The ADEC recommends an RPD of less than 30 percent for groundwater field duplicates and 20 percent for laboratory control samples. Except for total lead (68%), the RPD for each of the detected parameters is less than 30 percent. The total lead concentrations detected in the primary sample (0.00309 mg/L) and duplicate sample (0.00152 mg/L) are less than the cleanup level; therefore, the data are considered acceptable for the purposes of this report

Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's Laboratory Data Review Checklist (LDRC) for each data package, which are included in Appendix B. Quality control discrepancies and the impact to data quality/usability are described in further detail in the LDRC. In our opinion, no non-conformances that would adversely impact data usability for project data objectives were noted, and we find the project data to be complete and useable to support the project purpose and objectives.

6 INVESTIGATION DERIVED WASTE DISPOSAL

The purge water from Wells B3MW, B4MW, B5MW, B11MW, and B17MW was stored in one, labeled 55-gallon drum. Groundwater samples from Wells B4MW and B5MW had DRO and RRO concentrations greater than the ADEC Table C cleanup levels. Shannon & Wilson coordinated with the ADEC to dispose of the purge water. The ADEC Contaminated Media Transport and Treatment Approval form is provided in Appendix C. On February 2, 2021, NRC transported one drum of IDW to their Anchorage facility for processing and disposal. A copy of the waste manifest is provided in Appendix C.

7 SUMMARY

The 2020 groundwater monitoring activities consisted of collecting groundwater samples to monitor DRO, RRO, and lead-contaminated groundwater at the site. The groundwater samples collected from Well B4MW and B5MW contain DRO and RRO concentrations that exceed the ADEC Table C cleanup levels. Historical data shows that these parameters are consistently detected at concentrations greater than the cleanup levels in these monitoring wells. The remaining analyte concentrations in B3MW, B4MW, B5MW, B11MW, and B17MW were either reported as non-detect or at concentrations less than the respective ADEC Table C cleanup levels.

8 CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our clients and their representatives in the study of this site. The findings presented within this report are based on the limited sampling and analyses that we conducted. The findings should be construed in the context of the scope of sampling and not as definite conclusions regarding the Site's groundwater conditions. The sampling and analyses performed can only provide you with our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the attachments in Appendix D, "Important Information About Your Geotechnical/Environmental Report," to clarify use and limitations of our report. You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore, has not, and will not, disclose the results of this study, except with your permission or as required by law.

TABLE 1 WELL SAMPLING LOG

		Mor	nitoring Well Nu	mber	
	B3MW	B4MW	B5MW	B11MW*	B17MW
Water Level Measurement Data					
Date Water Level Measured	10/15/20	11/24/20	10/15/20	10/15/20	10/15/20
Time Water Level Measured	10:22	11:00	10:10	10:50	10:46
Measured Depth to Water (ft below TOC)	5.16	3.31	10.04	2.16	7.34
Height of TOC bgs (ft)	-0.22	-0.19	-0.22	-0.30	-0.65
Measured Depth to Water (ft bgs)	5.38	3.50	10.26	2.46	7.99
Surveyed TOC Elevation (ft)	96.45	97.45	98.35	78.31	77.83
Water Level Elevation (ft)	91.07	94.14	88.31	76.15	70.49
Purging/Sampling Data					
Date Sampled	10/15/20	11/24/20	10/15/20	10/17/20	10/15/20
Time Sampled	12:12	11:42	13:27	11:35	14:50
Measured Depth to Water (ft below TOC)	5.16	3.31	10.04	2.16	7.34
Total Depth of Well (ft below TOC)	5.93	11.02	12.11	14.94	12.48
Water Column in Well (ft)	0.77	7.71	2.07	12.78	5.14
Gallons per Foot	0.16	0.16	0.16	0.16	0.16
Water Column Volume (gallons)	0.12	1.23	0.33	2.04	0.82
Total Volume Pumped (gallons)	1.7	1.4	0.8	2.1	1.9
Sampling Method	SP	SP	SP	SP	SP
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch	2-inch
Water Quality Data					
Temperature (°C)	9.51	4.10	8.38	11.30	12.00
Specific Conductance (µS/cm)	650	717	776	628	627
pH (Standard Units)	6.59	6.16	6.43	7.93	6.30
Oxidation Reduction Potential (mV)	-35	6	-44	235	-4
Turbidity (NTU)	0.0	5.8	1.2	191	0.0
Remarks	Duplicate			Well purged dry;	
	Sample			PVC well casing	
	B14MW			cut down after	
				sampling	

Notes:

Water quality parameters were measured with a Horiba water quality meter and Hach 2100 Turbidimeter. Level Loop Survey conducted by Shannon & Wilson, Inc. on July 9, 2019

TOC = top of casing
°C = degrees Celsius

ft = feet

mV = millivolt

μS/cm = microsiemens per centimeter NTU = Nephelometric Turbidity Units

bgs = below ground surface

SS = Swing Sampler SP = Submersible pump

* = Well B11MW frost jacked; cut down after collecting groundwater sample

TABLE 2
GROUNDWATER SAMPLE ANALYTICAL RESULTS

					Sample ID Number^ and Water Depth in Feet bgs (See Table 1, Figure 2, and Appendix B)							
			Groundwater		Monitoring Wells Trip							
Parameter Tested	Units	Method*	Cleanup Level**	B3MW 5.38	B14MW~ 5.38	B4MW 3.50	B5MW 10.26	B11MW 2.46	B17MW 7.99	TB1	TB2	
Diesel Range Organics (DRO)	mg/L	AK 102	1.5	0.366 J	0.377 J	0.810	6.13	0.345 J	-	-	-	
Residual Range Organics (RRO)	mg/L	AK 103	1.1	0.704	0.815	1.33	4.64	0.534	-	-	-	
Volatile Organic Compounds (VOCs)												
Benzene	mg/L	EPA 8260D	0.0046	< 0.000200	< 0.000200	< 0.000200	0.000304 J	< 0.000200	-	< 0.000200	< 0.000200	
Toluene	mg/L	EPA 8260D	1.1	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	-	< 0.000500	< 0.000500	
Ethylbenzene	mg/L	EPA 8260D	0.015	< 0.000500	< 0.000500	< 0.000500	0.000460 J	< 0.000500	-	< 0.000500	< 0.000500	
Xylenes (total)	mg/L	EPA 8260D	0.190	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	-	< 0.00150	< 0.00150	
1,2,4-Trimethylbenzene	mg/L	EPA 8260D	0.056	< 0.000500	< 0.000500	< 0.000500	0.00119	< 0.000500	-	< 0.000500	< 0.000500	
1,2-Dichloroethane	mg/L	EPA 8260D	0.0017	< 0.000250	< 0.000250	< 0.000250	0.000955	< 0.000250	-	< 0.000250	< 0.000250	
Dichlorodifluoromethane - mg/L	mg/L	EPA 8260D	7.3	< 0.000500	< 0.000500	0.000595 J	< 0.000500	< 0.000500	-	< 0.000500	< 0.000500	
P & M - Xylenes	mg/L	EPA 8260D	-	< 0.00100	< 0.00100	< 0.00100	0.000667 J	< 0.00100		< 0.00100	< 0.00100	
sec-Butylbenzene	mg/L	EPA 8260D	2	< 0.000500	< 0.000500	< 0.000500	0.000328 J	< 0.000500	-	< 0.000500	< 0.000500	
Other VOCs	mg/L	EPA 8260D	varies	ND	ND	ND	ND	ND	-	ND	ND	
Total Lead	mg/L	EPA 6020A	0.015	0.00309 E	0.00152 E	0.000857 J	0.0110	0.00359	< 0.000500	-	-	

Notes:

* See Analytical Laboratory Report for compounds tested, methods, and laboratory reporting limits

** Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 7, 2020)

^ = sample ID No. preceded by 102104-

mg/L = milligrams per liter **0.704** = analyte detected

= reported concentration is equal to or exceeds the ADEC Table C cleanup level

< 0.000200 = analyte not detected; laboratory limit of detection is 0.000200 mg/L

bgs = below ground surface

- = not applicable

~ = duplicate of preceding sample

J = concentration is an estimate less than the limit of quantitation (LOQ). See the SGS laboratory report for details.

ND = analyte not detected

E = result is an estimate due to a primary/field duplicate sample pair relative percent difference (RPD) failure.

TABLE 3 SUMMARY OF HISTORICAL GROUNDWATER DATA

				Paran	neter Tested a	nd Cleanup Leve	el* (in mg/L)		
Monitoring		GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
Well	Date	2.2	1.5	1.1	0.0046	1.1	0.015	0.190	0.015
B3MW	8/7/00	0.135	< 0.297	< 0.495	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.0667
	2/22/01	< 0.0900	0.660	0.665	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-
	6/5/01	< 0.0900	< 0.495	< 0.990	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-
	9/10/01	< 0.0900	< 0.495	< 0.990	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-
	12/13/01	< 0.0900	< 0.505	<1.01	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-
	6/14/04	< 0.0900	< 0.341	< 0.568	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-
	5/6/14	-	-	-	-	-	-	-	-
	10/20/16	-	0.50	0.443 J	< 0.000200	< 0.000500	< 0.000500	< 0.00150	< 0.000500
	6/27/19	-	0.420 J	0.558	< 0.000200	< 0.000500	< 0.000500	< 0.00150	< 0.000500
		Well B3MV	V removed from	m the groundy	vater monitorir	ng program per A	DEC September	23, 2019 lette	r.
	10/15/20^	-	0.377 J~	0.815~	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.00309 E~
B4MW	8/8/00	< 0.0900	1.45	2.77	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.0667
	2/22/01	0.917	1.86	2.31	0.00242	< 0.00200	0.00351	0.00601	-
	6/5/01	0.518	1.33	1.47	0.00205	0.00633	0.00215	0.00486	-
	9/10/01	0.171	2.18	3.61	0.00107	< 0.00200	< 0.00200	< 0.00200	-
	12/13/01	0.708	1.12	< 0.990	0.00317	< 0.00200	0.00535	0.01550	-
	6/17/04	0.212	1.01	1.19	0.00117	< 0.00200	< 0.00200	< 0.00200	-
	5/6/14	-	2.60	1.47	0.000230 J	< 0.000500	0.000370 J	0.00170 J	0.00501
	10/21/16	-	2.32~	1.18~	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0224~
	6/27/19	-	1.60 E~	1.27 E~	< 0.000200	0.000411 J~	< 0.000500	< 0.00150	0.0396 E~
	10/28/19	-	5.78 E~	3.29 E~	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.00331 ~
	11/24/20	-	0.810	1.33	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.000857 J
B5MW	8/8/00	< 0.0900	1.29	1.24	< 0.00100	< 0.00100	< 0.00100	0.00247	< 0.0667
	2/22/01	0.221	3.89	8.90	0.00102	< 0.00200	0.00612	0.01892	-
	6/5/01	0.257	3.68	9.53	0.000932	< 0.00200	0.00447	0.01593	-
	9/10/01	0.148	4.32	9.69	0.000897	< 0.00200	0.00363	0.00937	-
	12/13/01	0.0904	0.863	1.12	0.000899	0.00240	0.00345	0.01874	-
	6/17/04	< 0.0900	0.879	1.16	< 0.000500	< 0.00200	< 0.00200	0.00308	-
	5/6/14	-	1.80	1.79	0.000260 J	< 0.000500	0.000440 J	0.00239 J	0.0201
	10/21/16	-	1.57	1.19	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0399
	6/28/19	-	1.58	1.79	0.000199 J	< 0.000500	0.000385 J	0.00156 J	0.0636
	10/28/19	-	2.10	3.97	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0150
	10/15/20	-	6.13	4.64	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0110

See notes on Page 2.

TABLE 3
SUMMARY OF HISTORICAL GROUNDWATER DATA

			Parameter Tested and Cleanup Level* (in mg/L)								
Monitoring		GRO	DRO	RRO	Benzene	Toluene	Ethylbenzene	•	Lead		
Well	Date	2.2	1.5	1.1	0.0046	1.1	0.015	0.190	0.015		
B10MW	8/7/00	< 0.0900	< 0.300	< 0.500	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.0667		
	2/22/01†	-	-	-	-	-	-	-	-		
	6/5/01	< 0.0900	< 0.500	<1.00	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	9/10/01	< 0.0900	< 0.495	< 0.990	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	12/13/01	< 0.0900	< 0.495	< 0.990	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	6/17/04	< 0.0900	< 0.341	< 0.568	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
		Well B10MW is lost/assumed destroyed.									
B11MW	2/22/01	< 0.0900	< 0.345	< 0.575	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	6/5/01	< 0.0900	< 0.538	<1.08	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	9/10/01	< 0.0900	< 0.495	< 0.990	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	12/13/01†	-	-	-	-	-	-	-	-		
	6/17/04	< 0.0900	< 0.379	< 0.581	< 0.000500	< 0.00200	< 0.00200	< 0.00200	-		
	5/7/14	-	0.282 J	0.299 J	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0371		
	10/21/16	-	0.627	0.846	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.109		
	6/28/19	-	0.221 J	< 0.240	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.0395		
	10/28/19	-	0.574 J	0.980	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.00576		
	10/17/20	-	0.345 J	0.534	< 0.000200	< 0.000500	< 0.000500	< 0.00150	0.00359		
B12MW	5/6/14	-	1.54~	5.11~	< 0.000200	< 0.000500	< 0.000500	0.00128 J~	0.341~		
	10/20/16	-	0.497 J	0.240 J	< 0.000200	< 0.000500	< 0.000500	< 0.00150	< 0.000500		
	We	ell B12MW pos	sitioned within	planned excar	vation footprin	and not included	l in groundwate	r monitoring p	rogram.		
B13MW	5/6/14	Water not enc	ountered in we	ell following ir	stallation						
	10/14/16	Water not enc	ountered on 10)/14/2016. We	ell Decommissi	ioned 10/14/2016					
B14MW	5/6/14	-	< 0.308	< 0.256	< 0.000200	< 0.000500	< 0.000500	< 0.00150	< 0.000500		
	6/27/19	-	0.212 J	< 0.236	< 0.000200	< 0.000500	< 0.000500	< 0.00150	< 0.000500		
		Well B14M	W removed fro	m the ground	water monitorii	ng program per A	DEC Septembe	r 23, 2019 lette	er.		
B17MW	6/28/19	-	-	-	-	-	-	-	< 0.000500		
	10/28/19	-	-	-	-	-	-	-	< 0.000500		
	10/15/20	-	-	-	-	-	-	-	< 0.000500		

Notes:

* = groundwater cleanup levels provided in Table 2

† = monitoring well frozen, not sampled

mg/L = milligrams per liter

<0.0900 = analyte not detected; laboratory limit of detection is 0.0900 mg/L

1.86 = reported concentration is equal to or exceeds the ADEC cleanup level

0.135 = analyte detected

E = result is an estimate due to a primary/field duplicate sample pair relative percent difference (RPD) failure.

- = not applicable

~ = Analytical results for the sample reflect the higher concentrations for a duplicate set

= B3MW misidentified as B4MW and sampled in 2020 groundwater monitoring event.

1021 East Third Avenue Anchorage, AK

VICINITY MAP

February 2021

102104-003

SHANNON & WILSON, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

FIG. 1

Appendix A: Field Notes

Appendix A

Field Notes

Shannon & Wilson, Inc.	790
Job No: 102104 Location: 1021 E. 3rd Are Weather: Clou	dy SIF
Well No.: MEBYALL B3MW	7
Date: \(\frac{0/15/20}{\tau}\) Time Started: \(\frac{11.0}{\tau}\) Time Completed	1: 12:48
Develop Date: Develop End Time: (24 hour break)	
Dovotop Date:	
INITIAL GROUNDWATER LEVEL DATA	, ,
Time of Depth Measurement: 10:27 Date of Depth Measurement: 10/	15/20
Measuring Point (MP) Top of PVC Casing Top of Steel Protective Casing / Other: Diameter of Casing: Well Screen Interval:	, <u> </u>
Total Depth of Well Below MP: 5.79 Product Thickness, if noted:	<u> </u>
	UM 10,83 = 0,91 gal
Water Column in Well: 0.63 (Total Depth of Well Below MP - I	DTW Below MP) well
Gallons per foot: 0.16	
Gallons in Well: (Water Column in Well x Gallons p	per foot)
DIDCING DATA	
PURGING DATA	17170
Date Purged: 10/15/20 Time Started: 11:42 Time Completed:	12:30
m vi ii vi ii vi i ii vi ii ii ii ii ii i	Las Con " And
Gallons Purged: Depth of Pump (generally 2 ft from bottom):	E 0, C C10
Max. Drawdown (generally 0.3 ft): 0,08 Pump Rate:	
Well Purged Dry: Yes \(\Box\) No \(\Box\) (If yes, use Well Purged Dry Log)	
Time: Gallons: Pump Rate DTW Drawdown Temp: Sp. Cond.: 10:	pH: ORP: Turb: (S.U.) (mV) (NTU)
	6.39 124 458
	6.25 95 382
	6:29 51 16.5
	6,35 × 26 3,0
710	6.430 4 0,6
	.480 -11 0,0
7:03 1.3 0.2 5.23 0.07 9,670 6520 1 6	10 11 10
SAMPLING DATA	
Odor: Color: dare brown, sed, -	to clear_
Odor: None. Color: Color: Time / Date: 12'12	10/15/20
QC Sample Designation: 167104 - BI4MW Time / Date: 12:47	10/15/20
QA Sample Designation: Time / Date:	
Evacuation Method: Submersible Pump / Other:	
Water Quality Instruments Used/Manufacturer/Model Number Harley	
Calibration Info (Time, Ranges, etc) 10/15/70 8:00 amocal	
Remarks: B3MN inadverting sumpled instead of well	BYMY
Sampling Personnel: 5124	
WELL CASING VOLUMES (GAL/FT): $1" = 0.04$ $2" = 0.16$ $4" = 0$. ANNULAR SPACE VOLUME (GAL/FT): $4"$ casing and $2"$ well $= 0.23$	
ANNULAK SPACE VULUME (GAL/F1): 4 casing and 2 wen = 0.23	,
(well volume	
· · · · · · · · · · · · · · · · · · ·	

Job No: Well No.: Date:

Interval

(minutes)

3 to 5

5

ADEC

(May 2010)

EPA

(Jan. 2010)

Pump

Rate

(mL/min):

100 to 150

50

Drawdown

(ft):

< 0.0328

< 0.3

LOW-FLOW WATER SAMPLING LOG

Location: 1021

Continued from previous page

/ V	Time: 12:66 12:09 12:12	Gallons: 1, 4 1, 5 1,7	Pump Rate (L/min): O, To O, Sande	DTW (ft BMP): 5,27 5,23 5,25 12,12	Drawdown (ft): 0,07 0,07 6,07	Temp: (°C) 9,624 9,564 9,514	Sp. Cond (uS/cm) 652 (651) (650)	DÓ (mg/L)	pH: (S.U.) 6.52 6,560 6,560	-21V	Turb: (NTU) 0, 6 V 0, 6 V
			-					_	-		evenous and a second
					A						
Ą	· ·						***************************************				
					-	***************************************			-		
									<u> </u>		
	·								•		
			·····					.		MARKET LANGUAGE CONTRACTOR OF THE PARTY OF T	
							-				,
											,
					-	-					
	***		***************************************		*						***

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

Sp. Cond.:

(uS/cm)

±3%

±3%

DO

(mg/L)

±10%

±10%

ORP:

(mV)

±10

 ± 10

Turb:

(NTU)

 $\pm 10\%$

±10% or <5 NTU

pH:

(Ŝ.U.)

 ± 0.1

 ± 0.1

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Temp:

(°C)

 $\pm 3\%$ or ± 0.2

±3%

diam'r.	70	FE FE
-		

	LOW-PLOW WAS	LEK SAMILEL	TIO LOG		
Shannon & Wilson, Inc.	1.0.5	and h.	- 1	1 390,=	
Job No: 10404	Location: 1021 E	s, s' Ave	Weather:	ondy -	_
Well No.: B.S.M.W Date: 10/15/20	Time Started: 17;	40	Time Complete	d: 14:00	
Develop Date:	Develop End Time:		(24 hour break)		1164
	INITIAL GROUND	The second secon	EL DATA		
XI	10:10		Measurement:	Aleka .	
Time of Depth Measurement: Measuring Point (MP) Top of P		rotective Casing /	Other:	0/15/ 60	===
Diameter of Casing:	VC Casing) 1 op of Steer 1	Well Screen Int	terval:		
Total Depth of Well Below MP:	12,11	Product Thickn	ess, if noted:		
Depth-to-Water (DTW) Below N		- (m - 1 p - 4 - 4	SXX-II D -1 MD	DTW Deleve MD)	
Water Column in Well:	0.16	_ (Total Depth of	f Well Below MP -	DI w Below MF)	
Gallons per foot: Gallons in Well:	0.37	- (Water Column	in Well x Gallons	per foot)	
Guitono in Wolf.	UMANA VILLES CERCO				
		ING DATA		12 00	
Date Purged: 16/15/20		V.59	Time Completed	13!3/	
Three Well Volumes:	(Gallons in	Well x 3)	ft from bottom):	116	
Gallons Purged: 0, 6 Max. Drawdown (generally 0.3 f		Pump Rate:	0,1 7mh		
Well Purged Dry:	Yes 🗆 No 📫		ll Purged Dry Log)		
outions.	TRI 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Temp: Sp. Co		pH: ORP:	Turb
	BMP): (ft): 0.6 0.57	(°C) (uS/c		$\begin{array}{ccc} \text{(S.U.)} & \text{(mV)} \\ \text{6.36} & -31 \end{array}$	Y6.
		6.24 76	0	6,35 -33	61,9
	0.71 0.67	8.24× 76	2~	6,390 -370	52,
	0.89 0.85	8.43- 77	1	6,394 -394	16.7
		3.39- 760	1-	6910 -920	8.3
5 0.9 0.1	1.34 130 9	8.38" 77	6	6,450 -140	1,2
	SAMPL	ING DATA			
Odor:		Color:	Clear		3
Sample Designation: 107	-164 -B5nh	Time / Date:	13:27	10/15/20	
QC Sample Designation:		Time / Date:	- Callin	Total Ing	-
QA Sample Designation:		Time / Date:	and continue	1007 - 1001	
Evacuation Method: Submersible Sampling Method: Submersible					
Water Quality Instruments Used/		per Islandia			
Calibration Info (Time, Ranges,	. 1.7 /-	8.00 an	1		
	itc)	0.00 0,0	THE STREET	ngha wasaring italiy	
Remarks:	ng St. Will				
Sampling Personnel:					
WELLC	ASING VOLUMES (GAL	/FT): $1" = 0.04$	2" = 0.16 $4" = 0$		
ANNU	LAR SPACE VOLUME (C	A	ig and Z wen – 0.	2.7	
	min I well	V			

		rom previou	is page		8 5 5 1 8				ii ii
	ob No: _ /ell No.: _	1		Location:		Site:		40	
	ate:	1							
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp: (°C)	Sp. Cond (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)
			\pm						
-				<u> </u>				- =	
				_					
	\equiv								
	=								
<u> </u>						=			
_	Interval	Pump	Drawdown	Temp:	Sp. Cond.:	DO	nH:	ORP:	Turb:
	(minutes)	Pump Rate (mL/min):	(ft):	(°C)	Sp. Cond.: (uS/cm)	(mg/L)	pH;/ (S.U.)	(mV)	(NTU)
ADEC (ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%
EPA	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <5 N

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

man State of	LUVV-ILUVV VV.	WILLIA DUMINITI	LING LOG			
Shannon & Wilson, Inc.		1	-1	7.	or-	
Job No: 102104	Location: 1021 2	=13 Ave	Weather: _ Cle		°F	
Well No.: BILMW				14:17	ZEA	
Date: \0/16/20	Time Started:	1:50	_ Time Complete	d: Clear	30 /	=
Develop Date:	Develop End Time:		(24 hour break)	_		
* * * · · · · · · · · · · · · · · · · ·	INITIAL GROUN	DWATED II	EXTEL DATA			
*	And the second s			10/15/	40	
Time of Depth Measurement:	10:50		th Measurement:	(0/15/		
Measuring Point (MP): Top of I	VC Casing/Top of Stee	Protective Casing	g / Other:			
Diameter of Casing:	74	Well Screen	A CONTRACTOR OF THE CONTRACTOR			
Total Depth of Well Below MP:		Product Thic	ckness, if noted:			_
Depth-to-Water (DTW) Below	MP: 2.16		and it by the same	DWW D-1	- 3 (D)	
Water Column in Well:	12.78	(Total Depth	of Well Below MP -	DI M Below	/MP)	
Gallons per foot:	0.16	— m	: W II - C-II	C4\		
Gallons in Well:	2,04	(Water Colu	mn in Well x Gallons	per root)		
	PIIR	GING DATA				
Date Purged: 16/16/70		2:15	Time Completed	13;2	-1	
Date Purged: 16/70			TOUR ASSET SERVICES OF SERVICES			
Three Well Volumes:6.1	Gallons Double of	in Well x 3)	2 ft from bottom):	7ºC1 - 10	mercd fo	0
Gallons Purged: 2,	ft): 7.43	Pump (generally Pump Rate:		3.0		
CMax. Drawdown (generally 0.3	11)	I timp Rate.	Well Purged Dry Log			
Well Purged Dry: BM= 2.3					opp	,
Gallons: Pump Rate (L/min): (1)	DTW Drawdown ft BMP): (ft):		Cond.: DO: (S/cm) (mg/L)	pH: (S.U.)	ORP: (mV)	(
	3.35 1.04	11.01	67		242	Ì.
3 6.7 0.1	370 1.39	9.50	19	5.52	252	L
	119 1.88	1034	i u	5,64	249	5
	139 2.08	10.21 5	-4	5,59	255	5
9 0.4 0.1	1,51		3		260	67
	491 2.60		5		251	5
36 0.5 01	4.11	10.75 5	3	3,10	271	_
	SAMI	PLING DATA				
Odor: None		Color:	clear ,	to tan	, & cl	red
	2104-BILMW	Time / Date:	16/17/20	11:35		-
OC Sample Designation:	C109- BILLIO	Time / Date:		11.22	The limite	
QA Sample Designation:		Time / Date:				
	1 P (Od 0-1 1		arit (a	Test Contact	1000	
Evacuation Method: Submersib	H. H. H. H. H. H. H. H. T. H.	whale				
Sampling Method: Submersible	and Charles and the second of	1	a l	43		
Water Quality Instruments Used	/Manufacturer/Model Nur	CO. 1 CO. 1 ST. 100	on & turb	# S	141	
Calibration Info (Time, Ranges,	etc) Americal	10/16/20				
^		res, ted m	onimene 1:d	Sticking	yp	
10/17/20 cut do) 11 /	11 1	Sandy	21.55	7	
Sampling Personnel:	- 11 VUCIL WITE					
WELL	CASING VOLUMES (GA	AL/FT): 1" = 0.0	4 2"=0.16 4"=		4.5	
ANNU	JLAR SPACE VOLUME	(GAL/FT): 4" ca	asing and 2" well $= 0$.	23		

Continued from previous page

Job No: Location: Site:

Well No.: B 1 MW
Date: 10/16/20

Time: 12:39 12:42 12:45 12:56 12:56 12:56 13:05 13:05 13:11	Gallons: 0.7 0.8 1.0 1.3 1.4 1.4 1.6 1.7 1.8 1.9 7.0 7.1	Pump Rate (L/min): 0,1	BM = 2.31 DTW (ft BMP): 6.79 8.07 8.07 8.07 8.64 9.64 9.37 9.36 9.36 9.36 9.36 9.37	Drawdown (ft): 9.75 5.76 6.33 6.59 6.73 7.06 7.18 7.25 7.43 OFE pum	Temp: (°C) 11.3.7 11.0.6 16.59 10.7.7 10.52 10.75 10.70 10.77 10.64 10.40 10.20 10.39	Sp. Cond (uS/cm) 54 58 245 225 215 207 198 653 639 668 720	DO (mg/L)	PH: (S.U.) 5,63 6,76 6,83 7.03 60 Mic 7.11 7.44 7.88 8,06 8,17 8,27 8,39	ORP: (mV) 255 224 238 225 214 207 197 185 163 160 150	Turb: (NTU) 50, 63.7 309 510 71000 +w6, 553.3 758.1 1071 71100 1100
ADEC (May 2010)	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft): <0.0328	Temp: (°C) ±3% or ±0.2	Sp. Cond.: (uS/cm)	DO (mg/L) ±10%	pH: (S.U.) ±0.1	ORP: (mV)	(N	 nrb: TU)
EPA (Jan. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or	<5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

WELL PURGED DRY LOG

Shannon & Wils	con Inc						
			1021 E.3rd Ave		1 0	705	
Job No: 1021		Location:	0110	Weather: _	clear	50 r	
Concern:		Well No.:	BILMW			3 1 10 1	John.
Date: \0/1	6/20 -40/17/0	Time Star	ted: 11:50 (10/16/20)	Гіте Сотр	oleted: 17:28	17:17	10/15/
(0)	17/20		11:05 (10/17/20)		11:58	C10/17	120)
	II.	NITIAL	GROUNDWATER LEVEL	<u>DATA</u>			
Time of Depth M	leasurement:	10:5	11:50 Date of Depth Mes	asurement:	Bench me	20	
		Casing /	Top of Steel Protective Casing / Ot	her:	Bench me	~/k	
Diameter of Casi		27	Well Screen Interv	al:			3
Total Depth of W	Markey B Art A.S.	14.9	Y Product Thickness	, if noted:	_		
	(DTW) Below MP:	2.3		Mediani	1+45		
Water Column in	70 (A. 1913) (A. 1814) (A. 1814)	12.		ell Below I		ow MP)	
Gallons per foot:		0.				essate essoperation	
Gallons in Well:	-	7,0		Well x Gal	lons per foot)		
Ganons in wen.	-		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			PURGING DATA				
	duto	m: c	/ 	ima Camal	eted: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21	
Date Purged:							
80% Recovery W			(Water Column in (Initial DTW + (W			W-4 C-1	`
80% Recovery D	TW:	7,0	(Initial DTW + (W	ater Col. –	80% Recovery	water Col.)
· ·							
						1	
	Time Well Purge	ed Dry	Time Well Was 80% Recovered	DTW	Pump Rate		
10/11/20	1710	à l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9,74	0.1	21	
10/16/20	15.4	1		1,14	V.1		
1.1.	11. 74		11124	4.81	0,1		
1 /3 / 1 - 1 / - 1 / - 200	1		11:34	1, 01	0,1		
10/17/10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
10/17/20	,,,,						
10/17/70					1 14		ā
10/17/70	FIEL	D PAR	AMETERS AT TIME OF S	AMPLIN	<u>1G</u>		
10/17/70	FIEL	D PAR	AMETERS AT TIME OF S	AMPLIN	<u>\(\mathbf{G} \) \(</u>		4
				AMPLIN Sp. Cond.:	√ G pH:	ORP:	Turb
Time: Gallons:	Pump Rate	D PAR. DTW t BMP):	AMETERS AT TIME OF S Drawdown (ft Temp: BMP): (°C)			ORP: (mV)	
	Pump Rate (L/min): (fi	DTW	Drawdown (ft Temp: BMP): (°C)	Sp. Cond.: (uS/cm)	pH: (S.U.)	(mV)	(NTU
Гіme: Gallons:	Pump Rate	DTW	Drawdown (ft Temp:	Sp. Cond.:	pH: (S.U.)		
Гіme: Gallons:	Pump Rate (L/min): (fi	DTW	Drawdown (ft Temp: BMP): (°C)	Sp. Cond.: (uS/cm)	pH: (S.U.)	(mV)	(NTU
Гіme: Gallons:	Pump Rate (L/min): (fi	DTW	Drawdown (ft Temp: (°C)	Sp. Cond.: (uS/cm)	pH: (S.U.)	(mV)	(NTU
Time: Gallons:	Pump Rate (L/min): (fi	DTW	Drawdown (ft BMP): (°C) SAMPLING DATA	Sp. Cond.: (uS/cm)	pH: (S.U.)	(mV)	(NTU
Time: Gallons:	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C)	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor:	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Lea BIIMW Time / Date:	Sp. Cond.: (uS/cm)	pH: (S.U.)	(mV)	(NTU
Odor:	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Lea BIM w Time / Date: Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor:	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Lea BIIMW Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor: AoA Sample Designati QC Sample Desig	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Jeo BUM Time / Date: Time / Date: Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOoOoOoOoOoOoOoOoOoOoOoOoOoOo	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Leo Time / Date: Time / Date: Time / Date: Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOdor:OoOoOoOoOoOoOoOoOoOoOoOoOoOoOo	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Cleo BIM Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV)	(NTU
Odor:OA Sample Designati QC Sample Desig QA Sample Desig Evacuation Method Sampling Method	Pump Rate (L/min): (find the content of the content	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Leo BIMW Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.) 7,93	(mV) 235	Turb: (NTU)
Odor:OA Sample Designati QC Sample Desig QA Sample Desig Evacuation Method Sampling Method	Pump Rate (L/min): (fi	DTW t BMP):	Drawdown (ft Temp: BMP): (°C) SAMPLING DATA Color: Leo BIMW Time / Date:	Sp. Cond.: (uS/cm) 628	pH: (S.U.)	(mV) 235	(NTU)

	LOW-FLOW W	ATER SAMPLING	LOG	
Shannon & Wilson, Inc.		4 1		Applied to the early
Job No: 102104	Location: 1021	Ex 3rd Ave We	ather: cloudy	39°F
Well No .: BITMG)			15:06
Date: 10/15/20		1119 T	ime Completed:	15:06
Develop Date:	Develop End Time:		4 hour break)	
	Company of the second s		DATA	
4		NDWATER LEVEL	The state of the s	
Time of Depth Measurement		Date of Depth Meas	surement: 10/15	120
	of PVC Casing / Top of Stee	el Protective Casing / Othe	r:	The state of the s
Diameter of Casing:	211	Well Screen Interva		
Total Depth of Well Below		Product Thickness,	if noted:	
Depth-to-Water (DTW) Be				
Water Column in Well:	5.14	(Total Depth of We	ll Below MP - DTW B	selow MP)
Gallons per foot:	0,(6	—		
Gallons in Well:	0.82	(Water Column in V	Vell x Gallons per foot	5)
	PILE	GING DATA		
1.1.	,		ne Completed: 14:	51
Date Purged: 10/15/	Time Started:		ne Completed:	71
Three Well Volumes: 2	(Gallons	in Well x 3)	821	
Gallons Purged:	0.3 ft): 0,09 th c	f Pump (generally 2 ft fro	m bottom):	1
Max. Drawdown (generally		Pump Rate: O		
Well Purged Dry:	Yes 🗆 No 🖷		The second secon	
Time: Gallons: Pump Rate	DTW Drawdown	Temp: Sp. Cond.:	DO: pH:	ORP: T (mV) (N
14:26 0,2 (L/min):	(ft BMP): (ft): 7.38 0.04	(°C) (uS/cm) 10.73 589	(mg/L) (S.U.) & . Zo	-10 1
			6.32	
14:29 0.4 0.4	7.37 0.63	11.03 594		
14:33 0.6 0.3	7.38 0.04	11.23 598	6.36	15- 7
14:38 0.7 0.2	7.78 0.04	11.28 606	6.36	-15-6
14:40 40 0,4	7.37 0.03	11.57 614	6.29	
14:43 1,3 0,5	7.37 0.03	11,860 623	6,26	0 -10 0
rge battery- tracest-	SAM	PLING DATA		
	SAM	<u> </u>	1	
Odor: None	21611 254	Color:C	les III	1:50
	02104-B17MW	Time / Date:	0/15/20. 19	130
QC Sample Designation: _		Time / Date:	- 110.00	CI SISSI
QA Sample Designation: _		Time / Date:		
Evacuation Method: Subme	ersible Pump / Other:	1 1	44	
Sampling Method: Submer	sible Pump / Other:	whale		
Water Quality Instruments U	Jsed/Manufacturer/Model Nu	mber Horsba	100	
Calibration Info (Time, Ran	1. 1 /	aure cal		
	ges, etc)		a Vancous Charles	
Remarks: & lead	any			The second of the
Exception of the second of the	The state of the s			
Sampling Personnel:				

WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65 ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

Continued from previous page

Job No:	102104	

Location: 1021 E, 3rd Ave Site:

Temp:

Drawdown

(ft):

0.03

po

(mg/L)

pH:

ORP:

Turb:

(NTU)

Sp. Cond

(uS/cm)

Well No.:

Gallons:

collect sample.

Time:

BIT MW

Pump Rate

(L/min):

DTW

(ft BMP):

Date: 10/15/20

				/ I		•		_	
			· 1/24		-	-			x
			8	1 2 .					
	1/2				1 2	-			
	i -				7,				
2 , 4		13.				8			
					- 1			-	Kens - Tari
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO (mg/L)	pH. (S.U.)	ORP: (mV)	Turb: (NTU)
ADEC Iay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <5 NTU

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

FIELD ACTIVITIES DAILY LOG

	estate in the			POST CONTRACTOR	10/15/20 - 10,
				Sheet Project No.) of <u>\</u>
Project Name:	1021 E. 3cd	Ave		Project No.	10 0104
Field activity sub			وملاء		
	aily activities and events:		<i></i>		
8.00	calibrare	Horiba A	TWO 3		
9:29	1ean SWI				
9:45	check in	MLaP			
			40.17		C convere
- thre	well		10:04	locased N	wooden English
10:10	BEMW		10.01	Place	Gence to South
10:22	BYMW		5.16 5	wood Chang is	Cences 4, Ser
(0:46	B17MV		7.34		
10:56	Blimw		2,16	1051	jacked
		(10 - 0)			
15:06	call Henry	(MLQP)	to	10-60	in 559d
15:26	drum (hel)	Not To	gove to	RYMW &	BSMUD
	drum (hels	100 41 10	Jule W	5.7.10	ps///
10/16/20		**************************************			
9:30	calibree Ho	c. eq			
11:45	acrive site	1 chec	hin ML&	0	
14:30	1. me 5/+c				
				N N	
10/17/20				1 0-1 0	
11:00	arrive of size	, & c	heck is whe	11	1
		then co	w down u	sell	
12:00	leave site				
-					
****			¥		ц
Visitors on site:					
			7		
Changes from p	lans/specifications and ot	her special order	s and important dec	isions:	
	A W	16			
					1
	CIT	/			
Weather condit	ions: <u>See fiel</u>	Novel.			
Important telep	hone calls:				
Personnel on sit	e: 5144				<u> </u>
Signature:	Au 21/			Date:	: 10/17/20

Shaimon & wilson, me.	
Job No: [02/04] Location: 102/ E. 31 Are Weather: 19 F Clear	
Well No.: <u>B4MW</u> Date: 11-19-2020 Time Started: 10107 Time Completed: 12:43	
Date: 11-29-200 Time Started: 10:00 Time Completed: 15:45 Develop Date: Develop End Time: (24 hour break)	
INITIAL GROUNDWATER LEVEL DATA	* *
Time of Depth Measurement: Date of Depth Measurement:	
Measuring Point (MP): Fop of PVC Casing / Top of Steel Protective Casing / Other: Diameter of Casing: Well Screen Interval:	
Diameter of Casing: Well Screen Interval: Well Screen Interval: Product Thickness, if noted:	
Depth-to-Water (DTW) Below MP: 3.3	_
Water Column in Well: 7.11 (Total Depth of Well Below MP - DTW Below MP)	
Gallons per foot: WLI-	4
Gallons in Well: Met 1,73 (Water Column in Well x Gallons per foot)	1
PURGING DATA	
Date Purged: 1/21/16 Time Started: 11/16 Time Completed: 1:53	
Three Well Volumes: 7,70 (Gallons in Well x 3)	
Gallons Purged: Depth of Pump (generally 2 ft from bottom): ~ 4.2 ft	
Max. Drawdown (generally 0.3 ft): 0.29 Pump Rate: 0.2	44
Well Purged Dry: Yes No (If yes, use Well Purged Dry Log)	Turb: 3x Cl
Time: Gallons: Pump Rate DTW Drawdown Temp: Sp. Cond.: DO: pH: ORP: (L/min): (ft BMP): (ft): (°C) (uS/cm) (mg/L) (S.U.) (mV)	Turb: (NTU)
1:20 0.3 0.1 3.46 6.15 4.48 697 6.35 58	72.4
11:23 0.4 0.2 3.56 6.25 4.05 718 6.32 45	74.3
1.76 0.5 0.7 3.59 0.78 4.27 716 6.30 32	39.0
$\frac{1!79}{0.78} \frac{0.6}{0.7} \frac{0.1}{0.7} \frac{0.1}{0.7} \frac{4.76}{4.7} \frac{715}{716} \frac{6.25}{6.25} \frac{77}{17}$	15.8
$\frac{11.35}{1.00} \frac{0.78}{0.2} \frac{0.2}{3.60} \frac{0.29}{0.29} \frac{4.18}{4.18} \frac{116}{716} \frac{6.25}{6.29} \frac{11}{11}$	75
1.0 0.2 3,00 0,01	110
Odor: hydro carbon organic Color: tan tipy	
Odor: hydro carbon organic Color: tan tipy	
Sample Designation: Time / Date:	
QC Sample Designation: QA Sample Designation: Time / Date: Time / Date:	
Evacuation Method: Submersible Pump / Other:	
Water Quality Instruments Used/Manufacturer/Model Number	
1.7	***
Remarks:	
Sampling Personnel: JH	
WELL CASING VOLUMES (GAL/FT): $1" = 0.04$ $2" = 0.16$ $4" = 0.65$	
ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23	

Continued from previous page

Job No: 102 104 Location: 10218, 3rd Ame Site:

Well No.: B4mw

Date: 1/29/20

				-	-			-		-	-
				,		-				3.	
-			* *	¥ .	*			-			
								-	· ·		<u>* </u>
						, £					
				-	· · ·	1	-	-			, P ₁ 1
				,							,
	8 , 1				9						- 19°
				· ×		· , · · ,			· · · · · ·	×** ×	
						<u> </u>			- 22.20		
	× ×	100.458 A			-	· · · · · · · · · · · · · · · · · · ·	5 °			· .	2
				***************************************						*	
		Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb (NTU	
	ADEC ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%	6
	EPA	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	E NITTI

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Brogher Francis - 1021 E 3rd Ave 102104 11/24/20 calibrate Horiba & 452 9:30 leave SWI (JKH & CP) 9:40 Arrive on stre, check in with Spewer Meer trans (MOA) & locase wells B3MW, B4MW& 10:00 10:05 B5MW measure swhy thes to B4MW Sample well B4MW Clay wells B3MW, B4MW & B5MW & label steat markers on Fence - 123 6, -Whence Tiof B3MW 2751 89 C1 B5mw Concrutt Bymn leave purge & decon water in 55 gallon drawn an sire overthe of gate 12:42 beare Sti 13:03 arrive SWI, unload gear, then take samples 565, Rite in the Rain.

21.666666666

Scale: 1 square = _

Appendix B: Results of Analytical Testing

Appendix B

Results of Analytical Testing

By SGS North America, Inc. of Anchorage, Alaska and ADEC Laboratory Data Review Checklist

CONTENTS

- Results of Analytical Testing by SGS North America, Inc. of Anchorage, Alaska
- ADEC Laboratory Data Review Checklist

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907)433-3241

Report Number: 1205774

Client Project: 102104 1021 E. 3rd Ave

Dear Judy Hepner,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Justin Nelson 2020.11.02

14:27:02 -09'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/30/2020 4:35:49PM Results via Engage

SGS North America Inc.

Case Narrative

SGS Client: **Shannon & Wilson, Inc.**SGS Project: **1205774**Project Name/Site: **102104 1021 E. 3rd Ave**Project Contact: **Judy Hepner**

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/30/2020 4:35:52PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/30/2020 4:35:56PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
102104-B4MW	1205774001	10/15/2020	10/19/2020	Water (Surface, Eff., Ground)
102104-B5MW	1205774002	10/15/2020	10/19/2020	Water (Surface, Eff., Ground)
102104-B11MW	1205774003	10/17/2020	10/19/2020	Water (Surface, Eff., Ground)
102104-B14MW	1205774004	10/15/2020	10/19/2020	Water (Surface, Eff., Ground)
102104-TB	1205774005	10/15/2020	10/19/2020	Water (Surface, Eff., Ground)
102104-B17MW	1205774006	10/15/2020	10/19/2020	Water (Surface, Eff., Ground)

Method Description

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water

SW6020B Metals by ICP-MS

SW8260D Volatile Organic Compounds (W) FULL

Print Date: 10/30/2020 4:35:57PM

Detectable Results Summary

Client Sample ID: 102104-B4MW			
Lab Sample ID: 1205774001	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Lead	3.09	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.366J	mg/L
	Residual Range Organics	0.704	mg/L
Client Sample ID: 102104-B5MW			
Lab Sample ID: 1205774002	Parameter	Result	Units
Metals by ICP/MS	Lead	11.0	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	6.13	mg/L
•	Residual Range Organics	4.64	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1.19	ug/L
	1,2-Dichloroethane	0.955	ug/L
	Benzene	0.304J	ug/L
	Ethylbenzene	0.460J	ug/L
	P & M -Xylene	0.667J	ug/L
	sec-Butylbenzene	0.328J	ug/L
Client Sample ID: 102104-B11MW			
Lab Sample ID: 1205774003	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Lead	3.59	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.345J	mg/L
	Residual Range Organics	0.534	mg/L
Client Sample ID: 102104-B14MW			
Lab Sample ID: 1205774004	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Lead	1.52	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.377J	mg/L
-	Residual Range Organics	0.815	mg/L

Print Date: 10/30/2020 4:35:59PM

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774001 Lab Project ID: 1205774 Collection Date: 10/15/20 12:12 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed <u>Limits</u> 3.09 0.310 Lead 1.00 ug/L 5 10/21/20 06:33

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B

Analyst: ACF

Analytical Date/Time: 10/21/20 06:33 Container ID: 1205774001-C Prep Batch: MXX33749
Prep Method: SW3010A
Prep Date/Time: 10/20/20 11:34
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774001 Lab Project ID: 1205774 Collection Date: 10/15/20 12:12 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.366 J	0.588	0.176	mg/L	1		10/25/20 17:23
Surrogates							
5a Androstane (surr)	88.1	50-150		%	1		10/25/20 17:23

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/25/20 17:23 Container ID: 1205774001-A Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.704	0.490	0.147	mg/L	1		10/25/20 17:23
Surrogates							
n-Triacontane-d62 (surr)	93.4	50-150		%	1		10/25/20 17:23

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 10/25/20 17:23 Container ID: 1205774001-A Prep Batch: XXX44117
Prep Method: SW3520C
Prep Date/Time: 10/23/20 15:42
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774001 Lab Project ID: 1205774 Collection Date: 10/15/20 12:12 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:06
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:06
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/20/20 22:06
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:06
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:06
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:06
Benzene	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:06
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/20/20 22:06
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:06
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:06
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:06

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774001 Lab Project ID: 1205774 Collection Date: 10/15/20 12:12 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF		ate Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:06
Chloromethane	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	1	0/20/20 22:06
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	1	0/20/20 22:06
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Freon-113	5.00 U	10.0	3.10	ug/L	1	1	0/20/20 22:06
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	1	0/20/20 22:06
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	1	0/20/20 22:06
Naphthalene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
o-Xylene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	1	0/20/20 22:06
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Styrene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Toluene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:00
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	1	0/20/20 22:06
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	1	0/20/20 22:06
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	1	0/20/20 22:06
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	1	0/20/20 22:06
urrogates							
1,2-Dichloroethane-D4 (surr)	114	81-118		%	1	1	0/20/20 22:00
4-Bromofluorobenzene (surr)	92.5	85-114		%	1	1	0/20/20 22:06
Toluene-d8 (surr)	98.8	89-112		%	1	1	0/20/20 22:06

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774001 Lab Project ID: 1205774 Collection Date: 10/15/20 12:12 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 10/20/20 22:06 Container ID: 1205774001-D Prep Batch: VXX36571
Prep Method: SW5030B
Prep Date/Time: 10/20/20 16:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 102104-B5MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774002 Lab Project ID: 1205774 Collection Date: 10/15/20 13:27 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> Date Analyzed **Limits** 0.310 Lead 11.0 1.00 ug/L 5 10/21/20 06:38

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B

Analyst: ACF

Analytical Date/Time: 10/21/20 06:38 Container ID: 1205774002-C Prep Batch: MXX33749
Prep Method: SW3010A
Prep Date/Time: 10/20/20 11:34
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: 102104-B5MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774002 Lab Project ID: 1205774 Collection Date: 10/15/20 13:27 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	6.13	0.545	0.164	mg/L	1		10/25/20 17:33
Surrogates							
5a Androstane (surr)	86.5	50-150		%	1		10/25/20 17:33

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/25/20 17:33 Container ID: 1205774002-A Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 275 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	4.64	0.455	0.136	mg/L	1		10/25/20 17:33
Surrogates							
n-Triacontane-d62 (surr)	89.3	50-150		%	1		10/25/20 17:33

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 10/25/20 17:33 Container ID: 1205774002-A Prep Batch: XXX44117
Prep Method: SW3520C
Prep Date/Time: 10/23/20 15:42
Prep Initial Wt./Vol.: 275 mL
Prep Extract Vol: 1 mL

Client Sample ID: 102104-B5MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774002 Lab Project ID: 1205774 Collection Date: 10/15/20 13:27 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:20
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,2,4-Trimethylbenzene	1.19	1.00	0.310	ug/L	1	10/20/20 22:20
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:20
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/20/20 22:20
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,2-Dichloroethane	0.955	0.500	0.150	ug/L	1	10/20/20 22:20
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:20
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:20
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:20
Benzene	0.304 J	0.400	0.120	ug/L	1	10/20/20 22:20
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/20/20 22:20
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:20
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:20
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:20

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B5MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774002 Lab Project ID: 1205774 Collection Date: 10/15/20 13:27 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits D	ate Analyzed
<u>Farameter</u> Chloroform	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:20
Chloromethane	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:20 0/20/20 22:20
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L ug/L	1		0/20/20 22:20 0/20/20 22:20
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1		0/20/20 22:20 0/20/20 22:20
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		0/20/20 22:20 0/20/20 22:20
				J			
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:2
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:2
Ethylbenzene	0.460 J	1.00	0.310	ug/L	1		0/20/20 22:2
Freon-113	5.00 U	10.0	3.10	ug/L	1		0/20/20 22:2
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:2
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		0/20/20 22:2
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	10	0/20/20 22:2
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10	0/20/20 22:2
Naphthalene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
P & M -Xylene	0.667 J	2.00	0.620	ug/L	1	10	0/20/20 22:2
sec-Butylbenzene	0.328 J	1.00	0.310	ug/L	1	10	0/20/20 22:2
Styrene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
Toluene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10	0/20/20 22:2
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10	0/20/20 22:2
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10	0/20/20 22:2
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10	0/20/20 22:2
urrogates							
1,2-Dichloroethane-D4 (surr)	112	81-118		%	1	10	0/20/20 22:2
4-Bromofluorobenzene (surr)	91.6	85-114		%	1		0/20/20 22:2
Toluene-d8 (surr)	97.5	89-112		%	1		0/20/20 22:2

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B5MW

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774002 Lab Project ID: 1205774 Collection Date: 10/15/20 13:27 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 10/20/20 22:20 Container ID: 1205774002-D

Prep Batch: VXX36571 Prep Method: SW5030B Prep Date/Time: 10/20/20 16:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 102104-B11MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774003 Lab Project ID: 1205774 Collection Date: 10/17/20 11:35 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed <u>Limits</u> 3.59 0.310 Lead 1.00 ug/L 5 10/21/20 06:42

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B

Analyst: ACF

Analytical Date/Time: 10/21/20 06:42 Container ID: 1205774003-C Prep Batch: MXX33749
Prep Method: SW3010A
Prep Date/Time: 10/20/20 11:34
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: 102104-B11MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774003 Lab Project ID: 1205774 Collection Date: 10/17/20 11:35 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.345 J	0.566	0.170	mg/L	1		10/25/20 17:43
Surrogates							
5a Androstane (surr)	83.9	50-150		%	1		10/25/20 17:43

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/25/20 17:43 Container ID: 1205774003-A Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.534	0.472	0.142	mg/L	1		10/25/20 17:43
Surrogates							
n-Triacontane-d62 (surr)	90.6	50-150		%	1		10/25/20 17:43

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 10/25/20 17:43 Container ID: 1205774003-A Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Client Sample ID: 102104-B11MW Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774003 Lab Project ID: 1205774 Collection Date: 10/17/20 11:35 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:35
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:35
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/20/20 22:35
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:35
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:35
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:35
Benzene	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:35
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/20/20 22:35
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:35
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:35
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:35

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B11MW Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774003 Lab Project ID: 1205774 Collection Date: 10/17/20 11:35 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/20/20 22:35
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/20/20 22:35
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:35
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:35
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:35
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/20/20 22:35
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Styrene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:3
Toluene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:3
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:3
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:3
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:35
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:3
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:3
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/20/20 22:3
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		10/20/20 22:3
urrogates							
1,2-Dichloroethane-D4 (surr)	113	81-118		%	1		10/20/20 22:3
4-Bromofluorobenzene (surr)	92.1	85-114		%	1		10/20/20 22:3
Toluene-d8 (surr)	98	89-112		%	1		10/20/20 22:3

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B11MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774003 Lab Project ID: 1205774 Collection Date: 10/17/20 11:35 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 10/20/20 22:35 Container ID: 1205774003-D Prep Batch: VXX36571
Prep Method: SW5030B
Prep Date/Time: 10/20/20 16:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 102104-B14MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774004 Lab Project ID: 1205774 Collection Date: 10/15/20 12:42 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> Date Analyzed **Limits** 1.52 0.310 Lead 1.00 ug/L 5 10/21/20 07:01

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B

Analyst: DMM

Analytical Date/Time: 10/21/20 07:01 Container ID: 1205774004-C

Prep Batch: MXX33749
Prep Method: SW3010A
Prep Date/Time: 10/20/20 11:34
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: 102104-B14MW Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774004 Lab Project ID: 1205774

Collection Date: 10/15/20 12:42 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.377 J	0.566	0.170	mg/L	1	<u>Limits</u>	10/25/20 17:53
Surrogates 5a Androstane (surr)	93.8	50-150		%	1		10/25/20 17:53

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK102 Analyst: CDM

Analytical Date/Time: 10/25/20 17:53 Container ID: 1205774004-A

Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.815	0.472	0.142	mg/L	1		10/25/20 17:53
Surrogates							
n-Triacontane-d62 (surr)	96.9	50-150		%	1		10/25/20 17:53

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 10/25/20 17:53 Container ID: 1205774004-A

Prep Batch: XXX44117 Prep Method: SW3520C Prep Date/Time: 10/23/20 15:42 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Client Sample ID: 102104-B14MW Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774004 Lab Project ID: 1205774 Collection Date: 10/15/20 12:42 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:49
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:49
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/20/20 22:49
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:49
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:49
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:49
Benzene	0.200 U	0.400	0.120	ug/L	1	10/20/20 22:49
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/20/20 22:49
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/20/20 22:49
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 22:49
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 22:49

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B14MW Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774004 Lab Project ID: 1205774 Collection Date: 10/15/20 12:42 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	<u>5. </u>	Limito	10/20/20 22:49
Chloromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		10/20/20 22:49
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		10/20/20 22:49
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Freon-113	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:49
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:49
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:49
Naphthalene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/20/20 22:49
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Styrene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Toluene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		10/20/20 22:49
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		10/20/20 22:49
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		10/20/20 22:49
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		10/20/20 22:49
Surrogates							
1,2-Dichloroethane-D4 (surr)	114	81-118		%	1		10/20/20 22:49
4-Bromofluorobenzene (surr)	92.3	85-114		%	1		10/20/20 22:49
Toluene-d8 (surr)	97.5	89-112		%	1		10/20/20 22:49

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-B14MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774004 Lab Project ID: 1205774 Collection Date: 10/15/20 12:42 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 10/20/20 22:49 Container ID: 1205774004-D Prep Batch: VXX36571
Prep Method: SW5030B
Prep Date/Time: 10/20/20 16:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774005 Lab Project ID: 1205774 Collection Date: 10/15/20 12:00 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	10/20/20 17:58
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	10/20/20 17:58
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Benzene	0.200 U	0.400	0.120	ug/L	1	10/20/20 17:58
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Bromomethane	2.50 U	5.00	2.00	ug/L	1	10/20/20 17:58
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774005 Lab Project ID: 1205774 Collection Date: 10/15/20 12:00 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/20/20 17:58
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Naphthalene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	10/20/20 17:58
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Styrene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Toluene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/20/20 17:58
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/20/20 17:58
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	10/20/20 17:58
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10/20/20 17:58
urrogates						
1,2-Dichloroethane-D4 (surr)	116	81-118		%	1	10/20/20 17:58
4-Bromofluorobenzene (surr)	94.3	85-114		%	1	10/20/20 17:58
Toluene-d8 (surr)	99.8	89-112		%	1	10/20/20 17:58

Print Date: 10/30/2020 4:36:02PM

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774005 Lab Project ID: 1205774 Collection Date: 10/15/20 12:00 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 10/20/20 17:58 Container ID: 1205774005-A Prep Batch: VXX36571
Prep Method: SW5030B
Prep Date/Time: 10/20/20 16:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 102104-B17MW
Client Project ID: 102104 1021 E. 3rd Ave

Lab Sample ID: 1205774006 Lab Project ID: 1205774 Collection Date: 10/15/20 14:50 Received Date: 10/19/20 08:08 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed <u>Limits</u> 0.500 U 0.310 Lead 1.00 ug/L 5 10/21/20 06:14

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B

Analyst: ACF

Analytical Date/Time: 10/21/20 06:14 Container ID: 1205774006-A Prep Batch: MXX33749
Prep Method: SW3010A
Prep Date/Time: 10/20/20 11:34
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Blank ID: MB for HBN 1813216 [MXX/33749]

Blank Lab ID: 1588822

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004, 1205774006

Matrix: Water (Surface, Eff., Ground)

Results by SW6020B

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Lead
 0.500U
 1.00
 0.310
 ug/L

Batch Information

Analytical Batch: MMS10922
Analytical Method: SW6020B

Instrument: Perkin Elmer Nexlon P5

Analyst: ACF

Analytical Date/Time: 10/21/2020 6:05:13AM

Prep Batch: MXX33749 Prep Method: SW3010A

Prep Date/Time: 10/20/2020 11:34:27AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/30/2020 4:36:05PM

Blank Spike ID: LCS for HBN 1205774 [MXX33749]

Blank Spike Lab ID: 1588823 Date Analyzed: 10/21/2020 06:09

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205774001, 1205774002, 1205774003, 1205774004, 1205774006

Results by SW6020B

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Lead
 1000
 1010
 101
 (88-115)

Batch Information

Analytical Batch: MMS10922 Prep Batch: MXX33749
Analytical Method: SW6020B Prep Method: SW3010A

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 10/20/2020 11:34

Analyst: ACF Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/30/2020 4:36:09PM

Matrix Spike Summary

 Original Sample ID: 1588824
 Analysis Date: 10/21/2020 6:14

 MS Sample ID: 1588825 MS
 Analysis Date: 10/21/2020 6:19

 MSD Sample ID: 1588826 MSD
 Analysis Date: 10/21/2020 6:24

 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205774001, 1205774002, 1205774003, 1205774004, 1205774006

Results by SW6020B

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Lead 0.500U 1000 1010 101 101 1000 1010 88-115 0.56 (< 20)

Batch Information

Analytical Batch: MMS10922 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5

Analyst: ACF

Analytical Date/Time: 10/21/2020 6:19:19AM

Prep Batch: MXX33749

Prep Method: 3010 H20 Digest for Metals ICP-MS

Prep Date/Time: 10/20/2020 11:34:27AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/30/2020 4:36:12PM

Blank ID: MB for HBN 1813243 [VXX/36571]

Blank Lab ID: 1588991

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

. 1000				
<u>Parameter</u>	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 10/30/2020 4:36:14PM

Blank ID: MB for HBN 1813243 [VXX/36571]

Blank Lab ID: 1588991

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	115	81-118		%
4-Bromofluorobenzene (surr)	94	85-114		%
Toluene-d8 (surr)	99.6	89-112		%

Print Date: 10/30/2020 4:36:14PM

Blank ID: MB for HBN 1813243 [VXX/36571]

Blank Lab ID: 1588991

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 10/20/2020 4:31:00PM

Prep Batch: VXX36571 Prep Method: SW5030B

Prep Date/Time: 10/20/2020 4:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2020 4:36:14PM

Blank Spike ID: LCS for HBN 1205774 [VXX36571]

Blank Spike Lab ID: 1588992 Date Analyzed: 10/20/2020 16:45 Spike Duplicate ID: LCSD for HBN 1205774

[VXX36571]

Spike Duplicate Lab ID: 1588993 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Results by SW8260D

Pamemeter Spike Result Res (%) Spike Result Color 1,1.1-Tirkhioroethane 30 28.5 95 30 21.2 104 (80-11) 1.0 (>20.0) 1,1.2-Tirkhioroethane 30 30.9 108 30.9 106 31.9 106 (%0.11) 0.0 0.27 (<20.0) 1,1-Dichloroethane 30 34.2 114 30 34.1 114 (77.151) 0.0 (<20.0) 1,1-Dichloroethane 30 32.0 110 30.4 115 (69-12) 1.50 (<20.0) 1,2-Dichloroethane 30 32.3 190 30.1 110 (<79-12) 2.0 (<20.0) 1,2-A-Tirkhiorobenzene 30 32.2 107 30 23.3 19 (<20.12			Blank Spike	e (ug/L)	Spike Duplicate (ug/L)					
1,1.1-Trichloroethane 30 32.3 108 30 31.8 106 (74-131) 1.40 (<20) 1,1.2-Tichloroethane 30 28.5 95 30 29.1 97 (71-121) 2.10 (<20) 1,1.2-Tichloroethane 30 30.9 103 30 31.2 104 (80-119) 0.94 (<20) 1,1-Dichloroethane 30 31.9 106 30 31.9 106 (77-125) 0.27 (<20) 1,1-Dichloroethane 30 34.2 114 30 34.1 114 (71-131) 0.30 (<20) 1,1-Dichloropropene 30 33.0 110 30 32.5 108 (79-125) 1.50 (<20) 1,2,3-Tichlorobenzene 30 31.9 106 30 34.4 115 (89-129) 7.60 (<20) 1,2,3-Tichloropropane 30 29.3 98 30 30.1 100 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (89-130) 7.40 (<20) 1,2,4-Tichlorobenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dichloroe-3-chloropropane 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dichloroe-3-chloropropane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichloroethane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichloroethane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloropane 30 31.5 105 30 31.2 104 (80-119) 1.50 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.1 104 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 32.8 86 30 28.6 92 (56-143) 1.00 (<20) 1,3-Dichloropropane 30 32.5 88 30 28.6 92 (56-143) 1.00 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.5 105 (80-119) 1.00 (<20) 2,2-Dichloropropane 30 32.8 86 30 28.8 96 (79-122) 1.50 (<20) 2,2-Dichloropropane 30 32.8 96 30 28.6 92 (56-143) 1.00 (<20) 2,2-Dichloropropane 30 32.8 30 30.8 31.5 30	<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1.1.2.2-Tetrachloroethane 30 28.5 95 30 29.1 97 (71-121 2.10 (< 20 1.1.2-Tirchloroethane 30 30.9 103 30 31.2 104 (80-119 0.94 (< 20 1.1-Dichloroethane 30 31.9 106 30 31.9 106 (77-125 0.27 (< 20 1.1-Dichloroethane 30 34.2 114 30 34.1 114 (71-131 0.30 (< 20 1.1-Dichloroethane 30 33.0 110 30 32.5 108 (79-125 1.50 (< 20 1.1-Dichloroptopene 30 33.0 110 30 32.5 108 (79-125 1.50 (< 20 1.2.3-Trichlorobenzene 30 31.9 106 30 34.4 115 (69-129 7.60 (< 20 1.2.3-Trichloroptopane 30 29.3 98 30 30.1 100 (73-122 2.70 (< 20 1.2.3-Trichloroptopane 30 27.8 93 30 28.6 96 (79-124 3.10 (< 20 1.2.4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124 3.10 (< 20 1.2.4-Trimethylbenzene 30 32.2 107 30 32.3 108 (77-121 1.10 (< 20 1.2-Dibromo-3-chloroptopane 30 30.7 102 30 31.2 104 (80-119 1.50 (< 20 1.2-Dibromoethane 30 32.6 109 30 32.7 109 (73-128 2.90 (< 20 1.2-Dichlorobenzene 30 32.6 109 30 32.7 109 (73-128 0.28 (< 20 1.2-Dichloroptopane 30 30.8 103 30 31.5 105 (80-119 1.50 (< 20 1.3-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 1.3-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 1.3-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 1.3-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5 105 30 31.5 105 (80-119 1.40 (< 20 2.2-Dichloroptopane 30 31.5	1,1,1,2-Tetrachloroethane	30	33.0	110	30	32.6	109	(78-124)	1.10	(< 20)
1,1,2-Trichloroethane 30 30.9 103 30 31.2 104 (80-119) 0.94 (< 20) 1,1-Dichloroethane 30 31.9 106 30 31.9 106 (77-125) 0.27 (< 20) 1,1-Dichloroethane 30 34.2 114 30 34.1 114 (71-131) 0.30 (< 20) 1,1-Dichloroethane 30 33.0 110 30 32.5 108 (79-125) 1.50 (< 20) 1,2-Ja-Trichlorobenzene 30 31.9 106 30 34.4 115 (69-129) 7.60 (< 20) 1,2-Ja-Trichloropropane 30 29.3 98 30 30.1 100 (73-122) 2.70 (< 20) 1,2-Ja-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (< 20) 1,2-Ja-Trichlorobenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (< 20) 1,2-Jibromo-3-chloropropane 30 26.5 89 30 27.3 91 (62-128) 2.90 (< 20) 1,2-Dibromo-3-chloropropane 30 32.0 107 30 32.3 108 (77-121) 1.10 (< 20) 1,2-Dibromo-4-chloropropane 30 32.6 109 30 32.7 109 (73-128) 0.28 (< 20) 1,2-Dichlorobenzene 30 30.3 103 30 31.2 104 (80-119) 1.50 (< 20) 1,2-Dichlorobenzene 30 30.3 103 30 31.2 104 (80-119) 1.50 (< 20) 1,2-Dichloropropane 30 32.6 109 30 32.7 109 (73-128) 0.28 (< 20) 1,2-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 31.5 105 (80-119) 0.29 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 1,3-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 2,2-Dichloropopane 30 81.7 91 90 82.6 92 (56-143) 1.90 (< 20) 2,2-Dichloropopane 30 31.6 90 90 82.6 92 (56-143) 1.90 (< 20) 2,2-Dichloropopane 30 31.0 103 30 31.6 105 (60-13) 1.00 (< 20) 2,2-Dichloropopane 30 30.8 103 30.3 31.9 106 (79-120) 0.56 (< 20) 2,2-Dichloropopa	1,1,1-Trichloroethane	30	32.3	108	30	31.8	106	(74-131)	1.40	(< 20)
1,1-Dichloroethane 30 31.9 106 30 31.9 106 (77-125) 0.27 (<20)	1,1,2,2-Tetrachloroethane	30	28.5	95	30	29.1	97	(71-121)	2.10	(< 20)
1,1-Dichloroethene 30 34.2 114 30 34.1 114 (71-131) 0.30 (<20) 1,1-Dichloropropene 30 33.0 110 30 32.5 108 (79-125) 1.50 (<20) 1,2,3-Trichlorobenzene 30 31.9 106 30 34.4 115 (69-129) 7.60 (<20) 1,2,3-Trichlorobenzene 30 32.9 88 30 30.1 100 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trimethylbenzene 30 32.2 89 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dichlorobenzene 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 32.6 109 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichlorobenzene 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichloropropane 30 31.0 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.1 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,3-Dichloropropane 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Dichloropropane 30 28.7 96 30 28.8 96 (79-122) 0.09 (<20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (<20) 4-Holtotoluene 30 28.7 96 30 30.3 101 (77-127) 3.60 (<20) 4-Holtotoluene 30 30.8 103 30 30.3 101 (77-127) 3.60 (<20) 4-Holtotoluene 30 30.8 103 30 30.3 101 (77-127) 3.60 (<20) 5-Romobenzene 30 31.0 103 30 31.3 104 (80-120) 0.56 (<20) 5-Romobenzene 30 30.8 110 30 32.8 110 (68-130) 0.79 (<20) 5-Romobenzene	1,1,2-Trichloroethane	30	30.9	103	30	31.2	104	(80-119)	0.94	(< 20)
1,1-Dichloropropene 30 33.0 110 30 32.5 108 (79-125) 1.50 (<20) 1,2,3-Trichlorobenzene 30 31.9 106 30 34.4 115 (69-129) 7.60 (<20) 1,2,3-Trichloropropane 30 29.3 98 30 30.1 100 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trinethylbenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trinethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dibromo-3-chloropropane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dibromoethane 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichloropropane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloroptropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichloroptopane 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloroptopane 30 31.5 105 30 31.6 105 (80-119) 1.40 (<20) 1,3-Dichloroptopane 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichloroptopane 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichloroptopane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Dichloroptopane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Dichlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Dichlorotoluene 30 28.8 96 30 30.3 107 (78-122) 1.50 (<20) 3-Dichlorotoluene 30 30.8 103 30 30.3 30.3 30.3 30.4 (<20) 3-Dichlorotoluene 30 30.8 30.3 30.3 30.3 30.3 30.4 (<20) 3-Dichlorotoluene 30 30.8 30.3 30.3 30.3 30.3 30.4 (<20) 3-Dichlorotoluene 30 30.8 30.3 30.3 30.3 30.3 30.4 (<20) (<20) 3-Dichlorotoluene 30 30.8 30.3 30.3 30.3 30.3 30.4 (<20) (<20) (1,1-Dichloroethane	30	31.9	106	30	31.9	106	(77-125)	0.27	(< 20)
1,2,3-Trichlorobenzene 30 31.9 106 30 34.4 115 (69-129) 7.60 (<20) 1,2,3-Trichloropropane 30 29.3 98 30 30.1 100 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2,4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2,2-Dibromo-3-chloropropane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichlorobenzene 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichlorobenzene 30 31.0 103 30 31.2 104 (78-124) 1.40 (<20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 (80-119) 1.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Dichlorobuene 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,4-Dichlorobuene 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 2,4-Dichlorobuene 30 38.7 96 30 30.3 101 (77-127) 3.60 (<20) 4-Hexanone 30 30.8 103 30.3 30.3 101 (77-127) 3.60 (<20) 4-Hexanone 30 31.0 103 30 31.3 104 (80-120) 0.95 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (<20) Bromodehrane 30 32.6 109 30 32.9 110 (66-130) 0.79 (<20)	1,1-Dichloroethene	30	34.2	114	30	34.1	114	(71-131)	0.30	(< 20)
1,2,3-Trichloropropane 30 29.3 98 30 30.1 100 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dibromo-3-chloropropane 30 26.5 89 30 27.3 91 (62-128) 2.90 (<20) 1,2-Dibromoethane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichloroptopane 30 30.8 103 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloroptopane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 31.5 105 (80-119) 1.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Dichlorobenzene 30 28.7 96 30 28.8 96 (79-122) 0.09 (<20) 2,4-Butanone (MEK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 30.8 103 30.3 31.3 104 (80-120) 0.95 (<20) Bromoethzene 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromoethzene 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromoethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromoethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20)	1,1-Dichloropropene	30	33.0	110	30	32.5	108	(79-125)	1.50	(< 20)
1,2,4-Trichlorobenzene 30 32.2 107 30 34.6 115 (69-130) 7.40 (<20) 1,2,4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20) 1,2-Dibromo-3-chloropropane 30 26.5 89 30 27.3 91 (62-128) 2.90 (<20) 1,2-Dibromoethane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichloropthane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloroptopane 30 32.6 109 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichloroptopane 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloroptopane 30 31.5 105 30 31.6 105 (80-119) 1.40 (<20) 1,3-Dichloroptopane 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Butanone (MEK) 90 81.0 90 82.6 92 (56-143) 1.90 (<20) 2-Hexanone 30 28.7 96 30 28.8 96 (79-122) 0.09 (<20) 2-Hexanone 30 29.3 98 30 30.3 101 (77-127) 3.60 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 31.8 113 30 31.8 104 (80-120) 0.56 (<20) Bromodentomethane 30 33.8 113 30 33.6 109 (78-123) 0.42 (<20) Bromodentomethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromodentomethane 30 33.8 113 30 33.9 110 (66-130) 0.79 (<20) Bromodentomethane 30 33.8 113 30 33.9 110 (66-130) 0.79 (<20)	1,2,3-Trichlorobenzene	30	31.9	106	30	34.4	115	(69-129)	7.60	(< 20)
1,2,4-Trimethylbenzene 30 27.8 93 30 28.6 96 (79-124) 3.10 (<20)	1,2,3-Trichloropropane	30	29.3	98	30	30.1	100	(73-122)	2.70	(< 20)
1,2-Dibromo-3-chloropropane 30 26.5 89 30 27.3 91 (62-128) 2.90 (<20) 1,2-Dibromoethane 30 32.0 107 30 32.3 108 (77-121) 1.10 (<20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichloropthane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3-Dichlorobenzene 30 28.2 94 30 28.6 95 (75-124) 1.40 (<20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (<20) 1,3-Dichlorobenzene 30 31.1 104 30 31.6 105 (80-119) 0.29 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (<20) 2-Hexanone 30 28.7 96 30 28.8 96 (79-122) 0.09 (<20) 2-Hexanone 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromochloromethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromochloromethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromochloromethane 30 33.8 113 30 33.9 110 (66-130) 0.79 (<20)	1,2,4-Trichlorobenzene	30	32.2	107	30	34.6	115	(69-130)	7.40	(< 20)
1,2-Dibromoethane 30 32.0 107 30 32.3 108 (77-121) 1.10 (< 20) 1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (< 20) 1,2-Dichloroethane 30 32.6 109 30 32.7 109 (73-128) 0.28 (< 20) 1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (< 20) 1,3-Dichlorobenzene 30 28.2 94 30 28.6 95 (75-124) 1.40 (< 20) 1,3-Dichloropropane 30 31.0 103 30 31.5 105 (80-119) 1.40 (< 20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (< 20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 1,4-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (< 20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Mettyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 31.3 104 (80-120) 0.95 (< 20) Bromobenzene 30 33.8 113 30 33.7 112 (79-125) 0.20 (< 20) Bromodichloromethane 30 33.8 113 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (< 20)	1,2,4-Trimethylbenzene	30	27.8	93	30	28.6	96	(79-124)	3.10	(< 20)
1,2-Dichlorobenzene 30 30.7 102 30 31.2 104 (80-119) 1.50 (<20) 1,2-Dichloroethane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20) 1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (<20) 1,3,5-Trimethylbenzene 30 28.2 94 30 28.6 95 (75-124) 1.40 (<20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (<20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (<20) 2,2-Dichloropropane 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Dichlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2,2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (<20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (<20) Bromobenzene 30 33.8 113 30 33.7 112 (79-125) 0.20 (<20) Bromochloromethane 30 32.8 109 (78-123) 0.42 (<20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (<20)	1,2-Dibromo-3-chloropropane	30	26.5	89	30	27.3	91	(62-128)	2.90	(< 20)
1,2-Dichloroethane 30 32.6 109 30 32.7 109 (73-128) 0.28 (<20)	1,2-Dibromoethane	30	32.0	107	30	32.3	108	(77-121)	1.10	(< 20)
1,2-Dichloropropane 30 30.8 103 30 31.2 104 (78-122) 1.30 (< 20) 1,3,5-Trimethylbenzene 30 28.2 94 30 28.6 95 (75-124) 1.40 (< 20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 0.29 (< 20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (< 20) 1,4-Dichloropropane 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (< 20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chloro	1,2-Dichlorobenzene	30	30.7	102	30	31.2	104	(80-119)	1.50	(< 20)
1,3,5-Trimethylbenzene 30 28.2 94 30 28.6 95 (75-124) 1.40 (< 20) 1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (< 20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (< 20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (< 20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) <td< th=""><th>1,2-Dichloroethane</th><th>30</th><th>32.6</th><th>109</th><th>30</th><th>32.7</th><th>109</th><th>(73-128)</th><th>0.28</th><th>(< 20)</th></td<>	1,2-Dichloroethane	30	32.6	109	30	32.7	109	(73-128)	0.28	(< 20)
1,3-Dichlorobenzene 30 31.0 103 30 31.5 105 (80-119) 1.40 (< 20) 1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (< 20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (< 20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Hothyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130)	1,2-Dichloropropane	30	30.8	103	30	31.2	104	(78-122)	1.30	(< 20)
1,3-Dichloropropane 30 31.5 105 30 31.6 105 (80-119) 0.29 (<20) 1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (<20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (<20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (<20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (<20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40	1,3,5-Trimethylbenzene	30	28.2	94	30	28.6	95	(75-124)	1.40	(< 20)
1,4-Dichlorobenzene 30 31.1 104 30 31.9 106 (79-118) 2.40 (< 20) 2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (< 20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 31.3 104 (80-120) 0.95 <th>1,3-Dichlorobenzene</th> <th>30</th> <th>31.0</th> <th>103</th> <th>30</th> <th>31.5</th> <th>105</th> <th>(80-119)</th> <th>1.40</th> <th>(< 20)</th>	1,3-Dichlorobenzene	30	31.0	103	30	31.5	105	(80-119)	1.40	(< 20)
2,2-Dichloropropane 30 26.2 88 30 26.0 87 (60-139) 1.00 (<20) 2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (<20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (<20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (<20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 30.8 103 30 31.3 104 (80-120) 0.95 (<20) Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 <	1,3-Dichloropropane	30	31.5	105	30	31.6	105	(80-119)	0.29	(< 20)
2-Butanone (MEK) 90 81.0 90 90 82.6 92 (56-143) 1.90 (< 20) 2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20) Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 <	1,4-Dichlorobenzene	30	31.1	104	30	31.9	106	(79-118)	2.40	(< 20)
2-Chlorotoluene 30 28.8 96 30 28.8 96 (79-122) 0.09 (< 20) 2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (< 20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20) Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (< 20) Bromodichloromethane 30 33.8 110 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 <	2,2-Dichloropropane	30	26.2	88	30	26.0	87	(60-139)	1.00	(< 20)
2-Hexanone 90 75.0 83 90 76.7 85 (57-139) 2.30 (<20) 4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (<20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (<20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (<20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (<20) Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (<20) Bromochloromethane 30 33.8 110 30 32.8 109 (78-123) 0.42 (<20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (<20) Bromomethane 30 32.9 110 30 31.9 106 (53-141) 3.20 (<20) <th>2-Butanone (MEK)</th> <th>90</th> <th>81.0</th> <th>90</th> <th>90</th> <th>82.6</th> <th>92</th> <th>(56-143)</th> <th>1.90</th> <th>(< 20)</th>	2-Butanone (MEK)	90	81.0	90	90	82.6	92	(56-143)	1.90	(< 20)
4-Chlorotoluene 30 28.7 96 30 29.1 97 (78-122) 1.50 (< 20) 4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20) Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (< 20) Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (< 20) Bromomethane 30 32.9 110 30 31.9 106 (53-141) 3.20 (< 20)	2-Chlorotoluene	30	28.8	96	30	28.8	96	(79-122)	0.09	(< 20)
4-Isopropyltoluene 30 29.3 98 30 30.3 101 (77-127) 3.60 (< 20) 4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20) Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (< 20) Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 33.8 113 30 33.7 112 (79-125) 0.20 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (< 20) Bromomethane 30 32.9 110 30 31.9 106 (53-141) 3.20 (< 20)	2-Hexanone	90	75.0	83	90	76.7	85	(57-139)	2.30	(< 20)
4-Methyl-2-pentanone (MIBK) 90 81.7 91 90 84.5 94 (67-130) 3.40 (< 20) Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20) Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (< 20) Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 (< 20) Bromoform 30 33.8 113 30 33.7 112 (79-125) 0.20 (< 20) Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (< 20) Bromomethane 30 32.9 110 30 31.9 106 (53-141) 3.20 (< 20)	4-Chlorotoluene	30	28.7	96	30	29.1	97	(78-122)	1.50	(< 20)
Benzene 30 30.8 103 30 30.6 102 (79-120) 0.56 (< 20)	4-Isopropyltoluene	30	29.3	98	30	30.3	101	(77-127)	3.60	(< 20)
Bromobenzene 30 31.0 103 30 31.3 104 (80-120) 0.95 (< 20)	4-Methyl-2-pentanone (MIBK)	90	81.7	91	90	84.5	94	(67-130)	3.40	(< 20)
Bromochloromethane 30 33.0 110 30 32.8 109 (78-123) 0.42 (< 20)	Benzene	30	30.8	103	30	30.6	102	(79-120)	0.56	(< 20)
Bromodichloromethane 30 33.8 113 30 33.7 112 (79-125) 0.20 (< 20)	Bromobenzene	30	31.0	103	30	31.3	104	(80-120)	0.95	(< 20)
Bromoform 30 32.6 109 30 32.9 110 (66-130) 0.79 (< 20)	Bromochloromethane	30	33.0	110	30	32.8	109	(78-123)	0.42	(< 20)
Bromomethane 30 32.9 110 30 31.9 106 (53-141) 3.20 (< 20)	Bromodichloromethane	30	33.8	113	30	33.7	112	(79-125)	0.20	(< 20)
	Bromoform	30	32.6	109	30	32.9	110	(66-130)	0.79	(< 20)
Carbon disulfide 45 52.5 117 45 51.7 115 (64-133) 1.50 (< 20)	Bromomethane	30	32.9	110	30	31.9	106	(53-141)	3.20	(< 20)
	Carbon disulfide	45	52.5	117	45	51.7	115	(64-133)	1.50	(< 20)

Print Date: 10/30/2020 4:36:18PM

Blank Spike ID: LCS for HBN 1205774 [VXX36571]

Blank Spike Lab ID: 1588992 Date Analyzed: 10/20/2020 16:45 Spike Duplicate ID: LCSD for HBN 1205774

[VXX36571]

Spike Duplicate Lab ID: 1588993 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	33.7	112	30	33.3	111	(72-136)	1.20	(< 20)
Chlorobenzene	30	32.1	107	30	32.3	108	(82-118)	0.59	(< 20)
Chloroethane	30	33.1	110	30	33.6	112	(60-138)	1.50	(< 20)
Chloroform	30	31.1	104	30	31.1	104	(79-124)	0.08	(< 20)
Chloromethane	30	30.0	100	30	29.5	99	(50-139)	1.40	(< 20)
cis-1,2-Dichloroethene	30	32.8	109	30	32.8	109	(78-123)	0.12	(< 20)
cis-1,3-Dichloropropene	30	30.3	101	30	30.7	102	(75-124)	1.30	(< 20)
Dibromochloromethane	30	33.0	110	30	33.3	111	(74-126)	0.76	(< 20)
Dibromomethane	30	33.3	111	30	33.8	113	(79-123)	1.50	(< 20)
Dichlorodifluoromethane	30	37.3	124	30	36.2	121	(32-152)	3.10	(< 20)
Ethylbenzene	30	31.6	105	30	31.6	105	(79-121)	0.28	(< 20)
Freon-113	45	51.6	115	45	51.1	114	(70-136)	1.10	(< 20)
Hexachlorobutadiene	30	29.6	99	30	31.1	104	(66-134)	5.00	(< 20)
Isopropylbenzene (Cumene)	30	31.3	104	30	31.3	104	(72-131)	0.12	(< 20)
Methylene chloride	30	32.9	110	30	33.4	111	(74-124)	1.50	(< 20)
Methyl-t-butyl ether	45	45.0	100	45	45.9	102	(71-124)	1.80	(< 20)
Naphthalene	30	28.8	96	30	31.1	104	(61-128)	7.70	(< 20)
n-Butylbenzene	30	30.2	101	30	31.7	106	(75-128)	4.70	(< 20)
n-Propylbenzene	30	29.4	98	30	29.6	99	(76-126)	0.98	(< 20)
o-Xylene	30	30.8	103	30	31.1	104	(78-122)	0.92	(< 20)
P & M -Xylene	60	62.5	104	60	62.3	104	(80-121)	0.28	(< 20)
sec-Butylbenzene	30	29.6	99	30	30.3	101	(77-126)	2.20	(< 20)
Styrene	30	30.6	102	30	30.6	102	(78-123)	0.02	(< 20)
tert-Butylbenzene	30	29.2	97	30	30.1	100	(78-124)	3.00	(< 20)
Tetrachloroethene	30	34.1	114	30	33.3	111	(74-129)	2.30	(< 20)
Toluene	30	30.4	101	30	30.3	101	(80-121)	0.34	(< 20)
trans-1,2-Dichloroethene	30	33.3	111	30	33.2	111	(75-124)	0.31	(< 20)
trans-1,3-Dichloropropene	30	29.6	99	30	29.7	99	(73-127)	0.50	(< 20)
Trichloroethene	30	33.3	111	30	33.1	110	(79-123)	0.78	(< 20)
Trichlorofluoromethane	30	36.0	120	30	35.2	117	(65-141)	2.40	(< 20)
Vinyl acetate	30	29.0	97	30	29.7	99	(54-146)	2.30	(< 20)
Vinyl chloride	30	34.6	115	30	33.6	112	(58-137)	2.80	(< 20)
Xylenes (total)	90	93.3	104	90	93.4	104	(79-121)	0.12	(< 20)

Print Date: 10/30/2020 4:36:18PM

Blank Spike ID: LCS for HBN 1205774 [VXX36571]

Blank Spike Lab ID: 1588992 Date Analyzed: 10/20/2020 16:45 Spike Duplicate ID: LCSD for HBN 1205774

[VXX36571]

Spike Duplicate Lab ID: 1588993 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205774001, 1205774002, 1205774003, 1205774004, 1205774005

Results by SW8260D

	Blank Spike (%)			Spike Duplicate (%)					
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	106	106	(81-118)	0.47	
4-Bromofluorobenzene (surr)	30	91.2	91	30	92.9	93	(85-114)	1.80	
Toluene-d8 (surr)	30	99.8	100	30	101	101	(89-112)	0.90	

Batch Information

Analytical Batch: VMS20429 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX36571
Prep Method: SW5030B

Prep Date/Time: 10/20/2020 16:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/30/2020 4:36:18PM

Blank ID: MB for HBN 1813367 [XXX/44117]

Blank Lab ID: 1589515

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 83.7 60-120 %

Batch Information

Analytical Batch: XFC15787 Prep Batch: XXX44117
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 10/23/2020 3:42:06PM

Analyst: CDM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/25/2020 3:44:00PM Prep Extract Vol.: 1 mL

Print Date: 10/30/2020 4:36:21PM

Blank Spike ID: LCS for HBN 1205774 [XXX44117]

Blank Spike Lab ID: 1589516

Date Analyzed: 10/25/2020 15:54

Spike Duplicate ID: LCSD for HBN 1205774

[XXX44117]

Spike Duplicate Lab ID: 1589517

Matrix: Water (Surface, Eff., Ground)

1205774001, 1205774002, 1205774003, 1205774004 QC for Samples:

Results by AK102

	-	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	19.6	98	20	20.1	101	(75-125)	2.50	(< 20)
Surrogates									
5a Androstane (surr)	0.4	96	96	0.4	101	101	(60-120)	4.60	

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX44117 Prep Method: SW3520C

Prep Date/Time: 10/23/2020 15:42

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/30/2020 4:36:25PM

Blank ID: MB for HBN 1813367 [XXX/44117]

Blank Lab ID: 1589515

QC for Samples:

1205774001, 1205774002, 1205774003, 1205774004

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 97.7 60-120 %

Batch Information

Analytical Batch: XFC15787 Prep Batch: XXX44117
Analytical Method: AK103 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 10/23/2020 3:42:06PM

Analyst: CDM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/25/2020 3:44:00PM Prep Extract Vol: 1 mL

Print Date: 10/30/2020 4:36:28PM

Blank Spike ID: LCS for HBN 1205774 [XXX44117]

Blank Spike Lab ID: 1589516 Date Analyzed: 10/25/2020 15:54 Spike Duplicate ID: LCSD for HBN 1205774

[XXX44117]

Spike Duplicate Lab ID: 1589517

Matrix: Water (Surface, Eff., Ground)

1205774001, 1205774002, 1205774003, 1205774004 QC for Samples:

Results by AK103

	1	Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.6	103	20	21.5	108	(60-120)	4.20	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	93.8	94	0.4	101	101	(60-120)	7.10	

Batch Information

Analytical Batch: XFC15787 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX44117 Prep Method: SW3520C

Prep Date/Time: 10/23/2020 15:42

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/30/2020 4:36:32PM

362656 SID

(206) 632-8020 (314) 68 2355 Hill Road 5430 Fa Fairbanks, AK 99709 Anchora (907) 479-0600 (907) 56 3990 Collins Way, Suite 100 1321 Ba	nmental Consultants destport Center Drive s, MO 63146-3564 99-9660 airbanks Street, Suite 3 age, AK 99518 61-2120 annock Street, Suite 20 CO 80204	2705 Saint / Pasco, WA (509) 946-63		, Suite A	Cooke	- 1 oc	ا - Analysis I دلک	Parameters (include		ontainer Desc	ription	Page of of Ancharia	
102104 - B4MW - B1MW - B14MW - B17MW V - TB 102104 - B17MW	JAP JAP JAP JAF GAO	12:12 13:27 11:35 12:42 14:50 12:00 14:50	10/15/20 10/17/20 10/15/20 10/15/20 10/15/20 10/15/20		X	X	X			6 6 6 6	grou	blank adwares	JK
Project Information Project Number: 02104 Project Name: 1021 E. 324 Contact: St. D.C. Ongoing Project? Yes 10 No Sampler: Sampler: 10 No Requested Turnaround Time: 4 Special Instructions: Distribution: White - w/shipment - ret Yellow - w/shipment - fo Pink - Shannon & Wilsor	Total Number COC Seals/Ir Received Go Delivery Meth (attach shipping structions Consigned to Shannon & Var consignee files	tact? Y/N/NA od Cond./Colo nod: g bill, if any)	d -	Printed Nam Company Shaw	epner epner ived By	d By: Time: 12; C Date: 10/11 Time:	90 Sign 8/10 Print Con Sign Print	nature: The latest Name: LECKIZ Inpany:	Date: ZC ー りいひゃ	2. S	Relinqui ignature: Printed Name: Company: Receiver ignature: Printed Name: Printed Name:	Time 0808	

F-19-91/UR

ANC: seals absent, HD.

No.__4335096

TB=0.8°C D23

e-Sample Receipt Form

SGS Workorder #:

1205774

1205774

		-							
Review Criteria	Condition (Yes,								
Chain of Custody / Temperature Requi	<u>irements</u>	Y	'es	Exemption permitt	ed if samp	ler hand carries/deliv	ers.		
Were Custody Seals intact? Note # &	location N/A								
COC accompanied sa	amples? Yes								
DOD: Were samples received in COC corresponding of									
N/A **Exemption permitted if		cted <8 hou	ire a	ago or for samples	where chi	illing is not required			
			_	1		0.8 °C Therm. ID:	D22		
Temperature blank compliant* (i.e., 0-6 °C after	er CF)? Yes			'	@		D23		
		Cooler ID:	-		@	°C Therm. ID:			
If samples received without a temperature blank, the "cooler temperature" will documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		Cooler ID:			@	°C Therm. ID:			
be noted if neither is available.		Cooler ID:			@	°C Therm. ID:			
		Cooler ID:			@	°C Therm. ID:			
*If >6°C, were samples collected <8 hours	s ago? N/A					•			
If <0°C, were sample containers ice	e free? N/A								
	1.571								
Note: Identify containers received at non-compliant tempe	rature								
Use form FS-0029 if more space is n									
Halding Time / Decumentation / Semale Condition D		N . D .		F 000 0		20 1 10 0			
Holding Time / Documentation / Sample Condition R		Note: Refer	to for	rm F-083 "Sample Gu	ide" for spec	cific holding times.			
Were samples received within holding	g time? res								
Do samples match COC** (i.e.,sample IDs,dates/times colle									
**Note: If times differ <1hr, record details & login per C	COC.								
***Note: If sample information on containers differs from COC, SGS will default to	COC information								
Were analytical requests clear? (i.e., method is specified for ar	nalyses Yes								
with multiple option for analysis (Ex: BTEX,	Metals)								
		N	I/A	***Exemption pern	nitted for m	netals (e.g,200.8/602	0A).		
Were proper containers (type/mass/volume/preservative***	*)used? Yes			,,		, ,, , , , , , , , , , ,			
	, 3000.								
Volatile / LL-Hg Rec	nuiremente								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa									
Were all water VOA vials free of headspace (i.e., bubbles ≤									
Were all soil VOAs field extracted with MeOH	I+BFB? N/A								
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd p	rocedures and ma	y impact da	ata quality.			
Additions	al notes (if a	nnlicable	١.						
Additions	ai iiules (ii a	pplicable).						

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1205774001-A	HCL to pH < 2	ОК			
1205774001-B	HCL to pH < 2	ОК			
1205774001-C	HNO3 to pH < 2	ОК			
1205774001-D	HCL to pH < 2	ОК			
1205774001-E	HCL to pH < 2	ОК			
1205774001-F	HCL to pH < 2	ОК			
1205774002-A	HCL to pH < 2	ОК			
1205774002-B	HCL to pH < 2	ОК			
1205774002-C	HNO3 to pH < 2	ОК			
1205774002-D	HCL to pH < 2	ОК			
1205774002-E	HCL to pH < 2	ОК			
1205774002-F	HCL to pH < 2	ОК			
1205774003-A	HCL to pH < 2	ОК			
1205774003-B	HCL to pH < 2	ОК			
1205774003-C	HNO3 to pH < 2	ОК			
1205774003-D	HCL to pH < 2	ОК			
1205774003-E	HCL to pH < 2	ОК			
1205774003-F	HCL to pH < 2	ОК			
1205774004-A	HCL to pH < 2	ОК			
1205774004-B	HCL to pH < 2	ОК			
1205774004-C	HNO3 to pH < 2	ОК			
1205774004-D	HCL to pH < 2	ОК			
1205774004-E	HCL to pH < 2	ОК			
1205774004-F	HCL to pH < 2	ОК			
1205774005-A	HCL to pH < 2	ОК			
1205774005-B	HCL to pH < 2	ОК			
1205774005-C	HCL to pH < 2	ОК			
1205774006-A	HNO3 to pH < 2	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

LABORATORY DATA REVIEW CHECKLIST

Completed by: LeeAnne Osgood

Title: 2020 Groundwater Monitoring Event

Date: January 2021

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1205774 **Laboratory Report Date:** 11/2/2020

Contaminated Site Name: MOA – Brother Francis Shelter Property

ADEC File Number: 2100.26.326 **Hazard Identification Number:** 24899

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?Yes/ No / NAComments:

b. Correct analyses requested? Yes/No/NA Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? **Yes/ No / NA**

Comments: The cooler temperature blank was 0.8° Celsius.

b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA Comments:

c. Sample condition documented - broken, leaking (MeOH), zero headspace (VOC vials)?
Yes/ No / NA

Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? **Yes No/NA**

Comments: No discrepancies were noted.

e. Data quality or usability affected?

Comments: See above.

4. Case Narrative

a. Present and understandable? Yes/ No / NA Comments:

- **b.** Discrepancies, errors or QC failures noted by the lab? **Yes / No /NA**Comments: *No discrepancies, error, or QC failures were noted by the laboratory in the case narrative.*
- **c.** Were all corrective actions documented? **Yes / No NA** Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *The case narrative does not discuss quality/usability*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Ves/ No / NA Comments:
- **b.** All applicable holding times met? Yes / No / NA Comments:
- c. All soils reported on a dry weight basis? Yes / No (NA) Comments: Soil samples not submitted for project.
- **d.** Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Yesy No / NA** Comments:

e. Data quality or usability affected? Comments: *Data quality/usability unaffected; see above.*

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis, and 20 samples?Yes/ No / NAComments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes No / NA Comments:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?Yes / No / NAComments:

v. Data quality or usability affected? Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/ No / NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes/No/NA Comments:

iv. Precision – All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) (Ves.) No / NA Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined?Yes / No (NA)Comments:

vii. Data quality or usability affected?

Comments: No, see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis, and 20 samples?
 Yes / No NA
 Comments:

ii. Metals/Inorganics - One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No / NAComments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. Yes / No / NA Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. Yes / No / NA Comments:
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No (NA)

 Comments:
- vii. Data quality or usability affected?

Comments: No, see above.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

- i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes/No/NA
 Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes / No / NA
 Comments:
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- **iv.** Data quality or usability affected? Comments: *See above*.
- e. **Trip Blank** Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes/ No / NA Comments:
 - ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? (If not, a comment explaining why must be entered below.) Yes (No) NA Comments: Only one cooler was used to transport the samples.
 - iii. All results less than LOQ and project specified objectives? Yes / No / NA Comments:
 - iv. If above LOQ or project specified DQOs, what samples are affected? Comments:
 - **v.** Data quality or usability affected? Comments: *See above*.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes/ No / NA

Comments: Sample B14MW is a field duplicate of Sample B4MW.

ii. Were the field duplicates submitted blind to the lab? Ves/ No / NA Comments:

- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil) **Yes** (No) NA Comments: *Except for total lead, the RPD for each of the detected parameters is less than 30 percent. The RPD for total lead is* 68%.
- iv. Data quality or usability affected?

 Comments: The total lead concentrations detected in the primary sample (0.00309 mg/L) and duplicate sample (0.00152 mg/L) are less than the cleanup level; therefore, the data are considered acceptable for the purposes of this report. The total lead concentrations from the primary and duplicate samples are E-flagged in Tables 2 and 3.
- **g. Decontamination or Equipment Blank** (If not applicable, a comment stating why must be entered below).

Yes / No NA

Comments: A decontamination or equipment blank was not included in our ADEC-approved work plan.

i. All results less than LOQ and project specified objectives? Yes / No (NA)

Comments:

- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? **Yes** / **No** / **NA**Comments: *A key is provided on Page 3 of the SGS Laboratory Report.*

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, AK 99518

Report Number: 1206405

Client Project: 102104 1021 East 3rd Ave

Dear LeeAnne Osgood,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Justin Nelson

2020.12.14

16:02:20 -09'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 12/14/2020 3:26:15PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.** SGS Project: **1206405**

Project Name/Site: 102104 1021 East 3rd Ave Project Contact: LeeAnne Osgood

Refer to sample receipt form for information on sample condition.

LCSD for HBN 1814528 [VXX/3671 (1594425) LCSD

8260D - LCSD recoveries for naphthalene and 1,2,3-trichlorobenzene do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

1206405001(1594997MSD) (1594999) MSD

6020B - Metals MSD recovery for Lead does not meet QC criteria. Post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 12/14/2020 3:26:19PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

<u>Client Sample ID</u> <u>Lab Sample ID</u> <u>Collected</u> <u>Received</u> <u>Matrix</u>

102104-B4MW 1206405001 11/24/2020 11/24/2020 Water (Surface, Eff., Ground) 102104-TB 1206405002 11/24/2020 11/24/2020 Water (Surface, Eff., Ground)

Method Description

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water

SW6020B Metals by ICP-MS

SW8260D Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: 102104-B4MW Lab Sample ID: 1206405001 Metals by ICP/MS

Semivolatile Organic Fuels

Volatile GC/MS

<u>Units</u> <u>Parameter</u> Result Lead 0.857J ug/L Diesel Range Organics 0.810 mg/L Residual Range Organics 1.33 mg/L Dichlorodifluoromethane 0.595J ug/L

Print Date: 12/14/2020 3:26:22PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405001 Lab Project ID: 1206405 Collection Date: 11/24/20 11:42 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed <u>Limits</u> 0.857 J 0.310 Lead 1.00 ug/L 5 12/09/20 09:36

Batch Information

Analytical Batch: MMS10963 Analytical Method: SW6020B

Analyst: DMM

Analytical Date/Time: 12/09/20 09:36 Container ID: 1206405001-F Prep Batch: MXX33869 Prep Method: SW3010A Prep Date/Time: 12/04/20 09:33 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 12/14/2020 3:26:23PM J flagging is activated

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405001 Lab Project ID: 1206405 Collection Date: 11/24/20 11:42 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.810	0.577	0.173	mg/L	1		12/07/20 15:33
Surrogates							
5a Androstane (surr)	79.6	50-150		%	1		12/07/20 15:33

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK102

Analyst: A.A

Analytical Date/Time: 12/07/20 15:33 Container ID: 1206405001-A Prep Batch: XXX44279
Prep Method: SW3520C
Prep Date/Time: 12/02/20 14:57
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.33	0.481	0.144	mg/L	1		12/07/20 15:33
Surrogates							
n-Triacontane-d62 (surr)	96.2	50-150		%	1		12/07/20 15:33

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK103

Analyst: A.A

Analytical Date/Time: 12/07/20 15:33 Container ID: 1206405001-A

Prep Batch: XXX44279
Prep Method: SW3520C
Prep Date/Time: 12/02/20 14:57
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 12/14/2020 3:26:23PM J flagging is activated

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405001 Lab Project ID: 1206405 Collection Date: 11/24/20 11:42 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/25/20 17:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/25/20 17:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Benzene	0.200 U	0.400	0.120	ug/L	1		11/25/20 17:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Bromomethane	2.50 U	5.00	2.00	ug/L	1		11/25/20 17:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52

Print Date: 12/14/2020 3:26:23PM

J flagging is activated

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405001 Lab Project ID: 1206405 Collection Date: 11/24/20 11:42 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	Lillito	11/25/20 17:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 17:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Dichlorodifluoromethane	0.595 J	1.00	0.310	ug/L	1		11/25/20 17:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/25/20 17:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Styrene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Toluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 17:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/25/20 17:52
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/25/20 17:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/25/20 17:52
urrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		11/25/20 17:52
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/25/20 17:52
Toluene-d8 (surr)	103	89-112		%	1		11/25/20 17:52

Print Date: 12/14/2020 3:26:23PM

J flagging is activated

Client Sample ID: 102104-B4MW

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405001 Lab Project ID: 1206405 Collection Date: 11/24/20 11:42 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20506 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 11/25/20 17:52 Container ID: 1206405001-C Prep Batch: VXX36712 Prep Method: SW5030B Prep Date/Time: 11/25/20 12:30 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/14/2020 3:26:23PM J flagging is activated

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405002 Lab Project ID: 1206405 Collection Date: 11/24/20 11:00 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/25/20 14:42
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/25/20 14:42
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/25/20 14:42
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/25/20 14:42
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/25/20 14:42
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/25/20 14:42
Benzene	0.200 U	0.400	0.120	ug/L	1		11/25/20 14:42
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
Bromomethane	2.50 U	5.00	2.00	ug/L	1		11/25/20 14:42
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/25/20 14:42
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/25/20 14:42
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/25/20 14:42

Print Date: 12/14/2020 3:26:23PM

J flagging is activated

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405002 Lab Project ID: 1206405 Collection Date: 11/24/20 11:00 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

	D 110 1	1.00/01	D.		DE	Allowable But A
Parameter Obligation	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyze
Chloroform	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Chloromethane	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	11/25/20 14:
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	11/25/20 14:
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Freon-113	5.00 U	10.0	3.10	ug/L	1	11/25/20 14:
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	11/25/20 14:
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	11/25/20 14:
Naphthalene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
o-Xylene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	11/25/20 14:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Styrene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Toluene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	11/25/20 14:
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	11/25/20 14:
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	11/25/20 14:
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	11/25/20 14:
urrogates						
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1	11/25/20 14:
4-Bromofluorobenzene (surr)	102	85-114		%	1	11/25/20 14:
Toluene-d8 (surr)	104	89-112		%	1	11/25/20 14:

Print Date: 12/14/2020 3:26:23PM

J flagging is activated

Client Sample ID: 102104-TB

Client Project ID: 102104 1021 East 3rd Ave

Lab Sample ID: 1206405002 Lab Project ID: 1206405 Collection Date: 11/24/20 11:00 Received Date: 11/24/20 14:22 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20506 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 11/25/20 14:42 Container ID: 1206405002-A

Prep Batch: VXX36712
Prep Method: SW5030B
Prep Date/Time: 11/25/20 12:30
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 12/14/2020 3:26:23PM J flagging is activated

Blank ID: MB for HBN 1814669 [MXX/33869]

Blank Lab ID: 1594995

QC for Samples: 1206405001

Matrix: Water (Surface, Eff., Ground)

Results by SW6020B

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Lead
 0.500U
 1.00
 0.310
 ug/L

Batch Information

Analytical Batch: MMS10963
Analytical Method: SW6020B

Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 12/9/2020 9:27:19AM

Prep Batch: MXX33869 Prep Method: SW3010A

Prep Date/Time: 12/4/2020 9:33:13AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike ID: LCS for HBN 1206405 [MXX33869]

Blank Spike Lab ID: 1594996 Date Analyzed: 12/09/2020 09:32

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1206405001

Results by SW6020B

Blank Spike (ug/L)

<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u>

Lead 1000 1110 **111** (88-115)

Batch Information

Analytical Batch: MMS10963 Prep Batch: MXX33869
Analytical Method: SW6020B Prep Method: SW3010A

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 12/04/2020 09:33

Analyst: DMM Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1594997 MS Sample ID: 1594998 MS MSD Sample ID: 1594999 MSD

QC for Samples: 1206405001

Analysis Date: 12/09/2020 9:36 Analysis Date: 12/09/2020 9:41 Analysis Date: 12/09/2020 9:46 Matrix: Water (Surface, Eff., Ground)

Results by SW6020B

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL Lead 0.857J 1000 1120 112 1000 1160 116 88-115 2.92 (< 20)

Batch Information

Analytical Batch: MMS10963 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 12/9/2020 9:41:25AM

Prep Batch: MXX33869

Prep Method: 3010 H20 Digest for Metals ICP-MS

Prep Date/Time: 12/4/2020 9:33:13AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Bench Spike Summary

Original Sample ID: 1594997 MS Sample ID: 1595000 BND

MSD Sample ID:

QC for Samples: 1206405001

Analysis Date: 12/09/2020 9:36 Analysis Date: 12/09/2020 9:50

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by SW6020B

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Lead 0.857J 1250 1390 111 75-125

Batch Information

Analytical Batch: MMS10963 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 12/9/2020 9:50:49AM

Prep Batch: MXX33869

Prep Method: 3010 H20 Digest for Metals ICP-MS

Prep Date/Time: 12/4/2020 9:33:13AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Blank ID: MB for HBN 1814528 [VXX/36712]

Blank Lab ID: 1594423

QC for Samples:

1206405001, 1206405002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Doromotor	Populto	LOQ/CL	<u>DL</u>	Units
Parameter 1,1,1,2-Tetrachloroethane	Results 0.250U	0.500	<u>DL</u> 0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Blank ID: MB for HBN 1814528 [VXX/36712]

Blank Lab ID: 1594423

QC for Samples:

1206405001, 1206405002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	101	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	103	89-112		%

Blank ID: MB for HBN 1814528 [VXX/36712]

Blank Lab ID: 1594423

QC for Samples:

1206405001, 1206405002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS20506 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 11/25/2020 6:21:00PM

Prep Batch: VXX36712 Prep Method: SW5030B

Prep Date/Time: 11/25/2020 12:30:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Leaching Blank

Blank ID: LB for HBN 1814475 [TCLP/10930

Blank Lab ID: 1594216

QC for Samples:

1206405001, 1206405002

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1-Dichloroethene	25.0U	50.0	15.5	ug/L
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
1,4-Dichlorobenzene	12.5U	25.0	7.50	ug/L
2-Butanone (MEK)	250U	500	155	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Carbon tetrachloride	25.0U	50.0	15.5	ug/L
Chlorobenzene	12.5U	25.0	7.50	ug/L
Chloroform	25.0U	50.0	15.5	ug/L
Hexachlorobutadiene	25.0U	50.0	15.5	ug/L
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Trichloroethene	25.0U	50.0	15.5	ug/L
Vinyl chloride	25.0U	50.0	15.5	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	103	89-112		%

Batch Information

Analytical Batch: VMS20506 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 11/25/2020 4:09:00PM

Prep Batch: VXX36712 Prep Method: SW5030B

Prep Date/Time: 11/25/2020 12:30:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1206405 [VXX36712]

Blank Spike Lab ID: 1594424 Date Analyzed: 11/25/2020 23:29

QC for Samples: 1206405001, 1206405002

Spike Duplicate ID: LCSD for HBN 1206405

[VXX36712]

Spike Duplicate Lab ID: 1594425 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Blank Spike (ug/L) Spike Duplicate (ug/L)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	32.6	109	30	32.0	107	(78-124)	1.70	(< 20)
1,1,1-Trichloroethane	30	30.8	103	30	30.2	101	(74-131)	2.00	(< 20)
1,1,2,2-Tetrachloroethane	30	33.4	111	30	34.2	114	(71-121)	2.30	(< 20)
1,1,2-Trichloroethane	30	34.2	114	30	33.7	112	(80-119)	1.40	(< 20)
1,1-Dichloroethane	30	32.4	108	30	31.7	106	(77-125)	2.30	(< 20)
1,1-Dichloroethene	30	32.2	107	30	31.4	105	(71-131)	2.50	(< 20)
1,1-Dichloropropene	30	32.4	108	30	31.7	106	(79-125)	2.20	(< 20)
1,2,3-Trichlorobenzene	30	38.5	128	30	39.3	131	* (69-129)	2.10	(< 20)
1,2,3-Trichloropropane	30	33.0	110	30	32.9	110	(73-122)	0.18	(< 20)
1,2,4-Trichlorobenzene	30	35.6	119	30	35.9	120	(69-130)	0.74	(< 20)
1,2,4-Trimethylbenzene	30	33.3	111	30	32.5	108	(79-124)	2.20	(< 20)
1,2-Dibromo-3-chloropropane	30	35.3	118	30	36.6	122	(62-128)	3.50	(< 20)
1,2-Dibromoethane	30	33.9	113	30	34.1	114	(77-121)	0.53	(< 20)
1,2-Dichlorobenzene	30	32.8	109	30	32.4	108	(80-119)	1.10	(< 20)
1,2-Dichloroethane	30	30.2	101	30	30.1	100	(73-128)	0.56	(< 20)
1,2-Dichloropropane	30	33.3	111	30	33.0	110	(78-122)	0.76	(< 20)
1,3,5-Trimethylbenzene	30	33.2	111	30	32.2	107	(75-124)	3.20	(< 20)
1,3-Dichlorobenzene	30	32.9	110	30	32.4	108	(80-119)	1.40	(< 20)
1,3-Dichloropropane	30	34.2	114	30	34.0	113	(80-119)	0.75	(< 20)
1,4-Dichlorobenzene	30	33.0	110	30	32.2	107	(79-118)	2.40	(< 20)
2,2-Dichloropropane	30	25.6	85	30	25.1	84	(60-139)	2.00	(< 20)
2-Butanone (MEK)	90	115	127	90	120	133	(56-143)	4.60	(< 20)
2-Chlorotoluene	30	32.9	110	30	34.2	114	(79-122)	3.70	(< 20)
2-Hexanone	90	108	120	90	111	124	(57-139)	3.20	(< 20)
4-Chlorotoluene	30	33.4	111	30	32.6	109	(78-122)	2.50	(< 20)
4-Isopropyltoluene	30	33.3	111	30	32.4	108	(77-127)	2.80	(< 20)
4-Methyl-2-pentanone (MIBK)	90	96.4	107	90	100	112	(67-130)	4.20	(< 20)
Benzene	30	33.1	110	30	32.0	107	(79-120)	3.60	(< 20)
Bromobenzene	30	32.7	109	30	32.2	107	(80-120)	1.50	(< 20)
Bromochloromethane	30	30.8	103	30	30.9	103	(78-123)	0.02	(< 20)
Bromodichloromethane	30	31.9	106	30	31.7	106	(79-125)	0.81	(< 20)
Bromoform	30	32.6	109	30	33.2	111	(66-130)	1.60	(< 20)
Bromomethane	30	23.4	78	30	23.2	77	(53-141)	0.63	(< 20)
Carbon disulfide	45	48.0	107	45	46.8	104	(64-133)	2.50	(< 20)

Blank Spike ID: LCS for HBN 1206405 [VXX36712]

Blank Spike Lab ID: 1594424 Date Analyzed: 11/25/2020 23:29

QC for Samples: 1206405001, 1206405002

Spike Duplicate ID: LCSD for HBN 1206405

[VXX36712]

Spike Duplicate Lab ID: 1594425 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Blank Spike (ug/L)					Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	31.7	106	30	31.3	104	(72-136)	1.20	(< 20)
Chlorobenzene	30	32.5	108	30	31.9	106	(82-118)	1.70	(< 20)
Chloroethane	30	35.4	118	30	32.9	110	(60-138)	7.10	(< 20)
Chloroform	30	31.5	105	30	30.9	103	(79-124)	1.70	(< 20)
Chloromethane	30	33.8	113	30	32.9	110	(50-139)	2.70	(< 20)
cis-1,2-Dichloroethene	30	31.6	105	30	31.0	103	(78-123)	1.80	(< 20)
cis-1,3-Dichloropropene	30	31.7	106	30	31.5	105	(75-124)	0.37	(< 20)
Dibromochloromethane	30	33.7	112	30	33.2	111	(74-126)	1.30	(< 20)
Dibromomethane	30	31.1	104	30	31.4	105	(79-123)	0.85	(< 20)
Dichlorodifluoromethane	30	33.5	112	30	32.7	109	(32-152)	2.50	(< 20)
Ethylbenzene	30	33.0	110	30	32.3	108	(79-121)	2.20	(< 20)
Freon-113	45	48.3	107	45	47.2	105	(70-136)	2.40	(< 20)
Hexachlorobutadiene	30	33.5	112	30	32.9	110	(66-134)	1.90	(< 20)
Isopropylbenzene (Cumene)	30	33.2	111	30	32.6	109	(72-131)	2.00	(< 20)
Methylene chloride	30	31.0	103	30	31.1	104	(74-124)	0.08	(< 20)
Methyl-t-butyl ether	45	49.2	109	45	49.2	109	(71-124)	0.05	(< 20)
Naphthalene	30	37.1	124	30	38.7	129	* (61-128)	4.30	(< 20)
n-Butylbenzene	30	34.3	114	30	33.6	112	(75-128)	2.00	(< 20)
n-Propylbenzene	30	33.8	113	30	32.9	110	(76-126)	2.60	(< 20)
o-Xylene	30	33.2	111	30	32.4	108	(78-122)	2.50	(< 20)
P & M -Xylene	60	66.2	110	60	64.8	108	(80-121)	2.30	(< 20)
sec-Butylbenzene	30	33.9	113	30	33.2	111	(77-126)	2.20	(< 20)
Styrene	30	33.0	110	30	32.3	108	(78-123)	2.10	(< 20)
tert-Butylbenzene	30	33.3	111	30	32.9	110	(78-124)	1.10	(< 20)
Tetrachloroethene	30	31.6	105	30	30.8	103	(74-129)	2.60	(< 20)
Toluene	30	32.6	109	30	31.9	106	(80-121)	2.20	(< 20)
trans-1,2-Dichloroethene	30	31.5	105	30	30.9	103	(75-124)	2.00	(< 20)
trans-1,3-Dichloropropene	30	32.2	107	30	31.9	106	(73-127)	0.93	(< 20)
Trichloroethene	30	31.3	104	30	30.7	102	(79-123)	1.90	(< 20)
Trichlorofluoromethane	30	34.1	114	30	33.3	111	(65-141)	2.40	(< 20)
Vinyl acetate	30	38.8	129	30	39.4	131	(54-146)	1.60	(< 20)
Vinyl chloride	30	33.5	112	30	32.7	109	(58-137)	2.50	(< 20)
Xylenes (total)	90	99.5	111	90	97.2	108	(79-121)	2.30	(< 20)

Blank Spike ID: LCS for HBN 1206405 [VXX36712]

Blank Spike Lab ID: 1594424 Date Analyzed: 11/25/2020 23:29

QC for Samples: 1206405001, 1206405002

Spike Duplicate ID: LCSD for HBN 1206405

[VXX36712]

Spike Duplicate Lab ID: 1594425 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike (%)			Spike Duplicate (%)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	98.4	98	30	98.5	99	(81-118)	0.12	
4-Bromofluorobenzene (surr)	30	98.7	99	30	98.9	99	(85-114)	0.18	
Toluene-d8 (surr)	30	103	103	30	103	103	(89-112)	0.24	

Batch Information

Analytical Batch: VMS20506 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX36712
Prep Method: SW5030B

Prep Date/Time: 11/25/2020 12:30

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1814604 [XXX/44279]

Blank Lab ID: 1594724

QC for Samples: 1206405001

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 82.2 60-120 %

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: A.A

Analytical Date/Time: 12/7/2020 2:34:00PM

Prep Batch: XXX44279 Prep Method: SW3520C

Prep Date/Time: 12/2/2020 2:57:13PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/14/2020 3:26:35PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1206405 [XXX44279]

Blank Spike Lab ID: 1594725 Date Analyzed: 12/07/2020 14:44

QC for Samples: 1206405001

Spike Duplicate ID: LCSD for HBN 1206405

[XXX44279]

Spike Duplicate Lab ID: 1594726 Matrix: Water (Surface, Eff., Ground)

Results by AK102

	[Blank Spike (mg/L)		Spike Duplicate (mg/L)					
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	19.5	98	20	18.3	92	(75-125)	6.50	(< 20)
Surrogates									
5a Androstane (surr)	0.4	99.9	100	0.4	92.9	93	(60-120)	7.30	

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: A.A

Prep Batch: XXX44279
Prep Method: SW3520C

Prep Date/Time: 12/02/2020 14:57

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 12/14/2020 3:26:37PM

Method Blank

Blank ID: MB for HBN 1814604 [XXX/44279]

Blank Lab ID: 1594724

QC for Samples: 1206405001

Matrix: Water (Surface, Eff., Ground)

Results by AK103

LOQ/CL Results <u>Units</u> <u>Parameter</u> DL Residual Range Organics 0.250U 0.500 0.150 mg/L

Surrogates

n-Triacontane-d62 (surr) 95.9 60-120 %

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: A.A

Analytical Date/Time: 12/7/2020 2:34:00PM

Prep Batch: XXX44279 Prep Method: SW3520C

Prep Date/Time: 12/2/2020 2:57:13PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 12/14/2020 3:26:38PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1206405 [XXX44279]

Blank Spike Lab ID: 1594725 Date Analyzed: 12/07/2020 14:44

QC for Samples: 1206405001 Spike Duplicate ID: LCSD for HBN 1206405

[XXX44279]

Spike Duplicate Lab ID: 1594726 Matrix: Water (Surface, Eff., Ground)

Results by AK103

	-	Blank Spike (mg/L)		Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.1	101	20	18.4	92	(60-120)	8.70	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	109	109	0.4	95.1	95	(60-120)	13.30	

Batch Information

Analytical Batch: XFC15827 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: A.A

Prep Batch: XXX44279 Prep Method: SW3520C

Prep Date/Time: 12/02/2020 14:57

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 12/14/2020 3:26:41PM

1206405

Profile 362285 coder lof 1

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants		4	USTODY	RECOR	Labora Attn:	tory SGS Page of Justin Nelson
400 N. 34th Street, Suite 100 2043 Westport Center Drive Seattle, WA 98103 St. Louis, MO 63146-3564 (206) 632-8020 (314) 699-9660	2705 Saint Andrews Loop Pasco, WA 99301-3378 (509) 946-6309	o, Suite A	_		rs/Sample Container De	escription
2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120	(000) 040-0000			a (CHCI) (H	e preservative if used)	
3990 Collins Way, Suite 100 Lake Oswego, OR 97035 (503) 223-6147 Sample Identity 1321 Bannock Street, Suite 200 Denver, CO 80204 (303) 825-3800 Lab No.	Date Time Sampled	\2 ⁵⁰ \2 ⁵	September 1	Street of the		Remarks/Matrix
102104 - BYMW	11:42 11/24/	,	XX	X		6 Grandwarer
	11:00 11/24/2	0 ×	X			3 trip blank
						-
Project Information Sampl	e Receipt	Relind	quished By:	1. Reling	uished By: 2.	Relinquished By: 3.
Project Number: 162 04 Total Number of	Containers	Signature:	Time: <u>\4!</u>	Signature:	Time:	Signature: Time:
Project Name: 02 Fast 3 hr COC Seals/Intar Contact: Dto / JKH Received Good	1 13	Printed Name	Date H/14	Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No Delivery Method Sampler: 5kH/C? (attach shipping b		Company:	rcpner -	Company:		Company:
Sampler: 3CH/CY (attach shipping b	oill, if any)	Shannon	、た いらったん ived By:	1. Receiv	red By: 2.	Received By: 3.
Requested Turnaround Time: Standard		Signature:	Time:	Signature:	Time:	Received By: 3. Signature: Time: 4: 22
Special Instructions:		Printed Name	Date:	Printed Name:	Date:	Printes came: Date: W/29 II
Distribution: White - w/shipment - returned to Shannon & Wils Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	son w/ laboratory report	Company:		Company:		Company: SGS DWO 4.5 Hosent HD

e-Sample Receipt Form

SGS Workorder #:

1206405

1206405

Review Criteria	Condition (Yes,	No, N/A		Exce	ptions N	oted below		
Chain of Custody / Temperature Requi	irements	Y	es	Exemption perr	nitted if sar	npler hand carries/del	vers.	
Were Custody Seals intact? Note # &	location N/A							
COC accompanied s	amples? Yes							
DOD: Were samples received in COC corresponding	coolers? N/A							
		ected <8 hours ago, or for samples where chilling is not required						
Temperature blank compliant* (i.e., 0-6 °C afte		Cooler ID:		1	@	4.5 °C Therm. ID	- D60	
Temperature blank compliant (i.e., o o o alt	01 01): 103	Cooler ID:		-	@	°C Therm. ID		
If samples received without a temperature blank, the "cooler temperature" wil	II he	Cooler ID:				°C Therm. ID		
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl					@			
be noted if neither is available.		Cooler ID:			@	°C Therm. ID		
*** ***	0	Cooler ID:			@	°C Therm. ID	:	
*If >6°C, were samples collected <8 hours	s ago? N/A							
If <0°C, were sample containers ice	e free? N/A							
Note: Identify containers received at non-compliant tempe								
Use form FS-0029 if more space is r	needed.							
Holding Time / Documentation / Sample Condition R	equirements	Note: Refer t	o for	m F-083 "Sample	Guide" for s	pecific holding times.		
Were samples received within holding	g time? Yes							
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes							
**Note: If times differ <1hr, record details & login per C	COC.							
***Note: If sample information on containers differs from COC, SGS will default to	COC information							
Were analytical requests clear? (i.e., method is specified for a	nalyses Yes							
with multiple option for analysis (Ex: BTEX,								
, , ,	,							
		N	/A	***Evamption n	ormitted for	metals (e.g,200.8/60	204)	
Mara proper centainere (transpose / religio / proper retire ***	*\uood2 V oo		/A	Ехепіриоп р	emilited for	metals (e.g,200.6/60.	<u>20A).</u>	
Were proper containers (type/mass/volume/preservative***)used? Tes							
Volatila / I L Ha Doa	nuiromanta							
Volatile / LL-Hg Rec								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa								
Were all water VOA vials free of headspace (i.e., bubbles ≤	1							
Were all soil VOAs field extracted with MeOH	I+RLR. N/V							
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd pi	rocedures and i	may impact	data quality.		
Additional notes (if applicable):								
Audition		ppiioabi o	•					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1206405001-A	HCL to pH < 2	ОК			
1206405001-B	HCL to pH < 2	OK			
1206405001-C	HCL to pH < 2	OK			
1206405001-D	HCL to pH < 2	OK			
1206405001-E	HCL to pH < 2	OK			
1206405001-F	HNO3 to pH < 2	OK			
1206405002-A	HCL to pH < 2	OK			
1206405002-B	HCL to pH < 2	OK			
1206405002-C	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

LABORATORY DATA REVIEW CHECKLIST

Completed by: Alec Rizzo

Title: 2020 Groundwater Monitoring Event

Date: January 2021

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1206405 **Laboratory Report Date:** 12/14/2020

Contaminated Site Name: MOA – Brother Francis Shelter Property

ADEC File Number: 2100.26.326 **Hazard Identification Number:** 24899

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?Yes/ No / NAComments:

b. Correct analyses requested? Yes / No / NA Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? **Yes/ No / NA**

Comments: *The cooler temperature blank was 4.5° Celsius.*

b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA Comments:

c. Sample condition documented - broken, leaking (MeOH), zero headspace (VOC vials)? Yes/ No / NA

Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes No/NA

Comments: No discrepancies were noted.

e. Data quality or usability affected?

Comments: See above.

4. Case Narrative

a. Present and understandable? Yes/ No / NA Comments:

- **b.** Discrepancies, errors or QC failures noted by the lab? Yes / No / NA Comments: *The case narrative noted the following:*
 - LCSD 8260D recoveries for naphthalene and 1,2,3-trichlorobenzene do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.
 - MSD 6020B recovery for Lead does not meet QC criteria. Post digestion spike was successful.
- c. Were all corrective actions documented? Yes / No / NA Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *The case narrative does not discuss quality/usability*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? **Ves/No/NA**Comments:
- **b.** All applicable holding times met? Yes / No / NA Comments:
- c. All soils reported on a dry weight basis? Yes / No (NA) Comments: Soil samples not submitted for project.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Yes No NA**

Comments: The LOQ for 1,2,3-trichloropropane was above the ADEC Method Two cleanup level.

e. Data quality or usability affected?

Comments: There is a potential that the target analyte is present at a concentration greater than the ADEC cleanup level, but less than the LOQ; however, the analyte was not detected at estimated concentrations in the project sample.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis, and 20 samples?Yes/ No / NAComments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes / No / NA Comments:

- **iii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?Yes / No / NAComments:
- **v.** Data quality or usability affected? Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/ No / NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA
 Comments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes No/ NA Comments: Recoveries for naphthalene and 1,2,3-trichlorobenzene do not meet QC criteria.
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) (Ves) No / NA Comments:
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *Sample B4MW*.
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes No/NA Comments: The analytes were not detected above the LOQ in the associated sample. Therefore, flagging is not required.
- **vii.** Data quality or usability affected? Comments: *No. see above.*
- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis, and 20 samples?
 Yes / No NA
 Comments:
 - ii. Metals/Inorganics One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No / NA Comments:
 - iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. Yes No NA Comments: MSD recovery for lead does not meet QC criteria.
 - iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. Yes / No / NA Comments:
 - **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *Sample B4MW*.

vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No (NA)

Comments: No, the %R for both the MS sample and the post digestion spike meet QC criteria and the sample used as the parent was collected from another work order. Therefore, flagging is not required.

vii. Data quality or usability affected?

Comments: No, see above.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes/ No / NA
 Comments:
 - ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes / No / NA Comments:
 - iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No (NA)

 Comments:
 - **iv.** Data quality or usability affected? Comments: *See above*.
- **e. Trip Blank** Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes/ No / NA Comments:
 - ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? (If not, a comment explaining why must be entered below.) Yes (No) NA Comments: Only one cooler was used to transport the samples.
 - iii. All results less than LOQ and project specified objectives? Yes / No / NA Comments:
 - iv. If above LOQ or project specified DQOs, what samples are affected? Comments:
 - v. Data quality or usability affected?

Comments: See above.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes No/NA

Comments: A field duplicate was not submitted with this work order.

- ii. Were the field duplicates submitted blind to the lab? Yes / No No Comments:
- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil) **Yes / No NA**Comments:
- **iv.** Data quality or usability affected? Comments:
- **g. Decontamination or Equipment Blank** (If not applicable, a comment stating why must be entered below).

Yes /No NA

Comments: A decontamination or equipment blank was not included in our ADEC-approved work plan.

i. All results less than LOQ and project specified objectives?

Yes / No (NA)

Comments:

- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? **Yes** / **No** / **NA**Comments: A key is provided on Page 3 of the SGS Laboratory Report.

Appendix C: Disposal Receip

Appendix C

Disposal Receipts

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE

Contaminated Sites and Prevention Preparedness and Response Programs

Contaminated Media Transport and Treatment or Disposal Approval Form

DEC HAZARD/SPILL ID #	ID # NAME OF CONTAMINATED SITE OR SPILL							
4636	Fori	Former Second Avenue Easement, 1021 East Third Avenue						
CONTAMINATED SITE OR S	SPILL LOCATION	N – ADI	DRESS OR OTHER AF	PPROPRIATE DESCRIPTION				
Former Second Avenu	Former Second Avenue Easement, 1021 East Third Avenue, MOA - Brother Francis Shelter Property							
CURRENT PHYSICAL LOCA	ATION OF MEDIA	1	SOURCE OF THE CONTAMINATION (DAY TANK, WASH BAY, FIRE TRAINING PIT, LUST, ETC.)					
Former Second Avenue Ea	asement/Purge V	Vater	Former Second Avenue Easement Tanks					
CONTAMINANTS OF CONCERN ESTIM			MATED VOLUME	DATE(S) GENERATED				
DRO, RRO, total lead			1, 55-gal drum	10/15/20 through 10/17/20, 11/24/20				
POST TREATMENT ANALY	SIS REQUIRED (s	such as (GRO, DRO, RRO, VOCs,	metals, PFAS, and/or Chlorinated Solvents)				
			NA					
COMMENTS OR OTHER IM	PORTANT INFO	RMATI	ON					
Impacted purge and decontamination water generated during sampling Wells B3MW, B4MW, B5WM, B11MW, and B17MW during the October/November 2020 groundwater sampling events.								

TREATMENT FACILITY, LANDFILL, AND/OR FINAL DESTINATION OF MEDIA	PHYSICAL ADDRESS/PHONE NUMBER
NRC Alaska LLC, an US Ecology Company	2020 Viking Drive, Anchorage, Alaska 99501 / (907) 258-1558
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER
Municipality of Anchorage / Jon Clark	3640 Tudor Road, Anchorage, AK 99507 / 907-343-8257
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER
NRC Alaska LLC, an US Ecology Company	2020 Viking Drive, Anchorage, Alaska 99501 / (907) 258-1558

*Note, disposal of polluted soil in a landfill requires prior ap	pproval from the landfill operat	or and ADEC Solid Waste Program.				
Alec Rizzo	Environmental Staff					
Name of the Person Requesting Approval (printed)	Title/Association					
Alec Rizzo Digitally signed by Alec Rizzo Date: 2021.01.06 08:59:44 -09'00'	1/6/21	907-561-2120				
Signature	Date	Phone Number				
Based on the information provided, ADEC approves to Party or their consultant must submit to the DEC Proje and a post treatment analytical report, if disposed of at transported as a covered load in compliance with 18 A. Julie Fix	ct Manager a copy of weight an approved treatment facility AC 60.015.	receipts of the loads transported				
DEC Project Manager Name (printed) Docusigned by: C13B384FF3D0465	Project Manager Title 1/6/2021	907-465-5368				
Signature	Date	Phone Number				
		Rev. 01/2020				

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

Plea	se print or type (Form designed for use on elite (-		
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.	000 206 79	7	Manifest Documer	t No. 162017A	2. Page 1 of	*
	3. Generator's Name and Mailing Address HORA 3640 TUDOR ROAD ANCHORAGE, AK 99507	GE	MOA - E 1021 EA ANCHOR	ROTHER FRAST THIRD AV RAGE, AK 99	ANCIS SHE ENUE 501	The Part of the Pa		
	4. Generator's Phone ()					N		
	5. Transporter 1 Company Name	6.	US EPA ID	Number 2004184		Fransporter's ID	9.1558	
	7. Transporter 2 Company Name	8.	US EPA ID	Number		orter 1 Phone Fransporter's ID		
	7. Hansporter 2 Company Name	1	OSEFAID	a a mber		porter 2 Phone		_
	Designated Facility Name and Site Address	10.	US EPA ID	Number		Facility's ID		_
	NRC ALASKA LLC 2020 VIKING DRIVE ANCHORAGE, AK 99501		AKROO	0004184	F. Facility	's Phone 907-258-1	558	
								_
	11. WASTE DESCRIPTION				Containers	13. Total Quantity	14. Unit Wt./Vol.	
	Motorial Not Pare latest by	CVT		-	No. Type	Quantity	VVI./VOI.	
	Material Not Regulated by				1	EM 223		P
GENER	b.							
A	¢.							7
OR	d.			ė.		•		
	G. Additional Descriptions for Materials Listed Above				11.11	ng Codes for Wastes Listed Al		-
	1) EA0302 IDW DECON WAT		₹		D3451	g cours for wastes Listed Al		
								¥ ,
The second of th	15. Special Handling Instructions and Additional Info Shipper's Certification: This is packaged, marked and labele of the Department of Transport 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials department of the proper condition for transport.	ed, and are in proper ortation	condition fo	r transportatio	are in all respects			
	Printed/Typed Name		Signature				Month Day Year	r
	X Alex RILLO		-	della		-	2 2 2	1
Ţ	17. Transporter 1 Acknowledgement of Receipt of M	aterials	the sol		* 8		Date	
RANNA	Printed/Typed Name		Signature			Λ.	Nonth Day Year	r
TRANSPORTER	Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	aterials	Signature				Date ### Date #### April 10	<i>r</i>
FAC	19. Discrepancy Indication Space	ang tanggan ng panggan ng pilipangan ng panggan ng panggan ng panggan ng panggan ng panggan ng panggan ng pang						
	20. Facility Owner or Operator: Certification of receip	t of the waste materials covered b	y this manifest, exc	ept as noted in item 19).		Date	=
Ť Y	Printed/Typed Name		Signature		* *	٨	lonth Day Year	

Appendix D

Important Information About Your Geotechnical/Environmental Report

Attachment to and part of Report 102104-003

Date: February 2021

To: Municipality of Anchorage

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2016

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2016