

August 21, 2018

Garrett's Tesoro 724 West International Airport Road Anchorage, AK 99518

Attn: Mr. Nelson Garrett

RE: GROUNDWATER SAMPLING AND REMEDIATION SYSTEM EVALUATION, 724 WEST INTERNATIONAL AIRPORT ROAD, ANCHORAGE, ALASKA; ADEC SPILL NO. 1990210001001; ADEC FILE NO. 2100.26.078

This letter report presents the results of Shannon & Wilson's groundwater sampling and remediation system evaluation activities conducted at 724 West International Airport Road, Anchorage, Alaska. Garrett's Tesoro, an active fueling station is located on the property. A site plan is included as Figure 1.

In a letter dated April 6, 2018 the Alaska Department of Environmental Conservation (ADEC) requested that the monitoring wells on site be sampled, a level-loop survey be conducted, and the remediation system be evaluated. The project purpose was to comply with the ADEC requests. The project was conducted in accordance with our June 13, 2018 revised work plan which was approved by Ms. Chelsy Passmore of the ADEC in a letter dated June 13, 2018.

BACKGROUND

Monitoring Wells B1MWR2, B2MW, and B3MW were last sampled by Shannon & Wilson in July 2014. At that time, concentrations of gasoline range organics (GRO); diesel range organics (DRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) exceeding the ADEC Table C cleanup levels were documented in Wells B1MWR2 and B2MW. The sample collected from Well B3MW did not contain contaminant concentrations in excess of the applicable cleanup levels.

The remediation system, a combined vapor extraction/air injection system (VEAIS), was last evaluated by Shannon & Wilson in March 2014. The system was started and flame ionization detector (FID) measurements and one analytical vapor sample were collected from the sample port on the vapor extraction system (VES) blower discharge. Following a few days of operation, the flow rate was negligible, and the blower pressure indicated it was operating at maximum

SHANNON & WILSON, INC.

Garrett's Tesoro Attn: Mr. Nelson Garrett August 21, 2018 Page 2

capacity. The VES was turned off out of concern of over-stressing the blower. It was assumed that moisture accumulated and froze within the VES piping and eventually closed off the lines.

FIELD ACTIVITIES

The project consisted of groundwater sampling, conducting a level-loop survey, evaluating the remediation system, and managing investigation-derived waste (IDW). SGS North America Inc. (SGS) of Anchorage, Alaska provided the analysis of the groundwater samples. Photographs of the remediation system are included as Attachment 1. Field notes documenting the sampling activities are included in Attachment 2.

Groundwater Sampling

Groundwater samples were collected from Monitoring Wells B1MWR2, B2MW, and B3MW on June 25, 2018. Prior to initiating groundwater sampling activities, the static water level was measured in the wells and recorded for evaluation of groundwater flow direction and gradient. The water level indicator was decontaminated using an alconox/water mixture and a water rinse prior to insertion in each well. The depths to groundwater in the monitoring wells are listed on Table 1.

The monitoring wells were purged and sampled using a low-flow technique, utilizing a submersible pump with disposable vinyl tubing. Sampling was initiated by purging each well to reduce the effect of stagnant well casing water on chemical concentrations and to obtain groundwater samples that are representative of the surrounding water-bearing formation. A submersible pump was placed approximately 1 foot below the groundwater interface to avoid sediment disturbance. The pump rate was set at approximately 0.1 to 0.4 liter per minute (L/min) with a goal of limiting the sustained water drawdown to a maximum of 0.3 foot. The drawdown was determined in each monitoring well using an electronic water probe that was checked regularly throughout the purging/sampling process.

During the purging process, field personnel monitored water quality parameters (pH, conductivity, temperature, and turbidity) and purge volume. After at least 1 well volume was purged and water quality parameters stabilized over three successive readings (pH within 0.1 unit, conductivity within 3 percent, temperature within 3 percent [minimum 0.2 degree Celsius], and turbidity within 10 percent or three consecutive readings of less than 10 Nephelometric Turbidity Units [NTUs]) groundwater samples were collected. Analytical samples were collected in decreasing order of volatility by transferring water directly from the in-well

SHANNON & WILSON, INC.

Garrett's Tesoro Attn: Mr. Nelson Garrett August 21, 2018 Page 3

submersible pump tubing into laboratory-supplied containers. The pump was decontaminated in between each well. Final water quality parameters are listed on Table 1.

Well Survey

A level loop survey was conducted on July 10, 2018 to determine the top-of-casing elevations of the groundwater monitoring wells relative to a temporary benchmark with an elevation designated 100.00 feet. The elevations were surveyed to an accuracy of 0.01 foot. Based on the July 10, 2018 groundwater elevations and survey, the approximate groundwater flow direction is to the southwest. The historical groundwater flow direction is to the northwest. The surveyed well elevations and corresponding July 2018 groundwater elevations are listed in Table 1.

Investigation-Derived Waste

IDW consisted of purge water and decontamination water which was placed in a 55-gallon drum, labeled, and currently stored on site with ADEC approval. Impacted media will be transported off-site for disposal/treatment by NRC Alaska, Inc. Shannon & Wilson will complete the ADEC's *Transport, Treatment & Disposal Approval Form for Contaminated Media* for ADEC review and approval prior to coordinating IDW disposal.

Remediation System Evaluation

On July 10, 2018, a Shannon & Wilson representative visually assessed and documented the condition of the remediation system equipment. The VEAIS and main components of the system were successfully started and appeared operational. Operation parameters including VES exhaust temperature, pressure, and flow rate, and air injection system (AIS) pressure and flow rate were recorded. The condition of the VES is consistent with our March 2014 system evaluation. Positive pressure was observed through the sample port with the dilution valve closed. The AIS system appears to have a damaged connection (air flow coming from bottom of connection) and possibly needs to be repaired in order for the system to function properly. The VEAIS was turned off prior to leaving the site.

LABORATORY ANALYSES

The groundwater samples were submitted to SGS for analysis using chain-of-custody procedures. The three groundwater samples, including one duplicate sample, were analyzed for GRO by Alaska Method (AK) 101 and volatile organic compounds (VOCs) by Environmental Protection Garrett's Tesoro Attn: Mr. Nelson Garrett August 21, 2018 Page 4

Agency (EPA) Method 8260C. Water trip blanks accompanied the samples and was analyzed for GRO by AK 101 and VOCs by EPA Method 8260C.

DISCUSSION OF ANALYTICAL RESULTS

The analytical groundwater results were compared to ADEC Table C cleanup levels listed in 18 Alaska Administrative Code (AAC) 75 regulations (November 2017). The cleanup levels and analytical results for this project are provided in Table 2. The laboratory report and completed ADEC Laboratory Data Review Checklist (LDRC) are provided in Attachment 3.

Groundwater Samples

The samples collected from Wells B1MWR2 and B2MW contained concentrations of GRO (maximum of 241 milligrams per liter [mg/L]), benzene (maximum of 59.5 mg/L), toluene (maximum of 37.9 mg/L), ethylbenzene (6.96 mg/L), and xylenes (maximum of 26.0 mg/L) exceeding the ADEC Table C cleanup levels of 2.2 mg/L, 0.0046 mg/L, 1.1 mg/L, 0.015 mg/L, and 0.190 mg/L, respectively. Wells B1MWR2 and B2MW contained concentrations of 1,2,4-trimethylbenzene (maximum of 1.86 mg/L) and 1,2-dichloroethane (maximum of 0.300 J mg/L), exceeding the ADEC Table C cleanup levels of 0.015 mg/L and 0.0017 mg/L, respectively. The sample collected from Well B1MWR2 also contained 0.0480 J mg/L 1,3,5-trimethylbenzene which exceeds the ADEC cleanup level of 0.120 mg/L. The sample collected from Well B3MW did not contain concentrations of GRO, BTEX, or VOCs above the ADEC Table C cleanup levels.

Quality Control

The project laboratory implements on-going quality assurance/quality control procedures to evaluate conformance to ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a brief narrative concerning the problem in the case narrative of their laboratory reports (See Attachment 3).

Field quality control samples included one water trip blank and one field duplicate sample. One laboratory prepared trip blank sample accompanied the project sample jars from the laboratory to the site during sampling activities and back again to SGS.

Garrett's Tesoro Attn: Mr. Nelson Garrett August 21, 2018 Page 5

External quality controls include field records and a groundwater duplicate sample set. A duplicate sample set was collected to assess the sampling precision and calculate the relative percent difference (RPD). The RPD measurement provides an indication of the sample homogeneity and the precision of the analytical techniques. The RPDs are within the ADEC recommended DQO of 30 percent.

Shannon & Wilson reviewed the SGS data deliverables and completed an ADEC Laboratory Data Review Checklist for the project work orders. The laboratory report and data review checklist are included in Attachment 3. In our opinion, no non-conformances that would adversely impact data usability for the objectives of this project were noted.

CONCLUSIONS

The groundwater samples collected during the June 2018 sampling event from Monitoring Wells B1MWR2 and B2MW contained concentrations of target analytes above the ADEC Table C cleanup levels. The sample collected from Well B3MW did not contain concentrations of target analytes above the ADEC Table C cleanup levels. These results are consistent with previous sampling events.

The remediation system was successfully started but may need maintenance to return the system to continuous operation.

CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our client and their representatives. The findings we have presented within this report are based on the limited research, sampling, and analyses that we conducted. They should not be construed as definite conclusions regarding the project site's groundwater quality. The sampling and analyses performed can only provide you with our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised. Shannon & Wilson has prepared the document in Attachment 4, Important Information About Your Geotechnical/Environmental Report, to assist you and others in understanding the use and limitations of our reports.

SHANNON & WILSON, INC.

Garrett's Tesoro Attn: Mr. Nelson Garrett August 21, 2018 Page 6

You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study unless authorized by you or required by law.

We appreciate the opportunity to be of service. If you have questions or comments concerning this report, please call the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

Prepared by:

-for:

Jake Kesler Environmental Scientist

Approved by:

Dan P. McMahon Associate

Enc: Tables 1 and 2; Figure 1; and Attachments 1 through 4

	Monitoring Well Number						
	B1MWR2	B2MW	B3MW				
Water Level Measurement Data							
Date Water Level Measured	6/25/2018	6/25/2018	6/25/2018				
Time Water Level Measured	11:37	11:49	11:20				
Measured Depth to Water (ft below TOC)	17.80	18.57	19.29				
Well Stickup (ft)	-0.38	-0.29	-0.33				
Depth to Water Below Ground Surface (ft)	18.18	18.86	19.62				
TOC Elevation (ft)	98.81	99.56	100.24				
Groundwater Elevation (ft)	81.01	80.99	80.95				
Sampling Data							
Date Sampled	6/25/2018	6/25/2018	6/25/2018				
Time Sampled	14:47	16:10	12:54				
Measured Depth to Water (ft below TOC)	17.80	18.57	19.29				
Total Depth of Well (ft below TOC)	19.86	24.45	21.89				
Water Column in Well (ft)	2.06	5.88	2.60				
Gallons per Foot	0.16	0.16	0.16				
Water Column Volume (gallons)	0.33	0.94	0.42				
Total Volume Pumped (gallons)	3.1	2.8	2.7				
Sampling Method	Submersible	Submersible	Submersible				
	pump	pump	pump				
Diameter of Well Casing	2-inch	2-inch	2-inch				
Water Quality Data							
Date Measured	6/25/2018	6/25/2018	6/25/2018				
Temperature (°C)	7.28	6.66	7.11				
pH (Standard Units)	6.23	6.48	5.56				
Specific Conductivity (µS/cm)	2.63	1.12	0.97				
Turbidity (NTU)	181.5	4.71	0.53				
Remarks		Duplicate					
		Sample					
		B12MW					

TABLE 1 WELL DEVELOPMENT AND SAMPLING LOG

Notes:

Water quality parameters were measured with a YSI 556 and a Micro TPW turbidimeter

- = Not applicable or not measured
- ^ = Depth to water measurement prior to development
- TOC = Top of casing
 - ft = Feet

°C = Degrees Celsius

 $\mu S/cm = Microsiemens \ per \ Centimeter$

- ~ = Duplicate of preceding sample
- NTU = Nephelometric Turbidity Unit
- mV = Millivolts

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

			Sample ID Number^ and Water Depth in Feet BTOC (See Table 1 and Figure 1)					
		Cleanup		Monitor	ing Wells		Trip l	Blanks
		Level	B1MWR2	B2MW	B12MW~	B3MW	WTB1	WTB2
Parameter Tested	Method*	(mg/L)**	17.80	18.57	18.57	19.29	-	-
Gasoline Range Organics (GRO) - mg/L	AK 101	2.2	163	234	241	0.0539 J	< 0.0500	-
Volatile Organic Compounds (VOCs)								
Benzene - mg/L	EPA 8260C	0.0046	8.84	57.2	59.5	< 0.000200	-	< 0.000200
Toluene - mg/L	EPA 8260C	1.1	33.1	36.9	37.9	< 0.000500	-	< 0.000500
Ethylbenzene - mg/L	EPA 8260C	0.015	6.96	3.37	3.57	< 0.000500	-	< 0.000500
Xylenes (total) - mg/L	EPA 8260C	0.190	26.0	14.5	14.8	< 0.00150	-	< 0.00150
1,2,4-Trimethylbenzene - mg/L	EPA 8260C	0.015	1.86	1.28	1.25	< 0.000500	-	< 0.000500
1,2-Dichloroethane - mg/L	EPA 8260C	0.0017	0.180 J	0.290 J	0.300 J	< 0.000250	-	< 0.000250
1,3,5-Trimethylbenzene - mg/L	EPA 8260C	0.120	0.480 J	< 0.500	< 0.500	< 0.000500	-	< 0.000500
n-Propylbenzene - mg/L	EPA 8260C	0.660	0.350 J	< 0.500	< 0.500	< 0.000500	-	< 0.000500
Other VOC analytes - mg/L	EPA 8260C	various	ND	ND	ND	ND	-	ND

Notes:

* = See Attachment 2 for compounds tested, methods, and laboratory reporting limits

** = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (Nov. 2017)

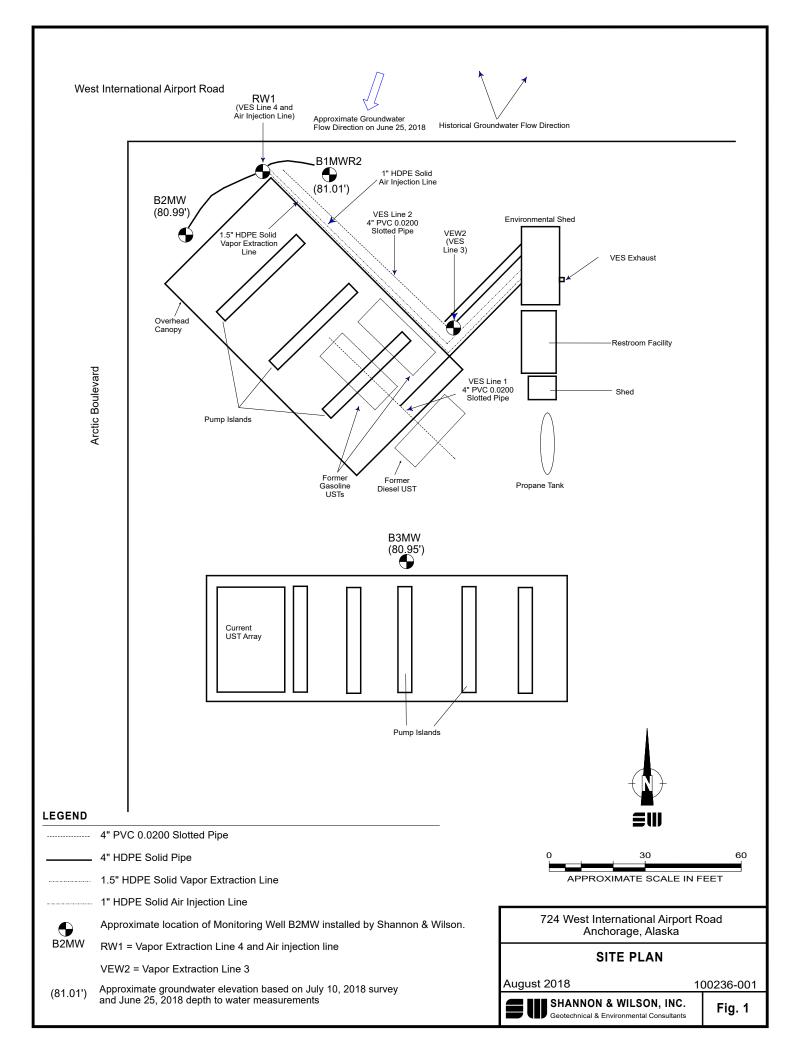
^ = Sample ID number preceded by "100236-" on the chain of custody form

mg/L = Milligrams per liter

< 0.0500	= Analyte not detected; laboratory limit of detection of 0.0500 mg/L
----------	--

0.0539 = Analyte detected

163 = Reported concentration exceeds the regulated cleanup level


- = Not applicable or sample not tested for this analyte

~ = Duplicate of preceding sample

J = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for more details.

BTOC = Below Top of Casing

ND = Analyte not detected

SHANNON & WILSON, INC.

ATTACHMENT 1

SITE PHOTOGRAPHS

100236-001



Photo 1: Looking into the remediation system shed. (July 10, 2018)

Photo 2: Looking at the VES lines of the remediation system. (July 10, 2018)

724 West International Airport Road Anchorage, Alaska						
PHOTOS 1 AND 2						
August 2018 100236-001						
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	1-1					

Photo 3: Looking at the AIS. (July 10, 2018)

Photo 4: Looking at the VES. (July 10, 2018)

724 West International Airport Road Anchorage, Alaska							
PHOTOS 3 AND 4							
August 2018 100236-007							
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	1-2						

SHANNON & WILSON, INC.

ATTACHMENT 2

FIELD NOTES

Shannon & Wilson, Inc.	
Job No: 100236 Location: Garrel's tesoo Weather: 50°F averast	
Well No .: XAW B3MW	
Well No.: $\frac{2740}{15}$ $\frac{13}{16}$ Time Started: 12.05 Time Completed: 13.05 (24 hour break)	
Develop Date: Develop End Time: (24 hour break)	
INITIAL GROUNDWATER LEVEL DATA	
Time of Depth Measurement: 11:20 Date of Depth Measurement: 6/25//8	
Measuring Point (MP): Top of PVC Casing / Top of Steel Protective Casing / Other:	
Diameter of Casing: 21 Well Screen Interval:	
Total Depth of Well Below MP: Product Thickness, if noted:	
Depth-to-Water (DTW) Below MP: (9.29)	
Water Column in Well: Gallons per foot: 2.60 (Total Depth of Well Below MP - DTW Below MP)	
Gallons per foot:OGallons in Well:O.416(Water Column in Well x Gallons per foot)	
19.34 PURGING DATA	
$\theta \mathcal{V}$ Date Purged: $\frac{6 25 8}{1.25}$ Time Started: $\underline{12:25}$ Time Completed: $\underline{2:53}$ Time Completed: $\underline{2:53}$	
$\theta \mathcal{V}$ Duce ranged. $\underline{0} \mathcal{V}$ range States $\underline{0} \mathcal{V}$ (Gallons in Well x 3)	
Gallons Purged: 2.7 Depth of Pump (generally 2 ft from bottom): 20.29	
Max. Drawdown (generally 0.3 ft): Pump Rate: Pump Rate:	
Well Purged Dry: Yes D No 🙀 (If yes, use Well Purged Dry Log) \mathcal{O}	
Time: Gallons: Pump Rate DTW Drawdown (Temp: *Sp. Cond.: DO: *pH: ORP:	• Turb:
(L/min): (ft BMP): (ft): ($^{\circ}C$) (uS/cm) (mg/L) (S.U.) (mV) (12:29 ().3 (0.3 (9.34 (0.05 7.4)) $7.417 1.0827 - 4.85 -$	(NTU)
12.32 0.5 0.3 19.36 0.07 7.41 $(-1.082 - 4.88)$ -	11.2.3
$\frac{12:35}{12:35}$ 0.9 0.3 19.37 0.08 7.30 1.054 - 5.01 -	3.76
12:38 1.2 0.3 19.39 0.1 7.157 1.0257 = 5.117 =	1.49 /
12.41 1.5 0.3 19.40 0.11 7.101 1.007 - 5.21 -	0.14
$\frac{1}{1244}$ $\frac{1}{1.8}$ $\frac{1}{0.3}$ $\frac{1}{0.39}$ $\frac{1}{0.10}$ $\frac{1}{7.14}$ $\frac{1}{0.997}$ $\frac{1}{-}$ $\frac{1}{5.39}$ $\frac{1}{-}$	0.291
SAMPLING DATA	
Odor: Nowe Color: Clear	
Sample Designation:	_
QC Sample Designation: Time / Date:	-
QA Sample Designation: Time / Date:	_
Evacuation Method: Submersible Pump / Other:	
Sampling Method: Submersible Pump / Other:	don the
Water Quality Instruments Used/Manufacturer/Model Number Heron #6, YSF 556, Hurbidium	
Calibration Info (Time, Ranges, etc) <u>Calibrated</u> [D:00	-
Remarks: brokey IVC, missing Well plug	-
Sampling Personnel: JJK	
WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65	
ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23	

Sh	annon & W							9		
Co	ntinued fr	om previous		ii		·	a tana tana	• • •		
Job	No:	100236 B3MW 6/25/18		location: <u>G</u>	arrett's Te	<u>Sovo</u> Site	<u>+24</u>	W. Info	anoitran	(
Time: [<u>1:47</u> [2:50 [2:53	Gallons: 2.1 2.4 2.7	Pump Rate (L/min): 0.3 0.3 0.3	DTW (ft BMP): <u>19.39</u> <u>19.38</u> 19.38	Drawdown (ft): 0.10 0.09 0.09	Temp: (°C) 7.13√ 7.07√ 7.11√	Sp. Cond (uS/cm) 0,98 0,97 0,97	√ (mg/L) ≪/ — 3√ —	pH: (S.U.) 5.46 5.52 5.56		Turb: (NTU) 0.70 0.46 0-53
			3 <u></u>	· · · · · · · · · · · · · · · · · · ·		* •				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·						a a a a a a a a a a a a a a a a a a a			
ADEC 1ay 2010)	Interval (minutes) 3 to 5	Pump Rate (mL/min): 100 to 150	 Drawdown (ft): <0.0328	±3% or ±0.2	Sp. Cond. (uS/cm) ±3%	ĎŎ (mg/L) ±10%	pH:** (S.U.) ±0.1	ORP: (mV) ±10		rb: CU)

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample. ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

LOW-FLOW WATER SAMPLING LOG	
Shannon & Wilson, Inc.	
Job No: 100236 Location: Gatvett's Tesoo Weather: 50F overcast Well No.: 51/10/22	
Date: 6/25/18 Time Started: 13:35 Time Completed: 15:15	
Develop Date: Develop End Time: (24 hour break)	
INITIAL GROUNDWATER LEVEL DATA	
Time of Depth Measurement: $1/37$ Date of Depth Measurement: $6/25//8$	
Measuring Point (MP): Top of PVC Casing / Top of Steel Protective Casing / Other:	
Diameter of Casing: Well Screen Interval: Well Screen Interval: Well Screen Interval:	
Depth-to-Water (DTW) Below MP: $17.30 - 17.79$	
Water Column in Well: (Total Depth of Well Below MP - DTW Below MP)	
Gallons per foot:	
Gallons in Well:	
PURGING DATA	
Date Purged: 6/25/18 Time Started: Time Completed: 15:02	
Three Well Volumes: 0-99 (Gallons in Well x 3)	
Gallons Purged: 3.1 Depth of Pump (generally 2 ft from bottom): 18.89	
Max. Drawdown (generally 0.3 ft): Well Purged Dry: Yes D No (If yes, use Well Purged Dry Log)	
(L/min): (ft BMP): (ft): (°C) (uS/cm) (mg/L) (S.U.) (mV) (NTU)	
$\frac{13.46}{13.62} \xrightarrow{0.6} 0.4 \frac{18.2}{16.2} \xrightarrow{0.41} \frac{5.86}{2.772} \xrightarrow{-} 6.12 \xrightarrow{-} 319.4$	
$\frac{13152}{13:55} \begin{array}{c} 0.8 \\ 0.9 \\ 0.1 \end{array} \xrightarrow{[8.02]{0.155023}} \begin{array}{c} 7.26 \\ 3.373 \\ - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c} 5.87 \\ - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c} 5.87 \\ - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c} - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c} 3.389 \\ - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c} - \end{array} \xrightarrow{[3.773]{0.165}} \begin{array}{c}$	
$\frac{13:55}{13:58} \xrightarrow{0.9} 0.1 \xrightarrow{-} \frac{3:05}{-} \frac{3:373}{8:55} \xrightarrow{-} \frac{6.01}{6.13} \xrightarrow{-} \frac{343:73}{6.13}$	8.6
14:01 1. 01 17.95 0.16 8.70 3.000 - 6.22	
14:04 1.1 0.1 - 8.89 2.991 - 6.28	
SAMPLING DATA	
Odor: House Diese Color: Clear Opaque	
Sample Designation: 100236 - B/MWP2 Time / Date: 14:47 6/25/18	
QC Sample Designation: Time / Date:	
QA Sample Designation: Time / Date:	
Evacuation Method: Submersible Pump / Other: Sampling Method: Submersible Pump / Other:	
Water Quality Instruments Used/Manufacturer/Model Number Heron #6 DTW YSI 556, Hurbodumeter #3	
Remarks: adjust flow rate to 0,1 4/min to accommodate gravelown. re-cellibrate turbidimental @ 13:56	
Sampling Personnel: <u>55</u>	
WELL CASING VOLUMES (GAL/FT): $1^{\circ} = 0.04$ $2^{\circ} = 0.16$ $4^{\circ} = 0.65$	
ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23	

Shannon & Wilson, Inc.

Continued from previous page S **Resob** Site: Job No: 0023 24 Location: Intervational MWR2 Well No .: 25 Date: . . Time: Gallons: **Pump Rate** DTW Drawdown Temp: Sp. Cond DO pH: **ORP:** Turb: (ft BMP): (L/min): (ft): (°C) (uS/cm). (mg/L)(S.U.) (mV) (NTU) 0.3 9.26 6.321 14:09 18.14 0.35 2.954 юl(0. 200 498,3 0.32 65 .32 O. 31 .6.49 6.25 257, Y 0.2 353.0 0.2 02 29 6.18. 2 0.2 336. S 1:2 7 1. 09 0.1 0. 30 240.5 36 v 2.7 6.(70 46~ 2 6.70 140. 9 Ľ ~ 245.8 50 18.11 0.32 2.67 2. 33 6-21 O. 622 14:33 2. 28 218.7 0. 0.32 2.6 2 36 339.5 .26 6.22 0. 0.32 2.64 :39 18.11 0.32 rЧ 2.63 6.12 3K, 8 0. 2.630 6.2 1:42 0. 18.1 2 28 6.8 A. 4:45 2.632 0.3 6.2 0. .1 181. 3 25 200 5 g 6 70 $\mathbb{C} = \{ i \in \mathcal{I} : i \in \mathcal{I} \}$ #**P**_1 e ... (* ¹ ; 7 . K. • at. 徽 ÷. 54 5. ÷ \mathbb{Z} 15 \mathbb{R}^{2} ٩, 5.8.5 . . the Street Pump Rate DÔ Drawdown' Sp. Cond.: pH: Interval Temp: **ORP:** Turb: (minutes) (mL/min): (ft): (uS/cm) (mg/L) (°C) (S.U.) (mV) (NTU)

ADEC 3 to 5 100 to 150 < 0.0328 ±3% or ±0.2 ±3% ±10% ±0.1 ±10 ±10% 1ay 2010) 0 EPA 5 50 <0.3 ±3% ±10% or 55 NTU ±3% ±10% ±0.1 ±10 an. 2010)

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample. ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

LOW-FLOW WATER SAMPLING LOG	
Shannon & Wilson, Inc. Job No: <u>100236</u> Location: <u>Grarrett's Tesoro</u> Weather: <u>50°F overcast</u>	
Well No.: <u>B2MW</u> Date: <u>625 MB</u> Time Started: <u>15:35</u> Time Completed: <u>16:35</u> Develop Date: <u>Develop End Time:</u> (24 hour break)	
INITIAL GROUNDWATER LEVEL DATA	
Time of Depth Measurement: $11:49$ Date of Depth Measurement: $3/25/19$	
Time of Depth Measurement: 11:49 Date of Depth Measurement: 6/25/14 Measuring Point (MP): Fop of PVC Casing/Top of Steel Protective Casing / Other: 6/25/14 Diameter of Casing: Y Well Screen Interval:	
Diameter of Casing: Well Screen Interval:	
Total Depth of Well Below MP: 24.45 Product Thickness, if noted:	
Water Column in Well: (Total Depth of Well Below MP - DTW Below MP)). A
Gallons per foot:	ż
Gallons in Well: 0.99 (Water Column in Well x Gallons per foot)	
PURGING DATA	
Date Purged: $6/26/18$ Time Started: $15:42$ Time Completed: $16:25$	
Three Well Volumes: (Gallons in Well x 3)	
Gallons Purged: 2.8 Depth of Pump (generally 2 ft from bottom): 19.57 Max. Drawdown (generally 0.3 ft): 0.18 Pump Rate: 0.44 19.04	
Well Purged Dry: Yes I No (If yes, use Well Purged Dry Log) 0.1 10%	
Time: Gallons: Pump Rate DTW Drawdown Temp: Sp. Cond.: DO: pH: ORP: Turb:	
(L/min): (ft BMP): (ft): ($^{\circ}C$) (uS/cm) (mg/L) (S.U.) (mV) (NTU) 15:45 0.2 0.4 [8.57 0.0 7.14 [$.167$ - 6.47 - 19.43	,
15.48 0.5 0.4 18.72 0.15 6.63 1.125 - 6.19 - 5.44	\checkmark
15:51 0.1 0.4 18.75 0.18 6.32 1.102 - 6.33 - 3.90	
$\frac{15:54}{1.3} 0.4 18.65 0.08 6.62 7.105 - 6.23 - 3.24 3.24 1.105 - 6.23 - 3.24 1.105 - 6.23 - 3.24 1.105 - 6.23 - 3.24 1.105 - 6.23 - - 6.23 - 6.23 - - 6.23 - - 6.23 - - 6.23 - - - 6.23 - - - - - - - - - $	V
$\frac{15:57}{16:00} \frac{1.6}{1.9} \frac{0.4}{0.4} \frac{18.65}{18.65} \frac{0.08}{0.08} \frac{6.66}{6.61} \frac{1.108}{1.116} - \frac{6.27}{6.36} - \frac{2.58}{5.84}$	· /
16:00 1.9 0.4 14.65 0.08 6.61 1.116 - 6.36 - 5.84	
SAMPLING DATA	
Odor: Diese Hydrocar bang Color: Clear Sample Designation: 100236-B2MW Time / Date: 16:10 6(25,18	
Sample Designation: $100236-B2MW$ Time / Date: $16:10$ $6(26 18)$ Time / Date: $16:20$ $6(26 18)$ Time / Date: $16:20$ $6(26 18)$	
QA Sample Designation: Time / Date:	
Evacuation Method: Submersible Pump / Other:	
Sampling Method: Submersible Pump / Other:	
Water Quality Instruments Used/Manufacturer/Model Number Hovan DTev #6, JST 556, tay bid the ter #3	
Calibration Info (Time, Ranges, etc) Calibrated 10:00	
Remarks:	
Sampling Personnel: J5k	
WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65	
ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23	

Shannon & Wilson, Inc.

±10%	, ±	±10	±0.1		±10	±3%	±3% or ±0.2	<0.0328	100 to 150	3 to 5	ADEC 1ay 2010)
Turb: (NTU)		ORP: (mV)	pH:		:: / · DO	Sp. Cond (uS/cm)	Temp: (°C)	Drawdown		Interval (minutes)	
	•	<u> </u>		· 19:34 19:30			63 ⁽ 19 <u>)</u>	j. 1			
		<u> </u>				/ .Q	() <u></u> ^	· • • •	<u></u>	·	
			•	+		• <u>* * * * * * * * * * * * * * * * * * *</u>	۲ میں			*	
	* HU & A	17. * 	• • • • • • • • • • • • • • • • • • •	.		***** <u>*</u> *****			<u></u>	•	
		<u> </u>	A			113 <u></u>				, n , n , n	
	· . 3					- A 1		· :			
							₹ ⁴ 26 *32 := -	5 - 8 - North			2000 2.000 100 - 100 - 100 - 100 100 - 100 - 100 - 100
								***.			
		/ /	· · · · · · · · · · · · · · · · · · ·			a 17 -0 -13-1				<u> </u>	
		A	19 ² 19								
				······································	4.						
4.7/	/	6.480	Cartine Concern	2.4		6.60	0.08	18.65	0.4	2.8	16:09
- <u>4.98</u> <u>4.92</u>		6.451		1221	5/ [.]	6.6	0.08	14.65	0.4	2.2	16:03
	ORP: (mV)	́рН: (S.U.)	DO (mg/L)	Cond /cm)		Temp: (°C)	Drawdown (ft):	DTW (ft BMP):	Pump Rate (L/min):	Gallons:	Time:
			÷		卒 (1997年) - 1997年) - 1997年)			<u> </u>	0/25/10	e	Dat
					f				B2MW	ll No.: _	We
2191	natze	1. Inter	724 4	Site:	tesao	vvett/s-	ocation: <u>Ga</u>		10026	No:	
	4				у. "	*			本1111月 第1		Co
		n di Canana Angli Angli Ang Angli Angli Ang			y. ***	A so pro-			rom previous		Co

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

FIELD ACTIVITIES DAILY LOG

Date 6/25/18 Sheet _/_of Project No. 100236 Garrett'S TESOVO Project Name: Field activity subject: Gw Sampling . Description of daily activities and events. 11:00 - arrive on Site ADEC Personnel Grant lidven, 48/54 Passwere 11:30 -BSMW BIMWRZ, DTIN 174 DUNGE 1 - 1900eto Gire usable Garret discus WORK being DEC -Mpe UNP (Dyp frain B2MU) CAMADE drum drop SHe int'l givport tel. . Durge OW ON NE Conner drop Samples SGS àt ADEC - Grant Lidven, Chelsy Visitors on site: Passmare Gearnett Melson Changes from plans/specifications and other special orders and important decisions: Weather conditions: 50 °F and Important telephone calls: Personnel on site; 22 Signature: Date: 6/25 S

SHANNON & WILSON, INC.

ATTACHMENT 3

RESULTS OF ANALYTICAL TESTING BY

SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA

AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Report of Analysis

To: Shannon & Wilson, Inc. 5430 Fairbanks St. Suite 3 Anchorage, AK 99518 (907)433-3226

Report Number: **1183159**

Client Project: 100236 Garrett's Tesoro

Dear Jake Kesler,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jillian at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jillian Vlahovich Project Manager Jillian.Vlahovich@sgs.com Date

Print Date: 07/06/2018 1:55:22PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson, Inc. SGS Project: 1183159 Project Name/Site: 100236 Garrett's Tesoro Project Contact: Jake Kesler

Refer to sample receipt form for information on sample condition.

LCS for HBN 1781683 [VXX/32498 (1455832) LCS

8260C - LCS recovery for bromomethane (152%) does not meet QC criteria. This analyte was not detected in associated samples.

LCS for HBN 1781776 [VXX/32514 (1456204) LCS

8260C - LCS recovery for bromomethane (153%) does not meet QC criteria. This analyte was not detected in associated samples.

LCSD for HBN 1781683 [VXX/3249 (1455833) LCSD

8260C - LCSD recovery for bromomethane (180%) does not meet QC criteria. This analyte was not detected in associated samples.

LCSD for HBN 1781776 [VXX/3251 (1456205) LCSD

8260C - LCSD recovery for bromomethane (170%) does not meet QC criteria. This analyte was not detected in associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/06/2018 1:55:23PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 06/11/2018 for Mercury by EPA245.1,Beryllium and Copper by EPA200.8) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
.	

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 07/06/2018 1:55:24PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary Client Sample ID Lab Sample ID Matrix **Collected Received** Water (Surface, Eff., Ground) 100236-B2MW 1183159001 06/25/2018 06/25/2018 100236-B12MW 1183159002 06/25/2018 06/25/2018 Water (Surface, Eff., Ground) 100236-B3MW 1183159003 06/25/2018 06/25/2018 Water (Surface, Eff., Ground) 100236-B1MWR2 1183159004 06/25/2018 06/25/2018 Water (Surface, Eff., Ground) 100236-WTB1 1183159005 06/25/2018 06/25/2018 Water (Surface, Eff., Ground) 100236-WTB2 1183159006 06/25/2018 06/25/2018 Water (Surface, Eff., Ground)

Method AK101 SW8260C Method Description

Gasoline Range Organics (W) Volatile Organic Compounds (W) FULL

Print Date: 07/06/2018 1:55:25PM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: 100236-B2MW			
Lab Sample ID: 1183159001	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	234	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1280	ug/L
	1,2-Dichloroethane	290J	ug/L
	Benzene	57200	ug/L
	Ethylbenzene	3370	ug/L
	o-Xylene	4490	ug/L
	P & M -Xylene	10000	ug/L
	Toluene	36900	ug/L
	Xylenes (total)	14500	ug/L
Client Sample ID: 100236-B12MW			
Lab Sample ID: 1183159002	Parameter	<u>Result</u>	Units
Volatile Fuels	Gasoline Range Organics	241	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1250	ug/L
Volatile Como	1,2-Dichloroethane	300J	ug/L
	Benzene	59500	ug/L
	Ethylbenzene	3570	ug/L
	o-Xylene	4550	ug/L
	P & M -Xylene	10200	ug/L
	Toluene	37900	ug/L
	Xylenes (total)	14800	ug/L
Client Sample ID: 100236-B3MW			
Lab Sample ID: 1183159003	Parameter	<u>Result</u>	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	0.0539J	mg/L
Client Sample ID: 100236-B1MWR2			
Lab Sample ID: 1183159004	Parameter	Result	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	163	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	1860	ug/L
	1,2-Dichloroethane	180J	ug/L
	1,3,5-Trimethylbenzene	480J	ug/L
	Benzene	8840	ug/L
	Ethylbenzene	6960	ug/L
	n-Propylbenzene	350J	ug/L
	o-Xylene	5800	ug/L
	P & M -Xylene	20200	ug/L
	Toluene	33100	ug/L
	Xylenes (total)	26000	ug/L

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100236-B2MW Client Sample ID: 100236-B2MW Client Project ID: 100236 Garrett's Te Lab Sample ID: 1183159001 Lab Project ID: 1183159	Collection Date: 06/25/18 16:10 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Volatile Fuels			_					
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 234	<u>LOQ/CL</u> 20.0	<u>DL</u> 6.20	<u>Units</u> mg/L	<u>DF</u> 200	<u>Allowable</u> Limits	Date Analyzed 07/05/18 15:29	
Surrogates								
4-Bromofluorobenzene (surr)	94.5	50-150		%	200		07/05/18 15:29	
Batch Information								
Analytical Batch: VFC14248 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 07/05/18 15:29 Container ID: 1183159001-C		Prep Batch: VXX32559 Prep Method: SW5030B Prep Date/Time: 07/04/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL						

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Results of 100236-B2MW

Client Sample ID: **100236-B2MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159001 Lab Project ID: 1183159 Collection Date: 06/25/18 16:10 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 18:59
1,1,1-Trichloroethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,1,2,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 18:59
1,1,2-Trichloroethane	200 U	400	120	ug/L	1000		06/27/18 18:59
1,1-Dichloroethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,1-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,1-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,2,3-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,2,3-Trichloropropane	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,2,4-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,2,4-Trimethylbenzene	1280	1000	310	ug/L	1000		06/27/18 18:59
1,2-Dibromo-3-chloropropane	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
1,2-Dibromoethane	37.5 U	75.0	18.0	ug/L	1000		06/27/18 18:59
1,2-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,2-Dichloroethane	290 J	500	150	ug/L	1000		06/27/18 18:59
1,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,3,5-Trimethylbenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,3-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
1,3-Dichloropropane	250 U	500	150	ug/L	1000		06/27/18 18:59
1,4-Dichlorobenzene	250 U	500	150	ug/L	1000		06/27/18 18:59
2,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 18:59
2-Butanone (MEK)	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
2-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 18:59
2-Hexanone	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
4-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 18:59
4-Isopropyltoluene	500 U	1000	310	ug/L	1000		06/27/18 18:59
4-Methyl-2-pentanone (MIBK)	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
Benzene	57200	400	120	ug/L	1000		06/27/18 18:59
Bromobenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Bromochloromethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
Bromodichloromethane	250 U	500	150	ug/L	1000		06/27/18 18:59
Bromoform	500 U	1000	310	ug/L	1000		06/27/18 18:59
Bromomethane	2500 U	5000	1500	ug/L	1000		06/27/18 18:59
Carbon disulfide	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
Carbon tetrachloride	500 U	1000	310	ug/L	1000		06/27/18 18:59
Chlorobenzene	250 U	500	150	ug/L	1000		06/27/18 18:59
Chloroethane	500 U	1000	310	ug/L	1000		06/27/18 18:59

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B2MW

Client Sample ID: **100236-B2MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159001 Lab Project ID: 1183159 Collection Date: 06/25/18 16:10 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	500 U	1000	310	ug/L	1000		06/27/18 18:59
Chloromethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
cis-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 18:59
cis-1,3-Dichloropropene	250 U	500	150	ug/L	1000		06/27/18 18:59
Dibromochloromethane	250 U	500	150	ug/L	1000		06/27/18 18:59
Dibromomethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
Dichlorodifluoromethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
Ethylbenzene	3370	1000	310	ug/L	1000		06/27/18 18:59
Freon-113	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
Hexachlorobutadiene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Isopropylbenzene (Cumene)	500 U	1000	310	ug/L	1000		06/27/18 18:59
Methylene chloride	2500 U	5000	1000	ug/L	1000		06/27/18 18:59
Methyl-t-butyl ether	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
Naphthalene	500 U	1000	310	ug/L	1000		06/27/18 18:59
n-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
n-Propylbenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
o-Xylene	4490	1000	310	ug/L	1000		06/27/18 18:59
P & M -Xylene	10000	2000	620	ug/L	1000		06/27/18 18:59
sec-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Styrene	500 U	1000	310	ug/L	1000		06/27/18 18:59
tert-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Tetrachloroethene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Toluene	36900	1000	310	ug/L	1000		06/27/18 18:59
trans-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 18:59
trans-1,3-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Trichloroethene	500 U	1000	310	ug/L	1000		06/27/18 18:59
Trichlorofluoromethane	500 U	1000	310	ug/L	1000		06/27/18 18:59
Vinyl acetate	5000 U	10000	3100	ug/L	1000		06/27/18 18:59
Vinyl chloride	75.0 U	150	50.0	ug/L	1000		06/27/18 18:59
Xylenes (total)	14500	3000	1000	ug/L	1000		06/27/18 18:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1000		06/27/18 18:59
4-Bromofluorobenzene (surr)	101	85-114		%	1000		06/27/18 18:59
Toluene-d8 (surr)	98.4	89-112		%	1000		06/27/18 18:59

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B2MW

Client Sample ID: **100236-B2MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159001 Lab Project ID: 1183159 Collection Date: 06/25/18 16:10 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 06/27/18 18:59 Container ID: 1183159001-D Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 06/27/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Client Sample ID: 100236-B12MW Client Project ID: 100236 Garrett's Tesoro Lab Sample ID: 1183159002 Lab Project ID: 1183159			Collection Date: 06/25/18 16:20 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
]						
<u>Result Qual</u> 241	<u>LOQ/CL</u> 20.0	<u>DL</u> 6.20	<u>Units</u> mg/L	<u>DF</u> 200	<u>Allowable</u> Limits	<u>Date Analyzed</u> 07/05/18 15:47		
94.8	50-150		%	200		07/05/18 15:47		
	1	Prep Metho Prep Date/T Prep Initial V	od: SW5030B Time: 07/04/18 08:00 Wt./Vol.: 5 mL					
	Result Qual 241 94.8	Tesoro R M S La 241 20.0 94.8 50-150	Tesoro Received Data Matrix: Water Solids (%): Location: Result Qual LOQ/CL DL 241 20.0 6.20 94.8 50-150 Prep Batch: Prep Method Prep Date/T Prep Initial V	Tesoro Received Date: 06/25/* Matrix: Water (Surface, Solids (%): Location: Result Qual LOQ/CL DL Units 241 20.0 6.20 mg/L 94.8 50-150 % Prep Batch: VXX32559 Prep Method: SW5030B Prep Date/Time: 07/04/1	Tesoro Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Gro Solids (%): Location: Result Qual LOQ/CL DL Units DF 241 20.0 6.20 mg/L 200 94.8 50-150 % 200 Prep Batch: VXX32559 Prep Method: SW5030B Prep Date/Time: 07/04/18 08:00 Prep Initial Wt./Vol.:	Tesoro Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Result Qual LOQ/CL DL Units DF Allowable 241 20.0 6.20 mg/L 200 94.8 50-150 % 200 Prep Batch: VXX32559 Prep Method: SW5030B Prep Date/Time: 07/04/18 08:00 Prep Initial Wt./Vol.: 5 mL		

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Results of 100236-B12MW

Client Sample ID: **100236-B12MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159002 Lab Project ID: 1183159 Collection Date: 06/25/18 16:20 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 19:16
1,1,1-Trichloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,1,2,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 19:16
1,1,2-Trichloroethane	200 U	400	120	ug/L	1000		06/27/18 19:16
1,1-Dichloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,1-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,1-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,2,3-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,2,3-Trichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,2,4-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,2,4-Trimethylbenzene	1250	1000	310	ug/L	1000		06/27/18 19:16
1,2-Dibromo-3-chloropropane	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
1,2-Dibromoethane	37.5 U	75.0	18.0	ug/L	1000		06/27/18 19:16
1,2-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,2-Dichloroethane	300 J	500	150	ug/L	1000		06/27/18 19:16
1,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,3,5-Trimethylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,3-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
1,3-Dichloropropane	250 U	500	150	ug/L	1000		06/27/18 19:16
1,4-Dichlorobenzene	250 U	500	150	ug/L	1000		06/27/18 19:16
2,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:16
2-Butanone (MEK)	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
2-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 19:16
2-Hexanone	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
4-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 19:16
4-Isopropyltoluene	500 U	1000	310	ug/L	1000		06/27/18 19:16
4-Methyl-2-pentanone (MIBK)	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
Benzene	59500	400	120	ug/L	1000		06/27/18 19:16
Bromobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Bromochloromethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
Bromodichloromethane	250 U	500	150	ug/L	1000		06/27/18 19:16
Bromoform	500 U	1000	310	ug/L	1000		06/27/18 19:16
Bromomethane	2500 U	5000	1500	ug/L	1000		06/27/18 19:16
Carbon disulfide	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
Carbon tetrachloride	500 U	1000	310	ug/L	1000		06/27/18 19:16
Chlorobenzene	250 U	500	150	ug/L	1000		06/27/18 19:16
Chloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:16

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B12MW

Client Sample ID: **100236-B12MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159002 Lab Project ID: 1183159

Collection Date: 06/25/18 16:20 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

-						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	500 U	1000	310	ug/L	1000		06/27/18 19:16
Chloromethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
cis-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:16
cis-1,3-Dichloropropene	250 U	500	150	ug/L	1000		06/27/18 19:16
Dibromochloromethane	250 U	500	150	ug/L	1000		06/27/18 19:16
Dibromomethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
Dichlorodifluoromethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
Ethylbenzene	3570	1000	310	ug/L	1000		06/27/18 19:16
Freon-113	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
Hexachlorobutadiene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Isopropylbenzene (Cumene)	500 U	1000	310	ug/L	1000		06/27/18 19:16
Methylene chloride	2500 U	5000	1000	ug/L	1000		06/27/18 19:16
Methyl-t-butyl ether	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
Naphthalene	500 U	1000	310	ug/L	1000		06/27/18 19:16
n-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
n-Propylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
o-Xylene	4550	1000	310	ug/L	1000		06/27/18 19:16
P & M -Xylene	10200	2000	620	ug/L	1000		06/27/18 19:16
sec-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Styrene	500 U	1000	310	ug/L	1000		06/27/18 19:16
tert-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Tetrachloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Toluene	37900	1000	310	ug/L	1000		06/27/18 19:16
trans-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:16
trans-1,3-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Trichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:16
Trichlorofluoromethane	500 U	1000	310	ug/L	1000		06/27/18 19:16
Vinyl acetate	5000 U	10000	3100	ug/L	1000		06/27/18 19:16
Vinyl chloride	75.0 U	150	50.0	ug/L	1000		06/27/18 19:16
Xylenes (total)	14800	3000	1000	ug/L	1000		06/27/18 19:16
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1000		06/27/18 19:16
4-Bromofluorobenzene (surr)	100	85-114		%	1000		06/27/18 19:16
Toluene-d8 (surr)	98.6	89-112		%	1000		06/27/18 19:16

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B12MW

Client Sample ID: **100236-B12MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159002 Lab Project ID: 1183159 Collection Date: 06/25/18 16:20 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 06/27/18 19:16 Container ID: 1183159002-D Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 06/27/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Member of SGS Group

13 of 46

Results of 100236-B3MW							
Client Sample ID: 100236-B3MW Client Project ID: 100236 Garrett's Te Lab Sample ID: 1183159003 Lab Project ID: 1183159	Collection Date: 06/25/18 12:54 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0539 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 07/05/18 16:06
Surrogates							
4-Bromofluorobenzene (surr)	91	50-150		%	1		07/05/18 16:06
Batch Information							
Analytical Batch: VFC14248 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 07/05/18 16:06 Container ID: 1183159003-C		Prep Batch: VXX32559 Prep Method: SW5030B Prep Date/Time: 07/04/18 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Results of 100236-B3MW

Client Sample ID: **100236-B3MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159003 Lab Project ID: 1183159 Collection Date: 06/25/18 12:54 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		06/28/18 11:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		06/28/18 11:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/28/18 11:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		06/28/18 11:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		06/28/18 11:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		06/28/18 11:25
Benzene	0.200 U	0.400	0.120	ug/L	1		06/28/18 11:25
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
Bromoform	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
Bromomethane	2.50 U	5.00	1.50	ug/L	1		06/28/18 11:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		06/28/18 11:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/28/18 11:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1		06/28/18 11:25

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B3MW

Client Sample ID: **100236-B3MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159003 Lab Project ID: 1183159 Collection Date: 06/25/18 12:54 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date An	<u>alyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Chloromethane	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	06/28/18	3 11:25
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	06/28/18	3 11:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Freon-113	5.00 U	10.0	3.10	ug/L	1	06/28/18	3 11:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	06/28/18	3 11:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	06/28/18	3 11:25
Naphthalene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	06/28/18	3 11:25
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Styrene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Toluene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	06/28/18	3 11:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	06/28/18	3 11:25
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	06/28/18	3 11:25
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	06/28/18	11:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	06/28/18	3 11:25
4-Bromofluorobenzene (surr)	103	85-114		%	1	06/28/18	3 11:25
Toluene-d8 (surr)	98.2	89-112		%	1	06/28/18	11:25

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B3MW

Client Sample ID: **100236-B3MW** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159003 Lab Project ID: 1183159 Collection Date: 06/25/18 12:54 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17955 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 06/28/18 11:25 Container ID: 1183159003-D Prep Batch: VXX32514 Prep Method: SW5030B Prep Date/Time: 06/28/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Member of SGS Group

17 of 46

Results of 100236-B1MWR2							
Client Sample ID: 100236-B1MWR2 Client Project ID: 100236 Garrett's Te Lab Sample ID: 1183159004 Lab Project ID: 1183159	soro	R M S	eceived Da	ate: 06/25/ ate: 06/25/′ er (Surface,	18 17:19		
Results by Volatile Fuels							
Parameter Gasoline Range Organics	<u>Result Qual</u> 163	<u>LOQ/CL</u> 10.0	<u>DL</u> 3.10	<u>Units</u> mg/L	<u>DF</u> 100	Allowable Limits	Date Analyzed 07/05/18 16:24
Surrogates	101	50-150		%	100		07/05/18 16:24
4-Bromofluorobenzene (surr) Batch Information Analytical Batch: VFC14248 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 07/05/18 16:24 Container ID: 1183159004-A		F	Prep Methoo Prep Date/T	VXX32559 d: SW5030B ime: 07/04/1 Vt./Vol.: 5 m	8 08:00		01700/10 10.24

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Results of 100236-B1MWR2

Client Sample ID: **100236-B1MWR2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159004 Lab Project ID: 1183159 Collection Date: 06/25/18 14:47 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 19:49
1,1,1-Trichloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,1,2,2-Tetrachloroethane	250 U	500	150	ug/L	1000		06/27/18 19:49
1,1,2-Trichloroethane	200 U	400	120	ug/L	1000		06/27/18 19:49
1,1-Dichloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,1-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,1-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,2,3-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,2,3-Trichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,2,4-Trichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,2,4-Trimethylbenzene	1860	1000	310	ug/L	1000		06/27/18 19:49
1,2-Dibromo-3-chloropropane	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
1,2-Dibromoethane	37.5 U	75.0	18.0	ug/L	1000		06/27/18 19:49
1,2-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,2-Dichloroethane	180 J	500	150	ug/L	1000		06/27/18 19:49
1,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,3,5-Trimethylbenzene	480 J	1000	310	ug/L	1000		06/27/18 19:49
1,3-Dichlorobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
1,3-Dichloropropane	250 U	500	150	ug/L	1000		06/27/18 19:49
1,4-Dichlorobenzene	250 U	500	150	ug/L	1000		06/27/18 19:49
2,2-Dichloropropane	500 U	1000	310	ug/L	1000		06/27/18 19:49
2-Butanone (MEK)	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
2-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 19:49
2-Hexanone	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
4-Chlorotoluene	500 U	1000	310	ug/L	1000		06/27/18 19:49
4-Isopropyltoluene	500 U	1000	310	ug/L	1000		06/27/18 19:49
4-Methyl-2-pentanone (MIBK)	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
Benzene	8840	400	120	ug/L	1000		06/27/18 19:49
Bromobenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Bromochloromethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
Bromodichloromethane	250 U	500	150	ug/L	1000		06/27/18 19:49
Bromoform	500 U	1000	310	ug/L	1000		06/27/18 19:49
Bromomethane	2500 U	5000	1500	ug/L	1000		06/27/18 19:49
Carbon disulfide	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
Carbon tetrachloride	500 U	1000	310	ug/L	1000		06/27/18 19:49
Chlorobenzene	250 U	500	150	ug/L	1000		06/27/18 19:49
Chloroethane	500 U	1000	310	ug/L	1000		06/27/18 19:49

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B1MWR2

Client Sample ID: **100236-B1MWR2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159004 Lab Project ID: 1183159 Collection Date: 06/25/18 14:47 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	500 U	1000	310	ug/L	1000		06/27/18 19:49
Chloromethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
cis-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:49
cis-1,3-Dichloropropene	250 U	500	150	ug/L	1000		06/27/18 19:49
Dibromochloromethane	250 U	500	150	ug/L	1000		06/27/18 19:49
Dibromomethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
Dichlorodifluoromethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
Ethylbenzene	6960	1000	310	ug/L	1000		06/27/18 19:49
Freon-113	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
Hexachlorobutadiene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Isopropylbenzene (Cumene)	500 U	1000	310	ug/L	1000		06/27/18 19:49
Methylene chloride	2500 U	5000	1000	ug/L	1000		06/27/18 19:49
Methyl-t-butyl ether	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
Naphthalene	500 U	1000	310	ug/L	1000		06/27/18 19:49
n-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
n-Propylbenzene	350 J	1000	310	ug/L	1000		06/27/18 19:49
o-Xylene	5800	1000	310	ug/L	1000		06/27/18 19:49
P & M -Xylene	20200	2000	620	ug/L	1000		06/27/18 19:49
sec-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Styrene	500 U	1000	310	ug/L	1000		06/27/18 19:49
tert-Butylbenzene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Tetrachloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Toluene	33100	1000	310	ug/L	1000		06/27/18 19:49
trans-1,2-Dichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:49
trans-1,3-Dichloropropene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Trichloroethene	500 U	1000	310	ug/L	1000		06/27/18 19:49
Trichlorofluoromethane	500 U	1000	310	ug/L	1000		06/27/18 19:49
Vinyl acetate	5000 U	10000	3100	ug/L	1000		06/27/18 19:49
Vinyl chloride	75.0 U	150	50.0	ug/L	1000		06/27/18 19:49
Xylenes (total)	26000	3000	1000	ug/L	1000		06/27/18 19:49
Surrogates							
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1000		06/27/18 19:49
4-Bromofluorobenzene (surr)	103	85-114		%	1000		06/27/18 19:49
Toluene-d8 (surr)	98.6	89-112		%	1000		06/27/18 19:49

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-B1MWR2

Client Sample ID: **100236-B1MWR2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159004 Lab Project ID: 1183159 Collection Date: 06/25/18 14:47 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 06/27/18 19:49 Container ID: 1183159004-D Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 06/27/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Member of SGS Group

21 of 46

SGS	

Results of 100236-WTB1 Client Sample ID: 100236-WTB1 Collection Date: 06/25/18 11:00 Client Project ID: 100236 Garrett's Tesoro Received Date: 06/25/18 17:19 Lab Sample ID: 1183159005 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1183159 Solids (%): Location: Results by Volatile Fuels Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Limits Date Analyzed Gasoline Range Organics 0.0500 U 0.100 0.0310 mg/L 1 07/03/18 17:50 Surrogates 4-Bromofluorobenzene (surr) 89.6 50-150 % 1 07/03/18 17:50 Batch Information Analytical Batch: VFC14245 Prep Batch: VXX32556 Analytical Method: AK101 Prep Method: SW5030B Analyst: ST Prep Date/Time: 07/03/18 08:00 Analytical Date/Time: 07/03/18 17:50 Prep Initial Wt./Vol.: 5 mL Container ID: 1183159005-A Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Results of 100236-WTB2

Client Sample ID: **100236-WTB2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159006 Lab Project ID: 1183159 Collection Date: 06/25/18 11:15 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		06/27/18 14:13
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		06/27/18 14:13
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		06/27/18 14:13
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		06/27/18 14:13
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		06/27/18 14:13
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		06/27/18 14:13
Benzene	0.200 U	0.400	0.120	ug/L	1		06/27/18 14:13
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
Bromoform	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
Bromomethane	2.50 U	5.00	1.50	ug/L	1		06/27/18 14:13
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		06/27/18 14:13
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		06/27/18 14:13
Chloroethane	0.500 U	1.00	0.310	ug/L	1		06/27/18 14:13

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-WTB2

Client Sample ID: **100236-WTB2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159006 Lab Project ID: 1183159 Collection Date: 06/25/18 11:15 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF		ate Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Chloromethane	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	0	6/27/18 14:13
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	0	6/27/18 14:13
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Freon-113	5.00 U	10.0	3.10	ug/L	1	0	6/27/18 14:13
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	0	6/27/18 14:13
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	0	6/27/18 14:13
Naphthalene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
o-Xylene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	0	6/27/18 14:13
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Styrene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Toluene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	0	6/27/18 14:13
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	0	6/27/18 14:13
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	0	6/27/18 14:13
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	0	6/27/18 14:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1	0	6/27/18 14:13
4-Bromofluorobenzene (surr)	102	85-114		%	1	0	6/27/18 14:13
Toluene-d8 (surr)	100	89-112		%	1	0	6/27/18 14:13

Print Date: 07/06/2018 1:55:26PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100236-WTB2

Client Sample ID: **100236-WTB2** Client Project ID: **100236 Garrett's Tesoro** Lab Sample ID: 1183159006 Lab Project ID: 1183159

Collection Date: 06/25/18 11:15 Received Date: 06/25/18 17:19 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 06/27/18 14:13 Container ID: 1183159006-A Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 06/27/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:26PM

J flagging is activated

Member of SGS Group

25 of 46

Method Blank

Blank ID: MB for HBN 1781683 [VXX/32498] Blank Lab ID: 1455831 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159004, 1183159006

Results by SW8260C

	5		5	
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 07/06/2018 1:55:28PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1781683 [VXX/32498] Blank Lab ID: 1455831 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159004, 1183159006

-	Results by SW8260C				
	<u>Parameter</u>	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
	Chloromethane	0.500U	1.00	0.310	ug/L
	cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
	Dibromochloromethane	0.250U	0.500	0.150	ug/L
	Dibromomethane	0.500U	1.00	0.310	ug/L
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
	Ethylbenzene	0.500U	1.00	0.310	ug/L
	Freon-113	5.00U	10.0	3.10	ug/L
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
	Methylene chloride	2.50U	5.00	1.00	ug/L
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
	Naphthalene	0.500U	1.00	0.310	ug/L
	n-Butylbenzene	0.500U	1.00	0.310	ug/L
	n-Propylbenzene	0.500U	1.00	0.310	ug/L
	o-Xylene	0.500U	1.00	0.310	ug/L
	P & M -Xylene	1.00U	2.00	0.620	ug/L
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L
	Styrene	0.500U	1.00	0.310	ug/L
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L
	Tetrachloroethene	0.500U	1.00	0.310	ug/L
	Toluene	0.500U	1.00	0.310	ug/L
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
	Trichloroethene	0.500U	1.00	0.310	ug/L
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
	Vinyl acetate	5.00U	10.0	3.10	ug/L
	Vinyl chloride	0.0750U	0.150	0.0500	ug/L
	Xylenes (total)	1.50U	3.00	1.00	ug/L
	Surrogates				
	1,2-Dichloroethane-D4 (surr)	107	81-118		%
	4-Bromofluorobenzene (surr)	103	85-114		%
	Toluene-d8 (surr)	99.1	89-112		%

Print Date: 07/06/2018 1:55:28PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

SG:

Blank ID: MB for HBN 1781683 [VXX/32498] Blank Lab ID: 1455831 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1183159001,\,1183159002,\,1183159004,\,1183159006$

Results by SW8260C

Results by SW8260C					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Batch Information					
Analytical Batch: VM Analytical Method: S Instrument: Agilent 7	W8260C	Prep Me Prep Da		0B /2018 12:00:00AM	
Analyst: FDR Analytical Date/Time:	: 6/27/2018 9:37:00AM		tial Wt./Vol.: 5 tract Vol: 5 m		

Print Date: 07/06/2018 1:55:28PM

Leaching Blank

Blank ID: LB for HBN 1781600 [TCLP/9475] Blank Lab ID: 1455473 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159004, 1183159006

Results by SW8260C

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1-Dichloroethene	25.0U	50.0	15.5	ug/L
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
1,4-Dichlorobenzene	12.5U	25.0	7.50	ug/L
2-Butanone (MEK)	250U	500	155	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Carbon tetrachloride	25.0U	50.0	15.5	ug/L
Chlorobenzene	12.5U	25.0	7.50	ug/L
Chloroform	25.0U	50.0	15.5	ug/L
Hexachlorobutadiene	25.0U	50.0	15.5	ug/L
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Trichloroethene	25.0U	50.0	15.5	ug/L
Vinyl chloride	3.75U	7.50	2.50	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	81-118		%
4-Bromofluorobenzene (surr)	103	85-114		%
Toluene-d8 (surr)	98.9	89-112		%

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Analytical Date/Time: 6/27/2018 3:39:00PM Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 6/27/2018 12:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:28PM

Blank Spike ID: LCS for HBN 1183159 [VXX32498] Blank Spike Lab ID: 1455832 Date Analyzed: 06/27/2018 09:54

Spike Duplicate ID: LCSD for HBN 1183159 [VXX32498] Spike Duplicate Lab ID: 1455833 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159002, 1183159004, 1183159006

Results by SW8260C

		Blank Spike	Blank Spike (ug/L) Spike Duplicate (ug/L)								
Parameter_	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL		
1,1,1,2-Tetrachloroethane	30	27.5	92	30	26.0	87	(78-124)	5.60	(< 20)		
1,1,1-Trichloroethane	30	28.5	95	30	28.5	95	(74-131)	0.04	(< 20)		
1,1,2,2-Tetrachloroethane	30	30.7	102	30	29.8	100	(71-121)	2.80	(< 20)		
1,1,2-Trichloroethane	30	30.0	100	30	28.7	96	(80-119)	4.40	(< 20)		
1,1-Dichloroethane	30	30.0	100	30	30.1	100	(77-125)	0.37	(< 20)		
1,1-Dichloroethene	30	31.1	104	30	32.2	107	(71-131)	3.50	(< 20)		
1,1-Dichloropropene	30	29.5	98	30	29.5	98	(79-125)	0.14	(< 20)		
1,2,3-Trichlorobenzene	30	28.3	94	30	25.6	85	(69-129)	9.80	(< 20)		
1,2,3-Trichloropropane	30	29.1	97	30	28.5	95	(73-122)	2.20	(< 20)		
1,2,4-Trichlorobenzene	30	29.0	97	30	27.0	90	(69-130)	7.00	(< 20)		
,2,4-Trimethylbenzene	30	31.1	104	30	30.1	100	(79-124)	3.30	(< 20)		
1,2-Dibromo-3-chloropropane	30	28.5	95	30	27.3	91	(62-128)	4.10	(< 20)		
I,2-Dibromoethane	30	28.8	96	30	28.0	93	(77-121)	2.90	(< 20)		
I,2-Dichlorobenzene	30	29.9	100	30	29.2	97	(80-119)	2.20	(< 20)		
,2-Dichloroethane	30	28.1	94	30	28.0	94	(73-128)	0.14	(< 20)		
,2-Dichloropropane	30	30.7	102	30	30.2	101	(78-122)	1.50	(< 20)		
,3,5-Trimethylbenzene	30	31.3	104	30	30.3	101	(75-124)	3.10	(< 20)		
,3-Dichlorobenzene	30	30.5	102	30	29.5	98	(80-119)	3.20	(< 20)		
,3-Dichloropropane	30	30.3	101	30	28.9	96	(80-119)	4.60	(< 20)		
,4-Dichlorobenzene	30	30.2	101	30	29.6	99	(79-118)	2.10	(< 20)		
2,2-Dichloropropane	30	29.5	98	30	29.2	97	(60-139)	1.10	(< 20)		
2-Butanone (MEK)	90	83.6	93	90	82.8	92	(56-143)	1.00	(< 20)		
2-Chlorotoluene	30	31.7	106	30	30.9	103	(79-122)	2.70	(< 20)		
2-Hexanone	90	90.4	100	90	86.0	96	(57-139)	5.00	(< 20)		
I-Chlorotoluene	30	31.4	105	30	30.4	101	(78-122)	3.20	(< 20)		
l-Isopropyltoluene	30	30.9	103	30	30.0	100	(77-127)	3.00	(< 20)		
I-Methyl-2-pentanone (MIBK)	90	88.6	99	90	83.8	93	(67-130)	5.60	(< 20)		
Benzene	30	29.5	98	30	28.8	96	(79-120)	2.40	(< 20)		
Bromobenzene	30	29.4	98	30	28.7	96	(80-120)	2.20	(< 20)		
Bromochloromethane	30	29.0	97	30	29.4	98	(78-123)	1.40	(< 20)		
Bromodichloromethane	30	29.3	98	30	29.2	98	(79-125)	0.07	(< 20)		
Bromoform	30	27.4	91	30	26.2	87	(66-130)	4.70	(< 20)		
Bromomethane	30	45.7	152	* 30	53.9	180	* (53-141)	16.50	(< 20)		
Carbon disulfide	45	47.6	106	45	50.8	113	(64-133)	6.50	(< 20)		

Print Date: 07/06/2018 1:55:30PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1183159 [VXX32498] Blank Spike Lab ID: 1455832 Date Analyzed: 06/27/2018 09:54 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32498] Spike Duplicate Lab ID: 1455833 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159002, 1183159004, 1183159006

Results by SW8260C

		Blank Spike	Blank Spike (ug/L) Spike Duplicate (ug/L)											
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL					
Carbon tetrachloride	30	27.9	93	30	28.0	93	(72-136)	0.25	(< 20)					
Chlorobenzene	30	28.0	93	30	26.8	89	(82-118)	4.50	(< 20)					
Chloroethane	30	38.3	128	30	39.1	130	(60-138)	2.20	(< 20)					
Chloroform	30	29.3	98	30	29.3	98	(79-124)	0.07	(< 20)					
Chloromethane	30	32.8	109	30	35.7	119	(50-139)	8.40	(< 20)					
cis-1,2-Dichloroethene	30	28.7	96	30	28.7	96	(78-123)	0.04	(< 20)					
cis-1,3-Dichloropropene	30	29.0	97	30	28.9	97	(75-124)	0.24	(< 20)					
Dibromochloromethane	30	28.3	94	30	27.4	91	(74-126)	3.20	(< 20)					
Dibromomethane	30	29.1	97	30	29.2	98	(79-123)	0.55	(< 20)					
Dichlorodifluoromethane	30	28.7	96	30	30.4	101	(32-152)	5.90	(< 20)					
Ethylbenzene	30	30.3	101	30	29.1	97	(79-121)	4.10	(< 20)					
Freon-113	45	45.7	101	45	47.3	105	(70-136)	3.60	(< 20)					
Hexachlorobutadiene	30	28.7	96	30	27.6	92	(66-134)	3.90	(< 20)					
Isopropylbenzene (Cumene)	30	30.8	103	30	29.6	99	(72-131)	4.10	(< 20)					
Methylene chloride	30	27.1	90	30	27.4	91	(74-124)	1.10	(< 20)					
Methyl-t-butyl ether	45	42.0	93	45	42.5	95	(71-124)	1.30	(< 20)					
Naphthalene	30	28.2	94	30	26.1	87	(61-128)	7.70	(< 20)					
n-Butylbenzene	30	31.5	105	30	30.1	100	(75-128)	4.60	(< 20)					
n-Propylbenzene	30	33.0	110	30	31.9	106	(76-126)	3.30	(< 20)					
o-Xylene	30	29.8	99	30	28.3	94	(78-122)	5.30	(< 20)					
P & M -Xylene	60	60.9	102	60	58.1	97	(80-121)	4.80	(< 20)					
sec-Butylbenzene	30	31.6	105	30	30.6	102	(77-126)	3.10	(< 20)					
Styrene	30	29.6	99	30	28.0	94	(78-123)	5.20	(< 20)					
tert-Butylbenzene	30	30.9	103	30	29.6	99	(78-124)	4.30	(< 20)					
Tetrachloroethene	30	28.3	94	30	26.4	88	(74-129)	7.10	(< 20)					
Toluene	30	27.9	93	30	26.5	88	(80-121)	5.00	(< 20)					
trans-1,2-Dichloroethene	30	29.2	97	30	29.2	97	(75-124)	0.07	(< 20)					
trans-1,3-Dichloropropene	30	29.4	98	30	28.5	95	(73-127)	3.10	(< 20)					
Trichloroethene	30	29.3	98	30	28.9	96	(79-123)	1.50	(< 20)					
Trichlorofluoromethane	30	31.1	104	30	33.2	111	(65-141)	6.70	(< 20)					
Vinyl acetate	30	29.3	98	30	29.8	99	(54-146)	1.60	(< 20)					
Vinyl chloride	30	30.6	102	30	32.1	107	(58-137)	4.90	(< 20)					
Xylenes (total)	90	90.7	101	90	86.4	96	(79-121)	5.00	(< 20)					

Print Date: 07/06/2018 1:55:30PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1183159 [VXX32498] Blank Spike Lab ID: 1455832 Date Analyzed: 06/27/2018 09:54 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32498] Spike Duplicate Lab ID: 1455833 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159002, 1183159004, 1183159006

Results by SW8260C

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.1	99	30	101	101	(81-118)	2.30	
4-Bromofluorobenzene (surr)	30	102	102	30	102	102	(85-114)	0.23	
Toluene-d8 (surr)	30	97.5	98	30	95.6	96	(89-112)	2.00	

Batch Information

Analytical Batch: VMS17947 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Prep Batch: VXX32498 Prep Method: SW5030B Prep Date/Time: 06/27/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:30PM

Method Blank

Blank ID: MB for HBN 1781776 [VXX/32514] Blank Lab ID: 1456203

QC for Samples: 1183159003

Results by SW8260C

-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform				-

Print Date: 07/06/2018 1:55:31PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1781776 [VXX/32514] Blank Lab ID: 1456203

QC for Samples: 1183159003

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	99.6	89-112		%
. ,				

Print Date: 07/06/2018 1:55:31PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Matrix: Water (Surface, Eff., Ground)
LOQ/CL DL Units
Prep Batch: VXX32514 Prep Method: SW5030B Prep Date/Time: 6/28/2018 12:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:31PM

Leaching Blank

Blank ID: LB for HBN 1781671 [TCLP/9477] Blank Lab ID: 1455768

QC for Samples: 1183159003

Results by SW8260C

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1-Dichloroethene	25.0U	50.0	15.5	ug/L
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
1,4-Dichlorobenzene	12.5U	25.0	7.50	ug/L
2-Butanone (MEK)	250U	500	155	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Carbon tetrachloride	25.0U	50.0	15.5	ug/L
Chlorobenzene	12.5U	25.0	7.50	ug/L
Chloroform	25.0U	50.0	15.5	ug/L
Hexachlorobutadiene	25.0U	50.0	15.5	ug/L
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Trichloroethene	25.0U	50.0	15.5	ug/L
Vinyl chloride	3.75U	7.50	2.50	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	115	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	99.1	89-112		%

Batch Information

Analytical Batch: VMS17955 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Analytical Date/Time: 6/28/2018 4:46:00PM Prep Batch: VXX32514 Prep Method: SW5030B Prep Date/Time: 6/28/2018 12:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:31PM

Matrix: Water (Surface, Eff., Ground)

Blank Spike ID: LCS for HBN 1183159 [VXX32514] Blank Spike Lab ID: 1456204 Date Analyzed: 06/28/2018 09:28 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32514] Spike Duplicate Lab ID: 1456205 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159003

Results by SW8260C

1.1,1.2-Tetrachloroethane 30 27.6 92 30 26.4 88 (78-124) 4.60 (< 20			Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
1.1.1-Trichloroethane 30 28.5 95 30 28.9 97 (74-131) 1.50 (< 20 1.1.2.2-Trichloroethane 30 31.3 104 30 29.9 100 (71-121) 4.60 (< 20 1.1.2-Chiloroethane 30 30.5 102 30 30.7 105 30.3 30.5 108 (71-131) 3.10 (< 20 1.1-Dichloroethane 30 30.5 105 30.3 30.5 108 (71-131) 3.10 (< 20 1.2.3-Trichloroethane 30 29.7 99 30 30.1 100 (79-125) 1.20 (< 20 1.2.3-Trichlorobenzene 30 29.4 98 30 28.7 96 (73-122) 6.00 (< 20 1.2.4-Trichrobenzene 30 31.4 105 30 30.8 103 (79-124) 1.90 (< 20 1.2.4-Trichrobenzene 30 31.4 105 30 28.1 94 (77-121) 3.10 (< 20 1.2.4-Trichrobenzene 30 30.1 100	Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,2,2-Tetrachloroethane 30 31.3 104 30 29.9 100 (71-121) 4.60 (< 20)	1,1,1,2-Tetrachloroethane	30	27.6	92	30	26.4	88	(78-124)	4.60	(< 20)
1,1,2-Trichloroethane 30 30.0 100 30 29.0 97 (80-119) 3.50 (< 20	1,1,1-Trichloroethane	30	28.5	95	30	28.9	97	(74-131)	1.50	(< 20)
1.1-Dichloroethane 30 30.5 102 30 30.7 102 (77-125) 0.72 (< 20	1,1,2,2-Tetrachloroethane	30	31.3	104	30	29.9	100	(71-121)	4.60	(< 20)
1.1-Dichloroethene 30 31.5 105 30 32.5 108 (71-131) 3.10 (< 20)	1,1,2-Trichloroethane	30	30.0	100	30	29.0	97	(80-119)	3.50	(< 20)
1.1-Dichloropropene 30 29.7 99 30 30.1 100 (79-125) 1.20 (< 20	1,1-Dichloroethane	30	30.5	102	30	30.7	102	(77-125)	0.72	(< 20)
12,3-Trichlorobenzene 30 29.4 98 30 26.2 88 (69-129) 11.20 (<20	1,1-Dichloroethene	30	31.5	105	30	32.5	108	(71-131)	3.10	(< 20)
1,2,3-Trichloropropane 30 30.4 101 30 28.7 96 (73-122) 6.00 (<20	1,1-Dichloropropene	30	29.7	99	30	30.1	100	(79-125)	1.20	(< 20)
1.2.4-Trichlorobenzene 30 29.5 98 30 27.5 92 (69-130) 7.10 (<20	1,2,3-Trichlorobenzene	30	29.4	98	30	26.2	88	(69-129)	11.20	(< 20)
1.2.4-Trimethylbenzene 30 31.4 105 30 30.8 103 (79-124) 1.90 (<20)	1,2,3-Trichloropropane	30	30.4	101	30	28.7	96	(73-122)	6.00	(< 20)
1.2-Dibromo-3-chloropropane3029.2973026.588(62-128)9.50(< 201.2-Dibromoethane3028.9963028.194(77-121)3.10(< 20	1,2,4-Trichlorobenzene	30	29.5	98	30	27.5	92	(69-130)	7.10	(< 20)
1,2-Dibromoethane 30 28.9 96 30 28.1 94 (77-121) 3.10 (<20 1,2-Dichlorobenzene 30 30.1 100 30 29.7 99 (80-119) 1.40 (<20 1,2-Dichlorobenzene 30 28.3 95 30 28.7 96 (73-128) 1.10 (<20 1,2-Dichloropropane 30 30.9 103 30 31.1 104 (75-124) 2.10 (<20 1,3-Trimethylbenzene 30 30.3 101 30 29.8 99 (80-119) 2.00 (<20 1,3-Dichlorobenzene 30 30.3 101 30 29.3 98 (80-119) 3.60 (<20 1,3-Dichlorobenzene 30 30.3 101 30 29.3 98 (80-119) 3.60 (<20 1,4-Dichlorobenzene 30 30.3 101 30 29.3 98 (80-139) 0.65 (<20 2,2-Dichloropropane 30 30.3 101 30 29.0 (56-143) 10.20	1,2,4-Trimethylbenzene	30	31.4	105	30	30.8	103	(79-124)	1.90	(< 20)
1,2-Dichlorobenzene 30 30.1 100 30 29.7 99 (80-119) 1.40 (< 20	1,2-Dibromo-3-chloropropane	30	29.2	97	30	26.5	88	(62-128)	9.50	(< 20)
1,2-Dichloroethane3028.3953028.796(73-128)1.10(< 201,2-Dichloropropane3030.91033031.1104(78-122)0.65(< 20	1,2-Dibromoethane	30	28.9	96	30	28.1	94	(77-121)	3.10	(< 20)
1,2-Dichloropropane 30 30.9 103 30 31.1 104 (78-122) 0.65 (< 20	1,2-Dichlorobenzene	30	30.1	100	30	29.7	99	(80-119)	1.40	(< 20)
1,3,5-Trimethylbenzene3032.01073031.3104(75-124)2.10(<201,3-Dichlorobenzene3030.41013029.899(80-119)2.00(<20	1,2-Dichloroethane	30	28.3	95	30	28.7	96	(73-128)	1.10	(< 20)
1,3-Dichlorobenzene3030.41013029.899(80-119)2.00(<201,3-Dichloropropane3030.31013029.398(80-119)3.60(<20	1,2-Dichloropropane	30	30.9	103	30	31.1	104	(78-122)	0.65	(< 20)
1,3-Dichloropropane3030.31013029.398(80-119)3.60(< 201,4-Dichlorobenzene3030.51023029.699(79-118)2.90(< 20	1,3,5-Trimethylbenzene	30	32.0	107	30	31.3	104	(75-124)	2.10	(< 20)
1,4-Dichlorobrezene3030.51023029.699(79-118)2.90(< 202,2-Dichloropropane3029.1973029.398(60-139)0.65(< 20	1,3-Dichlorobenzene	30	30.4	101	30	29.8	99	(80-119)	2.00	(< 20)
2,2-Dichloropropane3029.1973029.398(60-139)0.65(< 202-Butanone (MEK)9089.3999080.790(56-143)10.20(< 20	1,3-Dichloropropane	30	30.3	101	30	29.3	98	(80-119)	3.60	(< 20)
2-Butanone (MEK)9089.3999080.790(56-143)10.20(< 202-Chlorotoluene3032.01073031.4105(79-122)1.90(< 20	1,4-Dichlorobenzene	30	30.5	102	30	29.6	99	(79-118)	2.90	(< 20)
2-Chlorotoluene3032.01073031.4105(79-122)1.90(< 202-Hexanone9094.81059085.195(57-139)10.80(< 20	2,2-Dichloropropane	30	29.1	97	30	29.3	98	(60-139)	0.65	(< 20)
2-Hexanone9094.81059085.195(57-139)10.80(< 204-Chlorotoluene3031.51053031.3104(78-122)0.86(< 20	2-Butanone (MEK)	90	89.3	99	90	80.7	90	(56-143)	10.20	(< 20)
4-Chlorotoluene3031.51053031.3104(78-122)0.86(< 204-Isopropyltoluene3031.31043030.1100(77-127)3.60(< 20	2-Chlorotoluene	30	32.0	107	30	31.4	105	(79-122)	1.90	(< 20)
4-lsopropyltoluene3031.31043030.1100(77-127)3.60(< 204-Methyl-2-pentanone (MIBK)9093.01039085.295(67-130)8.70(< 20	2-Hexanone	90	94.8	105	90	85.1	95	(57-139)	10.80	(< 20)
4-Methyl-2-pentanone (MIBK)9093.01039085.295(67-130)8.70(< 20Benzene3029.2973029.298(79-120)0.24(< 20	4-Chlorotoluene	30	31.5	105	30	31.3	104	(78-122)	0.86	(< 20)
Benzene3029.2973029.298(79-120)0.24(< 20Bromobenzene3029.7993029.398(80-120)1.10(< 20	4-Isopropyltoluene	30	31.3	104	30	30.1	100	(77-127)	3.60	(< 20)
Bromobenzene 30 29.7 99 30 29.3 98 (80-120) 1.10 (< 20 Bromochloromethane 30 29.2 97 30 29.8 99 (78-123) 2.20 (< 20	4-Methyl-2-pentanone (MIBK)	90	93.0	103	90	85.2	95	(67-130)	8.70	(< 20)
Bromochloromethane 30 29.2 97 30 29.8 99 (78-123) 2.20 (< 20 Bromodichloromethane 30 29.3 98 30 29.7 99 (79-125) 1.30 (< 20	Benzene	30	29.2	97	30	29.2	98	(79-120)	0.24	(< 20)
Bromodichloromethane 30 29.3 98 30 29.7 99 (79-125) 1.30 (< 20 Bromoform 30 27.1 90 30 26.2 87 (66-130) 3.50 (< 20	Bromobenzene	30	29.7	99	30	29.3	98	(80-120)	1.10	(< 20)
Bromoform 30 27.1 90 30 26.2 87 (66-130) 3.50 (< 20 Bromomethane 30 45.8 153 * 30 51.0 170 * (53-141) 10.70 (< 20	Bromochloromethane	30	29.2	97	30	29.8	99	(78-123)	2.20	(< 20)
Bromomethane 30 45.8 153 * 30 51.0 170 * (53-141) 10.70 (< 20	Bromodichloromethane	30	29.3	98	30	29.7	99	(79-125)	1.30	(< 20)
	Bromoform	30	27.1	90	30	26.2	87	(66-130)	3.50	(< 20)
Carbon digulfide 45 47.7 106 45 50.0 113 (64.133) 6.40 (-20.	Bromomethane	30	45.8	153	* 30	51.0	170	* (53-141)	10.70	(< 20)
Calbon distince $+5$ $+1.1$ 100 $+5$ 50.8 115 (04-155) 0.40 (<20)	Carbon disulfide	45	47.7	106	45	50.9	113	(64-133)	6.40	(< 20)

Print Date: 07/06/2018 1:55:32PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1183159 [VXX32514] Blank Spike Lab ID: 1456204 Date Analyzed: 06/28/2018 09:28 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32514] Spike Duplicate Lab ID: 1456205 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159003

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	27.9	93	30	28.3	94	(72-136)	1.30	(< 20)
Chlorobenzene	30	28.1	94	30	27.3	91	(82-118)	2.80	(< 20)
Chloroethane	30	38.9	130	30	38.5	128	(60-138)	0.83	(< 20)
Chloroform	30	29.5	98	30	29.8	99	(79-124)	0.94	(< 20)
Chloromethane	30	32.4	108	30	34.9	116	(50-139)	7.60	(< 20)
cis-1,2-Dichloroethene	30	28.9	97	30	29.0	97	(78-123)	0.34	(< 20)
cis-1,3-Dichloropropene	30	29.0	97	30	29.3	98	(75-124)	1.10	(< 20)
Dibromochloromethane	30	27.8	93	30	27.5	92	(74-126)	1.30	(< 20)
Dibromomethane	30	29.4	98	30	29.6	99	(79-123)	0.64	(< 20)
Dichlorodifluoromethane	30	28.3	94	30	29.0	97	(32-152)	2.40	(< 20)
Ethylbenzene	30	30.5	102	30	29.7	99	(79-121)	2.80	(< 20)
Freon-113	45	47.0	104	45	48.0	107	(70-136)	2.00	(< 20)
Hexachlorobutadiene	30	28.8	96	30	27.5	92	(66-134)	4.50	(< 20)
Isopropylbenzene (Cumene)	30	31.2	104	30	30.2	101	(72-131)	3.20	(< 20)
Methylene chloride	30	27.2	91	30	27.6	92	(74-124)	1.50	(< 20)
Methyl-t-butyl ether	45	42.2	94	45	42.9	95	(71-124)	1.60	(< 20)
Naphthalene	30	29.5	98	30	26.0	87	(61-128)	12.60	(< 20)
n-Butylbenzene	30	32.7	109	30	30.5	102	(75-128)	7.00	(< 20)
n-Propylbenzene	30	33.5	112	30	32.5	108	(76-126)	3.30	(< 20)
o-Xylene	30	29.5	98	30	28.7	96	(78-122)	2.70	(< 20)
P & M -Xylene	60	60.8	101	60	59.1	99	(80-121)	2.80	(< 20)
sec-Butylbenzene	30	32.5	108	30	31.7	106	(77-126)	2.20	(< 20)
Styrene	30	29.6	99	30	29.0	97	(78-123)	1.90	(< 20)
tert-Butylbenzene	30	31.4	105	30	30.6	102	(78-124)	2.70	(< 20)
Tetrachloroethene	30	28.9	96	30	27.5	92	(74-129)	4.90	(< 20)
Toluene	30	28.5	95	30	27.3	91	(80-121)	4.10	(< 20)
trans-1,2-Dichloroethene	30	29.4	98	30	29.4	98	(75-124)	0.14	(< 20)
trans-1,3-Dichloropropene	30	28.8	96	30	28.4	95	(73-127)	1.50	(< 20)
Trichloroethene	30	29.6	99	30	29.4	98	(79-123)	0.92	(< 20)
Trichlorofluoromethane	30	31.8	106	30	32.7	109	(65-141)	2.70	(< 20)
Vinyl acetate	30	29.5	98	30	29.3	98	(54-146)	0.68	(< 20)
Vinyl chloride	30	30.6	102	30	31.4	105	(58-137)	2.40	(< 20)
Xylenes (total)	90	90.3	100	90	87.8	98	(79-121)	2.80	(< 20)

Print Date: 07/06/2018 1:55:32PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1183159 [VXX32514] Blank Spike Lab ID: 1456204 Date Analyzed: 06/28/2018 09:28 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32514] Spike Duplicate Lab ID: 1456205 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159003

Results by SW8260C

Results by SW0200C									
		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	99.4	99	30	103	103	(81-118)	3.70	
4-Bromofluorobenzene (surr)	30	101	101	30	102	102	(85-114)	1.10	
Toluene-d8 (surr)	30	98.8	99	30	97.6	98	(89-112)	1.20	

Batch Information

Analytical Batch: VMS17955 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Prep Batch: VXX32514 Prep Method: SW5030B Prep Date/Time: 06/28/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 07/06/2018 1:55:32PM

- Method Blank						
Blank ID: MB for HBN 17820 Blank Lab ID: 1457313)15 [VXX/32556]	Matrix	: Water (Surfa	urface, Eff., Ground)		
QC for Samples: 1183159005						
Results by AK101						
Parameter	<u>Results</u>	 LOQ/CL	<u>DL</u>	<u>Units</u>		
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L		
Surrogates						
4-Bromofluorobenzene (surr)	88	50-150		%		
Batch Information						
Analytical Batch: VFC1424	5	Prep Bat	ch: VXX32556)		
Analytical Method: AK101			thod: SW5030			
Instrument: Agilent 7890A F	PID/FID			018 8:00:00AM		
Analyst: ST Analytical Date/Time: 7/3/2	018 5:32:00PM		ial Wt./Vol.: 5 r ract Vol: 5 mL			
,						

Blank Spike ID: LCS for HBN 1183159 [VXX32556] Blank Spike Lab ID: 1457316 Date Analyzed: 07/03/2018 16:01 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32556] Spike Duplicate Lab ID: 1457317 Matrix: Water (Surface, Eff., Ground)

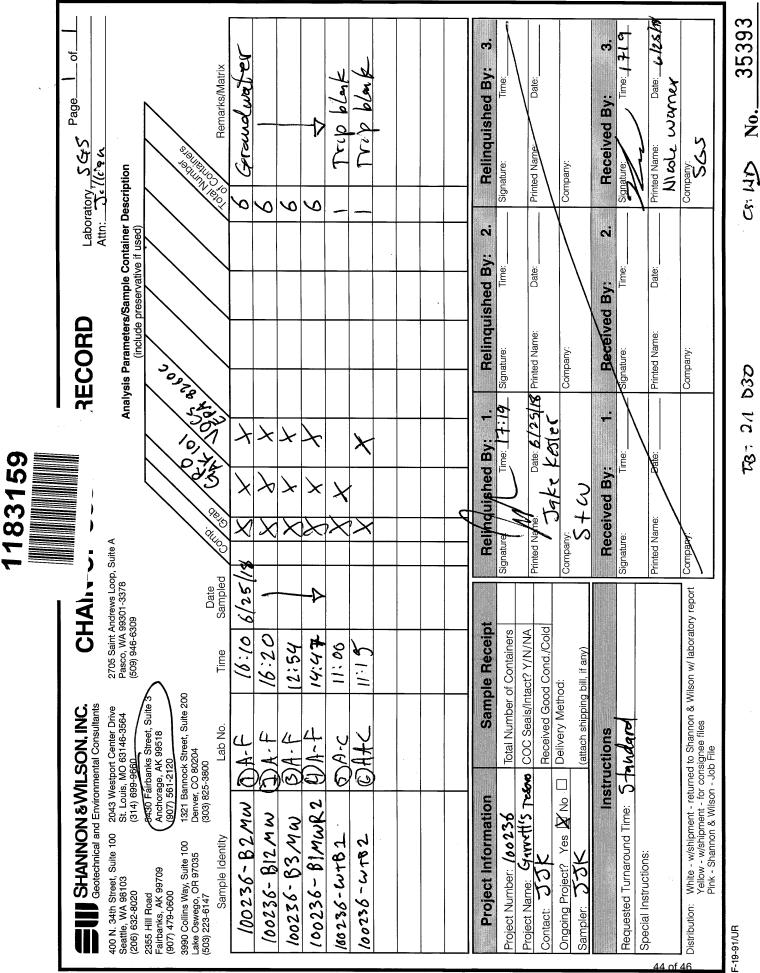
QC for Samples: 1183159005

Results by AK101			_							
	E	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	0.942	94	1.00	0.928	93	(60-120)	1.60	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	0.0500	90.4	90	0.0500	90.8	91	(50-150)	0.46		
Batch Information				Pror	Batch: V	¥¥22556				
Analytical Method: AK101					Method:					
Instrument: Agilent 7890A PII	D/FID									
Analyst: ST		Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL								

Print Date: 07/06/2018 1:55:34PM

Blank ID: MB for HBN 1782046 [VXX/32559] Blank Lab ID: 1457447		Matrix: Water (Surface, Eff., Ground)			
QC for Samples: 1183159001, 1183159002, 1183	3159003, 1183159004				
Results by AK101					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Gasoline Range Organics	0.0365J	0.100	0.0310	mg/L	
Surrogates					
4-Bromofluorobenzene (surr)	87.7	50-150		%	
atch Information					
Analytical Batch: VFC14248		Prep Ba	tch: VXX32559		
Analytical Method: AK101		Prep Method: SW5030B			
Instrument: Agilent 7890A PID/FID Analyst: ST		Prep Date/Time: 7/4/2018 8:00:00AM Prep Initial Wt./Vol.: 5 mL			
Analysi. 51 Analytical Date/Time: 7/5/2018 7:05:00AM			tract Vol: 5 mL	L	

Print Date: 07/06/2018 1:55:35PM



Blank Spike ID: LCS for HBN 1183159 [VXX32559] Blank Spike Lab ID: 1457448 Date Analyzed: 07/05/2018 14:17 Spike Duplicate ID: LCSD for HBN 1183159 [VXX32559] Spike Duplicate Lab ID: 1457449 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1183159001, 1183159002, 1183159003, 1183159004

Results by AK101										
	I	Blank Spike	e (mg/L)	Spike Duplicate (mg/L)						
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	1.08	108	1.00	1.01	101	(60-120)	6.90	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	0.0500	94.8	95	0.0500	92.7	93	(50-150)	2.20		
Batch Information										
Analytical Batch: VFC14248 Prep Batch: VXX32559										
Analytical Method: AK101 Prep Method: SW5030B										
Instrument: Agilent 7890A PID/FID					Prep Date/Time: 07/04/2018 08:00					
Analyst: ST				Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL						
				Dup		oi 1.00 mg	J/L Extract V	UL DINL		

Print Date: 07/06/2018 1:55:37PM

1183159	
---------	--

000	e-Samp	e-Sam <u>ple Receipt Form</u>			
SGS	SGS Workorder #:	1	1831	59	
	Review Criteria	Condition (Yes,	No, N/A	Exce	eptions Noted below
Chain of Custody / Temperature Requirements			ye	Exemption per	rmitted if sampler hand carries/delivers.
	Were Custody Seals intact? Note # & I			•	
	COC accompanied sa	mples? yes			
	yes **Exemption permitted if c	chilled & colled	cted <8 hour	s ago, or for samp	ples where chilling is not required
	<u></u>	n/a	Cooler ID:		@ °C Therm. ID:
		n/a	Cooler ID:		@ °C Therm. ID:
Tem	perature blank compliant* (i.e., 0-6 °C afte	r CF)? n/a	Cooler ID:		@ °C Therm. ID:
		n/a	Cooler ID:		@ °C Therm. ID:
		n/a	Cooler ID:		@ °C Therm. ID:
	*If >6°C, were samples collected <8 hours	ago? yes			
	If <0°C, were sample containers ice	free? n/a			
	received <u>without</u> a temperature blank, the "				
-	be documented in lieu of the temperature b ill be noted to the right. In cases where ne				
	or cooler temp can be obtained, note "ambi				
	•	hilled".			
Noto: Identify contain	are received at non-compliant temperature	Lico			
note: identity containe	ers received at non-compliant temperature form FS-0029 if more space is ne				
Holding Tim	e / Documentation / Sample Condition Re		Note: Refer	to form F-083 "Sa	ample Guide" for specific holding times.
	Were samples received within holding	g time? yes			
	h COC** (i.e.,sample IDs,dates/times colle				
**Note: If	times differ <1hr, record details & login per	r COC.			
Were analyses reque	ested unambiguous? (i.e., method is specif				
	analyses with >1 option for an	alysis)			
			n/	/a ***Exemption	permitted for metals (e.g,200.8/6020A).
Were proper con	tainers (type/mass/volume/preservative***)	used? yes			
	Volatile / LL-Hg Requ				
Were Trip Bl	lanks (i.e., VOAs, LL-Hg) in cooler with san				
	A vials free of headspace (i.e., bubbles ≤ 6				
We	re all soil VOAs field extracted with MeOH-	+BFB? n/a			
Note	to Client: Any "No", answer above indicates nor	n-compliance	with standar	d procedures and	l may impact data quality.
	Additiona	l notes (if a	pplicable)):	

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1183159001-A	HCL to pH < 2	ОК			
1183159001-B	HCL to pH < 2	ОК			
1183159001-C	HCL to pH < 2	ОК			
1183159001-D	HCL to pH < 2	ОК			
1183159001-E	HCL to pH < 2	ОК			
1183159001-F	HCL to pH < 2	ОК			
1183159002-A	HCL to pH < 2	ОК			
1183159002-B	HCL to pH < 2	ОК			
1183159002-C	HCL to pH < 2	ОК			
1183159002-D	HCL to pH < 2	ОК			
1183159002-E	HCL to pH < 2	ОК			
1183159002-F	HCL to pH < 2	ОК			
1183159003-A	HCL to pH < 2	ОК			
1183159003-B	HCL to pH < 2	ОК			
1183159003-C	HCL to pH < 2	ОК			
1183159003-D	HCL to pH < 2	ОК			
1183159003-E	HCL to pH < 2	ОК			
1183159003-F	HCL to pH < 2	ОК			
1183159004-A	HCL to pH < 2	ОК			
1183159004-B	HCL to pH < 2	ОК			
1183159004-C	HCL to pH < 2	ОК			
1183159004-D	HCL to pH < 2	ОК			
1183159004-E	HCL to pH < 2	ОК			
1183159004-F	HCL to pH < 2	ОК			
1183159005-A	HCL to pH < 2	ОК			
1183159005-B	HCL to pH < 2	ОК			
1183159005-C	HCL to $pH < 2$	ОК			
1183159006-A	HCL to $pH < 2$	ОК			
1183159006-B	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

HCL to pH < 2

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

1183159006-C

LABORATORY DATA REVIEW CHECKLIST

Completed by: Jake Kesler **Title:** Environmental Staff **Date:** August 2018

CS Report Name: Garrett's Tesoro, 724 West International Airport Rd, Anchorage, Alaska

Laboratory Report Date: July 6, 2018

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America, Inc. **Laboratory Report Number:** 1183159

ADEC File Number: 2100.26.078 ADEC RecKey Number: NA (NOTE: NA = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. Laboratory

- a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? Yes / No / NA (please explain)
 Comments:
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved?
 Yes / No / NA (please explain) Comments:

2. Chain of Custody (COC)

- a. COC information completed, signed, and dated (including released/received by)? **Ves**/ No / NA (please explain)
- **b.** Correct analyses requested? **Yes No** / **NA** (please explain) Comments:

3. Laboratory Sample Receipt Documentation

- a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
 Yes / No / NA (please explain)
 Comments: *Yes, temperature blank recorded at 2.1° C.*
- b. Sample preservation acceptable acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? Yes/ No / NA (please explain) Comments:

Work Order Number: <u>1183159</u>

- c. Sample condition documented broken, leaking (Methanol), zero headspace (VOC vials)? Yes / No / NA (please explain) Comments:
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside acceptance range, insufficient or missing samples, etc.? Yes / No / NA please explain)
 Comments: *No discrepancies noted*.
- e. Data quality or usability affected? Please explain. Yes No NA (please explain) Comments:

4. Case Narrative

- a. Present and understandable? Yes/ No / NA (please explain) Comments:
- b. Discrepancies, errors, or QC failures identified by the lab? Yes/ No / NA (please explain)
 Comments:
 - 8260C LCS recoveries for bromomethane (152%-153%) do not meet QC criteria. This analyte was not detected in associated samples
 - 8260C LCSD recoveries for bromomethane (170%-180%) do not meet QC criteria. This analyte was not detected in associated samples
- c. Were corrective actions documented? Yes /No NA (please explain) Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *The case narrative does not comment on data quality/usability.*

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Yes / No / NA (please explain)
 Comments:
- **b.** All applicable holding times met? **Yes**/ **No** / **NA** (please explain) Comments:

All soils reported on a dry weight basis? Yes / No / (NA) please explain) Comments: *No soils were included in this project.*

c. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes (No) NA (please explain) Comments:

d. Data quality or usability affected? Yes No NA (please explain) Comments: *Due to elevated sample results, the LOQs for various VOCs are elevated due to sample dilution.*

6. <u>QC Samples</u>

a. Method Blank

- One method blank reported per matrix, analysis, and 20 samples?
 Ves No / NA (please explain) Comments:
- ii. All method blank results less than LOQ? (Yes) No / NA (please explain) Comments:
- iii. If above LOQ, what samples are affected? NA Comments:
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
 Yes / No (NA) (please explain) Comments:
- v. Data quality or usability affected? Yes / No NA (please explain) Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes / No / NA (please explain) Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA (please explain) Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes /No NA (please explain)

Comments: *LCS/LCSD recoveries for bromomethane are greater than laboratory limits.*

- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%, VOCs 20%; all other analyses see the laboratory QC pages) (ves) No / NA (please explain) Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NA Comments: *All samples are affected*.
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined?
 Yes No NA (please explain) Comments:
- vii. Data quality or usability affected? Please explain. Yes No NA (please explain) Comments: Bromomethane was not detected in the project samples therefore data quality is not affected.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, field, QC and laboratory samples? **No / NA** (please explain) Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) (Ves) No / NA (please explain) Comments:
- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes / No (NA) (please explain) Comments:
- iv. Data quality or usability affected? Please explain. Yes / No / NA (please explain) Comments:
- d. Trip Blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.)
 - One trip blank reported per matrix, analysis and cooler? (If not, enter explanation below.) Yes/ No / NA (please explain) Comments:
 - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment stating why must be entered below.) Yes No/ NA (please explain)
 Comments: Only one cooler was used to store and transport the samples.

- iii. All results less than LOQ? Yes/ No / NA (please explain) Comments:
- iv. If above LOQ, what samples are affected? (NA) Comments: All were below LOQ.
- v. Data quality or usability affected? Please explain. Yes No NA (please explain) Comments:

e. Field Duplicate

- One field duplicate submitted per matrix, analysis and 10 project samples?
 Ves No NA (please explain) Comments:
- ii. Submitted blind to the lab? **Yes**/ No / NA (please explain) Comments:
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) (Yes) / No / NA (please explain) Comments:
- iv. Data quality or usability affected? Please explain. (NA) Comments:

f. Decontamination or Equipment Blank (if not applicable) Yes / No / NA (please explain)

Comments: *The use of a decontamination or equipment blank was not included in our ADEC-approved work plan.*

- i. All results less than LOQ? Yes / No / NA please explain) Comments:
- ii. If above LOQ, what samples are affected? NA Comments:
- iii. Data quality or usability affected? Please explain. (NA) Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

a. Defined and appropriate? **Yes**/ No / NA (please explain) Comments: A key is provided on page 3 of the laboratory report.

SHANNON & WILSON, INC.

ATTACHMENT 4 IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

SON, INC. Attachment to and part of Report 100236-001

Date: August 2018

To: Mr. Nelson Garrett

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland