

FAIRBANKS ENVIRONMENTAL SERVICES

- DATE: March 16, 2015
- TO: Mr. Russell Grandel, Alaska Railroad Corporation
- FROM: Michael Boese, Fairbanks Environmental Services
- RE: 2014 Soil Gas Survey Report, Rev2 Former Mammoth Trucking Site Anchorage, Alaska ADEC Hazard ID – 23887 / File ID – 2100.26.202

EXECUTIVE SUMMARY

A quantitative soil gas survey was conducted at the former Mammoth Trucking site located in Anchorage, Alaska (Figure 1). The industrial site is owned by the Alaska Railroad Corporation (ARRC) and currently leased to Alaska West Express. The survey was conducted to evaluate soil gas conditions in the area located northwest of the existing building, and was a second phase to the passive soil gas survey conducted in 2013. Soil and groundwater contamination above Alaska Department of Environmental Conservation (ADEC) cleanup levels has been previously been identified at the site; contaminants of concern include both fuel and chlorinated solvent constituents.

Soil gas samples were collected from three soil gas monitoring wells installed in the northwest corner of the site. The three locations were chosen, in part, based on 2013 passive soil gas survey results. The soil gas samples were analyzed for volatile organic compounds (VOCs) using Method TO-15. The soil gas monitoring wells were installed with the oversight of qualified person Mike Boese of Fairbanks Environmental Services (FES). Samples were collected in accordance with the ADEC Vapor Intrusion Guidance by qualified persons, Nathan Oberlee and Zack Kirk of Rescon Alaska, as required by Title 18 of the Alaska Administrative Code, Chapter 75.

VOCs were detected in samples collected from all three soil gas monitoring well locations. Soil gas results were compared to the ADEC's target levels for deep and shallow subslab soil gas for a commercial setting listed in Appendices E and F of the Vapor Intrusion Guidance for Contaminated Sites (ADEC, 2012). ADEC vapor intrusion guidance states that target levels for shallow soil gas are applicable to samples collected within 5 vertical feet of the foundation or ground surface; since the top of well screeens were all greater than 5 feet below the ground and foundation, only target levels for deep soil gas should apply. Shallow target levels were included in the comparison out of an abundance of caution. Analytes exceeding the deep and shallow target levels are summarized in the Table 1 below:

SGMW-1		SGN	1W-2	SGMW-3		
Deep	Shallow	Deep	Shallow	Deep	Shallow	
			Vinyl Chloride			
			cis-1,2 Dichlorethane			
		Benzene	n-Hexane			
Nene	Naahthalana	Ethylbenzene	Benzene	None	Trichlorethene	
None	Naphthalene	1,3,5-Trimethylbenzene	Ethylbenzene	None	Tetrachloroethene	
		1,2,4-Trimethylbenzene	m,p-xylenes			
			1,3,5-Trimethylbenzene			
			1,2,4-Trimethylbenzene			

Table 1 - Summary of Anal	vtes Exceeding Tai	aet Levels for Deep	& Shallow Subslab Soil Gas ¹
	jies Executing ful	got Lovels for Deep	

¹ – Target levels for deep and shallow subslab soil gas are from ADEC's Vapor Intrusion Guidance for Contaminated Sites, listed in Appendices F and E respectively, commercial setting (ADEC, 2012). All wells were greater than 5 feet deep and only deep target levels should apply.

The highest soil gas concentrations were generally detected in SGMW-2. SGMW-2 was installed in the location where the most contaminant detections with the highest magnitudes were detected during the 2013 passive gas survey.

Soil gas results for samples collected from well SGMW-1 and SGMW-3, located closest to the existing building, were below target levels for deep soil gas; however, the sample from SGMW-1 exceeded the shallow soil gas target level for naphthalene and the sample from SGMW-3 exceeded the shallow soil gas target level for tetrachloroethene (PCE) and trichloroethene (TCE). The sample from SGMW-1 was collected from approximately 5.5 feet below ground surface (bgs) and approximately 6.25 feet below the bottom of the slab (the slab was elevated on west side of building), and sample collected from SGMW-3 was collected from a depth of 7 feet bgs (approximately 6 feet below the bottom of the slab), so deep soil gas target levels would apply.

Based on the survey results, the potential for vapor intrusion of contaminants into the existing structure associated with the former Mammoth Trucking site appears to be low; the concentrations of analytes detected in soil gas monitoring wells located closest to the existing building (SGMW-1 and SGMW-3) were below applicable (deep) target levels. Although samples from SGMW-2 exceeded deep and shallow target levels for several VOCs, it is located 50 feet away from the building and the subslab screening levels would not be applicable.

1.0 INTRODUCTION

1.1 Site Description

The former Mammoth Trucking site is located at 1048 East Whitney Road in Anchorage, Alaska (Figures 1 and 2). The subject property is currently leased to Alaska West Express by the ARRC. Site improvements include a building surrounded by a large, paved yard. The site is underlain by a shallow, unconfined aquifer. The building which was constructed on a slab-on-grade foundation includes a shop with two large bays on the extreme west end, and office space immediately east of the shop. As shown in Photograph 1 in Appendix A, the local topography slopes to the south.

1.2 Previous Investigations

In 1990, one 500-gallon gasoline underground storage tank (UST), one 2,000-gallon diesel UST, one 12,000-gallon diesel UST, and two used oil USTs were removed from the northwest corner of the former Mammoth Trucking property. Upon removal of the tanks and approximately 140 cubic yards of contaminated soil, obvious soil contamination remained (Northern Test Lab, 1991).

In 1994, Laidlaw Transit, Inc. (Laidlaw), assumed the lease for the property. As part of the lease agreement, Laidlaw contracted with EMCON Alaska, Inc. (EMCON) to perform a baseline site assessment, including the installation of four monitoring wells. Groundwater analysis results revealed diesel-range organics (DRO), gasoline-range organics (GRO), and VOCs (including vinyl chloride and PCE) above the ADEC groundwater cleanup levels (EMCON, 1994).

Site characterization activities conducted between 1994 and 2012 indicate that soil and groundwater exceed ADEC cleanup levels for petroleum and chlorinated solvents. In addition, vapor intrusion screening levels were exceeded based on groundwater concentrations. Historical soil and groundwater results are shown in Figure 2. The source of chlorinated solvent contamination has not been identified, and based on PCE detections in wells located upgradient of the tanks the chlorinated solvent contamination does not appear to be from the former USTs. Groundwater flow direction at the former Mammoth Trucking site is generally to the south-southwest toward Ship Creek (CH2MHill, 1999).

A passive soil gas survey was conducted in October 2013. While nine of the twelve soil gas samplers had detectable contaminants, the detections were generally very low and detected compounds varied between sample locations. The passive sampler with the most contaminant detections and highest magnitude was from M-07, located 50 feet west of the existing building and near the location of the former underground storage tanks (FES, 2013). Passive soil gas results from 2013 are included on Figure 3.

2.0 WORK PERFORMED

Following utility locates, 1.5-inch-diameter holes were installed using a percussion driver through the asphalt at each of the three sample locations shown on Figure 3 on September 18, 2014. SGMW-2 was installed at former location of M-07 where the highest passive soil gas concentrations were measured in 2013. SGMW-1 was installed in the location of the former underground storage tanks (USTs) that were removed in 1990, and SGMW-3 was installed on the north side of the building nearest the office. Photographs of field activities are included in Appendix A. The locations of the soil gas samples were surveyed using a Global Positioning System (GPS) with sub-meter accuracy; coordinates are included in Table 2. In addition, the vertical depths of each well screen are summarized in the table.

Location	Depth to Ground- water (feet bgs)	Depth of Screened Interval (feet bgs)	Vertical Distance between Top of Well Screen and Bottom of Foundation ¹ (feet)	Longitude	Latitude
SGMW-1	7	5.3 to 5.8	6.3	-149.864097	61.224768
SGMW-2	7	5.2 to 5.7	NA	-149.864408	61.224809
SGMW-3	10.5	7 to 7.5	6.2	-149.863901	61.224926

Table	2 –	Summarv	of	Soil	Gas	Monitorina	Wells
i ubio	-	o anna y	U	0011	ous	monitoring	110113

¹ The slab on grade foundation was estimated to be 12 inches thick for the calculation. The foundation is higher than the asphalt parking lot at location SGMW-1.

Longitude and Latitude are in decimal degrees.

bgs – below ground surface

NA – not applicable – SGMW-2 is greater than 50 feet from the building.

Soil encountered beneath the asphalt was comprised primarily of gravelly sands (fill material). The openings were drilled to depths of approximately 1 to 2 feet above the water table (depths to the water table were measured prior to drilling in nearby groundwater monitoring wells); SGMW-1 and SGMW-2 were installed in borings drilled to a depth of 6 feet below ground surface (bgs), and SGMW-3 was installed in a boring drilled to a depth of 8.5 feet bgs. The soil gas monitoring wells were completed by installing a Geoprobe[®] 6-inch-long stainless steel implant connected to Teflon-lined tubing to the surface. Approximately 2 feet of 20/40 sand was placed in the annulus surrounding the implant, followed by a thin layer of dry bentonite and then a bentonite slurry to the ground surface to make a seal.

Samples were collected from each of the soil gas monitoring wells on September 23, 2014 by Nathan Oberlee and Zack Kirk of Rescon Alaska. A field duplicate was also collected from SGMW-2. The samples were collected in evacuated 1-liter Summa canisters following successful shut-in and leak tests. The shut-in tests confirmed that there were no leaks in the sample train and the leak tests confirmed that the soil gas monitoring wells were appropriately sealed from the surface (and that samples were being collected from the subsurface). Helium was used as the tracer compound for the leak tests. The results of the shut-in and leak tests are summarized in Table 3.

Location	Shut-I (Inches d	n Test ¹ of Water)	Leak Test ² (Helium	Pass/Fail		
	Initial	Ending	Concentration)			
SGMW-1	-100	-100	0 ppm	Pass		
SGMW-2	-100	-100	500 ppm	Pass		
SGMW-3	-100	-100	0 ppm	Pass		

Table 3 – Results of Shut-In and Leak Tests

The sample train was evacuated and a measureable vacuum of approximately 100 inches of water was drawn and sustained for a period of 1 minute.

² The percentage of helium introduced into shroud was set at 200,000 ppm, so acceptable helium concentrations for the leak test range from 0 to 20,000 ppm (or 0 to 2%).

ppm – parts per million

Canisters were equipped with a flow controller that regulated the flow to the canister at a rate of 200 milliliters per minute (mL/min). The sample identification number, the initial and final canister vacuum, the regulator serial number, and the canister number were documented in the field notes and on the canister tag for tracking purposes. Sample collection field notes are included in Appendix B.

The soil gas samples were sent to the ALS Environmental laboratory in Simi Valley, California under chain of custody for analysis of VOCs using Method TO-15. Following sample collection activities, the tubing was removed and the holes were backfilled with clean sand and the asphalt was repaired using cold patch. An elastic crack filler will be applied when temperatures increase to above 50 degrees Fahrenheit in the spring of 2015.

3.0 DATA QUALITY

Soil gas samples were collected and analyzed in accordance with the procedures in the approved Work Plan (FES 2014). All project samples were analyzed by ALS of Simi Valley, California. The laboratory is NELAP certified for the contaminant method employed. All samples were shipped in a single sample data group (SDG) and assigned the SGS report number P1403938R. A copy of the laboratory report is included in Appendix C.

Chemical data quality is summarized in the ADEC Laboratory Review Checklist in Appendix D. Batch quality control data including reference standards and method blanks indicated that the gas chromatograph/mass selective detection instrument was operating properly. Due to sample dilution, several VOC analytes were not reported with adequate sensitivity in the samples from SGMW-2 (ie., detection limit > target level for those analytes); therefore, the absence of these non detect VOC analytes at levels exceeding the target levels at that location cannot be confirmed. There was only minor impact to data as the samples collected from that location exceeded target levels for several other VOCs. Additionally, there were some minor field duplicate precision discrepancies, but they did not adversely impact the project data. Lastly, custody seals were not provide by the project laboratory and were not used for the sample shipment. However, the samples were still under a vacuum upon arrival at the laboratory, and do not appear to be tampered with.

4.0 SOIL GAS RESULTS

Soil gas results are presented in Table 3 and Figure 3. Table 3 compares the soil gas concentrations to ADEC's target levels for deep and shallow subslab soil gas for a commercial setting as listed in Appendices F and E, respectively, of the Vapor Intrusion Guidance for Contaminated Sites (ADEC, 2012). The target levels are applicable to the SGMW-1 and SGMW-3 locations as they are directly adjacent the building, however probably not applicable to SGMW-2 as it located 50 feet from the building.

Chlorinated compounds were detected in all three locations; PCE and TCE were detected in the sample from location SGMW-3, and breakdown daughter products cis-1,2-dichloroethene and vinyl chloride were detected in SGMW-1 and SGMW-2. The PCE detection is consistent with historical groundwater detections in the well located on the north side of the building, and the daughter products were detected in downgradient locations in the direction of groundwater flow. Chlorofluorocarbon (CFC) dichlorodifluoromethane (CFC 12) was detected in SGMW-1, and trichlorofluoromethane (CFC 11) was detected in SGMW-1 and SGMW-3. CFCs were below detected below their respective target levels.

Petroleum contaminants were detected in soil gas samples from SGMW-1 and SGMW-2, with the highest concentration detected in the sample from SGMW-2. SGMW-1 was installed in the former used oil tank location (contaminated soil was previously excavated from this area), and SGMW-2 was located west of the limits of the 1990 soil excavation. Multiple VOCs exceeded the target levels in the samples collected from SGMW-2; however, elevated contaminant concentrations were expected to be detected in SGMW-2 since it was installed in the location with the highest passive soil gas concentrations during the 2013 soil gas survey.

5.0 DISCUSSION AND CONCLUSION

The purpose of this work was to evaluate soil gas conditions in the northwest corner of the former Mammoth Trucking site. Both petroleum and chlorinated contaminants have been detected in historical soil and groundwater samples. The survey confirmed an area with elevated soil gas concentrations and confirmed the presence of contaminants of concern including hydrocarbons, PCE, and PCE breakdown products. The contaminants identified in soil gas samples are consistent with analytes historically detected in groundwater, soil, and soil gas samples at the site.

ADEC vapor intrusion guidance states that target levels for shallow soil gas are applicable to samples collected within five vertical feet of the foundation or ground surface; deep soil gas requirements apply to samples collected more than five feet below the foundation or ground surface. Soil gas samples collected from soil gas monitoring wells located closest to the building (SGMW-1 and SGMW-3) were collected from screened depths greater than five feet bgs and, therefore, target levels for deep soil gas would apply. Since no target levels for deep soil gas were exceeded in the sample from well SGMW-1 (located closest to the office space), the potential for vapor intrusion is low.

Although samples from SGMW-2 exceeded deep and shallow target levels for several VOCs, it is located 50 feet away from the existing building and there is no evidence of preferential pathways between SGMW-2 and the structure (parking lot was built on gravelly fill material and no buried utilities were located on the west side of the building). SGMW-1 is roughly located between SGMW-2 and the building, and results from the sample collected from well SGMW-1 did not exceed target levels for deep subslab soil gas in a commercial setting.

6.0 **REFERENCES**

Alaska Department of Environmental Conservation (ADEC), 2012. *Vapor Intrusion Guidance for Contaminated Sites.* October.

EMCON Alaska, Inc. 1994. Phase I and II Site Assessment Report – 1048 Whitney Road. September.

CH2M Hill, 1999a. Former Mammoth Trucking Release Investigation. February.

CH2M Hill, 1999b. Memorandum: Mammoth Groundwater Results. October 1.

Clarus Technologies, LLC, 2010. *Groundwater Monitoring Report, Former Mammoth Trucking Facility, Anchorage, Alaska, D-0012-01.* December.

Fairbanks Environmental Services (FES), 2014. 2014 Soil Gas Work Plan, Former Mammoth Trucking Site, Anchorage, Alaska. June 27.

FES, 2013. *Passive Soil Gas Survey Report, Former Mammoth Trucking Site, Anchorage, Alaska.* December 16.

Northern Test Lab, 1991. Mammoth of Alaska Mammoth Trucking UST Assessment Report. December.

Restoration Science & Engineering, LLC, 2012. *Groundwater Monitoring Report, Former Mammoth Trucking Facility, 1048 Whitney Road, Anchorage, Alaska, ADEC File No. 2100.26.202.* October.

Attachments:

Table 1 – Summary of Analytes Exceeding Target Levels for Deep & Shallow Subslab Soil Gas

Table 2 – Survey Coordinates of Soil Gas Monitoring Wells

Table 3 – Results of Shut-In and Leak Tests

Table 4 – Soil Gas Results

Figure 1 – Vicinity Map

Figure 2 – Previous Groundwater and Soil Cleanup Level Exceedances

Figure 3 – Soil Gas Results

Appendix A – Photolog

Appendix B – Field Notes

Appendix C – ALS Laboratory Report (P1403938)

Appendix D – ADEC Laboratory Review Checklist

Table 4 - Soil Gas Results 2014 Soil Gas Survey Former Mammoth Trucking Site

Sample ID				SGMW-1		SGMW-2		SGMW-X		SGMW-3	
		Location	Target Level	Target Level	SGN	W-1	SGN	1W-2	Dup of S	GMW-2	SGMW-3
	San	ple Depth ¹	Shallow	Deep	6.3	Feet	5.2	Feet	5.2	Feet	6.2 Feet
Sample Type			(< 5 feet) ²	$(\geq 5 \text{ feet})^2$	Prin	nary	Primary		Field Duplicate		Primary
	Coll	ection Date			9/23/	2014	9/23	/2014	9/23/	2014	9/23/2014
		IVIALITIX			5011	Gas	Soli Gas		Soli Gas		Soli Gas
Analyte	Method	Units			Result	[DL]	Result	[DL]	Result	[DL]	Result [DL]
Propene	TO-15	μg/m³	NE	NE	ND	[0.58]	ND	[210]	ND	[200]	ND [7.6]
Dichlorodifluoromethane (CFC 12)	TO-15	µg/m³	4400	44000	2.2	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Chloromethane	TO-15	µg/m³	3900	39000	ND	[0.63]	ND	[230]	ND	[210]	ND [8.2]
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	TO-15	μg/m³	NE	NE	ND	[0.79]	ND	[290]	ND	[270]	ND [10]
Vinyl Chloride	TO-15	μg/m³	280	2800	2.3	[0.71]	1800	[260]	1300	[240]	ND [9.3]
1,3-Butadiene	TO-15	μg/m³	41	410	ND	[0.92]	ND	[330]	ND	[310]	ND [12]
Bromomethane	TO-15	μg/m³	220	2200	ND	[0.79]	ND	[290]	ND	[270]	ND [10]
Chloroethane	TO-15	μg/m³	438000	4380000	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Ethanol	TO-15	μg/m³	NE	NE	ND	[3.3]	ND	[1200]	ND	1100	ND [44]
Acetonitrile	TO-15	µg/m³	NE	NE	ND	[0.75]	ND	[270]	ND	[260]	ND [9.8]
Acrolein	TO-15	µg/m³	NE	NE	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Acetone	TO-15	µg/m³	1350000	13500000	ND	[3.2]	ND	[1200]	ND	[1100]	ND [42]
Trichlorofluoromethane (CFC 11)	TO-15	µg/m³	30700	307000	4.9	[0.71]	ND	[260]	ND	[240]	87 [9.3]
2-Propanol (Isopropyl Alcohol)	TO-15	µg/m³	NE	NE	ND	[1.8]	ND	[630]	ND	[600]	ND [23]
Acrylonitrile	TO-15	µg/m³	NE	NE	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
1,1-Dichloroethene (1,1-DCE)	TO-15	µg/m³	8800	88000	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Dichloromethane (Methylene Chloride)	TO-15	μg/m³	2600	26000	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
3-Chloro-1-propene (Allyl Chloride)	TO-15	μg/m³	NE	NE	ND	[0.67]	ND	[240]	ND	[230]	ND [8.7]
1,1,2-Trichlorotrifluoroethane	TO-15	μg/m³	NE	NE	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Carbon Disulfide	TO-15	μg/m³	30700	307000	ND	[0.63]	ND	[230]	ND	[210]	ND [8.2]
trans-1,2-Dichloroethene	TO-15	μg/m³	2600	26000	ND	[0.79]	ND	[290]	ND	[270]	ND [10]
1,1-Dichloroethane (1,1-DCA)	TO-15	μg/m³	770	7700	ND	[0.67]	ND	[240]	ND	[230]	ND [8.7]
Methyl tert-Butyl Ether	TO-15	μg/m³	4700	47000	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Vinyl Acetate	TO-15	μg/m³	8800	88000	ND	[2.7]	ND	[980]	ND	[930]	ND [35]
2-Butanone (MEK)	TO-15	μg/m³	219000	2190000	ND	[0.88]	ND	[320]	ND	[300]	ND [11]
cis-1,2-Dichloroethene	TO-15	μg/m³	310	3100	3.1	[0.67]	2200	[240]	1700	[230]	ND [8.7]
Ethyl Acetate	TO-15	μg/m³	NE	NE	ND	[1.5]	ND	[530]	ND	[500]	ND [19]
n-Hexane	TO-15	μg/m³	30700	307000	52	[0.63]	50000	[230]	40000	[210]	ND [8.2]
Chloroform	TO-15	μg/m ³	53	530	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Tetrahydrofuran (THF)	TO-15	μg/m³	NE	NE	ND	[0.84]	ND	[300]	ND	[290]	ND [11]
1,2-Dichloroethane	TO-15	μg/m³	47	470	ND	[0.67]	ND	[240]	ND	[230]	ND [8.7]
1,1,1-Trichloroethane (TCA)	TO-15	μg/m³	219000	2190000	ND	[0.71]	ND	[260]	ND	[240]	ND [9.3]
Benzene	TO-15	μg/m³	160	1600	3.2	[0.67]	2200	[240]	1700	[230]	ND [8.7]
Carbon Tetrachloride	TO-15	μg/m ³	200	2000	ND	[0.63]	ND	[230]	ND	[210]	ND [8.2]

Table 4 - Soil Gas Results 2014 Soil Gas Survey Former Mammoth Trucking Site

			SGMW-1	SGMW-2	SGMW-X	SGMW-3			
		Location	Target Level	Target Level	SGMW-1	SGMW-2	Dup of SGMW-2	SGMW-3	
	Sam	ple Depth ¹	Shallow	Deep	6.3 Feet	5.2 Feet	5.2 Feet	6.2 Feet	
Sample Type			(< 5 feet) ²	$(\geq 5 \text{ feet})^2$	Primary	Primary	Field Duplicate	Primary	
Collection Date		ection Date			9/23/2014	9/23/2014	9/23/2014	9/23/2014	
		Iviatrix			Soli Gas	Soli Gas	Soll Gas	Soll Gas	
Analyte	Method	Units			Result [DL]	Result [DL]	Result [DL]	Result [DL]	
Cyclohexane	TO-15	µg/m³	263000	2630000	84 [1.2]	50000 [440]	38000 [410]	ND [16]	
1,2-Dichloropropane	TO-15	µg/m³	120	1200	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
Bromodichloromethane	TO-15	µg/m³	33	330	ND [0.63]	ND [230]	ND [210]	ND [8.2]	
Trichloroethene (TCE)	TO-15	μg/m³	88	880	ND [0.58]	ND [210]	ND [200]	330 [7.6]	
1,4-Dioxane	TO-15	μg/m³	NE	NE	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
Methyl Methacrylate	TO-15	μg/m³	NE	NE	ND [1.3]	ND [470]	ND [440]	ND [17]	
n-Heptane	TO-15	μg/m³	NE	NE	76 [0.71]	62000 [260]	48000 [240]	ND [9.3]	
cis-1,3-Dichloropropene	TO-15	μg/m³	310 (total)	3100 (total)	ND [0.58]	ND [210]	ND [200]	ND [7.6]	
4-Methyl-2-pentanone	TO-15	µg/m³	NE	NE	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
trans-1,3-Dichloropropene	TO-15	μg/m³	310 (total)	3100 (total)	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
1,1,2-Trichloroethane	TO-15	μg/m³	8.8	88	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
Toluene	TO-15	μg/m³	219000	2190000	3.1 [0.71]	ND [260]	ND [240]	ND [9.3]	
2-Hexanone	TO-15	μg/m³	1300	13000	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
Dibromochloromethane	TO-15	μg/m³	45	450	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
1,2-Dibromoethane	TO-15	μg/m³	2.0	20	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
n-Butyl Acetate	TO-15	μg/m³	NE	NE	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
n-Octane	TO-15	μg/m³	NE	NE	75 [0.75]	47000 [270]	38000 [260]	ND [9.8]	
Tetrachloroethene (PCE)	TO-15	μg/m³	1800	18000	ND [0.58]	ND [210]	ND [200]	5400 [7.6]	
Chlorobenzene	TO-15	μg/m³	2200	22000	ND [0.67]	ND [240]	ND [230]	ND [8.7]	
Ethylbenzene	TO-15	μg/m³	490	4900	17 [0.67]	8800 [240]	6900 [230]	ND [8.7]	
m,p-Xylenes	TO-15	μg/m³	4400 (total)	44000 (total)	19 [1.3]	8700 [450]	6900 [430]	ND [16]	
Bromoform	TO-15	μg/m³	1100	11000	ND [0.63]	ND [230]	ND [210]	ND [8.2]	
Styrene	TO-15	μg/m³	43800	438000	ND [0.63]	ND [230]	ND [210]	ND [8.2]	
o-Xylene	TO-15	μg/m³	4400 (total)	44000 (total)	ND [0.63]	ND [230]	ND [210]	ND [8.2]	
n-Nonane	TO-15	μg/m³	NE	NE	34 [0.63]	9800 [230]	8000 [210]	ND [8.2]	
1,1,2,2-Tetrachloroethane	TO-15	μg/m³	21	210	ND [0.63]	ND [230]	ND [210]	ND [8.2]	
Isopropylbenzene (Cumene)	TO-15	μg/m³	17500	175000	14 [0.63]	4000 [230]	3200 [210]	ND [8.2]	
alpha-Pinene	TO-15	μg/m³	NE	NE	ND [0.58]	ND [210]	ND [200]	ND [7.6]	
n-Propylbenzene	TO-15	μg/m ³	43800	438000	26 [0.67]	5300 [240]	4300 [230]	ND [8.7]	
4-Ethyltoluene	TO-15	μg/m³	NE	NE	25 [0.67]	4300 [240]	3300 [230]	ND [8.7]	
1,3,5-Trimethylbenzene	TO-15	μg/m³	310	3100	46 [0.67]	6700 [240]	5300 [230]	ND [8.7]	
1,2,4-Trimethylbenzene	TO-15	μg/m³	310	3100	95 [0.63]	11000 [230]	8800 [210]	ND [8.2]	
Benzyl Chloride	TO-15	μg/m³	NE	NE	ND [0.46]	ND [170]	ND [160]	ND [6]	
1,3-Dichlorobenzene	TO-15	µg/m³	8800	88000	ND [0.63]	ND [230]	ND [210]	ND [8.2]	

Table 4 - Soil Gas Results 2014 Soil Gas Survey Former Mammoth Trucking Site

		Sample ID			SGN	IW-1	SGN	1W-2	SGN	IW-X	SGM	W-3
Location			Target Level	Target Level	SGN	IW-1	SGN	1W-2	Dup of S	GMW-2	SGM	W-3
	San	ple Depth ¹	Shallow	Deen	6.3	Feet	5.2 Feet		5.2 Feet		6.2 Feet	
	S	ample Type	$(< 5 \text{ foot})^2$	$(> 5 \text{ feet})^2$	Prin	nary	Prir	nary	Field D	uplicate	Prin	nary
	Coll	ection Date	(< 5 leet)	(2 5 1001)	9/23	/2014	9/23	/2014	9/23	/2014	9/23/	2014
Matrix					Soil	Gas	Soil	Gas	Soil	Gas	Soil	Gas
Analyte	Method	Units			Result	[DL]	Result	[DL]	Result	[DL]	Result	[DL]
1,4-Dichlorobenzene	TO-15	μg/m³	110	1100	ND	[0.58]	ND	[210]	ND	[200]	ND	[7.6]
1,2-Dichlorobenzene	TO-15	µg/m³	8800	88000	ND	[0.63]	ND	[230]	ND	[210]	ND	[8.2]
d-Limonene	TO-15	μg/m³	NE	NE	ND	[0.58]	ND	[210]	ND	[200]	ND	[7.6]
1,2-Dibromo 3-Chloropropane	TO-15	μg/m³	NE	NE	ND	[0.41]	ND	[150]	ND	[140]	ND	[5.4]
1,2,4-Trichlorobenzene	TO-15	μg/m³	88	880	ND	[0.67]	ND	[240]	ND	[230]	ND	[8.7]
Naphthalene	TO-15	μg/m ³	36	360	100	[0.75]	ND	[270]	ND	[260]	ND	[9.8]
Hexachlorobutadiene	TO-15	μg/m ³	NE	NE	ND	[0.58]	ND	[210]	ND	[200]	ND	[7.6]

¹ Sample depth is vertical depth between top of well screen and bottom of foundation (SGMW1 and SGMW-3) and vertical depth between top of well screen and ground surface (SGMW-2).

² Target Level's are from ADEC's Vapor Intrusion Guidance for Contaminated Sites, Tables E (Shallow [<5 feet]) and F (Deep [≥5 feet]) for a Commercial setting.

Orange highlighted results exceed the Shallow target levels, but not the Deep target levels

Yellow highlighted results exceed the Deep and Shallow target levels

Gray highlighted results have detection limits that are greater than the one or both target levels

ADEC - Alaska Department of Environmental Conservation

DL - detection limit

ND - analyte was not detected

NE - not established

 μ g/m³ - micrograms per cubic meter

The Former Mammoth Trucking Site is located at 1048 E. Whitney Road in Anchorage, Alaska.

Vicinity Map 2014 Report Former Mammoth Trucking Site Anchorage, Alaska

CONTRACT:	FIGURE:	DATE:
85304	1	12/14

APPENDIX A PHOTOLOG

Photograph 1 – View of the site. View to the southeast.

Photograph 2 – Water levels were measured in adjacent existing wells to determine depth of soil gas monitoring wells; boreholes were advanced to approximately 1 foot above the water table. View to the north.

Photograph 3 – Boreholes were installed using percussion techniques. View to the northeast.

Photograph 4 – Example of Geoprobe 6-inch-long stainless steel implant connected to Teflon-lined tubing used in the construction of the soil gas monitoring wells.

Photograph 5 – A grout slurry was added above the sand pack to seal each soil gas monitoring well.

Photograph 6 – Example of a completed soil gas monitoring well (SGMW-3).

Photograph 7 – Leak tests were performed prior to sample collection using helium as shown here. Samples were collected in 1-liter stainless steel Summa canisters (both primary and field duplicate are shown).

Photograph 8 – Instrument used to measure the concentration of helium in parts per million.

APPENDIX B FIELD NOTES

	1	aler and			VAPOR IN	TRUSION	SAMPLE D	ATA SHEET	
Project Number		26-001		Date Sample Collect	ed		C	123	14
Project Name	M.	Amanorit TRUCKENG Temperature					~	500	F. OVARLAST, CALMA
Client		FES		Weather					
Sampler.	21	C, NO							
	5.1				SIT	E SPECIFIC	INFORMAT	ION	
							С	OPCs	Mor :
			2000			NICTED IN	AUDENES	170	
SAMPLE ID	Canister	Canister #	Regulator #	Gauge #	Leak Check	Initial	Sample	Final	Lasitian
SCMW-0	Size	15/00007		ounge a		Pressure	Time	Pressure	Location
S Combines V		12000004	0400741	AV663462	PASS	14.24	1030	1.45	SUMW - 2 LOCATEON. INSTOR GATE (WEST STAR)
SCALL I	11	15000051	0401085	AV603261	TAS	14.69	1035	1.17	DUPLICATE SAMPLE OF SCHW-2 SCHW-2
SUMW-1	10	1500460	OADIZGQ	AV603434	TASS	14.62	1100	1.39	INSFOR GATE AREA, WEST OF PROBART BLOG.
SOMOSIS	1-	1500009	0A00813	AVG03734	PASS	14.61	1125	2.18	OUTSIDE GATE IN FRONT OF BUILDING
		-				1			
	1						-	1	
							-		
						1	-		
	100					-		-	
1					-	-	-	-	
						-			
						-			
					-		1		
						-	-		
	-							N	
Sample Comments (Low Canister	Vacuum, Ba	d Flow Controller - C	anister Connection	Incorrect Flow Cont	roller Pate	atc)			
			unioter connection	inconcertion con	ioner Nate,	eicj			
Additional Site Commenter	-							-	
inducional one comments.									
								10	
Duplicate Samples						Primary :	Samples		
Duplicate Sample ID:		SGMI	2 - X			Primary Sa Primary Sa	ample ID:	SG	MW-2
Duplicate Sample ID:						Primary Sa	ample ID:		
	/	1.							
Signed:		1				Data	1		

d ladmin/field forms/GW Sample Data Sheet

36 FORMAR MANMOTH TRUCKENG	FORMER MAMMORIN TRUCKING ZK, NO 37
SEPTEMBER 23, 2014 ~ 50"F, OVERCAST, CALL	9 glazlin 250°, OVERCAST, CALM
1000 - AREIVE ONSSIR. MEAT M. BOWLS	1100 - COLLACT SOLL GAS SAMPLE
(FAERBANKS FENUSRONMANTAL SERVICES)	SGMW-1
Inserie TARGE VAPOR SAMPLE POENT	- SEE VI DATA CHEEF FOR OFFACES.
LOCATEDNS,	1105 - SET UP AT SGMW-3
MENOR GETTLENG (~1 TO 1.5')	LOCATEON-
OBSERVED IN WELL POSNES.	1120 - LEAN AND SHUF - IN FESTS
CONTACT GEOTAK TO BREAG HODE	PASS.
A ODIFIONAL GROUT.	● 1)25 - COLLECT SOLL GAS SAMPLE
1015 DELIDE TO PROCEERD WETH LICAR	SGMW-3.
CHALKS ANYWAY TO ASSES A NO	1145 - CLEAN UP AND DEPART
USA GROUF AS · NECESBARY WHEN	THE SETE.
GROTTIC ARREVES.	- TEMPORARY SOLL GAS PROBAS
- SET UP AT -A SGMW-2.	WELL BE LEFT ON SETE
1020 · CONSULT SHUT EN AND	PENDENG THE RESULS OF
LEAK FAST ON SAMPLE PROJE	THE ANALY ISCAL SAMPLES.
AND MANEFOLD.	
1025 - LAAK TASTS PASS.	
1030 - COLLEEF SOLL GAS SAMPLE SEMW. 2	
1035 - LOLLACT FERLO DUPLECATE SAMPLE	
SEMW-X AF THE SEMW-2 LOCATION.	Dere
- SEE VAPOR INTRUSEON DATA SHEET	
FOR DELTATLS	
1040 - SET UP AT SGMU - 1	
1050 - SHUT EN / LEAK TEST PASSIO	
× · · ·	2/2
and the second s	

APPENDIX C ALS LABORATORY REPORT P1403938

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

October 13, 2014

Nathan Oberlee Rescon Alaska 1120 Huffman Rd Ste 24-431 Anchorage, AK 99515

RE: Mammoth Trucking / 26-001

Dear Nathan:

Enclosed are the revised results of the samples submitted to our laboratory on September 26, 2014. For your reference, these analyses have been assigned our service request number P1403938. Please note that this report has been revised to extend the target analyte list, and all revised pages will be denoted with a "Revised Page" footer located on the bottom right-hand corner of the page.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

tha Hennington By Samantha Henningsen at 4:40 pm, Oct 13, 2014

Samantha Henningsen Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 www.alsglobal.com

Client: Rescon Alaska Project: Mammoth Trucking / 26-001 Service Request No: P1403938

CASE NARRATIVE

The samples were received intact under chain of custody on September 26, 2014 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is not included on the laboratory's AIHA-LAP scope of accreditation. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L14-2
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm_	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	643428
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 14-5
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 4-4
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client:	Rescon Alaska					Service Request: P1403938				
Project ID:	Mammoth Truc	king / 26-	001							
Date Received:	9/26/2014									
Time Received:	10:05									
								ans		
								ĮŽ		
								-		
			Date	Time	Container	Pi1	Pf1	10		
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	10		
SGMW-2	P1403938-001	Air	9/23/2014	10:30	1SC00907	-0.68	6.29	Х		
SGMW-X	P1403938-002	Air	9/23/2014	10:35	1SC00259	-0.41	5.70	Х		
SGMW-1	P1403938-003	Air	9/23/2014	11:00	1SC00960	-0.60	8.87	Х		
SGMW-3	P1403938-004	Air	9/23/2014	11:25	1SC00009			Х		

2655 Park Center Drive, Suite A

Air - Chain of Custody Record & Analytical Service Request

Page 1 of

	_		_					2	,	9	-		Č,		- 		_		 		T
lungag	2010.01-1						Comments e.a. Actual	Preservative	specific instructions										Project Requirements (MRLs, QAPP)		Cooler / Blank Temperature
ALS Project	-	act.	sis Method			10													al: (Circle) ABSENT	Sogui	Time:
	ALC Cont		Analy			10	Voc.	•	1	×	×	×	×						 Custody Sec BROKEN	197/201	Date:
Standard									Sample Volume	<u>ل</u>	1	1	لـ ۲						Chain of (INTACT		
es) please circle	for a favor							A	Canister End Pressure "Hg/psig	-1.45	1.12	-1.39	-2.18								
Days (Surcharg	Into Inton Into		- אבאנה						Canister Start Pressure "Hg	-14.29	-14.69	- 14.62	-14 61						Units:	<u>ه</u>	(f)
d Time in Business	+ (0/00) (000 0 (0/		The The		10	no	1	de la	Flow Controller ID (Bar code # - FC #)	CACOTHI	OAD LODA	OACIACA.	OADORI 2						EDD required YES	Received by: (Signatun	Received by: (Signature
Requested Turnaroun	ray (100/10) = Day (1	Project Name	Manao	Project Number	36.0	P.O. # / Billing Informat	36-00	Sampler (Print & Sign)	Canister ID (Bar code # - AC, SC, etc.)	1000001	15.002S	1500060	5660000							Time: 15 00	Time:
			_	•					Time	1030	1035	00	2011						n Summaries)	Date:	Date.
lifornia 93065 26-7161	7270		21-10	r r	_				Date Collected	a a a l 14	-		>						please selection of C & Calibration Package		
Simi Valley, Ca Phone (805) 52	Fax (805) 526-	nation)	4	ĥ	9950	151	Fax		Laboratory ID Number	0457	(r:0-3)	3-046	9-131						rt Tier Levels - Tier III (Results + Tier IV (Date Va		
ALS.		Company Name & Address (Reporting Inforr	Rescar Antsk	1130 HUFFILLEN KO	A-LHORAGE, AK	Project Manager	Phone	Email Address for Result Reporting	Client Sample ID	SCMU-2	Semu-Y								Tier I - Results (Default in not specified) Tier II (Results + QC Summaries	Relinquished by-(Signature)	Relinquished by: (Signature)

ALS Environmental Sample Acceptance Check Form

Client:	Rescon Alaska					Work order:	P1403938			
Project:	Mammoth True	cking / 26-001								
Sample(s) received on: $9/26/14$ Date opened: $9/26/14$ by: R							RMAR	TENIE	S	
Note: This	form is used for <u>all</u>	samples received by ALS.	The use of this for	orm for custody se	als is strictly me	eant to indicate prese	ence/absence and n	ot as an ir	dication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	he request of the	e client and/or as req	uired by the metho	od/SOP. Yes	No	N/A
1	Were sample o	containers properly m	narked with cli	ent sample ID	?					
2	Container(s) supplied by ALS?									
3	Did sample co	ntainers arrive in goo	od condition?					X		
4	Were chain-of	-custody papers used	and filled out	?				X		
5	Did sample co	ntainer labels and/or	tags agree wi	th custody pap	ers?			X		
6	Was sample ve	olume received adequ	ate for analysi	is?				X		
7	Are samples w	ithin specified holding	g times?					X		
8	Was proper ter	mperature (thermal p	reservation) o	f cooler at rece	pipt adhered t	o?				X
9	Was a trip bla	nk received?							X	
10	Were custody	seals on outside of co	oler/Box?						X	
	Location of seal(s)? Sealing Lid?								X	
	Were signature and date included?						X			
	Were seals inta	act?								X
	Were custody s	seals on outside of sar	nple container	?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signature	e and date included?								X
	Were seals inta	act?								X
11	Do container	rs have appropriate pr	reservation, ad	ccording to me	thod/SOP or	Client specified	information?			X
	Is there a clier	nt indication that the s	ubmitted samp	oles are pH pre	served?					X
	Were VOA vi	als checked for preser	nce/absence of	f air bubbles?						X
	Does the client	/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alte	r it?			X
12	Tubes:	Are the tubes capp	ed and intact?)						X
		Do they contain m	oisture?							X
13	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badg	es separated a	nd individuall	y capped and	intact?				X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	e Recei	pt / Pres	ervation	
	-	Description	nH *	nH	nH	(Presence/Absence		Commer	nte	

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1403938-001.01	1.0 L Source Can					
P1403938-002.01	1.0 L Source Can					
P1403938-003.01	1.0 L Source Can					
P1403938-004.01	1.0 L Source Can					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-2
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00907

ALS Project ID: P1403938 ALS Sample ID: P1403938-001

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig): -0.68

Final Pressure (psig): 6.29

Canister Dilution Factor: 1.50

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	750	ND	440	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	750	ND	150	
74-87-3	Chloromethane	ND	750	ND	360	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	750	ND	110	
75-01-4	Vinyl Chloride	1,800	750	700	290	
106-99-0	1,3-Butadiene	ND	750	ND	340	
74-83-9	Bromomethane	ND	750	ND	190	
75-00-3	Chloroethane	ND	750	ND	280	
64-17-5	Ethanol	ND	7,500	ND	4,000	
75-05-8	Acetonitrile	ND	750	ND	450	
107-02-8	Acrolein	ND	3,000	ND	1,300	
67-64-1	Acetone	ND	7,500	ND	3,200	
75-69-4	Trichlorofluoromethane	ND	750	ND	130	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	7,500	ND	3,100	
107-13-1	Acrylonitrile	ND	750	ND	350	
75-35-4	1,1-Dichloroethene	ND	750	ND	190	
75-09-2	Methylene Chloride	ND	750	ND	220	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	750	ND	240	
76-13-1	Trichlorotrifluoroethane	ND	750	ND	98	
75-15-0	Carbon Disulfide	ND	7,500	ND	2,400	
156-60-5	trans-1,2-Dichloroethene	ND	750	ND	190	
75-34-3	1,1-Dichloroethane	ND	750	ND	190	
1634-04-4	Methyl tert-Butyl Ether	ND	750	ND	210	
108-05-4	Vinyl Acetate	ND	7,500	ND	2,100	
78-93-3	2-Butanone (MEK)	ND	7,500	ND	2,500	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-2
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00907

ALS Project ID: P1403938 ALS Sample ID: P1403938-001

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig): -0.68

Final Pressure (psig): 6.29

Canister Dilution Factor: 1.50

CAS #	Compound	Result	MRL	Result	MRL	Data Ouclifier
156 59 2	cis 1.2 Dichloroethene	<u>μ</u> g/m ³ 2 200	μg/m ²	<u>рро v</u> 550	100	Quaimer
141 78 6	Ethyl Acetate	2,200 ND	1 500	330 ND	420	
141-70-0	n Havana	50 000	750	14 000	420	
110-34-3	Chlanafarma	50,000 ND	750	14,000	150	
67-66-3	Chloroform	ND	750	ND	150	
109-99-9	Tetrahydrofuran (THF)	ND	750	ND	250	
107-06-2	1,2-Dichloroethane	ND	750	ND	190	
71-55-6	1,1,1-Trichloroethane	ND	750	ND	140	
71-43-2	Benzene	2,200	750	700	230	
56-23-5	Carbon Tetrachloride	ND	750	ND	120	
110-82-7	Cyclohexane	50,000	1,500	14,000	440	
78-87-5	1,2-Dichloropropane	ND	750	ND	160	
75-27-4	Bromodichloromethane	ND	750	ND	110	
79-01-6	Trichloroethene	ND	750	ND	140	
123-91-1	1,4-Dioxane	ND	750	ND	210	
80-62-6	Methyl Methacrylate	ND	1,500	ND	370	
142-82-5	n-Heptane	62,000	750	15,000	180	
10061-01-5	cis-1,3-Dichloropropene	ND	750	ND	170	
108-10-1	4-Methyl-2-pentanone	ND	750	ND	180	
10061-02-6	trans-1,3-Dichloropropene	ND	750	ND	170	
79-00-5	1,1,2-Trichloroethane	ND	750	ND	140	
108-88-3	Toluene	ND	750	ND	200	
591-78-6	2-Hexanone	ND	750	ND	180	
124-48-1	Dibromochloromethane	ND	750	ND	88	
106-93-4	1,2-Dibromoethane	ND	750	ND	98	
123-86-4	n-Butyl Acetate	ND	750	ND	160	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

-0.68

Client:	Rescon Alaska
Client Sample ID:	SGMW-2
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00907

ALS Project ID: P1403938 ALS Sample ID: P1403938-001

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 6.29

Canister Dilution Factor: 1.50

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	47,000	750	10,000	160	
127-18-4	Tetrachloroethene	ND	750	ND	110	
108-90-7	Chlorobenzene	ND	750	ND	160	
100-41-4	Ethylbenzene	8,800	750	2,000	170	
179601-23-1	m,p-Xylenes	8,700	1,500	2,000	350	
75-25-2	Bromoform	ND	750	ND	73	
100-42-5	Styrene	ND	750	ND	180	
95-47-6	o-Xylene	ND	750	ND	170	
111-84-2	n-Nonane	9,800	750	1,900	140	
79-34-5	1,1,2,2-Tetrachloroethane	ND	750	ND	110	
98-82-8	Cumene	4,000	750	810	150	
80-56-8	alpha-Pinene	ND	750	ND	130	
103-65-1	n-Propylbenzene	5,300	750	1,100	150	
622-96-8	4-Ethyltoluene	4,300	750	870	150	
108-67-8	1,3,5-Trimethylbenzene	6,700	750	1,400	150	
95-63-6	1,2,4-Trimethylbenzene	11,000	750	2,300	150	
100-44-7	Benzyl Chloride	ND	750	ND	140	
541-73-1	1,3-Dichlorobenzene	ND	750	ND	120	
106-46-7	1,4-Dichlorobenzene	ND	750	ND	120	
95-50-1	1,2-Dichlorobenzene	ND	750	ND	120	
5989-27-5	d-Limonene	ND	750	ND	130	
96-12-8	1,2-Dibromo-3-chloropropane	ND	750	ND	78	
120-82-1	1,2,4-Trichlorobenzene	ND	750	ND	100	
91-20-3	Naphthalene	ND	750	ND	140	
87-68-3	Hexachlorobutadiene	ND	750	ND	70	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-X
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00259

ALS Project ID: P1403938 ALS Sample ID: P1403938-002

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig): -0.41

Final Pressure (psig): 5.70

Canister Dilution Factor: 1.43

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	720	ND	420	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	720	ND	140	
74-87-3	Chloromethane	ND	720	ND	350	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	720	ND	100	
75-01-4	Vinyl Chloride	1,300	720	520	280	
106-99-0	1,3-Butadiene	ND	720	ND	320	
74-83-9	Bromomethane	ND	720	ND	180	
75-00-3	Chloroethane	ND	720	ND	270	
64-17-5	Ethanol	ND	7,200	ND	3,800	
75-05-8	Acetonitrile	ND	720	ND	430	
107-02-8	Acrolein	ND	2,900	ND	1,200	
67-64-1	Acetone	ND	7,200	ND	3,000	
75-69-4	Trichlorofluoromethane	ND	720	ND	130	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	7,200	ND	2,900	
107-13-1	Acrylonitrile	ND	720	ND	330	
75-35-4	1,1-Dichloroethene	ND	720	ND	180	
75-09-2	Methylene Chloride	ND	720	ND	210	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	720	ND	230	
76-13-1	Trichlorotrifluoroethane	ND	720	ND	93	
75-15-0	Carbon Disulfide	ND	7,200	ND	2,300	
156-60-5	trans-1,2-Dichloroethene	ND	720	ND	180	
75-34-3	1,1-Dichloroethane	ND	720	ND	180	
1634-04-4	Methyl tert-Butyl Ether	ND	720	ND	200	
108-05-4	Vinyl Acetate	ND	7,200	ND	2,000	
78-93-3	2-Butanone (MEK)	ND	7,200	ND	2,400	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

-0.41

Client:	Rescon Alaska
Client Sample ID:	SGMW-X
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00259

ALS Project ID: P1403938 ALS Sample ID: P1403938-002

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 5.70

Canister Dilution Factor: 1.43

CAS #	Compound	Result	MRL	Result	MRL	Data
156 50 2	-i. 1.2 Dishlamathana	μg/m ³	μg/m ³	<u>ppbv</u>	ppb V	Qualifier
150-59-2	CIS-1,2-Dichloroethene	1,/00	/20	420	180	
141-78-6	Ethyl Acetate	ND	1,400	ND	400	
110-54-3	n-Hexane	40,000	720	11,000	200	
67-66-3	Chloroform	ND	720	ND	150	
109-99-9	Tetrahydrofuran (THF)	ND	720	ND	240	
107-06-2	1,2-Dichloroethane	ND	720	ND	180	
71-55-6	1,1,1-Trichloroethane	ND	720	ND	130	
71-43-2	Benzene	1,700	720	530	220	
56-23-5	Carbon Tetrachloride	ND	720	ND	110	
110-82-7	Cyclohexane	38,000	1,400	11,000	420	
78-87-5	1,2-Dichloropropane	ND	720	ND	150	
75-27-4	Bromodichloromethane	ND	720	ND	110	
79-01-6	Trichloroethene	ND	720	ND	130	
123-91-1	1,4-Dioxane	ND	720	ND	200	
80-62-6	Methyl Methacrylate	ND	1,400	ND	350	
142-82-5	n-Heptane	48,000	720	12,000	170	
10061-01-5	cis-1,3-Dichloropropene	ND	720	ND	160	
108-10-1	4-Methyl-2-pentanone	ND	720	ND	170	
10061-02-6	trans-1,3-Dichloropropene	ND	720	ND	160	
79-00-5	1,1,2-Trichloroethane	ND	720	ND	130	
108-88-3	Toluene	ND	720	ND	190	
591-78-6	2-Hexanone	ND	720	ND	170	
124-48-1	Dibromochloromethane	ND	720	ND	84	
106-93-4	1,2-Dibromoethane	ND	720	ND	93	
123-86-4	n-Butyl Acetate	ND	720	ND	150	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

-0.41

Client:	Rescon Alaska
Client Sample ID:	SGMW-X
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00259

ALS Project ID: P1403938 ALS Sample ID: P1403938-002

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/8/14 Volume(s) Analyzed: 0.0010 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 5.70

Canister Dilution Factor: 1.43

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	38,000	720	8,100	150	
127-18-4	Tetrachloroethene	ND	720	ND	110	
108-90-7	Chlorobenzene	ND	720	ND	160	
100-41-4	Ethylbenzene	6,900	720	1,600	160	
179601-23-1	m,p-Xylenes	6,900	1,400	1,600	330	
75-25-2	Bromoform	ND	720	ND	69	
100-42-5	Styrene	ND	720	ND	170	
95-47-6	o-Xylene	ND	720	ND	160	
111-84-2	n-Nonane	8,000	720	1,500	140	
79-34-5	1,1,2,2-Tetrachloroethane	ND	720	ND	100	
98-82-8	Cumene	3,200	720	650	150	
80-56-8	alpha-Pinene	ND	720	ND	130	
103-65-1	n-Propylbenzene	4,300	720	870	150	
622-96-8	4-Ethyltoluene	3,300	720	680	150	
108-67-8	1,3,5-Trimethylbenzene	5,300	720	1,100	150	
95-63-6	1,2,4-Trimethylbenzene	8,800	720	1,800	150	
100-44-7	Benzyl Chloride	ND	720	ND	140	
541-73-1	1,3-Dichlorobenzene	ND	720	ND	120	
106-46-7	1,4-Dichlorobenzene	ND	720	ND	120	
95-50-1	1,2-Dichlorobenzene	ND	720	ND	120	
5989-27-5	d-Limonene	ND	720	ND	130	
96-12-8	1,2-Dibromo-3-chloropropane	ND	720	ND	74	
120-82-1	1,2,4-Trichlorobenzene	ND	720	ND	96	
91-20-3	Naphthalene	ND	720	ND	140	
87-68-3	Hexachlorobutadiene	ND	720	ND	67	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-1
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00960

ALS Project ID: P1403938 ALS Sample ID: P1403938-003

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.40 Liter(s)

Initial Pressure (psig): -0.60

Final Pressure (psig): 8.87

Canister Dilution Factor: 1.67

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	2.1	ND	1.2	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	2.1	0.44	0.42	
74-87-3	Chloromethane	ND	2.1	ND	1.0	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	2.1	ND	0.30	
75-01-4	Vinyl Chloride	2.3	2.1	0.91	0.82	
106-99-0	1,3-Butadiene	ND	2.1	ND	0.94	
74-83-9	Bromomethane	ND	2.1	ND	0.54	
75-00-3	Chloroethane	ND	2.1	ND	0.79	
64-17-5	Ethanol	ND	21	ND	11	
75-05-8	Acetonitrile	ND	2.1	ND	1.2	
107-02-8	Acrolein	ND	8.4	ND	3.6	
67-64-1	Acetone	ND	21	ND	8.8	
75-69-4	Trichlorofluoromethane	4.9	2.1	0.88	0.37	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	21	ND	8.5	
107-13-1	Acrylonitrile	ND	2.1	ND	0.96	
75-35-4	1,1-Dichloroethene	ND	2.1	ND	0.53	
75-09-2	Methylene Chloride	ND	2.1	ND	0.60	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	2.1	ND	0.67	
76-13-1	Trichlorotrifluoroethane	ND	2.1	ND	0.27	
75-15-0	Carbon Disulfide	ND	21	ND	6.7	
156-60-5	trans-1,2-Dichloroethene	ND	2.1	ND	0.53	
75-34-3	1,1-Dichloroethane	ND	2.1	ND	0.52	
1634-04-4	Methyl tert-Butyl Ether	ND	2.1	ND	0.58	
108-05-4	Vinyl Acetate	ND	21	ND	5.9	
78-93-3	2-Butanone (MEK)	ND	21	ND	7.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

-0.60

Client:	Rescon Alaska
Client Sample ID:	SGMW-1
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00960

ALS Project ID: P1403938 ALS Sample ID: P1403938-003

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.40 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 8.87

Canister Dilution Factor: 1.67

CAS #	Compound	Result ug/m ³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	3.1	2.1	0.78	0.53	
141-78-6	Ethyl Acetate	ND	4.2	ND	1.2	
110-54-3	n-Hexane	52	2.1	15	0.59	
67-66-3	Chloroform	ND	2.1	ND	0.43	
109-99-9	Tetrahydrofuran (THF)	ND	2.1	ND	0.71	
107-06-2	1,2-Dichloroethane	ND	2.1	ND	0.52	
71-55-6	1,1,1-Trichloroethane	ND	2.1	ND	0.38	
71-43-2	Benzene	3.2	2.1	1.0	0.65	
56-23-5	Carbon Tetrachloride	ND	2.1	ND	0.33	
110-82-7	Cyclohexane	84	4.2	25	1.2	
78-87-5	1,2-Dichloropropane	ND	2.1	ND	0.45	
75-27-4	Bromodichloromethane	ND	2.1	ND	0.31	
79-01-6	Trichloroethene	ND	2.1	ND	0.39	
123-91-1	1,4-Dioxane	ND	2.1	ND	0.58	
80-62-6	Methyl Methacrylate	ND	4.2	ND	1.0	
142-82-5	n-Heptane	76	2.1	19	0.51	
10061-01-5	cis-1,3-Dichloropropene	ND	2.1	ND	0.46	
108-10-1	4-Methyl-2-pentanone	ND	2.1	ND	0.51	
10061-02-6	trans-1,3-Dichloropropene	ND	2.1	ND	0.46	
79-00-5	1,1,2-Trichloroethane	ND	2.1	ND	0.38	
108-88-3	Toluene	3.1	2.1	0.83	0.55	
591-78-6	2-Hexanone	ND	2.1	ND	0.51	
124-48-1	Dibromochloromethane	ND	2.1	ND	0.25	
106-93-4	1,2-Dibromoethane	ND	2.1	ND	0.27	
123-86-4	n-Butyl Acetate	ND	2.1	ND	0.44	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

-0.60

Client:	Rescon Alaska
Client Sample ID:	SGMW-1
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00960

ALS Project ID: P1403938 ALS Sample ID: P1403938-003

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.40 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 8.87

Canister Dilution Factor: 1.67

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	75	2.1	16	0.45	
127-18-4	Tetrachloroethene	ND	2.1	ND	0.31	
108-90-7	Chlorobenzene	ND	2.1	ND	0.45	
100-41-4	Ethylbenzene	17	2.1	3.9	0.48	
179601-23-1	m,p-Xylenes	19	4.2	4.4	0.96	
75-25-2	Bromoform	ND	2.1	ND	0.20	
100-42-5	Styrene	ND	2.1	ND	0.49	
95-47-6	o-Xylene	ND	2.1	ND	0.48	
111-84-2	n-Nonane	34	2.1	6.5	0.40	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.1	ND	0.30	
98-82-8	Cumene	14	2.1	2.9	0.42	
80-56-8	alpha-Pinene	ND	2.1	ND	0.37	
103-65-1	n-Propylbenzene	26	2.1	5.2	0.42	
622-96-8	4-Ethyltoluene	25	2.1	5.0	0.42	
108-67-8	1,3,5-Trimethylbenzene	46	2.1	9.4	0.42	
95-63-6	1,2,4-Trimethylbenzene	95	2.1	19	0.42	
100-44-7	Benzyl Chloride	ND	2.1	ND	0.40	
541-73-1	1,3-Dichlorobenzene	ND	2.1	ND	0.35	
106-46-7	1,4-Dichlorobenzene	ND	2.1	ND	0.35	
95-50-1	1,2-Dichlorobenzene	ND	2.1	ND	0.35	
5989-27-5	d-Limonene	ND	2.1	ND	0.37	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.1	ND	0.22	
120-82-1	1,2,4-Trichlorobenzene	ND	2.1	ND	0.28	
91-20-3	Naphthalene	100	2.1	20	0.40	
87-68-3	Hexachlorobutadiene	ND	2.1	ND	0.20	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-3
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00009

ALS Project ID: P1403938 ALS Sample ID: P1403938-004

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.020 Liter(s)

Initial Pressure (psig): -1.21

Final Pressure (psig): 0.0

Canister Dilution Factor: 1.09

CAS #	Compound	Result µg/m³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	27	ND	16	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	27	ND	5.5	
74-87-3	Chloromethane	ND	27	ND	13	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	27	ND	3.9	
75-01-4	Vinyl Chloride	ND	27	ND	11	
106-99-0	1,3-Butadiene	ND	27	ND	12	
74-83-9	Bromomethane	ND	27	ND	7.0	
75-00-3	Chloroethane	ND	27	ND	10	
64-17-5	Ethanol	ND	270	ND	140	
75-05-8	Acetonitrile	ND	27	ND	16	
107-02-8	Acrolein	ND	110	ND	48	
67-64-1	Acetone	ND	270	ND	110	
75-69-4	Trichlorofluoromethane	87	27	15	4.9	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	270	ND	110	
107-13-1	Acrylonitrile	ND	27	ND	13	
75-35-4	1,1-Dichloroethene	ND	27	ND	6.9	
75-09-2	Methylene Chloride	ND	27	ND	7.8	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	27	ND	8.7	
76-13-1	Trichlorotrifluoroethane	ND	27	ND	3.6	
75-15-0	Carbon Disulfide	ND	270	ND	88	
156-60-5	trans-1,2-Dichloroethene	ND	27	ND	6.9	
75-34-3	1,1-Dichloroethane	ND	27	ND	6.7	
1634-04-4	Methyl tert-Butyl Ether	ND	27	ND	7.6	
108-05-4	Vinyl Acetate	ND	270	ND	77	
78-93-3	2-Butanone (MEK)	ND	270	ND	92	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-3
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00009

ALS Project ID: P1403938 ALS Sample ID: P1403938-004

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.020 Liter(s)

Initial Pressure (psig): -1.21

Final Pressure (psig): 0.0

Canister Dilution Factor: 1.09

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	27	ND	6.9	
141-78-6	Ethyl Acetate	ND	55	ND	15	
110-54-3	n-Hexane	ND	27	ND	7.7	
67-66-3	Chloroform	ND	27	ND	5.6	
109-99-9	Tetrahydrofuran (THF)	ND	27	ND	9.2	
107-06-2	1,2-Dichloroethane	ND	27	ND	6.7	
71-55-6	1,1,1-Trichloroethane	ND	27	ND	5.0	
71-43-2	Benzene	ND	27	ND	8.5	
56-23-5	Carbon Tetrachloride	ND	27	ND	4.3	
110-82-7	Cyclohexane	ND	55	ND	16	
78-87-5	1,2-Dichloropropane	ND	27	ND	5.9	
75-27-4	Bromodichloromethane	ND	27	ND	4.1	
79-01-6	Trichloroethene	330	27	62	5.1	
123-91-1	1,4-Dioxane	ND	27	ND	7.6	
80-62-6	Methyl Methacrylate	ND	55	ND	13	
142-82-5	n-Heptane	ND	27	ND	6.7	
10061-01-5	cis-1,3-Dichloropropene	ND	27	ND	6.0	
108-10-1	4-Methyl-2-pentanone	ND	27	ND	6.7	
10061-02-6	trans-1,3-Dichloropropene	ND	27	ND	6.0	
79-00-5	1,1,2-Trichloroethane	ND	27	ND	5.0	
108-88-3	Toluene	ND	27	ND	7.2	
591-78-6	2-Hexanone	ND	27	ND	6.7	
124-48-1	Dibromochloromethane	ND	27	ND	3.2	
106-93-4	1,2-Dibromoethane	ND	27	ND	3.5	
123-86-4	n-Butyl Acetate	ND	27	ND	5.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Rescon Alaska
Client Sample ID:	SGMW-3
Client Project ID:	Mammoth Trucking / 26-001

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8
Analyst:	Wida Ang
Sample Type:	1.0 L Summa Canister
Test Notes:	
Container ID:	1SC00009

ALS Project ID: P1403938 ALS Sample ID: P1403938-004

Date Collected: 9/23/14 Date Received: 9/26/14 Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.020 Liter(s)

Initial Pressure (psig): -1.21

Final Pressure (psig): 0.0

Canister Dilution Factor: 1.09

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	27	ND	5.8	
127-18-4	Tetrachloroethene	5,400	27	800	4.0	
108-90-7	Chlorobenzene	ND	27	ND	5.9	
100-41-4	Ethylbenzene	ND	27	ND	6.3	
179601-23-1	m,p-Xylenes	ND	55	ND	13	
75-25-2	Bromoform	ND	27	ND	2.6	
100-42-5	Styrene	ND	27	ND	6.4	
95-47-6	o-Xylene	ND	27	ND	6.3	
111-84-2	n-Nonane	ND	27	ND	5.2	
79-34-5	1,1,2,2-Tetrachloroethane	ND	27	ND	4.0	
98-82-8	Cumene	ND	27	ND	5.5	
80-56-8	alpha-Pinene	ND	27	ND	4.9	
103-65-1	n-Propylbenzene	ND	27	ND	5.5	
622-96-8	4-Ethyltoluene	ND	27	ND	5.5	
108-67-8	1,3,5-Trimethylbenzene	ND	27	ND	5.5	
95-63-6	1,2,4-Trimethylbenzene	ND	27	ND	5.5	
100-44-7	Benzyl Chloride	ND	27	ND	5.3	
541-73-1	1,3-Dichlorobenzene	ND	27	ND	4.5	
106-46-7	1,4-Dichlorobenzene	ND	27	ND	4.5	
95-50-1	1,2-Dichlorobenzene	ND	27	ND	4.5	
5989-27-5	d-Limonene	ND	27	ND	4.9	
96-12-8	1,2-Dibromo-3-chloropropane	ND	27	ND	2.8	
120-82-1	1,2,4-Trichlorobenzene	ND	27	ND	3.7	
91-20-3	Naphthalene	ND	27	ND	5.2	
87-68-3	Hexachlorobutadiene	ND	27	ND	2.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Rescon Alaska Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Tast Coda:	EDA TO 15	Data Colloctad: N	٨
Test Code.	LFA 10-15	Date Conecteu. M	n
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA	A
Analyst:	Wida Ang	Date Analyzed: 10	/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	μg/m ND	<u>με</u> /Π 0.50	ppb v	0.29	Quannier
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
75-71-8	Chloromethane	ND	0.50	ND	0.10	
74-07-5	1.2 Diablara 1.1.2.2	ND	0.50	ND	0.24	
76-14-2	tetrofluoroothone (CEC 114)	ND	0.50	ND	0.072	
75-01-4	Vinvl Chloride	ND	0.50	ND	0.20	
106-99-0	1 3-Butadiene	ND	0.50	ND	0.23	
74_83_9	Bromomethane	ND	0.50	ND	0.13	
75.00.3	Chloroethane	ND	0.50	ND	0.15	
64 17 5	Ethanol	ND	5.0	ND	0.19	
04-17-3 75.05.8	Agetopitrile	ND	0.50	ND	0.30	
107.02.8	AcetoIntine	ND	0.30		0.30	
107-02-8	Acrolem	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Rescon Alaska Client: Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Test Code:	EPA TO-15	Date Collected: N	А
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: N	A
Analyst:	Wida Ang	Date Analyzed: 10)/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
	_	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Rescon Alaska Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Test Code:	EPA TO-15	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA	L
Analyst:	Wida Ang	Date Analyzed: 10/	7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00 L
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: Rescon Alaska Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Tast Coda:	EDA TO 15	Data Colloctad: N	٨
Test Code.	LFA 10-15	Date Conecteu. M	n
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA	A
Analyst:	Wida Ang	Date Analyzed: 10	/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data Ouclifior
115.07.1	Dromono	μg/m ²	μg/m	hhn A	0 20	Quaimer
113-07-1		ND	0.30	ND	0.29	
/5-/1-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Rescon Alaska Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Test Code:	EPA TO-15	Date Collected: N	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: N	A
Analyst:	Wida Ang	Date Analyzed: 10)/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
	_	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 3 of 3

Client: Rescon Alaska Client Sample ID: Method Blank Client Project ID: Mammoth Trucking / 26-001

Test Code:	EPA TO-15	Date Collected:	NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received:	NA
Analyst:	Wida Ang	Date Analyzed:	10/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	1.00
Test Notes:			

ALS Project ID: P1403938 ALS Sample ID: P141007-MB

Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client:	Rescon Alaska	
Client Sample ID:	Lab Control Sample	ALS Project ID: P1403938
Client Project ID:	Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 10/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg/m³	μg/m³		Limits	Qualifier
115-07-1	Propene	200	180	90	50-128	
75-71-8	Dichlorodifluoromethane (CFC 12)	204	189	93	66-117	
74-87-3	Chloromethane	198	190	96	51-133	
76 14 2	1,2-Dichloro-1,1,2,2-			00	65 117	
/0-14-2	tetrafluoroethane (CFC 114)	206	202	98	03-117	
75-01-4	Vinyl Chloride	202	209	103	61-127	
106-99-0	1,3-Butadiene	214	224	105	65-132	
74-83-9	Bromomethane	202	211	104	62-114	
75-00-3	Chloroethane	202	204	101	64-122	
64-17-5	Ethanol	1,020	911	89	57-131	
75-05-8	Acetonitrile	204	191	94	52-135	
107-02-8	Acrolein	214	241	113	64-124	
67-64-1	Acetone	1,080	949	88	60-113	
75-69-4	Trichlorofluoromethane	198	209	106	64-112	
67-63-0	2-Propanol (Isopropyl Alcohol)	420	391	93	62-129	
107-13-1	Acrylonitrile	208	210	101	69-133	
75-35-4	1,1-Dichloroethene	214	218	102	70-114	
75-09-2	Methylene Chloride	216	213	99	63-103	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	218	186	85	57-135	
76-13-1	Trichlorotrifluoroethane	216	209	97	69-116	
75-15-0	Carbon Disulfide	196	220	112	66-118	
156-60-5	trans-1,2-Dichloroethene	212	215	101	69-123	
75-34-3	1,1-Dichloroethane	208	200	96	65-118	
1634-04-4	Methyl tert-Butyl Ether	212	199	94	57-125	
108-05-4	Vinyl Acetate	1,020	1100	108	69-131	
78-93-3	2-Butanone (MEK)	216	216	100	63-121	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Test Notes:

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	Rescon Alaska	
Client Sample ID:	Lab Control Sample	ALS Project ID: P1403938
Client Project ID:	Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA

Wida Ang

1.0 L Summa Canister

Analyst:

Sample Type:

Test Notes:

Date Collected: NA Date Received: NA Date Analyzed: 10/7/14 Volume(s) Analyzed: 0.125 Liter(s)

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	214	211	99	69-119	
141-78-6	Ethyl Acetate	428	427	100	65-129	
110-54-3	n-Hexane	210	220	105	55-116	
67-66-3	Chloroform	216	205	95	68-111	
109-99-9	Tetrahydrofuran (THF)	206	201	98	69-120	
107-06-2	1,2-Dichloroethane	210	201	96	67-117	
71-55-6	1,1,1-Trichloroethane	208	198	95	74-116	
71-43-2	Benzene	220	184	84	61-109	
56-23-5	Carbon Tetrachloride	214	220	103	76-120	
110-82-7	Cyclohexane	422	396	94	72-115	
78-87-5	1,2-Dichloropropane	212	197	93	67-119	
75-27-4	Bromodichloromethane	216	213	99	78-124	
79-01-6	Trichloroethene	208	203	98	69-115	
123-91-1	1,4-Dioxane	218	207	95	69-127	
80-62-6	Methyl Methacrylate	420	420	100	76-128	
142-82-5	n-Heptane	214	202	94	66-118	
10061-01-5	cis-1,3-Dichloropropene	226	222	98	77-124	
108-10-1	4-Methyl-2-pentanone	218	207	95	66-134	
10061-02-6	trans-1,3-Dichloropropene	216	221	102	80-130	
79-00-5	1,1,2-Trichloroethane	212	205	97	75-119	
108-88-3	Toluene	212	209	99	68-114	
591-78-6	2-Hexanone	222	197	89	60-136	
124-48-1	Dibromochloromethane	220	217	99	75-132	
106-93-4	1,2-Dibromoethane	216	213	99	72-122	
123-86-4	n-Butyl Acetate	224	200	89	60-137	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client:	Rescon Alaska	
Client Sample ID:	Lab Control Sample	ALS Project ID: P1403938
Client Project ID:	Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS

Test Code:	EPA TO-15	Date Collected: N	NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: 1	NA
Analyst:	Wida Ang	Date Analyzed: 1	0/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)
Test Notes:			

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	208	197	95	66-120	
127-18-4	Tetrachloroethene	198	190	96	67-120	
108-90-7	Chlorobenzene	216	203	94	69-114	
100-41-4	Ethylbenzene	212	199	94	71-117	
179601-23-1	m,p-Xylenes	420	393	94	71-118	
75-25-2	Bromoform	216	245	113	76-149	
100-42-5	Styrene	218	210	96	71-128	
95-47-6	o-Xylene	206	192	93	72-118	
111-84-2	n-Nonane	204	187	92	63-123	
79-34-5	1,1,2,2-Tetrachloroethane	202	200	99	73-124	
98-82-8	Cumene	204	189	93	71-118	
80-56-8	alpha-Pinene	208	194	93	71-123	
103-65-1	n-Propylbenzene	202	189	94	71-120	
622-96-8	4-Ethyltoluene	212	196	92	71-121	
108-67-8	1,3,5-Trimethylbenzene	212	197	93	72-121	
95-63-6	1,2,4-Trimethylbenzene	210	202	96	71-122	
100-44-7	Benzyl Chloride	218	239	110	79-143	
541-73-1	1,3-Dichlorobenzene	218	216	99	67-121	
106-46-7	1,4-Dichlorobenzene	212	203	96	68-121	
95-50-1	1,2-Dichlorobenzene	214	213	100	68-121	
5989-27-5	d-Limonene	210	200	95	69-137	
96-12-8	1,2-Dibromo-3-chloropropane	206	231	112	73-145	
120-82-1	1,2,4-Trichlorobenzene	210	238	113	60-135	
91-20-3	Naphthalene	196	237	121	63-142	
87-68-3	Hexachlorobutadiene	214	216	101	65-127	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Volume(s) Analyzed:

0.125 Liter(s)

Client:	Rescon Alaska	
Client Sample ID:	Lab Control Sample	ALS Project ID: P1403938
Client Project ID:	Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 10/7/14

CAS #	Compound	Spike Amount µg/m³	Result µg/m ³	% Recovery	ALS Acceptance Limits	Data Qualifier
115-07-1	Propene	200	160	80	50-128	
75-71-8	Dichlorodifluoromethane (CFC 12)	204	167	82	66-117	
74-87-3	Chloromethane	198	168	85	51-133	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	206	180	87	65-117	
75-01-4	Vinyl Chloride	202	188	93	61-127	
106-99-0	1,3-Butadiene	214	206	96	65-132	
74-83-9	Bromomethane	202	189	94	62-114	
75-00-3	Chloroethane	202	185	92	64-122	
64-17-5	Ethanol	1,020	817	80	57-131	
75-05-8	Acetonitrile	204	171	84	52-135	
107-02-8	Acrolein	214	217	101	64-124	
67-64-1	Acetone	1,080	861	80	60-113	
75-69-4	Trichlorofluoromethane	198	186	94	64-112	
67-63-0	2-Propanol (Isopropyl Alcohol)	420	350	83	62-129	
107-13-1	Acrylonitrile	208	189	91	69-133	
75-35-4	1,1-Dichloroethene	214	197	92	70-114	
75-09-2	Methylene Chloride	216	192	89	63-103	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	218	166	76	57-135	
76-13-1	Trichlorotrifluoroethane	216	186	86	69-116	
75-15-0	Carbon Disulfide	196	199	102	66-118	
156-60-5	trans-1,2-Dichloroethene	212	193	91	69-123	
75-34-3	1,1-Dichloroethane	208	180	87	65-118	
1634-04-4	Methyl tert-Butyl Ether	212	179	84	57-125	
108-05-4	Vinyl Acetate	1,020	1020	100	69-131	
78-93-3	2-Butanone (MEK)	216	200	93	63-121	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Sample Type:

Test Notes:

1.0 L Summa Canister

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client: Client Sample ID:	Rescon Alaska Lab Control Sample	ALS Project ID: P1403938
Client Project ID:	Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: NA

Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: N	IA	
Analyst:	Wida Ang	Date Analyzed: 1	0/7/14	
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	0.125	Liter(s)
Test Notes:				

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	214	190	89	69-119	
141-78-6	Ethyl Acetate	428	398	93	65-129	
110-54-3	n-Hexane	210	210	100	55-116	
67-66-3	Chloroform	216	185	86	68-111	
109-99-9	Tetrahydrofuran (THF)	206	184	89	69-120	
107-06-2	1,2-Dichloroethane	210	181	86	67-117	
71-55-6	1,1,1-Trichloroethane	208	176	85	74-116	
71-43-2	Benzene	220	169	77	61-109	
56-23-5	Carbon Tetrachloride	214	198	93	76-120	
110-82-7	Cyclohexane	422	360	85	72-115	
78-87-5	1,2-Dichloropropane	212	181	85	67-119	
75-27-4	Bromodichloromethane	216	191	88	78-124	
79-01-6	Trichloroethene	208	187	90	69-115	
123-91-1	1,4-Dioxane	218	188	86	69-127	
80-62-6	Methyl Methacrylate	420	387	92	76-128	
142-82-5	n-Heptane	214	188	88	66-118	
10061-01-5	cis-1,3-Dichloropropene	226	202	89	77-124	
108-10-1	4-Methyl-2-pentanone	218	186	85	66-134	
10061-02-6	trans-1,3-Dichloropropene	216	198	92	80-130	
79-00-5	1,1,2-Trichloroethane	212	185	87	75-119	
108-88-3	Toluene	212	186	88	68-114	
591-78-6	2-Hexanone	222	172	77	60-136	
124-48-1	Dibromochloromethane	220	192	87	75-132	
106-93-4	1,2-Dibromoethane	216	186	86	72-122	
123-86-4	n-Butyl Acetate	224	174	78	60-137	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client: Rescon Alaska	
Client Sample ID: Lab Control Sample	ALS Project ID: P1403938
Client Project ID: Mammoth Trucking / 26-001	ALS Sample ID: P141007-LCS

Test Code:	EPA TO-15	Date Collected: N	NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8	Date Received: N	NA
Analyst:	Wida Ang	Date Analyzed: 1	0/7/14
Sample Type:	1.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)
Test Notes:			

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	208	177	85	66-120	
127-18-4	Tetrachloroethene	198	171	86	67-120	
108-90-7	Chlorobenzene	216	182	84	69-114	
100-41-4	Ethylbenzene	212	175	83	71-117	
179601-23-1	m,p-Xylenes	420	345	82	71-118	
75-25-2	Bromoform	216	214	99	76-149	
100-42-5	Styrene	218	185	85	71-128	
95-47-6	o-Xylene	206	170	83	72-118	
111-84-2	n-Nonane	204	164	80	63-123	
79-34-5	1,1,2,2-Tetrachloroethane	202	174	86	73-124	
98-82-8	Cumene	204	165	81	71-118	
80-56-8	alpha-Pinene	208	170	82	71-123	
103-65-1	n-Propylbenzene	202	166	82	71-120	
622-96-8	4-Ethyltoluene	212	175	83	71-121	
108-67-8	1,3,5-Trimethylbenzene	212	172	81	72-121	
95-63-6	1,2,4-Trimethylbenzene	210	176	84	71-122	
100-44-7	Benzyl Chloride	218	207	95	79-143	
541-73-1	1,3-Dichlorobenzene	218	189	87	67-121	
106-46-7	1,4-Dichlorobenzene	212	178	84	68-121	
95-50-1	1,2-Dichlorobenzene	214	188	88	68-121	
5989-27-5	d-Limonene	210	175	83	69-137	
96-12-8	1,2-Dibromo-3-chloropropane	206	199	97	73-145	
120-82-1	1,2,4-Trichlorobenzene	210	205	98	60-135	
91-20-3	Naphthalene	196	204	104	63-142	
87-68-3	Hexachlorobutadiene	214	187	87	65-127	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

APPENDIX D ADEC LABORATORY REVIEW CHECKLIST

Contaminated Sites Program Spill Prevention and Response Division Alaska Department of Environmental Conservation

Laboratory Data Review Checklist for Air Samples

Completed by:	Mike Boese			
Title:	Chemist Date: 12/12/2014			
CS Report Name:	Former Mammoth Trucking Report Date: 10/13/2014			
Consultant Firm:	Fairbanks Environmental Services			
Laboratory Name:	ALS – Simi Valley Laboratory Report Number: P1403938R1			
DEC File Number:	2100.26.202 DEC Haz ID: 23887			
 Laboratory Laboratory	LAP-certified laboratory receive and <u>perform</u> all of the submitted sample analyses? es No N/A (Please explain.)			
b. If the sam laboratory Yes Comments:	nples were transferred to another "network" laboratory or sub-contracted to an alternate y, was the laboratory performing the analyses NELAP-approved? No ■N/A (Please explain.)			
No samples	No samples were transferred.			
 2. <u>Chain of Custody (COC)</u> a. Was the COC information completed, signed and dated (including released/received by)? ■Yes No N/A (Please explain.) Comments: 				
b. Was the c ■Ye Comments:	correct analyses requested? es No N/A (Please explain.)			

- 3. Laboratory Sample Receipt Documentation
 - a. Was the sample condition documented? Were samples collected in gas-tight, opaque/dark Summa canisters or other DEC-approved containers? Was the canister vacuum/pressure checked, recorded upon receipt and were there no open valves?

```
∎Yes No
            N/A (Please explain.)
```

Comments:

b. If there were any discrepancies, were they documented? Examples include incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.

No \blacksquare N/A (Please explain.) Yes

Comments:

No discrepancies were noted.

c. Was the data quality or usability affected? (Please explain.)

Comments:

No, sample condition and sample documentation were acceptable.

- 4. Case Narrative
 - a. Is there a case narrative and is it understandable? ∎Yes No
 - N/A (Please explain.)

Comments:

b. Were there any discrepancies, errors or QC failures identified by the lab? • No N/A (Please explain.) Yes

Comments:

c. Were all corrective actions documented? Yes No \blacksquare N/A (Please explain.)

Comments:

No corrective actions were necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

No discrepancies were noted during sample analysis. The results reported above the DL but below the RL are considered to be high biased because the Summa canister cleaning is only documented down to the RL.

5. Samples Results

a. Was the correct analyses performed/reported as requested on COC?

■Yes No N/A (Please explain.)

Comments:

b. Were the samples analyzed within 30 days of collection or within the time required by the method?
 ■Yes No N/A (Please explain.)

Comments:

c. Are the reported PQLs less than the Target Screening Level or the minimum required detection level for the project?

Yes \blacksquare No N/A (Please explain.)

Comments:

Due to sample dilution, the reported detection limits for several non-detect VOC analytes did not meet the Target Levels in the soil gas samples from SGMW-2. Consequently, the absence of these VOC analytes at levels exceeding the target level at that location cannot be confirmed. Impact to data is minor since both of the impacted samples (primary and field duplicate) exceeded cleanup levels for other VOC compounds.

RLs were reported with acceptable analytical sensitivity in samples SGMW-1 and SGMW-3.

d. Was the data quality or usability affected?

Comments:

Several VOC analytes may not have been detected if present in samples from SGMW-2. Impact is minor since the contaminated samples exceeded target levels for several other VOC analytes.

- 6. <u>QC Samples</u>
 - a. Method Blank
 - i. Was one method blank reported per analysis and 20 samples?
 - **\blacksquare**Yes No N/A (Please explain.)

Comments:

- ii. Were all method blank results less than PQL?
 - ■Yes No N/A (Please explain.)

Comments:

iii. If above PQL, what samples are affected?

Comments:

Not applicable.

iv. Do the affected sample(s) have data flags and, if so, are the data flags clearly defined? Yes No ■N/A (Please explain.)

Comments:

There were no MB detections.

v. Was the data quality or usability affected? (Please explain.)

Comments:

No impact to data since there were no MB detections.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Was there one LCS/LCSD or one LCS and a sample/sample duplicate pair reported per analysis and 20 samples?
 - **\blacksquare**Yes No N/A (Please explain.)

Comments:

- ii. Accuracy Were all percent recoveries (%R) reported and within method or laboratory limits? What were the project specified DQOs, if applicable?
 - **\blacksquare**Yes No N/A (Please explain.)

Comments:

Laboratory limits were used for DQOs.

iii. Precision – Were all relative percent differences (RPD) reported and were they less than method or laboratory limits? What were the project-specified DQOs, if applicable.
 Yes No ■N/A (Please explain.)

Comments:

RPDs were not calculated. Precision was not specified as a project DQO.

iv. If the %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

Not applicable

v. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No ■N/A (Please explain.)

Comments:

LCS accuracy was acceptable and no data flags were required.

vi. Is the data quality or usability affected? (Please explain.)

Comments:

No impact to data quality or usability since LCS accuracy was acceptable.

c. Surrogates

i. Are surrogate recoveries reported for field, QC and laboratory samples? Yes No \blacksquare N/A (Please explain.)

Comments:

Surrogates are not a TO-15 method requirement and were not performed.

- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits? What were the project-specified DQOs, if applicable?
 - Yes No $\blacksquare N/A$ (Please explain.)

Comments:

Surrogates are not a TO-15 method requirement and were not performed.

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
 - Yes No $\blacksquare N/A$ (Please explain.)

Comments:

Surrogates are not a TO-15 method requirement and were not performed.

iv. Was the data quality or usability affected? (Please explain.)

Comments:

Not applicable.

d. Field Duplicate

- i. Was one field duplicate submitted per analysis and 10 type (soil gas, indoor air, etc.) samples?
 - **\blacksquare**Yes No N/A (Please explain.)

Comments:

Sample SGMW-X was a field duplicate of SGMW-2.

- ii. Were they or was it submitted blind to the lab?
 - ■Yes No N/A (Please explain.)

Comments:

iii. Precision – Were all relative percent differences (RPD) less than the specified DQOs? (Recommended: 25 %)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$ Where R_1 = Sample Concentration

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration Yes No N/A (Please explain.)

Comments:

RPDs for vinyl chloride (32%), benzene (26%), cis-1,2-dichloroethene (26%), 4-ethyltoluene (26%), and cyclohexane (27%) exceeded the recommended 25% criterion and the VOC analyte n-Heptane was equal to it.

iv. Was the data quality or usability affected? (Please explain.)

Comments:

Impact to data was minor as the exceedences were all marginally above 25% criterion, and the same analytes were detected in both samples.

e. Field Blank (If not used, explain why.)

Yes No $\blacksquare N/A$ (Please explain.)

Comments:

Field blanks were not required for this project and were not collected.

i. Were all results less than the PQL?

Yes No $\blacksquare N/A$ (Please explain.)

Comments:

Field blanks were not required for this project and were not collected.

ii. If above PQL, what samples are affected?

Comments:

Not applicable

iii. Was the data quality or usability affected? (Please explain.)

Comments:

Not applicable. There does not appear to be any impact to data quality or usability from potential contamination during shipping or storage.

- 7. <u>Other Data Flags/Qualifiers</u>

 a. Were other data flags/qualifiers defined and appropriate? Yes ■No N/A (Please explain.)

Comments: