

2355 Hill Road Fairbanks, Alaska 99709-5326 (907) 458-3100 FAX: 479-5691 E-mail: <u>msl@shanwil.com</u>

Transmittal

Го:	Alaska Department of Environmental Conservation	Attn:	Mr. Dennis Harwood
	555 Cordova Street	Date:	June 30 2010
	Anchorage, Alaska 99503	Job #	31-1-11472-001
		Re:	ADOT&PF Northway Maintenance Station, Mile 1,256 Alaska Highway, Alaska

The following items are enclosed:

Copies	Description
2	Site Characterization Report

These are transmitted:

X As requested

 $\hfill\square$ For review and comment

□ For your use □ For your action □ For your information **X** For your files

Comments:

Copies to:	By: Mark Lockwood, CPG
	Title: Senior Principal Geologist

Site Characterization Report ADOT&PF Northway Maintenance Station Mile 1,256 Alaska Highway, Alaska

June 2010

Submitted To: Alaska Department of Environmental Conservation 55 Cordova Street Anchorage, Alaska 99503

> By: Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709-5326

> > 31-1-11472-001

SHANNON & WILSON, INC.

SITE CHARACTERIZATION REPORT ADOT&PF NORTHWAY MAINTENANCE STATION MILE 1,256 ALASKA HIGHWAY, ALASKA

June 30, 2010

Prepared by:

SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, Alaska 99709-5326

Mark Lockwood, CPG

Project Manager:

Mark Lockwood, CPG Senior Principal Geologist

Reviewed by:

Jon Lindstrom, Ph.D. Associate

Prepared for:

Alaska Department of Environmental Conservation 555 Cordova Street Anchorage, Alaska 99503

31-1-11472-001

TABLE OF CONTENTS

1.0	INTR	DDUCTION	1
2.0	BACK	GROUND	1
2.0	2.1	Site Location and Description	1
	2.1	Subsurface Conditions	1
	2.2	Site History and Previous Work	2
	2.3 2.4	Cleanun Levels	2
	2.4	Project Objectives	5
	2.3		
3.0	SCOP	E OF SERVICES	4
4.0	OBSE	RVATIONS AND FIELD METHODS	4
	4.1	Floor Drain/Drywell Layout	4
	4.2	Soil Stockpile Field Screening and Analytical Sampling	5
	4.3	Water Sampling	5
		4.3.1 Water Well Sampling	5
		4.3.2 Pore-water Sampling	5
	4.4	Sample Custody, Storage, and Shipping	6
	4.5	Well Search	6
	4.6	Investigation-Derived Waste Management	6
5.0	RESU	LTS	6
	5.1	Soil Samples	6
	5.2	Pore-water Samples	7
		5.2.1 Whole Fuels	7
		5.2.2 Volatile Organic Compounds	7
		5.2.3 Semi-volatile Organic Compounds	7
	5.3	Well-water	7
		5.3.1 Whole Fuels	7
		5.3.2 Volatile Organic Compounds	7
		5.3.3 Semi-volatile Organic Compounds	8
		5.3.4 Metals	8
	5.4	Campground Well	8
		5.4.1 Whole Fuels	8
		5.4.2 Volatile Organic Compounds	8
60	OUAT	ITY ASSUBANCE/OUALITY CONTROL	Q
0.0	QUAL	Sample Handling	0
	- n ·		
	0.1	Analytical Sanaitivity	9
	6.1 6.2	Analytical Sensitivity	9 9 10

TABLE OF CONTENTS (Cont.)

	6.4	Precision	10
	6.5	Data Quality Summary	11
	DIGG		
7.0	DISC	CUSSION	
	7.1	Soil Contamination	
	7.2	Soil Stockpile	12
	7.3	Water Well	12
	7.4	Pore-water Samples	13
	7.5	Data Gaps	
	7.6	Conceptual Site Model	13
8.0	CON	ICLUSIONS AND RECOMMENDATIONS	15
0.0			15
	8.1	Conclusions	15
	8.2	Recommendations	15
0.0	ттмт	ΠΑΤΙΟΝΙς	16
2.0			10

TABLE OF CONTENTS (Cont.)

TABLES

- 1 Summary of Soil Sample Results
- 2 Summary of Pore-water and Water Well Sample Results

FIGURES

- 1 Site Location
- 2 Sample Locations
- 3 USACE As-builts Dry Well
- 4 USACE As-builts Burn Pit
- 5 CSM Graphic

APPENDICES

- A Excerpt from USF&WS Tetlin National Wildlife Refuge Contaminant Assessment
- B Site Photographs
- C SGS Work Order 1095962 (soil samples) SGS Work Order 1095963 (water samples) ADEC Data Quality Review Checklists

SITE CHARACTERIZATION REPORT ADOT&PF NORTHWAY MAINTENANCE STATION MILE 1,256 ALASKA HIGHWAY, ALASKA

1.0 INTRODUCTION

We are pleased to present this report on our site characterization at the Alaska Department of Transportation and Public Facilities (ADOT&PF) Northway Maintenance Station (NMS), Mile 1,256 Alaska Highway, Alaska. The objectives of this site characterization were to: 1) sample the NMS water-supply well; 2) develop a site-control plan for the well; 3) update the conceptual site model (CSM) with data from pore-water samples and neighboring wells; 4) assess access to the areas of the burn pit and dry well; and 5) determine treatment/disposal options for contaminated soil stockpiled during the 2007 aboveground storage tank (AST) demolition.

We provided our services using the methods described in our Northway Site Characterizations Work Plan (WP), and in accordance with our site safety and health plan and the provisions of our Contaminated Sites term contract #18-9028-14. Our services were based on the Alaska Department of Environmental Conservation (ADEC) request for proposal (RFP) dated May 27, 2009, and our Proposal dated July 8, 2009.

2.0 BACKGROUND

2.1 Site Location and Description

The ADOT&PF NMS is about 165 miles south of Delta Junction, at Mile 1,256 of the Alaska Highway (Figure 1). The property has been leased by the State of Alaska from the U.S. Fish and Wildlife Service (USF&WS) since 1986; it is the location of the former Haines/Fairbanks Pipeline Lakeview Pump Station. The site is fenced, generally level, and developed with a metal shop and storage buildings (Figure 2). The site is bounded on the east by the Richardson Highway and by Yarger Lake on the west.

The area surrounding the site is sparsely populated. A cabin and a USF&WS float-plane refueling station are south of the NMS; there is another cabin north of the NMS (Figure 2); our well search (described below) indicated neither cabin has a water-supply well. A public campground maintained by the USF&WS Tetlin National Wildlife Refuge is about ¹/₂ mile

northwest of the NMS (Figure 1); there is a hand-pump water-supply well at the campground. A notice at the campground well warns users of the presence of elevated levels of nitrate in the water.

2.2 Subsurface Conditions

Site geology generally consists of granitic bedrock mantled by 1 foot to 2 feet of silt. The depth to bedrock likely varies throughout the site, depending on the amount of fill. The shop building appears to be constructed on fill consisting of weathered granite from a borrow pit east of the Alaska Highway. Groundwater in the area of the site is likely restricted to fracture zones within the granitic bedrock.

2.3 Site History and Previous Work

The site was first developed by the U.S. Army in 1954 during construction of the Haines Pipeline. A 1968 air photo shows the completed Lakeview Pump Station with two vertical ASTs, pump building, storage shed, and residence trailers. The site appears to have been built on fill. A septic system gathered effluent from the pump/shop building and residence quarters, formerly west of the shop. U.S. Army Corps of Engineer (USACE) as-built drawings show a dry well outside the south end of the pump building (Figure 3). There are floor drains in the shop bay; according to the as-built drawings, the floor drains were connected to the dry well. According to Dave Johnson with ADOT&PF Operatoins & Maintenance, the floor drains were connected to a closed system/holding tank in 2000; the ADOT&PF pumps the tank periodically. The as-built drawings also show a burn pit and transfer piping north of the pump building that may have been used to incinerate fuel spills from the pumps (Figure 4).

The ADOT&PF began occupying the site in 1986, at which time they obtained water by truck from the U.S./Canadian border. They later rehabilitated the on-site well; in 1988, a sample from the well contained 270 μ g/L benzene. According to the ADOT&PF site foreman, a charcoal filter was installed. In 1992, a heating-oil underground storage tank (UST) was removed from the area north of the existing pump island. The former septic system was abandoned in 2000 and a new septic system installed to handle sewage.

The U.S. Army Pacific Environmental Health Agency (USAPACEHEA) conducted a site assessment in 1994, which included the collection and analysis of 13 soil samples. The samples were collected by hand from depths ranging between 12 inches and 24 inches below the ground surface (bgs). Three samples exceeded the cleanup level for total petroleum hydrocarbons

(TPH); TPH ranged from 530 to 3,500 parts per million (ppm). As these samples consisted of near-surface soil, the contamination was likely the result of surface releases.

Water samples collected from the on-site well in 2006 contained benzene and gasoline range organics (GRO) exceeding ADEC cleanup levels. Following receipt of the sample results, the ADOT&PF installed a water holding-tank at the site and began obtaining drinking water by truck from off-site.

In October 2006, Shannon & Wilson collected soil samples from 12 test pits at the site targeting hot spots identified by the USAPACEHEA, fuel-handling and storage areas, and the septicdischarge area. Sample results did not indicate the presence of widespread soil contamination; however, diesel range organics (DRO) exceeding the ADEC cleanup level were detected near the AST dispenser island. The results of the study are presented in our report *Site Investigation, ADOT&PF Northway Maintenance Station, Mile 1256 Alaska Highway, Alaska,* dated April 2007.

Shannon & Wilson observed the removal of three ASTs and piping in 2007, and stockpiled approximately 400 cubic yards of DRO-, GRO-, and benzene-contaminated soil. The source of the contamination appeared to be from a cracked gasoline pipe and leaking fittings in the diesel piping. The ADOT&PF installed new double-wall ASTs following demolition. A groundwater sample collected from the on-site well on September 17, 2007, contained GRO at a concentration of 1.62 μ g/L and benzene at 509 μ g/L. The results of the demolition are presented in our report *Closure Report, AST Demolition, ADOT&PF Northway Maintenance Station, Mile 1256 Alaska Highway, Alaska,* dated June 2008.

In 2007, the USF&WS prepared an environmental document entitled *Tetlin National Wildlife Refuge Contaminant Assessment* (TCA), summarizing site-ownership history, former and current uses of the site, and known contamination issues. The Lakeview Pump Station section of the TCA is included in Appendix A.

2.4 Cleanup Levels

ADEC has established soil cleanup levels in 18 AAC 75.340. Cleanup levels applicable to this site are the Method 2, Under 40-inch precipitation zone levels listed in 18 AAC 75.341. Groundwater cleanup levels are listed in 18 AAC 75.345 Table C.

2.5 Project Objectives

The primary objectives of our work were to: 1) sample the on-site water supply well; 2) develop a site-control plan for the well; 3) update the CSM with data from pore-water samples and neighboring wells; 4) assess the access to the areas of the burn pit and dry well; and 5) determine treatment/disposal options for contaminated soil stockpiled during the 2007 demolition of the ASTs.

Groundwater contamination was confirmed by previous sampling; therefore, the objective of groundwater sampling was to better characterize contamination and check for seasonal variability.

3.0 SCOPE OF SERVICES

Andrea Carlson, a geologist, and Kristen Williams, an environmental chemist, from the Shannon & Wilson's Fairbanks office conducted the site characterization field tasks on October 7'8, 2009. They collected water samples from the on-site drinking-water well along the shore of Yarger Lake and the well at the neighboring campground for chemical analysis. They used a photoionization detector (PID) to field screen the soil stockpile and collected representative soil samples for chemical analysis. They also attempted to locate the burn pit area and dry well. They submitted the collected soil and water samples to SGS Environmental Services, Inc. (SGS) of Fairbanks, an ADEC-approved laboratory. Photographs of our site visit are presented in Appendix B.

We prepared a Site-Control Plan for the on-site water well; the plan is presented in a separate report.

4.0 OBSERVATIONS AND FIELD METHODS

The fieldwork portion of this project was conducted in general accordance with 18 AAC 75, the ADEC Underground Storage Tanks(UST) Procedures Manual, and ADEC Guidance for Cleanup of Petroleum Contaminated Sites.

4.1 Floor Drain/Dry Well Layout

We observed the floor-drain system, looking for possible outfall locations that may have been used prior to the installation of the closed system. Figure 3 shows the USACE as-built drawings for the dry well. There was no conclusive evidence the floor drains were not connected to the

new storage-tank system. We looked for evidence of buried telephone lines and other underground utilities that may preclude future excavation in the area south of the pump building; the ADOT&PF site foreman and building maintenance manager could not accurately locate telephone lines that may traverse this area. To safely explore this area, a skilled utility locator will need to visit the site. Once the utilities have been located, an exploration plan for the drywell can be devised and implemented.

4.2 Soil-Stockpile Field Screening and Analytical Sampling

According to site foreman Norman Gallen, the ADOT&PF used the stockpile from the 2007 AST removal as fill in a project along the Alaska Highway. A small, 10-cubic-yard stockpile remained at the site. We field-screened five locations with a PID equipped with a 10.6 eV lamp, as a qualitative indication of the volatile organic compounds (VOCs) in the soil. The PID was calibrated and operated in accordance with the owner's manual. During the soil field-screening activities, we screened newly uncovered soil from the stockpile. The PID readings were less than 1 ppm.

We collected an analytical soil sample and a field duplicate from the center of stockpile at a depth of about 24 inches below the surface. We collected the analytical soil samples in laboratory-provided sample containers and submitted them to SGS for analysis of GRO by Alaska Method AK 101, DRO by Alaska Method AK 102, and benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8021B.

4.3 Water Sampling

4.3.1 Water Well Sampling

We collected one sample and a duplicate from the water-supply well. Before collecting the samples, we purged 50 gallons from the well into the floor drain in order to flush the piping. We collected the analytical samples in laboratory-provided, pre-preserved sample containers and submitted them to SGS for analysis of GRO by Alaska Method AK101, DRO by Alaska Method AK102, VOCs by EPA Method 8260B, SVOCs by EPA Method 8270D SIMS and UST metals by EPA Method 6000 series.

4.3.2 Pore-water Sampling

We collected four pore-water samples by hand-driving well points near the current shoreline of Yarger Lake. The sample locations are shown on Figure 2. Penetration depth of the pore-water probe was approximately 1 foot to 1.5 feet. The well points included a screened

disposable tip and were fitted with clean, new 3/16-inch inner diameter Teflon tubing. After driving the well points, the drive shafts were pulled from the ground and the well points developed with a peristaltic pump until the pore-water was clear of suspended sediment. We collected one groundwater sample from each well point for analysis of GRO, DRO, and VOCs by the methods mentioned above, and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270.

4.4 Sample Custody, Storage, and Shipping

After collection, we placed the samples in a cooler with adequate quantities of ice substitute to maintain samples at 2 °C to 6 °C. Prior to delivery to the laboratory, samples were in our custody at all times. We hand-delivered soil and water samples for this assessment directly to SGS in Fairbanks.

4.5 Well Search

We identified two properties adjacent to the NMS that may have groundwater wells. We inquired at each location to determine if a well is present. An ADOT&PF employee lives in a house north of NMS; that residence does not have a well. The cabin south of the NMS also does not have a well. The USF&WS campground has a well equipped with a hand-pump. We collected a water sample from the well and submitted it to SGS for the analysis of GRO, DRO, and BTEX using the methods previously stated.

4.6 Investigation-Derived Waste Management

We disposed disposable sampling equipment, including tubing, spoons, and resealable plastic bags, in the Fairbanks North Star Borough landfill.

5.0 RESULTS

5.1 Soil Samples

Soil sample analytical results are summarized in Table 1. The laboratory reports are attached in Appendix C. DRO were detected in the soil stockpile duplicate samples at 815 milligrams per kilogram (mg/kg) and 967 mg/kg, respectively. GRO and BTEX analytes were not detected at concentrations exceeding their practical quantitation limits (PQLs); however, these analytes may be biased low in one of the samples since the methanol leaked out during shipment and the laboratory performed a second extraction in-house. The other sample arrived at the laboratory

intact, and the produced similar results. In our opinion, the GRO and BTEX results accurately represent the soil samples.

5.2 **Pore-water Samples**

Groundwater sample analytical results are presented in Table 2. The laboratory reports are attached in Appendix C.

5.2.1 Whole Fuels

GRO were detected in the four pore-water samples at concentrations ranging from 0.117 milligrams per liter (mg/L) to 1.34 mg/L. DRO were detected above the PQL in two of the four pore-water samples; ranging from 0.743 mg/L to 1.74 mg/L.

5.2.2 Volatile Organic Compounds

Of the 14 VOC analytes detected in the water samples, only benzene exceeded its ADEC cleanup level of 5 μ g/L. Benzene concentrations ranged from 28.9 μ g/L to 568 μ g/L.

5.2.3 Semi-volatile Organic Compounds (SVOCs)

Of the four SVOCs detected in the pore-water samples, none were detected above their respective ADEC cleanup levels.

5.3 Maintenance Station Well-water

The on-site NMS water-well sample analytical results are also presented in Table 2. We collected one sample and a field duplicate from this well. The laboratory reports are attached in Appendix C.

5.3.1 Whole Fuels

GRO were detected in the well sample at a concentration of 2.45 mg/L, exceeding the ADEC groundwater cleanup level of 2.2 mg/L; there was insufficient sample volume to analyze the duplicate for GRO. DRO were not detected above the PQL.

5.3.2 Volatile Organic Compounds

Of the 12 VOCs detected in the well-water sample, only benzene was detected above its ADEC cleanup level (5 μ g/L). The benzene concentrations were 672 μ g/L and 678 μ g/L in the duplicate pair.

5.3.3 Semi-volatile Organic Compounds

Of the three SVOCs detected in the well sample, none were detected above their respective ADEC cleanup levels.

5.3.4 Metals

Barium, nickel, and lead were detected in the NMS well sample and its duplicate; these metals did not exceed their ADEC groundwater cleanup levels of 2,000 μ g/L, 100 μ g/L, and 15 μ g/L respectively. Arsenic, cadmium, chromium, and vanadium were not detected above their PQLs.

5.4 Campground Well

Campground well analytical results are also presented in Table 2. The laboratory reports are attached in Appendix C.

5.4.1 Whole Fuels

GRO and DRO were not detected above their PQLs in samples from the campground well.

5.4.2 Volatile Organic Compounds

BTEX compounds were not detected at concentrations above their PQLs.

6.0 QUALITY ASSURANCE/QUALITY CONTROL

Quality Assurance/Quality Control (QA/QC) procedures assist in producing data of acceptable quality and reliability. We conducted a QA/QC review of the pore-water, groundwater, and soil sample results. We reviewed the analytical results for laboratory QC samples, and conducted our own QA assessment for this project. We also reviewed the chain-of-custody (COC) records and laboratory-receipt forms to confirm custody was not breached and the samples were received in good condition. Our QA review procedures allowed us to document the accuracy and precision of the analytical data, as well as check that the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards, where such standards exist.

Details regarding the results of our QA review are presented below.

6.1 Sample Handling

All three temperature blanks placed in coolers containing pore-water, groundwater, and soil samples arrived at the SGS laboratory below the recommended range of 2 °C to 6 °C. The cooler temperatures were within the recommended range. The laboratory did not note the presence of ice in any of the samples. It is our opinion the low temperature blank temperatures did not affect data quality.

<u>Work Order (WO) 1095962</u> – One sample jar (sample *1472-002*) broke in transit from Fairbanks to Anchorage; the methanol leaked out, but the sample was intact. The laboratory performed an in-house extraction. The GRO and BTEX results for this sample may be biased low due to loss of methanol in transit.

<u>Work Order 1095963</u> – Limited sample volumes were submitted to the lab for samples *1472-100710-001*, and *1472-100710-005*; several sample jars were broken during transport (samples *1472-100710-004*, *1472-100710-005*, and *1472-100710-006*); a pair of jars for SVOC analysis was lost in shipment for sample *1472-100710-007*. The following table summarizes the analytes the laboratory was unable to complete as requested on the COC due to the limited sample volumes.

Sample Number	Analysis Not Completed	Reason
1472-100710-006	GRO	Broken sample jars
1472-100710-007	PAHs	Inadvertently listed on COC. This was not required as part of the work plan; sample jars did not arrive in Anchorage.

There were no other noteworthy sample-handling anomalies.

6.2 Analytical Sensitivity

PQLs were below the ADEC groundwater cleanup levels for the analytes determined, where cleanup levels exist.

The soil samples' PQLs were below ADEC migration-to-groundwater cleanup levels.

We shipped a trip blank with the soil and water samples to be analyzed for GRO, BTEX, and PAHs to determine if cross-contamination or contamination from an outside source may have

occurred during shipment or storage. No analytes were detected above the PQL in the trip blanks.

Laboratory method blanks (MBs) were analyzed in association with the samples collected for this project to check for contributions to the analytical results possibly attributable to laboratorybased contamination. No analytes were detected above the PQL in the water MBs. RRO was detected between the method detection limit (MDL) and the PQL in the soil MB; RRO was not a target analyte, and the MB detection did not affect the sample results.

6.3 Accuracy

The laboratory assessed the accuracy of their analytical procedure through a variety of QA procedures. Analysis of laboratory control samples (LCSs) and LCS duplicates (LCSDs) and continuing calibration verification samples (CCVs) allowed the laboratory to assess the accuracy of their procedures by checking their ability to recover analytes added to clean matrices. SGS also analyzed a matrix spike (MS) and MS duplicate (MSD) for VOCs to assess their ability to recover analytes from a matrix similar to that of the project samples. Laboratory accuracy was also evaluated individually for each sample by assessing the recovery of analyte surrogates added to individual project and QC samples.

The LCS/LCSD and MS/MSD recoveries fell within laboratory- or method-established limits for the soil samples (WO 1095962). The LCS/LCSD and CCV recoveries for the water samples (WO 1095963) were biased high for tetrachloroethane, dibromochloromethane, 1,1,1,2-tetrachloroethane, 2-butanone, and bromoform. These analytes were not detected above their PQLs in the associated samples, and were not affected by the laboratory anomalies.

Recoveries of GRO soil surrogate 4-BFB were above laboratory control limits for samples *1472-001* and *1472-002*, reportedly due to hydrocarbon interference. The corresponding GRO results are biased high; data usability is not affected, as GRO were not detected above the PQL.

6.4 Precision

We collected field duplicate samples at a frequency of 10 percent of the total samples to evaluate the precision of analytical measurements, as well as the reproducibility of our sampling technique. To evaluate the precision of the data, we calculated the relative percent difference (RPD; difference between the sample and its field duplicate divided by the mean of the two); RPD can be evaluated only if the results of the analyses for both the sample and its duplicate are above method detection limits. Field-duplicate RPDs were within the data quality objectives for soil and water samples, where calculable.

Laboratory analytical precision can also be evaluated by RPD calculations. LCS/LCSD RPDs provide information regarding the reproducibility of analytical procedures and therefore, a measure of analytical precision. SGS reported LCS/LCSD and MS/MSD RPDs. Laboratory-sample RPDs fell within laboratory- or method-established limits, and no project or QA samples were affected.

6.5 Data Quality Summary

By working in general accordance with our proposed scope of services, the samples we collected are considered to be representative of site conditions at the locations and times they were obtained. Based on our QA review, no samples were rejected as unusable due to QC failures, and our completeness goal of obtaining 85-percent useable data was met. In general, the quality of the analytical data for this project does not appear to have been compromised by any of the analytical irregularities noted above. GRO and BTEX were biased low in the one soil-sample duplicate pair (*1472-002*); however, usable data was obtained for the primary sample.

The laboratory reports and our ADEC data-quality-review checklists are included in Appendix C.

7.0 DISCUSSION

The site currently occupied by the ADOT&PF NMS has been used for fuel handling and vehicle maintenance since it was developed in 1954. Groundwater contamination was detected at the site in 1988 and has been reconfirmed several times since, most recently in 2009. Since 2006, Shannon & Wilson has conducted several assessments to determine the source of the groundwater contamination and completed a limited corrective action while decommissioning three ASTs at the site. In this section, we present a discussion of the results of our recent site assessment, as well as the results of previous assessments. Finally in this section, we use our current understanding of contaminant distribution to update the CSM.

7.1 Soil Contamination

In 2006, we collected soil samples from 12 test pits excavated in areas previously used for fuel storage or waste disposal. The results of the study are presented in our report *Site Investigation*, *ADOT&PF Northway Maintenance Station*, *Mile 1256 Alaska Highway*, *Alaska*, dated

April 2007. Sample results from test pits near the ASTs did not indicate the presence of widespread soil contamination; however, DRO exceeding the ADEC cleanup level were detected near the dispenser island. The test pits we sampled near a residential leach tank did not contain detectable BTEX or other VOCs, though the PQLs for 13 of these analytes were higher than their respective soil-cleanup levels. We were unaware of the dry well at the shop at the time of this assessment.

Shannon & Wilson observed the removal of three ASTs from the site in 2007. The contamination we observed during the demolition was associated with leaking piping. We identified two sources of GRO and benzene contamination: one near the gasoline AST piping 'Y' connecting the older and newer 2-inch lines from the tank to the dispensing pump islands, and another beneath a rupture in the 4-inch gasoline piping feeding the turbines in the composite building/ shop. We removed about 400 cubic yards of contaminated weathered granitic bedrock/soil from these areas; additional removal was not practicable due to the increasing hardness of the rock with depth. Concentrations of DRO, GRO, and BTEX constituents remaining in the fractured bedrock exceeded their respective ADEC soil cleanup levels at these locations.

The soil contamination associated with the operation of the former ASTs at the site resulted in soil contamination that appears to have limited lateral extent. Releases from the piping system likely migrated vertically through fracture zones in the bedrock.

7.2 Soil Stockpile

The ADOT&PF used the 400 cubic yards of soil we stockpiled during the AST demolition as fill in a road project. A 10 cubic-yard pile remained at the site; samples we collected during this assessment contained DRO exceeding their migration-to-groundwater soil cleanup level but below the ingestion and inhalation cleanup levels. BTEX analytes were not detected exceeding their PQLs.

7.3 Water Well

The presence of GRO and benzene contamination in the water-supply well indicates water quality has been compromised by site activities. The sources of contamination are likely the piping leaks associated with the former ASTs described in Section 2.3. The water supply well is reportedly 250 feet deep; we have no information regarding well construction or condition of the well. Groundwater at the site is likely restricted to fracture zones within the granitic bedrock.

According to the TCA, former employees at the Lakeview Pump Station were aware fuelhandling activities at the site had resulted in the presence of fuel in the well.

7.4 **Pore-water Samples**

The presence of GRO, DRO, benzene, and 1,2-dichloroethane in the pore-water samples collected on the eastern shore of Yarger Lake indicates water-quality in that area has been compromised by site activities. The source of the contamination may be the leaking AST pipes described above, though we note the USF&WS stores fuel at their float-plane dock adjacent to the area where we collected the pore-water samples. 1,2-Dichloroethane (a lead scavenger commonly found in aviation gasoline) was detected in two of the pore-water samples and has not been detected in the water-well samples. Additional sampling will be required determine which potential source is contributing the petroleum hydrocarbons to the pore water of Yarger Lake.

7.5 Data Gaps

The USACE as-built plans depict a dry well connected to floor drains in the southern end of the composite/shop building (Figure 3). The presence of more recent buried utilities in the area of the dry well precluded invasive sampling during our 2009 site characterization. The ADOT&PF attempted to locate the buried utilities, but they were unsure of their exact location. A qualified utility locator will need to visit the site to clear the area around the dry-well location before a thorough assessment can be performed.

The USACE as-built plans also depict a burn pit to the north of the composite/shop building (Figure 4). According to the TCA, the burn pit was connected to a sump in the valve room. The sump/burn pit was used to dispose of fuel drained from the pumps during maintenance and repairs. The TCA also noted the sump leaked for a year before the leak was discovered and fixed. We attempted to locate the burn pit using the measurements on the as-builts; however, there was no indication of a burn pit at the surface. The burn pit appears to have been filled in or covered; a backhoe will be required to explore this area.

7.6 Conceptual Site Model

We completed a CSM following our 2006 Site Assessment at the NMS. The CSM described potential sources of chemicals, release mechanisms, means of retention in or migration to exposure media, exposure routes and potential receptors. The following sections provide an updated version of the CSM; Figure 5 is an updated CSM graphic.

Subsurface soil and groundwater were affected by fuel releases at the site. Our 2006 test-pit sampling targeted near-surface and subsurface soil around the shop and former septic leach tanks; there was no indication of contamination in the test pits near the septic leach tanks. Soil contamination and broken piping observed during our 2007 AST removal indicated the likely source of groundwater contamination was the ASTs. During the 2007 AST decommissioning, we removed surface contamination in the area of the former ASTs. We have no data to evaluate the dry well and burn pit as potential sources of near-surface or subsurface soil contamination. Porewater samples indicate the presence of petroleum hydrocarbons adjacent to Yarger Lake; the source of this contamination has yet to be determined.

Potential contaminant receptors are limited to visitors, on-site workers, and construction workers, as site access is restricted. We removed about 400 cubic yards of contaminated soil from beneath the ASTs and the piping trenches; therefore, the outdoor-air exposure pathways (inhalation of outdoor air and inhalation of fugitive dust) have been eliminated. Groundwater-contaminant exposure was also considered a complete pathway for visitors, on-site workers, and construction workers through inhalation, incidental ingestion, and dermal contact. We understand the use of the NMS well has been discontinued, and water for drinking and other uses is now obtained from a source in Northway.

Indoor-air exposure due to groundwater contamination may represent a potentially complete pathway, since the depth to groundwater at the site is unknown, and volatilization of benzene or other VOCs from the contaminated groundwater into the facility's buildings is possible. Recent information regarding the leaking sump leading to the burn pit indicates there may be contaminated soil beneath the foundation surrounding the sump. It should be noted vehicle maintenance is performed in the building, which may represent a possible additional source of VOC exposure.

Incidental ingestion of groundwater, dermal absorption of contaminants in groundwater, and inhalation of volatile contaminants in groundwater represent potentially complete pathways, even though drinking water is obtained from an off-site source and stored in a tank at the facility. Use of groundwater for washing or other uses at the site poses an exposure risk. We prepared a site-control plan for the NMS well to limit potential exposures.

Incidental ingestion of pore-water, dermal absorption of contaminants in pore-water, and inhalation of volatile contaminants in pore-water represent potentially complete pathways. We have not completed ADEC's EcoScoping form; however, due the proximity of the pore-water

contamination to Yarger Lake and the sensitive nature of the environment (within Tetlin Wildlife Refuge), any future site assessment work should include an evaluation of ecological receptors.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The objectives of this study included sampling various site media, evaluating the presence of offsite receptors, and determining if data gaps exist regarding site contaminant sources.

8.1 Conclusions

We confirmed the presence of groundwater contamination at the ADOT&PF Northway Maintenance Facility. The water well apparently has been contaminated with benzene at similar levels since at least 1988. It is likely historical fuel releases from AST piping led to groundwater contamination exceeding the ADEC benzene and GRO cleanup levels. We have no information regarding well construction or condition.

We discovered pore-water contamination adjacent to Yarger Lake. The source of the GRO, DRO, and benzene contamination is unknown. The presence of 1,2-dichloroethane suggests a source other than the former ASTs.

The soil stockpile at the site contained DRO exceeding the ADEC cleanup levels.

The burn pit and the dry well remain as data gaps in the assessment of potential contaminant sources at the site.

8.2 Recommendations

The water-well at the site should not be used for a drinking-water source. We recommend implementing the site control we developed for the well. If the site-control plan is not implemented, we recommend abandoning the well to avoid potential contaminant exposures.

The source of pore-water contamination is not known; we recommend developing a plan to assess the potential sources of this contamination.

The soil stockpile at the site contained DRO exceeding the ADEC cleanup levels; since the levels do not exceed the ingestion and inhalation cleanup levels, the soil could be placed in a non-environmentally sensitive area.

To assess the burn pit and dry well, we recommend using a backhoe to excavate test pits in these areas. Utility clearance will be required in the area of the dry well.

9.0 LIMITATIONS

This report was prepared for the use of the ADEC and its representatives for assessing the nature and extent of contamination at the ADOT&PF Northway Maintenance Station. This report presents our professional judgment as to the conditions in the area. Conclusions and recommendations presented here are based on the sampling and analyses we performed, along with a limited review of records and other data available to the public. They should not be construed as definite conclusions about the soil, groundwater, or pore-water in the area, and it is possible our tests may not represent the highest levels of contamination in the area. We have not performed an independent evaluation of the accuracy or completeness of third-party information, and shall not be responsible for errors or omissions contained in such information.

The information included in this report should be considered representative of the time and locations at which the sampling occurred. It was not the intent of our investigation to detect the presence of soil or groundwater affected by contaminants other than those for which laboratory analyses were performed. No conclusions can be drawn on the presence or absence of other contaminants. The observed levels of contamination may be dependent upon seasonal fluctuations of the groundwater table and/or the passage of time. Due to such changes, or others beyond our control, our observations and recommendations applicable to this site may need to be revised. If substantial time has elapsed between submission of this report and the start of activities or action based upon it, we recommend this report be reviewed to determine the applicability of the conclusions and recommendations considering the lapsed time or changed conditions.

This report was prepared for the exclusive use of ADEC. All documents prepared by Shannon & Wilson are instruments of service with respect to the project for the sole use of our Client. Only our Client shall have the right to rely upon such documents. Such documents are not intended or represented to be suitable for reuse by our Client or others after the passage of time, on extensions of the project, or on any other project. Any such reuse without written verification or adaptation by Shannon & Wilson, as appropriate for the specific purpose intended, shall be at the user's sole risk.

Copies of documents that may be relied upon by our Client are limited to the printed copies (also known as hard copies) signed or sealed by Shannon & Wilson. Text, data, or graphics files in

electronic media format are furnished solely for the convenience of our Client. Any conclusion or information obtained or derived from such electronic files shall be at the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, the hard copies govern.

Because data stored in electronic media can deteriorate or be modified inadvertently or otherwise without authorization of the data's creator, the Client should perform acceptance tests or procedures within 60 days after its receipt, after which, unless notice of any errors are given in writing to Shannon & Wilson, the Client shall be deemed to have accepted the data thus transferred. Any errors reported within the 60-day acceptance period shall be corrected by Shannon & Wilson. Shannon & Wilson shall not be responsible for maintaining documents stored in electronic media format after acceptance by the Client.

When transferring documents in electronic media format, Shannon & Wilson does not make any representations as to long-term compatibility, usability, or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used for the document's creation.

Table 1.Summary of Analytical Soil Sample Results

SAMPLE NUMBER	GRO	DRO	Benzene	Toluene	Ethyl- benzene	p- & m - Xylenes	o-Xylene
ADEC Cleanup Level	260	230	25	6,500	6,900	63,000	
1472-001	< 2.30	815	< 0.0115	< 0.0461	< 0.0461	< 0.0461	< 0.0461
1472-002 [†]	< 3.14	967	< 0.0157	< 0.0628	< 0.0628	< 0.0628	< 0.0628

⁺ - field duplicate of *1472-001*, GRO and BTEX biased low; see QA/QC checklist for explanation. GRO and DRO results in mg/kg; BTEX results in μg/kg.

Table 2.Summary of Pore-Water and Water Well Sample Results

Fuels (mg/L) and BTEX (µg/L)

SAMPLE NUMBER	Location	GRO	DRO	Benzene	Toluene	Ethylbenzene	p&m -Xylenes	o-Xylene
ADEC Cle	anup Level	2.2	1.5	5	1,000	700	10,00	0
1472-100709-001	WP-1 (southern)	0.117	< 0.784	28.9	< 1.00	< 1.00	15.0	4.99
1472-100709-002	WP-1 (duplicate)	na	na	na	na	na	na	na
1472-100709-003	WP-2	1.34	1.74	568	1.40	32.0	8.33	1.40
1472-100709-004	WP-3	0.664	< 0.769	196	< 1.00	10.5	16.5	< 1.00
1472-100709-005	WP-4 (northern)	0.315	0.743	94.9	< 1.00	10.5	12.3	< 1.00
1472-100709-006	NMS Well	na	< 0.784	672	58.5	3.36	79.3	81.3
1472-100709-007	NMS well duplicate	2.45	< 0.714	678	57.1	3.38	78.0	71.7
1472-100709-008	campground well	<0.100	< 0.769	< 0.500	< 2.00	< 2.00	< 2.00	< 2.00

Volatile Organic Compounds (µg/L)

			- Drawl		1,2,4-	Det d	4.1	. Defed		
		isopropyi-	n-Propyi-	1,3,5-1 rimethyl-	i rimetnyi-	sec-Butyl-	4-isopropyi-	n-Butyl-		
SAMPLE NUMBER	Location	benzene	benzene	benzene	benzene	benzene	toluene	benzene	Naphthalene	1,2-Dichloroethane
ADEC Cle	anup Level	3,700	370	1,800	1,800	370	-	370	730	5
1472-100709-001	WP-1	5.32	< 1.00	5.31	8.14	< 1.00	< 1.00	< 1.00	< 2.00	2.07
1472-100709-002	WP-1 (duplicate)	na	na	na	na	na	na	na	na	na
1472-100709-003	WP-2	37.4	19.9	5.02	2.02	6.51	1.21	< 1.00	7.53	1.48
1472-100709-004	WP-3	2.71	4.56	< 1.00	< 1.00	4.98	4.28	2.16	7.45	< 0.500
1472-100709-005	WP-4	5.06	6.23	< 1.00	1.00	3.98	1.26	< 1.00	< 2.00	< 0.500
1472-100709-006	NMS Well	8.31	1.11	4.67	17.7	2.65	< 1.00	1.73	20.9	< 0.500
1472-100709-007	NMS Well (duplicate)	7.95	1.06	4.41	17.4	2.54	< 1.00	1.84	21.5	< 0.500
1472-100709-008	Campground Well	na	na	na	na	na	na	na	na	na

Semivolatile Organic Compounds (µg/L)

		1-Methyl-	2-Methyl-		
SAMPLE NUMBER	Location	naphthalene	naphthalene	Naphthalene	Fluorene
ADEC Clea	anup Level	150	150	730	1,500
1472-100709-001	WP-1	< 0.0565	< 0.0565	<0.113	< 0.0565
1472-100709-002	WP-1 (duplicate)	< 0.0500	< 0.0500	<0.1	< 0.0500
1472-100709-003	WP-2	1.61	0.974	2.88	< 0.0503
1472-100709-004	WP-3	2.83	0.419	3.27	0.0602
1472-100709-005	WP-4	0.103	< 0.0521	0.362	< 0.0521
1472-100709-006	NMS Well	2.42	3.77	8.26	< 0.0549
1472-100709-007	NMS Well (duplicate)	na	na	na	na
1472-100709-008	Campground Well	na	na	na	na

Metals (µg/L)

SAMPLE NUMBER Location		Barium	Nickel	Lead
ADEC Clea	anup Level	2,000	100	15
1472-100709-006	NMS Well	6.66	3.89	5.01
1472-100709-007	NMS Well (duplicate)	6.89	3.79	5.15

Notes:

"-" - no ADEC cleanup level established

na - not analyzed

Only those analytes that were detected above their practical quantitation limits are shown; complete laboratory report is presented in Appendix B

Pore-water sampling along the shore of Yarger Lake.

Stockpile sampling.

Burn pit area.

Dry well area.

NMS well head; not severed pipe near center of photograph.

Floor-drain-holding tank.

DRAFT HUMAN HEALTH CONCEPTUAL SITE MODEL

APPENDIX A

EXCERPT FROM USF&WS *TETLIN NATIONAL WILDLIFE REFUGE CONTAMINANT ASSESSMENT*

Tetlin National Wildlife Refuge Contaminant Assessment

July 2007

This report may be cited as:

USFWS. 2007. Tetlin National Wildlife Refuge Contaminant Assessment. U.S. Fish and Wildlife Service, Regional Office, Anchorage AK. 54pp.

Lakeview Pump Station

In 1961, in response to increasing fuel needs, the Haines to Fairbanks pipeline capacity was upgraded with the addition of six new pumps stations that would be used to boost pressure. The additional pump stations increased the highest pump capacity from 16,500 barrels a day to 27,500. The new stations were only used at full capacity for a few years, until military fuel needs decreased.

Miscellaneous debris at the Lakeview Pump Station in 2004.

Among the new stations was the Lakeview Pump Station. In 1965, PLO No. 3689 withdrew 21.48 acres from the public trust (Milepost 1256.4 on the Alaska Highway) for the U.S. Army as part of the Haines to Fairbanks pipeline and the future location of the Lakeview Pump Station. The station was built in 1961 and includes a combination building (engine room, pump room, office, generator room, and maintenance shop) and six trailers for family housing. The station was

deactivated with the pipeline in 1973. A brief Environmental Assessment was conducted by the U.S. Army that stated there was no impact to the environment at the Lakeview Pump Station. Later in 1973, the U.S. Army notified BLM that the site was no longer needed and requested revocation. For the next seven years, there was discussion among Federal agencies regarding the legal obligation to conduct a formal Environmental Impact Statement on excess land. This became moot in 1980, when the passage of ANILCA created TNWR and incorporated a portion of the Lakeview Pump Station into the Refuge.

Despite being within Refuge boundaries, there were varying legal opinions as to the ownership of the Lakeview Pump Station and associated land. In 1984, the U.S. Government Services Administration conveyed a 3.2 acre portion of the site outside of TNWR to the Federal Highway Administration, which subsequently conveyed the land to Alaska Department of Transportation (ADOT). In 1986, the FWS issued a 20 year permit to ADOT for a 5.54 acre portion of the Lakeview Pump Station within the Refuge boundaries. For the following ten years, state and federal agencies disagreed over who was responsible for the Lakeview Pump Station, with no agency eager to assume liability for the potentially contaminated parcel.

In 1992, the Refuge manager conducted a site visit to Lakeview Pump Station where he documented a section of above ground pipeline and a concrete storage vault smelling of diesel fuel. Photos taken depict numerous storage tanks, an old burn pit, a bonevard debris, tar piles, and piping. Surface soil samples were collected later in 1992 near the pump station and analyzed for organochlorines and Total Petroleum Hydrocarbons (TPH). Organochlorines were not detected in any sample (n = 4), but TPH concentrations ranged from 64 to 33,600 ppm (n = 16), with the highest concentration in samples collected near the building that was currently in use by ADOT. The results of this analysis and the potential for contamination of groundwater caused the Service to take the position not to accept transfer of the land from the U.S. Army. However, in 1996, PLO 7182 revoked (in part) PLO 3689 and placed a large portion of the former withdrawal under FWS management. Army realty records show that 2.5 acres of the original 21.48 acre site are still held by the U.S. Army.

During discussions with ADOT employees in 1997, the refuge was informed that the water well at the site had been tested for petroleum contamination beginning in 1987. ADOT-funded analyses of water samples conducted in 1988 detected up to 270 ppb benzene, 430 ppb toluene and 290 ppb xylenes. Later test results in 1996 found 517 ppb benzene, 90.7 ppb toluene, and 105 ppb xylenes. The refuge subsequently interviewed two former DOD workers and the wife of a third worker who lived at the site during its operation. They were aware of the water well contamination. The first known contamination event occurred when an employee overfilled a day tank and fuel migrated to the ground. Shortly after this spill, fuel was noted in the water well. An unsealed concrete floor sump in the main pump room was also identified as a significant source of contamination. This sump collected fuels that drained out of the pumps when they were being worked on. When the sump was full, fuels were pumped to an open burn pit and

burned. This sump operated for over a year before leaks were discovered and fixed. Following these events, the door on a clothes dryer was blown off its hinges. This was attributed to the ignition of fumes retained on clothes that had been washed in the contaminated well water. It is unknown if the open burn pit was lined with an impermeable liner. A similar pit at the Tok facilities was not lined, however at that site they later built a steel liner filled with sand.

Since the mid-1980's the site has been used by ADOT as a maintenance facility, equipment yard and as a staging area for road building materials. Three above ground fuel storage tanks with associated piping and a fuel island remain at the facility. ADOT is currently using one of the ASTs and the dispenser island. Floor drains at the facility are plumbed to an oil/water separator, which discharges to a holding tank. ADOT installed this system in 1992. Prior to that date, the floor drains discharged to the septic system.

Bulk waste oil storage tanks outside Alaska Highway rightof-way in 1992. Several areas of petroleum stained soil are also noticeable.

Recent ADEC information for this site noted that a test boring near the fuel island detected diesel range organics (DRO) at 2,160. In 2006 testing, the onsite well, which is no longer used as a drinkingwater source, contained 740 ppb benzene and 3 ppm GRO (gasoline range organics) but no DRO, suggesting that one of the gasoline tanks or piping to the dispenser island may be the source of the well contamination.

In December, 2006, the Service was notified by the USACE that ADOT's beneficial use of the Lakeview Pump Station precludes listing of the site under the FUDS cleanup program.
APPENDIX B

SITE PHOTOGRAPHS

Pore-water sampling along the shore of Yarger Lake.

Stockpile sampling.

Burn pit area.

Dry well area.

NMS well head; not severed pipe near center of photograph.

Floor-drain-holding tank.

APPENDIX C

SGS WORK ORDER 1095962 (SOIL SAMPLES) SGS WORK ORDER 1095963 (WATER SAMPLES) ADEC DATA QUALITY REVIEW CHECKLISTS

LABORATORY DATA REVIEW CHECKLIST

CS Report Name: Northway ADOT&PF Station

Date: June 2010

Laboratory Report Date: October 27, 2009

Consultant Firm: Shannon & Wilson, Inc.

Completed by: Mark S. Lockwood, C.P.G. **Title:** Senior Principal Geologist

Laboratory Name: SGS North America, Inc. SGS Work Order Number: 1095962 (One cooler - #1)

ADEC File Number: 170.38.035

(NOTE: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? **Ves**/ **No** Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved?
 (NA) / Yes / No Comments:

2. Chain of Custody (COC)

- a. COC information completed, signed, and dated (including released/received by)?
 Yes / No Comments:
- **b.** Correct analyses requested? Yes/ No Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?
Yes No
Comments: Upon delivery to SGS in Fairbanks the temp blank was 1.0° C and the cooler

temperature was 4.1° C. Upon delivery to the lab in Anchorage the temp blank was 1.0° C and the cooler temperature was 2° C. No evidence of freezing was noted.

- b. Sample preservation acceptable acidified waters, Methanol-preserved VOC soil (GRO, BTEX, VOCs, etc.)? NA / Ves No Comments:
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? Yes/No
 Comments: Samples 1472-002 was during transport to Anchorage; the methanol preservative leaked out. The lab performed an in-house extraction.
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA / Yes No
 Comments: Samples 1472-002 was during transport to Anchorage; the methanol preservative leaked out. The lab performed an in-house extraction.
- e. Data quality or usability affected? Yes Explain. Comments: Volatile organic compound results were biased low due to loss of field applied methanol.

4. Case Narrative

- a. Present and understandable? Yes / No Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? *None Noted* / Yes Comments: *AK103 method blank result was greater than one-half the PQL.*
- c. Were corrective actions documented? None Noted Yes Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? **None** Comments: *RRO was not a target analyte*.

5. <u>Sample Results</u>

- a. Correct analyses performed/reported as requested on COC? Yes/ No Comments:
- **b.** All applicable holding times met? **Yes**/ **No** Comments:
- **c.** All soils reported on a dry-weight basis? *NA* /**Yes**/ **No** Comments:

- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes / No Comments:
- e. Data quality or usability affected No Explain. *NA* Comments:

6. <u>QC Samples</u>

a. Method Blank

- One method blank reported per matrix, analysis, and 20 samples?
 Yes/ No Comments:
- ii. All method blank results less than PQL? Yes No Comments: *AK103 method blank result was greater than one-half the PQL*.

iii. If above PQL, what samples are affected? **None** Comments: *RRO was not a target analyte*.

iv. Do the affected sample(s) have data flags? NA/ Yes / No Comments:

If so, are the data flags clearly defined? (NA) Yes / No Comments:

v. Data quality or usability affected? No Explain. *NA* Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) *N/A* /Yes/ No Comments:

When analyses are non-AK methods and only a LCS was reported, but a MS/MSD was used for RPDs, answer will still be "yes."

- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA /Yes/ No Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes/ No

Comments:

- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Ves/ No Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NA Comments:
- vi. Do the affected samples(s) have data flags (NA)/ Yes / No Comments:

If so, are the data flags clearly defined? NAY Yes / No Comments:

vii. Data quality or usability affected? Explain. NA Comments:

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses, field, QC and laboratory samples? *NA* / Yes / No Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) NA /Yes/ No Comments:
- iii. Do the sample results with failed surrogate recoveries have data flags? (NA/ Yes / No Comments:

If so, are the data flags clearly defined? **NA Yes / No** Comments:

- iv. Data quality or usability affected? Explain. NA/ Yes Comments:
- d. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and cooler? *NA* / **Ves**/ **No** Comments: *No trip in cooler containing metals samples*.
 - ii. All results less than PQL? *NA* /Yes/ No
- 31-1-11472, Northway ADOT Station Page 4 of 5

Comments:

- iii. If above PQL, what samples are affected? (NA) Comments:
- iv. Data quality or usability affected? No Explain. NA Comments:

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
 Ves/ No Comments: 1472-100709-007 is the duplicate of sample 1472-100709-006.
- ii. Were the field duplicates submitted blind to the lab? *NA* /Yes/No Comments:
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) NA Yes / No Comments: The RPDs for detected analytes meet the DQOs; we could not calculate RPDs for the BTEX compounds as they were not detected above their PQLs.
- iv. Data quality or usability affected? No Explain.
- f. Decontamination or Equipment Blank (if applicable)
 - i. All results less than PQL? NA/ Yes / No Comments:
 - ii. If results are above PQL, what samples are affected? (NA) Comments:
 - iii. Data quality or usability affected? Explain. NA Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

a. Are they defined and appropriate? (NA) Yes / No

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 31-1-11472-001 Northway ADOT Shannon & Wilson-Fairbanks 1095962

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

Client Name: Shannon & Wilson-Fairbanks Project Name: 31-1-11472-001 Northway ADOT Workorder No.: 1095962

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID					
1095962001	PS	1472-001					
	AK102 - Unknown hydrocarbon with several peaks is present.						
1095962002	PS	1472-002					
	AK102 - Unknown hydrocarbon with several peaks is present.						
931409	MB	MB for HBN 221517 [XXX/21816]					
	AK103 - MB result is greater than one-half the PQL, however less than the PQL.						

Laboratory Analytical Report

Client: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99709

> Attn: Andrea Carlson T: (907)479-0600 F:(907)479-5691 ac@shanwil.com

Project: 31-1-11472-001 Northway ADOT

Workorder No.: 1095962

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Carmon Beene

Project Manager

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The Laboratory certification numbers are AK971-05 (DW), UTS-005 (CS) and AK00971 (Micro) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 6010B, 7470A, 7471A, 9040B, 9045C, 9056, 9060, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343. All work is being provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm)

The following descriptors may be found on your report which will serve to further qualify the data.

MDL	Method Detection Limit
PQL	Practical Quantitation Limit (reporting limit).
CL	Control Limit
U	Indicates the analyte was analyzed for but not detected.
F	Indicates value that is greater than or equal to the MDL.
J	The quantitation is an estimation.
ND	Indicates the analyte is not detected
В	Indicates the analyte is found in a blank associated with the sample.
*	The analyte has exceeded allowable regulatory or control limits.
D	The analyte concentration is the result of dilution.
GT	Greater Than
LT	Less Than
Q	QC parameter out of acceptance range.
М	A matrix effect was present.
E	The analyte result is above the calibrated range.
R	Rejected
DF	Analytical Dilution Factor
JL	The analyte was positively identified, but the quantitation is a low estimation.
<surr></surr>	Surrogate QC spiked standard
<surr is=""></surr>	Surrogate / Internal Standard QC spiked standard
QC	Quality Control
QA	Quality Assurance
MB	Method Blank
LCS (D)	Laboratory Control Sample (Duplicate)
MS(D)	Matrix Spike (Duplicate)
BMS(D)	Site Specific Matrix Spike (Duplicate)
RPD	Relative Percent Difference
ICV	Initial Calibration Verification
CCV	Continuous Calibration Verification
MSA	Method of Standard Addition

Notes: Soil samples are reported on a dry weight basis unless otherwise specified All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 10/21/2009 2:53 pm

Client Name: Shannon & Wilson-Fairbanks Project Name: 31-1-11472-001 Northway ADOT Workorder No.: 1095962

Analytical Methods

Method Description	Analytical Method
AK101/8021 Combo. (S)	AK101
AK101/8021 Combo. (S)	SW8021B
Diesel Range Organics (S)	AK102
GRO/8021 Combo In-House Ext (S)	AK101
GRO/8021 Combo In-House Ext (S)	SW8021B
Percent Solids SM2540G	SM20 2540G

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1095962001	1472-001
1095962002	1472-002
1095962003	TRIP BLANK

Print Date: 10/21/2009 2:53 pm

Analytical Prep

Client Sample ID: **1472-001** SGS Ref. #: 1095962001 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Percent Solids: 90.7

Collection Date/Time: 10/07/09 16:45 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	ND	2.30	mg/Kg	1	VFC9713		
Benzene	ND	0.0115	mg/Kg	1	VFC9713		
Toluene	ND	0.0461	mg/Kg	1	VFC9713		
Ethylbenzene	ND	0.0461	mg/Kg	1	VFC9713		
o-Xylene	ND	0.0461	mg/Kg	1	VFC9713		
P & M -Xylene	ND	0.0461	mg/Kg	1	VFC9713		
4-Bromofluorobenzene <surr></surr>	81.4	50-150	%	1	VFC9713		
1,4-Difluorobenzene <surr></surr>	96.9	80-120	%	1	VFC9713		
Batch Information							
Analytical Batch: VFC9713 Analytical Method: AK101					Initial Prep	Wt./Vol.: 76	6.907 g
Analysis Date/Time: 10/17/09 02:44					Container	ID:1095962	001-A
Dilution Factor: 1					Analyst: K	PW	
Analytical Batch: VFC9713					Initial Prep	Wt./Vol.: 76	6.907 g
Analytical Method: SW8021B							
Analysis Date/Time: 10/17/09 02:44					Container	ID:1095962	001-A
Dilution Factor: 1					Analyst: K	PW	

Print Date: 10/21/2009 2:53 pm

Analytical Bron

Client Sample ID: **1472-001** SGS Ref. #: 1095962001 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Percent Solids: 90.7

Collection Date/Time: 10/07/09 16:45 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Discol Pango Organico	915	77.0	100 g // g	4	VECOOCE	VVV21016	
	010	77.0	mg/Kg	1	XFC8965	~~~21010	
5a Androstane <surr></surr>	104	50-150	%	1	XFC8965	XXX21816	
Batch Information							
Analytical Batch: XFC8965 Prep Batch: X		Prep Batch: XXX21816	21816 Initial Prep Wt./Vol.: 30.07			749 g	
Analytical Method: AK102	Prep Method: SW3550C				Prep Extract Vol.: 3.5 mL		
Analysis Date/Time: 10/14/09 03:41 Prep Date/Time: 10/13/09 ⁻		Prep Date/Time: 10/13/09 12:1	0	Container ID:1095962001-B			1-B
Dilution Factor: 1					Analyst: KD	C	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 10/21/2009 2:53 pm

Client Sample ID: 1472-001
SGS Ref. #: 1095962001
Project ID: 31-1-11472-001 Northway ADOT
Matrix: Soil/Solid (dry weight)
Percent Solids: 90.7

Collection Date/Time: 10/07/09 16:45 Receipt Date/Time: 10/10/09 11:00

Solids

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	90.7		%	1	SPT8032		
Batch Information							
Analytical Batch: SPT8032 Analytical Method: SM20 2540G					Initial Prep V	Vt./Vol.: 1 m	L
Analysis Date/Time: 10/12/09 15:55					Container ID	:109596200)1-B
Dilution Factor: 1					Analyst: KA	N	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 10/21/2009 2:53 pm

Prep

Analytical

Client Sample ID: **1472-002** SGS Ref. #: 1095962002 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Percent Solids: 91.5

Collection Date/Time: 10/07/09 17:00 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	ND	3.14	mg/Kg	1	VFC9713		
Benzene	ND	0.0157	mg/Kg	1	VFC9713		
Toluene	ND	0.0628	mg/Kg	1	VFC9713		
Ethylbenzene	ND	0.0628	mg/Kg	1	VFC9713		
o-Xylene	ND	0.0628	mg/Kg	1	VFC9713		
P & M -Xylene	ND	0.0628	mg/Kg	1	VFC9713		
4-Bromofluorobenzene <surr></surr>	91.7	50-150	%	1	VFC9713		
1,4-Difluorobenzene <surr></surr>	96.7	80-120	%	1	VFC9713		
Batch Information							
Analytical Batch: VFC9713					Initial Prep	Wt./Vol.: 5	l.015 g
Analysis Date/Time: 10/17/09 03:04					Container I	D:1095962	002-A
Dilution Factor: 1					Analyst: Kl	PW	
Analytical Batch: VFC9713					Initial Prep	Wt./Vol.: 5'	l.015 g
Analytical Method: SW8021B							
Analysis Date/Time: 10/17/09 03:04					Container I	D:1095962	002-A
Dilution Factor: 1					Analyst: Kl	PW	

Print Date: 10/21/2009 2:53 pm

Analytical Bron

Client Sample ID: **1472-002** SGS Ref. #: 1095962002 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Percent Solids: 91.5

Collection Date/Time: 10/07/09 17:00 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	967	67 4	ma/Ka	1	XEC 8065	XXX21816	
5a Androstane <surr></surr>	105	50-150	%	1	XFC8965	XXX21816	
Batch Information							
Analytical Batch: XFC8965		Prep Batch: XXX21816			Initial Prep V	/t./Vol.: 30.1	588 g
Analytical Method: AK102 Prep Method: SW3550C		Prep Method: SW3550C		Prep Extract Vol.: 3.1 mL			-
Analysis Date/Time: 10/14/09 04:02 Prep Date/Time: 10/1		Prep Date/Time: 10/13/09 12:10	0		Container ID	:109596200	2-A
Dilution Factor: 1					Analyst: KD	C	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 10/21/2009 2:53 pm

Client Sample ID: **1472-002** SGS Ref. #: 1095962002 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Percent Solids: 91.5

Collection Date/Time: 10/07/09 17:00 Receipt Date/Time: 10/10/09 11:00

Solids

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	91.5		%	1	SPT8032		
Batch Information							
Analytical Batch: SPT8032 Analytical Method: SM20 2540G					Initial Prep V	Vt./Vol.: 1 m	L
Analysis Date/Time: 10/12/09 15:55					Container ID	:109596200	02-A
Dilution Factor: 1					Analyst: KA	N	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 10/21/2009 2:53 pm

Analytical Prep

Client Sample ID: TRIP BLANK

SGS Ref. #: 1095962003 Project ID: 31-1-11472-001 Northway ADOT Matrix: Soil/Solid (dry weight) Collection Date/Time: 10/07/09 16:45 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	<u>Batch</u>	<u>Batch</u>	<u>Qualifiers</u>
Gasoline Range Organics	ND	2.60	mg/Kg	1	VFC9713		
Benzene	ND	0.0130	mg/Kg	1	VFC9713		
Toluene	ND	0.0519	mg/Kg	1	VFC9713		
Ethylbenzene	ND	0.0519	mg/Kg	1	VFC9713		
o-Xylene	ND	0.0519	mg/Kg	1	VFC9713		
P & M -Xylene	ND	0.0519	mg/Kg	1	VFC9713		
4-Bromofluorobenzene <surr></surr>	81.4	50-150	%	1	VFC9713		
1,4-Difluorobenzene <surr></surr>	97	80-120	%	1	VFC9713		
Batch Information							
Analytical Batch: VFC9713 Analytical Method: AK101					Initial Prep	Wt./Vol.: 4	8.157 g
Analysis Date/Time: 10/17/09 01:25					Container	ID:1095962	2003-A
Dilution Factor: 1					Analyst: K	PW	
Analytical Batch: VFC9713					Initial Prep	Wt./Vol.: 4	8.157 g
Analytical Method: SW8021B							
Analysis Date/Time: 10/17/09 01:25					Container	ID:1095962	2003-A
Dilution Factor: 1					Analyst: K	PW	

SGS Ref.# Client Name Project Name/# Matrix	931390 Method Bla Shannon & Wilson-Fairbank 31-1-11472-001 Northway A Soil/Solid (dry weight)	nnk 5 DOT		Printed Date/Time Prep Batch Methoo Date	10/21/2009 14:53
QC results affect the 1095962001, 10	following production samples: 095962002				
Parameter	Result	Reporting/Control	MDL	Units	Analysis Date
Solids					
Total Solids	100)		%	10/12/09
Batch	SPT8032				
Method	SM20 2540G				
Instrument					

SGS Ref.#	931409	Method Blank	Printed	Date/Time	10/21/2009	14:53
Client Name	Shannon & Wilso	on-Fairbanks	Prep	Batch	XXX21816	
Project Name/#	31-1-11472-001	Northway ADOT		Method	SW3550C	
Matrix	Soil/Solid (dry w	veight)		Date	10/13/2009	

QC results affect the following production samples: 1095962001, 1095962002

Parameter F			Reporting/Control Limit	MDL Units		Analysis Date
Semivolatile	Organic Fuels Depart	ment				
Diesel Range Organics		ND	20.0	6.20	mg/Kg	10/14/09
Surrogates						
5a Androstane <s< th=""><th>urr></th><th>88.4</th><th>60-120</th><th></th><th>%</th><th>10/14/09</th></s<>	urr>	88.4	60-120		%	10/14/09
Batch	XFC8965					
Method	AK102					
Instrument	HP 6890 Series II FID SV D F	ł				

SGS Ref.# 932574 Method Blank Printed Date/Time 10/21/2	009 14:53
Client NameShannon & Wilson-FairbanksPrepBatchVXX20	134
Project Name/# 31-1-11472-001 Northway ADOT Method SW503	5A
MatrixSoil/Solid (dry weight)Date10/16/2	009

QC results affect the following production samples: 1095962001, 1095962002, 1095962003

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	ls Department					
Gasoline Range (Organics	ND	2.50	0.750	mg/Kg	10/16/09
Surrogates						
4-Bromofluorobe	nzene <surr></surr>	113	50-150		%	10/16/09
Batch	VFC9713					
Method	AK101					
Instrument	HP 5890 Series II PII	D+FID VCA				
Benzene		ND	0.0125	0.00400	mg/Kg	10/16/09
Toluene		ND	0.0500	0.0150	mg/Kg	10/16/09
Ethylbenzene		ND	0.0500	0.0150	mg/Kg	10/16/09
o-Xylene		ND	0.0500	0.0150	mg/Kg	10/16/09
P & M -Xylene		ND	0.0500	0.0150	mg/Kg	10/16/09
Surrogates						
1,4-Difluorobenz	ene <surr></surr>	97.2	80-120		%	10/16/09
Batch	VFC9713					
Method	SW8021B					
Instrument	HP 5890 Series II PII	D+FID VCA				

SGS Ref.# Client Name Project Name/# Original Matrix	931391 E Shannon & Wilson-Fai 31-1-11472-001 North 1095488061 Soil/Solid (dry weight)	uplicate rbanks way ADOT			Printed I Prep	Date/Time Batch Method Date	10/21/2009	14:53
QC results affect the	following production samples:							
1095962001, 109	75962002							
Parameter		Original Result	QC Result	Units	RPD	RPD Limits		Analysis Date
Solids								
Total Solids		61.6	60.4	%	2	(< 15)		10/12/2009
Batch	SPT8032							
Method Instrument	SM20 2540G							

-

Batch	XFC8965
Method	AK102
Instrument	HP 6890 Series II FID SV D R

SGS Ref.# Client Name Project Name/# Matrix	932575 932576 Shannon a 31-1-1147 Soil/Solid	Lab Control S Lab Control S & Wilson-Fairba 72-001 Northwa ((dry weight)	ample ample Dup anks y ADOT	blicate		Printed Prep	Date/Time Batch Method Date	10/21/2009 VXX20134 SW5035A 10/16/2009	14:53
QC results affect the foll 1095962001, 10959	owing produc 962002, 109	tion samples: 5962003							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartmen	t							
Benzene		LCS LCSD	1.24 1.29	99 103	(80-125)	4	(< 20)	1.25 mg/Kg 1.25 mg/Kg	10/16/2009 10/17/2009
Toluene		LCS LCSD	1.29 1.34	103 107	(85-120)	4	(< 20)	1.25 mg/Kg 1.25 mg/Kg	10/16/2009 10/17/2009
Ethylbenzene		LCS LCSD	1.34 1.39	107 111	(85-125)	4	(< 20)	1.25 mg/Kg 1.25 mg/Kg	10/16/2009 10/17/2009
o-Xylene		LCS LCSD	1.26 1.31	101 105	(85-125)	4	(<20)	1.25 mg/Kg 1.25 mg/Kg	10/16/2009 10/17/2009
P & M -Xylene		LCS LCSD	2.61 2.71	104 108	(85-125)	4	(< 20)	2.50 mg/Kg 2.50 mg/Kg	10/16/2009 10/17/2009
Surrogates									
1,4-Difluorobenzene <	surr>	LCS LCSD		101 102	(80-120)	0			10/16/2009 10/17/2009

Batch	VFC9713
Method	SW8021B
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.#	932577 Lab	Control S	ample		Printed	Date/Time	10/21/2009	14:53	
Client Name Project Name/# Matrix	932578 Lab Shannon & Wils 31-1-11472-001 Soil/Solid (dry v	Control S on-Fairba Northwa weight)	ample Dup anks y ADOT	olicate		Prep	Batch Method Date	VXX20134 SW5035A 10/16/2009	
QC results affect the follow 1095962001, 109596	wing production sate 52002, 109596200	nples:)3							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels De	partment								
Gasoline Range Organics	S	LCS	13.0	116	(60-120)			11.3 mg/Kg	10/17/2009
		LCSD	13.2	117		1	(<20)	11.3 mg/Kg	10/17/2009
Surrogates									
4-Bromofluorobenzene <	<surr></surr>	LCS		118	(50-150)				10/17/2009
		LCSD		116		2			10/17/2009
Batch VF(C9713								

Method AK101

Instrument HP 5890 Series II PID+FID VCA

ations Nationwide • Maryland • New York olina • Ohio inia www.us.sgs.com	pageof				REMARKS/ LOC ID							Special Deliverable Requirements:		al Instructions:		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT	White - Retained by Lab Pink - Retained by Client
bervices Inc. Y RECORD • West Virg.	SGS Reference #:	# SAMPLE Veeservatives	C C= Analysis 0 COMP N G=	A MI= Muti Incremental	R Samples	XX	XX	· ×		κ		U.55 DOD Project? YES NO	UIUDAC Gooler ID	Requested Turnaround Time and-or Speci		Samples Received Cold? YES NO	y By: Themperature C: The TB Temperature C: The LO	http://www.sgs.com/terms and conditions.htm
1095962	479 2000	MDOCI - LOOCIN :=	þ	100-2th11-h	DATE TIME MATRIX/ MATRIX CODE	102 54:911 60/L/0	1 00:11 60/L/01	-				Time Received By:	IN CUMPANOULA	Time Received By:	Time Received By:		Time Received For Laboratory	Fax: (907) 5 61-5301 Fax: (910) 350-1557
	BENT: Shurnon LUULDON	PROJECT: Northwise, ADY 245 SITE/PWSI	Pridrealarison / Harled wee	INVOICE TO: QUOTE #	LAB NO. SAMPLE IDENTIFICATION	046 1472-001	B+ 1472-202	31 tripplank	-			Collected/Relinquistred By;(1) Date	kol.	(Relinquished By: (2)) Date (UNMON Rel W 0/09	Relinquished By: (3) Date		Relinquished By: (4) Date	200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 3 550 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903

Long, Alesha (Anchorage)

From:Beene, Carmon R (Anchorage)Sent:Tuesday, October 13, 2009 1:57 PMTo:Long, Alesha (Anchorage)Subject:WO 1095962Importance: High

Per Mark Lockwood at S&W please do an in house extraction for the gro/btex analysis on sample 2 that was broken in transit from Fairbanks to anchorage.

Please Let me know if I need to notify anyone else. Thanks

Carmon Beene

Environmental Services Project Manager

SGS - North America 3180 Peger Rd Ste. 190 Fairbanks AK 99701 Phone: (907) 474-8656 Mobile: (907) 322-8444 Fax: (907) 474-9685 Email: <u>Carmon.Beene@sgs.com</u>

Did you know SGS now offers TO-14, TO-15 ambient air volatiles analysis including NELAC accreditation?

SGS sends analytical reports via the Internet as Portable Document Format (PDF) files. Reports in this format, with authenticated electronic signatures, are considered official reports. You may distribute your PDF files electronically or as printed hardcopies, as long as they are distributed in their entirety. All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm

Page 21 of 24

10/13/2009

SGS SAMPLE RECEIPT FORM SGS WO# No NA Yes TAT (circle one): Standard -or- Rush Are samples **RUSH**, priority or *w/in 72 hrs* of **hold time**? Received Date: 10 balog _____ If yes, have you done *e-mail ALERT notification*? _____ Are samples within 24 hrs. of hold time or due date? Received Time: 1055 _____ If yes, have you also *spoken with* supervisor? Cooler ID Temperature Measured w/ ____ Archiving bottles: Are lids marked w/ red "X"? (Therm/IR ID#) (=41 TB=100 _____ Were samples collected with proper preservative? FBX FID Any problems (ID, cond'n, HT, etc)? Explain: ND+ CHECKED IN the fair banks office °C °C °C Note: Temperature readings include thermometer correction factors _____ If this is for PWS, provide **PWSID:**___ **Delivery method** (circle all that apply): Payment received: \$_____ by Check or Credit Card Client // Alert Courier / Lynden / SGS _____ Will courier charges apply? UPS / FedEx / USPS / DHL / Carlile Data package required? (Level: 1 / 2 / 3 / 4) AkAir Goldstreak / NAC / ERA / PenAir Other: Notes: ____ Is this a DoD project? (USACE, Navy, AFCEE) Additional Sample Remarks: ($\sqrt{if applicable}$) Extra Sample Volume? Limited Sample Volume? This section must be filled out for DoD projects (USACE, Navy, AFCEE): **Multi-Incremental Samples?** Yes No Lab-filtered for dissolved Is received temperature $\leq 6^{\circ}$ C? Ref Lab required for Were containers ice-free? Notify PM immediately of any ice in samples. _Foreign Soil? If some cooler temperatures are non-compliant, see form FS-0029 (attached) for samples/analyses affected. Was there an airbill? (If "yes," see attached.) This section must be completed if problems are noted. Was cooler sealed with custody seals & were they intact? Was client notified of problems? Yes / No #/where: Was there a COC with cooler? By (SGS PM): _____ Was COC sealed in plastic bag & taped inside lid of cooler? Was the COC filled out properly? Did labels correspond? Individual contacted: Did the COC indicate USACE / Navy / AFCEE project? Via: Phone / Fax / E-mail (circle one) Samples were packed to prevent breakage with (circle one): Date/Time: Bubble Wrap Vermiculite Other (specify): Reason for contact: Were all samples sealed in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved? Were correct container / sample sizes submitted? Was the PM notified of arrival so they can send Sample Receipt Acknowledgement to client? Change Order Required? Yes / No

Notes:

Completed by (sign): <u>(AvmonBeene</u> (print): <u>Cakmon Beente</u> Login proof: Self-check completed *Mc* Peer-reviewer's Initials

1095962

1095962

		*Notes							ľ											1
		Other:	2				7													8
	e	IJ⁺HN																		10
	ativ	Ascorbic Acid										[Q
	e7	HOPN																		\mathcal{L}
	res	70S2H								1					1				90	e:
	•	EONH																	1#1	Dat
ŧ		HCI																	SOF	
S M		ənoN		7	 7	5 70.007.07.00.70.07.00.0007.00.00													Jec	
SG		Other:																	edb	
	/pe	Septa	ς				5						-						lent	
	r J	iloC																	cun	
	aine	Nalgene																	op 🤅	
ing	onté	HDbE			·														t be	
ack	ŏ	ÐŐ								ľ									snu	- d
μ		ÐA	5	5	7		5												ipt,	\sum
ottle		Other:										ĺ							ece (r v
- B	a me	Ղ ա0‡																	no J	
RM	olu	Дто																	dn C	
FO	er V	125mL or 4oz	-	{	/		~											7	ation \mathcal{M}_{I}	d by
EIPT	Itain	250mL or 802					_												serv	lete
ECE	S	Jm002																	l pre	duic
ш		ור									ч.								nica	Ŭ
Ę		TB					7		 							,		als	then	
SA		όс																Tota	al) c	
		Test	6NU Brex	DRO	DRO	•	640 PTEX	~									•	Bottle	Containers which require (addition	
+		Matrix	61		6		e)												* Note:	
		Container ID	4	∞	 Ă.		4													
		#	/		61		2													

				SGS N	10959
	SAMPLE	E RECEIPT FORM FO From FAIRBANKS, ALA To	OR TRANSFEF ASKA	RS	
	TO BE COMPLETED	IN ANCHORAGE U	PON ARRIVA	L FROM FAIR	BANKS.
NOTE	S RECORDED BELOV	WARE ACTIONS N	EEDED UPON	ARRIVAL IN A	NCHORAGE.
Notes:	GLAME ID H	(1472-001	402 A	6 W/SHATA	RECEIVEN
	ROUEN ON CO	Doctor flue	SIMMA	FLOST,	IN HOUSE
E	WACTION PORTA	IE the			
Receipt Date	Time:	59 1100	}		
Receipt Date Delivery meth Alert Courier Other: Airbill #	/ Time: <i>lO/OC</i> nod to Anchorage (<i>circle</i> UPS / FedEx / USPS / A	all that apply): A Goldstreak / NAC /	ERA / PenAir /	'Carlile/Lynden	/ SGS
Receipt Date Delivery metl Alert Courier Other: Airbill #	/ Time: <u>/O~/O~/</u> od to Anchorage (<i>circle</i> UPS / FedEx / USPS / A	all that apply): A Goldstreak / NAC /	ERA / PenAir /	Carlile/Lynden	/ SGS
Receipt Date Delivery metl Alert Courier Other: Airbill # COOLER AN Cooler ID /	/ Time: /O < /	DINGS* 6 <u>ooler (°C)</u>	ERA / PenAir /	Carlile / Lynden	/ SGS <u>Cooler (°C)</u>
Receipt Date Delivery metl Alert Courier Other: Airbill # COOLER AN Cooler ID /	Time: <u>10~10~0</u> nod to Anchorage (<i>circle</i> UPS / FedEx / USPS / A D TEMP BLANK REA <u>Temp Blank (°C)</u>	<u>o q (100</u> all that apply): A Goldstreak / NAC / DINGS* 6 <u>ooler (°C) C</u>	ERA / PenAir /	Carlile / Lynden	/ SGS <u>Cooler (°C)</u>
Receipt Date Delivery metl Alert Courier Other: Airbill # COOLER AN Cooler ID / CUSTODY SE	Time: <u>10-10-0</u> hod to Anchorage (circle UPS / FedEx / USPS / A D TEMP BLANK REA <u>Temp Blank (°C)</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>10</u>	2 9 //00 all that apply): A Goldstreak / NAC / DINGS* 6 <u>ooler (°C) C</u> 2	ERA / PenAir /	Carlile Lynden	/ SGS <u>Cooler (°C)</u>
Receipt Date Delivery metl Alert Courier Other: Airbill # COOLER AN Cooler ID CUSTODY SE	Time: <u>10-10-0</u> nod to Anchorage (<i>circle</i> UPS / FedEx / USPS / A D TEMP BLANK REA <u>Temp Blank (°C)</u> <u>C</u> ALS INTACT: <u>YES</u> #1 W	<u>all that apply</u>): A Goldstreak / NAC / DINGS* 6 <u>ooler (°C) C</u> 	ERA / PenAir /	Carlile Lynden	/ SGS <u>Cooler (°C)</u>

LABORATORY DATA REVIEW CHECKLIST

CS Report Name: Northway ADOT&PF Station

Date: June 2010

Laboratory Report Date: October 27, 2009

Consultant Firm: Shannon & Wilson, Inc.

Completed by: Mark S. Lockwood, C.P.G. **Title:** Senior Principal Geologist

Laboratory Name: SGS North America, Inc. SGS Work Order Number: 1095963 (Two coolers - #1 and #2)

ADEC File Number: 170.38.035

(NOTE: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? **Ves**/ **No** Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-approved?
 (NA) / Yes / No Comments:

2. Chain of Custody (COC)

- a. COC information completed, signed, and dated (including released/received by)?
 Yes / No Comments:
- **b.** Correct analyses requested? Yes/ No Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?
 Yes No
 Comments: Upon delivery to SGS in Fairbanks the temp blank was 1.0° C for cooler #1

and 2.1° C for cooler #2; cooler temp was 4.1° C for cooler #1 and 4.5° C for cooler #2; no evidence of freezing was noted. Upon delivery to the lab in Anchorage the temp blank was 1.2° C for cooler #1 and 1.0° C for cooler #2; cooler temp was 2° C for both coolers. No evidence of freezing was noted.

- b. Sample preservation acceptable acidified waters, Methanol-preserved VOC soil (GRO, BTEX, VOCs, etc.)? NA (Yes) / No Comments:
- c. Sample condition documented broken, leaking (soil MeOH), zero headspace (VOC vials)? Yes/ No
 Comments: Samples 1472-100709-001, and 1472-100709-005 and 1472-100709-006 had limited sample volumes due to breakage during transport.
- d. If there were any discrepancies, were they documented (e.g., incorrect sample containers/preservation, sample temperatures outside range, insufficient sample size, missing samples)? NA / Yes No Comments: Samples 1472-100709-001, and 1472-100709-005 and 1472-100709-006 had limited sample volumes due to breakage during transport.
- e. Data quality or usability affected? No Explain. *NA* Comments: Although the sample volume was limited, the laboratory was able to perform the analyses requested.

4. Case Narrative

- a. Present and understandable? Yes / No Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? *None Noted* / **Yes** Comments: *LCS, LCSD, and CCV recoveries were biased high for several 8260B analytes. The analytes were not detected above the PQL in the associated samples.*
- c. Were corrective actions documented? None Noted Yes Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *No effect noted*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? **Yes** / **No** Comments:
- **b.** All applicable holding times met? **Yes**/ **No** Comments:

- **c.** All soils reported on a dry-weight basis? (NA) Yes / No Comments:
- d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? Yes / No Comments:
- e. Data quality or usability affected? Explain. No Comments:

6. <u>QC Samples</u>

a. Method Blank

- One method blank reported per matrix, analysis, and 20 samples?
 Yes/ No Comments:
- ii. All method blank results less than PQL? Yes / No Comments:
- iii. If above PQL, what samples are affected? (NA) Comments:
- iv. Do the affected sample(s) have data flags? NA/ Yes / No Comments:

If so, are the data flags clearly defined? (NA) Yes / No Comments:

v. Data quality or usability affected? Explain. NA Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics - One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) *N/A* /Yes/ No Comments:

When analyses are non-AK methods and only a LCS was reported, but a MS/MSD was used for RPDs, answer will still be "yes."

ii. Metals/Inorganics - One LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA / Yes No
 Comments: No LCSD was reported for metal analysis.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No

Comments: LCS, LCSD, and CCV recoveries were biased high for tetrachloroethane, dibromochloromethane, 1,1,1,2-tetrachloroethane, 2-butanone, and bromoform. These analytes were not detected above their PQLs in the associated samples.

- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) (Yes) No Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? NA Comments:
- vi. Do the affected samples(s) have data flags (NA/ Yes / No Comments:

If so, are the data flags clearly defined? (NA) Yes / No Comments:

vii. Data quality or usability affected? Explain. NA Comments:

c. Surrogates - Organics Only

- Are surrogate recoveries reported for organic analyses, field, QC and laboratory samples? NA (Yes) / No Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) NA / Yes No
 Comments: AK101 Bromofluorobenzene was biased high in sample 1472-100709-003.
- iii. Do the sample results with failed surrogate recoveries have data flags? *NA* / Yes No Comments:

If so, are the data flags clearly defined? (NA) Yes / No Comments:

iv. Data quality or usability affected? Explain. *NA* (Yes) Comments: *GRO is biased high in sample 1472-100709-003*.
- d. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and cooler? *NA* / Yes No Comments: *No trip in cooler containing metals samples*.
 - ii. All results less than PQL? *NA* /Yes/ No Comments:
 - iii. If above PQL, what samples are affected? *NA* Comments:
 - iv. Data quality or usability affected? No Explain. NA Comments:

e. Field Duplicate

- One field duplicate submitted per matrix, analysis and 10 project samples?
 Yes/ No Comments: 1472-100709-007 is the duplicate of sample 1472-100709-006.
- ii. Were the field duplicates submitted blind to the lab? *NA* (Yes) / No Comments:
- iii. Precision All relative percent differences (RPDs) less than specified DQOs? (Recommended: 30% for water, 50% for soil) NA / Yes No
 Comments: The RPDs for detected analytes meet the DQOs with the exception of naphthalene.
- *iv.* Data quality or usability affected? No Explain. *The higher concentration of Naphthalene was below its cleanup level.*
- f. Decontamination or Equipment Blank (if applicable)
 - i. All results less than PQL? NA/ Yes / No Comments:
 - ii. If results are above PQL, what samples are affected? (NA) Comments:
 - iii. Data quality or usability affected? Explain. NA Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-specific, etc.)

- a. Are they defined and appropriate? (NA) Yes / No
- 31-1-11472, Northway ADOT Station Page 5 of 5

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 31-1-11472-001 Northway Adot Shannon & Wilson-Fairbanks 1095963

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

Client Name: Shannon & Wilson-Fairbanks Project Name: 31-1-11472-001 Northway Adot Workorder No.: 1095963

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID						
1095963003	PS	1472-100709-003						
	AK102 - The pattern is AK101 - BFB (surroga	consistent with a weathered middle distillate. te) recovery does not meet QC criteria (biased high) due to hydrocarbon interference.						
1095963005	PS	1472-100709-005						
	AK102 - Unknown hyd	rocarbon with several peaks is present.						
931413	LCS	LCS for HBN 221518 [VXX/20101]						
	8260B - LCS recoveries for several analytes do not meet QC criteria (biased high). These analyte the PQL in the associated samples							
931414	LCSD	LCSD for HBN 221518 [VXX/20101						
	8260B - LCSD recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the PQL in the associated samples							
931415	CCV	CCV for HBN 221519 [VMS/10917]						
	8260B - CCV recoverie above the PQL in the a	3260B - CCV recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the PQL in the associated samples						
931877	CCV	CCV for HBN 221627 [VMS/10926]						
	8260B - CCV recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the PQL in the associated samples							

Laboratory Analytical Report

Client: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99709

> Attn: Andrea Carlson T: (907)479-0600 F:(907)479-5691 ac@shanwil.com

Project: 31-1-11472-001 Northway Adot

Workorder No.: 1095963

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Carmon Beene

Project Manager

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The Laboratory certification numbers are AK971-05 (DW), UTS-005 (CS) and AK00971 (Micro) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 6010B, 7470A, 7471A, 9040B, 9045C, 9056, 9060, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343. All work is being provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm)

The following descriptors may be found on your report which will serve to further qualify the data.

MDL	Method Detection Limit
PQL	Practical Quantitation Limit (reporting limit).
CL	Control Limit
U	Indicates the analyte was analyzed for but not detected.
F	Indicates value that is greater than or equal to the MDL.
J	The quantitation is an estimation.
ND	Indicates the analyte is not detected
В	Indicates the analyte is found in a blank associated with the sample.
*	The analyte has exceeded allowable regulatory or control limits.
D	The analyte concentration is the result of dilution.
GT	Greater Than
LT	Less Than
Q	QC parameter out of acceptance range.
Μ	A matrix effect was present.
E	The analyte result is above the calibrated range.
R	Rejected
DF	Analytical Dilution Factor
JL	The analyte was positively identified, but the quantitation is a low estimation.
<surr></surr>	Surrogate QC spiked standard
<surr is=""></surr>	Surrogate / Internal Standard QC spiked standard
QC	Quality Control
QA	Quality Assurance
MB	Method Blank
LCS (D)	Laboratory Control Sample (Duplicate)
MS(D)	Matrix Spike (Duplicate)
BMS(D)	Site Specific Matrix Spike (Duplicate)
RPD	Relative Percent Difference
ICV	Initial Calibration Verification
CCV	Continuous Calibration Verification
MSA	Method of Standard Addition

Notes: Soil samples are reported on a dry weight basis unless otherwise specified All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 10/27/2009 11:24 am

Client Name: Shannon & Wilson-Fairbanks Project Name: 31-1-11472-001 Northway Adot Workorder No.: 1095963

Analytical Methods

Method Description	Analytical Method
8270 PAH SIM Semi-Vol GC/MS Liq/Liq ext.	8270D SIMS
BTEX 8021	SW8021B
DRO Low Volume (W)	AK102
Gasoline Range Organics (W)	AK101
Metals by ICP-MS	SW6020
Volatile Organic Compounds (W) FULL	SW8260B

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1095963001	1472-100709-001
1095963002	1472-100709-002
1095963003	1472-100709-003
1095963004	1472-100709-004
1095963005	1472-100709-005
1095963006	1472-100709-006
1095963007	1472-100709-007
1095963008	1472-100709-008
1095963009	TRIP BLANK

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-001** SGS Ref. #: 1095963001 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	0.117	0.100	mg/L	1	VFC9714	VXX2014	1
4-Bromofluorobenzene <surr></surr>	124	50-150	%	1	VFC9714	VXX2014	1
Batch Information							
Analytical Batch: VFC9714		0141		Initial Prep	Wt./Vol.: 5 m	٦L	
Analytical Method: AK101		5030B	Prep Extract Vol.: 5 mL				
Analysis Date/Time: 10/17/09 17:29 Prep Date/Time: 10/1			0/17/09 13:04		Container I	D:10959630	01-B
Dilution Factor: 1					Analyst: Kl	⊃W	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-001** SGS Ref. #: 1095963001 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	ND	0.784	mg/L	1	XFC8960	XXX2182	7
5a Androstane <surr></surr>	74.2	50-150	%	1	XFC8960	XXX2182	7
Batch Information							
Analytical Batch: XFC8960	Prep Batch: XXX21827		1827		Initial Prep	Wt./Vol.: 255	5 mL
Analytical Method: AK102		3520C	Prep Extract Vol.: 1 mL				
Analysis Date/Time: 10/16/09 11:45 Prep Date/Time: 10/1		0/15/09 10:20		Container I	D:10959630	01-G	
Dilution Factor: 1					Analyst: KI	C	

Analytical Prep

Client Sample ID: **1472-100709-001** SGS Ref. #: 1095963001

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

<u>Parameter</u> <u>Res</u>	ult PQL/CL	Units	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Benzene 28.0	0.400	ug/l	1	V/MS10021	VXX20105	
Toluene ND	1.00	ug/L	1	VMS10921	VXX20105	
Ethylbenzene ND	1.00	ug/L	1	VMS10921	VXX20105	
n-Butylbenzene ND	1.00		1	VMS10921	VXX20105	
Carbon disulfide ND	2.00		1	VMS10921	VXX20105	
1 4-Dichlorobenzene ND	0.500		1	VMS10921	VXX20105	
1 2-Dichloroethane 2 07	0.500	ug/L	1	VMS10921	VXX20105	
1.3.5-Trimethylbenzene 5.31	1.00		1	VMS10921	VXX20105	
4-Chlorotoluene ND	1.00		1	VMS10921	VXX20105	
Chlorobenzene ND	0.500		1	VMS10921	VXX20105	
4-Methyl-2-pentanone (MIRK) ND	10.0	ug/L	1	VMS10921	VXX20105	
cis-1 2-Dichloroethene ND	1 00	ug/L	1	VMS10921	VXX20105	
4-Isopropyltoluene ND	1.00		1	VMS10921	VXX20105	
cis-1 3-Dichloropropene ND	0.500	ug/L	1	VMS10921	VXX20105	
n-Propylbenzene ND	1 00	ug/L	1	VMS10921	VXX20105	
Styrene ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromomethane ND	1.00		1	VMS10921	VXX20105	
trans-1 3-Dichloropropene ND	1.00	ug/L	1	VMS10921	VXX20105	
1.2.4-Trichlorobenzene ND	1.00	ug/L	1	VMS10921	VXX20105	
1.1.2.2-Tetrachloroethane ND	0.500	ug/L	1	VMS10921	VXX20105	
1.2-Dibromo-3-chloropropane ND	2.00	ug/L	1	VMS10921	VXX20105	
Methyl-t-butyl ether ND	5.00	ua/l	1	VMS10921	VXX20105	
Tetrachloroethene ND	1.00	ua/L	1	VMS10921	VXX20105	
Dibromochloromethane ND	0.500	ug/L	1	VMS10921	VXX20105	
1,3-Dichloropropane ND	0.400	ug/L	1	VMS10921	VXX20105	
1,2-Dibromoethane ND	1.00	ug/L	1	VMS10921	VXX20105	
Carbon tetrachloride ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,1,2-Tetrachloroethane ND	0.500	ug/L	1	VMS10921	VXX20105	
Chloroform ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromobenzene ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,3-Trichloropropane ND	1.00	ug/L	1	VMS10921	VXX20105	
Chloromethane ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromomethane ND	3.00	ug/L	1	VMS10921	VXX20105	
Bromochloromethane ND	1.00	ug/L	1	VMS10921	VXX20105	
Vinyl chloride ND	1.00	ug/L	1	VMS10921	VXX20105	
Dichlorodifluoromethane ND	1.00	ug/L	1	VMS10921	VXX20105	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-001** SGS Ref. #: 1095963001 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

					<u>Analytical</u>	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	15.0	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	ND	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	4.99	1.00	ug/L	1	VMS10921	VXX20105
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	20.0	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	8.14	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	5.32	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	95.3	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	102	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	92.8	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-001** SGS Ref. #: 1095963001 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Parameter Batch Information	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch	Qualifiers
Analytical Batch: VMS10921		Prep Batch: VXX20105			Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW5030B			Prep Extrac	t Vol.: 5 ml	L
Analysis Date/Time: 10/13/09 05:48		Prep Date/Time: 10/12/09	08:42		Container II	D:1095963	001-A
Dilution Factor: 1					Analyst: SC	L	

Client Sample ID: 1472-100709-001

SGS Ref. #: 1095963001 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

					<u>Analytical</u>	Prep	
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers	
Acenaphthylene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Acenaphthene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Fluorene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Phenanthrene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Anthracene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Fluoranthene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Pyrene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Benzo(a)Anthracene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Chrysene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Benzo[b]Fluoranthene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Benzo[k]fluoranthene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Benzo[a]pyrene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Indeno[1,2,3-c,d] pyrene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Dibenzo[a,h]anthracene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Benzo[g,h,i]perylene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Naphthalene	ND	0.113	ug/L	1	XMS5156	XXX21800	
1-Methylnaphthalene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
2-Methylnaphthalene	ND	0.0565	ug/L	1	XMS5156	XXX21800	
Terphenyl-d14 <surr></surr>	91.1	50-135	%	1	XMS5156	XXX21800	
Batch Information							
Analytical Batch: XMS5156		Prep Batch: XXX2	1800		Initial Prep	Nt./Vol.: 885 mL	
Analytical Method: 8270D SIMS		Prep Method: SW3	3520C		Prep Extract Vol.: 1 mL		
Analysis Date/Time: 10/23/09 03:12		Prep Date/Time: 10/12/09 08:55			Container II	D:1095963001-I	
Dilution Factor: 1					Analyst: JD	Н	

Print Date: 10/27/2009 11:24 am

Client Sample ID: 1472-100709-002

SGS Ref. #: 1095963002 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 12:00 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

					<u>Analytical</u>	Prep
Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	<u>Batch</u>	Batch Qualifier
Acenaphthylene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Acenaphthene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Fluorene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Phenanthrene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Benzo(a)Anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Chrysene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Benzo[b]Fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Benzo[k]fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Benzo[a]pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Indeno[1,2,3-c,d] pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Dibenzo[a,h]anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Benzo[g,h,i]perylene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Naphthalene	ND	0.100	ug/L	1	XMS5156	XXX21800
1-Methylnaphthalene	ND	0.0500	ug/L	1	XMS5156	XXX21800
2-Methylnaphthalene	ND	0.0500	ug/L	1	XMS5156	XXX21800
Terphenyl-d14 <surr></surr>	86.9	50-135	%	1	XMS5156	XXX21800
Batch Information						
Analytical Batch: XMS5156		Prep Batch: XXX2	1800		Initial Prep \	Nt./Vol.: 1000 mL
Analytical Method: 8270D SIMS		Prep Method: SW	3520C		Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 10/23/09 03:47 Dilution Factor: 1		Prep Date/Time: 1	0/12/09 08:55		Container II Analyst: JD	D:1095963002-A H

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-003** SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	Result		PQL/CL	Units	DF	Batch	Batch	Qualifiers
<u>r uruneter</u>			<u></u>	onto	<u> 51</u>	Duton	Butom	duumero
Gasoline Range Organics	1.34		0.100	mg/L	1	VFC9714	VXX20141	
4-Bromofluorobenzene <surr></surr>	240	*	50-150	%	1	VFC9714	VXX20141	
Batch Information								
Analytical Batch: VFC9714	Prep Batch: VXX20141			11		Initial Prep	Wt./Vol.: 5 m	L
Analytical Method: AK101	Prep Method: SW5030B			0B		Prep Extract Vol.: 5 mL		
Analysis Date/Time: 10/17/09 17:52	llysis Date/Time: 10/17/09 17:52 Prep Date/Time: 10/17/09			7/09 13:04	13:04 Container ID:1095963003-C)3-C
Dilution Factor: 1						Analyst: Kl	PW	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-003** SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	1.74	0.769	mg/L	1	XFC8960	XXX2182 ⁻	7
5a Androstane <surr></surr>	70.6	50-150	%	1	XFC8960	XXX2182	7
Batch Information							
Analytical Batch: XFC8960		Prep Batch: XXX2	1827		Initial Prep	Wt./Vol.: 260	0 mL
Analytical Method: AK102		Prep Method: SW3	3520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/16/09 12:07		Prep Date/Time: 1	0/15/09 10:20		Container I	D:10959630	03-G
Dilution Factor: 1					Analyst: KI	C	

Analytical Prep

Client Sample ID: **1472-100709-003** SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot

Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Benzene	568	4.00	ug/l	10	VMS10926	VXX20113	
Toluene	1.40	1.00	ug/L	1	VMS10921	VXX20105	
Ethylbenzene	32.0	1.00	ug/l	1	VMS10921	VXX20105	
n-Butvlbenzene	ND	1.00	ug/l	1	VMS10921	VXX20105	
Carbon disulfide	ND	2.00	ug/l	1	VMS10921	VXX20105	
1,4-Dichlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	
1.2-Dichloroethane	1.48	0.500	ug/l	1	VMS10921	VXX20105	
1,3,5-Trimethylbenzene	5.02	1.00	ug/L	1	VMS10921	VXX20105	
4-Chlorotoluene	ND	1.00	ug/l	1	VMS10921	VXX20105	
Chlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	
4-Methyl-2-pentanone (MIBK)	ND	10.0	ug/L	1	VMS10921	VXX20105	
cis-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
4-Isopropyltoluene	1.21	1.00	ug/l	1	VMS10921	VXX20105	
cis-1,3-Dichloropropene	ND	0.500	ug/L	1	VMS10921	VXX20105	
n-Propylbenzene	19.9	1.00	ug/L	1	VMS10921	VXX20105	
Styrene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromomethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
trans-1,3-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,4-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,2-Dibromo-3-chloropropane	ND	2.00	ug/L	1	VMS10921	VXX20105	
Methyl-t-butyl ether	ND	5.00	ug/L	1	VMS10921	VXX20105	
Tetrachloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromochloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,3-Dichloropropane	ND	0.400	ug/L	1	VMS10921	VXX20105	
1,2-Dibromoethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Carbon tetrachloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
Chloroform	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Chloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,3-Trichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromomethane	ND	3.00	ug/L	1	VMS10921	VXX20105	
Bromochloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Vinyl chloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dichlorodifluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	

Print Date: 10/27/2009 11:24 am

Analytical Prep

Client Sample ID: **1472-100709-003** SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	Batch	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	6.51	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	8.33	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	7.53	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	1.40	1.00	ug/L	1	VMS10921	VXX20105
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	9.73	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	2.02	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	37.4	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	95.7	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	103	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	93.1	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-003** SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep		
Parameter	<u>Result</u>	PQL/CL	Units	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>	
Batch Information								
Analytical Batch: VMS10921		Prep Batch: VXX201	05		Initial Prep	Wt./Vol.: 5	mL	
Analytical Method: SW8260B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 10/13/09 06:22		Prep Date/Time: 10/12/09 08:42			Container ID:1095963003-A			
Dilution Factor: 1					Analyst: SC	L		
Analytical Batch: VMS10926		Prep Batch: VXX201	13		Initial Prep	Wt./Vol.: 5	mL	
Analytical Method: SW8260B		Prep Method: SW503	30B		Prep Extrac	t Vol.: 5 m	L	
Analysis Date/Time: 10/14/09 03:41		Prep Date/Time: 10/*	13/09 09:32		Container II	D:1095963	003-B	
Dilution Factor: 10					Analyst: SC	L		

Analytical Prep

Client Sample ID: 1472-100709-003

SGS Ref. #: 1095963003 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:00 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Acenaphthylene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Acenaphthene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Fluorene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Phenanthrene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Anthracene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Fluoranthene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Pyrene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Benzo(a)Anthracene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Chrysene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Benzo[b]Fluoranthene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Benzo[k]fluoranthene	ND	0.0503	ug/L	1	XMS5156	XXX21800	
Benzo[a]pyrene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Indeno[1,2,3-c,d] pyrene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Dibenzo[a,h]anthracene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Benzo[g,h,i]perylene	ND	0.0503	ug/L	1	XMS5156	XXX21800)
Naphthalene	2.88	1.01	ug/L	10	XMS5156	XXX21800)
1-Methylnaphthalene	1.61	0.0503	ug/L	1	XMS5156	XXX21800	
2-Methylnaphthalene	0.974	0.0503	ug/L	1	XMS5156	XXX21800)
Terphenyl-d14 <surr></surr>	93.3	50-135	%	1	XMS5156	XXX21800)
Batch Information							
Analytical Batch: XMS5156		Prep Batch: XXX2	1800		Initial Prep	Wt./Vol.: 995	mL
Analytical Method: 8270D SIMS		Prep Method: SW3	3520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 04:22		Prep Date/Time: 1	0/12/09 08:55		Container I	D:109596300)3-I
Dilution Factor: 1					Analyst: JE	DH	
Analytical Batch: XMS5156		Prep Batch: XXX2	1800		Initial Prep	Wt./Vol.: 995	mL
Analytical Method: 8270D SIMS		Prep Method: SW3	3520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 10:11		Prep Date/Time: 1	0/12/09 08:55		Container I	D:109596300)3-I
Dilution Factor: 10					Analyst: JE	ЭH	

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-004** SGS Ref. #: 1095963004 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Casalina Danga Organisa	0.664	0.100		4	1/500744	VXX20141	
Gasoline Range Organics	0.004	0.100	mg/L	1	VFC9/14	VXX20141	
4-Bromofluorobenzene <surr></surr>	122	50-150	%	1	VFC9714	VXX20141	
Batch Information							
Analytical Batch: VFC9714		Prep Batch: VXX20141			Initial Prep V	Vt./Vol.: 5 ml	-
Analytical Method: AK101		Prep Method: SW5030B			Prep Extract	Vol.: 5 mL	
Analysis Date/Time: 10/17/09 18:15		Prep Date/Time: 10/17/09 13:0	04		Container ID	:109596300	4-C
Dilution Factor: 1					Analyst: KP	N	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-004** SGS Ref. #: 1095963004 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	Units	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	ND	0.769	mg/L	1	XFC8960	XXX2182	7
5a Androstane <surr></surr>	81.1	50-150	%	1	XFC8960	XXX2182	7
Batch Information							
Analytical Batch: XFC8960		Prep Batch: XXX2	1827		Initial Prep	Wt./Vol.: 26	0 mL
Analytical Method: AK102		Prep Method: SW3	3520C		Prep Extrac	ct Vol.: 1 mL	
Analysis Date/Time: 10/16/09 12:18		Prep Date/Time: 1	0/15/09 10:20		Container I	D:10959630	04-F
Dilution Factor: 1					Analyst: K[C	

Analytical Prep

Client Sample ID: **1472-100709-004** SGS Ref. #: 1095963004

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Damana	100	1.00		10		10000000	
Benzene	196	4.00	ug/L	10	VMS10926	VXX20113)
Toluene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Ethylbenzene	10.5	1.00	ug/L	1	VMS10921	VXX20105	
n-Butylbenzene	2.16	1.00	ug/L	1	VMS10921	VXX20105	
Carbon disulfide	ND	2.00	ug/L	1	VMS10921	VXX20105	
1,4-Dichlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,2-Dichloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105)
1,3,5-Trimethylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	5
4-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105	5
Chlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	5
4-Methyl-2-pentanone (MIBK)	ND	10.0	ug/L	1	VMS10921	VXX20105	5
cis-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	i
4-Isopropyltoluene	4.28	1.00	ug/L	1	VMS10921	VXX20105	5
cis-1,3-Dichloropropene	ND	0.500	ug/L	1	VMS10921	VXX20105	5
n-Propylbenzene	4.56	1.00	ug/L	1	VMS10921	VXX20105	5
Styrene	ND	1.00	ug/L	1	VMS10921	VXX20105	5
Dibromomethane	ND	1.00	ug/L	1	VMS10921	VXX20105	;
trans-1,3-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105	;
1,2,4-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	;
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	;
1,2-Dibromo-3-chloropropane	ND	2.00	ug/L	1	VMS10921	VXX20105	;
Methyl-t-butyl ether	ND	5.00	ug/L	1	VMS10921	VXX20105	5
Tetrachloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	5
Dibromochloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105	5
1,3-Dichloropropane	ND	0.400	ug/L	1	VMS10921	VXX20105	5
1,2-Dibromoethane	ND	1.00	ua/L	1	VMS10921	VXX20105	;
Carbon tetrachloride	ND	1.00	ua/L	1	VMS10921	VXX20105	;
1,1,1,2-Tetrachloroethane	ND	0.500	ua/L	1	VMS10921	VXX20105	5
Chloroform	ND	1.00	ug/L	1	VMS10921	VXX20105	5
Bromobenzene	ND	1.00	ug/l	1	VMS10921	VXX20105	5
1.2.3-Trichloropropane	ND	1.00	ug/l	1	VMS10921	VXX20105	5
Chloromethane	ND	1.00	ug/l	1	VMS10921	VXX20105	5
Bromomethane	ND	3.00	ug/L	1	VMS10921	VXX20105	5
Bromochloromethane	ND	1.00	ug/L	, 1	VMS10921	VXX20105	;
Vinvl chloride	ND	1.00	ug/L	, 1	VMS10921	VXX20105	
Dichlorodifluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Biomoroaniaoromothano		1.00	uy/L		v 1010 1032 1		,

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-004** SGS Ref. #: 1095963004 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	4.98	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	16.5	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	7.45	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	ND	1.00	ug/L	1	VMS10921	VXX20105
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	16.5	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	2.71	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	95.4	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	102	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	93.3	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-004** SGS Ref. #: 1095963004 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep	
Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Batch Information							
Analytical Batch: VMS10921		Prep Batch: VXX201	05		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW5030B			Prep Extract Vol.: 5 mL		
Analysis Date/Time: 10/13/09 06:55		Prep Date/Time: 10/12/09 08:42			Container ID:1095963004-A		
Dilution Factor: 1					Analyst: SC	L	
Analytical Batch: VMS10926		Prep Batch: VXX201	13		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW503	30B		Prep Extrac	t Vol.: 5 m	L
Analysis Date/Time: 10/14/09 05:21		Prep Date/Time: 10/	13/09 09:32		Container II	D:1095963	004-B
Dilution Factor: 10					Analyst: SC	L	

Analytical Prep

Client Sample ID: 1472-100709-004

SGS Ref. #: 1095963004 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	<u>Batch</u>	<u>Qualifiers</u>
Acenaphthylene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Acenaphthene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Fluorene	0.0602	0.0500	ug/L	1	XMS5156	XXX21800	
Phenanthrene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Benzo(a)Anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Chrysene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Benzo[b]Fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Benzo[k]fluoranthene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Benzo[a]pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Indeno[1,2,3-c,d] pyrene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Dibenzo[a,h]anthracene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Benzo[g,h,i]perylene	ND	0.0500	ug/L	1	XMS5156	XXX21800	
Naphthalene	3.27	1.00	ug/L	10	XMS5156	XXX21800	
1-Methylnaphthalene	2.83	0.500	ug/L	10	XMS5156	XXX21800	
2-Methylnaphthalene	0.419	0.0500	ug/L	1	XMS5156	XXX21800	
Terphenyl-d14 <surr></surr>	95.6	50-135	%	1	XMS5156	XXX21800	
Batch Information							
Analytical Batch: XMS5156		Prep Batch: XXX21	800		Initial Prep	Wt./Vol.: 100	0 mL
Analytical Method: 8270D SIMS		Prep Method: SW3	520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 04:57		Prep Date/Time: 10)/12/09 08:55		Container I	D:109596300)4-H
Dilution Factor: 1					Analyst: JE	DH	
Analytical Batch: XMS5156		Prep Batch: XXX21	800		Initial Prep	Wt./Vol.: 100	0 mL
Analytical Method: 8270D SIMS		Prep Method: SW3	520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 10:46		Prep Date/Time: 10)/12/09 08:55		Container I	D:109596300)4-H
Dilution Factor: 10					Analyst: JE	ЭН	

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-005** SGS Ref. #: 1095963005 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	Units	DF	Batch	Batch	<u>Qualifiers</u>
	0.045	0.400					
Gasoline Range Organics	0.315	0.100	mg/L	1	VFC9714	VXX20141	
4-Bromofluorobenzene <surr></surr>	126	50-150	%	1	VFC9714	VXX20141	
Batch Information							
Analytical Batch: VFC9714		Prep Batch: VXX2014	41		Initial Prep	Wt./Vol.: 5 m	L
Analytical Method: AK101		Prep Method: SW503	60B		Prep Extra	ct Vol.: 5 mL	
Analysis Date/Time: 10/17/09 18:39		Prep Date/Time: 10/1	7/09 13:04		Container I	D:109596300)5-C
Dilution Factor: 1					Analyst: Kl	PW	

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-005** SGS Ref. #: 1095963005 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter_	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Diesel Range Organics	0.743	0.714	mg/L	1	XFC8960	XXX2182	.7
5a Androstane <surr></surr>	70.2	50-150	%	1	XFC8960	XXX2182	27
Batch Information							
Analytical Batch: XFC8960		Prep Batch: XXX2	1827		Initial Prep	Wt./Vol.: 28	0 mL
Analytical Method: AK102		Prep Method: SW3	3520C		Prep Extra	ct Vol.: 1 ml	_
Analysis Date/Time: 10/16/09 12:28		Prep Date/Time: 1	0/15/09 10:20		Container I	D:10959630)05-D
Dilution Factor: 1					Analyst: Kl	C	

Analytical Prep

Client Sample ID: 1472-100709-005

SGS Ref. #: 1095963005 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter Re	<u>esult</u>	PQL/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	<u>Qualifiers</u>
Benzene 04	1 0	2.00	ug/l	5	VMS10026	VXX20113	
Toluene NI	н.о П	1.00	ug/L	1	VMS10920	VXX20105	
Ethylbenzene 10	15	1.00	ug/L	1	VMS10921	VXX20105	
n-Butylbenzene NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Carbon disulfide	D	2.00	ug/L	1	VMS10921	VXX20105	
1 4-Dichlorobenzene NI	D	0.500	ug/L	1	VMS10921	VXX20105	
1.2-Dichloroethane	D	0.500	ug/L	1	V/MS10921	VXX20105	
1.3.5-Trimethylbenzene NI	D	1.00	ug/L	1	VMS10921	VXX20105	
4-Chlorotoluene NI	D	1.00	ug/L	1	V/MS10921	VXX20105	
Chlorobenzene NI	D	0.500	ug/L	1	VMS10921	VXX20105	
4-Methyl-2-pentanone (MIBK)	D	10.0	ug/L	1	V/MS10921	VXX20105	
cis-1 2-Dichloroethene NI	D	1.00	ug/L	1	VMS10921	VXX20105	
4-Isopropyltoluene	26	1.00	ug/L	1	VMS10921	VXX20105	
cis-1 3-Dichloropropene NI	D	0.500	ug/L	1	VMS10921	VXX20105	
n-Propylbenzene 6	23	1.00	ug/L	1	VMS10021	VXX20105	
Styrene	D	1 00	ug/L	1	VMS10921	VXX20105	
Dibromomethane NI	D	1.00	ug/L	1	VMS10921	VXX20105	
trans-1 3-Dichloropropene NI	D	1 00	ug/L	1	VMS10921	VXX20105	
1.2.4-Trichlorobenzene NI	D	1.00	ug/L	1	VMS10921	VXX20105	
1.1.2.2-Tetrachloroethane NI	D	0.500	ug/L	1	VMS10921	VXX20105	
1.2-Dibromo-3-chloropropane NI	D	2.00	ug/L	1	VMS10921	VXX20105	
Methyl-t-butyl ether NI	D	5.00	ug/l	1	VMS10921	VXX20105	
Tetrachloroethene NI	D	1.00	ua/L	1	VMS10921	VXX20105	
Dibromochloromethane NI	D	0.500	ua/L	1	VMS10921	VXX20105	
1,3-Dichloropropane NI	D	0.400	ua/L	1	VMS10921	VXX20105	
1,2-Dibromoethane NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Carbon tetrachloride NI	D	1.00	ug/L	1	VMS10921	VXX20105	
1,1,1,2-Tetrachloroethane NI	D	0.500	ug/L	1	VMS10921	VXX20105	
Chloroform NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Bromobenzene NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Chloromethane NI	D	1.00	ug/L	1	VMS10921	VXX20105	
1,2,3-Trichloropropane NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Bromomethane NI	D	3.00	ug/L	1	VMS10921	VXX20105	
Bromochloromethane NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Vinyl chloride NI	D	1.00	ug/L	1	VMS10921	VXX20105	
Dichlorodifluoromethane NI	D	1.00	ug/L	1	VMS10921	VXX20105	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-005** SGS Ref. #: 1095963005

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	3.98	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	12.3	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	ND	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	ND	1.00	ug/L	1	VMS10921	VXX20105
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	12.3	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	1.00	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	5.06	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	95.3	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	102	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	94.3	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-005** SGS Ref. #: 1095963005 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep	
Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Batch Information							
Analytical Batch: VMS10921 Prep Batch: VXX20105					Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B	al Method: SW8260B Prep Method: SW5030B				Prep Extract Vol.: 5 mL		
Analysis Date/Time: 10/13/09 07:29	3/09 07:29 Prep Date/Time: 10/12/09 08:42				Container ID:1095963005-A		
Dilution Factor: 1					Analyst: SC	L	
Analytical Batch: VMS10926		Prep Batch: VXX201	13		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW503	30B		Prep Extrac	t Vol.: 5 m	L
Analysis Date/Time: 10/14/09 03:07		Prep Date/Time: 10/1	13/09 09:32		Container II	D:1095963	005-B
Dilution Factor: 5					Analyst: SC	L	

Client Sample ID: 1472-100709-005

SGS Ref. #: 1095963005 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 14:15 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers
Acenaphthylene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Acenaphthene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Fluorene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Phenanthrene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Anthracene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Fluoranthene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Pyrene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Benzo(a)Anthracene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Chrysene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Benzo[b]Fluoranthene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Benzo[k]fluoranthene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Benzo[a]pyrene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Indeno[1,2,3-c,d] pyrene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Dibenzo[a,h]anthracene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Benzo[g,h,i]perylene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Naphthalene	0.362	0.104	ug/L	1	XMS5156	XXX21800
1-Methylnaphthalene	0.103	0.0521	ug/L	1	XMS5156	XXX21800
2-Methylnaphthalene	ND	0.0521	ug/L	1	XMS5156	XXX21800
Terphenyl-d14 <surr></surr>	91.3	50-135	%	1	XMS5156	XXX21800
Batch Information						
Analytical Batch: XMS5156		Prep Batch: XXX2	21800		Initial Prep	Nt./Vol.: 960 mL
Analytical Method: 8270D SIMS		Prep Method: SW	3520C		Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 10/23/09 05:31		Prep Date/Time: 1	10/12/09 08:55		Container II	D:1095963005-F
Dilution Factor: 1					Analyst: JD	Н

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-006** SGS Ref. #: 1095963006 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

Metals by ICP/MS

					Analytical	Prep	
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	<u>Batch</u>	<u>Qualifiers</u>
Arsenic	ND	5.00	ug/l	5	MM\$6155	MXX2242	3
Barium	6.66	3.00	ug/L	5	MMS6155	MXX2242	3
Cadmium	ND	2.00	ug/L	5	MMS6155	MXX2242	3
Chromium	ND	4.00	ug/L	5	MMS6155	MXX2242	3
Lead	5.01	1.00	ug/L	5	MMS6155	MXX2242	3
Nickel	3.89	2.00	ug/L	5	MMS6155	MXX2242	3
Vanadium	ND	20.0	ug/L	5	MMS6155	MXX2242	3
Batch Information							
Analytical Batch: MMS6155		Prep Batch: MXX	22423		Initial Prep	Nt./Vol.: 50	mL
Analytical Method: SW6020		Prep Method: SW3010A			Prep Extract Vol.: 50 mL		L
Analysis Date/Time: 10/22/09 20:36		Prep Date/Time:	10/21/09 16:15		Container II	D:10959630	06-D
Dilution Factor: 5					Analyst: NF	RB	

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-006** SGS Ref. #: 1095963006 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>	
Diesel Range Organics	ND	0.784	mg/l	1	XFC8960	XXX2182	27	
5a Androstane <surr></surr>	79.7	50-150	%	1	XFC8960	XXX2182	.7	
Batch Information								
Analytical Batch: XFC8960		Prep Batch: XXX21	827		Initial Prep	Wt./Vol.: 25	5 mL	
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract Vol.: 1 mL			
Analysis Date/Time: 10/16/09 12:39		Prep Date/Time: 10)/15/09 10:20		Container I	D:10959630	006-E	
Dilution Factor: 1					Analyst: Kl	C		

Analytical Prep

Client Sample ID: **1472-100709-006** SGS Ref. #: 1095963006

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	Batch	<u>Batch</u>	<u>Qualifiers</u>
Ponzono	670	40.0		100	V/MC40020	VVV20125	
Teluene	59 5	40.0	ug/L	100	VIVIS 10930	VXX20133	
Ethylhonzono	2.26	1.00	ug/L	1	VMS10921	VXX20105	
n Butylbonzono	1 73	1.00	ug/L	1	VIVIS10921	VXX20105	
	1.73 ND	2.00	ug/L	1	VINS10921	VXX20105	
		2.00	ug/L	1	VMS10921	VXX20105	
		0.500	ug/L	1	VMS10921	VXX20105	
	ND 4.67	1.00	ug/L	1	VMS10921	VXX20105	
	4.07 ND	1.00	ug/L	1	VMS10921	VXX20105	
4-Chlorotoluene		1.00	ug/L	1	VMS10921	VXX20105	
	ND	0.500	ug/L	1	VMS10921	VXX20105	
4-Methyl-2-pentanone (MIBK)	ND	10.0	ug/L	1	VMS10921	VXX20105	
cis-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
4-Isopropyltoluene	ND	1.00	ug/L	1	VMS10921	VXX20105	
cis-1,3-Dichloropropene	ND	0.500	ug/L	1	VMS10921	VXX20105	
n-Propylbenzene	1.11	1.00	ug/L	1	VMS10921	VXX20105	
Styrene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromomethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
trans-1,3-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,4-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,2-Dibromo-3-chloropropane	ND	2.00	ug/L	1	VMS10921	VXX20105	
Methyl-t-butyl ether	ND	5.00	ug/L	1	VMS10921	VXX20105	
Tetrachloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromochloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,3-Dichloropropane	ND	0.400	ug/L	1	VMS10921	VXX20105	
1,2-Dibromoethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Carbon tetrachloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
Chloroform	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Chloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,3-Trichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromomethane	ND	3.00	ug/L	1	VMS10921	VXX20105	
Bromochloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Vinyl chloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dichlorodifluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-006** SGS Ref. #: 1095963006

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	2.65	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	79.3	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	20.9	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	81.3	10.0	ug/L	10	VMS10926	VXX20113
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	162	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	17.7	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	8.31	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	92.5	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	101	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	91.4	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-006** SGS Ref. #: 1095963006 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

					Analytical	Prep		
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>	
Batch Information								
Analytical Batch: VMS10921		Prep Batch: VXX201	05		Initial Prep \	Nt./Vol.: 5	mL	
Analytical Method: SW8260B		Prep Method: SW50	30B		Prep Extract Vol.: 5 mL			
Analysis Date/Time: 10/13/09 08:03		Prep Date/Time: 10/12/09 08:42			Container ID:1095963006-A			
Dilution Factor: 1				Analyst: SC	L			
Analytical Batch: VMS10926		Prep Batch: VXX20113			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: SW8260B		Prep Method: SW50	30B		Prep Extract Vol.: 5 mL			
Analysis Date/Time: 10/14/09 02:33		Prep Date/Time: 10/	13/09 09:32		Container ID:1095963006-B			
Dilution Factor: 10					Analyst: SC	Ľ		
Analytical Batch: VMS10936		Prep Batch: VXX201	35		Initial Prep \	Nt./Vol.: 5	mL	
Analytical Method: SW8260B		Prep Method: SW50	30B		Prep Extrac	t Vol.: 5 ml	_	
Analysis Date/Time: 10/16/09 23:16		Prep Date/Time: 10/16/09 08:45			Container ID:1095963006-C			
Dilution Factor: 100					Analyst: SC	L		

Analytical Prep

Client Sample ID: 1472-100709-006

SGS Ref. #: 1095963006 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/08/09 11:15 Receipt Date/Time: 10/10/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch	<u>Qualifiers</u>
Acenaphthylene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Acenaphthene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Fluorene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Phenanthrene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Anthracene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Fluoranthene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Pyrene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Benzo(a)Anthracene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Chrysene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Benzo[b]Fluoranthene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Benzo[k]fluoranthene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Benzo[a]pyrene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Indeno[1,2,3-c,d] pyrene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Dibenzo[a,h]anthracene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Benzo[g,h,i]perylene	ND	0.0549	ug/L	1	XMS5156	XXX21800	1
Naphthalene	8.26	1.10	ug/L	10	XMS5160	XXX21800	1
1-Methylnaphthalene	2.42	0.0549	ug/L	1	XMS5156	XXX21800	1
2-Methylnaphthalene	3.77	0.549	ug/L	10	XMS5160	XXX21800	1
Terphenyl-d14 <surr></surr>	90.1	50-135	%	1	XMS5156	XXX21800	1
Batch Information							
Analytical Batch: XMS5156		Prep Batch: XXX21	1800		Initial Prep	Wt./Vol.: 910	mL
Analytical Method: 8270D SIMS		Prep Method: SW3	520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 06:06		Prep Date/Time: 10	0/12/09 08:55		Container I	D:109596300)6-G
Dilution Factor: 1					Analyst: JE	DH	
Analytical Batch: XMS5160		Prep Batch: XXX21	1800		Initial Prep	Wt./Vol.: 910	mL
Analytical Method: 8270D SIMS		Prep Method: SW3	520C		Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 10/23/09 23:25		Prep Date/Time: 10	0/12/09 08:55		Container I	D:109596300)6-G
Dilution Factor: 10					Analyst: JE	ЭН	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Arsenic	ND	5.00	ug/L	5	MMS6155	MXX2242	3
Barium	6.89	3.00	ug/L	5	MMS6155	MXX2242	3
Cadmium	ND	2.00	ug/L	5	MMS6155	MXX2242	3
Chromium	ND	4.00	ug/L	5	MMS6155	MXX2242	3
Lead	5.15	1.00	ug/L	5	MMS6155	MXX2242	3
Nickel	3.79	2.00	ug/L	5	MMS6155	MXX2242	3
Vanadium	ND	20.0	ug/L	5	MMS6155	MXX2242	3
Batch Information							
Analytical Batch: MMS6155		Prep Batch: MXX	22423		Initial Prep	Nt./Vol.: 50	mL
Analytical Method: SW6020		Prep Method: SW	'3010A		Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 10/22/09 20:38		Prep Date/Time:	10/21/09 16:15		Container II	D:10959630	07-G
Dilution Factor: 5					Analyst: NF	RB	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	2.45	0.100	mg/L	1	VFC9714	VXX20141	1
4-Bromofluorobenzene <surr></surr>	139	50-150	%	1	VFC9714	VXX20141	1
Batch Information							
Analytical Batch: VFC9714		Prep Batch: VXX20	0141		Initial Prep	Wt./Vol.: 5 m	۱L
Analytical Method: AK101		Prep Method: SW5	5030B		Prep Extra	ct Vol.: 5 mL	
Analysis Date/Time: 10/17/09 19:08		Prep Date/Time: 10	0/17/09 13:04		Container I	D:10959630	07-B
Dilution Factor: 1					Analyst: Kl	PW	

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	ND	0.714	mg/L	1	XFC8960	XXX21827	
5a Androstane <surr></surr>	75.6	50-150	%	1	XFC8960	XXX21827	
Batch Information							
Analytical Batch: XFC8960		Prep Batch: XXX21827			Initial Prep W	/t./Vol.: 280	mL
Analytical Method: AK102		Prep Method: SW3520C			Prep Extract	Vol.: 1 mL	
Analysis Date/Time: 10/16/09 12:50		Prep Date/Time: 10/15/09 10:2	0		Container ID	:109596300	7-H
Dilution Factor: 1					Analyst: KD	C	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Analytical Prep

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007

Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	<u>DF</u>	Batch	<u>Batch</u>	<u>Qualifiers</u>
Benzene	678	4.00	ua/l	10	VMS10926	VXX20113	
Toluene	57.1	1.00	ug/l	1	VMS10921	VXX20105	
Ethylbenzene	3.38	1.00	ug/L	1	VMS10921	VXX20105	
n-Butylbenzene	1.84	1.00	ug/L	1	VMS10921	VXX20105	
Carbon disulfide	ND	2.00	ua/L	1	VMS10921	VXX20105	
1,4-Dichlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,2-Dichloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,3,5-Trimethylbenzene	4.41	1.00	ug/L	1	VMS10921	VXX20105	
4-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Chlorobenzene	ND	0.500	ug/L	1	VMS10921	VXX20105	
4-Methyl-2-pentanone (MIBK)	ND	10.0	ug/L	1	VMS10921	VXX20105	
cis-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
4-Isopropyltoluene	ND	1.00	ug/L	1	VMS10921	VXX20105	
cis-1,3-Dichloropropene	ND	0.500	ug/L	1	VMS10921	VXX20105	
n-Propylbenzene	1.06	1.00	ug/L	1	VMS10921	VXX20105	
Styrene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromomethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
trans-1,3-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,4-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,2-Dibromo-3-chloropropane	ND	2.00	ug/L	1	VMS10921	VXX20105	
Methyl-t-butyl ether	ND	5.00	ug/L	1	VMS10921	VXX20105	
Tetrachloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dibromochloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
1,3-Dichloropropane	ND	0.400	ug/L	1	VMS10921	VXX20105	
1,2-Dibromoethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Carbon tetrachloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10921	VXX20105	
Chloroform	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105	
Chloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
1,2,3-Trichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Bromomethane	ND	3.00	ug/L	1	VMS10921	VXX20105	
Bromochloromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	
Vinyl chloride	ND	1.00	ug/L	1	VMS10921	VXX20105	
Dichlorodifluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers
Chloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
sec-Butylbenzene	2.54	1.00	ug/L	1	VMS10921	VXX20105
Bromodichloromethane	ND	0.500	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10921	VXX20105
Methylene chloride	ND	5.00	ug/L	1	VMS10921	VXX20105
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10921	VXX20105
P & M -Xylene	78.0	2.00	ug/L	1	VMS10921	VXX20105
Naphthalene	21.5	2.00	ug/L	1	VMS10921	VXX20105
o-Xylene	71.7	10.0	ug/L	10	VMS10926	VXX20113
Bromoform	ND	1.00	ug/L	1	VMS10921	VXX20105
Xylenes (total)	159	2.00	ug/L	1	VMS10921	VXX20105
1,2,4-Trimethylbenzene	17.4	1.00	ug/L	1	VMS10921	VXX20105
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10921	VXX20105
Trichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10921	VXX20105
Isopropylbenzene (Cumene)	7.95	1.00	ug/L	1	VMS10921	VXX20105
2-Hexanone	ND	10.0	ug/L	1	VMS10921	VXX20105
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10921	VXX20105
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10921	VXX20105
1,2-Dichloroethane-D4 <surr></surr>	93.2	73-120	%	1	VMS10921	VXX20105
Toluene-d8 <surr></surr>	103	80-120	%	1	VMS10921	VXX20105
4-Bromofluorobenzene <surr></surr>	92.6	76-120	%	1	VMS10921	VXX20105

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-007** SGS Ref. #: 1095963007 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 10:45 Receipt Date/Time: 10/10/09 11:00

					Analytical	Prep	
Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Batch Information							
Analytical Batch: VMS10921		Prep Batch: VXX201	05		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B	Prep Method: SW5030B				Prep Extract Vol.: 5 mL		
Analysis Date/Time: 10/13/09 08:36		Prep Date/Time: 10/12/09 08:42			Container II	D:1095963	007-A
Dilution Factor: 1					Analyst: SC	L	
Analytical Batch: VMS10926		Prep Batch: VXX201	13		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW50	30B		Prep Extrac	t Vol.: 5 m	L
Analysis Date/Time: 10/14/09 02:00		Prep Date/Time: 10/	13/09 09:32		Container II	D:1095963	007-C
Dilution Factor: 10					Analyst: SC	L	

Print Date: 10/27/2009 11:24 am

Analytical Prep

Client Sample ID: **1472-100709-008** SGS Ref. #: 1095963008 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 13:10 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	Qualifiers
Benzene	ND	0.500	ug/L	1	VFC9714	VXX20141	
Toluene	ND	2.00	ug/L	1	VFC9714	VXX20141	
Ethylbenzene	ND	2.00	ug/L	1	VFC9714	VXX20141	
o-Xylene	ND	2.00	ug/L	1	VFC9714	VXX20141	
P & M -Xylene	ND	2.00	ug/L	1	VFC9714	VXX20141	
1,4-Difluorobenzene <surr></surr>	106	80-120	%	1	VFC9714	VXX20141	
Batch Information							
Analytical Batch: VFC9714		Prep Batch: VXX2	20141		Initial Prep	Wt./Vol.: 5 m	L
Analytical Method: SW8021B		Prep Method: SW	5030B		Prep Extra	ct Vol.: 5 mL	
Analysis Date/Time: 10/17/09 19:31		Prep Date/Time: 1	10/17/09 13:04		Container I	D:109596300)8-A
Dilution Factor: 1					Analyst: Kl	⊃W	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 10/27/2009 11:24 am

Client Sample ID: **1472-100709-008** SGS Ref. #: 1095963008 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/08/09 13:10 Receipt Date/Time: 10/10/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	ND	0.769	mg/L	1	XFC8960	XXX2182 ⁻	7
5a Androstane <surr></surr>	76.7	50-150	%	1	XFC8960	XXX2182	7
Batch Information							
Analytical Batch: XFC8960		Prep Batch: XXX2	1827		Initial Prep	Wt./Vol.: 260	0 mL
Analytical Method: AK102		Prep Method: SW3	3520C		Prep Extrac	ct Vol.: 1 mL	
Analysis Date/Time: 10/16/09 13:00		Prep Date/Time: 1	0/15/09 10:20		Container I	D:10959630	08-D
Dilution Factor: 1					Analyst: K[C	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 10/27/2009 11:24 am

Analytical Bron

Client Sample ID: TRIP BLANK

SGS Ref. #: 1095963009 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Fuels Department

Parameter_	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	Batch	<u>Qualifiers</u>
Gasoline Range Organics	ND	0.100	ma/L	1	VFC9714	VXX2014 ⁻	1
4-Bromofluorobenzene <surr></surr>	110	50-150	%	1	VFC9714	VXX2014	1
Batch Information							
Analytical Batch: VFC9714		Prep Batch: VXX2	0141		Initial Prep	Wt./Vol.: 5 m	٦L
Analytical Method: AK101		Prep Method: SW8	5030B		Prep Extra	ct Vol.: 5 mL	
Analysis Date/Time: 10/17/09 17:06		Prep Date/Time: 1	0/17/09 13:04		Container I	D:10959630	09-B
Dilution Factor: 1					Analyst: Kl	⊃W	

Analytical Prep

Client Sample ID: TRIP BLANK

SGS Ref. #: 1095963009 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	PQL/CL	<u>Units</u>	DF	Batch	<u>Batch</u>	<u>Qualifiers</u>
Benzene	ND	0.400	ug/L	1	VMS10917	VXX20101	
Toluene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Ethylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
n-Butylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Carbon disulfide	ND	2.00	ug/L	1	VMS10917	VXX20101	
1,4-Dichlorobenzene	ND	0.500	ug/L	1	VMS10917	VXX20101	
1,2-Dichloroethane	ND	0.500	ug/L	1	VMS10917	VXX20101	
1,3,5-Trimethylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
4-Chlorotoluene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Chlorobenzene	ND	0.500	ug/L	1	VMS10917	VXX20101	
4-Methyl-2-pentanone (MIBK)	ND	10.0	ug/L	1	VMS10917	VXX20101	
cis-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10917	VXX20101	
4-Isopropyltoluene	ND	1.00	ug/L	1	VMS10917	VXX20101	
cis-1,3-Dichloropropene	ND	0.500	ug/L	1	VMS10917	VXX20101	
n-Propylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Styrene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Dibromomethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
trans-1,3-Dichloropropene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,2,4-Trichlorobenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10917	VXX20101	
1,2-Dibromo-3-chloropropane	ND	2.00	ug/L	1	VMS10917	VXX20101	
Methyl-t-butyl ether	ND	5.00	ug/L	1	VMS10917	VXX20101	
Tetrachloroethene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Dibromochloromethane	ND	0.500	ug/L	1	VMS10917	VXX20101	
1,3-Dichloropropane	ND	0.400	ug/L	1	VMS10917	VXX20101	
1,2-Dibromoethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
Carbon tetrachloride	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L	1	VMS10917	VXX20101	
Chloroform	ND	1.00	ug/L	1	VMS10917	VXX20101	
Bromobenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,2,3-Trichloropropane	ND	1.00	ug/L	1	VMS10917	VXX20101	
Chloromethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
Bromomethane	ND	3.00	ug/L	1	VMS10917	VXX20101	
Bromochloromethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
Vinyl chloride	ND	1.00	ug/L	1	VMS10917	VXX20101	
Dichlorodifluoromethane	ND	1.00	ug/L	1	VMS10917	VXX20101	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 10/27/2009 11:24 am

Prep

Analytical

Client Sample ID: TRIP BLANK

SGS Ref. #: 1095963009 Project ID: 31-1-11472-001 Northway Adot Matrix: Water (Surface, Eff., Ground) Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	PQL/CL	Units	DF	Batch	Batch	<u>Qualifiers</u>
Chloroethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
sec-Butylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Bromodichloromethane	ND	0.500	ug/L	1	VMS10917	VXX20101	
1,1-Dichloroethene	ND	1.00	ug/L	1	VMS10917	VXX20101	
2-Butanone (MEK)	ND	10.0	ug/L	1	VMS10917	VXX20101	
Methylene chloride	ND	5.00	ug/L	1	VMS10917	VXX20101	
Trichlorofluoromethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
P & M -Xylene	ND	2.00	ug/L	1	VMS10917	VXX20101	
Naphthalene	ND	2.00	ug/L	1	VMS10917	VXX20101	
o-Xylene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Bromoform	ND	1.00	ug/L	1	VMS10917	VXX20101	
Xylenes (total)	ND	2.00	ug/L	1	VMS10917	VXX20101	
1,2,4-Trimethylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
tert-Butylbenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1,1-Trichloroethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1-Dichloroethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
2-Chlorotoluene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Trichloroethene	ND	1.00	ug/L	1	VMS10917	VXX20101	
trans-1,2-Dichloroethene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,2-Dichlorobenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
2,2-Dichloropropane	ND	1.00	ug/L	1	VMS10917	VXX20101	
Hexachlorobutadiene	ND	1.00	ug/L	1	VMS10917	VXX20101	
Isopropylbenzene (Cumene)	ND	1.00	ug/L	1	VMS10917	VXX20101	
2-Hexanone	ND	10.0	ug/L	1	VMS10917	VXX20101	
1,2-Dichloropropane	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1-Dichloropropene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,1,2-Trichloroethane	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,3-Dichlorobenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,2,3-Trichlorobenzene	ND	1.00	ug/L	1	VMS10917	VXX20101	
1,2-Dichloroethane-D4 <surr></surr>	95.9	73-120	%	1	VMS10917	VXX20101	
Toluene-d8 <surr></surr>	101	80-120	%	1	VMS10917	VXX20101	
4-Bromofluorobenzene <surr></surr>	95.3	76-120	%	1	VMS10917	VXX20101	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com Member of SGS Group (Société Générale de Surveillance)

Print Date: 10/27/2009 11:24 am

Client Sample ID: **TRIP BLANK** SGS Ref. #: 1095963009 Project ID: 31-1-11472-001 Northway Adot

Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 10/07/09 11:45 Receipt Date/Time: 10/10/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

<u>Parameter</u> Batch Information	<u>Result</u>	PQL/CL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	Qualifiers
Analytical Batch: VMS10917		Prep Batch: VXX201	01		Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Method: SW50	30B		Prep Extrac	t Vol.: 5 ml	L
Analysis Date/Time: 10/12/09 17:28		Prep Date/Time: 10/	12/09 08:27		Container II	D:1095963	009-A
Dilution Factor: 1					Analyst: SC	L	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

SGS Ref.#	930990 Meth	od Blank			Printed	Date/Time	10/27/2009 11:25	
Client Name	Shannon & Wilson-Fai	irbanks			Prep	Batch	XXX21800	
Project Name/#	31-1-11472-001 North	way Adot				Method	SW3520C	
Matrix	Water (Surface, Eff., C	fround)				Date	10/12/2009	_
QC results affect the 1095963001, 1	following production samples: 095963002, 1095963003, 109	5963004,	1095963005, 109	95963006				
Parameter		Results	Reporting/Control	MDL	Units		Analysis Date	
Polynuclear A	Aromatics GC/MS							
Acenaphthylene		ND	0.0500	0.0150	ug/L		10/23/09	
Acenaphthene		ND	0.0500	0.0150	ug/L		10/23/09	
Fluorene		ND	0.0500	0.0150	ug/L		10/23/09	
Phenanthrene		ND	0.0500	0.0150	ug/L		10/23/09	
Anthracene		ND	0.0500	0.0150	ug/L		10/23/09	
Fluoranthene		ND	0.0500	0.0150	ug/L		10/23/09	
Pyrene		ND	0.0500	0.0150	ug/L		10/23/09	
Benzo(a)Anthrace	ene	ND	0.0500	0.0150	ug/L		10/23/09	
Chrysene		ND	0.0500	0.0150	ug/L		10/23/09	
Benzo[b]Fluorant	hene	ND	0.0500	0.0150	ug/L		10/23/09	
Benzo[k]fluoranth	nene	ND	0.0500	0.0150	ug/L		10/23/09	
Benzo[a]pyrene		ND	0.0500	0.0150	ug/L		10/23/09	
Indeno[1,2,3-c,d]	pyrene	ND	0.0500	0.0150	ug/L		10/23/09	
Dibenzo[a,h]anthi	racene	ND	0.0500	0.0150	ug/L		10/23/09	
Benzo[g,h,i]peryle	ene	ND	0.0500	0.0150	ug/L		10/23/09	
Naphthalene		ND	0.100	0.0310	ug/L		10/23/09	
1-Methylnaphthal	ene	ND	0.0500	0.0150	ug/L		10/23/09	
2-Methylnaphthal	ene	ND	0.0500	0.0150	ug/L		10/23/09	
Surrogates								
Terphenyl-d14 <s< td=""><td>urr></td><td>98.6</td><td>50-135</td><td></td><td>%</td><td></td><td>10/23/09</td><td></td></s<>	urr>	98.6	50-135		%		10/23/09	
Batch	XMS5156							
Method	8270D SIMS							
Instrument	HP 6890 Series II MS2 SVOA	1						

SGS Ref.# Client Name Project Name/# Matrix	931412 N Shannon & Wilsor 31-1-11472-001 N Water (Surface, Ef	Method Blank n-Fairbanks orthway Adot ff., Ground)			Printed Prep	Date/Time Batch Method Date	10/27/2009 11:25 VXX20101 SW5030B 10/12/2009
QC results affect the follow 1095963009	ing production sample	es:					
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date

SGS Ref.#	931412	Method Blank			Printed	Date/Time	10/27/2009 11:25	
Client Name	Shannon & Wil	son-Fairbanks			Prep	Batch	VXX20101	
Project Name/#	31-1-11472-001	Northway Adot				Method	SW5030B	
Matrix	Water (Surface,	Eff., Ground)				Date	10/12/2009	
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date	
Volatile Gas Chro	omatography/	Mass Spectros	scopy					
Benzene		ND	0.400	0.120	ug/L		10/12/09	
Toluene		ND	1.00	0.310	ug/L		10/12/09	
Ethylbenzene		ND	1.00	0.310	ug/L		10/12/09	
n-Butylbenzene		ND	1.00	0.310	ug/L		10/12/09	
Carbon disulfide		ND	2.00	0.620	ug/L		10/12/09	
1,4-Dichlorobenzene		ND	0.500	0.150	ug/L		10/12/09	
1,2-Dichloroethane		ND	0.500	0.150	ug/L		10/12/09	
1,3,5-Trimethylbenzene		ND	1.00	0.310	ug/L		10/12/09	
4-Chlorotoluene		ND	1.00	0.310	ug/L		10/12/09	
Chlorobenzene		ND	0.500	0.150	ug/L		10/12/09	
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L		10/12/09	
cis-1,2-Dichloroethene	,	ND	1.00	0.310	ug/L		10/12/09	
4-Isopropyltoluene		ND	1.00	0.310	ug/L		10/12/09	
cis-1,3-Dichloropropene	e	ND	0.500	0.150	ug/L		10/12/09	
n-Propylbenzene		ND	1.00	0.310	ug/L		10/12/09	
Styrene		ND	1.00	0.310	ug/L		10/12/09	
Dibromomethane		ND	1.00	0.310	ug/L		10/12/09	
trans-1,3-Dichloroprope	ene	ND	1.00	0.310	ug/L		10/12/09	
1,2,4-Trichlorobenzene		ND	1.00	0.310	ug/L		10/12/09	
1,1,2,2-Tetrachloroethan	ne	ND	0.500	0.150	ug/L		10/12/09	
1,2-Dibromo-3-chloropi	ropane	ND	2.00	0.620	ug/L		10/12/09	
Methyl-t-butyl ether		ND	5.00	1.50	ug/L		10/12/09	
Tetrachloroethene		ND	1.00	0.310	ug/L		10/12/09	
Dibromochloromethane		ND	0.500	0.150	ug/L		10/12/09	
1,3-Dichloropropane		ND	0.400	0.120	ug/L		10/12/09	
1,2-Dibromoethane		ND	1.00	0.310	ug/L		10/12/09	
Carbon tetrachloride		ND	1.00	0.310	ug/L		10/12/09	
1,1,1,2-Tetrachloroethan	ne	ND	0.500	0.150	ug/L		10/12/09	
Chloroform		ND	1.00	0.300	ug/L		10/12/09	
Bromobenzene		ND	1.00	0.310	ug/L		10/12/09	
Chloromethane		ND	1.00	0.310	ug/L		10/12/09	
1,2,3-Trichloropropane		ND	1.00	0.310	ug/L		10/12/09	
Bromomethane		ND	3.00	0.940	ug/L		10/12/09	
Bromochloromethane		ND	1.00	0.310	ug/L		10/12/09	
Vinyl chloride		ND	1.00	0.310	ug/L		10/12/09	
Dichlorodifluoromethan	ie	ND	1.00	0.310	ug/L		10/12/09	
Chloroethane		ND	1.00	0.310	ug/L		10/12/09	
sec-Butylbenzene		ND	1.00	0.310	ug/L		10/12/09	
Bromodichlor	of 88	ND	0.500	0.150	ug/L		10/12/09	

SGS Ref.# Client Name Project Name/# Matrix	931412 Shannon & Wil 31-1-11472-001 Water (Surface	Method Blank son-Fairbanks Northway Adot Eff., Ground)			Printed Date/Time Prep Batch Method Date	10/27/2009 11:25 VXX20101 SW5030B 10/12/2009
Parameter		Results	Reporting/Control	MDL	Units	Analysis Date
Volatile Gas (Chromatography/	Mass Spectros	зсору			
1,1-Dichloroethene		ND	1.00	0.310	ug/L	10/12/09
2-Butanone (MEK)		ND	10.0	3.10	ug/L	10/12/09
Methylene chloride	•	ND	5.00	1.00	ug/L	10/12/09
Trichlorofluoromet	hane	ND	1.00	0.310	ug/L	10/12/09
P & M -Xylene		ND	2.00	0.620	ug/L	10/12/09
Naphthalene		ND	2.00	0.620	ug/L	10/12/09
o-Xylene		ND	1.00	0.310	ug/L	10/12/09
Bromoform		ND	1.00	0.310	ug/L	10/12/09
1,2,4-Trimethylben	zene	ND	1.00	0.310	ug/L	10/12/09
tert-Butylbenzene		ND	1.00	0.310	ug/L	10/12/09
1,1,1-Trichloroetha	ine	ND	1.00	0.310	ug/L	10/12/09
1,1-Dichloroethane		ND	1.00	0.310	ug/L	10/12/09
2-Chlorotoluene		ND	1.00	0.310	ug/L	10/12/09
Trichloroethene	a	ND	1.00	0.310	ug/L	10/12/09
trans-1,2-Dichloroe	ethene	ND	1.00	0.310	ug/L	10/12/09
1,2-Dichlorobenzer	ne	ND	1.00	0.310	ug/L	10/12/09
2,2-Dichloropropar	ne	ND	1.00	0.310	ug/L	10/12/09
Hexachiorobutadie	ne Company)	ND	1.00	0.310	ug/L	10/12/09
Isopropyidenzene (Cumene)	ND	10.0	2.10	ug/L	10/12/09
2-Hexanone			1.00	0.210	ug/L	10/12/09
1,2-Dichloropropar		ND	1.00	0.310	ug/L	10/12/09
1,1-Diciliolopiopei	no	ND	1.00	0.310	ug/L	10/12/09
1,1,2-Inchlorobenzer		ND	1.00	0.310	ug/L	10/12/09
1,3-Diciliorobenzer	zene	ND	1.00	0.310	ug/L	10/12/09
Surrogates				0.510	48/2	
1.0.0.11	D4	00.0	72 120		0/	10/12/00
1,2-Dichloroethane	-D4 <surr></surr>	99.8	/3-120		%	10/12/09
Toluene-d8 <surr></surr>		102	80-120		%	10/12/09
4-Bromofluorobenz	zene <surr></surr>	94.8	/0-120		%	10/12/09
Batch	VMS10917					
Method	SW 8200B					

_

_

Instrument HP 5890 Series II MS3 VNA

SGS Ref.# Client Name Project Name/# Matrix	931615 Shannon & Wils 31-1-11472-001 Water (Surface, 1	Method Blank on-Fairbanks Northway Adot Eff., Ground)			Printed Prep	Date/Time Batch Method Date	10/27/2009 11:25 VXX20105 SW5030B 10/12/2009
QC results affect the follow 1095963001, 109596	ing production samp 3003, 1095963004	ples: 4, 1095963005,	1095963006, 1095	963007			
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date

SGS Ref.#	931615	Method Blank			Printed 1	Date/Time	10/27/2009 11:25	
Client Name	Shannon & Wils	son-Fairbanks			Prep	Batch	VXX20105	
Project Name/#	31-1-11472-001	Northway Adot				Method	SW5030B	
Matrix	Water (Surface,	Eff., Ground)				Date	10/12/2009	
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date	
Volatile Gas Chro	matography/	Mass Spectros	зсору					
Benzene		ND	0.400	0 120	ug/L		10/13/09	
Toluene		ND	1.00	0.120	ug/L		10/13/09	
Ethylbenzene		ND	1.00	0.310	ug/L		10/13/09	
n-Butvlbenzene		ND	1.00	0.310	ug/L		10/13/09	
Carbon disulfide		ND	2.00	0.620	ug/L		10/13/09	
1.4-Dichlorobenzene		ND	0.500	0.150	ug/L		10/13/09	
1.2-Dichloroethane		ND	0.500	0.150	ug/L		10/13/09	
1 3 5-Trimethylbenzene		ND	1.00	0.310	ug/L		10/13/09	
4-Chlorotoluene		ND	1.00	0.310	ug/L		10/13/09	
Chlorobenzene		ND	0.500	0.150	ug/L		10/13/09	
4-Methyl-2-pentanone (]	MIBK)	ND	10.0	3.10	ug/L		10/13/09	
cis-1.2-Dichloroethene	,	ND	1.00	0.310	ug/L		10/13/09	
4-Isopropyltoluene		ND	1.00	0.310	ug/L		10/13/09	
cis-1,3-Dichloropropene		ND	0.500	0.150	ug/L		10/13/09	
n-Propylbenzene		ND	1.00	0.310	ug/L		10/13/09	
Styrene		ND	1.00	0.310	ug/L		10/13/09	
Dibromomethane		ND	1.00	0.310	ug/L		10/13/09	
trans-1,3-Dichloroprope	ne	ND	1.00	0.310	ug/L		10/13/09	
1,2,4-Trichlorobenzene		ND	1.00	0.310	ug/L		10/13/09	
1,1,2,2-Tetrachloroethan	ie	ND	0.500	0.150	ug/L		10/13/09	
1,2-Dibromo-3-chloropr	opane	ND	2.00	0.620	ug/L		10/13/09	
Methyl-t-butyl ether		ND	5.00	1.50	ug/L		10/13/09	
Tetrachloroethene		ND	1.00	0.310	ug/L		10/13/09	
Dibromochloromethane		ND	0.500	0.150	ug/L		10/13/09	
1,3-Dichloropropane		ND	0.400	0.120	ug/L		10/13/09	
1,2-Dibromoethane		ND	1.00	0.310	ug/L		10/13/09	
Carbon tetrachloride		ND	1.00	0.310	ug/L		10/13/09	
1,1,1,2-Tetrachloroethan	ie	ND	0.500	0.150	ug/L		10/13/09	
Chloroform		ND	1.00	0.300	ug/L		10/13/09	
Bromobenzene		ND	1.00	0.310	ug/L		10/13/09	
Chloromethane		ND	1.00	0.310	ug/L		10/13/09	
1,2,3-Trichloropropane		ND	1.00	0.310	ug/L		10/13/09	
Bromomethane		ND	3.00	0.940	ug/L		10/13/09	
Bromochloromethane		ND	1.00	0.310	ug/L		10/13/09	
Vinyl chloride		ND	1.00	0.310	ug/L		10/13/09	
Dichlorodifluoromethan	e	ND	1.00	0.310	ug/L		10/13/09	
Chloroethane		ND	1.00	0.310	ug/L		10/13/09	
sec-Butylbenzene		ND	1.00	0.310	ug/L		10/13/09	
Bromodichlor	of 88	ND	0.500	0.150	ug/L		10/13/09	

SGS Ref.# Client Name Project Name/# Matrix	931615 Shannon & Wil 31-1-11472-00 Water (Surface	Method Blank Ison-Fairbanks I Northway Adot , Eff., Ground)			Printed Da Prep	ate/Time Batch Method Date	10/27/2009 11:25 VXX20105 SW5030B 10/12/2009
Parameter		Results	Reporting/Control	MDL	Units		Analysis Date
Volatile Gas C	hromatography/	Mass Spectros	copy				
1,1-Dichloroethene		ND	1.00	0.310	ug/L		10/13/09
2-Butanone (MEK)		ND	10.0	3.10	ug/L		10/13/09
Methylene chloride		ND	5.00	1.00	ug/L		10/13/09
Trichlorofluorometh	ane	ND	1.00	0.310	ug/L		10/13/09
P & M -Xylene		ND	2.00	0.620	ug/L		10/13/09
Naphthalene		ND	2.00	0.620	ug/L		10/13/09
o-Xylene		ND	1.00	0.310	ug/L		10/13/09
Bromoform		ND	1.00	0.310	ug/L		10/13/09
1,2,4-Trimethylbenz	ene	ND	1.00	0.310	ug/L		10/13/09
tert-Butylbenzene		ND	1.00	0.310	ug/L		10/13/09
1,1,1-Trichloroethan	ie	ND	1.00	0.310	ug/L		10/13/09
1,1-Dichloroethane		ND	1.00	0.310	ug/L		10/13/09
2-Chlorotoluene		ND	1.00	0.310	ug/L		10/13/09
Trichloroethene		ND	1.00	0.310	ug/L		10/13/09
trans-1,2-Dichloroet	hene	ND	1.00	0.310	ug/L		10/13/09
1,2-Dichlorobenzene	e	ND	1.00	0.310	ug/L		10/13/09
2,2-Dichloropropane	e	ND	1.00	0.310	ug/L		10/13/09
Hexachlorobutadien	e	ND	1.00	0.310	ug/L		10/13/09
Isopropylbenzene (C	Cumene)	ND	1.00	0.310	ug/L		10/13/09
2-Hexanone		ND	10.0	3.10	ug/L		10/13/09
1,2-Dichloropropane	e	ND	1.00	0.310	ug/L		10/13/09
1,1-Dichloropropene	e	ND	1.00	0.310	ug/L		10/13/09
1,1,2-Trichloroethan	ie	ND	1.00	0.310	ug/L		10/13/09
1,3-Dichlorobenzene	e	ND	1.00	0.310	ug/L		10/13/09
1,2,3-Trichlorobenze	ene	ND	1.00	0.310	ug/L		10/13/09
Surrogates							
1,2-Dichloroethane-	D4 <surr></surr>	95.7	73-120		%		10/13/09
Toluene-d8 <surr></surr>		102	80-120		%		10/13/09
4-Bromofluorobenze	ene <surr></surr>	97.4	76-120		%		10/13/09
Batch Method	VMS10921 SW8260B						

_

_

Instrument HP 5890 Series II MS3 VNA

SGS Ref.#	931874	Method Blank	Printed 1	Date/Time	10/27/2009	11:25
Client Name	Shannon & Wilse	on-Fairbanks	Prep	Batch	VXX20113	
Project Name/#	31-1-11472-001	Northway Adot		Method	SW5030B	
Matrix	Water (Surface, 1	Eff., Ground)		Date	10/13/2009	

QC results affect the following production samples:

1095963003, 1095963004, 1095963005, 1095963006, 1095963007

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Gas	Chromatography/Mass	Spectro	oscopy			
Benzene		ND	0.400	0.120	ug/L	10/13/09
o-Xylene		ND	1.00	0.310	ug/L	10/13/09
Surrogates						
1,2-Dichloroethar	ne-D4 <surr></surr>	97.2	73-120		%	10/13/09
Toluene-d8 < surr	>	103	80-120		%	10/13/09
4-Bromofluorober	nzene <surr></surr>	96.1	76-120		%	10/13/09
Batch	VMS10926					
Method	SW8260B					
Instrument	HP 5890 Series II MS3 VNA					

SGS Ref.#	931943	Method Blank	Printed	Date/Time	10/27/2009	11:25
Client Name	Shannon & Wils	on-Fairbanks	Prep	Batch	XXX21827	
Project Name/#	31-1-11472-001	Northway Adot		Method	SW3520C	
Matrix	Water (Surface, 1	Eff., Ground)		Date	10/15/2009	

QC results affect the following production samples:

1095963001, 1095963003, 1095963004, 1095963005, 1095963006, 1095963007, 1095963008

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Somirrolatilo	Organia Fuela Doparta	ant				
Semivoracire	Organic ruers Departi					
Diesel Range Org	anics	ND	0.800	0.250	mg/L	10/16/09
Surrogates						
5a Androstane <su< th=""><th>1rr></th><th>80.7</th><th>60-120</th><th></th><th>%</th><th>10/16/09</th></su<>	1rr>	80.7	60-120		%	10/16/09
Batch	XFC8960					
Method	AK102					
Instrument	HP 6890 Series II FID SV D R					

SGS Ref.# 932634	Method Blank			Printed	Printed Date/Time 10/27/2009 11:25				
Client Name	Shannon & W	ilson-Fairbanks			Prep	Batch	VXX20135		
Project Name/#	31-1-11472-00	1 Northway Adot				Method	SW5030B		
Matrix	Water (Surfac	e, Eff., Ground)				Date	10/16/2009		
QC results affect the follow 1095963006	ring production sa	mples:							
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date		
Volatile Gas Chro	omatography	/Mass Spectro	scopy						
Benzene		ND	0.400	0.120	ug/L		10/16/09		
Surrogates									
1,2-Dichloroethane-D4	<surr></surr>	102	73-120		%		10/16/09		
Toluene-d8 <surr></surr>		99.7	80-120		%		10/16/09		
4-Bromofluorobenzene	<surr></surr>	105	76-120		%		10/16/09		

MethodSW8260BInstrumentHP 5890 Series II MS1 VJA

VMS10936

Batch

SGS Ref.#	933012	Method Blank			Printed	Date/Time	10/27/2009 11:25
Client Name	Shannon & Wil	son-Fairbanks			Prep	Batch	VXX20141
Project Name/#	31-1-11472-001	Northway Adot				Date	SW5030B 10/17/2009
Matrix	Water (Surface,	Eff., Ground)				Date	10/17/2009
QC results affect the 1095963001, 10	following production sam 095963003, 109596300	nples: 04, 1095963005, 1	095963007, 109	5963008, 10959	63009		
		Develte	Reporting/Control	MDI	T In it.		Analysis
Parameter		Results	Limit	MDL	Units		Date
Volatile Fuel	s Department						
Gasoline Range O	rganics	ND	0.100	0.0310	mg/L		10/17/09
Benzene		ND	0.000500	0.000150	mg/L		10/17/09
Toluene		ND	0.00200	0.000620	mg/L		10/17/09
Ethylbenzene		ND	0.00200	0.000620	mg/L		10/17/09
o-Xylene		ND	0.00200	0.000620	mg/L		10/17/09
P & M -Xylene		ND	0.00200	0.000620	mg/L		10/17/09
Surrogates							
4-Bromofluorober	nzene <surr></surr>	106	50-150		%		10/17/09
1,4-Difluorobenze	ene <surr></surr>	108	80-120		%		10/17/09
Batch	VFC9714						
Method	AK101						
Instrument	HP 5890 Series II PID	+HECD VBA					
Benzene		ND	0.500	0.150	ug/L		10/17/09
Toluene		ND	2.00	0.620	ug/L		10/17/09
Ethylbenzene		ND	2.00	0.620	ug/L		10/17/09
o-Xylene		ND	2.00	0.620	ug/L		10/17/09
P & M -Xylene		ND	2.00	0.620	ug/L		10/17/09
Surrogates							
1,4-Difluorobenze	ene <surr></surr>	108	80-120		%		10/17/09
Batch	VFC9714						
Method	SW8021B						

Instrument HP 5890 Series II PID+HECD VBA

SGS Ref.# Client Name Project Name/# Matrix QC results affect the for 1095963006, 109	933881 Shannon & Wilso 31-1-11472-001 Water (Surface, 1 Dilowing production samp 95963007	Method Blank on-Fairbanks Northway Adot Eff., Ground) bles:			Printed Prep	Date/Time Batch Method Date	10/27/2009 11:25 MXX22423 SW3010A 10/21/2009	
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date	
Metals by ICP/	/ <u>MS</u>							
Arsenic		ND	5.00	1.50	ug/L		10/22/09	
Barium		ND	3.00	0.940	ug/L		10/22/09	
Cadmium		ND	2.00	0.600	ug/L		10/22/09	
Chromium		ND	4.00	1.20	ug/L		10/22/09	
Lead		ND	1.00	0.310	ug/L		10/22/09	
Nickel		ND	2.00	0.620	ug/L		10/22/09	
Vanadium		ND	20.0	6.20	ug/L		10/22/09	
Batch	MMS6155							
Method	SW6020							
Instrument	Perkin Elmer Sciex ICF	P-MS P3						

SGS Ref.#	930991	Lab Control S	ample			Printe	d Date/Time	10/27/2009 11:25		
Client Name	930992 Shannon	Lab Control S & Wilson-Fairb	ample Duj	plicate		Prep	Batch Method	XXX21800 SW3520C		
Project Name/# Matrix	31-1-114' Water (Su	72-001 Northwa	y Adot und)				Date	10/12/2009		
QC results affect the fol	lowing produc	ction samples:	,							
1095963001, 1095	963002, 109	5963003, 10959	63004, 10	95963005, 109:	5963006					
			QC	Pct	LCS/LCSD		RPD	Spiked	Analysis	
Parameter			Results	Recov	Limits	RPD	Limits	Amount	Date	
Polynuclear Aro	matics GC	:/MS								
Acenaphthylene		LCS	0.390	78	(50-105)			0.5 ug/L	10/23/2009	
F)		LCSD	0.407	81	(******)	4	(< 30)	0.5 ug/L	10/23/2009	
								-		
Acenaphthene		LCS	0.377	75	(45-110)			0.5 ug/L	10/23/2009	
		LCSD	0.391	78		4	(< 30)	0.5 ug/L	10/23/2009	
Fluorene		LCS	0.412	82	(50-110)			0.5 ug/L	10/23/2009	
		LCSD	0.418	84		1	(< 30)	0.5 ug/L	10/23/2009	
Phenanthrene		LCS	0.414	83	(50-115)			0.5 ug/L	10/23/2009	
		LCSD	0.422	84		2	(< 30)	0.5 ug/L	10/23/2009	
Anthracene		LCS	0.442	89	(55-110)			0.5 ug/L	10/23/2009	
		LCSD	0.447	90	(,	1	(< 30)	0.5 ug/L	10/23/2009	
Iuoranthene		LCS	0.487	98	(55-125)			0.5 ug/L	10/23/2009	
		LCSD	0.484	97		1	(< 30)	0.5 ug/L	10/23/2009	
Pyrene		LCS	0.471	94	(50-130)			0.5 ug/L	10/23/2009	
5		LCSD	0.464	93	,	2	(< 30)	0.5 ug/L	10/23/2009	
Benzo(a)Anthracene		LCS	0.511	102	(55-120)			0.5 ug/L	10/23/2009	
		LCSD	0.506	101		1	(< 30)	0.5 ug/L	10/23/2009	
Chrysene		LCS	0.478	96	(55-120)			0.5 ug/L	10/23/2009	
2 · ·		LCSD	0.470	94	(v)	2	(< 30)	0.5 ug/L	10/23/2009	
								-		
Benzo[b]Fluoranthene		LCS	0.500	100	(46-130)			0.5 ug/L	10/23/2009	
		LCSD	0.499	100		0	(< 30)	0.5 ug/L	10/23/2009	
Benzo[k]fluoranthene		LCS	0.498	100	(60-125)			0.5 ug/L	10/23/2009	
		LCSD	0.475	95	``'	5	(< 30)	0.5 ug/L	10/23/2009	
								-		
3enzo[a]pyrene		LCS	0.507	101	(55-120)	-		0.5 ug/L	10/23/2009	
		LCSD	0.495	99		3	(<30)	0.5 ug/L	10/23/2009	
	na	LCS	0 493	99	(45-125)			0.5 mg/I	10/22/2000	
ndeno[1,2,3-c.d] pvre	nc	LCO	0.1/5	,,	(+J-12J /			(1, 2) $(1, 2)$ $(1, 2)$	10/23/2009	

Page 61 of 88

SGS Ref.#	930991	Lab Control S	Sample			Printed	Date/Time	10/27/2009 11:2 XXX21800	11:25	
	930992	Lab Control S	Sample Du	plicate		Prep	Batch	XXX21800		
Client Name	Shannon &	wilson-Fairb	anks	•			Method	SW3520C		
Project Name/#	31-1-11472	2-001 Northwa	y Adot				Date	10/12/2009		
Matrix	Water (Sur	face, Eff., Gro	und)							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Polynuclear Arom	atics GC/	MS								
Dibenzo[a,h]anthracene	e	LCS	0.501	100	(41-140)			0.5 ug/L	10/23/2009	
		LCSD	0.462	92		8	(< 30)	0.5 ug/L	10/23/2009	
Benzo[g,h,i]pervlene		LCS	0.480	96	(46-125)			0.5 ug/L	10/23/2009	
		LCSD	0.462	93		4	(< 30)	0.5 ug/L	10/23/2009	
Nanhthalene		LCS	0 363	73	(42-100)			0.5. µg/I	10/22/2000	
Naphthalene			0.303	73	(42-100)	7	(< 30.)	0.5 ug/L	10/23/2009	
		LCSD	0.389	78		/	(< 50)	0.5 ug/L	10/25/2007	
1-Methylnaphthalene		LCS	0.369	74	(46-115)			0.5 ug/L	10/23/2009	
		LCSD	0.381	76		3	(< 30)	0.5 ug/L	10/23/2009	
2-Methylnaphthalene		LCS	0.359	72	(45-105)			0.5 ug/L	10/23/2009	
		LCSD	0.377	75		5	(< 30)	0.5 ug/L	10/23/2009	
Sumogatas										
Surrogates										
Terphenyl-d14 <surr></surr>		LCS		91	(50-135)				10/23/2009	
		LCSD		90		1			10/23/2009	

Batch	XMS5156
Method	8270D SIMS
Instrument	HP 6890 Series II MS2 SVOA

SGS Ref.#	931413 Lab Control	Sample		Printed	l Date/Time	11:25					
	931414 Lab Control	Sample Dup	licate	Prep	Batch	VXX20101					
Client Name	Shannon & Wilson-Fair	banks			Method	SW5030B					
Project Name/#	31-1-11472-001 Northw	vay Adot				Date	10/12/2009				
Matrix	Water (Surface, Eff., Gr										
QC results affect the following the following the second s	affect the following production samples:										
1095963009											
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date			

SGS Ref.#	931413	Lab Control S	Sample			Printe	ed Date/Time	10/27/2009	11:25	
	931414	Lab Control S	Sample Du	olicate		Prep	Batch	VXX20101		
Client Name	Shannon	& Wilson-Fairb	anks				Method	SW5030B		
Project Name/#	31-1-114	72-001 Northwa	y Adot				Date	10/12/2009		
Matrix	Water (Si	irface, Eff., Gro	und)							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Volatile Gas Ch	romatogra	phy/Mass Sp	ectrosc	ору						
Benzene		LCS	32.6	109	(80-120)			30 ug/L	10/12/2009	
		LCSD	33.4	111		2	(< 20)	30 ug/L	10/12/2009	
Taluana		LCS	21.0	102	(77,120)			20 /1	10/12/2000	
Toluene		LCS	22.4	105	(77-120)	5	(< 20)	30 ug/L	10/12/2009	
		LCSD	32.4	108		5	(< 20)	50 ug/L	10/12/2009	
Ethylbenzene		LCS	33.1	110	(80-120)			30 ug/L	10/12/2009	
		LCSD	34.5	115		4	(< 20)	30 ug/L	10/12/2009	
n Dutulhanzana		LCS	21.2	104	(90, 124)			20	10/12/2000	
n-Butylbenzene		LCS	31.2	104	(80-124)	1	(< 20)	30 ug/L	10/12/2009	
		LCSD	31.6	105		1	(< 20)	30 ug/L	10/12/2009	
Carbon disulfide		LCS	46.8	104	(72-123)			45 ug/L	10/12/2009	
		LCSD	50.3	112		7	(< 20)	45 ug/L	10/12/2009	
1.4 Dichlorohonzono		LCS	21.1	104	(20, 120)			20	10/12/2000	
1,4-Dicilioiobelizelle		LCS	21.0	104	(80-120)	r	(< 20)	30 ug/L	10/12/2009	
		LCSD	31.8	106		2	(< 20)	50 ug/L	10/12/2009	
1,2-Dichloroethane		LCS	31.0	103	(80-129)			30 ug/L	10/12/2009	
		LCSD	31.6	105		2	(< 20)	30 ug/L	10/12/2009	
1 3 5-Trimethylbenzer	ie.	LCS	29.2	97	(80-128)			30 ug/I	10/12/2009	
1,5,5 111110011510011201		LCSD	29.2	100	(00 120)	2	(< 20)	30 ug/L	10/12/2009	
		Lebb	29.9	100		-	(=•)	00 ug/2	10,12,2009	
4-Chlorotoluene		LCS	28.3	94	(79-128)			30 ug/L	10/12/2009	
		LCSD	29.0	97		3	(< 20)	30 ug/L	10/12/2009	
Chlorobenzene		LCS	32.9	110	(80-120)			30 ug/I	10/12/2009	
			34.3	114	(00 120)	4	(< 2.0)	30 ug/L	10/12/2009	
		Lebb	51.5				(-•)			
4-Methyl-2-pentanone	(MIBK)	LCS	110	123	(69-134)			90 ug/L	10/12/2009	
		LCSD	105	116		5	(< 20)	90 ug/L	10/12/2009	
cis-1 2-Dichloroethene	`	LCS	33.0	110	(80-125)			30. ug/I	10/12/2009	
eis-1,2-Diemoioeutene	,		34.3	110	(80-125)	4	(< 20)	30 ug/L	10/12/2009	
		LCSD	54.5	114		-	(120)	50 ug/L	10/12/2009	
4-Isopropyltoluene		LCS	30.4	101	(80-125)			30 ug/L	10/12/2009	
		LCSD	31.1	104		2	(< 20)	30 ug/L	10/12/2009	
cis-1 3-Dichloroproper	ne	LCS	34.6	115	(80-120)			30 µg/I	10/12/2009	
		LCSD	33.7	112	(00 120)	2	(< 20)	30 ug/L	10/12/2009	
Page 6	64 of 88	LCDD	55.1	112		-	(_)	20 MB E		

SGS Ref.# 931413		Lab Control S	Sample			Printe	ed Date/Time	10/27/2009	11:25
	931414	Lab Control S	Sample Du	plicate		Prep	Batch	VXX20101	
Client Name	Shannon	& Wilson-Fairb	anks				Method	SW5030B	
Project Name/#	31-1-1147	72-001 Northwa	y Adot				Date	10/12/2009	
Matrix	Water (Su	urface, Eff., Gro	und)						
D. (QC	Pct	LCS/LCSD	RDD	RPD	Spiked	Analysis
Parameter			Results	Recov	Limits	KPD	Limits	Amount	Date
Volatile Gas Ch	romatogra	phy/Mass Sr	ectrosc	ору					
n-Propylbenzene		LCS	27.7	92	(80-129)			30 ug/L	10/12/2009
		LCSD	28.5	95		3	(< 20)	30 ug/L	10/12/2009
Styrene		LCS	33.7	112	(80-120)			30 ug/L	10/12/2009
		LCSD	35.0	117		4	(< 20)	30 ug/L	10/12/2009
Dibromomethane		LCS	32.8	109	(80-120)			30 ug/L	10/12/2009
		LCSD	32.6	109		1	(< 20)	30 ug/L	10/12/2009
trans-1,3-Dichloroprop	pene	LCS	34.3	114	(80-124)			30 ug/L	10/12/2009
		LCSD	33.2	111		3	(< 20)	30 ug/L	10/12/2009
1,2,4-Trichlorobenzen	ie	LCS	32.9	110	(80-120)			30 ug/L	10/12/2009
		LCSD	32.9	110		0	(< 20)	30 ug/L	10/12/2009
1,1,2,2-Tetrachloroeth	ane	LCS	30.3	101	(76-123)			30 ug/L	10/12/2009
		LCSD	30.4	101		0	(< 20)	30 ug/L	10/12/2009
1,2-Dibromo-3-chloro	propane	LCS	33.1	110	(73-130)			30 ug/L	10/12/2009
		LCSD	33.3	111		1	(< 20)	30 ug/L	10/12/2009
Methyl-t-butyl ether		LCS	47.2	105	(80-120)			45 ug/L	10/12/2009
		LCSD	47.3	105		0	(< 20)	45 ug/L	10/12/2009
Tetrachloroethene		LCS	37.0	123 *	(79-122)			30 ug/L	10/12/2009
		LCSD	38.7	129 *		5	(< 20)	30 ug/L	10/12/2009
Dibromochloromethar	ne	LCS	35.4	118	(80-120)			30 ug/L	10/12/2009
		LCSD	36.3	121 *		3	(< 20)	30 ug/L	10/12/2009
1,3-Dichloropropane		LCS	32.4	108	(80-121)			30 ug/L	10/12/2009
		LCSD	33.0	110		2	(< 20)	30 ug/L	10/12/2009
1,2-Dibromoethane		LCS	33.9	113	(80-120)			30 ug/L	10/12/2009
		LCSD	33.6	112		1	(< 20)	30 ug/L	10/12/2009
Carbon tetrachloride		LCS	36.2	121	(80-126)			30 ug/L	10/12/2009
		LCSD	37.5	125		4	(< 20)	30 ug/L	10/12/2009
1,1,1,2-Tetrachloroeth Page	ane 65 of 88	LCS	35.1	117	(80-120)			30 ug/L	10/12/2009

SGS Ref.#	931413 La	ab Control S	ample			Printe	d Date/Time	10/27/2009	Analysis Date 10/12/2009 10/12/2009 10/12/2009 10/12/2009 10/12/2009 10/12/2009 10/12/2009 10/12/2009
	931414 L	ab Control S	ample Dur	olicate		Prep	Batch	VXX20101	
Client Name	Shannon & W	Vilson-Fairba	anks				Method	SW5030B	
Project Name/#	31-1-11472-0	01 Northwa	y Adot				Date	10/12/2009	
Matrix	Water (Surfac	ce, Eff., Gro	und)						
D			QC	Pct	LCS/LCSD	DDD	RPD	Spiked	Analysis
Parameter			Results	Recov	Limits	RPD	Limits	Amount	Date
Volatile Gas Chr	omatography	y/Mass Sp	ectrosc	opy					
		LCSD	36.4	121 *		4	(< 20)	30 ug/L	10/12/2009
Chloroform		LCS	31.9	106	(80-124)			30 ug/L	10/12/2009
		LCSD	32.5	108		2	(< 20)	30 ug/L	10/12/2009
							()	U	
Bromobenzene		LCS	31.2	104	(80-120)			30 ug/L	10/12/2009
		LCSD	31.4	105		0	(< 20)	30 ug/L	10/12/2009
Chloromethane		LCS	31.1	104	(67-125)			30 ug/L	10/12/2009
		LCSD	33.4	111		7	(< 20)	30 ug/L	10/12/2009
1 2 3-Trichloropropage		LCS	29.1	97	(80-120)			30. ug/I	10/12/2000
1,2,5 Themoropropule			20.3	98	(00 120)	1	(< 20)	30 ug/L	10/12/2009
		LCSD	27.5	78		1	(*20)	Jo ug/L	10/12/2007
Bromomethane		LCS	28.9	96	(30-140)			30 ug/L	10/12/2009
		LCSD	31.5	105		9	(< 20)	30 ug/L	10/12/2009
Bromochloromethane		LCS	35.5	118	(77-129)			30 ug/L	10/12/2009
		LCSD	34.9	116		2	(<20)	30 ug/L	10/12/2009
Vinyl chloride		LCS	32.6	109	(72 - 145)			20. ug/I	10/12/2000
v myr emoride			34.0	116	(72-145)	7	(< 20)	30 ug/L	10/12/2009
		LCSD	J 1 .7	110		1	(*20)	Jo ug/E	10/12/2007
Dichlorodifluorometha	ne	LCS	34.4	115	(62-153)			30 ug/L	10/12/2009
		LCSD	36.0	120		5	(< 20)	30 ug/L	10/12/2009
Chloroethane		LCS	31.0	103	(67-133)			30 ug/L	10/12/2009
		LCSD	31.2	104		1	(<20)	30 ug/L	10/12/2009
sec_Butylbenzene		LCS	20.5	08	(80-120)			20. ug/I	10/12/2000
see-Butyloenzene		LCS	20.5	102	(80-120)	3	(< 20)	30 ug/L	10/12/2009
		LCSD	50.5	102		5	(20)	JU ug/L	10/12/2009
Bromodichloromethane		LCS	32.3	108	(80-120)			30 ug/L	10/12/2009
		LCSD	33.3	111		3	(< 20)	30 ug/L	10/12/2009
1,1-Dichloroethene		LCS	34.2	114	(76-130)			30 ug/L	10/12/2009
		LCSD	36.4	121		6	(<20)	30 ug/L	10/12/2009
2 Butanona (MEV)		LCS	132	110 -	(66 126)			00/T	10/12/2000
2-Dutatione (MEK)			133	148 *	(00-130)	0	(< 20)	90 ug/L	10/12/2009
		LCSD	155	14/*		U	(< 20)	90 ug/L	10/12/2009

Page 66 of 88

SGS Ref.# 931413 931414		Lab Control S	ample	.		Printe	ed Date/Time	10/27/2009	11:25
Client Name Project Name/# Matrix	931414 Shannon & 31-1-1147 Water (Su	Lab Control S Wilson-Fairb 2-001 Northwa rface, Eff., Gro	ample Duj anks y Adot und)	plicate		ггер	Batch Method Date	SW5030B 10/12/2009	
Parameter		,,	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	omatogra	phy/Mass Sp	ectrosc	opy					
Methylene chloride		LCS	32.6	109	(63-131)			30 ug/L	10/12/2009
		LCSD	32.8	109	(00 101)	1	(< 20)	30 ug/L 30 ug/L	10/12/2009
T:11 0 1		LOG	22.0	110	((0.145))			20 /7	
Trichlorofluoromethan	e	LCS	32.9	110	(68-145)	1	(< 20)	30 ug/L	10/12/2009
		LCSD	33.1	110		1	(< 20)	50 ug/L	10/12/2009
P & M -Xylene		LCS	65.8	110	(80-120)			60 ug/L	10/12/2009
		LCSD	68.6	114		4	(< 20)	60 ug/L	10/12/2009
Nanhthalana		LCS	21.2	104	(75,120)			20	10/12/2000
Naphulaiene			31.5	104	(73-120)	0	(< 20)	30 ug/L 30 ug/I	10/12/2009
		LCSD	51.2	104		Ū	(*20)	50 ug/L	10/12/2009
o-Xylene		LCS	33.5	112	(80-120)			30 ug/L	10/12/2009
		LCSD	34.5	115		3	(< 20)	30 ug/L	10/12/2009
Bromoform		LCS	37.6	125 *	(80-120)			30. ug/I	10/12/2009
biomotorm		LCSD	39.0	130 *	(00 120)	4	(< 20)	30 ug/L 30 ug/L	10/12/2009
								U	
1,2,4-Trimethylbenzen	e	LCS	29.0	97	(80-125)			30 ug/L	10/12/2009
		LCSD	29.9	100		3	(< 20)	30 ug/L	10/12/2009
tert-Butvlbenzene		LCS	30.2	101	(80-122)			30 ug/L	10/12/2009
····		LCSD	30.9	103	()	2	(< 20)	30 ug/L	10/12/2009
1,1,1-Trichloroethane		LCS	35.2	117	(80-122)			30 ug/L	10/12/2009
		LCSD	36.2	121		3	(< 20)	30 ug/L	10/12/2009
1,1-Dichloroethane		LCS	31.9	106	(80-120)			30 ug/L	10/12/2009
,		LCSD	31.8	106	· · · ·	0	(< 20)	30 ug/L	10/12/2009
2-Chlorotoluene		LCS	28.0	93	(80-125)			30 ug/L	10/12/2009
		LCSD	28.7	96		2	(< 20)	30 ug/L	10/12/2009
Trichloroethene		LCS	34.0	113	(80-125)			30 ug/L	10/12/2009
		LCSD	35.3	118		4	(< 20)	30 ug/L	10/12/2009
trans-1,2-Dichloroether	ne	LCS	33.5	112	(79-132)	_	(. 20)	30 ug/L	10/12/2009
		LCSD	35.1	117		Э	(< 20)	30 ug/L	10/12/2009
1,2-Dichlorobenzene		LCS	31.6	105	(80-120)			30 ug/L	10/12/2009
Page 6	7 of 88	LCSD	31.4	105		1	(< 20)	30 ug/L	10/12/2009

SGS Ref.# Client Name	931413 931414 Shannon a	Lab Control S Lab Control S & Wilson-Fairba	ample ample Duj anks	olicate		Print Prep	ed Date/Time Batch Method	10/27/2009 VXX20101 SW5030B	11:25
Project Name/# Matrix	31-1-1147 Water (Su	2-001 Northwa rface, Eff., Gro	y Adot und)				Date	10/12/2009	
Parameter	~		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	omatogra	phy/Mass Sp	ectrosc	ору					
2,2-Dichloropropane		LCS	38.5	128	(80-132)			30 ug/L	10/12/2009
		LCSD	38.7	129		0	(< 20)	30 ug/L	10/12/2009
Hexachlorobutadiene		LCS	34.5	115	(77-125)			30 ug/L	10/12/2009
		LCSD	36.0	120		4	(< 20)	30 ug/L	10/12/2009
Isopropylbenzene (Cun	nene)	LCS	33.4	111	(80-121)			30 ug/L	10/12/2009
	,	LCSD	34.7	116		4	(< 20)	30 ug/L	10/12/2009
2-Hexanone		LCS	115	128	(68-130)			90 ug/I	10/12/2009
2 Heranone		LCSD	114	120	(00 150)	1	(< 20)	90 ug/L 90 ug/L	10/12/2009
1.2 Dishlaranranana		LCS	22.2	109	(90,121)			20 / 1	10/12/2000
1,2-Dichloropropane		LCS	32.5 33.1	108	(80-121)	3	(< 20)	30 ug/L 30 ug/L	10/12/2009
		LCOD	55.1	110		-	(-•)		
1,1-Dichloropropene		LCS	33.9	113	(80-122)			30 ug/L	10/12/2009
		LCSD	34.5	115		2	(< 20)	30 ug/L	10/12/2009
1,1,2-Trichloroethane		LCS	31.9	106	(77-120)			30 ug/L	10/12/2009
		LCSD	32.8	109		3	(< 20)	30 ug/L	10/12/2009
1,3-Dichlorobenzene		LCS	31.8	106	(80-120)			30 ug/L	10/12/2009
		LCSD	32.2	107		1	(< 20)	30 ug/L	10/12/2009
1 2 3-Trichlorobenzene		LCS	34.2	114	(77-120)			30 ug/I	10/12/2009
1,2,5 111011010001120110		LCSD	35.0	117	(/ / 120)	2	(< 20)	30 ug/L 30 ug/L	10/12/2009
a									
Surrogates		1.00		07	(72,120)				10/10/2000
1,2-Dichloroethane-D4	<surr></surr>			97	(73-120)	1			10/12/2009
		LCOD		,0		1			10/12/2009
Toluene-d8 <surr></surr>		LCS		98	(80-120)				10/12/2009
		LCSD		100		2			10/12/2009
4-Bromofluorobenzene	<surr></surr>	LCS		87	(76-120)				10/12/2009
		LCSD		88		0			10/12/2009

SGS Ref.#	931413	Lab Control Sample					ted Date/Time	10/27/2009	11:25
	931414	Lab Control Sample Duplicate					Batch	VXX20101	
Client Name	Shannon &	Wilson-Fairbanl			Method	SW5030B			
Project Name/#	31-1-11472-001 Northway Adot						Date	10/12/2009	
Matrix	Water (Surface, Eff., Ground)								
Parameter		R	QC esults	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

BatchVMS10917MethodSW8260BInstrumentHP 5890 Series II MS3 VNA

SGS Ref.#	931616 Lab Control Sample					l Date/Time	10/27/2009	11:25	
					Prep	Batch	VXX20105		
Client Name	Shannon & Wilson-Fa			Method	SW5030B				
Project Name/#	31-1-11472-001 North			Date	10/12/2009				
Matrix	Water (Surface, Eff., Ground)								
QC results affect the following production samples:									
1095963001, 1095963003, 1095963004, 1095963005, 1095963006, 1095963007									
		QC	Pct	LCS/LCSD		RPD	Spiked	Analysis	
Parameter		Results	Recov	Limits	RPD	Limits	Amount	Date	

SGS Ref.# Client Name	931616 Shannon &	Lab Control \$ & Wilson-Fairb	Sample			Printed Prep	Date/Time Batch Method	10/27/2009 VXX20105 SW5030B	11:25
Project Name/# Matrix	31-1-1147 Water (Su	2-001 Northwa rface, Eff., Gro	ay Adot ound)				Date	10/12/2009	
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chromatography/Mass Spectroscopy									
Benzene		LCS	30.5	102	(80-120)			30 ug/L	10/13/2009
Toluene		LCS	29.5	99	(77-120)			30 ug/L	10/13/2009
Ethylbenzene		LCS	30.7	102	(80-120)			30 ug/L	10/13/2009
n-Butylbenzene		LCS	27.5	92	(80-124)			30 ug/L	10/13/2009
Carbon disulfide		LCS	39.9	89	(72-123)			45 ug/L	10/13/2009
1,4-Dichlorobenzene		LCS	28.5	95	(80-120)			30 ug/L	10/13/2009
1,2-Dichloroethane		LCS	28.6	95	(80-129)			30 ug/L	10/13/2009
1,3,5-Trimethylbenzene	e	LCS	27.4	91	(80-128)			30 ug/L	10/13/2009
4-Chlorotoluene		LCS	26.5	88	(79-128)			30 ug/L	10/13/2009
Chlorobenzene		LCS	30.8	103	(80-120)			30 ug/L	10/13/2009
4-Methyl-2-pentanone	(MIBK)	LCS	90.9	101	(69-134)			90 ug/L	10/13/2009
cis-1,2-Dichloroethene		LCS	31.4	105	(80-125)			30 ug/L	10/13/2009
4-Isopropyltoluene		LCS	27.9	93	(80-125)			30 ug/L	10/13/2009
cis-1,3-Dichloropropen	e	LCS	29.6	99	(80-120)			30 ug/L	10/13/2009
n-Propylbenzene		LCS	26.0	87	(80-129)			30 ug/L	10/13/2009
Styrene		LCS	31.8	106	(80-120)			30 ug/L	10/13/2009
Dibromomethane		LCS	31.0	103	(80-120)			30 ug/L	10/13/2009
trans-1,3-Dichloropropo	ene	LCS	29.1	97	(80-124)			30 ug/L	10/13/2009
1,2,4-Trichlorobenzene		LCS	28.2	94	(80-120)			30 ug/L	10/13/2009
1,1,2,2-Tetrachloroetha	ine	LCS	27.1	90	(76-123)			30 ug/L	10/13/2009
1,2-Dibromo-3-chlorop Page 7	ropane 1 of 88	LCS	25.7	86	(73-130)			30 ug/L	10/13/2009

SGS Ref.#	931616 Lab Control	l Sample			Printed Prep	Date/Time Batch	10/27/2009 VXX20105	11:25
Client Name Project Name/#	Shannon & Wilson-Fair 31-1-11472-001 Northy	rbanks vay Adot			-	Method Date	SW5030B 10/12/2009	
Matrix	Water (Surface, Eff., G	round)						
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	comatography/Mass S	Spectros	сору					
Methyl-t-butyl ether	LCS	42.5	95	(80-120)			45 ug/L	10/13/2009
Tetrachloroethene	LCS	32.6	109	(79-122)			30 ug/L	10/13/2009
Dibromochloromethan	e LCS	31.8	106	(80-120)			30 ug/L	10/13/2009
1,3-Dichloropropane	LCS	30.5	102	(80-121)			30 ug/L	10/13/2009
1,2-Dibromoethane	LCS	31.5	105	(80-120)			30 ug/L	10/13/2009
Carbon tetrachloride	LCS	30.9	103	(80-126)			30 ug/L	10/13/2009
1,1,1,2-Tetrachloroetha	ane LCS	32.7	109	(80-120)			30 ug/L	10/13/2009
Chloroform	LCS	29.4	98	(80-124)			30 ug/L	10/13/2009
Bromobenzene	LCS	28.7	96	(80-120)			30 ug/L	10/13/2009
Chloromethane	LCS	28.3	95	(67-125)			30 ug/L	10/13/2009
1,2,3-Trichloropropane	LCS	25.8	86	(80-120)			30 ug/L	10/13/2009
Bromomethane	LCS	24.6	82	(30-140)			30 ug/L	10/13/2009
Bromochloromethane	LCS	33.6	112	(77-129)			30 ug/L	10/13/2009
Vinyl chloride	LCS	28.6	95	(72-145)			30 ug/L	10/13/2009
Dichlorodifluorometha	ne LCS	25.4	85	(62-153)			30 ug/L	10/13/2009
Chloroethane	LCS	26.2	87	(67-133)			30 ug/L	10/13/2009
sec-Butylbenzene	LCS	27.4	91	(80-120)			30 ug/L	10/13/2009
Bromodichloromethane	e LCS	29.5	98	(80-120)			30 ug/L	10/13/2009
1,1-Dichloroethene	LCS	29.9	100	(76-130)			30 ug/L	10/13/2009
2-Butanone (MEK)	LCS	91.9	102	(66-136)			90 ug/L	10/13/2009

SGS Ref.# Client Name Project Name/#	931616 I Shannon & V 31-1-11472-	Lab Control S Wilson-Fairb 001 Northw:	Sample banks			Printed D Prep	Date/Time Batch Method Date	10/27/2009 VXX20105 SW5030B 10/12/2009	11:25
Matrix	Water (Surfa	ice, Eff., Gro	ound)					10,12,2009	
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	omatograph	y/Mass S	pectros	сору					
Methylene chloride		LCS	30.0	100	(63-131)			30 ug/L	10/13/2009
Trichlorofluoromethane)	LCS	26.5	89	(68-145)			30 ug/L	10/13/2009
P & M -Xylene		LCS	60.9	102	(80-120)			60 ug/L	10/13/2009
Naphthalene		LCS	26.1	87	(75-120)			30 ug/L	10/13/2009
o-Xylene		LCS	31.3	104	(80-120)			30 ug/L	10/13/2009
Bromoform		LCS	33.7	112	(80-120)			30 ug/L	10/13/2009
1,2,4-Trimethylbenzene	2	LCS	27.1	91	(80-125)			30 ug/L	10/13/2009
tert-Butylbenzene		LCS	28.0	93	(80-122)			30 ug/L	10/13/2009
1,1,1-Trichloroethane		LCS	30.8	103	(80-122)			30 ug/L	10/13/2009
1,1-Dichloroethane		LCS	28.0	93	(80-120)			30 ug/L	10/13/2009
2-Chlorotoluene		LCS	26.2	88	(80-125)			30 ug/L	10/13/2009
Trichloroethene		LCS	31.0	103	(80-125)			30 ug/L	10/13/2009
trans-1,2-Dichloroethen	ie	LCS	30.0	100	(79-132)			30 ug/L	10/13/2009
1,2-Dichlorobenzene		LCS	28.8	96	(80-120)			30 ug/L	10/13/2009
2,2-Dichloropropane		LCS	27.5	92	(80-132)			30 ug/L	10/13/2009
Hexachlorobutadiene		LCS	28.8	96	(77-125)			30 ug/L	10/13/2009
Isopropylbenzene (Cum	nene)	LCS	31.0	103	(80-121)			30 ug/L	10/13/2009
2-Hexanone		LCS	83.1	92	(68-130)			90 ug/L	10/13/2009
1,2-Dichloropropane		LCS	30.3	101	(80-121)			30 ug/L	10/13/2009
1,1-Dichloropropene		LCS	30.3	101	(80-122)			30 ug/L	10/13/2009
1,1,2-Trichloroethane Page 73	3 of 88	LCS	30.0	100	(77-120)			30 ug/L	10/13/2009

SGS Ref.#	931616	Lab Control	Sample			Printed	Date/Time	10/27/2009	11:25
						Prep	Batch	VXX20105	
Client Name	Shannon &	& Wilson-Fairl	oanks				Method	SW5030B	
Project Name/#	31-1-1147	2-001 Northw	ay Adot				Date	10/12/2009	
Matrix	Water (Su	rface, Eff., Gro	ound)						
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro	omatogra	phy/Mass S	pectros	сору					
1,3-Dichlorobenzene		LCS	29.1	97	(80-120)			30 ug/L	10/13/2009
1,2,3-Trichlorobenzene		LCS	28.8	96	(77-120)			30 ug/L	10/13/2009
Surrogates									
1,2-Dichloroethane-D4	<surr></surr>	LCS		93	(73-120)				10/13/2009
Toluene-d8 <surr></surr>		LCS		102	(80-120)				10/13/2009
4-Bromofluorobenzene	<surr></surr>	LCS		90	(76-120)				10/13/2009

BatchVMS10921MethodSW8260BInstrumentHP 5890 Series II MS3 VNA

SGS Ref.# 92 Client Name Si Project Name/# 3 Matrix W	931875Lab Control Sample931876Lab Control Sample DuplicateShannon & Wilson-Fairbanks31-1-11472-001 Northway AdotWater (Surface, Eff., Ground)						Date/Time Batch Method Date	10/27/2009 VXX20113 SW5030B 10/13/2009	11:25
QC results affect the followir 1095963003, 10959630	ng production 004, 109596	n samples: 53005, 10959	963006.10	95963007					
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chroma	atograph	y/Mass Sp	ectrosc	opy					
Benzene		LCS	33.5	112	(80-120)			30 ug/L	10/13/2009
		LCSD	31.7	106		5	(< 20)	30 ug/L	10/13/2009
o-Xylene		LCS	33.7	112	(80-120)			30 ug/L	10/13/2009
		LCSD	32.4	108		4	(<20)	30 ug/L	10/13/2009
Surrogates									
1,2-Dichloroethane-D4 <su< td=""><td>urr></td><td>LCS</td><td></td><td>97</td><td>(73-120)</td><td></td><td></td><td></td><td>10/13/2009</td></su<>	urr>	LCS		97	(73-120)				10/13/2009
		LCSD		98		1			10/13/2009
Toluene-d8 <surr></surr>		LCS		100	(80-120)				10/13/2009
		LCSD		101		1			10/13/2009
4-Bromofluorobenzene <su< td=""><td>urr></td><td>LCS</td><td></td><td>90</td><td>(76-120)</td><td></td><td></td><td></td><td>10/13/2009</td></su<>	urr>	LCS		90	(76-120)				10/13/2009
		LCSD		88		2			10/13/2009

Batch	VMS10926
Method	SW8260B
Instrument	HP 5890 Series II MS3 VNA

SGS Ref.#	931944 Lab Control Sample	Printed Date/Time			11:25		
	931945 Lab Control Sample Duplicate	Prep	Batch	XXX21827			
Client Name	Shannon & Wilson-Fairbanks		Method	SW3520C			
Project Name/#	31-1-11472-001 Northway Adot		Date	10/15/2009			
Matrix	Water (Surface, Eff., Ground)						
QC results affect the following production samples:							
1095963001 1095963003 1095963004 1095963005 1095963006 1095963007 1095963008							

10/0/00001, 10/0/000000, 10/0/	, 10,0,0,000,000,000,000,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5705001, 1075705	/000				
Parameter	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Semivolatile Organic Fuel	s Department							
Diesel Range Organics	LCS 18.4	92	(75-125)			20 mg/L	10/16/2009	
	LCSD 17.7	89		4	(< 20)	20 mg/L	10/16/2009	
Surrogates								
5a Androstane <surr></surr>	LCS	86	(60-120)				10/16/2009	
	LCSD	85		1			10/16/2009	

Batch	XFC8960
Method	AK102
Instrument	HP 6890 Series II FID SV D R

SGS Ref.# Client Name Project Name/# Matrix QC results affect the follo	932635Lab Control Sample932640Lab Control Sample DuplicateShannon & Wilson-Fairbanks31-1-11472-001 Northway AdotWater (Surface, Eff., Ground)wing production samples:					Printed Prep	Date/Time Batch Method Date	10/27/2009 VXX20135 SW5030B 10/16/2009	11:25
1095963006									
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro Benzene	omatogra <u>r</u>	b hy/Mass Sp LCS LCSD	28.9 28.9	96 96	(80-120)	0	(< 20)	30 ug/L 30 ug/L	10/16/2009 10/16/2009
Surrogates									
1,2-Dichloroethane-D4	<surr></surr>	LCS LCSD		99 99	(73-120)	1			10/16/2009 10/16/2009
Toluene-d8 <surr></surr>		LCS LCSD		99 103	(80-120)	4			10/16/2009 10/16/2009
4-Bromofluorobenzene	<surr></surr>	LCS LCSD		100 101	(76-120)	1			10/16/2009 10/16/2009

Batch	VMS10936
Method	SW8260B
Instrument	HP 5890 Series II MS1 VJA

SGS Ref.#	933013	Lab Control S	Sample			Printed	Date/Time	10/27/2009	11:25
	933014	Lab Control S	Sample Du	plicate		Prep	Batch Mothod	VXX20141	
Client Name Project Name/#	Shannon 31_1_14	& Wilson-Fairbard	anks				Date	10/17/2009	
Matrix	Water (Su	urface, Eff., Gro	und)					10/1//2009	
QC results affect the foll	owing produ	ction samples:							
1095963001, 10959	963003, 109	5963004, 10959	963005, 10	95963007, 109	5963008, 1095963	3009			
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartmen	<u>it</u>							
Benzene		LCS	0.107	107	(80-120)			0.100 mg/L	10/17/2009
		LCSD	0.112	112		5	(<20)	0.100 mg/L	10/17/2009
Toluene		LCS	0.103	103	(80-120)			0.100 mg/L	10/17/2009
		LCSD	0.111	111		7	(<20)	0.100 mg/L	10/17/2009
Ethylbenzene		LCS	0.106	106	(87-125)			0.100 mg/L	10/17/2009
		LCSD	0.111	111		5	(<20)	0.100 mg/L	10/17/2009
o-Xylene		LCS	0.103	103	(85-120)			0.100 mg/L	10/17/2009
		LCSD	0.109	109		6	(<20)	0.100 mg/L	10/17/2009
P & M -Xylene		LCS	0.211	106	(87-125)			0.200 mg/L	10/17/2009
		LCSD	0.223	111		5	(<20)	0.200 mg/L	10/17/2009
Surrogates									
1,4-Difluorobenzene <s< td=""><td>surr></td><td>LCS</td><td></td><td>104</td><td>(80-120)</td><td></td><td></td><td></td><td>10/17/2009</td></s<>	surr>	LCS		104	(80-120)				10/17/2009
		LCSD		104		0			10/17/2009

Batch	VFC9714
Method	AK101
Instrument	HP 5890 Series II PID+HECD VBA

SGS Ref.#	933013	Lab Control S	ample			Printed	Date/Time	10/27/2009	11:25
Client Name	933014	Lab Control S	ample Du	plicate		Prep	Batch Method	VXX20141 SW5030B	
Proiect Name/#	31-1-114	& wilson-Fairda 72-001 Northwa	v Adot				Date	10/17/2009	
Matrix	Water (Si	urface, Eff., Gro	und)						
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels D	epartmer	<u>it</u>							
Benzene		LCS	107	107	(80-120)			100 ug/L	10/17/2009
		LCSD	112	112		5	(< 20)	100 ug/L	10/17/2009
Toluene		LCS	103	103	(80-120)			100 ug/L	10/17/2009
		LCSD	111	111		7	(<20)	100 ug/L	10/17/2009
Ethylbenzene		LCS	106	106	(87-125)			100 ug/L	10/17/2009
		LCSD	111	111		5	(< 20)	100 ug/L	10/17/2009
o-Xylene		LCS	103	103	(85-120)			100 ug/L	10/17/2009
		LCSD	109	109		6	(< 20)	100 ug/L	10/17/2009
P & M -Xylene		LCS	211	106	(87-125)			200 ug/L	10/17/2009
		LCSD	223	111		5	(< 20)	200 ug/L	10/17/2009
Surrogates									
1,4-Difluorobenzene <s< td=""><td>surr></td><td>LCS</td><td></td><td>104</td><td>(80-120)</td><td></td><td></td><td></td><td>10/17/2009</td></s<>	surr>	LCS		104	(80-120)				10/17/2009
		LCSD		104		0			10/17/2009

Batch	VFC9714
Method	SW8021B
Instrument	HP 5890 Series II PID+HECD VBA

SGS Ref.# Client Name Project Name/# Matrix	933015Lab Control Sample933016Lab Control Sample DuplicateShannon & Wilson-Fairbanks31-1-11472-001 Northway AdotWater (Surface, Eff., Ground)	Printed Da Prep	te/Time Batch Method Date	10/27/2009 VXX20141 SW5030B 10/17/2009	11:25
QC results affect the follo	wing production samples:				
1095963001, 109596	3003. 1095963004. 1095963005. 1095963007. 1095963008. 1095963009				

10/5/05001, 10/5/05005, 10/5/0	5001, 10757	05005, 10	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,00)			
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Department								
Gasoline Range Organics	LCS LCSD	0.213 0.206	106 103	(60-120)	3	(< 20)	0.200 mg/L 0.200 mg/L	10/17/2009 10/18/2009
Surrogates								
4-Bromofluorobenzene <surr></surr>	LCS LCSD		108 108	(50-150)	0			10/17/2009 10/18/2009

Batch	VFC9714
Method	AK101
Instrument	HP 5890 Series II PID+HECD VBA

SGS Ref.#	933882 L	ab Control	Sample			Printed Pren	Date/Time Batch	10/27/2009 MXX22423	11:25	
Client Name Project Name/# Matrix	Shannon & V 31-1-11472-0 Water (Surfa	Vilson-Fairl 001 Northw ce, Eff., Gro	banks ay Adot ound)			Trep	Method Date	SW3010A 10/21/2009		
QC results affect the 1095963006, 10	following productior 95963007	n samples:								_
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Metals by ICP/	<u>'MS</u>									
Arsenic		LCS	1040	104	(80-120)			1000 ug/L	10/22/2009	
Barium		LCS	1040	104	(80-120)			1000 ug/L	10/22/2009	
Cadmium		LCS	102	102	(80-120)			100 ug/L	10/22/2009	
Chromium		LCS	416	104	(80-120)			400 ug/L	10/22/2009	
Lead		LCS	1020	102	(80-120)			1000 ug/L	10/22/2009	
Nickel		LCS	1010	101	(80-120)			1000 ug/L	10/22/2009	
Vanadium		LCS	202	101	(80-120)			200 ug/L	10/22/2009	

Batch	MMS6155
Method	SW6020
Instrument	Perkin Elmer Sciex ICP-MS P3

-	

SGS Ref.#	933883	Matrix	Spike			Print	ed Date/Time	10/27/200	9 11:25
	933884	Matrix	Spike Duplic	ate		Prep	Batch	MXX2242	23
							Method	3010 H20	Digest for Metals ICI
							Date	10/21/200)9
Original	1095622001								
Matrix	Water (Surface,	Eff., Grour	nd)						
QC results affect	the following production sat	mples:							
1093903000,	1093903007								
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
	/								
Metals by I	CP/MS								
Lead	MS	ND	974	97	(80-120)			1000 ug	g/L 10/22/2009
	MSD		989	99		2	(< 15)	1000 ug	g/L 10/22/2009
Batch	MMS6155								
Method	SW6020								
Instrument	Perkin Elmer Sciex IC	CP-MS P3							

S Inc. New Jersey Maryland North Jersey New York North Zarolina Ohio West Virginia Www.us.sgs.com	page of of	d d	intered 2	10/0/0/H/X/W/	(1/2/6/F/8/3/) REMARKS		×	\times \times \times \times	X X X X X				X X X X	XXX		OD Project? YES NO Special Deliverable Requirements:	ooler ID	equested Tamaqound Time and or Special Instructions:	THHS BUDY HOLD TWE (0) ROOD -17	When we want a ward we want a ward ward and a ward	amples Received Cold? YES NO Chain of Custody Seal: (Circle)	Emperature C: 45 . 24 INTACT BROKEN ABSENT	THE THYAN 12 1-10 White - Retained by
Service	SGS Reference #:	SAMPLE US	TYPE C C C C C C C C C C C C C C C C C C C	R Z − A − GRAB Multi Incremental	R Samples	6	0	10	01	S				n In		plan loa	CINCHN'SS 6					تر By: ۱	
095963	0070-62.17	nnan I I L		172-001	TIME MATRIX MATRIX CODE	9 11:45 GW	7 12:00 GW	9 H:00 GW	1 HH 15 GW	7.14:55 GW	· ·	9 11-15 GN	9 10:45 GW	1 13:10 GW		Received By:	- Curren to	Received By:	Perceived Byr			Received For Laborato	561,6301
	JOM PHONE NO:	DCK-MUDD	EMAIL:	auote #:	DATE	0/L/01/0	02 10/ 10	01-101 Sa	of 10-100	02 10-100		06 10/8/0	018/01/20	203 10/3/00	T	ate Time	55:01 60/6/	ate Time	104 1500			ate Time	(1) 562-2343 Fax: (907)
S S S S S S S S S S S S S S S S S S S	annon 2 Wil	A CANALL	that and have have	ZW VZ	SAMPLE IDENTIFICATIC	1472-100709-c	0-botool-2th	J-POF001-5FH	3-60-001-74H	0-601-7241		0- 408001 - 2441	0-100001-7141	HTZ-100809-C	TRIPBUA	quished By:(1) D(y: (2) Di	TX M 10	2 		N: (4)	a Anchorade. AK 99518 Tel: (907
Pa		88 MINOLI	REPORTS RO: ANDRA Cark	INVOICE TO:	LAB NO.	C.N.J	QA,B	OA.J	DA-I	CAC		WA-H	DA.I	@ A.E	DAC 3	Collected/Relin	h	Relinquished By	Bolinanichad Bi			Relinquished B	CI 200 W Potter Drive

SGS

X

SAMPLE RECEIPT FORM

SCS WO#

Ver	NJ		GAMI LE RECEIT I FORM	505 W 0π.	
res	NO	NA	And a second as DUCU and with an order 70 has of hald the so	TAT (airele	
			Are samples HUSH , priority or <i>W/In 72 hrs</i> of hold time ?	TAT (CITCLE	eta: John Standard -or- Rush
			If yes, have you done e-mail ALERT notification?	Received D	
			Are samples within 24 hrs. of hold time of due date ?		
			IT yes, have you also <i>spoken with</i> supervisor?	Cooler ID	Temperature Weasured w/
			More complex collected with proper preservative?	1 C=	4.1 TB=LOR FRATIL
			Any problems (ID cond'n HT etc)? Explain:	7-1-1	15 +18/17 196 290
					°C
					O
				Note: Temperature	e readings include thermometer correction factors
	-		If this is for PWS, provide PWSID :	Delivery met	hod (circle all that apply):
			Payment received: \$ by Check or Credit Card	Client Ale	ert Courier / Lynden / SGS
			Will courier charges apply?	UPS / Fed	IEx / USPS / DHL / Carlile
			Data package required? (Level: 1 / 2 / 3 / 4)	AkAir Golds	streak / NAC / ERA / PenAir
			Notes:	Ot	her:
	1		Is this a DoD project? (USACE, Navy, AFCEE)	Additional San	nple Remarks: $(\sqrt{if applicable})$
				E>	ktra Sample Volume?
	<u>This se</u>	ection	must be filled out for DoD projects (USACE, Navy, AFCEE):		mited Sample Volume?
Yes	ľ	NO		IVII	uiti-incremental Samples?
			Is received temperature $\leq 6^{\circ}$ C?	La	ab required for
			Were containers ice-iree? Notify PM immediately of any ice in samples.	n	preign Soil?
			form ES 0020 (attached) for samples/analyses affected	r v	
			Was there an airhill? (If "yes" see attached)	This section	must be completed if problems are noted
			Was cooler sealed with custody seals & were they intact?	<u>1 his section i</u>	musi de completeu il prodiems ure noteu:
			# / where:	Was client r	notified of problems? Yes / No
	_		Was there a COC with cooler?	5 (666 5)	
			Was COC sealed in plastic bag & taped inside lid of cooler?	By (SGS PN	A):
		al an	Was the COC filled out properly? Did labels correspond?	Individual c	ontacted:
	. <u></u>		Did the COC indicate USACE / Navy / AFCEE project?	Via: Phon	e / Fax / E-mail (circle one)
			Samples were packed to prevent breakage with (circle one):	Date/Time:	
			Bubble Wrap Vermiculite Other (specify):	Reason for c	contact:
			Were all samples sealed in separate plastic bags?		
			Were correct container / sample sizes submitted?		
	-		Was the PM notified of arrival so they can send		
			Sample Receipt Acknowledgement to client?		
			Sumple Receipt Lexilo wedgement to enent.		
				Change Ord	er Reaured? Yes / No
L					

Notes: * limited sample volume for samples 1472-100709-001 and

1472-100709-005 - Client is aware CAB 10/09/09

	August.					
Completed by (sign):	Carry WWW	Boor reviewer'	(print):	(PDA	INBELIE	
Login proof: Self-ched		Feel-leviewei	S miliais_			

SGS W(

SAMPLE RECEIPT FORM FOR TRANSFERS From FAIRBANKS, ALASKA To ANCHORAGE, AK

	TO BE COMPLETED IN ANCHORAGE UPON ARRIVAL FROM FAIRBANKS.
N	OTES RECORDED BELOW ARE ACTIONS NEEDED UPON ARRIVAL IN ANCHORAGE.
Notes:	SAMPLE ID 1472-100804-006 THATE WOLF INCE
	REIENER BROKEN IN LODGER SIMILY WET
	51 me/t TO 1/122 10050/ 2015
	PARTICE IN 1912 100 804.003, ONE VOL VICE RECENED
	PROUEN IN COODER, TWO MUSSING. SAMIG 1057
	SLAMELE JO 1472-100804-004 TWO VOL VILES MISSING SIMMEROSE
Receipt	Date / Time: /0-10-09 1160
Delivery	method to Anchorage (circle all that apply);
Alert Co	rier / UPS / FedEx / USPS / AA Goldstreak / NAC / ERA / PenAir / Carlile/ Lynden SGS
Other: _	
Airbill #	
COOLE	R AND TEMP BLANK READINGS*
<u>Cooler II</u>	2 <u>Temp Blank (°C)</u> <u>Cooler (°C)</u> <u>Cooler ID</u> <u>Temp Blank (°C)</u> <u>Cooler (°C)</u>
-2	
CUSTOR	V SFALS INTACT. TES LAD
000100	#I WHERE: 9 FRONT & RICK JON IN
COMPLI	CTED BY:
*Temperatur	e readinos include thermometer correction fortore
	service mermue mermometer correction jactors.

0				*Notes	*						-		<u> </u>									T	Τ].	
Ó			a	ID [†] HN	[+	+		+	+									+	4			6	
Ś			ati X	Ascorbic Acid	 7	1		+	+	+		+	+	†		 		+			+	1			0	
Ś			ęŻ	HOBN	1			·		- <u> </u>	1	1	1		†	1	<u> </u>	+				1				
			res	H2SO4	ſ					1					1			1			1	1	9			
			1	EONH																1	1		#1		Dat	
		#ON		HCI	1	7	7		<u> </u>			7	1	2	7			12	3	7	17		SOF			I
		SS V		ənoN				7		7						7							per			
		S		Other:																			fed			
			ype	Septa	5	1	<u> </u>		ļ		<u> </u>	1	5	7		ļ		C	7	5			nen			
			er T	Coli		ļ		 	 	_	<u> </u>	ļ	<u> </u>	ļ		ļ,	ļ						ocur			
		5	tain	Valgene		 		ļ		ļ	ļ	ļ	ļ	ļ				<u> </u>			ļ	1	e do			
		kinç	Con	НДРЕ			<u> </u>			<u> </u>			ļ	ļ				ļ			ļ	1	st b	ist bi		
		[rac		07 90		+	<u> </u>			$\left \right $		1			<u> </u>				~	<u> </u>	$\left \cdot \right $	4	t mu		l y	
		tle 1		Other:	2	3	13	10		1.3		12	2	2	1	2		1.2	2			┢──	ceipi	ceipt	Va	
		Bot	r Volume	7007								01						ļ			 	6	D re(7	\mathcal{N}	
		- W			2	0						01	1.1					~		~		ĕ			R.	À
		OR		705 10 70021													1	ļ			ļ	<u> </u>	U		by:	
		PT F	aine																			<u> </u>	rvat		ted	
		E E	Conta	208 10 10052			2								8						9	8	orese		ple	
	i	R		Jm00č			ļ	ļ															alp	(Com	
		Ľ				ļ		F		0			ļ		•	0						S	mic			
		AM		<u>с</u> ВТ																		otals	che			
		Ś		JU																		e To	nal)			
				Test	0					4		2	۴ (A Voc	0			0		L Vol		Bottl	which require (addition			\$
		ļ.	-	Xatrix	1 6196	NOC	DAC	1441		1 124		1 6130	VOC	じメアル	DA	LA49		1 CM	VOI	EXTR	DAC		Note: Containers			
	6			Container ID	XC	Ц	14	2		611		0	2	4	3	N		¥	9	U	2C		*			
	3			#	1,3 1	, ,	ँ	7		R K		L L	V	-	Ľ	F		2	-		7					

			sətoN*																					a
			Other:												ĺ									0
		é	IJ⁺HN														1							2
		ativ	Ascorbic Acid													Ĺ								
		Š	HOPN																					2
		2 Sec	70S2H						ļ													90		te:
	-		EONH			<u> </u>	<u> </u>		7	<u> </u>					7							P#1		Da
	ţ Š		ICI		ļ	5)	7	ļ	2			7	7		7		7	7	4		SO		
	SS V		əuoN	2							2											per		
	ŝ		Other:		ļ				ļ	ļ					ļ							Ited		
		yp.	Septa		ļ	7	5	2			ļ		5	5				7		4		mer		
		er T	Coli				,															ocu		N,
	5	tain	Nalgene		 				~	ļ					5							b ed		(4)
	kinç	on	HDBE		 				\sim						12							ust b	Y	\langle , \rangle
	rac		90		 				<u> </u>				5									, T	N	$[\mathcal{V}]$
	le T			5	 		~	~		<u></u>	,		2	5	·	2	-+	2	<u>ر</u>	4		ceip		1
	3ott	പ	Other:	1					 											1		Ĕ		Š
	- V	Ĕ	Jm0 1	 		-	\sim	~					3	3				m		+	2	Jodr		
	ORN	2	Jm09																	l		ion (:yc
	L L	ner	125mL or 4oz			 											_					rvat		ed 1
	EIP	ntai	250mL or 802						~	R					~	R			S		8	ese		plet
3	S E C	ပိ	Jm008																			al pr		om
	щ		ור	Q							2										۲	ліс		0
	MPI		TB									·							:		als	chei		
	SA		ბი																		Tot	al)		
																					ottle	ition		
										-					5						ğ	add		
									ŝ.						123					Ň		ire (
								101	111						MI					la de		edn		-4
			lest					2	UE W						L.					Ś		chr		
				7		0	• •	4		-			0		\widetilde{c}	0		X		1		whi		
				14		15	00	1×	F	20	F F		20	00	6	120			20	6		ers		
							1	Ü	2	\mathcal{Q}	0		6	7	0	2	ľ	2	0	540		tain		
															M					Γ		Con		
			xittaM	1		į												~		1		ote:		
	T		Container ID	23		4	3	5 1	6	2	I		, C	1.1	5	Y.		ý	4	Y	d u	Z *		
R				2			Ú.		7	<u>L'</u>	Ś		K	Ì		Ľ		1	Ž	¥				
			#	5		6							N					B		01				

				SOLONI		1	1			T	1	<u> </u>	T/	1	1	1	T	1	Т	r	1	T	—		1	
Same Let RCEIPT FORM Same Let RCEIPT FORM Same Let RCEIPT FORM Same Let RCEIPT FORM Amount of the rest of the re				. TOILO				<u> </u>	 		+		+			┼──		 	<u> </u>	 		-			0	9
Same RECEIPT FORM - Built Same Receiver Addition Miledition Miledition And Addition And A				Other:	1	<u> </u>		ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>			_			ļ	 	ļ	-			0	•
SMMLE RECEIPT FORM - Both **			ive	UJ'HN											<u> </u>		ļ		<u> </u>	 	ļ	4			9	•
Same Let EREEIT FORM - Both			vat	bio & cidrors &			ļ			ļ							ļ	<u> </u>	ļ	 	 	4			5	1
SAMPLE RECEIPT FORM - Bottle Tracking Sceword Container 1D Container 1			Ser	HON		ļ,										<u> </u>	<u> </u>					4			ベ	1
SAMPLE RECEIPT FORM - Both Endering Solution The matrix of			Pre	CONT					<u> </u>						 							-	106		ate:	
SAME RECIFIT Form . Both - D - D - D - D - D - D - D - D - D -		#			$\left \cdot \right $								<u></u>			<u> </u>						4	#dC			
SAMPLE RECEIPT FORM - Bottle Tracking SSAMPLE	SGS SAMPLE PECEIDT FORM - Rottle Tracking	NO			5	5	2																ŝ			
SAMPLE RECEIPT FORM • Both Tracking S Image: Solution of the section of the seco		GS		.10000						+			1									4	ed pe			
SAMPLE RECEIPT FORM - Bothe Tracking Ample RECEIPT FORM - Bothe Tracking Ample RECEIPT FORM - Bothe Tracking Ample RECEIPT FORM - Bothe Tracking Container 1D Container 1D Container 1D Note: Contrainer which require (additional) change Bothe Totals Note: Contrainer which require (additional) change Completed by: Ample Particle Part and the contrainer which require (additional) change Completed by: Ample Part Part Part Part Part Part Part Part		Ś	e	Other:	<u> </u>				ļ	_		<u> </u>	 	 				ļ					ntec			
SAMPLE RECEIPT FORM - Both and Tacking and the form of			Гур		1	5	5					ļ		<u> </u>	<u> </u>	<u> </u>				ļ		4	mei			
SAMPLE RECEIPT FORM - Bottle Tracking		SGS SAMPLE RECEIPT FORM - Bottle Tracking SGS WO#	er .				 	ļ									ļ				ļ	4	locum			
SAMPLE RECEIPT FORM - Bottle Tracking till the first of t		6	tain		Image: constraint of the second straint of the second strand straint of the second straint of the second straint o				<u> </u>							ļ	4	b əc								
SAMPLE RECEIPT FORM - Bottle Trac Ammune Ammune <td></td> <td>kin</td> <td>ő</td> <td>Нррг</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>╂──</td> <td></td> <td></td> <td></td> <td>ļ</td> <td><u> </u></td> <td></td> <td></td> <td> </td> <td> </td> <td>* Note: Containers which recruite (additional) chemical preservation (100)</td> <td>ist t</td> <td></td> <td>K</td> <td></td>		kin	ő	Нррг						╂──				ļ	<u> </u>					* Note: Containers which recruite (additional) chemical preservation (100)	ist t		K			
SAMPLE RECEIPT FORM - Botha - 1 A Container ID A Container ID A Container ID A Container ID A Container ID A Container ID A Container Volume Container Volume Container Volume Container Volume Container Volume Container Volume B A D C C ID Container Volume Container Volume Completed by: Andreau Completed by: Completed		rac		55	<u> </u>	+		 									ļ	ļ	ļ			4	* Note: Containers which require (additional) chemical preservation upon receipt must be documented per SOP#106	Ń		
SAMPLE RECEIPT FORM - Bott A A A Container IID Container IID Container IID Container IID Completed by: A Container ID Completed by: A Container ID Container ID Container ID Container ID Container ID Container ID Container ID Containe		le T				5												ļ			<u> </u>	 	eipt	0	\bigcirc	
SAMPLE RECEIPT FORM - B A Matrix Container IID A Matrix Container Volume C M Matrix C M Ma		ott		Other:		ļ	ļ		ļ	ļ	ļ						ļ	<u> </u>	L				<u>e</u>		1	
SSS ample Recent form Ample Recent form Ample Recent form Ample Recent form Ample Recent form Container ID Container ID Botte Totals Container ID Botte Totals Container ID Completed br. Completed br.		-	Ĕ	Jm04	~		-															3	nod			~
SSS American Sector Se		RM	Volu	Jm09																			n u			, ·
SSPELE RECEPT * A Container ID A CONTAINER A CONT		С Ц	ler	125mL or 4oz									1										atio		d þ.	
SSPIELERCE * America III * Note: Containers which require (additional) chemical pre-		EIPT	tair	250mL or 802							<u>†</u>		1			,							s nemical preserva		lete	
SSMPLE R 		ECE	u Co	Jm002					<u> </u>		1	1	<u> </u>				<u> </u>								du	
# 9 # 9 # 9 # 9 A Container ID A Matrix Image: Second state in the image of the image	3	ЕR		וד								†	<u> </u>												ပိ	
SS * A Container ID * Note: Containers which require (additional) c1		PLI		II IR	5	.\	5					+	+							-		s				
* Note: Container Matrix * Note: Container Matrix * Note: Container Matrix		AN		ш <u>о</u> СС)		3					1	+									otal	с ()			
SS * A Container ID * Note: Container Matrix * Note: Containers which require (additive addition of the second		S														<u> </u>						le T	e Tc mal)			
* Note: Containers which require (ad marked in the container ID)																						Bottl	ditic			
* Note: Container ID * Note: Container ID * Note: Container State							5																(ad			
* Note: Containers which requires which requires which requires which requires which requires a second structure of the second							2																uire			
* Note: Containers which				÷																			requ			,
* Note: Containers wh				Tes	0		13																ich			
* Note: Containers					R	20	2×																Å			
* Nde: Container ID * Nde: Container ID * Nde: Container ID					9	Vc	E																ers			
* Note: Container ID * Note: Container ID * Note: Container ID * Note: Container ID																							tain			
* Normalized for the second se																							Con			
* * X X X X X X X X X X X X X		,		XitteM	1																		ote: (
** 1/ (Il ranietno) < d/ //					+																		ž *			
	Ģ			(T registro)	X	Ð	V					ļ														
				#	5																					